
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

FREDDY BRASILEIRO SILVA

REPRESENTATION OF MULTI-LEVEL DOMAINS ON THE WEB

VITÓRIA

2016

FREDDY BRASILEIRO SILVA

REPRESENTATION OF MULTI-LEVEL DOMAINS ON THE WEB

Dissertação apresentada ao Programa de Pós-

Graduação em Informática do Centro

Tecnológico da Universidade Federal do

Espírito Santo, como requisito parcial para

obtenção do Grau de Mestre em Informática.

Orientador: Prof. Dr. João Paulo A. Almeida

VITÓRIA

2016

Dados Internacionais de Catalogação-na-publicação (CIP)
(Biblioteca Setorial Tecnológica,

Universidade Federal do Espírito Santo, ES, Brasil)

 Brasileiro, Freddy, 1987-
B823r Representation of multi-level domains on the web / Freddy

Brasileiro. – 2016.
 90 f. : il.

 Orientador: João Paulo Andrade Almeida.
 Dissertação (Mestrado em Informática) – Universidade

Federal do Espírito Santo, Centro Tecnológico.

 1. Web semântica. 2. Metamodelagem. 3. OWL (Web

Ontology Language). 4. Modelagem multi-nível. I. Almeida, João
Paulo Andrade. II. Universidade Federal do Espírito Santo.
Centro Tecnológico. III. Título.

 CDU: 004

AGRADECIMENTOS

Primeiramente, gostaria de agradecer a minha família por todo suporte dado até hoje. Sem

eles, eu não teria chegado até aqui. Minha mãe Lana, por todo carinho e confiança. Minha

vó Ana, a quem sou muito grato. Meus queridos irmãos, Thiago e Fábia. Meu tio

Lindberg Júnior e minha prima Fernanda, por participação importante no meu

desenvolvimento pessoal e intelectual. Aos meus queridos, tios Normindo e Dalva.

A minha amada Larissa, minha namorada, por estar sempre por perto, me dando carinho

e suporte em todos os momentos. Muito obrigado por ter me motivado e me ajudado a

ter força para concluir esse trabalho, principalmente na reta final. Eu te amo.

Ao meu orientador João Paulo, por compartilhar seu conhecimento e experiência,

contribuindo muito para a minha evolução. Um agradecimento especial ao Victorio A.

Carvalho, que apesar de não poder ser oficialmente membro da banca, teve participação

especial, dando suporte e motivação durante todo o desenvolvimento deste trabalho. Ao

professor Giancarlo Guizzardi pelas excelentes contribuições dadas a este trabalho.

Aos meus companheiros de Menthor: Bernardo, John, Luiz Olavo e Tiago. Aos meus

companheiros de Nemo: Archimedes, Cássio, Cézar, Fabiano, Filipe, Gabriel, Jordana,

Julio, Laylla, Lucas, Pedro Paulo, Victor Amorim, Victorio, Vinicius Sobral, etc. Aos

professores do Nemo: Giancarlo, João Paulo, Monalessa, Renata, Ricardo e Vítor Souza.

Aos colegas de projetos Padtec: Rodrigo Stange e professores Anilton e Maxwell.

Esse trabalho foi financiado pela FAPES (Fundação de Amparo à Pesquisa e Inovação do

Espírito Santo) (283/2014), e foi desenvolvido no escopo de projetos de fomento da

própria FAPES, da CAPES, do W3C Brasil e do CNPq.

RESUMO

Estratégias de modelagem conceitual e representação de conhecimento frequentemente

tratam entidades em dois níveis: um nível de classes e um nível de indivíduos que

instanciam essas classes. Em vários domínios, porém, as próprias classes podem estar

sujeitas a categorização, resultando em classes de classes (ou metaclasses). Ao representar

estes domínios, é preciso capturar não apenas as entidades de diferentes níveis de

classificação, mas também as suas relações (possivelmente complexas). No domínio de

taxonomias biológicas, por exemplo, um dado organismo (por exemplo, o leão Cecil morto

em 2015 no Parque Nacional Hwange no Zimbábue) é classificado em diversos táxons

(como, por exemplo, Animal, Mamífero, Carnívoro, Leão), e cada um desses táxons é

classificado por um ranking taxonômico (por exemplo, Reino, Classe, Ordem, Espécie).

Assim, para representar o conhecimento referente a esse domínio, é necessário

representar entidades em níveis diferentes de classificação. Por exemplo, Cecil é uma

instância de Leão, que é uma instância de Espécie. Espécie, por sua vez, é uma instância de

Ranking Taxonômico. Além disso, quando representamos esses domínios, é preciso capturar

não somente as entidades diferentes níveis de classificação, mas também suas

(possivelmente complicadas) relações. Por exemplo, nós gostaríamos de afirmar que

instâncias do gênero Panthera também devem ser instâncias de exatamente uma instância

de Espécie (por exemplo, Leão). A necessidade de suporte à representação de domínios que

lidam com múltiplos níveis de classificação deu origem a uma área de investigação

chamada modelagem multi-nível. Observa-se que a representação de modelos com múltiplos

níveis é um desafio em linguagens atuais da Web Semântica, como há pouco apoio para

orientar o modelador na produção correta de ontologias multi-nível, especialmente por

causa das nuanças de restrições que se aplicam a entidades de diferentes níveis de

classificação e suas relações. A fim de lidar com esses desafios de representação,

definimos um vocabulário que pode ser usado como base para a definição de ontologias

multi-nível em OWL, juntamente com restrições de integridade e regras de derivação. É

oferecida uma ferramenta que recebe como entrada um modelo de domínio, verifica

conformidade com as restrições de integridade propostas e produz como saída um

modelo enriquecido com informações derivadas. Neste processo, é empregada uma teoria

axiomática chamada MLT (uma Teoria de Modelagem Multi-Nível). O conteúdo da

plataforma Wikidata foi utilizado para demonstrar que o vocabulário poderia evitar

inconsistências na representação multi-nível em um cenário real.

ABSTRACT

Often, subject domains are conceptualized with entities in two levels: a level of classes,

and a level of individuals which instantiate these classes. In several subject domains,

however, classes themselves may be subject to categorization, resulting in classes of

classes (or metaclasses). To represent these domains, one needs to capture not only

entities of different classification levels, but also their (possibly intricate) relations. In the

domain of biological taxonomies, for instance, a given organism (e.g. Cecil, the lion killed in

the Hwange National Park in Zimbabwe in 2015) is classified into taxa (such as, e.g.,

Animal, Mammal, Carnivoran, Lion), each of which is classified by a biological taxonomic rank

(e.g., Kingdom, Class, Order, Species). Thus, to represent the knowledge underlying this

domain, one needs to represent entities at different (but nonetheless related) classification

levels. For example, Cecil is an instance of Lion, since he exhibits those common features.

For example, Cecil is an instance of Lion, which is an instance of Species. Species, in its turn,

is an instance of Taxonomic Rank. Moreover, when representing these domains, one needs

to capture not only entities of different classification levels, but also their (possibly

intricate) relations. For example, we would like to state that instances of the genus

Panthera must also be instances of exactly one instance of Species (e.g. Lion). The need to

support the representation of knowledge domains dealing with multiple classification

levels has given rise to an area of investigation called multi-level modeling. We observe that

the representation of multi-level domains is challenging in current Semantic Web

languages, as there is little support to guide the modeler in producing correct multi-level

ontologies, especially because of the nuances in the constraints that apply to entities of

different classification levels and their relations. In order to address these representation

challenges, we define a vocabulary that can be used as basis for the definition of multi-

level ontologies in OWL. This vocabulary is accompanied by integrity constraints to

prevent the construction of inconsistent models as well as derivation rules to derive

knowledge that is not explicit in the model. We offer a tool that receives as input a

domain model, checks its conformance with the proposed integrity constraints and

produces an output model containing the original domain model plus derived

information. In this process, we employ an axiomatic theory called MLT (a Multi-Level

Modeling Theory). We use Wikidata content to demonstrate that the approach can

prevent the construction of inconsistent multi-level representations in a realistic setting.

LIST OF FIGURES

Figure 2-1. The UML notation for the powertype pattern .. 21

Figure 3-1. Labeled graph representing a triple about Tim Berners-Lee 31

Figure 3-2. Fragment of RDFS vocabulary .. 31

Figure 3-3. Labeled graph representing triples about Tim Berners-Lee, London, Person
and City ... 32

Figure 3-4. Example of Directed Labeled Graph of RDFS(FA) (from [9]) 34

Figure 3-5. Fragment of OWL vocabulary ... 36

Figure 3-6. OWL representation for biological taxonomic domain 36

Figure 3-7. Short representation for Taxonomic Biological Domain in Wikidata 41

Figure 4-1. Fragment of MLT Vocabulary for Order Classes and Individual. 46

Figure 4-2. Illustrating the use of mlt:isSubordinateTo and mlt:partitions properties. 47

Figure 4-3. Illustrating the use of mlt:completelyCategorizes and
mlt:overlappinglyCategorizes. .. 48

Figure 4-4. Tool’s flowchart ... 58

Figure 5-1. Wikidata information about Tim Berners-Lee and his professional occupation
 .. 62

Figure 5-2. Illustration of Anti-Pattern 1 .. 64

Figure 5-3. Scenario about earthquake found in Wikidata for AP1 64

Figure 5-4. Scenario about egg waffle found in Wikidata for AP1 65

Figure 5-5. Illustration of Anti-Pattern 2 .. 65

Figure 5-6. Scenario about excavator found in Wikidata for AP2 .. 66

Figure 5-7. Illustration of Anti-Pattern 3 .. 66

Figure 5-8. Scenario about urban park found in Wikidata for AP3 67

Figure 5-9. Derivation messages for the example of Tim Berners-Lee profession from
Wikidata ... 70

Figure 5-10. Inconsistency messages for the example of Tim Berners-Lee profession from
Wikidata ... 71

Figure 5-11. Derivation messages for the example of earthquakes from Wikidata 72

Figure 5-12. Derivation messages for the example of excavators from Wikidata 73

Figure 5-13. Derivation messages for the example of urban parks from Wikidata 73

Figure 5-14. Inconsistency messages for the example of urban parks from Wikidata 74

Figure 5-15. Derivation messages for the example of Biological Taxonomy with MLT
relations ... 75

LIST OF TABLES

Table 2-1. MLT Rules ... 24

Table 3-1. Support for multi-level modeling in RDFS languages ... 42

Table 4-1. Domain and range restrictions for multi-level relations. 49

Table 4-2. Integrity Constraints Corresponding to MLT Rules .. 50

Table 4-3. Derivation Rules Corresponding to MLT Rules ... 53

Table 5-1. Results for AP1 and AP2 ... 67

Table 5-2. Results for AP3 ... 68

Table II-1. SPARQL query for Wikidata Anti-Patterns ... 87

ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

IRI Internationalized Resource Identifier

MLT Multi-Level Modeling Theory

OCA Orthogonal Classification Architecture

OWL Web Ontology Language

OWL FA OWL with Fixed metamodeling Architecture

RDF Resource Description Framework

RDFS RDF Schema

RDFS(FA) RDFS with Fixed metamodeling Architecture

UFO Unified Foundation Ontology

UML Unified Modeling Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

SUMMARY

1 INTRODUCTION ... 15

1.1 MOTIVATION ... 15

1.2 OBJECTIVES ... 17

1.3 APPROACH ... 17

1.4 STRUCTURE .. 19

2 MULTI-LEVEL MODELING ... 20

2.1 POWERTYPE PATTERN ... 20

2.2 CLABJECTS AND DEEP INSTANTIATION .. 21

2.3 MLT: A THEORY FOR MULTI-LEVEL MODELING ... 22

2.4 REQUIREMENTS FOR A MULTI-LEVEL APPROACH .. 27

3 RELATED WORK: CURRENT APPROACHES TO MULTI-LEVEL MODELING IN

THE SEMANTIC WEB... 30

3.1 RDFS .. 30

3.2 RDFS(FA) .. 33

3.3 OWL 2 .. 35

3.4 OWL FA ... 37

3.5 PURO ... 38

3.6 THE WIKIDATA APPROACH .. 39

3.7 CONCLUDING REMARKS .. 41

4 EXPRESSIVE MULTI-LEVEL MODELING FOR THE SEMANTIC WEB 44

4.1 PRELIMINARY CONSIDERATIONS ... 44

4.2 THE MLT VOCABULARY FOR THE SEMANTIC WEB .. 45

4.3 INTEGRITY CONSTRAINTS BASED ON MLT .. 48

4.4 MODEL COMPLETION BASED ON MLT ... 51

4.5 IMPLEMENTATION .. 57

4.6 CONCLUDING REMARKS .. 58

5 VALIDATING THE APPROACH WITH TAXONOMIC HIERARCHIES FROM

WIKIDATA ... 61

5.1 A DIAGNOSIS OF MULTI-LEVEL TAXONOMIC HIERARCHIES IN WIKIDATA 61

5.2 APPROACH: DETECTION OF ANTI-PATTERNS ... 63

5.3 APPLYING MLT RULES TO WIKIDATA CONTENT ... 68

5.3.1 Examples on Avoiding Anti-Patterns .. 69

5.3.2 Example on Deriving Data from Valid Models .. 74

5.4 CONCLUDING REMARKS .. 75

6 CONCLUSIONS .. 77

6.1 CONTRIBUTIONS ... 77

6.2 LIMITATIONS ... 78

6.3 FUTURE WORK .. 79

BIBLIOGRAPHY ... 81

APPENDIX I - THE MLT VOCABULARY FOR THE SEMANTIC WEB 85

APPENDIX II - SPARQL QUERIES FOR WIKIDATA ANTI-PATTERNS 87

APPENDIX III - OWL FILES FOR EMPIRICAL EVALUATION 88

TIM BERNERS-LEE PROFESSION ... 88

EARTHQUAKES ... 88

EXCAVATOR ... 89

URBAN PARK .. 89

BIOLOGICAL TAXONOMY... 90

15

1 INTRODUCTION

1.1 MOTIVATION

The Semantic Web, or Web of Data, provides a common framework that allows data to

be shared across application, enterprise, and community boundaries [1]. This is achieved

by linking and publishing structured data using RDF (Resource Description Framework)

languages, which provide a basis for producing reusable vocabularies for various domains

of interest [2].

The notion of class is a key concept for representing vocabularies in Semantic Web

approaches, such as RDF Schema (RDFS) [3] and Web Ontology Language (OWL) [4].

Class (or type) is a ubiquitous notion in modern conceptual modeling approaches and is

used to establish invariant features of the entities in a domain. For example, a class Lion

can capture common features of a specific set of animals that are felines and that have a

specific set of morphological characteristics (such as weight, height, length, tail size,

longevity). Then, Cecil (the lion killed in the Hwange National Park in Zimbabwe in 2015)

is an instance of Lion, since it exhibits those common features.

Often, subject domains are conceptualized with entities in two levels: a level of classes,

and a level of individuals which instantiate these classes. In many subject domains,

however, classes themselves may also be subject to categorization, resulting in classes of

classes (or metaclasses). For instance, consider the domain of biological taxonomies [5].

In this domain, a given organism is classified into taxa (such as, e.g., Animal, Mammal,

Carnivoran, Lion), each of which is classified by a biological taxonomic rank (e.g., Kingdom,

Class, Order, Species). Thus, to represent the knowledge underlying this domain, one needs

to represent entities at different (but nonetheless related) classification levels. For

example, Cecil is an instance of Lion, which is an instance of Species. Species, in its turn, is an

instance of Taxonomic Rank. Other examples of multiple classification levels come from

domains such as software development [6] and product types [7].

16

The need to support the representation of knowledge domains dealing with multiple

classification levels has given rise to an area of investigation called multi-level modeling [7],

[8]. A number of research initiatives have also been conducted to support multi-level

modeling in the Semantic Web (e.g., [9]–[13]). These approaches exploit the fact that a

class is itself an RDF resource and may thus be the subject or object of RDF triples.

OWL 2 explicitly adopts this strategy under the term “metamodeling”, enabling the

representation of facts that are stated about classes [4].

Despite these developments, the current support for the representation of domains dealing

with multiple levels of classification in the Semantic Web still lacks a number of important

features. In some cases, there are no criteria or principles for the organization of

vocabularies into levels, leading to problematic classification and taxonomic statements

(see, e.g. [14]). Further, there has been no attention to the representation of the relations

between types at different levels. For example, in the biological domain, it is key to

represent that all instances of Species are subtypes of Organism (even when particular

species are not represented explicitly), and that all instances of Organism belong to one and

only one Species. Representing these relations between entities at different levels of

classification is not possible in current approaches.

Finally, knowledge bases, such as Wikidata [15] and DBPedia [16], have a lot of

taxonomic hierarchies with entities at different classification levels (particular individuals,

types of individuals, types of types of individuals, etc.). Aside from the recurrence of

domains that deal with multiple levels of classification, what also makes it of great

importance is the fact that multi-level modeling seems to pose a significant challenge to

modelers. For instance, analyzing Wikidata, we identified a significant number of

problematic classification and taxonomic statements especially when involving multiple

levels of classification and instantiation [14]. We hypothesize this can be explained by the

lack of adequate support for the representation of multi-level domains in the Semantic

Web. Thus, in order to allow the proper representation of multi-level domains in the

Semantic Web, this thesis puts forward a vocabulary, guidelines and tools for representing

multi-level domains in the Semantic Web.

