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Abstract

Intuitive prosthesis control is one of the most important challenges to
reduce the user effort in learning how to use an artificial hand. This work presents
the analysis of pattern recognition techniques for low-level myoelectric signals
able to discriminate dexterous hand and fingers movements using a reduced
number of electrodes in amputees. Ten amputees and ten able-bodied subjects
were evaluated and the performance of the techniques was evaluated in both
groups of subjects. The techniques here proposed were analyzed to classify
individual finger flexion, hand movements and different grasps using four
electrodes and taking into account the low level of muscle contraction in these
movements. Seventeen features of myoelectric signals were also analyzed
considering both traditional magnitude-based features and more recent
techniques based on fractal analysis. A comparison was computed for all the
techniques using different set of features, for both groups of subjects (able-bodied
and amputees) with significant level of 95%. The results with a selected set of
features showed average accuracy up to 92.7% of recognition for amputees using
support vector machine (SVM), followed very closely by K-nearest neighbors
(KNN). The results with the best combination of the analyzed techniques show
that the techniques here proposed are suitable for accurately controlling
dexterous prosthetic hand/fingers, providing more functionality and better

acceptance for amputees.

Keywords: myoelectric signal, upper-limb prosthesis, low-density signals,

dexterous hand/finger movements, pattern recognition.
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Resumo

O controle intuitivo de uma protese é um dos desafios mais importantes
para reduzir o esforco do usudrio em aprender a usar uma mdo artificial. Este
trabalho apresenta a analise de técnicas de reconhecimento de padrdes para sinais
mioelétricos de baixo nivel para classificar movimentos de destreza dos dedos e
da mdo em sujeitos com amputag¢do do antebrago. Dez individuos com amputag¢do
e dez individuos sem amputag¢do foram analisados e o desempenho das técnicas
propostas no presente estudo foi comparado levando em consideragdo ambos os
grupos. A classificacdo foi realizada para a flexdo de cada um dos dedos,
movimentos da mao e diferentes tipos de preensdo palmar utilizando quatro
eletrodos e considerando a baixa contracdo muscular durante estes movimentos.
Dezessete caracteristicas dos sinais mioelétricos baseadas na magnitude do sinal
e em analise de fractais foram comparadas para os dois grupos de sujeitos (com e
sem amputa¢do) com nivel de significincia de 95%. Os resultados, usando um
conjunto de caracteristicas mostraram uma exatiddo maxima das médias de 92,7%
de reconhecimento de padrio do movimento para o grupo de individuos
amputados utilizando maquinas de vetores de suporte (SVM). A segunda melhor
exatiddo foi obtida utilizando o método de k vizinhos mais préoximos (KNN). A
melhor combinagdo das técnicas analisadas mostrou-se adequada para realizar o
controle da prdstese com precisdo e destreza dos dedos e da mao, proporcionando

maior funcionalidade e melhor aceitacdo para os sujeitos com amputagdo.

Palavras-chave: sinal mioeléctrico, protese de membro superior, sinais de
baixa densidade, movimentos de destreza com as mao e os dedos, reconhecimento
de padroes.Palavras-chave: sinal mioeléctrico, protese de membro superior, sinais
de baixa densidade, movimentos de destreza com as mdo e os dedos,

reconhecimento de padrdes.
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1. Introduction

Amputation is the partial or total removal of a limb due to trauma or elective
surgical process, as a consequence of some accident, disease or congenital
malformation (PEERDEMAN et al.,, 2011). An amputation is considered as a
reconstructive process of an extremity with full or limited function, and can be
classified into three types: congenital, traumatic or vascular (CARVALHO, 2003).
In Brazil, the number of people who evolve to amputation of upper limbs is
significant. Over the age of 18, an important cause of amputation becomes the
work-related accident. In young adults, due to increased exposure to risks,
traumas related to traffic and work accidents, gunshot wounds, and burns are

major causes of upper limb amputation.

In Brazil, according to the Brazilian Institute of Geography and Statistics
(IBGE), in the Census of 2010, 7% of the population has a motor disability while
1.3% has a physical disability. Moreover, the number of people with disability in
Brazil increased from 7.0 million in 2000 to 12.7 million in 2010, which represents
4.2% and 6.7% of the total population, respectively. In relation to people with
functional limitations, there was an increment between 2000 and 2010, from 17.2
million (10.1%) to 32.8 million (17.2%). According to the Census 2000, from the
group of people with physical disability, 32.8% have lack of a member or part of
them, totaling 0.28% of the population. As lack of a member, the Census

considered leg, arm, foot, hand and first chirodactyl (IBGE, 2010).

Studies exclusively with amputees are important for the understanding of
their particularities, which can help in the design of rehabilitation strategies to
achieve a better performance in the execution of more skilled tasks in order to use
more modern myoelectric prostheses (ATZORI et al., 2014). Upper limb

prostheses offer to users an increased independence in their activities of daily



living to improve the quality of life, making these individuals feel capable of
leading a productive life (GOFFI, 2004). There are a variety of prostheses, from
purely esthetics to actives prosthetic hands. Myoelectric prostheses use
myoelectric signals to generate commands for the control system of the device.
Commonly, pattern recognition are used to classify myoelectric signals acquired
from a set of hand gestures. However, an ideal prosthesis of this type is still far
from current reality, and current hand prostheses often do not satisfactorily

restore the ability to hold the first chirodactyl (CARROZZA et al., 2002).

1.1. Motivation

Upper limb prosthetic devices have been constantly evolving, from the old
hooks to sophisticated devices with multi-degree of freedom electrically actuated.
While old devices are controlled by simple coarse mechanical movements based
on the power transmission to the effector, modern devices have finer control

based on the user intention (PEERDEMAN et al., 2011).

An ideal upper-limb prosthesis should be recognized as a natural part of the
amputee body, supplying motor and sensory functions (ENGLEHART; HUDGINS,
2003). Nevertheless, one of the major problems is the user’s acceptance after
starting the training process to use prostheses. Some of the common factors of
their rejection are the lack of easiness and comfort to use them, their exterior

appearance, but most of all, its limited functionality (PEERDEMAN et al., 2011).

An evaluation of the important activities of daily living for users of
prosthetic hand was presented by Peerdeman et al. (2011). Opening/closing
zipper, making the bed, grasping a glass, holding a ball, and using knife and fork
were activities considered as relevant. As a result, grasp tasks were found to be
more important than wrist movements, being lateral, cylindrical and tripod grasps

the most important one (SENSINGER et al., 2009). Furthermore, the same study



considered that wrist movements, as flexion/extension, and grasp should be taken
into account simultaneously. This would avoid non-natural movements with
shoulder and elbow. Other study with prosthesis users (ZECCA et al., 2002)
reports that 100% of interviewed would like to point the finger, 90% wanted to
have individual fingers control and 70% considered useful to have wrist
flexion/extension. However, most studies have focused on recognizing power
functions and wrist movements, while dexterous movements of prostheses have
not been widely addressed, being a lack to improve their functionality. As a result,
there is a need for a more functional and reliable control system, and using a

minimum number of electrodes.

Advances in the area have been mainly in the development of control
strategies often related to pattern recognition of myoelectric signals (MES). The
use of MES from residual muscles is one of the current research lines aimed at

providing the user with a natural control of the prosthetic device.

Surface electromyography (sEMG) is a common technique used to record
electrical activity on the surface of the skin resulting from muscle contraction.
Several researchers have used SEMG to control prosthetic devices (OSKOEI; HU,
2007; PONS et al., 2005; SCHULZ et al., 2005). However, systems based on sSEMG
are currently limited for control basic actions, such as opening and closing the
prosthetic hand. There are even more developed prostheses (NAIK; KUMAR,
2012) that open all fingers together simultaneously because it is difficult to
characterize myoelectric signals that allow commanding the individual opening
of each finger of the hand. The current focus in this area is to find signal processing
techniques to allow the identification of different movements, such as
opening/closing hand, and finger flexion and extension, in order to control each
finger of the hand individually, providing the users a more natural movement of

the prosthesis.



For this reason, several researchers in the world have investigated different
techniques to control hand and finger movements (ARJUNAN; KUMAR, 2010a;
OSKOEI, 2008; PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 2012a).
However, these techniques for classifying MES are unable to accurately identify
the actions produced by various active muscles mainly due to the crosstalk
problem. This difficulty is even greater when muscle contraction is tiny, which is
the case that happens when the muscle is affected by limb amputation. To
overcome this problem, some authors have used a great number of electrodes to
obtain redundant information from these muscles, in order to identify the actions

of each individual finger (TENORE et al., 2009). However, the accuracy is still low.

1.2. State of the art

From the literature, a great variety of methods for feature extraction in time
and frequency domains have been explored to recognize MES patterns (ZECCA et
al., 2002). Several works have used magnitude-based features to feed classifiers to
recognize hand motor tasks involving elbow, forearm, wrist and open/close hand
movements (GUO et al., 2015; OSKOEI; HU, 2008; PHINYOMARK; LIMSAKUL;
PHUKPATTARANONT, 2009). Other systems have got user’s commands for a
limited number of hand and individual finger movements (NAIK; KUMAR,;
ARJUNAN, 2009, 2010; PELEG et al., 2002; TSENOV et al., 2006), and even for
combined finger movements (KHUSHABA et al., 2012). However, such attempts
did not include dexterous or skillful movements in the hand or fingers. This is
mainly because the statistical-based features are not sufficiently reliable due to
the weak MES from these movements. Previous works have considered MES from
dexterous movements, but only for grasp movements, aiming to improve the
functionality of the prosthetic control (CHU; LEE, 2009; HARGROVE et al., 2009;
TOMMASI et al., 2013; WANG; CHEN; ZHANG, 2013). In fact, the non-linear

relationship between force and electric activity of muscles at low-level of



contractions (NAIK et al., 2010) makes much more difficult the MES analysis.
Techniques based on fractals dimensions (FD) have been used to estimate the
non-linear properties of MES, which present sensibility at frequency and
magnitude to the strength of muscle contraction (Arjunan and Kumar, 2007b).
Recently, a combination of Higuchi’s fractal dimension (HFD) and detrended
fluctuation analysis (DFA) were employed on MES (GUO et al., 2015), in order to

have the advantages of features from time and frequency domains.

Another factor that bother the prosthesis users is the high number of
electrodes, as the training with many input channels is a long and hard process,
resulting in their decision to use only a limited and very simple prosthesis (2-3
degrees of freedom). Moreover, prostheses with electrode array are complex, in
addition to the fact that differences in electrode placements lead to variations in
the MES and its spectrum (KUMAR; POOSAPADI ARJUNAN; SINGH, 2013a).
Some works have sought for systems with low-density (less than six channels)
MES (ARJUNAN; KUMAR, 2010b; CASTRO; ARJUNAN; KUMAR, 2015;
PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 2012b), which reduce
problems as electrode fixation and computational demand. However, the accuracy
reported by these researchers to recognize dexterous movements are still poor and

their experiments were only conducted in able-bodied subjects.

Some studies with amputees using few number of electrodes have been
conducted in order to fulfil this gap, such as done in (AL-TIMEMY et al., 2013;
CIPRIANI et al., 2011; KUMAR; POOSAPADI ARJUNAN; SINGH, 2013b; LI et al.,
2011; TENORE et al., 2009). In particular, in (KUMAR; POOSAPADI ARJUNAN;
SINGH, 2013b) a method based on wavelet maxima density was proposed as a non-
linear parameter to extract relevant information from MES using only one
channel, but no grasp movements were considered. Grasp movements were

considered in (LI et al. 2011), but using high-density MES (twelve electrodes).



Table 1. Relevant researches for recognition of hand/finger movements using MES.

Authors Year Ch M Tasks Features Feat. Classifier w/O Sub.
Select [ms]
Pe]eg-{- 2002 2 5 F1-F5 DFT, AR, Bin. GA KNN 1,2 4C
Elec. Act.
Englehart 2003 4 4  WF, WE, RD, UD ZC, SSC, WL, 256/16 12C
MAV
Tsenov 1— 2006 2 4  Fl, F2,F3, HC MAV,VAR, WL, ANN (MLP, 1C
Norm, ZC, RBF, LVQ)
Absolute Max and
Min, Max-Min,
Med
Khezri -H: 2007 2 6 HO, HC, F1, TP, MAV, SSC, AR, Neuro- 200/50 4C
WEF, WE DWT fuzzy
system
Oskoei and 2008 4 5 Isotonic: HF, HE, MAV, RMS, WL, SVM, LDA, 1cC
Hu Hab, Had, HS VAR, ZCs, SSC, MLP
WAMP, MAVI,
MAV2, PS, AR2
and AR6, FMN,
FMD
Phinyomark 2009 WF, WE, HC, HO, TD and FD (16) LDA 3C
FP, FS
Tenore -[- 2009 19 12 FFI, FEI, F345 MAV, VAR, WL, PCA MLP 200/25
WAMP C
1A
Chu and 2009 4 10 WF, WE, radial and AR4, ZC, WL, SSC, GMM 10C
Lee ulnar flexion of the MAV
wrist, HO,CG,
LT,RS
Naik ‘[’ 2010 2 F3, F4, F5 ICA, RMS ANOVA 7C
Cipriani t 2011 8 F1L,F2,F345,F2345,T MAV KNN 50/50
O,TR,LT C
5A
Li i 2011 12 11 EFE,WF, WE, WP, MAV, ZC, WL, LDA
WS, HO, TP, Power SSC C
Grip, Tool Grip,RS 8A
Phinyomark 2012a 1 2 FP, FS, WF, WE, DFA and TD LDA 20C
HO, HC
Khushaba T 2012 2 10 FI-F5, F12, FI3, F14, SSC, ZC, WL, LDA SVM-libsvm 100 8C
F15, HC HTD, Sample and KNN
Skewness, AR
Phinyomark 2012b 5 8 FP, FS, HO, HC, TD andFD (37) LDA 20C
WE, WF, RD, UD
Al—Timemy 2013 6 12 FI-F5, El-E5, TA, TD-AR PCA LDA and
+ F12, F234, F1234, RS OFND SVM 0C
A 6A
Kumar -’- 2013 1 4  Fl, F2, F3, F4, RS Wavelet Maxima T-SVM 300
Density (WMD) 1C
1A
Tommasi -{-i 2013 10 6 TP, LT, TR, PW, MAV LS-SVM 27C
PEG, prismatic 4
fingers grasp
Wang :l: 2013 2 8 CG,HG,LT, PT,SG, MAV, VAR, AR4, LDA LDA 256 6C
TR, TP, RS 7C, MNF, MDF
Castro :l: 2015 5 10 TP, TR, HC, HO, RS PSD-Av FLD 4C
Guo 2015 6 8 EFE, FP, FS, WF, WP, DFA and SVM and 7C
WE, Wab, Wad Muscle Models ANN

1, works including finger movements; , works including grasp gestures; Ch, number of channels;

G, number of gestures; W/O, window length/overlapping; C, control group; A, amputee; FI-F5,

flexion of finger 1 to finger 5 and combinations; E1-E5, extension of finger 1 to finger 5; WF= wrist

flexion; WE, wrist extension; RD, radial deviation; UD, ulnar deviation; HC, hand close; HO, Hand



open; HF, hand flexion; HE, hand extension; Hab, hand abduction; Had, hand adduction; HS, hand
straight; FP, forearm pronation; FS, forearm supination; FF= finger flexion individually; FE, finger
extension individually; RS, rest state; TO, thumb opposition; TP, tip pinch; LT, lateral grasp; CG,
cylindrical grasp; TR, tripod; EFE, elbow flexion and extension; WP, wrist pronation; WS, wrist
supination; TA, thumb abduction; PW, power grasp; PEG, parallel extension grasp; HG, hook
grasp; PT= point; SG= spherical grasp; Wab, wrist abduction; Wad, wrist adduction; PSAD-Av,
Power Spectral Density Average; DFT, discrete Fourier transform; DWT, discrete wavelet
transform; WAMP, amplitude Willison; ICA, independent component analysis; HTD, Hjorth Time
Domain; PCA, principal component analysis; OFNDA, orthogonal fuzzy neighborhood
discriminant analysis; ANN, artificial neural network; MLP, multilayer perceptron; LVQ, learning
vector quantization; RBF, radial basis function; TSVM, twin support vector machine; LS-SVM,
least-squares support vector machines; FLD, Fisher’s linear discriminant; GMM, Gaussian mixture
model; ANOVA, analysis of variance.

Nevertheless, in all these previous works conducted with amputees, a
common lack of experiments with hand and individual finger movements can be
noticed, and few of these works have even included dexterous movements, and
only for high-density. In fact, for our knowledge no studies with low-density for
dexterous movements on amputees were found in literature. Table 1 shows very
complete details about each one of these works, which are classified according to
the year of the research, number of channels, number of movements, kind of tasks,
signal features, classifiers, window length for MES analysis and duration of the

overlapping window.

However, amputees have to learn muscle contractions to produce specific
and repeated patterns to control the prosthesis functions, which is called “motor
learning”. Motor learning can be understood as a set of processes associated with
the practice and repetition of actions that lead to permanent alterations in the
motion performance over time (BOUWSEMA; VAN DER SLUIS; BONGERS,
2014).

