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RESUMO 

Neste trabalho, propomos uma abordagem de Controle Preditivo Baseado em Modelo 

Neural (Neural Based Model Predictive Control - N-MPC) para lidar com atrasos na planta de 

direção de carros autônomos. Examinamos a abordagem N-MPC como uma alternativa para a 

implementação do subsistema de controle de direção da Intelligent and Autonomous Robotic 

Automobile (IARA). Para isso, comparamos a solução padrão, baseada na abordagem de con-

trole Proporcional Integral Derivativo (PID), com a abordagem N-MPC. O subsistema de con-

trole de direção PID funciona bem na IARA para velocidades de até 25 km/h. No entanto, 

acima desta velocidade, atrasos na Planta de Direção da IARA são muito elevados para permi-

tir uma operação adequada usando uma abordagem PID. Modelamos a Planta de Direção da 

IARA usando uma rede neural e empregamos esse modelo neural na abordagem N-MPC. A 

abordagem N-MPC superou a abordagem PID reduzindo o impacto de atrasos na Planta de 

Direção de IARA e permitindo a operação autônoma da IARA em velocidades de até 37 km/h 

– um aumento de 48% na velocidade máxima estável.  



 

 

ABSTRACT 

In this work, we propose a Neural Based Model Predictive Control (N-MPC) approach to 

tackle delays in the steering plant of autonomous cars. We examined the N-MPC approach as 

an alternative for the implementation of the Intelligent and Autonomous Robotic Automobile 

(IARA) steering control subsystem. For that, we compared the standard solution, based on the 

Proportional Integral Derivative (PID) control approach, with the N-MPC approach. The PID 

steering control subsystem works well in IARA for speeds of up to 25 km/h. However, above 

this speed, IARA’s Steering Plant delays are too high to allow proper operation with a PID 

approach. We tried and modeled the IARA’s Steering Plant using a neural network and em-

ployed this neural model in the N-MPC approach. The N-MPC approach outperformed the 

PID approach by reducing the impact of IARA’s Steering Plant delays and allowing the au-

tonomous operation of IARA at speeds of up to 37 km/h – an increase of 48% in the maxi-

mum stable speed. 

 

 

 

 

 

  



 

 

Contents 

1 INTRODUCTION .......................................................................................................... 13 

1.1 Motivation .................................................................................................................. 15 

1.2 Objective .................................................................................................................... 16 

1.3 Contribution ............................................................................................................... 16 

1.4 Organization ............................................................................................................... 17 

2 RELATED WORK ......................................................................................................... 18 

3 THEORETICAL BACKGROUND .............................................................................. 20 

3.1 Proportional Integral Derivative (PID) Control ......................................................... 20 

3.1.1 Ziegler-Nichols Open-Loop Tuning Rules ......................................................... 21 

3.2 Model Predictive Control (MPC) .............................................................................. 24 

3.2.1 System Plant Models .......................................................................................... 25 

3.2.2 Conjugate Gradient Numerical Method ............................................................. 26 

4 IARA’S PID STEERING CONTROLLER ................................................................. 28 

5 IARA’S N-MPC STEERING CONTROLLER ........................................................... 31 

5.1 Neural-Based Steering Plant Model (N-SPM) ........................................................... 31 

5.1.1 Genetic Algorithm used for Finding the N-SPM Proper Configurations ........... 32 

5.2 N-MPC Architecture .................................................................................................. 34 

6 EXPERIMENTAL METHODOLOGY ....................................................................... 40 

6.1 IARA’s Steering Controllers Tuning ......................................................................... 40 

6.2 IARA’s Steering Controllers Evaluation ................................................................... 40 

6.3 Metric of the Steering Control Accuracy ................................................................... 42 

6.4 IARA’s Hardware ...................................................................................................... 42 

6.5 IARA’s Software ....................................................................................................... 42 

6.6 Carmen ....................................................................................................................... 44 

7 EXPERIMENTAL RESULTS ...................................................................................... 45 

7.1 IARA’s Steering Controllers Tuning ......................................................................... 45 

7.1.1 IARA’s PID Steering Controller Tuning ............................................................ 45 



 

 

7.1.2 IARA’s N-MPC Steering Controller Tuning ..................................................... 49 

7.2 IARA’s Steering Controllers Results ......................................................................... 50 

7.2.1 Results Derived from Trapezoidal and Sinusoidal Steering Control Inputs ...... 50 

7.2.2 Results Derived from IARA’s Standard Operation Mode ................................. 53 

7.3 Discussion .................................................................................................................. 56 

8 CONCLUSIONS AND FUTURE WORK .................................................................... 58 

8.1 Conclusions ................................................................................................................ 58 

8.2 Future Work ............................................................................................................... 58 

9 PUBLICATIONS ............................................................................................................ 60 

10 REFERENCES ............................................................................................................... 61 

 



 

 

LIST OF FIGURES 

Fig. 1 – (a) Intelligent and Autonomous Robotic Automobile (IARA). (b) An inside view and 

of IARA. (c) The trunk with IARA’s computers, no-breaks and switch. A video that shows 

IARA operating autonomously is available at https://youtu.be/iyKZV0ICysc. .................. 14 

Fig. 2 – Block Diagram of PID approach. ................................................................................ 20 

Fig. 3 – Two examples of step response curve of open-loop system, for Ziegler-Nichols PID 

tuning. .................................................................................................................................. 22 

Fig. 4 – Diagram of the architecture of IARA’s PID Steering Controller................................ 28 

Fig. 5 – IARA’s Steering Plant response time [DES16]. ......................................................... 29 

Fig. 6 – Diagram of N-SPM. The N-SPM neural network receives as input a time series of 

executed 𝑠𝑡 , 𝑆𝑡 = {𝑠𝑡 − 1, 𝑠𝑡 − 2, … , 𝑠𝑡 − 𝑘} , and measured 𝑐𝑡 , 𝐶𝑡 = {𝑐𝑡 − 1, 𝑐𝑡 −

2,… , 𝑐𝑡 − 𝑘},  at 𝑘 past time instants, and outputs a prediction of 𝑐𝑡, 𝑑𝑡. .......................... 32 

Fig. 7 – Diagram of the architecture of IARA’s N-MPC Steering Controller. ........................ 35 

Fig. 8 – Current desired trajectory, 𝑃. The green curve denotes 𝑃, which starts at the current 

state of IARA. The grey traces denote the goals and the red cubes denote obstacles, which, 

as a whole, form the map. .................................................................................................... 37 

Fig. 9 – Operation of the IARA’s N-MPC Steering Controller using real-world data. The 

vertical line splits the graph in two parts: Past and Future. In the Past side, the blue curve 

denotes executed 𝑠𝑡 and the red curve denotes 𝜑𝑡 computed from measured 𝑐𝑡 at 𝑘 past 

time instants. In the Future side, the green curve denotes 𝜑𝑡𝑑, the blue curve denotes 𝑠𝑡 

taken from  𝐾(. ) and the yellow curve denotes 𝜑𝑡𝑝 . The green curve in the Past side 

denotes 𝜑𝑡𝑑 and is shown to allow an appreciation of the performance of N-MPC (ideally, 

it should be equal to the red curve in the Past side). ............................................................ 38 

Fig. 10 – Crop of Fig. 9 that shows more details of the 𝐾(. ). The y axes have changed sides 

and origin, but the data is still the same. Only the Future Horizon is shown and the 

parameters of  𝐾(. ) are indicated. ....................................................................................... 38 



 

 

Fig. 11 – (a) Google Map view of the UFES main campus ring road. (b) First stretch of the 

UFES main campus ring road, which comprises a sharp curve. (c) Second stretch of the 

UFES main campus ring road, which comprises a series of smoother curves. ................... 41 

Fig. 12 – Block diagram of the five main modules of the IARA’s software............................ 43 

Fig. 13 – Four different IARA’s open-loop step response. The red curve denotes 𝜑𝑡 and the 

blue curve denotes 𝑠𝑡. The black line is the derivative line in the inflection point of 𝜑𝑡 

curve. 𝑡0 denotes the time the step was applied, 𝑡1 denotes the time 𝜑𝑡 starts responding 

and 𝑡2 the time 𝜑𝑡 reaches 0.63% of its maximum value. .................................................. 46 

Fig. 14 – Results of the performance evaluation of the Ziegler Nichols PID parameters while 

driving IARA autonomously. The green curve denotes 𝜑𝑡𝑑 and the red curve denotes 𝜑𝑡.

 ............................................................................................................................................. 48 

Fig. 15– Results of the performance evaluation of the old PID parameters while driving IARA 

autonomously. The green curve denotes 𝜑𝑡𝑑 and the red curve denotes 𝜑𝑡. ...................... 48 

Fig. 16 – Results of the performance evaluation of the PID Steering Controller while driving 

IARA’s Steering Plant with steering angles in a trapezoidal wave form along the straight 

area in the end of the second stretch of the UFES main campus ring road. The green curve 

denotes 𝜑𝑡𝑑 and the red curve denotes 𝜑𝑡. ......................................................................... 50 

Fig. 17 – Results of the performance evaluation of the N-MPC Steering Controller while 

driving IARA’s Steering Plant with steering angles in a trapezoidal wave form along the 

straight area in the end of the second stretch of the UFES main campus ring road. The 

green curve denotes 𝜑𝑡𝑑 and the red curve denotes 𝜑𝑡. ..................................................... 51 

Fig. 18 – Results of the performance evaluation of the PID Steering Controller while driving 

IARA’s Steering Plant with steering angles in a sinusoidal wave form along the straight 

area in the end of the second stretch of the UFES main campus ring road. The green curve 

denotes 𝜑𝑡𝑑 and the red curve denotes 𝜑𝑡. ......................................................................... 52 

Fig. 19 – Results of the performance evaluation of the N-MPC Steering Controller while 

driving IARA’s Steering Plant with steering angles in a sinusoidal wave form along the 



 

 

straight area in the end of the second stretch of the UFES main campus ring road. The 

green curve denotes 𝜑𝑡𝑑 and the red curve denotes 𝜑𝑡. ..................................................... 53 

Fig. 20 – Results of the performance evaluation of the PID Steering Controller while driving 

IARA’s Steering Plant along the first stretch of the UFES main campus ring road. The 

green curve denotes 𝜑𝑡𝑑 and the red curve denotes 𝜑𝑡. ..................................................... 54 

Fig. 21 – Results of the performance evaluation of the N-MPC Steering Controller while 

driving the IARA’s Steering Plant along the first stretch of the UFES main campus ring 

road. The green curve denotes 𝜑𝑡𝑑 and the red curve denotes 𝜑𝑡. ..................................... 55 

Fig. 22 – Results of the performance evaluation of the PID Steering Controller while driving 

IARA’s Steering Plant along the second stretch of the UFES main campus ring road. The 

green curve denotes 𝜑𝑡𝑑 and the red curve denotes 𝜑𝑡. ..................................................... 55 

Fig. 23 – Results of the performance evaluation of the N-MPC Steering Controller while 

driving IARA’s Steering Plant along the second stretch of the UFES main campus ring 

road. The green curve denotes 𝜑𝑡𝑑 and the red curve denotes 𝜑𝑡. ..................................... 56 

Fig. 24 – IARA’s Velocity Plant response time. ...................................................................... 59 

 



 

 

LIST OF TABLES 

Table 1 – Ziegler-Nichols Open-Loop Tuning Rules. .............................................................. 23 

Table 2 – Ziegler-Nichols Open-Loop Tuning Rules simplification. ...................................... 24 

Table 3 – Parameters of the neural networks evaluated by the genetic algorithm. .................. 33 

Table 4 – Four different values 𝐾, θ and τ, obtained from the graphs shown in figure Fig. 13.

