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ABSTRACT 

Micromechanical numerical models have become an important tool in the study of asphaltic 

pavements given its numerous advantages in comparison to analytical, semi-empirical and/or 

completely experimental approaches. Thus, this study presents a framework to predict the 

behavior of bituminous composites considering viscoelasticity and fracture resistance based 

on nonlinear viscoelastic cohesive zone (NVCZ) model.  The NVCZ model is able to predict 

the entire fracture process, from crack nucleation, initiation, and propagation in mixture 

microstructure. To examine the NVCZ model, two fine aggregate matrix (FAM) mixtures 

containing different fillers (hydrated lime and steel slag) were evaluated experimentally and 

compared to the numerical results. FAM material linear-viscoelastic properties and fracture 

parameters required as input for the numerical modelling were experimentally obtained. 

Linear-viscoelastic properties were obtained by performing frequency sweep tests and the 

required NVCZ parameters were obtained by an experimental-numerical calibration 

procedure using semi-circular bending (SCB) laboratory tests coupled with finite element 

numerical simulations. To validate the model, microstructural numerical simulations of the 

indirect tensile strength test (IDT) were conducted and compared to experimental results. 

Numerical modeling results agree well with laboratory testing results. The results of this 

research imply that the NVCZ model is promising to evaluate the cohesive fracture resistance 

of different material constituents in bituminous composites with significant savings in 

experimental costs and time. 

Keywords: Bituminous materials, Fracture, Viscoelasticity, Cohesive Zone 

  



RESUMO 

Modelos numéricos micromecânicos tornaram-se uma ferramenta importante para previsão do 

comportamento de compósitos, dadas as suas inúmeras vantagens em comparação com 

abordagens analíticas, semi-empíricas e/ou totalmente experimentais. Desta forma, este 

estudo apresenta um modelo numérico computacional para prever o comportamento de 

compósitos betuminosos considerando seu comportamento viscoelástico e resistência à fratura 

com base em modelo de zona coesiva viscoelástica não linear (ZCNV). O modelo ZCNV é 

capaz de prever todo o processo de fratura, desde a nucleação, iniciação e propagação da 

trinca na microestrutura da mistura asfáltica. Para validar o modelo, duas misturas de MAF 

(matriz asfáltica de finos) contendo diferentes fillers (cal hidratada e escória de aciaria) foram 

avaliadas experimentalmente e os resultados experimentais comparados com os resultados 

numéricos. As propriedades viscoelástricas lineares das MAF’s e os parâmetros de fratura 

necessários para a modelagem numérica foram obtidos experimentalmente. As propriedades 

viscoelásticas lineares foram obtidas através da realização de testes de varredura de 

frequência e os parâmetros de fratura requeridos foram obtidos por um procedimento de 

calibração numérica experimental usando testes de laboratório de flexão semicircular (SCB) 

acoplados a simulações numéricas de elementos finitos. Para validar o modelo, foram 

realizados ensaios laboratoriais de tração indireta (TI) e os resultados foram comparados com 

resultados numéricos para o mesmo ensaio com as mesmas condições de contorno. Os 

resultados da modelagem numérica foram compatíveis com os resultados dos testes 

laboratoriais. Os resultados desta pesquisa implicam que o modelo ZCNV é eficiente para 

avaliar a influência da adição de diferentes materiais em matrizes asfálticas com relação a 

resistência à fratura sendo, portanto, uma importante ferramenta para auxiliar na análise da 

influência de materiais no comportamento de misturas asfálticas, trazendo economias 

significativas em custo e tempo. 



Palavras-chave: Materiais betuminosos, Fratura, Viscoelasticidade, Zona Coesiva 
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1. INTRODUCTION 

The transportation system plays an important role in the Brazilian economy, since the 

principal manner to transport people and goods are by roadways. The Brazilian highway 

network is about 1.7 million kilometers according to the latest report of National 

Confederation of Transport (CNT, 2015). From that total, 12.2% are considered paved, being 

48.3% of paved roads ranked as in very poor conditions, as illustrated in Figure 1. Roadway 

users expect to have secure and comfortable pavement conditions while driving. For that, a 

minimum level of pavement distresses is desirable, i.e., minimum occurrences of permanent 

deformation, fatigue cracking, raveling, stripping and other are essential.  

FIGURE 1-PAVEMENT CLASSIFICATION - CNT SURVEY. 

 
SOURCE: ADAPTED FROM CNT (2015). 

The effects of traffic loads (whose volume increase along the years) and severe 

weather conditions, leads to the gradual degradation of pavement layers. In general, these 

distresses begin before the pavement reaches its design life. Among the main pavement 
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distresses, fatigue cracking and permanent deformation (Figure 2) are the principal causes of 

pavement´s premature failure and rupture. 

FIGURE 2 - (A) MACROCRACKS FORMED DUE TO EXCESSIVE FATIGUE CRACKING (B) PERMANENT DEFORMATION. 

 
SOURCE: BERNUCCI ET AL. (2006). 

Hot mix asphalt (HMA) is the main type of surface layer material used in Brazilian 

roadways and it is a composite material made by combining coarse and fine aggregates, 

asphalt binder, voids and oftentimes additives (natural filer, hydrated lime, polymers, etc). 

Due to the great differences in the constitutive behavior of each material constituent, 

individual characterization is essential to understand the overall HMA performance. 

  It is also worth mentioning that the large damage areas observed on the pavement 

surface are strongly related to the small-scale interaction that occurs when the pavement is 

subjected to different loading and climate conditions.  As illustrated by Lutif (2011) in Figure 

3, the macroscale pavement cracking is a result of microcracking phenomena that begins in 

small scale of analysis, such as within the fine aggregate matrix (FAM) and/or in the interface 

of FAM or mastic and aggregates. Since FAM´s performance is directly related to 

microcracking development, FAM characteristics should be carefully evaluated for better 

prediction of overall HMA performance. Different authors have been using FAM phase in 

their analysis and correlate its behavior with mixture level performance (KIM, 2003; 
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CASTELO BRANCO, 2008; KARKI, 2010; COUTINHO, 2012; UNDERWOOD and KIM, 

2013; FONSECA, 2016; FREIRE et al. 2017 among others).   

FIGURE 3-ILLUSTRATION OF MACROCRACKS FORMATION DUE TO MICROCRACKS IN DIFFERENT LENGTH SCALES. 

 
SOURCE: LUTIF (2011). 

Regarding the materials used in HMA composition, several studies have been 

developed to find more sustainable materials for pavement use. One important research line is 

about incorporation of waste or by-product materials into different phases of bituminous 

mixtures. Some by-products in fact, when added in bituminous composition, can improve 

mixture´s performance due to positive changes in mixture´s characteristics. Therefore, 

economic and environmental advantages are obtained, giving a commercial use to a valueless 

material and reducing natural resources exploration.  

Steel industry utilize lots of slag former (lime and dolomite) during the steel 

production. From that process, different types of by-products are generated in form of slags, 

sludges, dusts, mill scales, etc. One of them is the steel slag, which comes from hot metal 

refining process using basic oxygen furnace (Linz-Donawitz converter) or electric arc furnace 

(DIAO et al., 2016). Slag generated from basic oxygen converter are usually refer as LD slag. 

Depending on the grade of steel produced, around 100–160 kg per ton of LD slag are 

generated (MAHIEUX et al., 2008). The Brazilian LD slag generation in 2016 was about 2.4 

– 4.8 Mt, being 0.56-1.16 Mt from the state of ES alone. 
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The LD slag reuse is still limited and undervalued. Various efforts have been made on 

the utilization of LD steel slags, such as in cement production (TSAKIRDIS, 2007; MONSHI 

et al., 1999), fertilizer production, road construction (CASTELO BRANCO, 2004; 

MAHIEUX, 2008; COSME et al., 2016; GOTTARDI, 2015; FONSECA, 2016), and so on. 

Regarding the roadway application, studies have shown that LD slag as aggregate provides 

better interlock in comparison with limestone aggregates (QAZIZADEH et al., 2018; ZIAEE 

et. al, 2015).  However, the slag volumetric expansion and it is swelling due to its high 

content of free lime is still a major constraint to the application of that by-product in paving. 

More research efforts are necessary to verify the effects LD slag characteristic on asphalt 

mixture´s performance. 

1.2 RESEARCH PROBLEM  

Most studies that aim to understand and/or to predict the asphaltic concrete behavior use 

semi-empirical methods or phenomenological techniques, relying on extensive and costly 

laboratory tests. Moreover, most of the procedures do not provide a clear effect of individual 

material´s phase in the mixture global performance. 

There is a need to evaluate the global behavior of asphalt concrete considering the 

fundamental properties of its constituents and their interactions. Even though there are many 

advances regarding experimental and numerical techniques to determine bituminous 

material´s performance, still, an explicit way to identify damage initiation and propagation 

that occurs at small scales are necessary. The effects of new materials used for paving 

application in small scale needs to be carefully addressed. From the presented research 

statement problem, some research questions can be mentioned:  
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• Can LD steel slag be used as filler in asphalt mixture? 

• What are the changes in overall material characteristics if LD slags are incorporated 

in HMA?  

• Does the type of filler influence the speed of crack initiation and propagation? 

• What are the limitations of using numerical modeling to predict mechanical behavior 

of asphalt concrete? 

• What parameters and laboratory tests are needed to allow the use of numerical 

models? 

1.3 RESEARCH OBJECTIVES  

The primary goal of this research study is to model cracks in fine aggregate matrix (FAM) 

considering viscoelasticity and discrete fracture mechanisms. For that, a nonlinear viscoelastic 

cohesive zone model was used. Using this modelling technique, it is intended to evaluate the 

effects of LD steel slag on FAM viscoelasticity and fracture parameters.   

Specific objectives of this research are: 

1. Obtain linear viscoelastic material properties (LVE) experimentally by performing 

Frequency Sweep Tests on the studied FAM mixtures and compare the effects of different 

fillers (steel slag and hydrated lime) on FAM stiffness characteristics;  

2. Obtain fracture parameters for the NVCZ model used herein based on experimental-

numerical integrated approach by performing laboratory Semi-Circular Bending (SCB) 

tests and use this test as a step to numerically calibrate fracture parameters of studied 

FAM´s. 
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3. Perform a parametric analysis of fracture parameters to identify the physical/mechanical 

effects of each mode parameters on FAM fracture resistance; 

4. Verify the effect of different fillers in fracture characteristics of the studied FAM 

materials; 

5. Validate the nonlinear viscoelastic cohesive zone model (NLVE-CZ) numerical model to 

predict the damage-dependent behavior of laboratory-fabricated bituminous mixture by 

comparing indirect tension tests results obtained numerically and experimentally;  

1.4 DISSERTATION LAYOUT 

Following this introductory chapter, Chapter 2 is dedicated to a literature review on 

several approaches attempting to predict the mechanical behavior of bituminous composites, 

as well as advantages, limitations, and shortcomings of these approaches. In addition, a 

review on the by-product used as a potential substitute for the filler hydrated lime in asphalt 

mixtures as presented, containing its production process and its main characteristics that make 

it an attractive application material in asphalt paving. In Chapter 3 describes the experimental 

testing program designed in this research to obtain material properties of the FAM mixture 

phases required for the model validation, besides that, the chapter contains the numerical 

simulations and results to determine viscoelastic properties of FAM and calibration process to 

determine cohesive zone fractures parameters. It also shows all the characterization of the 

materials used during the research on the asphalt mixture and FAM mix design. Details about 

bituminous composite specimen geometry and material properties, as well as the loading 

conditions used in the indirect tensile strength tests for model validation, that are used in later 

chapter (Chapter 4), are shown. Chapter 4 consists of several approaches attempting to 

validation the model and the validation-calibration of the model to predict damage-dependent 

behavior of laboratory fabricated asphaltic composites. Comparisons of experimental results 

from indirect tensile strength tests with numerical results are presented. Chapter 5 presents 
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the conclusions of the research and recommendations for future work required to improve the 

model predictions.  
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2. THEORETICAL BACKGOUND 

Pavement structures are subjected to large number of solicitations over time, such as 

repetitive traffic loading, temperature gradients, rain and/or snow conditions, etc. The effect 

of those solicitations is the reduction of pavement performance due to the occurrence of 

different types of distresses, such as plastic deformation (rutting), loss of adhesion (raveling 

and stripping), formation of cracks (longitudinal and/or transverse cracks), potholes, etc. Most 

of those distresses are result of crack initiation and propagation within the asphalt media. 