Several factors are taken into account both in the motor learning and
acquisition of abilities during the training with an upper-limb prosthesis, as verbal
instructions, characteristics and variability of practice, active participation and
motivation of the user, feedback, among others. Some studies have been focused

on developing multifunctional upper limb prosthesis combined to training



environments to provides biofeedback (CUNHA, 2002). However, a methodology
to assess the amputees’ abilities to control a prosthesis is a lack in the literature

(BOUWSEMA; VAN DER SLUIS; BONGERS, 2014).

1.3. Problem Statement

1.3.1. Problem definition

The approval of prostheses by amputees is an important aspect, which could
be overcome by improving the functionality of the current prosthetic hands. The
level of dexterity of a prosthesis is an important factor contributing to its
functionality, as it is related to the ability to perform skilled movements that
resemble as much as possible the activities of daily living. The level of dexterity of
prosthesis is related to the ability to perform more skilled movements that provide
functions for the amputee, which are similar to the activities of daily living.
However, few available studies cover the recognition of dexterous hand/fingers
movements. Moreover, in most of cases, these dexterous movements are reduced
and combined with other tasks with a poor contribution to the functionality.
Furthermore, the study of low-density MES from forearm amputees to recognize
dexterous movements, without significant modifications of the natural functions
during contraction of remnant muscles in the residual limb has not been

addressed in the literature.

1.3.2. Research goal

In agreement with the scientific problem, the goal of this thesis is focused
on the recognition of the myoelectric pattern of forearm amputees, for control of
hand/fingers movements. The method here proposed allows an amputee the

ability of exert dexterous hand/fingers movements in a more natural way. To fulfill



this purpose, the processing and pattern recognition of MES is the main action

field.

1.3.3. Hypothesis

The main research question of this thesis is derived from the goals:

[s it possible to control dexterous hand/fingers movements of a prosthetic
hand by forearm amputees using lower muscle contractions in his residual limb

and a reduced number of electrodes?

From the stated scientific problem, the hypothesis formulated in this thesis
is: if the pattern recognition combines linear and non-linear features, it is possible
to recognize accurately dexterous hand/fingers movements considering low-
density MES, from forearm amputees, to control a prosthetic hand in a more

natural way.

1.4. Objectives

1.4.1. General objective

Explorer techniques of pattern recognition applied to low-density MES, able
to discriminate dexterous hand/fingers movements of forearm amputees, using a

reduced number of electrodes in his residual limb.

1.4.2. Specific objectives

e Proposed a muscle-computer interface (MuCI) to recognize patterns

of MES of dexterous hand/finger movements
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e Analyze the best parameter set of the pattern recognition to obtain
a better discrimination of a set of dexterous hand/fingers movements

e Evaluate the proposed pattern recognition method with able-bodied
subjects and amputees

e Assess the proposed system on an online pattern recognition system
using a virtual environment and a robotic hand, for myoelectric

training.

1.5. Thesis contribution

In this research, we propose and evaluate a method to recognize patterns
from low-density MES associated with accurate dexterous hand/finger movement
intention from forearm amputees, using four electrodes placed in his residual
limb, in order to improve the functionality of upper-limb prostheses, more
specifically, a hand prosthesis. Individual finger and hand movements are
characterized using fractal-based analysis combined with a suitable election of
other well-known features on time and frequency domains. The extent of
dimension reduction by a feature subset selection is also investigated, through
search strategies using sequential and genetic algorithms, considering seventeen
features from the MES. In addition, the efficiency of three supervised classifiers is
compared as well. From our research, a new system composed of a unique feature
set and one classifier is here introduced. Moreover, such system here proposed is
validated in online mode. Finally, the study with amputees, including the
evaluation of the proposed method in both offline and online execution, the
assessment of the movements according their abilities to perform dexterous
hand/finger movements, and the analysis toward a single-channel system, are

important contributions of this thesis.
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In summary, although previous studies have identified different hand and
finger movements, a common aspect of most of them is the little inclusion of
forearm amputees, which is the focus of our study. In our research, we propose a
system to recognize accurate dexterous hand/finger movements from amputees
using low-density MES (four electrodes), in order to improve the functionality of

upper-limb prostheses.

Hand and individual finger movements are characterized using fractal-
based analysis combined with a suitable election of others well-known features on
time and frequency domains. The extent of dimension reduction is also
investigated, considering seventeen features from the MES, and, in addition, the

efficiency of three supervised classifiers is compared as well.

From our research, a new method composed of a unique feature set and one
classifier is here introduced, with the aim of obtaining a reliable control, to
provide more functionality for forearm amputees in a more natural way to control

a multifunctional myoelectric prosthesis.

1.6. Thesis outline

This thesis is organized in seven chapters. The first chapter provides an
introduction to the fields of myoelectric prostheses and pattern recognition
systems for upper limb amputees. Also, state of art is covered in this chapter.
Chapter 2 includes a theoretical background to the understanding of the topics
treated in this thesis. This Chapter also presents an overview of the current state
of techniques for recognition of dexterous hand gesture recognition. Chapter 3
provides the details of the research methodology, also describing the protocols,
materials and participants involved in the experiments. This chapter also explains
the techniques used for features extraction, dimension reduction and

classification and the steps to be followed in order to develop a successful pattern
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recognition system. The results obtained from the experiments and the analysis of
the system performance, validated on amputees, are presented in Chapter 4.
Chapter 5 discusses the results presented in Chapter 4 and the original
contribution of this work, as well as the limitations of this research. Finally, the
conclusions of the research are presented and recommendations for future work

provided.
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2. Theoretical background

2.1. Functional hand movements

The hand and finger movements are highly important for activities of daily
living. The immense variability of movements of the hand allows it to be used as
a highly specialized instrument that performs very complex manipulations in daily
life, requiring multiple levels of force and precision (NEUMANN, 2011). For all this
freedom of movement, the hand has twenty-seven bones and uses innumerable
intrinsic and extrinsic muscles (NORKIN; LEVANGIE, 2001). The wrist and hand
can perform both precision and power movements, due to the number of joints
controlled by numerous muscles. The forearm, wrist and hand joints do not act in
isolation but as functional groups, as the position of a joint influences the position

and action of other joints.

Considering the function of the hand, it is verified that each finger has an
individual and specific functional value, and this value of each finger depends on
its strength, mobility and relations with the other fingers, especially with the first
chirodactyl (TUBIANA; THOMINE; MACKIN, 1996). The five fingers can be

divided into three parts, according to importance:

e The first chirodactyl, emphasizing its preponderant role due to its ability
to oppose the other fingers;

e The area of the tweezers, which includes the third chirodactyl and, above
all, the second chirodactyl, which is indispensable for the formation of tip
pinch, (first / second chirodactyls), or tripod grasp (first / second / third

chirodactyls);
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e The area of the grips, with the annular and minimum fingers, which are
indispensable to guarantee the firmness of the grip, with the whole palm

or even the grip (KAPANDJI, 2007).

According to the grasp taxonomy of human grasp types stablished in (FEIX
et al., 2015), grasps can be classified into power, intermediate and precision grasp.
In the power grip, all movements of the object have to be evoked by the arm. In
the precision handling, the hand is able to perform intrinsic movements on the
object without the arm movement. Finally, in the intermediate or link grasp,
elements of power and precision grasps are present in roughly. Napier, in 1956,
defined that power grip is used when full strength is required, as in activities that
generate the action of fingers and first chirodactyl against the palm of the hand,
for the purpose of transmitting force to an object. In precision gripping, the object
is clamped between the flexor surfaces of one or more fingers with the opposing
first chirodactyl, being used when necessary accuracy and refinement of touch

(MOREIRA, ALVAREZ, 2002).

In particular, the hand wrap grasp, referred as a power grip, uses almost
exclusively flexors to bring the fingers around the object and hold the claw. This
is performed between the palmar surfaces of the hand and fingers, and is used to
hold cylindrical objects like a glass, and the larger the diameter of the object, the
lower the grip strength. According to (FEIX et al., 2015), it can be split into three
similar grasps: large (LD) and small diameter (SD), and medium wrap (MW). Its

differences are related basically to the size and weight of the object to be clamped.

In relation to intermediate grasp, lateral (LT) or side tweezers are
considered. The area of contact is between the lateral surface of the fingers and
the pulp of the first chirodactyl, or between two fingers. It is used in activities such
as holding an object between the fingers as a credit card or triggering a key. It is

considered the strongest of the three tweezers.
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However, the precision gripper is the most important and most specialized

hand function. Two different kind of precision gripping can be considered:

2.2.

Tip-pinch: this is done with the fingertips, and the contact area is restricted
to the distal end of the digital pulp. This clamp is used to pick up very small
objects, such as a needle, being the most delicate and accurate of the
tweezers.

Tripod grasp, three-dimensional tweezers or palmar: are carried out
between the pulps of the first chirodactyl, second and third fingers. They
are used in about 60% of activities of daily living, such as picking up a pen
or to grasp small round subjects, like a tennis ball, and are an intermediate
force tweezer (PARDINI JR., 2006; MAGGE, 2010, FERREIRA et al., 2011,
KAPANDJI, 2007).

Brief approach to the physiology of muscle

contraction

Skeletal muscles are composed of muscle fibers which are organized into

bundles, called fascicles. The myofilaments comprehend myofibrils, grouped

together to form as muscle fibers. A muscle contraction occurs from the

stimulation to the execution. Initially, an action potential travels via a long nerve

motor to its ends in the muscle fibers.

The largest and most frequent source of force generated within the human

body is the contraction of muscles. Additional passive forces occur by the tension

of fascia, ligaments and non-contractile structures of muscles. Usually, muscles

never contract in isolation, instead, several muscles contribute to produce a

desired force.
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2.2.1. Types of muscle contraction

Muscle contractions are controlled by the central nervous system (CNS).
The brain signals travel through the nerves in the form of action potentials, to
motor neurons that innervate one or more muscle fibers (CARLSEN; PRIGGE;
PETERSON, 2014). Several types of muscle contractions are defined by changes in
the length of the muscle during contractions. Muscle contractions can be divided
into: Isotonic (meaning same tension), [sometric (meaning same distance or not

moving) and Isokinetic (meaning same speed).
2.2.1.1. Isometric Contraction

When a muscle is contracted with a constant force, the contraction is called
"isometric". Isometric contractions are often referred to as static or sustained
contractions, and are usually used for posture maintenance. Functionally, these
contractions stabilize joints, e.g., to reach forward with the hand, the scapula
needs to be stabilized against the thorax. The MES recorded during isometric
constant force contractions (steady-state) can be considered as a stationary
stochastic process, at least for time intervals short enough to exclude fatigue, with
Gaussian amplitude distribution and zero mean (BASMAJIAN, 1978; MERLETTI;
PARKER, 2004).

This thesis is focused on isometric contraction (steady-state MES) for the
representation of the pattern recognition system here proposed. [sometric muscle

contractions can be either concentric or eccentric.

2.2.1.2. Concentric Contraction

A shortening of the muscle during contraction is called "concentric
contraction” (positive dynamics) or shortening. Examples of such contractions
would be the quadriceps muscles when an individual is rising from a chair, or the

elbow flexors when an individual is carrying a glass to the mouth. In concentric
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contractions the origin and the insertion are approaching, which produces an

acceleration of segments of the bodyj, i.e., it accelerates the movement.

2.2.1.3. Eccentric Contraction

When a muscle stretches during contraction, it is called "eccentric
contraction” (negative dynamics) or stretching. For example, the quadriceps,
when the body is being lowered to sit, or the elbow flexors, when the cup is
lowered to the table. In eccentric contractions, the origin and insertion move
away, producing the deceleration of the body segments and providing shock
absorption (damping) when, e.g., it ends in a jump, or when walking, that is, it

stops the movement.

2.3. Electromyography (EMG)

Skeletal muscle consists of several muscle fascicles, formed by cells called
muscle fibers (MERLETTI; PARKER, 2004). The muscle consists of parallel axes
of muscle fibers. The activation of each muscle fiber is performed by the motor
axon that innervates the nerve fiber. According to the position and function of the
muscle, the number of muscle fibers innervated by the same axon can range from
one to over 1000 (MERLETTI; PARKER, 2004). The group formed by the motor
nerve cell of the spine, the axon and the muscle fibers that it innervates, represents
the motor unit of the muscular system. When a motor neuron sends an action
potential, all the muscle fibers of its motor unit are stimulated. However, in the
stimulation process, small delays occur between contractions. The result of the
algebraic sum of the n-fiber action potentials is called the motor unit action

potential (MUAP) (KONRAD, 2006).

The duration of a MUAP is approximately 2 to 10 ms (KONRAD, 2006). Due

to the short duration of a MUAP, the action potentials of the motor units must be
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repeated so that a muscle contraction can be generated for longer periods. The
sequence of the MUAPs is called the motor unit action potential train (MUAPT).
The MES is the sum of the MUAPT of the motor units captured by the detection
electrode. Due to the differences between the MUAP, the variations in the firing
rate of neurons and the fact that a contraction may include several muscles, the
MES has been described as a stochastic process (KONRAD, 2006; MERLETTI;
PARKER, 2004).

The MES presents frequency components from O to 500 Hz, with the most
power located between 10 and 250 Hz. Its range of amplitude varies between 10
pV and 10 mV, according to the type of muscle analyzed, the level of muscle
contraction and the location of the electrodes. Electromyography (EMG) can be
understood as the collective electric signal from muscles, which is controlled by
the nervous system and produced during muscle contraction (CHOWDHURY et
al., 2013b).

According the capture method it can be referred to in two types: surface
EMG (sEMG), and intramuscular EMG (FARINA; NEGRO, 2012). SEMG is
recorded by non-invasive electrodes unlike the intramuscular EMG, which uses
invasive electrodes. A surface electrode is able to pick up EMG activity from all the
active muscles in its vicinity, while the intramuscular EMG is highly sensitive, with
only minimal crosstalk from adjacent muscles. The non-invasive methods are
preferably used to obtain information about the time or intensity of superficial

muscle activation (FARINA; NEGRO, 2012).

In addition, surface electrodes are easy to manipulate because of their non-
invasive condition. However, they have the disadvantage of registering signals in
large areas and in some unnecessary and redundant way. Thus, a trade-off
between combine convenience and accuracy is commonly based on the scope and
limitations of the problem to the electrode selection. In this thesis, surface

electromyography is used.
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The MES is a very complex signal, due to it is influenced by many factors
related to the electrophysiology and the recording environment, especially when
motion occurs. Its complexity represents a challenge in the applications to control
powered prosthetic limbs, which is the case of this research. MES can be used to
generate control commands for rehabilitation, such as active prostheses among
other devices by an interface with the user. Control systems based on the
classification of MES are usually known as myoelectric control systems

(CHOWDHURY et al., 2013b).

2.4.Detection of movement intention for

myoelectric control systems

In recent years, a new tendency of human-computer interfaces is focused
on muscle-computer interfaces (muClI), in which users employs the electric
activity from their muscles as an input to some robotic device (for example a
robotic hand) while they are executing various tasks. The muscle-computer
interaction can be seen as a physical interface that implies a coordinated action
and an adaptation between both actors, since an unexpected behavior of one of

them could generate undesired results.

In addition to this physical interface, intelligent sensors, actuators,
algorithms and control strategies capable of gathering and decoding complex
human movements or physiological phenomena are involved. This interface is
designed in order for an artificial system can gather this information to adapt,
learn and optimize some body functions, or to generate an answer about a

cognitive process that occurs within itself.

A cognitive process is a sequence of tasks that includes reasoning, planning
and finally the execution of a previously identified problem or goal, according to

the diagram in Figure 1. In the cognitive interaction between the human and the
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device, a link is established where the information on cognitive processes is
acquired and transmitted in a bidirectional way. These kinds of interactions are
evident in applications where the human requires some robotic assistance for the

execution of certain tasks.

Although the different strategies used to control movements are
determined by low-level control systems, the device needs to know when to apply
them and what task the user wants to perform at a given time.

Figure 1. Scheme of a cognitive process in a muscle-computer interface (muClI).
Source: Adapted from (BUENO et al., 2008).
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2.4.1. Myoelectric prosthesis control

Myoelectric prosthesis control can be divided into two subsystems: high-
level control (HLC) and low-level control (LLC). HLC interprets the subject’s
intention gathered from patterns extracted from MES, whereas LLC takes the
output of the HLC to select a predefined strategy of control angles joint of the
prosthesis. HLC includes the MES processing and the pattern classification to
detect the user intention. The LLC can be seen as a selector for the control signal

of the actuators or servo motors in the prosthesis that executes the movements.
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The real challenge for researchers is in the HLC, in which intuitive
prosthetic control is one of the most important challenges, in order to reduce the
user’s learning effort for the prosthesis control. In this aspect, myoelectric control
may be considered quite suitable as it allows a more intuitive user interface in a
more natural way. However, the still unskillful control, in addition to lack of
feedback and training of these prostheses make them unacceptable to several
users. The proposal of the HLC for a myoelectric prosthesis control considered in

this thesis is shown in Figure 2.
Figure 2. Flowchart outlining a proposal for prosthesis control.
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2.4.2. Myoelectric signal processing

The development of applications for detection and identification of signals
in real time requires MES analysis techniques, typical of the field of pattern

recognition, including signal processing and classification. MES patterns are
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represented by a reduced set of features, and their classification is used as a binary
action to control a system. In order to solve the defined problem, in this thesis a
strategy is here proposed, which is shown in Figure 3. This strategy is composed
of the following stages: pre-processing and conditioning of the MES; feature
extraction; selection and projection of features; and finally, the classifier. The

approach is useful for both offline and online/real-time applications.

