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VITÓRIA, BRASIL
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[Lawrence has just extinguished a match between his thumb and forefinger.

William Potter surreptitiously attempts the same]

William Potter: Ooh! It damn well ’urts!

T.E. Lawrence: Certainly it hurts.

Officer: What’s the trick then?

T.E. Lawrence: The trick, William Potter,

is not minding that it hurts.

Lawrence of Arabia, Dir. David Lean. Columbia Pictures, 1962.



Resumo
Andadores inteligentes são dispositivos robóticos que fazem uso de uma série de sensores,

atuadores e interfaces para prover funcionalidades de assistência à mobilidade para

indiv́ıduos com desordens de marcha. A crescente complexidade computacional demandada

por algoritmos e técnicas recentes aplicados à robótica móvel, social e de saúde, comumente

limitados pelo hardware embarcado do robô, aliados com avanços em tecnologias de

rede e computação em nuvem deram origem ao paradigma da robótica em nuvem. Esta

dissertação propõe, implementa e valida um sistema cyber-f́ısico habilitado por computação

em nuvem para assistência à mobilidade. O sistema, denominado UFES CloudWalker,

tem por objetivo a integração entre andadores inteligentes e plataformas remotas de

computação em nuvem, com foco na expansão das capacidades e funcionalidades oferecidas

por estes dispositivos para usuários, pacientes, profissionais de saúde e familiares. O UFES

CloudWalker explora conceitos de robótica em nuvem para expandir as capacidades dos

andadores inteligentes apesar de posśıveis limitações de hardware. Este trabalho apresenta

um estudo sobre dispositivos de assistência à mobilidade, focado em andadores inteligentes,

e um estudo em sistemas cyber-f́ısicos e robótica em nuvem, com foco em suas aplicações

na área de saúde. Ademais, também se discute desafios e potencialidades de combinar estes

conceitos de sistemas cyber-f́ısicos e robótica em nuvem aplicados a andadores inteligentes.

Como parâmetros variáveis de rede e nuvem (e.g., latência fim-a-fim, perda de pacote, e

disponibilidade) podem afetar tremendamente o controle desse tipo de sistema, dois grupos

de experimentos são realizados para validar preliminarmente o sistema proposto e entender

os impactos da qualidade de serviço prestado pela rede e pela nuvem sobre a avaliação do

usuário final sobre sua qualidade de experiência. O sistema é implementado pela primeira

vez através da integração entre um andador desenvolvido na UFES, o UFES Smart Walker,

e uma plataforma de nuvem localizada em um edge data center. Para completar a validação

do UFES CloudWalker, o sistema implementado é utilizado em um experimento realizado

sobre um cenário de serviço de assistência à mobilidade. Os resultados obtidos mostram a

viabilidade do sistema proposto mesmo sob condições desfavoráveis de qualidade de rede,

abrindo as portas para o desenvolvimento de uma nova geração de andadores robóticos,

integrados com a nuvem e capazes de lidar com um futuro sistema de saúde conectado.

Palavras-chave: CloudWalker. andadores inteligentes. robótica em nuvem. dispositivos

assistivos. sistemas cyber-f́ısicos.



Abstract
Smart walkers are robotic devices which rely on a series of sensors, actuators, and interfaces

to provide mobility assistance functionalities to mobility impaired individuals. The

increased computational complexity demanded by recent algorithms and techniques applied

to mobile, healthcare, and social robotics, often limited by the robot’s embedded hardware,

together with advancements on networking and cloud computing enabled the so-called cloud

robotics paradigm. This dissertation proposes, implements, and validates a cloud-enabled

cyber-physical system for mobility assistance. The system, named UFES CloudWalker,

envisions the integration of smart walkers and remote cloud computing platforms, aiming

at expanding smart walkers’ capabilities and the features those devices can offer to users,

patients, medical staff, and family members. UFES CloudWalker explores cloud robotics

concepts to unleash smart walker’s capabilities despite possible hardware limitations. This

work presents a study on mobility assistive devices, focused on smart walkers, and a study

on cyber-physical systems and cloud robotics, focused on its applications in healthcare,

and discuss the challenges and potentialities of combining cyber-physical systems and

cloud robotics concepts concepts in smart walkers. Nevertheless, as network and cloud

parameters (e.g.,end-to-end latency, packet loss, and availability) can largely affect control

on such class of systems, two experiments sets are performed to preliminarily validate

UFES CloudWalker’s feasibility and to understand the impacts of the network and cloud

quality of service over the end user’s quality of experience. The system is implemented

for the first time by integrating an in-house developed smart walker, the UFES Smart

Walker, and a cloud platform located in an edge data center. To complete the validation

of the UFES CloudWalker, the implemented system is used in an experiment set built

over a mobility assistance service scenario. The results obtained argue for the feasibility

of such system even under unfavorable network quality scenarios, opening a door for the

development of a new generation of smart walkers, in which the devices are enabled by

the cloud and able to cope with future connected healthcare systems.

Keywords: CloudWalker. smart walker. cloud robotics. assistive devices. cyber-physical

systems. future healthcare.
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1 Introduction

1.1 Motivation

The world population is getting older and it is expected that in a few decades at least

one in every five individuals will be more than 60 years old in most developing countries.

In Brazil alone, the elderly accounted for 10% of the population in 2010 and are estimated

to reach 20% circa 2030 [1]. Human aging is associated with problems that gradually

affect mobility, which might lead to greater susceptibility to falls and accidents, loss of

independence and also hamper performance on certain daily chores.

Mobility is an important human faculty and impacts one’s capacity to freely move

through multiple environments and to perform daily chores with ease [2]. Besides decreasing

with age, neurological diseases also affect human mobility on different levels, and studies

have found that mobility difficulties can be linked with increased mortality [3]. Scientific

evidence also points to mobility restrictions also being associated with cognitive and

psychosocial disorders, which further degrades independence and the quality of life of the

individual [3].

Mobility assistive devices can be employed to mitigate mobility impairments. The use

of each of those devices are recommended according to the type of condition affecting

mobility and taking into account the level of impairment [2]. Technological developments

led to the possibility of integrating robotics concepts, sensors, and circuitry on such devices,

giving birth to a “smart” generation of mobility assistive devices. Smart wheelchairs [4],

canes [5], and walkers [6] have been developed by multiple research groups over the last

few decades to provide new or improved functionalities of physical support, and sensorial

and cognitive assistance. Smart walkers, for instance, have been designed to improve

pathological gait using support platforms for upper limbs and the exploitation of the user’s

own locomotion capabilities [7]. Recently, new features are being added to them ranging

from health monitoring to physical and cognitive assistance, demanding ever-increasing

embedded processing power.

The concept of cyber-physical systems is often applied to enhance the capacities of

standalone systems. Cyber-physical systems are systems that combine sensing, communi-

cation, control, and computing to interact with a physical entity [8]. Such systems usually

encompass physical elements, control and computation components, and communication

elements, and its definition encloses multiple systems from various fields [9]. Despite

the term not being directly linked to robotics, the concept is applied in networked and

distributed robotics, in applications as teleoperation and telemedicine [8, 10].

The evolution of control algorithms within the robotics field, relying on great amounts of
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data and computational capabilities, combined with recent developments on communication

and cloud computing technologies gave rise to the so-called cloud robotics paradigm [11].

On such paradigm, the individual robot does not rely solely on its own sensing and

processing capabilities. It communicates with a remote computing platform to acquire and

send data, instructions, and even control signals, while the cloud should be able to provide

nearly unlimited storage space and processing power. This allows for the exploitation of

techniques based on recent fields, such as big data and deep learning, on a larger range of

service robots, also allowing for the use of computationally expensive control algorithms

based on simultaneous localization and mapping, computer vision, trajectory planning,

among others [12].

In the light of a paradigm shift, a new generation of robotic assistive devices shall arise.

By leveraging the cloud capabilities, new control techniques will be applied on multi-robot

environments, in which assistive devices should be able to learn in a faster pace and adapt

to the ever-evolving impairment condition of different users. Over such scenario, mobility

assistive devices should evolve to offer new features to users, patients, therapists, and

caretakers. Nevertheless, the impact of relying on communication networks and remote

platforms must first be evaluated. Quality of service constraints may render unfeasible

such paradigm shift for devices with real-time requirements that physically interact with

impaired and often frail individuals.

This work discuss the challenges and potentialities of combining cyber-physical systems

and cloud robotics concepts in smart walkers. Moreover, a cloud-enabled cyber-physical

system for mobility assistance, the UFES CloudWalker, is presented. This system envisions

the integration of smart walkers and remote cloud computing platforms, aiming at

expanding smart walkers’ capabilities and the features those devices can offer to users,

patients, medical staff, and family members. This work also presents UFES CloudWalker’s

validation experiments. Results obtained from experimentation argue for the feasibility

of such system even under unfavorable network quality scenarios, opening a door for the

development of a new generation of smart walkers, in which the devices are enabled by

the cloud and able to cope with future connected healthcare systems.

1.2 Background

This work was carried out on the Assistive Technology and Robotics Group (NTA)

and the Software Defined Networks Study Group (NERDS), both linked to the Graduate

Program of Electrical Engineering at the Federal University of Esṕırito Santo (UFES).

Over the last decade, NTA has conducted research on smart walkers for assistance

and rehabilitation purposes, mainly focused on human-robot interaction (HRI) and

human-robot-environment interaction (HREI). An in-house developed smart walker, the

UFES Smart Walker, is central to several published papers, in which multiple interaction
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techniques, interfaces, and control algorithms have been developed and demonstrated.

The NERDS group develops research on cloud computing and programmable data

center networks. The group also participates on FUTEBOL, an EU-Brazil cooperation

project under the European Commission H2020 program with research focus on wireless-

fiber integration. Researchers at NERDS possess the expertise in managing cloud platforms

and physical infrastructure resource, aiming at providing optimized levels of service for

applications being executed on the cloud.

In this context, this work aims at discussing possible benefits and challenges of combining

cloud robotics concepts in mobility assistive devices. This work presents a study on mobility

assistive devices, focused on smart walkers, and a study on cyber-physical systems and

cloud robotics, focused on its applications in healthcare, while discussing the challenges

and potentialities of applying cyber-physical systems and cloud robotics concepts to smart

walkers.

A cloud-enabled cyber-physical system for mobility assistance, the UFES CloudWalker,

is proposed exploring resources and expertise from both NTA and NERDS. UFES

CloudWalker’s overall system and architecture are described and detailed. For not relying

solely on local computation, the proposed system is susceptible to variable network

and cloud conditions. Quality of service indexes involving communication and remote

computation, such as end-to-end latency, information loss, and availability, can largely

affect control and stability on cloud-enabled devices. Therefore, two experiments sets are

performed to preliminarily validate UFES CloudWalker’s feasibility and to understand the

impacts of the network and cloud quality of service over the end user’s quality of experience

when making use of mobility assistance services. During this preliminary validation stage,

the system is considered to be on its most vulnerable configuration, in which no processing

is retained and all control algorithms are remotely executed.

CloudWalker is implemented for the first time by integrating the UFES Smart Walker

and a cloud platform located the NERDS data center. The walker is adapted to be able

to communicate to remote virtual machines running on the cloud, exploring different

wireless and wired networks. To complete the validation of the UFES CloudWalker, the

implemented system is tested against an experiment set built over a mobility assistance

service scenario. Results and future directions are presented and discussed by the end of

this work.

1.3 Objectives

The general objective of this work is to propose, develop, and implement a cloud-

enabled cyber-physical system for mobility assistance. The system is composed by the

integration of a smart walker and services executed in a remote cloud platform. The smart

walker is intended to acquire data from sensors, communicate with the remote platform,
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and execute remotely executed control signals. The cloud platform receives the sensorial

information, process the data, execute control algorithms and sends back to the smart

walker the control signals to command its actuators.

The objectives of this work can be listed as:

• To perform a literature study regarding smart walkers;

• To perform a literature study regarding cloud robotics and its applications in

healthcare;

• To design a system architecture integrating a smart walker and a cloud computing

platform;

• To enable communication between a smart walker and a cloud computing platform;

• To develop control services to be remotely executed;

• To validate the real-time execution of the overall implemented system.

