

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

VINÍCIUS BRITO CARDOSO

A Model-Predictive Motion Planner for the

IARA Autonomous Car

Vitória, ES

2017

VINÍCIUS BRITO CARDOSO

A Model-Predictive Motion Planner for the

IARA Autonomous Car

Thesis submitted to the Programa de Pós-

Graduação em Informática of Centro Tecnológico

of Universidade Federal do Espírito Santo, in partial

fulfillment of the requirements for the degree of

Master of Science in Computer Science.

Advisor: Prof. Dr. Alberto Ferreira De Souza

Co-advisor: Profª. Drª. Claudine Badue

Vitória, ES

2017

Dados Internacionais de Catalogação-na-publicação (CIP)
(Biblioteca Setorial Tecnológica,

Universidade Federal do Espírito Santo, ES, Brasil)
Sandra Mara Borges Campos – CRB-6 ES-000593/O

 Cardoso, Vinícius Brito, 1992-
C268m A model-predictive motion planner for the IARA autonomous

car / Vinícius Brito Cardoso. – 2017.
 72 f. : il.

 Orientador: Alberto Ferreira De Souza.
 Coorientador: Claudine Badue.
 Dissertação (Mestrado em Informática) – Universidade

Federal do Espírito Santo, Centro Tecnológico.

 1. Veículos autônomos. 2. Robótica. 3. Controle preditivo.

4. Navegação de robôs móveis. 5. Movimento – Planejamento.
6. Planejamento de trajetória. I. Souza, Alberto Ferreira de. II.
Badue, Claudine. III. Universidade Federal do Espírito Santo.
Centro Tecnológico. IV. Título.

 CDU: 004

ACKNOWLEDGEMENTS

First of all, I would like to thank God for the blessing of life, and for giving me strength

in all moments.

Secondly, I would like to thank my parents, Egídio and Jirlene, for always giving me the

unconditional support that was so important during this journey, for their life example that

guided me till here, and for all the love that I will always try to reciprocate. My brothers for

all of their support. My wonderful wife Jessica, for her patience and support throughout this

time, and for understanding the moments when I was not able to be by her side. To my

grandparents, uncles, and aunts, thank you!.

I would like to thank my advisor Prof. Dr. Alberto Ferreira de Souza and my co-advisor

Profª. Drª. Claudine Badue for the friendship, patience, guidance, teachings, suggestions and

orientation in my academic trajectory as well as in the elaboration of this work. Also I would

like to thank Prof. Dr. Thiago Oliveira dos Santos, for reviews and knowledge during this

time. Additionally, for all of their support for the LCAD to achieve its goals.

I would like to thank my colleagues and friends of LCAD that I made during this

journey, and were very important for my personal and professional development.

I would like to thank my friends from home in Bahia, who, even from a distance,

supported me and helped me conclude this stage and climb one more step on this ladder.

I would like to thank the Conselho Nacional de Desenvolvimento Científico e

Tecnológico (CNPq) for the scholarship.

I thank everyone who directly or indirectly contributed to the completion of my Master's

degree.

Thank you very much!

“Apply thine heart unto instruction, and thine

ears to the words of knowledge.”

Proverbs: 23:12

RESUMO

Neste trabalho, apresentamos o Model-Predictive Motion Planner (MPMP) da Intelligent

Autonomous Robotic Automobile (IARA). IARA é um carro totalmente autônomo que usa

um planejador de caminho para computar um caminho da sua posição atual até um destino

desejado. Usando esse caminho, sua posição atual, um destino e um mapa, o MPMP pode

computar trajetórias suaves da sua posição atual até o destino em menos de 50 ms. MPMP

computa as poses dessas trajetórias de forma que elas sigam o caminho desejado e, ao mesmo

tempo, estejam a uma distância segura de eventuais obstáculos. Nossos experimentos

mostraram que o MPMP é capaz de computar trajetórias que seguem precisamente o caminho

produzido por um motorista humano (com distância de 0.15 m em média) enquanto dirige

suavemente a IARA a velocidades de até 32.4 km/h (9 m/s).

ABSTRACT

In this work, we present the Model-Predictive Motion Planner (MPMP) of the Intelligent

Autonomous Robotic Automobile (IARA). IARA is a fully autonomous car that uses a path

planner to compute a path from its current position to the desired destination. Using this path,

the current position, a goal in the path and a map, IARA’s MPMP is able to compute smooth

trajectories from its current position to the goal in less than 50 ms. MPMP computes the poses

of these trajectories so that they follow the path closely and, at the same time, are at a safe

distance from occasional obstacles. Our experiments have shown that MPMP is able to

compute trajectories that follow precisely a path produced by a human driver (distance of

0.15 m in average) while smoothly driving IARA at speeds of up to 32.4 km/h (9 m/s).

LIST OF FIGURES

Figure 1: Intelligent Autonomous Robotic Automobile (IARA). A video of IARA’s

autonomous operation is available at https://goo.gl/RT1EBt. A description about the project is

available at http://www.lcad.inf.ufes.br/wiki/index.php/IARA. .. 17

Figure 2: (a) UFES beltway. (b) Satellite route from UFES in Vitoria to Guarapari. 20

Figure 3: Autonomous cars projects. (a) Google Self-driving car. (b) CADU [DIA12]. (c)

Driving4U [HON10]. (d) CaRINA (http://lrm.icmc.usp.br/). .. 23

Figure 4: State lattice representations. (a) In an unstructured environment. (b) In a structured

environment such as on-road environments [MCN11]. ... 24

Figure 5: Illustration of RRT trees and trajectory evaluation [KUW09] 25

Figure 6: Illustration of a optimization based trajectory (x(t)) considering moving obstacles by

[ZIE14]. .. 25

Figure 7: Illustration of the trajectory generation process by [FER08]. (a) First a trajectory (in

blue) is interpolated from the precomputed trajectories (in red). (b) After that, using the blue

trajectory as seed, a new trajectory (in green) is optimized to reach the goal. 26

Figure 8: Kinematic model of a car-like vehicle. ... 28

Figure 9: Occupancy grid map cell representation from a measuring range [THR05]. 30

Figure 10: Occupancy grid map with 210x210m and 0.2m of resolution. In this visualization,

the blue area is the unknown cells, the occupied cells are in black, and the free cells in white.

The blue rectangle is the robot (IARA). ... 31

Figure 11: Lane map visualization estimated from centerline given by the RDDF path. The

lane is shown in white. The blue rectangle represents the robot (IARA) and the red rectangle

represents the end-pose. .. 35

Figure 12: Block diagram of the IARA main navigation modules. ... 37

Figure 13: IARA’s map, lane and motion plan. IARA is the blue rectangle, while the goal is

the yellow rectangle. The lane (𝐿) is shown in white and the trajectory (𝑇) in green. The

image is in the cells map low resolution... 38

Figure 14: 3D representation in better resolution of IARA, map, goal and motion plan. The

trajectory 𝑇 is shown in green and the goal is at the end of the trajectory. 39

Figure 15: Cubic spline, defined by 𝜑o, and k1, k2 and k3, that specifies the evolution of the

steering angle during tt , for tt = 3.96 s. The knot point k1 is defined at t = tt/4 , k2 at

t = tt/2 and k3 at t = tt. ... 40

Figure 16: Variables associated with ∆𝜆, ∆𝜃 and ∆𝜙, which together, measure the distance

from the end of the 𝑇, 𝐩𝐯𝒇, to the desired goal, 𝐩𝐯𝒈. ... 42

Figure 17: Illustration of the collision detection area where 𝐱𝑘 is the center of the circle and

the pose displaced from each 𝐱𝑖 ∈ 𝑇 ; and 𝑑𝑚𝑖𝑛 represent the circles radius, that is, the

smallest allowed distance between the car and an obstacle.. 43

Figure 18: Variables associated with 𝐷𝐿, which summarizes the distances between each point

in 𝐿 and its nearest point in 𝑇. .. 44

Figure 19: Elements of a 𝐭𝐝 (λg, ϕg, θg, vo and φo), which are derived from 𝐱o and 𝐩𝐯g ... 46

Figure 20: Interface to operate IARA’s system. ... 51

Figure 21: IARA's sensors .. 52

Figure 22: Computers resources. .. 52

Figure 23: Block diagram of all IARA’s software modules. .. 54

Figure 24: Illustration of the Publish-Subscribe inter-process model used in CARMEN with

IPC [HOH03]. ... 55

Figure 25: Pictures of the university testing environment. The images 1 to 5 show some of the

relevant parts of the course. .. 56

Figure 26: Absolute distance between MPMP poses and Human poses. 58

Figure 27: MPMP velocities (red) and Human velocities (blue).. 59

Figure 28: Poses of the two paths throughout the UFES beltway. ... 60

Figure 29: Region highlighted in the inset of the Figure 28. .. 60

Figure 30: Headings (orientation 𝜃) of the two paths throughout the UFES beltway. 61

Figure 31: MPMP trajectories (in green/red) avoiding obstacles blocking the road. 62

Figure 32: MPMP trajectories (in green/red) avoiding obstacle on the side of the road. 63

LIST OF TABLES

Table I: 𝒈(.) AND 𝒉(.) PARAMETERS AND BOUNDS ... 48

LIST OF ABBREVIATIONS AND ACRONYMS

CARMEN Carnegie Mellon Robot Navigation Toolkit

DARPA Defense Advanced Research Projects Agency

EKF Extended Kalman Filter

IARA Intelligent Autonomous Robotic Automobile

IPC Inter Process Communication

LCAD Laboratório de Computação de Alto Desempenho (High Performance

Computing Laboratory)

LiDAR Light Detection and Ranging

MCL Monte Carlo Localization

MPMP Model-Predictive Motion Planner

RDDF Route Data Definition File

SAE Society of Automotive Engineers

SLAM Simultaneous Localization And Mapping

TCP Trajectory Control Parameters

TLT Trajectory Look-up Table

UFES Universidade Federal do Espírito Santo (Federal University of Espírito

Santo)

CONTENTS

1 INTRODUCTION .. 15

1.1 Problem .. 18

1.2 Motivation .. 19

1.3 Objective .. 21

1.4 Contributions ... 21

1.5 Organization ... 21

2 RELATED WORKS .. 23

3 THEORETICAL BACKGROUND .. 27

3.1 Motion Planning .. 27

3.2 Mapping ... 29

3.3 Robot Localization ... 32

3.4 Path Planning ... 34

3.5 Model-Predictive Planner .. 35

4 IARA’S MODEL-PREDICTIVE MOTION PLANNER ... 37

4.1 System Overview ... 37

4.2 Hardware Platform Model ... 40

4.3 Minimization Problem ... 41

4.4 IARA’S Model-Predictive Planner Algorithm .. 45

4.5 Trajectory Look-up Table – TLT ... 46

5 EXPERIMENTAL METHODOLOGY ... 51

5.1 IARA’s Hardware .. 51

5.2 IARA’s Software ... 53

5.2.1 CARMEN Toolkit .. 54

5.3 Test Environment ... 56

5.4 Test Methodology .. 57

5.5 Metrics ... 57

6 EXPERIMENTAL RESULTS .. 58

6.1 Discussion .. 63

7 CONCLUSIONS AND FUTURE WORK .. 65

7.1 Conclusions .. 65

7.2 Future Work ... 65

8 PUBLICATIONS .. 67

9 REFERENCES ... 68

15

1 INTRODUCTION

Autonomous car technology has made great progress in recent years. The search for

improvements in traffic safety, urban mobility and sustainable alternatives are some of the

goals of this technology. In regards to traffic safety, according to the World Health

Organization (WHO), 1.25 million people die each year in traffic accidents, mostly caused by

human failure [WHO15]. Initiatives around the world seek to reduce this statistic. The

autonomous car sensing and control technology can save thousands of lives and prevent

humans from exposing themselves to dangerous activities [BUE09]. In regards to urban

mobility, autonomous cars drive more precisely and need less space between them, which can

optimize the traffic flow. In addition, autonomous cars can enable people who can't or don't

want to drive to safely ride without needing a driver. In regards to sustainable alternatives,

autonomous car control is more stable, which can reduce fuel consumption, gases emission

and less wear of parts.

The research on autonomous vehicles has been happening for many years, with the first

cars considered autonomous developed in 1977 [SHA13]. But the challenges of the Defense

Advanced Research Projects Agency (DARPA) have become known as the accelerator of

autonomous car development. The first challenges in 2004 and 2005, called the "Grand

Challenge", aimed at the development of autonomous vehicles capable of traveling along a

desert route, through dirt roads and rocky terrain. In the first year, none of the 15 finalists

completed the challenge; in the second year, five of the 23 finalists completed the challenge,

with the Stanford Race Team with the vehicle Stanley winning the challenge [BUE07]. In

2007, a new challenge was proposed, the "Urban Challenge". In this challenge, the cars

should travel through a route of 96 km in urban ways, dealing with moving traffic and traffic

rules, negotiating busy intersection and avoiding obstacles. Six of the eleven participants

completed the challenge and the winning team was the Tartan Race Team, developed by the

Carnegie Mellon University [BUE09].