In the preprocessing stage, the MES is conditioned by the removal of
interferences, in addition to offset and signal data extraction. Subsequently, in the
features extraction of the MES, several mathematical methods are used to process
the conditioned signal, which are employed to reduce redundant information and
extract models in relation to the physiological properties and conditions of the
muscles for distinguishing movement patterns. An evaluation of the features is
commonly included during training of the machine learning, selecting those with
the best performance for discrimination with a better distribution of the feature
space. Finally, the classification stage is composed by a machine learning
algorithm which associates patterns according to the nature of the executed

hand/fingers movements.

Figure 3. General scheme for MES pattern recognition for prosthesis control.
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2.4.2.1. Myoelectric signal conditioning

Considering the stochastic and non-stationary nature of the MES, the
recommendations proposed by SENIAM (Surface Electromyography for Non-
Invasive Assessment of Muscles) (SENIAM, 1996) are taken into account in this
study. In addition, digital filters are used to reject interference on the MES. The
amplitude of the MES is not constant due to the variation of the impedance
between the active muscle fibers and the electrodes (GERDLE et al., 1999). Thus,
the rectification and normalization of MES allow its scaling related to the
maximum contraction performed by the user, which reduce the variability

between subjects and between different samples.

It is widely known that MES can be treated as a stationary process if short
time segments between 200 ms and 300 ms are considered. This technique for
data extraction leads to generate a stream of MES patterns, in which short data
segments are processed using windows, independently. Choosing window width
is crucial in implementing online ranking. An overlapping window, or
"overlapping”, can be applied, which allows an increase of the number of
experimental trials, increasing their statistical dependence (MERLETTI; PARKER,
2004).

2.4.3. Feature extraction

The feature extraction stage is one of the most relevant in pattern
recognition problems, as is considered as a determinant factor to the success of a
pattern recognition system, depending on the quality and optimization of this
stage. Presenting the MES directly to a classifier is impractical given the dimension
of data. Thus, it is necessary to represent the MES by a vector of reduced

dimensions, called the characteristic vector.
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Features depend on problem itself, so it is necessary to know the area of
interest very well. In the context of the problem addressed in this thesis, the main
considerations to be taken into account are: 1) the low levels of muscular
contractions for dexterous movements; 2) the low-density signals related to a
reduced number of capture channels; 3) the computational cost for real-time
applications. Feature extraction can be associated into three different analysis:
time domain (TD), (spectrum) frequency domain (FD) and time-frequency
domain. The amplitude of MES in TD and some parameters of the power spectrum

in FD are commonly used to extract information about the behavior of the MES.

The features in TD do not need to make a signal transformation and are
generally faster and easier to calculate. Such features have been very diligent in
past decades when the technology developed was not able to perform more
complex tasks at reasonable processing times. However, although large-capacity
processing systems are currently available, these techniques are still used and
provide an efficient distribution of the characteristic space for their

discrimination.
The following are the features considered in this research:

Mean Absolute Value (MAV): Provides a maximum likelihood estimate of the
amplitude, when a signal is modelled as a Laplacian random process. It is used for

low contractions and fatigued muscles analysis (Equation 2.1).

A 21
MAV = —z X1, .
N Zan=

where X,, represents the nt" sample of the SEMG signal in a window segment; N denotes

the number of sample of the sSEMG signal.

Mean Absolute Value modified 1 (MAVI): is a modified version of MAV defined by
Equation 2.2:
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1 N
MAV1 = —z IX,|
N n=1

~ { 1,  if 025N <n<0.75N
"n =105, otherwise,

2.2

where w,, is the continuous weighting window function.

Mean Absolute Value modified I (MAV2): is a modified version of MAV defined by
Equation 2.3:

1 N
MAV2 = —Z X, |
N n=1

1, if 0.25N <n <0.75N 23
wy, = 4n/N, if 0.25N <n
4(1—n/N), if 0.75N >n,

where w,, is the continuous weighting window function.

Variances (VAR): this parameter is a representation of the EMG signal power,

helping to identify onset and contraction (Equation 2.4).

[ A 2.4
VARz—Z X :
N-1 n=1 "

Root Mean Square (RMS): Defined by Equation 2.5:

1 N
RMS = | Xy 2.5
NZLup=, "
Waveform Length (WL): this feature could provide information on the waveform
complexity in each segment as indicators for signal amplitude and frequency

(Equation 2.6).

N-1
WL="" [Xps = Xl 26
n=1

Zero Crossing (ZC): a simple frequency measure can be obtained by counting the
number of times the waveform crosses zero. In order to reduce the noise-induced
zero crossing, a threshold must be included. Given two consecutive samples X,

and X,,, 1, ZC is defined by Equation 2.7:
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N-1
7C = Z [sgn(Xn X Xn41) ﬂ |Xp — Xpial = thld]
- 2.7
_ (% if x > thld
sgn(x) = {0, otherwise ’

where thld denotes a threshold used to avoid low-voltage fluctuations or background

noises.

Slop Sign Changes (SSC): frequency measured by counting the number of times the

slope of the waveform changes sign (Equation 2.8).

N-1
SSC= D" FI0Xn = Xp1) X (¥ = Xnan)]
n=1 2.8
(1, ifx>thid
fx) = {O, otherwise

Autoregressive (AR) model: The MES is nonstationary and nonlinear, however, in a
short time interval, it can be regarded as a stationary Gaussian process. The MES

time series could be modeled as Equation 2.9:

P
=) ayx g, +w, 2.9
p=1

where P is the order of the AR model, a, are the estimate of the AR coefficients,

and w; is the residual white noise.

In relation to FD, the most common method used to determine the
frequency spectrum of MES are the fast and short term Fourier transforms (FFT
and SFT, also known as Gabor's transform). These transformation methods
assume that MES is stationary, however, MES are non-stationary. To overcome
this drawback, several sequential short segments of MES are processed, avoiding

this difficulty. Some of the most commons features used in FD are as follow:

Mean Frequency (MNF): Defined by Equation 2.10:

M M
MNF= Y R /> B, 210
=1 j=1
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where P; is the SEMG power spectrum at the frequency j, M is the length of the SEMG

power spectrum.

Median Frequency (MDF): Defined by Equation 2.11:

MDF M 1 ~—M
P = p. == P 2.1
E N E . J 75 E 1
j=1 Jj=MDF Jj=1

Peak Frequency (PKF): Defined by Equation 2.12:

PKF =max(P;), j=1,...,.M 212

Mean Power (MNP): Defined by Equation 2.13:

M
MNF = z P]-/M 2.13
j=1
Total Power (TTP): Defined by Equation 2.14:

M
TTP = P; 2.14

j=1

Power Spectrum Ratio (PSR): Defined by Equation 2.15:

P f0+r o
PSR=—°=Z pj/z P, 215
P j=fo—r j==oo

where f, is a feature value of PKF; r is the integral limit of the ratio (r = 20); P, is
nearby the maximum value of the SEMG power spectrum; P is the whole energy of

the sEMG power spectrum in a range of 10 to 500 Hz.

The representation of the time-frequency signal allows to locate the energy
of the signal, in time and frequency, making probable a more accurate
representation of the physical phenomenon. However, this method generally
requires a computationally expensive transformation, such as the SFT, discrete
wavelet transform (WT), and wavelet packet decomposition (WPT). This type of
transformations applied to non-stationary signals provides a map of spectral
characteristics of the signal in time and frequency domain, but with a feature
vector of high dimensions, which implies a greater complexity in the learning of

the parameters by a classifier. Thus, it is necessary an additional processing to
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reduce the data dimension to improve sorting speed and reduce memory

requirements without losing classification accuracy.

Moreover, fractal dimension estimates the fractional dimension of the
waveform signal in the time domain, which is considered as a geometric figure,
quite useful for transient detection. In this aspect, detrended fluctuation analysis
(DFA) is one of the most frequently used fractal time-series algorithms, which
explores the non-stationary properties of SEMG signals with computational
simplicity. DFA is a modified root mean square that provides a self-similarity
parameter representing the fractal dimension. This scaling exponent indicates the
presence of fractal scaling in a detrended time series of the RMS fluctuation in a
succession of random division of the integrated sEMG signal on the time domain
(PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 2012b). DFA offers
advantage over methods based on wavelet transformations in the time-scale
domain (PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 2012b). On the
other hand, HFD (ESTELLER et al., 2001) is one of the most used fractal dimension
feature, as it has shown better performance than other fractal methods
(ESTELLER et al., 2001), and has also shown good performance in the

classification of EMG signals.

2.4.4. Dimensionality reduction

One of the simplest techniques for reducing data dimensionality is the
selection of features, which consists of selecting an appropriate subset of the input
data, and discarding the rest. This is possible when there is a strong correlation
between the input data sets, so that the same information is repeated several
times. For this, it is necessary to define a criterion to determine the best subset
and establish a systematic process of analyzing all possible subsets. The ideal
criterion for classification should be the minimization of the probability of

misclassification, but generally simpler criteria based on class separability are
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chosen (ZECCA et al., 2002). One approach is to minimize the probability of
classification error, which evaluates the system performance. Other alternative is
based on the distribution of features in a clustering scatter. Furthermore, the
exhaustive search among all possible subsets is often impractical and other

methods can be used.

The commonly used method is the sequential forward selection (SFS),
which performs an exhaustive search by an optimization procedure for a high
classification accuracy. The method starts with an empty set of features and adds
a single feature at each step, with a view of improving the classification accuracy.
Since SFS method requires to repeatedly performing the searching procedure for
the optimal set of features until obtaining a given number of features, it would
take a long computation time to get a relatively optimal subset. Moreover, SFS
method must rely on a specific pattern recognition algorithm to obtain the
accuracy to execute the selection of the optimal features. Thus, the optimization
process would be executed again, in which some parameters of the algorithm

would be changed.

Alternatively, a Genetic Algorithms (GA) approach (HUANG; WANG,
2006) for feature selection is used as an alternative to the conventional heuristic
methods (THEODORIDIS; KOUTROUMBAS, 2008). GA is a method for solving
optimization problems based on some of the process observed in the biological
evolution. GA obtains the optimal subset after a series of iterations, being efficient
with large search spaces and less chance to get local optimal solution than other
algorithms. In addition, a fitness function assesses the mutual information

between features and the output like the entropy criteria.

The subsets of features are coded in the form of simple sequences
considering the genome of the individuals of a population, as the population
changes according to the reproduction of their individuals. For reproduction,

operators such as mutation and crosses are applied to the population. The
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aptitude of the individuals is represented by the performance of the classification
of the corresponding subset of characteristics and determines the possibility of
the reproduction. For several generations, the suitability of the population and its
individuals are improved. When the criterion is met, a stop is displayed and the
feature subset representing the most suitable ones is selected. GAs are
optimization strategies that do not assume a continuously differentiable search
space. In a population, the subsets of features present are initially covered by

random searches (CASTILLO GARCIA, 2015).

2.4.5. Classification

The extracted features must be organized by labels according to the class to
which they belong, so they can be associated with the desired movement. A
classification system should be able to associate such patterns, overcoming the
variations that may arise due to external factors, such as displacement of electrode
position, fatigue, sweat, and the intrinsic variability in the nature of the MES. Also,
the classifier must be adjusted to meet real-time constraints and efficiency in
recognizing new patterns. In this research, we consider supervised learning
methods for classification because during training for every input the

corresponding target is already known.
2.4.5.1. K-nearest neighbors (KNN)

The K-nearest neighbors (KNN) is a non-parametric method used for
classification. This classifier measures the distance between a trial measured and
the k closest training samples in the feature space. The trial is classified by the
majority vote, being assigned a label with the class of the most common of its
nearest neighbor examples. The algorithm commonly uses the Euclidean distance
as a metric distance. The number of the K neighbors is defined according to the
improvement of the classifier performance. A drawback of the majority voting is

that the classification depends on the class distribution, and sometimes the
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samples of a more frequent class tend to dominate the prediction, resulting in a
false positive. Thus, the K value assignment is crucial to define the architecture of

the algorithm.
2.4.5.2. Linear discriminant analysis (LDA)

The linear discriminant analysis (LDA) is a parametric method of machine
learning, which searches for a linear combination of features to distinguish two or
more classes to which the data belong. The objective of the LDA (also known as
Fisher Discriminant) is the use of hyperplanes to separate the data representing
the different classes (DUDA; HART; STORK, 2001). For a two-class problem, the
class of a feature vector depends on its location relative to the hyperplane. LDA
assumes normal distribution of data, with a covariance matrix for the equality of
both classes. The hyperplane is obtained by finding the projection that maximizes
the distance between the mean of the classes and minimizes the interclass

variance.

This technique has a very low computational requirement, which makes it
suitable for online systems. In addition, this classifier has no parameters to tune,
is easy to use and generally delivers good results. The main disadvantage of LDA
is its linearity, which can provide poor results with complex and non-linear data.
A study conducted by (ZHANG et al.,, 2013) shows the use of LDA, in an
unsupervised adaptation strategy applied to MES pattern recognition, which is
based on probability weighting. A variation of this technique uses a quadratic
decision surface, which can learn quadratic boundaries with more flexibility. LDA
using quadratic discriminant function assumes that the covariance matrix is not

identical for each class, then it estimates a matrix by class separately.

2.4.5.3. Support vector machines (SVM)

Support vector machine (SVM) is a learning system for the construction of

linear and non-linear classifiers and regression functions. SVM is a non-
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parametric technique that explicitly constructs the solution by a linear
combination of the training samples. The most salient feature of the SVM is its
ability to solve problems where the data is high dimensional, without degrading

the solution due to lack of them.

SVM uses a discriminant hyperplane to identify the classes (BURGES et al,
1998; BENNETT et al, 2000), in which the selected hyperplane maximizes the
distances between the closest points of the classes. Currently it is possible to train
SVM in real-time applications thanks to the improved computing and the
development of fast learning algorithms. SVM training builds a model that assigns
a new sample to one of two categories, making it a binary linear classifier. For
multiclass problem, a common approach consists of decomposing the multiclass
problem into several binary sub-problems, building a standard SVM for each class.
The most popular strategies are the “one against all” and “one against one”. The
first one builds one SVM per class, training to distinguish a particular class from
the other classes. The second one built one SVM for each pair of classes and the
result is decided by majority voting. Some studies have reported that “one against
one” approach has similar results as the other approach, and it has been stated to

be more practical because the training process is quicker.

The effectiveness of SVM depends on the selection of the kernel, the kernel's
parameters, and soft margin parameter C (HSU; CHANG; LIN, 2016). A common
choice is a Gaussian kernel (also known as radial basis function, RBF), which has
a single parameter y. The best combination of C and y is often selected by a grid
search with growing sequences of C and gamma. The C value in the SVM classifier
is a throttling parameter that allows the removal of atypical data and tolerates
errors in the training set to avoid misclassifying of training samples. The C value
configures the margin separating the hyperplane, such that large values configure
small margin to classify all training trials correctly. However, small values

configure a larger margin, even getting possible misclassified trial.
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2.4.5.4. Repeated k-fold cross-validation

In addition, repeated k-fold cross-validation method with all trials of the
experiments is used to assess how accurately the predictive model performs in the
offline validation. This method folds all dataset into k subsets, where one subset
is used to validate the model while the others are used as a training set. All subsets
are crossed so that each one of them has a chance to be used as a validation set.
The accuracy is the metric used to measure the overall performance of the

classifiers. This process is repeated n times and the average accuracy is calculated.

2.4.6. Post-processing

Post-processing techniques can be used as an attempt to improve
classification accuracy. The output vector of the classifier is composed of scores
with the probabilities of association of the current pattern with each one of the
classes. Before obtaining a class decision, it is convenient to compare these scores
to yield a reliable final decision. The class with the higher probability among all
others is a common criterium to stablish the output classifier. However, it is found
that a comparison of this output vector with a level of confidence could improve
the classification performance, in order to reject likely false positives by giving a

wrong decision.

One method used for post-processing is the comparison between the score
vector with a level of agreement, which is based on the metric Kappa (k), that
indicates a substantial agreement between the class expected and the predicted
decision for k values above 0.6, taking into account the a priori probability of a
classification system defined in 2.16,

1

~ Number of classes’ 216

e

where P, denotes the chance agreement of a class to be assigned.
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The Kappa coefficient is a parameter proposed by Cohen (JAPKOWICZ and
SHAH, 2011), which represents the concordance between the targets and the

prediction values. The Kappa’s coefficient (k) can be defined by Equation 2.17:

k= 2.17

where P, denotes the probably of overall agreement over the class decision and
the true class; and P, denotes the chance of agreement of a class to be assigned.
Values of K < O indicate no agreement; between O and 0.20 are considered as
slight; between 0.21 and 0.40 as fair; between 0.41 and 0.60 as moderate; between
0.61 and 0.80 as substantial, and finally, between 0.81 and 1 as almost perfect

agreement.

