

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM

INFORMÁTICA

SERGIO TEIXEIRA

LAURA ARCHITECTURE: TOWARDS A SIMPLER WAY OF

BUILDING SITUATION-AWARE AND BUSINESS-AWARE

FINAL WSN/IOT APPLICATIONS

DOCTORAL THESIS

VITÓRIA-ES, BRAZIL

MARCH 2019

SERGIO TEIXEIRA

LAURA ARCHITECTURE: TOWARDS A SIMPLER

WAY OF BUILDING SITUATION-AWARE AND

BUSINESS-AWARE FINAL WSN/IOT

APPLICATIONS

Tese de Doutorado submetida ao Programa de Pós-graduação

em Informática da Universidade Federal do Espírito Santo

como requisito parcial para a obtenção do grau de Doutor em

Ciência da Computação, sob orientação do Prof. Dr. José

Gonçalves Pereira Filho.

Vitória-ES, BRASIL

MARÇO, 2019

Ficha catalográfica disponibilizada pelo Sistema Integrado de
Bibliotecas - SIBI/UFES e elaborada pelo autor

T266l

Teixeira, Sergio, 1971-
LAURA ARCHITECTURE: TOWARDS A SIMPLER

WAY OF BUILDING SITUATION-AWARE AND
BUSINESS-AWARE FINAL WSN/IOT APPLICATIONS /
Sergio Teixeira. - 2019.

110 f. : il.

Orientador: José Gonçalves Pereira Filho.
Tese (Doutorado em Informática) - Universidade Federal do

Espírito Santo, Centro Tecnológico.

1. Internet das Coisas. 2. Processos de Negócios. 3.
Sensoriamento remoto. I. Pereira Filho, José Gonçalves. II.
Universidade Federal do Espírito Santo. Centro Tecnológico. III.
Título.

CDU: 004

DEDICATION

I dedicate this thesis to Laura, Giane and my
parents.

AGRADECIMENTOS

(Acknowledgments)

In portuguese...

Pela paciência e compreensão da Laura e da Giane que me apoiaram em todos os momentos.

A vocês todo o meu amor.

Aos meus pais Geraldo e Alveni que sempre me deram apoio e suporte incondicional.

Ao meu orientador professor Dr. José Gonçalves, pela ajuda incondicional e apoio em todos

os momentos da difícil jornada de construção desse trabalho. Sem o seu apoio nada disso

seria possível. A você o meu eterno agradecimento.

À professora Dr. Silvana Rossetto pelo apoio e contribuições desde o início de tudo. Suas

relevantes contribuições ajudaram a elevar o nível do trabalho.

Aos amigos ou colegas do departamento de informática da UFES que ajudaram,

principalmente no período da avaliação empírica da LAURA.

Meu agradecimento especial ao Júlio Cesar Nardi, Fabiano Borges Ruy, Victório Albani de

Carvalho e à Cristine Leonor Pereira Griffo Beccalli pelas contribuições e dicas importantes

ao longo de todo o trabalho e, principalmente, na avaliação empírica. Por consequência,

agradeço aos seus respectivos orientadores, pois essas contribuições foram importantes para

atalhar caminhos no acesso às referências e metodologias relevantes e necessárias para

embasar a concepção da proposta de tese.

Aos colegas que fazem parte do projeto LAURA. O meu eterno agradecimento aos colegas

Bruno Alves Agrizzi, Isaac Simões Araújo Pereira, Adriano Francisco Branco e Ruan Rocha

Martinelli que aceitaram a ideia de trabalhar no projeto LAURA, mesmo quando eu só tinha

uma vaga ideia do que a gente poderia construir.

Agradeço ao Vinicius Vacari que conseguiu representar as ideias, pensamentos e rascunhos

feitos a mão em belas imagens sobre o contexto de IoT e da arquitetura LAURA.

Agradeço especialmente às professoras Claire Venables e Geraldina Malbar Moscon que

revisaram o inglês. Vocês contribuíram muito para melhorar minha capacidade de escrita e

fala na lingua inglesa.

A todos os meus amigos e colegas que ajudaram de alguma forma, seja com contribuições ou

sugestões ao trabalho de pesquisa ou com apoios em outras questões que não tem relação

com o trabalho de doutorado, mas que foram vitais para que eu tivesse mais tranquilidade e

tempo de dedicação ao doutorado. Um agradecimento especial ao meu amigo Gustavo

Fernandes Siqueira que sempre me ajudou quando precisei e ao meu amigo Geraldo Magela

Freitas dos Santos que sempre ajudou e contribuiu muito para a melhoria da minha

capacidade de escrita.

Agradeço à CAPES (Processo: 9 96325252) pelo apoio financeiro recebido durante parte do

curso de doutorado.

Epígrafe

“Persistence is the shortest path to success”

(Charles Chaplin)

“The best way to predict the future is to invent it.”

(Alan Kay)

ABSTRACT

The explosion of smart objects made companies rethink their Business Model (BM) using

Wireless Sensor Networks (WSN) and the Internet of Things (IoT) aiming to improve their

Business Processes (BP) to achieve competitiveness. Business environments are complex due

to the wide variety of technologies, hardware and software solutions that compose

heterogeneous enterprise environments. On the other hand, putting real-world IoT scenarios

into practice is still a challenge for even experienced developers, because it requires low-

level programming skills and, at the same time, specific domain knowledge of a company`s

BM. This thesis proposes LAURA - Lean AUtomatic code generation for situation-aware

and business-awaRe Applications, a flexible, service-oriented and general open source

conceptual architecture, designed to support the deployment of decoupled IoT applications.

An empirical evaluation has shown that LAURA simplifies the development of final

Situation-Aware or Business-Aware applications, reducing the need for specialized IoT low-

level knowledge, while showing an acceptable performance. LAURA also provides the

freedom and independence to modify, adapt or integrate its architecture according to specific

needs of the stakeholders.

Keywords: Internet of things, IoT Architecture, Wireless sensor networks, Situation-

Awareness and Business Process

RESUMO

O crescimento explosivo dos objetos inteligentes fez com que as empresas

repensassem seu Modelo de Negócios usando Redes de Sensores Sem Fio (do inglês,

Wireless Sensor Networks - WSN) e a Internet das Coisas (do inglês, Internet of Things -

IoT), com o objetivo de melhorar seus Processos de Negócios para alcançar competitividade.

Os ambientes de negócios são complexos devido à grande variedade de tecnologias, soluções

de hardware, e sistemas de software, que compõem ambientes empresariais heterogêneos.

Por outro lado, colocar em prática cenários de IoT do mundo real ainda é um desafio mesmo

para desenvolvedores experientes, pois requer habilidades de programação de baixo nível e,

ao mesmo tempo, conhecimento do domínio específico do negócio da empresa. Esta tese

propõe a LAURA - Lean AUtomatic code generation for situation-aware and business-

awaRe Application, uma arquitetura conceitual de código aberto, flexível, orientada a

serviços e projetada para suportar a implantação de aplicações WSN/IoT. Uma avaliação

empírica demonstrou que a LAURA simplifica o desenvolvimento de aplicações finais

orientadas a situação e a negócios, reduzindo a necessidade de conhecimento especializado

de baixo nível em WSN/IoT, ao mesmo tempo que apresenta um bom desempenho. LAURA

também fornece liberdade e independência para modificar, adaptar ou integrar a arquitetura

de acordo com as necessidades específicas dos profissionais envolvidos.

Palavras-chave: Internet das Coisas, Arquiteturas para Internet das Coisas, Redes de

Sensores sem Fio, Sistemas Sensíveis à Situação, Processos de Negócisos.

List of Tables

Table 1 - Scientific Digital Library Sources ... 27

Table 2 - Domain Challenges and System Requirements ... 38

Table 3 - Simple Drools rule example .. 58

Table 4 - LAURA Context Broker RESTFul API methods ... 71

Table 5 - LAURA Context Broker JSON Example for Person entity 71

Table 6 - LAURA Context Broker – Context Binding RESTFul API methods 72

Table 7 - The AbsentSensorReading situation declaration in SCENE 73

Table 8 - The ExceedingThreshold situation declaration in SCENE 73

Table 9 - The ObserverETAGreaterThanETT situation declaration in SCENE................... 74

Table 10 - Script codes configured into the two script tasks of the process showed in figure
12...79

Table 11 - Performance evaluation - Experiment 3.1: Throughput analysis in high traffic

conditions for 5 minutes .. 83

Table 12 - Performance evaluation – Experiment 3.2: Throughput analysis in typical LWSN

applications for 5 minutes.. 84

Table 13 - Performance evaluation – Experiment 3.2: All general average delay of each

sampling times for 5 minutes ... 84

Table 14 - The evaluation questions and their respective rationales 88

Table 15 - The qualitative question for each evaluation question .. 89

Table 16 - Results of evaluations for both groups of professionals 93

List of Figures

Figure 1 - Smart real-world IoT scenario .. 15

Figure 2 - Design science research cycles (Hevner and Chatterjee, 2010) with activities.25

Figure 3 - LAURA domain reference model ... 43

Figure 4 - LAURA Conceptual architecture overview .. 46

Figure 5 - LAURA applied architecture overview .. 62

Figure 6 – Terra System basic elements (Branco et al., 2015) .. 63

Figure 7 - The UML class diagram that represents the model of the specified scenario……..69

Figure 8 - Overview of the initial part of the running process code that establishes the

connection between jBPM and SCENE .. 76

Figure 9 - The Script code configured into the script task `Alerts others about Observed’ which

will be shown in the BP of figure 11 ... 77

Figure 10 - The process in BPMN that started when the situation ‘i’ is activated or

deactivated..78

Figure 11 - The process in BPMN that starts when situation ‘ii’ is activated 78

Figure 12 –The process in BPMN that started when the situation ‘iii’ is activated 79

Figure 13 - The process in BPMN that started when the situation ‘vi’ is activated 80

Figure 14 - Performance evaluation- Experiment 3.2 e 3.3 - Scenario topology with 3 linear

WSNs ... 86

Figure 15 – Overview of LAURA architecture empirical evaluation processes steps and learning

cycle inspired by (Juristo and Moreno, 2010; Wohlin et al., 2012) .. 87

CONTENTS

CHAPTER 1. INTRODUCTION 14

1.1 Context 14

1.2 Motivation 17

1.3 Domain Challenges 19

1.4 Research Hypothesis 22

1.5 Research Objectives 22

1.6 Methodological Aspects 24

1.7 Organization of this Thesis 26

CHAPTER 2. RELATED WORK AND SYSTEM REQUIREMENTS 27

2.1 Related Work discussion 30

2.2 System Requirements 35

CHAPTER 3. LAURA ARCHITECTURE 40

3.1 Stakeholders 40

3.2 LAURA domain reference model 42

3.3 LAURA Conceptual architecture 45

3.3.1 ‘Physical Layer’ 47

3.3.2 ‘Fog Layer’ 49

3.3.3 ‘Core Layer’ 51

3.3.4 ‘Situation/Rule Layer’ 56

3.3.5 ‘Application/Business Process Layer’ 60

3.4 LAURA applied architecture 61

CHAPTER 4. APPLICATION SCENARIO, EXPERIMENTS, AND EMPIRICAL EVALUATION 67

4.1 Experiment 1 - MQC Situation-Aware modeling application 68

4.2 Experiment 2 - MQC Business-Aware modeling application 74

4.3 Experiment 3 - LAURA Architecture performance evaluation 81

4.4 LAURA Empirical Evaluation 86

4.4.1 Hypothesis 87

4.4.2 The scope, planning and design 89

4.4.3 The profile and `point of view` of the participants 90

4.4.4 Operation phase: execution of the evaluation 90

4.4.5 Data Collection 91

4.4.6 Data Validation 91

13

4.4.7 Analysis and interpretation 92

4.4.8 Results and discussion 92

4.4.9 Limitations of this evaluation 94

CHAPTER 5. CONCLUSIONS 95

5.1 Research Contributions and Connections with other Research Works 96

5.2 Future Perspectives 98

REFERENCES 100

14

Chapter 1. Introduction

“Your imagination is your preview of life’s coming attractions.”

Albert Einstein

This chapter presents an overview of this thesis and the foundations for understanding

the subsequent chapters. It presents the context in which this work is immersed, the problems,

justifications, and some domain challenges that motivated this research, the hypothesis

constructions as well the research hypothesis, the research objectives and the activities required

to achieve them, the scope and delimitations, the methodological aspects that the development

of this research is grounded and, finally, the structure of the remainder of this document.

1.1 Context

The influence of the Internet of Things (IoT) is, for many, already, an everyday reality

and it is expected to increase, contributing ubiquitously with applications that can improve the

quality of the environment and the automation of corporative processes in a wide range of

knowledge areas. The explosion of smart objects has already been highlighted by many

companies and research institutions. The International Data Corporation (IDC) report, for

example, predicts that the IoT market will be worth around $1.7 trillion in 2020 (IDC, 2017,

2015). According to the Gartner Group, by 2020 more than half of the major new companies

will have some elements of the IoT incorporated into their Business Processes (BP) and systems

(Plummer et al., 2015; Stamford, 2016). A panorama of 500 billion connected devices across

the world is expected by 2030 (Oxford Economics and Cisco, 2017). The United Nations (UN)

predicts that the world population will reach 8.5 billion by 2030 and this serves to reinforce this

data. The larger the population, the greater the demand for IoT applications (UN News Service,

2015).

Weiser (Weiser, 1999) envisioned a world full of small intelligent objects that work in

a transparent and omnipresent way with the aim of improving people's lives through making

15

them more aware of events surrounding them. One of the key elements in putting this vision

into practice is the rise of Wireless Sensor Networks (WSN) of tiny devices with processing,

storage, communication and sensing capacities, which provide a way to monitor physical world

magnitudes at a low cost (Akyildiz et al., 2002; Yick et al., 2008).

WSN have evolved in recent years and it is now possible to easily connect their nodes

with the Internet, enabling the concept of IoT in practice. The precision capillarity, low cost,

small size, Internet-based communication mean that today there is a great potential for many

types of IoT applications that were unimaginable at the time when Weiser made his prediction

(Su et al., 2011). Figure 1 presents an overview of some examples of IoT real-world application

scenarios.

Figure 1 - Smart real-world IoT scenario

The advent of the IoT has made companies change or rethink their Business Model

(BM), making IoT solutions an integral part of this process. In our previous work (Teixeira et

al., 2017b), we have verified that since 2012 there has been an increase in the demand from

16

companies to integrate IoT solutions into Business Process Management (BPM) systems. By

including sensing capabilities in the BP, companies are able to improve their ability to monitor

and respond to changes in real time, thus giving their business a competitive advantage. In other

words, companies are taking advantage of the benefits that smart devices offer to improve and

add value to their BP.

Meanwhile, putting real-world IoT scenarios into practice is still a challenge even for

even experienced developers. Developing and implementing IoT applications requires low-

level programming skills and, at the same time, specific domain knowledge of the company`s

BM. In addition to the specific aspects related to WSN or IoT devices, it is necessary to

integrate and balance a solution with the heterogeneous computational environment within a

company. This heterogeneity increases the complexity of deciding which solution is best for a

company to adopt.

Commonly, the development and deployment of IoT solutions demand a

multidisciplinary team due to the complexity and heterogeneity of certain aspects related to the

IoT itself, the domain knowledge of the application, and the specific characteristics of the

company`s BP (Baldam, R., Valle, R., Rozenfeld, 2014; Rodrigues et al., 2015; Tranquillini

et al., 2012). Thus, one of the greatest challenges in this area is proposing solutions that are

able to simplify the entire development and deployment process, taking into account the need

to involve professionals from different knowledge domains. For instance, Domain experts,

System experts, BPM experts, Situation/Rule experts, and IoT experts. The Domain expert,

for example, who has specific knowledge in the area that the solution will be applied to, is not

usually involved in the development of the IoT solution. It would be beneficial, therefore, if the

Domain expert contributed to various aspects during the development process, which would,

ultimately improve the quality of solution.

In this thesis, the term ̀ final application’ (Ayala et al., 2015; Gyrard et al., 2015; Xi and

Yuzhi, 2014) refers to the applications that will be used by final consumers, such as the Domain

experts. A type of `final application` addressed in this study is a Business-Aware application

that is based on Business Process Management Suites (BPMS) (I. Gartner, 2017). BPMS are

systems that support automate process management. BizAgi software (Bizagi, 2018) and jBPM

(Redhat, 2015) are examples of BPMS.

17

1.2 Motivation

The above scenario presented in the context section raises some important issues: (i) the

stakeholders responsible for the development of the final applications may be required to

manage many high-level aspects and issues related to the BP that may affect or may be affected

by lower level aspects; (ii) normally, each person works on a determined level of abstraction

with little or no knowledge of the work done by the other stakeholders; (iii) the complexity and

the heterogeneity of a IoT solution requires cognitive effort and appropriate training for

everyone involved, mainly in the programming aspects and low-level issues.

From the software design standpoint, one commonly used way to address the issues

raised above is to adopt “separation of concerns” methods (Almeida, 2006; Doddapaneni et al.,

2012; Mellor et al., 2004). According to Software Engineering, “separation of concerns” is a

modeling activity method for addressing a limited set of concerns in a series of design steps.

The separation of concerns is an essential strategy when it comes to deal with an environment

with many technical issues to be worked on at various levels of abstraction and facilitates the

interaction during the entire development and deployment of the solution. It makes the

decoupling of the layers possible, preventing the higher-level stakeholders from needing to

concern themselves with the lower level technical details. In this approach, experienced IoT

programmers would act in the treatment of sensing aspects, considering the hardware platform

architecture of the node and the communication protocols. On the other hand, the definition of

rules and events of the application domain would be dealt with by the Domain expert, who has

a much more specialized knowledge of business rule logic. The access to the inferior layers

would be made via standardized interfaces with full decoupling of the low-level aspects in such

a way that the stakeholders do not need any technical knowledge of the low-level layers.

From a deployment standpoint, one of the most important aspects is to allow flexibility

in the final applications and to provide standardized interfaces and full decoupling of the low-

level aspects so that the developer has freedom to choose the methods, approaches and

technologies that they wish to use in order to develop and integrate their final application with

the IoT solution. The Application Programming Interface (API) REST (Vujovic et al., 2014),

the Pub/Sub messaging pattern (Eugster et al., 2003), and the WebSocket protocol (Melnikov

and Fette, 2011) are examples of standards and technologies that give support to the

development of standardized interfaces and communication.

18

Another trend that has been on the rise in recent years is the use of Rule-based systems

(Murray et al., 2016) in the corporate environment as a strategy to respond faster to changes

that could occur in the business model or the application requirements. A rule-based (RB)

system is easier to understand and maintain if compared with imperative programming and may

increase the involvement of professionals that work within the definition of the business rules

(Flasiński, 2016).

In addition to the increasing adoption of RB approaches, IoT solutions can benefit from

Complex Event Processing (CEP) and Stream Processing (SP) techniques (Aliverti et al., 2016;

I. Gartner, 2017). The CEP paradigm provides a solid model and toolset to reason over a near-

uninterrupted flow of pieces of information coming from decoupled sources, e.g., sensors,

mobile devices, web services, etc. It allows us to build upon primitive events towards complex

event patterns by means of event data extraction and composition through explicit causal,

temporal/spatial relations (Flouris et al., 2017).

One of the key capabilities of a reactive and proactive IoT application is the bridging of

the gap between events that occur in the environment and the particular state-of-affairs of

interest also known as situations (Pereira et al., 2013). It is upon these that the application is

required to act on or react to. Within the scope of application development, this capability has

often been referred to as context-awareness (Dey, 2001) or situation-awareness. This

terminology has been taken from human factors research (Endsley, 1995). The aim of situation-

aware applications is to promote effective interaction with users by autonomously adapting

application behavior according to the user’s current and projected situation.

As discussed in (Costa et al., 2016), to leverage the benefits of the situation abstraction

concept, proper support is required at design-time to specify situation types, and run-time

support that can detect and maintain information regarding situations. There are various

alternatives that could be used to deploy such support. However, despite the immediate benefits,

traditional Rule-based and CEP solutions, such as Drools (Aliverti et al., 2016; Gartner, 2017)

and TIBCO (TIBCO, 2017), do not fully realize the potential of explicit support for situation

awareness, as discussed in (Costa et al., 2016).

Results obtained from our previous systematic mapping study (Teixeira et al., 2017b),

reinforced by the related work review presented in Chapter 5, reveal that there are few solutions

or architectures that deal with the entire process, from lower-level to higher-level aspects, of

supporting the development of decoupled final real-world IoT applications, particularly

19

providing integrated mechanisms for: (i) situation-awareness handling; (ii) automatic code

generation from high-level business process specifications (e.g., BMPN descriptions); (iii)

detection of changes in resource state through different event-driven1 methods (REST,

Publish/Subscribe and WebSockets); (iv) bytecode dissemination with a view to rapid and low

cost application reprogramming; (v) straightforward domain reference model that offers

stakeholders an artifact to promote a common ground of understanding and a representation

of meaningful real-world concepts pertinent to the IoT domain that need to be modeled in the

application software.

This thesis presents LAURA – Lean AUtomatic code generation for situation-awaRe

Application, a service-oriented architecture to support the development, deployment and

execution of Situation-aware or Business-aware IoT applications, which realize the set of

integrated facilities listed above. LAURA components operate in coordinated way to provide

high-level stakeholders with an easier process for developing dynamic real-world IoT

applications in scenarios such as those shown in Figure 1.

1.3 Domain Challenges

Figure 1 highlights relevant IoT scenarios with their respective domain challenges.

These IoT scenarios were selected based on their relevance. Smart HVAC systems, for example,

are highlighted due to energy concerns. The use of IoT solutions in such systems can reduce

investment costs by up to 40% and allow an energy efficiency by between 7% and 35%

(Acciona S.A., 2013). The demand for IoT and smart technologies in the HVAC industry is

growing due to their potential to increase the energy efficiency, reduce costs and improve

comfort (Kingatua, 2017). HVAC systems equipped with IoT technologies offers numerous

benefits to building owners, occupants and facility managers by allowing users to automatically

monitor and control a wide range of variables, such as temperature, water usage, lighting,

occupancy and CO2 levels, as well as to provide real-time status of almost all components.

Healthcare systems are a matter of interest. The world health spending is forecast to

exceed $18 trillion by 2040 (IHME, 2016; murabet et al., 2018; Townsend, 2019). The use of

IoT technologies in healthcare and medical sectors has brought significant improvement to

1 Event-driven applications can be caracterize as asynchronously oriented communications based-on a

full decoupling interaction in space and time (Eugster et al., 2003).

20

medical services, including: reducing emergency room waiting times, ensuring the availability

and accessibility of critical hardware, addressing chronic diseases, tracking staff, patients and

inventory, and enhancing drug management, among other benefits (Matthews, 2018). IoT

technologies can also contribute to the implementation of remote monitoring solutions such as

Ambient Assisted Living (AAL) systems through patient remote monitoring and follow-up in

harmony with the treatment of patients who prefer or need to live at home.

Smart agriculture, another relevant IoT application scenario (highlighted in Fig. 1) is a

worldwide issue, a popular research topic in farming industry and academia, and also a more

recent subject of concern. The global population is set to reach 9.7 billion by 2050 (Nations,

2019). To feed this increase in population, the farming industry must therefore fully embrace

new technologies such as IoT, which have the potential to improve and transform agriculture

in many aspects. Data collected by smart agriculture sensors such as weather conditions, soil

quality, crop growth progress and cattle health, can enable growers and farmers to reduce waste

and enhance productivity. IoT and smart technologies can assist farmers and producers in

finding new approaches to driving efficiency and improving operations through the use of

connected devices, such as RFID tags and wearables, and the application of predictive analytics

on real-time data.

The following section discuss some Domain Challenges (DC) that are common to the

development of smart real-world applications in these three examples of relevant IoT scenarios

as well as those scenarios depicted in Fig 1.

Domain challenge 1 (DC1): the capacity to change business rules or application

configuration parameters at any time due to the competitive aspects or specific needs, as there

may be a situation where energy savings are more important than pleasant temperature

sensations.

For example, in an HVAC system, the rules may either change, or differ according to

the geographic location, climate or type of enterprise/ This requires resources and flexibility for

everyone involved in the development and deployment of the solution to change the behavior

of the SVAC system. Thus, when a rule changes, it should be relatively easy to make changes

through high-level languages without requiring neither knowledge of low-level aspects related

to the operation of the IoT application nor hardware platforms, and without the need for manual

reprogramming.

21

Domain challenge 2 (DC2): The ability to deal with scenarios composed by numerous

contextual sources, in a simpler manner. For example, in healthcare systems, there are different

data sources that may also be influenced by response time. Thus, it may be necessary to model

the rules for decision-making in a medical emergency system that is dependent on the

processing of various events, e.g. data from the sensors coupled to the patient, availability and

data informed by the doctor, data from a smart traffic system that can indicate the best routes,

data from emergency services with available ambulances near the patient, data specific to the

hospital availability, including the stock of medicines indicated for the patient's concern. In this

case, with the many variables involved in complex decision-making, it is necessary to have

user-friendly language that facilitates the modeling of the solution and also the possibility of

offering timely responses according to the criticality of the applications. In this case, the action

cannot come from the cloud.

Domain challenge 3 (DC3): The ease and ability to engage a multidisciplinary team to

work in a simple and more intuitive manner over different abstraction levels. For example, the

BPM expert should be able to make business rule changes at any time, based on their expertise,

with minimal additional effort. On the other hand, the Situation/Rule expert also should be able

to change the situations/rules in user-friendly language and closer to the way the problem is

perceived in the real world by the Domain expert.