From there on, there was an increase of interest by the industry as well as a rise of new

researchers and companies interested in autonomous vehicles. In order to simplify

16

communication and collaboration, the Society of Automotive Engineers (SAE) International

[SAE14] divided On-Road Motor Vehicle Automated Driving Systems into six levels:

 Level 0 - No automation. All steering, acceleration and braking commands are made

by a human driver, as well as the monitoring of the environment.

 Level 1 - Driver assistance system. In this level, the system is capable of partially

assisting the braking or acceleration of the vehicle, but without monitoring the

environment.

 Level 2 - Partial automation. In this level, the execution of steering, acceleration and

braking can be executed by the system, but it still depends on the human driver to

monitor the environment and take control.

 Level 3 - Conditional automation. In a specific scenario, both the execution of

steering, acceleration or deceleration, as well as monitoring of the environment, can be

made by the assistance system. However, the human driver must be alert and intervene

or take control in situations not contemplated by the assistance system.

 Level 4 - High Automation. In a specific scenario, the system is able to drive the car

and also handle the situation when the human driver does not respond appropriately to

the intervention request.

 Level 5 - Full automation. The system is responsible for all aspects of driving in all

scenarios, requiring no intervention from a human driver.

Many applications of autonomous cars seeking level 5 of autonomy are not for sale yet,

but are already being tested by companies, such as Google
1
, Mercedes

2
 [ZIE14], Uber

3
,

Volvo
4
, among others. But, cars near the level 3 of autonomy are already available for sale,

1
 www.google.com/selfdrivingcar/

2
 www.mercedes-benz.com/en/mercedes-benz/innovation/autonomous-driving/

3
 www.uber.com/cities/pittsburgh/self-driving-ubers/

4
 www.volvocars.com/intl/about/our-innovation-brands/intellisafe/autonomous-driving

17

made by companies like TESLA
5
, since 2015. Besides companies, university projects have

also brought advances on autonomous car research, such as NavLab
6
, VisLab

7
 and RobotCar

8
.

Among Brazilian initiatives, we can cite the following projects: CADU [DIA12] at UFMG,

Driving4U [HON10] at UNIFEI and UFJF, CaRINA [FER14] at USP and IARA [MUT16] at

UFES.

The Laboratório de Computação de Alto Desempenho (LCAD) has developed a fully

autonomous car, named Intelligent Autonomous Robotic Automobile (IARA), which is in

level 4 of autonomy. Figure 1 shows IARA. We have used a Ford Escape Hybrid as hardware

platform, and designed and built a full set of software modules that allow its autonomous

operation in urban traffic, such as the mapper [MUT16], localizer [VER15] [VER16], path

planner, high level decision maker, motion planner [CAR17], obstacle avoider [GUI16],

controller [GUI17], traffic-light state detection, among others.

Figure 1: Intelligent Autonomous Robotic Automobile (IARA). A video of IARA’s autonomous operation is

available at https://goo.gl/RT1EBt. A description about the project is available at

http://www.lcad.inf.ufes.br/wiki/index.php/IARA.

5
 www.tesla.com/autopilot

6
 www.cs.cmu.edu/afs/cs/project/alv/www/index.htm

7
 www.vislab.it

8
 www.robotcar.org.uk

https://goo.gl/RT1EBt

18

For the navigation task, the main IARA’s modules are the mapper, localizer, path

planner, high level decision maker and motion planner. The mapper [MUT16] is responsible

for building a map of the environment around IARA. The localizer [VER15] [VER16] is

responsible for estimating IARA’s state in relation to the origin of the map. The path planner

is responsible for building a path from the initial pose to the end-pose, which obeys

restrictions imposed by the road limits and IARA’s previously defined maximum operating

parameters, such as maximum speed, acceleration, rate of driving wheel turn, etc. The path is

composed of poses and associated velocities. The high level decision maker is responsible for

establishing a lane and a goal state in it, considering traffic rules and traffic behavior. Finally,

the motion planner is responsible for planning a trajectory from the current IARA’s state to

the goal state, while following the lane and avoiding eventual obstacles. The trajectory is

composed of velocity and steering wheel angle commands and associated execution times.

1.1 Problem

In this work, we present IARA’s model-predictive motion planner, which receives a map,

a lane and a goal state at a rate of 20 Hz, and computes a trajectory from the current IARA’s

state to a pose and velocity of the lane as close as possible to the goal state, while following

the lane and avoiding occasional obstacles.

IARA’s model predictive motion planner uses a parameterized model of the behavior of

the hardware platform (Figure 8) that, given an initial pose, the goal state, and a set of

trajectory control parameters, computes the trajectory. In order to obtain a trajectory, we have

to find the right trajectory control parameters. For that, using the conjugate gradient

optimization algorithm, we gradually change an initial seed of the trajectory control

parameters taken from a pre-computed table indexed by indexes derived from the initial pose

and goal state, so that : (i) the final pose and velocity reached is close enough to the goal state

according to some optimization criteria; (ii) the poses in the trajectory are as close as possible

to the poses in the lane; and (iii) the poses in the trajectory are as far as possible of occasional

obstacles in the given map.

19

We have evaluated IARA’s model-predictive motion planner (MPMP) experimentally by

comparing it with a path followed by a Human driver (i.e., by comparing the distance between

MPMP poses and Human poses and the distance between MPMP velocities and Human

velocities). Experimental results show that MPMP performance compares well with Human

performance – its path is smooth and very close to the Human path (average distance of 0.15,

𝜎= 0.14) and its speeds are more stable than that of the Human driver. Currently, MPMP can

safely navigate IARA in urban environments with speeds of up to 32.4 km/h (9 m/s).

1.2 Motivation

This work is part of the IARA’s project, which aims to develop a fully autonomous car.

This project has been led by the Laboratório de Computação de Alto Desempenho (LCAD) in

the Universidade Federal do Espiríto Santo (UFES). The laboratory long-term objective is to

understand how the human brain works. Through the autonomous car project, we are able to

study a dynamic real-world interaction, which requires many brain functions from drivers.

Within this main objective, the motivation for this work is to extend the state of the art in the

area of motion planning by investigating a new strategy of generating smooth trajectories

based on splines of the steering wheel angle.

To evaluate IARA’s performance, two challenges were established: the first one is to

drive autonomously along the UFES beltway (Figure 2(a)), and the second one is to travel

autonomously from UFES in Vitória to Guarapari (Figure 2(b)). The first course is a 3.7

kilometers ring-road that encircles the UFES main campus with urban traffic environment,

however, with different road pavements and fewer traffic rules than inner city urban roads.

The second course is a 74 kilometers route that crosses three cities. This route has more

intense traffic and includes drive through urban environment, highway and dirt road, which

require smooth trajectories that can be executed in high speed.

In order to complete these challenges, IARA has to be able to create a map of the

environment around it, localize itself in relation to the map and navigate safely, considering

traffic rules and obstacles. In navigation, it is necessary to keep a safe and smooth trajectory,

20

achieve higher velocities and operate in real time. Unlike discrete techniques, such as RRT

[RAD14], that generate uneven paths [KAT15], the model-predictive planning technique

parameterizes the control using a polynomial curve to keep the movement transitions smooth

and the optimization process efficient.

In this work, we develop a Model-Predictive Motion Planner (MPMP) for the IARA

autonomous car. We evaluate the MPMP performance by comparing its path with that

followed by a Human driver. Experimental results show that MPMP is able of planning

smooth trajectories that follow a reference path while avoiding eventual obstacles, achieving

speeds of up to 32 km/h and operating at a high frequency of 20 Hz.

(a) (b)

Figure 2: (a) UFES beltway. (b) Satellite route from UFES in Vitoria to Guarapari.

21

1.3 Objective

 The objective of this work is to develop a motion planner for the IARA autonomous car,

which is able to generate smooth trajectories that follow the road and avoid obstacles, reach

velocities higher than 30km/h and operate in real-time.

1.4 Contributions

The main contribution of this work is a motion planner for the IARA autonomous car,

which is able to generate smooth and safe trajectories, reach higher velocities and operate in

real-time. Our experimental results show that the motion planner presented in this work is

able to:

 Compute smooth paths very close to the Human path;

 Generate velocities more stable than that of the Human driver;

 Plan trajectories that obey restrictions imposed by obstacles in the road and

IARA’s performance limits;

 Achieve speeds of up to 32km/h; and

 Operate at a high frequency of 20 Hz.

1.5 Organization

This dissertation is divided as follows:

 Chapter 2 presents a review of related works.

 Chapter 3 introduces the theoretical background of this work.

22

 Chapter 4 details the Model-Predictive Motion Planner algorithm, the focus of this

work.

 Chapter 5 explains the hardware and software platforms, test environment, test

methodology and metrics used in the experiments.

 Chapter 6 describes the experiments carried out to evaluate the MPMP and discusses

the results obtained.

 Chapter 7 presents conclusions and directions for future work.

23

2 RELATED WORKS

In this chapter, we present a review of related works. Among the autonomous car

initiatives, the most popular one is the Google Self-driving car, currently developed by

Waymo [WAY17], with a fleet that already traveled more than three million miles in

autonomous mode. In Brazil the initiatives are being developed since 2009 and are advancing

the research area. All these following projects adapted cars with actuators and sensors to

allow the autonomous navigation, and tested them in open areas. In the project CADU

[DIA12], a Chevrolet Astra navigates using a composition of vector field and dynamic

window approaches [DEL13]. In the project Driving4U [HON10], a Chevrolet Zafira

navigates using a fuzzy maneuver control approach [HON10]. In the CaRINA project

[FER14], a Fiat Palio Adventure navigates based on the state lattice approach [MAG13].

(a)

(b)

(c)

 (d)

Figure 3: Autonomous cars projects. (a) Google Self-driving car. (b) CADU [DIA12]. (c) Driving4U [HON10].

(d) CaRINA (http://lrm.icmc.usp.br/).

24

 There are several methods in the literature that address the on-road motion planning

problem for autonomous cars. We refer to the problem of motion planning that aims at

planning a trajectory – list of commands of velocity and steering angle along with respective

execution times – considering kinematic and dynamic constraints of the autonomous car,

which contrast to the problem of path planning, that aims at planning a path – list of

waypoints – considering only kinematic constraints. We also refer to the problem of on-road

motion planning that aims at planning a trajectory that follows a desired lane, which differs

from the problem of unstructured motion planning in which there are no lanes and, thus, the

trajectory is far less constrained.

Among the works on on-road motion planning that were evaluated experimentally using

real-world autonomous car, on-road motion planning methods employ mainly state lattice,

rapidly-exploring random tree (RRT), interpolation, optimization, and model predictive

techniques [BAU15].

In methods based on state lattice [MCN11] [XU12] [MAG13], trajectories between

initial and desired goal states are searched for in a state lattice that is adapted for on road

motion planning, such that only states that are a priori likely to be in the solution are

represented (Figure 4). Possible trajectories are evaluated by a cost function that considers the

car’s dynamic, environmental and behavioral constraints, among others. The major

disadvantage of these methods is that they are computationally costly due to the evaluation of

every possible solution in the graph.

(a) (b)

Figure 4: State lattice representations. (a) In an unstructured environment. (b) In a structured environment such

as on-road environments [MCN11].

In methods based on RRT [KUW09] [RAD14], a search tree is built incrementally from

the car’s initial state using random states. For each random state, a control command is

25

applied to the nearest state of the tree for creating a new state as close as possible to the

random state. A trajectory is found when a state reaches the goal state. Candidate trajectories

are evaluated according to various criteria (Figure 5). The main weakness of these methods is

that solutions are not continuous and, therefore, jerky.

Figure 5: Illustration of RRT trees and trajectory evaluation [KUW09]

In methods based on optimization [KOG06] [ZIE14], trajectories are computed using an

optimization process, which is run over trajectory parameters and aims at minimizing an

objective function that considers trajectory constraints, such as position, velocity,

acceleration, and jerk (Figure 6). The shortcoming of these methods is that they are time

consuming since the optimization process takes place at each motion state.

Figure 6: Illustration of a optimization based trajectory (x(t)) considering moving obstacles by [ZIE14].

In model predictive methods [FER08], a model predictive trajectory generation algorithm

is used to compute trajectories that satisfy desired goal state constraints. Trajectories are

computed via an optimization procedure that is run over control parameters. The constraint

26

equation is defined as the difference between the goal state constraints and the integral of the

car’s model dynamics. The constrained trajectory generation algorithm determines the control

parameters that minimize the constraint equation. An approximate mapping from the state

space to the parameter space is precomputed offline, in order to seed the constrained

optimization process. Resulting trajectories are evaluated using several criteria (Figure 7).

(a) (b)

Figure 7: Illustration of the trajectory generation process by [FER08]. (a) First a trajectory (in blue) is interpolat-

ed from the precomputed trajectories (in red). (b) After that, using the blue trajectory as seed, a new trajectory

(in green) is optimized to reach the goal.

Amidst previous works cited above, the most similar to ours is the motion planner

proposed by Ferguson et al. [FER08]. However, our work differs from that of Ferguson et al.

in three main aspects. First, our planner is able to compute more complex trajectories, since it

uses a steering angle spline with one extra knot point (four in total) to parameterize the car

control, while that of Ferguson et al. uses a three knot curvature spline. Second, our planner

can generate trajectories that are optimized for curvy roads with obstacles, since its cost

function considers the desired road as well as obstacles, while that of Ferguson et al.

generates several alternative trajectories and select a collision-free one. Third, we present the

algorithm that we use for computing the table of the trajectory control parameters (𝐭𝐜𝐩) seeds.