Thus, it is important to understand how this damage starts and what factors can accelerate its 

propagation.  

Numerous studies have been carried out over the past decades to obtain a better 

understanding of asphalt concrete fracture mechanisms and, thus, to address the cracking 

problem in asphalt pavements. The composite material performance depends directly on the 

selection and proportion of the constituents used in the mixture design and the interactions to 

each other. Methodologies are needed to provide the designer with as much information as 

possible about the microstructure behavior and the influence of each constituent in the 

behavior of the mixture. Given all the complexity to predict the behavior of asphalt materials 

(which include material anisotropy, damage in different length scales, viscoelasticity, aging, 

etc.), many scientific investigations are developed to reach at more efficient and precise 

methods of analyzing the behavior of these materials.  

One methodology that has been widely used in the scientific community is numerical 

modeling. With the advances in computer power, and in numerical techniques, the prediction 

of material´s behavior based on virtual observations is a reality that could overcome many 

uncertainties obtained when only experimental analysis is performed. Among the most 

studied numerical approaches to study composite materials, two modeling techniques are 
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highlighted by the pavement community: (i) continuous damage-based models and (ii) 

microstructural models. The use of each of these models has advantages, although they also 

have their limitations. 

2.1 CONTINUUM DAMAGE MODELING  

 In such models, asphalt composites are treated as homogenous bodies, and the state 

of damage is quantified in a homogenized way without performing microstructure analysis, 

using phenomenological internal state variables (ISVs). Thus, ISVs quantify the material 

internal damages (micro-cracks, chemical variations, etc.). Then, no internal contour (discrete 

cracks) is considered, and the internal variables are the only ones responsible for quantifying 

the energy dissipation caused by the propagation of cracks. The crack formation and 

propagation are not explicitly considered. Figure 4 presents the concept of effective stress for 

the case of uniaxial tension introduced by Kachanov (1958) and Rabotnov (1969) in 

continuum damage mechanics models. In this case the effective stress 𝜎ത is the stress applied 

to a fictitious state of the material which is totally undamaged. This fictitious state is assumed 

to be mechanically equivalent to the actual damaged state of the material (VOYIADJIS AND 

KATTAN, 2012).   

FIGURE 4 – DAMAGE AND EFFECTIVE UNDAMAGED CONFIGURATIONS. 

 

SOURCE: VOYIADJIS AND KATTAN (2012). 
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 Since the cracks in microscales are not modeled explicitly there is a great saving in 

computational time, which makes the model attractive. Several authors have used this model 

given this advantage (SCHAPERY, 1990; PARK et al., 1996; LEE and KIM, 1998; 

CHEHAB et al. 2002; DANIEL and KIM, 2002; BERTHELOT et al. 2003; TEIXEIRA et al., 

2007). 

 The main disadvantage of continuum damage models is the definition of the laws of 

damage evolution that govern the ISVs. They are determined through regression analyses by 

matching damage evolution characteristics from laboratory testing observations. These are a 

somewhat arbitrary choice and requires a large number of experimental tests.. Still, according 

to Caiazzo and Costanzo (2001), these laws are insufficient to know the cause and evolution 

of the damage. 

 

2.2 MICROSTRUCTURE MODELS WITH DISCRETE FRACTURE  

 Micromechanical models take into account the heterogeneity of the composite 

materials, considering the properties and behavior of each constituent, as well as the 

interactions between them. Then, the effective properties of composite materials are 

determined from known properties of each constituent of the composite. Among main 

advantages of computational microstructure models, over other methods such as continuum 

damage approach, is that once the properties of the constituents have been determined, the 

resulting properties of the composite can be determined computationally for different types of 

material´s proportions, without requiring a large number of time-consuming laboratory tests 

for each of them. 

To better understand the microstructure modelling approach, the first step is to 

describe the problem. Figure 5 represent to the initial boundary value problem (IBVP) for a 
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general elastic-viscoelastic composite containing cracks. Consider an object of volume V and 

a boundary 𝜕𝑉 which is divided into two parts,  𝜕𝑉௘  (external boundary) and 𝜕𝑉௜  (internal 

boundary with cohesive zones). There are three variables predicted by the model, they are: the 

displacement vector 𝑢௜(𝑥௠, 𝑡), the stress tensor 𝜎௜௝(𝑥௠, 𝑡), and the strain tensor 𝜀௜௝(𝑥௠, 𝑡), 

where t and 𝑥௠ are time and spatial coordinate, respectively.  

FIGURE 5 - SCHEMATIC REPRESENTATION OF MICROSTRUCTURE MODEL INITIAL BOUNDARY VALUE PROBLEM. 

 

SOURCE: AUTHOR. 

The mechanical models used in the microstructure model’s analysis can be represented 

by differential equations that relate stress and strains. In order to obtain the stress-strain 

relations of each model, three types of equations are used: i) kinetics (conservation of linear 

momentum), ii) kinematics (movement description) and iii) constitutive equations. Thus, the 

equations described below are sufficient to model the object: 

i. Kinetics (conservation of linear momentum): 

 
𝜎௜௝ = 0 in 𝑉 

(1) 
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ii. Kinematics (movement description): 

Considering small strains, the stress-strain relationship can be described by: 

 𝜀௜௝ =
ଵ

ଶ
൫𝑢௜௝ + 𝑢௝௜൯ in 𝑉   

(2) 

iii. Constitutive equations: 

The constitutive equation for non-aging linear viscoelastic materials, including non-

aged asphalt mixtures, are described as follows, respectively: 

 𝜎௜௝ ቀ𝑥௠,
𝑡ቁ =  න 𝐸௜௝(𝑡 − 𝜏)

𝜕𝜀௜௝(𝑥௠,
𝑡)

𝜕ఛ

𝑑𝜏
௧

଴

 (3) 

Where, 

𝐸௜௝: time-dependent linear-viscoelastic relaxation modulus tensor; 𝑡: time of interest; 𝜏 : time-

history integration variable.  

The initial condition for all state variables are known and assumed to be zero: 

 𝜎௜௝ (𝑥௠, 0 ) = 0 (4) 

 𝜀௜௝ (𝑥௠, 0 ) = 0 (5) 

 𝑢௜ (𝑥௠, 0 ) = 0 (6) 

 In the micromechanical approach, the phenomena of crack initiation and 

propagation is treated by means of discrete fracture models such as cohesive zone models 

(CZM). Through CZ models, the entire cracking phenomenon (crack initiation, propagation, 

nucleation and failure) can be modelled and observed and not only when the material 

collapses.  
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2.3. COHESIVE ZONE MODELS (CZM) 

 The first authors to introduced CZM were Dugdale (1960) and Barenblatt (1962). 

The CZM, as illustrated in Figure 6, represents the fracture as a gradual phenomenon that 

occurs in a potential damage zone ahead of a crack tip where fracture is resisted by cohesive 

tractions (Tn), that varies from a Tmax to 0 (zero), when the fracture separation (𝛿௡) reached 

the critical cohesive displacement (𝛿௖)  and full separations occurs.  

FIGURE 6 - SCHEMATIC ILLUSTRATION OF COHESIVE ZONE MODELING CONCEPT. 

 
(a)    (b)    (c) 

 
 

SOURCE: A) ADAPTED FROM HASSAN ET AL., 2014, AND B AND C) ADAPTED FROM KIM (2011). 

 Several researchers have been using CZM to perform fracture analysis in different 

kind of materials (ceramic, metals, polymers), including to investigate the fracture of asphalt 

concrete (SCHAPERY, 1975; NEEDLEMAN, 1987; TVERGAARD, 1990; COSTANZO and 

ALLEN, 1993; ALLEN and SEARCY, 2001). For instance, Chang and Kaijian (2013) has 

used CZM to find the principles in low temperature fracture. During the study, the authors 

emphasize the advantages of CZM compared to traditional models of fracture analysis: (1) the 

non-linear property around the crack tip zone can be considered; (2) fracture path needs not be 

set in advance, and the fracture mechanism can be investigated; (3) the fracture zone length 

under different loads can be attained, and the crack propagation behavior can be well 

analyzed. 

Crack path 
in FAM 

Aggregates 

FAM 
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In summary CZM is an expression of fracture process zone that mechanically relates cohesive 

traction forces with separation displacement. Those constitutive relations, 𝑇(𝛿), are defined as 

sofnening curves. Several softening functions types have been proposed in the literature such 

as exponential (XU and NEEDLEMAN, 1987, 1990, 1994), linear (CAMACHO and ORTIZ, 

1996), bilinear (GEUBELLE and BAYLOR, 1998), and non-linear (YOON and ALLEN, 

1999; ALLEN and SEARCY, 2001). Figure 7 illustrates some CZM softening curves where 

they can be distinguished by two main characteristics: (1) the shape of the traction-separation 

curve and (2) the existence of an initial cohesive stiffness. Models with an artificial initial 

stiffness are called intrinsic models, while models that assume an initial rigidity  are called 

extrinsic models. 

FIGURE 7- EXAMPLES OF SOFTENING FUNCTIONS OF CZM PROPOSED IN THE LITERATURE. 

 

SOURCE: AUTHOR. 

Several researches have been using CZM to evaluate fracture behavior in FAM. 

Aragão and Kim (2012) present an integrated approach combining experimental tests and 

numerical modeling to characterize mode I fracture behavior of FAM at intermediate 

temperature conditions using bilinear cohesive zone model (Figure 8). The model 

implemented by the author presented good agreement with experimental fracture test results. 