17

1.2 OBJECTIVES

The overall aim of this research is to provide mechanisms to support the representation

of expressive multi-level models in the Semantic Web. As specific objectives of this

research, we aim at:

1. Defining requirements for the representation of multi-level domains, emphasizing

the expressiveness and quality of the resulting multi-level models;

2. Reviewing the current Semantic Web approaches concerning their adherence to

these requirements;

3. Providing an approach to support the expressive representation of multi-level

domains on the web;

4. Providing guidelines and tools for modelers, in order to ensure the soundness of

multi-level models;

5. Evaluate items 3 and 4 in a real knowledge base.

1.3 APPROACH

In order to meet the overall aim of this research, we investigate both multi-level modeling

approaches in general (such as the powertype pattern [17], [18] and clabjects [19]), and those

specifically targeted for the Semantic Web. In this investigation, we identify a number of

common features of multi-level modeling approaches, as well as a number of recurrent

limitations. This forms the basis for us to formulate requirements for a desirable multi-

level modeling approach (specific objective 1).

We evaluate a number of initiatives that have been conducted to support multi-level

modeling in the Semantic Web, including the native support of RDFS [3] and OWL 2 [4]

standards proposed by W3C (World Wide Web Consortium), and further approaches that

aimed at improving them, namely: RDFS(FA) [9] and OWL FA [11]. We further evaluate

independent approaches such as PURO [12] and the representation strategy underlying

Wikidata [15]. In each case, we point out which requirements are supported by each

approach, also discussing their limitations (specific objective 2). We are concerned mainly

18

with their support for the representation of domain metaclasses as opposed to language

metaclasses.

We base our approach on a well-founded multi-level theory that captures the

foundational concepts underlying multi-level modeling, a multi-level modeling theory

called MLT [20]. The choice for MLT as semantic foundations for this work is due to the

fact it aims to achieve the requirements we deem desirable for an expressible multi-level

modeling approach. This theory formally characterizes the nature of classification levels,

and precisely defines the relations that may occur between elements of different

classification levels, which aims to fill the gap of existent approaches. The proposed

representation maintains correspondence with MLT as a foundational theory, in line with

the reasoning defended in [21], [22], that a modeling representation ought to provide

primitives that reflect categories in a foundational theory.

We propose an OWL vocabulary reflecting MLT distinctions (MLT-OWL), that can be

used as a basis for multi-level ontologies (specific objective 3). Axioms and theorems of

MLT are incorporated into integrity constraints which are applied to multi-level

vocabularies that employ MLT-OWL, offering thus guidance to prevent the construction

of inconsistent vocabularies. MLT rules are further employed to perform the derivation

of knowledge about the relations between elements that are not explicitly stated (specific

objective 4).

In the proposed solution, we opt to conform to the existing metamodeling structure that

is imposed by RDFS/OWL. Further, since the expressiveness of OWL does not allow us

to represent all applicable multi-level modeling rules, we adopt a complementary strategy:

we represent some of the MLT rules in native OWL when possible, and complement

those with SPARQL [23] queries when necessary.

Finally, to illustrate the applicability of the approach in a realistic setting, we evaluate it

using real-world data obtained from Wikidata content (specific objective 5). We analyze

occurrences of violations of MLT integrity constraints and show how our approach could

provide guidance to populate knowledge bases avoiding the identified problems. Our

approach is capable of warning users, showing which statements are problematic in light

of MLT.

19

1.4 STRUCTURE

This thesis is further structured as follows: Chapter 2 presents a brief introduction to

multi-level modeling and discusses the multi-level modeling theory employed in this work

(MLT) along with the basic requirements for the representation of multi-level domains;

Chapter 3 reviews the current support for multi-level modeling in the Semantic Web as

well as in related work in the literature; Chapter 4 presents our approach to represent

multi-level domains in the Semantic Web reflecting the rules of MLT, including the OWL

vocabulary and integrity and derivations rules implemented in SPARQL; Chapter 5

presents results of our analysis of current Wikidata content; Chapter 6 presents

concluding remarks.

20

2 MULTI-LEVEL MODELING

The need to support the representation of knowledge domains dealing with multiple

classification levels has given rise to an area of investigation called multi-level modeling [7],

[8]. The interest in multi-level modeling has led to a number of research initiatives in this

subject (e.g. [6]–[8], [17], [18]). We present here first two influential approaches for multi-

level modeling research: the powertype pattern (discussed in Section 2.1) and the approaches

based on the notion of clabject (discussed in Section 2.2). These approaches have

influenced the MLT axiomatic theory we employ further in this work (described in

Section 2.3). Since there is yet no consensus on the requirements that multi-level

modeling approaches must satisfy [24], we define desirable requirements for our own

multi-level modeling approach (Section 2.4) based on the common features and

limitations of current approaches.

2.1 POWERTYPE PATTERN

A seminal approach to the representation of domains with multiple levels of classification

relies on the notion of powertype. This approach raised from the identification of patterns

to represent the relationship between a class of categories (the powertype) and a class of

more concrete entities (the base type) [20]. Odell [17] defines a powertype as a type whose

instances are subtypes of another type. For example, if we consider Sugar Maple, Apricot,

American Elm and Saguaro as subtypes of Tree and as instances of Tree Species, then Tree

Species is a powertype of Tree according to Odell’s definition.

Cardelli [18], in its turn, defines powertype in an analogy with the notion of powerset.

Observing that the powerset of a set A, is the set whose elements are all possible subsets of

A including A itself, Cardelli defines that the powertype of T is a type whose instances are

all possible specializations of T, including T itself. For example, we can define a type Tree

Powertype having as instances all possible specializations of Tree, including all instances of

Tree Species and Tree itself as well as all other specializations of tree with any criteria such as

Big Tree, Small Tree, Tree Seedling, Old Tree, Blooming Tree. Note that, differently from

21

Cardelli, Odell admits the existence of specializations of the base type that are not instances

of the powertype.

Following Odell’s notion of powertype, the UML (Unified Modeling Language) 2.4.1

specification [25] includes means to relate a powertype to a generalization set, meaning that

all the subtypes involved in such generalization set are instances of the related powertype. In

Figure 2-1, the generalization set is composed by the specializations of Tree (namely Sugar

Maple, Apricot, American Elm and Saguaro), and the text “:Tree Species” means that these

subtypes are instances of Tree Species. In this case, the disjoint constraint means that Tree

specializations have no instances in common, and the incomplete constraint means that

there are instances of Tree that are not instances of Sugar Maple, Apricot, American Elm and

Saguaro.

Figure 2-1. The UML notation for the powertype pattern

2.2 CLABJECTS AND DEEP INSTANTIATION

In [19], Atkinson and Kühne argue that to model instantiation between arbitrary adjacent

levels, it is necessary to follow two fundamental properties of multi-level modeling: strict

metamodeling [26] and adhering to the notion of clabjects. In the strict metamodeling

principle, every element of an Mn level model is an instance of exactly one element of an

Mn+1 level model (except for the top level).

The authors coined the term clabject to refer to elements that have two facets: a type (or

class) facet and an instance (or object) facet. For example, we may consider that iPhone 5

has both an instance facet (it is instance of Mobile Phone Model) and a type facet (some

mobile phones, such as my iPhone, are instances of iPhone 5). The type facet of iPhone 5

captures some regularities that its instances have (e.g. every iPhone 5 has a 4-inch screen

class fig2-1

Tree Species Tree

Sugar Maple Apricot American Elm Saguaro

:Tree Species

{disjoint, incomplete}

+tree species

1

+tree

*

22

and each one has a particular imei number) while the instance facet defines values for

some attributes captured by Mobile Phone Model (e.g. considering that each Mobile Phone

Model has a launch date, iPhone 5 is an instance of Mobile Phone Model and has launch date

equals to “21 Sept, 2012”).

Atkinson and Kühne also proposed in [8], [27] the notion of deep instantiation as a means

to provide multiple levels of classification whereby an element at some level can describe

features of elements at each level beneath that level. They introduce the notion of potency

that is assigned to every model element at every model level. Potency defines the length

of the instantiation chain that is allowed below the element, in such way that an element

of potency 0 corresponds to a concrete individual and cannot be instantiated (i.e., an

element of potency 0 is not a clabject). When a clabject instantiates another clabject, the

potency of the clabject being instantiated is given by the potency of the clabject being

instantiated minus one. For example, considering the cited example of mobile phone

model, Mobile Phone Model, iPhone 5 and myiPhone5 have potencies 2, 1 and 0, respectively.

Finally, in contrast with the powertype pattern, deep instantiation does not obligate the

modeler to represent the base type. This design decision has the general purpose of

reducing the number of modeled concepts. Even when the base type is represented, the

approach does not support the representation of the relation between the base type and

the higher-order type. In the aforementioned example, we would be unable to express

that each instance of Mobile Phone must also be an instance of exactly one instance of

Mobile Phone Model (e.g. iPhone 5) (that specializes Mobile Phone).

2.3 MLT: A THEORY FOR MULTI-LEVEL MODELING

Motivated by the lack of theoretical foundations for multi-level modeling, Carvalho and

Almeida have proposed a formal axiomatic theory called MLT [20]. MLT formally

characterizes the nature of classification levels, and precisely defines the relations that may

occur between elements of different classification levels. The authors conceived MLT to

be a foundational theory useful to guide the development of well-founded languages for

multi-level conceptual modeling and to provide the modeler with basic concepts and

23

patterns to conceptualize domains that require multiple levels of classification.

Corroborating the authors original intentions, MLT has been successfully used to analyze

and improve the UML support for modeling the powertype pattern [28], to uncover

problems in multi-level taxonomies on the web [14] and to provide conceptual

foundations for dealing with types at different levels of classification both in core [29] and

in foundational ontologies [30].

The theory is founded on the notion of (ontological) instantiation and characterizes the

concepts of individuals and types, with types organized in levels related by instantiation. It is

defined using first-order logic, quantifying over all possible entities (individuals and types).

The instance of relation is represented in this formal theory by a binary predicate iof(e,t) that

holds if an entity e is instance of an entity t (denoting a type). In order to accommodate the

varieties of types in the multi-level setting, the notion of type order is used. Types having

individuals as instances are first-order types, types whose instances are first-order types are

second-order types and so on.

The logic constant “Individual” is used to define the conditions for entities to be

considered individuals: an entity is an instance of “Individual” iff it does not have any possible

instance (Axiom A1 in Table 2-1). Two types are considered equal iff the sets of all their

possible instances are the same (Axiom A2). The constant “First-Order Type” (or shortly

“1stOT”) categorizes the type that applies to all entities whose instances are instances of “Individual”

(A3 in Table 2-1). Analogously, each entity whose possible extension contains exclusively instances of

“1stOT” is an instance of “Second-Order Type” (or shortly “2ndOT”) (A4 in Table 2-1).

Further, instances of “Third-Order Type” are defined analogously to 1stOT and 2ndOT

(see Axiom A5). It follows from axioms A1, A3, A4 and A5 that “Individual” is instance

of “1stOT” (Theorem T1 in Table 2-1), which is instance of “2ndOT” (Theorem T2 in

Table 2-1). “2ndOT”, in its turn, is instance of “3rdOT” (T3). We call “Individual”,

“1stOT”, “2ndOT” and “3rdOT” the basic types of MLT. From the combinations of A1

to A5, MLT states that the basic types have no instances in common, i.e., their extensions

are disjoint (Theorem T4). According to MLT, every possible entity must be instance of

exactly one of its basic types (except the topmost type) (A6 in Table 2-1). Finally, axioms

A1 to A6 prescribe a strictly stratified organization of entities into orders, which results

that the instance of relation is asymmetric (Theorem T5) and anti-transitive (T6).

24

Table 2-1. MLT Rules

A1 ∀x iof(x, Individual) ↔ ∄y iof(y, x)

A2 ∀t1, t2 (¬iof(t1, Individual) ∧ ¬iof(t2, Individual)) → ((t1 = t2) ↔ (∀e iof(e, t1) ↔ iof(e, t2)))

A3 ∀t iof(t, 1stOT) ↔ (∃y iof(y, t) ∧ (∀x iof(x, t) → iof(x, Individual)))

A4 ∀t iof(t, 2ndOT) ↔ (∃y iof(y, t) ∧ (∀t′iof(t′, t) → iof(t′, 1stOT)))

A5 ∀t iof(t, 3rdOT) ↔ (∃y iof(y, t) ∧ (∀t′iof(t′, t) → iof(t′, 2ndOT)))

A6 ∀x (iof(x, Individual) ∨ iof(x, 1stOT) ∨ iof(x, 2ndOT) ∨ iof(x, 3rdOT) ∨ (x = 3rdOT))

D1 ∀t1, t2 specializes(t1, t2) ↔ (∃y iof(y, t1) ∧ (∀e iof(e, t1) → iof(e, t2)))

D2 ∀ t1, t2 properSpecializes(t1, t2) ↔ (specializes(t1, t2) ∧ t1 ≠ t2)

D3
∀t1, t2 isSubordinateTo (t1, t2)

↔ (∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) → (∃t4 iof(t4, t2) ∧ properSpecializes(t3, t4))))

D4 ∀t1, t2 isPowertypeOf(t1, t2) ↔ (∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) ↔ specializes(t3, t2)))

D5 ∀t1, t2 categorizes (t1, t2) ↔ (∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) → properSpecializes(t3, t2)))

D6 ∀t1, t2 completelyCategorizes(t1, t2) ↔ (categorizes(t1, t2) ∧ (∀e iof(e, t2) → ∃t3 (iof(e, t3) ∧ iof(t3, t1))))

D7
∀t1, t2 disjointlyCategorizes (t1, t2) ↔

(categorizes(t1, t2) ∧ ∀e, t3, t4 ((iof(t3, t1) ∧ iof(t4, t1) ∧ iof(e, t3) ∧ iof(e, t4)) → t3 = t4))

D8 ∀t1, t2 partitions(t1, t2) ↔ (completelyCategorizes(t1, t2) ∧ disjointlyCategorizes(t1, t2))

T1 𝑖𝑜𝑓(𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 1𝑠𝑡𝑂𝑇)

T2 𝑖𝑜𝑓(1𝑠𝑡𝑂𝑇, 2𝑛𝑑𝑂𝑇)

T3 𝑖𝑜𝑓(2𝑛𝑑𝑂𝑇, 3𝑟𝑑𝑂𝑇)

T4

∄x (iof(x, Individual) ∧ iof(x, 1stOT)) ∨ (iof(x, Individual) ∧ iof(x, 2ndOT))

∨ (iof(x, Individual) ∧ iof(x, 3rdOT)) ∨ (iof(x, 1stOT) ∧ iof(x, 2ndOT))

∨ (iof(x, 1stOT) ∧ iof(x, 3rdOT)) ∨ (iof(x, 2ndOT) ∧ iof(x, 3rdOT))

T5 ∄x, y (iof(x, y) ∧ iof (y, x))

T6 ∄x, y, z (iof(x, y) ∧ iof(y, z) ∧ iof (x, z))

T7 ∀t iof(t, 1stOT) ↔ specializes(t, Individual)

T8 ∀t iof(t, 2ndOT) ↔ specializes(t, 1stOT)

T9 ∀t iof(t, 3rdOT) ↔ specializes(t, 2ndOT)

T10 isPowertypeOf(1stOT, Individual)

T11 isPowertypeOf(2ndOT, 1stOT)

T12 isPowertypeOf(3rdOT, 2ndOT)

T13 ∀p, t isPowertypeOf(p, t) → ∄p′(p ≠ p′) ⋀ isPowertypeOf(p′, t)

T14 ∀p, t isPowertypeOf(p, t) → ∄t′(t ≠ t′)⋀ isPowertypeOf(p, t′)

T15 ∀t1, t2, t3, t4(specializes(t2, t1) ∧ isPowertypeOf(t4, t2) ∧ isPowertypeOf(t3, t1)) → specializes(t4, t3)

T16 ∀t1, t2, t3 (isSubordinateTo(t1, t2) ∧ categorizes(t2, t3)) → categorizes(t1, t3)

T17 ∀t1, t2, t3 (isPowertypeOf(t2, t1) ∧ categorizes(t3, t1)) → properSpecializes(t3, t2)

T18 ∀ t1, t2, t3 (partitions(t1, t3) ∧ partitions(t2, t3)) → ¬properSpecializes(t1, t2)

25

Some structural relations to support conceptual modeling are defined in MLT, starting

with the ordinary specialization between types. A type t1 specializes another type t2 iff all

instances of t1 are also instances of t2 (see definition D1 in Table 2-1). Since the reflexivity of

the specialization relation may be undesired in some contexts, we define in MLT the proper

specialization relation as follows: t1 proper specializes t2 iff t1 specializes t2 and t1 is different from

t2 (see D2 in Table 2-1). The definition D1 and the Axioms A3, A4 and A5 lead to a basic

pattern in MLT: every type that is not one of MLT’s basic types (e.g., a domain type) is an

instance of one of the basic higher-order types (e.g., “1stOT”, “2ndOT” and “3rdOT”),

and, at the same time proper specializes the basic type at the immediately lower level

(Theorems T7, T8 and T9). Additionally, MLT defines a subordination relation. Subordination

between two higher-order types implies specializations between their instances, i.e., t1 is

subordinate to t2 iff every instance of t1 proper specializes an instance of t2 (see D3 in Table 2-1).

The definitions presented thus far guarantee that both specializations, proper specializations

and subordinations may hold exclusively between types of the same order. We term these

intra-level relations.