27

3 THEORETICAL BACKGROUND

In this chapter, we present the theoretical background related to this work. In Section 3.1,

we present definitions of the general motion planning problem. In Section 3.2, we describe the

mapping problem, and the representation used for localization and the motion planner. In

Section 3.3, we describe the robot localization problem and the method used for this work. In

Section 3.4, we describe the path planning problem, and how our reference path is built. In

Section 3.5, we describe the general Model-Predictive Planner approach for trajectory

generation.

3.1 Motion Planning

A motion planner has to be able to automatically compile the information of a high-level

language task, into a set of low-level motion primitives, or feedback controllers. The task

normally is to find a collision-free motion for the robot, from one configuration to another

[CHO05]. The configuration of the robot or state is its position, orientation and velocities in

the environment at an instance of time. A set of all possible states that the robot can be in is

called a state space [HOW09]. Here the state is represented as the set 𝐱 = (𝑥, 𝑦, 𝜃, 𝑣, 𝜑, 𝑡),

where 𝑥, 𝑦 are the 2-Dimension position; 𝜃 the orientation, 𝑣 the speed, 𝜑 the steering wheel

angle, and 𝑡 the time. The initial state is represented by 𝐱𝒐 and 𝐱𝒈 represents the goal state.

To move from one state to another, the robot constraints have to be considered.

Nonholonomic robots, as a car-like, are subjected to velocity constraints, and all degrees of

freedom aren’t controllable (e.g. a car cannot translate sideways). If no constraints are applied

the robot is called holonomic [HOW09] [CHO05]. So, to estimate the new position of a robot

from one state to another we need a model that considers these constraints. The model of the

robot can be represented by kinematic equations, with velocity as control, or using dynamic

equations of motion, with forces as controls [CHO05]. In a car-like, the Ackerman geometry

model is commonly applied. With this model, it is possible to estimate the new position of a

robot from one state to another, with some precision in low speeds. The Figure 8 shows a

28

modified model representation, also known as bicycle model, where the steering angle 𝜑 is

approximated by the average between the two front wheels; 𝑥 and 𝑦 are the position of the

vehicle located in the middle of the rear wheels; 𝜃 his orientation; and 𝑙 is the wheelbase

[CHO05][KAT15].

Figure 8: Kinematic model of a car-like vehicle.

The kinematic model of motion is given by the equations:

𝑥𝑡+1 = 𝑥𝑡 + ∆𝑡 𝑣𝑡 𝑐𝑜𝑠 𝜃𝑡 ,
(1)

𝑦𝑡+1 = 𝑦𝑡 + ∆𝑡 𝑣𝑡 𝑠𝑖𝑛 𝜃𝑡 ,
(2)

𝜃𝑡+1 = 𝜃𝑡 + ∆𝑡
𝑡𝑎𝑛𝜑𝑡

𝑙

(3)

Considering the robot constraints, to move the robot, we need to command an action,

such as acceleration, steering angle or wheels torques. Common types of actions are controls

and controllers. The first uses the action as a function of time, and the second determines

inputs as a function of state and time. Controls and controllers can be parameterized to

approximate the continuous constraints by a finite number of constraints. For example,

parameters could be represented by spline curves or clothoid curves [HOW09] [CHO05]. In

this work, the control 𝒖 is defined by the command of velocity and steering angle during a

specific time variation, the time and steering angle control are parameterized as a spline. As

shown below.

𝒖 = [𝑣, 𝜑, 𝑡] (4)

29

𝜑 = 𝑠𝑝𝑙𝑖𝑛𝑒(∆𝑡) (5)

The motion planner can also be addressed as trajectory planning problem [CHO05]. The

set of associated states and times that defines the robot movement from initial state (𝐱𝑜) to

goal state (𝐱𝑔) is a trajectory (𝑇) . The trajectory generated has to satisfy the vehicle’s

kinematic constraints, consider the road boundaries, and also, at the same time, avoid collision

with obstacles. In order to achieve that, good representations of the environment, such as a

map, are required. The map, or maps, can be used for localization, obstacle detection, or road

boundaries detection, as well as to provide the information about traffic rules. Thus, the

decision making process can choose a goal considering traffic rules and eventual obstacles

and ask to the motion planner to generate a trajectory to this goal, considering the current

localization and obstacles in the map. In case of failure of the trajectory generation, or

localization problems, an obstacle avoider module takes control and stops the car.

3.2 Mapping

To properly localize and navigate, the robot needs a representation of the environment

where it is. This representation is acquired by sensing and extracting the main features

structures of the environment and processing it building a map [ROM14].

According to Thrun et al. [THR05], the main problems to acquire maps with robot

mapping is: (i) the dimensionality, in which the more complex the representation, more

processing, and storage will be required; (ii) the problem of simultaneous localization and

mapping (SLAM), where the localization is necessary to build a map, and a map is necessary

to localize the robot, thus the robot has to do both, estimate a map and localize itself in

relation to this map; Beyond those, it is possible to cite other problems, such as: size of the

environment in relation to the range of the sensors, noise in perception and actuation, and

cycles in the environment which increase odometry errors.

The common map representations are feature-based and location-based. In feature-based,

the map stores point landmarks, it is common to identify lines, corners, hallways, and

30

intersection. The location-based stores the proprieties of locations of the world, for example,

if a region is free, or if there is an obstacle in that location, one example is the occupancy grid

map [THR05].

The Occupancy grid mapping is a popular family of algorithms. This approach assumes

that the pose of the robot is known, and used to generate consistent maps from noisy and

uncertain sensor measurement data [THR05]. To reduce complexity, this map can be a 2-D

representation of the 3-D world; the map is a set of cells that describe real-world position,

building a grid. Given the robot pose and the measurement data, a probability of map is

computed, each cell stores the probability of occupation, which can be represented as a value,

for instance, when occupied the value is 1, when free the value is 0, for unknown cells the

value is 0.5. Figure 9 below shows an example of a map visualization, where the occupied

cells are in black, free cells in white and unknown cells in gray.

Figure 9: Occupancy grid map cell representation from a measuring range [THR05].

When poses of the robot are unknown, SLAM algorithms are used to estimates the robot

pose and build a map. The methods employed to solve this problem are mainly offline, given

the high computational cost, like EFK Slam and GraphSlam [MUT16], but there are also

technics for online, such as the FastSlam. In GraphSlam example, the odometry and sensor

data of the environment are logged, and offline, the poses of the robot are computed to fit the

real position of the robot, given the movement and sensors data, and matching actual and

posteriors predictions to correct the estimation. After that, a mapper (e.g. occupancy grid

mapping) use the predicted poses to build a precise map indicating where the robot was.

31

In the IARA autonomous car, the global map is an Occupancy grid-map. To build this

map, a human drives IARA through the region of interest and these data are logged. Then the

Large-Scale Environment Mapping System (LEMS) [MUT16] based on GraphSlam sends the

calculated LiDAR point clouds and their poses for the mapping subsystem that outputs an

Occupancy grid-map. This process is computed offline. In autonomous navigation mode, this

offline occupancy grid map is used to localization and is updated with the real-world data by

LiDAR sweep and the Occupancy grid-map algorithm. Figure 10 below, shows the

visualization of one part map, where each cell has 0.2 meters discretization and the total size

of the image represents 210x210 meters in a real world map. The occupied cells are in black,

free cells in white, and unknown cells in blue.

Figure 10: Occupancy grid map with 210x210m and 0.2m of resolution. In this visualization, the blue area is the

unknown cells, the occupied cells are in black, and the free cells in white. The blue rectangle is the robot

(IARA).

Besides, it is possible to use other representations that will only be used in the motion

planning task, helping in the fast collision detection, and reducing the complexity of the

32

search space, for example, Occupancy grid cost maps, state lattices, drive corridors and

Voronoi diagrams [KAT15].

3.3 Robot Localization

Localization is an important function in navigation task, responsible for estimating the

state of the robot. In dynamic environments, the robot has to be able to estimate its own pose

relative to a given map of the environment and to deal with the changes in the environment,

motion uncertainty, and sensors noise.

The localization problem can be divided in global localization, pose tracking and

kidnapped robot problem. In global localization problem, the initial pose of the robot is

unknown, normally when initially somewhere in its environment, without knowledge of

where it is; the pose tracking problem, assumes that the robot know the global pose, and

dealing with the motion noise, track the robot position over time for estimate a precise local

pose; the kidnapped robot problem evaluate the robot ability of recover from failures, by

simulating that the robot was kidnapped and testing if the robot recover its new pose without

the transition information, this is a variant of the global localization problem [THR05].

Localization methods are based on a loop of movement and perception. Each time, the

robot senses the environment, and when it moves, using a motion model and the previous

information about the environment, tries to estimate the new state [ROM14]. The perception

can be done by using for example sensors as LiDAR, cameras or radar, the movement can be

updated using the robot odometers and a motion model (Figure 8, Equations (1) to (3)).

To localize the robot, a representation of the environment is required. Normally a map

representation is used, as feature-based and location-based (e.g. occupancy grid maps)

[THR05]. With a map, mainly approaches applied in autonomous cars use probabilistic

methods, for example Extended Kalman filter (EKF) and Particle Filter (PF) [VER16]. These

localization methods are based on Bayes filter, which in each time, aims to update the belief

of the robot localization based on a probability distribution. The probability density

𝑝(𝐗𝑡|𝑧𝑡, 𝒖𝑡) translate the belief of the robot about the possible pose 𝐗𝑡 that the robot can be

33

at time t, taking into account the measurements of sensors 𝑧𝑡 and applied commands 𝒖𝑡. Due

to sensor uncertainties, the robot's belief in its measurements 𝑧𝑡 and its movement, are

represented by probabilistic models [ROM14]. In robotics localization problem, the

application of the Bayes filter is called Markov localization [THR05].

The Extended Kalman Filter algorithm applies Kalman Filter to the localization problem,

and extends it to nonlinear problems, approximating the state of the system, whose probability

density is Gaussian [THR05]. EKF predicts the new pose of the robot using the knowledge of

the previous pose and the sensor measurements, finding the parameters of mean and

covariance matrix of the estimation error. Alternating steps of prediction and correction

[THR05] [ROM14]. The EKF application typically uses feature map as can be seen in

[LYR15].

The Particle filter approach instead of representing the pose with a single hypothesis uses

many samples that represent the probability density of the robot’s current pose. In robot

localization, the particle filter applies the principle of the Monte Carlo techniques, where the

simulation of phenomena is used to estimate parameters in the model. This approach gave rise

to the Monte Carlo Localization (MCL) technique [ROM14]. In MCL, the localization of the

robot is initialized with initial particles sampled from a uniform distribution in the free area of

the map, when the robot moves and observes new areas, its belief about its location is

corrected. Each particle uses a motion model to predict the new pose after the initialization,

based on the last pose and the applied command (𝒖) with addition Gaussian noise, creating

assumptions of possible new poses. To correct the predicted pose, a weight is computed to

each particle based on the measurements of sensors (e.g. LiDAR data) compared with the map

information. The particles are drawn by importance, where the set of particles that represents

the belief, is those with high weights [THR05]. The algorithm stays in a loop between the

prediction, correction and resampling steps. In the course of time, the most likely position for

the robot to be will be where the particles concentrate.

The approach applied in IARA use a GPS data as an initial global localization, and pose

tracking based on a Particle Filter localization approach with Occupancy grid map and online

LiDAR data. After the initialization, the GPS information is no longer needed [VER16]. The

34

PF approach uses the odometry data for prediction phase, and applies map-matching with the

offline global map (Section 3.2) and the currently local map. With this technique, the MPMP

is able to receive the state of the robot at 20Hz and update the plan.

3.4 Path Planning

The path planner differs from motion planner in the addition of the time and velocities in

the model, where the problem of finding the sequence of states from initial state to a goal state

is considered only geometric [ROM14]. Thus, the task of a path planning is to generate a

geometric path, considering a simplified model of the robot constraints, from an initial state to

a desired final goal state, without taking into account the time and velocities. Commonly used

algorithms are graph searching algorithms like A* [LIK09] and Field D* [FER05]. Among

those, for on-road navigation, a path can be extracted using the information about the road

lanes [ZIE14] [FER08] or using a Route Data Definition File (RDDF) [THR06]. The

generated path is used for the motion planner as a reference to restrict the state space and

follow the traffic rules.

In this work, we use an RDDF to build a global plan. This file contains waypoints that

specify the route for IARA. This method stores a set of poses generated by a human driver

and corrected by the SLAM algorithm (LEMS [MUT16]). Therefore, a path will be processed

and will become the reference path for the motion planner. The path represents the lane

centerline. With this approach, we avoid problems with lane marking detection, for example,

in unpaved roads, poor lane marking, and noisy paths. The RDDF guarantee a path trusty and

fast to access. Figure 11 shows, as lane visualization, a stretch of RDDF post-processed

between the car and an end-goal defined by the user. For visualization purposes, the lane is an

estimation of the lane width where the RDDF path is the centerline.

35

Figure 11: Lane map visualization estimated from centerline given by the RDDF path. The lane is shown in

white. The blue rectangle represents the robot (IARA) and the red rectangle represents the end-pose.