Cohesive strength and fracture energy parameters were determined at a wide range of loading 

rates and the study demonstrated that both fracture parameters are typically rate-related 

mainly at higher loading rates with insignificant rate-dependency at lower loading. Another 
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author’s findings was about the fracture characteristics found by global measures. As the 

process of fracture is truly local phenomenon, the fracture energy parameters resulting from 

the global measurements shown to be overestimated which can mislead structural thickness 

design of pavement structures. The study shows that the energy dissipated by viscoelasticity 

play important role in the energy balance and for that it should be carefully considered when 

modeling fracture in viscoelastic media. In summary, the study demonstrated the importance 

of fracture models to well understand the rate-dependent behavior at the fracture process zone 

in the mixtures and the potential use of bilinear cohesive zone model to predicted fracture 

behavior of asphalt matrix by improving the methodologies to find the fracture parameters. 

FIGURE 8 - A FINITE ELEMENT MESH AND ITS BOUNDARY CONDITIONS TO MODEL THE SCB TESTING  

 

SOURCE: ARAGÃO AND KIM (2012). 

Im et al. (2014) and Ban et al. (2015) incorporated into finite element model 

simulations the linearly decaying mixed-mode cohesive zone model to characterize mode-I 

and mode-II fracture properties of FAM (Figure 9). The authors intended to find a 

comprehensive understanding to the mode-dependent fracture characteristics of asphalt 

mixtures using only FAM mixture. The author´s findings clearly indicate that the fracture 

characteristics need to be well understood when pursuing a more accurate design of pavement 

structures. An important conclusion from the studies is that the mode-II fracture toughness is 
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about three times greater than mode-I fracture toughness, which implies that FAM mixtures 

are approximately more resistant to the sliding mode than the opening failure, thus the mode-

dependent fracture characteristics should be considered in the design process of pavement 

structures for a more accurate prediction of the crack-related distress such as fatigue cracking 

and termal cracking.   

FIGURE 9 - ILLUSTRATION OF THE SCB SPECIMEN WITH ITS MATERIAL PROPERTIES THE LINEARLY DECAYING 

MIXED-MODE COHESIVE ZONE MODEL. 

 
SOURCE: IM ET AL. (2014). 

Many previous studies have applied CZM for predicting fracture of asphalt mixtures 

via intrinsic bilinear CZM. Bilinear CZM assumes that there is a recoverable linear elastic 

behavior until the traction (T) reaches a peak value, or cohesive strength (Tmax) at a 

corresponding separation in the traction–separation curve. At that point, a non-dimensional 

displacement (cr) can be identified and used to adjust the initial slope in the recoverable 

linear elastic part of the cohesive law (KIM and ARAGAO, 2013). Several researchers have 

reported numerical issues associated with artificial compliance in the response of the bodies 

of interest to externally applied loads due to the assumption of the initial artificial stiffness in 

the traction-separation relations of intrinsic models (GEUBELLE and BAYLOR 1998, 

ESPINOSA et al. 2000, ALFANO and CRISFIELD 2001, KLEIN et al. 2001, ZAVATTIERI 

and ESPINOSA 2001, ESPINOSA and ZAVATTIERI 2003, SONG et al. 2006).  Moreover, 
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it is required the insertion of CZ elements a priori within the finite element mesh and it may 

become computationally expensive. In contrast, extrinsic CZM is probably more realistic than 

the intrinsic approach, because they do not assume the pre-existence of CZ elements within 

the finite element meshes. Cohesive elements are inserted as needed by node duplication (the 

process generally referred to as dynamic or adaptive insertion) in the mesh whenever a 

damage initiation criterion is reached. There are a few studies that consider extrinsic CZM 

and viscoelasticity in the fracture process of asphalt media (KIM, 2003; SOUZA et al., 2004; 

TEIXEIRA et al., 2014). It is well known that asphalt mixtures are time and rate-dependent 

viscoelastic and it is believed herein that cracking phenomena can thus be better described 

and predicted using nonlinear viscoelastic cohesive zone (NVCZ).  

Thus, this study used the extrinsic NVCZ model proposed by Allen and Searcy (2001)  

to predict fracture behavior of asphalt composites. The NVCZ model used herein and effects 

of each NVCZ parameters on asphalt material´s cracking evolution is the aim of this research. 

This can lead to a better understanding of the fracture behavior of different types of HMA 

mixtures. In this model, cohesive zone elements are inserted in the body if the stress in the 

material reaches certain level, denoted by f, which is defined as the requisite stress level to 

initiate cohesive zones. As the material continues to be loaded, cohesive tractions increase 

until reaches σmax. After that point, cohesive tractions start to decrease until reaches zero. At 

this stage, the critical cohesive displacement (c) is reached and material separation occurs. 

The model used in this study is described by the following non-linear rate dependent traction-

separation relationship: 

 𝑇௜ (௧) =
1

𝜆(𝑡)

𝛿௜(𝑡)

𝛿௜
∗ [1 − 𝛼(𝑡)]. ቎𝜎௜

௙ 
+ න 𝐸௖(𝑡 − 𝜏)

𝜕𝜆(𝜏)

𝜕𝜏

௧

଴

𝑑𝜏቏ (7) 

where, 
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𝑇௜ (௧): traction forces acting on the cohesive zone boundary;  

𝛿௜(𝑡): cohesive zone opening displacement; 

𝛿௜
∗: material length parameter i direction; 

α (t): internal damage parameter; 

𝜎௜
௙ : requered stress level to initiate damage; 

Ec (t): time-dependent relaxation modulus of cohesive zone; 

λ (t): Euclidean norm of the damaged zone opening displacements, given by: 

 
𝜆(𝑡) = ൥ቆ

𝛿௡(𝑡)

𝛿௡
∗

ቇ

ଶ

+ ቆ
𝛿௥(𝑡)

𝛿௥
∗

ቇ

ଶ

 + ቆ
𝛿௦(𝑡)

𝛿௦
∗

ቇ

ଶ

൩

భ

మ

 
(8) 

Where 𝛿௡ ,  𝛿௥ and 𝛿௦ are the n; r; s- components of the damage zone opening displacements, 

and 𝛿௡
∗ , 𝛿௥

∗ and 𝛿௦
∗ are empirical material length parameters.  

In order to complete the model description, it is necessary to construct an internal 

variable evolution law for the internal damage parameter 𝛼(𝑡)  which is responsible for 

characterizing the state of damage. It can be notice from Equation (7) that when 𝛼(𝑡) reaches 

1 the traction force, 𝑇௜ (𝑡) , goes to 0, meaning that the faces of the cohesive element are fully 

separated. The damage evolution law that has been chosen for this study is the same as the 

one in Allen and Searcy (2001), which is a simple rate dependent generalization of the 

continuum damage formulation proposed by Kachanov (1958) and Rabotanov (1969), given 

by: 
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𝛼 ̇ = 𝐴ʎ௠          ʎ ̇ ≥ 0  and  𝛼 ≥ 0 

(9) 

 
𝛼 ̇ = 0          ʎ ̇ ≤ 0  or  𝛼 = 0 

(10) 

Where A and m are the material damage parameters. NLVE- CZM formulation shown 

above has been applied in many studies to preview damage evolution in many materials, as 

inelastic polycrystalline solids (HELMS et al.,1999) and composite materials (PHILLIPS et 

al., 1999; SEIDEL et al., 2005). Its use for modelling asphaltic media is still incipient, with 

few studies published for pavement mechanics application (KIM, 2003; SOUZA et al., 2004; 

LUTIF et al., 2012).  

 Aragão (2011) correlates some of the main factors that still limit the predictive 

capabilities of computational models, such as: the heterogeneity and the inelastic constitutive 

responses of the mixtures; the relatively large deformations in the fracture process zone of the 

mixtures; the rate-dependent characteristics of that fracture process zone; the difficulties 

associated with the proper characterization of rate-dependent fracture properties and with the 

development of fracture models that consider the rate-dependence of those properties, among 

others. 

2.4 USE OF LD STEEL SLAG AS FILLER IN ASPHALTIC MATERIALS 

 An important industrial sector in the world, responsible for a significant amount of 

residue`s production, is the steel making industry. According to the World Steel Association 

(WSA), in 2016, world crude steel production reached over 1.63 billion metric tons. Brazillian 

production occupies the ninth position, with a 31.3 million tons crude steel production, 

according to Brazilian steel institute (IAB, 2016). The state of Espirito Santo (ES) was 

responsible for 24% of the total amount of steel produced in Brazil, that is 7.5 million tons.  
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Each integrated steel plants have their process of production that can be laid out in various 

combinations depending on product mix, available raw materials, energy supply and 

investment capital. Therefore, there are three main process of crude steel production: In Blast 

Furnace (BF)/Basic Oxygen Furnace (BOF) route, Scrap/Eletric Arc Funace (EAF) route and 

Direct Reduced Iron (DRI)/EAF route. The three routes are schematic summarized in Figure 

10. 

FIGURE 10 - SCHEMATIC ILLUSTRATION OF STEEL PRODUCTION BY THREE DIFFERENT ROUTES. 

 
SOURCE: ADAPTED FROM INSTITUTE FOR INDUSTRIAL PRODUCTIVITY. 

Steel Slag is a byproduct of steel production from either the melting of scrap to make 

steel in electric arc furnaces (EAF), or conversion of iron to steel in basic oxygen finance 

(BOF). In the manufacturing processes the furnaces are charged with the predetermined 

mixture of raw material, i.e., scrap, pig iron, fluxes – lime (CaO and dolomitic lime). The 

amount of each material varies from 60% steel scrap with 40% pig iron to 90% steel scrap 

with 10% pig iron, this variation depends on material prices and local availability.  

In the process called LD (Linz-Donawitz) or BOF (Blast Oxygen Furnace), Figure 11 

(a), the steel is producing by reducing hot liquid metal by injecting hot natural oxygen. The 

oxygen combines with controlling the carbon percentage and removing the material 
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impurities. The flux agents combine with these impurities during the process to form the steel 

slag. At the end of the refining operation, the liquid steel is separated from the slag by 

decantation process (SHI, 2004; GERDAU S.A., 2001). 

In EAF process, cold steel scraps are used, reducing the amounts of iron scrap, pig 

iron, and direct reduced iron. After charging the electric arc furnace with the predetermined 

mixture of raw materials, electric power is applied following a computer-controlled melting 

profile, Figure 11 (b), (SHI, 2004; GERDAU S.A., 2001). 

FIGURE 11-SCHEMATIC ILLUSTRATION OF BOF E EAF. 

 

SOURCE: SHI (2004). 

The steel slag chemical compounds presented in the steel slag from those two furnaces 

are very similar. They consist primarily of CaO, MgO and FeO. Moreover, the proportion of 

these oxides and other components changes according to steel refine process (BOF, EAF, or 

others), raw materials used (type of coal, coke, and iron ore) and furnace conditions. Table 1 

shows the chemical composition of steel slag from different plants of steel production from 

BOF process. 

TABLE 1 - CHEMICAL COMPOSITION OF BOF SLAG FROM MANY RESEARCHERS. 

Compounds 
Mahieux et. al 

(2009) 
Belhadj et. al 

(2012) 
Diao et. al 

(2016) 
Cosme et. al 

(2016) 
Freitas et al. 

