
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO 

CENTRO DE CIÊNCIAS AGRÁRIAS E ENGENHARIAS 

PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA E MELHORAMENTO 

 

 

ARIANE TONETTO VIEIRA 

 

 

 

 

Copia LTR-retrotransposon superfamily occurrence and distribution and its role in the nuclear and 

chromosomal DNA content variations in two Passiflora species 

 

 

 

 

ALEGRE 

2018



 

    

ARIANE TONETTO VIEIRA 

 

 

 

 

 

 

 

Copia LTR-retrotransposon superfamily occurrence and distribution and its role in the nuclear and 

chromosomal DNA content variations in two Passiflora species 

 

Dissertação apresentada à Universidade Federal do 

Espírito Santo como requisito parcial para obtenção do 

Título de Mestre pelo Programa de Pós-Graduação em 

Genética e Melhoramento.  

Orientador: Dr. Wellington Ronildo Clarindo 

 

 

 

 

 

ALEGRE 

2018



 

 

    



 

 

    

 

 

 

 



ii 

 

    

 

 

 

 

 

A Deus, 

Aos meus pais Sérgio e Graça (in memoriam), meu irmão Matheus, e meus avós Paulo e Luzia por todo 

apoio durante minha vida e minha formação. 

 

 

 

Dedico 



iii 

 

    

AGRADECIMENTOS 

A Deus por me conceder sabedoria e força durante a minha caminhada. 

À Universidade Federal do Espírito Santo pelo apoio logístico no desenvolvimento desse projeto 

e ao Programa de Pós-Graduação em Genética e Melhoramento; 

À FAPES (Fundação de Amparo à Pesquisa do Espírito Santo) pela concessão da bolsa e pelo 

financiamento da pesquisa a qual esse trabalho está vinculado; 

Ao meu orientador, professor Dr. Wellington Ronildo Clarindo, pelos ensinamentos concedidos, 

os quais auxiliaram no meu desenvolvimento científico.  

Às minhas coorientadoras Dra. Fernanda Aparecida Ferrari Soares, pelo ensinamento acerca da 

citogenética molecular, e professora Dra. Maria Andréia Corrêa Mendonça, pela disponibilidade em 

sempre me ajudar desde o pré-projeto. 

À professora Dra. Milene Miranda Praça Fontes, pelo apoio e ensinamentos durante minha 

graduação e mestrado. 

Aos membros da Banca Examinadora, professores Milene Miranda Praça Fontes, Maria Andréia 

Corrêa Mendonça e Guilherme Mendes de Almeida Carvalho, por terem aceitado o convite para 

participar, contribuindo com sugestões para a melhoria do trabalho. 

Ao professor Carlos Roberto de Carvalho (UFV), pela contribuição nas análises de citometria de 

fluxo. 

A todos os professores, pelos ensinamentos que contribuíram para o meu crescimento 

acadêmico, profissional e pessoal. 

Aos técnicos Hamon e Soninha, pela disponibilidade em sempre me ajudar. 

Aos colegas dos Laboratórios de Citogenética e Cultura de Tecidos e de Genética e 

Melhoramento Vegetal, por participarem no desenvolvimento desta pesquisa, tornando-a mais alegre e 



iv 

 

    

descontraída. Em especial à Cristiana, pelo apoio nas análises moleculares, ao Lucas, pela ajuda com os 

primers. 

À minha família, pelo amor e apoio incondicional, meu pai Sérgio, meu irmão Matheus e meus 

avós Paulo e Luzia, por acreditarem que o meu sonho pudesse se tornar real. Dedico minha conquista a 

vocês. 

Ao meu melhor amigo e namorado, Adan, pelo amor, alegria, companheirismo, apoio, 

compreensão e paciência em todos os momentos. 

Aos meus amigos Natália, Stéfanie, Victor e Darley, pelo apoio, paciência, conselhos, troca de 

conhecimentos e todos os nossos momentos de risadas sem fim. 



v 

 

    

BIOGRAFIA 

Ariane Tonetto Vieira, filha de Milton Sérgio Vieira e Maria das Graças Tonetto Vieira (in 

memoriam), nasceu em Vitória, Espírito Santo, no dia 25 de março de 1994. Em 2012, ingressou na 

Universidade Federal do Espírito Santo, em Alegre, ES, graduando-se Bacharela em Ciências Biológicas 

em Agosto de 2016. Durante o período de graduação foi bolsista de iniciação científica PIBIC/CNPq, 

tendo desenvolvido atividades de pesquisa nas áreas de citogenética vegetal, de cultura de tecidos e de 

citometria de fluxo. Em agosto de 2016 iniciou o Mestrado no Programa de Pós-graduação em Genética e 

Melhoramento da Universidade Federal do Espírito Santo, atuando na área de Biologia Evolutiva e 

Citogenética, sob orientação do Prof. Dr. Wellington Ronildo Clarindo, submetendo-se à defesa de 

dissertação em julho de 2018. 



vi 

 

    

LISTA DE ABREVIATURAS 

APM – Amiprophos-methyl 

BAC – Bacterial artificial chromosome 

BES – BAC- end sequence 

DAPI – 4', 6-diamidino-2-phenylindole 

FCM – Flow cytometry 

FISH – Fluorescent in situ hybridization  

ICM – Image cytometry 

IOD – Integrated optical density 

LTR – Long terminal repeat  

LTR-RT – Long terminal repeat retrotransposon 

PBS – Phosphate buffer saline 

PCR – Polymerase chain reaction 

rDNA – ribosomal RNA  

SD – Standard deviation 

SSC – Sodium citrate 

YR – Tyrosine recombinase 



vii 

 

    

LISTA DE FIGURAS 

Fig. 1 – Cytogenetic preparations of P. edulis (a, b) and P. quadrangularis (c, d) presenting 2n = 18 

chromosomes and showing different chromatin condensation levels. (a) Initial prometaphase and late 

prometaphase, (b) late prometaphase, (c) metaphase, (d) late prometaphase and prophase. Bar = 5 µm. .... 9 

Fig. 2 – P. edulis (a) and P. quadrangularis (b) karyograms showing chromosomes stoichiometrically 

stained with Schiff's reagent. (a) P. edulis and (b) P. quadrangularis karyograms displaying higher 

(above) and lower (below) chromatin compaction level. In P. edulis, the chromosomes 1, 3, 5 – 7 and 9 

are metacentrics, and 2, 4 and 8 are submetacentrics. Chromosomes 2 and 6 showed higher DNA content 

than chromosomes 1 and 5, respectively. In P. quadrangularis, chromosomes 4 and 8 are metacentrics, 

and 1 – 3, 5 – 7 and 9 are submetacentrics. Chromosome 8 had more DNA content than chromosome 7. 