3.5 Model-Predictive Planner

A model-predictive planner is an approach used to solve the problem of generating a set

of parameterized control commands to take a robot from an initial state to a goal state. The set

of parameterized control commands represent the actions performed by the robot along the

way. A predictive motion model maps the actions to state response. To estimate the control

parameters, an optimizer is applied, and then the best parameters that approximate the

estimated final state to goal state are computed [HOW09].

The choice of action parameterization directly impacts the efficiency of the system. It is

necessary to take into account the boundary state constraints and motion model used, to avoid

for example indeterminate solutions, minimum local and sudden control variations.

The predictive motion model provides the estimative of the change of state of the robot

given the applied actions. Therefore, higher the fidelity of this model, better the prediction

and stability of the system, but also higher the computational complexity, especially in real-

time applications such as on-road navigation.

36

The optimization process aims to estimate the best parameters that minimize the cost of

the predicted state reaches the goal state. The cost function can consider the pose, the

proximity to the reference path, and others constraints. To reduce the all possible parameters

values, normally a precomputed set of parameters seeds the optimizer initial parameters.

Model Predictive Planning (MPP) algorithm is able to generate feasible solutions to

execute, thanks to the addition of the prediction model and compensation. In this work, we

propose a Model-Predictive Motion Planner (MPMP) for the IARA autonomous car. Using

the map, the current position by a precise localization, the path from its current position to the

desired destination and a goal in the path, IARA’s MPMP is able to compute, in real time,

smooth trajectories that follow the path closely and, at the same time, are at a safe distance

from obstacles.

In this work, the representation to obstacle detection is a Distance Map. With the

Occupancy grid map and the online sensor data, the IARA’s mapping system build a Distance

Map, where each cell, instead of the probability of occupation, stores the distance to the

nearest obstacle detected in the occupancy grid map. So, it is possible to check the nearest

obstacle to the car only consulting the cell’s data of interest. With Distance Map, we are able

to perform faster collision detection, which will be considered by the optimization process of

MPMP trajectory generation. This map is updated at 20Hz. In that way, when we specify a

map, we refer to the Distance Map.

37

4 IARA’S MODEL-PREDICTIVE MOTION PLANNER

In this chapter, we present the proposed system. In Section 4.1, we describe an overview

of the system. In Section 4.2, we describe the parameterization of the hardware platform

model. In Section 4.3, we describe the minimization problem of the optimization process,

detailing the process of obtaining the costs function. In Section 4.4, we describe the general

algorithm of the IARA’s Model-Predictive Motion Planner. Finally, In Section 4.5, we

describe how is computed ours Trajectory Look-up Table to seed the optimization process.

4.1 System Overview

Figure 12: Block diagram of the IARA main navigation modules.

In a typical mission, IARA is at an initial pose (origin), 𝐩𝑜 = (𝑥𝑜 , 𝑦𝑜 , 𝜃𝑜), and the user

defines an end-pose, 𝐩𝑒 = (𝑥𝑒 , 𝑦𝑒 , 𝜃𝑒), and asks it to go from 𝐩𝑜 to 𝐩𝑒. Once asked to perform

such a mission, IARA’s path planner builds a path, 𝑃 = (𝐩𝐯𝑜 , … , 𝐩𝐯𝑖 , … , 𝐩𝐯𝑒), from 𝐩𝑜 to 𝐩𝑒,

38

composed of a vector of poses, about 0.5 m apart, and associated velocities, 𝐩𝐯𝑖 =

(𝑥𝑖, 𝑦𝑖 , 𝜃𝑖 , 𝑣𝑖), that goes from 𝐩𝐯𝑜 = (𝑥𝑜 , 𝑦𝑜 , 𝜃𝑜 , 𝑣𝑜) to 𝐩𝐯𝑒 = (𝑥𝑒 , 𝑦𝑒 , 𝜃𝑒 , 𝑣𝑒), while obeying

restrictions imposed by the road limits and the platform’s previously defined maximum

operating parameters, such as maximum speed, acceleration, rate of driving wheel turn

(𝑑𝜑 𝑑𝑡⁄), etc. IARA’s high level decision making module periodically (20 Hz) slices this path

and takes a small portion of it of about 100 m that we call lane,

or 𝐿 = (𝐩𝐯1, ⋯ , 𝐩𝐯𝑔, ⋯ , 𝐩𝐯|𝐿|), and establish a goal in it, 𝐩𝐯𝑔 = (𝑥𝑔, 𝑦𝑔, 𝜃𝑔, 𝑣𝑔), about 5s in

front of IARA’s current position. To choose this goal, the high level decision making module

considers traffic rules and eventual obstacles.

IARA’s model-predictive motion planning module, receives a map, a lane and a goal at a

rate of 20 Hz, and computes a trajectory, 𝑇 = (𝐱𝑜, … , 𝐱𝑖, … , 𝐱𝑓), from the current car state,

𝐱𝑜 = (𝑥𝑜 , 𝑦𝑜 , 𝜃𝑜 , 𝑣𝑜 , 𝜑𝑜 , 𝑡𝑜) , to a pose and velocity as close as possible to 𝐩𝐯𝑔 , while

following the lane and avoiding occasional obstacles (Figure 13, Figure 14). The value 𝜑𝑜 in

𝐱𝑜 is the front-wheels’ steering angle of the current car state (Figure 8).

Figure 13: IARA’s map, lane and motion plan. IARA is the blue rectangle, while the goal is the yellow rectangle.

The lane (𝐿) is shown in white and the trajectory (𝑇) in green. The image is in the cells map low resolution.

39

In Figure 13, the trajectory seems irregular. However, it is not. It seems irregular because

this representation, which is very useful for us, has the resolution of the map. This

representation in the resolution of the map is important to analyze how the car interacts with

the map, which is fundamental for security. The trajectory is very smooth, as shown in Figure

14.

Figure 14: 3D representation in better resolution of IARA, map, goal and motion plan. The trajectory 𝑇 is shown

in green and the goal is at the end of the trajectory.

IARA’s model predictive motion planner uses a parameterized model of the behavior of

the hardware platform, 𝑀(.), that, given an initial state, 𝐱𝑜 , the goal, 𝐩𝐯𝑔 , and a set of

trajectory control parameters, 𝐭𝐜𝐩, computes the trajectory 𝑇 = 𝑀(𝐱𝑜 , 𝐩𝐯𝑔, 𝐭𝐜𝐩). In order to

obtain 𝑇, we have to find the right 𝐭𝐜𝐩. For that, using the conjugate gradient optimization

algorithm, we gradually change an initial 𝐭𝐜𝐩 seed taken from a pre-computed table indexed

by indexes derived from 𝐱𝑜 and 𝐩𝐯𝑔, so that: (i) 𝐩𝐯𝑓 = (𝑥𝑓 , 𝑦𝑓 , 𝜃𝑓 , 𝑣𝑓), composed of the final

pose and velocity at state 𝐱𝑓, is close enough to 𝐩𝐯𝑔 according to some optimization criteria;

(ii) the poses in 𝑇 are as close as possible to the poses in 𝐿; and (iii) the poses in 𝑇 are as far

as possible of occasional obstacles in the given map, 𝑚𝑎𝑝.

40

4.2 Hardware Platform Model

IARA’s model-predictive motion planner uses a parameterized model of the behavior of

the hardware platform, 𝑀(.), that, given an initial state, 𝐱𝑜 = (𝑥𝑜 , 𝑦𝑜 , 𝜃𝑜 , 𝑣𝑜 , 𝜑𝑜 , 𝑡𝑜), the goal,

𝐩𝐯g = (𝑥𝑔, 𝑦𝑔, 𝜃𝑔, 𝑣𝑔), and a set of trajectory control parameters, 𝐭𝐜𝐩, computes a trajectory

𝑇 = 𝑀(𝐱𝐨, 𝐩𝐯𝑔, 𝐭𝐜𝐩), which is a vector of states, 𝑇 = (𝐱𝐨, … , 𝐱𝐢, … , 𝐱𝐟). The elements of 𝐭𝐜𝐩

are the total time of the trajectory, 𝑡𝑡 , and three knot points, 𝑘1 , 𝑘2 and 𝑘3 , 𝐭𝐜𝐩 =

(𝑡𝑡, 𝑘1, 𝑘2, 𝑘3). The three knot points, together with 𝜑𝑜, define a cubic spline that specifies the

evolution of the steering angle during 𝑡𝑡 (Figure 15).

Figure 15: Cubic spline, defined by 𝜑o, and k1, k2 and k3, that specifies the evolution of the steering angle dur-

ing tt, for tt = 3.96 s. The knot point k1 is defined at t = tt/4, k2 at t = tt/2 and k3 at t = tt.

Our car model, 𝑀(.), is currently a bicycle kinematic model (Figure 8) modified to

consider an understeer coefficient, 𝑢, and is defined by the equations:

𝑥𝑡+1 = 𝑥𝑡 + ∆𝑡 𝑣𝑡 𝑐𝑜𝑠 𝜃𝑡 ,
(6)

𝑦𝑡+1 = 𝑦𝑡 + ∆𝑡 𝑣𝑡 𝑠𝑖𝑛 𝜃𝑡 ,
(7)

𝜃𝑡+1 = 𝜃𝑡 + ∆𝑡 𝑣𝑡𝑐𝑡
(8)

𝑣𝑡+1 = 𝑣𝑡 + ∆𝑡 𝑎 (9)

𝜑𝑡+1 = 𝑠𝑝𝑙𝑖𝑛𝑒(∆𝑡(𝑡 + 1)), and (10)

𝑐𝑡 =

𝑡𝑎𝑛
𝜑𝑡

1 + 𝑢𝑣𝑡
2

𝑙
 (11)

41

where 𝑐𝑡 is the car curvature that is directly used to control the car [TOR10]. The relationship

between 𝜑𝑡 and 𝑐𝑡, given by Equation (11), together with equations (6) to (10), constitute a

simplification of the full Ackerman car model and it was obtained experimentally [CUR08].

For our hardware platform, the understeer coefficient, 𝑢, is equal to 0.0015 [TOR10]. This car

model can be improved in the future without a significant impact on the remainder of the

planner.

To obtain 𝑇 , 𝑀(.) is interactively used for computing each state, 𝐱𝑡+1 . During each

planning cycle the model starts with 𝑡 = 0 and 𝑎 = (𝑣𝑔 − 𝑣0) 𝑡𝑡⁄ , and it is run from t = 0 to

𝑡 = 𝑡𝑡/∆𝑡. The velocity of the car evolves according to the acceleration (𝑎), so that the

velocity in the end of the trajectory is the desired velocity for that pose.

4.3 Minimization Problem

At a rate of 20 Hz, our model-predictive planner computes a trajectory, 𝑇, that starts at

the current car state, 𝐱𝑜 = (𝑥𝑜 , 𝑦𝑜 , 𝜃𝑜 , 𝑣𝑜 , 𝜑𝑜 , 𝑡𝑜) and finishes at a state,

𝐱𝑓 = (𝑥𝑓 , 𝑦𝑓 , 𝜃𝑓 , 𝑣𝑓 , 𝜑𝑓 , 𝑡𝑓), whose pose and velocity, 𝐩𝐯𝑓 = (𝑥𝑓 , 𝑦𝑓 , 𝜃𝑓 , 𝑣𝑓), is as close as

possible to a given goal pose and velocity, 𝐩𝐯𝑔 = (𝑥𝑔, 𝑦𝑔, 𝜃𝑔, 𝑣𝑔). However, it has to do that

while keeping the car at a safe distance from obstacles and as close as possible to the poses of

the given lane 𝐿 = (𝐩𝐯1, ⋯ , 𝐩𝐯𝑔, ⋯ , 𝐩𝐯|𝐿|), part of the path computed by the IARA’s path

planner. To compute 𝑇, we solve the following minimization problem:

arg min
𝐭𝐜𝐩

𝑓(𝑀(𝐱𝐨, 𝐩𝐯𝑔, 𝐭𝐜𝐩), 𝐿, 𝑚𝑎𝑝)
(12)

where

𝑓(.) = √𝑤1∆𝜆2 + 𝑤2∆𝜃2 + 𝑤3∆𝜙2 + 𝑤4𝐷𝑂2
+ 𝑤5𝐷𝐿22

, (13)

and 𝑤1to 𝑤5 are weights.

42

To minimize 𝑓(.), we have to find the 𝐭𝐜𝐩 that minimizes the square root of the weighted

sum of the squares of the values: (i) ∆𝜆, (ii) ∆𝜃 and (iii) ∆𝜙, which together, measure the

distance from the end of 𝑇, 𝐩𝐯𝑓 , to the desired goal, 𝐩𝐯𝑔; (iv) 𝐷𝑂, which summarizes the

distance of each point in 𝑇 to its nearest obstacle; and (v) 𝐷𝐿, which summarizes the distances

between each point in 𝐿 and its nearest point in 𝑇.

