UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS HUMANAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA VEGETAL

JULIANA DA SILVA PENHA

ESTIMATIVAS DA BIOMASSA EM CARBONO DO FITOPLÂNCTON AUTOTRÓFICO DA BACIA DO ESPÍRITO SANTO POR MEIO DO BIOVOLUME E SUA RELAÇÃO COM OS VALORES DE CLOROFILA a

> VITÓRIA - ES 2017

JULIANA DA SILVA PENHA

ESTIMATIVAS DA BIOMASSA EM CARBONO DO FITOPLÂNCTON AUTOTRÓFICO DA BACIA DO ESPÍRITO SANTO POR MEIO DO BIOVOLUME E SUA RELAÇÃO COM OS VALORES DE CLOROFILA *a*

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Biologia Vegetal do Centro de Ciências Humanas e Naturais da Universidade Federal do Espírito Santo como parte dos requisitos exigidos para a obtenção do título de Mestre em Biologia Vegetal.

Área de concentração: Fisiologia Vegetal.

Orientador: Prof. Dr. Camilo Dias Junior

VITÓRIA-ES

2017

Juliana da Silva Penha

"Estimativas da biomassa em carbono do fitoplâncton autotrófico da bacia do Espírito Santo por meio do biovolume e sua relação com os valores de clorofila a"

Dissertação apresentada ao Programa de Pós-Graduação em Biologia Vegetal do Centro de Ciências Humanas e Naturais, da Universidade Federal do Espírito Santo, como requisito parcial para obtenção do Grau de Mestre em Biologia Vegetal.

Aprovada em 4 de setembro de 2017.

Comissão Examinadora:

& Dry Prof Dr. Camilo Dias Junior (UFES) Orientador e Presidente da Comissão

d veine a 01 Prof^a. Dr^a. Valéria de Oliveira Fernandes (UFES) Examinadora Interna

Monicalmon Gonicalium Profª. Drª. Monica Amorim Gonçalves (AGERH) Examinadora externa

AGRADECIMENTOS

Agradeço primeiramente a Deus por abrir essa porta. Se eu posso crer no amanhã é porque ele vive e temor não há.

Ao programa de Pós-Graduação em Biologia Vegetal (PPGBV) e a Universidade Federal do Espírito Santo e toda equipe de professores pela oportunidade em desenvolver esta pesquisa e pela transmissão de conhecimento.

Ao CNPq, agência que forneceu a bolsa de estudos para esta pesquisa.

Ao meu orientador Prof. Dr. Camilo Dias Junior pela confiança depositada a mim para a realização deste estudo, por aceitar a me orientar mesmo sem me conhecer e por acreditar no meu potencial. Agradeço por todo ensinamento dado dentro da sala de aula, nas aulas práticas e no laboratório. O senhor exerce sua profissão com muito amor e dedicação e isso é admirável, essas atitudes são admiradas por muitos alunos e servem de exemplo para muitos.

Aos meus pais e minha irmã, por todo apoio.

Ao meu noivo Luiz, por acreditar em mim, por estar ao meu lado sempre, me apoiando e não deixando eu desistir.

Agradeço a todos amigos do LABFITO, em especial a Georgette, agradeço pelos valiosos ensinamentos, pelos incentivos, por me fazer crescer como pessoa e como profissional, obrigada por colaborar com todo seu conhecimento. Também agradeço pela amizade, pelos constantes apoio emocional e por todo carinho, aos amigos Kássia, Mayara, Roberto, Carol e Juline.

A professor Dr^a Sirlene A. Felisberto (*In Memoriam*), uma pesquisadora que eu me orgulho de ter conhecido e de ter tido a oportunidade de estagiar, sua trajetória de vida é admirável. Obrigada por me introduzir ao mundo da ficologia.

À Prof.^a. Dr^a Valéria de Oliveira Fernandes, obrigada por fazer parte da banca e de contribuir com valiosas sugestões.

À Dr^a Monica Amorim Gonçalves, agradeço por sua disposição e pela contribuição como examinador externo da banca.

À Prof.^a Dr^a. Alessandra Delazari Barroso, por aceitar fazer parte da banca como membro externo suplente.

Ao Prof. Dr. Geraldo Rogério Faustini Cuzzuol, coordenador do PPGBV, por aceitar ser membro interno suplente.

Aos amigos da turma 2015/01.Sem dúvidas vocês marcaram a minha vida em especial ao Josinei, Pamela e Raiane, obrigada por todo apoio emocional e obrigada pela amizade de vocês.

LISTA DE FIGURAS

Figura 1. Localização da Bacia do Espírito Santo – Brasil, evidenciando os quatros transectos (T1; T2; T3 e T4) e as estações amostradas
Figura 2. Contribuição das classes fitoplanctônica da Bacia do Espírito Santo, registradas nos períodos amostrais
Figura 3. Valores da biomassa em carbono total (pgC. L ⁻¹) ao longo dos quatros transectos
Figura 4. Teste de média evidenciando a diferença significativa entre os transectos
Figura 5. Classes de algas que apresentaram valores expressivos de biomassa em carbono (pgC.L ⁻¹)
Figura 6. Classes de algas que apresentaram valores expressivos de biomassa em carbono (pgC.L ⁻¹)
Figura 7. Box-plot para os valores de biomassa (pgC. L ⁻¹). A. biomassa em carbono entre os Períodos
Figura 8. Análise de regressão linear entre biomassa em carbono (pgC. L ⁻¹) e biovolume (µm ³ . L ⁻¹)
Figura 9. Diagrama de dispersão da relação das variáveis biomassa em carbono (pgC. L ⁻¹) e clorofila <i>a</i> (μg/L)

LISTA DE TABELAS

Tabela 1: Fatores de conversão do volume celular (µm ³ . cél ⁻¹) em biomassa em carbono (pgC. cél ⁻¹)
Tabela 2: Concentrações máximas (máx.), mínimas (Min.) e medianas (Med.), desvio padrão (DPad ±) e coeficiente
Tabela 3: Lista das Classes e táxons que apresentaram os maiores valores debiomassa em carbono, nos dois períodos amostrais
Tabela 4: Coeficiente de correlação de Spearman entre as variáveis biomassa

RESUMO

Este trabalho estimou a biomassa em carbono do fitoplâncton autotrófico baseado no biovolume e verificou a sua relação com a clorofila a. Foram realizadas duas campanhas oceanográficas, uma no inverno (julho a agosto de 2013) e outra no verão (março a abril de 2014). Foram amostrados quatro transectos ao longo da costa do estado do Espírito Santo, as estações amostradas dentro de cada transecto foram organizados em oito isóbatas e as amostras foram coletadas em duas profundidades, uma subsuperfície a 1m de profundidade e outra numa segunda profundidade, que estava relacionada ou com o Pico Máximo da Clorofila (PMC) ou a meia distância entre a superfície e o fundo (meia água), isso quando não era possível determinar o PMC. As amostras foram coletadas tanto na região da plataforma continental como na região do talude. As amostras de fitoplâncton foram coletadas utilizando-se a garrafa de Niskin, em seguida foram preservadas com formalina 0,4% e submetidas a sucessivos processos de sedimentação para contagem dos organismos. Foram feitas contagens dos organismos em microscópio invertido em campos aleatórios e efetuadas as análises morfométricas para a avaliação do volume celular, com base na forma geométrica das algas. Para estimar a biomassa em carbono (pgC. cél⁻¹) aplicou-se diferentes fatores de conversão onde o biovolume de uma determinada alga era convertido em biomassa em carbono. Os dados de clorofila a desta pesquisa pertencem ao Projeto AMBES e foram obtidos do Banco de Dados de Ambientes Costeiros e Oceânicos. Foi analisada a biomassa em carbono de 332 táxons no inverno e 304 no verão representados pelas Classes Bacillariophyceae, Coccolithophyceae, Coscinodiscophyceae, Cyanophyceae, Dinophyceae, Fragilariophyceae, entre outras. A relação entre biomassa em carbono e biovolume mostrou ser significativa entre os períodos, entre as profundidades e entre as regiões. A Classe Cyanophyceae apresentou baixo número de espécies, entretanto, apresentou um dos maiores valores de biomassa em carbono, representado principalmente pela cianobactéria do Gênero Trichodesmium. Na região da plataforma continental, Coscinodiscophyceae e Cyanophyceae mostraram em termos de biomassa os valores mais elevados, na região do talude e da subsuperfície as Classes Cyanophyceae e Coccolithophyceae e na segunda profundidade foram Coscinodiscophyceae e Bacillariophyceae. Foi possível observar variação espacial e temporal da biomassa em carbono, sendo os maiores valores registrados no verão, subsuperfície e plataforma continental. A relação entre biomassa em carbono e clorofila *a* mostrou-se significativa, entretanto baixa. Foi possível observar relações significativas entre estes dois métodos de estimativa de biomassa, no entanto, com baixos valores de coeficiente de correlação, no inverno (0,36; r²:0,10), na plataforma continental no inverno (0,40; r²:0,22) e no talude no verão (0,57; r²:0,32). A grande diversidade de técnicas para estimar a biomassa do fitoplâncton na literatura oferece grande variedade no grau de precisão dos dados, e as combinações de técnicas de estimativa de biomassa podem ser a melhor proposta para evitar as limitações dos diferentes métodos. Estimativas da biomassa em carbono por meio do método do biovolume tem se mostrado eficientes e importantíssimas para estudos fisiológicos e ecológicos nos ambientes marinhos.

Palavra-chave: Carbono orgânico. Espírito Santo. Fitoplâncton marinho. Métodos. Variação espacial e temporal.

ABSTRACT

This paper studied the estimation of carbon biomass of autotrophic phytoplankton based on biovolume and verified its relationship with chlorophyll a. Were carried out two oceanographic campaigns, one in winter (July to August 2013) and one in summer (March to April 2014). Were sampled four transects along the Espírito Santo coast, the stations sampled within each transect were organized in eight isobaths the samples were collected at two depths, one subsurface at 1m depth and another at a second depth, which was related or with the Chlorophyll Maximum (PMC) or middle distance between the surface and the bottom (half water), when it was not possible to determine the PMC. The samples were collected both in the continental shelf region and in the slope region. The phytoplankton samples were collected using the Niskin bottle, then preserved with 0.4% formalin and subjected to successive sedimentation processes to count the organisms. The organisms were counted under inverted microscope in random fields and morphometric analysis were carried out to evaluate cell volume, based on the geometric form of algae. To estimate the biomass on carbon (pgC. cell⁻¹) were applied different conversion factors, where the biovolume of a certain algae was converted into carbon biomass. The chlorophyll a data of this research belongs to the AMBES Project and were obtained from the Database of Coastal and Oceanic Environments. Was analyzed biomass in carbon of 332 taxa in winter and 304 in summer represented by the Classes Bacillariophyceae, Coccolithophyceae, Coscinodiscophyceae, Cyanophyceae, Fragilariophyceae Bacillariophyceae, Dinophyceae, Coccolithophyceae, Coscinodiscophyceae, Cyanophyceae, Dinophyceae, Fragilariophyceae, among others. The relationship between biomass in carbon and biovolume was significant between periods, between depths and between regions. The Class Cyanophyceae presented low number of species, however, presented one of the highest values in biomass in carbon, represented mainly by the cyanobacterium of the Genus Trichodesmium. In the region of the continental shelf, Coscinodiscophyceae and Cyanophyceae showed in highest values biomass terms the, in the slope region and in the subsurface were Cyanophyceae and Coccolithophyceae classes and second depth were Coscinodiscophyceae and Bacillariophyceae. Was possible to observe spatial and temporal variation of the

biomass in carbon, being the highest values recorded in the, subsurface and continental shelf. The relationship between biomass in carbon and chlorophyll a showed to be significant, however low. Was possible to observe significant relationships between these two biomass estimation methods, however, with low values of correlation coefficient in winter (0.36; r2: 0.10), on the continental shelf in winter (0.40, r2 : 0.22) and in the summer slope (0.57; r2: 0.32). The great diversity of techniques for estimating phytoplankton biomass in the literature offers a great variety in the degree of accuracy of the data, and the combinations of biomass estimation techniques may be the best proposal to avoid the limitations of the different methods. Estimates of biomass in carbon by means of the biovolume method have proved to be efficient and extremely important for physiological and ecological studies in marine environments.

Keywords: Organic carbon. Espírito Santo. Marine Phytoplankton. Methods. Spatial and temporal variation.

SUMÁRIO

1. INTRODUÇÃO GERAL	13
2. REVISÃO BIBLIOGRÁFICA	15
2.1. Fitoplâncton: Classificação, Ecologia e Importância	16
2.2. Métodos de estimativas da biomassa	18
2.2.1. Clorofila a	18
2.2.2. Biovolume	19
2.2.4. Biomassa em carbono	21
2.5. Biomassa em carbono e sua relação com a clorofila a	23
3. OBJETIVO GERAL	25
4. OBJETIVOS ESPECÍFICOS	26
5. MATERIAIS E MÉTODOS	26
5.1. Área de estudo	27
5.2. Amostragem e coleta do fitoplâncton	28
5.3. Análise quantitativa em laboratório	30
5.4. Cálculos do Biovolume	30
5.5. Cálculos para estimativas de Biomassa em carbono	32
5.6. Concentração da Clorofila a	32
5.7. Análise estatística	34
6. RESULTADOS	36
7. DISCUSSÃO	50
8. CONCLUSÕES	61
9. RECOMENDAÇÕES	62
10. REFERÊNCIAS	63
ANEXOS	79

1. INTRODUÇÃO GERAL

O fitoplâncton é um dos principais responsáveis pelos processos ecológicos marinhos e biogeoquímicos nos oceanos (RODRIGUES et al., 2014). Participam ativamente em diversos ciclos biogeoquímicos de inúmeros elementos, tais como carbono, nitrogênio e fósforo, principalmente através da fixação do carbono e absorção de nutrientes para seu metabolismo durante a produção primária. Participam também da subsequente exportação de matéria orgânica para o oceano profundo (BRIEN et al., 2013).

A descrição temporal e espacial da biomassa fitoplanctônica e da produtividade primária nos oceanos tem sido de grande interesse em estudos há algumas décadas. Isso se dá porque o fitoplâncton marinho é o responsável por aproximadamente 50% da produção primária em quase todos os ecossistemas marinhos, constitui a base da cadeia alimentar e é crucial para a transferência de energia trófica, além de ter papel fundamental na regulação do clima, devido ao sequestro de carbono e na produção de oxigênio (BOYCE et al., 2010). Ocorrendo alterações nesta base das cadeias alimentares, pode-se esperar mudanças em toda biota marinha.

A estrutura da comunidade fitoplanctônica nos ecossistemas aquáticos marinhos é dinâmica e frequentes mudanças são observadas na composição de espécies e na distribuição espacial e temporal da biomassa (WETZEL; LINKES, 2000). Essas mudanças estão intimamente relacionadas com os fatores bióticos (competição e predação) e com os fatores abióticos, como disponibilidade de nutrientes, salinidade, temperatura e intensidade luminosa. Essas condições, além de influenciarem nas mudanças da composição e biomassa, também são capazes de impulsionar alterações no desenvolvimento, na densidade e na relação de competição entre as espécies (AIDAR et al., 1993; PEDROSA et al., 2006).

Dessa forma, diversos esforços têm sido feitos para o entendimento da comunidade fitoplanctônica nos ecossistemas aquáticos, entre eles o de estimar a biomassa fitoplanctônica. Diversas técnicas foram desenvolvidas e têm sido

descritas para estimar a biomassa, tais como: teor de massa fresca e seca (WETZEL; LINKES, 2000); sensoriamento remoto (WILSON; QIU, 2008); citometria de fluxo (OLSON et al., 1985); cromatografia de pigmentos (ABAYCHI; RILEY, 1979) e por métodos espectrofotometricos e ou fluorimétricos (ESTEVES; SUZUKI, 2011).

Entretanto, a determinação da concentração de clorofila *a* é um dos principais métodos utilizados, pois sua quantificação é relativamente fácil e rápida de ser executada (FELIP; CATALAN, 2000). Apesar disso, esse método não permite a distinção da contribuição de grupos taxonômicos diferentes e não pode ser usado para comparar a contribuição de táxons específicos sob diferentes condições ambientais, já que a clorofila *a* é o pigmento encontrado em todos os organismos fotossintetizantes.

Outro método importante para estimar a biomassa fitoplanctônica é biovolume, baseado em modelos geométricos e na sua conversão em carbono orgânico. Estudos com esse enfoque estão principalmente relacionados com a dinâmica do fitoplâncton no ecossistema (SOURNIA, 1981; HILLEBRAND et al., 1999). Parâmetros ecológicos e fisiológicos referentes ao fitoplâncton no ambiente, tais como ciclo de vida, dinâmica populacional, crescimento, fotossíntese, respiração, assimilação e herbivoria, estão intimamente relacionados com as estimativas da biomassa em carbono por meio do biovolume (POTAPOVA; SNOEIJS, 1997; HILLEBRAND et al., 1999; SUN; LIU, 2003).

A diversidade de técnicas para estimativas da biomassa fitoplanctônica fornece variados graus de precisão dos dados, podendo não gerar resultados comparáveis (HALLEGRAEFF, 1977). Combinações de técnicas são importantes para maior confiabilidade dos resultados, já que diferentes técnicas não podem ser comparadas sem considerar um grande número de fatores (MENDES et al., 2016).

No Espírito Santo há vários estudos abrangendo a área costeira bem como a área oceânica, do qual podemos citar Tenenbaum (1995), Dias Jr.; Barroso (1998), Dias Jr. e colaboradores (2002), Brandini e colaboradores (2006),

Schaeffer (2007). Porém, pouco se sabe sobre a biomassa em carbono por meio do biovolume dos organismos fitoplanctônicos e sua relação com os valores de clorofila *a*, nas regiões costeiras e oceânicas da Bacia do Espírito Santo. Diante do exposto, observa-se, portanto, a importância do fitoplâncton autotrófico para a Bacia do Espírito Santo, uma vez que essa região vem sendo submetida a diversos impactos antrópicos, causados principalmente pelas atividades petrolíferas, pela falta de tratamento dos resíduos residências e industriais, pelas atividades portuárias e, recentemente, por lama com rejeitos de minérios.

O presente estudo tem como objetivo estimar os valores de biomassa em carbono através do biovolume celular e verificar a relação entre o método de estimativa de biomassa em carbono com o método de estimativa da concentração de clorofila *a*. São escassos os estudos com esse enfoque na Bacia do Espírito Santo e boa parte deles não focaliza as regiões oceânicas. Devido à relevada importância ecológica do fitoplâncton para os ecossistemas aquáticos marinhos, o presente estudo espera contribuir de forma significativa para a gestão e conservação destes ecossistemas e ampliar o conhecimento sobre as espécies fitoplanctônica na região da Bacia do Espírito Santo, assim como relacionar os métodos diferentes métodos de estimativas de biomassa.

Hipóteses

- A biomassa em carbono da comunidade fitoplanctônica autotrófica marinha estimada pelo biovolume apresenta relações significativas com a biomassa estimada pela concentração de clorofila *a*;
- Há variação temporal e espacial (horizontal e vertical) na estrutura da comunidade fitoplanctônica autotrófica marinha em relação à biomassa em carbono e composição taxonômica, apresentando diferença entre plataforma continental e talude, entre a subsuperfície e segunda profundidade, e entre os períodos de inverno e verão.

2. REVISÃO BIBLIOGRÁFICA

2.1. Fitoplâncton: Classificação, Ecologia e Importância

O fitoplâncton é um grupo polifilético extremamente variado que constitui diversos grupos de algas. Assim como o termo fitoplâncton, o termo alga não constitui uma categoria taxonômica definida, e sim um agrupamento de organismos com caraterísticas e históricos evolutivos diferentes, sendo classificadas em reinos distintos. Atualmente, Baudauf (2003) propõe cinco grandes grupos em Eukarya, classificados em: Unicontes (dividido em Opistocontes e Amoebozoa), Archaeplastida, Rhizaria, Chromoalveolados (divididos principalmente em Alveolados e Estramenópilas) e Excavados (dividido em Excavados e Discicristados), sendo os Unicontes os únicos que não apresentam organismos fotossintetizantes, além de incluírem as cianobactérias (LITCHMAN; KLAUSMEIER, 2008).

Diferentes grupos de algas compõem a comunidade fitoplanctônica marinha. Dentre elas, podemos destacar as Classes Cyanophyceae, Chlorophyceae, Bacillariophyceae, Dinophycea, Haptophyceae e Chrysophyceae (GRAHAM; WILCOX, 2000), sendo as Classes Bacillariophyceae e Dinophyceae as que apresentam a maior riqueza de espécies em ambientes marinhos (BONECKER et al., 2009). As diatomáceas predominam em termos de densidade celular e são responsáveis pela maior produtividade primária nas regiões costeiras e apresentam diminuição gradativa em direção ao oceano aberto, onde a comunidade de dinoflagelados e cocolitoforídeos predomina (BRANDINI; FERNANDES, 1996; FERNANDES; BRANDINI, 2004).

No ambiente aquático marinho o fitoplâncton também representa a base das cadeias alimentares, consequentemente desempenhando papel fundamental na transferência de compostos orgânicos para água, para os sedimentos e para os organismos (STANISZEWSKA et al., 2015), tanto nas regiões neríticas como nas regiões oceânicas ocorre a transferência de compostos orgânicos (AIDAR et al., 1993). A composição da comunidade fitoplanctônica também interfere no ciclo biogeoquímico de diversos elementos, tais como o carbono, o nitrogênio e o fósforo (FALKOWSKI et al., 2004).