1.4 Dissertation Overview

After this introduction regarding the main concepts addressed in this work, the next

chapter presents a study on mobility assistive devices focusing on smart walkers. Conven-

tional devices used to provide support and assistance to mobility impaired individuals are

presented. Conventional and smart walkers are further discussed and a literature review

regarding smart walkers’ functionalities is presented.

Chapter 3 introduces cyber-physical systems and cloud robotics concepts. A literature

review on cloud robotics is presented, focusing on its applications in the healthcare field.

The chapter ends with a discussion regarding potential benefits and challenges of exploring

cloud robotics concepts in mobility assistive devices.

The UFES CloudWalker system is proposed in Chapter 4. The overall architecture is

presented and the resources used for its implementation are shown. Preliminary validation

studies are presented to discuss the impacts of variable network and cloud conditions over

the proposed system focusing on the end-user point of view.

Chapter 5 details the first implementation of the UFES CloudWalker. The system

is validated against a mobility assistance scenario, in which all control applications are

remotely executed. Results are shown and discussed, pointing to the feasibility of employing

the UFES CloudWalker to assist mobility impaired individuals.

The last chapter, Chapter 6, presents the conclusions and contributions from this work,

together with a list of resulting publications. Future work is discussed to point and suggest

developments and increments to the UFES CloudWalker, aiming at exploring the full

possibilities of the system.
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2 Technical Aids for Human Locomotion

2.1 Mobility Assistive Devices

Human mobility can be affected by multiple conditions and the causes for degraded

mobility are seldom associated to only one disease [13]. Individuals of advanced age are

more prone to suffer from mobility disorders due to problems often associated with aging.

Therefore, gait disorders – which can be characterized by slower and esthetically abnormal

gait – are particularly important for the elderly population [14]. Such disorders do not

impact solely on the individual’s independence and ability to perform daily chores but can

also be a major risk factor for fall and injury. Reduced activity can lead to a decrease

in muscle tone and strength, decreasing physical function, and can also reduce social,

emotional, and cognitive function [13].

In this context, it is important to develop devices that can offer support and assistance

to mobility impaired individuals. Indeed, multiple assistive devices have been studied and

developed targeting different impairments conditions [15]. These solutions are selected by

a therapist based on the condition and the degree of disability of the user [6].

Assistive devices can be classified as alternatives, in case of total incapacity of mobility,

and augmentative, employed when the user has residual mobility capacity [16]. Among

alternative devices, wheelchairs (e.g., Fig. 1(a)) and solutions based on autonomous

special vehicles are the most common ones. Augmentative devices are employed whenever

possible to stimulate residual mobility and improve physical and cognitive capabilities.

Those devices can be categorized as mobility-training devices, such as parallel bars used

in therapy, self-ported devices, such as orthoses (e.g., Fig. 1(b)), and external devices.

Among the latter, canes, crutches (e.g., Fig. 1(c)-(d)), and walkers are most commonly

employed [6].

(a) (b) (c) (d)

Figure 1 – Examples of mobility assistive devices: a) manual wheelchair; b) active orthoses;
c) four-legged canes; d) auxiliary crutches.
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2.2 Walkers

Walkers are external devices characterized by their structural simplicity, low cost

and rehabilitation potential [17]. These devices provide support during bipedestation

while leveraging the individual’s locomotion capacity, stimulating lower-limbs musculature

and avoiding deterioration of physical capacities. Therefore, walkers are used whenever

possible to avoid early and deteriorative use of wheelchairs [6]. In addition, there is

evidence pointing that walker-assisted gait is related to psychological benefits as increased

confidence and safety perception during ambulation

There are many types of established walkers in the market and walkers developed

by research groups. These various devices differ in constitutive materials, structural

configuration, accessories, and offered functionalities. In general, walkers can be classified

in two types: conventional walkers and smart walkers [6].

2.2.1 Conventional Walkers

Conventional walkers (e.g., Fig. 2) are classified in respect to their ground contact

configuration. Considering the different kinds of these devices, they can be classified in

three groups [15]: standard, front-wheeled, and rollators.

(a) (b) (c)

Figure 2 – Walker frames. a) standard; b) front-wheeled; c) rollator.

The standard walker, depicted in Fig. 2(a), is the most common configuration among

conventional walkers. It is based on a four-legged rigid metal frame with rubber tips on

the end of each leg. Due to such form, it is considered the most stable configuration, being

employed when maximum balance assistance is required or when there are weight bearing

restrictions [6]. The standard walker requires some degree of upper body strength, as the

user must lift the walker on each stride, and also its use also results on an unnatural gait

pattern. Such extra level of force required drastically raises energy expenditure, restricting

the use of standard walkers for patients that also present severe levels of metabolic, cardiac,

or respiratory dysfunctions [18]. As such walker configuration also demands cognitive

ability to maneuver, there is still risk of falling – even backwards [19].
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Front-wheeled walkers, Fig. 2(b)), are a variation of standard walkers, characterized

by the presence of two wheels on the front legs, which affects ground contact [17]. These

devices are indicated for individuals with weaker lower limbs or that tend to fall backwards

while lifting standard walkers [6]. The front wheels allows for a more natural gait pattern,

but also diminish dynamic stability during walking when compared to the standard

model [15].

Rollators (also called four-wheeled walkers), Fig. 2(c), present wheels attached on

the four legs of the walker and brakes on the handlers. This device can be used when

the patient does not require higher levels of weight support, being the easiest to use

and preferred by most patients [19]. The use of rollators allows for faster locomotion

and more natural gait patterns. However, such devices are considered the most unstable

version among the walkers by the increased risk of falling when full body-weight support

is needed [17].

2.2.2 Smart Walkers

The use of conventional walkers provides enhanced support and weight bearing for the

individual, but it does not come without disadvantages. Some degree of cognitive abilities

is required to maneuver the walker in tight spaces and to command the brakes (in the case

of rollators). The use of walkers also reduct normal arm swing and might lead to poor

posture [2]. To solve such issues, research groups developed solutions encompassing the

integration of robotic concepts on conventional walkers, giving birth to the so-called smart

walkers.

Usually based – or inspired – on rollator frames, smart walkers integrate embedded

computational systems, sensors, and actuators to mitigate the disadvantages of conventional

walkers and to provide a whole new range of functionalities. Due to their design, smart

walkers are capable of offering better support while maintaining safety during locomotion

[20]. Some relevant examples of smart walkers from the literature are shown in Fig. 3,

such as the PAMM [21], a classic smart walker able to monitor patient’s vital signs, and

the one presented in [22], built to guide visually impaired individuals. The functionalities

offered by these smart walkers, among others, will by further discussed in the following

section.

As individuals that require mobility assistance have multiple specific needs, smart

walkers have evolved to provide different functionalities. These intelligent devices can

present features such as obstacle avoidance assistance, guidance during navigation, gait

monitoring, and fall prevention [6]. Usually, they can present five different functionalities [6]:

physical support; sensorial assistance; cognitive assistance; health monitoring; and advanced

human-robot interface. These functionalities are further discussed in the next section

together with a literature review.
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(a) (b) (c)

(d) (e) (f)

Figure 3 – Some relevant examples of smart walkers in the literature: a) PAMM [21];
b) iWalker [23]; c) JAROW [24]; d) SIMBIOSIS [25]; e) Guido [26]; f) smart
walker presented in [22].

2.3 Smart Walkers: Literature Review

Given the nature of smart walkers and the conditions of those who use these devices,

physical support functionalities are of great importance. Almost all smart walkers in the

literature present some kind of physical support function among its characteristics [2].

There are mainly two types of physical assistance [6]: passive and active.

Passive physical support is usually accompanied by mechanical or structural enhance-

ments to improve stability during gait, such as the enlargement of the base frame or the

balanced placement of heavy elements at lower planes [2]. Other passive change is the

replacement of the conventional handlebars of the walker by forearm support platforms,

which offers a better coupling between user and walker [27]. Smart walkers such as the

ASAS [28], SIMBIOSIS [27], ASBGo [29], and the UFES Smart Walker [17] are examples of

devices which rely on forearm support platforms. Clinical tests showed that these supports

eliminate the degree of freedom of the elbow articulation and also improve weight bearing,

easing the handling of the device and reducing risks of glide [2].

Passive breaking strategies are also commonly applied to improve gait stability by

controlling the device’s motion. As breaking on conventional walkers requires some level of

cognitive ability, motor coordination and dexterity, there is a risk of fall due to excessive

acceleration. To mitigate such problem, some smart walkers – sometimes referred to as
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passive smart walkers – utilize automated breaking control strategies. These models do

not present actuators to insert energy on the system, being literally pushed by the user.

The ability to perform automated break control allows for adapting the device’s apparent

dynamics to each individual user [30], fall prevention [31], and even guidance [22].

Active physical support functionalities are explored in several smart walkers. Usually,

motors are installed on the wheels of these devices to provide energy to the system, by

means of controlling wheels velocities, or to simply control wheels direction [6]. These

devices usually make use of advanced human-robot interfaces to detect, infer, or interpret

user’s commands and desires. Such interfaces can then translate those perceived signals

into motor actuation [2].

Sensorial assistance functionalities are usually designed to assist navigation on envi-

ronments with multiple obstacles or to help users with visual impairments [2]. Normally,

such features employ ultrasonic [32–34], infrared [33, 35], vision [36, 37], laser rangefinder

(LRF) [22, 33, 38], or even RFID [23] sensors to detect static and dynamic obstacles. The

control system can assist the user in obstacle avoidance by sound or haptic signals, or even

by directly acting upon the wheels, changing the path introduced by the user.

The PAM-AID [39] is a passive smart walker aimed to guide the elderly blind. Aware

of the environment, such walker took as inputs user’s desires (e.g., move forward or turn

left) to guide through corridors, providing warnings of nearby obstacles. In later work [40],

it was also able to steer the user around those obstacles. Point-to-point guidance was

resolved on Guido [26], an evolution of the PAM-AID, which was able to guide the user to

specific places.

On a more recent work, Wachaja et al. attempts to navigate people with visual and

walking impairments using an off-the-shelf passive walker retrofitted with laser sensors [22].

It relied on two vibro-tactile interfaces to provide navigational information. The walker

presented one operation mode in which the user was simply informed about surrounding

obstacles, and another operation mode designed to guide the user to a specific location.

Obstacle avoidance features were also tested on passive smart walkers on experiments

with blindfolded subjects. In Hellström et al., the walker’s breaks were employed as means

of influencing the direction of motion for obstacle avoidance [35], while in Hsieh et al., the

breaks were used to assure that the user would remain over a pre-established path [41].

Besides passive strategies, active strategies were also employed on guidance. The

Care-O-Bot II [42] is a walker capable of guiding the user throughout a established path

while respecting user’s inputs. Morris et al. presented the XR4000 [33], a walker able

to weigh user’s force inputs against a desired path. Other relevant examples of smart

walkers that employ active strategies are the COOL Aide [43], and the PAMM [21]. Those

strategies usually involve shared-control algorithms to still offer some degree of freedom to

the user.

Cognitive assistance techniques usually encompass navigation and auto-localization.
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Such features are especially important for people that present cognitive issues and problems

related to memory loss and disorientation [2]. Patients with neurological impairments

(e.g., Alzheimer, multiple sclerosis, and stroke victims) are also part of the target group for

cognitive assistance [44]. Some smart walkers are able to perform simultaneous localization

and mapping (SLAM) to place themselves in the environment, to plan trajectories, and to

guide individuals from one place to another. When the destination, which can be set by

the user or the caretaker, is known a priori, the walker may establish a path to be followed

over a previously uploaded map, in the case of structured environments, or a dynamically

generated map, when SLAM algorithms are used.