MLT also defines relations that occur between types of adjacent orders, the so-called cross-

level structural relations. These relations are inspired on different notions of powertype in the

literature. Based on the notion of powertype proposed by Cardelli [18], MLT defines a

powertype relation between a higher-order type and a base type at a lower order: a type t1 is

powertype of a base type t2 iff all instances of t1 specialize t2 and all possible specializations of t2

are instances of t1 (see D4). Note that it follows from the axioms and definitions presented

so far that “1stOT” is powertype of “Individual” (T10), i.e. all possible instances of “1stOT”

specialize “Individual” and all possible specializations of “Individual” are instances of

“1stOT”. Analogously, “2ndOT” is powertype of “1stOT” (T11), and so on (T12). Thus,

every instance of a basic higher-order type (“1stOT”, “2ndOT” and “3rdOT”) must

specialize the basic type at the immediately lower level (respectively, “Individual”,

“1stOT” and “2ndOT”). In other words, the notion of orders or levels in MLT can be

seen as a result of the iterated application of Cardelli’s notion of powertype to the basic

types. According to MLT, each type has at most one powertype (Theorem T13) and that each type

is powertype of, at most, one other type (Theorem T14), which is a concrete syntactic constraint

for a multi-level model: each type could have exactly one powertype. Finally, from the

26

powertype definition of Cardelli [18], MLT states that if a type t2 specializes a type t1 then the

powertype of t2 specializes the powertype of t1 (T15).

Differently from Cardelli, Odell [17] defined powertype simply as a type whose instances are

subtypes of another type (the base type), excluding the base type from the set of instances of

the powertype. Inspired on Odell’s definition for powertypes, MLT defines the categorization

relation between types at adjacent levels: a type t1 categorizes a type t2 iff all instances of t1 are

proper specializations of t2 (definition D5). The categorizes relation occurs between a higher-

order type t1 and a base type t2 when the instances of t1 specialize t2 according to a specific

classification criteria. Thus, differently from the cases involving (Cardelli’s) is powertype of

relation, there may be specializations of the base type t2 that are not instances of t1. For

example, we may define a type named “Organism by Habitat” (with instances “Terrestrial

Organism” and “Aquatic Organism”) that categorizes “Organism”, but is not a powertype of

“Organism” since there are specializations of “Organism” that are not instances of

“Organism by Habitat” (e.g. “Plant” and “Golden Eagle”). From the definitions D3 and

D5 and, further, D2, it is concluded that if a type t1 is subordinate to t2 and t2 categorizes a

type t3 then t1 categorizes t3 (Theorem T16). Now, considering D4, D5 and D2, if a type t2

is powertype of a type t1 and a type t3 categorizes the same base type t1 then all instances of t3

are also instances of the powertype t2 (T17).

MLT defines some refinements of the cross-level relation of categorization, which are

useful to capture further constraints in multi-level models. We consider that a type t1

completely categorizes t2 iff t1 categorizes t2 and every instance of t2 is instance of, at least, an instance of

t1 (D6). Moreover, iff t1 categorizes t2 and every instance of t2 is instance of, at most, one instance of

t1 it is said that t1 disjointly categorizes t2 (D7). Finally, a common use for the notion of

powertype in the literature considers a higher-order type that, simultaneously, completely

and disjointly categorizes a lower-order type. To capture this notion MLT defines the

partitions relation. Thus, t1 partitions t2 iff each instance of the base type t2 is an instance of exactly

one instance of t1 (D8). For example, considering the biological taxonomy for living beings

we have that “Species” (and all other biological ranks) partitions “Organism”. Finally, a

consequence of the partitions definition is that, if two types t1 and t2 both partitions the same type t3 then

it is not possible for t1 to specialize t2 (T18). A complete formalization of MLT in first-order

logic can be found in [20].

27

2.4 REQUIREMENTS FOR A MULTI-LEVEL APPROACH

We establish here four requirements we judge important for multi-level modeling

approaches, and that will guide the solutions proposed in this work. These requirements

focus on the expressiveness of the resulting models to capture knowledge in multi-level

domains. We indicate sources in the literature that establish similar requirements to

corroborate the relevance of the requirements identified here.

First of all, we consider an essential requirement for a multi-level modeling approach the

ability to represent entities of multiple (related) classification levels ([6], [7]), capturing chains of

instantiation between the involved entities (requirement R1). (This requirement is also

suggested by Gonzalez-Perez and Henderson-Sellers [6] and Neumayr et al. [7].) To

comply with it, the approach must admit entities that are, simultaneously, type (class) and

instance (object), complying thus to the notion of clabject [19]. This means that a multi-

level approach differs from the traditional two-level scheme, in which classification

(instantiation) relations can only be established between classes and individuals.

A second requirement we establish is that a multi-level modeling approach should define

principles for the organization of entities into levels (R2). These principles should guide the

modeler on the adequate use of classification (instantiation) relations. An example of this

sort of principle, which is adopted in some prominent multi-level modeling approaches, is

the so-called strict metamodeling principle [19]. It assumes that each element of a level

must be an instance of an element of the level above. Our motivation for these

requirements is has an empirical nature, since we have observed that the lack of principles

to guide organization of entities into levels often leads to the construction of unsound

multi-level models [14].

Another important characteristic of domains with multiple levels of classification is that

there are domain rules that apply to the instantiation of types of different levels. This kind

of rule is suggested by Gonzalez-Perez and Henderson-Sellers [6], inspired in the powertype

pattern [17], [18]. For example, all instances of Dog Breed (e.g. Collie and Beagle) specialize

the base type Dog. It is thus key that multi-level modeling approaches support the

representation of what kind of relationship exists between Dog Breed and Dog (we call this

28

sort of relation a structural relation, as it governs the instantiation of types at different

levels). For instance, one may need to represent whether an instance of Dog may

instantiate: (i) only one, or (ii) more than one Dog Breed. Moreover, we would like to

represent whether an instance of Dog must instantiate at least one Dog Breed. In this case,

an instance of Dog must instantiate exactly one (i.e., at least one and only one) Dog Breed.

In biological taxonomy, another rule concerning instantiation of types at different levels is

that the instances of Biological Taxonomic Rank obey a sort of subordination chain such that

every instance of Phylum specializes one instance of Kingdom (e.g., Chordate phylum

specializes Animal kingdom), every instance of Class specializes one instance of Phylum

(Mammal class specializes Chordate phylum), and so on. Thus, an expressive multi-level

approach should be able to capture rules for the instantiation of types at different levels (R3).

Finally, in various domains, there are relations which may occur between entities of

different classification levels. For example, consider the following domain rules: (i) each

Car has an owner (a Person), (ii) each Car is classified as instance of a Car Model, and (iii)

each Car Model is designed by a Person. In this domain, instances of Person (individuals)

must be related simultaneously with instances of Car Model (which are classes) and also

with instances of Car, i.e., instances of instances of Car Model. Thus, a multi-level modeling

approach should allow the representation of domain relations between entities in different classification

levels (R4). (A requirement also identified by Neumayr et al. [7].)

The characterization of MLT basic types in tandem with the definition that every entity

must be instance of one basic type, provide support for the representation of multiple

levels of classification (R1) as well as guidelines for the organization of entities into levels

(R2). Further, the MLT structural relations provide expressive support to capture rules for

the instantiation of types at different levels (R3). Finally, according to MLT, domain

relations between entities in different levels are allowed (R4). Thus, since MLT is a well-

founded theory which satisfies the four requirements, we choose it as semantic

foundation for our approach.

In Chapter 3, we review the current Semantic Web approaches concerning their

adherence to these requirements. They are later satisfied by the approach proposed in

Chapter 4.

29

In order to show the limitations of the various approaches in the representation of a

multi-level domain, we used as a paradigmatic example the domain of biological

taxonomies [5]. In this domain, a given organism is classified into taxa (such as, e.g.,

Animal, Mammal, Carnivoran, Lion), each of which is classified by a biological taxonomic rank

(e.g., Kingdom, Class, Order, Species). For example, Cecil is an instance of Lion, which is an

instance of Species. As consequence of being an instance of Lion, Cecil is also instance of

Panthera (instance of Genus), Felidae (instance of Family), Carnivoran (instance of Order),

Mammal (instance of Class), Chordata (instance of Phylum), Animal (instance of Kingdom),

and Organism. Species, Genus, Family, Order, Class, Phylum and Kingdom, in its turn, are

instances of Taxonomic Rank. Moreover, in this domain, all instances of Species are subtypes

of Organism, and all instances of Organism belong to one and only one Species. The same

occurs from Genus, Family, Order, Class, Phylum and Kingdom to Organism. For example, all

instances of Genus are subtypes of Organism, and all instances of Organism belong to one

and only one Genus. Further, all instances of Species are subtypes of instances of Genus, all

instances of Genus are subtypes of instances of Family, all instances of Family are subtypes

of instances of Order, and so on. For example, Lion (instance of Species) is subtype of

Panthera (instance of Genus), Panthera is subtype Felidae (instance of Family), Felidae is

subtype of Carnivoran (instance of Order), and so on. Finally, an instance of Species is named

by a Person. For instance, the researcher Lessner named the Vivaron haydeni species, an

extinct reptile related to crocodiles [31].

30

3 RELATED WORK: CURRENT APPROACHES TO MULTI-

LEVEL MODELING IN THE SEMANTIC WEB

In this chapter, we examine the state-of-the-art in approaches that support multi-level

modeling in the web. Initially, we discuss one of the main recommendations of W3C for

the Semantic Web, namely, RDFS (Section 3.1). We then discuss a related work regarding

improvements in this recommendation: RDFS(FA) (Section 3.2), which proposes

improvements in RDFS. Further, we discuss other main recommendation of W3C: OWL

(Section 3.3); for then discuss OWL FA (Section 3.4), which proposes improvements in

OWL. Moreover, we present PURO (Section 3.5), which is implemented in OWL, and

the Wikidata approach (Section 3.6), which underlies the Wikidata knowledge base and

defines its own vocabulary and vocabulary structuring mechanisms. Finally, in Section 3.7,

we present a summary of the existing approaches and their evaluation according to the

requirements for multi-level modeling approaches previously defined in Chapter 2.

3.1 RDFS

RDF (Resource Description Framework) and RDFS (RDF Schema) [3] are languages

proposed by W3C for use in the Semantic Web. They are intended for creating

vocabularies and for publishing and linking data on the web. RDFS extends the basic

vocabulary of RDF aiming to provide terms for creating domain vocabularies.

First of all, RDF uses the notion of “triple” to represent information. In a triple, a

resource (the subject) is connected to a literal or to other resource (the object) through a

property (the predicate). For RDF, a resource is anything identified by an IRI

(Internationalized Resource Identifier) [32] (e.g., the IRI http://www.wikidata.org/entity/Q80

identifies Tim Berners-Lee in Wikidata [15]). Thus, to represent that Tim Berners-Lee was

born in London, for example, we must create a triple which states that Tim Berners-Lee

(subject) was born in (predicate) London (object). Figure 3-1 shows a labeled graph

representing this statement.

31

Figure 3-1. Labeled graph representing a triple about Tim Berners-Lee

The notion of class (rdfs:Class) is introduced in RDFS to represent specific sets of

individuals that share the same characteristics. Thus, domain classes (such as Person) are

represented as instances of rdfs:Class through the rdf:type property. rdfs:Class is the main

primitive of RDFS, such that other important primitives are defined as its instances

(including rdfs:Class itself): these include rdfs:Resource, which represents anything that has an

IRI (e.g. Tim Berners Lee, London, Person or “was born in”), and rdf:Property. It is important to

note that both rdfs:Class and rdf:Property are subclasses of rdfs:Resource. Thus, domain classes

and properties are considered special kinds of resources, along with concrete individuals.

Further, RDFS also introduces rdf:Property to represent predicates (such as “was born in”).

Finally, rdfs:subClassOf and rdf:type properties are two important primitives of RDFS that

are instances of rdf:Property. rdfs:subClassOf is used to represent that all instances of a class

must be instances of other class. Figure 3-2 shows this fragment of RDFS. In Figure 3-2

we use a notation that is largely inspired in UML. We use UML specialization to represent

the rdfs:subClassOf properties, and dashed arrows to represent instantiation statements,

with labels to denote the names of the predicates that apply. For instance, a dashed arrow

labeled rdf:type between rdfs:subClassOf and rdf:Property represents that the former is an

instance of the latter. The notation used to elaborate Figure 3-2 is used in all further

diagrams.

Figure 3-2. Fragment of RDFS vocabulary

class RDFS Class

rdfs:Class

rdfs:Resource

rdf:Property

rdfs:subClassOf rdf:type

rdf:type

rdfs:subClassOf
rdf:type

rdf:type

rdf:type

rdf:type

32

We could extend the information about Tim Berners-Lee to say that he is an instance of

Person and that London is an instance of City. For that, we must state that Tim Berners-Lee

and London are instances of (through rdf:type) Person and City, respectively. With RDFS, we

are able to extend Figure 3-1, and explicitly represent the classes in the domain. For

example, we could represent Person and City as instances of the language primitive

rdfs:Class, since these represent sets of individuals that share the same characteristics.

Figure 3-3 shows this example.

Figure 3-3. Labeled graph representing triples about Tim Berners-Lee, London, Person and City

Note that, the fact Tim Berners-Lee is an instance of Person concerns information about the

domain, while Person being an instance of rdfs:Class is related to its representation in a

language (RDFS). Observing these two different cases of instantiation, Atkinson and

Kühne proposes the Orthogonal Classification Architecture (OCA) [33]. OCA is a

modeling framework that distinguishes domain-oriented ‘‘ontological’’ classification

relationships from language-infrastructure-oriented ‘‘linguistic’’ classification relationships

and organizes them according to the tenets of strict metamodeling [33]. While “linguistic”

metamodeling is concerned with language definition issues, “ontological” metamodeling

is concerned with classification relations that may occur between domain types.

The rdf:type property is used indistinctively to represent both ontological and linguistic

instantiations. Considering the usage of rdf:type to represent ontological instantiation, we

can state that RDFS provides support for representing multiple levels of classification,

satisfying the requirement R1. Moreover, as aforementioned, the only constraint for

building triples in RDFS is that the subject must be a resource (i.e., something identified

by an IRI) and that the object can be a resource or a literal. Thus, triples can link any pair

33

of resources, without restrictions, allowing the representation of domain relations

between entities of different orders (requirement R4). Further, no rules are defined to

guide the use of rdf:type property nor to support the organization of entities into

classification levels. Therefore, we conclude that RDFS does not satisfy the requirement

R2. A consequence of this to the biological taxonomy example described in Chapter 2 is

that RDFS provides no guidelines concerning the possible relations between Cecil, Lion,

Species and Taxonomic Rank. Note that, according to MLT we can identify that these are

entities at different orders and that there are rules that apply to them (such as, e.g., that

Lion cannot be an instance of Taxonomic Rank, that Species cannot subclass Taxonomic

Rank). Finally, RDFS does not provide constructs to express, for example, that every

instance of an instance of a powertype must also be instance of the base type (the power

type pattern), not satisfying thus the requirement R3. In the biological taxonomy example,

the lack of support for R3 makes it impossible to represent that all instances of Species

must specialize exactly one instance of Genus.

3.2 RDFS(FA)

In an early effort to organize the metamodeling architecture for RDFS 1.0, Pan and

Horrocks proposed RDFS(FA) [9]. They observed that “RDFS uses a single primitive

rdfs:Class to implicitly represent possibly infinite layers of classes” (as it is an instance of

itself) and that this creates barriers for understanding. They show examples on how this

lack of a principle of organization for levels creates a so-called “layer mistake”, where the

modeler ends-up making inadequate ad hoc language extensions. The authors argue that

these extensions are undesirable and that the modeler may confuse language extension

with domain modeling, since the same mechanisms can be used for both. Inspired by the

fixed UML metamodeling architecture [34], they proposed the use of four layers:

Metalanguage (M), Language (L), Ontology (O) and Instance (I). The M Layer is

responsible for defining the language, where modeling primitives of this topmost layer

have no types. The L Layer defines a language for specifying vocabularies and each entity

in this layer is an instance of an entity in the M Layer. Vocabularies are defined in the O

Layer (“Person” and “Animal” are examples of classes in this layer) and each element in

34

this layer is an instance of an element in the L Layer. Lastly, the I Layer is populated with

concrete individuals, which are instances of the vocabulary defined in O Layer.

Figure 3-4 shows the result of applying this architecture to RDFS. RDFS classes are

replicated in the M and L Layers with the respective prefix (M and L). In O layer, Animal

and Person are represented as instances of rdfsfa:LClass (instead of rdfs:Class); and John and

Mary in the Instance Layer, as an instance of Person.

Figure 3-4. Example of Directed Labeled Graph of RDFS(FA) (from [9])

This architecture organizes the language engineering effort, but it does not aim to address

the representation of domains with multiple levels of classification. In fact, it is based on

the two-level scheme for the representation of domains in the O and I layers, with classes

at the O layer, and individuals at the I layer, related through rdfsfa:otype (which represents

what is known as ontological instantiation [33]). Metaclasses are only used in the domain-

independent L layer; classes at the O layer are related to classes at the L layer through

rdfsfa:ltype (which represents what is known as linguistic instantiation [33]). In order to

represent a domain type such as Species one would be forced to include it in the L layer,

specializing rdfsfa:LClass, which would be inadequate according to [9], as language and

ontology issues would be confused. In this case, one would have to instantiate Species

using rdfsfa:ltype, clearly misusing linguistic instantiation [33]. In conclusion, RDFS(FA)

satisfies requirements R1 and R2 only for linguistic instantiation, but not for ontological

instantiation. A consequence of this limitation is that in the biological taxonomy example

described in Chapter 2, RDFS(FA) does not allow modelers to represent that Lion is an

instance of Species (R1). Since RDFS(FA) does not support R1 for ontological

instantiation, then it does not offer special support for expressing: (i) the relations

35

between a higher-order class and a base class in the powertype pattern (failing thus to

satisfy R3); and domain relations crossing levels (not satisfying R4). As a consequence,

important multi-level constraints cannot be represented in the biological taxonomy

scenario. For example, it is not possible to capture the constraint that every instance of

Organism must be instance of exactly one instance of Species.