Alguns grupos de algas fitoplanctônicas contribuem de forma específica para o meio em que vivem. Muitas cianobactérias são capazes de fixar o nitrogênio atmosférico e disponibilizá-lo na coluna d'água (CAPONE et al., 1997). As diatomáceas se destacam na fixação do carbono em oceanos profundos em razão do peso de suas frústulas de sílicas, que tendem a afundar primeiro que outros grupos de algas (SMETACEK, 1999). Outros grupos de algas são potencialmente tóxicas, como os dinoflagelados e cianobactérias, podendo produzir toxinas que afetam tanto a qualidade da água como os demais níveis tróficos nas cadeias alimentares (ANDERSON et al., 2002).

Os oceanos formam um ecossistema aquático cujos processos químicos, físicos e biológicos interagem entre si, intervindo em toda a comunidade marinha. Os efeitos dessas intervenções também são observados sobre a comunidade fitoplanctônica. Em muitas regiões do mundo, a comunidade fitoplanctônica próximo à costa é considerada mais abundante do que as regiões oceânicas, podendo sustentar cerca de 30% da produtividade oceânica total, embora possa ser extremamente variável (EKAU; KNOPPERS, 1999). Em sistemas costeiros isso deve-se à grande influência de nutrientes provenientes da lixiviação terrestre, juntamente com a estratificação da coluna de água e a redução da salinidade, contribuindo assim para o aumento da densidade numérica de plâncton (BONECKER et al., 2009).

Cerca de 70% do ambiente marinho é composta por regiões oceânicas, as quais conforme Aidar e colaboradores (1993), são consideradas oligotróficas. Por serem distantes das regiões costeiras, essas áreas não recebem insumos suficientes de nutrientes para a produção fitoplanctônica, estando o desenvolvimento dessa comunidade condicionado à ciclagem de nutrientes e aos processos de ressurgência. A turbidez e, consequentemente, a luz não seria, portanto, um fator limitante para esses organismos (LEÃO, 2004).

2.2. Métodos de estimativas da biomassa

Fatores abióticos como luminosidade, temperatura, salinidade e nutrientes, são os principais influenciadores das mudanças na composição de espécies e biomassa dos organismos fitoplanctônicos no ambiente marinho. Análises quantitativas dos organismos autotróficos, como a biomassa, são de extrema importância para o entendimento dos fenômenos ecológicos aquáticos (LONGHURST ET AL., 1995).

A estimativa de biomassa é considerada um dos principais métodos de estudo da comunidade fitoplanctônica em estudos ecológicos aquáticos (HARRIS, 1986). Estudá-las nos traz inferências sobre a estrutura e dinâmica dos ecossistemas (GARIBOTTI et al., 2003).

2.2.1. Clorofila a

Um dos principais métodos da estimativa de biomassa fitoplanctônica nos oceanos é por meio do método de concentração de clorofila *a*. Pigmento clorofiliano que ocorre em maior abundância nos organismos fotossintetizantes (WETZEL; LIKENS, 2000). A concentração da clorofila *a* nos organismos fitoplanctônicos e de aproximadamente de 1 a 2% do seu peso seco (BARROSO; LITTLEPAGE, 1998). Sua quantificação é relativamente fácil e rápida de ser executada (FELIPE; CATALAN, 2000). Contudo, é uma técnica pouco precisa, já que existe na água uma variedade de outros resíduos vegetais, além das células fitoplanctônicas.

A estimativa de biomassa pelo método da concentração de clorofila *a*, não permite nenhuma resolução taxonômica, já que a clorofila *a* é o pigmento comum a todos os organismos fotossintetizantes, pode ser limitada pelo volume de água, principalmente em ambientes oligotróficos (BILLINGTON, 1991) e diferentes grupos taxonômicos apresentam uma variabilidade no conteúdo de clorofila *a* (FELIPE; CATALAN, 2000), além de ser um método caro e requerer equipamentos específicos para sua quantificação (JASPIRA, 2002).

Para Barroso e Littlepage (1998), existem três métodos diferentes para a determinação da concentração de clorofila *a* na população fitoplanctônica, são eles: espectrofotometria, fluorimetria e cromatografia líquida de alta performance (HPLC). Entretanto, a fluorimetria é mais sensível do que a espectrofotometria, além de requerer um menor volume de amostra, podendo a determinação ser realizada *in vivo*. Já o método por cromatografia tem sido mais preciso, entretanto não é adequado para análises de rotina.

A determinação de clorofila *a* fitoplanctônica é de grande importância em estudos de dinâmicas dos ecossistemas aquáticos, além de avaliar a distribuição espacial e temporal dessa variável na comunidade fitoplanctônica. Esse método apresenta desvantagem quanto a ser um método de estimativa de biomassa, pois é um método que sofre influência das mudanças ambientais. Diferentes táxons apresentam variabilidade no conteúdo de clorofila e não existe a separação de partículas de detritos do fitoplâncton (MULLIN et al. 1966; WETZEL; LINKES (2000).

2.2.2. Biovolume

O método mais amplamente utilizado para calcular o volume das células do fitoplâncton é o da estimativa do biovolume. Esse método leva em consideração o volume celular dos organismos, onde as medidas deste volume são feitas através de cálculos baseados em modelos geométricos tridimensionais. Em formas geométricas que mais se aproxima da forma da célula, o volume pode ser calculado através de formas geométricas isoladas ou combinadas. Trabalhos como de Edler (1979), Hillebrand e colaboradores (1999), Sun e Liu (2003), Fonseca e colaboradores (2014), e Vadrucci e colaboradores (2007;2013) apresentam os modelos e fórmulas a serem utilizados para vários táxons.

O tamanho do fitoplâncton varia muito entre diferentes gêneros e espécies (DIAS Jr., 1998, SUN; LIU, 2003). Uma única espécie microplanctônica pode representar vários indivíduos picoplanctônicos (FONSECA et al., 2014), e estimar a biomassa através do biovolume celular agrega a mesma importância para as algas com tamanhos diferentes.

De acordo com Hillebrand e colaboradores (1999), os cálculos do biovolume apresentam diversos aspectos positivos, tornando-se uma medida recomendada para estimar a biomassa. Como alta resolução taxonômica, este método tem relativo baixo custo, é fácil de ser aplicado e é restrito a poucas fontes de erros, pois há um controle do pesquisador. A desvantagem é devida à inconsistência no cálculo do biovolume, mas esse erro pode ser reduzido se os modelos geométricos sugeridos forem adotados.

Os estudos sobre volume celular do fitoplâncton tiveram início com Bellinger (1974) e Edler (1979). Esses estudos foram pioneiros em estimar o volume das espécies fitoplanctônicas através da associação da forma das algas com modelos geométricos tridimensionais. Porém, com o decorrer dos anos, foram surgindo diversos trabalhos que contribuíram e atualizaram os cálculos e os modelos geométricos propostos. Trabalhos como de Hillebrand e colaboradores (1999), Sun e Liu (2003), Olenina e colaboradores (2006), Vadrucci e colaboradores (2007; 2013) são referências frequentemente utilizadas por diversos pesquisadores.

Hillebrand e colaboradores (1999) sugerem, como base de comparação, 21 formas geométricas, além de fornecerem as equações a serem utilizadas para o cálculo do volume celular e superfície de área para mais de 850 espécies de algas marinhas e de água doce pelágicas e bentônicas.

Sun e Liu (2003) propõem um conjunto de 31 modelos geométricos para o cálculo do volume celular e área de superfície para 284 gêneros de fitoplâncton em águas do Mar da China. Os autores ainda discutem sobre as reduções dos erros e esforços nos microscópios.

Olenina e colaboradores (2006) utilizaram 16 formas geométricas para a determinação do volume das células em estudos feitos no Mar Báltico. Para eles, não é possível classificar a forma geométrica de todas as espécies de fitoplâncton nas poucas formas geométricas utilizadas e o objetivo foi encontrar formas que exigissem o menor número possível de medições, mas que ao

mesmo tempo refletisse a forma do organismo. Além disso, os autores utilizaram formas e equações básicas recomendadas por Edler (1979) e também apresentaram novos nomes para as formas geométricas.

Vadrucci e colaboradores (2007) concluíram que a falta de um conjunto padronizado de formas geométricas e equações para o cálculo do volume celular causa dificuldades e produção de dados que não são comparáveis. Os autores sugerem 23 formas geométricas para determinação do volume celular de 201 gêneros. Esses gêneros foram divididos em 8 grupos. Grupo 1: 2: Bacillariophyceae; Chlorophyceae Prasinophyceae grupo + + Prymnesiophyceae; 3: Chrysophyceae + Dictyochophyceae grupo + Haptophyceae; grupo 4: Cryptophyceae + Coanoflagellates + Kinetoplastides; grupo 5: Cyanophyceae; grupo 6: Dinophyceae; grupo 7: Euglenophyceae e grupo 8: Xantophyceae. Em outro estudo feito em ecossistemas aquáticos de transição mediterrânicos, Vadrucci e colaboradores (2013) recomendaram um conjunto de 22 formas geométricas para os cálculos dos volumes celulares e área superficial de 235 gêneros fitoplanctônicos decorrentes da análise de 869 espécies de fitoplâncton. As equações foram sugeridas para minimizar os esforços de medições no microscópio. Além disso, os autores discutem sobre as semelhanças e diferenças entre os modelos geométricos propostos em artigos publicados anteriormente.

2.2.4. Biomassa em carbono

O principal componente estrutural dos organismos fitoplanctônicos é o carbono (MENDEN-DEUR; LESSARD, 2000). Estimativas da biomassa em carbono são muito utilizadas para entendimento da comunidade e conhecimento da energia transferida na cadeia trófica e tornaram um dos principais métodos em estudos sobre biomassa em ecossistemas aquáticos (GOSSELAIN et al., 2000). Porém, a medição direta do conteúdo de carbono do fitoplâncton não é possível em ambientes naturais devido principalmente à presença de outros organismos, detritos e matéria orgânica dissolvida (THORNTON, 2012). A partir dos cálculos do volume celular embasados nas formas geométricas, é possível estimar com

segurança a biomassa em carbono do fitoplâncton, por meio de equações de conversão propostas para diferentes táxons e tamanho.

Mullin e colaboradores (1966) observaram, por meio de experimento, uma variação semelhante entre o carbono celular e o volume da célula, e concluíram que o carbono celular varia de forma previsível com o volume celular. Entretanto de forma diferente, é observado para as diatomáceas (JASPIRA, 2002), uma vez que apresentam grandes vacúolos, podendo apresentar menos carbono por volume do que outros organismos fitoplanctônicos de tamanho semelhante (STRATHMANN, 1967).

Para estimar o carbono orgânico do fitoplâncton a partir do volume celular são necessários fatores de conversão, e diversos trabalhos determinam essas equações para grupos e tamanhos diferentes. Na literatura, podemos encontrar vários fatores de conversão para o cálculo da biomassa em carbono. Dentre as obras estão as de Mullin e colaboradores (1966), de Strathmann (1967), Eppley e colaboradores (1971), Verity e colaboradores (1992), Montagne e colaboradores (1994), Menden-Deuer e Lessard (2000), Montagnes e Franklin (2001), e de Carpenter e colaboradores (2004). Os trabalhos de Verity e colaboradores (1992), e Carpenter e colaboradores (2004) discutem os fatores de conversão para a Classe Cyanophyceae. Os trabalhos de Strathmann (1967) e Cornet- Barthaux e colaboradores (2007) evidenciam os fatores de conversão para as diatomáceas, e o de Munir e colaboradores (2015) destaca os fatores de conversão para biomassa em carbono dos dinoflagelados.

A relação entre os valores do biovolume e a biomassa em carbono do fitoplâncton tem mostrado uma relação positiva e significativa em diversos estudos. É o que pode-se verificar em trabalhos como de Cornet-Barthaux e colaboradores (2007), Naz e colaboradores (2013), e de Munir e colaboradores (2015), evidenciando que essas variáveis estão intimamente relacionadas.

A relação entre o carbono celular e o biovolume foram estabelecidas na literatura por diversos autores. O trabalho de Mullin e colaboradores (1966) foi um dos precursores sobre o tema. Os autores demostraram a relação entre o carbono celular e o volume celular a partir de estimativas de amostras de fitoplâncton preservadas. Eles determinaram que o teor de carbono por μ m³ do volume da célula de fitoplâncton varia inversamente com relação ao volume celular. Foi a partir dessa relação que foi estabelecida uma equação para estimar o carbono orgânico do fitoplâncton. Além disso, concluíram que o volume celular proporcionou uma melhor estimativa de carbono celular do que a superfície celular. Posteriormente, outros trabalhos surgiram, tais como de Strathmann (1967), seguido por Eppley e colaboradores (1971). Nestes trabalhos, os autores estenderam as observações de Mullin e colaboradores (1966) e fizeram algumas modificações nas constantes utilizadas.

Estimar a biomassa em carbono por meio do método do biovolume é uma maneira de obter informações específicas para cada táxon, agregar a mesma importância para algas com tamanhos diferentes e, ainda que esse método demande um certo tempo do pesquisador, é um método relativamente de baixo custo.

2.5. Biomassa em carbono e sua relação com a clorofila a.

A relação entre os diferentes métodos de estimativa de biomassa fitoplanctônica nos ecossistemas aquáticos tem sido discutido por diversos autores e grande parte desses estudos evidenciam os trabalhos realizados em laboratórios. Poucos deles focam em estudos no próprio ambiente e, principalmente, nos ambientes marinhos.

Trabalhos como de Descy e Métens (1996) destacam o alto coeficiente de correlação entre a biomassa em carbono e clorofila *a* total (r²: 0,82), entre a biomassa em carbono das diatomáceas e fucoxantina (r²: 0,74), e entre a biomassa em carbono das algas verdes e luteína (r²: 0,87). No entanto, os autores não encontraram relação significativa para a biomassa das cianobactérias e criptomonas e seus pigmentos específicos. Em conclusão, eles confirmam que pigmentos específicos são bons marcadores quantitativos do fitoplâncton, porém quando a abundância de um certo grupo é menor, essa relação é inexistente.

Schlüter e Havskum (1997) realizaram seus estudos em um mesocosmo, realizando análises de vários pigmentos e identificação da composição do fitoplâncton por meio de HPLC (cromatografia líquida de alta performance) e microscopia, além de realizarem medições do volume celular para estimar o carbono dos diferentes grupos de algas planctônicas, entretanto os pesquisadores verificaram a relação apenas entre biomassa em carbono e clorofila *a*. Os autores encontraram relação significativa entre a biomassa em carbono e clorofila *a* (r^2 : 0,75). Sugerem ainda, em sua pesquisa, que os pigmentos analisados podem ser utilizados como indicadores qualitativos e quantitativos dos respectivos grupos de fitoplâncton.

Marinho e Rodrigues (2003) detectaram variação sazonal da biomassa da comunidade fitoplanctônica em um reservatório eutrófico tropical. Os pigmentos foram avaliados por meio da análise de HPLC e os dados de pigmentos foram comparados com a biomassa em carbono estimada a partir da análise de microscópio (biovolume). O coeficiente de correlação mostrou-se significativo entre a clorofila *a* total e a biomassa em carbono total (r: 0,96), porém, não foi observada correlação entre Dinophyceae e peridinina (r: 0,31), entre Chlorophyceae e luteína (r: 0,23) e entre Cyanobacteria e zeaxantina (r: 0,10).

Lamentavelmente, as diferentes técnicas analíticas não produzem necessariamente resultados comparáveis, e muitas vezes esses métodos não se correlacionam. O teor de carbono indicaria o conteúdo energético da biomassa e a clorofila *a* refletiria o potencial fotossintético. Algumas dificuldades são apontadas na correlação entre a clorofila *a* e os dados de biovolume e biomassa em carbono, devido principalmente à variação nos teores de clorofila a nas células.

A maioria dos estudos já realizados no Brasil com fitoplâncton marinho, enfatizam as suas relações ecológicas, as condições abióticas, avaliação da produtividade primária, composição taxonômica e biomassa. A maioria dos estudos concentra-se nos estados do Rio de Janeiro, São Paulo, Paraná, Rio Grande do Sul, Pernambuco e outras localidades do nordeste e norte do Brasil.

24

Dentre eles, pode-se citar os trabalhos de Brandini e Moraes (1986), Brandini (1988; 1990), Ciotti e colaboradores (1994), Teixeira e Gaeta, (1991), Aidar e colaboradores (1993), Gaeta e colaboradores (1999), Ferreira e colaboradores (2010), Fernandes e Brandini (2004), Pedrosa e colaboradores (2006), Moser e colaboradores (2014), Takanohashi e colaboradores (2015), e de Carvalho e colaboradores (2016). No estado do Espírito Santo, recentes pesquisas, como de Lubiana e Junior (2016), relatam a biodiversidade de espécies de fitoplâncton e os novos registros de micro e mesofitoplâncton na cadeia submarina Vitória – Trindade. Para os autores, há ainda uma grande lacuna no conhecimento da biodiversidade do fitoplâncton no Brasil e no Espírito Santo.

Entretanto, no Brasil e no Espírito Santo os trabalhos que estimam a biomassa em carbono por meio do biovolume são escassos. Destaca-se, recentemente, a contribuição de Ribeiro-Queiroz e colaboradores (2014) que estudaram o arquipélago de São Pedro e São Paulo, área que pertence ao Estado de Pernambuco, porém, apenas a comunidade de microfitoplâncton foi estudada.

Boa parte dos estudos realizados na Bacia do Espírito Santo não enfocam as regiões oceânicas e os diferentes métodos de estimativas de biomassa. O enfoque é ainda em relação às estimativas da biomassa em carbono do fitoplâncton autotrófico marinho através do biovolume celular e sua relação com os valores de clorofila *a*, das regiões costeira e oceânica da Bacia do Espírito Santo.

3. OBJETIVO GERAL

Estimar a biomassa em carbono do fitoplâncton autotrófico por meio do biovolume e relacioná-las com a concentração de clorofila *a* na bacia do Espírito Santo bem como avaliar a distribuição espacial e temporal da biomassa em carbono ao longo dessa bacia.

4. OBJETIVOS ESPECÍFICOS

- Estimar o biovolume das células do fitoplâncton autotrófico marinho baseado em formas geométricas e converter para biomassa em carbono (pgC. cél⁻¹);
- Relacionar o biovolume e a biomassa em carbono nos períodos amostrais (inverno e verão), entre as profundidades (subsuperfície e segunda profundidade) e entre as regiões (plataforma continental e talude);
- Verificar a biomassa em carbono ao longo da Bacia do Espírito Santo, entre os períodos amostrais, entre as profundidades e entre as regiões e avaliar a ocorrência da distribuição temporal e espacial.
- Verificar a relação entre os métodos de estimativa de biomassa, clorofila a e biomassa em carbono entre os períodos amostrais, entre as profundidades e entre as regiões;

5. MATERIAIS E MÉTODOS

5.1. Área de estudo

A bacia do Espírito Santo situa-se na margem continental leste do Brasil, limitase ao norte pela Bacia de Mucuri, no Estado da Bahia, e ao sul com a Bacia de Campos, no Estado do Rio de Janeiro, e está localizada no oceano atlântico tropical entre as coordenadas 20° 19' 10'' S e 40° 20' 16'' W (figura 1).

Figura 1. Localização da Bacia do Espírito Santo – Brasil, evidenciando os quatros transectos (T1; T2; T3 e T4) e as estações amostradas.

O clima predominante no estado do Espírito Santo é tropical úmido. A região encontra-se em zona caracterizada por chuvas tropicais de verão e apresenta estação seca durante o outono e inverno. A temperatura média anual é de 22°C, ficando a média das máximas entre 28° e 30°C e mínima em torno de 15°C (ALBINO et al., 2006).

A bacia do Espírito Santo é dominada pela Água Tropical da Corrente do Brasil, região com águas oligotróficas, com temperatura acima de 20°C e com

salinidade acima de 36 (FERNANDES; BRANDINI, 1999). Outra característica da região é de estudo é a influência da bacia hidrográfica do rio Doce, cuja área de 83.400 km² (CUPOLILLO et al., 2008). A desembocadura do rio Doce influencia continuamente a região da plataforma continental, região sudoeste do Estado do Espírito Santo, devido às vazões máximas entre novembro - abril e vazões mínimas entre maio - outubro (ZOFFOLI et al., 2011).

Na plataforma continental da Bacia do Espírito Santo se reconhecem dois compartimentos fisiográficos: a Bahia Sul - Espírito Santo, que se estende de Belmonte (BA) a Regência (ES), e apresenta uma plataforma com largura média de 230 km; e o Embaíamento de Tubarão, que se inicia em Regência e estende-se até Itapemirim (ES), apresentando uma plataforma com média em torno de 50 km e mínima de 40 km próximo a Santa Cruz e de 45 km ao norte de Vitória (ASMUS et al., 1971; ALBINO et al., 2006). Já a região do Talude, que é vista como a região de quebra da plataforma continental, geralmente inicia-se nos 200 m até 2.000 m de profundidade (GAGE; TYLER, 1991). Essa região é geralmente vista como uma zona de transição entre a plataforma e as zonas abissais.

5.2. Amostragem e coleta do fitoplâncton

Para a coleta do material fitoplanctônico, foram realizadas duas campanhas oceanográficas, uma no período seco, denominado inverno (julho a agosto de 2013) e outra no período chuvoso, denominado verão (março a abril de 2014). Foram amostrados quatro transectos, de forma que abrangesse todo o litoral do Espírito Santo (fig. 1). As estações amostradas em cada transecto foram traçadas em oito isóbatas de 25, 50, 75, 150, 400, 1.000, 1.900 e 3.000 m, totalizando 32 estações amostrais. As amostras foram coletadas em duas profundidades: subsuperfície (a 1m de profundidade) e segunda profundidade, que estava relacionada ou com o pico máximo da clorofila (PMC) ou a meia distância entre a superfície e o fundo (meia água), isso quando não era possível determinar a PMC. Para determinação da PMC, foi utilizado um sensor de fluorescência acoplado ao sistema CTD (Conductivity, Temperature and Depth), o CTD é um instrumento oceanográfico que possui diversos sensores e equipamentos de coletada acoplados ao seu sistema.