Guido [26] employed a SLAM algorithm based on laser sensors to build a map of the

environment, which was used to plan a trajectory to be followed. The i-Walker [45] could

present a map in a screen, allowing the user to chose a destination to be guided to. Devices

such as the XR4000 [33] and the one presented by Wachaja et al. [22] are also able to

use SLAM algorithms to guide users. In Panteleris and Argyros [36], a RGB-D camera is

employed to perform SLAM and the tracking of moving objects. Such navigation systems

usually incorporate sensorial assistance features, such as obstacle tracking and avoidance,

to allow for a safe locomotion.

Some smart walkers can also be used to monitor health parameters of the user. This

information can be used to keep a medical history or to detect emergency situations. For

instance, the PAMM [46] presented continuous health monitoring sensors to detect changes

in health trends through an ECG-based pulse monitor. The smart walker presented by

Chan and Green [47] could perform physiological monitoring employing a cardiac monitor

and a blood oxygenation monitor, and the one presented by Zhang et al. [48] collected

pulse data to feed a web-based application.

The elements that enable interaction between human and walker are called interfaces.

Such interaction usually relies on advanced human-robot interfaces to be perceived as

user-friendly and natural [6]. Human-robot interaction techniques may depend on different

interfaces, such as touch screens, joysticks, tactile sensors, inertial measurement units

(IMU), and force/torque sensors [17].

Interfaces can be classified as either direct or indirect. Direct interfaces are the ones

in which are passed directly to the device. This can be achieved via joysticks [49], voice

communication [50], pressure or force sensors [17, 26, 33, 51], among others. Differently,

indirect interfaces are used to infer user’s movement and intention without direct human

interference. Examples of such interfaces applied to smart walkers are computational

vision [38, 52, 53], infrared sensors [24], ultrasonic sensors [2], and LRF [7, 54].

On the next chapter, cyber-physical systems and cloud robotics concepts will be

introduced together with a discussion on how mobility assistive devices can benefit from

the exploitation of such concepts. Those possibilities are further discussed for smart

walkers in particular, and how can their features and capabilities be expanded by emerging
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communication and computation technologies.
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3 Cyber-Physical Systems and Cloud
Robotics

Robotics has been increasingly applied to common everyday devices in order to expand

their capabilities and relieve people from tasks in which human intervention is no longer

needed. From autonomous mail delivery vehicles to robotic museum guides, it is expected

that several types of facilities outside industry will rely on such robotic employees working

alongside – and even cooperating with – human staff. Healthcare is one of the areas in

which robotics is being applied, and future medical facilities shall be equipped with devices

such as robotic caretakers and autonomous stretchers, which will be also sharing space with

patients and health professionals. The capabilities of the current generation of assistive

and rehabilitation devices are enhanced by the integration with robotics: Exoskeletons are

being used in physiotherapeutical treatment and traditional devices, such as walkers and

wheelchairs, are now smart systems capable of interacting with patients and surrounding

environment.

The last generation of these technologies can be classified into cyber-physical systems

(CPS) as they combine sensing, communication, control, and computing to interact with

a physical entity [8]. According to Bordel et al. [55], there are conflicting definitions of

the CPS paradigm. Nevertheless, in this work the term CPS shall be understood as the

integration of six components: physical world, transducers, control components, data

analytics elements, computation elements and communication components.

Many research works have been conducted on CPS architectures, and Liu et al. [8]

separate CPS’s closed loop control in three layers. The first layer comprises the physical

system (i.e., the hardware of the device, including sensors, actuators, among others). The

second comprises the information system (i.e., real-time control and other data analytics

elements). Lastly, the third layer is the user layer, comprising the way the user interacts

with the CPS.

The CPS definition encompasses a variety of systems throughout different engineering

fields, from cochlear implants to industrial plants, and the integration of the different

CPS components intensified recently [9]. In other words, multiple systems that relied

solely on embedded hardware have been migrated to distributed systems employing CPS’s

concepts [56]. In that way, computational tasks such as monitoring and control can be

performed by remote platforms, which makes it possible to diminish the computational

capacity available on the physical local device. Moreover, such remote computing platforms

make it viable the utilization of high processing control algorithms, the access to large

quantities of stored data, and the proper scaling when new applications or devices arise.

The exploitation of cloud computing concepts expands CPS capabilities and gives rise
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to the so-called cloud robotics systems [57]. According to Wan et al. [11], big data and

other emerging computing and communication technologies allows for the integration of

cloud technology and multi-robot systems, making it possible to implement such systems

with improved energy efficiency, real-time performance, and low cost. This new paradigm

allows for the construction of robots with simpler and smaller hardware, but with access

to platforms with nearly unlimited capability of data processing and storage, making it

viable to employ less expensive robots in compute-intensive unstructured tasks [58].

Kehoe et al. [59] cite four areas in which recent growth fosters the potential for cloud

utilization:

• big data, providing access to remote libraries of images, maps, and general data;

• cloud computing, providing access to on demand parallel computing for statistical

analysis, learning, and control;

• collective robot learning, with robots sharing trajectories, control policies, and

outcomes;

• human computation, by using crowdsourcing to assess remote human expertise.

Wan et al. [11] cite open source applications as motivating factors for cloud robotics and

highlight the use of the Robot Operating System (ROS) and RoboEarth initiative. ROS

is a framework known to the scientific community and is presented as a meta-operating

system [60]. It provides services as hardware abstraction, low-level device control, and

package management in a peer-to-peer manner, making use of processes running in nodes

that communicate in a publisher/subscriber architecture. ROS also provides libraries for

obtaining, writing, and running multi-lingual code across multiple computers.

RoboEarth is a website dedicated to provide services to robotics systems [61]. It

works as a big database, gathering data about grasping control, navigation, intelligent

services, and other applications, from where robots can learn from other robots experience.

RoboEarth works together with innitiatives such as Rapyuta, an open-source cloud robotics

platform that helps robots to offload heavy computation to the cloud, also allowing for

the easy access to the RoboEarth knowledge repository [62].

The exploitation of the so-called cloud robotics paradigm can expand the capabilities

and features offered by assistive robots. Intelligent devices requires ever-increasing

processing power to enable new functionalities and complex applications, impacting

on computational costs involved. Algorithms responsible for tasks as fall prevention

or guidance demands some degree of complexity to provide the safety and reliability

needed. Migrating robot’s processing capabilities to the cloud leads to lighter and less

expensive robots [63]. Furthermore, through the access of big data sets, massively parallel

computing, and the sharing of actions and outcomes, heavy adaptive control algorithms
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can be employed in order to command multiple connected robots in dynamic environments

of healthcare facilities [11].

3.1 Cloud Robotics in Healthcare: Literature Review

Healthcare is an intricate field and can benefit from various technologies, robotics being

on of them. It is foreseen that cloud computing can be exploited in healthcare initially in

simple tasks, as exploiting multiple networked sensors for remote patient status monitoring,

moving forward to more advanced tasks, that can be as demanding as remotely controlled

robotic surgery.

In current literature, most cloud-enabled solutions explore networked sensors, wearable

sensors and clothing, and wireless body area network concepts. Hossain [64] uses

smartphones to perform patient localization in a cloud-supported CPS for patient mon-

itoring. In such work, smartphones are the devices responsible for acquiring voice and

electroencephalogram signals in real-time, feeding the cloud application with data. Zhang

et al. [65] presented a CPS for patient-centric healthcare applications and services is

proposed. This system collects data from wearable and household devices and leverages

distributed storage and parallel computing to provide healthcare services. Chen et al. [66]

present a similar approach of gathering patient data and connecting stakeholders through

a cloud platform, though focused on the end-devices used for data collection. In such work,

the design of the so-called smart clothing is discussed as a means to provide pervasive

intelligence for healthcare systems.

Ontologies and databases are also being constructed on the cloud. Dogmus, Erdem and

Patoglu [67] discuss the design and development of a ontology for rehabilitation robotics.

Also with implications to rehabilitation robotics, Radu, Candea and Candea [68] present a

cloud-enabled application to monitor and store data from an assistive exoskeleton. Such

work is focused on human-robot interaction addressing exoskeletons for industrial needs,

nevertheless most of the discussion also holds for rehabilitation purposes.

Li et al. [69] integrate a robot used for upper-limb rehabilitation to a cloud platform

to allow the physician to remotely oversee therapy and adjust parameters. A cloud-based

monitoring application can be accessed through the Internet, displaying both video and

audio information, together with kinematic and physiological data for analysis. Moreover,

libraries on the central server can be employed to give advice based on the training data.

There are also initiatives in social robotics to design cloud-enabled companion and

caregiver robots for the elderly. Fiorini et al. [70] present a personal health management

service, combining cloud computing services, a domestic robot, an Android app and a web

portal. Services as localization and speech recognition are provided and the robot is able

to reach and interact with the user.

Assistive mobility devices are beginning to benefit from cloud computing concepts. Fu
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et al. [71] use smartphone sensors to collect navigational information of a wheelchair and

transmit them to the cloud for storage. Salhi et al. [72] integrate robotics concepts to the

cloud to share multiple wheelchair positions and the map of the environment to feed the

local controllers of the wheelchairs.

There are not many works exploring the integration of cloud computing and smart

walkers. Benavidez et al. [73] propose and simulate a multi-robot system integrated with

cloud data center. In such work, a conventional rollator was equipped with a Microsoft

Kinect sensor and the cloud was responsible for data processing. Presented as a prototype

of a smart walker, no functionalities other than the ones inherent to the rollator were

presented.

A thorough search in the literature regarding smart walkers yielded ANG-MED robot

[74] as the only smart walker currently making use of cloud-based services. It is a passive

smart walker built over a commercially available 4-wheels rollator with independent brakes

that can be used to stop the walker or to correct its trajectory during obstacle avoidance

routines. The ANG-MED was developed within the RAPP project [75], which aims to

provide cloud-based applications for robots in general. RAPP was a 3-year research project

(2013-2016) funded by the European Commission that developed an open source software

platform to support the creation and delivery of robotic applications. The goal was to

increase the versatility and utility of service and assistive robots, providing generic robotics

functionalities from a cloud platform. Until now, the only consumer robot supported by the

RAPP platform is NAO, by SoftBank robotics. The ANG-MED walker is also supported

by the platform, that also aims to respond to the intentions and needs of people at risk of

exclusion. Tsardoulias et al. [75] enabled the caregiver to remotely monitor and act upon

ANG-MED’s brakes. This smart walker has been evaluated by care professionals with

positive results, but there is no analysis of how overall aspects of the network might affect

its use, specially when the caregiver must activate the brakes of the system. Moreover,

there is no comprehensive discussion on how to assure the safety of such application.

3.2 A Paradigm Shift for Assistive Devices: Challenges

and Potentials

Placing the Cloud at the center of a connected healthcare system can enable a systematic

use of multiple heterogeneous devices at different facilities, allowing for the so-called

Healthcare as a Service (HaaS) to arise. Figure 4 depicts the big picture of such system,

where robotic devices exploits the use of the cloud to provide services for patients and to

feed databases with information that can be used by remote libraries, other robots, adaptive

control algorithms, and health reports generators to family, doctors, and caretakers. Local

and edge data centers can be exploited for applications with low latency requirements
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Figure 4 – Big picture overview of a healthcare system enhanced by networking and cloud
computing technologies.

while delegating to remote clouds tasks such as databases construction and even update of

global maps using multiple robots inputs.

While the use of robotic systems for rehabilitation is usually within ambulatory care,

assistive devices may be employed without any direct supervision and the user must rely on

the device alone. Such assistive robots, apart from most robotic systems, have to interact

closely with patients - on both cognitive and physical levels - to provide functionalities

where reliability and safety are essential [76]. On current paradigm, hardware and resources

constraints are imposed by embedded computing power, so are data storing and learning

capabilities. By leveraging cloud computing technologies, such constraints can be drastically

diminished. In this context, cloud-enabled CPS for patient mobility assistance will face

challenges related to end-to-end (E2E) quality of service (QoS) of a complex system

combining communication networks and cloud computing. CPS used in healthcare are

expected to require uninterrupted mobile and wireless connectivity, throughput guarantee,

stringent latency and jitter features, and hitless cloud-related virtual machine migration

and auto-scaling operations.