Bar = 5 µm. ................................................................................................................................................ 12 

Fig. 3 – FISH in P. edulis metaphase chromosomes (a), and in interphase nucleus and prometaphase 

chromosomes of P. quadrangularis (b) with 18S rDNA probe labelled with ChromaTide-488-5-dUTP 

(green) counterstained with DAPI. (a) P. edulis 18S rDNA sites were mapped on the terminal portion of 

the chromosome 6 long arm and in the terminal portion of the chromosome 8 short arm. (b) P. 

quadrangularis 18S rDNA signal was identified in the interphase nucleus and in below karyogram at the 

terminal portion of the chromosome 7 long arm. Two 18S rDNA sites were mapped at the terminal 

portion of the chromosome 7 long arm and the terminal portion of the chromosome 8 short arm (last 

karyogram). Bar = 5 µm............................................................................................................................. 13 

Fig. 4 – FISH in metaphase chromosomes stained with DAPI (blue) and Copia LTR-RT superfamily 

probe labelled with ChromaTide-488-5-dUTP (green), along P. edulis (a) and P. quadrangularis (b) 

chromosomes. FISH produced more scattered and accumulated hybridization signals in some 

chromosomes than in others. (a) In P. edulis prometaphases/metaphases, the hybridization signals were 

dispersed and stronger on chromosomes 3, 4 and 6, and weaker on the other chromosomes. (b) In P. 

quadrangularis chromosomes, the stronger signals were observed on chromosomes 1, 4, 5 and 8, and 

weaker signals on the other chromosomes. It is noteworthy that in both species the chromosome 4 

presented stronger hybridization signals, and chromosome 9 presented weaker signals. In addition, the 

signals were stronger on the P. quadrangularis chromosomes than P. edulis. Bar = 5 µm. ...................... 14 



viii 

 

    

Fig. 5 – Ideogram of P. edulis (a) and P. quadrangularis (b) summarizing the data about total length 

(μm), chromosome class, mean 1C chromosomal DNA content value (pg), stronger and weaker signals 

from the Copia LTR-RT superfamily and 18S rDNA mapping. ................................................................ 18 

 



ix 

 

    

LISTA DE TABELA 

Table 1 Mean 1C chromosomal DNA content, morphometry and chromosome class of P. edulis and P. 

quadrangularis. .......................................................................................................................................... 11 

 



x 

 

    

SUMÁRIO 

Introduction ................................................................................................................................................ 1 

Materials and methods ............................................................................................................................... 3 

Plant material ............................................................................................................................................ 3 

In vitro plantlets ........................................................................................................................................ 4 

Nuclear DNA content ............................................................................................................................... 4 

Prometaphases and metaphases ................................................................................................................ 5 

Morphometry and chromosomal DNA content ........................................................................................ 5 

18S rDNA and LTR retrotransposon sequences ....................................................................................... 6 

FISH ......................................................................................................................................................... 7 

Results ......................................................................................................................................................... 8 

Nuclear DNA content ............................................................................................................................... 8 

Morphometry and chromosomal DNA content ........................................................................................ 9 

18S rDNA and LTR retrotransposon sequences ..................................................................................... 12 

Discussion .................................................................................................................................................. 15 

Copia LTR-RT superfamily promotes the nuclear DNA content variation ............................................ 15 

Looking for influence of the Copia LTR-RT superfamily on Passiflora karyotype evolution ............... 17 

Total chromosome length, chromosomal DNA content and LTR retrotransposons: understanding 

intraspecific karyotype variations ........................................................................................................... 20 

Conclusions ............................................................................................................................................... 21 

Acknowledgments ..................................................................................................................................... 21 

References ................................................................................................................................................. 23 

 



xi 

 

    

Article: Copia LTR-retrotransposon superfamily occurrence and distribution and its role in the nuclear 

and chromosomal DNA content variations in two Passiflora species. 

 

Authors: Ariane Tonetto Vieira1, Fernanda Aparecida Ferrari Soares2, Cristiana Torres Leite1, Maria 

Andréia Corrêa Mendonça3, Wellington Ronildo Clarindo2 

 

1Laboratório de Citogenética e Cultura de Tecidos, Departamento de Biologia, Centro de Ciências 

Agrárias e Engenharias, Universidade Federal do Espírito Santo. ZIP: 29.500-000 Alegre – ES, Brazil. 

2Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências 

Biológicas e da Saúde, Universidade Federal de Viçosa. ZIP: 36.570-900 Viçosa – MG, Brazil. 

3Laboratório de Biotecnologia, Instituto Federal Goiano – Campus Rio Verde. ZIP: 75.901-970 Rio 

Verde –GO, Brazil. 

 

Corresponding author: e-mail: well.clarindo@ufv.br 

Tel.: +55 31 3899-2568, FAX: +55 31 3899-1296 

mailto:welbiologo@gmail.com


xii 

 

    

Resumo 

Semelhante a outras espécies de Passiflora, a variação do conteúdo de DNA nuclear ocorre entre 

Passiflora edulis e Passiflora quadrangularis que possuem o mesmo número 2n de cromossomos. Para 

algumas espécies, esta variação se acumula distintamente entre os cromossomos, sendo os elementos 

retrotransponíveis uma das causas. Entre os retroelementos, os retrotransposons LTR constituem uma 

fração significativa dos genomas, desempenhando um papel importante na evolução do cariótipo. Este 

estudo visa investigar a ocorrência e distribuição dos retrotransposons LTR da superfamília Copia em 

cromossomos de P. edulis e P. quadrangularis, e entender o papel dessas sequências nas variações do 

conteúdo de DNA nuclear e cromossômico. Corroborando com a origem monofilética das espécies, os 

cariótipos apresentaram o mesmo número de cromossomos, predominância de cromossomos 

metacêntricos e submetacêntricos, e dois cromossomos com o rDNA 18S na porção terminal dos braços 

curtos e longos. A evolução do cariótipo foi evidenciada pelo papel do retrotransposon LTR nas 

diferenças de conteúdo de DNA nuclear e cromossômico entre as espécies, sendo este retroelemento 

distribuído de maneira diferente e aleatória entre todos os cromossomos. A identificação inequívoca de 

cada cromossomo por meio da morfometria, rDNA 18S, conteúdo de DNA e retrotransposons LTR 

também mostrou que, individualmente para o cariótipo de P. edulis e P. quadrangularis, não há relação 

entre o comprimento total e o conteúdo de DNA em alguns cromossomos. Esse fenômeno ocorreu nos 

cromossomos 2 e 6 de P. edulis em relação aos cromossomos 1 e 5, respectivamente, e no cromossomo 8 

de P. quadrangularis para o cromossomo 7. Buscando o refinamento da metodologia citogenética, este 

estudo evidenciou cada cromossomo de P. edulis e P. quadrangularis, mostrando algumas alterações 

cariotípicas e os resultados promovidos pelos retrotransposons LTR. 

 

Palavras-chave: maracujá, evolução do cariótipo, cromossomo, tamanho do genoma, retroelementos. 
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Abstract 

Similar to other Passiflora species, nuclear DNA content variation occurs between Passiflora edulis and 

Passiflora quadrangularis, which show the same 2n chromosome number. For some species, this 

variation accumulates distinctly in the chromosomes, with retrotransposable elements being considered 

one of the causes for this observed variation. LTR-retrotransposons (LTR-RT) constitute a substantial 

portion of the genomes, playing an important role in karyotype evolution. This study aims to investigate 

the occurrence and distribution of the Copia LTR-RT superfamily in P. edulis and P. quadrangularis 

chromosomes, and to understand the role of these sequences in nuclear and chromosomal DNA content 

variations. The karyotypes showed the same chromosome number, predominance of metacentric and 

submetacentric chromosomes, as well as 18S rDNA in the terminal portion of the short and long arms of 

two chromosomes, corroborating the monophyletic origin of the species. The role of LTR-RT in 

karyotype evolution was evidenced by differences in nuclear and chromosomal DNA content between the 

species as well as differently and randomly distributed retroelements between all chromosomes. 