Em campo, as amostras para análise qualitativas do nano e microfitoplâncton, foram obtidas através de arrasto verticais, utilizando-se uma rede do tipo cilíndrico-cônica de 20 µm de malha e 30 cm de diâmetro de boca em ada estação de amostragem. Ao atingir a profundidade (PMC), iniciava-se o arrasto vertical em direção a superfície. Posteriormente, as amostras foram armazenadas em dois tipos de frascos: frasco cilíndrico âmbar de 150 mL com solução de lugol neutro e frasco de 250 mL de polietileno com batoque e solução de formaldeído tamponado com hexametilenotetramina, de modo a atingir concentração final de 2%.

Para a coleta do material biológico para análise quantitativa, utilizou-se a garrafa de Niskin sem nenhuma filtração *in situ*, onde foram coletados 4 litros de água do mar, acondicionados em dois fracos de polipropileno de 2 litros. Em seguida, as amostras foram fixadas em solução de formaldeído tamponado com hexametilenotetramina até atingir uma concentração final de 0,4%. As amostras foram armazenadas em temperatura ambiente e protegidas da luz com sacolas pretas. As amostras foram submetidas a sedimentações sucessivas em um dos laboratórios da Base Oceanográfica da UFES. Após o período de mais ou menos uma semana, o sobrenadante de cada frasco era descartado através da sucção com uso de bomba de vácuo, a fim de reduzir o volume (4L) até que se chegasse ao volume de 250 mL. Este volume foi homogeneizado e transferido para frascos de polietileno (250 mL) com batoque. Vale ressaltar que, em nenhum momento ocorreu filtração do material.

Esse material de 250 mL foi encaminhado ao Laboratório de Fitoplâncton (LabFito) na UFES, onde todo o volume das amostras foi novamente sedimentado, dessa vez em provetas de vidro por um período de no mínimo 3 a 5 dias, seguido da retirada do sobrenadante até o volume de 50 mL, os quais foram transferidos para câmaras de sedimentação de 50 mL até no mínimo 48 horas, segundo metodologia de Uthermöhl (1958). Em todos os processos de sedimentação foi utilizado o critério de Sournia (1978), que prevê um tempo mínimo de 4 horas de sedimentação para cada 1 cm de altura da coluna de água.

5.3. Análise quantitativa em laboratório

A contagem dos organismos foi realizada em microscópio invertido, em campos aleatórios (UEHLINGER, 1964), com uma contagem de 25 campos aleatórios para cada amostra. Adotou-se as recomendações de Lund e colaboradores (1958), os quais sugerem a contagem de, no mínimo, 100 indivíduos da espécie predominante, visando assim obter maior confiabilidade dos dados. Entretanto, caso a espécie mais abundante atingisse o valor de 100 indivíduos em menos de 25 campos, necessitaria a contagem de 400 indivíduos desta mesma espécie, com a intenção de se obter maior confiabilidade dos dados.

A densidade numérica do fitoplâncton foi calculada aplicando a fórmula modificada de Wetzel e Likens (2000), conforme a equação abaixo, e foram expressas em (organismos L⁻¹).

$$N=n\times\frac{A}{a}\times\frac{1}{V}$$

Onde, **N**: número de células/ L; **n**: número de células contadas; **a**: área contada (número de campos x área do campo); **A**: Área total da câmara; **V**: volume total sedimentado.

A unidade de contagem foi a célula, independente de formas em cadeias ou coloniais. Para as algas do gênero *Trichodesmium* foram obtidas as medidas celulares e do filamento (quando possível) e realizou-se divisão do filamento pela altura celular para obter um número aproximado de células.

5.4. Cálculos do Biovolume

Concomitante às contagens dos organismos, foram efetuadas as análises morfométricas para a avaliação do volume celular. Os espécimes encontrados durante a contagem tiveram registro fotográfico por meio de câmera digital USB acoplada ao microscópio invertido, o que deu subsídio ao cálculo do volume celular. Os organismos foram fotografados em diversas vistas (lateral, apical, dorsal e ventral), incluindo imagens em terceira dimensão. Cada dimensão foi fotografada e medida. As medidas das dimensões lineares (comprimento, altura, diâmetro e largura) foram feitas de acordo com a forma geométrica a qual a alga se assemelha.

Caso a alga estivesse numa posição fixa na lâmina, utilizou-se um objeto tipo agulha para tocar suavemente a lamínula, permitindo a movimentação da célula, sendo assim possível a captura da imagem de uma outra vista do organismo. Quando não era possível obter essa medida, foi utilizada a de trabalhos taxonômicos referentes à espécie. Muitas das medidas foram feitas sobre as fotografias utilizando uma régua manual do programa. Os dados em cm foram convertidos em µm, de acordo com a objetiva em que a alga foi fotografada no microscópio.

O biovolume fitoplanctônico foi estimado a partir dos volumes celulares dos indivíduos encontrados. Esse método leva em consideração o tamanho dos organismos e os cálculos das medidas feitas através de cálculos baseados em modelos geométricos tridimensionais, de acordo com o formato dos organismos, conforme metodologias propostas por Edler (1979), Hillebrand e colaboradores (1999), Wetzel e Likens (2000), Sun e Liu (2003), Olenina e colaboradores (2006) e de Vadrucci e colaboradores (2007; 2013). Então, a partir das medidas lineares (µm³) foi calculado o volume celular fitoplanctônico.

As formas geométricas utilizadas neste trabalho seguiram as propostas dos trabalhos de Hillebrand e colaboradores (1999), de Sun e Liu (2003), Olenina e colaboradores (2006), Vadrucci e colaboradores (2007; 2013), Leblanc e colaboradores (2012), e de Fonseca e colaboradores (2014). Neste trabalho, apenas os organismos autotróficos foram estudados, e foram utilizadas as

biomassas em carbono tanto do nanofitoplâncton (2 a 19 μ m) quanto do microfitoplâncton (>20 μ m).

A identificação taxonômica da comunidade fitoplanctônica da Bacia do Espírito Santo foi realizada através de bibliografias especializadas (TOMAS 1997; BALECH, 1988; TENENBAUM, 2006; TENENBAUM e colaboradores, 2007). Para consulta de nomenclaturas mais recentes foi utilizado o banco de dados do AlgaeBase.

5.5. Cálculos para estimativas de Biomassa em carbono

Para estimar o conteúdo de carbono celular (biomassa em carbono) aplicou-se diferentes fatores de conversão. O fator de conversão foi determinado de acordo com o grupo taxonômico e o tamanho do organismo (Tabela 1). O volume celular da alga em µm³·cél⁻¹ e biomassa em carbono pgC.cél⁻¹; entretanto, os valores de biomassa em carbono utilizados foram em picogramas de carbono por litro (pgC.L⁻¹).

Grupo taxonômico/ Tamanho do organismo	Fator de conversão	Literatura
Diatomáceas	0,32 * V ^{0,87}	(Montagnes; Franklim, 2001)
Microfitoplanctônicos	0,216 * V ^{0,939}	(Menden-Dauer; Lessard, 2000)
Nanofitoplanctônicos	0,433 * V ^{0,863}	(Verity, 1992)
Cianofíceas morfotipos	0,424 * V	(Carpenter et al., 2004)
Trichodesmium		

Tabela 1: Fatores de conversão do volume celular (µm³. cél ⁻¹) em biomassa em carbono (pgC. cél⁻¹), equações utilizadas e principais referências bibliográficas, v: volume celular

As amostras de água para as análises de clorofila *a* também foram coletadas na subsuperfície e/ou na PMC ou meio água. Foram coletados 6 Litros de água, os quais foram imediatamente filtrados sob vácuo suave, através de filtros com porosidade de cerca de 0,7 µm (GF/F, 25mm de diâmetro). Os filtros foram armazenados em nitrogênio líquido onde permaneceram até o momento da extração e análise por HPLC. A extração com solvente, assistida por ultrassom, foi feita segundo o método de Wright e Jeffrey (1997), e a análise de HPLC, de acordo com Van Heukelem e colaboradores (2001).

Deve-se ressaltar que esses resultados foram obtidos pelos procedimentos analíticos realizados no laboratório de pesquisa da Prof.^a Dr^a. Silvana Vianna Rodrigues, do Departamento de Química Analítica, Instituto de Química da Universidade Federal Fluminense, no Rio de Janeiro. A referida pesquisadora e sua equipe fazem parte do Projeto de Caracterização Ambiental da Bacia do Espírito Santo e porção norte da Bacia de Campos (AMBES), no qual este estudo está inserido.

Assim sendo, os dados utilizados de clorofila *a* desta pesquisa pertencem ao Projeto AMBES e foram extraídos do Banco de Dados de Ambientes Costeiros e Oceânicos (BDCO) e dos relatórios técnicos de embarque do Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES), da empresa Petróleo Brasileiro S.A. (Petrobras). Dessas fontes de pesquisa, foram extraídos os dados de clorofila *a* que são mostrados na Tabela 2.

Concentração do pigmento		Plataforma 2º	Talude	Talude 2º	
		1 IVI	1M profundidade	1 M	profundidade
Clorofila <i>a</i> Inverno	Máx.	0,81	0,77	0,23	0,58
	Min.	0,15	0,22	0,08	0,11
	Medi.	0,38	0,50	0,14	0,27
	Méd.	0,44	0,49	0,15	0,27
	DPad (±)	0,22	0,14	0,04	0,13
	CV (%)	0,49	0,30	0,26	0,48
Clorofila <i>a</i> Verão	Máx.	1,52	1,28	0,27	0,82
	Min.	0,10	0,14	0,09	0,29
	Medi.	0,18	0,48	0,14	0,36
	Méd.	0,33	0,49	0,15	0,43
	DPad (±)	0,38	0,30	0,04	0,16
	CV (%)	1,15	0,60	0,26	0,38

registrados no período de inverno e verão na região da plataforma continental e na região do Talude, em ambas as profundidades (subsuperfície e 2º profundidade).

5.7. Análise estatística

Os dados obtidos neste estudo foram, inicialmente, submetidos à estatística descritiva no MICROSOFT EXCEL 2010. Foram feitas análises para verificar diferenças nos atributos (Biomassa em carbono) entre os períodos (inverno x verão), entre as profundidades (subsuperfície e segunda profundidade) e entre as regiões (plataforma continental e talude).

Para a análise inferencial, primeiramente verificou-se a distribuição dos dados quanto à distribuição normal, por meio do teste de *Shapiro-Wilk*, ao nível de significância de 5% (p<0,05). Uma vez que esses dados não apresentaram

distribuição normal, foram utilizados testes não paramétricos. Para comparar diferenças significativas entre os transectos nos dois períodos amostrais, usouse o teste de *Kruskal wallis* e teste de média. O teste *Mann-Whitney* (Teste U) foi utilizado para verificar se havia diferença nos valores de biomassa em carbono entre os períodos, entre as profundidades e entre as regiões, ao nível de significância de 5% (p<0,05).

Para determinar a relação entre biovolume (µm³. L⁻¹) e biomassa em carbono (pgC. L⁻¹) entre os períodos, entre as profundidades e entre as regiões, foi aplicada análise de Regressão, ao nível de significância de 0,05%, os dados foram logaritmicamente transformados.

Para verificar a relação entre biomassa em carbono e clorofila a, foi feito testes de correlação linear, onde foi verificado o grau de relação entre biomassa em carbono e Clorofila *a*, utilizando o teste de *correlação de Spearman*, foi também realizada a*nálise de Regressão linear* para verificar a relação entre biomassa em carbono e clorofila *a*. Os dados foram logaritmicamente transformados.

6. RESULTADOS

Foi analisada, a biomassa em carbono (pgC. cel⁻¹) de 332 táxons no inverno e 304 no verão. As espécies fitoplanctônicas da área de estudo apresentaram diferentes formas geométricas, representadas por 24 formas geométricas no inverno e 23 no verão, para diferentes táxons. Os anexos 1 e 2 listam o volume celular (µm³. cél⁻¹) e biomassa em carbono (pgC. cél⁻¹) dos táxons, identificados ao nível mínimo de gênero.

Na figura 2 está a contribuição das classes fitoplanctônicas em ambos os períodos amostrais. É possível observar que as Classes Coscinodiscophyceae, Bacillariophyceae e Dinophyceae apresentaram valores expressivos nos números de táxons: Coscinodiscophyceae, com 20% no inverno representado por 65 táxons e com 11% no verão, evidenciado por 32 táxons; Classe Bacillariophyceae com 17% no inverno, representado por 56 táxons e 15% no verão, evidenciado por 47 táxons; seguido pela Classe Dinophyceae, com 16% no inverno, representados por 52 táxons e 16% no verão, representado por 48 táxons.

Figura 2: Contribuição das classes fitoplanctônica da Bacia do Espírito Santo, registradas nos períodos amostrais (A) inverno e (B) verão: Outros; Fragilariophyceae; Euglenophyceae; Dinophyceae; Cyanophyceae; Coscinodiscophyceae; Coscinodiscophyceae; Coscinodiscophyceae;
Os demais grupos contribuíram com menos de 10% para o número de táxons totais e, por isso, não tiveram seu destaque na porcentagem, sendo agrupadas como Outras. Estão inclusos os grupos de algas Chlorodendrophyceae, Cryptophyceae, Dictyochophyceae, Mamiellophyceae, Nephrophyceae, Pedinophyceae, Prasinophyceae, Prymnesiophyceae, Raphidophyceae, Synurophyceae, Trebouxiophyceae, algas da Divisão Nanochlorophyta e Ochrophyta, da Ordem Noctilucea e o agrupamento de algas que não foram identificadas chamado de Fitoflagelados.

A partir dos cálculos de biovolume celular (µm³. cél ⁻¹) das espécies encontradas na bacia do Espírito Santo, foram aplicados os cálculos de conversão para biomassa em carbono (pgC. cél ⁻¹). Os grupos de algas que apresentaram o maior número de espécies também foram os que obtiveram os maiores valores de biomassa em carbono. Coscinodiscophyceae, Bacillariophyceae e Dinophyceae foram os grupos que obtiveram o maior número de espécies e a composição taxonômica mostrou variação entre os dois períodos amostrais. Na tabela 3 estão representadas as espécies que contribuíram com os maiores valores de biomassa em carbono nos dois períodos amostrais.

A figura 3 evidencia as variações que ocorreram nos valores de biomassa em carbono na subsuperfície e segunda profundidade dos quatro transectos (T1-T4) nos dois períodos amostrais (inverno e verão). Ao longo do transecto T1 é possível observar que ocorreu pouca variação dos valores de biomassa em carbono. Entretanto, é possível observar que a estação T1E1 foi a que apresentou os maiores valores de biomassa em carbono ao longo do transecto, na segunda profundidade no inverno. Nesta estação, as algas fitoplanctônicas *Pseudoguinardia* cf. *recta* von Stosch, *Coscinodiscus centralis* Ehrenberg e *Odontella mobiliensis* (J.W.Bailey) Grunow foram as espécies que apresentaram valores expressivos de biomassa em carbono.

No transecto T2, localizado próximo à desembocadura do rio Doce, os valores de biomassa em carbono apresentaram uma tendência de maiores valores na subsuperfície em ambos períodos amostrais, principalmente na região da plataforma continental. No verão, os maiores valores de biomassa foram observados na região do talude, destacando-se a estação T2E8. No transecto T3, houve uma tendência dos maiores valores de biomassa em carbono ocorrerem na subsuperfície no verão. Já no transecto T4, é possível observar que a região do talude apresentou valores elevados na subsuperfície no verão (Figura 3).

Classe	Espécie	Carbono (pgC. cél⁻¹)	Carbono (pgC. L⁻¹)	
INVERNO				
Bacillariophyceae	Pleurosigma sp1	2885,17	6,9 x10 ⁶	
	Psammodictyon sp1	4230,46	6,9 x10 ⁶	
	Diatomácea 3 penata vista lateral	737,8	2,9 x10 ⁶	
	<i>Diploneis bombus</i> (Ehrenberg) Ehrenberg	592,61	2,5 x10 ⁶	
Coscinodiscophyceae	Pseudoguinardia cf recta	1399,02	1,2 x10 ⁸	
	Coscinodiscus centralis	22043,68	2,7 x10 ⁷	
	Thalassiosira sp3	1695,15	1,4 x10 ⁷	
	Pyrophacus sp.	627873,70	1,3 x10 ⁷	
Dinophyceae	Odontella mobiliensis	4698,63	9,5 x10 ⁶	
	Dinophyceae 3 Morfotipo Prorocentrum	1793,07	3,6 x10 ⁶	
	Neoceratium massiliense (Gourret) F. Gómez, D. Moreira& P. López-Garcia	23463,89	1,7 x10 ⁶	
VERÃO				
Bacillariophyceae	Psammodictyon sp2	2541,49	5,4 x10 ⁶	
	Pleuro/Gyrosigma 1	1375,15	4,2 x10 ⁶	
Coscinodiscophyceae	Hemiaulus sp7	684,169	2,6 x10 ⁶	
	Pseudosolenia calcar-avis (Schultze) B.G. Sundström	84119,6	1,9 x10 ⁶	
	<i>Hemiaulus membranaceus</i> Cleve	4362,72	4,0 x10 ⁶	
Dinophyceae	Gymnodinium sp1 Gymnodinium coeruleum	3038,95	7,1 x10 ⁶	
	Dogiel Gymnodinium cf sanguineum	46602,5	2,1x10 ⁶	
	K. Hirasaka	10929,2	2,1x10 ⁶	

Tabela 3: Lista das Classes e táxons que apresentaram os maiores valores de biomassa em carbono, nos dois períodos amostrais.

Figura 3: Valores da biomassa em carbono total (pgC. L⁻¹) ao longo dos quatros transectos T1, T2, T3 e T4, na subsuperfície e na segunda profundidade nos dois períodos amostrais. subsuperfície inverno; segunda profundidade inverno; subsuperfície no verão; segunda profundidade no verão. Desvio padrão ($_{T}$).

Para verificar a existência de diferença significativa entre os transectos nos dois períodos amostrais, foi utilizado o teste de *Kruskal Wallis*, sendo possível observar a existência de diferenças significativas entre os transectos apenas no período do verão (p<0,05). Pelo teste de média foi possível observar que o transecto T2 e T3 são diferentes (Figura 4). Não foi possível observar diferença significativa entre os transectos no inverno (p>0,05).

Figura 4: Teste de média evidenciando a diferença significativa entre os transectos para os valores de biomassa em carbono (pgC.L⁻¹) total ao longo da bacia do Espírito Santo no período do Verão, ($_{T}$) Desvio padrão.

Foi possível observar diferenças nos valores de biomassa em carbono entre as profundidades, subsuperfície e segunda profundidade, nos dois períodos amostrais (inverno e verão) (figura 5).

No inverno, os grupos de algas que se destacaram nos valores de biomassa total L⁻¹) subsuperfície foram: Coccolithophyceae (3.29 x10⁷). (pqC. na Cyanophyceae $(3,28 \times 10^7)$, Coscinodiscophyceae $(3,05 \times 10^7)$, Dinophyceae $(8,65 \times 10^6)$, Fragilariophyceae $(8,41 \times 10^6)$ e Bacillariophyceae $(8,32 \times 10^6)$. No verão, os grupos de algas com maiores valores de biomassa em carbono total na subsuperfície foram: Cyanophyceae (3,16 x10⁸), Dinophyceae (1,19 x10⁷), (9,86 x10⁶). Coscinodiscophyceae Coccolithophyceae (8,56 x10⁶), Bacillariophyceae (3,64 x10⁶), e Fragilariophyceae (2,28 x10⁶). A Classe Cyanophyceae se destacou com os maiores valores de biomassa em carbono para as amostras coletadas na subsuperfície, tanto no inverno como no verão.

No período de inverno, os grupos de algas que se destacaram nos valores de biomassa na segunda profundidade foram: Coscinodiscophyceae $(1,47 \times 10^8)$, Coccolithophyceae $(2,96 \times 10^7)$, Bacillariophyceae $(2,00 \times 10^7)$, Dinophyceae $(1,97 \times 10^7)$, Fragilariophyceae $(1,27 \times 10^7)$, e Cyanophyceae $(9,07 \times 10^6)$. No verão, os valores de maior biomassa em carbono total na segunda profundidade foram: Bacillariophyceae $(1,96 \times 10^7)$, Cyanophyceae $(1,90 \times 10^7)$, Coccolithophyceae $(1,80 \times 10^7)$, Dinophyceae $(1,49 \times 10^7)$, Coscinodiscophyceae $(9,79 \times 10^6)$, e Fragilariophyceae $(8,18 \times 10^6)$.

Figura 5: Classes de algas que apresentaram valores expressivos de biomassa em carbono (pgC.L⁻¹). A. biomassa em carbono subsuperfície; B. biomassa em carbono segunda profundidade. ■ inverno e verão; BAC (Bacillariophyceae); FRAG (Fragilariophyceae); COSC (Coscinodiscophyceae), CYA (Cyanophyceae); COCCO (Coccolithophyceae) e DINO (Dinophyceae), (⊤) Desvio padrão.

Tanto no inverno quanto no verão, a biomassa em carbono das diatomáceas se destacaram na segunda profundidade. A espécie *Pseudoguinardia* cf. *recta* da Classe Coscinodiscophyceae foi a alga fitoplanctônica que contribuiu com o maior valor de biomassa em carbono.