3.3 OWL 2

OWL 2 [4] is also a language proposed by W3C, which is defined in terms of RDFS.

OWL introduces new terms (besides the existing ones in RDFS), with the purpose of

increasing the expressiveness of domain vocabularies, while maintaining key choices in

the Semantic Web underlying RDF and RDFS. We focus here on the features of OWL

that can be used to represent multi-level models.

OWL introduces a new term for representing classes: owl:Class, which is an instance of

rdfs:Class. Moreover, these terms are declared as subclasses (specializations) of each other,

which makes them equivalent. OWL introduces a superclass of rdfs:Resource which is used

to classify everything: owl:Thing. Since RDFS allows properties to connect a resource to a

literal or to a resource, OWL introduces terms which specializes rdf:Property to distinguish

each of these cases: (i) instances of owl:DatatypeProperty connect a resource to a literal, and

(ii) instances of owl:ObjectProperty connect a resource to a resource. Thus, domain relations

(such as “was born in”) are represented as instances of owl:ObjectProperty. Further, instances

of (i) rdfs:Class/owl:Class and (ii) owl:ObjectProperty are instances of owl:Thing, since all of

them are (indirectly) subclasses of it. And, since concrete individuals are included as

resources, they are also instances of owl:Thing. This fragment of OWL is presented in

Figure 3-5. To increase the readability of the diagram, we omitted the representation of

rdf:type from owl:Thing to owl:Class and from all other elements to rdfs:Class.

36

Figure 3-5. Fragment of OWL vocabulary

Similarly to RDFS, OWL supports the representation of classes of classes, but explicitly

under the term metamodeling. For example, in Figure 3-6, two subclasses of Eagle, namely

Golden Eagle and Steppe Eagle are defined as instances of Species, which means that they are

members of the set of all species. Finally, we use the instance specification notation of

UML (i.e., underlining an element’s name) to represent an individual (e.g. Harry).

Figure 3-6. OWL representation for biological taxonomic domain

Despite introducing new elements, the OWL metamodeling architecture is similar to

RDFS’s. However, since OWL was designed with concerns for the tractability of

reasoning and inference, the designers have opted to constrain the language’s

expressiveness. Because of this, OWL’s multi-level modeling support is based on the

notion of contextual semantics [10], often referred to as punning. According to punning

principles, (i) a class is seen as an individual when it is an instance of another class, and (ii)

the interpretation of an entity as a class and it is completely independent of its

interpretation as an individual. This “independent” interpretation means that a constraint

OntoUML OWL Class2

owl:Class

rdfs:Class

rdfs:Resource

owl:Thing

rdf:Property

owl:ObjectProperty owl:DatatypeProperty

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

37

stated to the interpretation of an entity as a class will not be considered when this entity is

seen as an individual, which leads to non-intuitive interpretations [11]. For instance,

consider the following statements: (i) Harry is an instance of Golden Eagle, and; (ii) Golden

Eagle is the same as Aquila chrysaetos. Statement (i) treats Golden Eagle as a class, while

statement (ii) treats Golden Eagle as an individual. These two aspects of Golden Eagle are

never considered at the same time for reasoning. Thus, in this approach, it is impossible

to derive that Harry is an instance of Aquila chrysaetos, which violates our intuition with

respect to the multi-level model. We can say that while OWL seems to satisfy R1

(admitting classes that are also instances), it does so only partially, given the notion of

contextual semantics employed. The same can be said for the representation of relations

between entities of different levels (partially satisfying R4).

OWL offers no principle of organization into levels (failing to satisfy R2). Further,

punning also prevents us from correctly expressing the relation between a higher-order

class and a base class in the powertype pattern, which inevitable involves considering the

specializations of the base class as types and instances simultaneously (failing thus to

satisfy R3). Finally, considering the open world assumption, it is also impossible to

formally identify in this fragment above that Harry is an individual, as there could be

unstated rdf:type declarations involving Harry as a class. Further, given the same

assumption, it would be impossible to identify that Species (in isolation) is a metaclass; in

other words, we cannot express when modeling Species (and omitting its instances) that all

its instances are classes (in particular subclasses of Organism).

3.4 OWL FA

Pan and Horrocks also proposed OWL FA [11], [13], a metamodeling extension of OWL

1 DL, with an architecture based on RDFS(FA). They argue that OWL 1 Full supports

some metamodeling by allowing users to use the built-in vocabulary without restrictions,

but that leads to undecidability (as Motik pointed out [10]). They then propose a

decidable extension of OWL 1 DL allowing the reuse of existing reasoners.

38

While RDFS(FA) uses prefixes (M, L, O and I) to indicate the layer to which a class or

axiom belongs, OWL FA intuitively introduces a layer number in its constructors and

axioms, through annotations. The semantics of OWL FA [13], [35] take into account

elements that share the same URIs (Uniform Resource Identifier) and interpret them

dependently (in contrast to OWL). For instance, if Golden Eagle and Aquila chrysaetos are

stated as the same and Harry is an instance of Golden Eagle, OWL FA assumes that Harry

must be an instance of Aquila chrysaetos. However, it does not allow property assertions

between layers except for instantiation. For example, subclassing and domain relations

must be between classes at the same layer (failing thus to satisfy R4). As a consequence, in

the paradigmatic example described in Chapter 2, it is not possible to represent who

named the Golden Eagle species.

The numbered layers appear to merge Ontology and Instance Layers of RDFS(FA). Thus, we

understand here that identifying layers by numbers addresses the limitation of RDFS(FA)

(see 3.2) thus satisfying R1 fully. Moreover, as advantages when compared to the current

multi-level modeling support of OWL (see 3.3), OWL FA: (i) interprets dependently elements

that share the same URI, and; (ii) it introduces restrictions for instantiation and

subclassing, providing some criteria for the organization into levels (R2). Finally, OWL

FA offers no special support for the representation of constraints for the instantiation of

types at different levels (not satisfying R3).

3.5 PURO

Svatek et al. [12] propose the PURO approach which includes an OWL vocabulary that

can be used as a basis for multi-level domain vocabularies. In PURO, each entity of a

domain vocabulary can be annotated with a PURO term in order to clarify the entity’s

ontological status. The term B-object is used to refer to concrete individuals in the world

(such as Harry). In contrast, the term B-type is used to refer to classes (such as Eagle). A B-

type is analogous to an OWL class, however, B-types are organized into strata: instances of

1st order B-types are B-objects, instances of nth-order B-types are (n−1)th-order B-types (for n > 1).

The OWL vocabulary supporting the PURO approach only deals with B-objects and first-,

39

second- and third-order B-types. B-relationship is analogous to an object property assertion

and there are variations: (i) B-instantiation is an assertion to indicate that an entity

instantiates a B-type; (ii) B-axiom express a relationship between the extensions of two B-

types (e.g., subclassing); and (iii) B-fact express information about an entity, e.g., who

discovered certain species. Finally, B-relation is analogous to OWL Object Property.

Similarly to OWL and OWL FA, PURO has the required expressivity for representing

multiple levels of instantiation (R1) through the notions of B-object and the B-types.

Moreover, PURO defines rules for the organization of entities along levels (R2). Finally,

PURO allows modelers to express domain relations between entities of different levels

(R4); an example is provided in [12] in which a musician is considered an expert in a type

of instrument (e.g., the musician Yo-Yo Ma is an expert in Violin). However, similarly to

OWL and OWL FA, PURO offers no special support for the representation of

constraints for the instantiation of types at different levels (not satisfying R3).

3.6 THE WIKIDATA APPROACH

The importance of structured data on the web has become clear in the recent years, and

has fed developments to make it possible for data to be shared and reused across

application, enterprise, and community boundaries [1]. Currently, many initiatives focus

on structured data in an effort to facilitate the automated processing of data, as opposed

to human consumption through natural language. One prominent initiative with this

focus is Wikidata [15]: a project of the Wikimedia Foundation to capture the structured

data underlying Wikipedia, the popular online encyclopedia, and other Wikimedia sister

projects. The content of Wikidata is available under a free license, and can thus be

consumed and linked to other data sets on the linked data web.

The Wikidata repository consists mostly of items and statements about these items. Items are

used “to represent all the things in human knowledge, including topics, concepts, and objects”, and are

given a unique identifier, a label and a description [36]. Statements are used “for recording data

about an item”, and “consist of (at least) one property-value pair”; they serve to “connect items to each

other, resulting in a linked data structure” [37].

40

In order to organize Wikidata’s content, some items (termed classes) may be used to

classify other items through the instance of property (which has the unique identifier P31).

For example, the item London (Q84) is related to the item city (Q515) through the instance

of property, to represent the fact that London is a city. Further, classes can be related

through the subclass of (P279) taxonomic property, defining thus hierarchies of classes,

from more general to more specific ones [38]. For example, city and country (Q6256) are

subclasses of administrative territorial entity (Q56061), which is a subclass of human-geographic

territorial entity (Q15642541). The definition of instance of provided in Wikidata is informal

and silent about its formal logic properties (symmetry, reflexivity and transitivity).

Moreover, Wikidata declares that instance of and rdf:type are equivalent properties (P1628).

Further, subclass of is characterized as transitive and asymmetric (i.e., antisymmetric and

irreflexive) and as equivalent property of rdfs:subClassOf.

To illustrate this, we extracted from Wikidata a fragment of a biological taxonomy and the

classification of Cecil (the lion) in such taxonomy. Cecil is instance of Panthera Leo, which is

instance of Species. Species, in its turn, is instance of Taxonomic Rank. Considering the definition

of subclass of, we can conclude that Cecil is also instance of Panthera and, consequently, of all

its super classes. See Figure 3-7. Additionally, in order to increase the readability of the

diagram, we use dashed rectangles to group elements that instantiate the same other

element and draw only one arrow from the border of the rectangle to the other element.

While, in the model of Figure 3-7, modelers have been able to organize the model

adequately into strata, there is no support to prevent a Wikidata contributor from

violating this conformant structure. For example, a clearly incorrect modification

introducing a new entity (e.g. “Simba”) which is both an instance of Panthera Leo and

Species would go undetected, and would result in an inconsistent hierarchy1.

1 In fact, we have detected a large number of those problematic hierarchies (see Chapter 5).

41

Figure 3-7. Short representation for Taxonomic Biological Domain in Wikidata

Similarly with the previously presented approaches, Wikidata provides support for

representing many levels of instantiation (R1) through the possibility of chains of the

instance of property. Like RDFS, Wikidata allows statements between any pair of items,

thus it is possible to represent domain relations between entities in different levels (R4).

However, since Wikidata is silent about formal logic properties of instance of, it offers no

special support both for organization of entities along levels (not satisfying R2) and for

the representation of constraints for the instantiation of types at different levels (not

satisfying R3).

3.7 CONCLUDING REMARKS

Here, we summarize the review of the current Semantic Web approaches concerning their

adherence to the four requirements we established for multi-level approaches in

Chapter 2. Table 3-1 summarizes the analysis, classifying their support for each

requirement considering three categories: fully covered, partially covered and not covered.

42

Table 3-1. Support for multi-level modeling in RDFS languages

Requirement RDFS RDFS(FA) OWL 2 OWL FA PURO Wikidata

R1 – represents entities

of multiple levels of

classification

Yes. Partially. Partially. Yes. Yes. Yes.

R2 – offers guidance for

the organization of

entities into levels

No. Partially. No. Yes. Yes. No.

R3 – represents rules for

the instantiation of types

at different levels

No. No. No. No. No. No.

R4 – supports domain

relations between entities

of different levels

Yes. No. Partially. No. Yes. Yes.

We consider that RDFS provides support for representing multiple levels of classification

(R1) and that it allows the representation of domain relations between entities of different

orders (R4). However, no specific rules are defined to guide the use of the rdf:type property

(not satisfying R2) and no mechanism is provided to constrain the instantiation of types at

different classification levels (R3).

The Wikidata approach is quite similar to RDFS. Two of its main properties, instance of

(P31) and subclass of (P279), are said to be equivalent to (P1628) RDFS properties rdf:type

and rdfs:subClassOf, respectively. Similarly to RDFS, the Wikidata approach supports

multiple levels of classification (R1) and domain relations crossing levels (R4). However, it

offers no special support concerning the usage of instantiation and the relation between

higher-order types and base types, failing to support both R2 and R3.

RDFS(FA) provides support and guidance for representing multiple levels of

classification, however focusing on linguistic instantiation instead of ontological

instantiation. Because of this focus, when compared with RDFS, RDFS(FA) sacrifices R1

(which we consider only partially addressed) as well as R4, while providing support for

R2. Since RDFS(FA) does not support R1 for ontological instantiation, it does not offer

special support for expressing the relations between a higher-order class and a base class

in the powertype pattern (not satisfying R3).

43

Similarly to RDFS, OWL supports the representation of classes of classes, but under the

term metamodeling. Because of the need to maintain tractable inferencing mechanisms,

OWL metamodeling is based on the contextual semantics [10] (punning). This choice affects

the representation of relations and constraints crossing levels and hence offers only partial

support for R1 and R4 in contrast with RDFS, which we consider offers full support for

R1 and R4. OWL fails to support R2 and R3.

Finally, OWL FA and PURO offer full support for R1 and R2. However, OWL FA

restricts domain relations only for entities in the same level, while PURO supports

domain relations crossing levels (R4). Thus, PURO appears as the approach that meets

the largest number of requirements we have identified.

Despite the efforts in all these approaches, none of them support the representation of

constraints involving instantiation relations across levels (i.e., none of them satisfy R3).

The shortcomings of the existing approaches motivate our investigation into a novel

approach for multi-level modeling for the Semantic Web.

44

4 EXPRESSIVE MULTI-LEVEL MODELING FOR THE

SEMANTIC WEB

In this chapter, we present our approach to improve the expressivity of multi-level

modeling in the Semantic Web. For that, we first present and justify some basic choices

for the approach (Section 4.1). Then, we show the proposed vocabulary based on

distinctions put forth by MLT (Section 4.2), and a number of integrity (Section 4.3) and

derivation (Section 4.4) rules reflecting axioms and theorems of MLT. Further, we explain

how the vocabulary and rules are combined in an application that helps modelers to

produce sound models (Section 4.5). Finally, we present some conclusions regarding the

usage of our approach (Section 4.6).

4.1 PRELIMINARY CONSIDERATIONS

In this thesis, we are interested in providing expressiveness for representing multi-level

domains in the Semantic Web satisfying the four requirements for multi-level modeling

approaches defined in Section 2.4 and maintaining the current standards of Semantic Web

languages and metamodeling infrastructures.

We use MLT as foundation for this approach, since MLT achieves the four-requirements.

Then, considering that RDFS has the ability to represent entities of multiple (related)

classification levels (satisfying R1) we maintain the use of rdf:type to represent the

instantiation relations. This design decision corroborates with the principle of Linked

Data of reusing terms from widely deployed vocabularies whenever their semantics

correspond to the intended ones [39].

To provide some organization for the multi-level models (in order to satisfy R2), we: (i)

represent the basic types of MLT as instances of owl:Class (adhering to the infrastructure

standard), and (ii) provide queries implementing MLT rules to ensure that the

stratification into orders is respected by domain vocabularies that instantiate and

specialize these basic types.

45

To provide support to capture rules for the instantiation of types at different levels (in

order to satisfy R3) we: (i) incorporate the MLT relations representing them as instances

of owl:ObjectProperty (adhering to the infrastructure standard), and (ii) provide queries to

verify the soundness of vocabularies that use these relations.

Finally, considering that OWL supports the representation of domain relations between

entities in different classification levels, the domain relations in our approach are

represented as instances of owl:ObjectProperty adhering, thus, to the infrastructure standard

and satisfying to R4.

4.2 THE MLT VOCABULARY FOR THE SEMANTIC WEB

The proposed vocabulary encompasses the representation of the basic types of MLT and

the relations defined in the theory. The basic types of MLT are represented as instances

(rdf:type) of owl:Class. The class representing the MLT Individual basic type is named

mlt:TokenIndividual2, the class representing the First-Order Type is named mlt:1stOrderClass,

and the classes mlt:2ndOrderClass and mlt:3rdOrderClass represent, respectively, the Second-

order and Third-order basic types. Considering that, according to MLT, instances of Individual

are not instantiable (i.e. are not types), mlt:TokenIndividual does not specialize owl:Class. In

contrast, the classes representing all other basic types have an rdf:subClassOf relation with

owl:Class capturing the fact that their instances are classes (i.e. their instances are

instantiable) (see Figure 4-1).

2 The term “TokenIndividual” was adopted here to avoid confusion with the term “Individual” in the OWL

specification. “TokenIndividual” corresponds to what we call “Individual” in [20]. The choice for the prefix “token”

comes from its use in linguistics. In linguistics, the term refers to entities that do not have instances, contrasting with

the notion of types [51].

46

Figure 4-1. Fragment of MLT Vocabulary for Order Classes and Individual.