Another intricate problem arises when objective QoS metrics need be translated into

indexes of quality of experience (QoE) to the end-user. When physically interacting
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with the device, the user is literally in-the-loop of the control algorithms, which affects

stability [76]. Latency onto the control loop is another factor that greatly impacts the

overall stability, affecting both physical and cognitive interaction between human and

CPS.

The combination of recent and forthcoming mobile and wireless systems, cloud comput-

ing, and networking technologies (e.g., 5G wireless networks, mobile-edge computing, and

software-defined networking), will help a great deal in addressing QoS issues. Nevertheless,

a better understanding into QoE is needed not only in CPS for healthcare, but also

in other systems heavily influenced by the human-in-the-loop effect such as car driver

assistance [77], functional electrical stimulation treatment [78], and exoskeleton use [68].

QoS issues for remote healthcare CPS have been investigated by Shah et al. [79], which

state that approaches to QoS in healthcare services are scarce in the literature as this

is an emerging field. Hammer, Egger-lampl and Moller [80] consider that QoS needs to

be carefully controlled in CPS and its impact on QoE need to be taken into account.

Considering that the upcoming generation of assistive CPS for healthcare will deeply rely

on network/cloud services, there is a need to understand how these new technologies will

be affected by the quality of such services, specially on a user’s perspective. As cloud

services for healthcare CPS cannot be provided on a best-effort basis, QoE indexes should

actually impose the QoS requirements for those future network/cloud infrastructures.

The powerful drive of the incoming 5G networks is another factor that helps to pave

the way for current advances in the robotic field [11]. It is envisioned that 5G technology

will provide network services from three categories: enhanced mobile broadband (eMBB),

massive machine type communications (mMTC), and ultra-reliable, and low-latency

communications (uRLLC) [81]. The latter will be a key enabler for providing mobility

assistive services for patients dependent on heavy-processing critical procedures. Moreover,

cloud architectures utilizing mobile edge computing can help providing stringent latency and

jitter in case these also present real-time requirements. URLLC goals are to provide latency

figures as strict as 1 ms alongside 10−5 to 10−9 unavailability ratios. Software-defined

networking is expected to provide an uniform mechanism for E2E network programmability,

this means not only in between patient’s point of care and the cloud but also in inter and

intra cloud networks [82] for dynamically provisioning E2E availability, throughput, and

latency guarantees.

Assistive robots in general can benefit in multiple ways from this new ecosystem

composed of wireless/mobile, programmable network and cloud computing. Figure 5 links

some of the assistive devices’ main features and communication and computation features

as enablers to compose healthcare services. The black arrows in the figure exemplify

a navigation system exploiting wireless connectivity, network’s low latency, and cloud

platform’s high processing power, to provide a real-time mobility assistance healthcare

service.
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Figure 5 – Example of healthcare services enabled by communication and computation
technologies.

Smart walkers, in particular, are also represented in Fig. 5, as each of the five

functionalities previously listed are linked to at least one of the features in such figure.

Wireless connectivity is needed due to the mobile nature of such devices, and it often must

be combined with low latency networks to provide services in real-time, especially the ones

directly involving human-robot interaction.

Features involving user and health monitoring demand storage capabilities to construct

patient history. Such databases can feed adaptive algorithms that provide features such as

navigation assistance and shared control to effectively respond to the patient’s variable

impairment condition. Moreover, in a connected healthcare system, patient monitoring

can be used to directly contact ambulances in emergency situations [64]. This can be

coupled with recent advancements in smart clothing [83] and low power wide area networks

(LPWAN) technologies [84] for improved measurements and performance.

Sensorial and cognitive assistance functionalities offered by smart walkers can also

benefit directly from such environment. Solutions that explore cloud points or images, such

as the ones presented by Panteleris and Argyros [36] and Paulo, Peixoto and Nunes [53],

are often computationally expensive and can be performed in the cloud [59, 85]. In that

way, cloud platforms can host data processing services, including algorithms for person

and object recognition, as the ones presented by Redmon et al. [86] and Cao et al. [87],

for improved context-aware applications, in which the ability to interpret environmental

information is of great importance. Moreover, cloud services can also be used to share

information among devices and even help in path planning during navigation [12].

As safety is a main concern in assistive technologies, there is also debate on what

processes should be kept local and what processes can be remotely deployed [63]. The
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constant exchange of information between walker and remote platform allows for different

strategies regarding communication issues. For instance, less complex control algorithms

can be locally processed, fed by remotely generated parameters, or even being assessed

only in emergency situations, when communication issues are identified. Nevertheless,

situations in which QoS is largely degraded can be a risk to the user and must be carefully

administered not only over a network/cloud provider perspective, but also on the smart

walker itself.

In the light of this new environment, a cloud-enabled CPS for mobility assistance is

proposed in the next chapter. The proposed system envisions the integration of smart

walkers and cloud computing platforms to expand the capabilities and features offered

by such mobility assistive devices through the exploitation of the concepts previously

presented. Thus, the proposal of this CPS aims at the development of a new generation of

mobility assistive devices, enabled by the cloud and able to cope with future connected

healthcare systems.
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4 UFES CloudWalker: Proposal of a
Cyber-Physical System for Mobility
Assistance

A proposal of a cloud-enabled CPS for mobility assistance is presented in this chapter.

The system, named UFES CloudWalker, arises from the integration of smart walkers and

cloud computing, and its first implementation is built upon an in-house developed smart

walker and services executed on a remote cloud platform. The overall implementation is

described in this chapter, followed by preliminary validation studies. As there is a need to

understand the feasibility of the proposed system and how network and cloud parameters

might affect its use, two sets of experiments are performed to assess such impacts. This is

done before implementation details are further discussed, which will be later resumed on

the next chapter.

4.1 Overall System Design

4.1.1 Proposed Architecture

The UFES CloudWalker, from now on referred merely as CloudWalker, system

architecture allows for the use of smart walkers as cloud-enabled CPS, encompassing

a system that involves physical and cognitive human-robot-environment interaction to

assist mobility impaired individuals. CloudWalker’s overall system architecture is depicted

in Fig. 6.

Figure 6 – The UFES CloudWalker architecture.

In such system, user’s motion intents are perceived by embedded sensors on a smart
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walker, which communicates with a cloud platform, exchanging information. The smart

walker can send sensors and interface data to be processed on the cloud, which can provide

services such as storage and data processing. The cloud platform can also generate control

signals to command actuators, in case control algorithms need to be remotely processed.

Moreover, CloudWalker envisions a connected healthcare, in which data stored on database

services can be accessed by healthcare professionals and emergency services can be directly

triggered from monitoring services.

CloudWalker architecture decouples the physical assistive device (i.e., the smart walker

and its embedded hardware) from the features it can offer to the user. The centralization

of services running on the cloud allows for the use of multiple heterogeneous cloud-enabled

smart walkers working under the same CloudWalker architecture while making use of

subsets of the services provided by the cloud platform. The cloud is also able to offer

elasticity and scalability to guarantee the proper execution of real-time services or to allow

the insertion of new smart walkers into the system.

The cloud’s processing and storing capabilities can be leveraged to provide services that

can not be locally performed at the smart walker due to hardware limitations. Moreover,

databases can be constructed from patients’ history of use and the centralization of such

services in the cloud decouples patients from local devices, allowing for multiple patients

constantly interchanging smart walkers among themselves in shared facilities (e.g. hospital

or nursing homes). The gathering of large amounts of data allows for the implementation

of algorithms able to automatically identify the user and adapt to its specific needs.

4.1.2 Materials and Methods

In this work, CloudWalker is firstly implemented by the integration of an in-house

developed smart walker, a cloud platform, and a series of controllers processed on virtual

machines on the cloud. The materials and methods used on this implementation are

introduced in this section and further details will be discussed on the next chapter, during

the system’s experimental validation.

An important building block in CloudWalker’s first implementation is the UFES Smart

Walker (Fig. 7), a smart walker developed by the NTA, at UFES. This smart walker has

been used in several research works over the last years, such as [7, 16, 44, 88], mainly

focused on human-robot interaction strategies.

The UFES Smart Walker possesses the kinematics of a unicycle robot, with a pair of

differential rear wheels driven by DC motors and a front caster wheel. A couple of H1 (US

Digital, USA) encoders and a inertial sensor BNO055 (Adafruit, USA) are used to capture

the device’s velocities and orientation, information used by odometry algorithms to infer

its position. Two triaxial force sensors, MTA400 (Futek, USA), with their respective

amplifiers CSG110 (Futek, USA), are positioned under each forearm supporting platform

to capture the physical interaction forces between the user and the walker. The UFES
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Figure 7 – The UFES Smart Walker.

Smart Walker can also make use of two LRF sensors: a URG-04LX (Hokuyo, Japan) is

placed on the back of the walker to capture user’s legs position, and a RP-Lidar (Robo

Peak, China) is installed in the front to obtain environmental information. The embedded

computational system is based on the PC/104-Plus standard, possessing a 1.67 GHz Atom

N450, 2 GB of flash memory, and 2 GB of RAM. This embedded computer is integrated

into the Simulink Real-Time (MathWorks, USA) environment.

The Simulink Real-Time environment provides a fast prototyping platform for the

UFES Smart Walker. Its toolboxes allow the real-time acquisition of sensors data within

a Simulink code that can be generated in an external computer and uploaded to the

embedded PC/104-Plus. A sample time of 10 ms is used by the control loop due to time

constants for low level actuation controllers. A custom toolbox for the UFES Smart Walker

was generated within the duration of this work to easy the prototyping process. With

such toolbox, each sensor became a block that can be added directly to the Simulink

environment, providing as output the appropriate data. CloudWalker’s implementation

also makes use of such tools, as illustrated in Fig. 8, with the main difference being that

some - or all - sensor data is sent to an external platform through datagram sockets, which

are also used to retrieve the remotely generated information and control signals.

Another core building block of the CloudWalker is the cloud platform. In this work, the
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Figure 8 – Simulink template designed for data acquisition, actuators control, and the
communication between the embedded PC/104-Plus on the UFES Smart Walker
and the remote cloud computing platform.

cloud platform used is based on OpenStack version Ocata. OpenStack is an open-source

cloud management software, actively developed by the community, and capable to provide

and manage network, processing, and storage resources in a data center.1 It is designed to

allow the deployment of massively scalable public and private clouds. By the joint work

of several services, OpenStack is able to provide the so-called Infrastructure as a Service

(IaaS) cloud level.

Virtual machines (VM) are instantiated in the cloud platform to provide services for

CloudWalker. Different computing resources can be set before VM instantiation, and

OpenStack can be programmed to automatically manage life cycle and resources to provide

elasticity and scalability if necessary. The platform also handles VM IP assignment for

exterior communication, necessary to allow direct communication between the service and

the smart walker.

In this work, ROS is installed in the cloud’s VMs and is responsible for data processing,

storage, and logging.2 ROS is an open-source middleware that provides an abstraction layer

to robot’s hardware resources, treating physical data as streams on a publisher-subscriber

architecture [89]. ROS also integrates a large set of libraries and open-source software,

allowing code reutilization, which softens development time. Moreover, it has been used in

1 More information available in the OpenStack Wiki: https://wiki.openstack.org/. Accessed February 1,
2018.

2 More information available in the ROS Wiki: http://wiki.ros.org/. Accessed February 1, 2018.
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many service, industrial, and research robots, including smart walkers, as in [22].

As the UFES Smart Walker does not possess a wireless network interface card, a

Raspberry Pi 3 model B (Quad Core 1.2GHz Broadcom BCM2837 64bit CPU, 1GB

RAM) was used as a wireless gateway in this implementation of CloudWalker.3 The

Raspberry Pi provides 2.4GHz 802.11n wireless LAN, which is suitable for a first version

of CloudWalker, and runs the Raspbian Stretch Lite v4.9 operating system. ROS is also

installed in the Raspberry for logging purposes, as the data stored in it can be used for

offline measurements of network metrics, such as latency and packet loss. Communication

between the Raspberry and the smart walkers’s PC/104-Plus uses datagram sockets in a

strategy based on the one presented in [90]. In this first implementation, communication

between the Raspberry and the VM on the cloud is also based on datagram sockets, as

each one is aware of the other one’s local IP address.