Foi possível observar, também, diferenças entre plataforma continental e talude no que se refere aos valores de biomassa em carbono (pgC. L⁻¹), tanto no inverno quanto no verão (figura 6). No inverno, os grupos de algas que tiveram maior relevância nos valores de biomassa em carbono total na região da plataforma continental foram Coscinodiscophyceae (1,71 x10⁸), Coccolithophyceae (4,28 x10⁷), Bacillariophyceae (2,65 x10⁷), Fragilariophyceae (1,98 x10⁷), Cyanophyceae (1,28 x10⁷), e Dinophyceae (7,21 x10⁶). Já no verão, os valores de biomassa em carbono na plataforma continental foram evidenciados por: Cyanophyceae (7,71 x10⁷), Bacillariophyceae (2,18 x10⁷), Dinophyceae (1,79 x10⁷), Coccolithophyceae (1,25 x10⁷), Coscinodiscophyceae (9,13 x10⁶), e Fragilariophyceae (8,33 x10⁶). Os grupos de algas que apresentaram maior contraste entre inverno e verão foram Coscinodiscophyceae e Cyanophyceae.

No inverno, os grupos de algas que tiveram relevância nos valores de biomassa em carbono total na região do talude foram: Cyanophyceae $(2,91 \times 10^7)$, Dinophyceae $(2,11 \times 10^7)$, Coccolithophyceae $(1,97 \times 10^7)$, Coscinodiscophyceae $(6,63 \times 10^6)$, Bacillariophyceae $(1,77 \times 10^6)$, e Fragilariophyceae $(1,36 \times 10^6)$. No verão, as Classes que apresentaram destaque nos valores da biomassa em carbono na região do talude foram: Cyanophyceae $(1,63 \times 10^8)$, Coccolithophyceae $(9,86 \times 10^6)$, Coscinodiscophyceae $(7,71 \times 10^6)$, Dinophyceae $(6,35 \times 10^6)$, Fragilariophyceae $(1,97 \times 10^6)$, e Bacillariophyceae $(1,32 \times 10^6)$. A Classe Cyanophyceae foi a que apresentou os maiores valores de biomassa em carbono, tanto no inverno como no verão, para a região do talude (figura 6).

Figura 6: Classes de algas que apresentaram valores expressivos de biomassa em carbono (pgC.L⁻¹). A. biomassa em carbono plataforma continental; B. biomassa em carbono talude. Inverno e verão; BAC (Bacillariophyceae); FRAG (Fragilariophyceae); COSC (Coscinodiscophyceae), CYA (Cyanophyceae); COCCO (Coccolithophyceae) e DINO (Dinophyceae), ($_{T}$) Desvio padrão.

Para verificar a existência de variação espacial e temporal da biomassa em carbono da comunidade de fitoplâncton da Bacia do Espírito Santo, foi utilizado o teste de *Mann-Whitney*, com o nível de significância a 5%. Foi possível constatar que a biomassa em carbono do fitoplâncton autotrófico, estimada por meio do biovolume, foi significativamente diferente entre os períodos (1) inverno e (2) verão (Teste U:1611,00; teste de Z: -2,08; p=0,03). No inverno, a biomassa em carbono total foi de: 3,8 x10⁸ pgC. L⁻¹; mediana: 2,0 x10⁶ pgC. L⁻¹ e no verão,

a biomassa em carbono total foi de: $(4,63 \times 10^8 \text{ pgC}. \text{ L}^{-1}; \text{mediana: } 2,8 \times 10^6 \text{ pgC}. \text{ L}^{-1}).$

A biomassa em carbono da comunidade fitoplanctônica foi significativamente diferente entre as profundidades (1) subsuperfície e (2) segunda profundidade (Teste U:1421,00; teste de Z:2,98; p=0,002). Na subsuperfície, a biomassa em carbono do fitoplâncton apresentou biomassa em carbono total de: $(4,9 \times 10^8 \text{ pgC}. \text{ L}^{-1}; \text{ mediana: } 3,8\times 10^6 \text{ pgC}. \text{ L}^{-1})$ e na segunda profundidade, a biomassa em carbono apresentou valores de: $3,5 \times 10^8 \text{ pgC}. \text{ L}^{-1}; \text{ mediana: } 1,5 \times 10^6 \text{ pgC}. \text{ L}^{-1}$ (figura 7).

Também foi possível observar diferença significativa da biomassa em carbono do fitoplâncton marinho entre as regiões (1) plataforma continental e (2) talude (Teste U:1473,00; teste de Z:2,60; p=0,008). O fitoplâncton da região da plataforma continental apresentou valores da biomassa em carbono total: (4,5 x10⁸ pgC. L⁻¹; mediana: 3,5 x10⁶ pgC. L⁻¹), e na região do talude, a biomassa em carbono total foi: 3,9 x10⁸ pgC. L⁻¹; mediana: 1,7 x10⁶ pgC. L⁻¹ (figura 7).

Figura 7: Box-plot para os valores de biomassa (pgC. L⁻¹). A. biomassa em carbono entre os Períodos: (1) Inverno e (2) Verão; B. biomassa em carbono entre as profundidades: (1) Subsuperfície e (2) segunda profundidade; C. biomassa em carbono entre as regiões: (1) Plataforma continental e (2)Talude. Ao nível de significância de p<0,05); - Mediana 1º Quartil (25%) e 3º quartil (75%), mínimo e máximo T.

A relação entre biomassa em carbono (pg C. L⁻¹) e biovolume (μ m³. L⁻¹) mostrou ser significativa, quando aplicada a análise de regressão linear. Os valores do coeficiente de determinação mostraram o quanto o biovolume influenciou nos valores de biomassa em carbono. A relação mostrou-se significativa entre os períodos, entre as profundidades e entre as regiões. A relação entre biomassa em carbono (pg C. L⁻¹) e biovolume (μ m³. L⁻¹) foi significativa no inverno (R²: 0,95; <0,05) e no verão (R²: 0,84; <0,05), na subsuperfície (R²: 0,84; <0,05) e na segunda profundidade (R²: 0,94; <0,05), e significativo na plataforma (R²: 0,88; <0,05) e na região do talude (R²: 0,89; <0,05) (Figura 8).

Figura 8: Análise de regressão linear entre biomassa em carbono (pgC. L⁻¹) e biovolume (μm³. L⁻¹). A. a relação no inverno; B. relação no verão. C. subsuperfície; D. relação na 2º profundidade; E. relação na plataforma continental; F. relação no talude.

Por meio do teste de correlação de *Spearman* foi possível identificar as relações significativas entre os métodos de estimativa de biomassa. A relação foi feita entre a biomassa em carbono (pgC. L⁻¹) e clorofila *a* (μ g/L) (Tabela 4). Apesar do coeficiente de determinação ser bem baixo, apenas foram significativas as relações entre Biomassa em carbono inverno x Clorofila *a* inverno (0,36), entre Biomassa em carbono Plataforma Inverno x Clorofila *a* Plataforma Inverno (0,40), e entre Biomassa em carbono Talude Verão x Clorofila *a* Talude Verão (0,57). As demais correlações não foram significativas e apresentaram valor de p>0,05.

Relação	Coeficiente	p-valor
	de	
	correlação	
Biomassa inverno X Clorofila inverno	0,36	<0,05
Biomassa verão X Clorofila verão	-0,17	>0,05
Biomassa Sub Inverno X Clorofila Sub Inverno	-0,07	>0,05
Biomassa Sub Verão X Clorofila Sub Verão	-0,12	>0,05
Biomassa 2º prof. Inverno X Clorofila a 2º prof. Inverno	0,002	>0,05
Biomassa 2º prof. Verão X Clorofila a 2º prof. Verão	0,12	>0,05
Biomassa Plat. Inverno X Clorofila Plat. Inverno	0,40	<0,05
Biomassa Plat. Verão X Clorofila Plat. Verão	0,09	>0,05
Biomassa Talude Inverno X Clorofila Talude Inverno	0,04	>0,05
Biomassa Talude Verão X Clorofila Talude Verão	0,57	<0,05

Tabela 4: Coeficiente de correlação de *Spearman* entre as variáveis biomassa em carbono (pg C. L⁻¹) e clorofila *a* (μg/L) da comunidade fitoplanctônica da Bacia do Espírito Santo.

A representação gráfica da relação das variáveis biomassa em carbono (pgC.L⁻ ¹) e clorofila *a* (μg/L) foram expressas por meio do diagrama de dispersão (Figura 9). Na figura 9, também é possível observar a relação linear logarítmica entre biomassa em carbono inverno e clorofila *a*.

A análise de regressão linear mostrou ser significativa (p<0,05) para a relação Biomassa em carbono inverno x clorofila *a* inverno (r²:0,10 e p<0,008), entre Biomassa em carbono Plataforma inverno x clorofila *a* Plataforma inverno (r²:0,22 e p<0,01), e entre Biomassa em carbono Talude verão x Clorofila *a* Talude verão (r²:0,32 e p<0,000). Nesses casos, é possível confirmar a relação direta entre clorofila *a* e Biomassa em carbono, embora os valores do coeficiente de determinação sejam baixos. As demais correlações não foram significativas e apresentaram valor de p>0,05.

Figura 9: Diagrama de dispersão da relação das variáveis biomassa em carbono (pgC. L⁻¹) e clorofila *a* (μg/L). A. a relação no inverno; B. relação na plataforma no inverno e C. relação no talude no verão. Apenas as relações que mostraram ser significativa (p<0,05).

As relações que apresentaram ser significativas como, por exemplo, no inverno e na plataforma no inverno, apresentaram Coscinodiscophyceae como grupo de algas dominante em termos de biomassa em carbono. Já Cyanophyceae foi o grupo de alga que dominou em termos de biomassa na região do talude no verão.

7. DISCUSSÃO

A composição taxonômica da bacia do Espírito Santo mostrou-se bem semelhante com a composição taxonômica encontrada em outros trabalhos no litoral do Brasil (SILVA et al., 1988; AIDAR et al., 1993; FERNANDES; BRANDINI, 1999; FERNANDES; BRANDINI 2004 (diatomáceas); MOSER et al., 2014).

A composição taxonômica foi muito semelhante entre os dois períodos amostrais (inverno e verão), onde se destacaram as diatomáceas cêntricas, pertencentes à Classe Coscinodiscophyceae, as diatomáceas penadas da Classe Bacillariophyceae, seguido pela Classe Dinophyceae. Para Bonecker e colaboradores (2009), diversos grupos de algas compõem a comunidade fitoplanctônica marinha, no entanto, as Classes Bacillariophyceae e Dinophyceae são as que apresentam a maior biodiversidade nos ambientes marinhos. As diatomáceas predominam com alta densidade celular e alta produtividade primária na região da plataforma continental do sudoeste do Brasil, ocorrendo diminuição gradativa dessas algas em direção ao oceano aberto, onde predominam algas das classes, representada por Dinophyceae e Coccolithophyceae (BRANDINI; FERNANDES, 1996; FERNANDES; BRANDINI, 2004).

Representadas pelas Classes Bacillariophyceae, Coscinodiscophyceae e Fragilariophyceae, as diatomáceas são grupos de algas dominantes nos ecossistemas aquáticos marinhos e sua biomassa em carbono é um parâmetro importante para o entendimento quantitativo do seu papel nos ciclos biogeoquímicos do carbono e sílica marinha (CORNET-BARTHAUX et al., 2007). Além do relevante papel na cadeia alimentar, as diatomáceas contribuem com, aproximadamente, 35% da produtividade nos oceanos oligotróficos e com cerca de 75% nas áreas costeiras e antárticas (TRÉGUER et al., 1995).

As diatomáceas apresentaram em termos de biomassa em carbono valores expressivos na região da plataforma continental, principalmente, no período do inverno. Para Fernandes e Brandini (1999), elas necessitam de maiores concentrações de nutrientes para atingirem seu máximo de crescimento, e é na região da plataforma continental que as concentrações de nutrientes tendem a serem maiores (BONECKER et al., 2009). Isso se dá, principalmente, por conta do silicato, nutriente responsável pela formação de suas frústulas (TRÉGUER et al., 1995). Portanto, a biomassa das diatomáceas tendem a ser limitadas em água oligotrófica (AIDAR et al., 1993).

No trabalho de Brandini e Fernandes (1996), as diatomáceas dominaram na região da costa, principalmente, nas camadas sub-superficiais. No presente estudo, foi na segunda profundidade que as diatomáceas dominaram em termos de biomassa em carbono. Isso pode ser explicado pelo fato dessas algas apresentarem grande capacidade de aclimatação a baixas irradiâncias, pois apresentam pigmentos acessórios como fucoxantina, que auxilia na captação de luz e que também atua como fotoprotetor do aparato fotossintético contra danos oxidativos (UENOJO et al., 2007) ou por conta do peso de suas frústulas de sílicas. Para Smetacek (1999), esse seria o motivo dessas algas se destacarem na fixação de carbono em regiões mais profundas do oceano, pois, diferente de outros grupos de fitoplâncton, essas algas tendem a afundar primeiro, devido ao peso de suas frústulas de sílica.

No presente estudo, a espécie *Hemiaulus membranaceus* apresentou um dos maiores valores de biomassa em carbono, o que também foi observado por Ribeiro-Queiroz e colaboradores (2014) no Arquipélago São Pedro e São Paulo em Pernambuco, biomassa em carbono expressa em (pgC. µm⁻³). Naz e colaboradores (2013), em águas costeiras do Paquistão, observaram que a espécie *Odontella mobiliensis* também apresentou valores expressivos de biomassa em carbono (pgC. cel⁻¹). A espécie *Pseudoguinardia* cf *recta* foi a diatomáceae fitoplanctônica que apresentou o maior valor de biomassa em carbono, o que também foi observado por Lugo-Vizcaino e colaboradores (2003) na plataforma da Venezuela.

No presente estudo, a Classe Dinophyceae apresentou valores expressivos de biomassa em carbono no verão na região da plataforma continental e nos dois períodos amostrais na região do talude, com destaque no verão na região do talude. Os dinoflagelados prosperam em água mornas e, geralmente, são mais abundantes perto da superfície (LEE, 2008). A peridinina, um carotenoide predominante nos dinoflagelados, é o pigmento que permite que os organismos coletem luz na faixa de 470 – 550 nm, região onde a clorofila *a* não a absorve (KLEIMA et al., 2000), provavelmente. Esse pigmento, além de auxiliar na absorção de luz, apresenta o papel fotoprotetor para o aparato fotossintético dessas algas (LEE, 2008), permitindo o sucesso desse grupo de algas nas regiões com maior intensidade luminosa.

Assim como no presente estudo, os dinoflagelados se destacaram em relação ao número de espécies e biomassa em carbono em estudo realizado por Fernandes e Brandini (1999) no sul do Brasil e na Península Antártica. Nos trabalhos de Ribeiro-Queiroz e colaboradores (2014) e Munir e colaboradores (2015), bem como no presente estudo, a alga *Neoceratium massiliense* foi a que apresentou um dos maiores valores de biomassa em carbono. Outro dinoflagelado que apresentou um dos maiores valores de biomassa em carbono na Bacia do Espírito Santo, foi a espécie *Gymnodinium sanguineum*, que também apresentou valores expressivos de biomassa em carbono em estudos realizados por Montagnes e colaboradores (1994).

Apesar de não ser representada por elevada riqueza de espécies, a Classe Cyanophyceae também se destacou em relação aos valores de biomassa em carbono. O fitoplâncton representado pela Classe Cyanophyceae foi abundante em ambas as regiões, porém se sobressaiu na região do talude, tanto no inverno quanto no verão, e também apresentou altos valores de biomassa em carbono nas duas profundidades, principalmente na subsuperfície. De acordo com Ting e colaboradores (2002), as cianobactérias são um dos grupos de algas consideradas cosmopolitas. Essa versatilidade é devido ao sistema de coleta de luz (complexo antena) associado com o centro de reação do fotossistema II (FSII) que auxiliam na captação de luz em diferentes comprimentos de ondas. Isso tem contribuído para a sua capacidade de se proliferar em ambientes bastante diversificados. Os gêneros que mostraram maior contribuição para os valores de biomassa em carbono na área de estudo foram *Trichodesmium* e *Synechocystis*. A particularidade de *Trichodesmium* é que seu sucesso é garantido em regiões de oceano aberto graças a sua capacidade de fixar N₂ (nitrogênio atmosférico). Mesmo não apresentando células diferenciadas (heterocitos), sua flutuabilidade natural é o que posiciona estes organismos na coluna de água superior. Além disso, um aparelho fotossintético adaptado a um regime de alta intensidade luminosa e crescimento mais ou menos baixo, acompanhado da falta de grandes herbívoros, lhe garante manter uma biomassa relativamente alta (CAPONE et al., 1997). O Gênero *Trichodesmium* apresenta ampla distribuição nos oceanos Atlântico, Pacífico, Índico tropical e subtropical, Caraíbas e mares da China (PROENÇA et al. 2011). As cianobactérias representadas pelo gênero *Synechocystis* são consideradas algas cosmopolitas e estão presentes com muita frequência em regiões de águas oligotróficas (PEARL, 2000).

A Classe Coccolithophyceae é habitualmente encontrada em águas superficiais, além de serem uma das principais produtoras primárias do mundo, contribuindo aproximadamente com 15% da biomassa média do fitoplâncton marinho (YANG et al., 2001). Na bacia do Espírito Santo a Classe Coccolithophyceae apresentou os maiores valores de biomassa em carbono na subsuperfície, entretanto, os cocolitoforídeos também apresentaram expressiva biomassa em carbono nas águas mais profundas. Baumann e colaboradores (2005) relataram que por serem adaptadas à salinidade 32 – 37, a grande maioria dos cocolitoforídeos vive no oceano aberto. Neste estudo, a Classe Coccolithophyceae esteve bem representada com os valores de biomassa em carbono na região do talude, no entanto, os cocolitoforídeos também contribuíram expressivamente com valores de biomassa em carbono para a região da plataforma continental. Portanto, a distribuição de cocolitoforídeos não apresentou um padrão definido de distribuição espacial (vertical e horizontal).

Teixeira e Tundisi (1967) observaram a diminuição progressiva na produção primária e no número de organismos por litro entre as regiões costeiras e oceânicas, e que a composição taxonômica mudava entre as diferentes regiões. Isso também foi verificado na Bacia do Espírito Santo, onde os maiores valores

de biomassa em carbono foram observados na plataforma continental, evidenciado, principalmente, pelos grupos de algas Coscinodiscophyceae, Bacillariophyceae e Cyanophyceae. A região do talude apresentou menores valores de biomassa em carbono quando comparada com a região da plataforma continental, representada, principalmente, pelos grupos Cyanophyceae, Dinophyceae e Coccolithophyceae.

A estação E1 do transecto T1 (T1E1), ao sul, foi a estação que apresentou o maior valor de biomassa em carbono, especificamente na segunda profundidade durante o inverno. O que podemos destacar é que algas microfitoplâncton se destacaram nessa estação, representado, principalmente pela Classe Coscinodiscophyceae pela espécie *Pseudoguinardia* cf. recta, evidenciando que estimar a biomassa em carbono por meio do biovolume agrega devida importância para grupo de algas com tamanhos diferentes. Provavelmente, a diferença entre os transectos no período do verão, principalmente, para os transectos T2 e T3, está relacionada com a desembocadura do rio Doce, que exerce grande influência, principalmente, na região da plataforma continental, com vazões máximas no verão (ZOFFOLI et al., 2011), contribuindo para que esses transectos tenham sido diferentes dos demais. A influência da Bacia do rio Doce nos transectos T2 e T3 está relacionada principalmente com o grande fluxo de sedimento, apesar das dificuldades causadas pelo excesso de sedimentos, estes são responsáveis pelo transporte de nutrientes que são necessários à manutenção dos organismos fitoplanctônicos.

Por meio do teste de Mann-Whitney, foi possível observar a existência de diferença significativa entre a biomassa em carbono nos períodos amostrais, nas profundidades e entre as regiões. A existência de diferença significativa entre a biomassa em carbono nos dois períodos amostrais nos revela a ocorrência de variação temporal dos valores de biomassa em carbono, sendo que no verão foi observado maior valor quando comparado com o inverno. Da mesma forma, foram observadas diferenças significativas da biomassa em carbono entre as profundidades, evidenciando variação espacial vertical, com maiores valores na subsuperfície. Do mesmo modo, houve diferença significativa entre as regiões, apontando para variação espacial horizontal, e foi possível verificar que a

biomassa em carbono total foi maior na região da plataforma continental do que na região do talude.

A biomassa em carbono foi maior nas águas da subsuperfície do que nas águas da segunda profundidade, e maiores no verão do que no inverno. Tanto no verão como na subsuperfície a biomassa em carbono das cianobactérias foi maior quando comparada com a biomassa em carbono de outros grupos de algas. Sabe-se que esse grupo de algas habita, principalmente, as águas da superfície de oceanos pobres em nutrientes. De acordo com Ting e colaboradores (2002), esses organismos apresentam mecanismos antioxidantes bem desenvolvidos, o que permitem seu posicionamento na superfície dos oceanos e um aparato fotossintético adaptado a um regime de alta luminosidade.

As cianobactérias filamentosas do gênero *Trichodesmium* contribuíram para a maior parte da biomassa em carbono do fitoplâncton na Bacia do Espírito Santo e uma característica chave desse gênero é a presença de vesículas de gás que proporcionam flutuabilidade para esses organismos (VAN BAALEN; BROWM, 1969). Um mecanismo ecologicamente importante que lhes permite ajustar sua posição vertical na coluna d'água, as vesículas de gás ajudam as populações de *Trichodesmium* a se manterem nas águas superiores da coluna d'água (CAPONE et al. 1997). Um outro mecanismo importante é que as espécies de *Trichodesmium* spp. apresentam, como uma resposta foto-adaptativa quando exposta a elevados regimes de luz, a utilização de enzimas que participam na eliminação de espécies reativas de oxigênio. Enzimas como a Superóxido Dismutase (SOD) são importantes antioxidantes na defesa das células expostas a essas condições de alta intensidade luminosa (CUNNINGHAM; CAPONE, 1992).