 ............................................................................................................................................. 47 

Table 5 – The PID parameters – 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 – obtained from the average values of 𝐾, θ 

and τ, using the Ziegler Nichols tuning method. ................................................................. 47 

Table 6 – Old PID parameters – 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 – manually obtained by varying their values 

and evaluating graphically the difference between 𝜑𝑡𝑑 and 𝜑𝑡. ......................................... 47 

Table 7 – Best configurations of neural networks found by the genetic algorithm. ................. 49 

 



 

 

LIST OF ABREVATIONS AND ACRONYMS 

N-MPC Neural Based Model Predictive Control  

IARA Intelligent and Autonomous Robotic Automobile 

PID Proportional Integral Derivative 

ADAS Advanced Driver Assistance Systems  

DARPA Defense Advanced Research Projects Agency 

LCAD Laboratório De Computação de Alto Desempenho (High Performance 

Computing Laboratory) 

DI Departamento de Informática (Department of Informatics) 

UFES Universidade Federal do Espírito Santo (Federal University of Espíri-

to Santo) 

MIMO Multiple Input Multiple Output Systems 

FIR Finite Impulse Response 

AOC Arctangent of The Curvature 

N-SPM Neural-Based Steering Plant Model 

GA Genetic Algorithms 

RMSE Root Mean Square Error 

LIDAR Light Detection and Ranging 

CARMEN Carnegie Mellon Robot Navigation Toolkit 

IPC Inter Process Communication 

 

  



13 

 

 

1 INTRODUCTION 

Advanced driver assistance systems (ADAS) and autonomous cars have been a major 

source of research since the two editions of the competitions promoted by the Defense Ad-

vanced Research Projects Agency (DARPA) – the Urban Challenge in 2005 and the Grand 

Challenge in 2008.  

To allow autonomous navigation of a car around a structured environment, such as paved 

roads of cities, one has to provide a trajectory that takes into consideration the desired goal, 

obstacles in the way to the goal and guidelines (such as “keep inside the lane”) that would 

allow the selection of an optimal or suboptimal path to the goal [KAT15]. A trajectory pro-

duced this way can then be send down throughout the autonomous car control pipeline for 

execution. 

Several alternatives exist on how to design the autonomous car control pipeline, which 

range from the full integration of the motion planning subsystem with the control subsystem 

[GOT16] to the division of the pipeline in several stages [CAR16]. We have developed an 

autonomous car, called Intelligent and Autonomous Robotic Automobile (IARA), which is 

illustrated in Fig. 1. IARA has a four-level control pipeline composed of: (i) a path planner 

subsystem; (ii) a motion planning subsystem [CAR16], (iii) an obstacle avoidance subsystem 

[GUI16] and (iv) a control subsystem. 

The path planning subsystem computes a path from the current car’s pose (position and 

orientation) to a desired goal pose, which obeys restrictions imposed by the road traffic regu-

lation and avoids obstacles.  The path is a sequence of consecutive states, each one comprised 

of pose and velocity.   The motion planning subsystem computes a trajectory from the current 

car’s state to the goal state, which follows the path and avoids obstacles. The trajectory is a 

sequence of control commands, each one comprised of steering wheel angle, linear velocity 

and execution time. The obstacle avoidance subsystem simulates the trajectory and decreases 

the linear velocity commands of the trajectory, in case it is necessary to avoid an accident. 

The control subsystem computes the control commands that will actuate to make the car 

achieve each one of the trajectory’s steering wheel angle and linear velocity within the execu-

tion time. 
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(a) 

 

(b) 

 

(c) 

Fig. 1 – (a) Intelligent and Autonomous Robotic Automobile (IARA). (b) An inside view and of IARA. (c) The 

trunk with IARA’s computers, no-breaks and switch. A video that shows IARA operating autonomously is avail-

able at https://youtu.be/iyKZV0ICysc.    

In this work, we examine two alternatives for the implementation of the IARA’s steering 

control subsystem: the standard Proportional Integral Derivative (PID) control approach, de-

veloped prior to this work, and a Neural-Based Model Predictive Control (N-MPC) approach. 

The PID control approach involves specifying a desired control command and an error 

measure that accounts for how far the plant output is from the desired control command 

[AST08]. With this information, a PID control system computes the plant input, which is 𝐾𝑝 

times the error measure (proportional to the error according to 𝐾𝑝), plus 𝐾𝑖 times the integral 

of the error, plus 𝐾𝑑 times the derivative of the error, where 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are parameters of 

the PID control system. Although very simple, the PID control approach is very effective and 

it is used in the control of many types of systems.  

We have implemented a PID steering control (or lateral control) subsystem for IARA, as 

well as a PID velocity control (or longitudinal control) subsystem. IARA’s PID control sub-

systems work well for speeds of up to 25 km/h. However, above this speed, delays and non-

linearities of the IARA’s Steering Plant (the software/hardware that goes from the point where 

IARA receives a desired steering angle command to the point that measures the actual steer-

ing angle, i.e., the odometry sensor) are too high to allow proper operation with a PID control 

approach. The delay problem occurs when a significant amount of time elapses between the 

https://youtu.be/iyKZV0ICysc
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instant in which the control command is applied and the instant in which a variation in the 

plant is observed. It is caused by the drive by wire system comprised of the programmable 

logic controller, electric steering motor and motor driver installed by the company that 

adapted IARA for being controlled by computers. The non-linearity problem occurs when the 

change of the output is not proportional to the change of the input. For example, the more you 

turn the steering wheel, the harder it gets to turn. 

To tackle IARA’s Steering Plant delays, in this work, we propose the use of a N-MPC 

approach. The standard MPC approach tries and controls a plant using a model of it and an 

algorithm that, using the model, simulates the plant output some time steps ahead in order to 

decide what is the best plant input (i.e., the effort command that will minimize the difference 

between the plant output and the desired control command) to send to the plant in the current 

time step [ROS04]. Since the IARA’s motion planning subsystem produces a trajectory about 

5 seconds ahead in time [CAR16] and the IARA’s Steering Plant delay is about 0.6 seconds 

[DES16], we can use the MPC approach to reduce the impact of steering plant delays by an-

ticipating control commands that would timely move IARA according to the trajectory. How-

ever, standard techniques for predicting IARA’s Steering Plant motion [LIU14] did not work 

well due to its non-linearities and delays. We then tried and modeled the IARA’s Steering 

Plant using a neural network [DES16], in conjunction with the conjugate gradient numerical 

method to update the weights of the neural network, and employed this neural-based steering 

model in IARA’s N-MPC steering control subsystem. Experimental results showed that the 

N-MPC approach outperforms the PID control approach by reducing the impact of IARA’s 

Steering Plant delays and allows IARA’s autonomous operation at speeds of up to 37 km/h – 

an increase of 48% in maximum stable speed previously achieved with IARA’s PID steering 

control subsystem. 

1.1 Motivation 

This work is associated to a research project of the Laboratório de Computação de Alto 

Desempenho (High Performance Computing Laboratory - LCAD) of the Departamento de 

Informática (Department of Informatics - DI) at the Universidade Federal do Espírito Santo 

(Federal University of Espírito Santo - UFES). One of the objectives of this project is the au-

tonomous navigation of IARA along a course named “Ida a Guarapari”. This course has ap-
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proximately 74 km, starts in the main campus of UFES, in Vitória, and ends in the Meaípe 

beach, in Guarapari. 

The main motivation of this work is to contribute with the objective mentioned above by 

implementing a steering control subsystem that allows IARA to navigate autonomously along 

74 km long “Ida a Guarapari” course.  

1.2 Objective 

The objective of this work is to propose a steering control subsystem that is able to tackle 

delays in the steering plant of the IARA autonomous car.  

In a previous work, we implemented a steering control subsystem for IARA based on the 

standard PID control approach. In low speeds, the steering delay is not a problem for the 

standard PID control approach. However, in higher speeds, it causes large oscillations in the 

steering angle that prevents proper operation with a PID control approach.  

An alternative for the implementation of the IARA’s steering control subsystem is the 

MPC approach. Standard MPC simulates the plant output some time steps ahead to compute 

the best plant input for the current time step. We can use the MPC approach to reduce the im-

pact of steering plant delays by anticipating steering angle commands that would timely move 

IARA according to the trajectory. However, standard steering plant models did not work well 

due to its non-linearities and delays. An alternative for the implementation of the IARA’s 

Steering Plant model is a neural network based approach.  

1.3 Contribution 

The main contribution of this work is the use of a neural-based steering plant model in 

the MPC approach, in order to tackle delays in the steering plant of the IARA autonomous 

car. The neural network was necessary to proper model the complexities and nonlinearities of 

the IARA’s Steering Plant delays. 
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1.4 Organization 

This work is organized as follows. After this introduction, in Chapter 2, we present pre-

vious related work. In Chapter 3, we describe the theoretical background related to this work. 

In Chapter 4, we describe IARA’s PID steering control subsystem and, in Chapter 5, IARA’s 

N-MPC steering control subsystem. In Chapter 6, we present experimental methodology used 

to evaluate IARA’s N-MPC steering control subsystem and, in Chapter 7, experimental re-

sults. In Chapter 7, we present a discussion on experimental results and a critical analysis of 

this work.  Finally, in Chapter 8, we present conclusions and directions for future work. 
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2 RELATED WORK 

There are various approaches in the literature for the implementation of the control sub-

system of autonomous cars. Funke et al. [FUN12] adopted a combined feedforward and feed-

back control approach for implementing the (lateral and longitudinal) control subsystems of 

an Audi TTS. The hardware structures of the Audi TTS plant were designed to achieve hard 

real-time control at 200 Hz. This high-speed hardware enabled their control subsystem to 

drive the car at up to 160 km/h (44.4 m/s). It allows their control subsystem to actuate at every 

0.22 m when at this speed (44.4 m/s / 200 Hz = 0.22 m). The Audi TTS’s plant is five times 

faster than IARA’s plant, which operates at 40 Hz due to hardware limitations. Therefore, in 

theory, with a 5 times faster hardware our N-MPC steering control subsystem could drive 

IARA at up to 185 km/h, since the N-MPC can currently drive IARA at 37 km/h (with a 5 

times faster hardware, we would have 37 km/h × 5 = 185 km/h). N-MPC actuates at every 

0.26 m when IARA is at 37 km/h; so, a larger distance than the 0.22 m of the Audi TTS. Li et 

al. [LI15] employed the same combined feedforward and feedback control approach of Funke 

et al. [FUN12]. They evaluated their control subsystem on a Toyota Land Cruiser and it was 

able to drive the car at up to 25 km/h only.  

