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Abstract 

 

Intuitive prosthesis control is one of the most important challenges to 

reduce the user effort in learning how to use an artificial hand. This work presents 

the analysis of pattern recognition techniques for low-level myoelectric signals 

able to discriminate dexterous hand and fingers movements using a reduced 

number of electrodes in amputees. Ten amputees and ten able-bodied subjects 

were evaluated and the performance of the techniques was evaluated in both 

groups of subjects. The techniques here proposed were analyzed to classify 

individual finger flexion, hand movements and different grasps using four 

electrodes and taking into account the low level of muscle contraction in these 

movements. Seventeen features of myoelectric signals were also analyzed 

considering both traditional magnitude-based features and more recent 

techniques based on fractal analysis. A comparison was computed for all the 

techniques using different set of features, for both groups of subjects (able-bodied 

and amputees) with significant level of 95%. The results with a selected set of 

features showed average accuracy up to 92.7% of recognition for amputees using 

support vector machine (SVM), followed very closely by K-nearest neighbors 

(KNN). The results with the best combination of the analyzed techniques show 

that the techniques here proposed are suitable for accurately controlling 

dexterous prosthetic hand/fingers, providing more functionality and better 

acceptance for amputees. 

Keywords: myoelectric signal, upper-limb prosthesis, low-density signals, 

dexterous hand/finger movements, pattern recognition. 
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Resumo 

 

O controle intuitivo de uma prótese é um dos desafios mais importantes 

para reduzir o esforço do usuário em aprender a usar uma mão artificial. Este 

trabalho apresenta a análise de técnicas de reconhecimento de padrões para sinais 

mioelétricos de baixo nível para classificar movimentos de destreza dos dedos e 

da mão em sujeitos com amputação do antebraço. Dez indivíduos com amputação 

e dez indivíduos sem amputação foram analisados e o desempenho das técnicas 

propostas no presente estudo foi comparado levando em consideração ambos os 

grupos. A classificação foi realizada para a flexão de cada um dos dedos, 

movimentos da mão e diferentes tipos de preensão palmar utilizando quatro 

eletrodos e considerando a baixa contração muscular durante estes movimentos. 

Dezessete características dos sinais mioelétricos baseadas na magnitude do sinal 

e em análise de fractais foram comparadas para os dois grupos de sujeitos (com e 

sem amputação) com nível de significância de 95%. Os resultados, usando um 

conjunto de características mostraram uma exatidão máxima das médias de 92,7% 

de reconhecimento de padrão do movimento para o grupo de indivíduos 

amputados utilizando máquinas de vetores de suporte (SVM). A segunda melhor 

exatidão foi obtida utilizando o método de k vizinhos mais próximos (KNN). A 

melhor combinação das técnicas analisadas mostrou-se adequada para realizar o 

controle da próstese com precisão e destreza dos dedos e da mão, proporcionando 

maior funcionalidade e melhor aceitação para os sujeitos com amputação. 

Palavras-chave: sinal mioeléctrico, prótese de membro superior, sinais de 

baixa densidade, movimentos de destreza com as mão e os dedos, reconhecimento 

de padrões.Palavras-chave: sinal mioeléctrico, prótese de membro superior, sinais 

de baixa densidade, movimentos de destreza com as mão e os dedos, 

reconhecimento de padrões. 
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1. Introduction 

Amputation is the partial or total removal of a limb due to trauma or elective 

surgical process, as a consequence of some accident, disease or congenital 

malformation (PEERDEMAN et al., 2011). An amputation is considered as a 

reconstructive process of an extremity with full or limited function, and can be 

classified into three types: congenital, traumatic or vascular (CARVALHO, 2003). 

In Brazil, the number of people who evolve to amputation of upper limbs is 

significant. Over the age of 18, an important cause of amputation becomes the 

work-related accident. In young adults, due to increased exposure to risks, 

traumas related to traffic and work accidents, gunshot wounds, and burns are 

major causes of upper limb amputation.  

In Brazil, according to the Brazilian Institute of Geography and Statistics 

(IBGE), in the Census of 2010, 7% of the population has a motor disability while 

1.3% has a physical disability. Moreover, the number of people with disability in 

Brazil increased from 7.0 million in 2000 to 12.7 million in 2010, which represents 

4.2% and 6.7% of the total population, respectively. In relation to people with 

functional limitations, there was an increment between 2000 and 2010, from 17.2 

million (10.1%) to 32.8 million (17.2%). According to the Census 2000, from the 

group of people with physical disability, 32.8% have lack of a member or part of 

them, totaling 0.28% of the population. As lack of a member, the Census 

considered leg, arm, foot, hand and first chirodactyl (IBGE, 2010).  

Studies exclusively with amputees are important for the understanding of 

their particularities, which can help in the design of rehabilitation strategies to 

achieve a better performance in the execution of more skilled tasks in order to use 

more modern myoelectric prostheses (ATZORI et al., 2014). Upper limb 

prostheses offer to users an increased independence in their activities of daily 
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living to improve the quality of life, making these individuals feel capable of 

leading a productive life (GOFFI, 2004). There are a variety of prostheses, from 

purely esthetics to actives prosthetic hands. Myoelectric prostheses use 

myoelectric signals to generate commands for the control system of the device. 

Commonly, pattern recognition are used to classify myoelectric signals acquired 

from a set of hand gestures. However, an ideal prosthesis of this type is still far 

from current reality, and current hand prostheses often do not satisfactorily 

restore the ability to hold the first chirodactyl (CARROZZA et al., 2002). 

1.1. Motivation 

Upper limb prosthetic devices have been constantly evolving, from the old 

hooks to sophisticated devices with multi-degree of freedom electrically actuated. 

While old devices are controlled by simple coarse mechanical movements based 

on the power transmission to the effector, modern devices have finer control 

based on the user intention (PEERDEMAN et al., 2011).  

An ideal upper-limb prosthesis should be recognized as a natural part of the 

amputee body, supplying motor and sensory functions (ENGLEHART; HUDGINS, 

2003). Nevertheless, one of the major problems is the user’s acceptance after 

starting the training process to use prostheses. Some of the common factors of 

their rejection are the lack of easiness and comfort to use them, their exterior 

appearance, but most of all, its limited functionality (PEERDEMAN et al., 2011).  

An evaluation of the important activities of daily living for users of 

prosthetic hand was presented by Peerdeman et al. (2011). Opening/closing 

zipper, making the bed, grasping a glass, holding a ball, and using knife and fork 

were activities considered as relevant. As a result, grasp tasks were found to be 

more important than wrist movements, being lateral, cylindrical and tripod grasps 

the most important one (SENSINGER et al., 2009). Furthermore, the same study 
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considered that wrist movements, as flexion/extension, and grasp should be taken 

into account simultaneously. This would avoid non-natural movements with 

shoulder and elbow. Other study with prosthesis users (ZECCA et al., 2002) 

reports that 100% of interviewed would like to point the finger, 90% wanted to 

have individual fingers control and 70% considered useful to have wrist 

flexion/extension. However, most studies have focused on recognizing power 

functions and wrist movements, while dexterous movements of prostheses have 

not been widely addressed, being a lack to improve their functionality. As a result, 

there is a need for a more functional and reliable control system, and using a 

minimum number of electrodes. 

Advances in the area have been mainly in the development of control 

strategies often related to pattern recognition of myoelectric signals (MES). The 

use of MES from residual muscles is one of the current research lines aimed at 

providing the user with a natural control of the prosthetic device. 

Surface electromyography (sEMG) is a common technique used to record 

electrical activity on the surface of the skin resulting from muscle contraction. 

Several researchers have used sEMG to control prosthetic devices (OSKOEI; HU, 

2007; PONS et al., 2005; SCHULZ et al., 2005). However, systems based on sEMG 

are currently limited for control basic actions, such as opening and closing the 

prosthetic hand. There are even more developed prostheses (NAIK; KUMAR, 

2012) that open all fingers together simultaneously because it is difficult to 

characterize myoelectric signals that allow commanding the individual opening 

of each finger of the hand. The current focus in this area is to find signal processing 

techniques to allow the identification of different movements, such as 

opening/closing hand, and finger flexion and extension, in order to control each 

finger of the hand individually, providing the users a more natural movement of 

the prosthesis. 
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For this reason, several researchers in the world have investigated different 

techniques to control hand and finger movements (ARJUNAN; KUMAR, 2010a; 

OSKOEI, 2008; PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 2012a). 

However, these techniques for classifying MES are unable to accurately identify 

the actions produced by various active muscles mainly due to the crosstalk 

problem. This difficulty is even greater when muscle contraction is tiny, which is 

the case that happens when the muscle is affected by limb amputation. To 

overcome this problem, some authors have used a great number of electrodes to 

obtain redundant information from these muscles, in order to identify the actions 

of each individual finger (TENORE et al., 2009). However, the accuracy is still low. 

1.2. State of the art 

From the literature, a great variety of methods for feature extraction in time 

and frequency domains have been explored to recognize MES patterns (ZECCA et 

al., 2002). Several works have used magnitude-based features to feed classifiers to 

recognize hand motor tasks involving elbow, forearm, wrist and open/close hand 

movements (GUO et al., 2015; OSKOEI; HU, 2008; PHINYOMARK; LIMSAKUL; 

PHUKPATTARANONT, 2009). Other systems have got user’s commands for a 

limited number of hand and individual finger movements (NAIK; KUMAR; 

ARJUNAN, 2009, 2010; PELEG et al., 2002; TSENOV et al., 2006), and even for 

combined finger movements (KHUSHABA et al., 2012). However, such attempts 

did not include dexterous or skillful movements in the hand or fingers. This is 

mainly because the statistical-based features are not sufficiently reliable due to 

the weak MES from these movements. Previous works have considered MES from 

dexterous movements, but only for grasp movements, aiming to improve the 

functionality of the prosthetic control (CHU; LEE, 2009; HARGROVE et al., 2009; 

TOMMASI et al., 2013; WANG; CHEN; ZHANG, 2013). In fact, the non-linear 

relationship between force and electric activity of muscles at low-level of 
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contractions (NAIK et al., 2010) makes much more difficult the MES analysis. 

Techniques based on fractals dimensions (FD) have been used to estimate the 

non-linear properties of MES, which present sensibility at frequency and 

magnitude to the strength of muscle contraction (Arjunan and Kumar, 2007b). 

Recently, a combination of Higuchi’s fractal dimension (HFD) and detrended 

fluctuation analysis (DFA) were employed on MES (GUO et al., 2015), in order to 

have the advantages of features from time and frequency domains.  

Another factor that bother the prosthesis users is the high number of 

electrodes, as the training with many input channels is a long and hard process, 

resulting in their decision to use only a limited and very simple prosthesis (2-3 

degrees of freedom). Moreover, prostheses with electrode array are complex, in 

addition to the fact that differences in electrode placements lead to variations in 

the MES and its spectrum (KUMAR; POOSAPADI ARJUNAN; SINGH, 2013a). 

Some works have sought for systems with low-density (less than six channels) 

MES (ARJUNAN; KUMAR, 2010b; CASTRO; ARJUNAN; KUMAR, 2015; 

PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 2012b), which reduce 

problems as electrode fixation and computational demand. However, the accuracy 

reported by these researchers to recognize dexterous movements are still poor and 

their experiments were only conducted in able-bodied subjects. 

Some studies with amputees using few number of electrodes have been 

conducted in order to fulfil this gap, such as done in (AL-TIMEMY et al., 2013; 

CIPRIANI et al., 2011; KUMAR; POOSAPADI ARJUNAN; SINGH, 2013b; LI et al., 

2011; TENORE et al., 2009). In particular, in  (KUMAR; POOSAPADI ARJUNAN; 

SINGH, 2013b) a method based on wavelet maxima density was proposed as a non-

linear parameter to extract relevant information from MES using only one 

channel, but no grasp movements were considered. Grasp movements were 

considered in (LI et al. 2011), but using high-density MES (twelve electrodes).  
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Table 1. Relevant researches for recognition of hand/finger movements using MES.  

Authors Year Ch M Tasks Features 
Feat. 
Select 

Classifier 
W/O 
[ms] 

Sub. 

Peleg† 2002 2 5 F1-F5 DFT, AR, Bin. 
Elec. Act. 

GA KNN 1,2 4 C 

Englehart 2003 4 4 WF, WE, RD, UD ZC, SSC, WL, 
MAV 

   256/16 12 C 

Tsenov † 2006 2 4 F1, F2, F3, HC MAV,VAR, WL, 
Norm, ZC, 
Absolute Max and 
Min, Max-Min, 
Med 

 ANN (MLP, 
RBF, LVQ) 

 
1 C 

Khezri †‡ 2007 2 6 HO, HC, F1, TP, 
WF, WE 

MAV, SSC, AR, 
DWT 

 Neuro-
fuzzy 
system 

200/50 4C 

Oskoei and 
Hu  

2008 4 5 Isotonic: HF, HE, 
Hab, Had, HS 

MAV, RMS, WL, 
VAR, ZCs, SSC, 
WAMP, MAV1, 
MAV2, PS, AR2 
and AR6, FMN, 
FMD 

 SVM, LDA, 
MLP 

 
11 C 

Phinyomark  2009 
  

WF, WE, HC, HO, 
FP, FS 

TD and FD (16)  LDA 
 

3 C 

Tenore † 2009 19 12 FFI, FEI, F345 MAV, VAR, WL, 
WAMP 

PCA MLP 200/25 5 
C  

1 A 
Chu and  

Lee ‡ 
2009 4 10 WF, WE, radial and 

ulnar flexion of the 
wrist, HO,CG, 
LT,RS 

AR4, ZC, WL, SSC, 
MAV 

 GMM 
 

10 C 

Naik † 2010 2 3 F3, F4, F5 ICA, RMS  ANOVA 
 

7 C 

Cipriani † 2011 8 7 F1,F2,F345,F2345,T
O,TR,LT 

MAV  KNN 50/50 5 
C  

5 A 
Li ‡   2011 12 11 EFE,WF, WE, WP, 

WS, HO,TP, Power 
Grip, Tool Grip,RS 

MAV, ZC, WL, 
SSC 

 LDA 
 

5 
C 

8 A 
Phinyomark  2012a 1 2 FP, FS, WF, WE, 

HO, HC 
DFA and TD  LDA 

 
20 C 

Khushaba † 2012 2 10 F1-F5, F12, F13, F14, 
F15, HC 

SSC, ZC, WL, 
HTD, Sample 
Skewness, AR 

LDA SVM-libsvm 
and KNN 

100 8 C 

Phinyomark  2012b 5 8 FP, FS, HO, HC, 
WE, WF, RD, UD 

TD and FD (37)  LDA 
 

20 C 

Al-Timemy 
†   

2013 6 12 F1-F5, E1-E5, TA, 
F12, F234, F1234, RS 

 TD-AR PCA 
OFND
A 

 LDA and 
SVM 

 
1

0 C  
6 A 

Kumar †  2013 1 4 F1, F2, F3, F4, RS Wavelet Maxima 
Density (WMD) 

 T-SVM 300 1
1 C 

1 A 
Tommasi †‡ 2013 10 6 TP, LT, TR, PW, 

PEG, prismatic 4 
fingers grasp 

 MAV  LS-SVM  
 

27 C 

Wang ‡ 2013 2 8 CG, HG, LT, PT, SG, 
TR, TP, RS 

MAV, VAR, AR4, 
ZC, MNF, MDF 

LDA LDA 256 6 C 

Castro ‡ 2015 5 10 TP, TR, HC, HO, RS PSD-Av  FLD 
 

4 C 

Guo  2015 6 8 EFE, FP, FS, WF, 
WE, Wab, Wad 

WP, DFA and 
Muscle Models 

 SVM and 
ANN 

 
7 C 

†, works including finger movements; ‡, works including grasp gestures; Ch, number of channels; 

G, number of gestures; W/O, window length/overlapping; C, control group; A, amputee; F1-F5, 

flexion of finger 1 to finger 5 and combinations; E1-E5, extension of finger 1 to finger 5; WF= wrist 

flexion; WE, wrist extension; RD, radial deviation; UD, ulnar deviation; HC, hand close; HO, Hand 
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open; HF, hand flexion; HE, hand extension; Hab, hand abduction; Had, hand adduction; HS, hand 

straight; FP, forearm pronation; FS, forearm supination; FF= finger flexion individually; FE, finger 

extension individually; RS, rest state; TO, thumb opposition; TP, tip pinch; LT, lateral grasp; CG, 

cylindrical grasp; TR, tripod; EFE, elbow flexion and extension; WP, wrist pronation; WS, wrist 

supination; TA, thumb abduction; PW, power grasp; PEG, parallel extension grasp; HG, hook 

grasp; PT= point; SG= spherical grasp; Wab, wrist abduction; Wad, wrist adduction; PSAD-Av, 

Power Spectral Density Average; DFT, discrete Fourier transform; DWT, discrete wavelet 

transform; WAMP, amplitude Willison; ICA, independent component analysis; HTD, Hjorth Time 

Domain; PCA, principal component analysis; OFNDA, orthogonal fuzzy neighborhood 

discriminant analysis; ANN, artificial neural network; MLP, multilayer perceptron; LVQ, learning 

vector quantization; RBF, radial basis function; TSVM, twin support vector machine; LS-SVM, 

least-squares support vector machines; FLD, Fisher’s linear discriminant; GMM, Gaussian mixture 

model; ANOVA, analysis of variance. 

Nevertheless, in all these previous works conducted with amputees, a 

common lack of experiments with hand and individual finger movements can be 

noticed, and few of these works have even included dexterous movements, and 

only for high-density. In fact, for our knowledge no studies with low-density for 

dexterous movements on amputees were found in literature. Table 1 shows very 

complete details about each one of these works, which are classified according to 

the year of the research, number of channels, number of movements, kind of tasks, 

signal features, classifiers, window length for MES analysis and duration of the 

overlapping window. 