Muito provavelmente, o destaque de *Trichodesmium* no verão está relacionado com as altas temperaturas que ocorreram nesse período. Conforme Capenter e colaboradores (2004), em concordância com Carpenter e Capone (1992), as florações de *Trichodesmium* ocorrem a uma temperatura acima de 26° C. Segundo Dias Jr. e colaboradores (2016), a expressiva contribuição dessas cianofíceas para a biomassa é devida, principalmente, ao seu tamanho, sendo

as únicas algas filamentosas que apresentam uma boa importância numérica, principalmente em regiões oceânicas.

A região da plataforma continental apresentou maior valor de biomassa em carbono que a região do talude. De acordo com Naz e colaboradores (2013), o funcionamento de um ecossistema depende do tamanho da estrutura da comunidade. Fitoplâncton com células maiores domina em termos de biomassa nos ambientes eutróficos como as áreas costeiras (plataforma continental), e fitoplâncton com células pequenas dominam em ambientes de oceano aberto (talude). Para Eça e colaboradores (2014), os setores sul e sudeste da plataforma continental brasileira apresentam altos níveis de biomassa, devido, principalmente, às ressurgências sazonais e à influência de grandes rios que induzem a fertilização das águas.

Mudanças na biomassa e na produtividade do fitoplâncton são importantes e estão associadas à variabilidade dos processos biológicos e biogeoquímicos dos oceanos (YODER; KENNELLY, 2003) e são fundamentais para evidenciar a variação espaço – temporal da estrutura da comunidade.

Relações entre biomassa em carbono e biovolume do fitoplâncton foram inicialmente estudadas por Mullin e colaboradores (1966), e Strathmann (1967). Em nossos resultados, foi possível detectar uma correlação significativa entre biomassa em carbono (pgC. L⁻¹) com biovolume (µm³. L⁻¹), tanto entre os períodos inverno e verão, quanto para as regiões da plataforma continental e talude, e para as profundidades subsuperfície e segunda profundidade. Outros autores também encontraram resultados semelhante ao presente estudo, tais como Montagnes e outros (1994), Munir e colaboradores (2015), relacionaram biomassa em carbono e biovolume de dinoflagelados tecados e atecados, e Naz e colaboradores (2013), com a relação das variáveis para as diatomáceas.

Segundo Montagnes e colaboradores (1994), a grande variação dos fatores abióticos, tais como variação na luz, temperatura e escassez de nutrientes interfere no tamanho das células do fitoplâncton, o que influencia na mudança da relação carbono-volume. Por meio desses resultados é possível evidenciar o

quão confiável é estimar a biomassa em carbono baseado nos valores do biovolume celular.

A região do talude no verão foi que apresentou a maior relação entre as variáveis biomassa em carbono e clorofila *a*. Nessa região e nesse período, Cyanophyceae foi a Classe que apresentou o maior valor em porcentagem de biomassa em carbono (72,47%), se comparado com a biomassa em carbono total de outro grupo de algas.

A biomassa em carbono de Synechocystis mostrou contribuição maior no período do verão do que no inverno. De acordo com Pearl (2000) Synechocystis essas cianofíceas unicelulares nanofitoplantônicas são consideradas dominantes em águas superficiais e oligotróficas. De acordo com Malone (1980), a clorofila a é fortemente correlacionada com o tamanho da célula. Algas pequenas contêm mais clorofila a do que algas com células maiores, o que explicaria a relação significativa entre biomassa em carbono e clorofila a na região do talude no verão, onde a Classe Cyanophyceae dominou com altos valores de biomassa em carbono. Para Naz e colaboradores (2013) fitoplâncton com células menores dominam em ambientes de oceano aberto, o que também pode ter contribuído para a relação significativa entre biomassa em carbono e clorofila a.

A figura 9, confirma haver relação direta entre clorofila *a* e biomassa em carbono. No inverno apenas 10% da variação da biomassa em carbono decorre de mudanças na concentração de clorofila *a*, na plataforma continental no inverno 22% e no talude no verão 32%. Foi possível observar que as Classes Chlorophyceae, Dictyochophyceae, Euglenophyceae e Prasinophyceae estiveram bem representadas na relações que foram significativas, assim como as Classes Coscinodiscophyceae e Cyanophyceae dominaram em termos de biomassa em carbono para as relações que foram significativas. Hallegraeff (1977) sugere que as diferenças na composição das espécies afetam as relações sazonais entre diferentes medidas de biomassa.

A grande diversidade de técnicas para estimativas da biomassa fitoplanctônica oferece uma grande variedade no grau de precisão dos dados. Para Vörös e Padisák (1991), o conteúdo de clorofila a nas células do fitoplâncton é influenciado por diversos fatores, tais como limitação de nutrientes, intensidade de luz e o tamanho das células das algas. Outros autores citam a composição taxonômica do fitoplâncton como o fator responsável pela variabilidade de clorofila a (FELIP; CATALAN, 2000). Diversos autores citam que os diferentes pigmentos fotossintetizantes estão associados com grupos específicos de algas. Pork e Milius (1978) citam que a clorofila a é maior nas algas verdes do que em outros grupos de algas, assim como a peridinina ocorre com maior abundância nos dinoflagelados e a fucoxantina nas diatomáceas (IRIGOIEN et al., 2004). Estimar a biomassa só pela concentração de clorofila a não representaria todos os táxons da comunidade, pois há diferença na quantidade de clorofila a em diferentes grupos e nos diferentes tamanhos, e que esse método não estimaria com precisão a biomassa do fitoplâncton, além de excluir a comunidade heterotrófica da amostragem.

Garibotti e colaboradores (2003) afirmam que estudos quimiotaxonômicos, onde a biomassa é estimada pelo pigmento específico de cada grupo de alga, têm indicado uma excelente relação com o método de estimativa de biomassa em carbono. Trabalhos como de Descy e Métens (1996), Schlüter e Havskum (1997), Gosselain e colaboradores (2000), Marinho e Rodrigues (2003), Irigoien e colaboradores (2004), Lionard e colaboradores (2008), e Mendes e colaboradores (2016) têm contribuído com esses dados.

É possível determinar algumas desvantagens em ambos os métodos e isso explicaria a relação não significativa e significativa, porém fraca, entre os métodos de estimativa de biomassa. O método de análise por meio do microscópio, utilizado no presente trabalho, considerou apenas os organismos do nanofitoplâncton e microfitoplâncton para estimar o biovolume e, consequentemente, a biomassa em carbono. Ao mesmo tempo, a análise de pigmento não ignora as diferentes classes de tamanho e incluem organismos do ultraplâncton, picoplâncton e mesoplâncton com conteúdo de clorofila *a*. A inexistente relação entre carbono – clorofila *a* do fitoplâncton também pode ser

explicada pela influência da diminuição dos níveis de luz no ambiente. Uma outra consideração é que trabalhos de microscopia envolvem diversas fontes de erro, que se iniciam na etapa de sedimentação, enumeração, da mediação das dimensões da célula para o biovolume e vão até a sua conversão em carbono. Esses questionamentos foram levantados por Lionard e colaboradores (2008), já que os autores não observaram relações fortes entre os dois métodos de estimativa.

Estimar a biomassa em carbono por meio do biovolume revelou a composição específica da comunidade fitoplanctônica, que é uma informação extremamente valiosa para a pesquisa ecológica que não pode ser obtida por meio de análise de pigmentos avaliando apenas a clorofila *a* como medida de biomassa. Apesar dos dois métodos fazerem estimativas de biomassa, o método de clorofila a apresenta desvantagem quanto a ser um método de estimativa de biomassa. pois é um método que sofre influência das mudanças ambientais. Diferentes táxons apresentam variabilidade no conteúdo de clorofila e não existe a separação de partículas de detritos do fitoplâncton (MULLIN et al. 1966; WETZEL; LINKES (2000). De acordo com Cullen (1982), a clorofila a não é um perfeito descritor da biomassa orgânica do fitoplâncton. Nas equações oferecidas por diversos autores, o método de biomassa em carbono por meio do biovolume tem sido mais preciso, pois independe das alterações do ambiente (MULLIN et al. 1966). Devido a esses fatores externos e internos, não é possível estabelecer uma forte correlação entre as medidas de biomassa em carbono por meio do biovolume e clorofila a.

Embora o método do biovolume celular demande longo tempo de uso de microscópio para determinar a quantidade de organismos e o volume celular do fitoplâncton, apresenta diversos aspectos positivos tornando-se recomendada para estimativas de biomassa, devido a: alta resolução taxonômica, método de custo relativamente baixo e fácil de aplicar e restrito a poucas fontes de erros, pois há controle do pesquisador.

Baseado nesta pesquisa, podemos concluir que estimar a biomassa em carbono do fitoplâncton por meio do biovolume é importantíssimo para estudos

fisiológicos e ecológicos nos ambientes marinhos, uma vez que a variação espacial e temporal da biomassa em carbono do fitoplâncton foi evidenciada na bacia do Espírito Santo. Estimar a biomassa em carbono por meio do biovolume, nos permite dar valor a cada grupo taxonômico, agregar a mesma importância para as algas de tamanhos diferentes, além de proporcionar a manipulação de amostras já conservadas e, ainda, eliminar a presença de detritos e especificar a variabilidade do carbono em diferentes grupos do fitoplâncton.

Conforme Hallegraff (1977), as diferentes técnicas analíticas de estimativa da biomassa fitoplanctônica não produzem necessariamente resultados comparáveis. O teor de carbono mostraria o conteúdo energético da biomassa e a concentração de clorofila *a* refletiria o potencial fotossintético da comunidade. Apesar de significativas, as correlações entre biomassa em carbono e clorofila *a* apresentaram valores baixos de correlação no presente estudo, e esses resultados nos têm mostrado a importância de cada método de estimativas de biomassa. Desta forma, conclui-se que combinações destas técnicas sejam propostas para contrariar as limitações dos diferentes métodos e se aproximem ao máximo do real, em termos da comunidade fitoplanctônica.

8. CONCLUSÕES

Foi possível estimar com confiança a biomassa em carbono do fitoplâncton autotrófico a partir das medidas do volume celular. Essas medidas foram muito bem relacionadas pois apresentaram altos valores de coeficiente de determinação por meio de análise de regressão.

Os grupos de algas que apresentaram o maior número de táxons e os maiores valores de biomassa em carbono foram Coscinodiscophyceae, Bacillariophyceae e Dinophyceae que reforça o que já é discutido na literatura, apesar de não apresentar um maior número de táxons a Classe Cyanophyceae se destacou com elevado valor de biomassa em carbono.

A biomassa em carbono do fitoplâncton autotrófico apresentou variação espaço – temporal ao longo da Bacia do Espírito Santo. No verão foi possível observar os maiores valores de biomassa em carbono em relação ao inverno, na subsuperfície a biomassa em carbono foi maior quando comparado a segunda profundidade e a biomassa em carbono do fitoplâncton foi maior na região da plataforma continental quando relacionado com a região do talude.

Apenas entre a biomassa em carbono e clorofila *a* do inverno, da plataforma continental no inverno e da região do talude no verão foi possível verificar relações significativas entre essas medidas de biomassa. Apesar de significativa essas relações foram baixas e esses resultados têm evidenciado a importância e limitações de cada método para estimar a biomassa da comunidade fitoplanctônica, sugerindo que as combinações de técnicas de estimativas de biomassa seriam a melhor proposta para contrariar as limitações dos diferentes métodos de estimativas de biomassa.

9. RECOMENDAÇÕES

Uma vez que a comunidade fitoplanctônica respondem rápido às alterações ambientais, sofrendo modificações na sua composição de espécies e biomassa. A qualidade dos ecossistemas aquáticos tem sido frequentemente baseada na comunidade fitoplanctônica. Recomenda-se, estudos com a finalidade de conhecer a composição de espécies e biomassa, estudos que podem promover ações de conservação e de gestão ambiental dos ambientes marinhos, e principalmente da Bacia do Espírito Santo, bacia essa que vem sofrendo intensamente com os impactos ambientais.

Os conhecimentos obtidos através do desenvolvimento dessa dissertação, podem ser ampliados através de um trabalho de escala contínua. Onde recomenda-se trabalhos futuros que possam incorporar ao presente. Como por exemplo, trabalhos que visam caracterizar o detalhamento da relação da biomassa em carbono da comunidade fitoplanctônica com as variáveis abióticas, trabalhos taxonômicos e estudos contínuos, sistematizados e efetivos na Bacia do Espírito Santo.

10. REFERÊNCIAS

ABAYCHI, J.K.; RILEY, J.P. The determination of phytoplankton pigments by High-performance liquid chromatography. **Analytica Chimica Acta**. v. 64, p. 525-527, 1979.

AIDAR, E. et al. Ecossistema costeiro subtropical: nutrientes dissolvidos, fitoplâncton e clorofila-a e suas relações com as condições oceanográficas na região de Ubatuba, SP. **Instituto Oceanográfico**. São Paulo, v. 10, p. 9-43, 1993.

ALBINO, J.; GIRARDI, G.; NASCIMENTO, K.A.D. Erosão e progradação do litoral do Espirito Santo. In: Muehe, D. C. E. H. (ed.) Ministério do Meio Ambiente, Brasília, p. 227-264, 2006.

ANDERSON, D.M.; GLIBERT, P.M.; BURKHOLDER, J.M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. **Estuaries**, v. 25, n. 4b, p. 704-726, 2002.

ASMUS, H.E.; GOMES, J.B.; PERREIRA, A. C. B. Integração geológica regional da bacia do Espírito Santo. In: **Anais do XXV Congresso Brasileiro de Geologia**, 1971, São Paulo, SGV. p. 235-252, 1971.

BALECH, E. Los dinoflagelados del Atlântico Sudoccidental. Instituto Espanõl de Oceanografia, Madrid. 1988.

BARROSO, G.F.; LITTLEPAGE, J. Protocolo para análise de clorofila-a e feopigmentos pelo método fluorimétrico (Fluorímetro TD-700). Programa
Brasileiro de Intercâmbio em Maricutura – Monitoramento Ambiental. Vitória.
ES. Universidade Federal do Espírito Santo / University of Victoria: (s.n.). p. 21, 1998.

BAUDAUF, S.L. The deep roots of Eukaryotes. **SCIENCE**, v. 300, p. 1703-176, 2003.

BAUMANN, K.H.; ANDRULEIT, H.; BÖCKEL, B.; GEISEN, M.; KINKEL, H. The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and palaeoproductivity: a review. **Paläontologische Zeitschrift**, v.79, p. 93-112, 2005.

BELLINGER, E.G. A note on the use of algal sizes in estimates of population standing crops. **British Phycological Journal**, v9, n. 2, p. 157-161, 1974.

BILLINGTON, N. A comparison of three methods of measuring phytoplankton biomass on a daily and seasonal basis. **Hydrobiologia**, v. 226,n. 1, p. 1-15, 1991.

BONECKER, A.C.T.; BONECHER, S.L.C.; BASSANI, C. Plâncton Marinho. In: Perreira, R.C.; Soares-Gomes, A. (Eds.) **Biologia Marinha**. Interciência. p. 103-125, 2009.

BOYCE, D.G.; LEWIS, M.R.; WORN, B. Does blending of chlorophyll data bias temporal trend?. **Nature**, v. 466, p. 591-596, 2010.

BRANDINI, F. P. Composição e distribuição do fitoplâncton na Região Sueste do Brasil e suas relações com as massas de água (Operação Sueste – julho/agosto 1982). **Ciência e Cultura**, v. 4, n. 40, p. 334-341, 1988.

BRANDINI, F.P. Produção primária e características fotossintéticas do fitoplâncton na região sueste do Brasil. Boletim Instituto Oceanográfico.
São Paulo. v. 38, n. 2, p. 147-159, 1990.

BRANDINI, F.P.; MORAES, C.L.B. Composição e distribuição do fitoplâncton em áreas costeiras e oceânicas da região sueste do Brasil. **Revista Nerítica**, v.1, p. 9-19, 1986. BRANDINI, F.P.; FERNANDES, L.F. Microalgae of the continental shelf off Paraná State, southeastern Brazil: a review of studies. **Revista brasileira de Oceanografia**, v. 44, p.69-80, 1996.

BRIEN, C.J.O.; PELOQUIN, J.A.; VOGT, M.; HEINLE, M.; GRUBER, N.; AJANI, P.; ANDRULEIT, H.; ARÍSTEGUI, J.; BEAUFORT, L.; ESTRADA, M.; KARENTZ, D.; KOPCZYNSKA, E.; LEE, R.; POULTON, A.J.; PROTCHARD, T.; WIDDICOMBE, C. Global marine plankton functional type biomass distribuitions: Coccolithophores. **Earth System Science data**, v. 5, p. 259-276, 2013.

CAPONE, D.G.; ZEHR, J.P.; PAERL, B.B.; CARPENTER, E.J. Trichodesmium, a globally significant marine Cyanobacterium. **Science**, v. 276, p. 1221-1229, 1997.

CARPENTER, E.J.; CAPONE, D.G. Significance of Trichodesmium blooms in the marine nitrogen cycles. In: Carpenter, E.J., Capone, D.G., Rueter, J. (Eds.) Marine Pelagic Cyanobacteria: *Trichodesmium* and other Diazotrophs. Kluwer Academic Publishers, Dordrecht, p. 211-217, 1992.

CARPENTER, E.J; SUBRAMANIAM, A.; CAPONE, D.G. Biomass and primary productivity of the cyanobacterium Trichodesmium spp. In the tropical N Atlantic Ocean. **Deep-Sea Research I 51**. p. 173-203, 2004.

CARVALHO, R.C.Q.; CUTRIM, M.V.J.; ESCHRIQUE, S.A.; AZEVEDO-CUTRIM, A.C.G.; MOREIRA, E.G.; SILVEIRA, P.C.A.; COÊLHO, J.M. Microphytoplankton composition, chlorophyll-*a* concentration and environmental variables of the Maranhão Continental Shelf, Northern Brazil. **Latin American Journal of Aquatic Research**, v. 44, n. 2, p. 256-266, 2016.

CIOTTI, A.M.; ODEBRECHT, C.; FILLMANN, G.; MOLLER JR, O. Freshwater outflow and subtropical convergence influence on phytoplankton biomass on the southern Brazilian continental shelf. **Continental Shelf Research**, v. 15, n. 14, p. 1737-1756, 1995.

CORNET-BARTHAUX, V.; ARMAND, L.; QUÉGUINER, B. Biovolume and biomass estimates of key diatoms in the Southern Ocean. **Aquatic Microbial Ecology**, v. 48, p. 295-308, 2007.

CULLEN, J.J. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. **Canadian Journal of Fisheries and Aquatic Science**, v. 39, n. 5, p. 791-803, 1982.

CUNNINGHAM, K.A.; CAPONE, D.G. Superoxide Dismutase as a protective enzyme against oxygen toxicity: Na overview and initial studies in Trichodesmium. In: CARPENTER, E.J.; CAPONE, D.G.; RUETER, J.G. (Ed.). **Marine pelagic Cyanobacteria: Trichodesmium and other diazotrophs**. Nato ASI Series C: Mathematical and Physical Sciences, v. 362, p. 331-341, 1992.

CUPOLILLO, F.; ABREU, M.L.; VIANELLO, R.L. Climatologia da bacia do rio Doce e sua relação com a topografia local. **Geografias**, v. 4, n. 1, p. 45-60, 2008.

DESCY, J-P.; MÉTENS, A. Biomass-pigment relationships in potamoplankton. **Journal of Plankton Research**, v.18, n. 9, p. 1557-1566, 1996.

Dias, JR., C.1998. Estudo do fitoplâncton em um reservatório de águas ácidas na região litorânea do Espírito Santo- Reservatório de águas claras (Espírito Santo, Brasil). PhD Thesis, Universidade Federal de São Carlos, Brazil.

DIAS Jr., C; BARROSO, G.F. Limnological studies of coastal lagoons in the south of Espírito Santo State (Brazil). Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie, v.26, p. 1433–1437, 1998.

Dias JR. C.; Lázaro, G.C.S.; Lucas-Leal, P.S.; Macedo, A.R.D.C.; Oliveira, F.R.A. 2016. Estrutura da comunidade fitoplanctônica na bacia do Espírito Santo e porção norte da bacia de Campos: Distribuição espacial e temporal da densidade numérica, diversidade específica e composição taxonômica. In: PETROBRAS: **Relatório Final do Projeto de Caracterização Ambiental Regional da Bacia do Espírito Santo e Parte Norte da Bacia de Campos PCR-ES/AMBES**,2015.

ESTEVES, F.A.; SUZUKI, M.S. Comunidade fitoplanctônica. In: Esteves, F.A. (Ed.). **Fundamentos de Limnologia**. Rio de Janeiro: Editora Interciência, p. 445, 2011.

EÇA, G.F.; LOPES, J.B.B.S.; SOUZA, M.F.L.; BELÉM, A.L. Dissolved inorganic nutrientes and chlorophyll on the narrow continental shelf of eastern Brazil, **Brazilian Journal of Oceanography**, v. 62, n. 1, p. 11-21, 2014.

EDLER, L. Recommendations for marine biological studies in the Baltic Sea – phytoplankton and chlorophyll. **Baltic Marine Biologists**, v. **5**, p. 1-39, 1979.

EKAU, W.; KNOPPERS, B. Na introduction to pelagic system of the north east and east Brazilian shelf. **Archives of Fishery Marine Research**, v. 47, p. 113-132, 1999.