(2018) 
CaO 47.5 % 45.0 % 35.31% 36.78% 45% 
SiO2 11.8 % 10.8% 13.7% 14.17% 8.4% 

Fe2O3 22.6 % 32.0% 25.95% 24.36% 21.2% 
Al2O3 2.0 % 1.9% 2.66% 7.55% 3.9% 
MgO 6.3 % 4.5% 12.42% 11.54% 6.1% 
MnO 1.9% 2.6% 3.81% 3.83% - 
P2O5 2.7% 1.4% 2.07% 0.94% - 
TiO2 0.5% 0.5% 2.17% 0.38% - 
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SO3 0.2% 0.4% - 0.14% - 
SOURCE: AUTHOR. 

The material is a complex matrix structure consisting primarily of simple oxides 

determined from elementary analysis of x-ray fluorescence.  Steel Slag usually contain four 

major oxides CaO, MgO, SiO3 and Fe2O3, namely lime, magnesia, sílica and hematite, 

respectively. Minor elements include sulfur, aluminium, manganese, alkalis and trace amount 

of several others.  The Fe2O3 present in the steel slag contributes to a greater stiffening of the 

asphalt mixture, which can increase to the formation of cracks in the asphalt coating if it is 

subjected to low temperature conditions (Yoon and Tarrer, 1988), so the existence of it and 

other metals in slag material contributes greatly to the appreciable resistance of LD steel slag 

to abrasion. The high concentration of CaO increases the material´s performance reducing 

wheel track rutting, as well as aging and stress-related cracking (Little, 2006). Lastly, the 

presence of SiO2 can affect negatively the asphalt concrete performance, as silica prejudices 

the adhesiveness between binder aggregate (Yoon and Tarrer,1988). 

As said before, the main concern about steel slag application as aggregates into asphalt 

mixtures consists in their volumetric instability. The CaO hydrates very quickly causing 

instantaneous volumetric variations in the grains. Also, the hydration of MgO compound is 

slow, which take years until material reaches the stabilization, and may cause volumetric 

changes over time. In this aspect the use of this by-product as a filler in asphalt pavements 

becomes highly attractive since the fineness of the material can minimize the problems of 

expansion of the material. The authors Gottardi (2015), Cosme et al. (2016) and Fonseca 

(2016) evaluated the incorporation of steel slag in the performance of asphalt binders under 

three approaches 

Cosme et al. (2016) evaluated the influence of the addition of filler of steel slag LD on 

the rheological properties of the asphalt mastic and its susceptibility to permanent 
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deformations by means of frequency sweep tests, creep and multiple stress creep recovery 

(MSCR) tests. The authors compared mastics with incorporation of fillers of two by-products 

(steel slag and ornamental stones). The results showed that the use of steel slag increased the 

G* of the mastic significantly compared to mastics produced with ornamental stone residues. 

According to the authors, the higher G* values for mastics with LD slag may be linked to the 

higher concentration of iron oxide and lower impurity (silica) levels than the OSR residue; 

this factor may have contributed more to the hardening of the mastic than to the increased 

concentration of fine grains in the OSR residue. The creep and recovery analyses showed that 

the LD slag mastics are less likely to be permanently deformed than the ones that contain 

ornamental stone residues, probably due to the greater grain diameter of fillers for the slag.  

Fonseca (2016) evaluated the effect of LD steel slag on FAM characteristics and 

compared with FAM with hydrated lime addition results. Analysis of stiffening effect, fatigue 

resistance and fracture behavior were conducted on FAM specimens by means of frequency 

sweep tests, time sweep tests fitted in a viscoelastic continuum damage model (VECD) and 

Semi Circular (SCB) fracture tests. Regarding influence of fillers on material rigidity, for high 

frequencies mixtures with hydrated lime slag presented higher G* than FAM with LD slag, 

and at low frequencies the results were not significantly different. From VECD analysis, 

FAM with hydrated lime showed lower material integrity for the same level of damage 

accumulation than FAM with LD slag. Also, based on fracture parameters from SCB test, 

FAM with hydrated lime presented lower fracture energy than FAM with LD steel slag. 

Although these studies used advanced laboratory tests to characterize materials, the 

fracture and damage mechanisms of the mixtures that originate in the microstructure of the 

material under the influence of the interactions between the various constituents have not been 

well understood. Therefore, the use of microstructure modelling with NLVE-CZ model could 

be a power tool to assess fracture phenomena and to explain the abovementioned results. 
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3. EXPERIMENTAL PROGRAM  

This chapter presents materials and methodology used in this the research. Testing 

procedures of the individual constituents and the FAM studied mixtures are presented. 

FIGURE 12 - SCHEMATIC ILLUSTRATION OF RESEARCH METHODOLOGY. 

 

SOURCE: AUTHOR. 

Firstly, the materials used for FAM preparation and fabrication were properly selected 

and characterized. FAM samples were fabricated, and laboratory tests were performed to 

obtain the constitutive properties for the two FAM mixtures studied, differentiated by the 

filler addition on them, i.e., steel slag or and hydrated lime, named herein as FAM_HL and 
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FAM_SS, respectively. Frequency Sweep Tests (FS) were conducted to obtain viscoelastic 

properties of FAM mixtures and semi-circular bending tests (SCB) were performed to obtain 

fracture parameters of mixtures. The software MultimechTM was used to perform numerical 

simulations. To validate the model, indirect tensile strength tests (IDT) were conducted in 

laboratory and experimental results were compared with the numerical model results.    

3.1 MATERIAL CHARACTERIZATION  

3.1.1 Asphalt binder 

An asphalt binder PG 70-28 was used. It was provided by a local asphalt mixture plant (Usina 

Terra Brasil co.). The binder characteristics were provided by the supplier refinery 

REGAP/PETROBRAS and are shown in Table 2. They are in accordance with the Brazilian 

specifications regulated by the Petroleum National Agency (ANP, 2005). 

TABLE 2 - ASPHALT BINDER CHARACTERIZATION. 

Característica Method Specification Results Unit 

Penetration ASTM D5 50 to 70 53 0,1 mm 

Softening Point ASTM D36 46 min 49.4 ºC 

Brookfield Viscosity 135GC SP21 
20RPM 

ASTM D 4402 274 min 300 cP 

Brookfield Viscosity 150GC SP21 ASTM D 4402 112 min 153 cP 

Brookfield Viscosity 177GC SP21 ASTM D 4402 57 a 285 58 cP 

RTFOT Retained Penetration ASTM D5 55 min 62 % 

RTFOT Increased Softening Point ASTM D36 8max 4,2 °C 

RTFOT Ductility 25GC ASTM D113 20 min >150 cm 

RTFOT % mass variation ASTM D2872 (-)0,50 a 0,50 -0.226 % 

Ductility 25GC ASTM D 113 60 min >150 cm 

Solubility in Trichloroethylene ASTM D 2042 99,5 min 99.9 % mass 

Flash Point ASTM D92 235 min 338 °C 

Heat susceptibility index ASTM X 018 (-)1,5 a0,7 -1.2 N/A 

Specific Gravity -  20/4 GC ASTM D70 - 1.008 N/A 

SOURCE: REGAP LABORATORY. 
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3.1.2 Aggregates 

Three types of granite aggregates were used (B1, B0, Grits and Stone). Figure 13 and table 3 

shows the aggregate´s particle-size distribution (PSD) and physical characteristics, 

respectively.   

FIGURE 13 - GRADATION CURVES OF AGGREGATES. 

 

SOURCE: ADAPTED FROM GOTTARDI (2015). 

TABLE 3 - PHYSICAL CHARACTERISTICS OF THE AGGREGATES. 

Aggregate 
Real Specific Mass 

(g/cm³) 
Los Angeles 

Abrasion 
 Sand  

Equivalent 
 

B1 2.793 

55.87% 

 
- 

 

B0 2.791   

Grits 2.817   
Stone Dust 2.79  67.5%  

SOURCE: GOTTARDI (2015). 

 

3.1.3 Fillers 

a) Hydrated Lime  

The hydrated lime used was a commercially available from Massical co. The material was 

oven dried at 105 ° C and stored inside plastic bags prior its use. Its specific mass value 

obtained was 2.205 g/cm³. Mineralogical analysis by X-ray diffraction was also carried out 
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and the diffractometer results are shown in Figure 14. As expected, it is possible to notice the 

presence of calcite, followed by calcium and aluminum silicates. 

FIGURE 14 - MINERALOGICAL CHARACTERISTICS OF HYDRATED LIME PARTICLES. 

 
SOURCE: LABPETRO REPORT 

 

b) LD steel slag 

For the present study, LD steel slag with expansion level reduced to 3%, commercially 

named as ACERITA, provided by Arcelor Mittal Tubarão co. located in Serra (ES-Brazil), 

was selected. The LD slag was the same used in other studies (Gottardi, 2015, Cosme et. al. 

2016, and Fonseca, 2016). The material was first oven dried at 105 °C, then passed in the 

sieve #200 (0.075 mm), homogenized, quartered and stored inside plastic bags. 

Specific mass value obtained was 2.91 g/cm³. Mineralogical analysis by X-ray 

diffraction was also carried out and the result is shown in Figure 15. From the analyses it is 

possible to notice the presence of Magnetite (Fe2O4), Quartz (SiO2), Calcite (Ca2CO3) and 

others.  
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FIGURE 15-MINERALOGICAL CHARACTERISTICS OF LD STEEL SLAG PARTICLES. 

 

SOURCE: NANOBUSINESS INOVAÇÃO E INFORMAÇÃO REPORT.  

Chemical characterization of the by-product was also performed by X-ray 

fluorescence spectrometry (FRX) and the results are shown in Table 4. From the results, it can 

observe a large amount of calcium oxide (CaO), iron oxide (Fe2O3) and silicon oxide (SiO2). 

According to Cosme et al. (2016), the iron oxide present in the slag contributes to a greater 

stiffening of the asphalt mixture.  

TABLE 4 - SEMI-QUANTITATIVE ANALYSIS IN THE FORM OF OXIDES OF THE STEEL SLAG BY FRX. 
Oxides (%) 

Na2O 0,17 

MgO 5 

Al2O3 4,9 

SiO2 12,7 

P2O5 1,3 

SO3 0,16 

K2O <0,1 

CaO 43,4 

TiO2 0,36 

MnO 3,2 

Fe2O3 26,4 

SrO 0,1 

LC* 1,6 

*LC = Loss by Calcination 

SOURCE: NANOBUSINESS INOVAÇÃO E INFORMAÇÃO REPORT.  
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3.2 FAM MIX DESING 

The main purpose of this study was to evaluate the effect of LD steel slag in 

replacement of hydrated lime on FAM characteristics, as well as to investigate the efficiency-

validity of the extrinsic NVCZ model for characterizing case-specific fracture properties and 

predicting fracture behavior of asphaltic materials. FAM was selected based on Fonseca 

(2016) FAM gradation. However, Fonseca (2016) considered particles smaller than 2.00mm 

while herein only particles smaller than 0.60 mm (No. 30 sieve) were used.  Binder content of 

13.3% by total weight of FAM mixture were produced and tested. It is important to mention 

that there is no consensus on the literature about the nominal maximum aggregate size to 

represent FAM phase. Figure 16 shows the gradation curves of HMA from Gottardi (2015) 

and the respective derived PSD for the FAMs used in this study. 