However, amputees have to learn muscle contractions to produce specific 

and repeated patterns to control the prosthesis functions, which is called “motor 

learning”. Motor learning can be understood as a set of processes associated with 

the practice and repetition of actions that lead to permanent alterations in the 

motion performance over time (BOUWSEMA; VAN DER SLUIS; BONGERS, 

2014).  

Several factors are taken into account both in the motor learning and 

acquisition of abilities during the training with an upper-limb prosthesis, as verbal 

instructions, characteristics and variability of practice, active participation and 

motivation of the user, feedback, among others. Some studies have been focused 

on developing multifunctional upper limb prosthesis combined to training 
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environments to provides biofeedback (CUNHA, 2002). However, a methodology 

to assess the amputees’ abilities to control a prosthesis is a lack in the literature 

(BOUWSEMA; VAN DER SLUIS; BONGERS, 2014). 

1.3. Problem Statement 

1.3.1. Problem definition 

The approval of prostheses by amputees is an important aspect, which could 

be overcome by improving the functionality of the current prosthetic hands. The 

level of dexterity of a prosthesis is an important factor contributing to its 

functionality, as it is related to the ability to perform skilled movements that 

resemble as much as possible the activities of daily living. The level of dexterity of 

prosthesis is related to the ability to perform more skilled movements that provide 

functions for the amputee, which are similar to the activities of daily living. 

However, few available studies cover the recognition of dexterous hand/fingers 

movements. Moreover, in most of cases, these dexterous movements are reduced 

and combined with other tasks with a poor contribution to the functionality. 

Furthermore, the study of low-density MES from forearm amputees to recognize 

dexterous movements, without significant modifications of the natural functions 

during contraction of remnant muscles in the residual limb has not been 

addressed in the literature. 

1.3.2. Research goal 

In agreement with the scientific problem, the goal of this thesis is focused 

on the recognition of the myoelectric pattern of forearm amputees, for control of 

hand/fingers movements. The method here proposed allows an amputee the 

ability of exert dexterous hand/fingers movements in a more natural way. To fulfill 
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this purpose, the processing and pattern recognition of MES is the main action 

field.  

1.3.3. Hypothesis 

The main research question of this thesis is derived from the goals: 

Is it possible to control dexterous hand/fingers movements of a prosthetic 

hand by forearm amputees using lower muscle contractions in his residual limb 

and a reduced number of electrodes? 

From the stated scientific problem, the hypothesis formulated in this thesis 

is: if the pattern recognition combines linear and non-linear features, it is possible 

to recognize accurately dexterous hand/fingers movements considering low-

density MES, from forearm amputees, to control a prosthetic hand in a more 

natural way.  

1.4. Objectives 

1.4.1. General objective 

Explorer techniques of pattern recognition applied to low-density MES, able 

to discriminate dexterous hand/fingers movements of forearm amputees, using a 

reduced number of electrodes in his residual limb. 

1.4.2. Specific objectives 

 Proposed a muscle-computer interface (MuCI) to recognize patterns 

of MES of dexterous hand/finger movements 
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 Analyze the best parameter set of the pattern recognition to obtain 

a better discrimination of a set of dexterous hand/fingers movements 

 Evaluate the proposed pattern recognition method with able-bodied 

subjects and amputees 

 Assess the proposed system on an online pattern recognition system 

using a virtual environment and a robotic hand, for myoelectric 

training. 

1.5. Thesis contribution 

In this research, we propose and evaluate a method to recognize patterns 

from low-density MES associated with accurate dexterous hand/finger movement 

intention from forearm amputees, using four electrodes placed in his residual 

limb, in order to improve the functionality of upper-limb prostheses, more 

specifically, a hand prosthesis. Individual finger and hand movements are 

characterized using fractal-based analysis combined with a suitable election of 

other well-known features on time and frequency domains. The extent of 

dimension reduction by a feature subset selection is also investigated, through 

search strategies using sequential and genetic algorithms, considering seventeen 

features from the MES. In addition, the efficiency of three supervised classifiers is 

compared as well. From our research, a new system composed of a unique feature 

set and one classifier is here introduced. Moreover, such system here proposed is 

validated in online mode. Finally, the study with amputees, including the 

evaluation of the proposed method in both offline and online execution, the 

assessment of the movements according their abilities to perform dexterous 

hand/finger movements, and the analysis toward a single-channel system, are 

important contributions of this thesis.  
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In summary, although previous studies have identified different hand and 

finger movements, a common aspect of most of them is the little inclusion of 

forearm amputees, which is the focus of our study. In our research, we propose a 

system to recognize accurate dexterous hand/finger movements from amputees 

using low-density MES (four electrodes), in order to improve the functionality of 

upper-limb prostheses.  

Hand and individual finger movements are characterized using fractal-

based analysis combined with a suitable election of others well-known features on 

time and frequency domains. The extent of dimension reduction is also 

investigated, considering seventeen features from the MES, and, in addition, the 

efficiency of three supervised classifiers is compared as well.  

From our research, a new method composed of a unique feature set and one 

classifier is here introduced, with the aim of obtaining a reliable control, to 

provide more functionality for forearm amputees in a more natural way to control 

a multifunctional myoelectric prosthesis.  

1.6. Thesis outline 

This thesis is organized in seven chapters. The first chapter provides an 

introduction to the fields of myoelectric prostheses and pattern recognition 

systems for upper limb amputees. Also, state of art is covered in this chapter.  

Chapter 2 includes a theoretical background to the understanding of the topics 

treated in this thesis. This Chapter also presents an overview of the current state 

of techniques for recognition of dexterous hand gesture recognition. Chapter 3 

provides the details of the research methodology, also describing the protocols, 

materials and participants involved in the experiments. This chapter also explains 

the techniques used for features extraction, dimension reduction and 

classification and the steps to be followed in order to develop a successful pattern 
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recognition system. The results obtained from the experiments and the analysis of 

the system performance, validated on amputees, are presented in Chapter 4. 

Chapter 5 discusses the results presented in Chapter 4 and the original 

contribution of this work, as well as the limitations of this research. Finally, the 

conclusions of the research are presented and recommendations for future work 

provided. 
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2. Theoretical background 

2.1. Functional hand movements 

The hand and finger movements are highly important for activities of daily 

living. The immense variability of movements of the hand allows it to be used as 

a highly specialized instrument that performs very complex manipulations in daily 

life, requiring multiple levels of force and precision (NEUMANN, 2011). For all this 

freedom of movement, the hand has twenty-seven bones and uses innumerable 

intrinsic and extrinsic muscles (NORKIN; LEVANGIE, 2001). The wrist and hand 

can perform both precision and power movements, due to the number of joints 

controlled by numerous muscles. The forearm, wrist and hand joints do not act in 

isolation but as functional groups, as the position of a joint influences the position 

and action of other joints. 

Considering the function of the hand, it is verified that each finger has an 

individual and specific functional value, and this value of each finger depends on 

its strength, mobility and relations with the other fingers, especially with the first 

chirodactyl (TUBIANA; THOMINE; MACKIN, 1996). The five fingers can be 

divided into three parts, according to importance: 

 The first chirodactyl, emphasizing its preponderant role due to its ability 

to oppose the other fingers; 

 The area of the tweezers, which includes the third chirodactyl and, above 

all, the second chirodactyl, which is indispensable for the formation of tip 

pinch, (first / second chirodactyls), or tripod grasp (first / second / third 

chirodactyls); 
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 The area of the grips, with the annular and minimum fingers, which are 

indispensable to guarantee the firmness of the grip, with the whole palm 

or even the grip (KAPANDJI, 2007). 

According to the grasp taxonomy of human grasp types stablished in (FEIX 

et al., 2015), grasps can be classified into power, intermediate and precision grasp. 

In the power grip, all movements of the object have to be evoked by the arm. In 

the precision handling, the hand is able to perform intrinsic movements on the 

object without the arm movement. Finally, in the intermediate or link grasp, 

elements of power and precision grasps are present in roughly. Napier, in 1956, 

defined that power grip is used when full strength is required, as in activities that 

generate the action of fingers and first chirodactyl against the palm of the hand, 

for the purpose of transmitting force to an object. In precision gripping, the object 

is clamped between the flexor surfaces of one or more fingers with the opposing 

first chirodactyl, being used when necessary accuracy and refinement of touch 

(MOREIRA, ALVAREZ, 2002). 

In particular, the hand wrap grasp, referred as a power grip, uses almost 

exclusively flexors to bring the fingers around the object and hold the claw. This 

is performed between the palmar surfaces of the hand and fingers, and is used to 

hold cylindrical objects like a glass, and the larger the diameter of the object, the 

lower the grip strength. According to (FEIX et al., 2015),  it can be split into three 

similar grasps: large (LD) and small diameter (SD), and medium wrap (MW). Its 

differences are related basically to the size and weight of the object to be clamped. 

In relation to intermediate grasp, lateral (LT) or side tweezers are 

considered. The area of contact is between the lateral surface of the fingers and 

the pulp of the first chirodactyl, or between two fingers. It is used in activities such 

as holding an object between the fingers as a credit card or triggering a key. It is 

considered the strongest of the three tweezers. 
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However, the precision gripper is the most important and most specialized 

hand function. Two different kind of precision gripping can be considered: 

 Tip-pinch: this is done with the fingertips, and the contact area is restricted 

to the distal end of the digital pulp. This clamp is used to pick up very small 

objects, such as a needle, being the most delicate and accurate of the 

tweezers. 

 Tripod grasp, three-dimensional tweezers or palmar: are carried out 

between the pulps of the first chirodactyl, second and third fingers. They 

are used in about 60% of activities of daily living, such as picking up a pen 

or to grasp small round subjects, like a tennis ball, and are an intermediate 

force tweezer (PARDINI JR., 2006; MAGGE, 2010, FERREIRA et al., 2011, 

KAPANDJI, 2007).  

2.2. Brief approach to the physiology of muscle 

contraction 

Skeletal muscles are composed of muscle fibers which are organized into 

bundles, called fascicles. The myofilaments comprehend myofibrils, grouped 

together to form as muscle fibers. A muscle contraction occurs from the 

stimulation to the execution. Initially, an action potential travels via a long nerve 

motor to its ends in the muscle fibers.  

The largest and most frequent source of force generated within the human 

body is the contraction of muscles. Additional passive forces occur by the tension 

of fascia, ligaments and non-contractile structures of muscles. Usually, muscles 

never contract in isolation, instead, several muscles contribute to produce a 

desired force. 
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2.2.1. Types of muscle contraction 

Muscle contractions are controlled by the central nervous system (CNS). 

The brain signals travel through the nerves in the form of action potentials, to 

motor neurons that innervate one or more muscle fibers (CARLSEN; PRIGGE; 

PETERSON, 2014). Several types of muscle contractions are defined by changes in 

the length of the muscle during contractions. Muscle contractions can be divided 

into: Isotonic (meaning same tension), Isometric (meaning same distance or not 

moving) and Isokinetic (meaning same speed).  

2.2.1.1. Isometric Contraction 

When a muscle is contracted with a constant force, the contraction is called 

"isometric". Isometric contractions are often referred to as static or sustained 

contractions, and are usually used for posture maintenance. Functionally, these 

contractions stabilize joints, e.g., to reach forward with the hand, the scapula 

needs to be stabilized against the thorax. The MES recorded during isometric 

constant force contractions (steady-state) can be considered as a stationary 

stochastic process, at least for time intervals short enough to exclude fatigue, with 

Gaussian amplitude distribution and zero mean (BASMAJIAN, 1978; MERLETTI; 

PARKER, 2004).  

This thesis is focused on isometric contraction (steady-state MES) for the 

representation of the pattern recognition system here proposed. Isometric muscle 

contractions can be either concentric or eccentric. 

2.2.1.2. Concentric Contraction 

A shortening of the muscle during contraction is called "concentric 

contraction" (positive dynamics) or shortening. Examples of such contractions 

would be the quadriceps muscles when an individual is rising from a chair, or the 

elbow flexors when an individual is carrying a glass to the mouth. In concentric 
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contractions the origin and the insertion are approaching, which produces an 

acceleration of segments of the body, i.e., it accelerates the movement. 

2.2.1.3. Eccentric Contraction 

When a muscle stretches during contraction, it is called "eccentric 

contraction" (negative dynamics) or stretching. For example, the quadriceps, 

when the body is being lowered to sit, or the elbow flexors, when the cup is 

lowered to the table. In eccentric contractions, the origin and insertion move 

away, producing the deceleration of the body segments and providing shock 

absorption (damping) when, e.g., it ends in a jump, or when walking, that is, it 

stops the movement. 

2.3. Electromyography (EMG) 

Skeletal muscle consists of several muscle fascicles, formed by cells called 

muscle fibers (MERLETTI; PARKER, 2004). The muscle consists of parallel axes 

of muscle fibers. The activation of each muscle fiber is performed by the motor 

axon that innervates the nerve fiber. According to the position and function of the 

muscle, the number of muscle fibers innervated by the same axon can range from 

one to over 1000 (MERLETTI; PARKER, 2004). The group formed by the motor 

nerve cell of the spine, the axon and the muscle fibers that it innervates, represents 

the motor unit of the muscular system. When a motor neuron sends an action 

potential, all the muscle fibers of its motor unit are stimulated. However, in the 

stimulation process, small delays occur between contractions. The result of the 

algebraic sum of the n-fiber action potentials is called the motor unit action 

potential (MUAP) (KONRAD, 2006). 

The duration of a MUAP is approximately 2 to 10 ms (KONRAD, 2006). Due 

to the short duration of a MUAP, the action potentials of the motor units must be 
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repeated so that a muscle contraction can be generated for longer periods. The 

sequence of the MUAPs is called the motor unit action potential train (MUAPT). 

The MES is the sum of the MUAPT of the motor units captured by the detection 

electrode. Due to the differences between the MUAP, the variations in the firing 

rate of neurons and the fact that a contraction may include several muscles, the 

MES has been described as a stochastic process (KONRAD, 2006; MERLETTI; 

PARKER, 2004). 

The MES presents frequency components from 0 to 500 Hz, with the most 

power located between 10 and 250 Hz. Its range of amplitude varies between 10 

μV and 10 mV, according to the type of muscle analyzed, the level of muscle 

contraction and the location of the electrodes. Electromyography (EMG) can be 

understood as the collective electric signal from muscles, which is controlled by 

the nervous system and produced during muscle contraction (CHOWDHURY et 

al., 2013b).  

According the capture method it can be referred to in two types: surface 

EMG (sEMG), and intramuscular EMG (FARINA; NEGRO, 2012). SEMG is 

recorded by non-invasive electrodes unlike the intramuscular EMG, which uses 

invasive electrodes. A surface electrode is able to pick up EMG activity from all the 

active muscles in its vicinity, while the intramuscular EMG is highly sensitive, with 

only minimal crosstalk from adjacent muscles. The non-invasive methods are 

preferably used to obtain information about the time or intensity of superficial 

muscle activation (FARINA; NEGRO, 2012).  

In addition, surface electrodes are easy to manipulate because of their non-

invasive condition. However, they have the disadvantage of registering signals in 

large areas and in some unnecessary and redundant way. Thus, a trade-off 

between combine convenience and accuracy is commonly based on the scope and 

limitations of the problem to the electrode selection. In this thesis, surface 

electromyography is used. 
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The MES is a very complex signal, due to it is influenced by many factors 

related to the electrophysiology and the recording environment, especially when 

motion occurs. Its complexity represents a challenge in the applications to control 

powered prosthetic limbs, which is the case of this research. MES can be used to 

generate control commands for rehabilitation, such as active prostheses among 

other devices by an interface with the user. Control systems based on the 

classification of MES are usually known as myoelectric control systems 

(CHOWDHURY et al., 2013b). 

2.4. Detection of movement intention for 

myoelectric control systems 

In recent years, a new tendency of human-computer interfaces is focused 

on muscle-computer interfaces (muCI), in which users employs the electric 

activity from their muscles as an input to some robotic device (for example a 

robotic hand) while they are executing various tasks. The muscle-computer 

interaction can be seen as a physical interface that implies a coordinated action 

and an adaptation between both actors, since an unexpected behavior of one of 

them could generate undesired results.  

In addition to this physical interface, intelligent sensors, actuators, 

algorithms and control strategies capable of gathering and decoding complex 

human movements or physiological phenomena are involved. This interface is 

designed in order for an artificial system can gather this information to adapt, 

learn and optimize some body functions, or to generate an answer about a 

cognitive process that occurs within itself. 

A cognitive process is a sequence of tasks that includes reasoning, planning 

and finally the execution of a previously identified problem or goal, according to 

the diagram in Figure 1. In the cognitive interaction between the human and the 
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device,  a  link  is  established  where  the  information  on  cognitive  processes  is 

acquired and transmitted in a bidirectional way. These kinds of interactions are 

evident in applications where the human requires some robotic assistance for the 

execution of certain tasks.  

Although  the  different  strategies  used  to  control  movements  are 

determined by low‐level control systems, the device needs to know when to apply 

them and what task the user wants to perform at a given time. 

Figure  ͱ. Scheme of a cognitive process  in a muscle‐computer  interface (muCI). 
Source: Adapted from (BUENO et al., ͲͰͰ͸). 

 

2.4.1. Myoelectric prosthesis control 

Myoelectric prosthesis control can be divided into two subsystems: high–

level  control  (HLC)  and  low–level  control  (LLC). HLC  interprets  the  subject’s 

intention  gathered  from  patterns  extracted  from MES, whereas  LLC  takes  the 

output of the HLC to select a predefined strategy of control angles  joint of the 

prosthesis. HLC  includes  the MES processing  and  the pattern  classification  to 

detect the user intention. The LLC can be seen as a selector for the control signal 

of the actuators or servo motors in the prosthesis that executes the movements. 
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The real challenge for researchers is in the HLC, in which intuitive 

prosthetic control is one of the most important challenges, in order to reduce the 

user’s learning effort for the prosthesis control. In this aspect, myoelectric control 

may be considered quite suitable as it allows a more intuitive user interface in a 

more natural way. However, the still unskillful control, in addition to lack of 

feedback and training of these prostheses make them unacceptable to several 

users. The proposal of the HLC for a myoelectric prosthesis control considered in 

this thesis is shown in Figure 2. 