EPPLEY, R.W.; ROGERS, J.N.; McCARTHY, J.J. Ligth/dark periodicity in nitrogen assimilation of the marine phytoplankters Skeletonema costatum and Coccolithus huxleyi in N-limited chemostat culture. **Journal of Phycology**, v. 7, p. 150-154, 1971.

ESTEVES, F.A.; SUZUKI, M.S. Comunidade fitoplanctônica. In: Esteves, F.A. (Ed.). **Fundamentos de Limnologia**. Rio de Janeiro: Editora Interciência, p. 445, 2011.

FALKOWSKI, P.G.; KATZ, M.E.; KNOLL, A.H.; QUIGG, A.; AVEN, J.A.; SCHOFIELD, O.; TAYLOR, F..R. The evolution of modern eukaryotic phytoplankton. **SCIENCE**, v. 305, p. 354-360, 2004.

FELIP, M.; CATALAN, J. The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. **Journal of Plankton Research**, v. 22, n. 1, p. 91-105, 2000.

FERNANDES, L.F.; BRANDINI, F.P. Comunidade microplanctônica no oceano Atlântico sul Ocidental: biomassa e distribuição em novembro de 1992. **Revista Brasileira de Oceanografia**, v. 47, p. 189-205, 1999.

FERNANDES, L.F.; BRANDINI, F.P. Diatom associations in shelf waters off Paraná state, southern Brazil: annual variation in relation to environmental factors. **Brazil Journal of Oceanography**, v. 52, p. 19-34, 2004.

FERREIRA, L.C.; CUNHA, M.G.G.S.; KOENING, M.L.; FEITOSA, F.A.N.; SANTIAGO, M.F.; MUNIZ, K. Variação temporal do fitoplâncton em três praias urbanas do litoral sul do estado de Pernambuco, nordeste do Brasil. **Acta Botanica Brasilica**, v. 24, n. 1, p. 214-224, 2010.

FONSECA, B.M.; FERRAGUT, C.; TUCCI, A.; CROSSETTI, L.O.; FERRARI, F.; BICUDO, D.C.; SANT'ANNA, C.L.; BICUDO, C.E.M. Biovolume de cianobactérias e algas de reservatórios tropicais do Brasil com diferentes estados tróficos. **Hoehnea**, v. 41, p. 9-30, 2014.

GAETA, S.A.; RIBEIRO, S.M.S.; METZLER, P.M.; FRANCOS, M.S.; ABE, D.S. Environmental forcing on phytoplankton biomass and primary productivity of the coastal ecosystem in Ubatuba region, Southern Brazil. **Revista Brasileira de Oceanografia**, v. 41, n.1, p. 11-27, 1999.

GAGE, J.D.; TYLER, P.A. Deep-sea biology: **A natural history of organisms at the Deep-Sea floor**. Cambridge University Press. 1991.

GARIBOTTI, I.A.; VERNET, M.; KOZLOWSKI, W.A.; FERRARIO, M.E. Composition and biomass of phytoplankton assemblages in coastal Antartic waters: a comparison of chemotaxonomic and microscopic analyses. **Marine Ecology Progress Series**, v 247, p. 27-42, 2003.

GOSSELAIN, V.; HAMILTON, P.B.; DESCY, J.P. Estimating phytoplankton carbon from microscopic counts: an application for riverine systems. **Hydrobiologia**, v. 438, p. 75–90, 2000.

GRAHAM, L.E.; WILCOX, L.W. **Algae**. Upper Saddle River: Prentice-Hall, p. 640, 2000.

HALLEGRAEFF, G.M. A comparison of different methods used for the quantitative evaluation of biomass of freshwater phytoplankton. **Hydrobiologia**, v. 55, n. 2, p. 145-165, 1977.

HARRIS, G.P. **Phytoplankton Ecology: Structure, Function, and Fluctuation**. Chapman and Hall, London, England, 1986.

HILLEBRAND, H.; DÜRSELEN, C.D.; KIRSCHTEL, D.; POLLINGHER, U.; ZOHARY, T. Biovolume calculation for pelagic and benthic microalgae. **Journal Phycologic**, v. 35, p. 403-424, 1999.

IRIGOIEN, X.; MEYER, B.; HARRIS, R.; HARBOUR, D. Using HPLC pigment to investigate phytoplankton taxonomy: the importance of knowing your species. **Helgoland Marine Research**, v58, p. 77-82, 2004.

JASPIRA, N. Cell volumes and carbon measurements in marine phytoplankton. *In*: Rao, S.D.V.; Ganapati, P.N.; Lafond, E.C., Humphrey, G.F. (eds.) **Pelagic Ecology Methodology**. Taylor & Francis. p. 333-357, 2002.

KLEIMA, F. J.; M. WENDLING, M.; HOFMANN, E.; PETERMAN, E.J.; VAN GRONDELLE, R.V.; VAN AMERONGEN, H. Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. **Biochemistry**, v. 39, p. 5184–5195, 2000.

LEÃO, B.A. **Biomassa, taxonomia e ecologia do fitoplâncton do estuário do rio Igarassu (Pernambuco, Brasil)**. 2004. 71p. Dissertação (Mestrado em Biologia Vegetal) – Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Recife, 2004.

LEBLANC, K.; ARÍSTEGUI, J.; ARMAND, L.; ASSMY, P.; BEKER, B.; BODE, A.; BRETON, E.; CORNET, V.; GIBSON, J.; GOSSELIN, M.-P.; KOPCZYNSKA, E.; MARSHALL, H.; PELOQUIN, J.; PIONTKOVSKI, S.; POULTON, A.J.; QUÉGUINER, B.; SCHIEBEL, R.; SHIPE, R.; STEFELS, J.; VAN LEEUWE, M.A.; VARELA, M.; WIDDICOMBE, C.; YALLOP, M. A global diatom database – Abundance, biovolume and biomass in the world ocean. **Earth System and Science Data**, v. 1, p. 149-165, 2012.

LEE, R.E. Dinophyta. In: LEE, R.E. (Ed.). **Phycology**. Cambridge University Press, p. 262-303, 2008.

LIONARD, M.; MUYLAERT, K.; TACKX, M.; VYVERMAN, W. Evaluation of the performance of HPLC-CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium). **Estuarine Coastal and Shelf Science**, v. 76, p. 809-817, 2008.

LITCHMAN, E.; KLAUSMEIER, C.A. Trait-Based community ecology of phytoplankton. **Annual Review of Ecology Evolution and Systematics**, v. 39, p. 615-639, 2008.

LONGHURST, A.; SATHYENDRANATH, S. PLATT, T.; CAVERHILL, C. An estimate of global primary production in the ocean from satellite radiometer data. **Journal of Plankton Research**, v 17, n.6, p. 1245-1271, 1995.

LUBIANA, K.M.F.; DIAS Jr, C. The composition and new records of micro-and mesophytoplankton near the Vitória- Trindade seamount chain. **Biota Neotropica**, v. 16, n. 3, p. 1-18, 2016.

LUGO-VIZCAINO, B.M.; DÍAZ-RAMOS, J.R.; SÁNCHEZ-SUÁREZ, I.G. Biovolumen de algunas diatomeas cêntricas de la plataforma nororiental de Venezuela. **Acta Científica Venezolana**, v. 54, p. 88-96, 2003.

LUND, J.W.; KIPLING, C.; LE, C.D. The invert microscope method of estimating algal numbers and the statistical basis of estimation by counting. **Hydrobiologia**, v. 11, p. 143-170, 1958.

MALONE, T.C. Size-fractioned primary productivity of marine phytoplanlton. In: Falkowshi P (ed.), **Primary productivity in the Sea. Brookhaven Symposia in Biology**, v. 31.p. 301-319. 1980.

MARINHO, M.M.; RODRIGUES, S.V. Phytoplankton of an eutrophic tropical reservoir: comparison of biomass estimated from counts with chlorophyll-*a* biomass from HPLC measurements. **Hydrobiologia**, v. 505, p. 77-88, 2003.

MENDEN-DAUER, S.; LESSARD, E. Carbon to volume relationships for dinoflagellates, diatoms, and other protest plankton. Limnology and Oceanography, v. 45, p. 569-579, 2000.

MENDES, C.R.B.; ODEBRECHT, C.; TAVANO, V.M.; ABREU, P.C. Pigmento-basead chemotaxonomy of phytoplankton in the Patos lagoon estuary (Brazil) and adjacent coast. **Marine Biology Research**, p. 1-14, 2016.

MONTAGNES, D.J.S.; BERGES, J.A.; HARRISON, P.J.; TAYLOR, F.J.R. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. **Limnology and Oceanography**, v. 39, p.1044-1060, 1994.

MONTAGNES, D.J.S.; FRANKLIM, D.J. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms. **Limnology and Oceanography**, v. 46, p. 2008-2018, 2001.

MOSER, G.A.O; TAKANOHASHI, R.A.; BRAZ, M.C.; LIMA, D.T.; KIRSTEN, F.V.; GUERRA, J.V.; FERNANDES, A.M.; POLLERY, R.C.G. Phytoplankton spatial distribution on the Continental Shelf off Rio de Janeiro, from Paraíba do Sul river to Cabo Frio. **Hydrobiologia**, v. 728, p. 1-21, 2014.

MULLIN, M.M.; SLOAN, P.R.; EPPLEY, R.W. Relationship between carbon content, cell volume, and area in phytoplankton. **Limnology and Oceanography**, v. 11, p. 307-311, 1966.

MUNIR, S. et al. Morphometric forms, biovolume and cellular carbon content of dinoflagellates from polluted water on the Karachi coast, Pakistan. Indian. **Journal of Geo-Marine Science**, v. 44, p. 19-25, 2015.

NAZ, T. et al. Biovolume and biomass of common diatom species from the coastal waters of Karachi, Pakistan. **Pakistan Journal of Botany**, v. 45, p. 325-328, 2013.

OLENINA, I.; HAJDU, S.; EDLER, L.; ANDERSSON, A.; WASMUND, N.; BUSCH, S.; GÖBEL, J.; GROMISZ, S.; HUSEBY, S.; HUTTUNEN, M.; JAANUS, A.; KOKKONEN, P.; LEDAINE, I. & NIEMKIEWICZ, E. Biovolume and size-classes of phytoplankton in the Baltic Sae. Helcom Balt. **Sea Environmente Proceedings**, v. 106, p. 1-144, 2006.

OLSON, R. J.; VAULOT, D.; CHISHOLM, S. W. Marine phytoplankton distributions measured using shipboard flow cytometry. **Deep-Sea Research**. v. 32, n.10, p.1273-1280, 1985.

PEARL, H.W. Marine plankton. In: Whitton BA, Potts M. (eds.). **The ecology** of Cyanobacteria: Their diversity in time and space. Dordrecht: Kluer Academic Publishers. p. 121-148, 2000.
PEDROSA, P.; SUZUKI, M.S.; ANDRADE, L.; SILVEIRA, I.C.A.; SCHIMIDT, A.C.K.; FALCÃO, A.P.; LAVRADO, H.P.; REZENDE, C.E. Hidroquímica de massas d'água oceânicas em regiões da margem continenta brasileira, Bacia de Campos, estado do Rio de Janeiro, Brasil. **Geochemica Brasiliensis**, v. 20, n. 1, p. 101-119, 2006.

PORK, M.; MILIUS, A. Seasonal changes in phytoplankton biomass of some eutriphic lakes. **Izvestiya Akademii Nauk**, v. 27, p. 38-45, 1978.

POTAPOVA, M.; SNOEIJS, P. The natural life cycle in wild populations of Diatoma moliniformis (Bacillariophyceae) and its disruption in an aberrant environment. **Journal Phycologic**, v. 33, p. 924-937, 1997.

PROENÇA, L.A.O.; FONSECA, R.S.; PINTO, T.O. As microalgas. In: PROENÇA, L.A.O.; FONSECA, R.S.; PINTO, T.O. (Eds.) Microalgas em áreas de cultivo do litoral de Santa Catarina. Rima. p. 19-64, 2011.

RIBEIRO-QUEIROZ, A.R.; KOENING, M.L.; GASPAR, F.L. Cell biovolume and biomass in carbon of microphytoplankton species of oceanic regions, equatorial atlantic. **Tropical Oceanography**, v. 42, p.131-144, 2014.

RODRIGUES, S.V.; MARINHO, M.M.; JONCK, C.C.C; GONÇALVES, E.S.; BRANT, V.F.; PARANHOS, R.; CRUBELO, M.P.; FALÇÃO, A.P. Phytoplankton community structures in shelf and oceanic Waters off southeast Brazil (20° - 25°), as determined by pigment signatures. **Deep-Sea Research I**, v. 88, p. 47-62, 2014.

SCHAEFFER, L. R. Distribuição espacial e temporal da comunidade fitoplanctônica em uma área de malacultura no município de Anchieta – ES. 2007. 122 f. Dissertação de Mestrado. Programa de Pós-Graduação em Biologia Vegetal (Área: Fisiologia Vegetal). Universidade Federal do Espírito Santo, Vitória, 2007.

SCHLÜTER, L.; HAVSKUM, H. Phytoplankton pigments in relation to carbon content in phytoplankton communities. **Marine Ecology Progress Series**, v. 155, p. 55-65, 1997.

SILVA, N.M.L; VALENTIN, J.L.; BASTOS, E.T. O microfitoplâncton das águas costeiras do litoral Fluminense (Estado do Rio de Janeiro): Lista de espécies e aspectos ecológicos. **Boletim Instituto Oceanográfico**, v. 36, n. (1/2), p. 1-16, 1988.

SMETACEK, V. Diatoms and the ocean carbono cycle. **Protist**, v. 15, n. 25, p. 25-32, 1999.

SOURNIA, A. Morphological base of competition and succession. **Canadian Bulletim of Fisheries Aquatic Sciences**, v. 210, p. 339-346, 1981.

SOUZA, E.M. Biomassa e estrutura da comunidade fitoplanctônica dos ecossistemas do banco de Abrolhos, adjacências e no Atlântico Sul (Brasil x África). Tese de Doutorado em Ciências, área de Oceanografia Biológica, Universidade de São Paulo – USP, 2011. 142p.

STANISZEWSKA, M.; NEHRING, I.; ZGRUNDO, A. The role of phytoplankton composition, biomass and cell volume in accumulation and transfer of endocrine disrupting compounds in the Southern Baltic Sea (The Gulf of Gdansk). **Environmental Pollution**, v. 207, p. 319-328, 2015.

STRATHMANN, R.R. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. **Limnology and Oceanography**, v. 12, p. 411-418, 1967.

SUN, L.; LIU, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. **Journal of Plankton Research**, v. 25, p. 1331-1346, 2003.

TAKANOHASHI, R.A.; MOSER, G.A.O.; FERNANDES, M.A.; ENRICH-PRAST, A.; POLLERY, R.C.G. Nutrients and chlorophyll-a distribution over the continental margin between Cabo Frio (RJ) and Ubatuba (SP), southeastern Brazil: winter of 2010. **Brazilian Journal of Aquatic Science and Technology**, v. 19, n. 3, p. 31-41, 2015.

TEIXEIRA, C.; GAETA, S.A. Contribution of picoplankton to primary production in estuarine, coastal and equatorial Waters of Brazil. **Hidrobiologia**, v. 209, p. 117-122, 1991.

TEIXEIRA, C.; TUNDISI, J. Primary production and phytoplankton in equatorial waters. **Instituto Oceanográfico de São Paulo**, n. 232, p. 884-891, 1967.

TENENBAUM, D. R. O fitoplâncton numa região tropical costeira impactada pelo efluente de uma fábrica de celulose (Espírito Santo, Brasil). 1995. 245 f. Tese de doutorado – Universidade Federal de São Carlos (UFSCar), São Paulo, 1995.

TENENBAUM, D. R. **Dinoflagelados e tintinídeos da região central da Zona Econômica Exclusiva brasileira: Guia de identificação**. Rio de Janeiro: Museu Nacional, 2006.

TENENBAUM, D. R.; GOMES, E. A. T.; GUIMARÃES, G. P. Microorganismos planctônicos: pico, nano e micro. In: VALENTIN, J. L. Características hidrobiológicas da região central da Zona Econômica Exclusiva brasileira (Salvador, BA, ao Cabo de São Tomé, RJ). Série Documentos REVIZEE/SCORE Central. Brasília: Ideal gráfica, p. 83-124, 2007.
THORNTON, D. C. O. Primary Production in the Ocean. *In*: NAJAFPOUR, M. M. (Ed.). Advances in Photosynthesis - Fundamental Aspects. Rijeka, Croatia: Intech. p. 563–588, 2012.

TING, C.S.; ROCAP, G., KING, J.; CHISHOLM, S.W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. **Trends in Microbiology**, v.10, p. 134-141, 2002.

Tomas, C. R. **Identifying marine phytoplankton**. San Diego: Academic Press. 1997.

TRÉGUER, P.; NELSON, D.M.; Van Bennekem, A.J.; DEMASTER, D.J.; LEYNAERT, A.; QUÉGUINER, B. The silica balance in the world ocean: A reestimate, **SCIENCE**, v. 268, p. 375-379, 1995.

UEHLINGER V. Étude statistique des methods de dénombrement planctonique. Archaeological Science 17:121-123, 1964.

UENOJO, M.; JUNIOR, M.R.M.; PASTORE, G.M. 2007. Carotenóides: Propriedades, aplicações e biotransformação para formação de compostos de aroma. **Quimica nova**, v. 30, p. 616-622, 2007.

UTHERMÖHL, H. Zur Vervolkommung der quantitativen Phytoplankton Metodik. Mitteilung Internationale Vereinigung fuer Theoretische unde Angewandte Limnologie, v. 9, p. 1-38, 1958.

VADRUCCI, M.R.; CABRINI, M.; BASSET, A. Biovolume determination of phytoplankton guilds in transitional water ecosystems of Mediterranean Ecoregion. **Transition Waters Bulletin**, v. 2, p. 83-102, 2007.

VADRUCCI, M.R.; MAZZIOTTI, C.; FIOCCA, A. Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: methodological aspects. **Transition Waters Bulletin**, v.7, p. 100-123, 2013.

VAN BAALEN, C.; BROWN, R.M. The ultrastructure of the marine blue-green alga, *Trichodesmium erythraeum*, with special reference to the cell wall, gas

vacuoles, and cylindrical bodies. **Archives of Microbiology**, v. 69, p. 79-91, 1969.

VAN HEUKELEM, L.; THOMAS, C.S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. **Journal of Chromatography A**, v. 910, p. 31-49, 2001.

VERITY, P.G.; ROBERTSON, C.Y.; TRONZO, C.R.; ANDREWS, M.G.; NELSON, J.R.; SIERACKI, M.G. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. **Limnology and Oceanography**, v. 37,n. 7, p. 1434 - 1446, 1992.

VÖRÖS, L.; PADISÁK, J. Phytoplankton biomass and chlorophyll a in some shallow lakes in central Euripe. **Hydrobiologia**, v. 215, p. 111-119, 1999.

WETZEL, R. G.; LIKENS, G. E. Limnological analysis. Philadelphia: WB Sunders CO., 1979.

WILSON, C.; QIU, X. Global distribution of summer chlorophyll blooms in the oligotrophic gyres. **Progress in Oceanography**, v. 78, p. 107-134, 2008.

WRIGHT, S.W.; JEFFREY, S.W. High resolution HPLC sytem for chlorophylls and carotenoids of marine phytoplankton. In: Jeffrey et al. (Eds.) **Phytoplankton pigments in oceanography**, UNESCO, p. 327-341, 1997.

YANG, T.N.; WEI, K.Y.; GONG, G.C. Distribution of coccolithophorids coccoliths in surface ocean off northeastern Taiwan. **Botanical Bulletin-Academia Sinica**, v. 42, p. 287-302, 2001.

YODER, J.A.; KENNELLY, M. Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements. **Global Biogeochemical Cycles**, v. 17, n. 4, p. 1-14, 2003.

ZOFFOLI, M.L.; KAMPEL, M.; FONSECA, L.M.G. Caracterização da pluma de sedimentos do rio Doce (ES) utilizando dados TM- Landsat 5. In: Anais do XV Simpósio Brasileiro de Sensoriamento Remoto-SBSR, 2011, Curitiba.p. 5025-5031, 2011.

ANEXOS

ANEXO 1: Lista dos táxons identificados ao nível mínimo de Gênero, dados do biovolume ($\mu m^3 \cdot c \acute{e}l^{-1}$) e biomassa em carbono (pgC. cél⁻¹) no Inverno.