Stating a level of agreementk; = 0.6, then, the minimum probability to
obtain a reliable class decision, P, . , can be defined by Equation 2.18 using the

value of P, in Equation 2.17, as follow:

P,

omin = K1 — K1 * Po — Pe. 218

For example, for the eight-class problem of individual finger movements,
the minimum probability of a sample to be reliable is 0.65. Finally, the output
vector of the classifier is compared with the value obtained by P, ., and a class

decision is assigned, if and only if, some class gets a higher probability value.

Additionally, a second method for pros-processing uses a defined threshold
to compare each one of the class probabilities in the score vector among the
others. A class decision can be given, if and only if, a maximum class probability
is sufficiently greater than the other ones in the score vector. Considering a
multiclass system for 5 movements, the a priori probability for each class is 20%,
supposing all class has the same chance of happening, with no difference between
each one of classes. For this purpose, it is necessary to define a threshold for

difference between two similar classes.
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Finally, a simple approach for post-processing seeks to smooth the outcome
accuracy using a Majority Vote (MV) (KHUSHABA et al., 2012). This method is
intended to combine adjacent outputs in a stream of class decisions to reduce false
positives. The MV uses the current decision combined with a defined number of
last decisions to obtain the mode as the current output. A ponderation in a
modified scheme is used to add weight to the samples in the decision stream, so
that the last sample contributes more to the average than the more distant ones.
The maximum pondered value among all classes would correspond to the final
decision. By trial and error different weight combinations were tested, and it was

found the following values to be most appropriated to improve the performance:

Decision n, weight = 4;
Decision n-I, weight = 3;

Decision n-2, weight = 2;

where n is the actual state of the decision stream, which is intended to avoid the

perseverance of past values, rejecting the tendency to prevail past decisions.

The error rate using majority vote scheme is roughly lower than the error
with unprocessed stream decisions, and it does not depends on the feature set and
window increment (ENGLEHART; HUDGINS; PARKER, 2001). It has also to be
taken into account that this scheme can induce errors in the classification
performances, especially in the transition regions between hand/fingers
movements. For real-time applications, the improvement due to using a majority
vote scheme may serve to smooth the stream of class decisions and reduce

spurious €rrors.

2.4.7. Performance measures

The performance measures for a MuCl draw information mainly from the
confusion matrix. In order to have a detailed analysis by classes of the classifier

performance, a confusion matrix is also calculated to obtain the average accuracy
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for all classes. The confusion matrix is generated from results of classification,
where information about accuracy and misclassification for each class can be
analyzed. This confusion matrix considers the correct classification in the
diagonal cells as the positive predictions and the misclassification in the other

cells as the negatives.

For multiclass system, the confusion matrix is a square matrix and can be

defined by Equation 2.19:

c= {Ci,- =D lt=0-@= j)]}, 219

X€T
where each element C;; of the confusion matrix denotes the number of examples

belonging to a class i label, and the classifier recognizes as a class j. For a test

sample, [ denotes the corresponding label and p the predicted class.

Specificity (Sp), also known as True Negative Rate (TNR), is the proportion
of negative instances (movements) that are detected, defined by the Equation 2.20

TN

S 2.20
FP + TN

Sp
where TN denotes the true negatives, and FP the false positives.

Further, Positive-Negative Measurement index (PNM) takes into account
the sensitivity and specificity of the system (CASTRO; ARJUNAN; KUMAR, 2015).
This index combines the correct classification of each class, referred as positive,
with the misclassification in the prediction, caused by counting false positives

instead negatives, as is shown in Equation 2.21.

(Ci = X7.:Cy) + (Cu — X7, Cyy)

g g
ij=1 Cij + Zj,i=1 Cij

PNM; = 2.21

where C;; corresponds to the element in row i and column j in the confusion
matrix; and g is the total number of classes. The PNM index is used to measure

the performance of an individual movement related to how well the movement
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was correctly recognized and to how well the same movement was discriminated
by other ones. The index ranges from 1, if all predictions are correct, to -1 if all

predictions are wrong.
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3. Materials and methods

In this chapter, a detailed description about the implementation of the
blocks for pre-processing, feature extraction, feature selection and classification,
shown in the Figure 3, and the different techniques used is addressed. Moreover,

the experimental procedure conducted in this thesis is descripted.

3.1. Experimental procedure

3.1.1. Subjects

This study was conducted on a control and amputees groups. MES was
recorded from the dominant forearm of ten able-bodied subjects (five males and
five females), from the control group, aged 22-35 years, with no history of
neurological or neuromuscular disorders. Moreover, ten forearm amputee
subjects (five females and five males), aged 19-64, participated in this study. All
the amputees are outpatients from the Centro de Reabilitagdo Fisica do Espirito
Santo (CREFES/Brazil), which are shown in Figure 4. All amputees have traumatic
amputation. The amputees (A) were previously evaluated by a physiotherapist,
with an assessment (Appendix B) including aspects as participant identification
and physical examination (anamnesis, inspection, palpation, range of motion and
sensitivity). All subjects did not have any experience of attending this kind of
study before. The inclusion criteria adopted in this research were as follows: (1)
transradial or wrist disarticulation amputation; (2) no evidence, in their medical
history, of peripheral neuropathy, diseases of the central nervous system or any
neurological or muscular disease; (3) no evident abnormal motion restriction; and

(4) no earlier experience with myoelectric prosthesis.
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Figure 4. Group of amputees who voluntarily participated of the experiments.
Details of each one can be seen in Table 2.

All transradial levels (distal, medial or proximal) of amputation were

accepted because it is possible to capture MES from the muscle groups selected
for this research.All participants were informed about the objectives and
methodology of the study, through oral presentation. After knowing the detailed
procedures, the participants signed the free consent form, according to the ethical
principles of the Universidade Federal do Espirito Santo (UFES/Brazil). The study
was approved by the Human Ethics Committee of UFES, conducted in strict
adherence to the Declaration of Helsinki (protocol number 302/11, Appendix A).
A physical and functional assessment was accomplished for each participant.
Baseline sociodemographic and amputee characteristics from all subjects are

presented in Table 2.

3.1.2. Equipment and electrode placement

MES data were acquired using reusable bipolar active electrodes
(PLO91060A - 60Hz) manufactured by Touch Bionics, with inbuilt 60Hz notch
filter, pre-amplification and conditioning circuits, with adjustable gain (Figure 5).
The MES was sampled (1 kHz) via an NI USB-6009 data acquisition system. The
software Matlab 2014a (The Mathworks, Inc) running on a laptop battery powered,
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with Windows 10 64-bits operational system, and an Intel Core i-7 processor (2.2

GHz) and RAM of 8 GB, was used to process the data. Electrodes were positioned

in contact with the unbroken skin in suitable locations to capture the activation

of specific muscle groups as detailed below. All three metal pads of the electrodes

were correctly attached to the subject’s skin by adding conductive gel in order to

make good electric contact.

Table 2. Participant demographics. Level of amputation is indicated: wrist
disarticulation (WD), Proximal Transradial (PTR), Medial Transradial (MTR) and
Distal Transradial (DTR).

Amputee Gender ~ Age Missing  Time sirTce Prosthesis Level Qf
Hand  amputation used amputation

Al Female 45 Right 4 years Esthetic WD
A2 Male 64 Left 42 years Esthetic WD
A3 Female 48 Right 1 year Non WD
A4 Female 23 Right 4 years Non PTR
A5 Female 48 Right 2 years Non WD

A6 Female 50 Left 25 years Non PTR £
A7 Male 34  Botht 2 years Non WD
A8 Male 21 Left 2 years Non MTR
A9 Male 27  Botht 1 year Non PTR
A0  Male 24 Right 1 year Non DTR

T Bilateral amputation, not same level on both sides

F Cause of amputation due to poor circulation

Figure 5. Touch bionics electrode for MES acquisition
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e Power Supply: powered by USB port supply via NI USB-6009 DAQ

e Temperature Range: -15°C to 60°C

e Frequency Bandwidth: 90 - 450 Hz
e Sensitivity Range: 2000 - 100,000 fold

Four electrodes were placed on the selected muscle groups of the subject,

according to their relation with the functions of the hand/finger movements, as

described in Table 3.

Table 3. Description and functions of muscle groups covered in this study.

Ch Muscle Origin Insertion Primary functions Electrode
placement
1/3 of  the Palmar base of Flexes the first 1/3 _ of  the
Flexor anterior face of the first chirodactyl anterlor.face of
1 pollicis the radius and . interphalangeal and the radius and
. chirodactyl inter
longus interosseous Distal Phalanx metacarpophalange erosseous
membrane al Joints membrane
Base of the Flexion of proximal Ventral face of
Flexor Medial middle phalanx \Pterphalangeal and the forearm,
2 digitorum epicondyle  of of the gn d tz)( metacarpophalange apprO)flmately 5
superficialis the humerus hf al joints, from 2nd ©M distal from
Sth finger to 5th finger the elbow fold
L Flexor 2/[?21;‘11(1 le of Base of 2nd and gleez(ila(ililonandofm(iﬁi Ventral face of
carpi radialis }1: h Y 3rd metacarpals . the forearm,
3 the humerus wrist approximately 5
2. Flexor Humeral head ]:;S:H of the Sfee)ila(i?onam:) ¢ UI?}?Z cm  distal from
carpi ulnaris and ulnar head v the elbow fold
metacarpal wrist
1. Extensor =~ Humerus Dorsal base of .
S et Extends, radially
carpi radialis (lateral the Index . .
longus supracondylar)  Metacarpal deviates the Wrist
Center of
2. Extensor  Humerus Dorsal base of Extends and uscular mass, 5
4 carpi radialis (lateral the Middle radially deviates the ., distal of the
brevis epicondyle) Metacarpal Wrist elbow
3. Extensor dorsal base of Extension and ulnar
) Distal humerus the Small deviation of the

carpi ulnaris

Metacarpal

Wirrist
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The electrode placement procedure was the same for able-bodied subjects
and amputees. All the electrodes were placed according to SENIAM
recommendations (HERMENS et al., 2000). Prior to place the electrodes on the
forearm, the skin was previously cleaned with 70% alcohol, and conductive gel
was used before attaching the electrodes, in order to reduce skin impedance. The
same experimental conditions were maintained to guarantee the repeatability of
experiments across different days. A temperature of 24 °C was conditioned to
avoid the presence of sweet. A minimal inter-electrode distance on the forearm of
2 cm was ensured for all subjects. To find the best location for positioning the
electrodes, a graphical representation of the patient’s MES was provided. Three
near points around each specific muscle area were tested to identify the more

suitable point with the strongest signal.

The selected muscles for this research, shown in Figure 6, are associated to
the first chirodactyl flexion (channel 1), fingers flexions (channel 2), wrist flexion
(channel 3) and wrist extension (channel 4).

Figure 6. Forearm muscles by channel adopted in the experimental protocol.
Source: adapted from ANATOMY OF THE HAND (2017)

Flexor digitorium Wrist extensors

Flexor Pollicis superficialis : ’
7~ (Palm facing down)

=

Wrist flexors

Channel 1 Channel 2 Channel 3 and 4

Longus

(Palm facing up)

3.1.3. Experimental protocol

All the subjects (amputees and able-bodied) performed each hand/finger
movement, shown in Figure 7Figure 7, separately. Thirteen movements

(descripted in Table 4) were considered in this study, arranged into three
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movement categories: category A (CA) for individual fingers, which includes first
chirodactyl flexion (F1), second chirodactyl flexion (F2), third chirodactyl flexion
(F3), fourth chirodactyl flexion (F4), fifth chirodactyl flexion (F5), hand closing
(HC) and hand opening (HO); category B (CB), for hand grasp, which was
arranged within the following taxonomy: into power, intermediate and precision
grasps. As power grasps, two kind of full hand wrap grasps were considered: large
diameter (LD: diameter = 9 cm, height = 11 cm) and medium wrap (MW: diameter
= 5 cm, height = 14 cm). The lateral grasp (LT) was included as intermediated
grasp. For the precision grasps, sphere tripod grasp (TR) and tip pinch (TP) were
considered. Finally, the category C (CC), which includes all the thirteen
movements. The rest state (RT) was included in all categories. The movements,
descripted in Figure 7 were selected because of their importance to the

improvement of prosthesis functionality (BOUWSEMA, 2008).

Table 4. Movements performed in the experiments.

Category  No. Abbreviation  Hand/fingers movements
- 0 RT Resting
1 F1 First chirodactyl flexion
2 F2 Second chirodactyl flexion
3 F3 Third chirodactyl flexion
CA 4 F4 Fourth chirodactyl flexion
5 F5 Fifth chirodactyl flexion
6 HC Hand closing
7 HO Hand opening
8 LD Large diameter Dim =9 cm
9 MW Medium wrap Dim =5 cm
CB 10 LT Lateral tripod grasp
1 TR Sphere tripod grasp
12 TP Tip pinch
CC - - All movements
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Figure 7. Different kinds of hand and individual finger movements considered in
this study (rest state picture is not included).

g 24 S 2 S0

Thumb Index Middle Ring Little Hand Close

Large Medium Lateral Tripod Tip Pinch Hand Open

For the experiments, a preliminary assessment (day 0) and three
experimental sessions in different days (days 1-3) were conducted. Prior to the
recording, the subjects were encouraged to familiarize themselves with the
experimental protocol. They were seated in a chair with both arms resting on a
table. During the familiarization stage, it was given a time to they imagine the
movement performance with the missing limb, at the bilateral action training
modality. The amputee subjects were asked to produce muscle contractions while
they imagined specific movements with their phantom stump. At the same time,
they performed a mirrored bilateral movement with the intact limb to facilitate

the contraction of the affected side.

Afterwards, during the experiments, the subjects were instructed by both
visual and oral cues to elicit a contraction from the rest state and hold that task
for 6 s, followed by a background activity (rest state) of 4 s, switching between
isometric contraction and relaxation. Each hand gesture was repeated five times
consecutively, as shown in Figure 8, with a resting period of 3 minutes between
each movement, in order to avoid fatigue. Each performed repetition and
background period are referred to in this thesis as “trial”. Within each trial, the
contraction period was split roughly into a phase of onset and a subsequent
steady-state (isometric) phase. Moreover, to enhance generalization ability due to
the fluctuation of MES, the experiments were repeated on three different days,

referred to herein as sessions.
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Figure 8. Experimental protocol to extract the isometric task.
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3.2.Method for recognition of dexterous

hand/fingers movements

The muscle-computer interface (muCl) proposed in this thesis is composed of MES
pattern recognition, such as that descripted in the diagram shown in Figure 9.

The system can be divided, according to the recognition stages, into two
subsystems: training and validation. The first one is intended to define a predictive
model, which is trained by a supervised learning machine through loading of a
data base of processed MES patterns with known movement. This processing is
performed in offline mode. Furthermore, the predictive model is used in the
validation subsystem to predict new MES patterns and recognize the movement
originated from this signal. This recognition originated from the user’s intention
is taken as a control command for the prosthesis. This processing is performed in
online mode. Both subsystem include a processing data stage, in which pre-
processing and feature extraction are performed. In the online mode, MES
capturing and data processing are accomplished using two threads concurrently.
The data processing is performed for a short segment of signal captured previously
while a new segment is captured simultaneously. The Data Acquisition System

Toolbox of Matlab was used to accomplish this stage of research.
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Figure 9. General scheme for MES pattern recognition.
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Processing data and supervised learning block shown in Figure 9 are widely
detailed in the Figure 10. The data processing block can be divided into data
extraction, feature extraction and classification stages. Moreover, two adjacent
blocks (feature selection and gesture selection) can be noted, which are used in
order to find the best parameters during system design with the aim to improve
the performance. The first one is intended to obtain a subset of features by the
selection of the best parameter to characterize the myoelectric patterns. The
second one is used to assess the suitable movements for each voluntary according
to its abilities to performed the contractions and generate different patterns. Both

are blocks executed just at the designing phase of the recognition system.



47

Figure 10. Diagram of the techniques used for the design of the MES pattern
recognition.
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3.2.1. Data extraction and data windowing

All the raw MES are preprocessed for conditioning and to remove unwanted
DC level. It is not necessary to use digital filters due to the analog Notch filters
embedded in the active electrodes circuits. Due to the zero average of the signal,
the rectification is intended to obtain only positive values preserving all the
information from magnitude of muscle contractions. The unwanted DC level is
removed subtracting the average of the MES, and, subsequently, a rectification
(full wave) is performed. The MES is not normalized due to the analysis is
performed for each channel individually and not comparison of signal magnitudes

is needed between muscles and among voluntaries.
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Afterwards, a data extraction stage is carried out, which is determinant for
a real-time implementation of the myoelectric control. As stated by Englehart and
Hudgins (2003), using transient MES for control has some obstacles, as the
requirement of initiating a movement from the rest-state in order to produce a
single command, which makes continuous control of devices cumbersome and
slow (SHENOQY et al., 2008). This makes awkward and slow the continuous
control. Thus, in this research steady-state signals are considered for the learning
patterns during offline experiments. However, continuous MES (both transient

and steady-state) are considered for online classification.