Unambiguous identification of each chromosome by morphometry, 18S rDNA, DNA content and LTR-

RT allowed us to show that there is no relation between the total length and DNA content for some 

chromosomes. This phenomenon occurred in P. edulis chromosomes 2 and 6 in relation to chromosomes 

1 and 5, respectively, and in P. quadrangularis chromosome 8 compared to 7. Using refined cytogenetic 

approaches, we analyzed each chromosome of P. edulis and P. quadrangularis individually, finding that 

karyotype changes were promoted by LTR retrotransposons.  

 

Keywords: Passionfruit; Karyotype evolution; Chromosome; Nuclear genome size; Retroelements. 
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Introduction 

Passiflora L. is the most representative subgenus of the Passiflora L. genus, comprising species 

with x = 9 and x = 10 chromosomes. This subgenus is a good taxon to study the causes of the nuclear 

genome size variation, since species with the same basic chromosome number (x = 9) have marked 

differences in nuclear DNA content, specifically 1C = 1.25 pg for Passiflora edulis Sims (Yotoko et al. 

2011) and 1C = 2.68 pg for Passiflora quadrangularis L. (Souza et al. 2008). This variation can be 

related to differences between the karyotypes, which may be accumulated in distinct chromosomes, thus 

promoting chromosomal DNA content variation. So, it is important to characterize each chromosome pair 

by classical cytogenetics, and use additional tools to provide quantitative data on the DNA content of 

each chromosome. Hence, this study focused on two questions: is the nuclear genome size variation 

evenly distributed among all chromosomes of P. edulis and P. quadrangularis? Conversely, are there 

chromosomes containing more DNA than others? 

Nuclear DNA content variation in plants can occur due to distinct events, such as the 

accumulation and/or elimination of repetitive DNA sequences (Bennetzen and Wang 2014). A significant 

contribution to the evolution of the genome size in plants is related to class I transposable elements, called 

retrotransposons (Bennetzen and Wang 2014). Retrotransposons can be divided into four groups: Long 

Terminal Repeat retrotransposons (LTR-RT), Non-LTR retrotransposons, Tyrosine Recombinase 

retrotransposons, and Penelope retrotransposons (Eickbush and Jamburuthugoda 2008). The majority of 

the LTR-RT belongs to either Copia or Gypsy superfamilies (Heslop-Harrison and Schwarzacher 2011). 

These elements are abundant in plants, for example comprising 75% of the total genome of Zea mays L. 

(Schnable et al. 2009), 62% in Solanum lycopersicum L. (Paz et al. 2017), or 20% in Arabdopsis thaliana 

L. (Underwood et al. 2017). In P. edulis, the LTR-RT correspond to 17.6% (~1.83 Mb) of sequenced 

genome data, equivalent to about 1% (10.4 Mb) of the total genome size (Munhoz et al. 2018). LTR-RT 

occurrence leads us to question the role of these elements in the nuclear and in chromosomal DNA 

content variations among monophyletic taxa. Therefore, a third question arises: might the possible 

variations in nuclear and chromosomal DNA contents in P. edulis and P. quadrangularis be due to LTR-

RT occurrence? 

LTR-RT play a structural role in the heterochromatin between telomere and centromere portions 

(Bennetzen 2000; Gao et al. 2008; Bierhoff et al. 2013; Li et al. 2017), as well as in the centromere 
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(Castro Nunes et al. 2018), telomeres (Zou et al. 2009), knobs (Díez et al. 2013) and chromomeres 

(Chang et al. 2008). As functional component of the centromere heterochromatin, LTR-RT contribute to 

the kinetochore structure, which is a fundamental chromosome portion for microtubule association and 

chromosome and chromatid segregation during anaphases (Freeling et al. 2015). In addition, these 

retroelements can interfere in gene expression, when their insertion occurs close to genes, promoting 

epigenetic changes (Bierhoff et al. 2013; Vicent and Casacuberta 2017). Uncontrolled amplification of 

LTR-RT can expand heterochromatin domains in plants, as reported for A. thaliana in which 

pericentromeric heterochromatin has been expanded 6 to 10 times in the last 5 million years (Hall et al. 

2006). Given the amount of LTR-RT observed in different plant taxa and the structural and functional 

roles of these elements, the knowledge of the physical location of these sequences in each chromosome 

could help us to understand the importance of these sequences in karyotype evolution. Besides, this 

knowledge is important to interpret the differences in nuclear DNA contents between species, as observed 

in Passiflora. 

The Copia LTR-RT superfamily is randomly located in genomes, but it can frequently be found 

in heterochromatic regions of the plant chromosomes. These elements can exhibit a block distribution in 

subterminal and telomeric regions, as seen in Erianthus arundinaceus Hainan chromosomes (Huang et al. 

2017), or, conversely, a dispersed distribution in the centromeric and pericentromeric regions as in Coffea 

canephora Pierre ex Froehner, Coffea eugenioides S. Moore and Coffea arabica L. chromosomes (Castro 

Nunes et al. 2018). In addition, retrotransposons can be distributed evenly throughout, as in euchromatin 

in Z. mays (Mroczek and Dawe 2003) and in Solanum lycopersicum (Xu and Du 2014) chromosomes. 

Although these studies mark the chromosomal regions in which the LTR-RT occur, most of them do not 

assemble the karyogram in order to indicate which chromosomes hold these transposable elements. So, to 

address the questions of this study and to map the LTR-RT, morphometric characterization and DNA 

content of each chromosome were provided. We also used an 18S rDNA marker was used for 

unambiguous identification of individual chromosomes. 

In this context, image cytometry (ICM) can be used as an additional tool for karyotype 

characterization (e.g. Z. mays, Rosado et al. 2009; Silva et al. 2018). Associating cytogenetic and ICM 

approaches, Z. mays ‘Black Mexican Sweet Corn’ individuals were intraspecifically discriminated based 

on DNA content of each chromosome of the A and B complements, leading to distinguished variations in 
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DNA content that amounted to 1C = 0.045 pg (Rosado et al. 2009). In another ICM study, Silva et al. 

(2018) updated the Z. mays ‘AL Bandeirante’ karyotype from the descriptive to the quantitative level by 

estimating the DNA content of all chromosomes as well as their long and short arms, and the satellite of 

the chromosome 6. They found that the DNA content of chromosome 9 (1C = 0.280 pg) was higher than 

of chromosome 8 (1C = 0.266 pg), a fact associated to the occurrence of the knob in the long arm of the 

chromosome 9. In this species, retrotransposons are abundant in the heterochromatin knobs, with knobs 

being related to genome size increase (Díez et al. 2013). 

Using cytogenetic tools, our study provides a karyotype refinement of two Passiflora species, by 

means of: (a) morphometric characterization of each chromosome, (b) measurement of the nuclear and 

chromosomal DNA contents, (c) mapping of 18S rDNA sites, and (d) identifying of the LTR-RT 

sequences of the Copia superfamily on the karyotypes of P. edulis and P. quadrangularis. The results 

showed the occurrence of the Copia LTR-RT superfamily in P. edulis and P. quadrangularis 

chromosomes, evidencing one relevant cause of the nuclear and chromosomal DNA content variations. 

Together, these findings provide important insights into the karyotype evolution of species with the same 

2n chromosome number. 