Before the system’s complete implementation and testing, there is a need to understand

its own feasibility by assessing the impacts of network and cloud parameters on CloudWalker

and how those parameters affect its use.

4.2 Preliminary Validation

CloudWalker architecture is built upon the assumption that the network and the

cloud services are able to provide proper performance requirements, such as adequate

availability, E2E latency, and throughput. For instance, E2E latency directly influences

physical system’s response time, what might degrade both control, leading to instability

issues, and QoE. Latency variability also influences performance by inserting feed-backed

information disorder. In a short-term scale, congestion and errors over wireless connection

are causes of packet loss, resulting in throughput reduction. There are also long-term,

network and cloud availability issues that also lead to packet loss events. VM availability,

and instantiation and migration time in the cloud platform must be observed, and also

wireless connectivity gaps, downtime and handover time should be taken into account

when using such system.

To validate the proposed system, the feasibility of employing CloudWalker in the

real world must be investigated. There is a need to access how network and cloud QoS

parameters affects CloudWalker usage and safety. To do this, a set of experiments is

designed to investigate user’s perceived QoE under variable QoS by testing the system

under different network and cloud conditions. By assessing user feedback over their usage

experience, it is possible to subjectively evaluate CloudWalker’s performance through the

end-user point of view.

3 More information available in the official Raspberry Pi documentation:
https://www.raspberrypi.org/documentation/. Accessed February 1, 2018.
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There is a need to understand beforehand the system’s minutiae and how it is impacted

by external factors. As some processing and control tasks might be performed within

the walker’s embedded system and different configurations and levels of services can be

provided by the cloud, it is likely that CloudWalker will be more commonly implemented

on systems running some tasks locally. Nevertheless, to better understand the system,

during this preliminary validation stage, it will be considered that all data processing and

control execution is performed remotely. During the preliminary validation experiments,

CloudWalker system was not entirely implemented. Instead, QoS parameters were locally

emulated on the walker’s embedded computer to maintain full control over parameter

values and variation. In this way, the system’s feasibility can be verified, validating its

use before the actual implementation of the cloud services and communication. Figure 9

exemplifies the architecture used during the preliminary validation stage.

Figure 9 – UFES CloudWalker architecture during the preliminary validation experiments.

The network and the cloud are emulated in the Simulink environment installed on

the smart walker’s embedded computer. The developed algorithm used to emulate the

network can insert deterministic and variable latency onto the system, allowing for packet

superscription and disorder. It can also emulate packet loss and network availability

according to probabilities set as part of the algorithm’s configuration parameters. For

instance, the algorithm can allow the experimenter to set a 50 ms deterministic latency

and a 10 % probability of packet loss, while guaranteeing full network availability.

4.2.1 Proposed Scenarios

Two sets of experiments are performed over two different scenarios to validate Cloud-

Walker’s proposal. Both scenarios are built over mobility assistance services, different

among themselves. On the first experiment set, the use of the walker is evaluated under
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variable latency conditions by the assessment of objective and subjective metrics. On the

second set, more variable QoS parameters are tested, such as packet loss and availability,

and subjective metrics are observed to evaluate the impacts of such parameters on user

experience.

Experiment Set A

On experiment set A, the effects of E2E latency and its variability on CloudWalker are

evaluated. The proposed scenario is based on a path following task, in which the user can

freely control the walker’s direction and velocities, while asked to follow a specific path.

This illustrates a scenario in which patients in a hospital or nursing home must follow

marks on the floor when going to the cafeteria or an appointment. Users are requested to

follow a path marked on the floor multiple times under different latency conditions. Users

are also asked to evaluate their experience in the usage of the walker after each run.

On total, ten test conditions are established. A benchmark condition is performed to

provide baseline measurements of the local use of the controller. Three test conditions

with deterministic latency values are also performed to evaluate the impact of latency

alone. Such latency values are set to 100, 200, and 300 ms. The same latency values are

used as mean latencies to test latency variability. This is emulated based on a normal

distribution, with values centered on 100, 200, and 300 ms, and variances of 4 and 9 µs2,

forming the other six test conditions. This values are empirically chosen to avoid overlap

in latency values among test conditions with different mean values, and the distribution

variances are intentionally set to small values on this first validation experiment set.

Five volunteers participated on this first set of experiments. All subjects can be

considered healthy and presented no gait dysfunctions. Their ages ranged from 25 to 35

years and their weights from 56 to 80 kg. Only two of the volunteers had some previous

usage experience with a smart walker while the other three had none. Each of these

volunteers were submitted to all the ten test conditions in randomized order to avoid

distortions in their evaluations.

The same path is used on all tests regarding this experiment set. It consists of three

straight lines connected by 90◦ curves, the first to the left, the second, to the right. All

participants are advised to walk at comfortable and yet slow pace while following the path.

Two metrics are used to quantify the usage of CloudWalker. The first one is a subjective

metric regarding user experience, the mean opinion score (MOS). After each run, users are

asked to grade the quality of their experience in a discrete numerical scale ranging from one

to five. They are required to answer a one-question questionnaire: how do you rate your

experience in a scale of one to five, one meaning a negative and five a positive experience?

The MOS is calculated as the average grading each test condition obtained [91]. This is

done to capture user’s perceived QoE under different QoS conditions.
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The second metric employed is an objective measurement named kinematic tracking

error (KTE) [51], in which the desired path is compared to the performed one. KTE is

obtained using the following equation:

KTE =
√

¯|ε|2 + σ2 (4.1)

in which ¯|ε| is the absolute mean error between the discrete points that compose the

performed and desired path, and σ2 is the variance of these error values. The KTE gives

a number that raises with the increase of the mean error and its variance. Therefore, it

takes into account not only stationary errors on the path following, but also oscillations in

this error value, both factors that directly reflect the struggle in maintaining the walker

on track.

To calculate the KTE, the path marked on the floor is translated into a desired path

composed by a discrete series of points distanced 20 cm one another. The walker’s odometry

is compared to this desired path and the error values are obtained from the distance of

each odometry point to the nearest point in the desired path.

Experiment Set B

On experiment set B, not only latency and its variability are evaluated, but also

network availability and packet loss. This experiment is built upon a scenario in which

hospitalized patients and nursing homes inhabitants may benefit from the use of cloud-

enabled assistive devices. Particularly in nursing home environments, assistive devices

may be required to guide patient’s displacement based on patient-lead human-robot-

environment interaction. CloudWalker does not pull nor push the user, but haptically

provides a preferred displacement by easing movements in the direction of a pre-established

path, while hardening for attempts to move it elsewhere.

Ten test conditions are established and listed in Table 1. For each test, only one

parameter (i.e., latency, availability, or packet loss) is changed whereas the other ones are

considered ideal. On test conditions which involve variable latency, latency variability is

modeled again using a normal distribution. On this set of experiments, a parameter called

mean variance ratio (VMR) was used to set a fixed ratio between the mean latency and

the variance of the distribution. This normalizes the measure of the dispersion of the E2E

latency distribution so that results can be compared among test conditions with different

mean latencies, providing an alternative way to look into those results.

Over this universe of ten test conditions, five are randomly chosen for each participant.

Tests ordering is also randomized to avoid parameter-induced bias. The pre-established

path is unknown to the users a priori, and they must find out which way to go while

interacting with CloudWalker.

Twelve participants were recruited to take part in the experiment. All subjects can be

considered healthy, with no disabilities or gait disorders, and only two of them had prior
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Table 1 – Experiment set B: emulated network and cloud QoS test conditions.

Parameter Condition

Benchmark Local control

Deterministic
E2E latency

10ms

Mean E2E latency
(VMR 0.01 ms)

100 ms
300 ms
500 ms

Availability
75%
50%

Packet loss
10%
20%
30%

experience using the smart walker. Participants’ ages ranged from 22 to 33 years old, their

weights from 57 to 92 kg, and their heights from 1.61 to 1.85 m.

In this experiment set, the same path is used on all tests, consisting of three straight

lines interspersed by smooth curves to both sides. All subjects are advised to walk at

comfortable and yet slow pace. Each subject performed five tests under different test

conditions, aware that some conditions could perform better than others.

MOS is used to subjectively evaluate user perceived QoE. At the end of each test,

participants are asked to describe their experience using the walker, based on the same

numerical scale as in experiment set A. This time, comments and answers were also

registered to evaluate user’s QoE.

4.2.2 Control Architecture

Experiment Set A

In experiment set A, the user is asked to follow a path marked on the floor while using

the CloudWalker. The control algorithms that command the smart walker’s motion allows

the user to have full control over the system. The 3D force sensors installed under the

forearms supports are used to measure the physical interaction forces between user and

CloudWalker, which sets reference values for linear and angular velocities. The control

strategy is based on [20] and the control law is described by equations 4.2 and 4.3:

vc = K1(F f
r + F f

l ) (4.2)

ωc = K2(F f
r − F

f
l ) (4.3)
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where vc and ωc are the control signals for linear and angular velocities, respectively. K1, K2

are proportionality constants empirically set in values to allow a comfortable pace. F f
r , F

f
l

are the forward right and left force sensors signals, respectively, filtered by a first-order

low-pass filter to remove noise and undesired signal components.

Despite its simplicity, this control strategy is based only in physical interaction forces

and poses itself as a natural way for the user to command the walker’s motion, resembling

the familiar feeling of handling a supermarket trolley, while bearing weight on the forearms

supports. The walker repeats the last received control signal if no new information arrives

within the 10 ms time sample window.

Experiment Set B

In experiment set B, the user must follow a predetermined path without possessing

full control over CloudWalker’s motion. Instead, a shared control strategy is implemented

to guide the user throughout a pre-established path while avoiding deviations from it.

The control strategy is based on the one proposed in [92], which encompasses a path

follower control module, leveraged to provide the desired orientation of the smart walker

in relation to the path. An admittance controller, based on [93], is used to detect user’s

motion intention. As there is a pre-established path to be followed, the path follower

controller [94] weights robot’s current position and desired orientation to stay on - or to

get on - the path. The admittance controller is also responsible for generating control

signals for the device’s linear and angular velocities.

CloudWalker’s linear velocity is directly linked to user interaction forces, while the

steering velocities also depend on the desired orientation given by the path follower

algorithm. In such strategy, the user has no direct input in consciously changing the

device’s orientation, which is mainly dictated by the device’s relative position to the path.

The control law implemented is described by equations 4.4 and 4.5:

vc = (F f
r + F f

l )−mvv̇

dv
(4.4)

ωc = vc
dw

tanh(θ̃) (4.5)

in which vc and ωc are the control signals for linear and angular velocities, respectively.

As in experiment set A, the walker repeats the last received control signal if no new

information arrives within the 10 ms time sample window. F f
r , F

f
l are the right and

left force sensors signals, respectively, filtered by a first-order low-pass filter to remove

noise and undesired signal components. mv is a virtual mass parameter, and dv, dw are

damping parameters used for properly setting velocities and to define the dynamics of

response and interaction between user and smart walker. v̇ is the walker’s velocity first
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order derivative. θ̃ is the error between CloudWalker’s desired and actual orientations.

The desired orientation, θd, is defined by equation 4.6:

θd = atan(xd
yd

) (4.6)

And the point (xd, yd) is given by the path follower algorithm, described by equation

4.7:

ẋd
ẏd

 =

vr cos(θp) + lx tanh(kx

lx
x̃)

vr sin(θp) + ly tanh(ky

ly
ỹ)

 (4.7)

in which ẋd, ẏd are the desired velocities, vr is the reference velocity, or ideal path following

velocity, θp is the path reference orientation, defined by the tangent of the nearest point

in the path. x̃, ỹ is the position error, lx, ly are saturation limits, and kx, ky are gain

parameters.

By implementing such control strategy, CloudWalker interacts with the user and,

while respecting the user’s own pace, leads the way by hinting the desired orientation of

movement.