Figure 2. Flowchart outlining a proposal for prosthesis control. 

 

 

2.4.2. Myoelectric signal processing 

The development of applications for detection and identification of signals 

in real time requires MES analysis techniques, typical of the field of pattern 

recognition, including signal processing and classification. MES patterns are 
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represented by a reduced set of features, and their classification is used as a binary 

action to control a system. In order to solve the defined problem, in this thesis a 

strategy is here proposed, which is shown in Figure 3. This strategy is composed 

of the following stages: pre-processing and conditioning of the MES; feature 

extraction; selection and projection of features; and finally, the classifier. The 

approach is useful for both offline and online/real-time applications. 

In the preprocessing stage, the MES is conditioned by the removal of 

interferences, in addition to offset and signal data extraction. Subsequently, in the 

features extraction of the MES, several mathematical methods are used to process 

the conditioned signal, which are employed to reduce redundant information and 

extract models in relation to the physiological properties and conditions of the 

muscles for distinguishing movement patterns. An evaluation of the features is 

commonly included during training of the machine learning, selecting those with 

the best performance for discrimination with a better distribution of the feature 

space. Finally, the classification stage is composed by a machine learning 

algorithm which associates patterns according to the nature of the executed 

hand/fingers movements. 

Figure 3. General scheme for MES pattern recognition for prosthesis control. 
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2.4.2.1. Myoelectric signal conditioning 

Considering the stochastic and non-stationary nature of the MES, the 

recommendations proposed by SENIAM (Surface Electromyography for Non-

Invasive Assessment of Muscles) (SENIAM, 1996) are taken into account in this 

study. In addition, digital filters are used to reject interference on the MES. The 

amplitude of the MES is not constant due to the variation of the impedance 

between the active muscle fibers and the electrodes (GERDLE et al., 1999). Thus, 

the rectification and normalization of MES allow its scaling related to the 

maximum contraction performed by the user, which reduce the variability 

between subjects and between different samples. 

It is widely known that MES can be treated as a stationary process if short 

time segments between 200 ms and 300 ms are considered. This technique for 

data extraction leads to generate a stream of MES patterns, in which short data 

segments are processed using windows, independently. Choosing window width 

is crucial in implementing online ranking. An overlapping window, or 

"overlapping", can be applied, which allows an increase of the number of 

experimental trials, increasing their statistical dependence (MERLETTI; PARKER, 

2004). 

2.4.3. Feature extraction 

The feature extraction stage is one of the most relevant in pattern 

recognition problems, as is considered as a determinant factor to the success of a 

pattern recognition system, depending on the quality and optimization of this 

stage. Presenting the MES directly to a classifier is impractical given the dimension 

of data. Thus, it is necessary to represent the MES by a vector of reduced 

dimensions, called the characteristic vector.  
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Features depend on problem itself, so it is necessary to know the area of 

interest very well. In the context of the problem addressed in this thesis, the main 

considerations to be taken into account are: 1) the low levels of muscular 

contractions for dexterous movements; 2) the low-density signals related to a 

reduced number of capture channels; 3) the computational cost for real-time 

applications. Feature extraction can be associated into three different analysis: 

time domain (TD), (spectrum) frequency domain (FD) and time-frequency 

domain. The amplitude of MES in TD and some parameters of the power spectrum 

in FD are commonly used to extract information about the behavior of the MES.  

The features in TD do not need to make a signal transformation and are 

generally faster and easier to calculate. Such features have been very diligent in 

past decades when the technology developed was not able to perform more 

complex tasks at reasonable processing times. However, although large-capacity 

processing systems are currently available, these techniques are still used and 

provide an efficient distribution of the characteristic space for their 

discrimination. 

The following are the features considered in this research: 

Mean Absolute Value (MAV): Provides a maximum likelihood estimate of the 

amplitude, when a signal is modelled as a Laplacian random process. It is used for 

low contractions and fatigued muscles analysis (Equation 2.1). 

 
MAV =

1

N
∑ |𝑋n|

N

n=1
, 2.1 

where 𝑋𝑛 represents the 𝑛𝑡ℎ sample of the sEMG signal in a window segment; N denotes 

the number of sample of the sEMG signal. 

Mean Absolute Value modified 1 (MAV1): is a modified version of MAV defined by 

Equation 2.2: 
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MAV1 =

1

N
∑ |𝑋n|

N

n=1
 

𝑤𝑛 = {
1, 𝑖𝑓 0.25𝑁 ≤ 𝑛 ≤ 0.75𝑁

0.5, otherwise,
 

2.2 

where 𝑤𝑛 is the continuous weighting window function. 

Mean Absolute Value modified 1 (MAV2): is a modified version of MAV defined by 

Equation 2.3: 

 
MAV2 =

1

N
∑ |𝑋n|

N

n=1
 

𝑤𝑛 = {

1, 𝑖𝑓 0.25𝑁 ≤ 𝑛 ≤ 0.75𝑁

 4n 𝑁⁄ , 𝑖𝑓 0.25𝑁 < 𝑛

4(1 − n 𝑁)⁄ , 𝑖𝑓 0.75𝑁 > 𝑛,
 

2.3 

where 𝑤𝑛 is the continuous weighting window function. 

Variances (VAR): this parameter is a representation of the EMG signal power, 

helping to identify onset and contraction (Equation 2.4). 

 
VAR =

1

N − 1
∑ 𝑋n

2
N

n=1
 2.4 

Root Mean Square (RMS): Defined by Equation 2.5: 

 

RMS = √
1

N
∑ 𝑋n

2
N

n=1
 2.5 

Waveform Length (WL): this feature could provide information on the waveform 

complexity in each segment as indicators for signal amplitude and frequency 

(Equation 2.6). 

 
WL = ∑ |𝑋n+1 − 𝑋n|

N−1

n=1
 2.6 

Zero Crossing (ZC): a simple frequency measure can be obtained by counting the 

number of times the waveform crosses zero. In order to reduce the noise-induced 

zero crossing, a threshold must be included. Given two consecutive samples 𝑋𝑛 

and 𝑋𝑛+1, ZC is defined by Equation 2.7: 
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ZC = ∑ [sgn(𝑋𝑛 × 𝑋𝑛+1) ⋂  |𝑋𝑛 − 𝑋𝑛+1| ≥ 𝑡ℎ𝑙𝑑]

N−1

n=1
 

 

sgn(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑙𝑑
0, otherwise

, 

2.7 

where thld denotes a threshold used to avoid low-voltage fluctuations or background 

noises. 

Slop Sign Changes (SSC): frequency measured by counting the number of times the 

slope of the waveform changes sign (Equation 2.8).  

 
SSC = ∑ 𝑓[(𝑋𝑛 − 𝑋𝑛−1) × (𝑋𝑛 − 𝑋𝑛+1)]

N−1

n=1
 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑙𝑑
0, otherwise

 

2.8 

Autoregressive (AR) model: The MES is nonstationary and nonlinear, however, in a 

short time interval, it can be regarded as a stationary Gaussian process. The MES 

time series could be modeled as Equation 2.9: 

 
x𝑖 = ∑ 𝑎𝑝𝑥𝑖−𝑝 + 𝑤𝑖

𝑃

𝑝=1
, 2.9 

where 𝑃 is the order of the AR model, 𝑎𝑝 are the estimate of the AR coefficients, 

and 𝑤𝑖 is the residual white noise. 

In relation to FD, the most common method used to determine the 

frequency spectrum of MES are the fast and short term Fourier transforms (FFT 

and SFT, also known as Gabor's transform). These transformation methods 

assume that MES is stationary, however, MES are non-stationary. To overcome 

this drawback, several sequential short segments of MES are processed, avoiding 

this difficulty. Some of the most commons features used in FD are as follow: 

Mean Frequency (MNF): Defined by Equation 2.10: 

 
MNF = ∑ 𝑓𝑗𝑃𝑗

M

𝑗=1
∑ 𝑃𝑗

M

𝑗=1
⁄ , 2.10 
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where 𝑃𝑗 is the sEMG power spectrum at the frequency j, M is the length of the sEMG 

power spectrum. 

Median Frequency (MDF): Defined by Equation 2.11: 

 
∑ 𝑃𝑗

MDF

𝑗=1
= ∑ 𝑃𝑗

M

𝑗=MDF
=

1

2
∑ 𝑃𝑗

M

𝑗=1
 2.11 

Peak Frequency (PKF): Defined by Equation 2.12: 

 PKF = max(𝑃𝑗) , 𝑗 = 1, . . . , 𝑀 2.12 

Mean Power (MNP): Defined by Equation 2.13: 

 
MNF = ∑ 𝑃𝑗

M

j=1
𝑀⁄  2.13 

Total Power (TTP): Defined by Equation 2.14: 

 
TTP = ∑ 𝑃𝑗

M

j=1
 2.14 

Power Spectrum Ratio (PSR): Defined by Equation 2.15: 

 
PSR =

𝑃0

𝑃
= ∑ 𝑃𝑗

𝑓0+r

j=𝑓0−r
∑ 𝑃𝑗

∞

𝑗=−∞
,⁄  2.15 

where 𝑓0 is a feature value of PKF; r is the integral limit of the ratio (r = 20); 𝑃𝑜 is 

nearby the maximum value of the sEMG power spectrum; P is the whole energy of 

the sEMG power spectrum in a range of 10 to 500 Hz. 

The representation of the time-frequency signal allows to locate the energy 

of the signal, in time and frequency, making probable a more accurate 

representation of the physical phenomenon. However, this method generally 

requires a computationally expensive transformation, such as the SFT, discrete 

wavelet transform (WT), and wavelet packet decomposition (WPT). This type of 

transformations applied to non-stationary signals provides a map of spectral 

characteristics of the signal in time and frequency domain, but with a feature 

vector of high dimensions, which implies a greater complexity in the learning of 

the parameters by a classifier. Thus, it is necessary an additional processing to 
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reduce the data dimension to improve sorting speed and reduce memory 

requirements without losing classification accuracy. 

Moreover, fractal dimension estimates the fractional dimension of the 

waveform signal in the time domain, which is considered as a geometric figure, 

quite useful for transient detection. In this aspect, detrended fluctuation analysis 

(DFA) is one of the most frequently used fractal time-series algorithms, which 

explores the non-stationary properties of sEMG signals with computational 

simplicity. DFA is a modified root mean square that provides a self-similarity 

parameter representing the fractal dimension. This scaling exponent indicates the 

presence of fractal scaling in a detrended time series of the RMS fluctuation in a 

succession of random division of the integrated sEMG signal on the time domain 

(PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 2012b). DFA offers 

advantage over methods based on wavelet transformations in the time-scale 

domain (PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 2012b). On the 

other hand, HFD (ESTELLER et al., 2001) is one of the most used fractal dimension 

feature, as it has shown better performance than other fractal methods 

(ESTELLER et al., 2001), and has also shown good performance in the 

classification of EMG signals. 

2.4.4. Dimensionality reduction 

One of the simplest techniques for reducing data dimensionality is the 

selection of features, which consists of selecting an appropriate subset of the input 

data, and discarding the rest. This is possible when there is a strong correlation 

between the input data sets, so that the same information is repeated several 

times. For this, it is necessary to define a criterion to determine the best subset 

and establish a systematic process of analyzing all possible subsets. The ideal 

criterion for classification should be the minimization of the probability of 

misclassification, but generally simpler criteria based on class separability are 
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chosen (ZECCA et al., 2002). One approach is to minimize the probability of 

classification error, which evaluates the system performance. Other alternative is 

based on the distribution of features in a clustering scatter. Furthermore, the 

exhaustive search among all possible subsets is often impractical and other 

methods can be used. 

The commonly used method is the sequential forward selection (SFS), 

which performs an exhaustive search by an optimization procedure for a high 

classification accuracy. The method starts with an empty set of features and adds 

a single feature at each step, with a view of improving the classification accuracy. 

Since SFS method requires to repeatedly performing the searching procedure for 

the optimal set of features until obtaining a given number of features, it would 

take a long computation time to get a relatively optimal subset. Moreover, SFS 

method must rely on a specific pattern recognition algorithm to obtain the 

accuracy to execute the selection of the optimal features. Thus, the optimization 

process would be executed again, in which some parameters of the algorithm 

would be changed. 

Alternatively, a Genetic Algorithms (GA) approach (HUANG; WANG, 

2006) for feature selection is used as an alternative to the conventional heuristic 

methods (THEODORIDIS; KOUTROUMBAS, 2008). GA is a method for solving 

optimization problems based on some of the process observed in the biological 

evolution. GA obtains the optimal subset after a series of iterations, being efficient 

with large search spaces and less chance to get local optimal solution than other 

algorithms. In addition, a fitness function assesses the mutual information 

between features and the output like the entropy criteria.  

The subsets of features are coded in the form of simple sequences 

considering the genome of the individuals of a population, as the population 

changes according to the reproduction of their individuals. For reproduction, 

operators such as mutation and crosses are applied to the population. The 
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aptitude of the individuals is represented by the performance of the classification 

of the corresponding subset of characteristics and determines the possibility of 

the reproduction. For several generations, the suitability of the population and its 

individuals are improved. When the criterion is met, a stop is displayed and the 

feature subset representing the most suitable ones is selected. GAs are 

optimization strategies that do not assume a continuously differentiable search 

space. In a population, the subsets of features present are initially covered by 

random searches (CASTILLO GARCIA, 2015). 

2.4.5. Classification 

The extracted features must be organized by labels according to the class to 

which they belong, so they can be associated with the desired movement. A 

classification system should be able to associate such patterns, overcoming the 

variations that may arise due to external factors, such as displacement of electrode 

position, fatigue, sweat, and the intrinsic variability in the nature of the MES. Also, 

the classifier must be adjusted to meet real-time constraints and efficiency in 

recognizing new patterns. In this research, we consider supervised learning 

methods for classification because during training for every input the 

corresponding target is already known.  

2.4.5.1. K-nearest neighbors (KNN) 

The K-nearest neighbors (KNN) is a non-parametric method used for 

classification. This classifier measures the distance between a trial measured and 

the k closest training samples in the feature space. The trial is classified by the 

majority vote, being assigned a label with the class of the most common of its 

nearest neighbor examples. The algorithm commonly uses the Euclidean distance 

as a metric distance. The number of the K neighbors is defined according to the 

improvement of the classifier performance. A drawback of the majority voting is 

that the classification depends on the class distribution, and sometimes the 
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samples of a more frequent class tend to dominate the prediction, resulting in a 

false positive. Thus, the K value assignment is crucial to define the architecture of 

the algorithm. 

2.4.5.2. Linear discriminant analysis (LDA) 

The linear discriminant analysis (LDA) is a parametric method of machine 

learning, which searches for a linear combination of features to distinguish two or 

more classes to which the data belong. The objective of the LDA (also known as 

Fisher Discriminant) is the use of hyperplanes to separate the data representing 

the different classes (DUDA; HART; STORK, 2001). For a two-class problem, the 

class of a feature vector depends on its location relative to the hyperplane. LDA 

assumes normal distribution of data, with a covariance matrix for the equality of 

both classes. The hyperplane is obtained by finding the projection that maximizes 

the distance between the mean of the classes and minimizes the interclass 

variance.  

This technique has a very low computational requirement, which makes it 

suitable for online systems. In addition, this classifier has no parameters to tune, 

is easy to use and generally delivers good results. The main disadvantage of LDA 

is its linearity, which can provide poor results with complex and non-linear data. 

A study conducted by (ZHANG et al., 2013) shows the use of LDA, in an 

unsupervised adaptation strategy applied to MES pattern recognition, which is 

based on probability weighting. A variation of this technique uses a quadratic 

decision surface, which can learn quadratic boundaries with more flexibility. LDA 

using quadratic discriminant function assumes that the covariance matrix is not 

identical for each class, then it estimates a matrix by class separately.  

2.4.5.3. Support vector machines (SVM) 

Support vector machine (SVM) is a learning system for the construction of 

linear and non-linear classifiers and regression functions. SVM is a non-
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parametric technique that explicitly constructs the solution by a linear 

combination of the training samples. The most salient feature of the SVM is its 

ability to solve problems where the data is high dimensional, without degrading 

the solution due to lack of them. 

SVM uses a discriminant hyperplane to identify the classes (BURGES et al, 

1998; BENNETT et al, 2000), in which the selected hyperplane maximizes the 

distances between the closest points of the classes. Currently it is possible to train 

SVM in real-time applications thanks to the improved computing and the 

development of fast learning algorithms. SVM training builds a model that assigns 

a new sample to one of two categories, making it a binary linear classifier. For 

multiclass problem, a common approach consists of decomposing the multiclass 

problem into several binary sub-problems, building a standard SVM for each class. 

The most popular strategies are the “one against all” and “one against one”. The 

first one builds one SVM per class, training to distinguish a particular class from 

the other classes. The second one built one SVM for each pair of classes and the 

result is decided by majority voting. Some studies have reported that “one against 

one” approach has similar results as the other approach, and it has been stated to 

be more practical because the training process is quicker. 

The effectiveness of SVM depends on the selection of the kernel, the kernel's 

parameters, and soft margin parameter C (HSU; CHANG; LIN, 2016). A common 

choice is a Gaussian kernel (also known as radial basis function, RBF), which has 

a single parameter γ. The best combination of C and γ is often selected by a grid 

search with growing sequences of C and gamma. The C value in the SVM classifier 

is a throttling parameter that allows the removal of atypical data and tolerates 

errors in the training set to avoid misclassifying of training samples. The C value 

configures the margin separating the hyperplane, such that large values configure 

small margin to classify all training trials correctly. However, small values 

configure a larger margin, even getting possible misclassified trial.  
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2.4.5.4. Repeated k-fold cross-validation 

In addition, repeated k-fold cross-validation method with all trials of the 

experiments is used to assess how accurately the predictive model performs in the 

offline validation. This method folds all dataset into k subsets, where one subset 

is used to validate the model while the others are used as a training set. All subsets 

are crossed so that each one of them has a chance to be used as a validation set. 