Divisão ou Classe	Espécies ou Gêneros	Forma Geométrica	Biovolume Total (µm³·cél ⁻¹)	Biomassa em Carbono Total (pgC. cél ⁻¹)
Bacillariophyceae	Amphora sp1	Cymbeloide	71470	8052
Bacillariophyceae	Amphora sp2	Cymbeloide	1805753	149800
Bacillarianhycoao	Bacillaria of pavillifera (O E Müller) T Marcson	Paralelepípedo ou Caixa		
Bacillanophyceae		retangular	8027693	757876
Bacillarionhyceae	Bacillaria sn1	Paralelepípedo ou Caixa		
Bacillanophyceae	Dacinaria sp i	retangular	2542454	296698
Bacillariophyceae	Campylodiscus decorus Brébisson	Prisma na base elíptica	806994	69989
Bacillariophyceae	Cocconeis sp1	Prisma na base elíptica	356917	50367
Bacillarionhyceae	cf. Cylindrotheca sp2	Prisma na base do		
Dacillanophyceae		paralelograma	2742769	281757
Bacillariophyceae	Cylindrotheca closterium (Ehrenberg) Reimann & J.C.Lewin	Esferoide Prolado	726320	125033
Bacillariophyceae	Cylindrotheca sp1	Esferoide Prolado	9991	1765
Bacillariophyceae	Cymbella sp.	Cymbeloide	799483	105494
Bacillarionhyceae	Diploneis hombus (Ebrenherg) Ebrenherg	Prisma na base elíptica com		
Dacinanophyceae	Elpionolo somsuo (Emonsorg) Emonsorg	constricção transapical	25187762	2618634
Bacillarionhyceae	Diploneis crabro (Ebrenberg) Ebrenberg	Prisma na base elíptica com	n	
Dacinanophyceae	Diploneis erabio (Emenberg) Emenberg	constricção transapical	315121	35825
Bacillarionhyceae	Dinloneis sn1	Prisma na base elíptica com		
Dacinanophyceae		constricção transapical	1346399	125614
Bacillarionhyceae	Dinloneis sn2	Prisma na base elíptica com		
Dacinanophyceae		constricção transapical	688450	92997
Bacillarionhyceae	Dinloneis sn3	Prisma na base elíptica com		
Dacinanophyceae		constricção transapical	75856	8494
Bacillarionhyceae	Dinloneis sn4	Prisma na base elíptica com		
Baomanophycouo		constricção transapical	2507104	192602
Bacillarionhyceae	Frustulia sp	Prisma na base do		
Dacinanophyceae	rustana sp.	paralelograma	58827	6707
Bacillariophyceae	<i>Mastogloia</i> sp.	Prisma na base elíptica	168355	23507
Bacillariophyceae	Navicula lyra Ehrenberg	Prisma na base elíptica	1214581	163721
Bacillariophyceae	Navicula sp1	Prisma na base do		
Baomanophycouo		paralelograma	71590	8764
Bacillariophyceae	Nitzschia cf. longissima (Brébisson) Ralfs in Pritchard	Esferoide Prolado	1242290	169830
Bacillariophyceae	Nitzschia cf. nicobarica (Grunow) Grunow	Prisma na base elíptica com		
Daemanophytotae		constricção transapical	2408176	301714

	2			
Bacillariophyceae	Nitzschia cf. tryblionella Hantzsch in Rabenhorst	Prisma na base do	0054004	170400
Desillerierburgen	Nitzahia Jangiasing (Drékissen) Dalés in Dritakand	paralelograma	2251021	176420
Bacillariophyceae	Nitzschia iongissima (Bredisson) Raiis în Pritchard	Esteroide Prolado	4480	/14
Bacillariophyceae	Nitzschia panduriformis W.Gregory	Prisma na base eliptica com	00705000	
	·····	constricçao transapical	22765908	2002028
Bacillariophyceae	Nitzschia sp1	Prisma na base eliptica com		057450
		constricçao transapical	6400493	657453
Bacillariophyceae	Nitzschia sp2	Prisma na base do	051510	00405
		paralelograma	351519	32195
Bacillariophyceae	Nitzschia sp3	Prisma na base do		
240		paralelograma	1766244	223960
Bacillarionhyceae	Nitzschia sp4	Prisma na base do		
Baemanophyceae		paralelograma	44905	5349
Bacillarionhyceae	Nitzschia sp5	Prisma na base do		
Dacillanophyceae		paralelograma	50159752	3531501
Bacillariophyceae	Pinnularia sp1	Prisma na base elíptica	13318702	1006139
Bacillariophyceae	Pinnularia sp2	Prisma na base elíptica	23714913	1374743
Bacillarionhyceae	Plaurosiama sp1	Prisma na base do		
Bacillanophyceae	r reulosigina spi	paralelograma	85847520	7045266
Regillerienbygege	Psammadictuan sp1	Prisma na base elíptica com		
Басшапорпусеае	r sammouloiyon spi	constricção transapical	94851338	7351506
Regillerienbygege	Pearmadiation on?	Prisma na base elíptica com		
Басшапорпусеае	r sammouloiyon sp2	constricção transapical	26396734	2207755
Desillerienburgen	Reammentic transmo	Prisma na base elíptica com		
Басшапорпусеае	Psammoulciyon sp3	constricção transapical	800534	119758
Desillerienburgen	Recude ritzechie ef euteur ete (Heele) C.A. Er well in Heele	Prisma na base do		
Басшапорпусеае	Pseudo-nitzschia ci. subcurvata (Hasie) G.A.Fryxeli in Hasie	paralelograma	18629	2887
De sille sie steve e s	Recude nitrachie and	Prisma na base do		
Bacillariophyceae	Pseudo-nitzschia spi	paralelograma	10298	1638
De sille sie steve e s	Recude nitrachie en 2	Prisma na base do		
Bacillariophyceae	Pseudo-nitzschia spz	paralelograma	180817	24888
		Prisma na base do		
Bacillariophyceae	Pseudo-nitzschia sp3	paralelograma	2984909	354301
		Prisma na base do		
Bacillariophyceae	Pseuao-nitzschia sp4	paralelograma	6848678	917233
		Prisma na base do		
Bacillariophyceae	Stauroneis sp.	paralelograma	11083301	641371

Bacillarianhycoao	Stanontorobio en 1	Prisma na base do		
Bacillanophyceae	Steriopterobia spi	paralelograma		
		_	98787	15884
Bacillariophyceae	Stenopterobia sp2	Prisma na base do		
Daomanophycoad		paralelograma	157411	15792
Bacillarionhyceae	cf. Steponterobia sp3	Prisma na base do		
Daemanophyceae		paralelograma	3189619	393171
Bacillariophyceae	Surirella fastuosa Ehrenberg	Prisma na base elíptica	4721648	443042
Bacillariophyceae	Surirella sp1	Prisma na base elíptica	1682655	156389
Chlorophyceae	Chlamydomonas sp.	Esferoide Prolado/esfera	111211	26485
Chlorophyceae	Desmodesmus sp1	Esferoide Prolado	1035	347
Chlorodendrophyceae	Tetraselmis sp1	Esferoide Prolado	105217	25847
Coccolithophyceae	Algirosphaera sp1	Esferoide Prolado	55728583	5972837
Coccolithophyceae	Calciosolenia sp1	Cilindro na vista da cintura	8816951	1254929
Coccolithophyceae	Coronosphaera sp.	Esfera	326280845	37325827
Coccolithophyceae	Discosphaera sp.	Esfera	467976	114270
Coccolithophyceae	Halopappus sp.	Cone	967368	163235
Coccolithophyceae	Helicosphaera cf. carteri (Wallich) Kamptner	Esferoide Prolado	4448325	591719
Coccolithophyceae	Michaelsarsia sp.	Esfera	934231	137737
Coccolithophyceae	Rhabdosphaera cf. clavigera G.Murray & Blackman	Esfera	761056	139766
Coccolithophyceae	Scyphosphaera sp.	Esfera	884106	106607
Coccolithophyceae	Syracosphaera cf. prolongata Gran ex Lohmann	Cone	3087101	420931
Coccolithophyceae	Umbellosphaera sp.	Esfera	1330046	258040
Coscinodiscophyceae	Actinoptychus splendens (Shadbolt) Ralfs in Pritchard	Cilindro	767785	84835
Coscinodiscophyceae	Actinoptychus undulatus (Kützing) Ralfs in Pritchard	Cilindro	11860476	1061409
Coscinodiscophyceae	Asteromphalus hookeri Ehrenberg	Cilindro	573034	49331
Coscinodiscophyceae	Asteromphalus sp1	Cilindro	6962523	574116
Coscinodiscophyceae	Asteromphalus sp2	Cilindro	283536	26276
Coscinodiscophyceae	Bacteriastrum hyalinum Lauder	Cilindro na vista da cintura	119874198	10817722
Coscinodiscophyceae	Bacteriastrum sp1	Cilindro na vista da cintura	48700149	4198332
Coscinodiscophyceae	Bacteriastrum sp2	Cilindro na vista da cintura	96219485	8308033
Coscinodiscophyceae	Cerataulina cf. bicornis (Ehrenberg) Hasle	Cilindro na vista da cintura	106604673	7815235
Coscinodiscophyceae	Cerataulina pelagica (Cleve) Hendey	Cilindro na vista da cintura	798569	84255
Coscinodiscophyceae	Chaetoceros affinis Lauder	Cilindro	996594	118266
Coscinodiscophyceae	Chaetoceros atlanticus Cleve	Cilindro	2969676	316910
Coscinodiscophyceae	Chaetoceros brevis F.Schütt	Cilindro	2088613	228836
Coscinodiscophyceae	Chaetoceros didymus var. anglicus (Grunow) Gran	Cilindro	8754826	1032218
Coscinodiscophyceae	Chaetoceros lorenzianus Grunow	Cilindro	30833948	3018009
Coscinodiscophyceae	Chaetoceros peruvianus Brightwell	Cilindro	404309	54128
Coscinodiscophyceae	Chaetoceros sp1	Cilindro	17292800	1990416

Coscinodiscophyceae	Chaetoceros sp2	Cilindro	23370	3004
Coscinodiscophyceae	Chaetoceros sp3	Cilindro	26965	3779
Coscinodiscophyceae	Chaetoceros sp4	Cilindro	4704000	505400
Cossingdiscontry	Chapterares sp5	Cilindro	4764669	525490
Coscinodiscophyceae	Chaetoceros sp6	Cilindro	1240700	100019
Coscinodiscophyceae	Chaetoceros spo	Cilindro	1240799	109210
Coscinodiscophyceae	Climenodium an	Driama alíptica L 4 Canas	193433	20277
Coscinodiscophyceae	Construction of Austria Hanson	Cilindra + 2 maia asforas	4100920 94056	0216
Coscinodiscophyceae	Corethron crianhulum Costrogono	Cilindro + 2 meia esferas	04900	9310
Coscinodiscophyceae	Corethron on	Cilindro + 2 meia esteras	1903132	100900
Coscinodiscophyceae	Coreinron sp.		9937377	203270
Coscinodiscophyceae	Coscinodiscus centralis Entenberg	Cilindro	441782012	20700830
Coscinodiscophyceae			10131374	1090002
Coscinodiscophyceae	Coscinodiscus spi		6369202	478002
Coscinodiscopnyceae	Coscinoalscus radiatus Enrenberg	Cilinaro Cilinaro	6791219	417639
Coscinodiscopnyceae	Dactyliosolen fragilissimus (Bergon) Hasie in Hasie & Syvensen	Clindro na vista da cintura	625150	52648
Coscinodiscopnyceae	Dactyliosolen phuketensis (B.G.Sundstrom) G.R.Hasle in Hasle & Syvensen	Cliindro na vista da cintura	256854	27891
Coscinodiscophyceae	Dactyllosolen sp1	Cilindro na vista da cintura	177312	22745
Coscinodiscophyceae	Dactyliosolen sp2	Cilindro na vista da cintura	6383909	438913
Coscinodiscophyceae	Eucampia cornuta (Cleve) Grunow in Van Heurck	Prisma eliptico + 4 Cones	13883101	1397251
Coscinodiscophyceae	Eucampia sp1	Prisma eliptico + 4 Cones	2456590	195798
Coscinodiscophyceae	Eucampia sp2	Prisma eliptico + 4 Cones	507224	48624
Coscinodiscophyceae	Guinardia cylindrus (Cleve) Hasle	Cilindro na vista da cintura	2843498	242792
Coscinodiscophyceae	Guinardia flaccida (Castracane) H.Peragallo	Cilindro na vista da cintura	76806297	4720769
Coscinodiscophyceae	Guinardia striata (Stolterfoth) Hasle in Hasle & Syvertsen	Cilindro na vista da cintura	38791737	2961180
Coscinodiscophyceae	Helicotheca sp.	Prisma na base eliptica		
C C C C C C C C C C C C C C C C C C C		(vista da cintura)	8775719	526587
Coscinodiscophyceae	Helicotheca tamesis (Shrubsole) M. Ricard	Prisma na base elíptica		
C C C C C C C C C C C C C C C C C C C		(vista da cintura)	38861248	2907302
Coscinodiscophyceae	Hemiaulus sp4	Prisma na base elíptica		
Cocomodicophycouc		(vista da cintura)	15195311	1401835
Coscinodisconhyceae	Hemiaulus hauckii Grunow ex Van Heurck	Prisma na base elíptica		
Coolinealocophyceae		(vista da cintura)	13187623	1200693
Coscinodisconhyceae	Hemiaulus membranaceus Cleve	Prisma na base elíptica		
Coscillouiscophyceae		(vista da cintura)	5108850	394147
Coscinodisconhyceae	Hemiaulus sinensis Greville	Prisma na base elíptica		
Costinuascophyceae		(vista da cintura)	52490900	4200589
Coscinodisconhyceae	Hemiaulus sn1	Prisma na base elíptica		
Costiniouscophyteae		(vista da cintura)	413299	40374

ANEXO 1. COntinua				
Coscinodiscophyceae	Hemiaulus sp2	Prisma na base elíptica (vista da cintura)	2253748	161377
Coscinodiscophyceae	Hemiaulus sp3	Prisma na base elíptica (vista da cintura)	12415771	980769
Coscinodiscophyceae	Hemiaulus sp5	Prisma na base elíptica (vista da cintura)	2988558	223765
Coscinodiscophyceae	Hemiaulus sp5	Prisma na base elíptica (vista da cintura)	213933314	14790352
Coscinodiscophyceae	Hyalodiscus sp.	Esferoide Prolado	5892359	577518
Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae	<i>Isthmia enervis</i> Ehrenberg <i>Lauderia borealis</i> Gran <i>Melosira nummoloides</i> C.Agardh <i>Melosira</i> sp1 <i>Melosira</i> sp2 <i>Melosira sulcata</i> (Ehrenberg) Kützing	Cilindro + 2 cones Cilindro na vista da cintura Cilindro na vista da cintura Cilindro na vista da cintura Cilindro na vista da cintura Cilindro na vista da cintura	5434471 59814045 5730666 2987812 906646 14373889	349770 4136613 703193 295065 114681 1844855
Coscinodiscophyceae	Neocalyptrella robusta (G.Norman ex Ralfs) Hernández-Becerril & Meave del Castillo	Cilindro + 2 cones		0004004
Coscinodiscophyceae	Odontella mobiliensis (J.W.Bailey) Grunow	Prisma na base elíptica (vista da cintura)	85906678	3831931 9504667
Coscinodiscophyceae	Proboscia alata var1 (Brightwell) Sundström	Cilindro na vista da cintura	21460975	1959715
Coscinodiscophyceae	Pseudoguinardia cf. recta von Stosch	Cilindro	1829285035	118564978
Coscinodiscophyceae	Pseudosolenia calcar-avis (Schultze) B.G.Sundström	Cilindro na vista da cintura	37228331	1845764
Coscinodiscophyceae Coscinodiscophyceae	Rhizosolenia formosa H. Peragallo Rhizosolenia hebetata Bailey	Cilindro na vista da cintura Cilindro na vista da cintura	542125101 176247	23191299 17423
Coscinodiscophyceae	Rhizosolenia imbricata Brightwell	Cilindro na vista da cintura	5595376	424445
Coscinodiscophyceae	Rhizosolenia styliformis T.Brightwell	Cilindro na vista da cintura	29504797	2386915
Coscinodiscophyceae	Skeletonema costatum (Greville) Cleve	Cilindro + 2 meia esferas	84489	11681
Coscinodiscophyceae	Thalassiosira cf. hyalina (Grunow) Gran	Cilindro	3285500	344230
Coscinodiscophyceae	Thalassiosira sp1	Cilindro	4461336	496740
Coscinodiscophyceae	Thalassiosira sp2	Cilindro	154298	20163
Coscinodiscophyceae	Thalassiosira sp3	Cilindro	160533396	14264178
Dictyochophyceae	Dictyocha fibula Ehrenberg	Esfera	16813604	2033659
Dictyochophyceae	Dictyocha fibula f. rhombica P.Schulz	Esfera	3718447	411817
Dictyochophyceae	Dictyocha sp1	Esfera	26822606	2935016
Cyanophyceae	Merismopedia sp.	Esferoide Prolado	37055	12945

Cuananhuanan	Suppopopopulo op	Estavoido Drolado	20042	10704
Cyanophyceae	Synechococcus sp.	Esteroide Prolado	36042	12/84
Cyanophyceae	Synechocystis sp1		3114300	1011096
Cyanophyceae	Synechocystis sp2	Estera	26004	9707
Dinophyceae	Corythodinium tesselatum (Stein) Loedlich Jr. & Loedlich		842518	102728
Dinophyceae	Dinophysis sp1	Cone	559849	67013
Dinophyceae	Dinophysis sp1	Esteroide Prolado/elipsoide	287706	34901
Dinophyceae	Gonyaulax sp.	Cone Duplo	955109	118463
Dinophyceae	Gonyaulax turbynei Murray & Whitting	Cone + Meia Estera	3520239	392417
Dinophyceae	Gymnodinium cf. catenatum H.W.Graham	Esferoide Prolado	1549999	203130
Dinophyceae	Gymnodinium coeruleum H.W.Graham	Esferoide Prolado	9440604	918217
Dinophyceae	Gymnodinium sp1	Esferoide Prolado	8212393	953763
Dipanhyanaa	Gumpodinium sp2	Meio elipsoide + Cone na		
Diriophyceae	Gynnounnun spz	base elipsoide	88590	12347
Dinophyceae	Gymnodinium sp3	Esferoide Prolado	3422588	388432
Dipanhyanaa	Neoceratium aff pentagonum var pentagonum (Gourret) F.Gomez, D.Moreira &	Elipsoide + Cilindro + 2		
Dinophyceae	P.Lopez-Garcia	Cones	362679	43441
Dinanhyanaa	Nacaratium carrianae (Courret) E Comaz, D Maraira & D Lanaz, Caroia	Elipsoide + Cilindro + 2		
Dinophyceae	Neoceratium camense (Gouriet) F.Gomez, D.Moreira & F.Lopez-Garcia	Cones	873970	103350
Dipophyceae	Neoceratium of teres (Kotoid) E Gomez, D Moreira & P Lopez-Garcia	Elipsoide + Cilindro + 2		
Dinophyceae		Cones	254474	31080
Dinophyceae	Neoceratium declinatum var. tenerum (Jörg.) F.Gomez, D.Moreira & P.Lopez-	Elipsoide + Cilindro + 2		
Diriophyceae	Garcia	Cones	480295	56470
Dinophyceae	Neoceratium furca (Ehrenberg) F.Gomez, D.Moreira & P.Lopez-Garcia	Elipsoide + Cilindro + 2	1508002	18878/
Dinophyceae	Neoceratium fusus (Ehrenberg) F.Gomez, D.Moreira & P.Lopez-Garcia	Cone Duplo	1922238	221942
Disashussa	Necessarium herrichum (Cleve) E Comer, D Mercire & D Lener Consis	Elipsoide + Cilindro + 2		
Dinopnyceae	Neoceratium norridum (Cieve) F.Gomez, D.Moreira & P.Lopez-Garcia	Cones	139364	17680
Dipophycopo	Noncoratium massilianse (Courret) E Cómez, D Maraira & D Lónez Carcia	Elipsoide + Cilindro + 2		
Dinophyceae	Neoceratium massiliense (Gourret) F.Gomez, D.Moreira & F.Lopez-Garcia	Cones	16299125	1657560
Dipophycese	Neoceratium pentagonum var tenerum Jørgensen	Elipsoide + Cilindro + 2		
Diriophyceae	Neoceralium pentagonum var. tenerum sørgensen	Cones	119907	15280
Dipophycopo	Neoceratium nulchellum (Schröder) E Comez, D Moreira & P Lopez-Carcia 2010	Elipsoide + Cilindro + 2		
Dinophyceae	Neoceratium pulchenum (Schloder) 1. Somez, D. Norena & T. Lopez-Garcia 2010	Cones	2969514	333144
Dipophycopo	Neoceratium tripos tripos (O.F.Müller) F.Gómez, D.Moreira & P.López-Garcia	Elipsoide + Cilindro + 2		
Diriophyceae	2010	Cones	5166816	549822
Dinophyceae	Oxytoxum milneri Murray & Whitting	Cone Duplo	2931131	335200
Dinophyceae	Oxytoxum scolopax Stein	Cone Duplo	247261	31451
Dinophyceae	Oxytoxum sp1	Cone Duplo	7676083	839519
Dinophyceae	Oxytoxum sp2	Cone Duplo	1803068	243484

	3			
Dinophyceae	Podolampas elegans Schütt	Cone	389432	46311
Dinophyceae	Podolampas spinifera Okamura	Cone	519340	66863
Dinophyceae	Prorocentrum gracile Schütt	Cone + Meio Elipsoide	3743341	439053
Dinophyceae	Prorocentrum micans Ehrenberg	Cone + Meio Elipsoide	275338	34945
Dinophyceae	Pyrocystis fusiformis C.W.Thomson in J.Murray	Cone Duplo	3811378	411412
Dinophyceae	Pyrocystis obtusa Pavillard	Monoraphidioide	3442236	402095
Dinophyceae	Pyrophacus sp.	Esferoide Prolado/elipsoide	160425659	13177903
Pedinophyceae	cf. Resultor sp.	Esfera	160172	33107
Euglenophyceae	Euglena cf. acus (O.F.Müller) Ehrenberg	Cilindro + 2 cones	7915756	1060623
Euglenophyceae	Euglena sp1	Esferoide Prolado	98117	14420
Euglenophyceae	Euglena sp?	Cone + Cilindro	12565193	1511494
Euglenophyceae	Eutreptia sp1	Cone + Cilindro	1401757	174227
Euglenophyceae	Eutrentiella sp	Esferoide Prolado	77231	10566
Euglenophyceae	Trachelomonas sp1	Esfera	143768	25388
Euglenophyceae	Trachelomonas sp2	Esfera	1003978	120337
		Paralelepípedo ou Caixa	1000010	120001
Fragilariophyceae	Asterionellopsis sp.	retangular	5232858	648840
		Paralelepípedo ou Caixa	0101000	0.0010
Fragilariophyceae	Bleakeleya notata (Grunow) Round in Round, Crawford & Mann	retangular	1385606	131307
Fragilariophyceae	Delphineis surirella (Ehrenberg) G.W.Andrews	Prisma na base elíptica	843331	148658
Fragilarionhycopo	Lioloma of pacificum (Cupp) Haclo in Haclo & Sywartson	Paralelepípedo ou Caixa		
Flagilanophyceae	Liolonia ci. pacificum (Cupp) hasie in hasie & Syvensen	retangular	92683	10039
Fragilarionhycoao	Lioloma pacificum (Cupp) Haslo in Haslo & Swortson	Paralelepípedo ou Caixa		
Flagilanophyceae	Liolonia pacificum (Cupp) hasie in hasie & Syvensen	retangular	3013455	233887
Fragilariophyceae	Synedra sp1	Prisma na base elíptica	299476	44084
Fragilariophyceae	Synedra sp2	Prisma na base elíptica	527557	65383
Fragilarianhyaaaa	Supadra sp2	Paralelepípedo ou Caixa		
Flagilanophyceae	Synedia spo	retangular	27671	4022
Fragilarionhycoao	Sunedra sp/	Paralelepípedo ou Caixa		
Flagilanophyceae	Syneura sp4	retangular	679455	83682
Fragilarionhycoao	of Sunadra on 5	Paralelepípedo ou Caixa		
Flagilanophyceae	or. Synedia spo	retangular	241856	37783
Fragilariophyceae	Synedra ulna (Nitzsch) Ehrenberg	Prisma na base elíptica	3117317	256100
Fragilarionhyceae	Thalassionema nitzschioides (Grupow) Mereschkowsky	Paralelepípedo ou Caixa		
Flagilanophyceae	Thalassionerna Thizschloides (Starlow) Mereschlowsky	retangular	4974347	836886
Fragilarionhycoao	Thalassianama sp1	Paralelepípedo ou Caixa		
ragilanophyceae	ו ומומטווטווים אין ו	retangular	2903458	445925
Fragilarionhyceac	Thalassionema sp2	Paralelepípedo ou Caixa		
ragilaliopityceae	nalassionenia spz	retangular	168305	28141

Fragilariophyceae	Thalassiothriv frauenfeldii (Crunow) Crunow	Paralelepípedo ou Caixa		
Taglianophyceae		retangular	252429220	23981584
Synurophyceae	Mallomonas sp.	Esfera	46020	8119
Neetilueee	Dranaatiluaa ant	Elipsoide flattended (d1=12;		
Noculucea	Pronoculuca spi	d2=10) ou Elipsoide	368694	48455
Noctilucea	Pronoctiluca sp2	Esferoide Prolado	160449	20114
Noctilucea	Pronoctiluca sp3	Elipsoide H=1/2L	564849	71520
Noctilucea	Pronoctiluca sp4	Cone Duplo	53227	7153

ANEXO 2: Lista dos táxons identificados ao nível mínimo de Gênero, dados do biovolume ($\mu m^3 \cdot c \ell l^{-1}$) e biomassa em carbono (pgC. c ℓl^{-1}) no Verão.