Domain challenge 4 (DC4): The capability to deal with heterogeneous, dynamic and

flexible real-world environments, allowing developers to choose technologies, standards,

languages and devices that are easier to adapt or integrate with the existing IT solutions. For

example, depending on the country or region, there may be advantages to adopting certain types

of technology. In this way, the solution should offer a fully decoupled approach that allows one

to choose different types of hardware platforms, without the need to change higher-level aspects

of the application.

LAURA architecture seeks to tackle these four (4) challenges by promoting the

flexibility required to meet the demands of adaptive real-world IoT applications. Indeed, the

increase of interest in applications in the aforementioned IoT scenarios will demand solutions

capable of dealing with requirements that may change at any time. These solutions should

provide features such as portability, scalability, and full decoupling capacity in order to support

a complex and heterogeneous IT business environment which is composed of a wide variety of

technologies integrated with enterprise systems. This makes the support solutions such as

LAURA a strategic component for the deployment of IoT applications.

22

1.4 Research Hypothesis

Based on the findings in the previous sections, some basic principles were defined and

categorized into three dimensions as described below:

Theory dimension: The conceptual and functional description of an architecture

facilitates the understanding and especially the decoupling between the function of each layer

with its respective modules, elements and the technological choices that can be made at the time

of deployment according to the specific needs;

Practice dimension: The definition of a deployment architecture and the development

of real-world final Situation-Aware and Business-Aware, via some experiments and empirical

evaluation, allows the conceptual architecture to be validade and acts as a proof of concept that

can be implemented according to technological choices or specific interests;

Relevance dimension: The final result of the proposed work should be useful, relevant,

coherent and compatible with the business model of the company that intends to use the

architecture. Thus, the proposed architecture must support good practice, the market reality and

the corporate environment.

Taking into account the context, motivations, and principles presented in the previous

sections, the research hypothesis of this thesis can be formulated as following:

A flexible, fully decoupled, general, and open source IoT architecture equipped with

selected facilities, such as those proposed in this research work, can contribute to overcome

the challenges of building real-world Situation-Aware and/or Business-Aware final IoT

applications. Such architecture should promote the participation of multidisciplinary teams,

in which each professional has well-defined roles and works on his/her specific leve of

expertisel, according to his/her professional profile.

1.5 Research Objectives

There are three foundations that guide the objectives of this thesis: the conceptual

support (theory), the deployment and experiments (practice) and the strategic interests of the

business model (relevance). In this way, the General Objective (GO) of this thesis is to

propose a conceptual IoT architecture fully decoupled in all layers, which does not require

or depend on specific platform, middleware, framework, enterprise service bus, ecosystem

23

or tool, and that providestotal freedom and independence to modify, adapt or integrate any

part of the architecture according to the specific needs of the stakeholders.

Based on this GO the following Specific Objectives (SO) have been proposed:

SO1: Specify a lean IoT reference model based on standard IoT models, such as IoT-

A and SSN (Bauer et al., 2013).

SO2: Define an applied architecture, indicating the appropriate technological choices,

including languages and systems needed to deploy IoT real-world applications based on

LAURA conceptual architecture components;

SO3: Put into practice the applied architecture, proposing real-world scenarios and

applications in order to:

(i) Evaluate the performance of LAURA in different traffic conditions to

show how the proposed architecture is capable of supporting different

application types with different requirements,

(ii) Perform an Empirical Evaluation with developers to confirm the

relative ease support of LAURA to simplify the development and

deployment of final Situation-Aware and Business-Aware IoT

applications.

The ‘Lean’ aspects of LAURA architecture are made throung: (i) The use of a more

simplified reference model focused on the most used aspects, abstracting concepts that are not

commonly used in practice or in enterprise applications. For example, lower level aspects of

node or network programming that are commonly deployed regards of the reference model; (ii)

The architecture proposed that allows the execution of interactive applications and especially

the reprogramming capability of the sensor nodes in a running network according to the

performance evaluation that was accomplished.

In order to achieve the previously stated objectives, it was necessary to develop the

following Activities:

A1: Develop a systematic mapping study in order to investigate modeling and automatic

code generation solutions for IoT that use model-driven or business process approaches. Create

a knowledge base of these initiatives.

A2: Develop a systematic mapping study in order to investigate architectures that

support the deployment of IoT applications and, at the same time, simplify the development

24

of final Situation-Aware applications such as LAURA architecture. Create a knowledge base

of these initiatives.

A3: Identify and delimit the context surrounding the problem domain.

A4: Identify, characterize and classify the problems, opportunities, motivations, and

approaches used by solutions found in A2;

A5: Define the objectives of the proposed solution according to the investigations

obtained in Activities `A3` and `A4`.

A6: Design and develop the conceptual architecture and the deployment architecture

according to the knowledge base obtained in Activities `A1` and `A2` and with the definitions

made in activity `A5`;

A7: Develop real-world IoT experiments and empirical evaluation to put into practice

the applied architecture in order to produce proof of concept and evaluation of LAURA.

A8: Evaluate the proposed architecture, verifying that it meets the requirements

obtained by activity `A5` and from the results and tests obtained in Activity `A7`.

1.6 Methodological Aspects

The methodological support for the construction of this thesis was based on the theory

and practice of Design Science Research (DSR) presented in (Hevner and Chatterjee, 2010).

DSR is a research paradigm that aims to understand and explain a relevant design problem and

its solution in order to create an innovative and useful ICT artifact in applications that meet

some functional requirements. The understanding of a design problem is related to the

knowledge that allows predicting how some phenomenon behaves. Three DSR cycles are

defined to conduct any design problem project. Figure 2 presents an overview of the three DSR

cycles with the indication of the thesis work activities planned for each cycle.

25

Figure 2 - Design science research cycles (Hevner and Chatterjee, 2010) with
activities.

The Relevance Cycle connects the contextual environment with the design science

activities and defines the criteria for the evaluation of the results. The key aspect in this cycle

is the identification and characterization of problems and opportunities in the domain problem

environment. The Rigor Cycle is based on the existing domain knowledge base and must add

new knowledge to this base through the obtained results. The rigor is related to the choice and

application of appropriate methods and theories for the creation and evaluation of the produced

artifacts. The Design Cycle is the kernel of any DSR project performing the most fundamental

and difficult work. A consistent work in this cycle requires good arguments with a good

evaluation of them based on the requirements (inputs from relevance cycle) until reaching the

desired result. The DSR cycles defined for conducting this thesis will be presented below `.

The Rigor Cycle is covered through the activities ̀ A1` and ̀ A2` The analysis and results

of these activities is presented in (Teixeira et al., 2017b) and also in Chapter 2. These activities

helped the identification of stakeholder roles and profiles used in related work and support the

specification of LAURA architecture stakeholders roles according to the thesis objectives.

The Relevance Cycle was made through the activities `A3`, `A4` and `A5`. The

environment, domain problem and requirements were presented in the previously sections.

These activities helped the definition of research challenges and contributions of this thesis

The Design Cycle was made through the activities `A6` and `A8`. The analysis and

results of these activities will be presented in Chapters 3, 4 and 6.

26

1.7 Organization of this Thesis

The remainder of this thesis is organized in the following way:

 Chapter 2. - Related Works and System Requirements: performs a systematic

mapping review, which aims to identify similar work and identify research gaps, and

presents the system requirements.

 Chapter 3. - LAURA Architecture: presents the domain reference model and the

specification of the proposed conceptual architecture. The chapter also presents the

technologies, standards and languages used in the applied architecture.

 Chapter 4. - Application Scenario, Experiments and, Empirical Evaluation:

presents the application scenario used throughout this thesis, which is based on a real-

world problem, i.e., the real-time monitoring of the quality of medical products. It

also introduces the proof of concept of LAURA Applied Architecture, which is based

on the proposed application scenario. Three experiments were developed, including

a performance measurement experiment. The empirical evaluation of LAURA is also

discussed in this chapter.

 Chapter 5. - Conclusions: presents the final considerations, the research

contributions, the connections with other studies, and future perspectives that point

out where new investigations can be developed.

27

Chapter 2. Related Work and System Requirements

In order to identify a more scientifically consistent and rigorous selection of related

works for analyses and comparison in this thesis, a search was made within the same seven

scientific digital libraries that we have used in our previous work (Teixeira et al., 2017b) and

considered relevant sources of research in the IoT area. Those digital libraries are listed in Table

1.

Table 1 - Scientific Digital Library Sources.

Scientific Digital Library Universal Resource Location

IEEE Xplore http://ieeexplore.ieee.org

ACM Digital Library http://portal.acm.org

Science Direct http://www.sciencedirect.com

Springerlink http://www.springerlink.com

Web of Science http://www.webofknowledge.com

Scopus http://www.scopus.com

Compendex http://www.engineeringvillage.com

The entire process of planning, searching, analyzing, refining, modifying and adapting

the search string in order to obtain the selected papers helped to reinforce and confirm the initial

hypothesis that, in the scientific literature, there are few architectures with properties or

characteristics that are similar to the LAURA conceptual architecture proposal. Thus, this

process follow a mapping protocol in order to identify the related works in a consistent way

(Kitchenham and Charters, 2007; Kitchenham et al., 2011). The spreadsheet containing the

entire systematic review process is available in the 'Related-works-Systematic-Mapping'

repository of the LAURA project at GitHub (Teixeira et al., 2017a).

This mapping study helped to confirm the importance, effectiveness and relevance of

the properties and elements proposed in this conceptual architecture, indicating real possibilities

for future modifications and improvements that would permit the addition of new layers,

elements and concepts. For example, the inclusion of the `Fog Layer` in the conceptual

architecture was the direct result of the analysis process of the selected papers (Aazam and Huh,

2014; Al-Doghman et al., 2016; Bonomi et al., 2012; Chen, 2017; Chen et al., 2017; Hu et al.,

2017). This, in turn, demonstrated the flexibility, adaptability, decoupling and freedom that

LAURA conceptual architecture provides.

In order to obtain a search string capable of identifying relevant studies, three pilot tests

were performed using the IEEE Xplore. This is considered to be the source that returns the

http://ieeexplore.ieee.org/
http://portal.acm.org/
http://www.sciencedirect.com/
http://www.springerlink.com/
http://www.webofknowledge.com/
http://www.scopus.com/
http://www.engineeringvillage.com/

28

largest number of results related to this area of study (Teixeira et al., 2017b). The spreadsheet

containing the stages, raw data, information, records and the analysis of the systematic protocol

used in this study are available in the 'Related-works-Systematic-Mapping' repository of the

LAURA project at GitHub (Teixeira et al., 2017a). The mapping spreadsheet protocol has five

tabs. The Planning tab indicates the objectives, the Search String used in the advanced or expert

options of each digital library, the selection criteria used and some relevant information. There

is a tab for each ‘Stage’ of the mapping protocol that follows the same methodology used in the

previously developed mapping study already mentioned.

Pilot Test 1 was performed on August 2, 2017 using the search string ("Internet of

things") AND ("Architecture"). The search returned a total of 2,815 publications. After

completing Stage 1 and reviewing 35 papers in Stage 2, it became clear that this search string

was too broad to obtain relevant works and therefore new terms were introduced in order to

refine the search results.

On August 7, 2017, Pilot Test 2 was performed with more specific search strings. New

terms were added, reducing the number of unrelated papers in the search results. For example,

the string "Context-aware" AND "Internet of Things" AND "Architecture" has returned 93

papers; the string "rule-based" AND "Internet of Things" AND "Architecture" has returned in

16 studies. A total of 118 publications has been analyzed in Pilot Test 2.

Both Pilot Tests 1 and 2 have returned publications that had either no relevance at all

to the objectives of LAURA architecture, or were general architectures, with no support for

the deployment of situation-aware or business-aware final IoT applications. Some of them do

not address aspects related to the physical layer or lower levels. In addition, some studies also

do not present enough information for an analysis or comparison with the proposed

architecture. This can be verified in (Gong et al., 2012; Mainetti et al., 2015). In other cases,

it was verified that some studies are dependent on a specific middleware (Cardozo et al., 2016;

d. Matos et al., 2015; Mathes et al., 2009), framework (Barbero et al., 2011; Carlson et al.,

2012; Ta-Shma et al., 2018), enterprise service bus (Prado et al., 2017), or focus only on higher

level aspects (Mormul et al., 2017) in their solution. These results demonstrate the need to

enrich the search with more specific terms to effectively obtain publications related to the

objectives and characteristics of LAURA architecture, particularly its vocation for the use in

CPS scenarios.

The initial search string was inspired by previous mapping study already mentioned. It

29

was divided into three parts, but in practice, it is a single string. Part 1 (left side) contains the

terms related to the IoT. The central part has the term "Architecture" and the third part (right

side) the terms related to the ‘Situation-Aware’ or ‘Business-Aware’ applications terms.

For Pilot Test 3, a new search string was written inspired on Part 1 search string that

had obtained effective results and included the terms “cyber-physical”, "Architecture" and other

terms related situation/context-aware applications. This was tested in IEEE Xplore on

September 16 and 17, 2017. In the following, the search string and the results obtained will be

presented: ("Wireless Sensor" OR "Cyber-physical" OR "Sensor networks" OR "Actuator

Networks" OR "Internet of Things" OR "Web of Things") AND ("Architecture") AND

(("Situation") OR ("Context-aware") OR ("Context aware") OR ("rule-based")) returned 465

results from IEEE Xplore on September 16, 2017. In Stage 1, the results were recorded

including the source, publication year and the title. Stage 2 started with assignment of an ID

number for each paper and the reading and analysis of the titles and abstracts in order to

eliminate any non-relevant papers that did not fit the selection criteria described in the

spreadsheet (Teixeira et al., 2017a), leaving a total of 129 papers. In Stage 3, an analysis of the

full paper was conducted using the same selection criteria as in the previous stage, leaving a

total of 2 selected papers. The search string was considered effective in obtaining the required

results and was then applied to the other digital libraries.

It is important to note that adaptions were made according to the advanced search

requirements for each source. All the adapted search strings are available in the ‘Planning’ tab

of the previously cited spreadsheet. At each stage, a review of the results was conducted by the

co-authors in order to minimize bias as much as possible. Despite the large number of papers

that were identified in the search, there may still be publications that use non-standard terms,

and therefore, were not returned.

The final search string was used to search all the digital libraries and the selection

criteria (Teixeira et al., 2017a) applied to obtain the final list of selected papers. A total of 7,656

publications were returned: 465 from IEEE, 257 from ACM, 66 from Science Direct, 376 from

Web of Knowledge, 731 from Scopus, 764 from Compendex and 4,996 from Springerlink. This

process followed the stages described in the spreadsheet mentioned above and they were

executed in September 16 and 17, 2017 and then an update was made from 2017 until may

2019.

30

2.1 Related Work discussion

We have analyzed related work on the light of the Domain Challenges (DC) identified in

Section 1.3. This analysis is summarized in Table 2, as described following in section 2.2.

Papers will be identified with a ‘#’ and an ID number to facilitate visualization in Table 2.

The work presented in (Bai et al., 2007), identified as #01 in Table 1, presents a 5- layered

architecture as follows: abstract hardware, service registry, context model, reasoning and

application. The architecture also includes two cross-layer modules: one on energy management

and another on supporting service-oriented, programmable context-aware applications in

various scenarios, using heterogeneous devices and a synchronization method to ensure

sensitivity to context changes. The dynamics of the solution follows an agent-oriented approach,

i.e. an agent is created for each registered device. Agents become pro-active and capable of

perceiving context event changes, which are inserted into a Rule-Based System for further

inferencing. Another interesting functionality of this work is its energy efficiency capabilities,

implemented by means of the Energy Optimization Module. This component implements

techniques to save energy and unnecessary network traffic based on system’s situations

(context). With respect to the DC, this work does not address DC1, DC2 and DC3. It only

partially tackles DC4 by providing support to different hardware platforms through the “abstract

hardware” layer. It also provides support for data storage by means of the Working Memory

component as part of the Rule-Based System and fails to present information about how they

deal with aspects related to the DC4.

Paper (Choi and Rhee, 2012), identified as #02 in Table 1, presents a distributed Semantic

Sensor Web Platform (SSWP) aiming at simplifying information processing through three

levels: (i) aggregating raw data via Smart Gateway (SG) components and multiple interfaces;

(ii) context virtual sensor descriptions, which are generated by SGs in order to make smart

decisions and (iii) inferred context information (also known as situations) based on events

received from multiple context providers and SGs. The paper applies the solution in an

irrigation system scenario in which irrigation is activated based on data collected from sensors

spread over the crop. The system is also capable of taking smart decisions based on events

provided by external context providers such as changing truckers´ routes due to poor weather

conditions and/or accident reports. Another interesting aspect of this work is the separation of

semantic services from domain services by means of multiples SGs using (i) management

functions such as aggregation, discovery and history management; (ii) brokering functions such

31

as service discovery, registry and abstraction; and (iii) storage and inferencing functions with

ontology and rule-based systems. With respect to the DC, this work does not address DC1 and

DC2. DC3 is partially addressed by means of the proposed architecture and its components, but

it does not define which stakeholders are involved and their role in the development of

applications. DC4 is almost fully addressed by means of SGs.

The work discussed in (Jara et al., 2014), identified as #03, presents the “Digcovery”

architecture, a global resource discovery and service-oriented framework aimed at facilitating

the deployment of context-aware applications. This architecture deploys mechanisms to allow

users to register sensors to discover various kinds of resources based on geo-location, resource

types and mobile platforms. The architecture allows these external resources to interact with a

scalable and elastic search engine in order to allow high complex queries (serialized as JSON

messages) to be efficiently executed (with low response time). To achieve these objectives, the

following strategies are proposed: (i) the integration of different kinds of systems, technologies

and standards such as IPv6, 6lowPAN, EPC and legacy devices to transform any kind of service,

device or resource into a semantic interoperable format via a JSON API; (ii) the use of a

Digcovery component, which is a centralized point to manage and discover resources and

services. This component is based on a common ontology and profiles from the IP-enabled

smart objects alliance (IPSO) compatible with DNS-SD types to interoperate with final

applications through standard API such as DNS, CoAP and REST APIs; (iii) the use of an

ElasticSearch component to collect unorganized data from different directories in order to filter

services and to integrate these services with different types of resources. This aims to provide

methods to form a global organized lookup service capable of efficiently managing a distributed

and heterogeneous set of repositories, filtered by resource type (e.g., temperature). This paper

does not address DC1, DC2 nor DC3. DC4 is partially addressed by means of the Digcorevy

Core APIs and Discovery Protocols components.

The work discussed in (Kuo et al., 2008), identified as #04, proposes a heterogeneous

middleware architecture and an open platform to develop context-aware applications based on:

(i) a SensorInfo gateway component capable of hiding hardware discrepancy and deploying

web-based API to facilitate the development of context and location-based applications; (ii)

Location-based services capable of providing location estimation for the developers from

different positioning systems; and (iii) Remote update features in order to support the update of

sensor mote images from a web interface according to each platform. This work does not

address DC2 and partially addresses DC1, DC3 and DC4. DC1 has been addressed by means

32

of the remote update features provided by the platform. DC3 has been addressed by means of

the fully decoupled nature of the components and services of the architecture. Finally, DC4 has

been addressed by the SensorInfo Gateway, but it fails to present information about how they

offer APIs to final applications.

The work presented in (Paphitou et al., 2015), identified as #05, introduces a generic context-

aware architecture featuring: (i) a Sensor set component capable of connecting different sensor

platforms with a variety of context sensors; (ii) management application facilities, to offer

services to develop context-aware via an exposed API; (iii) RESTful services, to support Web

Services operations such as addition or deactivation of specific sensors; (iv) flexibility with

respect to sensor configuration to change measurement frequency according to users’

requirements; and (v) information provisioning according to the sensors connecting to

corresponding boards. This work does not address DC1, DC2 nor DC3. It tackles DC4 by

supporting various types of platforms by means of exposed WSs. In addition, since RESTful

services are supported, it facilitates the integration of external sensors.

The work presented in (Cubo et al., 2014), identified as #06, proposes a Cloud-based service-

oriented platform to manage and orchestrate heterogeneous devices according to their behaviors

based on the following strategies: (i) a lightweight model to characterize device behaviors,

organize communication messages, and to compose devices using the concept of devices as

services. In order to promote interoperability among devices, message exchange is realized via

gateway in a generic and standardized manner; (ii) a web-based approach by means of an

external cloud-based API; (iii) combination of devices via gateway according to their

complexity or specificities; (iv) a discovery service, to discover, manage and orchestrate the

interaction among devices based on specific scenario requirements; (v) a behavior-aware

orchestration method to deploy a cloud-based (Google Cloud Platform) approach in order to

use the concept of devices as services. Service subscriptions are based on standard languages

such as WSDL, SOAP, WS-Discovery and SOAP-over-UDP and are used to manage event

channels, which run on top of a protocol stack from IPv4, IPv6 and IP multicast network layer

until SOA applications. This paper fails to address challenges DC1, DC2 and DC3. It

contemplates DC4 given it provides a strong framework to deal with device heterogeneity.

The work discussed in (Corredor et al., 2011), identified as #07, presents a Knowledge- Aware

and Service-Oriented (KASO) ontology-based middleware to enable the development and

deployment of real-world applications via common API services in the Cloud. By means of

these services, sensors and actuators can be registered with a network hierarchy to minimize

33

the complexity of underlying mechanisms, such as resources allocation, orchestration, and

service discovery. This work uses protocols, services and other mechanisms to enable the

deployment of business process applications according to the following strategies: (i)

minimizing service overhead via lightweight protocols and optimized service-orientation; (ii)

reducing costs with ‘plug and play’ discovery mechanisms, which minimize manual node

service configuration work; (iii) orchestrating resource-aware services to allow dynamic

resource allocation to optimize resource allocation according to current situations; (iv) simple

programming in order to simplify the development of complex scenarios for business process

applications. This work does not address DC2 and DC3. It approaches DC1 given it provides

ways for the development of final IoT applications. However, this work’s approach does not

take into account the possibility of remotely changing the node code applications behaviors

during system runtime, when considering the dynamic and constant changes in business rules.

DC4 is addressed through the semantic-based framework, as previously discussed.

The work discussed in (Avilés-López and García-Macías, 2009), identified as #08, proposes

TinySOA, a service-oriented architecture capable of integrating external applications and

facilitating the use of sensor networks to create abstractions at the level of Web Services (WS).

The approach is based on a centralized server that incorporates the gateway, database, and

communication functions, which define web services for accessing external applications and/or

gathering data directly to/from the sensor network nodes. The architecture defines the following

components: (i) node, to encapsulate sensing node functions, using well-known approaches to

deal with node topology such as service discovery to promote hardware identification of sensing

capabilities, actuator control and abstraction of hardware low-level aspects; (ii) gateway, to

aggregate sensor node capabilities; (iii) registry, to store information about the infrastructure,

user events and task management information to define how node data should be read; (iv)

server, which acts as a web service provider, offering interfaces for each supported network and

sending commands to network without the use of task management. This work does not address

DC1, DC2 and DC3. It tackles DC4, but it fails to present information about the available APIs

to final applications.

The adaptive Web of Things (WoT) convergence platform proposed by (Yu et al., 2016),

identified as #09, presents a global mechanism to help user communication through the Web or

external applications based on a common semantic or non-semantic data in order to facilitate

device interoperation. IoT devices in this platform define HTTP Rest interfaces. The platform

is composed of: (i) registry, to support data conversion among non-semantic data and

34

support for semantic translation based on technologies such as RDF and SPARQL queries; (ii)

retrieval and recommendation, to maintain virtual nodes and their data, including data

synchronization services. This component also implements recommendation capabilities; (iii)

ubiquitous process management (UPM) and engine, responsible for resource identification,

services mashup with smart devices, thing-to-thing communication, and thing monitoring

capabilities for collaboration. This work does not address DC2 and DC3. DC1 is partially

addressed through the global mechanism to facilitate communication and DC4 is addressed by

means of platform components previously presented.

The work presented in (El-Mougy et al., 2019), identified as #10, presents features, concepts

and aspects that address several of our DC. The approach is based on a conceptual architecture

consisting of 4 layers (sensing, fog, Core and Application/services layers) that together fulfill

requirements to develop personalized scalable IoT networks. The main goal is to offer

optimized techniques to allocate the most appropriate application sensing resources considering

dynamic requirements (such as unpredicted user needs). The following strategies are proposed:

(i) virtualization of physical sensors networks (similar to VM-based approaches) in order to

facilitate the dynamic allocation of resources through optimization algorithms, resource

discovery, and application decomposition. Application decomposition is required when

problems in the sensing layer occur (such as a physical defect or a security/privacy breach) or

when resources need to be reallocated to meet changing requirements; (ii) migration of

applications to the so called “Fog layer” in order to meet specific requirements, or when there is

a more rigid latency requirement. The approach is capable of using various meta-information

(such as data precision and freshness) to decide the best application deployment environment

(such as the Cloud or the fog layer) considering these dynamic data; (iii) using information-

centric networks to tackle mobility and traffic congestion requirements through pub/sub event-

based mechanisms to provide proactive caching; (iv) supporting artificial intelligence and

context awareness approaches to leverage mobility prediction, cognitive networking and

adaptive duty cycling. These mechanisms allow, for example, reprogramming sensors

according to users’ requests to meet changing application requirements. This work does not

address DC1 and partially addresses DC3. It is the only one of the related works to address DC2

by means of the Core Networking and Fog layers. DC4 is addressed by means of the optimized

techniques and strategies previous presented.