 Zhao et al. [ZHA12] employed an adaptive PID approach, based on the generalized 

minimum variance method, for implementing the control subsystem of an autonomous car 

named “Intelligent Pionner”. Intelligent Pionner’s control subsystem was able to drive the car 

at up to 60 km/h. They did not explain how they tackled delays in their car plant, perhaps be-

cause they had a fast plant and its delays where negligible for the operation of the car at up to 

60 km/h.   

 Ziegler et al. [ZIE14] adopted a MPC approach for implementing the longitudinal con-

trol subsystem, and feedforward and feedback control approaches for the lateral control sub-

system of “Bertha” – the Mercedes-Benz S-Class S500 that completed fully autonomously the 

historic Bertha-Benz-Memorial-Route in Germany. Bertha’s control subsystem was able to 

drive the car at up to 100 km/h through the 100 km long Bertha-Benz-Memorial-Route. They 

did not mention delays in their car plant (perhaps, again, because they had a fast plant and its 

delays where negligible for the operation of the car at up to 100 km/h). 

 Koga et al. [KOG16] used a MPC approach for implementing the lateral and longitu-

dinal control subsystem, which uses the standard bicycle model for predicting the autonomous 
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car motion. They evaluated their control subsystem on a small electrical car, which was able 

to drive the car at up to 20 km/h.    

 Levinson et al. [LEV11] used a mixture of a MPC approach, based upon well-known 

physically based vehicle models, along with a feedforward PID control approach for imple-

menting the control subsystem of “Junior” – the (2006 Volkswagen Passat) Stanford’s entry 

to the 2007 DARPA Urban Challenge that achieved the second place in this competition.  

Junior’s control subsystem was able to drive the car at up to 56 km/h. Nevertheless, it is hard 

to be implemented because of the difficulty in deriving the control parameters for the physi-

cally-based vehicle model. 

Different from all the control subsystems mentioned above, which generate longitudinal 

and lateral control inputs to track the trajectory generated by the motion planning subsystem, 

Götte et al. [GOT16] adopted a combined motion planning and lateral control subsystem. In 

their planning/control subsystem, a single prediction model is used to plan a trajectory and 

perform lateral control of the car at the same time. For implementing the planning/control 

subsystem, they employed a nonlinear MPC approach that incorporates environmental con-

straints, which leads to a model predictive planning and control approach. However, they test-

ed their planning/control subsystem only on an autonomous car simulator.  

There is a lack of details about the implementation of autonomous car control systems in 

the literature. Most of the systems either rely on a high precision hardware or work with low 

linear velocities. Besides that, we could not find any work that mention the delay problem in 

an autonomous car steering or velocity plant. Therefore, to deal with these issues, mainly the 

delay, we propose our Neural Based Model Predictive Control Approach.     
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3 THEORETICAL BACKGROUND 

This chapter presents the theoretical background related to this work. Firstly, we present 

a brief description of the operation of the Proportional Integral Derivative Control approach. 

Then a description of how the Model Predictive Control approach works followed by a dis-

cussion on a set of System Plant Models and the Conjugate Gradient Numerical Method. 

3.1 Proportional Integral Derivative (PID) Control  

The PID control approach operates observing and trying to minimize the system output 

error 𝑒𝑡, the difference between a desired set-point (or desired target value) 𝑟𝑡 and the meas-

ured system plant output value 𝑦𝑡. For that, PID applies corrections in the control variable 𝑢𝑡 

based on the proportional, integral, and derivative terms P, I and D respectively. Fig. 2 show 

the block diagram of PID controller approach, detailing how each one of the terms are ob-

tained. 

 

Fig. 2 – Block Diagram of PID approach. 

• (P) Proportional term: produces an output value that is proportional to the current 

system output error 𝑒𝑡 times a proportional gain 𝐾𝑝. A very large proportional gain 

can make the system become unstable and a very low gain may prevent the system to 

respond. 

• (I) Integral term: produces an output value that is the sum of the system output error 

𝑒𝑡 over time, times an integrative gain 𝐾𝑖. Since the integral term responds to accumu-

lated errors from the past, it can cause the system to overshoot. 
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• (D) Derivative term: produces an output value that is calculated by determining the 

slope of the system output error 𝑒𝑡 over time, times a derivative gain 𝐾𝑑. Is used to 

predict the system behavior and thus improves settling time and stability of the sys-

tem. 

The control variable 𝑢𝑡 is calculated based in a sum of 𝐾𝑝 times the error 𝑒𝑡, 𝐾𝑖 times the 

integral of the error 𝑒𝑡 and 𝐾𝑑 times the derivative of the error 𝑒𝑡, as shown in Equation (1). 

𝑢𝑡 = 𝐾𝑝𝑒𝑡 + 𝐾𝑖 ∫ 𝑒𝑡 𝑑𝑡 + 𝐾𝑑
𝑑𝑒𝑡

𝑑𝑡
, (1) 

The simplicity of PID controller approach and the possibility of applying it without ad-

vanced knowledge of the process that is being controlled make it widely applied in different 

fields. The three parameters of PID may be tuned to deal with specific process requirements 

and some applications may require using only one or two terms. If a mathematical system 

plant model can be obtained, it can be used to tune the PID parameters using one of several 

analytical approaches available depending on the requirements of the project. Most of the 

times the system plant model is so complex that a reliable system plant model cannot be ob-

tained, so there are some heuristic tuning methods that enable the PID tuning without the sys-

tem plant model. We can say that the most common heuristic PID tuning method is the Zieg-

ler-Nichols tuning rules proposed in 1942 and will be discussed in Section 3.1.1. 

The biggest disadvantage of PID approach is that it does not explicitly consider the future 

implication of current control actions, and so it cannot deal well with system plant delays, 

what may cause instability. It also has difficulties in the presence of nonlinearities, do not re-

act to changes in the process behavior, have lag in responding to large disturbances and can-

not guarantee optimal control of the system or even its stability. 

3.1.1 Ziegler-Nichols Open-Loop Tuning Rules 

The Ziegler-Nichols open-loop tuning rules are based in three process characteristics: 

process gain, dead time, and time constant. Process gain, describes how far the system plant 

output value 𝑦𝑡 will travel for a given change in control variable 𝑢𝑡, sometimes called the sen-

sitivity of the process. Dead time is the delay between a change in 𝑢𝑡 and the response of 𝑦𝑡. 

Time constant describes how fast 𝑦𝑡 moves in response to a change in 𝑢𝑡. These characteris-

tics can be obtained by analyzing the open-loop system plant step response graphic [OGA10, 
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SMU11]. The Ziegler-Nichols method is completely graphical approximation and the analysis 

should be made by following these steps: 

1 Apply a step change of a few percent in the control variable 𝑢𝑡 and wait for the 

system plant output value 𝑦𝑡 to settle out. The size of this step should be large 

enough that the system plant output value 𝑦𝑡  moves well clear of the process 

noise/disturbance level. If the system plant does not have integrators or dominant 

complex conjugate poles, the curve of step response will show an “S” aspect as 

shown in Fig. 3. The Ziegler-Nichols Open-Loop Tuning Rules can only be ap-

plied if the step response shows this aspect. 

 

Fig. 3 – Two examples of step response curve of open-loop system, for Ziegler-Nichols PID tuning. 

2 Find the point that 𝑦𝑡 achieve 0.63% of its maximum value. 

3 Find the inflection point of the curve 𝑦𝑡, and draw a tangential line to the curve 

passing through this point. 

4 Using the graphic obtained from the step response, find the following parameters:  

• Δ𝑦𝑡 variation in the system plant output value 
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• Δ𝑢𝑡 variation in the control variable 

• 𝑡  time of beginning of control variable 𝑢𝑡 variation  

• 𝑡  time that the tangential line crosses the line that passes through the line 

of initial value of 𝑦𝑡 

• 𝑡  time that 𝑦𝑡 takes to achieve 0.63% of its maximum value 

5 Calculate the parameters process gain 𝐾, dead time θ, and time constant τ, using 

equations (2), (3) e (4) as follows. 

𝐾 = 
Δ𝑦𝑡

Δ𝑢𝑡
, (2) 

θ = 𝑡 − 𝑡  
(3) 

τ = 𝑡 − 𝑡  (4) 

6 Use the Ziegler-Nichols Open-Loop Tuning Rules shown in Table 1, to compute 

the proportional gain 𝐾𝑐, integral time τ𝑖 and derivative time τ𝑑. 

Table 1 – Ziegler-Nichols Open-Loop Tuning Rules. 

Controller Type 𝑲𝒄 𝛕𝒊 𝛕𝒅 

P τ

𝐾θ
 _ _ 

PI 0.9τ

𝐾θ
 

0.  θ _ 

PID 1.2τ

𝐾θ
 

2θ 0.5θ 

 

The original Ziegler-Nichols tuning rules were designed for controllers using reset rate 

(integral gain in repeats per minute). However, all the modern texts on process control use 

integral time, so we need to convert reset rate parameters to integral time parameters. Equa-

tion (5) presents the reset rate PID, to convert it to integral time PID we just need to match the 

terms of equations (1) and (5). 

𝑢𝑡 = 𝐾𝑐𝑒𝑡 +
𝐾𝑐

τ𝑖
∫ 𝑒𝑡 𝑑𝑡 + 𝐾𝑐τ𝑖

𝑑𝑒𝑡

𝑑𝑡
, (5) 
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Equations (6), (7) and (8) shows the calculation of 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 from 𝐾𝑐, τ𝑖 and τ𝑑 . 

𝐾𝑝 = 𝐾𝑐 , (6) 

𝐾𝑖 =
𝐾𝑐

τ𝑖
 (7) 

𝐾𝑑 = 𝐾𝑐τ𝑑 (8) 

A combination of Table 1 and equations (6), (7) and (8) can be made to give directly the 

PID parameters, as shown in Table 2.  

Table 2 – Ziegler-Nichols Open-Loop Tuning Rules simplification. 

Controller Type 𝑲𝒑 𝐊𝒊 𝐊𝒅 

P τ

𝐾θ
 _ _ 

PI 0.9τ

𝐾θ
 

 . 4τ

𝐾θ2
 

_ 

PID 1.2τ

𝐾θ
 

0. τ

𝐾θ2
 

0. τ

𝐾
 

 

It is recommended to do two or three tests and calculate process gain 𝐾, dead time θ, and 

time constant τ, for each test to obtain a good average of the process characteristics. If you get 

vastly different numbers, do even more step tests and discard the most different ones, until 

you have a good average. Note that these rules produce a quarter-amplitude damping re-

sponse, and the controller gain, 𝐾𝑐, can be reduced by a factor of up to 50%, to reduce over-

shoot and improve stability. 

3.2 Model Predictive Control (MPC)  

The Model Predictive Control (MPC) approach consists of selecting control actions 

which will lead to the best the system plant output 𝑦𝑡, using the model of the system to simu-

late and optimize the system plant output 𝑦𝑡, over a prediction horizon in the future. The main 

advantage of MPC is the fact that it allows the current control action to be optimized, while 

keeping future control actions in account. This consideration of the future set-point values 𝑟𝑡 
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in the current control action, gives MPC the ability to anticipate future events and take control 

actions accordingly to minimize the system error 𝑒𝑡. At time 𝑡, the current plant state is sam-

pled and a cost minimizing control strategy is computed, generally using a numerical minimi-

zation algorithm, for a relatively short time horizon in the future 𝑇, the prediction horizon. 