4.2.3 Preliminary Results and Discussion

Experiment Set A

Figure 10 shows the desired path, as marked on the floor, against some examples

of paths performed by multiple users under different test conditions, each on described

in terms of mean latency and variance. Figure 10 exemplifies what was expected and

observed in practice: the increase of latency seems to harden the use of the walker, inducing

oscillatory courses.
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Figure 10 – Desired path (dashed line) and examples of performed paths under different
test conditions, expressed in terms of mean latency and latency variance
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The MOS obtained from subjects’ evaluations and the calculated KTE can be observed

in Fig. 11, in which each bar represents a specific test condition, grouped and colored

according to mean latency and variance values. Figure 11(a) displays the MOS, and it is

possible to note a clear correlation between the increase in E2E latency and user experience

degradation, even though latency variability (i.e., jitter) does not seem - at first glance -

to negatively impact the subjective evaluation.
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Figure 11 – Mean and standard deviation values of objective and subjective metrics for
each test condition, grouped by latency variance and colored by mean latency.
a) MOS Scale; b) Kinematic Tracking Error (KTE).

Figure 11(b) displays the values obtained from the objective analysis via the KTE

metric. The least value was observed when there was no E2E latency, on the benchmark

test condition. The increase in the average latency does seem to induce hardship upon the

task, while latency variability seems to actually impact only when latency variance was

larger.

The KTE should not be evaluated just per se. As it is composed by the mean

tracking error and its variance, both factors must be taken into account when building an

understanding on CloudWalker’s system. Figure 12 shows, respectively, the mean tracking

error and the mean error variance. While the mean error displays a slight tendency to

increase with latency and its variation, error variance seems to better reflect user quality

of experience.

In order to discuss the obtained results, some observations are necessary to be made.

The control signal delay and the disorder inserted in this signal through latency variability

generates unexpected and - eventually - intense interactions between user and walker.

Frequently, this kind of interaction results in the user pulling the walker towards self,

inducing wheel slips and degrading odometry. As the user rarely deviates too much from

the path, such interaction is not clearly perceived on KTE measurements, but rather

impacts the variability of the tracking error. Therefore, this metric may be more suited to
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Figure 12 – Mean and standard deviation of the factors that compose the KTE for each
test condition. a) Mean tracking error; b) Tracking error variance.

reflect user experience.

Another necessary observation is related to test conditions in which latency variability

is higher, which seem to - in a certain way - randomize the control signal sequence that

commands the actuators, leading to the larger standard deviations observed in the third

group in Figures 11(b) and 12. Lastly, it was noted that walking at slower paces while

significantly depositing weight on the forearms supports mitigates the previously mentioned

factors.

Although the number of volunteers on this experiment may be rendered small, it was

enough to point strong tendencies of control degradation with the increase of latency and

its variation. Latency mean value seems to be preponderant to user quality of experience,

while the increase in its variation does not seem to largely affect the subjective evaluation.

Nevertheless, as the variance values set are relatively small, the true impacts of real-world

latency variability may not have been fully emulated in this experiment set. Regarding

the objective metrics, error variance between desired and performed path indicates how

oscillatory was the course.

Finally, it is important to state that E2E latencies of 100, 200, and 300 ms represent

10, 20, and 30 control samples, respectively. When evaluating test conditions with smaller

latency variability, it can be noted that even 100 ms delay does not significantly degrade

user experience. In other words, even though reliable high speed networks are desirable

for this class of applications, this experiment indicates that latency values of few samples

do not render CloudWalker unfeasible.

Experiment Set B

Although the participants of experiment set B did not know beforehand the path to be

performed, they figured out how to interact with the walker and managed to successfully
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follow the predetermined path. Two participants had to be fully removed from the gathered

data set as they intentionally pushed CloudWalker beyond the limits of wheels adherence

or velocity controllability.

Figures 13 and 14 presents the outcomes for predetermined and actually performed

paths, interaction forces, and linear velocities from two realizations from the same subject

using CloudWalker under different E2E latency conditions: 10 ms (deterministic) and

500 ms (VRM 0.01 ms). The score for each realization is also shown so that the complex

relations between physical interaction effects and subjective evaluation could be clearly

illustrated. It can be observed in Fig. 13 that there are small deviations from the virtual

trail even under 500 ms latency. In fact, the largest deviations occurred under the smallest

latency condition, and data from all tests indicates that this is mainly due to user’s gait

speed, which tends to increase according to user’s positive perception of the experience.

(a)

Figure 13 – Observations from experiment set B: path traveled by same subject under
different test conditions.

As it might be expected, the subject better graded the test under smaller E2E latency,

and Fig. 14 may provide evidences to understand the reason: 500 ms latency degraded

the participant’s ability to control the CPS. Cognitive and physical interactions on such

human-in-the-loop system is impaired because of temporal mismatches between perception

and action. This leads to intense oscillations in the interaction forces in Fig. 14(a) and

subsequent speed variation in Fig. 14(b). Notice also that the largest deviations seen in

Fig. 13 happened for 10 ms latency condition. This is so due to user’s gait speed, which

tends to increase according to user’s positive perception of the experience, as the higher

average velocity for 10 ms latency in Fig. 14(b) indicates.

Figure 15 brings two realizations from different participants to illustrate the complexity

of assessing QoS effects on user and system overall performance. Although under the same

500 ms (VMR 0.01) latency test condition as in Fig. 13, in Fig. 15 it caused CloudWalker
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(a)

(b)

Figure 14 – Observations from experiment set B, same tests as the ones portraited in Fig.
13: a) forward interaction forces observed, first ten seconds; b) CloudWalker
linear velocities, first ten seconds.

to completely miss the pre-established path. This leads to safety concerns and may draw

limits for QoS degradation. In contrast, Figure 15 also presents a realization under poor

QoS (only 63.71 percent availability) and yet successfully performed. However, it is worth

noting that no period longer than two seconds of connection loss was observed along the

curves of the path.

MOS was obtained and results are displayed in Fig. 16. It is noticeable that unfavorable

QoS conditions clearly deteriorate user experience. Among parameters evaluated, E2E

latency appears to be of most significance. Network availability also seems to degrade

QoE, though the implemented control application showed itself quite resilient to loss of

connectivity. Packet loss ratio over the network also seems to affect experience, but given

the slow system dynamics and the relatively high sampling rate, no significant effects could

be observed.
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(a)

Figure 15 – Observations from experiment set B: a special case of path deviation, and
impacts of connectivity losses larger than two seconds.

Statistical limitations from this reduced pool of realizations may be the reason for QoE

outliers in Fig. 16. The human factor directly impacts the experiment itself. For example,

four participants experienced 500 ms E2E latency, but only one (depicted in Fig. 14(a))

evaluated its QoE in the lowest score, whereas remainder participants had a more pleasant

experience without large oscillations and all scored 4.

Id
e
a
l

1
0
m

s

1
0
0
m

s

3
0
0
m

s

5
0
0
m

s

1

3

5

M
O

S

Mean Delay

Id
e
a
l

7
5
%

5
0
%

1

3

5

M
O

S

Availability

Id
e
a
l

1
0
%

2
0
%

3
0
%

1

3

5

M
O

S

Packet Loss

(a)

Figure 16 – Results of subjective MOS and coefficient of variation (i.e., standard deviation
normalized by the mean) for each network parameter evaluated on the pilot
experiment.

Most users followed the assigned virtual trail correctly with no prior information and

under poor QoS conditions. Despite the limited number of participants in this pilot

experiment, our outcomes unveil trends for relating QoS indexes and human-robot physical

interactions with control loops affecting QoE degradation.
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E2E latency is the major cause of lower QoE and also raised safety concerns as

controllability might degrade to unstable conditions. There is need for deeper studies with

larger VMR for more realistic latency variability assessment. It was also noticed that

MOS scores analysis alone did not reflect entirely participants’ experiences. For instance,

one subject said “this test is better than the previous one” and then gave the same score

in both tests. In another session, a test in which the participant said “the walker seems

to be failing” received a 3 and it was not the lowest score given by that particular user.

Comments like “this was the best one”, “smooth”, and “comfortable” were usually linked to

highest scores, but negative comments were not necessarily followed by the lowest score.

4.2.4 Preliminary Remarks

As CloudWalker relies on the integration of physical smart walkers and cloud computing

platforms, the remote execution of control algorithms can be largely impacted by network

and cloud QoS parameters. The objective of performing a preliminary validation stage

before fully implementing the system was to verify the proposed system’s feasibility

beforehand and to better understand the impacts of variable QoS onto the system from

the end-user point of view.

Two different experiment sets were performed to assess both quantitative and qual-

itatively the impacts of variable QoS over the system. In experiment set A, the effects

of E2E latency were evaluated and it was verified that, although the increase in latency

affects control and user experience, QoE does not seem to be significantly degraded under

lower latency parameters. Despite user difficulty to handle the system, users were able to

follow the suggested path even under higher E2E latency conditions. In experiment set B,

besides latency and its variability, network availability and packet loss were also evaluated

as network and cloud QoS parameters. Such parameters are also pertinent to real world

operation and CloudWalker use was not compromised even under poor QoS conditions.

It must be noted that the entire control was remotely executed during this preliminary

validation stage. This takes CloudWalker to its most QoS vulnerable condition by directly

inserting latency and information loss and disorder to the control loop. Ideally, any

implementation of CloudWalker should retain at least a basic control algorithm running

locally on the smart walker for safety assurance. This local control could be fed by remotely

generated parameters or should, at least, be executed in times of connectivity loss or

poor QoS, taking control of the system. Even without such mechanism, CloudWalker’s

preliminary validation experiments point to the system’s feasibility on real-world usage.

For instance, testing the exchange of 70 B packets from UFES to a major cloud provider

on US’ coasts, an average latency of about 700 ms was observed, decreasing to 50 ms with

their edge-like service. This reinforces the possibility of repeating preliminary validation

scenarios in commercial cloud providers.
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In the next chapter, CloudWalker’s first implementation will be discussed in details.

The implemented system is validated in a scenario similar to the ones presented in this

chapter, during the preliminary validation stage. The control algorithms are remotely

executed in a cloud platform and communication is performed over a network linking a

laboratory at UFES and an edge data center.
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5 UFES CloudWalker: Experimental Va-
lidation

After the preliminary validation stage (described in Section 4.2), the proposed Cloud-

Walker system was implemented for its final validation studies. In this chapter, Cloud-

Walker’s implementation is further detailed and the validation scenario is described. The

validation experiments are exposed and the results obtained are discussed by the end of

the chapter.

5.1 Validation Scenario and UFES CloudWalker Implemen-

tation

The proposed scenario for CloudWalker validation experiments is based on a mobility

assistive service in which all the control algorithms are remotely executed. A set of

experiments is performed to evaluate how network parameters actually impact CloudWalker

use when assisting on user locomotion. Therefore, CloudWalker’s implementation is

validated in a non-simulated scenario built over a non-structured environment.

As the user interacts with CloudWalker, the walker’s embedded computers are respon-

sible only for reading data from sensors, communicating with the cloud, and executing

the remotely generated control signals. The communication is performed over different

network setups, which links the walker, a wireless access point (AP), NERDS laboratory

local network, and the cloud setup running on the NERDS data center.

An admittance-based controller is implemented on the cloud to command CloudWalker’s

motion. The controller uses the interaction forces captured by the force sensors to

provide full control over the walker to the user. As opposed to the performed preliminary

experiments, the user is not asked to follow a line or to stay over a predetermined path,

being completely able to walk and turn on his/her own pace and liking.

The user conducts CloudWalker on part of a pedestrian pathway (approximately 1.8

m wide) composed by straight lines and 90◦ curves to both left and right. An wireless

AP working on the 802.11n 2.4 GHz band is positioned at approximately 10 meters

away from the pathway midpoint to provide connectivity to CloudWalker. Figure 17

illustrates this scenario. The dashed double-sided arrow in the figure represents the

wireless communication between the smart walker, specifically the wireless interface of

the Raspberry Pi, and the AP, which is directly connected to a local NetGear 16 Port

switch installed inside the NERDS laboratory. This switch is connected to a Mikrotik

RouterBoard installed at the NERDS data center, in an adjacent room. The RouterBoard
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is responsible for connecting the laboratory’s local network and the cloud platform network.