The value ∆𝜆 is the difference between the magnitude of the two vectors, 𝐬𝑔 = (𝑥𝑔, 𝑦𝑔)

and 𝐬𝑓 = (𝑥𝑓 , 𝑦𝑓), that connect the poses associated with 𝐱𝑜 and 𝐩𝐯𝑔 (𝐬𝑔), and the poses

associated with 𝐱𝑜 and 𝐩𝐯𝑓 (𝐬𝑓), and it is computed by the equation (Figure 16):

∆𝜆 = ‖(𝑥𝑔 − 𝑥0, 𝑦𝑔 − 𝑦0)‖ − ‖(𝑥𝑓 − 𝑥0, 𝑦𝑓 − 𝑦0)‖ (14)

The value ∆𝜃 is the difference between the car orientation at the goal and the car

orientation at the end of the trajectory, and is computed by the equation (Figure 16):

∆𝜃 = 𝜃𝑔 − 𝜃𝑓 (15)

The value ∆𝜙 is the angle between 𝐬𝑔 and 𝐬𝑓, and is given by the equation (Figure 16):

∆𝜙 = atan2((𝑦𝑔 − 𝑦𝑜)/(𝑥𝑔 − 𝑥𝑜)) − atan2((𝑦𝑓 − 𝑦𝑜)/(𝑥𝑓 − 𝑥𝑜)) (16)

Figure 16: Variables associated with ∆𝜆, ∆𝜃 and ∆𝜙, which together, measure the distance from the end of the 𝑇,

𝐩𝐯𝒇, to the desired goal, 𝐩𝐯𝒈.

43

The value 𝐷𝑂 is the summation of the differences between 𝑑𝑚𝑖𝑛 and ‖𝐱𝑘 − 𝐨𝑘‖, where

𝑑𝑚𝑖𝑛 is the smallest allowed distance between the car and an obstacle (about half the car

width (Figure 17)), and ‖𝐱𝑘 − 𝐨𝑘‖ is the distance between the pose 𝐱𝑘 and its nearest

obstacle, 𝐨𝑘, in the distance grid map, 𝑚𝑎𝑝. The pose of 𝐱𝑘, is a displacement of each 𝐱𝑖 ∈ 𝑇,

where 𝑘 is distributed in 𝑛 circles to cover all the car area, and check all obstacles considering

the car size. 𝐷𝑂 is computed by the equation:

𝐷𝑂 = ∑ ∑ 𝑚𝑎𝑥 (0, 𝑑𝑚𝑖𝑛 − ‖𝐱𝑘 − 𝐨𝑘‖)

𝑛

𝑘=0

𝑓

𝑖=0

 (17)

Figure 17: Illustration of the collision detection area where 𝐱𝑘 is the center of the circle and the pose displaced

from each 𝐱𝑖 ∈ 𝑇 ; and 𝑑𝑚𝑖𝑛 represent the circles radius, that is, the smallest allowed distance between the car

and an obstacle.

Finally, the value 𝐷𝐿 is the summation of ‖𝐩𝐯𝑘 − 𝐱𝑖‖ from 𝐩𝐯𝑗 (the pose in 𝐿 nearest to

𝐱𝑜) to 𝐩𝐯𝑔 (the goal pose in 𝐿), where ‖𝐩𝐯𝑘 − 𝐱𝑖‖ is distance between the pose of each

element 𝐩𝐯𝑘 of 𝐿 to the pose of 𝐱𝑖 ∈ 𝑇 nearest to 𝐩𝐯𝑘 , and is calculated by the equation

(Figure 18):

𝐷𝐿 = ∑‖𝐩𝐯𝑘 − 𝐱𝑖‖

𝑔

𝑘=𝑗

(18)

To solve the minimization problem, we start with an initial guess for 𝐭𝐜𝐩, 𝐭𝐜𝐩𝑠𝑒𝑒𝑑, taken

from a 5-dimension pre-computed table, named trajectory look-up table, 𝑇𝐿𝑇 , which is

indexed by indexes computed from 𝐱𝑜 and 𝐩𝐯𝑔 , named discrete trajectory descriptors,

𝑑𝑚𝑖𝑛 𝑥𝑘 𝑥𝑘+1 𝑥𝑘+2 𝑥𝑘+3

44

𝐝𝐭𝐝 = (𝜆𝑔
𝑑, 𝜙𝑔

𝑑 , 𝜃𝑔
𝑑, 𝑣𝑜

𝑑 , 𝜑𝑜
𝑑), as described in Section 4.5 below. The indexes 𝜆𝑔

𝑑, 𝜙𝑔
𝑑, 𝜃𝑔

𝑑, 𝑣𝑜
𝑑

and 𝜑𝑜
𝑑 are computed from 𝜆𝑔, 𝜙𝑔, 𝜃𝑔, 𝑣𝑜 and 𝜑𝑜, respectively, which, as a tuple, are called

trajectory descriptors, or 𝐭𝐝 = (𝜆𝑔, 𝜙𝑔, 𝜃𝑔, 𝑣𝑜 , 𝜑𝑜) (Section 4.5). We then use the conjugate

gradient optimization algorithm to minimize 𝑓(.) by manipulating the 𝐭𝐜𝐩𝑠𝑒𝑒𝑑 elements (the

trajectory total time, 𝑡𝑡, and three knot points, 𝑘1, 𝑘2 and 𝑘3, of the cubic spline that specifies

the evolution of the steering angle during 𝑡𝑡).

Figure 18: Variables associated with 𝐷𝐿 , which summarizes the distances between each point in 𝐿 and its nearest

point in 𝑇.

The conjugate gradient algorithm requires derivatives of the cost function, 𝑓(.), with

respect to the optimizing variables, 𝑡𝑡, 𝑘1, 𝑘2 and 𝑘3. In our model-predictive planner, we

compute these derivatives numerically using finite differences. Unfortunately, the

minimization problem includes parameters (e.g. the weights 𝑤1 to 𝑤5) that need to be tuned

empirically. Fortunately, we have a IARA`s simulator that reproduces accurately its behavior

in speeds up to 9 m/s, because it is based on a neural network [DES16]. Using this simulator

in specific scenarios in our simulation environment, we can tune these parameters, so that

IARA can perform properly in autonomous mode.

45

4.4 IARA’S Model-Predictive Planner Algorithm

The listing of Algorithm 1 presents our model-predictive motion planning algorithm. At

a rate of 20 Hz, compute_motion_plan() receives 𝐱𝑜, 𝐩𝐯𝑔, 𝐿 and 𝑚𝑎𝑝 from IARA’s modules

as input, and returns 𝑇 as output.

Algorithm 1: compute_motion_plan

Input: 𝐱𝑜 , 𝐩𝐯𝑔, 𝐿, 𝑚𝑎𝑝

Output: 𝑇

1: 𝐭𝐝 ← get_td(𝐱𝑜 , 𝐩𝐯𝑔)

2: 𝐝𝐭𝐝 ← get_dtd(𝐭𝐝)

3: 𝐭𝐜𝐩𝑠𝑒𝑒𝑑 ← 𝑇𝐿𝑇 [𝐝𝐭𝐝(𝜆𝑔
𝑑)] [𝐝𝐭𝐝(𝜙𝑔

𝑑)] [𝐝𝐭𝐝(𝜃𝑔
𝑑)] [𝐝𝐭𝐝(𝜑𝑜

𝑑)] [𝐝𝐭𝐝(𝑣𝑜
𝑑)]

4: 𝐭𝐜𝐩𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← arg min𝐭𝐜𝐩 𝑓(𝑀(𝐱𝑜 , 𝐩𝐯𝑔, 𝐭𝐜𝐩𝑠𝑒𝑒𝑑), 𝐿, 𝑚𝑎𝑝)

5: if valid(𝐭𝐜𝐩𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑) then

6: 𝑎 ← (𝐩𝐯𝑔
(𝑣𝑔) − 𝐱𝑜

(𝑣𝑜)) 𝐭𝐜𝐩𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑(𝑡𝑡)
⁄

7: 𝑇 ← get_T_by_simulation(𝐱𝑜 , 𝑎, 𝐭𝐜𝐩𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑)

8: else

9: 𝑇 ← ∅

10: return (𝑇)

In line 1, the Algorithm 1 uses the function get_td() to compute 𝐭𝐝 as a function of 𝐱𝑜

and 𝐩𝐯𝑔 (Section 4.5). In line 2, it uses the function get_dtd() to compute 𝐝𝐭𝐝 from 𝐭𝐝

(Section 4.5). In line 3, it gets 𝐭𝐜𝐩𝑠𝑒𝑒𝑑 from 𝑇𝐿𝑇 and, in line 4, it runs the conjugate gradient

algorithm to find a 𝐭𝐜𝐩𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 that takes the car from 𝐱𝑜 to 𝐩𝐯𝑔. In line 6, the acceleration 𝑎

is computed. If the optimization succeeds, in line 7, the function get_T_by_simulation()

(trivial implementation; listing not shown) simulates the car, according to equations (6) to

(11), starting from 𝐱𝑜 (time 𝑡 = 0) and until time 𝑡𝑡 of 𝐭𝐜𝐩𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 using 𝑎. At the end of

this simulation, the function get_T_by_simulation() returns a trajectory 𝑇 that ends as close as

possible to 𝐩𝐯𝑔 and with poses: (i) as close as possible to 𝐿 and (ii) as far as possible from the

obstacles in the 𝑚𝑎𝑝. If the optimization fails, in line 9 an empty trajectory is returned in the

cycle. If compute_motion_plan() fails to find trajectories for many consecutive cycles, IARA

is stopped. Note that IARA does not move much in a single cycle and a previous trajectory

might still be suitable after several cycles. IARA’s obstacle avoider module takes care of it in

such cycles (or in any situation that may lead to a collision) [GUI16].

46

4.5 Trajectory Look-up Table – TLT

Initial guesses for 𝐭𝐜𝐩, 𝐭𝐜𝐩𝑠𝑒𝑒𝑑, are pre-computed with varying 𝐭𝐝 = (𝜆𝑔, 𝜙𝑔, 𝜃𝑔, 𝑣𝑜 , 𝜑𝑜),

where 𝜆𝑔 and 𝜙𝑔 are the relative differences between 𝐱𝑜 and 𝐩𝐯𝑔 in polar coordinates; 𝜃𝑔 is

the goal orientation; 𝑣𝑜 is the initial velocity; and 𝜑𝑜 is the initial steering angle (Figure 19).

A 𝐭𝐜𝐩𝑠𝑒𝑒𝑑 computed from 𝐭𝐝 = (𝜆𝑔, 𝜙𝑔, 𝜃𝑔, 𝑣𝑜 , 𝜑𝑜) is stored in the 𝑇𝐿𝑇 cell indexed by

𝐝𝐭𝐝 = (𝜆𝑔
𝑑, 𝜙𝑔

𝑑 , 𝜃𝑔
𝑑, 𝑣𝑜

𝑑 , 𝜑𝑜
𝑑), i.e., 𝑇𝐿𝑇[𝜆𝑔

𝑑][𝜙𝑔
𝑑][𝜃𝑔

𝑑][𝑣𝑜
𝑑][𝜑𝑜

𝑑] = 𝐭𝐜𝐩𝑠𝑒𝑒𝑑 . The elements of 𝐭𝐝

are derived from 𝐱𝑜 and 𝐩𝐯𝑔 according to the following equations:

𝜆𝑔 = ‖(𝑥𝑔 − 𝑥𝑜 , 𝑦𝑔 − 𝑦𝑜)‖, (19)

𝜙𝑔 = 𝑎𝑡𝑎𝑛2((𝑦𝑔 − 𝑦𝑜)/(𝑥𝑔 − 𝑥𝑜)), (20)

𝜃𝑔 = 𝐩𝐯𝑔
(𝜃), (21)

𝑣𝑜 = 𝐱𝑜
(𝑣) and (22)

𝜑𝑜 = 𝐱𝑜
(𝜑), (23)

where, in the equations (21), (22) and (23) above, 𝐭𝐮𝐩𝐥𝐞(𝑎) is the element 𝑎 of a

𝐭𝐮𝐩𝐥𝐞 = (𝑎, 𝑏, 𝑐, …).

