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Epígrafe 

“Persistence is the shortest path to success” 

(Charles Chaplin) 

 

 
“The best way to predict the future is to invent it.” 

(Alan Kay) 



ABSTRACT 

 
The explosion of smart objects made companies rethink their Business Model (BM) using 

Wireless Sensor Networks (WSN) and the Internet of Things (IoT) aiming to improve their 

Business Processes (BP) to achieve competitiveness. Business environments are complex due 

to the wide variety of technologies, hardware and software solutions that compose 

heterogeneous enterprise environments. On the other hand, putting real-world IoT scenarios 

into practice is still a challenge for even experienced developers, because it requires low-

level programming skills and, at the same time, specific domain knowledge of a company`s 

BM. This thesis proposes LAURA - Lean AUtomatic code generation for situation-aware 

and business-awaRe Applications, a flexible, service-oriented and general open source 

conceptual architecture, designed to support the deployment of decoupled IoT applications. 

An empirical evaluation has shown that LAURA simplifies the development of final 

Situation-Aware or Business-Aware applications, reducing the need for specialized IoT low-

level knowledge, while showing an acceptable performance. LAURA also provides the 

freedom and independence to modify, adapt or integrate its architecture according to specific 

needs of the stakeholders. 

 

 

 

 
Keywords: Internet of things, IoT Architecture, Wireless sensor networks, Situation- 

Awareness and Business Process 



RESUMO 

 
O crescimento explosivo dos objetos inteligentes fez com que as empresas 

repensassem seu Modelo de Negócios usando Redes de Sensores Sem Fio (do inglês, 

Wireless Sensor Networks - WSN) e a Internet das Coisas (do inglês, Internet of Things - 

IoT), com o objetivo de melhorar seus Processos de Negócios para alcançar competitividade. 

Os ambientes de negócios são complexos devido à grande variedade de tecnologias, soluções 

de hardware, e sistemas de software, que compõem ambientes empresariais heterogêneos. 

Por outro lado, colocar em prática cenários de IoT do mundo real ainda é um desafio mesmo 

para desenvolvedores experientes, pois requer habilidades de programação de baixo nível e, 

ao mesmo tempo, conhecimento do domínio específico do negócio da empresa. Esta tese 

propõe a LAURA - Lean AUtomatic code generation for situation-aware and business-

awaRe Application, uma arquitetura conceitual de código aberto, flexível, orientada a 

serviços e projetada para suportar a implantação de aplicações WSN/IoT. Uma avaliação 

empírica demonstrou que a LAURA simplifica o desenvolvimento de aplicações finais 

orientadas a situação e a negócios, reduzindo a necessidade de conhecimento especializado 

de baixo nível em WSN/IoT, ao mesmo tempo que apresenta um bom desempenho. LAURA 

também fornece liberdade e independência para modificar, adaptar ou integrar a arquitetura 

de acordo com as necessidades específicas dos profissionais envolvidos. 

 

 
Palavras-chave: Internet das Coisas, Arquiteturas para Internet das Coisas, Redes de 

Sensores sem Fio, Sistemas Sensíveis à Situação, Processos de Negócisos. 
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Chapter 1. Introduction 
 

 

 

 

 

 

 

 
 

“Your imagination is your preview of life’s coming attractions.” 

Albert Einstein 

 

 

This chapter presents an overview of this thesis and the foundations for understanding 

the subsequent chapters. It presents the context in which this work is immersed, the problems, 

justifications, and some domain challenges that motivated this research, the hypothesis 

constructions as well the research hypothesis, the research objectives and the activities required 

to achieve them, the scope and delimitations, the methodological aspects that the development 

of this research is grounded and, finally, the structure of the remainder of this document. 

 

1.1 Context 

 
The influence of the Internet of Things (IoT) is, for many, already, an everyday reality 

and it is expected to increase, contributing ubiquitously with applications that can improve the 

quality of the environment and the automation of corporative processes in a wide range of 

knowledge areas. The explosion of smart objects has already been highlighted by many 

companies and research institutions. The International Data Corporation (IDC) report, for 

example, predicts that the IoT market will be worth around $1.7 trillion in 2020 (IDC, 2017, 

2015). According to the Gartner Group, by 2020 more than half of the major new companies 

will have some elements of the IoT incorporated into their Business Processes (BP) and systems 

(Plummer et al., 2015; Stamford, 2016). A panorama of 500 billion connected devices across 

the world is expected by 2030 (Oxford Economics and Cisco, 2017). The United Nations (UN) 

predicts that the world population will reach 8.5 billion by 2030 and this serves to reinforce this 

data. The larger the population, the greater the demand for IoT applications (UN News Service, 

2015). 