Divisão ou Classe	Espécies ou Gêneros	Forma Geométrica	Biovolume Total (µm³⋅cél⁻¹)	Biomassa em Carbono Total (pgC. cél ⁻¹)
Bacillariophyceae	Amphora cf. spectabilis Gregory	Cymbeloide	238577	24891
Bacillariophyceae	Amphora sp1	Cymbeloide	129030	14537
Bacillariophyceae	Bacillaria sp1	Paralelepípedo ou Caixa retangular	4307813	502711
Bacillariophyceae	Cylindrotheca closterium (Ehrenberg) Reimann & J.C.Lewin	Esferoide Prolado	914911	157498
Bacillariophyceae	Cylindrotheca sp1	Esferoide Prolado	24039	4247
Bacillariophyceae	cf. Cylindrotheca sp2	Prisma na base do paralelograma	2468761	253609
Bacillariophyceae	Diploneis bombus (Ehrenberg) Ehrenberg	Prisma na base elíptica com constricção transapical	9941004	1033512
Bacillariophyceae	Diploneis sp2	constricção transapical	368906	49833
Bacillariophyceae	Diploneis sp3	Prisma na base elíptica com constricção transapical	2174418	243471
Bacillariophyceae	Diploneis sp4	Prisma na base eliptica com constricção transapical	2453988	188522
Bacillariophyceae	Donkinia sp.	Prisma na base do paralelograma	227944	23850
Bacillariophyceae	Fragilariopsis kerguelensis (O'Meara) Hustedt	Prisma na base do paralelograma	171990	21326
Bacillariophyceae	Mastogloia fimbriata (T.Brightwell) Grunow	Prisma na base elíptica	5727752	432595
Bacillariophyceae	Mastogloia sp.	Prisma na base elíptica	13562	1894
Bacillariophyceae	Navicula sp1	Prisma na base do paralelograma	207618	25416
Bacillariophyceae	Naviculales 1	Prisma na base do paralelograma	19280109	1870514
Bacillariophyceae	Nitzschia braarudii G.R.Hasle	Prisma na base do paralelograma	22230	3646
Bacillariophyceae	Nitzschia cf. longissima (Brébisson) Ralfs in Pritchard	Esferoide Prolado	1282084	175270
Bacillariophyceae	Nitzschia cf. nicobarica (Grunow) Grunow	Prisma na base elíptica com constricção transapical	58358	7312
Bacillariophyceae	Nitzschia longissima (Brébisson) Ralfs in Pritchard	Esferoide Prolado	129357	20612

Mitere El continuação				
Bacillariophyceae	Nitzschia panduriformis W.Gregory	Prisma na base elíptica com constricção transapical	1735375	152608
Bacillariophyceae	Nitzschia reversa W.Smith	Prisma na base do paralelograma	15367184	1677536
Bacillariophyceae	Nitzschia socialis Gregory	Prisma na base do paralelograma	180096	18066
Bacillariophyceae	Nitzschia sp2	Prisma na base do paralelograma	649731	59508
Bacillariophyceae	Nitzschia sp3	Prisma na base do paralelograma	1027125	130239
Bacillariophyceae	Nitzschia turgidula Hustedt	Prisma na base do paralelograma	1425960	185413
Bacillariophyceae	Pleurosigma sp1	Prisma na base do paralelograma	23730469	1947493
Bacillariophyceae	Psammodictyon sp2	Prisma na base elíptica com constricção transapical	64936978	5431161
Bacillariophyceae	Psammodictyon sp3	constricção transapical	362152	54177
Bacillariophyceae	Pseudo-nitzschia sp1	Prisma na base do paralelograma	28512	4536
Bacillariophyceae	Pseudo-nitzschia sp2	Prisma na base do paralelograma	347655	47851
Bacillariophyceae	Pseudo-nitzschia sp3	Prisma na base do paralelograma	2050390	243376
Bacillariophyceae	Pseudo-nitzschia sp4	Prisma na base do paralelograma	958750	128404
Bacillariophyceae	Pseudo-nitzschia sp5	Prisma na base do paralelograma	117645	19592
Bacillariophyceae	Pseudo-nitzschia sp6	Prisma na base do paralelograma	1398360	169883
Bacillariophyceae	Stenopterobia sp1	Prisma na base do paralelograma	299501	48157
Bacillariophyceae	Stenopterobia sp2	Prisma na base do paralelograma	2190000	219703
Bacillariophyceae	cf. Stenopterobia sp3	Prisma na base do paralelograma	498340	61428
Bacillariophyceae	Surirella sp2	Prisma na base elíptica	10554074	680610
Chlorodendrophyceae	Pachysphaera sp1	Esfera	1070	275
Chlorodendrophyceae	Pachysphaera sp2	Esfera/Esferoide Prolado	3149	803
Chlorodendrophyceae	Tetraselmis cf. striata Butcher	Esferoide Prolado	963	250
Chlorodendrophyceae	Tetraselmis sp1	Esferoide Prolado	245226	60240
Chlorodendrophyceae	Tetraselmis sp3	Esferoide Prolado	15751	3760
Chlorodendrophyceae	cf. <i>Tetraselmis</i> sp5	Esferoide Prolado	38102	9263
Chlorophyceae	Chlamydomonas sp.	Esferoide Prolado/esfera	596431	142043
Chlorophyceae	<i>Dunaliella</i> sp.	Esferoide Prolado	566	157

,				
Coccolithophyceae	cf. Acanthoica sp.	Esferoide Prolado	366131	50317
Coccolithophyceae	Braarudosphaera bigelowii (Gran & Braarud) Deflandre	Esfera	49087	8225
Coccolithophyceae	Calciosolenia sp1	Cilindro na vista da cintura	5348809	761303
Coccolithophyceae	Coronosphaera sp.	Esfera	2412743	276013
Coccolithophyceae	Discosphaera sp.	Esfera	571835	139630
Coccolithophyceae	Halopappus sp.	Cone	1622878	273846
Coccolithophyceae	Helicosphaera cf. carteri (Wallich) Kamptner	Esferoide Prolado	1645566	218894
Coccolithophyceae	Michaelsarsia sp.	Esfera	8177046	1205567
Coccolithophyceae	Rhabdosphaera cf. clavigera G.Murray & Blackman	Esfera	1402721	257606
Coccolithophyceae	Syracosphaera cf. prolongata Gran ex Lohmann	Cone	3423079	466743
Coccolithophyceae	Umbellosphaera sp.	Esfera	22236749	4314109
Coscinodiscophyceae	Lauderia borealis	Cilindro na vista da cintura	8262209	571397
Coscinodiscophyceae	Actinoptychus splendens (Shadbolt) Ralfs in Pritchard	Cilindro	396442	35892
Coscinodiscophyceae	Chaetoceros atlanticus Cleve	Cilindro	223810	23884
Coscinodiscophyceae	Chaetoceros brevis F.Schütt	Cilindro	274139	30036
Coscinodiscophyceae	Chaetoceros neglectus Karsten	Cilindro	67180	9070
Coscinodiscophyceae	Chaetoceros pelagicus Cleve	Cilindro	789718	71139
Coscinodiscophyceae	Chaetoceros pendulus Karsten	Cilindro	1391974	137848
Coscinodiscophyceae	Chaetoceros peruvianus Brightwell	Cilindro	97789	13092
Coscinodiscophyceae	Chaetoceros sp24	Cilindro	181181	22135
Coscinodiscophyceae	Chaetoceros sp7	Cilindro	2474004	239657
Coscinodiscophyceae	Chaetoceros sp8	Cilindro	224483	21762
Coscinodiscophyceae	Coscinodiscus centralis Ehrenberg	Cilindro	32393937	1961888
Coscinodiscophyceae	Coscinodiscus lineatus Ehrenberg	Cilindro	17371751	1624641
Coscinodiscophyceae	Coscinodiscus sp2	Cilindro	1917694	139857
Coscinodiscophyceae	Dactyliosolen phuketensis (B.G.Sundström) G.R.Hasle in Hasle & Syvertsen	Cilindro na vista da cintura	293714	31893
Coscinodiscophyceae	Dactyliosolen sp1	Cilindro na vista da cintura	27172	3485

Coscinodiscophyceae	Dactyliosolen sp2	Cilindro na vista da cintura	5899856	405633
Coscinodiscophyceae	Eucampia cornuta (Cleve) Grunow in Van Heurck	Prisma elíptico + 4 Cones	3702324	372617
Coscinodiscophyceae	<i>Eucampia</i> sp 1	Prisma elíptico + 4 Cones	5546480	442072
Coscinodiscophyceae	Guinardia cylindrus (Cleve) Hasle	Cilindro na vista da cintura	1244071	106225
Coscinodiscophyceae	Guinardia striata (Stolterfoth) Hasle in Hasle & Syvertsen	Cilindro na vista da cintura	2945243	224826
Coscinodiscophyceae	Hemiaulus membranaceus Cleve	Prisma na base elíptica (vista da cintura)	33250617	2565280
Coscinodiscophyceae	Hemiaulus sinensis Greville	Prisma na base elíptica (vista da cintura)	9516743	761578
Coscinodiscophyceae	Hemiaulus sp1	Prisma na base elíptica (vista da cintura)	4279806	418079
Coscinodiscophyceae	Hemiaulus sp2	Prisma na base eliptica (vista da cintura) Drieme na base elíctica (vista da	9134470	654063
Coscinodiscophyceae	Hemiaulus sp7	Prisma na base eliptica (vista da cintura)	39817143	4051649
Coscinodiscophyceae	Lauderia borealis Gran	Cilindro na vista da cintura	8262209	571397
Coscinodiscophyceae	Leptocylindrus danicus Cleve	Cilindro na vista da cintura	767445	92675
Coscinodiscophyceae	Melosira sulcata (Ehrenberg) Kützing	Cilindro na vista da cintura	3043537	390631
Coscinodiscophyceae	Odontella sp2	Prisma na base elíptica (vista da cintura)	2743946	210230
Coscinodiscophyceae	Proboscia alata var1 (Brightwell) Sundström	Cilindro na vista da cintura	649426	59303
Coscinodiscophyceae	Pseudosolenia calcar-avis (Schultze) B.G.Sundström	Cilindro na vista da cintura	37326485	1850631
Coscinodiscophyceae	Rhizosolenia sp.	Cilindro na vista da cintura	4258822	382203
Coscinodiscophyceae	Rhizosolenia styliformis T.Brightwell	Cilindro na vista da cintura	5888173	476349
Coscinodiscophyceae	Thalassiosira cf. hyalina (Grunow) Gran	Cilindro	1466177	153615
Coscinodiscophyceae	Thalassiosira sp1	Cilindro	1372375	152805
Coscinodiscophyceae	Thalassiosira sp3	Clindro	2747200	244102
Cyanophyceae	Synechocystis sp4	Esfera	450	176
Cyanophyceae	Synechocystis sp1	Esfera	572891	185996
Cyanophyceae	Synechococcus sp.	Esferoide Prolado	49923	17707
Dictyochophyceae	Dictyocha fibula Ehrenberg	Esfera	3965397	479628
Dictyochophyceae	Dictyocha fibula f. rhombica P.Schulz	Esfera	3990403	441936

Dictyochophyceae	Dictyocha sp2	Meia esfera	206	66
Dinophyceae	Amphisolenia globifera Stein	Esferoide Prolado + 2 Cilindros	4981544	611647
Dinophyceae	Corythodinium sp.	Cone Duplo	6059925	612891
Dinophyceae	Dinophysis sp2	Esferoide Prolado/elipsoide	422426	50260
Dinophyceae	Gonyaulax birostris Stein	Cone Duplo	1574527	188500
Dinophyceae	Gonyaulax cf. jolliffei Murray & Whitting	Cone Duplo	399207	49388
Dinophyceae	Gymnodinium cf. catenatum H.W.Graham	Esferoide Prolado	10311097	1351289
Dinophyceae	Gymnodinium cf. sanguineum K.Hirasaka	Esferoide Prolado/elipsoide	20044016	2142126
Dinophyceae	Gymnodinium coeruleum H.W.Graham	Esferoide Prolado	22040522	2143716
Dinophyceae	Gymnodinium sp1	Esferoide Prolado	61911017	7190163
Dinophyceae	Gymnodinium sp3	Esferoide Prolado	1680009	190665
Dinophyceae	Gymnodinium sp4	Esfera	4336969	796474
Dinophyceae	Gymnodinium sp5	Esfera	47042	7882
Dinophyceae	Gymnodinium sp6	Esferoide Prolado	542019	136226
Dinophyceae	Gymnodinium sp7	Esfera	7232531	1363940
Dinophyceae	Neoceratium azoricum (Cleve) F.Gómez, D.Moreira & P.López- Garcia	Elipsoide + Cilindro + 2 Cones	142016	18059
Dinophyceae	Neoceratium cf. teres (Kofoid) F.Gomez, D.Moreira & P.Lopez- Garcia	Elipsoide + Cilindro + 2 Cones	252246	30807
Dinophyceae	Neoceratium furca (Ehrenberg) F.Gomez, D.Moreira & P.Lopez- Garcia	Elipsoide + Cilindro + 2 Cones	1997711	250074
Dinophyceae	Neoceratium fusus (Ehrenberg) F.Gomez, D.Moreira & P.Lopez- Garcia	Cone Duplo	1929461	222776
Dinophyceae	Neoceratium hircus (Schröder) F.Gomez, D.Moreira & P.Lopez- Garcia	Elipsoide + Cilindro + 2 Cones	1607677	210060
Dinophyceae	Neoceratium pentagonum (Gourret) F.Gomez, D.Moreira & P.Lopez-Garcia	Elipsoide + Cilindro + 2 Cones	15509110	1917049
Dinophyceae	<i>Neoceratium pentagonum</i> var. <i>tenerum</i> (Gourret) F.Gomez, D.Moreira & P.Lopez-Garcia	Elipsoide + Cilindro + 2 Cones	4324796	551125
Dinophyceae	Neoceratium sp1	Elipsoide + Cilindro + 2 Cones	116905	14964
Dinophyceae	Neoceratium teres (Kofoid) F.Gomez, D.Moreira & P.Lopez-Garcia	Elipsoide + Cilindro + 2 Cones	433629	51511
Dinophyceae	Neoceratium tripos var. tripodioides (Jörg.) F.Gomez, D.Moreira & P.Lopez-Garcia	Elipsoide + Cilindro + 2 Cones	1738818	197196

Dinophyceae	Oxytoxum robustum Kofoid & Michener	Cone Duplo	808794	92492
Dinophyceae	Oxytoxum milneri Murray & Whitting	Esferoide Prolado	5183628	549219
Dinophyceae	Oxytoxum scolopax Stein	Cone Duplo	553706	70429
Dinophyceae	Oxytoxum sp2	Cone Duplo	101611	13721
Dinophyceae	Podolampas elegans Schütt	Cone	425955	50655
Dinophyceae	Podolampas palmipes Stein	Cone	539961	65674
Dinophyceae	Podolampas spinifera Okamura	Cone	555473	71515
Euglenophyceae	Euglena cf. acus (O.F.Müller) Ehrenberg	Cilindro + 2 cones	8269462	1108016
Euglenophyceae	<i>Eutreptia</i> sp1	Cone + Cilindro	7226135	898147
Euglenophyceae	Euglena sp1	Esferoide Prolado	12127	1782
Euglenophyceae	<i>Eutreptiella</i> sp.	Esferoide Prolado	420993	57596
Euglenophyceae	Eutreptia sp2	Esferoide Prolado	226759	36655
Euglenophyceae	Trachelomonas sp3	Esferoide Prolado	8847	1685
Fragilariophyceae	Asterionellopsis sp.	Paralelepípedo ou Caixa retangular	10244430	1270242
Fragilariophyceae	Bleakeleya notata (Grunow) Round in Round, Crawford & Mann	Paralelepípedo ou Caixa retangular	534750	50676
Fragilariophyceae	Delphineis surirella (Ehrenberg) G.W.Andrews	Prisma na base elíptica	42510	7493
Fragilariophyceae	Grammatophora flexuosa Grunow in Van Heurck	Paralelepípedo ou Caixa retangular	2469141	219301
Fragilariophyceae	Grammatophora marina (Lyngbye) Kützing	Paralelepípedo ou Caixa retangular	737616	76499
Fragilariophyceae	Lioloma cf. pacificum (Cupp) Hasle in Hasle & Syvertsen	Paralelepípedo ou Caixa retangular	91513	9912
Fragilariophyceae	Lioloma pacificum (Cupp) Hasle in Hasle & Syvertsen	Paralelepípedo ou Caixa retangular	1187960	92202
Fragilariophyceae	Rhabdonema adriaticum Kützing	Paralelepípedo ou Caixa retangular	549766	78083
Fragilariophyceae	Rhabdonema cf. adriaticum Kützing	Paralelepípedo ou Caixa retangular	120915	20391
Fragilariophyceae	Synedra sp1	Prisma na base elíptica	285100	41968
Fragilariophyceae	Synedra sp2	Prisma na base elíptica	9179760	1137691
Fragilariophyceae	Synedra sp3	Paralelepípedo ou Caixa retangular	49802	7238
Fragilariophyceae	Synedra sp4	Paralelepípedo ou Caixa retangular	277144	34133
Fragilariophyceae	Thalassionema nitzschioides (Grunow) Mereschkowsky	Paralelepípedo ou Caixa retangular	2753326	463221
Fragilariophyceae	Thalassionema sp2	Paralelepípedo ou Caixa retangular	20639	3451

Fragilariophyceae	Thalassionema sp3	Paralelepípedo ou Caixa retangular	49356	8918
Fragilariophyceae	Thalassiothrix frauenfeldii (Grunow) Grunow	Paralelepípedo ou Caixa retangular	72524933	6882433
Fragilariophyceae	Toxarium undulatum J.W.Bailey	2 Cilíndrico + Prisma Elíptico	5741261	396130
Mamiellophyceae	Micromonas sp1	Esferoide Prolado	3775	1375
Mamiellophyceae	cf. Micromonas sp2	Esferoide Prolado	287161	66330
Nephrophyceae	Nephroselmis rotunda (N.Carter) Fott	Esfera	768626	110904
Nephrophyceae	Nephroselmis cf. rotunda (N.Carter) Fott	Esfera	179146	40586
Noctilucea	Pronoctiluca sp5	Cone Duplo	363842	51678
Noctilucea	Pronoctiluca sp1	Elipsoide flattended (d1=12; d2=10) ou Elipsoide	706668	92872
Noctilucea	Pronoctiluca sp3	Elipsoide H=1/2L	3116510	394607
Pedinophyceae	cf. Resutor	Esfera	102936	21277
Pyramimonadophyceae	Pyramimonas cf. grossii Parke	Cone	65561	16904
Pyramimonadophyceae	<i>Pyramimonas</i> sp.	Esfera	13614	3324