Figure 19: Elements of a 𝐭𝐝 (λg, ϕg, θg, vo and φo), which are derived from 𝐱o and 𝐩𝐯g

47

The discrete indexes, 𝜆𝑔
𝑑, 𝜙𝑔

𝑑, 𝜃𝑔
𝑑, 𝑣𝑜

𝑑 and 𝜑𝑜
𝑑, are defined as:

𝜆𝑔
𝑑 = 𝑔(𝜆𝑔, 𝑐𝑟𝜆𝑔 , 𝑠𝑓𝜆𝑔 , 𝑧𝑖𝜆𝑔), (24)

𝜙𝑔
𝑑 = ℎ(𝜙𝑔, 𝑐𝑑𝜙𝑔 , 𝑧𝑖𝜙𝑔), (25)

𝜃𝑔
𝑑 = 𝑔(𝜃𝑔, 𝑐𝑟𝜃𝑔 , 𝑠𝑓𝜃𝑔 , 𝑧𝑖𝜃𝑔), (26)

𝑣𝑜
𝑑 = 𝑔(𝑣𝑜 , 𝑐𝑟𝑣𝑜 , 𝑠𝑓𝑣𝑜 , 𝑧𝑖𝑣𝑜) and (27)

𝜑𝑜
𝑑 = 𝑔(𝜑𝑜, 𝑐𝑟𝜑𝑜 , 𝑠𝑓𝜑𝑜 , 𝑧𝑖𝜑𝑜), (28)

where

𝑔(𝜄, 𝑐𝑟, 𝑠𝑓, 𝑧𝑖) = [𝑙𝑜𝑔𝑐𝑟

𝜄 + 𝑠𝑓

𝑠𝑓
] + 𝑧𝑖

(29)

for 𝜄 = 𝜆𝑔 (or 𝜃𝑔 , 𝑣𝑜 and 𝜑𝑜), 𝑐𝑟 = 𝑐𝑟𝜆𝑔 (or 𝑐𝑟𝜃𝑔 , 𝑐𝑟𝑣𝑜 and 𝑐𝑟𝜑𝑜), 𝑠𝑓 = 𝑠𝑓𝜆𝑔 (or 𝑠𝑓𝜃𝑔 , 𝑠𝑓𝑣𝑜

and 𝑠𝑓𝜑𝑜) and 𝑧𝑖 = 𝑧𝑖𝜆𝑔 (or 𝑧𝑖𝜃𝑔 , 𝑧𝑖𝑣𝑜 and 𝑧𝑖𝜑𝑜);

ℎ(𝜄, 𝑐𝑑, 𝑧𝑖) = [
𝜄

𝑐𝑑
] + 𝑧𝑖 (30)

for 𝜄 = 𝜙𝑔, 𝑐𝑑 = 𝑐𝑑𝜙𝑔 and 𝑧𝑖 = 𝑧𝑖𝜙𝑔; and, in the equations (29) and (30), [𝑒] is equal to the

nearest integer to 𝑒.

The functions 𝑔(.) and ℎ(.), and their parameters for each element of 𝐝𝐭𝐝, were chosen

in order to compute a 𝐝𝐭𝐝 suitable for accessing a 𝑇𝐿𝑇 that would contain the appropriate

𝐭𝐜𝐩𝑠𝑒𝑒𝑑 for building trajectories with properties in the range of operation of IARA. More

specifically, the functions 𝑔(.) and ℎ(.) were chosen in order to apply finer-grained

discretization of the elements of 𝐝𝐭𝐝 for smaller relative differences between 𝐱𝑜 and 𝐩𝐯𝑔 and

coarser-grained discretization for larger ones. Table I presents the values we have chosen for

the parameters of 𝑔(.) and ℎ(.) of each element of 𝐝𝐭𝐝, and the bounds, 𝑛, of 𝑔(.) and ℎ(.)

for each element. We also have functions 𝑔−1(.) and ℎ−1(.) that compute the inverse of 𝑔(.)

and ℎ(.), i.e., map each member of 𝐝𝐭𝐝 to an element of 𝐭𝐝 (trivial deduction; not shown).

48

Table I: 𝒈(.) AND 𝒉(.) PARAMETERS AND BOUNDS

𝐝𝐭𝐝
𝒈(.) and 𝒉(.) parameters bounds (𝒏)

𝒄𝒓 𝒔𝒇 𝒛𝒊 𝒄𝒅 min Max

𝜆𝑔
𝑑 1.8 2.3 -1 - 0 15

𝜙𝑔
𝑑 - - 7 0.139 0 15

𝜃𝑔
𝑑 1.3 0.174 7 - 0 15

𝜑𝑜
𝑑 1.394 0.052 7 - 0 15

𝑣𝑜
𝑑 1.381 1.3 0 - 0 8

The listing of Algorithm 2 presents the algorithm designed to generate the 𝑇𝐿𝑇. In line 1,

Algorithm 2 initializes 𝑇𝐿𝑇, 𝐿 and 𝑚𝑎𝑝 as empty (when building a 𝐭𝐜𝐩𝑠𝑒𝑒𝑑 one does not need

to consider a lane or 𝑚𝑎𝑝). In lines 2, 3 and 4, Algorithm 2 cycles through all possible values

of 𝜆𝑔
𝑑, 𝑣𝑜

𝑑 and 𝜑𝑜
𝑑 (i.e. within the bounds of Table I), while, in lines 5 and 6, it samples 𝑘2 and

𝑘3 throughout the range of possible IARA’s steering angle values (at small intervals). The

value 𝑚𝑖𝑛𝜑 is the minimum steering angle and 𝑚𝑎𝑥𝜑 is the maximum steering angle.

Throughout lines 7 to 14, Algorithm 2 use all these values to compute a 𝐭𝐜𝐩seed, which is

saved into 𝑇𝐿𝑇 in line 16.

Algorithm 2: fill_trajectory_lookup_table

Input: void

Output: 𝐓𝐋𝐓

1: 𝑇𝐿𝑇 ← ∅, 𝐿 ← ∅, 𝑚𝑎𝑝 ← ∅

2: for 𝜆𝑔
𝑑 = 0 to 𝑛𝜆𝑔 − 1

3: for 𝑣𝑜
𝑑 = 0 to 𝑛𝑣𝑜 − 1

4: for 𝜑𝑜
𝑑 = 0 to 𝑛𝜑𝑜 − 1

5: for 𝑘2 = 𝑚𝑖𝑛𝜑 to 𝑚𝑎𝑥𝜑

6: for 𝑘3 = 𝑚𝑖𝑛𝜑 to 𝑚𝑎𝑥𝜑

7: 𝐭𝐜𝐩𝑠𝑎𝑚𝑝𝑙𝑒 , 𝑎 ← get_tcp_sample_and_acc(𝜆𝑔
𝑑, 𝑣𝑜

𝑑 , 𝑘2, 𝑘3)

8: 𝐱𝑜 = (0,0,0, 𝑔−1(𝑣𝑜
𝑑), 𝑔−1(𝜑𝑜

𝑑),0)

9: 𝐭𝐝, 𝑣𝑔 ← get_td_and_vg_by_simulation(𝐱0, 𝑎, 𝐭𝐜𝐩𝑠𝑎𝑚𝑝𝑙𝑒)

10: 𝐝𝐭𝐝 ← get_dtd(𝐭𝐝)

11: if valid(dtd) then

12: 𝜆 = 𝑔−1(𝐝𝐭𝐝(𝜆𝑔
𝑑)), 𝜙 = ℎ−1(𝐝𝐭𝐝(𝜙𝑔

𝑑)), 𝜃 = 𝑔−1(𝐝𝐭𝐝(𝜃𝑔
𝑑))

13: 𝐩𝐯𝑔 = (𝜆 cos 𝜙 , 𝜆 sin 𝜙 , 𝜃, 𝑣𝑔)

14: 𝐭𝐜𝐩𝒔𝒆𝒆𝒅 ← arg min𝐭𝐜𝐩 𝑓(𝑀(𝐱𝑜 , 𝐩𝐯𝑔, 𝐭𝐜𝐩𝑠𝑎𝑚𝑝𝑙𝑒), 𝐿, 𝑚𝑎𝑝)

15: if valid(𝐭𝐜𝐩𝑠𝑒𝑒𝑑) then

16: 𝑇𝐿𝑇 [𝐝𝐭𝐝(𝜆𝑔
𝑑)] [𝐝𝐭𝐝(𝜙𝑔

𝑑)] [𝐝𝐭𝐝(𝜃𝑔
𝑑)] [𝐝𝐭𝐝(𝜑𝑜

𝑑)] [𝐝𝐭𝐝(𝑣𝑜
𝑑)]← 𝐭𝐜𝐩𝑠𝑒𝑒𝑑

17: return (𝑇𝐿𝑇)

49

The function get_tcp_sample_and_acc(), called in line 7 of Algorithm 2, is presented in

Algorithm 3. This function computes a 𝐭𝐜𝐩sample and an acceleration, 𝑎. The elements 𝑘2 and

𝑘3 of 𝐭𝐜𝐩sample come directly from the inputs of get_tcp_sample_and_acc(), while 𝑡𝑡 of

𝐭𝐜𝐩sample is computed in lines 3 to 9 of Algorithm 3. Note that 𝑘1 is not filled in 𝐭𝐜𝐩seed,

since this part of a 𝐭𝐜𝐩 is only computed during run time – 𝑘1 is used for adding

maneuverability to avoid obstacles and to keep IARA precisely in the road during the

execution of compute_motion_plan(), Algorithm 1. Finally, the acceleration 𝑎 is computed in

line 10 of Algorithm 3 using the equation of motion, 𝜆 = 𝑣𝑜 × 𝑡 + 𝑎 × 𝑡2/2, solved for the

acceleration (𝑎 = (𝜆 − 𝑣𝑜 × 𝑡)/(𝑡2 2⁄)).

Algorithm 3: get_tcp_sample_and_acc

Input: λg
d, vo

d, k2, k3

Output: 𝐭𝐜𝐩𝑠𝑎𝑚𝑝𝑙𝑒 , 𝑎

1: 𝐭𝐜𝐩𝑠𝑎𝑚𝑝𝑙𝑒(𝑘2)
= 𝑘2

2: 𝐭𝐜𝐩𝑠𝑎𝑚𝑝𝑙𝑒(𝑘3)
= 𝑘3

3: 𝜆 = 𝑔−1(𝜆𝑔
𝑑)

4: if 𝜆 > 7 then

5: 𝐭𝐜𝐩𝑠𝑎𝑚𝑝𝑙𝑒(𝑡𝑡)
= 5𝑠

6: else if 𝜆 > 3.5 then

7: 𝐭𝐜𝐩𝑠𝑎𝑚𝑝𝑙𝑒(𝑡𝑡)
= 2.5𝑠

8: else

9: 𝐭𝐜𝐩𝑠𝑎𝑚𝑝𝑙𝑒(𝑡𝑡)
= 2𝑠

10: 𝑎 = (𝜆 − 𝑔−1(𝑣𝑜
𝑑) × 𝑡𝑡)/(𝑡𝑡2 2⁄)

11: return (𝐭𝐜𝐩𝑠𝑎𝑚𝑝𝑙𝑒 , 𝑎)

Algorithm 2 initializes the car at the origin in line 8, but with velocity 𝑔−1(𝑣𝑜
𝑑) and

steering angle 𝑔−1(𝜑𝑜
𝑑). In line 9, using the function get_td_and_vg_by_simulation() (trivial

implementation; listing not shown), it simulates the car, according to equations (6) to (11),

from 𝐱𝑜 (time 𝑡 = 0) until time tt of 𝐭𝐜𝐩𝑠𝑎𝑚𝑝𝑙𝑒 using acceleration 𝑎 . At the end of this

simulation, get_td_and_vg_by_simulation() computes a 𝐭𝐝 using the last state of the

simulation as goal. The function get_td_and_vg_by_simulation() then returns this 𝐭𝐝 as well

as the velocity of the last state of the simulation as 𝑣𝑔.

In line 10, Algorithm 2 uses the function get_dtd() (trivial implementation; listing not

shown) to compute a 𝐝𝐭𝐝 from a 𝐭𝐝, according to equations (24) to (28). This 𝐝𝐭𝐝 might be

50

invalid (one of its elements might be out of the bounds shown in Table I) and, in such cases, it

is discarded. If this 𝐝𝐭𝐝 is valid, in lines 12 and 13, Algorithm 2 builds a 𝐩𝐯𝑔 and, in line 14,

runs the conjugate gradient algorithm to find a 𝐭𝐜𝐩 that takes the car from 𝐱𝑜(time t = 0)

to 𝐩𝐯𝑔 (time 𝑡 = 𝑡𝑡). If the optimization succeeds, in line 16 the computed 𝐭𝐜𝐩𝑠𝑒𝑒𝑑 is saved

in 𝑇𝐿𝑇.

Many combinations of 𝜆𝑔
𝑑, 𝜙𝑔

𝑑 , 𝜃𝑔
𝑑 , 𝜑𝑜

𝑑, 𝑣𝑜
𝑑 can never occur in real life due to the physical

restrictions of IARA. For example, it cannot change from an angle 𝜃𝑜 to a largely different

angle 𝜃𝑔 in a short λg . Therefore, many 𝑇𝐿𝑇 cells are empty after Algorithm 2. To fill as

much cells as possible, after Algorithm 2, we run a function that goes back to each empty cell

of 𝑇𝐿𝑇 and use nearby occupied cells as seeds for computing the 𝐭𝐜𝐩 of these empty cells

(listing not shown). This process is repeated until the function cannot fill extra cells with a

valid 𝐭𝐜𝐩 . Using this process, we were able to fill 57.63% of 𝑇𝐿𝑇 . The experimental

evaluation has shown that this is enough for proper real time operation.

51

5 EXPERIMENTAL METHODOLOGY

In this chapter, we present the experimental methodology. In Section 5.1, we describe the

IARA’s Hardware sensors and actuators. In Section 5.2, we describe the framework and

modules whose compose the IARA’s Software tools. In Section 5.3, we describe the

environment where we run the experiments to evaluate the MPMP. In Section 5.4, we

describe the methodology of the experiments. In Section 5.5, we describe the metrics applied

to evaluate the MPMP performance.