The accuracy is the metric used to measure the overall performance of the 

classifiers. This process is repeated n times and the average accuracy is calculated.  

2.4.6. Post-processing 

Post-processing techniques can be used as an attempt to improve 

classification accuracy. The output vector of the classifier is composed of scores 

with the probabilities of association of the current pattern with each one of the 

classes. Before obtaining a class decision, it is convenient to compare these scores 

to yield a reliable final decision. The class with the higher probability among all 

others is a common criterium to stablish the output classifier. However, it is found 

that a comparison of this output vector with a level of confidence could improve 

the classification performance, in order to reject likely false positives by giving a 

wrong decision.  

One method used for post-processing is the comparison between the score 

vector with a level of agreement, which is based on the metric Kappa (k), that 

indicates a substantial agreement between the class expected and the predicted 

decision for k values above 0.6, taking into account the a priori probability of a 

classification system defined in 2.16,  

 
𝑃𝑒 =

1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
,  2.16 

where 𝑃𝑒 denotes the chance agreement of a class to be assigned.  
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The Kappa coefficient is a parameter proposed by Cohen (JAPKOWICZ and 

SHAH, 2011), which represents the concordance between the targets and the 

prediction values. The Kappa’s coefficient (k) can be defined by Equation 2.17:  

 
𝑘 =

𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
 , 2.17 

where 𝑃𝑜 denotes the probably of overall agreement over the class decision and 

the true class; and 𝑃𝑒 denotes the chance of agreement of a class to be assigned. 

Values of K < 0 indicate no agreement; between 0 and 0.20 are considered as 

slight; between 0.21 and 0.40 as fair; between 0.41 and 0.60 as moderate; between 

0.61 and 0.80 as substantial, and finally, between 0.81 and 1 as almost perfect 

agreement. 

Stating a level of agreement𝑘1 = 0.6, then, the minimum probability to 

obtain a reliable class decision, 𝑃𝑜𝑚𝑖𝑛
, can be defined by Equation 2.18 using the 

value of 𝑃𝑜 in Equation 2.17, as follow: 

 𝑃𝑜𝑚𝑖𝑛
= 𝑘1 − 𝑘1 ∗  𝑃𝑒 − 𝑃𝑒. 2.18 

For example, for the eight-class problem of individual finger movements, 

the minimum probability of a sample to be reliable is 0.65. Finally, the output 

vector of the classifier is compared with the value obtained by 𝑃𝑜𝑚𝑖𝑛
, and a class 

decision is assigned, if and only if, some class gets a higher probability value. 

Additionally, a second method for pros-processing uses a defined threshold 

to compare each one of the class probabilities in the score vector among the 

others. A class decision can be given, if and only if, a maximum class probability 

is sufficiently greater than the other ones in the score vector. Considering a 

multiclass system for 5 movements, the a priori probability for each class is 20%, 

supposing all class has the same chance of happening, with no difference between 

each one of classes. For this purpose, it is necessary to define a threshold for 

difference between two similar classes. 
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Finally, a simple approach for post-processing seeks to smooth the outcome 

accuracy using a Majority Vote (MV) (KHUSHABA et al., 2012). This method is 

intended to combine adjacent outputs in a stream of class decisions to reduce false 

positives. The MV uses the current decision combined with a defined number of 

last decisions to obtain the mode as the current output. A ponderation in a 

modified scheme is used to add weight to the samples in the decision stream, so 

that the last sample contributes more to the average than the more distant ones. 

The maximum pondered value among all classes would correspond to the final 

decision. By trial and error different weight combinations were tested, and it was 

found the following values to be most appropriated to improve the performance:  

Decision n, weight = 4;  

Decision n-1, weight = 3;  

Decision n-2, weight = 2; 

where n is the actual state of the decision stream, which is intended to avoid the 

perseverance of past values, rejecting the tendency to prevail past decisions. 

The error rate using majority vote scheme is roughly lower than the error 

with unprocessed stream decisions, and it does not depends on the feature set and 

window increment (ENGLEHART; HUDGINS; PARKER, 2001). It has also to be 

taken into account that this scheme can induce errors in the classification 

performances, especially in the transition regions between hand/fingers 

movements. For real-time applications, the improvement due to using a majority 

vote scheme may serve to smooth the stream of class decisions and reduce 

spurious errors.  

2.4.7. Performance measures 

The performance measures for a MuCI draw information mainly from the 

confusion matrix. In order to have a detailed analysis by classes of the classifier 

performance, a confusion matrix is also calculated to obtain the average accuracy 
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for all classes. The confusion matrix is generated from results of classification, 

where information about accuracy and misclassification for each class can be 

analyzed. This confusion matrix considers the correct classification in the 

diagonal cells as the positive predictions and the misclassification in the other 

cells as the negatives.  

For multiclass system, the confusion matrix is a square matrix and can be 

defined by Equation 2.19: 

 
𝐶 = {𝐶𝑖𝑗 = ∑[(𝑙 = 𝑖) ∙ (𝑝 = 𝑗)]

𝑥∈𝑇

}, 2.19 

where each element 𝐶𝑖𝑗 of the confusion matrix denotes the number of examples 

belonging to a class 𝑖 label, and the classifier recognizes as a class 𝑗. For a test 

sample, 𝑙 denotes the corresponding label and 𝑝 the predicted class. 

Specificity (𝑆𝑝), also known as True Negative Rate (TNR), is the proportion 

of negative instances (movements) that are detected, defined by the Equation 2.20 

 
𝑆𝑝 =

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
, 2.20 

where TN denotes the true negatives, and FP the false positives. 

Further, Positive-Negative Measurement index (PNM) takes into account 

the sensitivity and specificity of the system (CASTRO; ARJUNAN; KUMAR, 2015). 

This index combines the correct classification of each class, referred as positive, 

with the misclassification in the prediction, caused by counting false positives 

instead negatives, as is shown in Equation 2.21. 

 
𝑃𝑁𝑀𝑖 =

(𝐶𝑖𝑖 − ∑ 𝐶𝑖𝑗
𝑔
𝑗≠𝑖 ) + (𝐶𝑖𝑖 − ∑ 𝐶𝑖𝑗

𝑔
𝑖≠𝑗 )

∑ 𝐶𝑖𝑗
𝑔
𝑖,𝑗=1 + ∑ 𝐶𝑖𝑗

𝑔
𝑗,𝑖=1

, 2.21 

where 𝐶𝑖𝑗 corresponds to the element in row i and column j in the confusion 

matrix; and g is the total number of classes. The PNM index is used to measure 

the performance of an individual movement related to how well the movement 
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was correctly recognized and to how well the same movement was discriminated 

by other ones. The index ranges from 1, if all predictions are correct, to -1 if all 

predictions are wrong.  
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3. Materials and methods 

In this chapter, a detailed description about the implementation of the 

blocks for pre-processing, feature extraction, feature selection and classification, 

shown in the Figure 3, and the different techniques used is addressed. Moreover, 

the experimental procedure conducted in this thesis is descripted.  

3.1. Experimental procedure 

3.1.1. Subjects 

This study was conducted on a control and amputees groups. MES was 

recorded from the dominant forearm of ten able-bodied subjects (five males and 

five females), from the control group, aged 22-35 years, with no history of 

neurological or neuromuscular disorders. Moreover, ten forearm amputee 

subjects (five females and five males), aged 19-64, participated in this study. All 

the amputees are outpatients from the Centro de Reabilitação Física do Espirito 

Santo (CREFES/Brazil), which are shown in Figure 4. All amputees have traumatic 

amputation. The amputees (A) were previously evaluated by a physiotherapist, 

with an assessment (Appendix B) including aspects as participant identification 

and physical examination (anamnesis, inspection, palpation, range of motion and 

sensitivity). All subjects did not have any experience of attending this kind of 

study before. The inclusion criteria adopted in this research were as follows: (1) 

transradial or wrist disarticulation amputation; (2) no evidence, in their medical 

history, of peripheral neuropathy, diseases of the central nervous system or any 

neurological or muscular disease; (3) no evident abnormal motion restriction; and 

(4) no earlier experience with myoelectric prosthesis.  
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Figure 4. Group of amputees who voluntarily participated of the experiments. 
Details of each one can be seen in Table 2. 

     
A1 A2 A3 A4 A5 

     
A6 A7 A8 A9 A10 

All transradial levels (distal, medial or proximal) of amputation were 

accepted because it is possible to capture MES from the muscle groups selected 

for this research.All participants were informed about the objectives and 

methodology of the study, through oral presentation. After knowing the detailed 

procedures, the participants signed the free consent form, according to the ethical 

principles of the Universidade Federal do Espirito Santo (UFES/Brazil). The study 

was approved by the Human Ethics Committee of UFES, conducted in strict 

adherence to the Declaration of Helsinki (protocol number 302/11, Appendix A). 

A physical and functional assessment was accomplished for each participant. 

Baseline sociodemographic and amputee characteristics from all subjects are 

presented in Table 2. 

3.1.2. Equipment and electrode placement 

MES data were acquired using reusable bipolar active electrodes 

(PL091060A - 60Hz) manufactured by Touch Bionics, with inbuilt 60Hz notch 

filter, pre-amplification and conditioning circuits, with adjustable gain (Figure 5). 

The MES was sampled (1 kHz) via an NI USB-6009 data acquisition system. The 

software Matlab 2014a (The Mathworks, Inc) running on a laptop battery powered, 
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with Windows 10 64-bits operational system, and an Intel Core i-7 processor (2.2 

GHz) and RAM of 8 GB, was used to process the data. Electrodes were positioned 

in contact with the unbroken skin in suitable locations to capture the activation 

of specific muscle groups as detailed below. All three metal pads of the electrodes 

were correctly attached to the subject’s skin by adding conductive gel in order to 

make good electric contact. 

Table 2. Participant demographics. Level of amputation is indicated: wrist 
disarticulation (WD), Proximal Transradial (PTR), Medial Transradial (MTR) and 
Distal Transradial (DTR). 

Amputee Gender Age 
Missing 
Hand 

Time since 
amputation 

Prosthesis 
used 

Level of 
amputation 

A1 Female 45 Right 4 years Esthetic WD 

A2 Male 64 Left 42 years Esthetic WD 

A3 Female 48 Right 1 year Non WD 

A4 Female 23 Right 4 years Non PTR 

A5 Female 48 Right 2 years Non WD 

A6 Female 50 Left 25 years Non    PTR ‡ 

A7 Male 34 Both † 2 years Non WD 

A8 Male 21 Left 2 years Non MTR 

A9 Male 27 Both † 1 year Non PTR 

A10 Male 24 Right 1 year Non DTR 

† Bilateral amputation, not same level on both sides 
‡ Cause of amputation due to poor circulation 

 

Figure 5. Touch bionics electrode for MES acquisition 
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Some technical specifications of these electrodes are: 

 Power Supply: powered by USB port supply via NI USB-6009 DAQ 

 Temperature Range: -15°C to 60°C 

 Frequency Bandwidth: 90 - 450 Hz 

 Sensitivity Range: 2000 – 100,000 fold 

Four electrodes were placed on the selected muscle groups of the subject, 

according to their relation with the functions of the hand/finger movements, as 

described in Table 3. 

Table 3. Description and functions of muscle groups covered in this study. 

Ch Muscle Origin Insertion Primary functions 
Electrode 
placement 

1 
Flexor 
pollicis 
longus 

1/3 of the 
anterior face of 
the radius and 
interosseous 
membrane 

Palmar base of 
the first 
chirodactyl 
Distal Phalanx 

Flexes the first 
chirodactyl 
interphalangeal and 
metacarpophalange
al Joints 

1/3 of the 
anterior face of 
the radius and 
interosseous 
membrane 

2 
Flexor 
digitorum 
superficialis 

Medial 
epicondyle of 
the humerus 

Base of the 
middle phalanx 
of the 2nd to 
5th finger 

Flexion of proximal 
interphalangeal and 
metacarpophalange
al joints, from 2nd 
to 5th finger 

Ventral face of 
the forearm, 
approximately 5 
cm distal from 
the elbow fold 

3 

1. Flexor 
carpi radialis 

Medial 
epicondyle of 
the humerus 

Base of 2nd and 
3rd metacarpals 

Flexion and radial 
deviation of the 
wrist 

Ventral face of 
the forearm, 
approximately 5 
cm distal from 
the elbow fold 

2. Flexor 
carpi ulnaris 

Humeral head 
and ulnar head 

Base of the 
small 
metacarpal 

Flexion and ulnar 
deviation of the 
wrist 

4 

1. Extensor 
carpi radialis 
longus 

Humerus 
(lateral 
supracondylar) 

Dorsal base of 
the Index 
Metacarpal 

Extends, radially 
deviates the Wrist 

Center of 
muscular mass, 5 
cm distal of the 
elbow 

2. Extensor 
carpi radialis 
brevis 

Humerus 
(lateral 
epicondyle) 

Dorsal base of 
the Middle 
Metacarpal 

Extends and 
radially deviates the 
Wrist 

3. Extensor 
carpi ulnaris 

Distal humerus 
dorsal base of 
the Small 
Metacarpal 

Extension and ulnar 
deviation of the 
Wrist  
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The electrode placement procedure was the same for able-bodied subjects 

and amputees. All the electrodes were placed according to SENIAM 

recommendations (HERMENS et al., 2000). Prior to place the electrodes on the 

forearm, the skin was previously cleaned with 70% alcohol, and conductive gel 

was used before attaching the electrodes, in order to reduce skin impedance. The 

same experimental conditions were maintained to guarantee the repeatability of 

experiments across different days. A temperature of 24 °C was conditioned to 

avoid the presence of sweet. A minimal inter-electrode distance on the forearm of 

2 cm was ensured for all subjects. To find the best location for positioning the 

electrodes, a graphical representation of the patient’s MES was provided. Three 

near points around each specific muscle area were tested to identify the more 

suitable point with the strongest signal. 

The selected muscles for this research, shown in Figure 6, are associated to 

the first chirodactyl flexion (channel 1), fingers flexions (channel 2), wrist flexion 

(channel 3) and wrist extension (channel 4).   

Figure 6. Forearm muscles by channel adopted in the experimental protocol. 
Source: adapted from ANATOMY OF THE HAND (2017) 

 

 

 

 

 

 

 

Channel 1 Channel 2 Channel 3 and 4 

 

3.1.3. Experimental protocol 

All the subjects (amputees and able-bodied) performed each hand/finger 

movement, shown in Figure 7Figure 7, separately. Thirteen movements 

(descripted in Table 4) were considered in this study, arranged into three 

Flexor Pollicis  

Longus 

Wrist extensors 

Wrist flexors 

(Palm facing down) 

Flexor digitorium 

superficialis 

(Palm facing up) 
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movement categories: category A (CA) for individual fingers, which includes first 

chirodactyl flexion (F1), second chirodactyl flexion (F2), third chirodactyl flexion 

(F3), fourth chirodactyl flexion (F4), fifth chirodactyl flexion (F5), hand closing 

(HC) and hand opening (HO); category B (CB), for hand grasp, which was 

arranged within the following taxonomy: into power, intermediate and precision 

grasps. As power grasps, two kind of full hand wrap grasps were considered: large 

diameter (LD: diameter = 9 cm, height = 11 cm) and medium wrap (MW: diameter 

= 5 cm, height = 14 cm). The lateral grasp (LT) was included as intermediated 

grasp. For the precision grasps, sphere tripod grasp (TR) and tip pinch (TP) were 

considered. Finally, the category C (CC), which includes all the thirteen 

movements. The rest state (RT) was included in all categories. The movements, 

descripted in Figure 7 were selected because of their importance to the 

improvement of prosthesis functionality (BOUWSEMA, 2008). 

Table 4. Movements performed in the experiments. 

Category No. Abbreviation Hand/fingers movements 

- 0 RT Resting  

CA 

1 F1 First chirodactyl flexion  

2 F2 Second chirodactyl flexion  

3 F3 Third chirodactyl flexion  

4 F4 Fourth chirodactyl flexion  

5 F5 Fifth chirodactyl flexion  

6 HC Hand closing  

7 HO Hand opening  

CB 

8 LD Large diameter Dim = 9 cm 

9 MW Medium wrap Dim = 5 cm 

10 LT Lateral tripod grasp  

11 TR Sphere tripod grasp  

12 TP Tip pinch  

CC - - All movements  
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Figure 7. Different kinds of hand and individual finger movements considered in 
this study (rest state picture is not included). 

Thumb Index Middle Ring Little Hand Close 

Large Medium Lateral Tripod Tip Pinch Hand Open 

For the experiments, a preliminary assessment (day 0) and three 

experimental sessions in different days (days 1-3) were conducted. Prior to the 

recording, the subjects were encouraged to familiarize themselves with the 

experimental protocol. They were seated in a chair with both arms resting on a 

table. During the familiarization stage, it was given a time to they imagine the 

movement performance with the missing limb, at the bilateral action training 

modality. The amputee subjects were asked to produce muscle contractions while 

they imagined specific movements with their phantom stump. At the same time, 

they performed a mirrored bilateral movement with the intact limb to facilitate 

the contraction of the affected side.  

Afterwards, during the experiments, the subjects were instructed by both 

visual and oral cues to elicit a contraction from the rest state and hold that task 

for 6 s, followed by a background activity (rest state) of 4 s, switching between 

isometric contraction and relaxation. Each hand gesture was repeated five times 

consecutively, as shown in Figure 8, with a resting period of 3 minutes between 

each movement, in order to avoid fatigue. Each performed repetition and 

background period are referred to in this thesis as “trial”. Within each trial, the 

contraction period was split roughly into a phase of onset and a subsequent 

steady-state (isometric) phase. Moreover, to enhance generalization ability due to 

the fluctuation of MES, the experiments were repeated on three different days, 

referred to herein as sessions. 
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Figure 8. Experimental protocol to extract the isometric task. 