The context-aware system platform for Industrial IoT (IIoT) proposed by (Alexopoulos et al.,

2018), identified as #11, presents an infrastructure to support decision making for mobile

35

and static users organized as follows: (i) the context information layer based on an ontology

model to dynamically support changing of applications and user contexts using standards such

as UML, the Web Ontology language (OWL) and REST interfaces; (ii) the event-driven

architecture (EDA) layer to support heterogeneous communication and decoupling aiming to

facilitate the management of complex systems with independent features; (iii) the enterprise

layer to provide business specific services which are key to reducing assembly errors and

production costs, such as: services to help locate people on the factory floor to improve work

task allocation and execution, and, to track available material and errors reports during the

production process in order to support expert proactive actions. This work does not address

DC1 and DC2 and partially addresses DC3. DC4 is addressed by means of the Event-driven

approach and through the integration layer.

2.2 System Requirements

The previous section allows us to refine our challenges in terms of essential requirements that

should be fulfilled by our solution (the LAURA architecture). Papers #7 and #9 tackle DC1 by

offering infrastructures that support the deployment of business-oriented IoT applications. The

IoT solution should offer facilities for BP modeling in a way in which the BPM Expert does

not have to know the lower level aspects. Since this is a relevant feature for most of the scenarios

we are interested in (Figure 1) we derive our first requirement R1: the architecture should

define functions to allow easy deployment of business-aware IoT applications.

DC1 has been (partially) addressed by papers #4, #7 and #9. Paper #4 introduces remote node

update features which are interesting solutions to deal with dynamic business environments in

order to avoid manual work. The use of VM-based WSN platforms, that have light-weight code-

dissemination functions, make the maintenance of the solution easier, avoiding manual node

code reprogramming. Based on this, we derive another system requirement R2: the

architecture should include mechanisms to allow remote reprogramming to cope with

ever changing business environments.

Paper #10 tackles DC2 by offering support for the deployment of fog-oriented IoT applications

with facilities to (i) avoid unnecessary data being sent to final applications; and (ii) provide

response time required by real time or critical applications, such as smart traffic application to

make real-time decisions about traffic routes. In addition, they must be able to

36

deal with large quantities of data to process, infer, aggregate, compose and make temporal

correlations. In this way, we define the system requirement R3: the architecture should

provide mechanisms and features to deal with fog computing paradigm.

All the papers partially tackle DC2 by offering support for the deployment of context- aware or

situation-aware IoT applications, since this is a requirement for the search and selection of the

related works. It is desirable that solutions offer facilities to support a user- friendly language,

using the “situation” abstraction to represent situations as they occur in the real-world and also

support the specification of situations decoupled from the low-level aspects. Thus, we define the

system requirement R4: the architecture should provide mechanisms and features to allow

the deployment of situation-aware applications.

DC3 has been (partially) addressed by papers #2, #4, #10 and #11. No paper introduces

mechanisms to reduce node processing by moving some operations or processing that are

commonly performed on the nodes to the upper layers. Based on this, we define system

requirement R5: the architecture should include components or mechanisms to reduce

node processing.

It is desirable that IoT solutions promote the engagement, adhesion and the definition of

stakeholder roles compatible with those found in the market. In complex solutions that demands

the participation of multiple stakeholders and multidisciplinary teams, this should be

encouraged by the platform, however, each professional should have well-defined roles

according to the profiles that can be commonly found in the labor market. Facilities to

engagement and adhesion of stakeholders working on their specific abstraction levels have been

addressed by papers #2, #4, #10 and #11. The solutions include the use of ‘Separation of

Concern’ applied to the levels of abstraction compatible with professional profiles that are

commonly found in the labor market or the use of a BPM-based approach to generate node

codes in order to facilitate the work of the professionals working at the highest level layers of

abstraction. Thus, we define system requirement R6: the architecture should provide

facilities for the engagement of multidisciplinary stakeholders according to well-defined

professional profiles.

DC4 has been (partially) addressed by all papers by means of flexibility and freedom to use

different WSN hardware platforms or IoT devices. Usually, companies adopt the solution that

best meets their needs. The adopting of VM-based devices or WSN facilitates the adoption of

new hardware platforms due to the fact that the programming language and OS system remains

37

the same. Incorporating a new platform is necessary to adapt the radio communication and

sensor components according to the VM-based approach used. From these aspects, we define

system requirement R7: the architecture should support different devices or hardware

platforms. The use of decoupled and flexible gateways provides portability by offering support

or facilities for using new platforms that are not yet used by the architecture. In this way, we

define system architecture R8: the architecture should support portable data

communication gateways to allow the use of new devices.

Paper #3 is the only one that doesn't support facilities to store sensed data, which is an important

feature to allow data analysis over periods of time, as it may be necessary to analyze data

behavior over time window intervals to identify situations. Thus, we define system architecture

R9: the architecture should support data storage.

Papers #2, #3, #5, #6, #7, #9 and #11 provide support to the deployment of decoupled final IoT

applications via REST API and paper #11 provides the same support via a Pub/Sub API.

Business IT environments are usually heterogeneous, complex and prefer the use of cloud

computing. The stakeholders, who are responsible for the development of final applications,

must deal with many high-level aspects affected by those that work on the lower levels aspects.

The use of user-friendly communication interfaces and well-established standards, with full

decoupling of lower level technical aspects, is a strategy that can be used to allow flexibility for

the deployment and integration of final applications for IoT solutions, according to business

needs. In this way, the stakeholders only need to know the communication methods, patterns

and formats available to access the data through the APIs. From the above aspects, we define

system requirement R10: the architecture should provide facilities and freedom for the

deployment of a range of decoupling final real-world IoT applications.

Table 2 presents an analysis of the domain challenges (DC) and the corresponding system

requirements, considering the related work. Some of the requirements marked with ‘no’ mean

that they were not identified or there was not sufficient information available in the study to

reach a conclusion. In these cases, when it was partially addressed in the paper, the cell contains

a description of what was found. For example, (Choi and Rhee, 2012) did not refer to or specify

if processing occurred. Therefore, it was considered as a ‘no’, as the proposal did not describe

or identify if the data were previously processed or not.

Aspects related to the treatment of context-aware or situation-aware issues were not

characterized in Table 2, as it was considered a prerequisite for the selection of related works

that is well characterized in the systematic mapping performed and available in the spreadsheet.

38

Therefore, all related work somehow deals with context-aware aspects.

Table 2 - Domain Challenges and System Requirements.

Domain
challenges

Requirements #01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11

DC1

R1

No

No

No

No

No

No

Yes

No

Yes

No

No

R2 No No No Yes No No No No No No No

DC2
R3 No No No No No No No No No Yes No

R4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DC3
R5 No No No No No No No No No No No

R6 No Yes No Yes No No No No No Yes Yes

 R7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
 R8 Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes
 R9 Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes

DC4

Yes,

but

Yes,

but

Yes,

but

Yes,

but

Yes,

but

Yes,

but

Yes,

but

only

Pub/

Sub

API

Yes,

but

 R10 No only only No only only only No only only
 REST REST REST REST REST REST REST

 API API API API API API API

The entire process of planning and analyzing the papers to obtain the selected papers

together with the analysis and discussion of related works helped to reinforce and confirm the

initial hypothesis that, in the scientific literature, there are few architectures with properties or

characteristics that are similar to the LAURA conceptual architecture proposal.

The mapping study performed helped to confirm the importance, effectiveness and

relevance of the properties and elements proposed by LAURA conceptual architecture,

indicating real possibilities for future modifications and improvements that would permit the

addition of new layers, elements and concepts. For example, the inclusion of the `Fog Layer`

in the conceptual architecture was a direct result of the analysis process of the selected papers

(Aazam and Huh, 2014; Al-Doghman et al., 2016; Bonomi et al., 2012; Chen, 2017; Chen et

al., 2017; El-Mougy et al., 2019; Hu et al., 2017). This, in turn, demonstrated the flexibility,

adaptability, decoupling and freedom that LAURA conceptual architecture provides.

The analysis of each stage in the systematic mapping protocol, revealed that many

studies present architectures that focus on a domain-specific problem (Hilal and Basir, 2015)

or architectures that were designed for specific kinds of final applications (Jantunen et al., 2008;

Zirpins, 2016). Some studies concentrate on the low-level (Sánchez López et al., 2012; Shu et

al., 2016) or high-level aspects (Frömel and Kopetz, 2016; Happ et al., 2017) and others present

39

similar focus at the context/rule layer to the one proposed in the LAURA architecture (Da et

al., 2014; Fonseca et al., 2016; Forsström and Kanter, 2014) although do not offer the flexibility

and the full control of complex situations present in the entire LAURA architecture. In

summary, this systematic related work analysis has shown that few studies present an equally

streamlined and integrated approach that is geared to meet full multi-layer facilities. LAURA

design, on the other hand, aims to simplify the development of situation-aware and business-

aware IoT applications.

40

Chapter 3. LAURA Architecture

This Chapter presents the design of LAURA architecture. The stakeholders that interact

with LAURA, the proposed domain reference model, and the components of LAURA

conceptual architecture are then described. The Chapter also elaborates on the technological

issues and the choices made for the development of LAURA applied architecture.

3.1 Stakeholders

It is important to define the role of the stakeholders in any software project, especially

those that are more complex and demand the participation of multidisciplinary teams. This is

due to the fact that every stage, in the development, deployment, and maintenance of an IoT

solution, is directly influenced by each stakeholder`s approach to the project. In the creation of

a solution, the architecture will be influenced directly and in accordance with the requirements

and the role that each stakeholder will play in the solution (Rodrigues et al., 2015; Tei et al.,

2015).

One key aspect that facilitates the deployment of an architecture is that the roles are

compatible with the professional profiles that can be found easily in the workplace. By

decreasing the cognitive effort needed in the deployment of a solution, less training is needed

for stakeholders, making this a more attractive option for the decision makers within a business

context. When this is not taken into consideration, stakeholders may be required to take on roles

that are not within their profile or demand additional knowledge. For example, Rodrigues

(Rodrigues et al., 2015) defined the Domain Expert as a professional with basic software

development skills, mainly in modifying UML models and the WSN expert was required to

have the profile of a software developer. In theory, this approach is conceivable. However,

considering the reality of the IT Business scenario, the level of training required to prepare

employees to fit these roles, makes this approach less attractive in a business context.

Another example, Tranquillini (Tranquillini et al., 2012) works under the assumption

that the Domain Expert will have knowledge in BPM/BPMN as well as basic, low-level IoT

knowledge. In addition, it is also necessary to have knowledge in modeling and automation

process in BPMS solutions. This professional profile, however, is not commonly found in the

labor market. It is also expected that the IoT Expert will have knowledge of software

41

development and the ability to make low-level programming or adjustments according to the

IoT hardware platform used. In the real-world labor market, it is also uncommon to find

someone with this level of BPMN knowledge.

The above examples show how a design strategy can influence or complicate the use of

an IoT architecture with similar characteristics to LAURA architecture. Its acceptability and

feasibility to be adopted as a solution on large scale domains will depend greatly on the ease

with which professionals can be found in the real-world market to fill the defined roles.

Architectures that are based on common profiles are likely to be received favorably and

help to reduce the lack of IoT professionals in the market. This, in turn, may contribute to the

universalization of the development of an IoT solution within a real-world context that will

continue to experience growth in the next few years. The following paragraphs describe the

roles and profiles of stakeholders that were defined for the proposed architecture.

The Domain Expert normally has training or experience in the field that the IoT solution

will be applied in order to solve a specific problem. Domain Experts represent the group of

people who will benefit most from the results that the IoT solution will provide. For example,

the experts could be doctors, engineers, nurses, pharmacists, biologists, oceanographers, etc.

Thus, this professional is one of the main users or interested in the IoT solution and, at the same

time, is a member of the development team in order to assist or contribute with technical aspects

of the domain problem to help the other stakeholders. It is expected that these professionals do

not have any knowledge about the IoT platform or systems.

The WSN or IoT specialist is defined as the IoT Expert, the professional specialized in

IoT and who has knowledge of the different components in a solution, such as hardware

platforms and the software that will be used. They are expected to have low-level programming

knowledge such as the ability to manually program node codes. Furthermore, when using an

automatic node code generation approach, these professionals may have some background

knowledge and they only need to make small adjustments to the node code sensor.

The BPM Expert is a specialist in BPM who has practical experience with BPMN

modeling and business process automation with the use of BPM systems. He has superficial

knowledge of IoT, similar to what has been described above for the Domain Expert, and also

hold basic programming skills.

The specialist in information systems is defined as the System Expert. He/she is the

Information System Development Manager who, in many cases, performs the role of Software

42

Engineer. This professional is normally the Team Leader on IoT projects, providing supervision

and support for the other stakeholders. The System Expert is required to have knowledge of IoT

that is equivalent to the description of the Domain Expert. Depending on the size of the

company, this professional may also perform the role of the BPM expert.

The specialist in rule or situation design is defined as the Situation/Rule Expert,

responsible for the creation of the rules and situations that will be used for the SituationAware

final solutions. Finally, the System Operator usually works closely with the support of Domain

Expert to get support for the use, management or operation of a IoT solution. This role is

typically held by a technician or the person responsible for supervising and running the solution.

He/she performs the required tasks to meet the needs and objectives of the solution, such as

monitoring and reporting on the results obtained.

The LAURA architecture design was made to support the professional profiles

described above. In this way, the architecture aims to promote the involvement of

multidisciplinary teams to simplify the work of those responsible for the development of the

final IoT solution.

3.2 LAURA domain reference model

Figure 3 presents the LAURA domain reference model. The proposed model was

inspired by previous initiatives such as IoT-A (Bauer et al., 2013), Butler and FI-WARE (Butler

Consortium, 2013), IoT-lite (Bermudez-Edo et al., 2017), and SSN (Compton et al., 2012). The

model offers stakeholders a lean and useful artifact that promotes a common ground of

understanding of the abstract concepts, properties, attributes, relationships and semantics,

necessary to develop their own version of LAURA applied final IoT solution, according to the

requirements and specificities of the company domain problem.

The proposed domain reference model is divided into two parts or visions that

complements each other. The blue highlighted elements represent the concepts addressed in the

‘Physical’ and ‘Core’ layers of LAURA architecture and the green highlighted elements

represent the concepts addressed in the ‘Fog’, ‘Situation/Rule’ and ‘Application/Business

Process’ layers.

43

Figure 3 - LAURA domain reference model.

The blue highlighted elements represent the virtual view of things, devices, entities and

other related virtual artifacts. The focus is to represent the general concepts used in the ‘Core’

layer. The lower level concerns related to hardware aspects, such as the type of device, sensor,

tag or actuator, are not addressed by the domain model.

The ‘Sensing Device’ is the virtual representation of a device, with sensors, that has a

single identification ‘key’, defined as key and a ‘descriptor’ that helps the stakeholder to

characterize its purpose or utility, e.g., ‘Living-room controller’, ‘Claire's mobile phone’, ‘Store

Beacon’. The ‘Sensing Device’ can add one or more ‘Observed Properties’ that can be any

property, quality or attribute that a ‘Sensing Device’ is able to observe or collect, for example,

a temperature observation, humidity or location.

44

An ‘Observation’ is a set of values or physical world magnitudes identified for a certain

property at a specific time. An observation of geolocation, for example, has, at least, two pairs

of ’keyvalue’, latitude and longitude, respectively. Frequently, the magnitudes captured by

´Observations´ are transmitted periodically in temporally ordered series (streams of data) with

their respective ‘ObservableProperties’. An ‘ObservableProperty’ represents a topic that can be

measured over time with shared conditions like source/sensor origin, measurement unit,

accuracy. Examples of ‘ObservableProperty’ are the temperature of a specific place or area, the

location of an certain individual, etc. ‘ObservableProperties’ and its stream of values can be

available or “exposed” by means of ‘endpoints’ via an API.

It is possible to associate characteristics or metadata, according to the necessity or

preference of the stakeholder, in any instance of the blue highlighted entities. The ‘metadata’

has a ‘name’, ‘value’ and ‘kind’. Following this, some examples of ‘metadata’ values are:

‘name’="devicemodel", ‘value’="MTM-CM5000-MSP", ‘kind’="String" (used to identify a

device model); ‘name’="unit", ‘value’="Celsius", ‘kind’="String" (used to identify the

magnitude unit of an ‘ObservedProperty’) and ‘name’="precision", ‘value’="0.3",

‘kind’="Double" (used to define the precision of an Observation).

The green highlighted elements are related to the concepts addressed in the ‘Fog’,

‘Situation/Rule’ and ‘Application/Business Process’ layers.

An 'Entity' is a virtual representation of a real-world individual, it is composed by

properties and contexts ('Context') which are of the stakeholder’s interest. An 'Entity' must have

a ‘key’ for a unique identification. In addition, it has a descriptor for human-friendly

characterization, and a kind to designate its type, class or scheme. The tuple (50303, "Sergio",

"Person") is an example of 'Entity' with its values referring to attributes ‘key’, ‘descriptor’ and

‘kind’, respectively. An 'Entity' may present a set of 'Attributes', values that belong to an

individual or thing that remains unchangeable during the existence of its owner in the

application or scenario. A valid example of an 'Attribute' associated with the 'Entity' previously

suggested would be (label = "birthday", value = "1987-03-16", type = "datetime").

A 'Context' makes up the state-of-affairs of an 'Entity', characteristics of an individual

that are submitted to changes in the environment that it is inserted. The green highlighted

elements are based on (Dockhorn Costa, 2007) and use a similar classification when

distinguishing 'Context' in 'Intrinsic' and 'Relational'. An 'IntrinsicContext' represents properties

that relate only to your bearer, e.g., "temperature", "location", "mood". A 'RelationalContext'

45

constitutes states shared between one or more 'Entity'. Good examples are "friendship",

"proximity", "containment", "ownership", and so on. In both classifications ‘Context’ must

have a key and kind, e.g., (key = "temp50303", kind = "Temperature"), (key = "prox50303-

45231", kind = "Proximity"), and in such 'RelationalContext' it must be given a specific role or

part within the relation to entities, like in an "ownership" context, one is expected to be labeled

as the owner and the other one labeled as the owned. A 'RelationalPart' class helps in qualifying

those participations.

Besides its intrinsic or relational characteristics, every 'Context' has a relation with a

‘ContextValue’ which represents its current state, quite similar to an 'Observation' in the 'Core'

layer, in the sense that it's a temporal construct, a point-in-time event, and may present a

composite of key-value pairs, a set of 'Entries', as it can be seen in Figure 3.

The link between the 'Core' and 'Application/Business' layers is made by exposing

contexts and observing properties of the 'Core' layer. This can be seen in the connection between

'ContexSubscription' and ‘ObservableProperty’. The proposed model allows an association of

a certain 'Context' to the consumption of streams of 'Observation', produced directly by

'ObservableProperty'. Once the 'Context' is defined, it is possible to associate the

'ContextSubscription', whose purpose is to maintain a subscription through an endpoint that

refers to the URL or URI in which a particular 'ObservableProperty' was exposed. The technical

characteristics related to how this link, subscription or observation should be performed are not

part of the scope of this reference model. Furthermore, in the `ContexSubscription`, the

stakeholder must be able to define a window rule in order to establish a time window to be used

by the consumed part in order to interpret and send the 'Observation' group of interest. For

example, it is possible that the consuming part needs to perform some pre-processing, such as

an aggregation operation over a value of the last N 'Observation' (length window) or even

'Observation' occurred in the last 10 minutes (time window). The applications of these

operations are defined by means of a 'Formula'.

3.3 LAURA Conceptual architecture

The design of the conceptual architecture was made in the light of methodological

aspects presented in section 1.6 and based on the mapping protocol made to identify the related

works presented in chapter 2. The analyse of the related work allow the design of a five-tier

architecture capable of meeting some domains challenges and requirements that were

46

previously presented in chapter 2.

Figure 4 shows an overview of the LAURA layers, and the stakeholders who are actively

involved at each layer. For didactic purposes, the following sections will present each layer

using a bottom-up view, describing their main components as well as highlighting the

requirements met in each layer and different activities performed for each of the stakeholders

in correspondence of each layer.

Figure 4 - LAURA Conceptual architecture overview.

It should be observed that, for the sake of brevity and objectivity, we decided not to

include in this document the whole set of material (forms, spreadsheets, tables, graphics, etc)

produced during the thesis work. These materials can be easily accessed at GitHub repositories.

Particularly for this chapter, the reader can get more detailed information regarding the issues

47

discussed here in our journal paper (Teixeira et al., 2017b) or in the spreadsheet (Teixeira et al.,

2016), which elaborates on the background topics here introduces, and discusses the results of

our mapping protocol approach.

3.3.1 ‘Physical Layer’

The 'Physical Layer' includes all low-level aspects related to the running of the WSN or

IoT devices, such as specific details concerning the hardware, OS system and communication

protocols adopted. LAURA assumes that there is a preconfigured network of WSN or IoT

devices. In this layer, the IoT Expert defines the physical devices, platform, OS systems and

the most appropriate topology of sensing, taking into account the objectives of the final

application. In addition to the operating environment, the IoT devices keep the code responsible

for receiving data collected from the monitored real-world space or physical object, and for

sending them to the Sink node.

The scenario presented in the introductory section shows the high expectation for new

real-world IoT applications, whose demand is likely to experience a rapid growth in the coming

years. However, researchers and companies have been interested in hardware and software

technologies which have formed the basis of the IoT for a long time. For example, one of the

most commonly used embedded Operating System (OS) for low-power WSN devices, TinyOS

(Levis, 2012), was finished in 1999.

Nowadays, there are many hardware platforms and system options for the development

of IoT solutions (Gajjar et al., 2014; Teixeira et al., 2017b). This fact offers many possibilities

for those who wish to develop or deploy some kind of IoT solution, but this same fact makes

selecting the best options and technologies a more complex process involving many variables

and aspects that are already complicated in a heterogeneous computational enterprise

environment.

Considering the dynamic nature of a IoT application and the corporate environment, a

relevant aspect to be taken into account when selecting the hardware platforms and systems to

be used in a solution is the ability to make dynamic updates (or automatic reprogramming) of

the code that runs on network nodes. Specially in the corporative environment, this feature of

automatic reprogramming is highly relevant as the application requirements may change at any

moment due to a change in the BM or competitive forces.

A dynamic code update is understood as how a specific solution is able to automatically

48

spread sensor codes through the use of radio links without manual serial programming in a

running network (Dong et al., 2014). A network becomes less scalable when it is necessary to

recover a device, manually update the node code and reinstall it in the original location,

particularly when this is in an inhospitable location.

A good reprogramming mechanism must be capable of updating the nodes in an

efficient manner, with low interference in the running applications and avoiding, as much as

possible, the increase of the processing and energy consumption of the nodes. There are several

dissemination mechanisms. The Full-Image Replacement, for example, executes a complete

replacement of the node code image. This approach is implemented by Deluge (Hui and Culler,

2004), the native TinyOS dissemination protocol. TinyOS is the first and currently the most

commonly used embedded Operating System (OS) for low-power WSN devices (Levis, 2012).

One concern with this technique is the high use of bandwidth and power consumption during

the image update.

In Virtual Machine (VM) approaches (Balani et al., 2006; Branco et al., 2015), a high-

level language is executed instead of a native platform code. After the compilation process is

completed, the high-level code is transformed into a bytecode and broken up into small parts

that can be transmitted through the network with low bandwidth use.

LAURA follows a VM-approach, which means that the `Physical Layer` is composed

of one or more virtual machines based on a VM infrastructure, called Terra System (Branco et

al., 2015), built on top of TinyOS (see section 3.4). This infrastructure combines a reactive

programming language and a component-based virtual machine, which allows for different VM

customizations using the same high-level language and compiler.

From a design point of view, the LAURA Physical Layer consists of a sink element

(Sink node) and a set of connection elements (Interfaces). The Sink Node is responsible for

exchanging data packets and node image updates between the IoT devices and the upper layers

via communication channels. The data of the phenomena of interest are sensed by sensor nodes

and IoT devices and they are periodically sent to the Sink node, which is responsible for

packaging and sending the messages from the sensor nodes to the upper layers. Each message

travels from the Sink node to the Core Layer Gateway or from the Sink node to the Fog Layer

using a dedicated communication channel and a specific communication mechanism for

sending and receiving messages. In addition, the Sink Node coordinates the reprogramming

process with the IoT nodes and interoperates with the Core Layer ‘Dissemination Module’ via

a communication channel to receive and forward the node images to the WSN nodes.

49

In this layer, LAURA offers three communication interfaces. One communication

channel is responsible for sending and receiving data packets between the IoT device and the

‘Communication Module’ of the `Core Layer`. This channel is used when it is not necessary or

possible to use the features provided in the ‘Fog Layer’.

For example, when the network nodes code process collected data locally, minimizing

the amount of packets sent.

Another example would be in situations where there are technical limitations that

prevent the deployment of a device to act as a `Fog Layer`, forcing the packets to go directly to

the ‘Core Layer’.

The second communication channel is used exclusively for node code reprogramming.

This channel exchanges packets containing only the updated node code data between the IoT

devices and the ‘Dissemination Module’ located at `Core Layer`.

The third communication channel is used for communication with ‘Fog Layer’ when it

is intended to use the features of reducing, filtering or aggregating data. This aims to achieve

requirement R3.

It is worth to mention that the VM approach and the communication solution provided

by LAURA at Physical Layer provides the IoT Expert, regardless the domain and type of

application shown in Figure 1, with an uniform way of programming and dealing with

heterogeneous hardware platforms and devices. This seeks to meet requirement R7.