Weiser (Weiser, 1999) envisioned a world full of small intelligent objects that work in 

a transparent and omnipresent way with the aim of improving people's lives through making 
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them more aware of events surrounding them. One of the key elements in putting this vision 

into practice is the rise of Wireless Sensor Networks (WSN) of tiny devices with processing, 

storage, communication and sensing capacities, which provide a way to monitor physical world 

magnitudes at a low cost (Akyildiz et al., 2002; Yick et al., 2008). 

WSN have evolved in recent years and it is now possible to easily connect their nodes 

with the Internet, enabling the concept of IoT in practice. The precision capillarity, low cost, 

small size, Internet-based communication mean that today there is a great potential for many 

types of IoT applications that were unimaginable at the time when Weiser made his prediction 

(Su et al., 2011). Figure 1 presents an overview of some examples of IoT real-world application 

scenarios. 

Figure 1 - Smart real-world IoT scenario 
 

The advent of the IoT has made companies change or rethink their Business Model 

(BM), making IoT solutions an integral part of this process. In our previous work (Teixeira et 

al., 2017b), we have verified that since 2012 there has been an increase in the demand from 
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companies to integrate IoT solutions into Business Process Management (BPM) systems. By 

including sensing capabilities in the BP, companies are able to improve their ability to monitor 

and respond to changes in real time, thus giving their business a competitive advantage. In other 

words, companies are taking advantage of the benefits that smart devices offer to improve and 

add value to their BP. 

Meanwhile, putting real-world IoT scenarios into practice is still a challenge even for 

even experienced developers. Developing and implementing IoT applications requires low- 

level programming skills and, at the same time, specific domain knowledge of the company`s 

BM. In addition to the specific aspects related to WSN or IoT devices, it is necessary to 

integrate and balance a solution with the heterogeneous computational environment within a 

company. This heterogeneity increases the complexity of deciding which solution is best for a 

company to adopt. 

Commonly, the development and deployment of IoT solutions demand a 

multidisciplinary team due to the complexity and heterogeneity of certain aspects related to the 

IoT itself, the domain knowledge of the application, and the specific characteristics of the 

company`s BP (Baldam, R., Valle, R., Rozenfeld, 2014; Rodrigues et al., 2015; Tranquillini 

et al., 2012). Thus, one of the greatest challenges in this area is proposing solutions that are 

able to simplify the entire development and deployment process, taking into account the need 

to involve professionals from different knowledge domains. For instance, Domain experts, 

System experts, BPM experts, Situation/Rule experts, and IoT experts. The Domain expert, 

for example, who has specific knowledge in the area that the solution will be applied to, is not 

usually involved in the development of the IoT solution. It would be beneficial, therefore, if the 

Domain expert contributed to various aspects during the development process, which would, 

ultimately improve the quality of solution. 

In this thesis, the term ̀ final application’ (Ayala et al., 2015; Gyrard et al., 2015; Xi and 

Yuzhi, 2014) refers to the applications that will be used by final consumers, such as the Domain 

experts. A type of `final application` addressed in this study is a Business-Aware application 

that is based on Business Process Management Suites (BPMS) (I. Gartner, 2017). BPMS are 

systems that support automate process management. BizAgi software (Bizagi, 2018) and jBPM 

(Redhat, 2015) are examples of BPMS. 
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1.2 Motivation 

 
The above scenario presented in the context section raises some important issues: (i) the 

stakeholders responsible for the development of the final applications may be required to 

manage many high-level aspects and issues related to the BP that may affect or may be affected 

by lower level aspects; (ii) normally, each person works on a determined level of abstraction 

with little or no knowledge of the work done by the other stakeholders; (iii) the complexity and 

the heterogeneity of a IoT solution requires cognitive effort and appropriate training for 

everyone involved, mainly in the programming aspects and low-level issues. 