5.1 IARA’s Hardware

We developed the hardware and software of IARA (Figure 1). IARA’s hardware is based

on a Ford Escape Hybrid, which was adapted by Torc Robotics [TOR17] to enable electronic

actuation of the steering wheel, throttle, and brake; reading the car odometry; and powering

several high-performance sensors and computers. The IARA’s hardware includes one

Velodyne HDL 32-E Light Detection and Ranging (LiDAR); one SICK LD-MRS 3D LiDAR;

one Trimble Dual Antenna RTK GPS; one Xsens Mti IMU; four Point Grey Bumblebee

stereo cameras, one ZED 2K stereo camera (Figure 21); one Switch Gigabit CISCO Catalyst;

and a Dell Precision R5500 computer (Figure 20 and Figure 22).

Figure 20: Interface to operate IARA’s system.

52

Figure 21: IARA's sensors

Figure 22: Computers resources.

Cameras

53

5.2 IARA’s Software

The IARA’s software is composed of seven main modules: localizer [VER15] [VER16],

mapper [MUT16], behavior selector, path planner, motion planner [RAD14] [CAR17] (the

focus of this work), obstacle avoider [GUI16] and controller [GUI17]. The localizer module is

responsible for estimating the state of the robot relative to the origin of the map using the

LiDAR data and the offline map. The mapper module is responsible for creating an online

map using the LiDAR, the occupancy grid map algorithm, and the IARA localization. The

behavior selector module is responsible for defining the local goal states and velocities that

IARA’s has to follow in order to reach its goal; this module considers the information about

the environment, namely the map, traffic lights, traffic rules and the global plan. The path

planner module is responsible for building a global path from IARA’s initial state to the

desired end-pose. The motion planner module, presented in this work, is responsible for

computing the local motion planning, which drives IARA’s from the current state to the next

goal selected by the behavior selector module. The obstacle avoider module is responsible for

verifying the current trajectory generated by the motion planner and reducing the velocities or

stopping the car in case of possible collisions; this module is a safeguard that works two times

faster than the motion planner. Finally, the controller module is responsible for converting the

control commands of the trajectories into acceleration, brake and steering efforts [GUI17].

Together, these modules allow IARA’s autonomous operation on urban roads.

Additional modules are: health monitor, logger, traffic lights state detector, simulator

[DES16], among others. These modules were implemented in Carnegie Mellon Robot

Navigation (CARMEN) Toolkit. This toolkit was extended by the LCAD for the IARA’s

project.

Figure 23 shows a block diagram of all the IARA’s software modules, including the main

ones cited above.

54

Figure 23: Block diagram of all IARA’s software modules.

5.2.1 CARMEN Toolkit

There are some frameworks for robots software development. Regarding open source

ones, we can cite CARMEN (Carnegie Mellon Robot Navigation Toolkit)

(http://carmen.sourceforge.net/) and ROS (Robot Operating System) (http://www.ros.org/).

CARMEN is a modular collection of software for mobile robot control. CARMEN

supports several robot hardware platforms, sensors and provides basic navigation primitives.

This Toolkit aims to standardize the mobile robot programming as well as avoid rework, once

it is open source, and its programs (modules) can be shared and used in different robot

platforms [MON03].

Each module handles a subtask in a robot system and communicates with each other. To

communicate between modules, CARMEN uses the Inter-Process Communication protocol

(IPC), wherewith each module can publish messages and/or subscribe to receive published

55

messages. The sending of a new message happens through a publication sent by a Publisher to

the Central server. Message reception is asynchronous, that is, the Subscribers provide a

callback function associated with each signed message. Then the Central server sends a copy

of the message to all Subscribers and every time a new message is received the respective

callback function is executed. The Central server is also responsible for storing the systems’

information, such as the message’s name, network routes and network traffic log messages

[SIM17]. IPC supports messages containing complex data structures. Figure 24 shows an

illustration of the inter-process model.

Figure 24: Illustration of the Publish-Subscribe inter-process model used in CARMEN with IPC [HOH03].

ROS is a collection of tools, libraries, and conventions for creating robots, which

supports a variety of robotic platforms. ROS is a multi-lingual framework that supports

various programming languages, such as C++, Python, Octave and LISP. In this way,

programs (nodes) implemented in different languages can communicate with each other

through a message layer. ROS also uses a publish/subscribe scheme for inter-process

communication as CARMEN, but with peer-to-peer communication, that is, the messages

data do not route through a Central server; instead, a name server stores the routes and the

nodes communicate directly with each other. The transmission around a network does not use

a single transport protocol; so, nodes negotiate a connection with its appropriated protocol

[ROS17] [QUI09].

56

Even though ROS is also a robust framework, when the IARA’s project began, ROS was

under a lot of change. Therefore, it was unstable at the time for the project’s purpose.

CARMEN was simpler and, at the time, seemed to be enough as a platform for the

development of the LCAD’s autonomous car, what has proven to be true with the successful

development of IARA. Currently, the LCAD has a trained team of developers using

CARMEN. LCAD CARMEN version advanced from the initial version and outcome initial

limitations, allowing now the development of anything developed currently on ROS for non-

articulated robots. In this way, the modules described in Section 5.2, including the MPMP,

were developed using the CARMEN toolkit.

5.3 Test Environment

Figure 25: Pictures of the university testing environment. The images 1 to 5 show some of the relevant parts of

the course.

IARA’s test environment is the Universidade Federal do Espírito Santo (www.ufes.br)

main campus beltway (UFES beltway). Figure 25 shows parts of the UFES beltway. It is a

very challenging course with 3.7 km since it is frequently busy, with many cars, motorcycles,

and buses traveling around, parked cars on both sides of the road, as well as pedestrians

crossing (Figure 25(2) and (3)). The road pavement includes segments with cobbles (Figure

57

25(1)) and asphalt (Figure 25(4)). Furthermore, it has six speed bumps, sharp and wide

curves, varying track widths and two gate barriers. Therefore, the motion planner must be able

to deal with all these hazards in order to drive the car smoothly and safely.

5.4 Test Methodology

We asked an experienced Human driver to drive IARA along the UFES beltway and

logged the car poses (given by our localizer module). We transformed the sequence of poses

and velocities observed during Human driving into a standard IARA path (as would be

produced by our path planner). Later, we commanded IARA to perform the same path in

autonomous mode using the MPMP. We evaluated the differences between the Human path

and the MPMP path. Furthermore, we show the behavior of MPMP with obstacles in real

world situations. The results of these evaluations are reported in Chapter 6.

5.5 Metrics

We evaluated the performance of MPMP using the mean and standard deviation of the

distance between each point of the path followed by MPMP to the path followed by the

Human driver (Equations (31) and (32)). Beyond that, we compared the velocities of MPMP

and Human driver along the path followed.

𝜎 = √
∑ (𝑑𝑖 − X̅)2𝑛

𝑖=1

𝑛

(31)

To evaluate the capacity of the planner to deal with obstacles in the road, we presented

situations in which obstacles blocked part of the road. We then evaluated visually the ability

of the planner to compute trajectories that follow the lane while maintaining a safe distance

from obstacles.

58

6 EXPERIMENTAL RESULTS

The performance of the MPMP driving IARA in a real world environment was compared

with that of a Human driver. Figure 26 shows the distance between each point of the path

followed by MPMP to the path followed by the Human driver. In the graph of this figure, the

x-axis represents the time of each pose of the Human path, while the y-axis represents the

distance between paths. Note that we have synchronized the poses of the MPMP path with the

poses of the Human path so as to measure the distance between the correct poses, since the

velocities were not the same in both paths. For that, for each point of MPMP path, we found a

point in the line that connects the nearest two points in the Human path. As Figure 26 shows,

the absolute distance between paths is small throughout the whole paths, never exceeding 0.8

m. The average distance was 0.15 m (𝜎 = 0.14).

Figure 26: Absolute distance between MPMP poses and Human poses.

Figure 27 compares the velocities of MPMP and Human along the UFES beltway. In the

graph of this figure, in the x-axis we show the time of each velocity sample, while in the y-

axis we show the velocities (the velocity samples were synchronized with the time of the

poses of Figure 26). The two curves in the graph show the MPMP velocity in red and the

Human velocity in blue.

0,0

0,2

0,4

0,6

0,8

1,0

0 100 200 300 400 500

di
st

an
ce

 (m
)

time (s)

59

The maximum allowed speed in the UFES beltway varies, but, in most of the beltway, it

is 30 km/h (8.33 m/s). We programmed MPMP to maintain 30 km/h (8.33 m/s) and asked the

Human driver to follow the beltway speed limits. As the graph in Figure 27 shows, MPMP

managed to maintain IARA’s speed close to the programmed velocity. Its speed was reduced

to less than 7.2 km/h (2 m/s) at some points due to the bumps and gate barriers present in the

beltway. As can be seen in Figure 27, MPMP was more cautious while crossing bumps, gates

barriers and other places that required slower speeds. Also, its speed was more stable than the

Human speed throughout the course, which is known to reduce fuel consumption.

Figure 27: MPMP velocities (red) and Human velocities (blue).

Figure 28 compares the poses of Human (blue) and MPMP (red) throughout the UFES

beltway. As Figure 28 shows, in the scale of the whole beltway, the poses of the two drivers

are indistinguishable. The inset in Figure 28 highlights one of the regions of the beltway

where the distance between the paths is around the largest. As this inset shows, both paths are

smooth and the distance between them changes smoothly as well. The region is showed in

Figure 29.

0

2

4

6

8

10

12

0 100 200 300 400 500

ve
lo

ci
ty

 (m
/s

)

time (s)

Human MPMP

60

Figure 28: Poses of the two paths throughout the UFES beltway.

Figure 29: Region highlighted in the inset of the Figure 28.

Figure 30 shows the heading (orientation 𝜃) of the Human path and the MPMP path in

the UFES beltway of the same experiment shown in Figure 28 above. It is possible to see that

the MPMP maintain its heading very close to the human heading in virtually the whole

beltway.

-600

-400

-200

0

200

-1400 -900 -400 100

Human MPMP

61

Figure 30: Headings (orientation 𝜃) of the two paths throughout the UFES beltway.

In real traffic situations, the planner has also to deal with obstacles in the road. Figure 31

shows one such situation that happened in the UFES beltway. Several buses were parked on

the side the road, blocking part of it. The MPMP had to optimize the trajectory to maintain a

safe distance from obstacles while maintaining the trajectory as close as possible to the lane

(Equation (13)). Please note that the Brazilian traffic regulations allow crossing school busses

(or other cars) in the situation shown in Figure 31. The weights of the cost function are the

same in all experiments.

Figure 31 presents the situation according to the MPMP perspective. The optimized

trajectory (green/red) avoids the obstacles between the IARA (rectangle in the beginning of

the trajectory, on the right of it) and the goals (yellow rectangle on the left). The MPMP tries

to maintain the IARA on the lane while keeping a safe distance from the obstacles. This

experiment can be seen in the video https://youtu.be/o_NU23fpZhw?t=134.

62

Figure 31: MPMP trajectories (in green/red) avoiding obstacles blocking the road.

Figure 32 shows another situation of obstacle avoidance. When an obstacle appears on

the side of the road, the MPMP optimizes a trajectory that maintains a safe distance from the

obstacle and goes back to the lane in sequence.

63

Figure 32: MPMP trajectories (in green/red) avoiding obstacle on the side of the road.

6.1 Discussion

The main contribution of this work is a motion planner for the IARA autonomous car

that can operate in real-time at urban on-road scenarios.

The first experimental evaluation showed that MPMP is able to compute trajectories that

precisely follow a path produced by a Human driver – the average distance between MPMP

and Human paths was 0.15 m (σ = 0.14). The second and third experimental evaluations

showed that MPMP is capable to maintain the car’s speed close to the programmed velocity.

Furthermore, MPMP speed was more stable than the Human speed throughout the course.

The third experimental evaluation showed that MPMP is able to maintain the IARA on the

lane, while keeping a safe distance from obstacles.

64

Although this work presented satisfactory results, some issues are worth discussing,

which are highlighted bellow.

 The weights of the cost function (Equation (13)) are hard to tune, because it is

necessary to find a balance among the optimization criteria. For example, if an

obstacle is blocking part of the lane, to get around the obstacle, the weights have

to be balanced in a way that the cost of getting out of the lane does not surpass the

cost of avoiding the obstacle. Furthermore, the trajectory has to be kept smooth

and the goal has to be achieved.

 The MPMP does not explicitly consider moving obstacles. However, moving

obstacles are mapped as static obstacles in a high frequency mapping or filtered

out by the high level decision maker. Thus, along with the high frequency motion

planning, it is possible to avoid them.

 The collision-check in the optimization process is computationally expensive.

Due to this, a different representation of moving obstacles will be needed, in

order to incorporate constraints associated with them in our optimization model

and model-predictive motion planning algorithm. Currently, moving obstacles

can cause sudden reactions, because the MPMP does not predict their trajectory.

 A more precise Hardware Platform model is desired to achieve higher velocities.

However, its computational cost needs to be the same or lower than the

computational cost of the current one, in order to avoid the increase of the

computational cost of the trajectory predicting phase during the optimization

process.