3.3.2 ‘Fog Layer’

The systematic review carried out in chapter 2 and the particular analysis of application

requirements and characteristics revealed that the traditional model of Cloud Computing is

unable to give adequate support to some particular IoT applications when: (i) it is necessary to

deal with applications that produce or consume large quantities of data from the edge of the

network. According to a Cisco prediction, data produced by people, things or machines will

reach approximately 500 zettabytes by 2019 and 45% of this data will be analyzed, processed

and stored on edge devices (Hu et al., 2017). By introducing techniques and mechanisms to

filter, aggregate or prevent unnecessary, invalid or redundant data from being transferred to the

Cloud or uppers layers it is possible to considerably reduce the volume of sent data; (ii) the

application requires a short response time of between milliseconds to seconds. The round-trip

50

delay from the devices to the Cloud and vice versa can take minutes and this period of time

may be impracticable in some cases (Cisco, 2015; Yi et al., 2015). For example, in a Healthcare

IoT system (Rahmani et al., 2018) the response time of vital signs is a very critical aspect that

requires rapid processing and action that can normally be done by a device located at the edge

or closer to the sensors; (iii) the application requires mobility support in a widely geo-

distribution environment or location awareness (Bonomi et al., 2012). By using mobility

mechanisms, it is possible to decouple the device identification from the physical location via

distributed directory systems (Chen, 2017). For example, a smart traffic light system that

controls some sensors in a specific area in order to detect the presence of bikers and people,

calculates the distance of an approaching vehicle and takes actions when necessary. In this case,

the devices must interact quickly with the smart lights, sending warnings to prevent accidents;

(iv) it is necessary to deal with a heterogeneous environment (Hu et al., 2017) by supporting

different types of data that is sent from a wide variety of devices with different types of

hardware, languages, operating systems and communications systems. In this way, it is

necessary to dynamically deal with different requirements, especially low latency, which can

change at any time according to the conditions of a specific moment of the communication

links. For example, an application that aims to prevent manufacturing line shutdowns needs a

response in milliseconds from the devices to restore the power. Low latency makes the

difference between an incident that can be quickly controlled without causing major disruption

to a disaster due to a cascading system failure (Cisco, 2015).

In response to the challenges presented above, Cisco first introduced the concept of Fog

Computing (Aazam and Huh, 2014; Cisco, 2015; Marín-Tordera et al., 2017). Fog can be

considered an extension of the Cloud, with widely spread devices (also called ‘fog nodes’)

capable of storage (usually temporary), processing and communication with the final

application in order to support new services and applications with specific QoS demands.

LAURA architecture proposes a ‘Fog Layer’ to reduce, filter or aggregate, in the space

or time dimensions, the sent data from ‘Physical Layer`, preventing, as much as possible,

unnecessary or invalid data packets from being transmitted to the upper layers. For example,

the imprecision of the measures can be offset by some kind of statistical processing in Fog

Layer. Therefore, in order to associate the sensed data, Quality of Context (QoC) parameters

(e.g. Coverage, Up-to-dateness, Frequency, Accuracy, and Significance) (Buchholz et al., 2003;

Gray and Salber, 2001; Hoffman, 2016; Toninelli et al., 2009) can be checked, allowing the

final applications verify the usefulness or the temporal validity of this data, according to its

51

purposes. In this way, it is possible to add QoC features in this layer to prevent unnecessary or

invalid data from being sent to the upper layers.

The idea is to include a Fog node with a power supply, high processing and memory

capacity, between the ‘Physical Layer’ and ‘Core Layer’. The Fog node is usually located at

the edge of the network but may be placed anywhere in the network between applications and

the network or sensor nodes. It can be co-located alongside smart gateways.

LAURA ‘Fog layer’ is responsible for: (i) managing the communication channel

between the `Sink node` and `Physical Layer` to receive sensed data; (ii) the standardization of

data packets before forward to the ‘Fog node’ module in order to facilitate the data processing

and promote the ‘separation of concerns’; (iii) managing of communication with the ‘Fog node’

within the layer itself through a Pub/Sub channel in order to promote the decoupling.

The ‘Fog node’ module consists of a ‘Situation platform’ with a rule-based engine that

supports a CEP computing paradigm. The ‘Situation platform’ must be capable of encapsulating

the features provided by the CEP engine and offers a user-friendly language and mechanisms

that support modeling and processing of situation specification, detection and lifecycle control.

The situation types and rules will be created by the Situation/Rule expert with the

support of the other stakeholders, mainly the Domain expert. The objective is to establish

particular situations of interest or complex contexts in which the data can be filtered or

aggregated, without causing any type of difficulty or prejudice for the final application.

The ‘Fog Layer’ seeks to meet requirement R3. The layer is currently under

development; thus, it is not fully available in this version of LAURA deployment architecture.

The architecture design takes into account that the fog layer may not be used depending on the

specificity of the design whose requirements may not require this layer.

3.3.3 ‘Core Layer’

The ‘Core Layer’ plays a key role in abstracting and decoupling the low-level aspects

that are commonly found in the ‘Physical Layer’, providing communication interfaces for the

application layer. The Core Layer minimizes the processing and the complexity of the ‘Physical

Layer’ or ‘Fog Layer’, offering to the applications homogeneous access to low-level services

executed by IoT devices. Additionally, the Core Layer is responsible for the dissemination of

new node code image received from the Application Layer. Thus, this layer has the purpose of

52

providing the necessary support to meet the major requirement R10. The System Expert works

at this layer registering the entities and contexts derived from the specific domain of the

problem, configuring core API services and eventually defining situation rules that will trigger

specific actions in the IoT application.

The main components of this layer are the Gateway, the Dispatcher, the Complementary

Functions container, and the Database. The layer also holds the 'Core API services', which are

communication facilities running at the Core Layer in behalf of the applications.

The Gateway is a central element for the operation of this layer. It is divided into two

modules: Communication and Dissemination. The 'Communication Module' is a software

artifact that must be able to process and delivery packets quickly and that can be configured or

adapted to maintain interoperability with different types of communication channels according

to the technological choices made by lower layers. This module is responsible for sending and

receiving data packets to and from Physical or Fog Layers, performing message conversion to

a standard lightweight data-interchange format that is independent of language and easy for

human manipulation or for machines to parse and generate it.

This feature seeks to meet R8 due to the capacity to offer portability and flexibility, by

abstracting and transforming low-level IoT data packets to a common layout. Furthermore, it

also enables other modules and layers to process information easily, regardless of the type or

the data structure used in the Physical Layer.

Another gateway module is the `Dissemination Module`. It hosts a code dissemination

service, which is needed for any final application. The dissemination starts when a new image

is received from the API and through the `Dispatcher`. After the new node code image has been

received, this module establishes a communication channel with any kind of device available

in the `Physical Layer` (Sink Node or any IoT device), according to specific features of the IoT

platform used. As aforementioned, this feature seeks to meet requirement R2 and avoids the

need for manual node code reprogramming.

The `Dispatcher` is a key part of the Core API services that sends and receives data

packets or updated node code data packets in different data flows, according to the type of API.

This element seeks to meet R9 due to the capacity to interacts with the Database performing

data persistence to maintain a record of the sensed data, according to the parameters or rules

defined in the architecture. The persistence of data in a Database is justified by the fact that

some applications need to access and maintain the data for a certain period of time. It is common

53

that final users are interested in the statistics or history of the data for a certain period of time,

according to the characteristics and objectives of the applications.

The Core API services are accomplished through widely adopted open standards and

based on SOA paradigm. The SOA is an architectural style for software development that is

currently one of the preferred options in major companies. SOA aims to simplify the relations

between distinct software systems, improving their operation and facilitating the incorporation

of new elements. Therefore, if there are changes in the needs of the business, companies can

respond these changes quickly. Ultimately, SOA can help to reduce maintenance costs and

increase the company`s ability to adapt faster to fluctuations in the environment (Seridi and

Seriai, 2012).

In service-orientation, one of the most important concepts is the Web Service (WS)

(Santanna, 2010; Vujovic et al., 2014). WS is a software service accessible via Uniform

Resource Identifier (URI) and a Uniform Resource Locator (URL) and standard protocols such

as Hypertext Transfer Protocol (HTTP). WS follows a series of standards and communication

interfaces that allow the exchange of messages between a client and the server. The Web

Services Description Language (WSDL) is a standard based on Extensible Markup Language

(XML) syntax, which is used to describe a WS mechanism.

Another widely used standard that has been attracting more interest in recent years is

JavaScript Object Notation (JSON). This is a lightweight data-interchange format that is

independent of language. The format used is based on JavaScript Programming Language

making it easy for human manipulation or for machines to parse and generate it (International,

2013). These features make JSON a good choice of data-interchange language.

In adopting SOA, mainly for solutions or frameworks whose interfaces are well defined

and standardized, the programmer does not need to be concerned with network protocols,

platforms, packet sizes or other low-level details. The use of WS facilitates the IoT

development, mainly when it is necessary to communicate with a service outside the IoT area

(Nissanka and Zhao, 2008). In our previous work (Teixeira et al., 2017b) it was verified that

61% of the 59 selected papers in the mapping review address some kind of SOA to support IoT

applications.

There are two transport components that are widely used in WS: Simple Object Access

Protocol (SOAP) and the REpresentational State Transfer (REST) (Vujovic et al., 2014). REST

is the most common standard used due to the small format messages and lightweight processing,

54

which make it easy to learn and deploy. These characteristics make REST an attractive option

for the developer who wishes to communicate a IoT solution with final Service-oriented

applications.

Meanwhile, RESTful does not have all the interoperability features required to meet the

needs of some types of IoT applications. For example, RESTful is not adequate when there is

an application with many simultaneous demands or requires a short response time from the

sensed data. This type of demand is common in real-time applications or when the state of the

connection is relevant. In these cases, the Publisher/Subscriber (Pub/Sub) exchanged message

can be an alternative solution capable of suppressing the demands of this type of application

(Eugster et al., 2003).

The Pub/Sub is an interaction paradigm standard that provides three dimensions of

dynamic and decoupling event services between publishers and subscribers: (i) space

decoupling: the parties involved in a communication do not need to know each other nor how

many are participating in the interaction; (ii) time decoupling: those involved do not have to

participate at the same time; (iii) synchronization decoupling: the parts do not block each other,

that is, they work asynchronously and notify the other part in case of an unexpected event.

The decoupling of the production and consumption in an interaction process increases

the scalability. In the Pub/Sub communication, the interested client takes on the role of

‘subscriber’, informing the publisher the topics of interest. The Publisher has the role of ‘server’

and is responsible for the generation of channels of communication. Each message is redirected

to its respective channel and attends the needs of the interested clients (subscribers). For

example, a IoT application can use a Pub/sub service to define a topic of interest for each

measurement such as temperature or humidity. In this way, it is possible to have several

subscribers interested in receiving data on specific topics.

The Pub/Sub is a comprehensive and flexible standard that can be used with different

communication protocols and has a variety of private and public deployment solutions. An

example is the use of WebSocket (Saint-Andre, 2011) to develop final Web applications based

on the Pub/Sub standard.

There are three types of APIs in this version of LAURA, as shown in Figure 4: (i) the

Pub/Sub API is used when the response time is a concern or there is a lot of traffic; (ii) the

WebSocket API is used when the final application (commonly Web applications) requires this

type of communication; and (iii) a REST API is used when the response time is not a concern.

55

The Pub/Sub communication interfaces allow final IoT applications to receive sensed

data in real time from the ‘Physical layer’ devices. Applications interested in a specific data

flow subscribe to any available channel provided by Core Layer to receive the data. In this case,

the ‘Core Layer’ acts as Publisher in the communication. The Pub/Sub channels are also

permanently connected to the 'Situation/Rule Layer' in order to send the sensed data to the

'Situation Platform'.

The WebSocket API defines a second form of data access and exists to meet the

demands of Web applications that are interested in the sensed data. The option to offer this

specific API is due to the growing demand for real-time Web applications and because it is a

W3C standard.

The Rest API supports final applications or any kind of communication that do not

require real-time data. Thus, in order to allow more specific queries to previous data records,

the Core Layer offers the RESTful API as a third alternative to Physical Layer data access.

Through this API, the applications can perform on-demand queries, searching, for example,

data of a specific sensor of the network or temperatures that reached a certain threshold It also

enables queries to the Database in order to access data previously saved by the Dispatcher.

There are three data flows that are handled by the ‘Dispatcher’. The first one refers to

the sensed data that comes from the ‘Physical layer’ through the ‘Communication module’.

The second flow refers to data coming from superior layers to the ‘Physical layer’ or

`Fog layer`. This data flow is usually related to actions to be performed on a particular sensing

device or actuator. Once the data is received, the 'Communication Module' performs the

necessary data conversions before forwarding it to the physical layer. This is the inverse process

of what is done when the data is received from the physical layer. In general, the operation of

this component is simple: after identifying the need for measurement conversion of the received

data, the respective conversion function is performed to transform it in a user- friendly format

that it is normally used by the final applications. The third data flow refers to new node code

images coming from the upper layers and that is directed to the 'Physical layer'. This flow is a

specific kind of data, related to reprogramming functions, and it is handled by the

'Dissemination Module'.

The `Sensor Node Complementary Function` is a Core Layer component that

encompasses several auxiliary functions. This component seeks to meet R5. By moving certain

56

types of the processing out of the sensor node, it becomes possible to reduce complexity,

processing and energy consumption into the network.

3.3.4 ‘Situation/Rule Layer’

The main objective of the ‘Situation/Rule Layer’ is to allow an easy connection between

situation-aware final applications and any kind of chosen situation platform or engine. In this

way, the application is able to receive triggered situations according to the programming done

previously by the Situation/Rule Expert. The central component of this layer is the Situation

Platform whose objective is to process situations and create a service-oriented access in an easy

and practical way so that the applications only need to program the actions to be performed in

response to the triggered situations. For example, a BPM-based application can initiate a

process according to a triggered situation and program a flow of BPMN actions.

An IDC study from 2016 made predictions about the impact of new technologies and

organizational innovations on businesses. One of these indicates that by 2020, 50% of

companies will use cognitive computing to automate marketing and sales interactions with

customers. The traditional telesales services, which are inconsistent and expensive, will be

replaced with a virtual sales representative system created with a rule-based learning algorithm

(Murray et al., 2016).

The requirements of a business system change with a certain frequency. The changes

may occur due to competitive forces or with changes to the BM (Bali, 2009). Furthermore,

business systems are becoming increasingly complex and there has been a growth in process

automation in various types of BP, mainly from the influence of the IoT on the company BM.

Considering this, there is a demand for a model or development paradigm that is more suitable

for a context in which there are constant changes to the business requirements, directly affecting

the rules of the BP. In this way, the rule-oriented development paradigm, or declarative

programming, offers a series of advantages providing fast answers to the constant changes that

may occur at any moment.

It is possible to highlight the following advantages in using Rule-oriented systems: (i)

rules are easier for a Domain expert or any employee from the administration area to

understand; (ii) changing or adding a new rule is easier when compared with imperative

programming style based on if-else aligned instructions.

57

These advantages have already been noticed by rule-oriented system developers;

however, there are few difficulties or important issues that must be observed when adopting

this kind of methodology or support solution (Zacharias, 2008). One of the biggest

disadvantages in the development of rule-based applications is the lack of tools for debugging

error support. Other drawbacks include solutions with underdeveloped tool support. Business

Rule Management Systems, (BRMS) such as JBoss/Drools, are considered a solution for

minimizing the negative aspects and concerns described above (RedHat, 2017a).

Drools is an open source Java-based Business Logic integration Platform (BLiP) project

that is backed by the JBoss Community and Red Hat, under the Apache License. The work on

the Drools rule engine began in 2001. Nowadays, Drools is a part of the KieGroup (RedHat,

2017b), an open source project for business system automation and management.

A generic rule-based system should contain the following elements: (i) Facts: this is

either raw data or something that happened or is happening and portrays an objective reality

(Laudon and Laudon, 2003; MerriamWebster, 2014); (ii) Rules: representations of knowledge

that define how an action will be performed according to one or more conditions. Commonly,

the rule is an ‘if-then’ clause defined as a tuple with a precondition and a consequence.

Preconditions contain the premises that need to be satisfied and the consequence is a set of

actions to be performed if the preconditions are matched (Flasiński, 2016; Pereira, 2012;

Rattanasawad et al., 2013) (iii) Working memory: the memory space that contains the factual

instances related to a specific knowledge domain. This space is available to be exploited by an

inference engine in a current knowledge session (Raymundo, 2013); (iv) Inference engine (or

Rule engine): the ‘heart’ of a rule-based system, responsible for seeking, analyzing and

evaluating factual instances according to the rule patterns, executing any kind of pattern-

matching algorithm ; (v) Rule base: the place where rules are stored.

A strategic question of any BRMS is the ease with which the rules can be understood

by non-experts. A user-friendly language can increase the participation of all stakeholders.

Table 3 presents an example of a simple Drools rule. Line 3 shows an example of restriction

and the line 5 shows the executable action.

58

Table 3 - Simple Drools rule example.
Line Instruction

01

02

03

04

05
06

rule “temperature alert” when

Freezer(temperature > -5)

then

System.out.println(“product at risk”);
end

Despite the possibilities and advantages that Business Rule Management Systems

(BRMS) can offer, e.g. JBoss/Drools (RedHat, 2017a), there are groups of IoT real-world

applications with specific features that traditional BRMS are unable to provide (Aliverti et al.,

2016). This group of applications demands, for example, the analysis of facts over the time, the

ability to deal with and make inferences of large numbers of events from multiple sources, infer

relationships, and others in order to allow complex events to be detected (De Maio et al., 2014;

Fülöp et al., 2012). These types of applications require a Complex Event Processing (CEP)

computing paradigm (Gartner, 2017). For example, a fraud detection system needs to check, in

real-time, a large number of events from different locations, including the transaction timestamp

and duration and expiration date, in order to detect complex situations that cannot be identified

in few events (Aliverti et al., 2016).

Ideally, in scenarios like these, the system should be capable of providing the Domain

Expert with the means to specify how the system should respond, abstracting the low-level

technical aspects, with a user-friendly language that is closer to the way in which the problem

is expressed in the real world. These specific methods and ways to specify complex real-world

situations lead to the concept of Situation Awareness (SA) (Endsley, 1995). SA refers to the

perception of environmental contexts and events, taking into consideration its relationship in

space and time, understanding its meaning and the projection of its general state in a ‘Domain

of Discourse’. In other words, a situation refers to how a stakeholder defines a state of affairs

in reality (Adi et al., 2000; Ye et al., 2012).

Although conventional CEP-based systems, e.g., ESPER (EsperTech Inc., 2017),

Drools, StreamInsightTM (Microsoft, 2017), are capable of aggregating, composing, reasoning

over and deriving composite events, few are able to represent and manage situations from a

specific domain in an expressive and user-friendly manner. Conventional CEP-based systems

fall short in its ability to support the situation-awareness concept by itself since events in these

systems are only detected when they occur, i.e., when they finish at the same time or before the

present moment. A situation, on the other hand, can be detected in the first instant that it appears,

59

without knowing when or if it will end. An event does not support the concepts of “happening

now”, however, it is an intrinsic part of the situation concept.

Real-world IoT domains like those depicted in Figure 1 are composed by innumerous

context sources. In these domains the potential situations that can result from the combination

of environmental context and events is enormous, i.e., the states of affairs in reality that may be

of interest of the stakeholders and applications are considerably large. Therefore, it is highly

recommended that the IoT platform provide situation management support for dealing with

those real-world IoT applications. In fact, one of the distinguishing features of LAURA is the

situation/rule layer, which is managed by a rule-based platform based on Drools.

A situation refers to how a stakeholder defines a state of affairs in reality (Adi et al.,

2000; Ye et al., 2012). Situation, as composite events, inherit event dimensions such as:

composition, aggregation and temporal correlation with other situations or events. In addition,

situations present an activeness dimension. A situation is said to be active while those properties

satisfy predicates captured in the situation type logical expression. It ceases to exist when those

properties no longer satisfy the defined predicates. In this case, the situation is said to be a past

situation. The point, in time, in which a particular situation instance is detected, is called the

`situation activation instant’ and the point, in time, in which the situation ceases existing, is

called `situation deactivation instant’.

SCENE (Costa et al., 2016) is the rule-based platform adopted by LAURA. It connects

CEP-based and situation-aware approaches by leveraging the Drools general-purpose rule

system and Drools Fusion CEP module as a mechanism for situation detection and lifecycle

management. The Fusion module offers an event schema, stream processing, temporal

correlation and time-window operators, seamlessly integrated with its Drools Rule Language

(DRL).

The ‘Situation platform’ is composed of a rule-based engine that supports CEP

computing paradigm and a platform, system or tool that is capable of encapsulating the features

provided by CEP engine, offering a user-friendly language and mechanisms that support

modeling and processing of situation specification, detection and lifecycle control. In addition

to meet requirement R4, this platform also seeks to meet requirement R1 since the BPM Expert

can model a BP from a triggered situation, minimizing the need to know the lower level aspects,

as situations are modeled by the Situation/Rule or System Expert.

60

3.3.5 ‘Application/Business Process Layer’

As we argued in the Introduction, enterprise infrastructure should promote the

participation of high-level users in the development of IoT applications. BPM experts, for

example, should continue using their preferred graphical modeling notation, leaving low-level

details to a model compiler and a run-time system. Business Process Model and Notation

(BPMN) ((OMG), 2015), for example, graphic language, is the de-facto standard of modeling

business processes, being suitable for non-expert IT professionals to model BPs without

needing low-level knowledge or extensive training.

LAURA’s Application/Business is the place where BPM Experts, Domain Experts, and

other high-level users interact with LAURA. In this sense, this layer provides functionalities

related to the development of final applications. It provides a place in which domain

applications and business processes can be visually specified, i.e., the rules of business

application and the situations of interest are modeled through a graphical interface. This layer

is also responsible for starting the process of transforming the specification diagrams created

by the developer into node/device processable instructions, so the machine can execute the

model.

The ‘Application/Business Layer’ also set a place where the users can get information

and monitor the state of the IoT devices. For example, they can identify available sensor nodes

with their respective endpoints, including the APIs and methods available for use by final

applications. They can also upload and automatically disseminate sensor node codes or

associate the endpoints with the access keys of the stakeholders according to established

profiles and permissions. The layer contains components that offers dashboard reports and

graphs to aid the work of the IoT experts who is usually responsible for maintaining and

monitoring the solution.

This layer provides a way for the integration of final applications with one or more IoT

devices through standardized communication interfaces, freeing developers from any concerns

about systems or technologies related to the lower layers or the operation of IoT devices. In this

way, the developer only needs to be informed about the available APIs so that the final

application can access the data collected by the sensors. This allows total decoupling from the

low-level technical aspects. The stakeholder, responsible for the creation or integration of the

final applications can gain easier access to the sensed data or triggered situations through a Web

61

system. The only requirement is that this person knows the endpoint or the URI of the resource,

methods and access keys needed to receive sensed data from the IoT devices.

Ultimately, the ‘Application/Business Process Layer’ provides a place where the

stakeholders can create or modify their applications at any time according to new demands or

needs of the company business.

3.4 LAURA applied architecture

This section presents LAURA applied architecture based on the conceptual architecture,

and according to the technological choices that were discussed previously in section 3.3. The

choices made are fundamental in simplifying the work of the developer of the final application.

Some deployment considerations will also be presented, regarding the technologies, languages,

standards, systems, libraries and tools used to develop LAURA applied architecture, which is

depicted in Figure 5. The main differences between the applied and conceptual architecture are

highlighted in this figure.

Concerning the ‘Physical Layer’, we have mentioned that LAURA uses a VM approach

based on Terra System. There are three basic elements in a network based on Terra (Figure 6):

(i) a Céu-T script language – that relies on the reactive Céu language proposed by (SantAnna

et al., 2013) - which is used for node (bytecode) programming; (ii) a set of customized

components that are defined according to the node platform and application type; and (iii) the

Terra virtual machine (VM-T), which controls the bytecode execution and handles the output

and input events.

Among many interesting features found in Terra System, the following three were

central in our decision to choose Terra as the VM-oriented implementation at the Physical

Layer. The first feature refers to the availability of high-level programming resources and

functions. This speed up and makes easier the programming of low-level tasks. The second

important characteristic is its native support for dynamic code update by means of bytecode

dissemination, which is an attractive solution regarding bandwidth consumption. The choice of

a VM-based approach and Terra System in particular aims to achieve requirement R2.

The third feature is related to the possibility of using the same node code for different

platforms. As the bytecode runs on the VM-T of the node, the code is the same regardless of

the hardware platform, making it a portable solution that can be adapted for use with new types

62

of hardware devices. Thus, it is possible to use or adapt the VM nodes for different types of

hardware platforms, making such a solution more interesting to use in heterogeneous

environments. This seeks to meet requirement R7.

Figure 5 - LAURA applied architecture overview.

It is also noticed that current Terra System implementation uses Active Message (AM)

mechanism to exchange message between IoT devices or WSN nodes (Eicken et al., 1992).

Active Message is a message driven asynchronous network communication mechanism that

reduces processing and communication overheads between the devices in a network

communication (Levis et al., 2005). Besides, the communication channels between the Sink

node and the `Core Layer’ makes use of the TOSSAM (Silvestre, 2017), a library that supports

different types of communications based on the AM protocol.