FIGURE 16- GRADATION CURVES OF THE FINE AGGREGATE MATRIX AND THE COMPLETE BITUMINOUS COMPOSITE. 

 
SOURCE: AUTHOR. 

The percentage of 7.43% (by total FAM mass) of hydrated lime and LD steel slag 

were added in FAM_HL and FAM_SS, respectively. The binder content was kept the same to 

eliminate binder content influence on the results and equal to 13.3% for both mixtures studied 

herein, since the main objective was to evaluate exclusively the influence of the filer in 

asphalt matrix performance.  
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3.3 LINEAR VISCOELASTIC PROPERTIES OF FAM_SS AND FAM_HL 

Linear viscoelastic properties of the studied FAM were experimentally obtained by 

performing dynamic frequency sweep (FS) tests using a dynamic shear rheometer (DSR) 

followed by the curve fitting collocation method to obtain Prony Series coefficients. 

3.3.1. DSR sample fabrication 

For each FAM (FAM_HL and FAM_SS) four cylindrical samples with 50 mm 

diameter and 12mm height were fabricated. The procedure to fabricate (mixing and 

compaction) these testing samples was based on Fonseca (2016) and included some step, as 

follow: first, aggregates were quarter, dried and sieved. For each studied FAM, 500g of 

mixture was prepared by preheating the aggregates and the binder to the mixing temperature 

of 146 ºC for 2 hours and then mixed at 135 ºC. After that, the mixture was put inside a 

container, as shown in Figure 17 (a), and small amounts were heated for short time at 135ºC 

as needed to compaction. The amount of mixture necessary to mold each sample was 

experimentally determined by attempts targeting samples with 4.00 +/- 0.5% of air voids. 

Figure 17 (b) and (c) show the bipartite mold used and the apparatus to place sample inside 

the mold, respectively. To compact the samples, it was used a mechanical pressing machine, 

with a manual compactation effort, as displayed in Figure 17 (d). After compaction, the 

sample was removed by opening the brackets and separating mold parts. Figure 17 (e) shows 

one example of FAM sample used for DSR testing. Table 5 summarizes the volumetric 

parameters obtained of FAM samples for DSR testing.   
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FIGURE 17 - FAM SAMPLE FABRICATION PROCESS: (A) FAM MIXTURE BATCH); ( (B) SAMPLE MOLD; (C) MIXTURE 

BEING PLACED IN THE MOLD; (D) SAMPLE COMPACTION; (E) FAM DSR TESTING SAMPLE. 

   
(A)                                                   (B)                                                  (C)  

  
(D)     (E) 

SOURCE: AUTHOR. 

 
TABLE 5 - VOLUMETRIC PARAMETERS OF TESTING SAMPLES. 

FAM 
Mixture 
Mass (g) 

Dried Mixture 
Mass (g) 

Submerged 
Mass (g) 

Gmb Air Voids (%) 

FAM_HL 13.3 

13.21 7.18 2.191 3.89 
4.04 
4.22 
3.50 
3.64 

13.19 7.16 2.187 
13.23 7.17 2.183 
13.22 7.21 2.199 

FAM_SS 15.5 

14.94 8.25 2.233 
14.94 8.22 2.223 4.07 
14.77 8.14 2.227 3.87 
14.79 8.17 2.234 3.60 

SOURCE: AUTHOR. 

 

3.3.2 FAM Linear Viscoelastic Properties 

The studied FAMs were subject to dynamic frequency sweep tests by applying a 

controlled strain amplitude of 65 microstrains and varying the frequency from 25 Hz to 0.01 

Hz at three different temperatures (20°C, 30°C and 40°C).  
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Storage Shear Modulus over the reduced frequency domain were plotted at the three 

temperatures. Figure 18 and Figure 19 shows the results for FAM_HL and FAM_SS, 

respectively. Four samples were tested for each mixture and the averaged values were used 

for collocation method. 

FIGURE 18 - FREQUENCY SWEEP TEST RESULTS - FAM_HL. 

 

SOURCE: AUTHOR. 

FIGURE 19 - FREQUENCY SWEEP TEST RESULTS - FAM_SS 

 
SOURCE: AUTHOR. 

With results shown above and employing temperature superposition principle, the 

linear viscoelastic master curves of the storage modulus in the frequency domain at a 

reference temperature of 25 ºC were obtained for the FAM_HL and FAM_SS, as shown in 

Figure 20. 
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FIGURE 20- MASTER CURVE OF DYNAMIC SHEAR MODULUS FOR THE ASPHALT MATRIX AT 25 ºC. 

 
SOURCE: AUTHOR. 

In concern about the filler effect in the mixture viscoelastic stiffness characteristics, 

from Figure 20 is possible to observe that at high frequencies the dynamic shear moduli were 

similar to both mixtures, FAM_SS and FAM_HL, but at low frequencies is noticed higher 

values for FAM_SS, which means that the steel slag filler increased the material stiffness 

mainly at high temperatures (low frequencies) improving the material resistance of permanent 

deformations. According to Bahia (1995) the effects of the filler incorporation on asphalt 

matrix are more significant and favorable at high temperatures (low frequencies), increasing 

the stiffness of the binder, which has a smaller complex modulus in this temperature range. 

However, at low temperatures, the filler further increases the stiffness of the asphalt binder, 

resulting in a reduction in the capacity to relax tensions, which means that in this aspect the 

incorporation of the by-product steel slag improved the performance of the asphalt mixture. 

This increased stiffness observed in the FAM_SS can be explained by the higher specific 

mass of the slag compared to the specific mass of lime, 32% higher. Besides that, as already 

mentioned above the presence of iron oxide (Fe2O3) in relatively high concentrations 

contributes to a greater stiffening of the asphalt mixture (COSME et. al. 2016). 

1,00E+06

1,00E+07

1,00E+08

1,00E+09

1,00E+10

1,00E-03 1,00E-01 1,00E+01 1,00E+03

St
or

ag
e 

S
he

ar
 M

od
ul

us
  G

' (
P

a)

Reduced Frequency  (rad/seg)

Hydrated Lime

Steel Slag



50 
 

Following the procedure described in (KIM, 2003) and already applied by other 

researchers (SOUZA, 2005; LUTIF, 2011; ARAGÃO, 2011), the Prony series coefficients 

were used to define time-domain shear relaxation modulus. Poisson’s ratio of 0.30 was 

assumed base in (BERNUCCI, 2006). TABLE 6 shows the linear viscoelastic properties for the 

FAM’s used herein (spring constants (𝑬𝑖)  and relaxation time (𝝆𝒊) in the generalized Maxwell 

model). 

TABLE 6 - PRONY SERIES COEFFICIENTS OF THE MATRIX PHASE AT 25ºC. 
FAM mixtures  FAM_HL FAM_SS 

𝜌ଵ 1.10E-04  𝐸ଵ 9.39 E+09 Pa 5.23E+09 Pa 

𝜌ଶ 1.10E-03  𝐸ଶ 7.04 E+08 Pa 1.95E+09 Pa 

𝜌ଷ 1.10E-02  𝐸ଷ 4.91 E+09 Pa 5.83E+09 Pa 

𝜌ସ 1.10E-01  𝐸ସ 4.68 E+08 Pa 4.41E+08 Pa 

𝜌ହ 1.10E+00  𝐸ହ 2.19 E+08 Pa 2.60E+08 Pa 

𝜌଺ 1.10E+01  𝐸଺ 6.56 E+07 Pa 6.01E+07 Pa 

𝜌଻ 1.10E+02  𝐸଻ 3.93 E+07 Pa 7.70E+07 Pa 

𝜌଼ 1.10E+03  𝐸଼ 1.24 E+07 Pa 1.89E+07 Pa 

   𝐸ஶ 4.10 E+07 Pa 7.70 E+07 Pa 

SOURCE: AUTHOR. 

The results generated for the storage modulus (G ') over the frequency domain using 

the Prony Series coefficients were compared with experimental results, to verify the 

propositions of linearity and negligible inertia assumed in the development of the mechanical 

models, represented by Prony series. Figure 21 and Figure 22 present the results for FAM_HL 

and FAM_SS, respectively. It is observed that there were no significant variations in the 

curves, which indicates that the fitting procedure used was valid. 
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FIGURE 21 - CURVES OF EXPERIMENTAL AND FITTED STORAGE MODULUS (G’), FAM_HL. 

 
SOURCE: AUTHOR. 

FIGURE 22 - CURVES OF EXPERIMENTAL AND FITTED STORAGE MODULUS (G’), FAM_SS. 

 

SOURCE: AUTHOR. 

3.4 FRACTURE PROPERTIES OF FAM FAM_SS AND FAM_HL 

As above mentioned, the non-linearity of the FAM studied herein was considered as a 

consequence of material microcrack growth and propagation. The CZ model selected in this 

study to model the damage evolution is based on the non-linear viscoelastic cohesive zone 
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(NLVE-CZM) model developed by Allen and Searcy (2001), mathematically represented by 

Equation (7). 

In order to perform the numerical simulations, one needs to obtain fracture parameters 

required in the adopted NLVE-CZM. For that, it was used herein a calibration procedure 

based on experimentally obtained fracture testing results. Some test configurations are being 

used to evaluate fracture characteristics of asphalt mixture: Single Edge Notch Beam (SENB); 

Disc-shaped Compact Tension (DCT); and Semi-Circular Bending (SCB) tests.  

In this study, a semi-circular bend (SCB) geometry was selected for fracture testing. 

Given the various advantages such as repeatability, reproducibility, consistency, and 

simplicity of specimen preparation and testing, the SCB test has received a growing interest 

by the research community to characterize fracture properties of asphalt mixtures. According 

to Aragão (2011), SCB geometry has been used by many researchers (BASHAM et al., 1990; 

KHALID and ARTAMENDI, 2008; MOHAMMAD and LIECHTI, 2000; VAN ROOIJEN 

and de BONDT, 2008; LI and MARASTEANU, 2004 and 2010, and many more) to obtain 

fracture toughness, fracture energy, and stress-softening curves of various types of brittle and 

semi-brittle materials. Furthermore, the success in generating the requisite parameters for 

fracture assessment has ensued American and England research community in the 

development of SCB standard protocols (EN 12697-44:2010, AASHTO TP 105-13) under 

monotonic loading conditions (SASHA and BILIGIRI, 2015). 

Thus, the SCB geometry was chosen in this study to obtain mode I fracture 

parameters. The calibration process is schematic represented in Figure 23. 
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FIGURE 23 - CALIBRATION PROCESS TO DETERMINE MODE I FRACTURE PARAMETERS. 

 

SOURCE: AUTHOR. 

3.4.1 SCB sample fabrication  

The SCB samples were obtained from Marshall compacted specimens in laboratory. The 

target air void for that samples was (4,00 +/- 0,7 %), within the limit (3% to 5%) from 

bituminous mix design. Many attempts were made until the desired volume of voids was 

reached. At first by changing the Marshall compactor numbers of blows, and subsequently by 

changing the amount of mass inserted in the mold. Table 7 summarized volumetric 

parameters of SCB testing samples. 