The onset and offset of the muscle contraction is identified by the cues given
to the subject during experiments. This process is made manually because of the
low amplitude of the background activity, which is similar to the isometric activity
itself and noise magnitude. The steady-state MES (isometric task) is extracted
from each trial, and the transient stages (i.e. during movement changes) are
removed. The data from the two first seconds and last second of the 6-second trial
are removed from all observation to extract only the steady-state of the isometric
contraction of each trial. In this sense, three seconds from each trial are used to
be processed. This time is enough to ensure that the subject starts the movement,

the transient is performed and the steady-state is achieved.

Before feature extraction stage, the MES are windowed, and from each
window a control command is conveyed. It is important to note that the window
length (denoted here as M) for recording and the window increment or
overlapping (denoted here as N) have influence in the characterization of patterns
and the classifier’s performance. The maximum delay possible for data processing
is limited by the N value, while the required memory to store the data to be
processed is defined by M value. It is worth to mention that an evaluation of the
effects of the window length and window increment on the classification accuracy

for all subjects is also performed in this research. The window length is varied for
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M =100, 200, 300, 400 and 500 ms, while the overlapping was varied for N = 20,
40, 60, 80 and 100 ms.

It is actually expected that a larger window improves the accuracy, but
increases the response time. However, a very short overlapping reduces the effects
of the delay, increasing the computational cost. The minimum and maximum
values for both parameters are defined to agree with the real-time constraint
required by human being for detection of user intention using MES, whose
response time should be less than 300 ms, in order to not introduce a perceivable

delay by the user (ENGLEHART; HUDGINS, 2003).

3.2.2. Feature extraction

Seventeen features detailed before in the second chapter are considered in
this study, which are based on time domain (TD), frequency domain (FD) and
non-linear analysis related to Fractals, as shown in Table 5. Each feature was
normalized individually based on the average and standard deviation values. For
each data window, the features extracted from all channels are concatenated,
which yield a twenty-dimensional feature vector per channel. It is important to
remark that each one of the autoregressive (AR) coefficients are here considered

as one-dimension feature for each channel.

After the feature extraction stage, a normalization is necessary to reduce the
variability of magnitude levels among features. For this, the method based on

mean and standard deviation of the data was used, following Equation 3.1.

X—Xx 3.1
|X| = ——
o
where X is the value of the feature to be normalized, X and ¢ are the mean and
standard deviation of the feature vector and |X| is the value normalized,

respectively.
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Table 5. Features selected for this study, split in groups. The parameters used for
some features are also specified.

Domain Feature Abbr.  Dim/Ch
Mean absolute value MAV 1
\l\;[a(ilclheﬁled mean absolute MAVI 1
\l\;[a(ilclheﬁzed mean absolute MAVD 1
Time Variance VAR 1
Domain Root mean square RMS 1
Waveform length WL 1
Zero crossing 7C 1
Slope sign change SSC 1
Autoregressive model AR 4
Mean frequency MNF 1
Median frequency MDF 1
Frequency Peak frequency PKF 1
Domain Mean power MNP 1
Total power TTP 1
Power spectrum ratio PSR 1
. irelzilsli(;led Fluctuation DFA 1
Features Eliiilecilsiion Fractal HFD 1

Dim/Ch, dimensions per channel; thid, threshold.

3.2.3. Feature selection

It is known that multiple feature sets are more feasible to accomplish a high
accuracy for the classifier (ENGLEHART; HUDGINS, 2003). However, despite the
analysis of all aforementioned features may provide redundant information, the

use of more features will increase also the computation cost. Hence, it is
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imperative to use techniques for feature reduction for optimal subsets in a point
of view of class separability. Two methods are considered in this study: Sequential
Forward Selection (SFS) and Genetic Algorithms (GA). These two methods are
chosen to compare the selection of features using traditional solutions and models
to solve optimization problems based on machine learning. The SFS method
performs the search using the classification accuracy as a criteria for the selection.
On the other hand, GA approach is based on the feature space distribution, which
minimizes the within-cluster scatter and maximizes the between-cluster

separation, such as proposed by (HUANG; WANG, 2006).

Both methods are carried out following two approaches: in the first one,
features from the four channels are considered as a whole dataset using all-
channel analysis (GA and SFS). In the second approach, features from each
channel are selected using an individual-channel analysis (denoted as GA-CH and
SFS-CH). All methods were performed by each subject for both control group and
amputees, yielding an own feature subset in each case. Data classification was also

performed, in order to determine the performance of each method.

3.2.4. Classification

For the experiments, a comparison among different classification
techniques was performed to identify the most appropriated classifier for the
pattern recognition system here proposed. Linear Discriminant Analysis (LDA),
K-Nearest Neighbors (KNN) and multi-class Support Vector Machine (SVM) (one-
against-one approach) were the selected classifiers. These classifiers were selected
due to their low computational complexity (Chowdhury et al., 2013). Also, they
are recommended as robust classifier and have been employed in several studies
(CHOWDHURY et al., 2013a; CIPRIANI et al., 2011; GUO et al., 2015; KHUSHABA
et al., 2012; OSKOEI, 2008; PHINYOMARK; PHUKPATTARANONT; LIMSAKUL,
2012a; WANG; CHEN; ZHANG, 2013).
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For each one of these topologies, tests of different architectures and
parameters were performed. K is usually chosen as an odd value for an even
number of classes. Also, small K-values lead to a high noise influence on the results
and a low generalization capability. For KNN classifier implementation, the K-
value was iterated taking odd numbers from 5 to 9. Even values were not
considered to avoid score results with two class with the same probability. The
LDA does not require parameter adjustment, and a quadratic function was chosen

for its implementation.

For SVM, three different kernels were considered: linear, Gaussian (also
known as RBF) and polynomial. For the Gaussian kernel, the parameter y and the
regularization parameter, C, were empirically optimized by minimizing the error
rate on the validation dataset. The y parameter for RBF kernel was set for the
following values: 0.01, 0.1, 0.5, 1, 2 and 5. In the polynomial kernel, the order have
to be set, using polynomials of second, third and fourth order. For all kernels, the
C was iterated for: 0.01, 0.1, 1, 2, 5 and 10. These values were defined according to
the revision in literature (CHEN et al., 2013; HSU; CHANG; LIN, 2016; LIU, 2015;
OSKOEI; HU, 2007). In addition, a repeated k-fold cross-validation is used in the

offline validation for k = 5 subsets and repeated n = 3 times.

3.2.5. Post-processing

Post-processing techniques were used to prevent overwhelming the
prosthetic controller with varying classification decisions, in an attempt to
improve the classifier performance by eliminating spurious misclassification, as
previously done by (ENGLEHART & HUDGINS, 2003). Three methods were
tested for post-processing: by comparison using Kappa (k) as a level of agreement;
by comparison using a defined threshold among score vector; and finally, by using
a pondered majority vote (MV) technique. For the first one, a value of k = 0.6 was

used to ensure a substantial agreement between the decision and the class
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expected. For the second method, a threshold of 0.2 was stablished, which
corresponds to a 20% of difference among the selected class and the other classes.
For the MV method, the maximum pondered value among all classes would
correspond to the final decision. Different weight combinations are tested using

the following values to be most appropriated to improve the performance:

Decision n, weight = 4;
Decision n-I, weight = 3;

Decision n-2, weight = 2;

being n the actual state of the decision stream, which is intended to avoid the

perseverance of past values, rejecting the tendency to prevail past decisions.

3.3. Experimental design

The experiments conducted in this thesis can be organized into two specific
studies, according to the objective for each one, such as offline and online studies.
The offline study is aimed to obtain a predictive model of a MES pattern
recognition, validated both on control group and amputees. The online study is
considered as a subsequent phase in the validation of the previous results,
considering specific conditions for real-time implementations, performing the

recognition simultaneously with the movement execution.

In the offline study, the data collected from the first two sessions are used
to analyze the structure of an optimal system and finally obtaining a trained
classification system. After the feature extraction stage on both control group and
amputees, an analysis for feature selection is carried out for each movement
category, in order to determinate an optimal feature subset. This optimal feature
subset is intended to obtain the best characterization of the MES patterns by
extraction of the most relevant information, rejecting redundant information and

reducing computational costs. The accuracy of the results is used to establish a
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ranking of frequency for each feature, to yield a new feature subset for each
method. Finally, an overall method is adopted to recognize patterns related to all

aforementioned movement groups.

In the online study, a third session is performed for the validation of the
classification system trained with the results of two first sessions with the
structure proposed by the offline study. The same protocol used to the perform
hand/finger movements is followed in the online study, and its performance is
also evaluated. To achieve the online application, two concurrent thread are
executed to capture and process data, using the proposed data extraction scheme.
No visual feedback to the users during the system validation was considered, to

assess the repeatability of the patterns in spontaneous way.

Additionally, two alternative schemes were proposed for training the motor
learning and acquisition of abilities to use a myoelectric prosthesis and performing
distinguishable muscle patterns associated with individual finger flexion and
grasp movements. In the first scheme, a virtual hand designed in a virtual reality
environment (VRE) was used. The human movements were adapted to the hand
in the VRE, which is controlled by the motion command provided by the pattern
recognition system. The second scheme, referred as a prototype of a robotic hand,
can be controlled through a low level control (LLC) system. Figure 11 details the

system design for this study.

The predicted commands yielded by the high level control (HLC) system
are used as input for the LLC. The LLC system, shown in Figure 12, is composed of
a microprocessor, which controls five servomotors that reproduce the flexion and
extension of each finger of the robotic hand. In this study, both schemes offer a

biofeedback (visual response) to the user about the predicted movement.



55

Figure 11. Diagram of the system for myoelectric pattern recognition of hand/finger
movements, using virtual reality environment and robotic hand.
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Finally, the results obtained in the online study were used to carry out two
analyses, after the experiments. The first one is intended to develop a system
towards a MES single-channel recognition system, in which the information
provided from each one of the muscle contractions is assessed. The second one is
an analysis for the selection of a suitability set of movements, according to the
abilities of the amputees. The accuracy is used to compare the extent of
discrimination of the movements. This analysis was carried out independently for
movements of categories CA and CB. The positive-negative performance (PNM)
measurement index (CASTRO; ARJUNAN; KUMAR, 2015) is then used to measure
the performance (recognition/discrimination) of the movement in relation to the
other ones. This index is compared for all subjects, while average and variance are
considered to compare the easiness to exert specific contractions for determined
movement and to maintain constant patterns and separated among the

movements proposed in this study.

3.4. Statistical evaluation

Accuracy (Acc), mean percentage error (MPE), specificity (Sp), Kappa’s
coefficient (k) and positive-negative measurement (PNM) are used to evaluate the
performance of each classifier. For the analysis of the results obtained in this
research, and taking into account the low number of observations and their
unknown distribution, non-parametric approaches were used, which are strongly
suggested in the literature (CIPRIANI et al., 2011) due to not require the
assumption of normality. Statistical differences among experimental results were
also evaluated, firstly using the Wilcoxon rank-sum test to compare two groups
with unpaired data, and the Friedman test for simultaneous comparison of more
than two groups. Post hoc pairwise comparisons using Wilcoxon rank-sum test
with a Bonferroni correction factor were also conducted, in which a level of p <

0.05 was selected as the threshold for statistical significance. The outcome of
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these tests were interpreted in this research to establish if there was a statistically
significant difference in accuracy for each category of movements between

different subjects.
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4. Results

4.1. Offline study results

4.1.1. Data extraction

In the first part of the experiments, the effects of the window length and its
overlapping were evaluated. The windowed data evaluation was performed to
compare the classification accuracy using all the features included in this research.
The window length (M) was varied for M =100, 200, 300, 400 and 500 ms, while
the window increment or overlapping (N) was varied for N = 20, 40, 60, 80 and
100 ms.

Results of the experiments with amputees, varying the window length
(descripted in Figure 13), showed a direct correlation between the classification
accuracy and size of the window length: the more length of the window the more
accuracy, such as expected. Figure 13 shows the average accuracy for all amputees,
for different lengths, iterating overlapping from N = 20 up to 100 ms, with
increments of N = 20 ms. It can be noted that the accuracy was above 98% for M
= 200 ms onwards, being M = 500 ms the value with best performance achieved.
The classification accuracy at values of M =300, 400 and 500 ms was found to be
closely the same. Moreover, the accuracy was found to be improved with the

reduction of N.
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Figure 13. Effect of varying the length of the window for individual fingers
movements.
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The window increment determines the real-time constraint of the system,
i.e., the features must be computed and processed to generate a command before
the next data segment arrives. After data analysis the classification accuracy was
found to be increased with a progressive reduction of the overlapping time.
However, the performance was not significant affected by this increment for
window lengths from 200 samples onwards, as shown in Figure 14.

Figure 14. Effect of varying the sliding of the window on individual fingers
movements.
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From these results, a trade-off between these two parameters was taken into
account in this research, being chosen in this study a window length M =300 ms
and an overlapping N = 100 ms. These parameters were selected to conduct the
next experiments, to accomplish the real-time application purpose. The same
behavior in classification accuracy was observed (last results: M = 300 ms and N =
100 ms) for the group of grasp movements, such as shown in Figure 15.

Figure 15. Results varying the length of the window and the overlapping for grasp
movements.
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4.1.2. Parameter adjustment

The setting of some parameters for the features considered in this research
(Table 5), were optimized iteratively using trial and error method, seeking to
improve the classification accuracy. Particularly, for ZC and SSC, the thresholds
values obtained were 0.0005 and 0.001, respectively. Other parameters were
chosen according to the literature, such as: for AR model(order = 4) (OSKOEI;
HU, 2007), DFA (L = 10) (PHINYOMARK; PHUKPATTARANONT; LIMSAKUL,
2012b), PSR (N = 20) (PHINYOMARK et al., 2012) and HFD (Kmax = 10)
(ESTELLER et al., 2001). All parameters are summarized in the Table 6.
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Table 6. Parameters selected for features used in this research.

Feature Abbreviation Parameters
Zero Crossing ZC thld = 0.0005
Slope Sign Change SSC thld = 0.001
Autoregressive Model AR P=4
Power Spectrum Ratio PSR r=20
Detrended Fluctuation Analysis DFA L=10
Higuchi Fractal Dimension HFD Kmax =10

Additionally, the parameters of the classifiers were selected by comparing
the classification rate for the different values for each topology, such as defined in
the methodology. Three different classifiers were tested in the experiments of this
research, being considered KNN, LDA and three variants of SVM. For KNN, it was
found an improvement at the performance (accuracy = 96.6%) for most of
amputees using K = 7 neighbors. This is true for the three group of categories
(hand/finger, grasp and all movements). However, using K = 9 a similar

performance was obtained with differences in accuracy below of 5%.

For SVM, three kernels were used in its architecture, such as above
mentioned in the methodology. Using a linear kernel (SVM-Lin), no additional
adjustments were needed other than the C constant. From the results with
Gaussian kernel (SVM-RBF), in most of cases, with y = 2 led the results to an
improvement (accuracy = 98.5%), as shown in Figure 16. Using the polynomial
kernel (SVM-Polynomial), a third-order polynomial was found to get the best
performance (accuracy = 97.1%) in most of cases, followed closely by the second
order with no significant difference (accuracy = 96.5%). Finally, for all kernels,
variations of the constant C were also analyzed. From the overall results, the
classification accuracy at higher values of C was found to be improved (accuracy
= 98.5%). However, no significant difference was found for C > 1 (accuracy =

98.2%). This tendency was found to be similar for all groups of movements.
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Figure 16. Graphic representation of the accuracy distribution of the different
parameters according to the variance among amputees. (a), parameter y for SVM-
RBF; (b), polynomial order for SVM-Polynomial; (c), constant C for all SVM
kernels.
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This study was also carried out with the control group getting similar

results. A summary of the parameters selected for all classifiers can be summarized

in Table 7.

Table 7. Parameters selected for the classifiers used in the experiments.

Classifier Function Parameters  Value
Linear - -
RBF Y 2
SVM Polynomial Order 3rd
All kernels C 1
KNN - K 7
LDA Quadratic - -

Overall results for the classifiers architectures implemented (three for SVM,
KNN and LDA) by each one of the amputees are shown in Figure 17. Despite
differences found between subjects, it can be noted a similar behavior in the
performance of different classifiers tested. SVM-RBF was found to have the best
performance in all subjects, while SVM-Lin showed the higher error, as shown in
Figure 17, for individual fingers movements (a) and grasp movements (b). No
differences were found among groups of movements in relation to the performance

between classifiers.
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Figure 17. Comparison of classification results with amputees in offline mode, for
individual fingers (a) movements and grasp movements (b).
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From the results with the control group, a similar performance was found
among classifiers, as shown in Figure 18. However, when compared error results
from Figure 17 and Figure 18, it can be noted a difference on the error between

amputees and control groups, respectively.
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Figure 18. Comparison of classification results with the control group in offline
mode, for individual fingers movements and grasp movements.
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In summary, according to the selected parameters from previous analysis,
an architecture for each one of the classifiers was chosen to be used in the
following experiments. Thus, KNN was configured with K = 7, and for LDA, the

quadratic function was used. In the case of SVM, the RBF kernel was chosen due
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to its better performance in comparison with the other two kernels analyzed.