 

 

3.2. Method for recognition of dexterous 

hand/fingers movements 

The muscle-computer interface (muCI) proposed in this thesis is composed of MES 
pattern recognition, such as that descripted in the diagram shown in Figure 9.  

The system can be divided, according to the recognition stages, into two 

subsystems: training and validation. The first one is intended to define a predictive 

model, which is trained by a supervised learning machine through loading of a 

data base of processed MES patterns with known movement. This processing is 

performed in offline mode. Furthermore, the predictive model is used in the 

validation subsystem to predict new MES patterns and recognize the movement 

originated from this signal. This recognition originated from the user’s intention 

is taken as a control command for the prosthesis. This processing is performed in 

online mode. Both subsystem include a processing data stage, in which pre-

processing and feature extraction are performed.  In the online mode, MES 

capturing and data processing are accomplished using two threads concurrently.  

The data processing is performed for a short segment of signal captured previously 

while a new segment is captured simultaneously. The Data Acquisition System 

Toolbox of Matlab was used to accomplish this stage of research.  
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Figure 9. General scheme for MES pattern recognition. 

 
 

 

Processing data and supervised learning block shown in Figure 9 are widely 

detailed in the Figure 10. The data processing block can be divided into data 

extraction, feature extraction and classification stages. Moreover, two adjacent 

blocks (feature selection and gesture selection) can be noted, which are used in 

order to find the best parameters during system design with the aim to improve 

the performance. The first one is intended to obtain a subset of features by the 

selection of the best parameter to characterize the myoelectric patterns. The 

second one is used to assess the suitable movements for each voluntary according 

to its abilities to performed the contractions and generate different patterns. Both 

are blocks executed just at the designing phase of the recognition system.  
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Figure 10. Diagram of the techniques used for the design of the MES pattern 
recognition. 

 

3.2.1. Data extraction and data windowing 

All the raw MES are preprocessed for conditioning and to remove unwanted 

DC level. It is not necessary to use digital filters due to the analog Notch filters 

embedded in the active electrodes circuits. Due to the zero average of the signal, 

the rectification is intended to obtain only positive values preserving all the 

information from magnitude of muscle contractions. The unwanted DC level is 

removed subtracting the average of the MES, and, subsequently, a rectification 

(full wave) is performed. The MES is not normalized due to the analysis is 

performed for each channel individually and not comparison of signal magnitudes 

is needed between muscles and among voluntaries.  
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Afterwards, a data extraction stage is carried out, which is determinant for 

a real-time implementation of the myoelectric control. As stated by Englehart and 

Hudgins (2003), using transient MES for control has some obstacles, as the 

requirement of initiating a movement from the rest-state in order to produce a 

single command, which makes continuous control of devices cumbersome and 

slow (SHENOY et al., 2008). This makes awkward and slow the continuous 

control. Thus, in this research steady-state signals are considered for the learning 

patterns during offline experiments. However, continuous MES (both transient 

and steady-state) are considered for online classification.  

The onset and offset of the muscle contraction is identified by the cues given 

to the subject during experiments. This process is made manually because of the 

low amplitude of the background activity, which is similar to the isometric activity 

itself and noise magnitude. The steady-state MES (isometric task) is extracted 

from each trial, and the transient stages (i.e. during movement changes) are 

removed. The data from the two first seconds and last second of the 6-second trial 

are removed from all observation to extract only the steady-state of the isometric 

contraction of each trial. In this sense, three seconds from each trial are used to 

be processed. This time is enough to ensure that the subject starts the movement, 

the transient is performed and the steady-state is achieved.   

Before feature extraction stage, the MES are windowed, and from each 

window a control command is conveyed. It is important to note that the window 

length (denoted here as M) for recording and the window increment or 

overlapping (denoted here as N) have influence in the characterization of patterns 

and the classifier’s performance. The maximum delay possible for data processing 

is limited by the N value, while the required memory to store the data to be 

processed is defined by M value. It is worth to mention that an evaluation of the 

effects of the window length and window increment on the classification accuracy 

for all subjects is also performed in this research. The window length is varied for 
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M = 100, 200, 300, 400 and 500 ms, while the overlapping was varied for N = 20, 

40, 60, 80 and 100 ms.  

It is actually expected that a larger window improves the accuracy, but 

increases the response time. However, a very short overlapping reduces the effects 

of the delay, increasing the computational cost. The minimum and maximum 

values for both parameters are defined to agree with the real-time constraint 

required by human being for detection of user intention using MES, whose 

response time should be less than 300 ms, in order to not introduce a perceivable 

delay by the user (ENGLEHART; HUDGINS, 2003). 

3.2.2. Feature extraction 

Seventeen features detailed before in the second chapter are considered in 

this study, which are based on time domain (TD), frequency domain (FD) and 

non-linear analysis related to Fractals, as shown in Table 5. Each feature was 

normalized individually based on the average and standard deviation values. For 

each data window, the features extracted from all channels are concatenated, 

which yield a twenty-dimensional feature vector per channel. It is important to 

remark that each one of the autoregressive (AR) coefficients are here considered 

as one-dimension feature for each channel.  

After the feature extraction stage, a normalization is necessary to reduce the 

variability of magnitude levels among features. For this, the method based on 

mean and standard deviation of the data was used, following Equation 3.1. 

 
|𝑋| =

𝑋 − �̅�

𝜎
 

 3.1 

where 𝑋 is the value of the feature to be normalized, �̅� and 𝜎 are the mean and 

standard deviation of the feature vector and |𝑋| is the value normalized, 

respectively.  



50 

 

 

 

 

Table 5. Features selected for this study, split in groups. The parameters used for 
some features are also specified. 

Domain Feature Abbr. Dim/Ch 

Time 
Domain 

Mean absolute value  MAV 1 

Modified mean absolute 
Value 1 

MAV1 
1 

Modified mean absolute 
Value 2 

MAV2 
1 

Variance  VAR 1 

Root mean square  RMS 1 

Waveform length  WL 1 

Zero crossing ZC 1 

Slope sign change SSC 1 

Autoregressive model AR 4 

Frequency 
Domain 

Mean frequency  MNF 1 

Median frequency  MDF 1 

Peak frequency PKF 1 

Mean power  MNP 1 

Total power TTP 1 

Power spectrum ratio PSR 1 

Fractal 
Features 

Detrended Fluctuation 
Analysis 

DFA 
1 

Higuchi Fractal 
Dimension 

HFD 
1 

Dim/Ch, dimensions per channel; thld, threshold. 

3.2.3. Feature selection 

It is known that multiple feature sets are more feasible to accomplish a high 

accuracy for the classifier (ENGLEHART; HUDGINS, 2003). However, despite the 

analysis of all aforementioned features may provide redundant information, the 

use of more features will increase also the computation cost. Hence, it is 
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imperative to use techniques for feature reduction for optimal subsets in a point 

of view of class separability. Two methods are considered in this study: Sequential 

Forward Selection (SFS) and Genetic Algorithms (GA). These two methods are 

chosen to compare the selection of features using traditional solutions and models 

to solve optimization problems based on machine learning. The SFS method 

performs the search using the classification accuracy as a criteria for the selection. 

On the other hand, GA approach is based on the feature space distribution, which 

minimizes the within-cluster scatter and maximizes the between-cluster 

separation, such as proposed by (HUANG; WANG, 2006).  

Both methods are carried out following two approaches: in the first one, 

features from the four channels are considered as a whole dataset using all-

channel analysis (GA and SFS). In the second approach, features from each 

channel are selected using an individual-channel analysis (denoted as GA-CH and 

SFS-CH). All methods were performed by each subject for both control group and 

amputees, yielding an own feature subset in each case. Data classification was also 

performed, in order to determine the performance of each method.  

3.2.4. Classification 

For the experiments, a comparison among different classification 

techniques was performed to identify the most appropriated classifier for the 

pattern recognition system here proposed. Linear Discriminant Analysis (LDA), 

K-Nearest Neighbors (KNN) and multi-class Support Vector Machine (SVM) (one-

against-one approach) were the selected classifiers. These classifiers were selected 

due to their low computational complexity (Chowdhury et al., 2013). Also, they 

are recommended as robust classifier and have been employed in several studies 

(CHOWDHURY et al., 2013a; CIPRIANI et al., 2011; GUO et al., 2015; KHUSHABA 

et al., 2012; OSKOEI, 2008; PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 

2012a; WANG; CHEN; ZHANG, 2013). 
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For each one of these topologies, tests of different architectures and 

parameters were performed. K is usually chosen as an odd value for an even 

number of classes. Also, small K-values lead to a high noise influence on the results 

and a low generalization capability. For KNN classifier implementation, the K-

value was iterated taking odd numbers from 5 to 9. Even values were not 

considered to avoid score results with two class with the same probability. The 

LDA does not require parameter adjustment, and a quadratic function was chosen 

for its implementation.  

For SVM, three different kernels were considered: linear, Gaussian (also 

known as RBF) and polynomial. For the Gaussian kernel, the parameter γ and the 

regularization parameter, C, were empirically optimized by minimizing the error 

rate on the validation dataset. The γ parameter for RBF kernel was set for the 

following values: 0.01, 0.1, 0.5, 1, 2 and 5. In the polynomial kernel, the order have 

to be set, using polynomials of second, third and fourth order. For all kernels, the 

C was iterated for: 0.01, 0.1, 1, 2, 5 and 10. These values were defined according to 

the revision in literature (CHEN et al., 2013; HSU; CHANG; LIN, 2016; LIU, 2015; 

OSKOEI; HU, 2007). In addition, a repeated k-fold cross-validation is used in the 

offline validation for k = 5 subsets and repeated n = 3 times.  

3.2.5. Post-processing 

Post-processing techniques were used to prevent overwhelming the 

prosthetic controller with varying classification decisions, in an attempt to 

improve the classifier performance by eliminating spurious misclassification, as 

previously done by (ENGLEHART & HUDGINS, 2003).  Three methods were 

tested for post-processing: by comparison using Kappa (k) as a level of agreement; 

by comparison using a defined threshold among score vector; and finally, by using 

a pondered majority vote (MV) technique. For the first one, a value of k ≥ 0.6 was 

used to ensure a substantial agreement between the decision and the class 
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expected. For the second method, a threshold of 0.2 was stablished, which 

corresponds to a 20% of difference among the selected class and the other classes. 

For the MV method, the maximum pondered value among all classes would 

correspond to the final decision. Different weight combinations are tested using 

the following values to be most appropriated to improve the performance:  

Decision n, weight = 4;  

Decision n-1, weight = 3;  

Decision n-2, weight = 2; 

being n the actual state of the decision stream, which is intended to avoid the 

perseverance of past values, rejecting the tendency to prevail past decisions. 

3.3. Experimental design 

The experiments conducted in this thesis can be organized into two specific 

studies, according to the objective for each one, such as offline and online studies. 

The offline study is aimed to obtain a predictive model of a MES pattern 

recognition, validated both on control group and amputees. The online study is 

considered as a subsequent phase in the validation of the previous results, 

considering specific conditions for real-time implementations, performing the 

recognition simultaneously with the movement execution.  

In the offline study, the data collected from the first two sessions are used 

to analyze the structure of an optimal system and finally obtaining a trained 

classification system. After the feature extraction stage on both control group and 

amputees, an analysis for feature selection is carried out for each movement 

category, in order to determinate an optimal feature subset. This optimal feature 

subset is intended to obtain the best characterization of the MES patterns by 

extraction of the most relevant information, rejecting redundant information and 

reducing computational costs. The accuracy of the results is used to establish a 
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ranking of frequency for each feature, to yield a new feature subset for each 

method. Finally, an overall method is adopted to recognize patterns related to all 

aforementioned movement groups.  

In the online study, a third session is performed for the validation of the 

classification system trained with the results of two first sessions with the 

structure proposed by the offline study. The same protocol used to the perform 

hand/finger movements is followed in the online study, and its performance is 

also evaluated. To achieve the online application, two concurrent thread are 

executed to capture and process data, using the proposed data extraction scheme. 

No visual feedback to the users during the system validation was considered, to 

assess the repeatability of the patterns in spontaneous way.  

Additionally, two alternative schemes were proposed for training the motor 

learning and acquisition of abilities to use a myoelectric prosthesis and performing 

distinguishable muscle patterns associated with individual finger flexion and 

grasp movements. In the first scheme, a virtual hand designed in a virtual reality 

environment (VRE) was used. The human movements were adapted to the hand 

in the VRE, which is controlled by the motion command provided by the pattern 

recognition system. The second scheme, referred as a prototype of a robotic hand, 

can be controlled through a low level control (LLC) system. Figure 11 details the 

system design for this study. 

The predicted commands yielded by the high level control (HLC) system 

are used as input for the LLC. The LLC system, shown in Figure 12, is composed of 

a microprocessor, which controls five servomotors that reproduce the flexion and 

extension of each finger of the robotic hand. In this study, both schemes offer a 

biofeedback (visual response) to the user about the predicted movement. 

 

 



͵͵ 

 

 

 

 

Figure ͱͱ. Diagram of the system for myoelectric pattern recognition of hand/finger 
movements, using virtual reality environment and robotic hand. 

 

Figure ͱͲ. Diagram of the low level control (LLC) of the robotic hand for real time 

validation. 
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Finally, the results obtained in the online study were used to carry out two 

analyses, after the experiments. The first one is intended to develop a system 

towards a MES single-channel recognition system, in which the information 

provided from each one of the muscle contractions is assessed. The second one is 

an analysis for the selection of a suitability set of movements, according to the 

abilities of the amputees. The accuracy is used to compare the extent of 

discrimination of the movements. This analysis was carried out independently for 

movements of categories CA and CB. The positive-negative performance (PNM) 

measurement index (CASTRO; ARJUNAN; KUMAR, 2015) is then used to measure 

the performance (recognition/discrimination) of the movement in relation to the 

other ones. This index is compared for all subjects, while average and variance are 

considered to compare the easiness to exert specific contractions for determined 

movement and to maintain constant patterns and separated among the 

movements proposed in this study.   

3.4. Statistical evaluation 

Accuracy (Acc), mean percentage error (MPE), specificity (Sp), Kappa’s 

coefficient (k) and positive-negative measurement (PNM) are used to evaluate the 

performance of each classifier. For the analysis of the results obtained in this 

research, and taking into account the low number of observations and their 

unknown distribution, non-parametric approaches were used, which are strongly 

suggested in the literature (CIPRIANI et al., 2011) due to not require the 

assumption of normality. Statistical differences among experimental results were 

also evaluated, firstly using the Wilcoxon rank-sum test to compare two groups 

with unpaired data, and the Friedman test for simultaneous comparison of more 

than two groups. Post hoc pairwise comparisons using Wilcoxon rank-sum test 

with a Bonferroni correction factor were also conducted, in which a level of ρ < 

0.05 was selected as the threshold for statistical significance. The outcome of 
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these tests were interpreted in this research to establish if there was a statistically 

significant difference in accuracy for each category of movements between 

different subjects. 
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4. Results  

4.1. Offline study results  

4.1.1. Data extraction 

In the first part of the experiments, the effects of the window length and its 

overlapping were evaluated. The windowed data evaluation was performed to 

compare the classification accuracy using all the features included in this research. 

The window length (M) was varied for M = 100, 200, 300, 400 and 500 ms, while 

the window increment or overlapping (N) was varied for N = 20, 40, 60, 80 and 

100 ms.  

Results of the experiments with amputees, varying the window length 

(descripted in Figure 13), showed a direct correlation between the classification 

accuracy and size of the window length: the more length of the window the more 

accuracy, such as expected. Figure 13 shows the average accuracy for all amputees, 

for different lengths, iterating overlapping from N = 20 up to 100 ms, with 

increments of N = 20 ms. It can be noted that the accuracy was above 98% for M 

= 200 ms onwards, being M = 500 ms the value with best performance achieved. 

The classification accuracy at values of M = 300, 400 and 500 ms was found to be 

closely the same. Moreover, the accuracy was found to be improved with the 

reduction of N. 
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Figure 13. Effect of varying the length of the window for individual fingers 
movements. 

 

The window increment determines the real-time constraint of the system, 

i.e., the features must be computed and processed to generate a command before 

the next data segment arrives. After data analysis the classification accuracy was 

found to be increased with a progressive reduction of the overlapping time. 

However, the performance was not significant affected by this increment for 

window lengths from 200 samples onwards, as shown in Figure 14.  

Figure 14. Effect of varying the sliding of the window on individual fingers 
movements. 
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From these results, a trade-off between these two parameters was taken into 

account in this research, being chosen in this study a window length M = 300 ms 

and an overlapping N = 100 ms. These parameters were selected to conduct the 

next experiments, to accomplish the real-time application purpose. The same 

behavior in classification accuracy was observed (last results: M = 300 ms and N = 

100 ms) for the group of grasp movements, such as shown in Figure 15.  

Figure 15. Results varying the length of the window and the overlapping for grasp 
movements. 

 

4.1.2. Parameter adjustment 

The setting of some parameters for the features considered in this research 

(Table 5), were optimized iteratively using trial and error method, seeking to 

improve the classification accuracy. Particularly, for ZC and SSC, the thresholds 

values obtained were 0.0005 and 0.001, respectively. Other parameters were 

chosen according to the literature, such as: for AR model(order = 4) (OSKOEI; 

HU, 2007), DFA (L = 10) (PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 

2012b), PSR (N = 20) (PHINYOMARK et al., 2012) and HFD (Kmax = 10) 

(ESTELLER et al., 2001). All parameters are summarized in the Table 6. 
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Table 6. Parameters selected for features used in this research. 

Feature Abbreviation  Parameters 

Zero Crossing  ZC thld = 0.0005 

Slope Sign Change  SSC thld = 0.001 

Autoregressive Model  AR P = 4 

Power Spectrum Ratio  PSR r = 20 

Detrended Fluctuation Analysis  DFA L = 10 

Higuchi Fractal Dimension  HFD Kmax = 10 

 

Additionally, the parameters of the classifiers were selected by comparing 

the classification rate for the different values for each topology, such as defined in 

the methodology. Three different classifiers were tested in the experiments of this 

research, being considered KNN, LDA and three variants of SVM. For KNN, it was 

found an improvement at the performance (accuracy = 96.6%) for most of 

amputees using K = 7 neighbors. This is true for the three group of categories 

(hand/finger, grasp and all movements). However, using K = 9 a similar 

performance was obtained with differences in accuracy below of 5%. 