Only the first step of the control is applied to the system plant. Then the plant state is sampled 

again and the calculations are repeated starting from the new current state. 

In order to predict the future behavior of a process, we must have a model of how the 

process behaves. A precise model is not always required to get tight control because the deci-

sions are updated at every control cycle, this allows MPC to deal with the model uncertainties 

[ROS04].  

In order to choose the best current control action, we need criteria to judge which action 

is the best, that is made using a cost function, commonly is the minimization of the system 

error 𝑒𝑡. Selection of the cost function considers the predicted behavior over the prediction 

horizon into the future and therefore at each successive sampling instant. 

The MPC controller will be as precise as the model i.e., for a highly-tuned controller, we 

need a very accurate model. If we have a very accurate model and the right cost function, the 

system will achieve automatically stability and tuning.  

Typically, in case of a huge variation in the set-point the PID control approach will deal 

with this only at the instant the variation occurs, what will possible cause the system to over-

shoot due to excess of actuation, this problem would be solved using MPC approach. Another 

issue that can be easily deal with using MPC is to control Multiple Input Multiple Output sys-

tems (MIMO) since a model of the MIMO system can be build. As the PID approach designs 

make use of relatively small amount of information about the plant it cannot deal with the 

interaction of MIMO systems effectively. 

3.2.1 System Plant Models 

The task of obtaining an accurate model of the system plant is difficult and very depend-

ent of the type of the system being controlled, but as the selection of the model is the most 

important part of an MPC design, this section will give a very brief description of some com-

mon system plant models applied with MPC approach. 
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The State Space Models represents the physical system as a set of input, output and state 

variables related by first-order differential equations. It has an advantage of easily extend to 

the multivariable case and there is a huge quantity of theoretical results which can be applied 

to produce controllers/observers and to analyze the models and resulting control laws. 

Transfer function model is a representation in terms of spatial or temporal frequency, of 

the relation between the input and output of a system. Historically one advantage of this was 

the close relationship to popular black box identification techniques. 

Finite Impulse Response (FIR) is a filter whose response to a finite length input is of fi-

nite duration, because it settles to zero in finite time. In practice, these models could be de-

termined by a single step test, the practical requirements for identifying FIR models is that far 

more data is needed than to identify state-space and transfer function. 

An interesting but not common way to model a system plant is to use Neural Networks. 

They can model with high precision even nonlinear systems but they are difficult to choose 

between all the different types of networks and for each network tune the different configura-

tions that best fit for the kind of system to be modeled. When using a neural network as the 

system plant model, it is necessary to incorporate an optimization method to find the optimum 

control output. A well-known optimization method is the conjugate gradient method, that will 

be described in next section. 

3.2.2 Conjugate Gradient Numerical Method  

The conjugate gradient is one of the most well-known iterative methods for finding the 

nearest local minimum with a few steps. It uses conjugate directions instead of the local gra-

dient for going downhill. If the vicinity of the minimum has the shape of a long, narrow val-

ley, the minimum is reached in far fewer steps than would be the case using the method of 

steepest descent. 

https://en.wikipedia.org/wiki/Differential_equation
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The conjugate gradient algorithm requires derivatives of the function to be minimized, 

with respect to the optimizing variables, to know the direction of the step to find the local 

minimum. Most of time the differential equations cannot or are too difficult to be calculated 

so they can be computed numerically. A very common numerical method for solving differen-

tial equations is the finite difference method, that consists in approximating the differential 

operator 𝑓′(𝑎) by replacing the derivatives in the equation 𝑓(𝑎) using a differential quotient 

ℎ as shown in Equation (9). 

 𝑓′(𝑎) ≈
𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
, (9) 
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4 IARA’S PID STEERING CONTROLLER 

In this chapter, we describe the Proportional Integral Derivative (PID) controller ap-

proach implemented in the IARA autonomous car, that was developed prior to this work. Fig. 

4 presents the architecture of the IARA’s PID steering control subsystem, namely IARA’s 

PID Steering Controller. In the IARA’s PID Steering Controller, the desired car’s steering 

angle is represented by 𝜑𝑡
𝑑, while the current car’s steering angle is represented by 𝜑𝑡. How-

ever, IARA’s odometry sensor informs the car’s steering angle using another metric that is 

called arctangent of the curvature (AOC, measured in radians). The reason is that the technol-

ogy we have used to implement the electromechanical subsystem that drives IARA’s steering 

wheel was provided by Torc Robotics [TOR10], which uses AOC instead of the steering an-

gle in their odometry message. 

 

Fig. 4 – Diagram of the architecture of IARA’s PID Steering Controller. 

The car’s curvature, C, can be defined as the inverse of the car’s turning radius (meas-

ured in m-1) and, in IARA, it is related to the car’s steering angle, 𝜑, by [DES16]  

C =
tan(

𝜑

1+𝑣2𝑘
)

𝐿
, (10) 

where 𝑣 is the car’s velocity, 𝑘 is the car’s understeer coefficient (1.5 × 10-3 in IARA) and 𝐿 

is the car’s wheel base, i.e., the distance from the rear axle to the front axle (in meters). AOC, 

as a function of 𝜑, is given by  

AOC(𝜑) = tan− (
tan(

𝜑

1+𝑣2𝑘
)

𝐿
). (11) 
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Torc have chosen to use AOC instead of C to provide a more evenly distributed resolu-

tion across the integer field that code C in their hardware. In IARA’s PID Steering Controller, 

we convert 𝜑 to AOC using Equation (11) in order to make it comparable with the infor-

mation provided by IARA’s odometry sensor message. In Fig. 4, the block AOC(𝜑) converts 

𝜑 to AOC. 

IARA’s PID Steering Controller (Fig. 4) receives as input 𝜑𝑡
𝑑, converts 𝜑𝑡

𝑑  to the desired 

IARA’s AOC, 𝑐𝑡
𝑑 , and computes the current steering effort, 𝑠𝑡, that will make IARA’s Steer-

ing Plant produce as output the current AOC, 𝑐𝑡. It does so by computing the current error, 𝑒𝑡, 

i.e., the difference between 𝑐𝑡 and 𝑐𝑡
𝑑 , and, from 𝑒𝑡 , the 𝑠𝑡  that will drive IARA’s Steering 

Plant closer to the correct value. In Torc’s implementation, 𝑠𝑡  is a value in the range 

[-100, 100]. IARA’s PID Steering Controller computes 𝑠𝑡 by adding three values, i.e.: 𝑠𝑡 =

𝐾𝑝 × 𝑒𝑡 + 𝐾𝑖 × ∫ 𝑒𝑡 𝑑𝑡 + 𝐾𝑑 ×
𝑑

𝑑𝑡
𝑒𝑡 . We have selected the constants 𝐾𝑝 , 𝐾𝑖  and 𝐾𝑑 using 

standard PID tuning techniques. Finally, 𝑐𝑡 is converted to 𝜑𝑡, which is sent to other subsys-

tems of IARA. In Fig. 4, the block AOC(c)−  converts 𝑐𝑡  to 𝜑𝑡. 

IARA’s PID Steering Controller only produces 𝑠𝑡 if there is a current or previous (thanks 

to the integral of previous errors) 𝑒𝑡. Since IARA’s Steering Plant has a significant delay, 𝑒𝑡 

might evolve for a significant amount of time before any change in the plant output can be 

perceived due to previously applied 𝑠𝑡 related to it. Fig. 5 shows experimental results that al-

low estimating IARA’s Steering Plant delay in the form of its response time [DES16]. 

 

Fig. 5 – IARA’s Steering Plant response time [DES16]. 

In Fig. 5, the x axis is time (in seconds), the right y axis is 𝑠𝑡(dimensionless value in the 

range [-100, 100]) and the left y axis is 𝑐𝑡 (in radians). In the figure, 𝑠𝑡 (blue curve) is an ap-

proximation of the Dirac Delta function and 𝑐𝑡   (orange curve) captures IARA’s Steering 

Plant response to the approximate Dirac Delta. The time that IARA takes to completely re-

spond to the stimulus (Dirac Delta), added to the stimulus time, characterizes the time con-
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stants of the dynamics that govern the IARA’s Steering Plant response in the time domain, 

and can be used as an estimate of its maximum response time to stimuli [ANG12]. As Fig. 5 

shows, the IARA’s Steering Plant maximum response time, or delay, is not negligible – it is 

about 0.6 s. In low speeds (up to about 25 km/h), the steering delay is not a problem for 

IARA’s PID Steering Controller; however, in higher speeds, it causes large oscillations in 𝜑𝑡 

that prevents proper operation. That’s why we have chosen to implement a new steering con-

trol subsystem based on the model predictive control approach. With our N-MPC, we take 

advantage of the fact that IARA’s motion planning subsystem provides a time series of de-

sired steering wheel angles, Φ𝑑 = {𝜑𝑡
𝑑, 𝜑𝑡+ 

𝑑 , … , 𝜑
|Φ𝑑|
𝑑 }, and use a neural model of the 

IARA’s Steering Plant to generate a predicted time series of the car’s steering wheel angles, 

Φ𝑝 = {𝜑𝑡
𝑝, 𝜑𝑡+ 

𝑝 , … , 𝜑|Φ𝑝|
𝑝 }  using a time series of steering wheel efforts, 𝑆 =

{𝑠𝑡, 𝑠𝑡+ , … , 𝑠|𝑆|}. N-MPC selects the optimal time series of steering wheel efforts that will 

lead 𝜑𝑡 according to the motion plan (i.e., the 𝑆 that will minimize the difference between 

Φ𝑑and Φ𝑝), anticipating the steering wheel efforts, 𝑠𝑡, that will counteract the Steering Plant 

delay when necessary and possible. 
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5 IARA’S N-MPC STEERING CONTROLLER 

In this chapter, we describe the operation of the Neural Based Model Predictive Control 

approach proposed in this work. In Section 5.1, we describe the neural network employed to 

model IARA’s steering plant. In Section 5.2,  we describe the N-MPC operation. 

5.1 Neural-Based Steering Plant Model (N-SPM) 

Due to the complexity of the dynamics of the IARA’s Steering Plant response to stimuli, 

we tried and modeled it using a neural network [DES16]. This neural network, that we call 

Neural-Based Steering Plant Model (N-SPM), simulates the mechanisms that govern how a 

time series of 𝑠𝑡 (executed steering efforts) alters the 𝑐𝑡 (measured AOCs) of IARA.  