Hereinafter, the selected configuration SVM-RBF will be referred as SVM.

4.1.3. Feature selection analysis

First of all, in the experiment using SFS method, the relation between
average classification and number of selected features was studied. Classification
accuracy was found to increase in most of cases when including more features, as
shown in Figure 19. However, it can also be noted that there was no substantial
improvement in the error using more than six features, which agrees with the
findings of (PHINYOMARK; PHUKPATTARANONT; LIMSAKUL, 2012a). Thus,
from the feature selection analysis a suitable subset composed of six features was

adopted to form the MES patterns.

Figure 19. Effect of error of classification according to the increment of features.
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In the experiments, the feature selection methods proposed in the
methodology were evaluated for each movement category. In relation to GA and
GA-CH methods, the ZC and DFA features were the most frequently selected,
followed by SSC, AR, HFD and PSR, as shown in Figure 20. Specifically, ZC and
DFA were selected in all movement categories for all amputees. Moreover, time

domain features were little considered as relevant, with MAV1 as the most relevant



feature from this set. Similarly, PKF, computed in the frequency domain, was
considered in lesser extent. The analysis with AG-CH, using the individual-
channel approach, showed similarity in the selected features between channels.
Moreover, from AG and AG-CH, the features were found to be similar between
movement categories and subjects.

Figure 20. Results of the feature selection experiment for each one of the

movements categories. Representation of the selected frequency feature, for the
control group and amputees.
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In relation to SFS and SFS-CH methods, from the results AR model was the

most frequently feature selected, followed by HFD and MAVL. Different features
from time and frequency domains were included in the subsets for both control
and amputees. However, outcomes using SFS and SFS-CH approaches showed

strong differences among the features selected, categories and subjects.
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All resulting feature subsets were used as input for the chosen classifiers
(LDA, KNN and SVM), in order to compare the performance of the proposed
methods to select the most suitable approach. In general, the comparison of error
variance distribution of the methods had similar mean and standard deviation for
all movement categories, as shown in Figure 21, in which the results are related to
all categories. Due to the similar performance of both control group and
amputees, only results of amputees have been widely discussed here. KNN and
LDA showed similar error variance distributions among the methods, unlike SVM,

which showed a different behavior.

From the results, SFS had the best classification performance with SVM
(MPE < 2.8 %), followed closely by GA-CH and GA methods, with similar
performances (MPE < 6.1 %) and no significant differences (p > 0.954). In contrast,
SFS showed the lowest performance using KNN and LDA, having a significant
difference when compared with SFS-CH (p < 0.009). The SFS-CH method
achieved the best performance for KNN and LDA classifiers, followed closely by
GA-CH. In addition, the performance of SFS-CH was found to be significantly
better when compared to GA and SFS (p < 0.028). In contrast, SFS-CH method
showed the lowest performance among other methods when using SVM.
However, from Figure 21, GA and GA-CH approaches did not present significant
differences (p > 0.618) using KNN. In addition, improved results were found using

the features from GA-CH with KNN (MPE < 9.6 %) and LDA (MPE < 25.1 %).

In summary, the error variance in the box plots of Figure 21 shows high
dispersion in different movement categories for SFS (i.e. classification of CB and
CC using KNN and LDA) and for SFS-CH (i.e. CA, CB and CC using SVM). The
results indicate that features of SFS, GA and GA-CH with SVM classifier provide
lower classification error rates for both control group and amputees. From these
findings, a ranking of the selection frequency from all cases was employed to

obtain a feature subset for each method.
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Figure 21. Graphic representation of the error distribution of the different feature
selection methods according to the variance among amputees.
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From GA and GA-CH, the ranking resulted in the same feature sets, which
were DFA, HFD, AR model, ZC, SSC and PSR. Likewise, from SFS, the features
obtained were DFA, HFD, AR model, ZC, MAV] and MNF. For SFS-CH, the
features were different for each category, in which the ranking was not significant
and therefore, it was no suitable to be considered. Afterwards, an evaluation with
the subsets obtained from the raking for each method was performed, having no
significant differences between SFS and GA (p < 0.918). As result, taking into
account all of the above, the features selected by GA were chosen as the proposed

feature set to be used for the analyses conducted in this study.

4.1.4. Proposed MES pattern recognition system

A comparison from results for KNN, LDA and SVM classifiers using the
proposed feature set was carried out. From all movement categories, SVM showed
the best performance, followed by KNN and LDA, respectively. Moreover, SVM
had a significant difference with LDA (p < 0.024) for all cases, but did not have a
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significance difference with KNN (p > 0.062), except for the control group for
movements of CB (p < 0.032). Figure 22 shows the classification error for both
control group and amputees using SVM. From the results with amputees, the
average accuracy for CA, CB and CC categories using SVM were 97.0 + 2.0%, 94.6
+ 2.2% and 95.4 + 2.0%, respectively, with the grasp movements (CB) obtaining

the lowest performance.

For all categories, values of Kappa’s coefficient and specificity were higher
than 0.9 and 98.4%, respectively. The accuracy among subjects ranged from
99.8% (A7 for CA) to 90.8% (A3 for CB). In all experiments, the highest
performances per subject were for the amputees A7, Al0 and AS8, sorted by
performance, respectively.

Figure 22. Classification error for control group and amputees using the proposed
feature set with SVM.
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For category C, which includes thirteen movements, the best accuracies
were achieved by amputee A7 (99.5 +1.0%) followed closely by A10 (97.0 + 2.4%).
However, the worst result was for amputee A3, for CB (90.8 + 3.6%), while for CA
and CC categories, amputee A5 and A6 showed the worst performance (although,
above 92.4%). Results using KNN showed average accuracies above 90.4% (CB),
while for LDA the performance was above 74.9%. From the results for the control
group, accuracies ranged from 99.9% to 96.8%, with average accuracy of 98.8 +
1.2%, specificity (Sp > 99%) and Kappa (k > 0.97). Table 8 summarizes the results
for the control group and amputees for accuracy and Kappa.

The confusion matrices for each movement category provide the average mistaken
classification for all amputees, as shown in

Figure 23. The confusion matrix for CA shows that the recognition of finger
movements was mainly confused with flexions of the near fingers. However, the
fifth chirodactyl (F5) was found to be easily confused with most of the movements.
Furthermore, hand closing (HC) was confused with all fingers (F1-F5).

Table 8. Average classification accuracy (%) and Kappa’s Coefficient of three

movement categories, for control group and amputees. Table includes the results
for SVM, LDA and KNN classifiers.

SVM LDA KNN
Cat Sub
Acc K Acc K Acc K
C | 99.17+0.6 0.99+0.0 | 95.06£2.5 0.92+0.0 | 99.55+0.2 0.96+0.0
A A | 98.94+0.8 0.97+0.0 80'2;:10' 0.78+0.2 | 96.98+1.9  0.92+0.1
97.64+0.8 0.98+0.0 | 89.35+3.4 0.84+0.0 | 98.07t1.4  0.93+0.1
< A | 96.94+1.0 0.94+0.0 | 76.06+£9.7  0.75+0.1 | 94.58+2.2  0.84x0.
98.77+0.7 0.99+0.0 | 88.19+3.2 0.88+0.0 | 97.89+0.7 0.97+0.1
- A | 97.19+0.9 0.95+0.0 | 71.91£10.7  0.75+0.1 | 9536+2.0 0.89+0.1

Control group (C); Amputees (A).
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Figure 23. Confusion matrices with average misclassification for amputees.
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For CB, the confusion matrix shows that most movements were confused
among them. Specifically, confusion matrices for the subjects show that tripod
(TP) is easily mistaken with all other classes. However, the highest mistaken was
found between the full hand wrap grasps (for 2.9% of times LD was confused as
MD). Finally, the results for CC resemble with previous observations, in which TP
was found to be the most difficult movement to be recognized. It was also found
from the results that movements belonging to CA were rarely confused with CB

(below 0.1% of mistaken).
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4.2.0nline study results

An important issue discussed in this thesis is whether the recognition
scheme can meet the real-time constraints of the problem. To accomplish it, the
system must perform pre-processing, feature extraction and classification in the
window increment time N = 100 ms, previously stablished. The processing delay
was empirically tested using an Intel Core i-7 processor (2.2GHz) for this system
computing and the computation performed in Matlab. No real-time operational
system was used for the testing. For the experiments, this processing system was
tested on online mode, without a perceivable delay in the visual response in the
laptop screen. This preliminary test showed that the system used was enough for
the experimental design here proposed. Although it is possible, the
implementation of the proposed method on an embedded hardware is beyond the

scope of this thesis.

The results shown in Figure 24, describes the error from each amputee for
the three movement categories. Table 9 summarizes the accuracy of classification
for each amputee and the mean accuracy for all of them. According to the results,
the highest performance (accuracy = 92.7%) was achieved for the finger individual

movements, followed by the grasp movements.

From the results in Table 9, an analysis of the overall performance of the
experiments shows a mean of recognition for all participants of 62.5% (SD = 15.1)
for CA, 54.1% (SD =12.7) for CB and 47.4% (SD =10.8) for CC. It is worth to note
that each category groups a different number of hand/finger movements, which is
directly related to the demand of the classifier to discriminate the classes.
Moreover, it was found a significant variance among subject’s performances for all

categories.
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Figure 24. Online results for amputees, for three movements categories.
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Table 9. Online results for amputees, for the three movements categories.

Subjects Mean

Cat
CA
CB
CcC

1 2 3 4 5 6 7 8 9 10

717 537 541 546 432 442 927 723 604 784 625
61.0 59.5 258 42.0 699 423 626 613 539 624 541
59.5 46.8 32.8 40.7 383 364 687 546 423 533 474

For CA, e.g., the performances were between 44% and 93%, being a

significant difference. Similar results were found for the control group, which can

be found in Table 10.

Table 10. Online results for control group, for the three movements categories.

Subjects Mean

Cat
CA
CB
CC

1 2 3 4 5 6 7 8 9 10
822 888 685 569 824 718 634 822 679 768 741
675 799 557 515 708 639 535 675 797 765 66.6
65.2 63.7 428 429 631 582 361 652 50.7 59.8 54.8
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Conducting a deeper analysis for each one of the categories, with the
individual finger movements belonging to the CA, some subjects showed ease to
discriminate individual finger movements, while others showed difficulty to
accomplish it. The best performance was achieved by amputee A7, with 92.7% of
accuracy, followed by Al0 with 78.4%. Al and A8 also showed a good recognition
rate, with accuracies above 71%. However, the lowest performance corresponded
to A5 and A6, with accuracies below 44%. A2, A3 and A4 had also difficulty to

recognize the movements, obtaining accuracy of 54%, approximately.

In particular, amputee A7 showed to have good abilities to contract the
selective muscles to discriminate individual fingers. In Figure 25, the confusion
matrix shows that high values of recognition were related in the diagonal, which
means that the classifier’s output matches the correct target, corresponding to the
performed movement. It can be seen that when the classifier received patterns of
second chirodactyl flexion, it was confused by recognizing them as fourth

chirodactyl flexion (8.62%) or fifth chirodactyl flexion (5.5%).

Figure 25. Confusion matrix for A7 subject, in validation online for CA
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Figure 26. Output stream of predictions for amputee A7, in validation online for
individual fingers
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Similarly, the third chirodactyl flexion was confused with fourth chirodactyl
flexion (6.8%) or hand closing (6.2%). Figure 26 shows the stream of the class
decisions in the online experiments. The continuous blue line represent the target
while the red point describes the samples referred to the recognized patterns. It
can be seen that most of confused patterns are referred to movements of close

muscle in the arm, such as adjacent fingers.

Furthermore, for the grasps movements grouped in CB, most of subjects
showed similar performance, with accuracies between 60% and 70%. The best
performance was achieved by amputee A5, with 69.9% of accuracy, followed by
A7 with 62.6%. Taking into account the amputee A7 again, which was analyzed
for the movements from CA, Figure 27 shows the confusion matrix, while Figure
28 shows the responses on the time of validation. A7 showed to have abilities to
contract specific muscles for grasp movements, as well as to perform individual

finger flexion movements.

However, the grasp movements imply a greater difficulty in the muscle
selectivity to accomplish more complex movements, which involves more finger
movements at the same time. In Figure 27, the highest accuracy of true positive

for the movements, different to the rest state, was achieved for full hand medium
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wrap (86.3%), with a similar accuracy for sphere tripod grasp. Both medium wrap

and sphere tripod grasp were referred as power and precision grasp, respectively.

Figure 27. Confusion matrix for amputee A7, in validation online for grasp
movements
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Figure 28. Output stream of predictions for amputee A7, in validation online for
grasp movements.
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The most difficult movement to be recognized was the tip pinch, which was

confused with all other grasp movements, mainly with full hand large grasp
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(39.7%), being above of the movement itself (17.8%). Lateral grasp was confused
with high percentage of false positive for full hand medium wrap (39.0%). Similar
behavior was found in other amputees, whose accuracies were above 54%, such as

for Al, A2, A5, A7, A8, A9 and AlO.

Furthermore, some amputees had a low performance, around 42%, such as
A4, A6 and A9. In particular, the amputee A3 had the lowest performance, with
25.8% of accuracy, being that a high recognition rate for the rest state class was
achieved with 67.1%. It is worth to mention that the accuracy by itself it is no able
to assess the results on the validation of the classification, whereby it is necessary
to interpret the other indices of evaluation. However, the sensibility (25.8%) and
the specificity (85.1%) also indicated a very low performance. In relation to the
Kappa’s coefficient, a slight agreement between targets and outputs was found (K
=0.10), which means that the achieved results are not reliable to be used as control

command.

An overall assessment about this subject (A3) can be obtained by inspection
of the confusion matrix in Figure 29. The rest state, referred to no voluntary
contraction to execute any movement, was wrongly recognized when the subject
was asked to perform most of movements. A significant number of false positive
was found, up to 76.7%, when performed lateral grasp. Also, it was found that full
hand large grasp was recognized as false positive when other movements were
performed. The spherical tripod grasp had the higher recognition among the
grasps, with 32.2%.

In summary, it can be noted that in the online experiment, this subject
could no perform voluntarily the selected muscle contraction to discriminate
movements, neither maintain repeated patterns in relation to the experiments
conducted in the training of the recognition system. Moreover, it could be
understood as there was not an enough voluntary contraction, in most of trials in

the experiment, to be recognized as a movement.
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Finally, in CC, for the recognition of all proposed movements, results
showed accuracies between 32.8% and 68.7%. The best performance was achieved
by amputee A7 again (68.7%), followed by Al (59.5%). In particular, for the
confusion matrix of A7 in Figure 30, it was possible to identify a tendency in the
misclassification, in relation to the similarities in the movement executed.

Figure 29. Confusion matrix for the amputee A3, in validation online for grasp
movements.
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The grasp movements, e.g., which involves the actuation of more than one
finger to accomplish the movement, were confused mainly among themselves.
Similarly, the individual finger movements seem to be confused mainly with other
movements in this category. However, a few false positives were noted when some
movements, like spherical tripod and lateral grasps, were recognized as first

chirodactyl or third chirodactyl flexions.

Figure 31 shows the stream of outputs in the sequence of the execution of

each movement in the experiment.
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Figure 30. Confusion matrix for the amputee A7, in validation online for all
adopted movements.
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Figure 31. Output stream of predictions for the amputee A7, in validation online
for all adopted movements
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4.2.1. Post-processing

The results of the classifier were evaluated to reduce the yielding of
predictions without an enough reliable. The results of the classifiers generated
scores with a probability of association of the current pattern with each one of the
classes. The three methods exposed in the methodology were analyzed after the
obtainment of the results to identify its suitability in an implementation for real-

time applications.

The methods used in the analysis are denoted here as PPl, for the
comparison using the agreement through the Kappa’s coefficient, PP2, for the
comparison using a defined threshold; and MV for majority vote. Table 11 details
the results of the methods for all amputees. By inspection, it can be seen that in
most of cases PP1 produces better results than other methods, followed by MV and
PP2, respectively. PP1 showed differences up to 5.3% in relation to PP2. A slight
difference was found between PP2 and MV (up to 1.9%).

On the overall results, PP1 improved the performance up to 10.7%, in
relation to the cases when no post-processing techniques were applied. However,
it can be also observed that the improvements were accomplished for the same
subjects, while other ones did not have difference, over all movement categories.
The percentage of trials discarded are also included in Table 11, denoted as Discl
and Disc2, for PP1 and PP2 methods, respectively. For MV, it was not calculated

this measure, due to at the end, the output is changed and not discarded.

As a specific case, results for amputee AlO in the online experiment, for CA,
were considered to analysis. Figure 32 describes the performance using PPl
method by iteration of the threshold of maximum score used for comparison. It is
shown the accuracy across the iterated threshold, T, from O to 0.9 (blue line), and
the percentage of the total of trials that were classified (red line). The value T =

0.65 was obtained for the eight-class problem according to Equation 2.17.
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Table 11. Post-processing analysis results.