63

The realization of the ‘Core Layer’ encompasses the deployment of the following

modules: (i) ‘Terra Gateway’, which acts as the ‘Communication Module’; (ii) ‘Terra Core’,

which provides the ‘Core API services’; and (iii) ‘Terra Dia’, which realizes the ‘Dissemination

Module’. MySQL (MySQL, 2017) was the technological choice for the database. These

modules, the other elements and the communications channels are illustrated in Figure 5. To

maintain compatibility and standardization, some of the technological choices, made in the

lower layers, were also applied in ‘Core layer’. For example, TOSSAM channels are used as a

way to connect this layer with the `Physical layer` or `Fog layer`.

Figure 6 – Terra System basic elements (Branco et al., 2015).

Terra Gateway (Martinelli, 2017) accomplishes the tasks designed to the

‘Communication Module’ . It is responsible for communicating the sensor network with the

Core layer through a TOSSAM communication channel. In addition, it maintains a Pub/Sub

communication channel with ‘Sensor node Complementary Functions’, allowing real-time

interoperability with other components of ‘Terra Core’ module. In this way, it receives and

forwards data originating from the Terra System network to the Terra Core component,

enabling the full decoupling of lower level aspects from communication interfaces that will be

made available for the final applications. Furthermore, Terra Gateway is also responsible for

the conversion of AM data packet to a JSON standard structured string in order to facilitate

sensor data manipulation and processing, making the solution more portable and flexible. JSON

– JavaScript Object Notation – is a lightweight data interchange format based on JavaScript

Programming Language (International, 2013).

‘TerraDia’2 (Martinelli, 2017; Ribeiro, 2016) implements the Dissemination Module

proposed at Core layer. It is responsible for transmitting new node code image packets to the

2 https://github.com/laura-architecture/terra-dia

64

Sink node, via a TOSSAM channel, providing remote reprogramming features to WSN nodes,

contributing to achieve requirement R2. TerraDia interoperates with the Sink node to transmit

the bytecode blocks using the native Terra System dissemination process.

The ‘Terra Core’ API services is illustrated in Figure 5 by gray highlighted parts. It is a

JavaScript Node.js (Expressjs, 2017) application module, responsible for providing the three

standardized communication interfaces (API REST, Pub/Sub and WebSocket) defined in this

layer. . For the Pub/Sub API, ZeroMQ library (ZeroMQ, 2017) was the deployment choice. For

the WebSocket API, the Socket.io (Socket.io, 2017) library was selected. Finally, for the REST

API, the Express Framework (Expressjs, 2017) was employed.

In addition, there is a permanent Pub/Sub channel between ̀ Terra Gateway` and ̀ Sensor

nodes complementary Functions` that allows decoupling and accelerates message forwarding.

This process will only occur in the absence of a ̀ Fog Layer`. Otherwise, the conversion process

of an AM packet to a JSON object will have already taken place when the packet is received

by the Terra Gateway in the `Fog Layer`.

The implementation of the `Dispatcher` aimed at performing the functions, actions and

features previously described in Section 3.3.3 (Core layer). Thus, after converting the data to a

useful measure and updating the JSON object, the Dispatcher is invoked with the purpose of

forwarding the message containing the sensed data to the deployed `Terra Core` APIs. In

addition, the data is persistent with the recording in a MySQL (MySQL, 2017) database. As

aforementioned, such persistence, in the database, is justified by the need for applications to

access and maintain the data for a certain period of time.

The ‘Situation/Rule Layer’ basically takes advantage of SCENE situation platform

(Costa et al., 2016; Pereira et al., 2013) to provide situation detection and lifecycle management.

SCENE is a rule-based platform adopted by LAURA that connects CEP-based and situation-

aware approaches by leveraging the Drools general-purpose rule system and Drools Fusion

CEP module as a mechanism for situation detection and lifecycle management. The Fusion

module offers an event schema, stream processing, temporal correlation and time-window

operators, seamlessly integrated with its Drools Rule Language (DRL).

From a deployment perspective, data are received by SCENE platform from lower

layers via Pub/Sub API using ZeroMQ library and are readily processed in accordance with the

situation rules previously defined. The detected situations are then made available as services

to final Situation-Aware applications.

65

Situation types are specified in SCENE by means of structural and behavioral aspects,

which are realized by Situation Classes and Situation Rules, respectively (Costa et al., 2016).

Situation Class specializes the predefined class SituationType.

Situation specification in SCENE occurs as follows. Firstly, SCENE requires the

definition of structural aspects. In this phase, a user-defined Situation Class should specify the

specific roles played by domain entities in that situation type. For example, in a Fever Situation

type, if the domain entity Person is playing a role febrile, it should be explicitly defined as such.

In SCENE approach, situation properties are tagged as roles using the @SituationRole Java

annotation.

When a situation is activated, a situation fact is inserted in the working memory

representing that specific situation occurrence. From this point on, SCENE starts lifecycle

management of that particular situation.

As previously mentioned, the ‘Application/Business Process Layer’ encompasses a set

of capabilities that aim at facilitating the communication between a wide variety of final

applications and LAURA lower layers via available APIs. These facilities are made available

through a ‘Management Tool’, which assumes the role of centralizing element of the layer, i.e.,

this tool provides a portal to a set of LAURA services. In addition, the Management Tool offers

dashboard reports and graphs to aid the work of the IoT expert who is usually responsible for

maintaining and monitoring the solution.

The 'Management Tool’ is actually a ‘WEB APP’, which assists the users in the

management of their solutions, offering centralized management facilities of all the endpoints

with the respective permissions and access keys according to the stakeholder profile. With the

use of this tool, it is possible to: (i) identify, test and evaluate the data received, identifying its

origin and performance information; (ii) associate the endpoints with the access keys of the

stakeholders, according to established profiles and permissions; (iii) use a user-friendly

interface to upload new codes (bytecodes) that will be automatically disseminated through the

Core Layer's ‘Dissemination Module’; (iv) use a node code generation solution for WSN from

BPMN specifications, allowing the BPM expert to generate codes that runs on the LAURA VM

nodes (Agrizzi, 2018).

One of LAURA’s application-level facilities is the ‘Terra Web Control’ (TWC). TWC

uses a Websocket API and a RESTful API to access the communication interfaces available on

`Terra Core`. TWC provides key features to the IoT expert by generating data traffic and other

66

relevant information regarding the running of the IoT devices. In addition, if a problem or error

in the application occurs, it can also be used as an alternative way to monitor the physical

entities data via the API WebSocket and Rest. It is also able to interoperate by means of the

API Pub/Sub, receiving triggered situations from the SCENE Platform.

Another application-level facility is the ‘Terra Dia App’, a Web application that offers

the mean by which the IoT expert can remotely upload a new node code. This Web application

establishes communication with TerraDia3 module in Core layer, via WebSocket API,

uploading a new node code that will then be transmitted remotely to the network nodes. The

source code and additional documents about TWC and TerraDia are available in the repositories

of LAURA project at GitHub (Teixeira et al., 2017a). A step-by-step guide explaining how to

download and execute the ready-to-use LAURA VM is available in the repository ‘how-to-use-

laura’4 of the same GitHub address.

Another example of LAURA’s application-level facility is `TerraGen` (Agrizzi, 2018),

the LAURA’s solution for node code generation from BPMN specifications. `TerraGen`

provides BPM experts, who have basic programming skills, a way to generate WSN node codes.

`TerraGen` implements an approach for transforming BPMN 2.0 language elements into Céu-

T reactive language constructors, allowing the generation of codes or code blocks with

equivalent and coherent semantics in Terra System, the virtual machine used in LAURA

architecture. The source code and other `TerraGen`5 documents are also available at the

LAURA’s project repository.

3
https://github.com/laura-architecture/terra-dia

4
https://github.com/laura-architecture/how-to-use-laura

5
https://github.com/laura-architecture/terra-generation

67

Chapter 4. Application Scenario, Experiments, and

Empirical Evaluation

The application scenario proposed is an IoT application called Medicine Quality Control

(MQC). MQC is a situation-aware application for real-time monitoring of medical products that

must be maintained within a specific temperature range inside the refrigerator or freezer. If an

undesired situation occurs, it would be necessary to take an action to avoid the loss of the

product. This scenario is applicable to any other group of applications with similar

characteristics or requirements, such as the monitoring of vaccines, horse semen in labs or

specialized institutions, food and drinks in bars, restaurants, hotels, and supermarkets.

The MQC application will be used to monitor and control the temperature of Botulinum

Toxin Type A (onabotulinumtoxinA) bottles that will be used for esthetic or medical treatments

by dermatologists. The bottles are normally delivered frozen and vacuum-packed in sterile glass

bottle containing 100 units of onabotulinumtoxinA. The bottles are received in a small

Styrofoam box lined with gel ice bricks that maintain the product within the recommended

temperature range for 24 hours or more, allowing it to be transported without affecting the

quality. After receiving the Styrofoam box with vials, it must be stored immediately in a freezer

at -5º Celsius or below. According to industry recommendations, after the product is diluted

with 0.9% sterile saline, it must be kept in the refrigerator between 2ºC and 8ºC for a maximum

of 3 days. This application scenario is only concerned with monitoring bottles that have not yet

been diluted. Therefore, the bottles must be maintained at a temperature equal to or below -5ºC

in a freezer. As soon as the Styrofoam boxes are received, the package should be checked to

assure that the bottles have arrived in appropriate conditions to ensure that they are appropriate

for use.

MQC is able to identify any undesired situations, alerting the system users in real-time

and allowing them to respond and potentially preventing product loss. For example, in the case

of power loss the application may stop receiving sensed data and be programmed to send an

alert requiring a response from the user. According to this response, the `Situation Platform`

can even trigger new situations. This allows constant interaction and greater sensitivity to the

real-time context.

The same quality control scenario was used to create a BPMS Situation-Aware

application. In this scenario, processes are modeled in BPMN by the BPM expert, reacting to

68

the situations previously defined by the Situation/Rule Expert. The starting event begins when

a pre-defined situation is triggered. The number of modeled processes in BPMN will depend

on the actions required by the Domain Expert and suggestions from the other stakeholders. A

process can specify alert actions for the user, such as, email, SMS or a message sent to other

system.

The following sections present a proof of concept of LAURA Applied Architecture,

which was used to support the proposed application scenario. This proof of concept is composed

by the following: two modeling application implementations and, a performance and an

empirical evaluation experiment. The experiment 1 (modeling application) uses an IoT Arduino

platform to deploy the Medicine Quality Control (MQC) application described above. The

temperature of Botulinum Toxin Type A bottles can be monitored via a mobile application that

allows users to prevent product losses by making appropriate decisions when undesirable

situations are detected. Experiment 2 (modeling application) uses the same scenario as

Experiment 1, however, a Business-aware application was modeled using jBPM tool. The

experiment 3 uses TelosB (MEMSIC Inc., 2003), IRIS (Memsic, 2009a) and MicaZ (Memsic,

2009b) (MEMSIC, 2016)WSN nodes to monitor the physical quantities of the temperature and

luminosity. The experiment 3 (performance evaluation) is not directly related to the scenario

abovementioned. This experiment was the objective to evaluate how LAURA responds to a

high or unexpected overhead while processing the sensed data.

The following sections contain the procedures and necessary steps to develop the

experiments. For the sake of brevity, we do not include here all the complementary material

(forms, spreadsheets, tables, graphics) produced during the empirical evaluation. The reader

can find this material at LAURA Project GitHub 'experiments' and 'how-to-use-laura'

repositories (S. Teixeira et al., 2017a) and the forms made for the Empirical evaluation:

(Teixeira, 2018a) and (Teixeira, 2018b).

4.1 Experiment 1 - MQC Situation-Aware modeling application

This modeling application intends to show the main steps for building a final situation-

aware application (called MQC application). We assume that the ready-to-use LAURA VM is

used and configured according to the tutorial available in the repository ‘how-to-use-laura’ at

GitHub (Teixeira et al., 2017a).

69

In accordance with LAURA domain reference model, the ‘1st Step’ encompasses the

requirement analysis made by a System expert, who draws a UML class diagram that represents

the domain application scenario in terms of its entities, static attributes, intrinsic contexts and

relations to other entities through relational contexts. Figure 7 presents the UML model

developed for the proposed domain, using a simple stereotype entity-context terminology.

The entity with a kind Person (which comes to be the user of the application) wants to

observe one or more Products that are sensitive to variations in temperature. Thus, a relational

context Observation exists between them. Furthermore, the Product must be kept in a pre-

determined temperature range, according to the manufacturer’s recommendations or its

characteristics, avoiding loss or damage of the product. A Container has a Temperature control

system (which translates in an intrinsic context Temperature) and it can store one or more

products, therefore a relation context of containment or Storage exists between a Product entity

and a Container entity. In this way, the temperature of the Product can be considered the same

as that of the Container in which it is stored. Both, Container and Person present an intrinsic

context Geolocation, in order to provide information like the distance between an observer and

where the observed product is being stored.

Figure 7 - The UML class diagram that represents the model of the specified scenario

70

According to the application scenario, the dermatologist needs to monitor vacuum-

packed in sterile glass bottles of onabotulinumtoxinA that are stored in two freezers. One of the

freezers is in the office and the other one is at home. Each freezer has a DS18B20 (Integrated,

2018) waterproof temperature sensor connected to a Arduino (“Arduino,” 2016) board.

The MQC modeling application serves as an interaction point with the doctor, secretary

or whoever is in charge of watching and keeping the previously mentioned products safe,

delivering alerts, notifications or even asking for user's immediate actions in order to prevent

any loss.

To interoperate with this application, a MQC service is built on top of the LAURA

Context Broker, a service that fits into the Situation/Rule layer, and that provides a RESTFul

API to manage the context-aware scenarios revealed by the previous presented domain

reference model. Working along with a situation inference engine (SCENE), the MQC service

can go from subscribing to events from sensing device's properties (ObservableProperties)

through feeding domain entities contexts and composing them into meaningful situations.

The ‘2nd Step’ comprises the task performed by the System expert in order to register

the entities and context derived from the specific domain of the problem model as shown in

figure 7. The model was realized in LAURA Context Broker through its RESTFul API methods,

first inserting all entities instances (Person, Product, Container) and context instances

(Temperature, Geolocation, Observation and Storage). The relevant API operations for this

matter are presented in Table 4 and described ahead: (1) creates a new Entity instance, in which

a kind and a descriptor must be provided, and if it succeeds, a new 'entityId' is created; (2)

fetches entities (it can be filtered by kind) from the broker; (3) adds an 'attribute' - a static value

for an entity instance, e.g., 'name', 'email' - to an existent entity (4) adds a new 'Intrinsic Context'

to an existent entity. A kind and label must be provided, e.g., 'Temperature', 'Geolocation', and

if it succeeds, a new 'contextId' is created; (5) sets a new value for a given intrinsic entity's

context; (6) creates an Relational Context between entities, entityId's for the related entities

must be provided, as well as the label for the part/role which one takes in the relation if it

succeeds; (7) fetch any relational contexts, (they can be filtered by kind) from the broker; (8)

sets a new value for a given Relational Context.

71

Table 4 - LAURA Context Broker RESTFul API methods
Methods endpoints

01 POST /entities

02 GET /entities?kind=${kind}

03 POST /entities/${entityId}/attributes

04 POST /entities/${entityId}/contexts

05 POST /entities/${entityId}/contexts/${contextId}/value

06 POST /relations

07 GET /relations?part=${label}&entityId=${id}&entityKind=${kind}
08 POST /relations/${contextId}/value

The exchange format for all API operations is JSON. Table 5 presents a JSON

representation for an entity instance of the 'Person' kind. For the sake of objectivity, the payload

schemas are left outside this work. More detailed schemas for all the payloads expected by the

API can be found in the 'LAURA-Context-Broker' repository of the LAURA project at GitHub

(Teixeira et al., 2017a).

Table 5 - LAURA Context Broker JSON Example for Person entity

Once the entity-context model was set, the ‘3rd Step’ encompasses the binding of

contexts to appropriate virtual sensors (provided by Terra Gateway), i.e., associating a

particular context to a particular observation provider (a sensor node with an unique identifier)

so its observed values can be automatically fed into the Context Broker once the Terra Gateway

receives new readings right from the physical device. Table 6 presents API methods to handle

context bindings (known as ContextSubscriptions in the reference model). In that sense one

{

"id": 56534,
"kind": "Person",

"descriptor": "Dr. Mary Sue",

"contexts": [

{

"id": 6553,

"kind": "Geolocation",

"value": {

"timestamp": 1531208030,

"entries": {

"latitude": -20.3582821,

"longitude": 40.333145

}

}

}

],
"attributes": {

"name": "Mary Sue",

"email": "marysue@laura.com",

"role": "Doctor"

}

}

mailto:marysue@laura.com

72

could bind the Dr. Mary Sue`s (entityId: 56534 from Table 5 example) specific Geolocation to

a device (the GPS from the Dr. Mary Sue`s smartphone) previously configured to send those

coordinates through Terra Gateway.

Table 6 - LAURA Context Broker – Context Binding RESTFul API methods

Methods endpoints

01 POST /entities/${entityId}/contexts/{contextId}/bindings

02 GET /entities/${entityId}/contexts/{contextId}/bindings
03 GET /entities/${entityId}/contexts/{contextId}/bindings/{bindingId}

The ‘4th Step’ comprises the activities of modeling and creation of situations by the

Situation/Rule Expert according to the analysis of the requirements and the domain problems

in the view of the Domain expert with the support of the System expert. Eight specific situation

types were identified: (i) ‘Observed Situation’, characterized when a Person indicates his/her

interest in monitoring a specific product. (ii) ‘Absent Sensor Reading’ that describes a situation

in which there is a breakdown in communication or data reception for a pre-determined period

of time; (iii) ‘Exceeding Threshold Situation’, when a temperature measurement is beyond the

acceptable range for a certain product; (iv) ‘Exceeding Safety Distance Situation’, when a

Person is at a distance from the Container that is far to be considered safe; (v) ‘Estimated Time

of Arrival (ETA) Greater than Estimated Time-to-Threshold (ETT) Situation’, when the

estimated time for a Person to reach a Container is greater then the estimated time that it would

take for the Container to reach an unsafe temperature previously defined for that product; (vi)

‘All Observers are with ETA Greater than ETT Situation’, when all Observers are found in

situation (v); (vii) ‘Busy Situation’, when an Observer indicates that he/she is busy or

unavailable to act in response to a situation (vi); (viii) ‘Attending Situation’, when an Observer

indicates that he/she is available to act in response to the situation (vi). Tables 7 to 9 present the

specification of some of these situation types in SCENE. The complete list of situation type

definitions can be found in the ‘experiments’ repository of the LAURA project at GitHub

(Teixeira et al., 2017a).

73

Table 7 - The AbsentSensorReading situation declaration in SCENE.
Line Instruction

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16
17

declare AbsentSensorReading extends Situation

container: Entity @part end

rule AbsentSensorReading @role(situation) @type(AbsentSensorReading)

when
temperature: IntrinsicContext(kind=="temperature") container:

Entity(kind=="Container") from

temperature.bearer not (

ContextValue(context == temperature) over window:time(1m30s)

)

then

SituationHelper.situationDetected(drools);
end

Table 8 - The ExceedingThreshold situation declaration in SCENE.

Line Instruction

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16
17

declare ExceedingThreshold extends Situation product: Entity @part

end
rule ExceedingThreshold @role(situation) @type(ExceedingThreshold)

when
containment: RelationalContext(kind=="Containment")

RelationalPart(label=="contained", relation==containment, product: entity)

RelationalPart(label=="container", relation==containment, container: entity)

temperature: IntrinsicContext(kind=="temperature", bearer == container,

value.entries["temperature"](>= product.attributes["maxThreshold"] ||

<= product.attributes["minThreshold"]))

)

then

SituationHelper.situationDetected(drools);
end

74

Table 9 - The ObserverETAGreaterThanETT situation declaration in SCENE.
Line Instruction

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

declare ObserverETAGreaterThanETT extends Situation observer: Entity @part

container: Entity @part product: Entity @part end

rule ObserverETAGreaterThanETT @role(situation)

@type(ObserverETAGreaterThanETT) when

observation: RelationalContext(kind=="Observation", value.entries["status"] !=

"BUSY")

RelationalPart(relation == observation, label=="observer", observer: entity)

RelationalPart(relation == observation, label=="observed", product: entity) containment:

RelationalContext(kind="Containment", value.entries["status"] == "ON")

RelationalPart(relation == containment, label=="contained", entity == product)

RelationalPart(relation == containment, label=="container", container: entity)

ett: IntrinsicContext(kind=="EstimatedTimeToThreshold", bearer == product)
eta: RelationalContext(kind=="EstimatedTimeOfArrival", value.entries["eta"] >

ett.value.entries["ett"])

RelationalPart(relation == eta, label=="person", entity == observer)

RelationalPart(relation == eta, label=="container", entity == container) then

SituationHelper.situationDetected(drools); end

All SCENE situation type specifications were written in a single DRL file which was

then uploaded to the SCENE Situation Engine and from that moment on, the MQC Service is

all set and able to detect new situations based on incoming sensor data. In addition, the MQC

Service provides a Situation Subscription API along with a specific websocket channel for client

applications and/or services to listen for alerts about situations they are interested in.

4.2 Experiment 2 - MQC Business-Aware modeling application

This experiment (modeling application) is based on the same application scenario and

situation types that were previously presented. The purpose of this experiment is to show that

it is relatively simple to configure a business-aware application using LAURA architecture,

with special attention to the activities performed by the BPM expert. We assume that the

activities performed by the Situation/Rule and System experts in Experiment 1 were

successfully performed. Following paragraphs present the main steps for configuring a final

BPM application from the point of view of the BPM expert.

75

The ‘1st Step’ comprises the activities of specifying and modeling some BP in BPMN

that can define the actions that must be executed from the triggered situations. Based on the

previously defined situations, it is necessary to define the processes that must be executed to

achieve the desired goals. Following steps present examples of processes for this application

scenario using a java-based tool called jBPM to model and execute BP in BPMN.

The ‘2nd Step’ comprises the activities of configuring the communication channels

between the jBPM and the LAURA architecture in order to enable interoperability between the

APIs of the Situation Layer (SCENE platform) and the jBPM. Therefore, to start the processes

from situation activations in the SCENE platform, a permanent Pub/Sub communication

channel is established through a websocket connection that uses the Pub/Sub standard. In

addition, a REST call is needed to query situations and its participants, during a BP. In this way,

jBPM subscribes to SCENE and waits for messages containing the name of the situation that is

configured in SCENE. As soon as messages are received, the situation name is verified to select

the commands to be executed.

Another activity that should be performed in this step is programming the process code

to establish the connection between jBPM and SCENE. According to the received message,

this process executes a loop to identify the situation that should be triggered. It is expected that

the System expert makes the initial programming of this code and that the BPM expert changes

or includes a new `case` block code that appears soon after the ‘switch(situation)’ command,

as can be seen in figure 8. Note that each ‘case’ indicates the process that will be started from

76

the triggered situation, indicating the file with extension `.bpmn2` that contains the processes

such as the BP that will be presented in figure 13.

Figure 8 - Overview of the initial part of the running process code that establishes the

connection between jBPM and SCENE.

Figure 8 shows an overview of the initial part of the process code that is running in

background into the jBPM to establish the connection and, according to the received message,

executes a loop to identify the situation that will be triggered. As jBPM is java-based, it was

chosen to develop this code in Java. According to the BPMS tool adopted, the team of

developers must decide how best to make these configurations and procedures according to the

facilities provided by the BPMS tool. It is expected that the System expert makes the initial

programming of this code and that the BPM expert changes or includes a new ̀ case` block code

that appears soon after the ‘switch(situation)’ command. Note that each ‘case’ indicates the

process that will be started from the triggered situation, indicating the file with extension

`.bpmn2` that contains the BP that will be presented in figure 13.

Therefore, whenever it is necessary to include a new process, the BPM expert only needs

to include a new ‘case’ block code according to the example shown in Figure 8. The line that

starts with 'CreateRuntimeManager' creates all process into the knowledge base with the default

settings. The second and third lines have the objectives of creating a running instance of the

Rule Engine as a KieSession. Finally, the line that starts with 'KsessionObserving' has the

function of initializes the process ‘medicine.contro.Observing’ into the session previously

created.

77

The ‘3rd Step’ comprises the activities of configuring the BP in BPMN that have been

modeled in the ‘1st Step’ in order to access the communication channels to interoperate with

MQC service(‘Situation/Rule Layer’) as previously reported in Experiment 1. Figure 9 shows

an example of a script that needs to be configured into the ‘Script task’ of the process showed

in figure 11. The Script code contains the instruction to send an e-mail to all other observers.

When working with a BP from a triggered situation, it is expected that there are several

processes running simultaneously, since we may have more than one situation occurring at the

same time. The BPM expert models processes defining the actions that should be performed

when situation notifications are received. Some processes are simpler or more direct and others

demand more actions according to the situation.

Figure 9 - The Script code configured into the script task `Alerts others about

Observed’ which will be shown in the BP of figure 11.

Next, we show some examples of processes that were modeled in BPMN to meet the

objectives of the application scenario. When working with a BP from a triggered situation, it is

expected that there are several processes running simultaneously, since we may have more than

one situation occurring at the same time. The BPM expert will model each process according

to what they want to be done after each triggered situation. Some processes are simpler or more

direct and others demand more actions according to the situation. Figure 10 presents the process

when the 'i' - 'Observed Situation' is activated. That is, whenever a person indicates he/she is

interested or not in monitoring a specific product, an alert is sent to everyone else monitoring

the same product.