Concerning the MLT relations, instance of relations are represented as rdf:type properties

and specialization relations are represented as rdfs:subClassOf properties. All other intra- and

cross-level relations of MLT are represented in this vocabulary in a hierarchy of instances

of owl:ObjectProperty, including at the top: mlt:intraLevelProperty, which is as a super property

for all MLT intra-level relations; and mlt:crossLevelProperty, which is a super property for all

MLT cross-level relations. The subordination relation of MLT is then represented by the

property mlt:isSubordinateTo as a sub-property of mlt:intraLevelProperty, while the categorization

(mlt:categorizes) and the is powertype of (mlt:isPowertypeOf) relations are represented as sub-

properties of mlt:crossLevelProperty. Finally, each variation of categorization (e.g. complete

categorization, disjoint categorization and so on) is represented as a sub-property of

mlt:categorizes.

These properties are also used in the vocabulary definition to represent relations that

occur between the basic types of MLT. To capture the fact that the basic type in one

order is instance of the basic type in an immediately higher order, statements with rdf:type

are defined between the classes representing the basic types (e.g., mlt:TokenIndividual rdf:type

mlt:1stOrderClass, mlt:1stOrderClass rdf:type mlt:2ndOrderClass), capturing thus the MLT

Theorems T1-T3. Further, mlt:isPowertypeOf is used to represent that a basic type in an

order is the powertype of the basic type in the immediately-lower order (Figure 4-1),

capturing thus the Theorems T10-T12. Finally, we use owl:AllDisjointClasses to capture in

OWL the MLT Theorem T4, which states that MLT basic types are disjoint. The

vocabulary is available at [40] and at Appendix I.

The MLT vocabulary allows the representation of domain rules concerning the

instantiation of types in different levels. For example, Figure 4-2 illustrates a fragment of

an ontology in the biological taxonomy domain applying this vocabulary. In such an

47

ontology, Genus and Species are represented as instances of mlt:2ndOrderClass (and, thus, as

subclasses of mlt:1stOrderClass) meaning that their instances (e.g. Panthera, Panthera Onca,

and so on) must specialize mlt:TokenIndividual, i.e. instances of their instances are non-

instantiable elements (e.g. Cecil (the lion) which does not possibly have instances). The

domain rule that every instance of Species must be a subclass of an instance of Genus is

captured by the mlt:isSubordinateTo property between Species and Genus. Further, the

mlt:partitions property between Species and Panthera captures the rule that every instance of

Panthera must be instance of exactly one instance of Species. Finally, Genus mlt:partitions

Organism and Species mlt:partitions Organism, to capture that every organism must be instance

of exactly one Genus and instance of exactly one instance of Species. Note that domain

modelers only need to declare their domain classes as instances and/or specializations of

the MLT basic types. (As we shall discuss later in section 4.4, some of these relations can

be inferred automatically, using derivation rules reflecting MLT axioms and theorems.)

Figure 4-2. Illustrating the use of mlt:isSubordinateTo and mlt:partitions properties.

Figure 4-3 shows an example of an ontology representing employees and their roles in a

company to illustrate the use of variations of categorization relations to capture domain

rules. To capture the rule that each Employee must play one or more Business Roles in the

company, Business Role mlt:completelyCategorizes Employee meaning that every instance of

Employee must be instance of at least one instance of Business Role. Further, to represent

that an Employee may play at most one Management Role, Management Role

mlt:disjointlyCategorizes Employee.

OntoUML SOSYM - Fig6

mlt:TokenIndiv idualmlt:1stOrderClassmlt:2ndOrderClass

Species

Genus

Panthera

Panthera Onca Panthera Tigris Panthera Leo Cecil

Organism

Panthera Species

rdf:type

mlt:partitions

rdfs:subClassOf

mlt:partitions

mlt:partitions

rdfs:subClassOfrdfs:subClassOf

rdf:type

mlt:isSubordinateTo

rdf:type

rdfs:subClassOf

rdfs:subClassOf

48

Figure 4-3. Illustrating the use of mlt:completelyCategorizes and mlt:overlappinglyCategorizes.

4.3 INTEGRITY CONSTRAINTS BASED ON MLT

An important aspect of the proposed vocabulary is that it allows us to leverage rules of

the MLT formalization in order to guide modelers in producing sound models. The rules

discussed in this section ensure that the domain classes respect the stratification into

orders. Some of these rules are expressible in pure OWL and thus were directly included

in the vocabulary. For example, a disjointness constraint (owl:AllDisjointClasses) is

introduced to reflect the fact that the basic types of MLT are all mutually disjoint

(Theorem T4 - Table 2-1).

The majority of the MLT rules, though, are not expressible directly in OWL, and are

represented here in SPARQL. This is the case of constraints concerning the domain and

range of MLT structural relations. For example, mlt:isPowertypeOf, mlt:categorizes and all its

variations must occur between classes of adjacent levels, i.e., if the domain is a

2ndOrderClass, then the range must be a 1stOrderClass, if the domain is a 3rdOrderClass, then

the range must be a 2ndOrderClass, and so on. Table 4-1 shows the domain/range

restrictions for MLT relations.

49

Table 4-1. Domain and range restrictions for multi-level relations.

Relation name Domain and Range

rdfs:subClassOf
Classes of the same order

(instances of 1st, 2nd or 3rd Order Classes)

isSubordinateTo
Higher-order classes of the same order

(2ndOrderClass or 3rdOrderClass)

rdf:type Elements of adjacent levels.

isPowertypeOf

Classes of adjacent levels:

- 2ndOrderClass → 1stOrderClass

- 3rdOrderClass → 2ndOrderClass

categorizes

completelyCategorizes

incompletelyCategorizes

disjointlyCategorizes

overlappinglyCategorizes

SPARQL queries are also provided to allow the verification of rules concerning the nature

of the basic types of MLT. For example, considering that instances of Individual must

have no instances, we provide an integrity constraint to verify if there are instances of

instances of mlt:TokenIndividual (see IC1 in Table 4-2, which would detect violations of this

constraint).

According to the definition of categorization (see D5) the instances of the higher-order type

are proper specializations of the base type, i.e. the base type cannot be an instance of the

higher-order type that categorizes it. The integrity constraint IC2 captures this issue.

Furthermore, axioms A1 and A6 (see Table 2-1) prescribe a strictly stratified organization

of entities into orders, which is called strict metamodeling principle. As a result, the strict

metamodeling principle is also guarantee through two SPARQL queries checking

properties of instantiation: (i) asymmetry (see IC3 in Table 4-2), and (ii) and anti-

transitivity (see IC4 in Table 4-2).

Integrity constraints are also provided to verify MLT theorems concerning characteristics

of structural relations. For instance, given the definition of the is powertype of relation, a

base class can have, at most, one higher-order class as powertype and a higher-order class

may be the powertype of at most one base class. This suggests two clear integrity

50

constraints: (i) a class can be the subject of at most one triple having mlt:isPowertypeOf as

predicate (violations detected by IC6 in Table 4-2), and (ii) a class can be the object of at

most one triple having mlt:isPowertypeOf as predicate (see IC5 in Table 4-2).

Another example is a constraint provided to allow the verification of the MLT theorem

that states that if two classes t1 and t2 both partition the same class t then it is not

possible for t1 to be subclass of t2 (IC7 in Table 4-2).

Table 4-2. Integrity Constraints Corresponding to MLT Rules

MLT

Rule
#Query Integrity Constraint SPARQL query

A1 IC1

#Integrity constraint IC1 based on MLT Axiom A1
#This query checks scenarios where individuals have instances
SELECT DISTINCT *
WHERE {
 ?x rdf:type mlt:TokenIndividual .
 ?y rdf:type ?x
}

D5 IC2

#Integrity constraint IC2 based on MLT Definition D5
#This query checks scenarios where a type t1 categorizes t2 and
#t2 instantiates t1
SELECT DISTINCT *
WHERE {
 ?t1 mlt:categorizes ?t2 .
 {
 ?t2 rdf:type ?t1 .
 }UNION{
 ?t3 rdfs:subClassOf ?t2 .
 ?t2 owl:sameAs ?t3 .
 ?t3 rdf:type ?t1 .
 }
}

T5 IC3

#Integrity constraint IC3 based on MLT Theorem T5
#This query checks scenarios where asymmetry is violated
SELECT DISTINCT *
WHERE {
 ?x rdf:type ?y .
 ?y rdf:type ?x
}

T6 IC4

#Integrity constraint IC4 based on MLT Theorem T6
#This query checks scenarios where stratification is violated
SELECT DISTINCT *
WHERE {
 ?x rdf:type ?y .
 ?y rdf:type ?z .
 ?x rdf:type ?z
}

T13 IC5

#Integrity constraint IC5 based on MLT Theorem T13
#This query checks scenarios where a type has more than one powertype
SELECT DISTINCT *
WHERE {
 ?p mlt:isPowertypeOf ?t .
 ?p1 mlt:isPowertypeOf ?t .
 FILTER (?p NOT IN (?p1))
}

51

MLT

Rule
#Query Integrity Constraint SPARQL query

T14 IC6

#Integrity constraint IC6 based on MLT Theorem T14
#This query checks scenarios where a type is powertype of more than one
#type
SELECT DISTINCT *
WHERE {
 ?p mlt:isPowertypeOf ?t .
 ?p mlt:isPowertypeOf ?t1 .
 FILTER (?t NOT IN (?t1))
}

T18 IC7

#Integrity constraint IC7 based on MLT Theorem T18
#This query checks scenarios where a type t3 is partitioned by two
#other types t1 and t2, and t1 is subclass of t2
SELECT DISTINCT *
WHERE {
 ?t1 mlt:partitions ?t3 .
 ?t2 mlt:partitions ?t3 .
 ?t1 rdfs:subClassOf ?t2
}

4.4 MODEL COMPLETION BASED ON MLT

Considering that models built using our MLT vocabulary may exhibit incomplete

information, we leverage MLT axioms and theorems to allow the inference of

information not represented explicitly. For instance, it follows from the axioms of MLT

that, instances of a basic higher-order type are entities whose instances are instances of a

type at the immediately lower level. And the inverse is also valid, instances of a basic type

are entities whose types are instances of a type at the immediately higher level. For

example, query DR1 (Table 4-3) allows the identification of instances of

mlt:TokenIndividual whose types are not represented as instances of mlt:1stOrderClass. While

the query DR2 (Table 4-3) allow the identification of instances of mlt:1stOrderClass whose

instances are not represented as instances of mlt:TokenIndividual. The same pattern occurs

for the queries DR3 and DR4, and DR5 and DR6 (Table 4-3).

MLT also defines some structural relations which occur between types of the same order

(intra-level relations) and between types of adjacent levels (cross-level relations). The first

intra-level relation is the ordinary specialization between types, which defines that a type

specializes other type, then every instance of the former is also instance of the last. The

query DR7 (Table 4-3) allows the identification of cases in which the subclassing of two

types is represented but the instances of the subtypes are not represented as instances of

52

the super type. Note that this derivation could be made using existent reasoners, since this

rule is intrinsic of the definition of rdfs:subClassOf. However, since we deal with multiple

levels of classification, we are not dealing with OWL-DL. Thus, the current reasoners

cannot guarantee evaluation in a viable time.

According to the definition of the first cross-level relation, when t1 is the powertype of t2

and exists a t3 which is instance of t1, then t3 specializes t1. The query DR8 (Table 4-3)

identifies cases in which t1 is represented as the powertype of t2 and t3 is represented as

instance of t1, but t3 is not represented as subclass of t1. Even in the definition of the

powertype of relation, if t1 is the powertype of t2 and t3 specializes t1, then t3 is an instance of

t1. The query DR9 (Table 4-3) allows the identification of cases where the instantiation is

not represented.

Now, the definition of the categorize relation states that all instances of a class must

specialize other class. For that, query DR10 (Table 4-3) identifies cases when a type t1

categorizes a type t2 and the instances of t1 are not represented as subclasses of t2.

Further, this relation has two specializations: completelyCategorizes and disjointlyCategorizes.

The queries DR11 and DR12 (Table 4-3) identify cases when these variations are

represented but the categorize relation is not. Lastly, the partitions relation is a specialization

of both completelyCategorizes and disjointlyCategorizes. Thus, the query DR13 (Table 4-3) looks

for cases when the super relations are represented but the sub relation is not, and the

query DR14 (Table 4-3) looks for cases when the sub relation is represented but the super

relations are not.

Further, since every instance of a basic higher-order type must specialize the basic type at

the immediately lower level, we can identify some missing relations. For example, query

DR15 (Table 4-3) allows the identification of cases in which types are represented as

instances of mlt:1stOrderClass but their subclass relations with mlt:TokenIndividual are not

represented. Even more, DR16 (Table 4-3) works inversely, it allows the identification of

subclasses of mlt:TokenIndividual which are not represented as instances of

mlt:1stOrderClass. The pattern occurs between the queries DR17 and DR18, and between

DR19 and DR20.

53

It follows from the axioms of MLT that, if t is subclass of t1 then the powertype of t is

subclass of the powertype of t1. This is reflected in a query to identify cases in which the

subclass of relation is not represented between the powertypes (DR21 in Table 4-3).

Even more, according to MLT, if t1 is subordinate to t2 and t2 categorizes t3, then t1

categorizes t3. The query DR22 (Table 4-3) identifies cases where the subordination

between t1 and t2, and the categorization between t2 and t3 occurs, but the categorization

between t1 and t3 is not represented.

Finally, according to MLT, if t2 is powertype of t1 and t3 categorizes t1, then t3 is subclass

of t2, we provide a SPARQL query to identify cases in which the isPowertypeOf and the

categorization relations are represented but the subclass relations are not (DR23 in Table

4-3).

Table 4-3. Derivation Rules Corresponding to MLT Rules

MLT

Rule
Query Derivation SPARQL query

A3

DR1

#Derivation rule DR1 based on MLT Axiom A3
#This query derives instances of instances of 1stOrderClass
#as instances of TokenIndividual
CONSTRUCT {
 ?x rdf:type mlt:TokenIndividual
}WHERE {
 ?t rdf:type mlt:1stOrderClass .
 ?x rdf:type ?t
}

DR2

#Derivation rule DR2 based on MLT Axiom A3
#This query derives types of instances of TokenIndividual
#as instances of 1stOrderClass
CONSTRUCT {
 ?t rdf:type mlt:1stOrderClass
}WHERE {
 ?x rdf:type ?t .
 ?x rdf:type mlt:TokenIndividual .
 filter(?t != mlt:TokenIndividual)
}

A4 DR3

#Derivation rule DR3 based on MLT Axiom A4
#This query derives instances of instances of 2ndOrderClass
#as instances of 1stOrderClass
CONSTRUCT {
 ?t1 rdf:type mlt:1stOrderClass
}WHERE {
 ?t rdf:type mlt:2ndOrderClass .
 ?t1 rdf:type ?t
}

54

MLT

Rule
Query Derivation SPARQL query

DR4

#Derivation rule DR4 based on MLT Axiom A4
#This query derives types of instances of 1stOrderClass
#as instances of 2ndOrderClass
CONSTRUCT {
 ?t rdf:type mlt:2ndOrderClass
}WHERE {
 ?t1 rdf:type ?t .
 ?t1 rdf:type mlt:1stOrderClass .
 filter(?t != mlt:TokenIndividual)
}

A5

DR5

#Derivation rule DR3 based on MLT Axiom A4
#This query derives instances of instances of 3rdOrderClass
#as instances of 2ndOrderClass
CONSTRUCT {
 ?t1 rdf:type mlt:2ndOrderClass
}WHERE {
 ?t rdf:type mlt:3rdOrderClass .
 ?t1 rdf:type ?t
}

DR6

#Derivation rule DR4 based on MLT Axiom A4
#This query derives types of instances of 2ndOrderClass
#as instances of 3rdOrderClass
CONSTRUCT {
 ?t rdf:type mlt:3rdOrderClass
}WHERE {
 ?t1 rdf:type ?t .
 ?t1 rdf:type mlt:2ndOrderClass .
 filter(?t != mlt:TokenIndividual)
}

D1 DR7

#Derivation rule DR7 based on MLT Definition D1
#This query derives as instances of t2
#the instances of t1 which is subclass of t2
CONSTRUCT {
 ?e rdf:type ?t2
}WHERE {
 ?t1 rdfs:subClassOf+ ?t2 .
 ?e rdf:type ?t1
}

D4

DR8

#Derivation rule DR8 based on MLT Definition D4
#This query derives as subclass of t2
#the instances of t1 which is powertype of t2
CONSTRUCT {
 ?t3 rdfs:subClassOf ?t2
}WHERE {
 ?t1 mlt:isPowertypeOf ?t2 .
 ?t3 rdf:type ?t1 .
 ?t1 rdf:type ?t1Type .
 filter(?t1Type != mlt:TokenIndividual)
}

DR9

#Derivation rule DR9 based on MLT Definition D4
#This query derives as instances of t1
#the subclasses of t2, in which t1 is powertype of t2
CONSTRUCT {
 ?t3 rdf:type ?t1
}WHERE {
 ?t1 mlt:isPowertypeOf ?t2 .
 ?t3 rdfs:subClassOf* ?t2 .
 ?t1 rdf:type ?t1Type .
 filter(?t1Type != mlt:TokenIndividual)
}

55

MLT

Rule
Query Derivation SPARQL query

D5 DR10

#Derivation rule DR10 based on MLT Definition D5
#This query derives as subclasses of t2
#the instances of t1 which categorizes t2
CONSTRUCT {
 ?t3 rdfs:subClassOf ?t2
}WHERE {
 ?t1 mlt:categorizes ?t2 .
 ?t3 rdf:type ?t1 .
 ?t1 rdf:type ?t1Type .
 filter(?t1Type != mlt:TokenIndividual)
}

D6 DR11

#Derivation rule DR11 based on MLT Definition D6
#If t1 completelyCategorizes t2
#this query derives that t1 categorizes t2
CONSTRUCT {
 ?t1 mlt:categorizes ?t2
}WHERE {
 ?t1 mlt:completelyCategorizes ?t2
}