Subjects NoPP PP1 PP2 MV Discl Disc2
Category A (CA)
1 65.8 76.5 71.7 73.5 03 19.8
2 493 493 493 493 0.0 0.0
3 51.9 56.2 54.1 55.0 0.2 13.7
4 50.3 50.3 50.3 50.7 0.0 0.0
5 403 46.1 432 432 0.5 28.5
6 434 447 442 46.1 0.1 34
7 90.1 90.1 90.1 90.4 0.0 0.0
8 69.7 74.2 723 72.8 0.2 2.4
9 58.7 61.2 60.4 60.6 0.2 12.7
10 74.8 8l.4 78.4 80.6 0.2 14.8
Category B (CB)
1 49.7 57.5 54.8 55.0 0.4 22.7
2 471 471 471 48.2 0.0 0.0
3 18.5 20.2 19.1 193 0.7 393
4 42.5 424 42,5 42.7 0.0 0.0
5 393 411 40.4 40.8 0.5 25.0
6 26.1 26.5 263 25.8 0.0 2.2
7 55.1 55.1 55.1 55.8 0.0 0.0
8 39.6 40.0 40.2 40.1 03 17.5
9 421 40.7 42.5 43.6 0.4 20.9
10 43.9 44.9 44.6 44.4 03 17.7
Category C (CC)
1 55.4 64.9 59.5 61.6 0.4 22.8
2 427 427 427 42.8 0.0 0.0
3 32.0 33.8 32.8 32.7 0.4 214
4 43.8 43.8 43.8 442 0.0 0.0
5 30.3 323 32.2 335 0.6 299
6 35.2 35.6 35.6 36.5 0.1 2.8
7 65.6 65.6 65.6 66.4 0.0 0.0
8 451 49.0 47.0 47.4 03 18.8
9 413 41.6 41.8 413 03 18.4
10 50.8 57.0 533 54.6 04 20.4

Output without post-processing technique applied (NoPP); method 1 for
post-processing (PP1); method 2 for post-processing (PP2); results using majority
vote (MV); rate of discarded trials using PP1 (Discl); rate of discarded trials using
PP1 (Disc2).
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Figure 32.Post-processing response by iteration of level of agreement.
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The stream of the class decisions from the classifier in the online results
were plotted to illustrate the suitability of this scheme. In Figure 33, in the upper
diagram, the unclassified trials are represented by vertical black lines. The blue
line indicates the target class related to the real movement performed by the user
and, the outputs that were classified are represented by red point dot. Such as
aforementioned, due to the requirements of the system to be applied in real time,
it is necessary to guarantee a response with a delay lower than 300ms. Thus, it is
important that consecutive unclassified trials do not yield an extend time without
a command to be sent. As the increment window defined in the data extraction
was 100 ms, then, it is accepted no more than five consecutive unclassified trials
to meet this constraint. The Figure 33, illustrates the occurrence and number of
consecutive unclassified trials in the execution of the experiment. Figure 33 also
shows the post-processing results using PP], for A10 in CA, showing the cases with
up to 3 consecutive unclassified trials. The performance for this amputee achieved
81.4% of accuracy, in relation to 74.8% when no post-processing technique was

applied. Thus is, a correction of 6.6% was accomplished, with 14.8% of trials

discarded.
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Figure 33. Temporal diagram using post-processing method 1. (Up) predicted
decision with discarded patterns; (down) consecutive discarded trials.
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An analysis made from the results of all subjects indicated that some of the
unclassified trials were actually true positives, i.e., correctly recognized patterns.
Nevertheless, it was noted that the post-processing improved the overall
performance. However, the overall results using PP1 showed to have no more than
four consecutive samples discarded, as shown in Figure 34. It can be noted that
subjects A2 and A7 did not present discarded trials, while A3, A5, A8 and Al0 had
the highest rates of which indicates that recognition had a low rate of discarded
trials. It is worth to note that discarding trials is intended to reject likely false

positives, according to the scatter distribution of the feature space.

4.3.Online applications

Experiments were conducted using a robotic hand of 5 Degrees of Freedom
(DOF), one DOF per finger, shown in Figure 35, including individual articulations
for five fingers. Five servomotors were controlled by an Arduino, which receives

the control commands via serial port using an UDP protocol.
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Figure 34. Histogram of consecutive unclassified samples.
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Posterior experiments were conducted with a second prototype of a robotic
hand, built with a 3D printing (Figure 36). This prototype has similar
configuration to the robotic hand previously descripted, with five DOF for each
one of fingers. Servomotors use the same control developed in Arduino. It is worth
to mention that this prototype does not represent a solution to replace an amputee
limb because it is not wearable and its physical characteristics are not developed
to be used as a prosthetic device. Inside the 3D printed robotic hand, an array of
string pulls the artificial fingers through the servomotors controlled by the user
interface. Both prototypes descripted before were adapted to be used in the
experiments and to represent a visual response for the MES recognition system

proposed in this thesis.

For the experiments using the robotic hand, the system showed a success
rate of 96.36% and high concordance (k = 0.97). This test in online mode was
performed initially without visual feedback, showing 54.3% of accuracy and K =
0.45. Finally, visual feedback was provides for the subject with 94.6% of accuracy
and a very high concordance (k = 0.94). These results means that it is possible to
obtain an important improvement in performance when is provide a feedback in

the experiments.
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Figure 35. Robotic hand used for the experiments.

Additionally, experiments with a virtual reality environment (VRE) were
also conducted (Figure 37). The VRE was built to allow a visual biofeedback during
the experiments, and can be used as a training system for the use of myoelectric
prosthesis. The VRE includes all the movements adopted in this research by
controlling the individual articulations resembling human fingers. Only finger
flexions were controlled, while the return to the state position is an implicit action

when a command control indicates a change at the movement.
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Figure 37. Virtual reality environment for training the control of a myoelectric
prosthesis.

4.4. Towards a single-channel recognition

system

The effect of using a reduced number of electrodes to recognized dexterous
hand/finger movements was analyzed, in order to identify the scope of the
proposed method focused on low-density MES. All the possible combinations
using four electrodes were tested, in order to compare the improvement of the
performance when increasing the number of MES channels. Fifteen different MES
channel combinations were used to train the MES pattern recognition system,
grouped into four sets according to the number of channels, referred as four-
channel (4-CH), to a single-channel (1-CH) system. From the results, the best
channel combination for these sets were summarized in Table 12. A comparison

of performance from each amputee is presented, underlining the best accuracy.
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This analysis was performed for each one of the categories of movements proposed

in this research.

For GA movements, it was found that 3-CH and 4-CH systems had
performances very similar in most of cases, with difference in accuracy between
both systems from 0.1% to 3.9%. Four amputees showed having the best
performance when 4-CH system was tested (Al, A3, A8 and 10). Moreover, the 3-
CH system achieved the best performance for four amputees (A4, A5, A7 and A9).
However, there were amputees who achieved the best performance using 3-CH
and 2-CH systems, such as A6 and A9, respectively. At overall, it was found that
the use of more channels improves the performances for most of amputees,

however, these differences are not significant (p = 0.9397).

Table 12. Comparison of accuracy for different number of MES channels.

Subjects

CH 1 2 3 4 5 6 7 8 9 10 Mean SD
CA

53.7 544 435 413 39.0 482 904 489 50.6 510 521 137

[a—

2 673 63.0 431 452 442 445 938 626 638 703 59.8 15.2
3 714 619 461 52.0 449 439 963 728 656 771 63.2 161
4 749 574 46.6 49.7 448 433 942 767 613 78.6 62.7 16.6
CB
1 60.2 566 21.6 420 497 342 681 454 475 578 483 129
2 672 541 158 46.0 577 36.0 704 494 514 573 50.5 149
3 77.6 517 143 469 553 447 673 509 48.0 60.9 51.8 15.8
4 754 442 127 414 502 404 644 471 477 551 479 15.6

CC
1 406 368 245 298 259 323 684 333 431 392 374 119
2 59.6 50.7 273 331 311 349 684 469 559 556 463 133
3 69.8 50.7 289 373 329 371 713 521 538 62.6 49.6 145
4 73.8 49.7 276 354 332 346 689 588 484 59.2 49.0 15.2

Number of channels (CH). All values corresponds to accuracy [%].
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However, for CB movements, five amputees showed the best performances
with the 3-CH system, followed by 2-CH and 1-CH, as shown in Table 12. Although
the 4-CH system showed similar performance in comparison to the 3-CH (p =
0.2899), it did not improve the results by including more MES channels. Similarly,
for CC movements, the 3-CH system showed the best performance for most of

amputees, followed by 4-CH and 2-CH, respectively.

Figure 38 shows the error obtained for 4-CH to 1-CH systems, for all
amputees and all movements. It can be concluded that the increasing of MES
channels does not necessarily improve the ability of discrimination of the pattern
recognition system. Possibly, it could be due to the addition of irrelevant
information that makes more difficult the separability among classes. In
particular, for CB, it was noted that for all cases three channels provides better

results.

The relationship between the accuracy and the number of channels is
represented in Figure 39. It was obtained that single-channel systems is significant
different (p < 0.0286) from 3-CH and 4-CH schemes in relation to the accuracy
for CA movements; moreover, for CB, it was not found significant difference (p >
0.2257); and finally, for CC, the same scheme is significant different (p < 0.0036)
for 3-CH and 4-CH.

From these results, it can be stablished that it is possible to obtain a pattern
recognition system using a single-channel, with similar results compared with
other ones based on low-level MES. However, it is worth to mention that it is
expected a decreased performance in the recognition when increasing the number
of classes. Thus, it is concluded that an interesting problem in this research area
is the identification of a reduced set of movements, suitable for each amputee,

according to his/her abilities to obtain a more accurate system.
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Figure 38. Comparison among performance for four-channel to single-channel
systems, for all categories of movements.
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Due to the difference on the accuracy in relation to the number of channels,
Table 13 summarizes the main selected muscle groups from previous results,
which provide the better performance.

Table 13. Channels selected for the configurations with reduced number of
electrodes.

CA CB CC
Electrodes (Ch) 1234 1234 1234
Number of
channels
1 2 2 2
2 2 3 12 2 3
3 234 12 4 234

From this results, it can be found that a second channel provides relevant
information to be selected for all channel configurations. This is expected, as this
additional channel collects information from the finger flexion muscles, which
plays an important role in the execution of all hand/finger movements here
proposed. Moreover, a third channel is necessary for system configurations using
two channels, when finger movements are involved, as this third channel collects
information from the wrist flexion muscles, which are contracted along other
muscles in hand movements using fingers. For grasp movements, the first channel
has an important contribution, such as expected, due to this channel collecting
information from deep muscles of the first chirodactyl, which have an important
action for most of movements for grasp purposes. Finally, a fourth channel may
be considered on all three-channel configurations, as it provides information

about the extensors muscles.
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dexterous

An assessment of the movements performed by amputees regarding

discrimination abilities, taking into account his/her ability to repeat patterns

belonging to the same movement and to distinguish patterns from other

movements was performed. The analysis was divided into the categories of

movements for individual finger movements (CA) and grasp movements (CB). The

overall results are shown in Table 14.

Table 14. Results for PNM index for movements of CA and CB.

Mov. Amputees PNM
1 2 3 4 5 6 7 8 9 10 Average
Individual finger movements (CA)
RT 0.98 1.00 0.39 0.95 0.44 0.48 1.00 0.97 0.89 1.00 0.81+0.25
F1 0.75 0.00 -0.04 -08 -041 -0.57 0.99 -0.61 -0.96 041 -013+0.64
F2 0.50 -0.20 -0.59 -044 -0.60 -0.57 0.0 010 -0.27 052 -0.14+041
F3 -0.16 -0.29 0.00 017 -028 -0.66 0.59 0.55 0.74 0.25 0.09+043
F4 -0.16 -0.50 -0.25 -031 -0.86 -019 0.62 0.71 -0.65 -0.09 -0.17+047
F5 -0.07 -0.72 -0.8 -024 -055 -010 0.75 0.45 0.10 0.20 -0.11x0.48
HC -042 -024 -022 -029 008 -055 099 -0.05 0.20 0.57 0.01+0.45
HO 0.68 041 -0.26 -0.01 -0.04 0.59 0.99 0.65 0.94 0.57 0.45+0.40
Grasp movements (CB)

RT 0.99 1.00 -0.76 1.00 0.68 0.97 100 1.00 1.00 0.99 0.79+0.52
LD 0.90 045 -091 -0.06 -0.58 -0.51 049 -0.47 0.56 030 0.02+0.57
LT 024 -0.04 -066 -049 -019 -059 0.06 -052 -053 -012 -0.28=+0.30
T 045 -024 -0.70 -0.36 019 -0.61 0.06 -0.53 -0.32 0.01 -0.21+0.35
TP -0.07 -0.01 -0.64 -0.37 030 0.08 005 -0.71 -039 -0.02 -0.18=+0.1

4.5.1. Individual Finger Movements

A comparison conducted for eight movements using PNM index showed

that the rest state is easily differentiated from the others. Opening hand

movement was the most distinguished among others (0.45), followed by third
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chirodactyl (0.09) and closing hand (0.01). The second and fourth chirodactyls
had the greatest difficulty for discrimination, with values below of -0.14, followed
closely by first chirodactyl and fifth chirodactyl. However, amputees Al, A7 and
Al10 showed easiness to recognize correctly the first chirodactyl (from 0.41 to 0.99)
and the second chirodactyl (from 0.10 to 0.52). Also, A7, A8, A9 and Al0 showed
high separability for third and fifth chirodactyls.

An individual assessment of subjects showed that A7, A8 and AlO had
indices above 0.4 in at least five movements, while A7 had the second chirodactyl
almost 0.6. However, A2, A3, A4, A5 and A6 had indices below -0.2 for second,
fourth and fifth chirodactyls. Also, most participants had negatives indices for first

chirodactyl and closing hand.

4.5.2. Grasp Movements

In general, full hand wrap grasp (LD) had the second best PNM index (0.02)
after rest state (0.79), followed by tip pinch (-0.18). The hardest movement was
lateral grasp (LT) with 0.28. For amputees Al, A2, A7, A9 and AlO, LD grasp had
a very high performance in relation to the other functional movements, with
indices from 0.3 up to 0.9, which means a highlighted easiness to accomplish this
movement. However, A3 and A5 had the worst performance for this movement
among the others, with indices from -0.58 to -0.91. For A5 and A6, the tip pinch
showed highest indices (0.3 and 0.08, respectively), while A8 had the worst value
among the other movements (-0.71). Amputees A3, A4 and A9 also showed
trouble to accomplish this movement. In relation to tripod grasp, Al showed a
high ability to hold similar patterns across repetitions (0.45), while A5, A7 and
Al0 had a medium performance, with indices from 0.01 up to 0.19. Among all
amputees, A3 had a strong difficulty, showing a high confusion of grasp
movements with rest state. A8 and A4 also showed good results, distinguishing

very well functional movement from rest state (PNM=1). A4 also showed an
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easiness to differentiate LD grasp from the other movements. Details of the above

results can be found in Table 15.

The amputees showed two different tendencies according to their abilities
for movement learning. In the first one, some amputees achieved a high
performance with differentiated patterns among the proposed movements. In the
second one, some amputees showed difficulties to generate repeatable patterns in
some movements, implying that they would require additional sessions using the
protocol proposed to accomplish better results. In relation to the amputee’s
characteristics, low correlations of accuracies with age (p= -0.365 for GA and
p=0.134 for GB), and time since amputation (p=-0.290 for GA and p=-0.068 for

GB) showed a reduced impact on the results
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5. Discussion

The objective of this thesis was to propose a method able to recognize
patterns from dexterous hand/finger movements from amputees based on low-
density MES. A research was conducted with different feature combinations to
define an optimal set able to improve the results of classification. The results
indicate that a feature selection using SFS-based methods was highly variable
between subjects, while GA-based methods provide more homogeneous feature
subsets. Moreover, the methods SFS and SFS-CH (SFS applied by channel
independently) showed different results according to the algorithm used for

classification.

In terms of the nature of the features, GA selected, in most of cases, DFA
and HFD features, which means the suitability of these features to characterize
the complexity of the MES. However, the feature AR model was also considered
with high relevance in the proposed feature set, which is consistent with literature
as shown in Several factors are taken into account both in the motor learning and
acquisition of abilities during the training with an upper-limb prosthesis, as verbal
instructions, characteristics and variability of practice, active participation and
motivation of the user, feedback, among others. Some studies have been focused
on developing multifunctional upper limb prosthesis combined to training
environments to provides biofeedback (CUNHA, 2002). However, a methodology
to assess the amputees’ abilities to control a prosthesis is a lack in the literature

(BOUWSEMA; VAN DER SLUIS; BONGERS, 2014).

Table 1. Other features from the time domain, such as SSC and ZC, were also
found to be relevant in solving the problem in this research, which provide
information about frequency properties of the signal. Similar results were

achieved by the method SFS, which suggests the relevance of these features to be
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selected according both SFS and GA methods. However, SFS includes the feature
MNF in the frequency domain, which involves a transformation. Moreover, SFS
uses the classification accuracy as criteria for selection, which makes it dependent
on the selection of the classifier and time consumption for training and validation.
Otherwise, GA is based on the entropy of the feature distribution, which provides
high-quality results for feature selection and avoids local solutions, as was here
reported. In terms of computational cost, GA provides a suitable method for
feature selection in comparison with methods SFS. As a result of the factors
mentioned above, the selection of the outcome of GA was proposed to provide a
better characterization of dexterous patterns from MES. It should also be noted
that extraction of same features from all channels is more convenient for simpler
implementations. However, this study showed that it is possible to obtain better
results with a single-channel approach, but it would require a specific method for
each subject. Thus, a suitable scheme to get the best results is based on the best
performance achieved with GA + SVM. It is worth to comment that KNN also
could be considered as a good classifier, due to present a performance close to

SVM and have a lower computational cost.