 

Materials and methods 

 

Plant material 

Fruits of Passiflora edulis (Voucher – 34970) and P. quadrangularis (Voucher – 34962), 

Passiflora subgenus, were collected in the experimental area of the Universidade Federal do Espírito 

Santo, Campus Alegre, Brazil (20 45' 49" S, 41 31' 58" W). P. edulis and P. quadrangularis were chosen 

because they exhibit (a) the same basic chromosome number, x = 9, as revealed by our previous classical 

cytogenetic studies, and (b) contrasting nuclear DNA contents (Souza et al. 2008; Yotoko et al. 2011). 

Flow cytometry was conducted in order to confirm the difference in nuclear DNA content between the 

species. For this, Solanum lycopersicum L. ‘Stupické’ seeds were used as internal standard (2C = 2.00 pg, 

Praça-Fontes et al. 2011). 
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In vitro plantlets  

P. quadrangularis and P. edulis seeds were manually scarified to remove the pericarp using a 

scalpel. The seeds were disinfested in a laminar flow chamber by immersion in 70% ethanol for 20 s, then 

for 20 min in 1.5% commercial sodium hypochlorite containing Tween 20 (Sigma®), one drop for every 

100 ml. The seeds were washed four times in distilled/deionized/sterilized water, dried in sterilized filter-

paper, and inoculated in germination medium composed of 2.15 g l-1 MS salts (Sigma®), 10 ml l-1 MS 

vitamins (Murashige and Skoog 1962), 30 g l-1 sucrose (Sigma®) and 7 g l1 Agar (Isofar®), pH 5.7. The 

medium was poured into glass vials and autoclaved for 20 min at 121°C. The seeds were maintained in in 

vitro conditions until developing into seedlings, whose leaves were used for the flow cytometry 

procedures. After seed germination, 1.0–2.0 cm roots were used in cytogenetic procedures. 

 

Nuclear DNA content 

Nuclei extraction of P. edulis and P. quadrangularis (samples) and S. lycopersicum (internal 

standard) was performed according to Galbraith et al. (1983). Leaf fragments of 2 cm² were cut into Petri 

dishes containing 0.5 ml of OTTO I nuclear extraction buffer (Otto 1990), at 4°C, supplemented with 2 

mM dithiothreitol and 50 μg ml-1 RNAse (Sigma®). The suspension was adjusted to 1 ml using the same 

buffer, filtered through a 30 μm nylon mesh (Partec®) in 1.5 ml microtube, and then centrifuged at 100 xg 

for 5 min. The supernatant was discarded and the pellet resuspended and incubated for 10 min in 100 μl 

of OTTO-I nuclear extraction buffer. Subsequently, the suspensions were stained for 30 min in the dark 

with 1.5 ml of OTTO-I:OTTO-II (1:2) staining buffer (Otto 1990), supplemented with 50 mM 

dithiothreitol, 50 µg ml-1 RNase and 75 µM of propidium iodide (Sigma®). Then, the suspensions were 

filtered through a nylon mesh (Partec®) of 20 μm and analyzed on a Partec PAS® flow cytometer (Partec® 

Gmbh, Munster, Germany) equipped with a laser source (488 nm). The histograms were analyzed in the 

FlowMax program (Partec® Gmbh). Mean nuclear genome sizes of P. edulis and P. quadrangularis were 

obtained by multiplying the 2C value of S. lycopersicum (internal standard) by the ratio of fluorescent 

intensity corresponding to the G0/G1 nuclei peak.  
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Prometaphases and metaphases 

Approximately 1.0–2.0 cm roots of the in vitro germinated seeds were treated with 4 μM 

antitubulin amiprophos-methyl (APM, Sigma®, Carvalho et al. 2007) or with 4 µM APM/95.0 µM 

cycloheximide (Sigma®, Reis et al. 2014) from 1 h–8:30 h at 30ºC and roots gathered every 30 min, 16 h 

at 25ºC, or 16 h at 4ºC. Roots were washed with distilled water and fixed in methanol: acetic acid solution 

(3:1), changing this solution three times for 10 min each, and, after the last change, the material was 

stored at -20°C (Carvalho et al. 2007). After 24 h, the roots were washed with distilled water, and each 

apical root meristem was excised and transferred to 2 ml microtube containing enzymatic pool (4% 

cellulase – C1184 Sigma®, 1% macerozyme – R10 Kinki Yakult MFG, 0.4% hemicellulase – H2125 

Sigma® diluted in pectinase E6287 – Sigma®) diluted in distilled water in a ratio of 1:40–1:60 (enzymatic 

pool: distilled water). Each meristem was enzymatically macerated for 2 h at 34°C, washed with distilled 

water to remove the enzymatic pool, fixed in methanol: acetic acid (3:1) and stored at -20ºC. After at least 

12 h, slides were prepared by root meristem dissociation (one per slide) and air-drying techniques, and 

placed on a hot plate at 50ºC (Carvalho et al. 2007). 

Immediately after preparation, all slides were evaluated on the Nikon Eclipse Ci (Nikon) phase 

contrast microscope and selected for ICM and fluorescence in situ hybridization (FISH) following the 

criteria: (a) mitotic cells with little or no cytoplasmic background, (b) chromosomes with well-defined 

telomere and centromere, and (c) chromosomes without overlaps and structural deformations of the 

chromatin.  

 

Morphometry and chromosomal DNA content 

Some pre-selected slides were stored in methanol: formaldehyde: acetic acid (17:5:1) fixative for 

24 h at 25°C, washed in distilled water and submitted to the Feulgen reaction. For this, the chromosomes 

in the slides were hydrolyzed in 5 M HCl (Merck®) at 25ºC for 18–24 min. The slides were washed in 

distilled water, and stained for 12 h at 4°C with Schiff’s reagent (in 100 ml: 0.5 g of basic fuchsine 

Sigma®, 15 ml of 1 M HCl, 2.23 g of potassium metabisulfite Sigma® and 0.703 g of activated charcoal 

Sigma®). Finally, the slides were washed three times in distilled water and air-dried (Carvalho et al. 

2011). 
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A Nikon Eclipse 80i model (Nikon, Japan) microscope was calibrated and configured according 

to Carvalho et al. (2011). A standard micrometer slide (1,000 μm, Nikon, Japan) for the area spatial 

parameter was used for image system calibration and three tests were performed: stability, linearity and 

uniformity. The stability test consisted of measuring the gray level of a pixel to evaluate the variations of 

the light source of the microscope. During the capture routine, the system analysis was only conducted 

after stabilization time. The linearity test was performed with a set of certified neutral density filters: 0.15, 

0.30, 0.40, 0.60, 0.90 and 2.50 (Edmund Industrial Optics). The uniformity test was conducted with 11 

staggered density filters (Edmund Industrial Optics). 

Prometaphase and metaphase images were captured using a CCD digital video camera of 8-bits 

gray (Nikon, Japan) coupled to a Nikon 80i microscope (Nikon, Japan) equipped with a stabilized light 

source, a 100x Nikon Pan Fluor oil immersion objective with 1.30 numerical aperture, a planat achromat 

condenser with 0.7 aperture, ND6 neutral density filter, and a 550–570 nm interference green color filter. 

The microscope was coupled to a Pentium Intel Core i5 (Termaltake – Asus) computer featuring the Nis – 

Elements 3.0 imaging software (Nikon, Japan). 

We selected ten prometaphase/metaphase samples of P. edulis and of P. quadrangularis for 

DNA content measurement of each chromosome. For this, the mean 1C nuclear value (pg) obtained by 

flow cytometry, was proportionally distributed against the mean integrated optical density (IOD) values 

of each chromosome calculated by ICM (Carvalho et al. 2011). Chromosome morphometry was 

characterized for the same ten prometaphase/metaphase samples, and the class was determined as 

proposed by Levan et al. (1964) and reviewed by Guerra (1986). 