D7 DR12

#Derivation rule DR12 based on MLT Definition D7
#if t1 disjointlyCategorizes t2
#this query derives that t1 categorizes t2
CONSTRUCT {
 ?t1 mlt:categorizes ?t2
}WHERE {
 ?t1 mlt:disjointlyCategorizes ?t2
}

D8

DR13

#Derivation rule DR13 based on MLT Definition D8
#if t1 partitions t2
#this query derives that
#t1 completelyCategorizes t2 and that t1 disjointlyCategorizes t2
CONSTRUCT {
 ?t1 mlt:completelyCategorizes ?t2 .
 ?t1 mlt:disjointlyCategorizes ?t2
}WHERE {
 ?t1 mlt:partitions ?t2
}

DR14

#Derivation rule DR14 based on MLT Definition D8
#if t1 completelyCategorizes t2 and that t1 disjointlyCategorizes t2
#this query derives that t1 partitions t2
CONSTRUCT {
 ?t1 mlt:partitions ?t2
}WHERE {
 ?t1 mlt:completelyCategorizes ?t2 .
 ?t1 mlt:disjointlyCategorizes ?t2
}

T7

DR15

#Derivation rule DR15 based on MLT Theorem T7
#if t is an instance of 1stOrderClass
#this query derives that t is subclass of TokenIndividual
CONSTRUCT {
 ?t rdfs:subClassOf mlt:TokenIndividual
}WHERE {
 ?t rdf:type mlt:1stOrderClass
}

DR16

#Derivation rule DR16 based on MLT Theorem T7
#if t is a subclass of TokenIndividual
#this query derives that t is an instance of 1stOrderClass
CONSTRUCT {
 ?t rdf:type mlt:1stOrderClass
}WHERE {
 ?t rdfs:subClassOf+ mlt:TokenIndividual
}

56

MLT

Rule
Query Derivation SPARQL query

T8

DR17

#Derivation rule DR17 based on MLT Theorem T8
#if t is an instance of 2ndOrderClass
#this query derives that t is subclass of 1stOrderClasss
CONSTRUCT {
 ?t rdfs:subClassOf mlt:1stOrderClasss
}WHERE {
 ?t rdf:type mlt:2ndOrderClass
}

DR18

#Derivation rule DR18 based on MLT Theorem T9
#if t is a subclass of 1stOrderClass
#this query derives that t is an instance of 2ndOrderClass
CONSTRUCT {
 ?t rdf:type mlt:2ndOrderClass
}WHERE {
 ?t rdfs:subClassOf+ mlt:1stOrderClass
}

T9

DR19

#Derivation rule DR19 based on MLT Theorem T9
#if t is an instance of 3rdOrderClass
#this query derives that t is subclass of 2ndOrderClass
CONSTRUCT {
 ?t rdfs:subClassOf mlt:2ndOrderClasss
}WHERE {
 ?t rdf:type mlt:3rdOrderClass
}

DR20

#Derivation rule DR20 based on MLT Theorem T9
#if t is a subclass of 2ndOrderClass
#this query derives that t is an instance of 3rdOrderClass
CONSTRUCT {
 ?t rdf:type mlt:3rdOrderClass
}WHERE {
 ?t rdfs:subClassOf+ mlt:2ndOrderClass
}

T15 DR21

#Derivation rule DR21 based on MLT Theorem T15
#if t3 is powertype of t1, t4 is powertype of t2,
#and that t2 is subclass of t1
#this query derives that t4 is subclass of t3
CONSTRUCT {
 ?t4 rdfs:subClassOf ?t3
}WHERE {
 ?t2 rdfs:subClassOf+ ?t1 .
 ?t4 mlt:isPowertypeOf ?t2 .
 ?t3 mlt:isPowertypeOf ?t1
}

T16 DR22

#Derivation rule DR22 based on MLT Theorem T16
#if t1 is subordinate to t2 and t2 categorizes t3
#this query derives that t1 categorizes t3
CONSTRUCT {
 ?t1 mlt:categorizes ?t3
}WHERE {
 ?t1 mlt:isSubordinateTo ?t2 .
 ?t2 mlt:categorizes ?t3
}

T17 DR23

#Derivation rule DR23 based on MLT Theorem T17
#if t2 is powertype of t1 and t3 categorizes t1
#this query derives that t3 is subclass of t2
CONSTRUCT {
 ?t3 rdfs:subClassOf ?t2
}WHERE {
 ?t2 mlt:isPowertypeOf ?t1 .
 ?t3 mlt:categorizes ?t1
}

57

4.5 IMPLEMENTATION

In order to facilitate the combined usage of the MLT vocabulary in OWL and the MLT

rules in SPARQL (described in Sections 4.2-4.4), we developed an application that

receives as input an OWL file describing a domain ontology. It detects violations of MLT

rules and, in the case of valid models, it produces an OWL output file containing the

original domain ontology plus derived information following MLT rules.

Our application is developed using Jena [41], which is a widely used Java API

(Application Programming Interface) that provides support to manipulate RDF models

(which includes RDFS and OWL) and to execute SPARQL queries into these models.

For that, we used two bundles: jena-core-2.10.1 and arq-2.8.7. The former is the core

RDF API, provides mechanisms to handle RDF models and its triples. For example, with

the core RDF API we are able to handle OWL’s classes, properties and individuals. The

latter, ARQ is a SPARQL Processor for Jena, i.e., a query engine for Jena that supports

the SPARQL. Moreover, we use the reasoner Hermit [42] (version 1.3.8.4) in order to

check MLT rules expressed in OWL, such as the disjointness of the MLT basic types

(Theorem T4 in Table 2-1).

The application loads a domain model in order to execute the MLT rules. First, MLT

rules implemented in OWL, such as Theorem T4 (Table 2-1) which is implemented

through owl:AllDisjointClasses, are checked. Then, MLT integrity constraints are checked

running SPARQL queries. If any inconsistency is found, a diagnosis is shown and the

application ends. Further, knowledge is derived from the execution of MLT derivation

rules also implemented in SPARQL. Derivation rules are executed repeatedly, until no

new statements are generated. This is because knowledge derived in an iteration may

trigger new derivations. MLT integrity constraints and rules implemented in OWL and in

SPARQL are checked again in order to verify whether any inconsistent information was

introduced during the execution of derivation rules. Again, if any consistency is found, a

diagnosis is shown and the application ends. Finally, the enriched domain model is

serialized. These steps are shown in the tool’s flowchart presented in Figure 4-4.

58

Figure 4-4. Tool’s flowchart

It is key that these models have statements involving MLT, e.g. that a resource is an

instance of or subclass of the MLT basic types. Otherwise, our application will check only

Theorems T5 and T6 (Table 2-1) about strict metamodeling, which are independent of

MLT’s basic types and relations.

4.6 CONCLUDING REMARKS

Despite being the standard for representing vocabularies on the Web, OWL lacks

expressivity for representing all MLT integrity constraints and derivation rules. Thus, only

MLT basic types and relations, and a few set of theorems (T1-T4 and T10-T12) have

been represented directly in OWL. Some of other MLT rules (A1, A3-A5, D1, D4-D8,

T5-T9 and T13-T18) have been implemented using SPARQL, using SELECT and

CONSTRUCT primitives.

sd thesis flow2

Enter a

domain

model

Check

constraints

stated in OWL

Run

deriv ation

rules

Derivation rules

generated new

statements?

Check Integrity

Constraints in

SPARQL

Check Integrity

Constraints in

SPARQL

Check

constraints

stated in OWL

Serialize

enriched

domain model

Any

inconsistency

found?

Any

inconsistency

found?

Any

inconsistency

found?

Any

inconsistency

found?

Print

diagnosis

yes

no

yes

no

yes

no

yes

yes

no no

59

A few rules could not be (fully- or partially-) implemented, neither in OWL or SPARQL,

due to the Open World Assumption (OWA). This is the case for rules A2, A6 and D3,

which could not be fully-implemented, and D1, D4-D7, which were only partially

implemented. This is because since MLT is formalized quantifying over all possible entities,

some MLT definitions are not expressible considering the OWA. For instance, according

to MLT, two types are equal iff the sets of all their possible instances are the same (A2 in

Table 2-1). Further, if t1 has instances such that all of them are also instances of t2, then we

can conclude that t1 is a subclass of t2 (D1 in Table 2-1). Again, according to MLT, if all

possible instances of a type t1 also specializes a type t2, then t1 is the powertype of t2 (D4).

Analogously to Definitions D5, D6 and D7 from Table 2-1. These rules could not be

captured in our approach since, considering the OWA, we cannot assume that all instances

of an entity are represented in the knowledge base. Thus, these rules cannot be reflected

in the implementation.

Since the notion of equality between types (defined in axiom A2, which cannot be

implemented) is central to capture the difference between specialization and proper

specialization (D2 in Table 2-1), it was not possible to reflect definition D2 in the

implementation. Although, the notion of proper specialization is used in MLT definition of

categorization (D5) to capture that the base type itself is not an instance of the higher-order

type that categorizes it. This issue has given rise to integrity constraint IC2 presented in

Section 4.3. Finally, the notion of proper specialization is also central to the definition of

subordination (D3), which was not reflected in the implementation.

According to MLT, each entity in our domain of inquiry is necessarily an instance of

exactly one of its basic types. However, due to OWA, we cannot assume that all

instantiation relations are represented and, thus, it is not possible to capture this MLT rule

as a constraint. When the information about the basic type instantiated by a domain entity

is neither declared nor derived, a warning is given to the modeler.

Thus, to accomplish the requirements defined in Section 2.4 our approach defines an

OWL vocabulary representing MLT and implements MLT rules in SPARQL. The choice

for MLT is due to the fact MLT met these requirements. As discussed in Section 4.5, we

developed this approach into an application, which receives an OWL model as input and

60

run MLT rules, in order to check consistency and to derive knowledge. With this

application, we are now able to assess a real knowledge base for its conformance with

MLT rules.

We have refrained from an annotation-based approach such as that of OWL FA [43] and

PURO [12]). An annotation-based approach deviates from the standard use of rdf:type for

representing instantiation, and a key aspect of the multi-level model ends up in

annotations outside the model. Moreover, the OWL specification [4] recommends that

metamodeling should be done through punning, while annotations should be used when

the added information is not part of the domain (e.g. the date that John included an

information). The use of punning makes a model incompatible with OWL-DL and

unfortunately DL-reasoners do not support reasoning on cross-level constraints (punning

included). Thus, it is not possible to run MLT rules through an existing DL-reasoner.

Moreover, the contextual semantics [10] of OWL also makes impossible to represent

MLT rules in SWRL [44] (Semantic Web Rule Language), since it is based on OWL DL.

Therefore, considering our focus on supporting expressive multi-level modeling, since the

DL-reasoners do not support the expressivity needed to represent the rules of MLT our

approach relies on SPARQL queries to check constraints and to derive information.

61

5 VALIDATING THE APPROACH WITH TAXONOMIC

HIERARCHIES FROM WIKIDATA

To provide empirical evidence of the applicability of MLT-OWL approach to assess real-

world content dealing with multiple classification levels, in this chapter we apply this

approach to assess the Wikidata content from the perspective of multi-level modeling.

First, we present our considerations of semantic correspondence between Wikidata

properties and MLT relations, and the problems found in the multi-level taxonomic

hierarchies in Wikidata (Section 5.1). Then, we present some anti-patterns that occur in

Wikidata and that violate the aforementioned stratification into classification levels

(Section 5.2). Further, we show how the MLT approach can be used for avoiding these

anti-patterns and how it can be used in valid ontologies (Section 5.3). Finally, we present

some conclusions of the usage of MLT-OWL approach in Wikidata content (Section 5.4).

5.1 A DIAGNOSIS OF MULTI-LEVEL TAXONOMIC HIERARCHIES IN WIKIDATA

The definition of instance of provided in Wikidata is informal and silent about its formal

logic properties (symmetry, reflexivity and transitivity). However, observing its use in

Wikidata content, we have concluded that its purpose is similar to the iof relation of MLT:

to denote that a type applies to an element. Therefore, in order to apply MLT to validate

taxonomic hierarchies in Wikidata, we consider the semantics of its instance of property to

correspond to that of the iof relation in MLT. Further, subclass of provided in Wikidata is

characterized as transitive and asymmetric (antisymmetric and irreflexive). We consider

the semantics of the subclass of property in Wikidata to correspond to that of the proper

specialization relation in MLT. The establishment of the semantics of instance of and subclass

of properties in terms of MLT allow us to use the MLT rules to validate Wikidata content.

Considering the chain of instantiations in Figure 3-7 (page 41) we can clearly detect a

notion of levels: Cecil, Organism, Taxon and Taxonomic Rank are at different levels of

classification. If we assume Cecil as an instance of Individual (of MLT), since we know that it

62

has no instances, we can apply the MLT basic pattern (Theorems T7, T8 and T9, Table

2-1) to deduce new information from the diagram in Figure 3-7. First, we can derive that

Panthera Leo and all its super classes are both instances of 1stOT (from Axiom A3) and then

subclasses of Individual (from Theorem T7). Consequently, the classifiers of Organism types

(e.g., Taxon, Domain, Species) are both instances of 2ndOT (from Axiom A4) and then

subclasses of 1stOT (from Theorem T8). Finally, Taxonomic Rank is derived as instance of

3rdOT (from Axiom A5) and then subclass of 2ndOT (from Theorem T9).

The example of biological taxonomic rank illustrated in Figure 3-7 conforms to the

stratification underlying MLT rules, following its basic pattern. However, there is no

automated support or guidelines to prevent a Wikidata contributor from violating this

conformant structure. For example, a clearly incorrect modification introducing a new

entity (e.g. “Simba”) which is both an instance of Panthera Leo and Species would go

undetected, and would result in an inconsistent hierarchy. In fact, we have observed many

occurrences of such problematic hierarchies in current Wikidata content.

For example, take Wikidata information about Tim Berners-Lee and his professional

occupation (a fragment of which is depicted in Figure 5-1). Tim is considered instance of

Computer Scientist. In its turn, Computer Scientist is indirectly subclass of Profession. Thus, we can

conclude Tim is an instance of Profession(!), which clearly violates our sense of what a

Profession is. Formally, these statements could be considered inconsistent in the light of

MLT: since instance of is anti-transitive (Theorem T6, Table 2-1) and Computer Scientist is

instance of Profession, Tim cannot be instance of Profession.

Figure 5-1. Wikidata information about Tim Berners-Lee and his professional occupation

OntoUML Wikidata Profession

Profession

Creator

Scientist

Computer Scientist

Tim Berners-Leeinstance of

subclass of

subclass of

instance of

subclass of

63

Now, considering Tim Berners-Lee as an Individual (of MLT), since it has no instances, we

can apply the MLT basic pattern to deduce information. First, we conclude that Computer

Scientist and all its super classes are both instances of 1stOT (from Axiom A3) and subclasses of

Individual (from Theorem T7). Consequently, since instances of Profession are instances of

1stOT, Profession is both instance of 2ndOT (from Axiom A4) and subclass of 1stOT (from

Theorem T8). Here, we realize that Profession is instance of both 1stOT and 2ndOT, which is

invalid by A6 (see Table 2-1).

We have observed similar problems concerning multiple levels of classification in other

domains represented in Wikidata, such as transport, software and sports. In section 5.2,

we present the results of some queries we have submitted to Wikidata in order to detect

potential problematic scenarios. We highlight some issues identified and discuss them in

the light of MLT.

5.2 APPROACH: DETECTION OF ANTI-PATTERNS

In order to obtain some indication of the use of multi-level hierarchies in Wikidata, we

have queried for three simple cases of anti-patterns that violate the aforementioned

stratification. Figure 5-2 illustrates Anti-Pattern 1 (AP1) that looks for pairs of items (A,

Z) such that one (Z) is simultaneously a subclass of and an instance of the other (A). This

anti-pattern can appear under many configurations, i.e., one (Z) can be a direct subclass of

the other (A) or there may be a chain of subclass of properties between the involved items.

The fragment illustrated in Figure 5-1 (concerning Tim Berners-Lee’s professional

occupation) includes two occurrences of this anti-pattern with chains of subclass of

properties of length 2 and 3. Regardless of the size of this chain, the occurrence of this

pattern prevents stratification into classification levels, and creates a formal contradiction:

classes A and Z would be simultaneously at the same level (because they are related by

specialization) and at adjacent levels (because they are related by instantiation). Table II-1

(Appendix II) shows the SPARQL query associated to AP1 that considers a transitive

closure for subclass of statements. For this anti-pattern, we have found 14320 occurrences,

covering many domains, such as software, sports, biology, food, profession.

64

Figure 5-2. Illustration of Anti-Pattern 1

Figures Figure 5-3 and Figure 5-4 show examples of problematic fragments identified

through Anti-Pattern 1. Figure 5-3 shows that earthquake (Q7944) is both instance of and

subclass of natural disaster (Q8065). This fragment seems to have an unclear interpretation.

Does the Wikidata contributor consider earthquake to be a natural disaster or a special type

of natural disaster?

Figure 5-3. Scenario about earthquake found in Wikidata for AP1

This lack of clarity that results from the occurrence of AP1 has practical implications for

the properties of the items involved. For instance, considering that instances of natural

disaster are specific events (Q1190554), i.e., specific occurrences of natural disasters, then

these instances may be represented as having a point in time feature (P585). For example,

we can say that the 1985 Mexico City earthquake took place on September 19th, 1985.