In relation to the number of classes, CA includes eight, CB includes six and
CC has thirteen. Notice that a high number of classes makes the recognition to be
more complex. A comparison of the overall results showed that grasp movements
had a lower performance, even when the scheme included fewer classes. CB
movements had lower accuracy than gestures of CA, for all amputees, except for
amputee A5, with difference between categories from 0.21% to 5.66%. Note that
the classification accuracy was calculated by post-processing (offline). Although
each subject’s performance was different (i.e. amputees A7, Al0 and A8 achieved
generally better performance than the other ones), most of them presented clear
abilities for movements recognizing. Specifically, the amputee A3 showed

difficulties when performing grasp movements, which reflects in the results.
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However, results for recognition of individual finger for this amputee (A3) was

similar to other participants (96.4 +1.3%).

In all cases, it was found a lower accuracy for the amputees in comparison
with subjects of the control group, which may be due to several reasons, such as
disuse of the muscles or damage of the remaining muscles (Kumar et al., 2013).
All analyses of the movement categories lead to understand the abilities from
amputees to send commands to control a prosthetic hand. This study about
dexterous movements also covered the use of individual fingers to understand the
abilities of amputees to perform grasps movements. Thus, grasp movements
recognition seems to be more difficult than individual finger movement, mainly
due to the simultaneous use of more fingers during grasp. The category including
all the movements showed the possibility of identifying both individual finger and

grasp movements with high accuracy.

In addition, it is known from the literature that the relation between
strength of contraction and MES amplitude is non-linear for muscle contractions
on dexterous movements, making difficult the differentiation of muscular
activities of rest state at these conditions (Arjunan and Kumar, 2010; Arjunan et
al., 2014). However, MES from dexterous movements have a poor SNR (Signal to
Noise Ratio), while strongest contractions produce a bigger SNR, making the
features based on amplitude feasible to obtain better performance. Also, in the
experiments with amputees, it was found greater difficulty to accomplish lower
contractions during the performance of movements in comparison with able-
bodied subjects, mainly because the amputation effect. However, spasms and
difficulty for contraction of selective muscles while conducting dexterous
movements for a long time were also reported by the amputees, mainly A3 and
A5, although we think these issues can be overcome with a more frequent use of
the muscles. Also, we think that the level of amputation has influence in the
results, specifically for subjects A4, A6 and A9, who also had some changes on the

insertion point of the muscles due to the amputation height.
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For all experiments, the participants were required to concentrate whilst
the movements were carried out. Muscle fatigue was attempted to be avoided
leaving enough time between repetitions during the tests, and no more than one
hour was considered for tests, in order to avoid mental stress. This is due to the
protocol used, in which all the participants held the arms on the table, but a final

application would not have this limitation.

Despite the system was validated in offline mode, the time to record and
process the raw MES was lower than 300 ms, which agrees with the criteria
reported in (Englehart et al.,, 2001) to be used in real time application. A
comparison of our technique with previous works can be unbalanced because of
the difference in number of electrodes and muscles selected, number of classes,
whether amputees were included in the study and the kind of movements used in
relation to the level of dexterity. However, it is possible to obtain a ratio (R) shown
in Equation 5.1, which is proposed in this thesis, to get the relation between the
number of classes and the number of electrodes, meaning that the higher is value
of R, the better is the method. Table 15 shows a summary of previous works which
we calculate the value of R for comparison with our work. The overall accuracy
and details about the system used were also included, such as number of channels,
number of classes, and number and kind of participants, whether able-bodied or
amputee. Moreover, the kind of movements recognized is also evaluated, as if
movements related to finger, hand, writs, forearm and grasps were specified.
Finally, the ratio R here proposed was calculated, which is defined by the relation

shown in Equation 5.1.

N.Cl

= 5.1
N.Ch

R

where N.Cl is the number of classes to be recognized and N.Ch is the number of
channels used to collect the information from the system. In this sense, our work
presents value of R equal 2 (for CA), 1.5 (for CB) and 3.25 (for CC), which means

the highest value in comparison with the other researches.
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Authors N. N. Kind Subjects Acc  Ratio
Ch Cl movements [%] R
2002, Peleg et al. 2 5  Fingers 4C 93 2.50
2006, Tsenov etal. 2 4  Finger and 1C 98 2.00
hand
4 4 1.00
2008, Oskoei 4 5  Wrist nc 97 1.25
Hu
2009, Tenoreetal. 19 12  Finger 5Cand1A 88 0.63
32 12 Finger 5Cand1A 94 0.38
2009, Chuand Lee 4 10 Wrist and 11 C 97 2.50
grasp
2011, Ciprianietal. 8 7  Finger 5Cand5A 48 to 0.88
98
2011, Li et al. 12 11 Wrist and 5C 713 0.92
grasp 8A
2012, Phinyomark et 1 2 Forearm, wrist 20 C 78 to 2.00
al. and hand 91
2013, Al-Timemy et 6 15 Finger 10 C 89 2.50
al. 6 12 Finger 6A 79 2.00
2013, Wang et. al. 2 8  Grasp 6C 98 4.00
2015, Castroet.al. 5 6  Finger 4C 97 1.20
5 10 Finger and 4C 80 2.00
grasp
This study 4 8  Finger and 10Cand10A 99 2.00
hand
4 6  Grasp I0Cand10A 97 1.50
4 13 Finger and 10Cand10A 97 3.25
grasp

Number of channels (N.Ch);

Amputees (A); Accuracy (Acc).

Number of classes (N.Cl); Control group (C);

Thus, our research represents a contribution in the study of non-linear

techniques to characterize MES for accurately recognized dexterous hand/finger

movements. The validation of the proposed method to recognize all thirteen

movements considered in this research, with high accurate results, represents also

a contribution for the literature. Additionally, the use of low-density MES

represents an important advantage for the acceptance of prostheses by amputees,

according to (KHUSHABA et al., 2012), who state that the reduction in the
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number of electrodes, without compromising the classification accuracy, would

significantly simplify the requirements to control myoelectric prostheses.

Analyzing Table 15, from the studies considering dexterous movements,
(CHU; LEE, 2009) included only two grasp movements (cylindrical and lateral
grasps). It is worth mentioning the study of LI et al. (2011), which recognizes four
different grasps among eleven movements, with 71.3% of accuracy, validated on
amputees. However, their work included high-density MES (twelve channels).
Moreover, AL-TIMEMY et al. (2013) included twelve different based-finger
movements with six amputees and six MES channels, with 89% of accuracy.
However, their study did not include grasp movements, a drawback that our
research has overcome. However, CASTRO; ARJUNAN; KUMAR (2015) included
finger and grasp movements, but using five channels, with 80% of accuracy and

only was validated offline on able-bodied subjects.

Additionally, our study included the most important movements from a
user-centered perspective according to PEERDEMAN et al. (2011), which improve
significantly the functionality of the prostheses for activities of daily living.
Moreover, results presented in this research can be considered quite relevant, due
to the validation of signal processing techniques with ten amputees, even in both
offline and online modes. For our knowledge, no studies for recognition of
dexterous hand/finger movements in more than eight amputees were found in

literature.

The analysis performed for the selection of the suitable dexterous
hand/finger movements sought identifying the abilities from an amputee to use a
reliable myoelectric control. This lead the assessment of the movement-learning
abilities of upper-limb amputees using a myoelectric prosthesis and performing
distinguishable muscle patterns associated with hand, individual finger and grasp

movements. The method developed in this thesis can be used in clinical
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environments for cross-sectional studies to assess both amputees’ abilities and

training in prosthesis control.

One approach is to develop technologies and training methods that take
advantage of the innate control and learning strategies used by the brain to control
a biological limb. In fact, the central nervous system (CNS) uses strategies to
efficiently perform the task of grasping and manipulating objects. Thus, the
control system would modify ongoing motor commands based on sensory input,
producing predictive motor commands used to accomplish the task, such as found
for different authors (DOSEN et al., 2015; LEVIN; WEISS; KESHNER, 2015). The
improvements throughout new experiments can be associated with a
familiarization with the movements themselves. In addition, due to a series of
repetition movements, the brain inputs associated with motor learning are
training, and therefore, could be affected, improving the abilities for prosthesis

control purposes.

In relation to the discrimination abilities, variations in the performances
among amputees suggest differences in their learning abilities, which could
determine the duration of the training process. For example, amputees A7 and Al
showed the highest performance, for hand/finger movements and for grasp
movements, respectively. However, A3 showed the lowest performance with grasp
movements. Thus, the response variability among subjects reported in this thesis
may be influenced by factors like level of education, number of sessions, fatigue
and postural control, such as also detected by CANO-DE-LA-CUERDA et al.
(2015) and ENGDAHL et al. (2015). Likewise, clinical and physiological
parameters might affect in the discrimination and learning abilities for a natural

prosthesis control (ATZORI et al., 2016).
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6. Conclusion

The method proposed in this thesis lead to identify a more skilled group of
movements considering individual finger flexion, opening/closing hand and
grasps movements, for a prosthetic hand, using weak signals and low-density
MES. The system is divided into three categories for the study: individual finger
movements, opening/closing hand and grasps movements. A set of feature
combining non-linear techniques and statistical parameters of the MES amplitude
were also proposed to be used as input to the classifiers. In terms of classification,
LDA had poor results, with the best results obtained by SVM, followed closely by
KNN. However, KNN is faster than SVM, which implies an advantage over SVM
for real time applications, taking into account the not significant difference on
statistic tests. These results are encouraging for the development of real-time
control strategies based on the use of small number of MES channels to accurately
control dexterous prosthetic hands. In comparison with others works in the
literature, the method proposed in this thesis reached the highest average
accuracy (98.9%) and the highest value of R (3.25) in works including amputees,
which means that this method is reliable and efficient. The validation of the
method here proposed was performed in offline mode. Future works include tests
about the validity of the proposed method in real-time applications using
embedded hardware, towards a single-channel system for the recognition of

dexterous hand/finger gestures of amputees.

The design and control of versatile upper limb prostheses is a very
challenging task. While many breakthroughs have been made over the last several
decades, the difference in performance and quality between human hands and
artificial hands is quite substantial. Robotic hands have many degrees of freedom
distributed among several kinematic chains, the fingers. The complexity of the

mechanical design is needed to adapt hands to the many kinds of movements
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required in unstructured environments. Although it has been acknowledged that
a prosthetic limb does not provide all of the amputation functionality of a human
limb, there have been many recent advances to improve the upper limb prosthetic

restoration.

A limitation of this research is the fact that we did not divide the
participants into different learning capacities for the analysis. We do not know if
all subjects could be treated as a homogeneous experimental group, due to the
low number of participants, and we did not expect to find differences in learning
beforehand, related to the characteristics of the subjects. However, this interesting
finding was worth mentioning. In future experiments, it is recommended to define
possible differences in learning ability in advance. Moreover, we had some
limitations for this research. First, we had a limited number of tests to capture
data from amputees. Second, we did not include the use of visual feedback of
classification response to amputees while validation was carried out. We could
identify that is need to perform an enough number of previous experiments for a
better understanding of the abilities of the amputee, before presenting

biofeedback, to avoid frustration and dejection to the volunteer.

Future research and development of upper limb prostheses continue to be
held to mimic the human hand in terms of dexterity and adaptive capacity. The
literature shows that movement intention should be recognized and selected by
the user, while the control of the actuators for setting the joint angles, trajectories,
level of pressures should be performed automatically in a low level control system
(ANTFOLK et al., 2010), making sure to hold objects and avoid slippage. Recent
works show an increasingly interest to provide more functionality to the current
prostheses for better acceptance on amputees, which are addressed to be able to
identify dexterous hand/finger movements and different precision grasps to
increase the skills on tasks of daily living. Further, different works use weak MES
instead of high muscle forces to obtain a better muscle-computer interaction.

Non-linear techniques like fractal analysis (used in this thesis) are being used also
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in other works of the literature to model these weak MES, in order to develop high
level control systems. However, also low density is desirable to improve the
accuracy of these systems, avoiding interferences, training and decreasing
computational cost for real time implementations. However, implementation of
these techniques could require embedded systems with mid-range
microcontrollers or digital signal processors (DSP). Future studies should
investigate changes of results including simultaneous knowledge of performance
during validation. Simulators with virtual prosthesis could motivate the amputees
by providing this feedback. Nevertheless, this study did not included able-bodied
participants according to the precept that learning skills of the amputees are

similar to the unimpaired participants.
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Appendices



Appendix A — Human Ethics

Committee

UNIVERSIDADE FEDERAL DO ESPIRITO SANTO
e COMITE DE ETICA EM PESQUISA DO
éfca o CENTRO DE CIENCIAS DA SAUDE

Vitéria-ES, 15 de dezembro de 2011.

De: Prof. Dr. Adauto Emmerich Qliveira
Coordenador do Comité de Etica em Pesquisa do Centro de Ciéncias da Salde

Para: Prof. (a) Teodiano Freire Bastos Filho
Pesquisador (a) Responsavel pelo Projeto de Pesquisa intitulado “Méo artificial
inteligente. Controle de méo e dedos de uma prétese artificial.”

Senhor (a) Pesquisador (a),

Informamos a Vossa Senhoria, que o Comité de Etica em Pesquisa do Centro de
Ciéncias da Saude da Universidade Federal do Espirito Santo, apés analisar o Projeto
de Pesquisa n°. 302/11 intitulado “Mao artificial inteligente. Controle de méao e
dedos de uma prétese artificial.” e o Termo de Consentimento Livre e
Esclarecido, cumprindo os procedimentos internos desta Instituicdo, bem como as
exigéncias das Resolugdes 196 de 10.10.96, 251 de 07.08.97 e 292 de 08.07.99,
APROVOU o referido projeto, em Reunido Ordinéria realizada em 14 de dezembro de
2011.

Lembramos que, cabe ao pesquisador responsavel elaborar e apresentar os
relatérios parciais e finais de acordo com a resolugéo do Conselho Nacional de Salde
n® 196 de 10/10/96, inciso IX.2. letra “c”.

Atenciosamente,

@Q&MCMLUACMAM ~
Coordenador do
Comité de Etica em Pesquisa
CEP/UFES

Av. Marechal Campos, 1468 — Maruipe — Vitéria — ES — CEP 29.040-091.
Telefax: (27) 3335 7211
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Appendix B - Assessment sheet for

amputees

1- Identificagao

Mome:

Data de MNascimento: ! f Idade: anos Sexo | JM [ JF

Escolaridade

2- Anamnesge

Mao doeminante: [ ) direita [ lesquerda

L

Eficlogia da amputacao:
[ Iwascular { ) neoplasica ( )infecciosa [ ) congénita ( ) fraumatica { ) outros

Tempo de amputacdo: anos

Nivel da Amputagao Direito | Ezquerdo
Amputacdo de Antebrage | Terco proximal
Terco medio
Terco distal

Desarticulagao de Punho

3- Exame Fisico (geral e do coto)

Exame fisico geral

Ja fez uso de protese?(  1Sim () Mao

L

Tipao: Ha quanto tempo?
anos

ANVDs: Dependente (D) Parcialmente Independente (P} Independenta (1)
{ )alimentagde ( ) higiene cral ( ) higiene genital | ) banho { ) vestuario

L

Exame fisico do coto

Cicatrizacao

Localizagao da cicafriz

Cicatriz:

{  )Regular{ ) Mormotrofica ( ) Hipotrdfica () Aderida a planos profundos




118

Coxim terminal

Caracteristicas do Coxim Adiposo:

{ ) Firme { ) Flacido { ) Escasso [ )Ideal { ) Volumoso

Perimetria
Comprimento do cofto: cm  Referéncia ossea
Circunferéncia do cofo: e Referéncia dssea:

KMembro Fantasma

Paciente apresenta [ [ ) Sim [ JMN3o |
sensacac de membro | () Pressao [ JFormigamento
fanfasma? { )Dorméncia ( ) Temperatura
[ ) Coceira () Posicao do membro
Dor Fantasma
Paciente apresenta dor|{ ] Sim [ 1 N3o
fantazma? [ ) Disparo doloroso {1 Aperio
{ ) Queimacdo { ) Caimbra

Avaliacao Arficular

Goniometria: Afiva (&)  Passiva [P)

Direite | Esquerdo

E [P _|[A_[F

Ombro

Flexao (0 - 1807)

Zbducac (0 - 1607

Extensao (180°- 0

Rotacao Interna (0 - 657)

Rotacao Externa (0 - 907)

Cotovelo

Flexao {0 - 1457)

Extensao (145°- 0)

Pronacao (0 - 90%)

sUpinacao (90°- 0}

Data: / /

Assinatura do Avaliador
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