Fig. 6 shows a diagram of N-SPM. In the training phase, the neural network of N-SPM 

receives as input a set of input samples and associated outputs,𝑇 = {(𝐼 , 𝑐 ), (𝐼 , 𝑐 ), … , 

(𝐼𝑡, 𝑐𝑡),… (𝐼|𝑇|, 𝑐|𝑇|)} . Each input sample,  𝐼𝑡 , is a time series of executed 𝑠𝑡 , 𝑆𝑡 =

{𝑠𝑡− , 𝑠𝑡− , … , 𝑠𝑡−𝑘}, and measured 𝑐𝑡, 𝐶𝑡 = {𝑐𝑡− , 𝑐𝑡− , … , 𝑐𝑡−𝑘}, at 𝑘 past time instants (i.e., 

𝐼𝑡 = 𝑆𝑡 ∪ 𝐶𝑡), which are stored into the Steering Effort Queue and AOC Queue, respectively 

(see Fig. 6). The output associated with each input sample is the 𝑐𝑡 measured at the current 

time instant, 𝑡. For each input sample, 𝐼𝑡, the neural network predicts 𝑑𝑡 and this prediction is 

compared with the associated output, 𝑐𝑡 . The squared error between predictions, 𝑑𝑡 , and 

measurements, 𝑐𝑡, calculated over different subsets of the training set, is repeatedly used by a 

gradient-based Learning Algorithm to update the weights of the network until a maximum 

number of epochs or a minimum error is achieved. This whole process is repeated for neural 

networks with different number of layers, neurons per layer and type of neurons, among other 

parameters, all selected using a genetic algorithm (see Section 5.1.1). The best individual 

(network) can then be used in the test phase. More details of how we have implemented N-

SPM can be found in De Souza et al. [DES16].  

In the test phase, the neural network of N-SPM receives as input a time series of execut-

ed 𝑠𝑡 and measured 𝑐𝑡 at 𝑘 past time instants (𝑆𝑡and 𝐶𝑡, respectively) and outputs 𝑑𝑡. 
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Fig. 6 – Diagram of N-SPM. The N-SPM neural network receives as input a time series of executed 𝑠𝑡, 𝑆𝑡 =
{𝑠𝑡− ,  𝑠𝑡− , … , 𝑠𝑡−𝑘}, and measured 𝑐𝑡, 𝐶𝑡 = {𝑐𝑡− , 𝑐𝑡− , … , 𝑐𝑡−𝑘},  at 𝑘 past time instants, and outputs a predic-

tion of 𝑐𝑡, 𝑑𝑡.  

In previous work [DES16], we evaluated the performance of the N-SPM using real-world 

datasets. Experimental results showed that N-SPM was able to simulate, in real time, how a 

time series of 𝑠𝑡 influences 𝑐𝑡 and, while navigating in a map of a real-world environment, N-

SPM was able to emulate the IARA’s AOC with root mean squared error of 6.3x10-3 radians. 

5.1.1 Genetic Algorithm used for Finding the N-SPM Proper Configura-

tions 

In previous work [DES16], we used Genetic Algorithms (GA) for finding proper values 

for the sets of parameters for the neural network of N-SPM. In this context, each individual in 

the GA represents a neural network configuration. The set of parameters of such a configura-

tion and their search space are listed in Table 3.  

A group of individuals defines a population in the GA. Initially, a random population is 

created from the parameters’ search space. Subsequently, an iterative process starts and it is 

repeated for a maximum number of iterations, or until a user-defined minimum value of the 

evaluation function is achieved. At each iteration, the GA creates a new population from the 

previous one by following three steps: (i) selection of parents, (ii) creation of new individuals 

via crossover of parents, and (iii) mutation of the created individuals. 

Steering Effort Queue

AOC Queue

𝑠𝑡− 𝑠𝑡− 𝑠𝑡− . . . 𝑠𝑡−𝑘

𝑐𝑡− 𝑐𝑡− 𝑐𝑡− . . . 𝑐𝑡−𝑘

𝑠𝑡− 

𝑐𝑡− 

𝑠𝑡−𝑘

. . .

𝑐𝑡−𝑘

𝑑𝑡

𝑐𝑡
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Table 3 – Parameters of the neural networks evaluated by the genetic algorithm. 

Parameters Search Space 

Number of hidden lay-

ers 
1; 2 

Activation function of 

hidden layers 

Linear; threshold; sigmoid; sigmoid with stepwise linear approxi-

mation; symmetric sigmoid (hyperbolic tangent); stepwise linear 

approximation to symmetric sigmoid; Gaussian; symmetric 

Gaussian; sigmoid proposed by David Elliott [21]; bounded linear; 

periodical sine; periodical cosine. 

(see http://goo.gl/2vJRLS) 

Activation function of 

output layer 
Same used in Activation function of hidden layers. 

Number of neurons in 

the hidden layer 

First hidden layer: 5; 8; 10; 12; 15; 18; 38; 50; 80; 100; 200; 300. 

When we have more than one hidden layer, the other hidden lay-

ers have half the number of neurons of the previous hidden layer. 

Learning Algorithm 
Online Backpropagation; Batch Backpropagation; RPROP algo-

rithm [22]; QUICKPROP algorithm [23]. 

Learning Rate 0.1; 0.2; …; 0.9 

Momentum 0.1; 0.2; …; 0.9 

Learning Rate Decay 
0.1; 0.2; …; 0.9 

(relevant only for the QUICKPROP training algorithm) 

Maximum epochs to 

train 
100; 200; 300 

 

In the selection step, two random parents are chosen for creating a new individual. In this 

work, the fitness of the parents is not taken in consideration for the selection process. The new 

individual is generated from the selected parents using a multipoint crossover strategy 

[SRI94]. If a new individual already exists in the population, it is discarded and a new crosso-

ver is executed. The selection and crossover steps are repeated until a new population with 

size equals to 90% of the size of the previous population is created. To complete the new 

population, the previous population is ranked according to the fitness of each individual and 

the top-performing 10% are transferred to the new population – this technique is called elitism 

[JON75]. In the mutation step, each individual of the new population suffers a mutation with 

10% probability. The mutation consists of changing one of the individual’s parameters (se-

lected randomly) to a random value of its search space. 

To measure the performance, or fitness, of an individual, we need to build, train, and 

evaluate a neural network configured according to the individual’s parameters. The neural 
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network is trained using a subset of the training set, and evaluated with the remaining part of 

the training set, called the validation set. Training and evaluating the network with independ-

ent sets is important to guarantee that the network acquires generalized knowledge, instead of 

overfitting to the training data. The evaluation function is the root mean square error (RMSE) 

between the expected values of AOC and the predictions made by the network over all sam-

ples of the validation set. The evolution of the individuals, promoted by the GA, seeks to min-

imize this evaluation function. 

5.2 N-MPC Architecture 

Fig. 7 shows a diagram of the architecture of IARA’s N-MPC steering control subsys-

tem, namely IARA’s N-MPC Steering Controller. The IARA’s N-MPC Steering Controller 

has three cycles: Control Cycle, Optimization Cycle and N-SPM Prediction Cycle. A Control 

Cycle encompasses various Optimization Cycles, and an Optimization Cycle encompasses 

various N-SPM Prediction Cycles.  

At each Control Cycle, N-MPC receives a motion plan from IARA’s planner and ex-

tracts a time series of  𝜑𝑡
𝑑  (desired IARA’s steering wheel angles), Φ𝑑 = {𝜑 

𝑑 , 𝜑 
𝑑 , … ,

𝜑𝑘
𝑑 , … , 𝜑

|Φ𝑑|
𝑑 }, from it. This time series is compared with a time series of 𝜑𝑡

𝑝
 (predicted 

IARA’s steering wheel angles), Φ𝑝 = {𝜑 
𝑝, 𝜑 

𝑝, … , 𝜑𝑘
𝑝, … , 𝜑|Φ𝑝|

𝑝 }, and the result of this 

comparison is used by an Optimizer to produce an optimal steering effort, 𝑘 , that is sent to 

the IARA’s Steering Plant (see Fig. 7). This Optimizer may require several optimization cy-

cles to achieve an optimal value of 𝑘 . We have limited to 15 the maximum number of opti-

mization cycles. The Control Cycle executes in the hardware maximum frequency, 40 Hz. 
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Fig. 7 – Diagram of the architecture of IARA’s N-MPC Steering Controller. 

At each Optimization Cycle (Fig. 7), Φ𝑑  is compared with Φ𝑝 according to the cost 

function 

𝐹(Φ𝑑, Φ𝑝) =
 

|Φ𝑝|
∑ | 𝜑𝑡

𝑑 − 𝜑𝑡
𝑝|

|Φ𝑝|
𝑡= . (12) 

The cost returned by 𝐹(. ) is used by the Optimizer to compute the optimum parameters 

of a spline of 𝑠𝑡 (steering efforts), 𝐾(𝑘 , 𝑘 , 𝑘 , 𝑘4) (see Fig. 7). 𝐾(. ) is a cubic spline that 

specifies the evolution of 𝑠𝑡 in time and it is defined by four steering effort knot points, 𝑘 , 

𝑘 , 𝑘  and 𝑘4. In the first Optimization Cycle of the first Control Cycle, the parameters of 

𝐾(. ) are set to zero and these zeroed parameters are used as the first Optimizer seed; in the 

following Optimization Cycles, the parameters of  𝐾(. ) computed in the previous Optimiza-

tion Cycle are used as the Optimizer seed. In the first Optimization Cycle of each Control 

Cycle, the optimum parameters of 𝐾(. ), computed in the previous Control Cycle, are used as 

the Optimizer seed in the current Control Cycle.  

In the beginning of each Optimization Cycle, the Steering Effort Queue (purple queue 

in Fig. 7) and the AOC Queue (green queue in Fig. 7) are initialized with executed 𝑠𝑡 and 

measured 𝑐𝑡 at 𝑘 past time instants that were stored in the Executed Effort Queue (blue queue 

N-MPC

∑

𝜑𝑡Φ𝑑 +

-

𝑘 
Optimizer

K(.)

 𝑡

AOC 𝑐 − 

Φ𝑝

IARA’s
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Plant

{𝑘 𝑘 𝑘 𝑘4}

𝐹(Φ𝑑, Φ𝑝)

𝑑𝑡

+

+

𝑠𝑡

𝑐𝑡

𝜑𝑡
𝑝

AOC 𝑐 − 

Optimization Cycle

Prediction Cycle
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in Fig. 7) and the Measured AOC Queue (red queue in Fig. 7), respectively. After this initiali-

zation, from the current 𝑡 to 𝑡 + 𝑡𝑝, where 𝑡𝑝 is the Prediction Horizon, N-SPM is recursively 

used for making predictions, 𝑑𝑡 . These predictions are employed for building Φ𝑝  (as de-

scribed below), which is used in each Optimization Cycle (see Fig. 7). 

 In the first N-SPM Prediction Cycle of each Optimization Cycle, N-SPM predicts 𝑑𝑡 

using as input only executed 𝑠𝑡 and measured 𝑐𝑡 of the 𝑘 past time instants, which are copied 

from the Executed Effort Queue to the Steering Effort Queue and from the Measured AOC 

Queue to the AOC Queue, respectively. At each subsequent N-SPM Prediction Cycle, each 

𝑠𝑡  taken from 𝐾(. ) and each 𝑑𝑡  (steering effort) predicted by N-SPM are inserted into the 

Steering Effort Queue of N-SPM and the AOC Queue, respectively. With this information, 

the N-SPM predicts 𝑑𝑡+ , which is converted to 𝜑𝑡
𝑝
, added to the disturbance correction vari-

able, 𝛿𝑡(explained below), and inserted into the Predicted 𝜑 Queue (yellow queue in Fig. 7). 