 

18S rDNA and LTR retrotransposon sequences 

18S rDNA probe was generated by PCR using the forward and reverse primers F: 5'-

CTGCCAGTAGTCATATGC-3' and R: 5'-ATGGATCCTCGTTAAGGG-3' (Unfried et al. 1989). The 

probe of the Copia LTR-RT superfamily was generated with the primers F: 5'-

TTCTGAGGCAGGAGAGGAAG-3' and R: 5'-GGCGTGCTTCTTTCTTGAAC-3'. Copia LTR-RT 

superfamily primers were designed from the complete sequence of this LTR-RT obtained from GenBank 
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for P. edulis ‘MF401642’ and ‘CL43Contig33’ (deposited at https://www.ncbi.nlm.nih.gov/nuccore/ 

MF401642). 

Genomic DNA was extracted according to Doyle and Doyle (1990) using leaves of in vitro P. 

edulis plantlets, the species with lower nuclear DNA content. DNA concentration was quantified in a 

spectrophotometer (NanoDrop 2000 Thermo Scientific®), and its integrity was verified by 1.0% agarose 

gel electrophoresis. PCR was performed from 200 ng genomic DNA, 1x buffer (GoTaq®), 0.5 µM of the 

primers (F and R of each sequence), 1.3 mM of each dNTP, 1.25 U of Taq DNA polymerase (GoTaq®) 

and 3.0 mM MgCl2 and completed with distilled water to reach a final volume of 15 µl. Amplification 

conditions for 18S rDNA were: initial denaturation at 95°C for 5 min; 35 cycles at 95°C for 1 min, 60°C 

for 1 min and 72°C for 1 min 30 s; and final extension at 72°C for 5 min (Unfried et al. 1989). For the 

Copia LTR-RT superfamily, amplification conditions were: initial denaturation at 95°C for 5 min; 30 

cycles at 95°C for 45 s, 58°C for 30 s, 72°C for 1 min 30 s; and final extension at 72°C for 5 min. The 

reactions were conducted in an Applied Biosystems VeritiTM 96-Well Thermal Cycler. PCR products 

were analyzed by electrophoresis in 1.0% agarose gel.  

Amplification products showing ~200 bp of the Copia LTR-RT superfamily were purified using 

the Genomic Wizard® DNA Purification Kit according to the Promega Corporation protocol. Samples 

were sequenced by capillary electrophoresis in an ABI3730 apparatus using POP7 polymer and BigDye 

v3.1 by Myleus Biotechnology. Sequencing quality was verified using the free software Sequence 

Scanner Software (Applied Biosystems, deposited at: 

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?Cmd=catNavigate2&catID=600583&tab=D

etailInfo). Subsequently, the sequences were compared with those deposited in GenBank® through the 

BLASTn tool. 

 

FISH 

Some previously selected slides were stored in 70% ethanol at -20°C for at least 15 days, or in 

polypropylene vials only containing the slides at 37°C for at least 5 days. The procedures were performed 

according to Schwarzacher and Heslop-Harrison (2000) with modifications. The slides were treated in 1X 

phosphate buffer saline (PBS) for 5 min, 3% formalin (in 40 ml: 3.25 ml of 37% formaldehyde and 36.75 

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?Cmd=catNavigate2&catID=600583&tab=DetailInfo
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?Cmd=catNavigate2&catID=600583&tab=DetailInfo
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ml of 1X PBS buffer) for 15 min, 1X PBS buffer for 5 min and dehydrated in an ice col graded ethanol 

series (70%, 85%, 100%). 35 µL of hybridization mix containing 300 ng of the probe (18S rDNA or 

Copia LTR-RT superfamily), 50% formamide and 2X saline-sodium citrate (SSC) buffer was placed on 

the slide, which was covered with a HybriSlip™ plastic cover slip (Sigma®) and sealed with Rubber 

Cement (Elmer's). Chromosome and probe denaturation at 70ºC for 4 min and hybridization at 37ºC for 

24 h were performed in the thermocycler (Loccus do Brasil). Post-hybridization stringency washes were 

conducted in 2 X SSC at 58°C for 25 min.  

The slides were counterstained with 4', 6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich®) and 

sealed with colorless enamel. Prometaphases and metaphases were captured by a monochromatic CCD 

digital video camera DS-Fi1c of 8-bits gray (Nikon, Japan) coupled to an epifluorescence Nikon 

microscope 80i (Nikon) microscope equipped with a 100X objective lens, UV-2E/C (DAPI) and EN GFP 

(18S rDNA and Copia LTR-RT superfamily probes) filters. Captured images were edited in Adobe® 

Photoshop CS4. 

 

Results 

 

Nuclear DNA content 

The nuclei extraction and staining during the flow cytometry procedure resulted in histograms 

showing G0/G1 nuclei peaks with coefficient of variation below 5%. So, the mean nuclear DNA content 

of P. edulis was 2C = 3.39 ± 0.04 pg (1C = 1.695 pg) and P. quadrangularis was 2C = 5.46 ± 0.02 pg (1C 

= 2.73 pg), presenting an interspecific variation in nuclear genome size of ~61.06%. Because of this 

confirmed difference in 1C value, we performed the following steps: chromosome number determining, 

morphometric characterization, chromosomal DNA content menasurement, 18S rDNA site mapping, and 

Copia LTR-RT superfamily localization and distribution. 

 

Prometaphases and metaphases 



9 

 

    

Taking into account the criteria used to choose the slides, the treatments that generated the 

highest index of prometaphase/metaphase were the 4 μM APM for 1 h 40 min at 30°C for P. edulis and 

16 h at 4°C for P. quadrangularis (Fig. 1). From the obtained slides, ICM and FISH were performed from 

at least 10 prometaphase/metaphase samples of P. edulis and of P. quadrangularis for each application. 

 

Fig. 1 – Cytogenetic preparations of P. edulis (a, b) and P. quadrangularis (c, d) presenting 2n = 18 

chromosomes and showing different chromatin condensation levels. (a) Initial prometaphase and late 

prometaphase, (b) late prometaphase, (c) metaphase, (d) late prometaphase and prophase. Bar = 5 µm. 

 

Morphometry and chromosomal DNA content 

All chromosomes of P. edulis and P. quadrangularis were stoichiometrically stained by Feulgen 

reaction from hydrolysis in 5 M HCl at 25°C for 20 min in P. edulis (Figs. 1a, b, 2a) and for 22 min in P. 

quadrangularis chromosomes (Figs. 1c, d, 2b), and staining with Schiff's reagent for 12 h. Based on IOD 

values and 1C nuclear value, the mean DNA content of each chromosome was measured for ten 

metaphase/prometaphase samples of each Passiflora species. From these preparations, the morphometric 

characterization (total and arm lengths, and centromeric index) was also performed.  
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Mean total length of the P. edulis chromosomes ranged from 1.92 ± 0.24 µm (chromosome 1) to 

1.19 ± 0.12 µm (chromosome 9). The karyogram of this species was composed of six metacentric (1, 3, 5 

– 7 and 9) and three submetacentric pairs (2, 4 and 8) (Table 1, Fig. 2a). In P. quadrangularis, the mean 

total length ranged from 2.06 ± 0.46 µm (chromosome 1) to 1.28 ± 0.29 µm (chromosome 9), with two 

metacentric (4 and 8) and seven submetacentric pairs (1 – 3, 5 – 7 and 9) (Table 1, Fig. 2b). Concerning 

the morphological shapes, only chromosome 2 was classified as submetacentric in both species. The other 

chromosomes were classified as belonging to different classes in P. edulis and P. quadrangularis (Table 

1).  