For SVM, three kernels were used in its architecture, such as above 

mentioned in the methodology. Using a linear kernel (SVM-Lin), no additional 

adjustments were needed other than the C constant. From the results with 

Gaussian kernel (SVM-RBF), in most of cases, with γ = 2 led the results to an 

improvement (accuracy = 98.5%), as shown in Figure 16. Using the polynomial 

kernel (SVM-Polynomial), a third-order polynomial was found to get the best 

performance (accuracy = 97.1%) in most of cases, followed closely by the second 

order with no significant difference (accuracy = 96.5%). Finally, for all kernels, 

variations of the constant C were also analyzed. From the overall results, the 

classification accuracy at higher values of C was found to be improved (accuracy 

= 98.5%). However, no significant difference was found for C > 1 (accuracy = 

98.2%). This tendency was found to be similar for all groups of movements. 
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Figure 16. Graphic representation of the accuracy distribution of the different 
parameters according to the variance among amputees. (a), parameter γ for SVM-
RBF; (b), polynomial order for SVM-Polynomial; (c), constant C for all SVM 
kernels. 

  
(a) (b) (c) 

This study was also carried out with the control group getting similar 

results. A summary of the parameters selected for all classifiers can be summarized 

in Table 7. 

Table 7. Parameters selected for the classifiers used in the experiments. 

Classifier Function Parameters Value 

SVM 

Linear - - 
RBF γ 2 
Polynomial Order 3rd 

All kernels C 1 

KNN - K 7 

LDA Quadratic - - 

 

Overall results for the classifiers architectures implemented (three for SVM, 

KNN and LDA) by each one of the amputees are shown in Figure 17. Despite 

differences found between subjects, it can be noted a similar behavior in the 

performance of different classifiers tested. SVM-RBF was found to have the best 

performance in all subjects, while SVM-Lin showed the higher error, as shown in 

Figure 17, for individual fingers movements (a) and grasp movements (b). No 

differences were found among groups of movements in relation to the performance 

between classifiers. 
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Figure 17. Comparison of classification results with amputees in offline mode, for 
individual fingers (a) movements and grasp movements (b). 

 

Individual fingers movements 

 
(a) 

 

Grasp movements 

 

 
(b) 

 

From the results with the control group, a similar performance was found 

among classifiers, as shown in Figure 18. However, when compared error results 

from Figure 17 and Figure 18, it can be noted a difference on the error between 

amputees and control groups, respectively. 
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Figure 18. Comparison of classification results with the control group in offline 
mode, for individual fingers movements and grasp movements. 
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In summary, according to the selected parameters from previous analysis, 

an architecture for each one of the classifiers was chosen to be used in the 

following experiments. Thus, KNN was configured with K = 7, and for LDA, the 

quadratic function was used. In the case of SVM, the RBF kernel was chosen due 
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to its better performance in comparison with the other two kernels analyzed. 

Hereinafter, the selected configuration SVM-RBF will be referred as SVM. 

4.1.3. Feature selection analysis 

First of all, in the experiment using SFS method, the relation between 

average classification and number of selected features was studied. Classification 

accuracy was found to increase in most of cases when including more features, as 

shown in Figure 19. However, it can also be noted that there was no substantial 

improvement in the error using more than six features, which agrees with the 

findings of (PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 2012a). Thus, 

from the feature selection analysis a suitable subset composed of six features was 

adopted to form the MES patterns. 

Figure 19. Effect of error of classification according to the increment of features. 

 

In the experiments, the feature selection methods proposed in the 

methodology were evaluated for each movement category. In relation to GA and 

GA-CH methods, the ZC and DFA features were the most frequently selected, 

followed by SSC, AR, HFD and PSR, as shown in Figure 20. Specifically, ZC and 

DFA were selected in all movement categories for all amputees. Moreover, time 

domain features were little considered as relevant, with MAV1 as the most relevant 
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feature from this set. Similarly, PKF, computed in the frequency domain, was 

considered in lesser extent. The analysis with AG-CH, using the individual-

channel approach, showed similarity in the selected features between channels. 

Moreover, from AG and AG-CH, the features were found to be similar between 

movement categories and subjects.  

Figure 20. Results of the feature selection experiment for each one of the 
movements categories. Representation of the selected frequency feature, for the 
control group and amputees. 

 
In relation to SFS and SFS-CH methods, from the results AR model was the 

most frequently feature selected, followed by HFD and MAV1. Different features 

from time and frequency domains were included in the subsets for both control 

and amputees. However, outcomes using SFS and SFS-CH approaches showed 

strong differences among the features selected, categories and subjects.  
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All resulting feature subsets were used as input for the chosen classifiers 

(LDA, KNN and SVM), in order to compare the performance of the proposed 

methods to select the most suitable approach. In general, the comparison of error 

variance distribution of the methods had similar mean and standard deviation for 

all movement categories, as shown in Figure 21, in which the results are related to 

all categories. Due to the similar performance of both control group and 

amputees, only results of amputees have been widely discussed here. KNN and 

LDA showed similar error variance distributions among the methods, unlike SVM, 

which showed a different behavior.  

From the results, SFS had the best classification performance with SVM 

(MPE < 2.8 %), followed closely by GA-CH and GA methods, with similar 

performances (MPE < 6.1 %) and no significant differences (ρ > 0.954). In contrast, 

SFS showed the lowest performance using KNN and LDA, having a significant 

difference when compared with SFS-CH (ρ < 0.009). The SFS-CH method 

achieved the best performance for KNN and LDA classifiers, followed closely by 

GA-CH. In addition, the performance of SFS-CH was found to be significantly 

better when compared to GA and SFS (ρ < 0.028). In contrast, SFS-CH method 

showed the lowest performance among other methods when using SVM. 

However, from Figure 21, GA and GA-CH approaches did not present significant 

differences (ρ > 0.618) using KNN. In addition, improved results were found using 

the features from GA-CH with KNN (MPE < 9.6 %) and LDA (MPE < 25.1 %).  

In summary, the error variance in the box plots of Figure 21 shows high 

dispersion in different movement categories for SFS (i.e. classification of CB and 

CC using KNN and LDA) and for SFS-CH (i.e. CA, CB and CC using SVM). The 

results indicate that features of SFS, GA and GA-CH with SVM classifier provide 

lower classification error rates for both control group and amputees. From these 

findings, a ranking of the selection frequency from all cases was employed to 

obtain a feature subset for each method. 
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Figure 21. Graphic representation of the error distribution of the different feature 
selection methods according to the variance among amputees. 

 

From GA and GA-CH, the ranking resulted in the same feature sets, which 

were DFA, HFD, AR model, ZC, SSC and PSR. Likewise, from SFS, the features 

obtained were DFA, HFD, AR model, ZC, MAV1 and MNF. For SFS-CH, the 

features were different for each category, in which the ranking was not significant 

and therefore, it was no suitable to be considered. Afterwards, an evaluation with 

the subsets obtained from the raking for each method was performed, having no 

significant differences between SFS and GA (ρ < 0.918). As result, taking into 

account all of the above, the features selected by GA were chosen as the proposed 

feature set to be used for the analyses conducted in this study.  

4.1.4.  Proposed MES pattern recognition system 

A comparison from results for KNN, LDA and SVM classifiers using the 

proposed feature set was carried out. From all movement categories, SVM showed 

the best performance, followed by KNN and LDA, respectively. Moreover, SVM 

had a significant difference with LDA (ρ < 0.024) for all cases, but did not have a 
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significance difference with KNN (ρ > 0.062), except for the control group for 

movements of CB (ρ < 0.032). Figure 22 shows the classification error for both 

control group and amputees using SVM. From the results with amputees, the 

average accuracy for CA, CB and CC categories using SVM were 97.0 ± 2.0%, 94.6 

± 2.2% and 95.4 ± 2.0%, respectively, with the grasp movements (CB) obtaining 

the lowest performance.  

For all categories, values of Kappa’s coefficient and specificity were higher 

than 0.9 and 98.4%, respectively. The accuracy among subjects ranged from 

99.8% (A7 for CA) to 90.8% (A3 for CB). In all experiments, the highest 

performances per subject were for the amputees A7, A10 and A8, sorted by 

performance, respectively.  

Figure 22. Classification error for control group and amputees using the proposed 
feature set with SVM. 
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For category C, which includes thirteen movements, the best accuracies 

were achieved by amputee A7 (99.5 ± 1.0%) followed closely by A10 (97.0 ± 2.4%). 

However, the worst result was for amputee A3, for CB (90.8 ± 3.6%), while for CA 

and CC categories, amputee A5 and A6 showed the worst performance (although, 

above 92.4%). Results using KNN showed average accuracies above 90.4% (CB), 

while for LDA the performance was above 74.9%. From the results for the control 

group, accuracies ranged from 99.9% to 96.8%, with average accuracy of 98.8 ± 

1.2%, specificity (Sp > 99%) and Kappa (k > 0.97). Table 8 summarizes the results 

for the control group and amputees for accuracy and Kappa.  

The confusion matrices for each movement category provide the average mistaken 
classification for all amputees, as shown in  

Figure 23. The confusion matrix for CA shows that the recognition of finger 

movements was mainly confused with flexions of the near fingers. However, the 

fifth chirodactyl (F5) was found to be easily confused with most of the movements. 

Furthermore, hand closing (HC) was confused with all fingers (F1-F5). 

Table 8. Average classification accuracy (%) and Kappa’s Coefficient of three 
movement categories, for control group and amputees. Table includes the results 
for SVM, LDA and KNN classifiers. 

Cat Sub 
SVM LDA KNN 

Acc K Acc K Acc K 

CA 
C 99.17±0.6 0.99±0.0 95.06±2.5 0.92±0.0 99.55±0.2 0.96±0.0 

A 98.94±0.8 0.97±0.0 
80.21±10.

8 
0.78±0.2 96.98±1.9 0.92±0.1 

CB 
C 97.64±0.8 0.98±0.0 89.35±3.4 0.84±0.0 98.07±1.4 0.93±0.1 

A 96.94±1.0 0.94±0.0 76.06±9.7 0.75±0.1 94.58±2.2 0.84±0.1 

CC 
C 98.77±0.7 0.99±0.0 88.19±3.2 0.88±0.0 97.89±0.7 0.97±0.1 

A 97.19±0.9 0.95±0.0 71.91±10.7 0.75±0.1 95.36±2.0 0.89±0.1 

Control group (C); Amputees (A). 
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Figure 23. Confusion matrices with average misclassification for amputees. 

CA CB 
 

     
 

CC 
 

 
 

For CB, the confusion matrix shows that most movements were confused 

among them. Specifically, confusion matrices for the subjects show that tripod 

(TP) is easily mistaken with all other classes. However, the highest mistaken was 

found between the full hand wrap grasps (for 2.9% of times LD was confused as 

MD). Finally, the results for CC resemble with previous observations, in which TP 

was found to be the most difficult movement to be recognized. It was also found 

from the results that movements belonging to CA were rarely confused with CB 

(below 0.1% of mistaken). 
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4.2. Online study results 

An important issue discussed in this thesis is whether the recognition 

scheme can meet the real-time constraints of the problem. To accomplish it, the 

system must perform pre-processing, feature extraction and classification in the 

window increment time N = 100 ms, previously stablished. The processing delay 

was empirically tested using an Intel Core i-7 processor (2.2GHz) for this system 

computing and the computation performed in Matlab. No real-time operational 

system was used for the testing. For the experiments, this processing system was 

tested on online mode, without a perceivable delay in the visual response in the 

laptop screen. This preliminary test showed that the system used was enough for 

the experimental design here proposed. Although it is possible, the 

implementation of the proposed method on an embedded hardware is beyond the 

scope of this thesis. 

The results shown in Figure 24, describes the error from each amputee for 

the three movement categories. Table 9 summarizes the accuracy of classification 

for each amputee and the mean accuracy for all of them. According to the results, 

the highest performance (accuracy = 92.7%) was achieved for the finger individual 

movements, followed by the grasp movements.  

From the results in Table 9, an analysis of the overall performance of the 

experiments shows a mean of recognition for all participants of 62.5% (SD = 15.1) 

for CA, 54.1% (SD = 12.7) for CB and 47.4% (SD = 10.8) for CC. It is worth to note 

that each category groups a different number of hand/finger movements, which is 

directly related to the demand of the classifier to discriminate the classes. 

Moreover, it was found a significant variance among subject’s performances for all 

categories.  
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Figure 24. Online results for amputees, for three movements categories. 

 
 

 

Table 9. Online results for amputees, for the three movements categories. 

 Subjects Mean 

Cat 1 2 3 4 5 6 7 8 9 10  

CA 71.7 53.7 54.1 54.6 43.2 44.2 92.7 72.3 60.4 78.4 62.5  

CB 61.0 59.5 25.8 42.0 69.9 42.3 62.6 61.3 53.9 62.4 54.1 

CC 59.5 46.8 32.8 40.7 38.3 36.4 68.7 54.6 42.3 53.3 47.4 

 

For CA, e.g., the performances were between 44% and 93%, being a 

significant difference. Similar results were found for the control group, which can 

be found in Table 10.  

Table 10. Online results for control group, for the three movements categories. 

 Subjects Mean 

Cat 1 2 3 4 5 6 7 8 9 10  

CA 82.2 88.8 68.5 56.9 82.4 71.8 63.4 82.2 67.9 76.8 74.1 

CB 67.5 79.9 55.7 51.5 70.8 63.9 53.5 67.5 79.7 76.5 66.6 

CC 65.2 63.7 42.8 42.9 63.1 58.2 36.1 65.2 50.7 59.8 54.8 
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Conducting a deeper analysis for each one of the categories, with the 

individual finger movements belonging to the CA, some subjects showed ease to 

discriminate individual finger movements, while others showed difficulty to 

accomplish it. The best performance was achieved by amputee A7, with 92.7% of 

accuracy, followed by A10 with 78.4%. A1 and A8 also showed a good recognition 

rate, with accuracies above 71%. However, the lowest performance corresponded 

to A5 and A6, with accuracies below 44%. A2, A3 and A4 had also difficulty to 

recognize the movements, obtaining accuracy of 54%, approximately.  

In particular, amputee A7 showed to have good abilities to contract the 

selective muscles to discriminate individual fingers. In Figure 25, the confusion 

matrix shows that high values of recognition were related in the diagonal, which 

means that the classifier’s output matches the correct target, corresponding to the 

performed movement. It can be seen that when the classifier received patterns of 

second chirodactyl flexion, it was confused by recognizing them as fourth 

chirodactyl flexion (8.62%) or fifth chirodactyl flexion (5.5%). 

Figure 25. Confusion matrix for A7 subject, in validation online for CA 
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Figure 26. Output stream of predictions for amputee A7, in validation online for 
individual fingers 

 

Similarly, the third chirodactyl flexion was confused with fourth chirodactyl 

flexion (6.8%) or hand closing (6.2%). Figure 26 shows the stream of the class 

decisions in the online experiments. The continuous blue line represent the target 

while the red point describes the samples referred to the recognized patterns. It 

can be seen that most of confused patterns are referred to movements of close 

muscle in the arm, such as adjacent fingers. 

Furthermore, for the grasps movements grouped in CB, most of subjects 

showed similar performance, with accuracies between 60% and 70%. The best 

performance was achieved by amputee A5, with 69.9% of accuracy, followed by 

A7 with 62.6%. Taking into account the amputee A7 again, which was analyzed 

for the movements from CA, Figure 27 shows the confusion matrix, while Figure 

28 shows the responses on the time of validation. A7 showed to have abilities to 

contract specific muscles for grasp movements, as well as to perform individual 

finger flexion movements.  

However, the grasp movements imply a greater difficulty in the muscle 

selectivity to accomplish more complex movements, which involves more finger 

movements at the same time. In Figure 27, the highest accuracy of true positive 

for the movements, different to the rest state, was achieved for full hand medium 
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wrap (86.3%), with a similar accuracy for sphere tripod grasp. Both medium wrap 

and sphere tripod grasp were referred as power and precision grasp, respectively.  

Figure 27. Confusion matrix for amputee A7, in validation online for grasp 
movements 

 

Figure 28. Output stream of predictions for amputee A7, in validation online for 
grasp movements. 
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(39.7%), being above of the movement itself (17.8%). Lateral grasp was confused 

with high percentage of false positive for full hand medium wrap (39.0%). Similar 

behavior was found in other amputees, whose accuracies were above 54%, such as 

for A1, A2, A5, A7, A8, A9 and A10. 

Furthermore, some amputees had a low performance, around 42%, such as 

A4, A6 and A9. In particular, the amputee A3 had the lowest performance, with 

25.8% of accuracy, being that a high recognition rate for the rest state class was 

achieved with 67.1%. It is worth to mention that the accuracy by itself it is no able 

to assess the results on the validation of the classification, whereby it is necessary 

to interpret the other indices of evaluation. However, the sensibility (25.8%) and 

the specificity (85.1%) also indicated a very low performance. In relation to the 

Kappa’s coefficient, a slight agreement between targets and outputs was found (K 

= 0.10), which means that the achieved results are not reliable to be used as control 

command. 

An overall assessment about this subject (A3) can be obtained by inspection 

of the confusion matrix in Figure 29. The rest state, referred to no voluntary 

contraction to execute any movement, was wrongly recognized when the subject 

was asked to perform most of movements. A significant number of false positive 

was found, up to 76.7%, when performed lateral grasp. Also, it was found that full 

hand large grasp was recognized as false positive when other movements were 

performed. The spherical tripod grasp had the higher recognition among the 

grasps, with 32.2%.  