78

Figure 10 - The process in BPMN that started when the situation ‘i’ is activated or

deactivated.

For the sake of brevity and objectivity, a brief clarification will be made on the BPMN

elements used in this experiment. Only the most common BPMN elements were used. Thin-

border circles labeled 'Start' and thick-bordered circles labeled 'End' indicate, respectively, the

start and end of a process. In the proposed approach, the 'Start' events are triggered when a

situation is triggered. It was also used time events that are associated with the circles with the

image of a clock and the description of the time that will elapse during the flow between two

elements as can be seen in figure 12.

The diamond shape represents the gateway element that is used for divergent or

convergent flow control behavior in a process. The rounded corner rectangle represents the

activity that is performed in a BP. This activity can be atomic or non-atomic. The activity can

be a task or sub-process. In this experiment, we used only the `Script tasks` that is executed by

a system (there may be a task executed by a person). Finally, the arrow connecting two elements

is used to represent a sequence flow direction.

Figure 11 presents the process that is initiated when the 'ii' - 'Absent Sensor Situation'

is activated. That is, when the breakdown occurs in communication or data reception for a pre-

determined period of time. In this case, an alert will be sent to all those monitoring the same

product.

Figure 11 - The process in BPMN that starts when situation ‘ii’ is activated.

Figure 12 presents the process that is initiated when situation 'iii' - 'Exceeding Threshold

Situation' is activated. In other words, when the temperature of the Botulinum Toxin bottles is

beyond the acceptable range of below or equal to -5 ° C. If a measurement outside the range

79

occurs, there is a 40 second delay to avoid a false alert. Following this, the temperature is

checked again to verify if situation 'iii' is still active. If not, an alert is sent to all monitoring

parts, informing them that the temperature is outside the acceptable range. Otherwise, the

process terminates.

Figure 12 –The process in BPMN that started when the situation ‘iii’ is activated.

Table 10 presents the script codes that have been configured into the two script tasks of

the process presented in Figure 12. The Script task 'ExceedingThreshold' makes a REST call to

verify if the situation that initiated this process is still active. The other task contains the

instruction to send an e-mail to all observers.

Table 10 - Script codes configured into the two script tasks of the process showed in figure 12.
Task name Configured script code instructions

ExceedingThreshold kcontext.setVariable("ExceedingThreshold",

ws.getExceedingThreshold("http://localhost:3000/getExceedingThresho

ld"));

if (ExceedingThreshold.situation.type == "ExceedingThreshold") {

kcontext.setVariable("ExceedingThresholdActivated", true);

} else { kcontext.setVariable("ExceedingThresholdActivated", false);
}

Alert everyone about

"ExceedingThreshold"
notification.sendEmail("ExceedingThreshold");

Figure 13 presents the process that is started when Situation 'vi'-' All Observers are with

ETA Greater than ETT Situation' is activated, that is, when everyone monitoring the product is

at a close enough distance to prevent the product from spoiling.

80

There is a 40 second delay to avoid a false alert. After 40 seconds, a check is made to

see if Situation 'vi' is still active. If not, the process is terminated. If the situation remains active,

a check is made to verify if there is someone in Situation `i`. At the same time, a simultaneous

check is made to verify if Situation `vii` is active, making it possible to alert all available parts.

Once a person has been notified, there is a wait time of 180 seconds to allow a minimum

response time to he/she sees and responds to the alert. After the delay, a check is made to verify

if a response has been received indicating there is at least one person available and able to solve

the problem in both Situations 'i' and 'viii'. In this case, the process is terminated.

If there is no available observer, there is an increase in the number of attempts. A total

of 20 attempts were stipulated, corresponding to approximately one hour (maximum time that

justifies warning before the product is lost). Until reaching the maximum number of attempts,

the process returns to the initial checkpoint, and continues to verify if the Situation 'vi' is active.

Once the maximum number of attempts has been reached, a final alert is sent to all observers

and the process terminates.

Figure 13 - The process in BPMN that started when the situation ‘vi’ is activated.

81

This experiment has shown that it is relatively easy for the BPM experts to configure

their own business-aware application to use LAURA architecture, without having to know the

lower-level technical aspects. The complete code and all other instructions used in this

experiment are available in the 'experiments/Experiment-2/' repository of the LAURA project

at GitHub (Teixeira et al., 2017a).

4.3 Experiment 3 - LAURA Architecture performance evaluation

This complementary evaluation (the empirical evaluation is the main assessment

directly related to the objectives of this thesis) aims at verifying if the proposed architecture is

capable of processing and delivering sensed data to final applications within a satisfactory end-

to-end latency. The evaluation consists of various experiments using different topologies,

configurations and sample times. Measurements (in milliseconds) were taken to record the time

that the package takes to be processed between the Terra Gateway and the Terra Web Control

final application. Breakpoints to register time are placed at data arrival in the Terra Gateway

and in the Terra Web Control. The difference between these time measurements is calculated

in order to find the length of the latency. The average latency is calculated using the simple

arithmetic mean based on the latency of each received package. An average latency can be

calculated for temperature and another for the luminosity. Therefore, this evaluation does not

present an in-depth analysis, but it was considered important to make the assessment of a end-

to-end latency.

This evaluation consists of three experiments: Experiment 3.1 evaluates the average

delay when packets are sent in bursts to Terra Gateway. Experiment 3.2 evaluates the average

delay in a real-world application scenario comparing different sample times. Experiment 3.3

evaluates the influence of the dissemination process in the running application. New node codes

(bytecodes) are disseminated into the WSN to observe if there is any significant delay or loss

of sensed data in the running application during this process.

These experiments analyzed latency for different types of topologies. Since Terra

System is the WSN chosen for the LAURA applied architecture, we have used Terra-based

WSN topologies. Moreover, an average latency can be stipulated for each WSN and an overall

average measurement for all WSNs used in this evaluation. In addition, it was not taken into

account the latency between the reading of the sensed data in the node until the arrival of the

package in the sink node. According to (Delsing et al., 2010), a WSN based on IEEE 802.15.4,

82

with transmission rate of approximately 250kbps, has a latency variation of 5 to 20ms for each

communication hop also taking into account any communication interferences. Therefore, the

average delay when processing sensed data using LAURA architecture is equivalent to one

more communication hop in a WSN. Thus, if we add 20ms (for the worst-case hop) to the final

latency obtained in our experiments, we will have the end-to-end latency of the LAURA applied

architecture from reading the sensed data until the arrival of the data in the final application.

The LAURA architecture proposal is designed to be a generic platform, capable of

supporting different application types with different requirements, mainly in interactive

applications that are typical in a IoT application scenarios. The majority of users of different

types of low-latency interactive multimedia streaming applications find acceptable a delay of

40ms. Taking into consideration that the time between a mouse click until the message arrives

in the application is at least 30ms, 70ms is an acceptable delay for these applications (ITU-T,

2014). There is no fixed threshold for acceptable delays in interactive applications, however,

an end-to-end latency of less than 100ms is considered acceptable for most interactive

applications (Mandjes et al., 1999). For example, the high-quality gaming scenario experiences

responses of at least 100ms (Petlund, 2009). The ITU G.114 recommendation (Brosh et al.,

2010) states that the maximum delay (worst case scenario) required for interactive application

is 400ms. For an audio conferencing application, ITU-T guidelines indicate that users are

satisfied with a latency less than 150ms (Petlund, 2009).

In Experiment 3.1, we evaluate the average latency in high traffic conditions

determining the average delay in a data burst scenario to Terra Gateway. This experiment was

performed with three Terra System-based WSNs, containing a Sink Node linked to a

Mib600CA (MEMSIC, 2016) gateway with Ethernet connection in each WSN. Each node was

fitted with temperature and luminosity sensors. All WSNs were connected by Ethernet

connections to a computer running Terra Gateway, Terra Web Control and other components

and specific modules in LAURA applied architecture. Table 9 presents each WSN

configuration, the components and extra content related to the experiment 3.1. All results,

additional data and information about experiment 3.1 are available in the `Experiment’6

repository in the LAURA Architecture GitHub Project. Each experiment or sampling period

created a text file for each WSN containing all the data packages received in the Terra Gateway.

6
https://github.com/laura-architecture/experiments/tree/master/Experiment-3/Exp3.1

83

All the data generated in the modeling applications and experiments are also available in

GitHub.

Table 11 - Performance evaluation - Experiment 3.1: Throughput analysis in high traffic

conditions for 5 minutes

WSN Sink node Unique Node
Temperature

Average Delay

01 Mib600ca + Micaz - ID:10 TelosB – ID:11 11ms

02 Mib600ca + IRIS - ID:20 IRIS – ID:21 10ms

03 Mib600ca + Micaz – ID:30 MicaZ – ID:31 11ms

Each node was programed to send bursts every 5 seconds to its corresponding Sink

Node. Each burst had 5 temperature readings within 800ms intervals. The reading ranges used

in our experiments were chosen because they are smaller than what is normally used for a group

of applications similar to the application scenario. This allowed Terra Gateway to receive 15

packages every 5 seconds from 3 WSNs containing the temperature readings. Over a 5 minutes

period, 277 packages were captured from WSN1, 335 packages from WSN2 and 363 packages

from WSN3. The difference in the number of received packages was expected due to each node

having a different processing capacity. The Terra node code used in this experiment is also

available in the same GitHub repository mentioned above. The average delay of all WSNs in

this scenario was 11ms. Adding a 20ms for the latency within the WSN (from the reading of

data to the sink node) we have an end-to-end latency of 31ms. Therefore, the end-to-end latency

observed in this evaluation can 70 or 100ms, as previously discussed. Furthermore, non-

interactive monitoring real-world IoT applications as previously presented in figure 1 of the

introduction section are usually more flexible and do not require such a short latency.

Experiment 3.2 evaluates the average delay in WSNs topologies, such as the one

depicted in Figure 14. In order to evaluate the communication performance, it was decided to

configure each WSN with a linear topology following the specifications of (Alfayez et al.,

2015). We chose the use of Linear topology for this experiment given the latency and energy

consumption challenges imposed by these types of WSN. For example, the linear topology

limits the number of neighbors that a node can have or forces a single route in which data are

sent from one node to the next. Thus, the nodes closer to the Sink node tend to get overloaded

and can even lose packages.

This experiment measured temperature and luminosity using the same nodes from

experiment 3.1. However, we have used an increased number of nodes within each Terra

System WSN as shown in fig 14. Table 12 presents each LWSN configuration, components

84

and other information. All results, data and additional information about experiment 3.2 are

available in the `Experiments’7 repository in the LAURA Architecture GitHub

Table 12 - Performance evaluation – Experiment 3.2: Throughput analysis in typical LWSN

applications for 5 minutes.
Sampling times: Temperature every 5s and Luminosity every 8s

WSN Sink node Nodes Average Delay

01 Mib600ca + Micaz - ID:10
TelosB - ID:11 to 15 (5

nodes)

Temperature: 14ms

Luminosity: 12ms

02 Mib600ca + IRIS - ID:20
IRIS with MDA100 sensor
- ID 21 to 29 (9 nodes)

Temperature: 13ms

Luminosity: 16ms

03

Mib600ca + Micaz – ID:30

MICAZ with MDA100

sensor - ID 31 to 34
(4 nodes)

Temperature: 17ms

Luminosity: 14ms

In this experiment, the measurements used three different configurations for the sample

times. Table 13 shows temperature readings taken every 5 seconds and luminosity readings

every 8 seconds per node for each WSN. The average data transfer latency was 14ms after a

period of 5 minutes. This average delay can be considered satisfactory according to the same

arguments previously presented in experiment 3.1. While recording the length of the delay in

the Terra Web Control, it was observed that, over a shorter period of under 5 minutes, the

differences among average delays ware small, with a tendency to remain stable over longer

periods. Therefore, 5 minutes was considered enough time to make a reliable calculation of the

average delay time. This was also true for the other experiments in the performance evaluation.

Table 13 - Performance evaluation – Experiment 3.2: All general average delay of each

sampling times for 5 minutes.

Sample Sampling times
General Average

Delay of all WSN

01
Temperature: every 5 seconds
Luminosity: every 8 seconds

14ms

02
Temperature: every 35 seconds Luminosity:

every 38 seconds
6ms

03
Temperature: every 55 seconds
Luminosity: every 58 seconds

6ms

The Terra node code used in these experiments and the other data and information are

available in the same GitHub repository previously mentioned along with all the sensed data

7
https://github.com/laura-architecture/experiments/tree/master/Experiment-3/Exp3.2

85

captured for each sample time. Table 13 shows the general average delay of all WSN for each

sampling time executed for 5 minutes.

These experiments indicate that the LAURA Architecture introduces an average latency

that is acceptable for the groups of applications we have considered. Our experiments were

performed under a controlled environment to simulate the behavior of real-world applications;

however, we have introduced more intense traffic than what is usually observed in this

particular group of applications. Figure 14 summarizes the Scenario topology used in

experiments 3.2 and 3.3.

Experiment 3.3 evaluates communication performance under unusual conditions that

may occur in IoT Real-World application scenarios when it is necessary to update the code of

the nodes simultaneously to the operation of the network. For this experiment, significant loss

of sensed data was registered. The bytecode from Sample 3 (see Table 13) replaced the code

from Sample 1 in all nodes of the LWSNs. Bytecode dissemination lasted an average of 16

seconds for each LWSN. In this way, it was possible to verify that approximately 3 temperature

and luminosity readings have been lost due to the sampling time of sample 1. Dissemination

time and package loss were considered satisfactory as the dissemination of a new bytecode is

something that can be programmed when stakeholders are able to monitor the process avoiding

any days or moments when data loss would be critical. Moreover, this process allows the node

codes to be updated in a faster and more practical way that a manual update process. All results,

raw data, additional information and some videos that show the realization of experiment 3.3

are available in the 'experiments'8 repository in LAURA Architecture GitHub.

8
https://github.com/laura-architecture/experiments/tree/master/Experiment-3/Exp3.3

86

Figure 14 - Performance evaluation- Experiment 3.2 e 3.3 - Scenario topology with 3 linear

WSNs.

4.4 LAURA Empirical Evaluation

This section presents an empirical evaluation of LAURA architecture from the point of

view of two of its stakeholders: the BPM Expert and the System Expert. This evaluation was

conducted from December 2018 to February 2019, with a sample of 30 participants, who were

divided into two groups, according to their professionals’ profile.

To select the participants, open invitations were sent to BPM professionals through

associations such as ABPMP (ABPMP International, 2018) and other affiliates scattered around

the globe. In addition, invitations were sent to system developers in universities and companies

in general mainly through LinkedIn.

The entire process of planning, executing and analyzing the results of this evaluation

was based on (Juristo and Moreno, 2010; Wohlin et al., 2012). Figure 15 presents an overview

of LAURA architecture experimental evaluation process steps and learning cycle. The steps of

the experimentation process are: The steps of the experimentation process are: (i) Definition of

a general hypothesis and transformation of this hypothesis into evaluation questions; (ii)

Definition of the scope, planning and description of the experiment design; (iii) Setting up the

profile and the ‘point of view’ of the participants; (iv) Setting up a period for the evaluation in

which the participants perform the proposed experiments and evaluate the LAURA

87

architecture; (v) In this step, data are collected, tabulated and categorized; (vi) This step refers

to data validation. This is done to avoid inconsistencies, possible errors or failures in the entire

evaluation process; (vii) During this step, the data are analyzed and interpreted to verify if the

results are enough and able to confirm the hypotheses; (viii) in the last part of the evaluation

process, the results are presented and discussed. The details of each step of the empirical

evaluation are presented below.

Figure 15 – Overview of LAURA architecture empirical evaluation processes steps and

learning cycle inspired by (Juristo and Moreno, 2010; Wohlin et al., 2012).

4.4.1 Hypothesis

The general hypothesis is that LAURA architecture simplifies the task of developing

IoT applications for those stakeholders of LAURA ‘Application/Business Process Layer’ who

are not aware of the lower-level technical aspects related to the development and deployment

of IoT solutions.

This general hypothesis was divided into more specific hypotheses that were

transformed into evaluation questions, using three factors of the Technology Acceptance Model

(TAM) (Avilés-López and García-Macías, 2009; Venkatesh and Davis, 1996): the perceived

application ‘Easy of Use’, `Usefulness`, and `Intention` of use of the LAURA architecture.

88

Additionally, a question was elaborated to verify if the presented problem is equivalent or

comparable to real-world problems that normally are treated in a corporate environment. We

use the Likert (Harpe, 2015) rating scale from 'strongly disagree' as the value ‘1’ to 'strongly

agree' as the value ‘5’. Table 14 presents the evaluation question and their respective rationales.

Table 14 - The evaluation questions and their respective rationales
Evaluation question Rationale

Taking in account your

background professional

experience, is the problem

presented in the application

scenario considered similar or

equivalent to a real-world

problem?

Taking into consideration that LAURA architecture aims to

support real-world IoT solutions and considering that this

evaluation proposes a simulated real-world scenario, it is

important to know if the problem described in the application

scenario is equivalent to those commonly found in an enterprise

environment. The participant of this experiment is a qualified

professional to confirm if the problem presented is comparable to

a real-world problem.

BPM expert evaluation:
Is it easy to configure/adapt the

BP with the use of LAURA to

solve the proposed problem

through a BPM workflow?

System expert evaluation:

Is it easy to configure/adapt the

application you developed with

the use of LAURA to solve the

proposed problem?

Evaluation of the perceived easy-of-use. According to Davis it

can be defined as "the degree to which a person believes that

using a particular system would be free of effort". In this way,

this question seeks to evaluate whether the APIs, provided by

LAURA architecture, is easy to use and offer simple abstraction

when used by the developer of the IoT final solution.

Was LAURA useful to solve the

proposed problem?

Evaluation of the architecture usefulness. According to Davis, it

can be defined as "the degree to which a person believes that

using a particular system would enhance his or her job

performance". In this way, this question seeks to evaluate

whether the LAURA allows relatively easy integration between

LAURA and the final application that the developer intends to

use and that is capable of solving the proposed problem in the

best way as possible.

Assuming you have to use an IoT

architecture to solve a problem,

like to the one previously

presented through a

BP in BPMN, would you use

LAURA architecture to solve it?

Evaluation of the intention of use. It is easy to use (configure or

reconfigure) the BP to solve a problem using LAURA

architecture.

For each evaluation question presented in Table 14, it was made a qualitative question

so that the participant could make relevant observations. Each open question with free text has

the main objective of obtaining information from the participants that can contribute to the

improvement of the evaluation (to be done during the pilot test) and mainly with comments that

can contribute to the improvement of the LAURA architecture. Table 15 presents the qualitative

question and its rationale that is made shortly after each evaluation question described in table

14.

89

Table 15 - The qualitative question for each evaluation question.
Evaluation question Rationale

We will be grateful if you have

any comments, suggestions,

aspect or characteristic related to

the above question. If you have

nothing to say, simply write ‘no

comments’ in the field below.

The evaluation performed by professionals who had never used

LAURA is relevant and important to scientific research. The

labor market professional has a critical and pragmatic view of a

solution. The participant can provide rich and consistent feedback

with insights from a different point of view than the people

involved in developing the LAURA architecture. In this

way, this qualitative open question can provide relevant

information to the improvement of the solution.

For this Empirical evaluation, two evaluation forms were developed, one for each group

of professionals - System Experts and BPM Experts - which served to guide the participants in

conducting the experiment. The forms are very similar, but present some specific details for

each group. The complete forms are available in (Teixeira, 2018a) and (Teixeira, 2018b),

respectively.

4.4.2 The scope, planning and design

The BPM expert is hired to develop a BPMN-based application called Medicine Quality

Control (MQC), which purpose is the real-time monitoring of medical products, as previously

presented in the beginning of chapter 4. In order to perform the experiment, the BPM Expert

must use a BPMS (jBPM tool was used). According to the guidelines in its respective form, the

BPM Expert must configure a business process described in BPMN to integrate it with LAURA,

accessing sensed data and configuring the contextual situations defined in the problem

specification.

The System Expert is hired to develop a similar final application, which is not BPM-

based, but he/she must perform the same functionality as proposed in the application scenario.

The System Expert must develop a client application using a programming language of his/her

choice, to solve the same problem. Like the BPM Expert, the System Expert must follow the

guidelines described in its respective form.

After defining the application scenario, the steps and guidelines necessary to carry out

the evaluation experiment were defined. Initially, there was a validation phase of the evaluation

forms with the support of the Pilot participants. During this phase, adjustments and

improvements were made to the guidelines contained in the documents, since the participants

reported lack of information to be able to complete the evaluation. The constant concern, in this

stage, was to adjust the forms so that the participants were able to understand the proposed

90

problem and the necessary steps to make the evaluation, but without losing the essence that the

proposed evaluation seeks to portray a scenario equivalent to those found in the corporate

environment, in which the professional experiences adverse circumstances and needs to seek

information to perform a certain task. In this way, the form was gradually improved in order to

provide the minimum information necessary for the participant to make the evaluation.

In this step, it was also necessary to adjust the form in relation to the guidelines of the

practical performing part of the experiment in the Virtual Machine (VM), since the pilot

participants also reported difficulties in the use of VM LAURA. Examples of improvements

made to the documents include improved API documentation and additional information about

using jBPM.

4.4.3 The profile and `point of view` of the participants

The target participants of this empirical evaluation (BPM Experts and System Experts)

are professionals who usually have little or no prior knowledge of lower-level aspects of IoT

programming or infrastructures, and who has never worked with LAURA architecture. That is,

the participants may even have some knowledge of IoT, but in this experiment, they will not

have any kind of interaction with the lower-level aspects of the architecture. In case of the

System Expert, he/she is expected to be a Software Engineer or a professional with similar

profile, who has no or very little knowledge about BPM. To solve the problem proposed in the

experiment, he/she has to develop an IoT application in Java, Python, Node or any other

language, and use LAURA as an IoT infrastructure. Thus, the ̀ point of view` of the participants

is related to the final application developer, at the abstraction level of the application layer,

whose focus is related to the higher level aspects of the architecture.

4.4.4 Operation phase: execution of the evaluation

The evaluation was divided into two cycles: pilot evaluation and regular evaluation.

Pilot evaluations were performed to validate the whole cycle of the experiment. After these

pilot tests, the experiment was released to the regular participants. After reaching the minimum

number of desired participants (at least 15 of each group, totaling 30 participants), the results

were tabulated and discussed;

The first cycle of evaluations was performed through individual invitations sent directly

91

to the pilot participants. After the analysis of the results of the pilot teste, it started the regular

evaluation. After receiving the open invitation, the participant had access to the form containing

all the information and necessary links to carry out the evaluation. After reading the guidelines

he/she should download the VM to perform the evaluation.

4.4.5 Data Collection

After completing the experiment, the participant was asked to complete the evaluation

form according to their profile. The collected data was exported to a spreadsheet and then

categorized by generating tables and graphs with statistical data per group. No confidential data

were exposed nor used in the reports. Data entered as confidential was awaited in a separate

spreadsheet for consistency check and verification. An e-mail was sent to each participant to

confirm their participation and discuss their impression of the assessment or to clarify any

comments made in the field of observations as described in Table 15.

The spreadsheet containing all raw data, tables and some graphics, without exposing

confidential data, is available in repository ‘'experiments/Empirical-evaluation' of LAURA

project at GitHub (Teixeira et al., 2017a).

4.4.6 Data Validation

Data validation prevents errors, failures or inconsistencies in the collected data. In this

evaluation, the main validation process was performed through the pilot tests, in order to adjust

the entire process of the evaluation. Four evaluations were done as pilot test: two participants

for the BPM Expert and two for the System Expert evaluations. The pilot test served as the

basis for the expected result for the other participations. The result of the regular evaluation

followed the same trend of the pilot test, indicating a congruence of the results.

For the remainder of this paper and in the spreadsheet containing all raw data, each

participant, acting as a pilot test, is identified with ‘&Pilot-part-’ string plus an ID number. Each

participant of the regular evaluation is identified with ‘&Part-’ string plus an ID number. The

data obtained from the form was converted to a spreadsheet, including some graphs generated

from the results. The confidential data indicated on the evaluation form have been

mischaracterized so as not to expose any data from the participants.

92

4.4.7 Analysis and interpretation

Data analyses were done based on the data collected in the two forms answered by the

participants (one form for the BPM Expert and another for the System Expert). Answers were

categorized and analyzed through tables in order to verify inconsistencies, checking the

hypothesis previously presented and discuss new ideas or perceptions that may arise based on

the analyzed results.

The qualitative questions were analyzed to verify if there is something relevant that

should be discussed. As aforementioned, in the pilot test stage, these analyses were

fundamental, since they allowed validating or adjusting aspects of the evaluation.

4.4.8 Results and discussion

The evaluation participants reside mostly in Brazil (97%), have an academic

background, and 30% have a master's or doctorate degree. The predominant area is services

(50%), followed by the academic area (43%). Most (73%) have basic knowledge of IoT,

however, most (67%) do not have advanced IoT knowledge. Participants with the System

Expert profile used JavaScript(27%), Java(13%) or Node.js(10%). The average age of the

participants is 32.3 years and they have a large professional background, on average, 6.6 years.

To perform the experiment itself (from Stage 3 of the form) both groups took, on average, 1.8

hours.

These data reflect the professional profile of professionals who were contacted by

linkedin, the university UFES or other institutions that attended the calls. After the contact with

each participant, it was verified that all the evaluation takes approximately 4 hours to be made,

because it takes an average of 3 hours to understand the problem and then, between one and

two hours to perform the the evaluation. Thus, the time required to perform the evaluation is an

important aspect that may inhibit the participation of professionals with little experience.