65

7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this work, we have presented the Model-Predictive Motion Planner (MPMP)

developed for the Intelligent Autonomous Robotic Automobile (IARA). MPMP is a high

frequency motion planner that operates at 20 Hz and is capable of generating smooth

trajectories that follow a reference path while avoiding occasional obstacles. We have tested

MPMP running in IARA in a challenging course of 3.7 km and compared its performance

with that of a Human in the same course (we asked IARA to follow the Human path as close

as possible). Our results showed that MPMP compares well with the Human performance –

its path is smooth, very close to the Human path (average distance of 0.15 m, σ = 0.14) and

its speeds are more stable than that of the Human driver. Besides, MPMP trajectories obey the

restrictions imposed by obstacles in the road and the platform’s performance limits (speed,

acceleration, rate of driving wheel turn, etc.). Currently, MPMP can safely navigate in urban

environments with speeds of up to 32.4 km/h (9 m/s), while performing very close to Human

drive behavior.

7.2 Future Work

In future work, we will:

 Investigate how to improve MPMP and IARA’s low level control to improve its

maximum speed.

 Examine how to incorporate constraints associated with moving obstacles in our

trajectory optimization model and model-predictive motion planning algorithm.

 Improve the tune of the weights of the cost function.

 Investigate the impact of high speed on the actual model.

66

 Use a more precisely Hardware Platform Model compatible with higher speeds.

 Upgrade the IARA’s control hardware, changing part of the TORC automation.

 Develop a system for handling pedestrians.

 Build a reemission map for road detection and path extraction.

 Use offline map information to anticipate adjustment of velocities on curves and

narrow streets.

67

8 PUBLICATIONS

Two publications were produced during the period of the master's program. The first is a

direct result of the research presented here and also a partial requirement for obtaining the

master degree in informatics. The second publication is related to other research in

development in our laboratory.

 V. Cardoso, J. Oliveira, T. Teixeira, C. Badue, F. Mutz, T. Oliveira-Santos, L.

Veronese and A. F. De Souza, “A Model-Predictive Motion Planner for the IARA

Autonomous Car”, 2017 IEEE International Conference on Robotics and Automation

(ICRA 2017), Singapura.

 F. Mutz, V. Cardoso, T. Teixeira, L. F. R. de Jesus, M. A. Golçalves, R. Guidolini, J.

Oliveira, C. Badue, A. F. De Souza, “Following the Leader using a Tracking System

based on Pre-trained Deep Neural Networks”, 2017 IEEE 30th International Joint

Conference on Neural Networks (IJCNN 2017), Anchorage, Alaska, USA, 2017.

68

9 REFERENCES

[BAU15] D. G. Bautista, J. Pérez, V. Milanés and F. Nashashibi, “A Review of Motion

Planning Techniques for Automated Vehicles”, IEEE Transactions on Intelli-

gent Transportation Systems, vol. 17, no. 4, pp. 1135 – 1145, 2015.

[BUE07] M. Buehler, K. Iagnemma, S. Singh, (Eds.). “The 2005 DARPA Grand Chal-

lenge: The Great Robot Race”, Springer, 2007.

[BUE09] M. Buehler, K. Iagnemma, S. Singh, (Eds.). “The DARPA Urban Challenge:

Autonomous Vehicles in City Traffic.” Springer, 2009.

[CAR17] V. Cardoso, J. Oliveira, T. Teixeira, C. Badue, F. Mutz, T. Oliveira-Santos,

L. Veronese and A. F. De Souza, “A Model-Predictive Motion Planner for

the IARA Autonomous Car”, 2017 IEEE International Conference on Robot-

ics and Automation (ICRA 2017), Singapura, pp. 225-230, 2017.

[CHO05] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki and

S. Thrun, “Principles of Robot Motion: Theory, Algorithms and Implementa-

tions”, Massachusetts, The MIT Press, 2005.

[CUR08] P. N. Currier, “Development of an Automotive Ground Vehicle Platform for

Autonomous Urban Operations”, M.S. Thesis, Virginia Polytechnic Institute

and State University, Blacksburg, VA, 2008.

[DEL13] D. A. De Lima and G. A. S. Pereira, “Navigation of an autonomous car using

vector fields and the dynamic window approach”, Journal of Control, Auto-

mation and Electrical Systems, vol. 24(1-2), pp. 106-116, 2013.

[DES16] A. F. De Souza, J. R. C. Silva, F. Mutz, C. Badue and T. Oliveira-Santos,

“Simulating Robotic Cars Using Time-Delay Neural Networks”, 2016 Inter-

national Joint Conference on Neural Networks (IJCNN 2016), Vancouver,

BC, pp. 1261-1268, 2016.

[DIA12] J. E. A. Dias, G. A. S. Pereira, and R. M. Palhares, “Identificação do modelo

dinâmico longitudinal de um carro autônomo”, Anais do Congresso Brasilei-

ro de Automática, pp. 461-468, 2012.

[FER05] D. Ferguson and A. Stentz, “Field D*: An Interpolation-based Path Planner

and Replanner”, Robotics search: Results of the 12th International Symposi-

um (ISRR'05), San Francisco, CA, pp. 239-253, 2005.

[FER08] D. Ferguson, T. Howard and M. Likhachev, “Motion Planning in Urban En-

vironments”, Journal of Field Robotics, vol. 25, no. 11–12, pp. 939–960,

2008.

[FER14] L. C. Fernandes, J. R. Souza, G. Pessin, P. Y. Shinzato, D. Sales, C. Mendes,

... and Wolf, D. F., “CaRINA intelligent robotic car: Architectural design and

applications”, Journal of Systems Architecture, vol. 60(4), pp. 372-392,

2014.

69

[GUI16] R. Guidolini, C. Badue, M. Berger and A. F. De Souza, “A Simple Yet Effec-

tive Obstacle Avoider For The IARA Autonomous Car”, 2016 IEEE 19th

International Conference on Intelligent Transportation Systems (ITSC 2016),

Rio de Janeiro, Brazil, pp. 1914-1919, 2016.

[GUI17] R. Guidolini, C. Badue, F. Mutz and A. F. De Souza, “Neural-Based Model

Predictive Control for Tackling Steering Delays of Autonomous Cars”, 2017

IEEE 30th International Joint Conference on Neural Networks (IJCNN

2017), Anchorage, Alaska, USA, pp. 4324-4331, 2017.

[HOH03] G. Hohpe, B. Woolf, “Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions”, 1. ed. Addison-Wesley Professional,

2003.

[HON10] L. M. Honório, L. L. Vermaas, L. M. Gonçalves, and M. Vidigal, “Uma

metodologia para aprendizado supervisionado aplicada em veículos inteli-

gentes”, XVIII Congresso Brasileiro de Automática, pp. 1028-1035, 2010.

[HOW09] T.M. Howard, “Adaptive Model-Predictive Motion Planning for Navigation

in Complex Environments”, Ph.D. Thesis, Carnegie Mellon University, 2009.

[KAT15] C. Katrakazas, M. Quddus, W.-H. Chen and L. Deka, “Real-Time Motion

Planning Methods for Autonomous On-Road Driving: State-Of-The-Art and

Future Research Directions”, Transportation Research Part C: Emerging

Technologies, vol. 60, pp. 416-442, 2015.

[KOG06] D. Kogan and R. Murray, “Optimization-Based Navigation for the Darpa

Grand Challenge”, 45th IEEE Conference on Decision and Control (CDC

2006), San Diego, USA, 2006.

[KUW09] Y. Kuwata, J. Teo, S. Member, G. Fiore, S. Karaman, E. Frazzoli, S. Mem-

ber, J. P. How, “Real-Time Motion Planning with Applications to Autono-

mous Urban Driving”, IEEE Transactions on Control Systems Technology,

vol. 17, no. 5, pp. 1105–1118, 2009.

[LIK09] M. Likhachev and D. Ferguson, “Planning Long Dynamically Feasible Ma-

neuvers for Autonomous Vehicles”, International Journal of Robotics Re-

search, vol. 28, no. 8, pp. 933–945, 2009.

[LYR15] L. J. Lyrio, T. Oliveira-Santos, C. Badue and A. F. De Souza, "Image-Based

Mapping, Global Localization and Position Tracking Using VG-RAM

Weightless Neural Networks," 2015 IEEE International Conference on Ro-

botics and Automation (ICRA), Seattle, WA, pp. 3603-3610, 2015.

[MAG13] A. C. Magalhães, M. Prado, V. Grassi, and D. F. Wolf, “Autonomous vehicle

navigation in semi-structured urban environment”, IFAC Proceedings, vol

46(10), pp. 42-47, 2013.

[MCN11] M. McNaughton, C. Urmson , J. M. Dolan and J. W. Lee, “Motion Planning

for Autonomous Driving with a Conformal Spatiotemporal Lattice”, 2011

IEEE International Conference on Robotics and Automation (ICRA 2011),

Shangai, China, pp. 4889-4895, 2011.

70

[MON03] M. Montemerlo, N. Roy and S. Thrun, “Perspectives on Standardization in

Mobile Robot Programming: The Carnegie Mellon Navigation (CARMEN)

Toolkit”, International Conference on Intelligent Robots and Systems

(IROS), Tokyo, Japan, pp. 2436-2441, 2003.

[MUT16] F. Mutz, L. P. Veronese, T. Oliveira-Santos, E. Aguiar, F. A. Auat-Cheeín

and A. F. De Souza, “Large-Scale Mapping In Complex Field Scenarios Us-

ing An Autonomous Car”, Expert Systems with Applications, vol. 46, pp.

439-462, 2016.

[QUI09] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler

and A. Y. Ng, “ROS: an open-source Robot Operating System”. ICRA work-

shop on open source software, vol. 3, No. 3.2, p. 5, 2009.

[RAD14] R. R. Radaelli, C. Badue, M. A. Gonçalves, T. O. Santos and A. F. De Souza,

“A Motion Planner for Car-Like Robots Based on Rapidly-Exploring Ran-

dom Trees”, 4th Ibero-American Conference on Artificial Intelligence

(IBERAMIA 2014), Santiago, Chile, pp. 469-480, 2014.

[ROM14] R. A. F. Romero et al., “Robótica Móvel”, 1. ed., Rio de Janeiro: LTC, 2014.

[ROS17] ROS.org, “ROS wiki” Available at http://wiki.ros.org/. Accessed on Novem-

ber 26, 2017.

[SAE14] SAE International, “SAE International Standard J3016”, 2014. Available at

http://www.sae.org/misc/pdfs/automated_driving.pdf. Accessed on July 20,

2017.

[SHA13] R. Shanker, A. Jonas, S. Devitt, K. Huberty, S. Flannery, W. Greene, ... & J.

Moore, “Autonomous cars: Self-driving the New Auto Industry Para-

digm”, Morgan Stanley Blue Paper, 2013.

[SIM17] R. Simmons, “The Inter-Process Communication (IPC) System”. Available at

http://www.cs.cmu.edu/afs/cs/project/TCA/www/ipc/ipc.html. Accessed on

August 22, 2017.

[THR05] S. Thrun, W. Burgard and D. Fox, “Probabilistic Robotics”, Massachusetts,

The MIT Press, 2005.

[THR06] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, ...

and K. Lau, “Stanley: The Robot that Won the DARPA Grand Chal-

lenge”, Journal of Field Robotics, vol. 23, no. 9, pp. 661-692, 2006.

[TOR10] TORC Technologies, “ByWire XGV™ User Manual - Hybrid Escape Drive-

by-Wire Platform”, TORC Robotics, Version 1.5, Blacksburg, VA, 2010.

[TOR17] TORC Robotics. Available at http://www.torcrobotics.com. Accessed on

September 15, 2017.

http://www.torcrobotics.com/

71

[VER15] L. P. Veronese, E. de Aguiar, R. C. Nascimento, J. Guivant, F. Auat Cheein,

A. F. De Souza and T. Oliveira-Santos, “Re-Emission and Satellite Aerial

Maps Applied to Vehicle Localization on Urban Environments”, 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

2015), Hamburg, Germany, pp. 4285-4290, 2015.

[VER16] L. P. Veronese, F. A. Cheeín, T. O. Santos, F. W. Mutz, C. Badue and A. F.

De Souza, “A Light-Weight Yet Accurate Localization System for Autono-

mous Cars in Large-Scale and Complex Environments”, 2016 IEEE 19th In-

ternational Conference on Intelligent Transportation Systems (ITSC 2016),

Rio de Janeiro, Brazil, pp. 520-525, 2016.

[WAY17] Waymo, “Waymo Safety Report”, 2017, Available at

https://waymo.com/safetyreport/. Accessed on November 27, 2017.

[WHO15] WHO - World Health Organization, “WHO Global Status Report on Road

Safety 2015, Geneva, 2015.

[XU12] W. Xu, J. Wei, J. M. Dolan, H. Zhao and H. Zha, “A Real-Time Motion

Planner with Trajectory Optimization for Autonomous Vehicles“, 2012 IEEE

International Conference on Robotics and Automation Robotics and Automa-

tion, Saint Paul, USA, pp. 2061-2067, 2012.

[ZIE14] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T.

Dang, U. Franke, N. Appenrodt, C. Keller, E. Kaus, R. Herrtwich, C. Rabe,

D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler, C. Knoppel, J. Hipp,

M. Haueis, M. Trepte, C. Brenk, A. Tamke, M. Ghanaat, M. Braun, A. Joos,

H. Fritz, H. Mock, M. Hein and E. Zeeb, “Making Bertha Drive – An Auton-

omous Journey on a Historic Route”, IEEE Intelligent Transportation Sys-

tems Magazine, vol. 6, no. 2, pp. 8–20, 2014.