In summary, it can be noted that in the online experiment, this subject 

could no perform voluntarily the selected muscle contraction to discriminate 

movements, neither maintain repeated patterns in relation to the experiments 

conducted in the training of the recognition system. Moreover, it could be 

understood as there was not an enough voluntary contraction, in most of trials in 

the experiment, to be recognized as a movement. 
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Finally, in CC, for the recognition of all proposed movements, results 

showed accuracies between 32.8% and 68.7%. The best performance was achieved 

by amputee A7 again (68.7%), followed by A1 (59.5%). In particular, for the 

confusion matrix of A7 in Figure 30, it was possible to identify a tendency in the 

misclassification, in relation to the similarities in the movement executed.  

Figure 29. Confusion matrix for the amputee A3, in validation online for grasp 
movements. 

 
The grasp movements, e.g., which involves the actuation of more than one 

finger to accomplish the movement, were confused mainly among themselves. 

Similarly, the individual finger movements seem to be confused mainly with other 

movements in this category. However, a few false positives were noted when some 

movements, like spherical tripod and lateral grasps, were recognized as first 

chirodactyl or third chirodactyl flexions.  

Figure 31 shows the stream of outputs in the sequence of the execution of 

each movement in the experiment. 
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Figure 30. Confusion matrix for the amputee A7, in validation online for all 
adopted movements. 

 
 

Figure 31. Output stream of predictions for the amputee A7, in validation online 
for all adopted movements 
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4.2.1. Post-processing 

The results of the classifier were evaluated to reduce the yielding of 

predictions without an enough reliable. The results of the classifiers generated 

scores with a probability of association of the current pattern with each one of the 

classes. The three methods exposed in the methodology were analyzed after the 

obtainment of the results to identify its suitability in an implementation for real-

time applications.  

The methods used in the analysis are denoted here as PP1, for the 

comparison using the agreement through the Kappa’s coefficient, PP2, for the 

comparison using a defined threshold; and MV for majority vote. Table 11 details 

the results of the methods for all amputees. By inspection, it can be seen that in 

most of cases PP1 produces better results than other methods, followed by MV and 

PP2, respectively. PP1 showed differences up to 5.3% in relation to PP2. A slight 

difference was found between PP2 and MV (up to 1.9%).  

On the overall results, PP1 improved the performance up to 10.7%, in 

relation to the cases when no post-processing techniques were applied. However, 

it can be also observed that the improvements were accomplished for the same 

subjects, while other ones did not have difference, over all movement categories. 

The percentage of trials discarded are also included in Table 11, denoted as Disc1 

and Disc2, for PP1 and PP2 methods, respectively. For MV, it was not calculated 

this measure, due to at the end, the output is changed and not discarded.  

As a specific case, results for amputee A10 in the online experiment, for CA, 

were considered to analysis. Figure 32 describes the performance using PP1 

method by iteration of the threshold of maximum score used for comparison. It is 

shown the accuracy across the iterated threshold, T, from 0 to 0.9 (blue line), and 

the percentage of the total of trials that were classified (red line). The value T = 

0.65 was obtained for the eight-class problem according to Equation 2.17.  
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Table 11. Post-processing analysis results. 

Subjects NoPP PP1 PP2 MV Disc1 Disc2 

Category A (CA) 

1 65.8 76.5 71.7 73.5 0.3 19.8 

2 49.3 49.3 49.3 49.3 0.0 0.0 

3 51.9 56.2 54.1 55.0 0.2 13.7 

4 50.3 50.3 50.3 50.7 0.0 0.0 

5 40.3 46.1 43.2 43.2 0.5 28.5 

6 43.4 44.7 44.2 46.1 0.1 3.4 

7 90.1 90.1 90.1 90.4 0.0 0.0 

8 69.7 74.2 72.3 72.8 0.2 12.4 

9 58.7 61.2 60.4 60.6 0.2 12.7 

10 74.8 81.4 78.4 80.6 0.2 14.8 

Category B (CB) 

1 49.7 57.5 54.8 55.0 0.4 22.7 

2 47.1 47.1 47.1 48.2 0.0 0.0 

3 18.5 20.2 19.1 19.3 0.7 39.3 

4 42.5 42.4 42.5 42.7 0.0 0.0 

5 39.3 41.1 40.4 40.8 0.5 25.0 

6 26.1 26.5 26.3 25.8 0.0 2.2 

7 55.1 55.1 55.1 55.8 0.0 0.0 

8 39.6 40.0 40.2 40.1 0.3 17.5 

9 42.1 40.7 42.5 43.6 0.4 20.9 

10 43.9 44.9 44.6 44.4 0.3 17.7 

Category  C (CC) 

1 55.4 64.9 59.5 61.6 0.4 22.8 

2 42.7 42.7 42.7 42.8 0.0 0.0 

3 32.0 33.8 32.8 32.7 0.4 21.4 

4 43.8 43.8 43.8 44.2 0.0 0.0 

5 30.3 32.3 32.2 33.5 0.6 29.9 

6 35.2 35.6 35.6 36.5 0.1 2.8 

7 65.6 65.6 65.6 66.4 0.0 0.0 

8 45.1 49.0 47.0 47.4 0.3 18.8 

9 41.3 41.6 41.8 41.3 0.3 18.4 

10 50.8 57.0 53.3 54.6 0.4 20.4 

Output without post-processing technique applied (NoPP); method 1 for 
post-processing (PP1); method 2 for post-processing (PP2); results using majority 
vote (MV); rate of discarded trials using PP1 (Disc1); rate of discarded trials using 
PP1 (Disc2). 
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Figure 32.Post-processing response by iteration of level of agreement. 

 

The stream of the class decisions from the classifier in the online results 

were plotted to illustrate the suitability of this scheme. In Figure 33, in the upper 

diagram, the unclassified trials are represented by vertical black lines. The blue 

line indicates the target class related to the real movement performed by the user 

and, the outputs that were classified are represented by red point dot. Such as 

aforementioned, due to the requirements of the system to be applied in real time, 

it is necessary to guarantee a response with a delay lower than 300ms. Thus, it is 

important that consecutive unclassified trials do not yield an extend time without 

a command to be sent. As the increment window defined in the data extraction 

was 100 ms, then, it is accepted no more than five consecutive unclassified trials 

to meet this constraint. The Figure 33, illustrates the occurrence and number of 

consecutive unclassified trials in the execution of the experiment. Figure 33 also 

shows the post-processing results using PP1, for A10 in CA, showing the cases with 

up to 3 consecutive unclassified trials. The performance for this amputee achieved 

81.4% of accuracy, in relation to 74.8% when no post-processing technique was 

applied. Thus is, a correction of 6.6% was accomplished, with 14.8% of trials 

discarded.  
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Figure 33. Temporal diagram using post-processing method 1. (Up) predicted 
decision with discarded patterns; (down) consecutive discarded trials. 

 
 

An analysis made from the results of all subjects indicated that some of the 

unclassified trials were actually true positives, i.e., correctly recognized patterns. 

Nevertheless, it was noted that the post-processing improved the overall 

performance. However, the overall results using PP1 showed to have no more than 

four consecutive samples discarded, as shown in Figure 34. It can be noted that 

subjects A2 and A7 did not present discarded trials, while A3, A5, A8 and A10 had 

the highest rates of which indicates that recognition had a low rate of discarded 

trials. It is worth to note that discarding trials is intended to reject likely false 

positives, according to the scatter distribution of the feature space.  

4.3. Online applications 

Experiments were conducted using a robotic hand of 5 Degrees of Freedom 

(DOF), one DOF per finger, shown in Figure 35, including individual articulations 

for five fingers. Five servomotors were controlled by an Arduino, which receives 

the control commands via serial port using an UDP protocol.  
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Figure 34. Histogram of consecutive unclassified samples. 

 

 

Posterior experiments were conducted with a second prototype of a robotic 

hand, built with a 3D printing (Figure 36). This prototype has similar 

configuration to the robotic hand previously descripted, with five DOF for each 

one of fingers. Servomotors use the same control developed in Arduino. It is worth 

to mention that this prototype does not represent a solution to replace an amputee 

limb because it is not wearable and its physical characteristics are not developed 

to be used as a prosthetic device. Inside the 3D printed robotic hand, an array of 

string pulls the artificial fingers through the servomotors controlled by the user 

interface. Both prototypes descripted before were adapted to be used in the 

experiments and to represent a visual response for the MES recognition system 

proposed in this thesis.  

For the experiments using the robotic hand, the system showed a success 

rate of 96.36% and high concordance (k = 0.97). This test in online mode was 

performed initially without visual feedback, showing 54.3% of accuracy and K = 

0.45. Finally, visual feedback was provides for the subject with 94.6% of accuracy 

and a very high concordance (k = 0.94). These results means that it is possible to 

obtain an important improvement in performance when is provide a feedback in 

the experiments. 
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Figure 35. Robotic hand used for the experiments. 

  

 

Figure 36. Robotic hand built with a 3D printing. 

 

 

Additionally, experiments with a virtual reality environment (VRE) were 

also conducted (Figure 37). The VRE was built to allow a visual biofeedback during 

the experiments, and can be used as a training system for the use of myoelectric 

prosthesis. The VRE includes all the movements adopted in this research by 

controlling the individual articulations resembling human fingers. Only finger 

flexions were controlled, while the return to the state position is an implicit action 

when a command control indicates a change at the movement.  
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Figure 37. Virtual reality environment for training the control of a myoelectric 
prosthesis. 

 

4.4. Towards a single-channel recognition 

system 

The effect of using a reduced number of electrodes to recognized dexterous 

hand/finger movements was analyzed, in order to identify the scope of the 

proposed method focused on low-density MES. All the possible combinations 

using four electrodes were tested, in order to compare the improvement of the 

performance when increasing the number of MES channels. Fifteen different MES 

channel combinations were used to train the MES pattern recognition system, 

grouped into four sets according to the number of channels, referred as four-

channel (4-CH), to a single-channel (1-CH) system. From the results, the best 

channel combination for these sets were summarized in Table 12. A comparison 

of performance from each amputee is presented, underlining the best accuracy. 
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This analysis was performed for each one of the categories of movements proposed 

in this research. 

For GA movements, it was found that 3-CH and 4-CH systems had 

performances very similar in most of cases, with difference in accuracy between 

both systems from 0.1% to 3.9%. Four amputees showed having the best 

performance when 4-CH system was tested (A1, A3, A8 and 10). Moreover, the 3-

CH system achieved the best performance for four amputees (A4, A5, A7 and A9). 

However, there were amputees who achieved the best performance using 3-CH 

and 2-CH systems, such as A6 and A9, respectively. At overall, it was found that 

the use of more channels improves the performances for most of amputees, 

however, these differences are not significant (ρ = 0.9397).  

Table 12. Comparison of accuracy for different number of MES channels. 

 
Subjects   

CH 1 2 3 4 5 6 7 8 9 10 Mean SD 

CA 

1 53.7 54.4 43.5 41.3 39.0 48.2 90.4 48.9 50.6 51.0 52.1 13.7 

2 67.3 63.0 43.1 45.2 44.2 44.5 93.8 62.6 63.8 70.3 59.8 15.2 

3 71.4 61.9 46.1 52.0 44.9 43.9 96.3 72.8 65.6 77.1 63.2 16.1 

4 74.9 57.4 46.6 49.7 44.8 43.3 94.2 76.7 61.3 78.6 62.7 16.6 

CB 

1 60.2 56.6 21.6 42.0 49.7 34.2 68.1 45.4 47.5 57.8 48.3 12.9 

2 67.2 54.1 15.8 46.0 57.7 36.0 70.4 49.4 51.4 57.3 50.5 14.9 

3 77.6 51.7 14.3 46.9 55.3 44.7 67.3 50.9 48.0 60.9 51.8 15.8 

4 75.4 44.2 12.7 41.4 50.2 40.4 64.4 47.1 47.7 55.1 47.9 15.6 

CC 

1 40.6 36.8 24.5 29.8 25.9 32.3 68.4 33.3 43.1 39.2 37.4 11.9 

2 59.6 50.7 27.3 33.1 31.1 34.9 68.4 46.9 55.9 55.6 46.3 13.3 

3 69.8 50.7 28.9 37.3 32.9 37.1 71.3 52.1 53.8 62.6 49.6 14.5 

4 73.8 49.7 27.6 35.4 33.2 34.6 68.9 58.8 48.4 59.2 49.0 15.2 

Number of channels (CH). All values corresponds to accuracy [%]. 
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However, for CB movements, five amputees showed the best performances 

with the 3-CH system, followed by 2-CH and 1-CH, as shown in Table 12. Although 

the 4-CH system showed similar performance in comparison to the 3-CH (ρ = 

0.2899), it did not improve the results by including more MES channels. Similarly, 

for CC movements, the 3-CH system showed the best performance for most of 

amputees, followed by 4-CH and 2-CH, respectively. 

Figure 38 shows the error obtained for 4-CH to 1-CH systems, for all 

amputees and all movements. It can be concluded that the increasing of MES 

channels does not necessarily improve the ability of discrimination of the pattern 

recognition system. Possibly, it could be due to the addition of irrelevant 

information that makes more difficult the separability among classes. In 

particular, for CB, it was noted that for all cases three channels provides better 

results.   

The relationship between the accuracy and the number of channels is 

represented in Figure 39. It was obtained that single-channel systems is significant 

different (ρ < 0.0286) from 3-CH and 4-CH schemes in relation to the accuracy 

for CA movements; moreover, for CB, it was not found significant difference (ρ > 

0.2257); and finally, for CC, the same scheme is significant different (ρ < 0.0036) 

for 3-CH and 4-CH. 

From these results, it can be stablished that it is possible to obtain a pattern 

recognition system using a single-channel, with similar results compared with 

other ones based on low-level MES. However, it is worth to mention that it is 

expected a decreased performance in the recognition when increasing the number 

of classes. Thus, it is concluded that an interesting problem in this research area 

is the identification of a reduced set of movements, suitable for each amputee, 

according to his/her abilities to obtain a more accurate system. 
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Figure 38. Comparison among performance for four-channel to single-channel 
systems, for all categories of movements. 
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Figure 39. Graphic representation of the relationship between the number of 
electrodes and the accuracy of the pattern recognition system. 
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Due to the difference on the accuracy in relation to the number of channels, 

Table 13 summarizes the main selected muscle groups from previous results, 

which provide the better performance.  

Table 13. Channels selected for the configurations with reduced number of 
electrodes. 

 
 

 

From this results, it can be found that a second channel provides relevant 

information to be selected for all channel configurations. This is expected, as this 

additional channel collects information from the finger flexion muscles, which 

plays an important role in the execution of all hand/finger movements here 

proposed. Moreover, a third channel is necessary for system configurations using 

two channels, when finger movements are involved, as this third channel collects 

information from the wrist flexion muscles, which are contracted along other 

muscles in hand movements using fingers. For grasp movements, the first channel 

has an important contribution, such as expected, due to this channel collecting 

information from deep muscles of the first chirodactyl, which have an important 

action for most of movements for grasp purposes. Finally, a fourth channel may 

be considered on all three-channel configurations, as it provides information 

about the extensors muscles. 
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4.5. Assessment of suitable dexterous 

movements  

An assessment of the movements performed by amputees regarding 

discrimination abilities, taking into account his/her ability to repeat patterns 

belonging to the same movement and to distinguish patterns from other 

movements was performed. The analysis was divided into the categories of 

movements for individual finger movements (CA) and grasp movements (CB). The 

overall results are shown in Table 14. 

Table 14. Results for PNM index for movements of CA and CB. 

Mov. Amputees PNM 

 1 2 3 4 5 6 7 8 9 10 Average 

 
Individual finger movements (CA) 

 

RT 0.98 1.00 0.39 0.95 0.44 0.48 1.00 0.97 0.89 1.00 0.81 ± 0.25 

F1 0.75 0.00 -0.04 -0.85 -0.41 -0.57 0.99 -0.61 -0.96 0.41 -0.13 ± 0.64 

F2 0.50 -0.20 -0.59 -0.44 -0.60 -0.57 0.10 0.10 -0.27 0.52 -0.14 ± 0.41 

F3 -0.16 -0.29 0.00 0.17 -0.28 -0.66 0.59 0.55 0.74 0.25 0.09 ± 0.43 

F4 -0.16 -0.50 -0.25 -0.31 -0.86 -0.19 0.62 0.71 -0.65 -0.09 -0.17 ± 0.47 

F5 -0.07 -0.72 -0.85 -0.24 -0.55 -0.10 0.75 0.45 0.10 0.20 -0.11 ± 0.48 

HC -0.42 -0.24 -0.22 -0.29 0.08 -0.55 0.99 -0.05 0.20 0.57 0.01 ± 0.45 

HO 0.68 0.41 -0.26 -0.01 -0.04 0.59 0.99 0.65 0.94 0.57 0.45 ± 0.40 

 Grasp movements (CB) 
 

RT 0.99 1.00 -0.76 1.00 0.68 0.97 1.00 1.00 1.00 0.99 0.79 ± 0.52 

LD 0.90 0.45 -0.91 -0.06 -0.58 -0.51 0.49 -0.47 0.56 0.30 0.02 ± 0.57 

LT 0.24 -0.04 -0.66 -0.49 -0.19 -0.59 0.06 -0.52 -0.53 -0.12 -0.28 ± 0.30 

T 0.45 -0.24 -0.70 -0.36 0.19 -0.61 0.06 -0.53 -0.32 0.01 -0.21 ± 0.35 

TP -0.07 -0.01 -0.64 -0.37 0.30 0.08 0.05 -0.71 -0.39 -0.02 -0.18 ± 0.31 

 

4.5.1. Individual Finger Movements 

A comparison conducted for eight movements using PNM index showed 

that the rest state is easily differentiated from the others. Opening hand 

movement was the most distinguished among others (0.45), followed by third 
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chirodactyl (0.09) and closing hand (0.01). The second and fourth chirodactyls 

had the greatest difficulty for discrimination, with values below of -0.14, followed 

closely by first chirodactyl and fifth chirodactyl. However, amputees A1, A7 and 

A10 showed easiness to recognize correctly the first chirodactyl (from 0.41 to 0.99) 

and the second chirodactyl (from 0.10 to 0.52). Also, A7, A8, A9 and A10 showed 

high separability for third and fifth chirodactyls.  