However, the participants' report, through direct contact, the analysis of the open questions and

the verified result of the research questions, showed that the participants found it relatively easy

to use LAURA to solve the problem proposed.

The text of the form and the proposed application scenario were carefully thought out

and planned to propose a context similar to a real-world problem that might reflect the natural

difficulties that occur when a professional needs to develop a solution to any problem. In this

93

case, there are some aspects that are new to most participants: (i) working on the development

of a situation-aware final application for a scenario involving IoT; (ii) use of tools or

technologies that they are not familiar with; (iii) working with a health care setting that is not

common in their work environment. Therefore, an evaluation that involves these aspects

requires a minimum time for understanding the problem considered consistent with the time

spent by the participants.

Table 16 presents the results of evaluation questions by both groups. It was computed

the average (Avg) and its respective Standard Deviation (SD) for each TAM factors from each

group.

Table 16 - Results of evaluations for both groups of professionals.

TAM factor
BPM expert System expert Both groups

Avg. SD Avg. SD Avg. SD

Easy of Use 4.47 0.64 4.33 0.62 4.40 0.62

Usefulness 4.60 0.51 4.73 0.46 4.67 0.48

Intention of use 4.60 0.51 4.47 0.64 4.53 0.57

Table 16 shows that the average of Likert rating scale of the both groups for all TAM

factors are between 4 - 'agree' and 5 'strongly agree'. The SD was low (between 10 and 14%

for both groups), indicating an uniformity in responses that are similar to the results of the pilot

test (Gunver et al., 2017). In addition, the results of the answers to the first evaluation question

indicate that the participants consider the problem equivalent to the ones commonly found in

the real world.

Thus, according to the participants’ views, the LAURA architecture has scored well for

the TAM factors. This indicates its suitability to developers to solve similar problems in other

IoT scenarios. The good averages obtained in both groups indicate that it is straightforward to

integrate LAURA into the professionals’ development environment. Moreover, the good

averages of `Usefulness` and `Intention` show a positive evaluation of the overall functionality

offered by the architecture, particularly the facilities related to situation-awareness, suggesting

that LAURA is useful to develop IoT situation-awareness applications in corporate

environments.

94

4.4.9 Limitations of this evaluation

Carrying out a complete evaluation of an IoT architecture, is not a simple task, since it

involves the participation of various stakeholders working in several aspects of the solution,

from the lowest to the highest level. In addition, an evaluation of this magnitude, involving the

simultaneous participation of several professionals, would take longer to complete and

sometimes the participants might not finish it. In any case, it would be interesting to evaluate

the architecture from the point of view of the other LAURA stakeholders, for example, the IoT

Expert and the Situation/Rule Expert. Their feedback and assessments in other levels of

abstractions of the LAURA architecture could contribute to improve the proposed solution.

95

Chapter 5. Conclusions

In this chapter, we summarize our main conclusions, briefly discussing LAURA design

in the light of the identified challenges.

In the introductory chapter, we have started our discussion drawing attention to the

increasing interest in the development of business applications in diverse IoT real-world

scenarios. We have emphasized the demand for infrastructures capable of meeting several types

of IoT applications with requirements that may change any time. We also underlined that

business environments are complex due to the wide variety of technologies, hardware and

software solutions integrated with traditional systems. Therefore, we claimed that the solutions

should provide flexibility, portability, and full decoupling capacity to support such complex

and heterogeneous IT business environment. This way, business models could be redesigned

to incorporate smart objects in the development process, facilitating the build and deliver of

new IoT products and services. This makes the support solutions, such as the LAURA

architecture, a strategic component for the deployment of IoT applications.

An enormous diversity of standards and the interests of the big players or the challenges

of putting a specific technology or standard into practice cause the IoT environment to continue

being heterogeneous and with a wide range of technologies, languages and systems for the

development of solutions. Gubbi (Gubbi et al., 2013) presents examples of standards for a range

of different proposals that were the foundation for the development of the IoT. Considering the

expected growth of the IoT solutions, it is reasonable to expect that standards will impact the

success of new products and services. There is a strong prediction that there will be an increase

in the demand for solutions with the capacity for storage, processing and the integration of

large-scale applications on an independent platform with high reliability, scalability and

autonomy to provide a flexible way to develop and deploy an IoT final applications. Gubbi

reinforces the importance of the development of platforms qualified for offering APIs that are

capable of dealing with the new demands, providing developers with the flexibility needed to

build customizable applications with multiple programming models.

Despite the growing demand for IoT solutions and the need for the use of standards or

other solutions able to offer flexibility, adaptability, portability, interoperability and re-

usability, in practice there is a wide variety of technologies, platforms and systems to develop

96

IoT solutions. In the case of the IoT, it is common to find specific solutions that are compatible

with only one specific hardware platform. In these instances, the desired properties previously

presented are invalid, as it is only possible to develop solutions that use a determined device

technology, software environment, or operational system.

LAURA architecture proposes to promote the flexibility required to meet the demands

of adaptive applications. Indeed, the increase of interest in IoT applications in the most diverse

scenarios will demand solutions capable of meeting several types of final IoT real-world

applications with different requirements that may change any time. These solutions should

provide flexibility, portability, scalability and full decoupling capacity to support a complex

and heterogeneous IT business environment that is commonly composed of a wide variety of

technologies integrated with ES. In addition, a BM can be redesigned to incorporate a way for

people to build and deliver their product and services with integrated smart objects. This makes

the support solutions such as the LAURA architecture a strategic component for the deployment

of IoT applications.

Furthermore, due to the complexity and multidisciplinary features, a solution must allow

the participation of various stakeholders whose roles must be well defined. The specific profiles

of these professionals should match those that can be commonly found in the labor market. This

aspect is directly related to the ability to simplify the deployment of the final IoT application.

This aspect improves the engagement and adhesion of each stakeholder that typically works on

a specific abstraction level. These issues are also strategic, considering it has been predicted

that there will be a deficiency in the number of qualified professionals to develop or deploy IoT

applications in the next few years. For example, in 2027, it is expected that 59% of ICT

professionals shortfall in programming skills (Oxford Economics and Cisco, 2017). This

reinforces the importance of delivering WSN or IoT devices infrastructures with similar

functionalities as provided by LAURA Architecture.

5.1 Research Contributions and Connections with other Research

Works

One of the central challenges we have identified is the capacity of making changes in

business rules or application configuration parameters to fulfill specific business demand, using

high-level languages and approaches. LAURA addresses this challenge providing a

97

Situation/Rule layer, which employs a distinguishing situation platform to support the

representation and management of situations in a more expressive and friendly way than

traditional CEP approaches. In addition, at Application Layer, LAURA provides automatic

node code generation from BPMN specifications, freeing the developer of business models

from the task of knowing details of lower level programming aspects. Also, a web application

allows high-level users to remote update the node code image using communication facilities

provided by lower layers, particularly the Core Layer, speeding up the work and facilitating the

interaction of high-level stakeholders with LAURA.

The ability to deal in a simpler manner with IoT real-world scenarios, composed by

numerous contextual sources, was another major challenge identified in our study. The choice

for using VM-based approach – and Terra System in particular – greatly helped to address this

essential problem. Its availability of high-level programming resources and functions provides

an uniform way of communicating with IoT devices, regardless of the hardware platform.

LAURA faces this challenge mostly at the Physical and Core Layers. Notice that the

Situation/Rule Layer also contribute to address this challenge since the more contextual

sources, the more potential contextual situations emerge or can be envisaged by applications.

We also identified the complex challenge of engaging a multidisciplinary team in the

process of developing real-world IoT application in business environments. LAURA solution

for this challenge includes: (i) a “syntactic” view, represented by a layered architecture that

provides a set of software components and well defined interaction points, which implement

facilities and abstractions that are used by several professionals, with different roles and

technical backgrounds, involved in the development of the IoT application; (ii) a “semantic”

view, represented by LAURA reference model and the domain application model, together with

the list of situations of interest. The LAURA reference model and the UML application model,

in addition to the contextual situations specified, offer stakeholders a common ground of

understanding of the essential concepts necessary to develop their final IoT solutions using

LAURA.

The choice for a fully decoupled architectural design also helped to tackle the challenge

of dealing with adaptive environments. For example, allowing developers to choose

technologies that are easier to adapt or integrate with the existing IT solutions. For example, a

Fog node can be added to provide specific applications with functions like filtering, aggregating

or avoiding sending invalid or unnecessary data to upper layers (i.e., offering to applications

a quality of data monitoring function). Sensor node complementary functions can also be

98

included in LAURA Core Layer to allow the processing of specific node functions, aiming at

reducing the node energy consumption.

LAURA Empirical Evaluation attested that our proposal obtained a very positive

acceptance from the BPM Experts and the System Experts professionals, who evaluated

LAURA architecture with grades between 4 - 'agree' and 5 - 'strongly agree' for the perception

of 'Usefulness', and 'Intention of Use'. This suggests the suitability of LAURA as a support

infrastructure for the development of situation-aware or business-aware final IoT applications.

It is important to note that from an academic standpoint, in addition to the production

of scientific articles in qualified journals, a relevant contribution of this doctoral work was the

creation of a research group in our Lab focused on developing IoT solutions based on LAURA

system. Initial academic results include two bachelor monografs (Martinelli, 2017; Ribeiro,

2016), and two master's dissertation, one finished (Agrizzi, 2018), and another in progress

(Pereira, 2018). All these works deal with issues discussed in the upper layers of LAURA

architecture.

5.2 Future Perspectives

Future work can occur on several levels and aspects, however, some issues deserve to

be highlighted by the relevance in IoT or by the importance in the improvements that can be

made in LAURA. Among them, we can point out: (i) sensor data filtering and aggregation based

on QoC (Quality of Context) parameters, which would bring to LAURA greater quality of data

awareness; (ii) development of a graphical language for modeling situations, which would

provide the developer with a great readiness to specify situation types considering aspects such

as composition of situations and their temporal reasoning; (iii) privacy and security support,

relevant aspects of the IoT domain that were not exploited in this version of LAURA; (iv)

improvements in the automatic node code generation solution to fully explore BPMN notation

elements, and the inclusion of additional facilities, such as the creation of a plug-in that can be

used in different BPMS.

Part of this set of issues is under analysis at LPRM and there is a perspective that new

master dissertations and undergraduation monographs will be developed in the near future,

covering some of these research issues. Our proposal for the evolution of LAURA architecture

is to engage students from UFES or other institutions to develop new functionalities or features,

99

including the outcome of work on the LAURA project repositories available on Github at

http://laura-architecture.github.io.

http://laura-architecture.github.io/
http://laura-architecture.github.io/

100

REFERENCES

(OMG), O.M.G., 2015. Business Process Modeling Notation (BPMN) [WWW Document].
URL http://www.omg.org/bpmn/ (accessed 1.1.15).

Aazam, M., Huh, E.N., 2014. Fog Computing and Smart Gateway Based Communication for

Cloud of Things, in: 2014 International Conference on Future Internet of Things and Cloud.

pp. 464–470. https://doi.org/10.1109/FiCloud.2014.83

ABPMP International, 2018. ABPMP International [WWW Document].

URL https://www.abpmp.org (accessed 9.29.18).

Acciona S.A., 2013. ACCIONA heads the makeSense R&D project to reduce Wireless Sensor

Networks costs by 40% [WWW Document]. URL

https://www.acciona.com/pressroom/news/2013/february/acciona-heads-the-makesense-

rd-project-to-reduce-wireless-sensor-networks-costs-by-40/ (accessed 6.22.19).

Adi, A., Botzer, D., Etzion, O., 2000. Semantic Event Model and its Implication on Situation

Detection. ECIS.

Agrizzi, B.A., 2018. Terra Generation [WWW Document]. URL https://github.com/laura-

architecture/terra-generation (accessed 10.22.18).

Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E., 2002. A survey on sensor

networks. IEEE Commun. Mag. 40, 102–

105. https://doi.org/10.1109/MCOM.2002.1024422

Al-Doghman, F., Chaczko, Z., Ajayan, A.R., Klempous, R., 2016. A review on Fog Computing

technology, in: 2016 IEEE International Conference on Systems, Man, and Cybernetics

(SMC). pp. 1525–1530. https://doi.org/10.1109/SMC.2016.7844455

Alexopoulos, K., Sipsas, K., Xanthakis, E., Makris, S., Mourtzis, D., 2018. An industrial

Internet of things based platform for context-aware information services in manufacturing.

Int. J. Comput. Integr. Manuf. 31, 1111–

1123. https://doi.org/10.1080/0951192X.2018.1500716

Alfayez, F., Hammoudeh, M., Abuarqoub, A., 2015. A Survey on MAC Protocols for Duty-
cycled Wireless Sensor Networks. Procedia Comput. Sci. 73, 482–489.

https://doi.org/https://doi.org/10.1016/j.procs.2015.12.034

Aliverti, E., De Maio, M., Salatino, M., 2016. Mastering Jboss Drools 6. Packt Publishing.

Almeida, J., 2006. Model-driven design of distributed applications, Springer.

Arduino [WWW Document], 2016. URL https://www.arduino.cc/ (accessed 1.1.16).

Avilés-López, E., García-Macías, J.A., 2009. TinySOA: a service-oriented architecture for

wireless sensor networks. Serv. Oriented Comput. Appl. 3, 99–108.

https://doi.org/10.1007/s11761-009-0043-x

Ayala, I., Amor, M., Fuentes, L., Troya, J.M., 2015. A Software Product Line Process to

Develop Agents for the IoT. Sensors 15, 15640–15660.
https://doi.org/10.3390/s150715640

Bai, Y., Ji, H., Han, Q., Huang, J., Qian, D., 2007. MidCASE : A Service Oriented Middleware

Enabling Context Awareness for Smart Environment, in: 2007 International Conference

http://www.omg.org/bpmn/
http://www.abpmp.org/
http://www.acciona.com/pressroom/news/2013/february/acciona-heads-the-makesense-
http://www.arduino.cc/

101

on Multimedia and Ubiquitous Engineering (MUE’07). pp. 946–951.

https://doi.org/10.1109/MUE.2007.152

Balani, R., Han, C.-C., Rengaswamy, R.K., Tsigkogiannis, I., Srivastava, M., 2006. Multi-level

software reconfiguration for sensor networks. Proc. 6th ACM IEEE Int. Conf. Embed.

Softw. 112–121. https://doi.org/http://doi.acm.org/10.1145/1176887.1176904

Baldam, R., Valle, R., Rozenfeld, H., 2014. Gerenciamento de Processos de Negócios - BPM.

Elsevier Brasil, 2014, Rio de Janeiro.

Bali, M., 2009. Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing Ltd., Birmingham,

B27 6PA, UK.

Barbero, C., Zovo, P.D., Gobbi, B., 2011. A Flexible Context Aware Reasoning Approach for

IoT Applications, in: 2011 IEEE 12th International Conference on Mobile Data

Management. pp. 266–275. https://doi.org/10.1109/MDM.2011.55

Bauer, M., Boussard, M., Bui, N., Carrez, F., Jardak, C., De Loof, J., Magerkurth, C., Meissner,

S., Nettsträter, A., Olivereau, A., Thoma, M., Walewski, J.W., Stefa, J., Salinas, A., 2013.

Deliverable D1.5 - Final architectural reference model for the IoT v3.0, Internet of Things

- Architecture (IOT-A).

Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., Taylor, K., 2017. IoT-Lite: a lightweight
semantic model for the internet of things and its use with dynamic semantics. Pers.

Ubiquitous Comput. 21, 475–487. https://doi.org/10.1007/s00779-017-1010-8

Bizagi, 2018. Bizagi [WWW Document]. URL https://www.bizagi.com/ (accessed 10.12.18).

Bonomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog Computing and Its Role in the Internet

of Things, in: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud

Computing, MCC ’12. ACM, New York, NY, USA, pp. 13–16.

https://doi.org/10.1145/2342509.2342513

Branco, A., Sant’anna, F., Ierusalimschy, R., Rodriguez, N., Rossetto, S., 2015. Terra:

Flexibility and Safety in Wireless Sensor Networks. ACM Trans. Sen. Netw. 11, 59:1--

59:27. https://doi.org/10.1145/2811267

Brosh, E., Baset, S.A., Misra, V., Rubenstein, D., Schulzrinne, H., 2010. The delay-friendliness

of TCP for real-time traffic. IEEE/ACM Trans. Netw. 18, 1478–1491.

https://doi.org/10.1109/TNET.2010.2050780

Buchholz, T., Küpper, A., Schiffers, M., 2003. Quality of Context: What It Is And Why We

Need It. Proc. Work. HP OpenView Univ. Assoc. 1–14. https://doi.org/10.1.1.147.565

Butler Consortium, 2013. D3.2 Integrated System Architecture and Initial Pervasive BUTLER

proof of concept.

Cardozo, A., Yamin, A., Souza, R., Davet, P., Lopes, J., Geyer, C., 2016. Sensing and Actuation
in IoT: An Autonomous Rule Based Approach, in: 2016 IEEE 13th International

Conference on Mobile Ad Hoc and Sensor Systems (MASS). pp. 355–360.

https://doi.org/10.1109/MASS.2016.053

Carlson, D., Altakrouri, B., Schrader, A., 2012. AmbientWeb: Bridging the Web’s cyber-

physical gap, in: 2012 3rd IEEE International Conference on the Internet of Things. pp. 1–

8. https://doi.org/10.1109/IOT.2012.6402297

Chen, R.-Y., 2017. An intelligent value stream-based approach to collaboration of food

traceability cyber physical system by fog computing. Food Control 71, 124–136.

http://doi.acm.org/10.1145/1176887.1176904
http://www.bizagi.com/

102

https://doi.org/https://doi.org/10.1016/j.foodcont.2016.06.042

Chen, Y.C., Chang, Y.C., Chen, C.H., Lin, Y.S., Chen, J.L., Chang, Y.Y., 2017. Cloud-fog

computing for information-centric Internet-of-Things applications, in: 2017 International

Conference on Applied System Innovation (ICASI). pp. 637–640.

https://doi.org/10.1109/ICASI.2017.7988506

Choi, H., Rhee, W., 2012. Distributed semantic sensor web architecture, in: TENCON 2012

IEEE Region 10 Conference. pp. 1–6. https://doi.org/10.1109/TENCON.2012.6412239

Cisco, 2015. Fog Computing and the Internet of Things: Extend the Cloud to Where the Things

Are. San Jose, CA, USA.

Compton, M., Barnaghi, P., Bermudez, L., García-Castro, R., Corcho, O., Cox, S., Graybeal,

J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., Phuoc,

D. Le, Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A.,

Taylor, K., 2012. The SSN ontology of the W3C semantic sensor network incubator group.

Web Semant. Sci. Serv. Agents World Wide Web 17, 25–32.

https://doi.org/10.1016/j.websem.2012.05.003

Corredor, I., Martínez, J.F., Familiar, M.S., 2011. Bringing pervasive embedded networks to

the service cloud: A lightweight middleware approach. J. Syst. Archit. 57, 916–933.

https://doi.org/https://doi.org/10.1016/j.sysarc.2011.04.005

Costa, P.D., Almeida, J.P.A., Pereira, I.S.A., van Sinderen, M., Pires, L.F., 2016. Rule-Based
Support for Situation Management, in: Rogova, G., Scott, P. (Eds.), Fusion Methodologies

in Crisis Management: Higher Level Fusion and Decision Making. Springer International

Publishing, Cham, pp. 341–364. https://doi.org/10.1007/978-3-319-22527-2_16

Cubo, J., Nieto, A., Pimentel, E., 2014. A Cloud-Based Internet of Things Platform for Ambient

Assisted Living. Sensors 14, 14070–14105. https://doi.org/10.3390/s140814070

d. Matos, E., Amaral, L.A., Tiburski, R., Lunardi, W., Hessel, F., Marczak, S., 2015. Context-

aware system for information services provision in the Internet of Things, in: 2015 IEEE

20th Conference on Emerging Technologies Factory Automation (ETFA). pp. 1–4.

https://doi.org/10.1109/ETFA.2015.7301624

Da, K., Roose, P., Dalmau, M., Nevado, J., Karchoud, R., 2014. Kali2Much: A Context

Middleware for Autonomic Adaptation-driven Platform, in: Proceedings of the 1st ACM

Workshop on Middleware for Context-Aware Applications in the IoT, M4IOT ’14. ACM,

New York, NY, USA, pp. 25–30. https://doi.org/10.1145/2676743.2676748

De Maio, M.N., Salatino, M., Aliverti, E., 2014. jBPM6 Developer Guide, Community

Experience Distilled. Packt Publishing.

Delsing, J., Eliasson, J., Leijon, V., 2010. Latency and packet loss of an interferred 802.15.4
channel in an industrial environment. Proc. - 4th Int. Conf. Sens. Technol. Appl.

SENSORCOMM 2010 33–38. https://doi.org/10.1109/SENSORCOMM.2010.12

Dey, A.K., 2001. Understanding and Using Context. Pers. Ubiquitous Comput. 5, 4–7.

https://doi.org/10.1007/s007790170019

Dockhorn Costa, P., 2007. Architectural support for context-aware applications: from context

models to services platforms. Universal Press.

Doddapaneni, K., Ever, E., Gemikonakli, O., Malavolta, I., Mostarda, L., Muccini, H., 2012. A

model-driven engineering framework for architecting and analysing Wireless Sensor

Networks. 2012 Third Int. Work. Softw. Eng. Sens. Netw. Appl. 1–7.

103

https://doi.org/10.1109/SESENA.2012.6225729

Dong, W., Chen, C., Bu, J., Liu, W., Dunkels, A., Finne, N., Eriksson, J., Voigt, T., Eicken, T.

Von, Culler, D.E., Schauser, K.E., 2014. Optimizing Relocatable Code for Efficient

Software Update in Networked Embedded Systems. ACM Trans. Sens. Networks 11, 1–

34. https://doi.org/10.1145/2629479

Eicken, T. Von, Culler, D.E., Goldstein, S.C., Schauser, K.K., 1992. Active Messages: a

Mechanism for Integrated Communication and Computation, in: Proceedings of the 19th

International Symposium on Computer Architecture. pp. 1–20.

https://doi.org/10.1109/ISCA.1992.753322

El-Mougy, A., Al-Shiab, I., Ibnkahla, M., 2019. Scalable Personalized IoT Networks. Proc.

IEEE 107, 695–710. https://doi.org/10.1109/JPROC.2019.2894515

Endsley, M.R., 1995. Toward a Theory of Situation Awareness in Dynamic Systems. Hum.

Factors J. Hum. Factors Ergon. Soc. 37, 32–

64. https://doi.org/10.1518/001872095779049543

EsperTech Inc., 2017. Complex Event Processing Streaming Analytics [WWW Document].

URL http://www.espertech.com/

Eugster, P.T., Felber, P., Guerraoui, R., Kermarrec, A.-M., 2003. The Many Faces of

Publish/Subscribe. ACM Comput. Surv. 35, 114–

131. https://doi.org/10.1145/857076.857078

Expressjs, 2017. Express framework for Node.js [WWW Document]. URL
https://expressjs.com/ (accessed 11.27.17).

Flasiński, M., 2016. Introduction to Artificial Intelligence. Springer, Cham, Switzerland.

https://doi.org/https://doi.org/10.1007/978-3-319-40022-8

Flouris, I., Giatrakos, N., Deligiannakis, A., Garofalakis, M., Kamp, M., Mock, M., 2017. Issues

in complex event processing: Status and prospects in the Big Data era. J. Syst. Softw. 127,

217–236. https://doi.org/https://doi.org/10.1016/j.jss.2016.06.011

Fonseca, J., Ferraz, C., Gama, K., 2016. A Policy-based Coordination Architecture for

Distributed Complex Event Processing in the Internet of Things: Doctoral Symposium, in:

Proceedings of the 10th ACM International Conference on Distributed and Event-Based

Systems, DEBS ’16. ACM, New York, NY, USA, pp. 418–421.

https://doi.org/10.1145/2933267.2933431

Forsström, S., Kanter, T., 2014. Enabling ubiquitous sensor-assisted applications on the

internet-of-things. Pers. Ubiquitous Comput. 18, 977–

986. https://doi.org/10.1007/s00779-013-0712-9

Frömel, B., Kopetz, H., 2016. Interfaces in Evolving Cyber-Physical Systems-of-Systems, in:
Bondavalli, A., Bouchenak, S., Kopetz, H. (Eds.), Cyber-Physical Systems of Systems:

Foundations -- A Conceptual Model and Some Derivations: The AMADEOS Legacy.

Springer International Publishing, Cham, pp. 40–72. https://doi.org/10.1007/978-3-319-

47590-5_2

Fülöp, L.J., Beszédes, Á., Tóth, G., Demeter, H., Vidács, L., Farkas, L., 2012. Predictive

Complex Event Processing: A Conceptual Framework for Combining Complex Event

Processing and Predictive Analytics, in: Proceedings of the Fifth Balkan Conference in

Informatics, BCI ’12. ACM, New York, NY, USA, pp. 26–31.

https://doi.org/10.1145/2371316.2371323

http://www.espertech.com/

104

Gajjar, S., Choksi, N., Sarkar, M., Dasgupta, K., 2014. Comparative analysis of wireless sensor

network motes, in: 2014 International Conference on Signal Processing and Integrated

Networks (SPIN). pp. 426–431. https://doi.org/10.1109/SPIN.2014.6776991

Gartner, 2017. Gartner IT Glossary [WWW Document]. URL http://www.gartner.com/it-

glossary/complex-event-processing (accessed 7.16.17).