However, since earthquake is also declared to be an instance of natural disaster and, thus, an

instance of event, earthquake itself could also be associated to a point in time. Notice, however,

that earthquake is more naturally thought of as a subclass of natural disaster, i.e., as a specific

kind of natural disaster, and a specific kind of event. But, in this case, it would be

65

problematic to attribute a specific point in time to this particular class of events. So, in this

example, it seems that the undesired relation is the instance of relation between earthquake

and natural disaster.

Analogously, Figure 5-4 shows that Egg waffle (Q837620) is both instance of and indirectly a

subclass of food (Q375). In this case, it is unclear whether an instance of food, waffle and Egg

waffle would represent a particular portion of food (the egg waffle John had for breakfast),

or a kind of food (such as waffle or Egg waffle).

Figure 5-4. Scenario about egg waffle found in Wikidata for AP1

A second anti-pattern (AP2) is illustrated in Figure 5-5. In this case, we have that an item

(C) has two direct super classes (A and B) such that one of the super classes is an instance

of the other (B is instance of A). Similarly to AP1, the occurrences of AP2 present logical

inconsistencies that rise from the violation of the stratification into classification levels. In

this case, all instances of C are also instances of A and B. However, instances of B cannot be

instances of A, since B is itself instance of A. Table II-1 (Appendix II) presents the SPARQL

query that can be used to detect occurrences of AP2. By running this query, we have

found 257 occurrences, covering domains, such as diseases, biology, food and colors.

Figure 5-5. Illustration of Anti-Pattern 2

66

Figure 5-6 illustrates that crawler excavator (Q5182961) is declared to be a subclass of both

excavator and heavy equipment, and excavator (Q182661) is an instance of heavy equipment

(Q874311).

Figure 5-6. Scenario about excavator found in Wikidata for AP2

Finally, a third anti-pattern (AP3) is illustrated in Figure 5-7. This anti-pattern represents

cases in which the anti-transitivity of the instance of relation is violated, making

stratification unfeasible. In the case depicted in Figure 5-7, C would have to be

simultaneously one and two classification levels below A. The query shown in Table II-1

(Appendix II) can be used to detect instances of AP3. By running it, we have found 6708

occurrences of AP3.

Figure 5-7. Illustration of Anti-Pattern 3

Figure 5-8 illustrates an example of AP3. Central Park (Q160409), the public park at the

center of Manhattan in New York City, is considered an instance of both urban park

(Q22746) and park (Q22698), while urban park is also an instance of park. As a subclass of

geographic location (Q2221906), park defines the property coordinate location (P625). Thus, we

could state that Central Park and urban park have values for this, which is plausible for

Central Park that has coordinate location 40°46'57"N, 73°57'58"W. In this, it sounds

67

problematic to attribute a value of coordinate location to urban park. So, in this example, it

seems that the undesired relation is the instance of relation between urban park and park,

which should possibly be replaced by a subclass of relation. This anti-pattern often occurs

in chains with terms such as: award (Q618779), Chinese surname (Q1093580), family

name (Q101352), Voivodeship road (Q1259617), Mikroregion (Q11781066) and natural

region (Q1970725).

Figure 5-8. Scenario about urban park found in Wikidata for AP3

Table 5-1 summarizes the results we have obtained from our queries into the Wikidata

simplified dump for AP1 and AP2. The total number of classes involved in taxonomic

hierarchies is 337102. This number is obtained by counting the items that are either a

subject or an object in “subclass of” statements. From this total number of items, 17819

classes are also the object of “instance of” statements, which means they are

simultaneously classes and instances of other classes, and thus involved in hierarchies

spanning more than one level of classification (our target classes for this investigation).

From this number of classes, we have found 15177 classes involved in AP1 (85%) and

441 classes involved in AP2 (2.5%). Thus, a significant percentage of the classes involved

in hierarchies spanning more than one level of classification violate the stratification of

classification levels.

Table 5-1. Results for AP1 and AP2

Number of classes in any taxonomic hierarchy 337,102

Number of classes in taxonomic hierarchies spanning more than one level 17,819

Number of classes involved in AP1 15,177

Number of classes involved in AP2 441

68

Table 5-2 summarizes the results for AP3. Here, we contrast: (i) the total number of items

in chains of instantiation with three levels (items A, B, and C, where C is an instance of B

and B is an instance of A) with: (ii) the number of those items in occurrences of AP3, in

which the third item in the chain (C) is also an instance of the first item in the chain (A),

violating the stratification. Only 0.1% of the items that occur in these instantiation chains

violate the stratification. The relatively low number of occurrences of this anti-pattern

when contrasted with AP1 and AP2 corroborates our intuition that it is the combined use

of sub classification and instantiation (a characteristic of AP1 and AP2) that is most

challenging to Wikidata contributors.

Table 5-2. Results for AP3

Number of items in chains of instantiation with three items 6,963,059

Number of items in AP3 in these chains 7,082

5.3 APPLYING MLT RULES TO WIKIDATA CONTENT

Here, we aim to show how the proposed MLT-OWL approach is capable of preventing a

number of issues found in Wikidata multi-level taxonomical hierarchies. As reported in

Section 5.2, there are over 22,000 occurrences of three anti-patterns related to multi-level

modeling in current Wikidata content; all these occurrences would have been prevented

by using MLT-OWL. We show how each of three anti-patterns can be detected using

MLT-OWL. In addition, we demonstrate how MLT-OWL approach could be used to

complete valid models using fragments of Wikidata content.

The full set of integrity constraints and derivation rules, and the MLT vocabulary

(described in Section 4.1) are combined in a tool, described in section 4.5. The tool

receives as input an OWL file describing a domain ontology. It detects violations of MLT

rules and, in the case of valid models, it produces an OWL output file containing the

original domain ontology plus derived information following MLT rules.

The following subsections are organized as follows: subsection 5.3.1 shows how the

problems detected in the example ontologies extracted from Wikidata content (presented

69

in Section 5.2) could be avoided through the analyze of MLT-OWL tool (which detects

the multi-level modeling problems); and subsection 5.3.2 presents other examples in

which the tool is used to derive additional information, based on the MLT rules, from

valid domain ontologies.

5.3.1 Examples on Avoiding Anti-Patterns

Tim Berners-Lee’s profession

In Figure 5-1 we present the example about Tim Berners-Lee profession, which is referent

to AP1. As we said, to make MLT rules useful, at least one entity of the domain model

must be instance of or subclass of the MLT basic types (otherwise, only IC3 and IC4 will be

checked). Then, in addition to the information presented in the example, we added the

information that Tim Berners-Lee is an instance of mlt:TokenIndividual, since we know that

he is a concrete individual and he has no instances. This example is serialized in the file

named tim-berners-lee-profession.owl and it is available at [40] and at Appendix III. Selecting

the file containing this example, our implementation runs the MLT derivation rules and it

shows the messages presented in Figure 5-9.

70

Figure 5-9. Derivation messages for the example of Tim Berners-Lee profession from Wikidata

Further, our implementation runs the MLT integrity constraints and it shows the

messages presented in Figure 5-10. Note that there are occurrences of inconsistency from

three integrity constraints. In Figure 5-9, we have from DR2 (A3) that ComputerScientist

and Profession are derived as instances of mlt:1stOrderClass, since they have a

mlt:TokenIndividual as its instance (Tim Berners-Lee). However, then, we have from DR1

(A3) that ComputerScientist is an instance of mlt:TokenIndividual, since it is an instance of

Profession (which is an instance of mlt:1stOrderClass). This scenario is not allowed according

to Integrity Constraint IC1 (Axiom A1), where instances of mlt:TokenIndividual cannot

have instances.

In the second occurrence of inconsistency, the message shows that this model violates

IC4 (T6), about stratification. Note that Tim is an instance of Computer Scientist and,

transitively, he is also instance of Profession. However, Computer Science also is instance of

Profession. Then, IC4 is useful to avoid AP3.

Finally, this model also violates Theorem T4. This is due to the fact that the basic types of

MLT are disjoint (Theorem T4). Thus, since ComputerScientist, Scientist, Profession and Creator

71

are derived as instances of more than one MLT basic type, this model is inconsistent

according to MLT.

Figure 5-10. Inconsistency messages for the example of Tim Berners-Lee profession from Wikidata

Earthquakes

In Figure 5-4 we present the example about earthquakes, which is referent to AP1. In

addition to the information presented in the example, we added the information that

earthquake is an instance of mlt:1stOrderClass. This example is serialized in the file named

earthquakes.owl and it is available at [40] and at Appendix III. Selecting the file containing

this example, our implementation shows the messages presented in Figure 5-11. Note that

72

there are occurrences of inconsistency from one integrity constraint. Since earthquake and

natural disaster are derived as instances of more than one MLT basic type, this model

violates Theorem T4 and it is inconsistent according to MLT.

Figure 5-11. Derivation messages for the example of earthquakes from Wikidata

Excavator

In Figure 5-6 we present the example about excavator, which is referent to AP2. In

addition to the information presented in the example, we added the information crawler

excavator is an instance of mlt:1stOrderClass. This example is serialized in the file

excavator.owl and it is available at [40] and at Appendix III. Selecting the file containing this

example, our implementation shows the messages presented in Figure 5-12. Note that

there are occurrences of inconsistency from one integrity constraint. Since crawler excavator

is derived as instance of more than one MLT basic type, this model violates Theorem T4

and it is inconsistent according to MLT.

73

Figure 5-12. Derivation messages for the example of excavators from Wikidata

Urban Park

In Figure 5-8 we present the example about the Central Park, which is referent to AP3. In

addition to the information presented in the example, we added the information that

Central Park is an instance of mlt:TokenIndividual. This example is serialized in the file

named urban-park.owl and it is available at [40] and at Appendix III. Selecting the file

containing this example, our implementation runs the MLT derivation rules and it shows

the messages presented in Figure 5-13.

Figure 5-13. Derivation messages for the example of urban parks from Wikidata

Further, our implementation runs the MLT integrity constraints and it shows the

messages presented in Figure 5-14. Note that there are occurrences of inconsistency from

74

three integrity constraints. We have, in Figure 5-13, that from DR2 (A3) that urban park

and park are derived as instances of mlt:1stOrderClass, since they have a mlt:TokenIndividual

as its instance (Central Park). However, from DR1 (A3) we have that urban park is an

instance of mlt:TokenIndividual, since it is an instance of park. This scenario is not allowed

according to IC (A1), where instances of mlt:TokenIndividual cannot have instances.

In the second occurrence of inconsistency, Figure 5-14 shows that this model violates IC4

(T6), about stratification. Note that Central Park is an instance of both park and urban park,

and urban park is also an instance of park.

Finally, this model also violates Theorem T4, this is due to the fact that the basic types of

MLT are disjoint. Thus, since urban park, Central Park and park are derived as instances of

more than one MLT basic type, this model is inconsistent according to MLT

Figure 5-14. Inconsistency messages for the example of urban parks from Wikidata

5.3.2 Example on Deriving Data from Valid Models

In Figure 3-7, we present the example about Cecil (the lion) which is available at the

Wikidata content. For this example, we introduced the information that Cecil is an

75

instance of mlt:TokenIndividual, since we know that he is a concrete individual and he has

no instances. Moreover, we also introduced in this example the MLT structural relations

isSubordinateTo and partitions, as we exemplified in Figure 4-2. This example is serialized in

the file named biological-taxonomy.owl and it is available at [40] and at Appendix III.

Selecting the file containing this example, our implementation shows the messages

presented in Figure 5-15.

Note that, as said in Section 4.1, this is an example of a valid model. From the

information that Cecil is an instance of mlt:TokenIndividual, all other entities are derived as

subclasses of or instances of MLT basic types. Further, from D8, which defines mlt:partitions,

the tool derives that PantheraSpecies is related to Panthera through both

mlt:completelyCategorizes and mlt:disjointlyCategorizes.

Figure 5-15. Derivation messages for the example of Biological Taxonomy with MLT relations

5.4 CONCLUDING REMARKS

We have analyzed Wikidata content from the perspective of multi-level modeling. We

have observed a number of occurrences of violations of the stratification of levels in

Wikidata, which indicate that some support for multi-level modeling could be beneficial

in order to support contributors in the collaborative creation of multi-level taxonomies.

76

The queries we have used are the first step in automating this support. In addition to

identifying possible problematic occurrences, we understand that more methodological

guidance is required for contributors to understand the challenges in multi-level

taxonomies and in particular to distinguish clearly between instantiation and

specialization.

Future work is required in order to assess whether the items of “class” (Q16889133) and

“metaclass” (Q19361238) could be used to provide more explicit support for multi-level

modeling in Wikidata. In any case, we have found that these items are rarely employed,

and that they seem limited by a three level system (instances, class and metaclass). In the

biological taxonomy domain, we see that a fourth level is required (where “Taxonomic

Rank” lies).

77

6 CONCLUSIONS

In this chapter, we present the conclusions of this thesis. In particular, we discuss our

contributions (Section 6.1), the limitations of our approach (Section 6.2) and future work

pointing directions for improvements of this research (Section 6.3).

6.1 CONTRIBUTIONS

Multi-level modeling addresses phenomena dealing with a number of complex notions

and subtle relations that cross multiple levels of instantiation. These phenomena are

ubiquitous in application domains, ranging from biology, to software engineering, from

enterprise modeling to product classification [20]. Aside from the recurrence of these

phenomena in practical cases, what also makes it of great importance is the fact that

multi-level modeling seems to pose a significant challenge to modelers. As previously

mentioned, in [14] (discussed in Chapter 5), we have empirically analyzed the presence of

three anti-patterns related to multi-level modeling in Wikidata, finding over 22,000

occurrences of these anti-patterns. In fact, for one these anti-patterns, we found its

manifestation in 85% of the cases of taxonomic hierarchies spanning more than one level

in Wikidata! That study clearly indicates that for complex modeling phenomena such as

these, an expressive engineering support must be offered for vocabulary engineers as well

as Semantic Web application developers. In Chapter 5, we also provide a technical report

showing how each of these anti-patterns found in Wikidata could be avoided by using the

artifact proposed in this thesis, demonstrating the relevance of MLT-OWL using real-

world data.

The recognition of the importance of offering support for multi-level modeling led many

researchers in the Semantic Web community to propose solutions addressing this issue.

Some prominent results in that respect are reviewed in this thesis, namely, RDFS,

RDFS(FA), metamodeling (punning) in OWL, OWL FA, PURO and Wikidata. We have

shown in our analysis of these related works that all of them fail to fully support the

identified modeling desiderata.

78

We adopted as a basis for our work a theoretically sound and well-tested formal theory

(MLT) that was shown to be able to address all these multi-level modeling requirements.

We then decided to offer a set of engineering tools that together would implement the

modeling distinctions and axiomatization of this theory. These tools include: (i) an OWL

vocabulary (capturing the formal relations put forth by this theory); (ii) a set of OWL

axioms that would capture derivation and integrity rules over this vocabulary put forth by

the theory; and (iii) a set of SPARQL queries that would capture those derivation and

integrity rules put forth by this theory but that could not be represented in OWL directly.

We strongly believe that these tools amount to an important methodological and

computational contribution for guiding modelers to produce sound multi-level models in

the Semantic Web.

6.2 LIMITATIONS

Currently, our approach only checks MLT rules in batch style. Alternately, some of the

rules could be checked in real-time if embedded properly in a modeling environment. A

real-time verification strategy could bring some benefits to both the usability and

performance of the approach. Concerning the usability, if the problems are identified at

the moment they arise it is easier to the user to understand and fix them. Further, the

strategy of facing the users with the errors in real-time could help them to learn the MLT

rules, avoiding thus the recurrence of errors. Concerning performance issues, the

execution time and the amount of memory required to execute queries drastically

increases according to the number of triples in the dataset. This problem is highlighted in

queries using transitive closure (such as DR9, DR18, DR20 and DR21 in Table 4-3).

Using a real-time strategy, we could verify the impact of an inserted statement considering

only the portion of data affected by it, avoiding the need of a complete verification.

Applying this strategy, the execution time of the complete verification would be split and

the required amount of memory would decrease. Thus, a natural extension to this work

could be to implement a real-time strategy to check MLT rules. Such strategy could be

implemented embedding the MLT rules in a Semantic Web modeling environment, such

79

as Protégé [45] or Wikidata [15], or implementing from scratch a new modeling

environment which incorporates these rules.

6.3 FUTURE WORK

The reason why these phenomena are recurrent in a large variety of practical application

domains is because they are genuine ontological phenomena (from a philosophical point

of view) [30]. As such, we advocate that truly ontological considerations cannot be

eschewed from a fuller analysis of multi-level modeling. Additionally, some initiatives

have demonstrated that the systematic evaluation of the ontological consistency of

Semantic Web ontologies and vocabularies can greatly benefit from the use of

foundational distinctions and axioms ([46], [47]). In order to leverage the benefits of both

a foundational ontology and a multi-level modeling theory, in [48] Guizzardi et al. have

already combined MLT and the foundational ontology UFO [22]. A natural extension of

this work is to enrich the set of engineering tools proposed here with support for the

ontological distinctions and axiomatization of UFO (e.g., dealing with temporal aspects of

anti-rigid concepts). Incorporating UFO in our approach would also lead to the need of

incorporating MLT aspects in the current transformations from OntoUML (a language

for ontology-driven conceptual modeling based on UFO) to OWL (such as [49], [50]).