Mean chromosomal DNA content values ranged from 1C = 0.2274 ± 0.0143 pg (chromosome 1) 

to 1C = 0.1412 ± 0097 pg (chromosome 9) in P. edulis, highlighting that chromosomes 2 (1C = 0.2308 ± 

0.0152 pg) and 6 (1C = 0.1863 ± 0.0123 pg) presented higher mean values when compared to 

chromosomes 1 and 5 (1C = 0.1794 ± 0.0112 pg), respectively. In P. quadrangularis, the mean values 

varied from 1C = 0.3759 ± 0.0195 pg (chromosome 1) to 0.2177 ± 0.0241 pg (chromosome 9). Here, 

chromosome 8 showed a higher DNA content (1C = 0.2710 ± 0.0121 pg) than chromosome 7 (1C = 

0.2592 ± 0.0149 pg).  
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Table 1 Mean 1C chromosomal DNA content, morphometry and chromosome class of P. edulis and P. quadrangularis. 

P. edulis  P. quadrangularis 

Chromosome 1C (pg) % Size* Total (µm) % Size** 
Arms (µm) 

Class 
 

1C (pg) % Size* Total (µm) % Size** 
Arms (µm) 

Class 
Short  Long  Short  Long 

1 0.2274 ± 0.0143 13.42 1.92 ± 0.24 13.67 0.81 1.11 M  0.3759 ± 0.0195 13.77 2.06 ± 0.46 13.74 0.70 1.36 SM 

2 0.2308 ± 0.0152 13.62 1.89 ± 0.21 13.49 0.68 1.22 SM  0.3538 ± 0.0168 12.96 1.94 ± 0.43 12.92 0.77 1.17 SM 

3 0.2124 ± 0.0147 12.53 1.75 ± 0.22 12.47 0.75 1.00 M  0.3450 ± 0.0185 12.64 1.89 ± 0.42 12.58 0.71 1.18 SM 

4 0.1943 ± 0.0159 11.46 1.60 ± 0.19 11.40 0.60 1.00 SM  0.3161 ± 0.0165 11.58 1.80 ± 0.34 11.98 0.80 1.00 M 

5 0.1794 ± 0.0112 10.58 1.54 ± 0.19 10.98 0.65 0.89 M  0.3085 ± 0.0184 11.30 1.58 ± 0.30 10.52 0.62 0.96 SM 

6 0.1863 ± 0.0123 10.99 1.48 ± 0.19 10.55 0.63 0.85 M  0.2829 ± 0.0085 10.36 1.56 ± 0.30 10.35 0.62 0.94 SM 

7 0.1677 ± 0.0073 9.89 1.38 ± 0.13 9.84 0.59 0.79 M  0.2592 ± 0.0149 9.49 1.49 ± 0.32 9.91 0.53 0.96 SM 

8 0.1556 ± 0.0109 9.18 1.28 ± 0.14 9.12 0.48 0.81 SM  0.2710 ± 0.0121 9.93 1.43 ± 0.34 9.49 0.58 0.85 M 

9 0.1412 ± 0.0097 8.33 1.19 ± 0.12 8.48 0.49 0.70 M  0.2177 ± 0.0241 7.97 1.28 ± 0.29 8.54 0.40 0.88 SM 

Total 1.695 100.00 14.03 100.00     2.73 100.00 15.02 100.00  

1C – mean 1C chromosomal DNA content in pg (± SD); mean total (± SD), short and long arms in µm; size – % size in relation to sum of the mean 1C value* and total 

length**; M – metacentric; SM – submetacentric. 
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Fig. 2 – P. edulis (a) and P. quadrangularis (b) karyograms showing chromosomes stoichiometrically 

stained with Schiff's reagent. (a) P. edulis and (b) P. quadrangularis karyograms displaying higher 

(above) and lower (below) chromatin compaction level. In P. edulis, the chromosomes 1, 3, 5 – 7 and 9 

are metacentrics, and 2, 4 and 8 are submetacentrics. Chromosomes 2 and 6 showed higher DNA content 

than chromosomes 1 and 5, respectively. In P. quadrangularis, chromosomes 4 and 8 are metacentrics, 

and 1 – 3, 5 – 7 and 9 are submetacentrics. Chromosome 8 had more DNA content than chromosome 7. 

Bar = 5 µm. 

 

18S rDNA and LTR retrotransposon sequences 

The F primer for the Copia LTR-RT superfamily sequence generated an amplification product 

with 213 pb, and the product generated by the R primer presented 207 pb. BLASTn analysis showed high 

homology between the amplified and the database sequences, specifically 87% for the F primer and 94% 

for the R primer.  

18S rDNA site was reproductively visualized in 25 prometaphase/metaphase samples of P. 

edulis, and mapped on the terminal portion of the long arm on chromosome 6 and the terminal portion of 

the short arm on chromosome 8 (Fig. 3a). In P. quadrangularis, 18S rDNA site was mapped in 19 

prometaphase/metaphase samples. In 15 prometaphase/metaphase samples, 18S rDNA was located in the 

terminal portion of the chromosome 7 long arm. In 4 prometaphase/metaphase samples, 18S rDNA was 

also mapped on the terminal portion of the chromosome 8 short arm (Fig. 3b). Cytological features in 

each prometaphase/metaphase sample, even on the same slide, resulted in the distinct number of 18S 
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rDNA sites in P. quadrangularis. Cytoplasmic debris, which were identified through background 

comparisons, promoted a physical barrier, probably blocking the 18S rDNA probe from the target DNA 

in chromosome 8. So, we concluded that P. quadrangularis possesses two chromosomes with an 18S 

rDNA site. 

 

Fig. 3 – FISH in P. edulis metaphase chromosomes (a), and in interphase nucleus and prometaphase 

chromosomes of P. quadrangularis (b) with 18S rDNA probe labelled with ChromaTide-488-5-dUTP 

(green) counterstained with DAPI. (a) P. edulis 18S rDNA sites were mapped on the terminal portion of 

the chromosome 6 long arm and in the terminal portion of the chromosome 8 short arm. (b) P. 

quadrangularis 18S rDNA signal was identified in the interphase nucleus and in below karyogram at the 

terminal portion of the chromosome 7 long arm. Two 18S rDNA sites were mapped at the terminal 

portion of the chromosome 7 long arm and the terminal portion of the chromosome 8 short arm (last 

karyogram). Bar = 5 µm. 
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Dispersed hybridization signals from the Copia LTR-RT superfamily probe were observed in 30 

prometaphase/metaphase samples of P. edulis. Stronger signals were found on chromosomes 3, 4 and 6, 

and weaker signals on chromosomes 1, 2, 5, and 7 – 9. The hybridization signal on chromosome 2 was 

predominant in the short arm portion, and on chromosome 8, the hybridization signal was stronger on one 

of the homologous pairs. In general, the signals were dispersed throughout the length of the chromosomes 

(Fig. 4a). In P. quadrangularis, dispersed hybridization signals were found in 20 karyotypes. Intense 

hybridization signals were observed on chromosomes 1, 4, 5 and 8, and weaker hybridization signals on 

chromosomes 2, 3, 6, 7 and 9. Chromosomes 7 and 9 accumulated weaker signals in the interstitial 

portions at the long arms (Fig. 4b). In both species, chromosome 4 exhibited stronger signals, while 

chromosome 9 showed weaker signals. In general, the hybridization signals were more accumulated in P. 

quadrangularis than in P. edulis chromosomes (Fig. 4). 