The N-SPM Prediction Cycle is recursively repeated until we have Φ𝑝 with the same size of 

Φ𝑑, i.e.,  |Φ𝑝| = |Φ𝑑|.  Φ𝑝 is then compared again to Φ𝑑 according to 𝐹(. ) (Equation (3)) 

and the cost returned by 𝐹(. ) is used in another Optimization Cycle. The Optimization Cycles 

are repeated until the Optimizer converges to the optimum set of parameters of 𝐾(. ). The pa-

rameter 𝑘  of the optimum 𝐾(. ) is sent to IARA’s Steering Plant. The executed 𝑘  and the 

measured 𝑐𝑡 are inserted into the Executed Effort Queue and the Measured AOC Queue, re-

spectively, and the oldest values of each of these queues are removed. This terminates the 

Control Cycle. 

The Optimizer uses a conjugate gradient optimization method to compute the optimum 

parameters of 𝐾(. ) that minimizes 𝐹(. ) in each Optimization Cycle. The conjugate gradient 

method requires derivatives of 𝐹(. ) with respect to the optimizing parameters (𝑘 , 𝑘 , 𝑘 ,

𝑘4). These derivatives are computed using the finite differences numerical method. 

As mentioned above, Φ𝑑 is taken from the current desired trajectory, 𝑃, which is gener-

ated by the IARA’s motion planning subsystem [CAR16] at a rate of 20 Hz.  Fig. 8 illustrates 

𝑃, which is a set of motion commands, 𝑃 = {𝑚 ,𝑚 , … ,𝑚|𝑃|}, where each motion command 

is a triplet, 𝑚𝑡 = {𝑣𝑡 , 𝜑𝑡, 𝛥𝑡𝑡}, that specifies the car’s velocity, 𝑣𝑡, car’s steering angle, 𝜑𝑡, 

and the time interval of the motion command, 𝛥𝑡𝑡, at the time instant 𝑡, which will lead IARA 

from the current state to its next goal state in the map. To compute Φ𝑑, for each 𝑚𝑡 ∈ 𝑃, we 

take 𝜑𝑡 ∈ 𝑚𝑡 until the sum of 𝛥𝑡𝑡 ∈ 𝑚𝑡  is greater than or equal to the Prediction Horizon, 𝑡𝑝. 
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Fig. 8 – Current desired trajectory, 𝑃. The green curve denotes 𝑃, which starts at the current state of IARA. The 

grey traces denote the goals and the red cubes denote obstacles, which, as a whole, form the map. 

The graph of Fig. 9 illustrates the operation of IARA’s N-MPC Steering Controller using 

real-world data. A vertical line splits this graph in two parts: Past and Future. In the beginning 

of the Control Cycle just after the vertical line, the Steering Effort Queue and the AOC Queue 

are initialized with previous values of 𝑠𝑡 (blue curve in the Past side) and 𝑐𝑡 (the red curve in 

Fig. 9 shows previous values of 𝜑𝑡, which are derived from measured values of 𝑐𝑡; see Fig. 

7). A series of Optimization Cycles (and associated N-SPM Prediction Cycles) of this Control 

Cycle produces the values of the Prediction Horizon of Fig. 9.  

At each N-SPM Prediction Cycle, a 𝑠𝑡 taken from 𝐾(. ) (blue curve in the Future side of 

Fig. 9) is inserted into the Steering Effort Queue and a 𝑑𝑡, previously predicted by N-SPM, is 

inserted into the AOC Queue, and the N-SPM predicts a new 𝑑𝑡, or 𝑑𝑡+ . This process is re-

cursively repeated until the first Prediction Horizon is complete. The Optimizer evaluates the 

quality of the Φ𝑝(yellow curve) of this first Prediction Horizon by comparing it with Φ𝑑 

(green curve in the Future side of Fig. 9), using Equation (12). If Φ𝑝 is optimal, the Control 

Cycle is complete and  𝑘  is sent to IARA’s Steering Plant; otherwise, a new Optimization 

Cycle (and associated N-SPM Prediction Cycles) is executed. Fig. 10 is a crop of Fig. 9 that 

shows more details of 𝐾(. ). 
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Fig. 9 – Operation of the IARA’s N-MPC Steering Controller using real-world data. The vertical line splits the 

graph in two parts: Past and Future. In the Past side, the blue curve denotes executed 𝑠𝑡 and the red curve de-

notes 𝜑𝑡 computed from measured 𝑐𝑡 at 𝑘 past time instants. In the Future side, the green curve denotes 𝜑𝑡
𝑑, the 

blue curve denotes 𝑠𝑡 taken from 𝐾(. ) and the yellow curve denotes 𝜑𝑡
𝑝
. The green curve in the Past side denotes 

𝜑𝑡
𝑑 and is shown to allow an appreciation of the performance of N-MPC (ideally, it should be equal to the red 

curve in the Past side). 

 

Fig. 10 – Crop of Fig. 9 that shows more details of the 𝐾(. ). The y axes have changed sides and origin, but the 

data is still the same. Only the Future Horizon is shown and the parameters of  𝐾(. ) are indicated. 

Although the N-SPM models the IARA’s Steering Plant well, there still might be model-

ing imprecisions, plant variations over time, or variations in terrain that may not be captured 

by N-SPM. To account for these, we include a disturbance correction variable, 𝛿𝑡 (mentioned 

above), which is defined as: 
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𝛿𝑡 = 𝜑𝑡 − 𝜑𝑡
𝑝
. (13) 

The use of 𝛿𝑡 allows for the compensation of the aforementioned plant modeling errors 

[ROS04]. 

In summary, the N-MPC receives as input the first part of the trajectory, about 0,4 s 

ahead in time, that composes Φ𝑑, and uses the optimizer, that employs the neural network, to 

modify the steering effort spline and minimize the error between the desired Φ𝑑 and predicted 

Φ𝑝 steering wheel angles sequence. Finally, when the process is complete, N-MPC selects the 

spline first value 𝑘 , which is the best control command to be applied in the steering plant in 

actual moment, to direct the steering plant output to the desired value. N-MPC explicitly con-

siders the implication of the actual command in the future, being able, in this way, to deal 

with the delay problem. 
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6 EXPERIMENTAL METHODOLOGY 

In this chapter, we describe the methodology followed to perform the experiments and all 

resources employed. In Section 6.1, we describe a description of PID and N-MPC parameters 

tuning. In Section 6.2, we describe the experimental environment and situations of analysis. 

In Section 6.3, we present the metric used to compare the PID and N-MPC approaches. In 

Section 6.4, the hardware used in the experiments. In Section 6.5, the software. In Section 6.6, 

we describe the CARMEN robotics framework. 

6.1 IARA’s Steering Controllers Tuning  

The parameters of the IARA’s PID Steering Controller – 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 – were tuned us-

ing the Ziegler Nichols method described in Section 3.1.1. The parameters of N-SPM (em-

ployed by the IARA’s N-MPC Steering Controller) – number of layers, neurons per layer and 

type of neurons, among others (see Section 5.1.1) – were tuned using a genetic algorithm de-

scribed in Section 3.2.2.   

6.2 IARA’s Steering Controllers Evaluation 

To evaluate the performance of the IARA’s N-MPC Steering Controller against the 

IARA’s PID Steering Controller, IARA was driven autonomously in two different situations 

along two different stretches of the ring road of the main campus of Universidade Federal do 

Espírito Santo (Federal University of Espírito Santo - UFES). Fig. 11 shows the Google Map 

view of the UFES main campus ring road. Fig. 11(a) shows the whole UFES main campus 

ring road, which has an extension of about 3.7 km. Fig. 11(b) shows the first stretch, which 

comprises a sharp curve, and Fig. 11(c) shows the second stretch, which comprises a series of 

smoother curves. 

In the first situation, IARA’s path planning and motion planning subsystems were 

switched off, in a way that IARA’s steering controllers are evaluated without any interference 

of other subsystems and execute exactly the same control inputs. IARA was driven autono-

mously by simple trajectories – composed of steering angles in trapezoidal and sinusoidal 
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wave forms and constant linear velocities of 5 km/h, which were sent directly to IARA’s 

steering controllers. Also, IARA was conducted along the end of the second stretch of the 

UFES main campus ring road (Fig. 11(c)), because it has a larger straight area. 

In the second situation, IARA’s path planning and the motion planning subystems were 

switched on, in a way that IARA’s steering controllers are analyzed in standard operation 

mode, while interacting with other subsystems. IARA was driven autonomously with a max-

imum velocity of 37 km/h. Also, IARA was conducted along two different stretches of the 

UFES main campus ring road (Fig. 11(b) and Fig. 11(c)), which comprise a sharp curve and a 

series of smoother curves. 

 

Fig. 11 – (a) Google Map view of the UFES main campus ring road. (b) First stretch of the UFES main campus 

ring road, which comprises a sharp curve. (c) Second stretch of the UFES main campus ring road, which com-

prises a series of smoother curves. 

The speed limitation of 25 km/h for the PID approach and 37 km/h for the N-MPC ap-

proach are defined by the behavior of IARA, above these speeds the oscillation in the steering 

are too high and may cause the car to leave the lane, in any of the stretches of UFES ring 

road. 

(b) 

(a) (c) 
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6.3 Metric of the Steering Control Accuracy 

We evaluated the difference between 𝜑𝑡
𝑑 (desired steering angle) and 𝜑𝑡 (measured steer-

ing angle) using the root mean squared error (RMSE) metric given by: 

RMSE =√
∑ ( 𝜑𝑡

𝑑−𝜑𝑡)
2𝑛

𝑡=1

𝑛
  (14) 

where 𝑛 is the total number of 𝜑𝑡
𝑑 being considered, and for each 𝜑𝑡

𝑑 there is a correspondent 

𝜑𝑡. It is different from the trajectory size because a complete experiment may contain multi-

ple trajectories. 

The RMSE metric was chosen because it is a frequently used measure of the differences 

between predicted and observed values. RMSE aggregates the magnitudes of the errors in 

predictions for various times into a single measure of the prediction accuracy. Also, RMSE 

compounds information about average error with information about variation in the errors. 

6.4 IARA’s Hardware  

We developed the hardware and software of the Intelligent and Autonomous Robotic Au-

tomobile (IARA, Fig. 1). The IARA’s hardware is based on a Ford Escape Hybrid, which was 

adapted by Torc Robotics (http://www.torcrobotics.com) to enable electronic actuation of the 

steering, throttle and brakes; reading the car odometry; and powering several high-

performance computers and sensors. IARA has one Velodyne HDL 32-E Light Detection and 

Ranging (LIDAR); one Trimble RTK GPS; one Xsens MTi IMU; one Point Grey Bumblebee 

and two Point Grey Bumblebee XB3 stereo cameras; and two Dell Precision R5500 comput-

ers. 

6.5 IARA’s Software 

IARA’s software is composed of many modules and the five main ones are: mapper 

[MUT16], localizer [VER15] [VER16], motion planner [CAR16], obstacle avoider [GUI16] 

and controller. N-MPC is part of the controller module. Fig. 12 shows a simplified block dia-

http://www.torcrobotics.com/
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gram of IARA’s software and depicts how the controller module, and hence N-MPC, connects 

with the other five main modules.  

 

Fig. 12 – Block diagram of the five main modules of the IARA’s software. 