TABLE 7 - VOLUMETRIC PARAMETERS OF SCB TESTING SAMPLES. 

Filler 
Nº Blows 

p/ face 

Diameter 

(mm) 

Gmb 

(gr/cm³) 

Gmm 

(gr/cm³) 
Air Voids (%) 

Steel Slag 75 10.2 2.22 2.318 4.17 

Hydrated Lime 25 10.2 2.17 2.279 4.66 

SOURCE: AUTHOR. 

According to Gottardi (2015), who also studied these two fillers in HMA, the variation 

in the materials behavior (regarding air voids distribution) is expected as the average particle 

size of hydrated lime is 7 times lower than steel slag, being 10µm and 70µm, respectively. 

Figure 24 and Figure 25, shows the geometry and procedure, respectively, used herein to 
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obtain the semi-circular testing samples, with 100 mm of diameter, and a 10 mm notch made 

using 1.5mm blade along the axis of symmetry. The specimen thickness (25mm) adopted in 

this study was based on Aragão (2011). The author stated that for two-dimensional 

simulations, SCB specimens 25 mm thick can be used when it is assumed the plane stress 

condition.   

FIGURE 24-ILLUSTRATION OF SCB SPECIMEN CORING AND CUTTING PROCEDURE. 

SOURCE: ADAPTED FROM LUTIF (2011). 

FIGURE 25 – ACTUAL SCB SPECIMEN CORING AND CUTTING PROCEDURE 
 

 
SOURCE: AUTHOR. 

3.4.2 SCB experimental test and numerical calibration using MultiMech TM software 

Two SCB samples for each studied FAM mixture were subjected to pure mode I SCB 

laboratory tests. Samples were loaded up to failure at a constant displacement rate of 

0.83mm/s at 25 ± 1º C. The support`s distance was fixed as 80 mm, as also used by Fonseca 

(2016), maintaining the same proportion of the SCB tests performed by Lutif (2011) and 

Aragão (2011) in bigger samples (using 150mm diameter) compacted in Superpave Gyratory 
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Compactor (80% of the sample diameter). The test set-up and execution are shown in Figure 

26. SCB laboratory testing results are presented in Figure 27. 

FIGURE 26 - SCB TEST SET-UP. 

 
SOURCE: AUTHOR. 

FIGURE 27 - LABORATORY RESULTS FOR SCB BENDING TESTS. 

 
SOURCE: AUTHOR. 

 

After performing SCB experimental tests, the calibration process was performed. For that, 

first a convergence study was conducted to identify the appropriate size of cohesive elements 

to model the SCB fracture testing. The FAM_HL mixture was used as reference for the 

convergence study. Six different meshes were simulated. The level of refinement was 

increased on the most potential cohesive zone area of SCB specimen, as shown in Figure 28. 

It was considered the following elements sizes: 0.9 mm, 0.7 mm, 0.6mm, 0.4mm, 0.2mm, and 

0.1mm. The LVE material input properties used are the ones showed in Table 6. Since the 

effort is to investigate mesh convergence, for the cohesive zone fracture parameters, 
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arbitrarily values were used but with same magnitude as the ones used by Lutif (2011) as 

show in Table 8.  

FIGURE 28 – ILLUSTRATION OF SCB MESHING REFINEMENT 

 

 

 

SOURCE: AUTHOR. 

TABLE 8 - FRACTURE PARAMETERS USED FOR MESH CONVERGENCE STUDY. 
  FAM_HL 

 

𝛿௦
∗ 

 

55 mm 55 mm 
  

9E+05 Pa 1.0E+20 Pa 
A 1E6 
m 3.4 

SOURCE: AUTHOR. 

Figure 29 shows the corresponding simulation results in the form of maximum 

reaction force vs. element size graphic. It can be observed considerable difference among the 

results due to changes in mesh refinement. Thus, an element size of 0.4 mm was chosen 

because was a fairly refined mesh with reasonable simulation computational time (14 time 

less than the size 0.2mm and 65 times less than 0.1mm).   

 

 

 

 

Most-Potential crack path: 
element size varying from 

0.9mm to 0.1mm  

𝛿௡
∗  

𝜎௡
௙

𝜎௦
௙

Linear-viscoelastic FAM 

Extrinsic NVCZ: Automatic insertion of cz elements 
is allowed throughout the whole sample when σ>σf 
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FIGURE 29 – SCB MESH CONVERGENCE STUDY - SIMULATION RESULTS – MÁX. FORCE X ELEMENT SIZE. 

 

SOURCE: AUTHOR. 

After de mesh convergence study, the mode I cohesive zone fracture parameters were 

determined by a trial-and-error calibration process, by varying fracture parameters from the 

Equation (7) until a good agreement between the experimental and numerical curves was 

obtained. Four parameters (𝛿௡
∗ , , m and A) of the NLVE-CZM were determined. The process 

of calibration, shown in Figure 23 accounts for the influence of each parameter in mixtures 

behavior. This is not a trivial task, since one needs to play with different set of parameters to 

obtain a matching curve. However, If one could understand the contribution of each parameter 

on the entire fracture process, the calibration can be conducted more efficiently by taking 

proper steps.   

I think it is important to inform the reader that you used MultiMech to perform these 

numerical simulations. 

 Parameter 𝜹* 

The first step in the calibration process was to define the parameter 𝛿௡
∗ . From Allen and 

Searcy (2001), 𝜹  is the empirical material length parameter which reflect a length scale 

intrinsic to the scale of the damaged zone, representing the thickness of the cohesive zone. To 

determine the 𝛿௡
∗   value, other parameters were fixed arbitrarily and 𝛿௡

∗  was varied from 0.015 
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to 0.030 m. Results from Figure 30 indicate that 𝛿௡
∗  changes the slope of the curve and peak, 

changing the entire fracture energy until sample failure. Therefore, if  𝛿௡
∗ increases the more 

ductile the material becomes. The best fitted curve for FAM_SS was found with 𝛿 = 0.025 

and for FAM_HL was with 𝛿 = 0.015.  

FIGURE 30 - 𝜹𝒏
∗  CALIBRANTION FOR (A) FAM_HL (B) FAM_SS. 

 

 

SOURCE: AUTHOR. 

 Parameter 𝒎 and A  

The parameters A and 𝑚 are used to define the internal damage evolution law, as 

stated in Equation (9), associated with the damage evolution rate which reflects a dependence 

on crack opening displacements and have a significant impact on the traction-displacement 

relationship. From Figure 31 is possible to observe that by decreasing the m parameter, the 

rate of damage propagation increases.  
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FIGURE 31 - 𝒎 CALIBRANTION FOR (A) FAM_HL (B)FAM_SS. 

 

 

SOURCE: AUTHOR. 

In contrast, from Figure 32 one can noticed that if 𝐴  value is decreased the damage 

propagation in the material occurs more slowly. As the two parameters play the same role, 

first A was fixed and the best experimental-numerical match with different 𝑚  values was 

obtained. Then, the inverse process was made to find the best match for A. An important 

observation must be made, the effect of 𝑚  value is inversely proportional to the rate of 

damage propagation, since m was assumed herein to be less than 1. From Equation (9) it 

possible to explain that behavior, as the parameter 𝑚 is an exponent of a variable smaller than 

1.  
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FIGURE 32 - 𝐀  CALIBRANTION FOR (A) FAM_HL (B) FAM_SS. 

 

 

SOURCE: AUTHOR. 

 Parameter σf   

The last step to the fracture parameter´s calibration is to find the magnitude of initial 

stress criteria, 𝜎௙, requisite stress level to initiate damage. This is not a trivial task. However, 

from the current study, it is possible to observe that for higher values of 𝜎௙ ,  the fracture 

process occurs with lower energy absorption and at higher rate, characterizing a brittle 

fracture behavior, as shown in. If ones assume a 𝜎௙ >>0, physically, it means that the CZ 

initiation criteria is never reached, and material will never failure due to fracture. Figure 34 

shows the final curves of calibrated numerical results and the averaged experimental results 

for both mixtures. 
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FIGURE 33 -  𝜎௙  CALIBRATION FOR (A) FAM_HL (B)FAM_SS. 

 

 

SOURCE: AUTHOR. 

Finally, Mode II cohesive zone fracture parameters were defined with high σ values 

and the same δ determined for Mode I. This because in the test used herein to validate the 

model the fracture process occurs essentially by traction (mode I), well detailed below, then 

high values of σ were defined in order not to create CZ by mode II. About δ, it was defined 

with same value of mode I parameter just because it cannot be zero as it is a denominator in 

Equation (8), and its value does not interfere in Equation (7) result as we do not have fracture 

by mode II. Table 9 summarizes the input material parameters obtained with the methodology 

employed herein for the mixtures studied (FAM_HL and FAM_SS).  
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TABLE 9 – LVE MATERIAL PROPERTIES (PRONY SERIES) AND NLVE-CZM  FRACTURE DAMAGE PARAMETERS FOR 

MODEL SIMULATIONS. 
Laboratory tests and target 
model inputs 

(1) Dynamic frequency sweep test using FAM specimens: linear viscoelastic 
material properties (Prony series parameters in the generalized Maxwell 
model)  
(2) Semi-circular bending test using FAM specimens: cohesive zone fracture 
parameters 

FAM mixtures  FAM_HL FAM_SS   
Test results (model inputs) (1) Linear viscoelastic properties (Prony series parameters) 
  𝐸ଵ 9.39 E+09 Pa 5.23E+09 Pa 𝜌ଵ 1.10E-04 

  𝐸ଶ 7.04 E+08 Pa 1.95E+09 Pa 𝜌ଶ 1.10E-03 
  𝐸ଷ 4.91 E+09 Pa 5.83E+09 Pa 𝜌ଷ 1.10E-02 
  𝐸ସ 4.68 E+08 Pa 4.41E+08 Pa 𝜌ସ 1.10E-01 
  𝐸ହ 2.19 E+08 Pa 2.60E+08 Pa 𝜌ହ 1.10E+00 
  𝐸଺ 6.56 E+07 Pa 6.01E+07 Pa 𝜌଺ 1.10E+01 
  𝐸଻ 3.93 E+07 Pa 7.70E+07 Pa 𝜌଻ 1.10E+02 
  𝐸଼ 1.24 E+07 Pa 1.89E+07 Pa 𝜌଼ 1.10E+03 
  𝐸ஶ 4.10 E+07 Pa 7.70 E+07 Pa   
  (2) Nonlinear viscoelastic cohesive zone parameters 
  𝛿௡

∗  0.015 m 0.025 m   
  𝜎௡

௙ 9.0 E+04 Pa 3.0 E+04 Pa   
  A 9 9   
  m 0.7 0.8   
Properties assumed  0.3 0.3   
  Mode I (normal) and mode II (shear) cohesive material length parameter δ୧

∗ is 
assumed to be equal in this study, and Mode II (shear) initial stress level 𝜎௦

௙  is 
assumed to be 2.3E+7 (very high) to eliminate mode II CZ.      

 SOURCE: AUTHOR.  

FIGURE 34 – MODE I FRACTURE PARAMETER AFTER CALIBRATION. 