 

Fig. 4 – FISH in metaphase chromosomes stained with DAPI (blue) and Copia LTR-RT superfamily 

probe labelled with ChromaTide-488-5-dUTP (green), along P. edulis (a) and P. quadrangularis (b) 

chromosomes. FISH produced more scattered and accumulated hybridization signals in some 

chromosomes than in others. (a) In P. edulis prometaphases/metaphases, the hybridization signals were 
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dispersed and stronger on chromosomes 3, 4 and 6, and weaker on the other chromosomes. (b) In P. 

quadrangularis chromosomes, the stronger signals were observed on chromosomes 1, 4, 5 and 8, and 

weaker signals on the other chromosomes. It is noteworthy that in both species the chromosome 4 

presented stronger hybridization signals, and chromosome 9 presented weaker signals. In addition, the 

signals were stronger on the P. quadrangularis chromosomes than P. edulis. Bar = 5 µm. 

 

 

Discussion 

 

Copia LTR-RT superfamily promotes the nuclear DNA content variation 

Even though LTR-RT is the most abundant class of transposable elements in plants, the process 

through which LTR-RT have shaped plant genomes in different ways is still poorly understood. In this 

study, we aimed to understand the role of the Copia LTR-RT superfamily in genome size variation 

between two Passiflora species, which possess the same 2n chromosome number but different 2C DNA 

values. Our results show that the occurrence of the Copia LTR-RT superfamily in the chromosomes of P. 

edulis and P. quadrangularis is a relevant cause for the nuclear 2C value variation of ~61.06%. 

Transposable elements (TEs) accounted for 17.6% of 10.4 Mb of the sequenced genome (~1% of the total 

genome size) from 112 bacterial artificial chromosome (BAC) inserts from the P. edulis genomic library 

(Munhoz et al. 2018). According to these authors, these TEs were preferentially hosted in intergenic 

regions. The LTR-RT was the most frequent, and accounted for 75.1% of retrotransposons, corresponding 

to 1,418,389 bp or 13.6% (1,418,389 bp/10,401,671 bp) of all sequenced data. In another sequencing 

approach, it was unraveled that the P. edulis genome shows 19.6% of repetitive DNA sequences, 18.5% 

(~1.14 Mb) of which represented by LTR-RT (Santos et al. 2014). Based on the 1C = 1.695 pg (1C = 

1.65771 Gb) value measured here and published sequenced genome data (Santos et al. 2014; Munhoz et 

al. 2018), LTR-RT are equivalent to ~0.07% of the P. edulis genome. The abundance in LTR-RT is very 

similar in the two previous Passiflora genome reports (Santos et al. 2014; Munhoz et al. 2018). However, 

our FISH data indicate that the proportion of the Copia LTR-RT superfamily is higher. Probably, these 

species have a large proportion of LTR-RT, as is also observable in other species: Z. mays with 75% 
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(Schnable et al. 2009), S. lycopersicum with 62% (Paz et al. 2017) or A. thaliana where 20% of the 

genome are comprised of retrotransposons (Underwood et al. 2017). On the other hand, Munhoz et al. 

(2018) stated that the content of LTR elements in P. edulis is comparable to that identified in related 

Malpighiaceae species, such as Populus trichocarpa (~25% LTR-TR), Ricinus communis (~16% LTR-

RT) and Manihot esculenta (~11% LTR-RT), although they recognized the highly variable abundance of 

these sequences, which is evidence for the importance of transposable elements in genome evolution. 

Although LTR-RT has been previously reported only for P. edulis (Santos et al. 2014; Munhoz 

et al. 2018), it was presumed that P. quadrangularis must have these elements because of the "ancestral 

library" hypothesis (Salser et al. 1976). This hypothesis proposes that phylogenetically related species 

share an "ancestral library" containing several repetitive DNA sequences conserved over evolutionary 

periods (Salser et al. 1976). In addition, the two species derived from a common ancestor with a 

divergence time of ~16.8 millions of years ago (Muschner et al. 2012). 

Several authors have emphasized the importance of transposable elements in plant genome size 

variation. Taking into account the replication mechanism of LTR-RT, the higher 1C value and higher 

number of Copia LTR-RT superfamily hybridization signals observed in P. quadrangularis compared to 

P. edulis can be explained as an outcome of the balancing between accumulation (retrotransposition) and 

elimination (unequal homologous recombination and/or illegitimate recombination) events throughout the 

evolution of the species. These processes are random during karyotype evolution and may be uncorrelated 

with phylogenetic placement (Grover et al. 2008). Considering that the phylogeny of the Passiflora genus 

(proposed by Muschner et al. 2003) showed P. edulis to be more basal than P. quadrangularis, the higher 

DNA content as well as higher number of LTR-RT signals (Figs. 2, 4 and 5) found in P. quadrangularis 

can be explained by an increased genome size due to the accumulation/amplification of retrotransposable 

elements. In accordance with our results, genome size increase promoted by retrotransposition, involving 

the amplification of new LTR-RT copies and their transpositions, was observed in Z. mays (Schnable et 

al. 2009) and S. lycopersicum (Paz et al. 2017). In contrast, the genome size can decrease by LTR-RT 

removal through unequal homologous recombination and/or illegitimate recombination, as reported in A. 

thaliana (Bennetzen et al. 2005) and Oryza sativa L. (Vitte et al. 2007). Moreover, Copia LTR-RT 

superfamily contribution to nuclear genome size variation was observed in Helianthus L. species with the 

same chromosome number. Helianthus petiolaris ssp. Fallax showed 1C = 5.78 pg and Helianthus 
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agrestis Pollard 1C = 16.24 pg, both with 2n = 34 chromosomes. Corroborating these results, the LTR-RT 

content ranged from 73.6% in H. petiolaris to 84.2% in H. agrestis. So, the interspecific nuclear DNA 

variation was attributed to the occurrence and abundance of Copia and Gypsy LTR-RT superfamilies 

(Mascagni et al. 2017).  

 

Looking for influence of the Copia LTR-RT superfamily on Passiflora karyotype evolution 

Cytogenetic results confirmed the monophyletic origin of P. edulis and P. quadrangularis. 

Similarly, divergences promoted by the Copia LTR-RT superfamily were also observed in each 

chromosome of the two species. So, cytogenetic preparations of mitotic cells with little or no cytoplasmic 

background, as well as chromosomes with well-defined telomere and centromere, without overlaps and 

structural chromatin deformations are fundamental, which is why tiny adjustments in the cytogenetic 

protocol are usually necessary. Among the similarities found in the karyotypes, especially the 

chromosome number 2n = 18, the occurrence of only metacentric and submetacentric chromosomes, the 

number of 18S rDNA sites, and 18S rDNA localization in the terminal portion of the chromosome 8 short 

arm should be highlighted. In contrast, divergences between the species were observed when each 

chromosome was qualitatively (through morphometry, 18S rDNA localization and LTR-RT signals) and 

quantitatively (chromosomal DNA content) characterized and compared (Table 1, Figs. 2, 3, 4 and 5).  
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Fig. 5 – Ideogram of P. edulis (a) and P. quadrangularis (b) summarizing the data about total length 

(μm), chromosome class, mean 1C chromosomal DNA content value (pg), stronger and weaker signals 

from the Copia LTR-RT superfamily and 18S rDNA mapping.  