The mapper continuously computes a map of the environment around IARA using a 

GraphSLAM estimator algorithm to integrate the data generated by the sensors, a 3D LiDAR 

Velodyne HDL-32E, an Inertial Measurement Unit and a low cost Global Position System 

[MUT16].  

The localizer continuously estimates IARA’s state relative to the origin of the map. It is 

based on the Particle Filter localization, which corrects particles’ poses by applying map-

matching between 2D global occupancy grid-maps computed offline and 2D local occupancy 

grid-maps constructed online. The localization system converts the dense 3D point clouds of 

the 3D LiDAR into sparse local maps [VER15, VER16].  

The path planner module extracts the path from the current car state to the goal state from 

a road definition data file (RDDF), a sequence of car states logged while manually driving 

IARA. IARA’s path planner follows the 2005 DARPA Grand Challenge pattern, instead of 

using an approach to obtain the path online. 

IARA's Model-Predictive Motion Planner continuously computes a trajectory from the 

current IARA’s state to the next goal state, using the path, the current car’s state, a goal in the 

path and the map. The motion planner subsystem is able to compute smooth trajectories from 

its current position to the goal in less than 50 μs [CAR16].  

IARA’s obstacle avoider firstly receives as input an updated map, the current car’s state 

and the trajectory. Secondly, the obstacle avoider simulates the trajectory. Finally, if the tra-

jectory crashes into an obstacle, then the obstacle avoider decreases the linear velocity com-

mands of the trajectory to prevent the accident [GUI16]. 
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Finally, the controller is responsible to compute the acceleration, brake and steering 

wheel control commands that will make IARA execute the trajectory states, the closest possi-

ble. These control commands are modeled as the effort that will be applied in the system 

plant. The effort values vary in the range [-100, 100]. For the break and acceleration, in case 

of -100, the maximum break effort is applied and, in case of 100, the maximum acceleration 

effort is applied. For the steering plant, in case of -100, the maximum acceleration counter-

clockwise is applied and, in case of 100, the maximum acceleration clockwise is applied. 

Additional modules of IARA’s software include: health monitor, that checks the working 

condition of all modules and reinitiates those that are not operating correctly; behavior selec-

tor, that sets the mode of operation depending on current conditions; logger, that provides 

sensor data logs; simulator, that simulates IARA using sensor data logs [DES16]; among oth-

ers. 

6.6 Carmen 

The modules mentioned above were implemented in the Carnegie Mellon Robot Naviga-

tion Toolkit (CARMEN). CARMEN is an open source software collection for mobile robot 

control. It was designed to provide basic navigation primitives, including mapping, localiza-

tion, path planning, obstacle avoidance, logging, and base and sensor control.  It was created 

by the Carnegie Mellon University (http://carmen.sourceforge.net/) and, since 2011, it has 

been extended and maintained by the Laboratório de Computação de Alto Desempenho (High 

Performance Computing Laboratory - LCAD) at the Universidade Federal do Espírito Santo 

(Federal University of Espírito Santo UFES) (https://github.com/LCAD-UFES/carmen_lcad). 

CARMEN implements a modular software architecture, in which robot functionalities 

are divided in separate modules. It provides scalability and reliability, since the modules can 

be executed taking advantage of multi-core computers, or even in different computers, and, if 

a module fails, the others will not stop necessarily. The communication between modules is 

made by the Inter Process Communication (IPC) platform. IPC uses the publish-subscribe 

scheme, which allows to send and receive complex data structures even between computers 

using TCP/IP protocol. Fig. 8  shows an example of CARMEN’s simulation environment, 

including the IARA’s representation, the obstacle map, the global path and the trajectory. 
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7 EXPERIMENTAL RESULTS 

This chapter presents the experimental results performed to validate the work developed 

in this research. Section 7.1 presents the PID parameters tuning process and the neural net-

work system plant model, N-SPM, of N-MPC tuning process. Section 7.2 presents IARA’s 

steering control results in different testing situations. 

7.1 IARA’s Steering Controllers Tuning 

In Section 7.1.1, we describe the PID control subsystem tuning process using the Ziegler 

Nichols tuning rules described in Section 3.1.1. In Section 7.1.2, we describe the neural steer-

ing plant model, N-SPM, of MPC tuning process using the genetic algorithm described in 

Section 5.1.1. 

7.1.1 IARA’s PID Steering Controller Tuning 

The parameters of the IARA’s PID Steering Controller – 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 – were tuned us-

ing the Ziegler Nichols method described in Section 3.1.1. Firstly, to collect the data to build 

the step response of open-loop system, we sent to IARA’s Steering Plant a fixed effort with 

value of 20 until the steering settle in a curvature. This process was repeated four times to 

obtain a good average of the process characteristics. For each one of the four open-loop step 

response data, a graph from the data was obtained and a tangent line in the inflection point 

was drawn, as shown in Fig. 13. 

Using the Ziegler Nichols tuning rules presented in Section 3.1.1, we obtained the pa-

rameters Δ𝑦𝑡, Δ𝑢, 𝑡 , 𝑡  and 𝑡 , and, using Equations (2), (3) and (4), we can calculate the 

process characteristic parameters process gain 𝐾, dead time θ and time constant τ, from each 

one of the graphs presented in Fig. 13 as shown in Table 4 respectively. An average value for 

each parameter was calculated to obtain a better approximation. 
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(1) 

  
(2) (3) 

 

 

(4)  

Fig. 13 – Four different IARA’s open-loop step response. The red curve denotes 𝜑𝑡 and the blue curve denotes 

𝑠𝑡. The black line is the derivative line in the inflection point of 𝜑𝑡 curve. 𝑡  denotes the time the step was ap-

plied, 𝑡  denotes the time 𝜑𝑡 starts responding and 𝑡  the time 𝜑𝑡 reaches 0.63% of its maximum value. 

0

5

10

15

20

25

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25

e
ff

or
t

 
(r

ad
ia

n
s)

time (seconds)

Série2 Série1𝜑𝑡 𝑠𝑡

𝑡 𝑡 𝑡 

0

5

10

15

20

25

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25 30

e
ff

or
t

 
(r

ad
ia

n
s)

time (seconds)

Série2 Série1𝜑𝑡 𝑠𝑡

0

5

10

15

20

25

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20

e
ff

or
t

 
(r

ad
ia

n
s)

time (seconds)

Série2 Série1𝜑𝑡 𝑠𝑡

0

5

10

15

20

25

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20

e
ff

or
t

 
(r

ad
ia

n
s)

time (seconds)

Série2 Série1𝜑𝑡 𝑠𝑡



EXPERIMENTAL RESULTS  47 

 

Table 4 – Four different values 𝐾, θ and τ, obtained from the graphs shown in figure Fig. 13. 

 𝑲 Θ Τ 

1 0.0036291 0.66551 2.616715 

2 0.00297765 0.60035 1.51849 

3 0.00297655 0.53341 1.54684 

4 0.00330685 0.55983 1.77452 

Average 0.00314225 0.58009 1.66068 

Standard Deviation 0.000312453 0.057507498 0.514637117 

 

From the process characteristics parameters presented in Table 4, the PID parameters – 

𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 – can be calculated using the equations presented in Table 2 for PID controller 

type. 

Table 5 – The PID parameters – 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 – obtained from the average values of 𝐾, θ and τ, using the Zieg-

ler Nichols tuning method. 

𝑲𝒑 𝑲𝒊 𝑲𝒅 

1093.279205 942.3358489 317.1001671 

 

We compared the PID parameters found using the Ziegler Nichols tuning method against 

the old parameters that we have found manually, by varying 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 values, and evalu-

ating graphically the difference between 𝜑𝑡
𝑑  and 𝜑𝑡. The old PID parameters are shown in 

Table 6. 

Table 6 – Old PID parameters – 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 – manually obtained by varying their values and evaluating 

graphically the difference between 𝜑𝑡
𝑑 and 𝜑𝑡. 

𝑲𝒑 𝑲𝒊 𝑲𝒅 

1250 600 25 
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Fig. 14 shows graphically the performance of Ziegler Nichols PID parameters while driv-

ing IARA’s Steering Plant autonomously with maximun velocity of 20 km/h. The RMSE be-

tween 𝜑𝑡
𝑑 and 𝜑𝑡 in this graph is 5.51×10-3 radians.  

Fig. 15 shows graphically the performance of old manually tuned PID parameters while 

driving IARA’s Steering Plant autonomously with maximun velocity of 20 km/h. The RMSE 

between 𝜑𝑡
𝑑 and 𝜑𝑡 in this graph is 7,68×10-3 radians. 

 

Fig. 14 – Results of the performance evaluation of the Ziegler Nichols PID parameters while driving IARA 

autonomously. The green curve denotes 𝜑𝑡
𝑑 and the red curve denotes 𝜑𝑡. 

 

Fig. 15– Results of the performance evaluation of the old PID parameters while driving IARA autonomously. 

The green curve denotes 𝜑𝑡
𝑑 and the red curve denotes 𝜑𝑡. 
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The results presented in this section shows a reduction of more than 28,3% in PID’s 

RMSE by comparing Ziegler Nichols parameters with those adjusted manually. 

7.1.2 IARA’s N-MPC Steering Controller Tuning 

The parameters of N-SPM (employed by the IARA’s N-MPC Steering Controller) – 

number of layers, neurons per layer and type of neurons, among others (see Section 5.1.1) – 

were tuned using the genetic algorithm (GA) described in Section 3.2.2. The GA found a so-

lution in the first generation, with nine of the 150 randomly created individuals achieving a 

RMSE over validation below the desired error, 1x10-2 radians. These nine individuals were 

subsequently evaluated with the testing set, and the best individual was chosen to be used as 

IARA’s neural based steering plant model N-SPM. The configuration of the best individual is 

listed in Table 7. The RMSE over the validation and testing dataset are 6.4x10-3 and 6.3x10-3 

respectively. 

Table 7 – Best configurations of neural networks found by the genetic algorithm. 

Parameters AOC Network 

Number of inputs 80 

Number of hidden layers 1 

Number of neurons in the first hidden layer 50 

Number of neurons in the second hidden layer - 

Activation function of hidden layers Sigmoid Symmetric 

Activation function of output layer Linear 

Learning Algorithm Online Backpropagation 

Learning Rate 0.5 

Momentum 0.5 

Learning Rate Decay - 

Maximum epochs trained 200 
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7.2 IARA’s Steering Controllers Results 

This section presents the comparison between the PID approach and N-MPC approach 

graphically and by the RMSE metric. 

7.2.1 Results Derived from Trapezoidal and Sinusoidal Steering Control 

Inputs 

The results presented in this subsection shows a comparison between PID and N-MPC 

approaches with a simple trajectory, composed of steering angles in a trapezoidal or sinusoi-

dal wave form, which was computed empirically. Moreover, all planning modules were 

switched off. These experiments aim to evaluate the control approaches executing the same 

trajectory without interference of planning modules. 

Fig. 16 shows the results of the performance evaluation of the PID Steering Controller 

while driving IARA’s Steering Plant with a simple trajectory – composed of steering angles in 

a trapezoidal wave form and constant linear velocities of 5 km/h – along the straight area in 

the end of the second stretch of the UFES main campus ring road (Fig. 11(b)). The RMSE 

between 𝜑𝑡
𝑑 and 𝜑𝑡 in this graph is 5.74×10-3 radians.  