 

SOURCE: AUTHOR. 
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3.5 INDIRECT TENSION STRENGTH TEST (IDT) 

As is widely known, concrete has a tensile strength much lower than compressive 

strength. The tensile strength is an important characteristic for asphalt mixtures since 

pavements experiments high tensile strains in the bottom of the surface layer when traffic load 

is applied on its top. If the material does not have sufficient tensile strength, it starts to 

develop cracks, and consequently is a critical factor in pavements design life. Thus, the tensile 

strength has been shown to be an important parameter for the characterization of asphalt 

mixtures.  

The so-called Brazilian test for evaluating tensile strength in concrete materials is by 

diametrical compression mode. For this reason, it is known as indirect tension test (IDT). It 

was developed by professor Lobo Carneiro in Rio de Janeiro, Brazil (CARNEIRO, 1943). 

The test configuration considers the application of two concentrated and diametrically 

opposed forces of compression in a cylinder (Figure 37). Uniform tensile stresses 

perpendicular to the diameter are generated. Since 1972, this testing procedure has been used 

in bituminous mixtures characterization (BERNUCCI, 2006), including the American 

standard ASTM D6931. Authors have been using the IDT to evaluate asphalt mixtures 

performance due its ease and quick execution and fabrication of replicates (ZHANG et al., 

2016; TUAN NGUYEN, 2013).  
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FIGURE 37-INDIRECT TENSILE (IDT) STRENGTH TEST PROCEDURE. 

 

SOURCE: ADAPTED FROM BERNUCCI (2006). 
 

In IDT tests for asphalt mixtures, the Marshall specimen is loaded through a 12.7 mm 

thick metallic strips (Figure 37). The Brazilian and American standards, DNIT 136 (2010) and 

ASTM D 6931, respectively, do not consider the influence of theses strips in the tensile 

strength determination. According to the expression used by these entities, only the elastic 

behavior of the materials is taken into account and the rupture of the specimen along the 

requested diameter are due solely to the uniform tensile stresses generated.  The IDT tension 

strength 𝑇ூ஽் can be determined as follows: 

 𝑇ூ஽் =  
2. 𝑃

𝜋. 𝐷. 𝑙
 (11) 

Where, 

 𝑇ூ஽்: the indirect tensile strength;  

𝑃: the peak applied force;  

𝐷: the diameter of Marshall specimen;  

𝑙: the thickness of concrete specimen. 

Considering the importance as a structural indicator for asphalt concrete resistance, for 

validation of the computational microstructure model, IDT tests were conducted. Marshall 

specimens were mold for the two FAM mixtures studied herein. To use the input properties 
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determined from frequency sweep and SCB tests in the numerical simulations of IDT, same 

mix design and procedures described in 4.4.1 are adopted. table 10 the volumetric parameters 

for the two samples compacted for IDT tests.  

TABLE 10 - MARSHALL TESTING SAMPLES VOLUMETRIC PARAMETERS FOR IDT TESTS. 

 Blows Nº 
Diâmeter 

(cm) 

Dry Mass 

(gr) 

Gmb 

(gr/cm³) 

Gmm 

(gr/cm³) 

Vv 

(%) 

FAM_HL 25 10.2 1111.10 2.181 2.318 4.33 

FAM_SS 75 10.2 1331 2.259 2.279 2.49 

SOURCE: AUTHOR. 
 

3.5.1 IDT experimental setup and results 

IDT was conducted on 10cm diameter and 6.2cm thick Marshall specimens of the 

studied FAM mixtures at a testing temperature of 25 °C. Samples air voids were maintained at 

4  0.5%. A monotonic constant displacement rate of 0.83mm/s was applied to the top center 

point until the specimens failed completely. Test results, plotting the reaction forces captured 

by the load cell as the loading time increased, were used for the validation of the model, by 

comparing experimental and numerical results. Figure 35 shows the experimental setup for 

the test and the FAM specimens (after being tested) with a macrocrack developed at the center 

region. The laboratory test results are shown in Figure 36. 

.FIGURE 35 – (A) IDT SAMPLE SETUP. (B) FAM_HL AND (C) FAM_SS AFTER TEST. 

  
(A)     (B)     (C) 

SOURCE: AUTHOR. 
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FIGURE 36 - LABORATORY RESULTS FOR IDT STRENGTH. 

 

SOURCE: AUTHOR. 

4. VERIFICATION AND VALIDATION OF MICROSTRUCTURE 

NUMERICAL MODEL  

To verify the model used herein to evaluate bituminous mixtures, first it was performed some 

trial simulations of a tapered bar problem with known analytical solution to verify the 

material models available in MultiMech TM software.   

The initial simulations included: (I) an elastic model without damage verification; and 

(II) a viscoelastic model without damage verification. After the verification, the IDT Strength 

Test was simulated, and results were compared to experimental ones obtained previously.  

4.1 VERIFICATION OF ELASTIC CONSTITUTIVE MODELS WITHOUT 

DAMAGE  

In this first attempt, a closed-form solution problem was solved in order to verify the 

efficiency and accuracy of the Multimech TM algorithms and optimizer. Thus, numerical 

results from Multimech TM were compared to numerical results from Abaqus for the same 

problem. Thus, a homogeneous tapered bar problem, presented in FIGURE 37, was used. The 
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tapered bar was assumed with elastic materials and monotonically increasing displacements 

were applied at the right end of the bar. 

The tapered bar problem was selected because of its inhomogeneous state of stress (as 

a result of its varying cross-section along the bar), which allowed the verification of different 

stress behavior along the bar. Table 11 presents the material properties used that were 

arbitrarily assumed for comparison purposes only.  

FIGURE 37 - ELASTIC TAPER BAR PROBLEM. 

SOURCE: AUTHOR. 

TABLE 11- MATERIAL PROPERTIES FOR THE ELASTIC TAPERED BAR USED FOR THE ELASTIC MODEL VERIFICATION. 
ISOTROPIC LINEAR ELASTIC 

Young Modulus (E) 122000 

Poisson Ratio (ν) 0.35 

SOURCE: AUTHOR. 

A convergence study was first conducted to identify the appropriate finite element 

mesh of the global scale object to model the tapered bar. Four different meshes in different 

level of refinement (80, 240, 960, 3000 elements) were investigated. Figure 38 shows the four 

meshes generated for this study and Figure 39, the corresponding simulation results in the 

form of Reaction Force (kN) vs. Time (sec) graphics. According to graphic analyses, the level 

of refinement did not affect the solution, which implied that 80 global elements were enough 

to obtain converged solutions for this problem. Thus, the mesh with 80 elements was chosen 

for the remaining simulations as it reduces the simulation time. 

 

L = 100 mm 

H = 40 mm 

u (L , t) = 0.83t 
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FIGURE 38 – TAPERED-BAR MESH CONVERGENCE STUDY FOR FOUR MESH REFINEMENT ELEMENT NUMBER: (A) 80 

ELEMENTS; (B) 240 ELEMENTS; (C) 960 ELEMENTS; (D) 3000 ELEMENTS. 

 

SOURCE: AUTHOR. 

 

FIGURE 39 – TAPERED BAR MESH CONVERGENCE STUDY - MULTIMECH SIMULATION RESULTS. 

 

SOURCE: AUTHOR. 
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Simulation results from Multimech can be compared to results from ABAQUS. The 

comparation was made by the stress value (S11) in some specific points. Figure 40 illustrate 

the points used in the verification their respective stress results from Multimech and Abaqus.  

FIGURE 40 - SCHEMATIC ILLUSTRATION AND RESULTS OF TAPERED BAR STRESS. 

 

SOURCE: AUTHOR. 

Figure 40 shows that the numerical simulation results from both softwares are close. 

The difference between theses stress results from Abaqus and Multimech is about 8% and can 

be explained by the fact that Multimech gives interpolated stress values between elemental 

stresses that contains that specific analyzed point, while Abaqus do not interpolate the stress 

values and the stress are given per element. In this study, to obtain Abaqus results for 

comparison, one element connected to a specific analyzed point was randomly selected 

without interpolation. 
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4.2 VERIFICATION OF VISCOELASTIC CONSTITUIVE MODEL WITHOUT 

DAMAGE  

The second attempt to verify the model was with a viscoelastic problem. For this 

purpose, another closed-form solution problem was solved, but at this time, the numerical 

results are compared to analytical solutions. Due to the axis of symmetry, only half of the bar 

was mound, the geometry and boundary conditions used to the problem are show in Figure 

41.   

FIGURE 41-VISCOELASTIC TAPERED BAR PROBLEM. 

 

(a) Tapered Bar Geometry and Boundary Conditions. 

 

(b) Global scale mesh with 40 elements. 

SOURCE: AUTHOR. 

The tapered bar material was assumed as a viscoelastic matrix. The material properties 

used to characterize the tapered bar were arbitrarily selected based on other studies and are 

presented in Table 12.  
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TABLE 12- MATERIAL PROPERTIES USED FOR VISCOELASTIC VERIFICATION. 
𝑬ஶ 1.22E+07 Pa    
ν 0.35   

𝑬𝟏 3.03E+09 Pa  𝜌ଵ 8.00E-05 
𝑬𝟐 1.48E+09 Pa  𝜌ଶ 8.00E-04 
𝑬𝟑 1.33E+09 Pa  𝜌ଷ 8.00E-03  
𝑬𝟒 4.35E+08 Pa  𝜌ସ 8.00E-02 
𝑬𝟓 1.60E+08 Pa 𝜌ହ 8.00E-01 
𝑬𝟔 5.00E+07 Pa  𝜌଺ 8.00E+00  
𝑬𝟕 1.79E+07 Pa  𝜌଻ 8.00E+01 
𝑬𝟖 3.02E+06 Pa  𝜌଼ 8.00E+02 

SOURCE: AUTHOR. 

The analytical solution for this problem is given by: 

 𝐸ത(𝑡) = 𝐸ஶ 𝑡 + ෍ −𝐸௜𝜌௜ 𝑒
ష೟

ഐ೔ + 𝜌௜ 𝐸௜  (12) 

 𝜀(𝑥, 𝑡) =  
0.1𝑡

ln (2)
൬

1

20 − 𝑥
൰ (13) 

 𝜎(𝑥, 𝑡) =  
0.1

ln (2)
൬

1

20 − 𝑥
൰  𝐸 (𝑡) (14) 

The results from analytical solution were compared with results from MultiMech 

numerical simulation by stress values in one specific point, coordinates (0,1), on the tapered 

bar. Table 13 and Figure 42 show the results and comparisons. 

TABLE 13 – STRESS VALUES FROM ANALYTICAL AND MULTIMECH ANALYSIS. 

STRESS S11 

Point Time 
Analytical  

Stress (Pa) 

Multimech 

Stress (Pa) 
Variation 

(0,1) 

1 1573991.82 1579543.026 0.35268% 

2 2298414.23 2306520.359 0.35268% 

3 2851407.72 2861464.163 0.35268% 

4 3333209.79 3344965.465 0.35268% 

5 3775014.53 3788328.376 0.35268% 

SOURCE: AUTHOR. 
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FIGURE 42 - STRESS VALUES FROM ANALYTICAL AND MULTIMECH ANALYSIS AT THE POINT (0, 1) ON THE 

TAPERED BAR. 