 

Nuclear genome size variation between P. edulis and P. quadrangularis is differently and 

randomly distributed among all the chromosomes of the karyotypes. We found that some chromosomes 

stood out with higher DNA content and more Copia LTR-RT superfamily hybridization signals than 

others (Table 1, Fig. 5). Comparing the chromosomes individually (e.g. chromosome 1 of P. edulis to 

chromosome 1 of P. quadrangularis, Fig. 5), P. edulis chromosomes showed smaller mean total lengths, 

lower DNA contents and weaker Copia LTR-RT superfamily signals compared to respective P. 

quadrangularis chromosomes. These data corroborate with a larger nuclear genome size in P. 

quadrangularis.  

P. edulis chromosome 6 and P. quadrangularis chromosome 7 presented an 18S rDNA site in 

the same portion (Figs. 4 and 5), thus these chromosomes were unequivocally identified by this marker. 
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Considering that the species are monophyletic taxa (Muschner et al. 2003, 2012), the karyotypes of these 

species underwent modifications that promoted differences in the mean total and arm length, 

chromosomal class (Table 1, Figs. 3, 4 and 5) and DNA content (Table 1, Fig. 5). Such changes were so 

accentuated that P. edulis chromosome 6 and in P. quadrangularis chromosome 7 are positioned 

differently in the karyograms according to chromosome classification rules (Levan et al. 1964; Guerra 

1986). Corroboratingly, chromosome 8 of both species showed the same 18S rDNA mapping (Figs. 4 and 

5), thus probably the same ancestral chromosome. The observed changes in chromosome 8 in each 

species also caused divergences in the classification using the morphometry (Table 1) and DNA content 

data. These alterations also involved the Copia LTR-RT superfamily, which is more predominant in P. 

quadrangularis’ chromosome 8 (Fig. 5). The occurrence and distribution of the Copia LTR-RT 

superfamily between the P. edulis and P. quadrangularis chromosomes suggest that the differences could 

be due to accumulation/elimination of these sequences, leading to an increase/decrease of the DNA 

content, culminating in chromosome morphometry modifications.  

Copia LTR-RT superfamily hybridization signals were predominantly distributed from telomere 

to telomere of the P. edulis and P. quadrangularis chromosomes (Figs. 4 and 5). The distribution of the 

Copia LTR-RT superfamily can be dispersed throughout the extension in plant chromosomes, occurring 

in euchromatic regions and in higher copy number in heterochromatic regions (Contreras et al. 2015). 

However, as natural selection tends to eliminate deleterious insertions, there is a greater concentration of 

retrotransposons insertions in gene-poor regions, such as the heterochromatic repetitive regions (Graham 

and Boissinot 2006; Zamudio et al. 2015). According to Munhoz et al. (2018), 70.4% of transposable 

elements identified in the sequenced genome of P. edulis were preferentially hosted in intergenic regions. 

This data is in accordance with the spread distribution of the Copia LTR-RT superfamily found in this 

study. Additionally, LTR-RT distribution in different chromatin regions has also been described for other 

taxa. In A. thaliana, the pericentromeric heterochromatin has expanded 6 to 10 times in the last 5 million 

years due to the retrotransposition (Hall et al. 2006). In Z. mays (Mroczek and Dawe 2003) and in S. 

lycopersicum (Xu and Du 2014), the Copia LTR-RT superfamily has been diffused by euchromatin. 

LTR-RT also occur in heterochromatin of the telomeric regions in E. arundinaceus (Huang et al. 2017), 

and centromeric and pericentromeric regions in Coffea (Castro Nunes et al. 2018). 
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Total chromosome length, chromosomal DNA content and LTR retrotransposons: understanding 

intraspecific karyotype variations 

Intraspecifically, there is no relation between the total length and DNA content for some 

chromosomes: chromosomes 2 and 6 in P. edulis, and chromosome 8 in P. quadrangularis have a relative 

lower total length but higher DNA content (Table 1, Figs. 2, 3, 4 and 5). Looking at each Passiflora 

species allowed us to analyze the role of the Copia LTR-RT superfamily in the karyotype evolution.  

In the P. edulis karyotype, chromosome 2 presented a lower total length and a higher DNA 

content than chromosome 1 (Table 1, Fig. 5). This suggests that the chromatin condensation level of 

chromosome 2 is higher than of chromosome 1. Copia LTR-RT superfamily hybridization signals were 

weaker and more dispersed from telomere to telomere in chromosome 1, while chromosome 2 showed 

stronger signals predominantly in the long arm (Table 1, Figs. 4 and 5). Therefore, other types of 

repetitive DNA sequence might be present on chromosome 2, such as simple repeats and elements of low 

complexity that represent about to 1% (0.0028 Mb) of transposable elements identified in P. edulis BES 

(Santos et al. 2014). P. edulis’ chromosome 6 had a lower total length and a greater amount of Copia 

LTR-RT superfamily signals compared to chromosome 5 (Table 1, Figs. 4 and 5), evidencing that the 

increased DNA content on chromosome 6 and the relatively larger chromatin condensation level is 

promoted by the accumulation of LTR-RT sequences. The same was observed in P. quadrangularis’ 

chromosome 8 that presented a smaller total length, and a higher DNA content, more Copia LTR-RT 

superfamily signals and a higher compaction level than chromosome 7 (Table 1, Fig. 5). These 

retroelements are mainly found in heterochromatic regions (Bennetzen 2000; Gao et al. 2008; Bierhoff et 

al. 2013; Li et al. 2017) and, thus, the Copia LTR-RT superfamily hybridization signals can be related to 

these portions. Heterochromatin has a higher chromatin condensation level than euchromatin (Bennetzen 

2000). Therefore, a higher condensation level results in a smaller total length, despite a higher DNA 

content in these chromosomes. 

As observed in Z. mays ‘AL Bandeirante’, the DNA content, accessed by ICM, of chromosome 9 

(1C = 0.280 pg) is higher than of chromosome 8 (1C = 0.266 pg, Silva et al. 2018). This difference was 

related to differential DAPI staining that evidenced a knob portion in the long arm of the chromosome 9. 

So, Silva et al. (2018) suggested that the chromosomal DNA content variation between these two Z. mays 

chromosomes was promoted by occurrence of the heterochromatin in the knob. The retrotransposons 
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occur in abundance in this region, and due to this the activity of these elements can play an important role 

in the alteration in the DNA content observed in Z. mays (Silva et al. 2018). In the two Passiflora species 

analyzed, the chromosomes have different amounts of LTR-RT, which account for differences in DNA 

content, chromatin compaction level, and consequently the chromosome’s total length. Nevertheless, the 

ICM technique allowed inter- and intraspecifically to discriminate each chromosome, showing tiny DNA 

content differences between them.  

 

Conclusions 

Our findings showed that the Copia LTR-RT superfamily promotes nuclear and chromosomal 

DNA content variations between P. edulis and P. quadrangularis, with DNA content and retroelements 

being distributed differently and randomly in the chromosomes. By analyzing each chromosome from 

qualitative and quantitative characterization, it was possible to identify some causes of the karyotype 

evolution and the actual structural organization of the chromosomes of P. edulis and P. quadrangularis. 
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