Gartner, I., 2017. Business Process Management Suites (BPMSs) [WWW Document]. URL

https://www.gartner.com/it-glossary/bpms-business-process-management-suite (accessed

10.17.17).

Gong, T., Hu, Z., Liu, H., Lin, F., Zhou, D., Tian, H., 2012. A context-aware computing

mediated dynamic service composition and reconfiguration for ubiquitous environment, in:

2012 3rd IEEE International Conference on the Internet of Things. pp. 16–23.

https://doi.org/10.1109/IOT.2012.6402299

Gray, P., Salber, D., 2001. Modelling and Using Sensed Context Information in the Design of

Interactive Applications. LNCS 2254 Proc. 8th IFIP Int. Conf. Eng. Human-Computer

Interact. 2254/2001, 317–335.

Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M., 2013. Internet of Things (IoT): A vision,

architectural elements, and future directions. Futur. Gener. Comput. Syst. 29, 1645–1660.

https://doi.org/10.1016/j.future.2013.01.010

Gunver, M.G., Senocak, M.S., Vehid, S., 2017. TO DETERMINE SKEWNESS, MEAN AND
DEVIATION WITH A NEW APPROACH ON CONTINUOUS DATA. Ponte 73.

https://doi.org/10.21506/j.ponte.2017.2.34

Gyrard, A., Datta, S.K., Bonnet, C., Boudaoud, K., 2015. A Semantic Engine for Internet of

Things: Cloud, Mobile Devices and Gateways, in: 2015 9th International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing. pp. 336–341.

https://doi.org/10.1109/IMIS.2015.83

Happ, D., Karowski, N., Menzel, T., Handziski, V., Wolisz, A., 2017. Meeting IoT platform

requirements with open pub/sub solutions. Ann. Telecommun. 72, 41–52.

https://doi.org/10.1007/s12243-016-0537-4

Harpe, S.E., 2015. How to analyze Likert and other rating scale data. Curr. Pharm. Teach.

Learn. https://doi.org/10.1016/j.cptl.2015.08.001

Hevner, A.R., Chatterjee, S., 2010. Design Research in Information Systems Theory and

Practice, Integrated Series in Information Systems Volume 22.

https://doi.org/10.1007/978-1-4419-5653-8

Hilal, A.R., Basir, O.A., 2015. A Scalable Sensor Management Architecture Using BDI Model

for Pervasive Surveillance. IEEE Syst. J. 9, 529–541.

https://doi.org/10.1109/JSYST.2014.2334071

Hoffman, J.S., 2016. Um serviço para controle e avaliação de informações de redes de sensores
sem fio na Internet. Federal University of Espirito Santo.

Hu, P., Dhelim, S., Ning, H., Qiu, T., 2017. Survey on fog computing: architecture, key

technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42.

https://doi.org/https://doi.org/10.1016/j.jnca.2017.09.002

Hui, J.W., Culler, D., 2004. The Dynamic Behavior of a Data Dissemination Protocol for

Network Programming at Scale, in: Proceedings of the 2Nd International Conference on

Embedded Networked Sensor Systems, SenSys ’04. ACM, New York, NY, USA, pp. 81–

http://www.gartner.com/it-
http://www.gartner.com/it-glossary/bpms-business-process-management-suite

105

94. https://doi.org/10.1145/1031495.1031506

IDC, 2017. Internet of Things Spending Forecast to Grow 17.9% in 2016 Led by

Manufacturing, Transportation, and Utilities Investments, According to New IDC Spending

 Guide [WWW Document]. URL

http://www.idc.com/getdoc.jsp?containerId=prUS42209117 (accessed 2.4.17).

IDC, 2015. Explosive Internet of Things Spending to Reach $1.7 Trillion in 2020 [WWW

Document]. Explos. Internet Things Spend. to Reach $1.7 Trillion 2020. URL

https://www.businesswire.com/news/home/20150602005329/en/Explosive-Internet-

Things-Spending-Reach-1.7-Trillion (accessed 1.1.15).

IHME, 2016. Global spending on health is expected to increase to $18.28 trillion worldwide by

2040 but many countries will miss important health benchmarks [WWW Document]. URL

http://www.healthdata.org/news-release/global-spending-health-expected-increase-1828-

trillion-worldwide-2040-many-countries (accessed 6.23.19).

Integrated, M., 2018. DS18B20 [WWW Document].

 URL

https://www.maximintegrated.com/en/products/sensors/DS18B20.html

 (accessed 7.10.18).

International, E., 2013. The JSON Data Interchange Format [WWW Document]. URL

http://www.json.org/ (accessed 2.27.17).

ITU-T, I.T.U.-, 2014. Recommendation ITU-T F.746.1 - Requirements for low-latency
interactive multimedia streaming.

Jantunen, I., Laine, H., Huuskonen, P., Trossen, D., Ermolov, V., 2008. Smart sensor

architecture for mobile-terminal-centric ambient intelligence. Sensors Actuators A Phys.

142, 352–360. https://doi.org/10.1016/j.sna.2007.04.014

Jara, A.J., Lopez, P., Fernandez, D., Castillo, J.F., Zamora, M.A., Skarmeta, A.F., 2014. Mobile

digcovery: discovering and interacting with the world through the Internet of things. Pers.

Ubiquitous Comput. 18, 323–338. https://doi.org/10.1007/s00779-013-0648-0

Juristo, N., Moreno, A.M., 2010. Basics of Software Engineering Experimentation, 1st ed.

Springer Publishing Company, Incorporated.

Kingatua, A., 2017. IoT in HVAC systems [WWW Document]. URL

https://electronicsandict.com/iot-in-hvac-systems/ (accessed 8.27.19).

Kitchenham, B., Charters, S., 2007. Guidelines for performing Systematic Literature reviews

in Software Engineering Version 2.3. Engineering 45, 1051.

https://doi.org/10.1145/1134285.1134500

Kitchenham, B.A., Budgen, D., Pearl Brereton, O., 2011. Using Mapping Studies As the Basis

for Further Research - A Participant-observer Case Study. Inf. Softw. Technol. 53, 638–

651. https://doi.org/10.1016/j.infsof.2010.12.011

Kuo, S.-P., Lin, C., Lee, Y.-F., Fang, H.-W., Hong, Y.-W.P., Lin, H.-C., Tseng, Y.-C., King,
C.-T., Wang, C.-L., 2008. The NTP Experimental Platform for Heterogeneous Wireless Sensor

Networks, in: Proceedings of the 4th International Conference on Testbeds and Research

Infrastructures for the Development of Networks & Communities, TridentCom ’08. ICST

(Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering), ICST, Brussels, Belgium, Belgium, pp. 35:1--35:6.

Laudon, K.C., Laudon, J.P., 2003. Management information systems: managing the digital

http://www.idc.com/getdoc.jsp?containerId=prUS42209117
http://www.idc.com/getdoc.jsp?containerId=prUS42209117
http://www.businesswire.com/news/home/20150602005329/en/Explosive-Internet-
http://www.healthdata.org/news-release/global-spending-health-expected-increase-1828-
http://www.healthdata.org/news-release/global-spending-health-expected-increase-1828-
http://www.maximintegrated.com/en/products/sensors/DS18B20.html
http://www.maximintegrated.com/en/products/sensors/DS18B20.html
http://www.json.org/
http://www.json.org/

106

firm. Pearson 12, 223–223. https://doi.org/10.1590/S1415-65552003000100014

Levis, P., 2012. Experiences from a Decade of TinyOS Development, in: Proceedings of the

10th USENIX Conference on Operating Systems Design and Implementation, OSDI’12.

USENIX Association, Berkeley, CA, USA, pp. 207–220.

Levis, P., Gay, D., Culler, D., 2005. Active Sensor Networks, in: Proceedings of the 2Nd

Conference on Symposium on Networked Systems Design & Implementation - Volume 2,

NSDI’05. USENIX Association, Berkeley, CA, USA, pp. 343–356.

Mainetti, L., Mighali, V., Patrono, L., Rametta, P., 2015. A novel rule-based semantic

architecture for IoT building automation systems, in: 2015 23rd International Conference

on Software, Telecommunications and Computer Networks (SoftCOM). pp. 124–131.

https://doi.org/10.1109/SOFTCOM.2015.7314063

Mandjes, M., van der Wal, K., Kooij, R., Bastiaansen, H., 1999. End-to-end delay models for

interactive services on a large-scale IP network, in: Proceedings of the 7th Workshop on

Performance Modelling and Evaluation of ATM & IP Networks (IFIP99). pp. 28–30.

Marín-Tordera, E., Masip-Bruin, X., García-Almiñana, J., Jukan, A., Ren, G.-J., Zhu, J., 2017.

Do we all really know what a fog node is? Current trends towards an open definition.

Comput. Commun. 109, 117–130. https://doi.org/10.1016/j.comcom.2017.05.013

Martinelli, R.R., 2017. Terra Gateway e Terra Core: Uma solução de suporte ao

desenvolvimento de aplicações finais para Redes de Sensores sem fio. Federal University

of Espirito Santo.

Mathes, M., Stoidner, C., Schwarzkopf, R., Heinzl, S., Dörnemann, T., Dohmann, H.,
Freisleben, B., 2009. Time-constrained services: a framework for using real-time web

services in industrial automation. Serv. Oriented Comput. Appl. 3, 239.

https://doi.org/10.1007/s11761-009-0050-y

Matthews, K., 2018. 6 Exciting IoT Use Cases in Healthcare [WWW Document]. URL

https://www.iotforall.com/exciting-iot-use-cases-in-healthcare (accessed 8.27.19).

Mellor, S., Scott, K., Uhl, A., Weise, D., 2004. MDA Distilled: Principles of Model-Driven

Architecture. Addison-Wesley Prof.

Melnikov, A., Fette, I., 2011. The WebSocket Protocol. Request for Comments.

https://doi.org/10.17487/RFC6455

Memsic, 2009a. IRIS Mote. Memsic, 2009b. MicaZ Mote.

MEMSIC, 2016. MEMSIC Powerful Sensing Solutions – Wireless Sensor Networks [WWW

Document]. URL http://www.memsic.com/wireless-sensor-networks/ (accessed 1.1.16).

MEMSIC Inc., 2003. TelosB datasheet: Document Part Number: 6020-0094-02 Rev B 2.

MerriamWebster, 2014. Merriam Webster Dictionary Online. Merriam Webster Dict.

Online.

Microsoft, 2017. Microsoft StreamInsight [WWW Document]. Microsoft. URL
https://www.microsoft.com/en-us/download/details.aspx?id=30149

Mormul, M., Hirmer, P., Wieland, M., Mitschang, B., 2017. Situation model as interface

between situation recognition and situation-aware applications. Comput. Sci. - Res. Dev.

32, 331–342. https://doi.org/10.1007/s00450-016-0335-2

murabet, A. El, Abtoy, A., Touhafi, A., Tahiri, A., 2018. Ambient Assisted living system’s

http://www.iotforall.com/exciting-iot-use-cases-in-healthcare
http://www.memsic.com/wireless-sensor-networks/
http://www.microsoft.com/en-us/download/details.aspx?id=30149

107

models and architectures: A survey of the state of the art. J. King Saud Univ. - Comput.

Inf. Sci. https://doi.org/https://doi.org/10.1016/j.jksuci.2018.04.009

Murray, G., Schaub, K., Vancil, R., Leclair, A., 2016. IDC FutureScape IDC FutureScape :

Worldwide Chief Marketing Officer Advisory 2016 Predictions 1–18.

MySQL, 2017. MySQL [WWW Document]. Oracle Corp. URL https://www.mysql.com/

(accessed 11.27.17).

Nations, U., 2019. Growing at a slower pace, world population is expected to reach 9.7 billion

in 2050 and could peak at nearly 11 billion around 2100 [WWW Document]. URL

https://www.un.org/development/desa/en/news/population/world-population-prospects-

2019.html#targetText=The world’s population is expected,United Nations report launched

today. (accessed 8.29.19).

Nissanka, Zhao, F., 2008. Tiny web services: design and implementation of interoperable and

evolvable sensor networks. {…} Embed. Netw. Sens. {…} 253–266.

https://doi.org/10.1145/1460412.1460438

Oxford Economics and Cisco, 2017. The A.I. Paradox How Robots Will Make Work More

Human. San Jose, CA, USA.

Paphitou, A.C., Constantinou, S., Kapitsaki, G.M., 2015. SensoMan: Remote Management of

Context Sensors, in: Proceedings of the 5th International Conference on Web Intelligence,

Mining and Semantics, WIMS ’15. ACM, New York, NY, USA, pp. 19:1--19:6.

https://doi.org/10.1145/2797115.2797121

Pereira, I.S.A., 2018. LAURA Context Broker [WWW Document]. URL
https://github.com/laura-architecture/LAURA-Context-Broker (accessed 2.21.19).

Pereira, I.S.A., 2012. Drools Situation: uma Abordagem Baseada em Regras para Detecção de

Situações. Federal University of Espirito Santo.

Pereira, I.S.A., Costa, P.D., Almeida, J.P.A., 2013. A rule-based platform for situation

management, in: 2013 IEEE International Multi-Disciplinary Conference on Cognitive

Methods in Situation Awareness and Decision Support (CogSIMA). pp. 83–90.

https://doi.org/10.1109/CogSIMA.2013.6523827

Petlund, A., 2009. Improving latency for interactive, thin-stream applications over reliable

transport. University of Oslo.

Plummer, D.C., Baker, V.L., Austin, T., Smulders, C., Tully, I., Valdes, R., Sarner, A., Moyer,

K.R., Karamouzis, F., Andrews, W., Heiser, J., Fabre, S., McIntyre, A., Scheibenreif, D.,

Hobert, K.A., Sussin, J., Marshall, R., Smith, R., Kihn, M., Revang, M., Leow, A., Wong,

J., Hicks, T., Morello, D., Furlonger, D., Brant, K.F., Poitevin, H., 2015. Top Strategic

Predictions for 2016 and Beyond: The Future Is a Digital Thing [WWW Document].

Gartner.

 UR

L

https://www.gartner.com/binaries/content/assets/events/keywords/symposium/sym26/gar
tner_top_strategic_predictions_2016.pdf (accessed 7.29.15).

Prado, A.G. De, Ortiz, G., Boubeta-Puig, J., 2017. CARED-SOA: A Context-Aware Event-

Driven Service-Oriented Architecture. IEEE Access 5, 4646–4663.

https://doi.org/10.1109/ACCESS.2017.2679338

Rahmani, A.M., Gia, T.N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., Liljeberg, P., 2018.

http://www.mysql.com/
http://www.un.org/development/desa/en/news/population/world-population-prospects-
http://www.gartner.com/binaries/content/assets/events/keywords/symposium/sym26/gar

108

Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog

computing approach. Futur. Gener. Comput. Syst. 78, 641–658.

https://doi.org/10.1016/j.future.2017.02.014

Rattanasawad, T., Saikaew, K.R., Buranarach, M., Supnithi, T., 2013. A review and comparison

of rule languages and rule-based inference engines for the Semantic Web. 2013 Int.

Comput. Sci. Eng. Conf. ICSEC 2013 1–6. https://doi.org/10.1109/ICSEC.2013.6694743

Raymundo, C.R., 2013. Sinos – a Situation Notification Service Platform. Master Diss. Federal

University of Espirito Santo.

Redhat, 2015. jBPM [WWW Document]. Red Hat Inc. URL http://www.jbpm.org/ (accessed

2.1.16).

RedHat, 2017a. Drools [WWW Document]. URL http://www.drools.org/ (accessed 3.9.17).

RedHat, 2017b. KieGroup [WWW Document]. URL http://www.kiegroup.org/ (accessed

3.10.17).

Ribeiro, F.S., 2016. Terra DIA: Uma solução de suporte a atualização dinâmica de bytecodes

em redes de sensores sem fio baseadas em maquina virtual. Federal University of Espirito

Santo.

Rodrigues, T., Delicato, F.C., Batista, T., Pires, P.F., Pirmez, L., 2015. An approach based on

the domain perspective to develop WSAN applications. Softw. Syst. Model. 1–29.

https://doi.org/10.1007/s10270-015-0498-5

Saint-Andre, P., 2011. RFC Standard 6455-- The WebSocket Protocol. RFC 6455 (Proposed

Stand. i–73. https://doi.org/10.1017/CBO9781107415324.004

Sánchez López, T., Ranasinghe, D.C., Harrison, M., McFarlane, D., 2012. Adding sense to the

Internet of Things. Pers. Ubiquitous Comput. 16, 291–308.

https://doi.org/10.1007/s00779-011-0399-8

SantAnna, F., Rodriguez, N., Ierusalimschy, R., Landsiedel, O., Tsigas, P., 2013. Safe system-
level concurrency on resource-constrained nodes. Proc. 11th ACM Conf. Embed.

Networked Sens. Syst. - SenSys ’13 1–14. https://doi.org/10.1145/2517351.2517360

Santanna, F.A., 2010. Análise do consumo de energia em RSSF dotadas de serviços web.

Universidade Federal do ABC.

Seridi, A., Seriai, A.-D., 2012. Evolution Approaches Towards a Service Oriented Architecture,

in: ICMCS’12: 3rd International Conference on Multimedia Computing and Systems.

IEEE, Morocco, pp. 687–693.

Shu, Z., Wan, J., Zhang, D., Li, D., 2016. Cloud-Integrated Cyber-Physical Systems for

Complex Industrial Applications. Mob. Networks Appl. 21, 865–878.

https://doi.org/10.1007/s11036-015-0664-6

Silvestre, B.O., 2017. TOSSAM - TinyOS Serial AM for Lua [WWW Document]. URL

http://www.inf.ufg.br/~brunoos/tossam/ (accessed 7.14.17).

Socket.io, 2017. Socket.io [WWW Document]. Socket.io community. URL https://socket.io/

(accessed 11.27.17).

Stamford, C., 2016. Gartner Says By 2020, More Than Half of Major New Business Processes

and Systems Will Incorporate Some Element of the Internet of Things [WWW Document].

Gartner.com. URL https://www.gartner.com/en/newsroom/press-releases/2016-01-

14- gartner-says-by-2020-more-than-half-of-major-new-business-processes-and-systems-

https://doi.org/10.1109/ICSEC.2013.6694743
http://www.jbpm.org/
http://www.drools.org/
http://www.kiegroup.org/
http://www.inf.ufg.br/~brunoos/tossam/
http://www.inf.ufg.br/~brunoos/tossam/
http://www.gartner.com/en/newsroom/press-releases/2016-01-14-
http://www.gartner.com/en/newsroom/press-releases/2016-01-14-

109

will-incorporate-some-element-of-the-internet-of-things (accessed 7.29.15).

Su, K., Li, J., Fu, H., 2011. Smart city and the applications. 2011 Int. Conf. Electron. Commun.
Control. ICECC 2011 - Proc. 1028–1031. https://doi.org/10.1109/ICECC.2011.6066743

Ta-Shma, P., Akbar, A., Gerson-Golan, G., Hadash, G., Carrez, F., Moessner, K., 2018. An

Ingestion and Analytics Architecture for IoT Applied to Smart City Use Cases. IEEE

Internet Things J. 5, 765–774. https://doi.org/10.1109/JIOT.2017.2722378

Tei, K., Shimizu, R., Fukazawa, Y., Honiden, S., 2015. Model-Driven-Development-Based

Stepwise Wireless Sensor Networks 45, 675–

687. https://doi.org/10.1109/TSMC.2014.2360506

Teixeira, S., 2018a. LAURA - Empirical evaluation form for the System expert [WWW

Document].URL

https://docs.google.com/forms/d/e/1FAIpQLSefkbpcYrwbocb9VLY3oc44WOBoL4Vjne

yJpvLmWfJmVJ_iGQ/viewform (accessed 1.23.19).

Teixeira, S., 2018b. LAURA - Empirical evaluation form for the BPM expert [WWW

Document]. URL

 https://docs.google.com/forms/d/e/1FAIpQLScVWkkV-

fED2df9mbjweV6J6dqXFP6ZuAo2yaU03o7ueqlu-A/viewform (accessed 1.23.19).

Teixeira, S., Agrizzi, B., et al., 2016. SpreadSheet Protocol for a Mapping Literature Review

[WWW Document]. URL https://github.com/sergiomulticast/MappingReview (accessed

1.1.16).

Teixeira, S., Agrizzi, B.A., Martinelli, R.R., Branco, A.F., Pereira, I.S.A., Al., E., 2017a.

LAURA Architecture: Codes, Experiments, Documentation, Videos and others related

files [WWW Document]. URL https://laura-architecture.github.io (accessed 7.1.17).

Teixeira, S., Agrizzi, B.A.A., Filho, J.G.P.G.P., Rossetto, S., Baldam, R.D.L.L., 2017b.

Modeling and automatic code generation for Wireless Sensor Network Applications using

Model-Driven or Business Process approaches: A systematic mapping study. J. Syst.

Softw. 132, 50–71. https://doi.org/https://doi.org/10.1016/j.jss.2017.06.024

TIBCO, 2017. Streaming Analytics Augments Business Intelligence [WWW Document].

TIBCO Softw. inc. URL https://www.tibco.com/streaming-analytics (accessed 11.22.17).

Toninelli, A., Corradi, A., Montanari, R., 2009. A quality of context-aware approach to access

control in pervasive environments, in: Lecture Notes of the Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering. pp. 236–251.

https://doi.org/10.1007/978-3-642-01802-2_18

Townsend, M., 2019. IDC TechScape: Worldwide Life Science Commercial IoT Technologies,
abstract [WWW Document]. IDC Res.

 URL https://www.idc.com/getdoc.jsp?containerId=US45061619

(accessed 6.23.19).

Tranquillini, S., Spiess, P., Daniel, F., Karnouskos, S., Casati, F., Oertel, N., Mottola, L.,

Oppermann, F.J., Picco, G. Pietro, Roemer, K., Voigt, T., 2012. Process-Based Design and

Integration of Wireless Sensor Network Applications. Bus. Process Manag. Bpm 2012

7481, 134–149. https://doi.org/10.1007/978-3-642-32885-5_10

UN News Service, 2015. UN News - UN projects world population to reach 8.5 billion by 2030,
driven by growth in developing countries [WWW Document]. United Nations. URL

http://www.un.org/apps/news/story.asp?NewsID=51526 (accessed 7.29.15).

http://www.tibco.com/streaming-analytics
http://www.idc.com/getdoc.jsp?containerId=US45061619
http://www.un.org/apps/news/story.asp?NewsID=51526
http://www.un.org/apps/news/story.asp?NewsID=51526

110

Venkatesh, V., Davis, F.D., 1996. A Model of the Antecedents of Perceived Ease of Use:

Development and Test. Decis. Sci. https://doi.org/10.1111/j.1540-5915.1996.tb01822.x

Vujovic, V., Maksimovic, M., Perisic, B., Milosevic, V., 2014. A graphical editor for RESTful

sensor web networks modeling. SACI 2014 - 9th IEEE Int. Symp. Appl. Comput. Intell.

Informatics, Proc. 61–66. https://doi.org/10.1109/SACI.2014.6840036

Weiser, M., 1999. The Computer for the 21st Century. SIGMOBILE Mob. Comput. Commun.

Rev. 3, 3–11. https://doi.org/10.1145/329124.329126

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012.

Experimentation in software engineering, Experimentation in Software Engineering. Springer

New York. https://doi.org/10.1007/978-3-642-29044-2

Xi, L., Yuzhi, Z., 2014. Efficient Innovative Teaching Scheme of Internet of Things Based on

Practice, in: Zhong, S. (Ed.), Proceedings of the 2012 International Conference on

Cybernetics and Informatics. Springer New York, New York, NY, pp. 493–497.

https://doi.org/10.1007/978-1-4614-3872-4_63

Ye, J., Dobson, S.A., McKeever, S., 2012. Situation identification techniques in pervasive

computing: a review. Pervasive Mob. Comput. 8, 36–66.

https://doi.org/10.1016/j.pmcj.2011.01.004

Yi, S., Li, C., Li, Q., 2015. A Survey of Fog Computing: Concepts, Applications and Issues, in:

Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata ’15. ACM, New York,

NY, USA, pp. 37–42. https://doi.org/10.1145/2757384.2757397

Yick, J., Mukherjee, B., Ghosal, D., 2008. Wireless sensor network survey. Comput. Networks

52, 2292–2330. https://doi.org/10.1016/j.comnet.2008.04.002

Yu, J., Bang, H.-C., Lee, H., Lee, Y.S., 2016. Adaptive Internet of Things and Web of Things

convergence platform for Internet of reality services. J. Supercomput. 72, 84–102.

https://doi.org/10.1007/s11227-015-1489-6

Zacharias, V., 2008. Development and Verification of Rule Based Systems -- A Survey of
Developers. RuleML ’08 Proc. Int. Symp. Rule Represent. Interchang. Reason. Web,

LNCS 5321 6–16. https://doi.org/10.1007/978-3-540-88808-6_4

ZeroMQ, 2017. ZeroMQ [WWW Document]. iMatix Corp. URL http://zeromq.org/ (accessed

11.27.17).

Zirpins, C., 2016. Situational Data-Analytics for the Web-of-Things, in: Proceedings of the 1st

International Workshop on Mashups of Things and APIs, MOTA ’16. ACM, New York,

NY, USA, pp. 6:1--6:4. https://doi.org/10.1145/3007203.3007218

http://zeromq.org/