An individual assessment of subjects showed that A7, A8 and A10 had 

indices above 0.4 in at least five movements, while A7 had the second chirodactyl 

almost 0.6. However, A2, A3, A4, A5 and A6 had indices below -0.2 for second, 

fourth and fifth chirodactyls. Also, most participants had negatives indices for first 

chirodactyl and closing hand.  

4.5.2. Grasp Movements 

In general, full hand wrap grasp (LD) had the second best PNM index (0.02) 

after rest state (0.79), followed by tip pinch (-0.18). The hardest movement was 

lateral grasp (LT) with 0.28. For amputees A1, A2, A7, A9 and A10, LD grasp had 

a very high performance in relation to the other functional movements, with 

indices from 0.3 up to 0.9, which means a highlighted easiness to accomplish this 

movement. However, A3 and A5 had the worst performance for this movement 

among the others, with indices from -0.58 to -0.91. For A5 and A6, the tip pinch 

showed highest indices (0.3 and 0.08, respectively), while A8 had the worst value 

among the other movements (-0.71). Amputees A3, A4 and A9 also showed 

trouble to accomplish this movement. In relation to tripod grasp, A1 showed a 

high ability to hold similar patterns across repetitions (0.45), while A5, A7 and 

A10 had a medium performance, with indices from 0.01 up to 0.19. Among all 

amputees, A3 had a strong difficulty, showing a high confusion of grasp 

movements with rest state. A8 and A4 also showed good results, distinguishing 

very well functional movement from rest state (PNM=1). A4 also showed an 
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easiness to differentiate LD grasp from the other movements. Details of the above 

results can be found in Table 15. 

The amputees showed two different tendencies according to their abilities 

for movement learning. In the first one, some amputees achieved a high 

performance with differentiated patterns among the proposed movements. In the 

second one, some amputees showed difficulties to generate repeatable patterns in 

some movements, implying that they would require additional sessions using the 

protocol proposed to accomplish better results. In relation to the amputee’s 

characteristics, low correlations of accuracies with age (ρ= -0.365 for GA and 

ρ=0.134 for GB), and time since amputation (ρ= -0.290 for GA and ρ= -0.068 for 

GB) showed a reduced impact on the results 
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5. Discussion 

The objective of this thesis was to propose a method able to recognize 

patterns from dexterous hand/finger movements from amputees based on low-

density MES. A research was conducted with different feature combinations to 

define an optimal set able to improve the results of classification. The results 

indicate that a feature selection using SFS-based methods was highly variable 

between subjects, while GA-based methods provide more homogeneous feature 

subsets. Moreover, the methods SFS and SFS-CH (SFS applied by channel 

independently) showed different results according to the algorithm used for 

classification.  

In terms of the nature of the features, GA selected, in most of cases, DFA 

and HFD features, which means the suitability of these features to characterize 

the complexity of the MES. However, the feature AR model was also considered 

with high relevance in the proposed feature set, which is consistent with literature 

as shown in Several factors are taken into account both in the motor learning and 

acquisition of abilities during the training with an upper-limb prosthesis, as verbal 

instructions, characteristics and variability of practice, active participation and 

motivation of the user, feedback, among others. Some studies have been focused 

on developing multifunctional upper limb prosthesis combined to training 

environments to provides biofeedback (CUNHA, 2002). However, a methodology 

to assess the amputees’ abilities to control a prosthesis is a lack in the literature 

(BOUWSEMA; VAN DER SLUIS; BONGERS, 2014). 

Table 1. Other features from the time domain, such as SSC and ZC, were also 

found to be relevant in solving the problem in this research, which provide 

information about frequency properties of the signal. Similar results were 

achieved by the method SFS, which suggests the relevance of these features to be 
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selected according both SFS and GA methods. However, SFS includes the feature 

MNF in the frequency domain, which involves a transformation. Moreover, SFS 

uses the classification accuracy as criteria for selection, which makes it dependent 

on the selection of the classifier and time consumption for training and validation. 

Otherwise, GA is based on the entropy of the feature distribution, which provides 

high-quality results for feature selection and avoids local solutions, as was here 

reported. In terms of computational cost, GA provides a suitable method for 

feature selection in comparison with methods SFS. As a result of the factors 

mentioned above, the selection of the outcome of GA was proposed to provide a 

better characterization of dexterous patterns from MES. It should also be noted 

that extraction of same features from all channels is more convenient for simpler 

implementations. However, this study showed that it is possible to obtain better 

results with a single-channel approach, but it would require a specific method for 

each subject. Thus, a suitable scheme to get the best results is based on the best 

performance achieved with GA + SVM. It is worth to comment that KNN also 

could be considered as a good classifier, due to present a performance close to 

SVM and have a lower computational cost. 

In relation to the number of classes, CA includes eight, CB includes six and 

CC has thirteen. Notice that a high number of classes makes the recognition to be 

more complex. A comparison of the overall results showed that grasp movements 

had a lower performance, even when the scheme included fewer classes. CB 

movements had lower accuracy than gestures of CA, for all amputees, except for 

amputee A5, with difference between categories from 0.21% to 5.66%. Note that 

the classification accuracy was calculated by post-processing (offline). Although 

each subject’s performance was different (i.e. amputees A7, A10 and A8 achieved 

generally better performance than the other ones), most of them presented clear 

abilities for movements recognizing. Specifically, the amputee A3 showed 

difficulties when performing grasp movements, which reflects in the results. 



96 

 

 

 

 

However, results for recognition of individual finger for this amputee (A3) was 

similar to other participants (96.4 ± 1.3%).  

In all cases, it was found a lower accuracy for the amputees in comparison 

with subjects of the control group, which may be due to several reasons, such as 

disuse of the muscles or damage of the remaining muscles (Kumar et al., 2013). 

All analyses of the movement categories lead to understand the abilities from 

amputees to send commands to control a prosthetic hand. This study about 

dexterous movements also covered the use of individual fingers to understand the 

abilities of amputees to perform grasps movements. Thus, grasp movements 

recognition seems to be more difficult than individual finger movement, mainly 

due to the simultaneous use of more fingers during grasp. The category including 

all the movements showed the possibility of identifying both individual finger and 

grasp movements with high accuracy.  

In addition, it is known from the literature that the relation between 

strength of contraction and MES amplitude is non-linear for muscle contractions 

on dexterous movements, making difficult the differentiation of muscular 

activities of rest state at these conditions (Arjunan and Kumar, 2010; Arjunan et 

al., 2014). However, MES from dexterous movements have a poor SNR (Signal to 

Noise Ratio), while strongest contractions produce a bigger SNR, making the 

features based on amplitude feasible to obtain better performance. Also, in the 

experiments with amputees, it was found greater difficulty to accomplish lower 

contractions during the performance of movements in comparison with able-

bodied subjects, mainly because the amputation effect. However, spasms and 

difficulty for contraction of selective muscles while conducting dexterous 

movements for a long time were also reported by the amputees, mainly A3 and 

A5, although we think these issues can be overcome with a more frequent use of 

the muscles. Also, we think that the level of amputation has influence in the 

results, specifically for subjects A4, A6 and A9, who also had some changes on the 

insertion point of the muscles due to the amputation height. 
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For all experiments, the participants were required to concentrate whilst 

the movements were carried out. Muscle fatigue was attempted to be avoided 

leaving enough time between repetitions during the tests, and no more than one 

hour was considered for tests, in order to avoid mental stress. This is due to the 

protocol used, in which all the participants held the arms on the table, but a final 

application would not have this limitation.  

Despite the system was validated in offline mode, the time to record and 

process the raw MES was lower than 300 ms, which agrees with the criteria 

reported in (Englehart et al., 2001) to be used in real time application. A 

comparison of our technique with previous works can be unbalanced because of 

the difference in number of electrodes and muscles selected, number of classes, 

whether amputees were included in the study and the kind of movements used in 

relation to the level of dexterity. However, it is possible to obtain a ratio (R) shown 

in Equation 5.1, which is proposed in this thesis, to get the relation between the 

number of classes and the number of electrodes, meaning that the higher is value 

of R, the better is the method. Table 15 shows a summary of previous works which 

we calculate the value of R for comparison with our work. The overall accuracy 

and details about the system used were also included, such as number of channels, 

number of classes, and number and kind of participants, whether able-bodied or 

amputee. Moreover, the kind of movements recognized is also evaluated, as if 

movements related to finger, hand, writs, forearm and grasps were specified. 

Finally, the ratio R here proposed was calculated, which is defined by the relation 

shown in Equation 5.1. 

 
𝑅 =

𝑁. 𝐶𝑙

𝑁. 𝐶ℎ
 5.1 

where 𝑁. 𝐶𝑙 is the number of classes to be recognized and 𝑁. 𝐶ℎ is the number of 

channels used to collect the information from the system. In this sense, our work 

presents value of R equal 2 (for CA), 1.5 (for CB) and 3.25 (for CC), which means 

the highest value in comparison with the other researches. 
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Table 15. Comparison of previous research with this current work. 

Authors 
N. 
Ch 

N. 
Cl 

Kind of 
movements 

Subjects 
Acc 
[%] 

Ratio 
R 

2002, Peleg et al. 2 5 Fingers  4 C 93 2.50 
2006, Tsenov et al. 2 4 Finger and 

hand  
1 C 98 2.00 

4 4 
  

1.00 
2008, Oskoei and 
Hu 

4 5 Wrist  11 C 97 1.25 

2009, Tenore et al. 19 12 Finger  5 C and 1 A 88 0.63 
32 12 Finger  5 C and 1 A 94 0.38 

2009, Chu and Lee 4 10 Wrist and 
grasp  

11 C 97 2.50 

2011, Cipriani et al. 8 7 Finger  5 C and 5 A 48 to 
98 

0.88 

2011, Li et al. 12 11 Wrist and 
grasp  

5 C 
8 A 

71.3 0.92 

2012, Phinyomark et 
al. 

1 2 Forearm, wrist 
and hand  

20 C 78 to 
91 

2.00 

2013, Al-Timemy et 
al. 

6 15 Finger  10 C 89 2.50 
6 12 Finger  6 A 79 2.00 

2013, Wang et. al. 2 8 Grasp  6 C 98 4.00 
2015, Castro et. al. 5 6 Finger  4 C 97 1.20 
 5 10 Finger and 

grasp  
4 C 80 2.00 

This study 4 8 Finger and 
hand  

10 C and 10 A 99 2.00 

4 6 Grasp  10 C and 10 A 97 1.50 
4 13 Finger and 

grasp  
10 C and 10 A 97 3.25 

Number of channels (N.Ch); Number of classes (N.Cl); Control group (C); 

Amputees (A); Accuracy (Acc). 

Thus, our research represents a contribution in the study of non-linear 

techniques to characterize MES for accurately recognized dexterous hand/finger 

movements. The validation of the proposed method to recognize all thirteen 

movements considered in this research, with high accurate results, represents also 

a contribution for the literature. Additionally, the use of low-density MES 

represents an important advantage for the acceptance of prostheses by amputees, 

according to (KHUSHABA et al., 2012), who state that the reduction in the 
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number of electrodes, without compromising the classification accuracy, would 

significantly simplify the requirements to control myoelectric prostheses.  

Analyzing Table 15, from the studies considering dexterous movements, 

(CHU; LEE, 2009) included only two grasp movements (cylindrical and lateral 

grasps). It is worth mentioning the study of LI et al. (2011), which recognizes four 

different grasps among eleven movements, with 71.3% of accuracy, validated on 

amputees. However, their work included high-density MES (twelve channels). 

Moreover, AL-TIMEMY et al. (2013) included twelve different based-finger 

movements with six amputees and six MES channels, with 89% of accuracy. 

However, their study did not include grasp movements, a drawback that our 

research has overcome. However, CASTRO; ARJUNAN; KUMAR (2015) included 

finger and grasp movements, but using five channels, with 80% of accuracy and 

only was validated offline on able-bodied subjects. 

Additionally, our study included the most important movements from a 

user-centered perspective according to PEERDEMAN et al. (2011), which improve 

significantly the functionality of the prostheses for activities of daily living. 

Moreover, results presented in this research can be considered quite relevant, due 

to the validation of signal processing techniques with ten amputees, even in both 

offline and online modes. For our knowledge, no studies for recognition of 

dexterous hand/finger movements in more than eight amputees were found in 

literature.  

The analysis performed for the selection of the suitable dexterous 

hand/finger movements sought identifying the abilities from an amputee to use a 

reliable myoelectric control.  This lead the assessment of the movement-learning 

abilities of upper-limb amputees using a myoelectric prosthesis and performing 

distinguishable muscle patterns associated with hand, individual finger and grasp 

movements. The method developed in this thesis can be used in clinical 
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environments for cross-sectional studies to assess both amputees’ abilities and 

training in prosthesis control.  

One approach is to develop technologies and training methods that take 

advantage of the innate control and learning strategies used by the brain to control 

a biological limb. In fact, the central nervous system (CNS) uses strategies to 

efficiently perform the task of grasping and manipulating objects. Thus, the 

control system would modify ongoing motor commands based on sensory input, 

producing predictive motor commands used to accomplish the task, such as found 

for different authors (DOSEN et al., 2015; LEVIN; WEISS; KESHNER, 2015). The 

improvements throughout new experiments can be associated with a 

familiarization with the movements themselves. In addition, due to a series of 

repetition movements, the brain inputs associated with motor learning are 

training, and therefore, could be affected, improving the abilities for prosthesis 

control purposes. 

In relation to the discrimination abilities, variations in the performances 

among amputees suggest differences in their learning abilities, which could 

determine the duration of the training process. For example, amputees A7 and A1 

showed the highest performance, for hand/finger movements and for grasp 

movements, respectively. However, A3 showed the lowest performance with grasp 

movements. Thus, the response variability among subjects reported in this thesis 

may be influenced by factors like level of education, number of sessions, fatigue 

and postural control, such as also detected by CANO-DE-LA-CUERDA et al. 

(2015) and ENGDAHL et al. (2015). Likewise, clinical and physiological 

parameters might affect in the discrimination and learning abilities for a natural 

prosthesis control (ATZORI et al., 2016).  
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6. Conclusion 

The method proposed in this thesis lead to identify a more skilled group of 

movements considering individual finger flexion, opening/closing hand and 

grasps movements, for a prosthetic hand, using weak signals and low-density 

MES. The system is divided into three categories for the study: individual finger 

movements, opening/closing hand and grasps movements. A set of feature 

combining non-linear techniques and statistical parameters of the MES amplitude 

were also proposed to be used as input to the classifiers. In terms of classification, 

LDA had poor results, with the best results obtained by SVM, followed closely by 

KNN. However, KNN is faster than SVM, which implies an advantage over SVM 

for real time applications, taking into account the not significant difference on 

statistic tests. These results are encouraging for the development of real-time 

control strategies based on the use of small number of MES channels to accurately 

control dexterous prosthetic hands. In comparison with others works in the 

literature, the method proposed in this thesis reached the highest average 

accuracy (98.9%) and the highest value of R (3.25) in works including amputees, 

which means that this method is reliable and efficient. The validation of the 

method here proposed was performed in offline mode. Future works include tests 

about the validity of the proposed method in real-time applications using 

embedded hardware, towards a single-channel system for the recognition of 

dexterous hand/finger gestures of amputees. 

The design and control of versatile upper limb prostheses is a very 

challenging task. While many breakthroughs have been made over the last several 

decades, the difference in performance and quality between human hands and 

artificial hands is quite substantial. Robotic hands have many degrees of freedom 

distributed among several kinematic chains, the fingers. The complexity of the 

mechanical design is needed to adapt hands to the many kinds of movements 
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required in unstructured environments. Although it has been acknowledged that 

a prosthetic limb does not provide all of the amputation functionality of a human 

limb, there have been many recent advances to improve the upper limb prosthetic 

restoration.  

A limitation of this research is the fact that we did not divide the 

participants into different learning capacities for the analysis. We do not know if 

all subjects could be treated as a homogeneous experimental group, due to the 

low number of participants, and we did not expect to find differences in learning 

beforehand, related to the characteristics of the subjects. However, this interesting 

finding was worth mentioning. In future experiments, it is recommended to define 

possible differences in learning ability in advance. Moreover, we had some 

limitations for this research. First, we had a limited number of tests to capture 

data from amputees. Second, we did not include the use of visual feedback of 

classification response to amputees while validation was carried out. We could 

identify that is need to perform an enough number of previous experiments for a 

better understanding of the abilities of the amputee, before presenting 

biofeedback, to avoid frustration and dejection to the volunteer.  

Future research and development of upper limb prostheses continue to be 

held to mimic the human hand in terms of dexterity and adaptive capacity. The 

literature shows that movement intention should be recognized and selected by 

the user, while the control of the actuators for setting the joint angles, trajectories, 

level of pressures should be performed automatically in a low level control system 

(ANTFOLK et al., 2010), making sure to hold objects and avoid slippage. Recent 

works show an increasingly interest to provide more functionality to the current 

prostheses for better acceptance on amputees, which are addressed to be able to 

identify dexterous hand/finger movements and different precision grasps to 

increase the skills on tasks of daily living. Further, different works use weak MES 

instead of high muscle forces to obtain a better muscle-computer interaction. 

Non-linear techniques like fractal analysis (used in this thesis) are being used also 
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in other works of the literature to model these weak MES, in order to develop high 

level control systems. However, also low density is desirable to improve the 

accuracy of these systems, avoiding interferences, training and decreasing 

computational cost for real time implementations. However, implementation of 

these techniques could require embedded systems with mid-range 

microcontrollers or digital signal processors (DSP). Future studies should 

investigate changes of results including simultaneous knowledge of performance 

during validation. Simulators with virtual prosthesis could motivate the amputees 

by providing this feedback. Nevertheless, this study did not included able-bodied 

participants according to the precept that learning skills of the amputees are 

similar to the unimpaired participants. 
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