Moreover, this work could be extended to cover the MLT accounts for attributes and

relationships reflecting a mechanism that has been called “deep instantiation” in the

multi-level modeling literature. An attribute such as the height of a person or a relation of

friendship in a social network, has effects only at the immediately lower level, complying

to what has been called “shallow instantiation” [8]. MLT intends to cover attributes and

relationships of higher-order types that aim at capturing regularities over instances of its

instances. Following [48] these attributes are classified as regularity attributes. For example,

consider we would like to state that all instances of iPhone 5 must have screen size equals to

4 inches. Considering that Mobile Phone Model defines the attribute model screen size and its

instance iPhone 5 defines the attribute screen size, we could state that the attribute model

screen size somehow constrains the attribute screen size. Thus, if iPhone 5 has model screen size

80

equals to 4 inches, it means that all instances of iPhone 5 must have screen size equals to 4

inches. The representation of regularity attributes, and the constraints that arise from the

use of regularity attributes are not yet addressed in the present work.

Finally, since we rely minimally on inferential mechanisms for OWL, the approach can be

easily applied to RDF(S). In that case, the MLT basic types can be represented as

instances of rdfs:Class (instead of owl:Class) and MLT structural relations can be

represented as instances of rdf:Property (instead of owl:ObjectProperty). We intend to report

on a version of the vocabulary for RDF(S) in order to benefit a wider range of users.

81

BIBLIOGRAPHY

[1] W3C, “W3C Semantic Web Activity.” [Online]. Available:
https://www.w3.org/2001/sw/. [Accessed: 11-Jan-2016].

[2] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So Far,” Int. J.
Semant. Web Inf. Syst., vol. 5, no. 3, pp. 1–22, Jan. 2009.

[3] W3C, “RDF Schema 1.1.” W3C Recommendation, 2014.

[4] W3C, “OWL 2 Web Ontology Language - Structural Specification and Functional-
Style Syntax (Second Edition).” W3C Recommendation, 2012.

[5] E. Mayr, The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Harvard
University Press, 1982.

[6] C. Gonzalez-Perez and B. Henderson-Sellers, “A powertype-based metamodelling
framework,” Softw. Syst. Model., vol. 5, no. 1, pp. 72–90, 2006.

[7] B. Neumayr, K. Grun, and M. Schrefl, “Multi-level domain modeling with m-
objects and m-relationships,” in 6th Asia-Pacific Conference on Conceptual Modelling,
2009.

[8] C. Atkinson and T. Kühne, “The Essence of Multilevel Metamodeling,” in 4th
International Conf. on the Unified Modeling Language, 2001.

[9] J. Z. Pan and I. Horrocks, “Metamodeling Architecture of Web Ontology
Languages,” in Proc. of the 2001 Int. Semantic Web Working Symposium, 2001, pp. 131–
149.

[10] B. Motik, “On the Properties of Metamodeling in OWL,” J. Log. Comput., vol. 17,
no. 4, pp. 617–637, 2007.

[11] J. Z. Pan, I. Horrocks, and G. Schreiber, “OWL FA: A metamodeling extension of
OWL DL,” in Proc. of the 15th Intl Conf. on World Wide Web, 2006, pp. 1065–1066.

[12] V. Svatek, M. Homola, J. Kluka, and M. Vacura, “Metamodeling-Based Coherence
Checking of OWL Vocabulary Background Models,” in Proceedings of the 10th
International Workshop on OWL: Experiences and Directions (OWLED 2013), 2013, vol.
1080.

[13] G. Gröner, N. Jekjantuk, T. Walter, F. S. Parreiras, and J. Z. Pan, “Metamodelling
and Ontologies,” in Ontology-Driven Software Development, 1st ed., 2013, pp. 151–174.

[14] F. Brasileiro, J. P. A. Almeida, V. A. Carvalho, and G. Guizzardi, “Applying a
Multi-Level Modeling Theory to Assess Taxonomic Hierarchies in Wikidata,” in
Proceedings of the 25th International Conference Companion on World Wide Web, 2016, pp.

82

975–980.

[15] D. Vrandečić and M. Krötzsch, “Wikidata: A Free Collaborative Knowledgebase,”
in Communications of the ACM, 2014, vol. 57, no. 10, pp. 78–85.

[16] “DBpedia.” [Online]. Available: http://dbpedia.org.

[17] J. Odell, “Power Types,” J. Object-Oriented Programing, vol. 7, no. 2, pp. 8–12, 1994.

[18] L. Cardelli, “Structural subtyping and the notion of power type,” in Proceedings of the
15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages -
POPL ’88, 1988, pp. 70–79.

[19] C. Atkinson and T. Kühne, “Meta-level Independent Modelling,” in Intl .Workshop
on Model Eng. at 14th European Conf. on Object-Oriented Programming, 2000, pp. 1–4.

[20] V. A. Carvalho and J. P. A. Almeida, “Toward a well-founded theory for multi-level
conceptual modeling,” Softw. Syst. Model., pp. 1–27, Jun. 2016.

[21] R. Weber, Ontological Foundations of Information Systems. Coopers & Lybrand, 1997.

[22] G. Guizzardi, Ontological foundations for structural conceptual models. Enschede:
Telematica Instituut Fundamental Research Series, 2005.

[23] W3C, “SPARQL 1.1 Query Language.” W3C Recommendation, 2013.

[24] C. Atkinson, R. Gerbig, and T. Kühne, “Comparing Multi-Level Modeling
Approaches,” in Proceedings of the 1st International Workshop on Multi-Level Modelling,
2014.

[25] OMG, “UML Superstructure Specification – Version 2.4.1.” 2011.

[26] C. Atkinson, “Meta-Modeling for Distributed Object Environments,” in Proceedings
of the Enterprise Distributed Object Computing Workshop (EDOC ’97), 1997, pp. 90–101.

[27] C. Atkinson and T. Kühne, “Reducing accidental complexity in domain models,”
Softw. Syst. Model., vol. 7, no. 3, pp. 345–359, 2008.

[28] V. A. Carvalho, J. P. A. Almeida, and G. Guizzardi, “Using a Well-Founded Multi-
Level Theory to Support the Analysis and Representation of the Powertype Pattern
in Conceptual Modeling,” in 28th Intl. Conf. on Advandced Information Systems
Engineering, 2016.

[29] V. A. Carvalho and J. P. A. Almeida, “A Semantic Foundation for Organizational
Structures: A Multi-level Approach,” in IEEE 19th International Enterprise Distributed
Object Computing Conference (EDOC 2015), 2015, pp. 50–59.

[30] V. A. Carvalho, J. P. A. Almeida, C. M. Fonseca, and G. Guizzardi, “Extending the
Foundations of Ontology-based Conceptual Modeling with a Multi-Level Theory,”
in 34rd International Conference on Conceptual Modeling (ER2015), 2015.

83

[31] E. J. Lessner, M. R. Stocker, N. D. Smith, A. H. Turner, R. B. Irmis, and S. J.
Nesbitt, “A new rauisuchid (Archosauria, Pseudosuchia) from the Upper Triassic
(Norian) of New Mexico increases the diversity and temporal range of the clade,”
PeerJ, vol. 4, p. e2336, 2016.

[32] W3C, “Internationalized Resource Identifiers (IRIs) - RFC3987.” 2005.

[33] C. Atkinson and T. Kühne, “Model-Driven Development: A Metamodeling
Foundation,” IEEE Softw., vol. 20, no. 5, pp. 36–41, 2003.

[34] OMG, “Unified Modeling Language Specification v1.3.” 1999.

[35] N. Jekjantuk, G. Gröner, and J. Z. Pan, “Modelling and Reasoning in
Metamodelling Enabled Ontologies,” Int. J. Softw. Informatics, vol. 4, pp. 277–290,
2010.

[36] Wikidata Project, “Help:Items.” [Online]. Available:
https://www.wikidata.org/wiki/Help:Items. [Accessed: 27-Jan-2016].

[37] Wikidata Project, “Help:Statements.” [Online]. Available:
https://www.wikidata.org/wiki/Help:Statements. [Accessed: 27-Jan-2016].

[38] Wikidata Project, “Help:Modelling.” [Online]. Available:
https://www.wikidata.org/wiki/Help:Modelling. [Accessed: 21-Jan-2016].

[39] T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global Data Space, vol. 1,
no. 1. 2011.

[40] “MLT.” [Online]. Available: http://nemo.inf.ufes.br/mlt.

[41] The Apache Software Foundation, “Jena.” [Online]. Available:
https://jena.apache.org/.

[42] “Hermit.” [Online]. Available: http://www.hermit-reasoner.com/.

[43] J. Z. Pan, I. Horrocks, and G. Schreiber, “OWL FA: A metamodeling extension of
OWL DL,” Proc. Int. Work. OWL Exp. Dir., 2005.

[44] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean,
“SWRL: A Semantic Web Rule Language Combining OWL and RuleML.” W3C
Member Submission, 2004.

[45] Stanford Center for Biomedical Informatics Research, “Protégé.” [Online].
Available: http://protege.stanford.edu/.

[46] M. Fernandéz-López and A. Gómez-Pérez, “The integration of OntoClean in
WebODE,” in EKAW’02 Workshop on Evaluation of Ontology-based Tools (EON2002),
2002, pp. 38–52.

[47] H. Paulheim and A. Gangemi, “Serving DBpedia with DOLCE – More than Just

84

Adding a Cherry on Top,” in The Semantic Web - ISWC 2015, vol. 9366, 2015, pp.
180–196.

[48] G. Guizzardi, J. P. A. Almeida, N. Guarino, and V. A. Carvalho, “Towards an
Ontological Analysis of Powertypes,” in Intl. Workshop on Formal Ontologies for
Artificial Intelligence (FOFAI 2015), 2015.

[49] P. P. F. Barcelos, V. S. Amorim, F. B. Silva, M. E. Monteiro, and A. S. Garcia, “An
Automated Transformation from OntoUML to OWL and SWRL,” in Proceedings of
the 6th Seminar on Ontology Research in Brazil (Ontobras 2013), 2013, pp. 130–141.

[50] V. C. Zamborlini, “Estudo de Alternativas de Mapeamento de Ontologias da
Linguagem OntoUML Para OWL: Abordagens Para Representação de Informação
Temporal,” Universidade Federal do Espírito Santo, 2011.

[51] L. Wetzel, “Types and Tokens.” The Stanford Encyclopedia of Philosophy (Spring
2014 Edition), Edward N. Zalta (ed.), URL =
<http://plato.stanford.edu/archives/spr2014/entries/types-tokens/>.

85

APPENDIX I - THE MLT VOCABULARY FOR THE

SEMANTIC WEB

@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

mlt:TokenIndividual rdf:type owl:Class ;

owl:equivalentClass [
rdf:type owl:Restriction ;
owl:onProperty [

owl:inverseOf mlt:isPowertypeOf
] ;
 owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ;

owl:onClass mlt:1stOrderClass
] ;

 rdf:type mlt:1stOrderClass .

mlt:1stOrderClass rdf:type owl:Class ;
 owl:equivalentClass [

rdf:type owl:Restriction ;
owl:onProperty [

owl:inverseOf mlt:isPowertypeOf
] ;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ;
owl:onClass mlt:2ndOrderClass

] ;
 rdfs:subClassOf rdfs:Class ,

[rdf:type owl:Restriction ;
owl:onProperty mlt:isPowertypeOf ;
owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger ;
owl:onClass mlt:TokenIndividual
] ;

rdf:type mlt:2ndOrderClass ;
mlt:isPowertypeOf mlt:TokenIndividual .

mlt:2ndOrderClass rdf:type owl:Class ;

owl:equivalentClass [
rdf:type owl:Restriction ;
owl:onProperty [

owl:inverseOf mlt:isPowertypeOf
] ;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ;
owl:onClass mlt:3rdOrderClass

] ;
rdfs:subClassOf rdfs:Class ,

[rdf:type owl:Restriction ;
owl:onProperty mlt:isPowertypeOf ;
owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger ;
owl:onClass mlt:1stOrderClass
] ;

rdf:type mlt:3rdOrderClass ;
mlt:isPowertypeOf mlt:1stOrderClass .

mlt:3rdOrderClass rdf:type owl:Class ;

rdfs:subClassOf rdfs:Class ,
[rdf:type owl:Restriction ;
owl:onProperty mlt:isPowertypeOf ;

86

owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger ;
owl:onClass mlt:2ndOrderClass
] ;

mlt:isPowertypeOf mlt:2ndOrderClass .
mlt:mltProperty rdf:type owl:ObjectProperty ;

mlt:intraLevelProperty rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf mlt:mltProperty .

mlt:crossLevelProperty rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf mlt:mltProperty .

mlt:isSubordinatedTo rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf mlt:intraLevelProperty ;

mlt:isPowertypeOf rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf mlt:crossLevelProperty ;

mlt:categorizes rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf mlt:crossLevelProperty ;

mlt:completelyCategorizes rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf mlt:categorizes ;
owl:propertyDisjointWith mlt:incompletelyCategorizes .

mlt:disjointlyCategorizes rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf mlt:categorizes ;
owl:propertyDisjointWith mlt:overlappinglyCategorizes .

mlt:incompletelyCategorizes rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf mlt:categorizes .

mlt:overlappinglyCategorizes rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf mlt:categorizes ;

mlt:partitions rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf mlt:completelyCategorizes,
mlt:disjointlyCategorizes .

[

rdf:type owl:AllDisjointClasses ;
owl:members (

mlt:TokenIndividual
mlt:1stOrderClass
mlt:2ndOrderClass
mlt:3rdOrderClass
)

] .

87

APPENDIX II - SPARQL QUERIES FOR WIKIDATA ANTI-

PATTERNS

To access data from Wikidata, we used the Simplified and derived RDF dumps of Wikidata

from January 4th, 2016, available at RDF Exports from Wikidata3. Moreover, we have

queried these using SPARQL, where instance of and subclass of are represented as rdf:type and

rdfs:subClassOf, respectively. Note that, in this dump, whenever an item is subclass of

another item or when it has subclasses or instances, then it is declared to be an instance of

owl:Class (through the rdf:type property).

Note that since we are concerned only with the instance of properties occurring between

items in Wikidata, the SPARQL query ignores the triples that declare resources to be

instances of owl:Class; these are artificial triples introduced in the dump as part of the RDF

representation strategy and do not correspond to instance of statements in Wikidata.

Table II-1. SPARQL query for Wikidata Anti-Patterns

Anti-Pattern SPARQL query

AP1

SELECT DISTINCT *
WHERE {
 ?Z rdf:type ?A .
 ?Z rdfs:subClassOf+ ?A .
}

AP2

SELECT DISTINCT *
WHERE {
 ?B rdf:type ?A .
 ?C rdfs:subClassOf ?A .
 ?C rdfs:subClassOf ?B .
}

AP3

SELECT DISTINCT *
WHERE {
 ?C rdf:type ?B .
 ?B rdf:type ?A .
 ?C rdf:type ?A .
 filter(?A != owl:Class) .
}

3 http://tools.wmflabs.org/wikidata-exports/rdf/

88

APPENDIX III - OWL FILES FOR EMPIRICAL

EVALUATION

TIM BERNERS-LEE PROFESSION

@prefix wd: <http://www.wikidata.org/entity/> .
@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

wd:Profession rdf:type owl:Class .

wd:Creator rdf:type owl:Class ;
 rdfs:subClassOf wd:Profession .

wd:Scientist rdf:type owl:Class,
 wd:Profession;
 rdfs:subClassOf wd:Creator .

wd:ComputerScientist rdf:type owl:Class,

wd:Profession;
 rdfs:subClassOf wd:Scientist .

wd:TimBernersLee rdf:type mlt:TokenIndividual ,
 wd:ComputerScientist .

EARTHQUAKES

@prefix wd: <http://www.wikidata.org/entity/> .
@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

wd:earthquake rdf:type owl:Class ,
 mlt:1stOrderClass ,
 wd:natural_disaster;

rdfs:subClassOf wd:natural_disaster .

wd:natural_disaster rdf:type owl:Class .

89

EXCAVATOR

@prefix wd: <http://www.wikidata.org/entity/> .
@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

wd:crawler_excavator rdf:type owl:Class ;

rdfs:subClassOf wd:excavator ,
 wd:heavy_equipment .

wd:excavator rdf:type owl:Class,

mlt:1stOrderClass ,
 wd:heavy_equipment .

wd:heavy_equipment rdf:type owl:Class .

URBAN PARK

@prefix wd: <http://www.wikidata.org/entity/> .
@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

wd:park rdf:type owl:Class .

wd:urban_park rdf:type owl:Class,
 wd:park .

wd:CentralPark rdf:type mlt:TokenIndividual ,

wd:park ,
wd:urban_park .

90

BIOLOGICAL TAXONOMY

@prefix wd: <http://www.wikidata.org/entity/> .
@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

wd:TaxonomicRank rdf:type owl:Class .

wd:Genus rdf:type owl:Class ,
 wd:TaxonomicRank .

wd:Species rdf:type owl:Class,

wd:TaxonomicRank ;
mlt:isSubordinatedTo wd:Genus .

wd:Organism rdf:type owl:Class .

wd:Panthera rdf:type owl:Class,
 wd:Genus ;

rdfs:subClassOf wd:Organism .

wd:PantheraLeo rdf:type owl:Class,

wd:PantheraSpecies;
rdfs:subClassOf wd:Panthera .

wd:PantheraOnca rdf:type owl:Class ;

rdfs:subClassOf wd:Panthera .

wd:PantheraTigris rdf:type owl:Class ;

rdfs:subClassOf wd:Panthera .

wd:PantheraSpecies rdf:type owl:Class ;

rdfs:subClassOf wd:Species ;
mlt:partitions wd:Panthera .

wd:Cecil rdf:type mlt:TokenIndividual ,

wd:PantheraLeo .