Figure 17 – UFES CloudWalker system validation: scenario and network architecture.

The CloudWalker system was implemented according to the description in Section 4.1.

The overall implementation of the system is depicted in Fig. 18. The PC/104-Plus is

responsible for gathering incoming data from the force sensors, wheel encoders, and IMU.

It is also responsible for the walker’s local odometry system and for generating sequence

numbers used to uniquely identify each transmitted packet. This embedded computer

sends force signals, velocity and odometry information to the local Raspberry Pi via UDP

socket. Both devices have network interfaces sharing a local network and know each other’s

static IPs (ranging from 192.168.1.1 to .3, non-related to the networks depicted in Fig.

17). The Raspberry Pi, which is also located at the smart walker, is connected to the

PC/104-Plus via a copper cable and uses another UDP socket to receive the information

regarding the walker’s sensors.

The Raspberry Pi makes use of the ROS middleware. It reads the received data,

publish it to separate topics (one for the force signals, one for the velocities, and another

one for odometry) and then uses its wireless network interface to send information to

the VM running on the cloud. The information published to each of the ROS topics is

encapsulated together with its sequence number, as generated by the PC/104-Plus, and

with a time stamp. This information is stored in separate files, one file per topic, via
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Figure 18 – UFES CloudWalker system validation: implemented architecture.

the rosbag package.1 These files are used to store the raw information regarding each

topic and for offline evaluation of packet loss and network latency. The force signals and

its corresponding sequence numbers are encapsulated in a UPD packet and sent to the

VM to be processed by CloudWalker’s controller. UDP is chosen as networking protocol

as lower latency values should be prioritized over higher reliability on the exchange of

information. The dashed-and-continuous line in Fig. 18, representing the wireless and

wired communication network depicted in Fig. 17.

Figure 19 illustrates the VM being executed inside a private network on OpenStack.

The cloud platform addresses a public IP, or “floating IP” as called by OpenStack, to

the VM, thus making it accessible to the Raspberry Pi. The VM receives the incoming

data on a UDP socket and makes use of the ROS middleware to process the information.

One ROS node is responsible for reading the incoming information and publishing the

force signals and its sequence numbers to a specific ROS topic. Another ROS node is

responsible for executing the control algorithm that commands CloudWalker’s motion. It

subscribes to the topic in which the force signals are published, process the data, executes

the control algorithm, and publish the generated control signals to another ROS topic. A

last node is responsible for subscribing this topic containing the control signals and for

sending this information to the Raspberry Pi, located on the smart walker. Throughout

all this process flow, the packet sequence number is always encapsulated together with the

processed information (i.e., this number is gathered from the packet, published on both

1 More information available in the ROS Wiki: http://wiki.ros.org/rosbag. Accessed February 1, 2018.
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topics, and send back to the Raspberry Pi together with the control signal).

Figure 19 – Screen capture of Horizon, the OpenStack’s dashboard, displaying the VM
deployed to execute UFES CloudWalker control algorithms. There is a virtual
local network inside the cloud in which other VMs can be instantiated.

As the Raspberry Pi receives the remotely generated control signals and its corre-

sponding sequence numbers, a ROS node is responsible for time-stamping this data and

publishing it on a topic. Again, the information published in this topic is stored on a

separate file for offline evaluation of network metrics. This ROS node is also responsible for

sending the control signals to the PC/104-Plus, which receives it and uses it to command

CloudWalker’s actuators. If no packet arrives at the PC/104-Plus within its sample time,

which is set to 10 ms due to low level actuation control constants, the device repeats the

execution of last control signal received.

5.2 Control Architecture

An admittance-based controller is used to provide the user liberty to command

CloudWalker’s motion. The controller is implemented within a ROS node running on the

cloud and the interaction forces between user and walker, forward force, F , and torque, τ

(check equations 5.1 and 5.2), are used to command the walker’s velocities.

F = Fl + Fr (5.1)

τ = dh(Fr − Fl)
2 (5.2)
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in which Fl, Fr are, respectively, the forward forces measured by the left and right

force sensors and dh is the distance from one handle to another. The admittance-based

controller uses those values as input to calculate the control signals.

The controller sets zones of constant and varying friction, depending on minimum

values for force and torque, Fmin and τmin. It implicitly solves the differential equations

given by equations 5.3 and 5.4 to generate the control signals for linear and angular

velocities.

mv̇ =



0 if v = 0 and |F | ≤ Fmin

F − Fminsign(F ) if v = 0 and |F | > Fmin

F − Fminsign(F ) if |v| > 0 and Bvv ≤ Fmin

F −Bvv if |v| > 0 and Bvv > Fmin

(5.3)

Jẇ =



0 if w = 0 and |τ | ≤ τmin

τ − τminsign(τ) if w = 0 and |τ | > τmin

τ − τminsign(τ) if |w| > 0 and Bww ≤ τmin

τ −Bww if |w| > 0 and Bww > τmin

(5.4)

in which F, τ are the forward force and the torque calculated from the force sensors

inputs. Apparent mass, m, moment of inertia, J , drag, Bv, and angular drag, Bw, are the

parameters that regulate the system’s apparent dynamics. The control signals are then

generated according to equations 5.5 and 5.6

vc =



0 if vl = 0 and |F | ≤ Fmin
(F−Fminsign(F ))

m
dt if vl = 0 and |F | > Fmin

vl + (F−Fminsign(F ))
m

dt if |vl| > 0 and Bvvl ≤ Fmin

exp(−Bvdt

m
)vl + (1− exp(−Bvdt

m
)) F
Bv

if |vl| > 0 and Bvvl > Fmin

(5.5)

wc =



0 if wl = 0 and |τ | ≤ τmin
(τ−τminsign(τ))

J
dt if wl = 0 and |τ | > τmin

wl + (τ−τminsign(τ))
J

dt if |wl| > 0 and Bwwl ≤ τmin

exp(−Bwdt

J
)wl + (1− exp(−Bwdt

J
)) τ
Bw

if |wl| > 0 and Bwwl > τmin

(5.6)

in which vc, wc are the control signals for linear and angular velocities, respectively, dt

is the time difference between last and current step, and vl, wl are the last step control

signals for linear and angular velocities. Due to safety concerns, the control signals for

linear and angular velocities are limited: 0 ≥ vc ≥ 0.3 m/s and −0.5 ≥ wc ≥ 0.5 rad/s.

Those values are considered to be fit due to prior empirical observations.
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5.3 Experimental Protocol

The experiments are conducted on a pedestrian pathway in an outdoor environment,

next to the building in which the NERDS laboratory and data center are located. The

pathway is approximately 1.8 m wide and a track approximately nine meters long,

consisting of straight lines and sharp curves to the right and to the left, is chosen for the

experimentation. Starting and finishing lines are draw to delimit the track. The walker

starts over the starting line, the user is able to fully control CloudWalker’s motion and

there is no specif path to be followed. The user interacts with the walker heading towards

the finishing line, stopping only when reaching the track’s limit.

The walker communicates with a wireless AP, which works in the 802.11n 2.4 GHz

band and is positioned at approximately 10 meters away from the pathway midpoint.

Received signal strength indicator (RSSI) levels along the pathway were measured2 using

the Raspberry Pi and average values ranging from -65 to -60 dBm where observed.

Six experiment realizations are conducted over the same track. Each experiment

realization starts after communication between walker and cloud is established. Sensor

data and control signals are timestamped and stored in the walker for offline processing.

The walker is responsible for gathering data from its sensors, for performing an odometry

algorithm for recording purposes only, and for commanding its actuators, delegating all

other processing tasks to the cloud, which executes the control algorithm. Communication

and network parameters can affect overall system performance.

Another experiment realization, the seventh one, is performed until complete loss of

connectivity is observed. The walker is positioned in the middle of the track used in prior

realizations and the user commands its displacement along the pathway, moving away

from the wireless AP, until there is no communication between the smart walker and the

cloud platform.

5.4 Results and Discussions

All seven realizations were performed along the same pathway and over the same test

conditions, as previously described. During the first six realizations, no communication

loss was observed and network and cloud parameters’ impact over the system could not

be observed by the user during most of the time. On two occasions, the user described a

feeling of momentarily disobedience or discomfort. Figure 20 brings the odometry recorded

from realization number four to illustrated the path walked along the pathway.

As there were no pre-established path nor guidelines marked on the floor, the user

was free to walk and turn on its own pace, leading to the oscillatory S-shaped path. The

interaction forces measured on CloudWalker’s force sensors were also recorded, as the

2 This can be done using the command iwconfig on a Raspbian terminal. More information available in
Linux man page: https://linux.die.net/man/8/iwconfig. Accessed February 1, 2018.
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Figure 20 – Odometry recorded from realization number four. The walker starts on the
lower right part of the image, over the starting line of the track, and is guided
by the user towards the mark on the left upper part, representing the finishing
line.

measured velocities and remotely generated control signals. Figure 21 brings the measured

values during realization number four.

In Fig. 21, the readings from both force sensors are repeated in the top of the image

so the impacts of the interaction forces over forward force and torque, control signals,

and velocities can be better assessed. The oscillations on the measured force values result

mainly from the user gait, which can be pointed the fact that those oscillations are usually

on counter-phase. In other words, during each stride, there is a tendency to push or pull

the walker, differing in each arm according to the stage of the gait. Forward force and

torque are calculated according to Equations 5.1 and 5.2 and the graphs in the middle of

Figure 21 illustrates the beginning of the movement, the moment of each turn, and the

moment in which the user attempts to stop the walker as it approaches the finishing line.

The control signal values for linear and angular velocities displayed on the bottom of

Fig. 21 result from the control law described in Section 5.2. The control signal for linear

velocity is maximum during most of the experiment, decreasing mostly when the user is

turning the walker. This can be observed on two periods of time: one ranging from 15 to

20 s, and the other one ranging from 25 to 32s, approximately. The turning periods are

indicated by the opposition of signal in the forces measured by the forces sensors, which

results in the largest torque values.

Measurements from realization number four, as displayed in Figs. 20 and 21, are

representative for the first six experiment realizations. The values for odometry, forces,

and velocities are similar to the ones measured on the other five realizations. The effects

of network and cloud QoS could not be clearly perceived in any of them. As for the

measurements of QoS parameters, latency and packet loss measurements from realizations
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Figure 21 – Measured interaction forces and resulting velocities on realization number four.
From right to left, top to bottom: forward forces measured in each 3D force
sensor, graph repeated on the left, resulting total interaction forward force,
resulting interaction torque, control signal and measured values for UFES
CloudWalker linear velocities, and control signal and measured values for
angular velocities.

one to six are shown in Table 2.

Table 2 – Validation experiments: latency and packet loss measurements. Realizations
one to six were performed along the same track.

Realization
Number

E2E Latency Packet
Loss %Mean (ms) VMR (ms) Min (ms) Max (ms)

1 9.7 39.60 2.4 235.2 1.08
2 4.1 3.34 2.7 74.1 0.00
3 4.0 3.06 2.3 57.1 0.01
4 5.8 41.96 2.4 212.0 0.44
5 11.6 72.00 2.6 297.1 1.31
6 5.8 7.97 2.5 100.0 0.00

As it can be observed in Table 2, the measured mean values for E2E latency were far

lower than most of the ones emulated during the preliminary validation experiments, which

ranged from 10 to 500 ms. This is mainly due to the fact that the cloud platform was

running on an local data center. Minimum latency values are also quite low, consuming

only a fraction of the 10 ms sample window, though the maximum values observed often

surpassed some of the conditions established during preliminary validation (i.e., 10, 100,
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and 200 ms). This impacts latency variability, and the resulting VMR values are far

greater than the ones previously emulated, which were all smaller than 0.09 ms. Despite

sporadic observations, the impact of such variability could not be perceived by the user.

Packet loss rates are also lower than the ones emulated during the preliminary validation

experiments and apparently had no effect on the handling of CloudWalker. The deploy of

cloud services to remote and edges platforms and the increased in services offered and their

complexity can impact the loss of information along the network and cloud. Nevertheless,

as the system showed itself quite resilient to the loss of information, rates of packet loss

below 10 % should not impact CloudWalker’s usage.