 

SOURCE: AUTHOR. 

From Table 13 and Figure 42, it can be observed that the values are extremely close 

with difference under 0.5%, demonstrating the efficacy and accuracy of numerical model used 

herein to evaluate the behavior of viscoelastic materials subject to monotonic loading 

conditions. 

4.3 VALIDATION OF THE MICROSTRUCTURE MODEL CONSIDERING 

DAMAGE  

The verifications described above do not take in account the cohesive zones due to 

damage of the material. The effectiveness of the model for damage-induced problems was 

verified by simulating the IDT described in 4.5. Test results, plotting the reaction forces 

captured by the load cell as the loading time increased, were used for the validation of the 

model, by comparing experimental and numerical results. Figure 43 shows the overall 

methodology employed to validate the model used herein, including boundary conditions 

imposed.   
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FIGURE 43 - SCHEMATIC ILLUSTRATION OF METHODOLOGY EMPLOYED FOR MODEL VALIDATION. 
 

 
 

SOURCE: AUTHOR. 

4.3.1 Mesh Convergence Study for IDT Strength Test Validation  

Prior to performing the validation simulations, a mesh convergence study was 

conducted for the IDT testing geometry to ensure that a correct level of refinement was 

applied. Six different meshes were investigated, with the elements sizes on the most-potential 

cohesive zone area of 2mm (4896 el.), 1.7mm (6132 el.), 1.5mm (7230 el.), 1.2mm (10052 

el.), 1.1mm (11428 el.), and 1mm (13096 el.). Figure 44 shows the refinement level procedure 

used. For the convergence study, arbitrary fracture parameters were used.  
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FIGURE 44 – IDT STRENGTH TEST MESH CONVERGENCE STUDY FOR COHESIVE ELEMENT SIZES. 

 

SOURCE: AUTHOR. 

FIGURE 45 shows the maximum reaction force vs. nº of elements.  Even though there 

was no considerable difference observed in the results, the element size of 1.0 mm was chosen 

because was the most refined mesh but with still a reasonable computational time. 

FIGURE 45 – IDT MAX. REACTION FORCE VS. NUMBER OF ELEMENTS. 

 

SOURCE: AUTHOR. 

4.3.2. Validation of IDT Strength Test with Damage  

To investigate the initiation and propagation of cracks in asphalt pavements it is 

necessary to insert damage evolution laws in the model. FAM mixtures were modeled as 
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isotropic linear viscoelastic with discrete fracture by NLVE-CZM. The linear-viscoelastic 

properties and non-linear viscoelastic cohesive zone parameters were experimentally obtained 

and defined in Table 9.  Figure 46 show a comparison among numerical simulations with 

experimental results. 

FIGURE 46 - TEST RESULTS VS. MICROSTRUCTURE MODEL SIMULATION RESULTS OF FAM BITUMINOUS 

MIXTURE: IDT VALIDATION. 

 

 

SOURCE: AUTHOR. 

As shown in Figure 46, the initial slope from numerical simulations matched well with 

the experimental results, which demonstrates that, along with the appropriate constitutive 

model, the linear-viscoelastic material properties used were well determined. Also, for 

FAM_HL, even before taking any calibration of damage parameters, a fair agreement 

between experimental and numerical simulation results is observed which indicates that the 

rate-dependent fracture parameters were also well determined for that mixture.  In contrast, 

for FAM_SS, after 5 seconds, the moment when the reaction force in the experimental curve 

started to gradually decrease due to significant damage, the numerical result did not match 

well with the experimental data.  
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The difference in FAM_SS experimental and numerical results could be associated 

with mode II fracture. Since this mixture presented more ductile behavior (higher delta) than 

FAM_HL, and more CZ elements were developed within the sample, it could be more prone 

to mode II fracture mechanics that was not considered in the analysis. 

Further observations through the computational modeling can be made by visualizing 

the deformed mesh and elemental stress contours as shown in Figure 47. As expected in IDT 

tests, tensile stresses are developed diametrically opposed to the loading direction while 

compressive stresses are observed at the supports.  

Observing the FAM_HL, the following cracking evolution was obtained: at about 0.5 

seconds, the CZ initial stress level is reached at the higher tensile stress region (at the center 

of the specimen) and CZ elements are inserted in the finite element mesh. Note that this does 

not mean that cracks are developed in the sample yet. It can be observed some tensile stress 

concentration at the center with cohesive elements, but stress values continue to increase. At 9 

seconds, the tensile stresses start to decrease, meaning that microcracks were developed and 

alleviated those stress concentration regions. At 10 seconds, there is no more tensile stress and 

after that, a macrocrack can be observed. 

As for the FAM_SS, the first CZ elements (potential region of cracks) are inserted at 

0.1 seconds. Tensile stresses keep increasing until approximately 10 seconds, with no 

microcrack developments observed in the material.  FAM_SS only failures at approximately 

13 seconds. Although the CZ elements are inserted earlier in FAM_SS than FAM_HL, in a 

certain way CZ elements relieve the stresses in the FAM, so the mixture resist to higher loads 

without abruptly breaking, showing a more ductile material behavior. These findings 

corroborate with experimental results from Fonseca (2016). The author used time sweep tests 

to evaluate material integrity due to damage accumulation based on damage characteristic 
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curves derived from Simplified Viscoelastic Continuum Damage (S-VECD) model. FAM_HL 

shows a lower integrity than FAM_SS at the same level of damage accumulation, which 

means a lower tolerance to fatigue damage than FAM_SS.    

  



78 
 

FIGURE 47 - DEFORMED MESH AND LONGITUDINAL STRESS CONTOURS BEFORE MICROCRACKING 

INITIATION AT DIFFERENT LOADING TIMES. 

   

SOURCE: AUTHOR 
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FIGURE 48 - DEFORMED MESH AND LONGITUDINAL STRESS CONTOURS AFTER MICROCRACKING 

INITIATION UNTIL COMPLETE FAILURE AT DIFFERENT LOADING TIMES. 

 

SOURCE: AUTHOR 
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In sum, from experimental results, it can be noticed that FAM_HL fails first than 

FAM_SS. This observation can be related to the NVCZ parameters. FAM_HL model has a 

lower value of m, which implies in greater rate of damage propagation. However,  𝜎௙ are 

higher to FAM _HL, indicating this mixture is more resistant to crack initiation. The higher 

peak value obtained by FAM_SS may be more related to material initial stiffness, since the 

linear viscoelastic parameters obtained were slightly higher. The higher stiffness of FAM_SS 

also resulted in lower 𝜎௙, developing CZ earlier. Even though FAM_SS presented initial CZ 

areas first, it resists more to microcracking formation due to its ductile behavior (higher 𝛿௡
∗).  

After the verifications and validation, the numerical results obtained using the model showed 

to be efficiently and accurately enough to predict the damage-dependent behavior of the 

bituminous composites with hydrated lime specimens used herein and the influence of the 

filler could be assessed. About the bituminous composites with steel slag, some adjustments 

must be made to calibrate the model, however we already could evaluate the influence of the 

steel slag in the mixtures with the model found herein.   
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5. CONCLUDING REMARKS 

The main goal of this study was to employ a microstructure numerical modelling 

technique to assess the influence of different fillers in the behavior of FAM mixtures.  With 

that, one could verify the potential of different materials (such as steel slag herein) to be 

incorporated in asphalt mixtures.  

Analysis of the linear-viscoelastic properties of the studied FAM mixtures and fracture 

parameters were performed, and a nonlinear viscoelastic cohesive zone model (NVCZ) was 

used for predicting the damage-dependent mechanical behavior of FAM bituminous 

composites with different filer addition.  

FAM mixture performance with steel slag filer and or hydrated lime addition were 

evaluated by FAM analysis and the matrix properties required as input for the computational 

model were obtained from simple laboratory tests. The linear viscoelastic properties of matrix 

were obtained by dynamic frequency sweep tests and represented by Prony series. The non-

linear viscoelastic fracture characteristics of the matrix was considered by employing a 

micromechanically based non-linear rate-dependent viscoelastic cohesive zone model 

(NLVE-CZM) and simulations of experimental fracture tests (SCB) were carried out to 

calibrate the rate-dependent fracture parameters. With that, analysis of the influence of each 

fracture parameter on the behavior of the mixture was performed. 

Some attempts have been made to verify the model algorithm used herein to evaluate 

bituminous mixtures, therefore problems with closed-form solutions were used comparing 

numerical and analytical results. The results show the efficiency and accuracy of the 

numerical model to evaluate problems involving elastic and viscoelastic material. To validate 

the model, indirect tensile strength test (IDT) was performed and the results were compared 
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with numerical ones. From the results, the model showed to be efficiently and accurately 

enough to predicted the damage-dependent behavior of FAM.  

To the end, with respect to the effect of replacing the hydrated lime filer by steel slag, 

it was found an increase in the material stiffness, which resulted in an earlier development of 

cohesive zone within the sample. However, damage propagation was slower for FAM_SS, 

resulting in higher fracture resistance. This behavior was observed both in the SCB fracture 

test, used for calibration of the NLVE-CZ fracture parameters and in the IDT used in the 

validation of the model. The analysis carried out about the fracture parameters was helpful to 

explain that influence. 

In general, numerical analyzes results match well with the results found from 

laboratory tests, which in turn corroborate with the study of each fracture parameter influence 

on the mechanical behavior of the fine asphalt matrix (MAF). In other words, numerical 

model and its virtual tests can potentially replace expensive laboratory tests. In addition, there 

is a need for a better understanding of the NLVE-CZ parameters calibration to become the 

process of choosing the most efficient and precise parameter set. 

The main advantage of using the microstructural numerical model in the evaluation of 

the performance of asphalt mixtures is that once you have an accurate numerical modeling 

approach, engineers could optimize mix design using much cheaper and faster numerical 

simulations, and then run laboratory experiments on the most promising optimized designs for 

verification before putting it in the field. In this way we have a significant savings in time, 

financial resources and human resources needed to laboratory performance tests to 

characterize damage in the mixtures. Another great advantage of using numerical modeling 

considering damage through cohesive zone models is the ability to investigate more explicitly 

the fracture phenomena, as it allows a more comprehensive examination of the 



83 
 

microstructural changes as damage evolves.  Also, numerical simulations give more insight 

into the physical process governing material failure, because engineers can extract a lot more 

information, so that while in lab tests all one can get is the load curve and potentially some 

images, numerical simulations gives full range of variables (stress, strain, force, damage) to 

analyze. 
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Future Research Work 

From the results and conclusions obtained in the present research it is suggested to 

future works: 

 Using the model in two-way coupled multiscale computational analyses; 

 Validate the model for other types of laboratory test conditions as well as for other 

type of composite media;  

 Calibrate and Validate Mode II fracture parameters; 

 Verify and calibrate the model for problems in three dimensions;  

 Perform a rigorous study aiming a better understanding of the process of defining the 

set of fracture parameters with greater number and types of fracture tests. 

 Trying different types of damages laws available in MultiMech; 

 Using Nonlinear optimization tools to try to calibrate all damage parameters 

altogether. 
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