 

Fig. 16 – Results of the performance evaluation of the PID Steering Controller while driving IARA’s Steering 

Plant with steering angles in a trapezoidal wave form along the straight area in the end of the second stretch of 

the UFES main campus ring road. The green curve denotes 𝜑𝑡
𝑑 and the red curve denotes 𝜑𝑡. 
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Fig. 17 shows the results of the performance evaluation of the N-MPC Steering Control-

ler while driving IARA’s Steering Plant with steering angles in a trapezoidal wave form along 

the straight area in the end of the second stretch of the UFES main campus ring road (Fig. 

11(b)). The RMSE between 𝜑𝑡
𝑑 and 𝜑𝑡 is 2.4×10-3 radians. A visual comparison of Fig. 16 

and Fig. 17 clearly shows, that N-MPC can drastically reduce the impact of the plant delay, as 

indicated by black arrows in the graphs. In this experiment N-MPC approach achieved a 

RMSE reduction compared with PID of 58,2%. 

 

Fig. 17 – Results of the performance evaluation of the N-MPC Steering Controller while driving IARA’s Steer-

ing Plant with steering angles in a trapezoidal wave form along the straight area in the end of the second stretch 

of the UFES main campus ring road. The green curve denotes 𝜑𝑡
𝑑 and the red curve denotes 𝜑𝑡. 
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Fig. 18 shows the results of the performance evaluation of the PID Steering Controller 

while driving IARA’s Steering Plant with a simple trajectory – composed of steering angles in 

a sinusoidal wave form and constant linear velocities of 5 km/h – along the straight area in the 

end of the second stretch of the UFES main campus ring road (Fig. 11(b)). The RMSE be-

tween 𝜑𝑡
𝑑 and 𝜑𝑡 in this graph is 8.28×10-3 radians. 

 

Fig. 18 – Results of the performance evaluation of the PID Steering Controller while driving IARA’s Steering 

Plant with steering angles in a sinusoidal wave form along the straight area in the end of the second stretch of the 

UFES main campus ring road. The green curve denotes 𝜑𝑡
𝑑 and the red curve denotes 𝜑𝑡. 

In Fig. 19 shows the results of the performance evaluation of the N-MPC Steering Con-

troller while driving IARA’s Steering Plant with steering angles in a sinusoidal wave form 

along the straight area in the end of the second stretch of the UFES main campus ring road 

(Fig. 11(b)). The RMSE between 𝜑𝑡
𝑑 and 𝜑𝑡 is 3.55×10-3 radians. In this experiment N-MPC 

approach achieved a RMSE reduction compared with PID of 57,1%. 
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Fig. 19 – Results of the performance evaluation of the N-MPC Steering Controller while driving IARA’s Steer-

ing Plant with steering angles in a sinusoidal wave form along the straight area in the end of the second stretch of 

the UFES main campus ring road. The green curve denotes 𝜑𝑡
𝑑 and the red curve denotes 𝜑𝑡. 

7.2.2 Results Derived from IARA’s Standard Operation Mode  

The video available at https://youtu.be/iyKZV0ICysc  shows IARA being driven auton-

omously along the testing sites, and the graphical results of the performance evaluation of the 

PID and N-MPC Steering Controllers while driving IARA’s Steering Plant along the first 

(Fig. 11(b)) and second (Fig. 11(c)) stretches of UFES main campus ring road. For the exper-

iments presented in this section IARA was driven autonomously along the two stretches of the 

UFES ring road with a maximum velocity of 37 km/h. 

In Fig. 20, we show graphically the performance of the PID Steering Controller in first 

stretch of the UFES main campus ring road (Fig. 11(b)). The root mean squared error 

(RMSE) between 𝜑𝑡
𝑑 (desired steering angle) and 𝜑𝑡 (measured steering angle) is 2.62×10-2 

radians (This result corresponds to the period between 4 and 13 seconds of the video men-

tioned above; please note that the scales of the graphs that appear in the video are not the 

same as those in this work). 
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Fig. 20 – Results of the performance evaluation of the PID Steering Controller while driving IARA’s Steering 

Plant along the first stretch of the UFES main campus ring road. The green curve denotes 𝜑𝑡
𝑑 and the red curve 

denotes 𝜑𝑡. 

In Fig. 21, we show graphically the performance of the N-MPC Steering Controller in 

first stretch of UFES main campus ring road. The RMSE between 𝜑𝑡
𝑑 and 𝜑𝑡 in this case is 

0,73×10-2 radians, which represents an error reduction of 72% if compared with the PID error 

(This result corresponds to the period between 23 and 32 seconds of the video mentioned 

above). The main cause of the errors of both controllers is the steering plant delay, as can be 

seen in Fig. 20 and Fig. 21. A visual comparison of these figures clearly shows, however, that 

N-MPC can drastically reduce the impact of the plant delay, as indicated by black arrows in 

the graphs. A visual comparison of Fig. 20 and Fig. 21 clearly shows, that N-MPC can drasti-

cally reduce the impact of the plant delay, as indicated by black arrows in the graphs. In this 

experiment N-MPC approach achieved a RMSE reduction compared with PID of 72,1%. 
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Fig. 21 – Results of the performance evaluation of the N-MPC Steering Controller while driving the IARA’s 

Steering Plant along the first stretch of the UFES main campus ring road. The green curve denotes 𝜑𝑡
𝑑 and the 

red curve denotes 𝜑𝑡. 

Fig. 22 shows the results of the performance evaluation of the PID Steering Controller 

while driving IARA’s Steering Plant along the second stretch of UFES main campus ring road 

(Fig. 11(c)). As in the previous graphs, in the graph of Fig. 22 the green curve denotes 𝜑𝑡
𝑑 and 

the red curve denotes 𝜑𝑡. The RMSE between 𝜑𝑡
𝑑 and 𝜑𝑡 in this graph is 2.66×10-2 radians 

(This result corresponds to the period between 43 and 1:01 in the video). 

 

Fig. 22 – Results of the performance evaluation of the PID Steering Controller while driving IARA’s Steering 

Plant along the second stretch of the UFES main campus ring road. The green curve denotes 𝜑𝑡
𝑑 and the red 

curve denotes 𝜑𝑡. 

Fig. 23 shows the results of the performance evaluation of the N-MPC Steering Controller 

while driving IARA’s Steering Plant along the second stretch of the UFES main campus ring 
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road (Fig. 11(c)). The RMSE between 𝜑𝑡
𝑑 and 𝜑𝑡 is 0.9×10-2 radians, which is 66% below the 

errors of the PID Steering Controller in the same stretch of road (This result corresponds to 

the period between 1:20 and 1:38 seconds of the video). Again, the main cause of the errors of 

both controllers is plant delay, but N-MPC is much less impacted by it. A visual comparison 

of Fig. 22 and Fig. 23 clearly shows, that N-MPC can drastically reduce the impact of the 

plant delay, as indicated by black arrows in the graphs. In this experiment N-MPC approach 

achieved a RMSE reduction compared with PID of 66,2%. 

 

 

Fig. 23 – Results of the performance evaluation of the N-MPC Steering Controller while driving IARA’s 

Steering Plant along the second stretch of the UFES main campus ring road. The green curve denotes 𝜑𝑡
𝑑 and the 

red curve denotes 𝜑𝑡. 

7.3 Discussion 

The results presented in Section 7.1.1, shows a reduction of more than 24% in PID’s 

RMSE comparing Ziegler Nichols parameters with manual parameters. Comparing Ziegler 

Nichols tuning method with manually tuning, there is also a huge reduction in working hours. 

All these efforts on PID tuning demonstrate we did our best to achieve the better PID configu-

ration we could, and demonstrates a fair comparison between PID and the proposed N-MPC. 

Based on the results shown in Chapter 7 (see Section 7.2), the proposed IARA’s N-MPC 

Steering Controller can drastically reduce the error between the desired and measured steering 
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angle – the error reduction was in the range of 57% to 72%, if compared with that of the 

IARA’s PID Steering Controller.  

The main cause of the errors of both controllers is the IARA’s Steering Plant delay, 

which is caused by the drive by wire system comprised of the programmable logic controller, 

electric steering motor and motor driver installed by the Torc company. A visual comparison 

of the graphs presented in Section 7.2 clearly shows that N-MPC can drastically reduce the 

impact of the plant delay, as indicated by black arrows in the graphs. This was made possible 

by the Neural-Based Steering Plant Model (N-SPM), which is able to precisely simulate the 

steering plant. This allows N-MPC to anticipate the steering effort commands that need to be 

sent to the steering plant to reduce the controller errors. 
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8 CONCLUSIONS AND FUTURE WORK 

This chapter presents the conclusions and future work. In Section 8.1, we preset the con-

clusions based on the experimental results of this research work. In Section 8.2, we present a 

critical analysis of this research work with direction for future work. 

8.1 Conclusions  

We proposed a Neural-Based Model Predictive Control (N-MPC) approach to tackle de-

lays in the steering plant of the Intelligent and Autonomous Robotic Automobile (IARA). The 

previous PID steering control subsystem of IARA works well for speeds of up to 25 km/h. 

However, above this speed, IARA’s Steering Plant delays are too high to allow proper opera-

tion with a PID control approach. 

To tackle IARA’s Steering Plant delays, we presented here the N-MPC approach. Due to 

the complexity of the dynamics of the IARA’s Steering Plant response to stimuli, we tried and 

modeled it using a neural network and employed this neural model in the N-MPC approach. 

Experimental results showed that the N-MPC approach outperformed the PID control ap-

proach by reducing the impact of IARA’s Steering Plant delays and allowing the autonomous 

operation of IARA at speeds of up to 37 km/h – an increase of 48% in maximum stable speed. 

8.2 Future Work 

Similar to the PID steering control subsystem, the IARA’s PID velocity control subsys-

tem does not work well for speeds higher than 25 km/h. Again, the reason is that delays of 

IARA’s Velocity Plant are too high to allow proper operation with a PID control approach. 

Fig. 24 shows experimental results that allow estimating IARA’s Velocity Plant delay, ap-

proximately 2 seconds, in the form of its response time. A possible direction for future work 

is the use of the N-MPC approach for implementing the IARA’s velocity control subsystem. 
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Fig. 24 – IARA’s Velocity Plant response time. 

IARA has a three-level control pipeline composed of the motion planning subsystem, the 

obstacle avoidance subsystem and the control subsystem. An alternative on how to design 

IARA’s control pipeline would be the full integration of the motion planning, obstacle avoid-

ance and control subsystems. The integrated control subsystem would produce directly the 

steering and throttle efforts, which could reduce the subsystem complexity and response time. 

Another direction for future research is the integration of IARA’s motion planning subsystem 

with IARA’s N-MPC steering control subsystem. 

For the results shown in this work, N-SPM (employed by the IARA’s N-MPC Steering 

Controller) was trained with data acquired while using IARA’s PID Controller. This might 

have caused some noise in the IARA’s Steering Plant model. Another direction for further 

research is to retrain the N-SPM with data acquired by N-MPC to try and improve its perfor-

mance further. (For the results shown in this work, N-SPM was trained with data acquired 

while using IARA’s PID steering control subsystem). 
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