Figure 22 displays E2E latency measurements from realization number four. In Fig.

22(a), the latency observed in each packet received from the cloud is shown. It can be

observed that spikes in latency are evenly distributed throughout the realization and that

most observations lie below the 5 ms range. This is confirmed in Fig. 22(b), in which the

histogram shows that most packets are received from the cloud less than 3 ms after the

corresponding packet is sent from the walker.

(a) (b)

Figure 22 – Latency measurements from realization number four: a) E2E latency observed
in each received packet; b) Histogram for observed E2E latency values.

The last experiment realization, the seventh one, is related to connectivity loss. During

this realization, as the walker moved away from the wireless AP, the effects of latency

could be felt on the handling of the system. There was one short connectivity loss on the

beginning of the realization. Connectivity was quickly reestablished and the realization

continued. The walker was guided in a sort of sine-wave shaped path, so that increased

latency or connectivity loss would be apparent. This was done until the walker lost

connectivity once again, this time too far away from the AP to re-connect, in a zone
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in which RSSI was later measured to be around -85 dBm. Latency and packet loss

measurements from this realization is shown in Table 3. As realization number seven was

performed until connectivity loss, it was conducted over a larger period of time and under

gradually worse RSSI conditions, thus explaining the differences observed in value ranges

on Table 2 and Table 3 .

Table 3 – Validation experiments: latency and packet loss measurements. Realization
number seven is related to connectivity loss.

Realization
Number

E2E Latency Packet
Loss %Mean (ms) VMR (ms) Min (ms) Max (ms)

7 100.4 761.48 2.6 3786.6 5.50

Table 3 shows a mean E2E latency value more compatible with the ones emulated during

preliminary validation. As realization number seven starts with the walker positioned

inside the track used by the previous experiments, the minimum latency observed is similar

to the ones displayed in Table 2. As the smart walker gets away from the AP, RSSI

decreases, resulting in increased latency and packet loss. The large VMR observed points

to information disorder, which also impacts the handling of CloudWalker. Larger latency

values were observed just before connectivity loss, period of time in which more packets

were lost. Despite the poor quality of wireless signal during most of the experimentation,

the packet loss rates were low again.

Figure 23 displays E2E latency measurements from realization number seven. The two

red arrows in the figure point to the moments in which communication between smart

walker and cloud was lost. The leftmost arrow points toward the first connectivity loss,

which was quickly reestablished, while the rightmost arrow point to the moment of final

loss of connection.

As opposed to Fig. 22(a), latency observations in Fig. 23 are not quite uniform.

Despite the first latency peak that accompanied the first moment of connectivity loss,

latency was kept low and slowly increased as the smart walker went away from the wireless

AP. These higher latency values largely impacted on the handling of CloudWalker. The

histogram for latency observations is not shown due to the large concentration of samples

bellow the 100 ms range.

5.5 Final Remarks

Overall results from the preliminary validation stage pointed to the feasibility of

deploying CloudWalker even under poor network and cloud QoS conditions. After

CloudWalker’s first implementation was completed, validation experiments were performed

over an actual network linking the smart walker and a cloud platform. Despite network’s
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Figure 23 – Latency measurements from realization number seven: E2E latency observed
in each received packet. The red arrows point to moments of connectivity loss

simplicity and the physical proximity of the cloud to the walker, results from the validation

experiments indicates that CloudWalker can indeed be employed for mobility assistance.

The proposed system was validated under its most vulnerable configuration, counting

on the full deployment of control algorithms to be remotely executed. Under such

configuration, the system becomes latency-sensitive, and the time between the sending of

sensorial information and the receiving of control signals is perceived directly as a delay

onto the control loop. Nevertheless, the device’s inherently low velocities and the walker’s

own inertia are mitigating factors that enhance the system’s resilience to latency. The

analysis of the obtained results indicates CloudWalker’s feasibility when making use of

in-site clouds, also pointing that the system is likely to work by exploring MEC concepts.

This is probably enhanced by retaining local processing on the device, which should be

able to perform its own control algorithms whenever poor QoS is detected.

Latency variability was not thoroughly assessed during the preliminary validation stage.

The magnitude of such parameter was much greater on the actual network then it was

previously emulated. Despite the high latency variability observed during CloudWalker

validation, its effects were not perceived during the first six experiment realization. The

evaluation of latency variability and its effects over realization number seven can not be

decoupled from the high E2E latency values observed in such realization. Information

disorder is likely to be mitigated by prioritizing newer information while discarding older

packets at arriving. As latency, and not its variability, is indicated to be the main impacting

factor over control, this strategy might be a solution to latency variability when latency

values are low.

Information loss over the network was assessed during the preliminary validation stage

and did not appear to heavily impact system’s usability or end-user experience. The
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measured values for packet loss during CloudWalker’s validation experiments were far

lower than the ones previously emulated. Packet loss rates smaller than 5 % should not

degrade user experience significantly and might even not be perceived affecting the control,

as consecutive values for force and control signals tend to be similar.

Network and cloud availability are concerns due to mobile nature of the system. Wireless

connectivity and seamless AP migration are also necessary to guarantee sufficient RSSI

without downtimes. Again, during validation experiments, as the walker moved away from

the wireless AP, latency times increased and connection was eventually lost. Such issues

must be dealt with, and CloudWalker should be employed taking into consideration the

wireless communication technology. The use of commercial WiFi demands an adequate

distribution of AP and handover strategies to avoid downtimes during AP migration.

The proposed system was validated and CloudWalker showed itself capable of providing

mobility assistance services even without no control algorithm being executed locally at

the smart walker. The final conclusions for this work and future possibilities are discussed

in the next Chapter.
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6 Conclusions and Future Work

6.1 Conclusions and Contributions

This work proposed and validated a cloud-enable CPS for mobility assistance. A

study was performed to evaluate the current state of art of research regarding mobility

assistive devices and cloud robotics, looking for opportunities to integrate CPS and cloud

robotics concepts into smart walker. It is shown that multiple features and functionalities

commonly offered by smart walkers can be enhanced by leveraging the extended processing

and storing capabilities of cloud computing platforms. By delegating computational tasks

to the cloud, smart walkers can be designed to be more cost-efficient while extending

battery autonomy and easing maintenance, mitigating deterrent factors to their acquisition

and wide-spread utilization.

The cloud is able to provide different services to users of mobility assistive devices,

tailoring the range of features offered according to individual needs. The construction of

databases and the utilization of large amounts of data can assist healthcare professionals

in monitoring the evolution of gait parameters in patients and even in alerting emergency

staff when identifying potential health problems. Besides leveraging the cloud to perform

only algorithms smart walkers are currently making use of, sensorial inputs from multiple

robots can be used for global map construction, improved path planning with up-to-date

information, and task collaboration.

A cloud-enable CPS for mobility assistance, named UFES CloudWalker, was proposed

and had its overall architecture described. The system was firstly implemented by

integrating a smart walker, the UFES Smart Walker, and a cloud platform running on a

data center inside the university campus. To investigate how network and cloud quality

of services parameters could affect the use of such system, especially from an end-user

point of view, a preliminary validation stage was performed in which the communication

network and the cloud were locally emulated at the smart walker. Results pointed to the

feasibility of implementing and using the system even under unfavorable QoS conditions.

The UFES CloudWalker was implemented and validated against a scenario involving

a mobility assistance service. The implemented system showed itself to be capable of

providing assistive services even when all control algorithms are remotely executed. These

results point to the emergence of a new generation of smart walkers, designed to leverage

cloud computing concepts to provide an extended range of services to users, relatives, and

healthcare professionals.
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6.2 Publications

During the realization of this work, the following paper was published and is directly

linked to the work here presented:

• MELLO, R.; JIMENEZ, M.; SOUZA, F.; RIBEIRO, M. R. N.; FRIZERA-NETO,

A. Impacto da Latência em Sistemas Cyber-F́ısicos em Nuvem: Métricas Subjetiva

e Objetiva para Andador Robótico. In: Anais do XIII Simpósio Brasileiro de

Automação Inteligente, pp 1120-1125, 2017.

Moreover, this work also led to the submission of the following paper, currently under

review:

• MELLO R.; JIMENEZ, M.; RIBEIRO, M. R. N. Ribeiro; GUIMARÃES, R. L.;

FRIZERA-NETO, A. On Human-in-the-Loop Cyber-Physical Systems in Future

Healthcare: A Cloud-Enabled Mobility Assistance Service. IEEE Systems Journal,

2018 (Under review).

Lastly, the author participated on other research activities in the duration of this work

and contributed in the papers listed bellow:

• SOUZA, F.; FRIZERA-NETO, A.; JIMENEZ, M.; MELLO, R. Desvio de obstáculos

móveis em andador inteligente. In: Actas del IX Congreso Iberoamericano de

Tecnoloǵıa de Apoyo a la Discapacidad, v.1., p.625-632, 2017 (Published).

• JIMENEZ, M.; MELLO, R.; FRIZERA-NETO, A.; BASTOS, T. Assistive Device

for Guiding Visually Impaired People With Mobility Disorders. In: 13th Annual

ACM/IEEE International Conference on Human Robot Interaction, 2018. (Accepted).

• MARTÍNEZ, V. M. G.; MELLO, R.; HASSE, P.; RIBEIRO, M. R. N.; MAR-

TINELLO, M.; GUIMARÃES, R.; FRASCOLLA, V. Ultra Reliable Communication

for Robot Mobility enabled by SDN Splitting of WiFi Functions. In: IEEE

Symposium on Computers and Communications 2018, 2018. (Under Review).

6.3 Future Work

After the realization of the presented work and the validation of the UFES CloudWalker,

multiple lines of future work remain possible. The implemented system, as making use of

the UFES Smart Walker as robotic platform, must be extended to contemplate the full

range of sensors and interfaces that are already integrated into the smart walker. Moreover,

to leverage the research group expertise, HRI strategies previously developed at NTA

should be replicated using the cloud to process the necessary algorithms.



6.3. Future Work 65

The development of novel control and HRI strategies involving UFES CloudWalker

should encompass the assessment of different configurations regarding which tasks must be

locally processed and which ones can be remotely deployed. Safety mechanisms must be

developed and implemented to assure the safe use of the system. After such enhancements

over the already implemented system, the clinical validation of the device shall be possible.

This experimentation should involve mobility impaired individuals, validating UFES

CloudWalker’s capacity to provide mobility assistance services.

Computationally intensive algorithms can now be incorporated into the UFES Smart

Walker system. Information collected by the LRF sensors can be used by probabilistic tech-

niques, such as SLAM, to perform self-localization and create environmental maps, feeding

map libraries stored by cloud services. Path planning algorithms can be implemented to

assist in guidance tasks, interactively creating routes to be followed by the user, based on

voice acquired destinations and previously constructed maps. This is specially eased by

making use of the ROS middleware, a design choice of this work, as several of the available

ROS packages aim at techniques such as SLAM, path planning, and voice recognition,

allowing the researchers to focus more on the interaction and in novel strategies per se.

The current platform can also be integrated with new sensors and interfaces. For

instance, a touch-screen can be used to receive inputs of the patients desires and intentions.

A camera system can also be installed to explore computational vision in context-aware

applications, exploring interaction strategies in which facial recognition or the ability to

discern humans from other moving objects are important. Wearable sensors can also be

coupled with the use of UFES CloudWalker for patient health monitoring.

Despite possible enhancements over the implemented platform, the full capabilities of

the UFES CloudWalker also involve multi-robot cooperation for mapping and learning,

and direct communication between the smart walkers and healthcare professionals. To do

so, the cloud computing platform must be able to provide services connecting information

from multiple robots scattered among different facilities and communicating with doctors

and therapists via web applications, always assuring for the privacy of the patient and the

safety of its personal data.

This work envisions a smarter, new generation of mobility assistive devices. Future

work shall encompass the design of cost-effective robotics devices fully integrated with

cloud computing platforms, able to provide a wider range of services for mobility impaired

individuals, aiming at mitigating independence restrictions and improving quality of life.
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