From the software design standpoint, one commonly used way to address the issues 

raised above is to adopt “separation of concerns” methods (Almeida, 2006; Doddapaneni et al., 

2012; Mellor et al., 2004). According to Software Engineering, “separation of concerns” is a 

modeling activity method for addressing a limited set of concerns in a series of design steps. 

The separation of concerns is an essential strategy when it comes to deal with an environment 

with many technical issues to be worked on at various levels of abstraction and facilitates the 

interaction during the entire development and deployment of the solution. It makes the 

decoupling of the layers possible, preventing the higher-level stakeholders from needing to 

concern themselves with the lower level technical details. In this approach, experienced IoT 

programmers would act in the treatment of sensing aspects, considering the hardware platform 

architecture of the node and the communication protocols. On the other hand, the definition of 

rules and events of the application domain would be dealt with by the Domain expert, who has 

a much more specialized knowledge of business rule logic. The access to the inferior layers 

would be made via standardized interfaces with full decoupling of the low-level aspects in such 

a way that the stakeholders do not need any technical knowledge of the low-level layers. 

From a deployment standpoint, one of the most important aspects is to allow flexibility 

in the final applications and to provide standardized interfaces and full decoupling of the low- 

level aspects so that the developer has freedom to choose the methods, approaches and 

technologies that they wish to use in order to develop and integrate their final application with 

the IoT solution. The Application Programming Interface (API) REST (Vujovic et al., 2014), 

the Pub/Sub messaging pattern (Eugster et al., 2003), and the WebSocket protocol (Melnikov 

and Fette, 2011) are examples of standards and technologies that give support to the 

development of standardized interfaces and communication. 
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Another trend that has been on the rise in recent years is the use of Rule-based systems 

(Murray et al., 2016) in the corporate environment as a strategy to respond faster to changes 

that could occur in the business model or the application requirements. A rule-based (RB) 

system is easier to understand and maintain if compared with imperative programming and may 

increase the involvement of professionals that work within the definition of the business rules 

(Flasiński, 2016). 

In addition to the increasing adoption of RB approaches, IoT solutions can benefit from 

Complex Event Processing (CEP) and Stream Processing (SP) techniques (Aliverti et al., 2016; 

I. Gartner, 2017). The CEP paradigm provides a solid model and toolset to reason over a near- 

uninterrupted flow of pieces of information coming from decoupled sources, e.g., sensors, 

mobile devices, web services, etc. It allows us to build upon primitive events towards complex 

event patterns by means of event data extraction and composition through explicit causal, 

temporal/spatial relations (Flouris et al., 2017). 

One of the key capabilities of a reactive and proactive IoT application is the bridging of 

the gap between events that occur in the environment and the particular state-of-affairs of 

interest also known as situations (Pereira et al., 2013). It is upon these that the application is 

required to act on or react to. Within the scope of application development, this capability has 

often been referred to as context-awareness (Dey, 2001) or situation-awareness. This 

terminology has been taken from human factors research (Endsley, 1995). The aim of situation- 

aware applications is to promote effective interaction with users by autonomously adapting 

application behavior according to the user’s current and projected situation. 

As discussed in (Costa et al., 2016), to leverage the benefits of the situation abstraction 

concept, proper support is required at design-time to specify situation types, and run-time 

support that can detect and maintain information regarding situations. There are various 

alternatives that could be used to deploy such support. However, despite the immediate benefits, 

traditional Rule-based and CEP solutions, such as Drools (Aliverti et al., 2016; Gartner, 2017) 

and TIBCO (TIBCO, 2017), do not fully realize the potential of explicit support for situation 

awareness, as discussed in (Costa et al., 2016). 

Results obtained from our previous systematic mapping study (Teixeira et al., 2017b), 

reinforced by the related work review presented in Chapter 5, reveal that there are few solutions 

or architectures that deal with the entire process, from lower-level to higher-level aspects, of 

supporting the development of decoupled final real-world IoT applications, particularly 
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providing integrated mechanisms for: (i) situation-awareness handling; (ii) automatic code 

generation from high-level business process specifications (e.g., BMPN descriptions); (iii) 

detection of changes in resource state through different event-driven1 methods (REST, 

Publish/Subscribe and WebSockets); (iv) bytecode dissemination with a view to rapid and low 

cost application reprogramming; (v) straightforward domain reference model that offers 

stakeholders an artifact to promote a common ground of understanding and a representation 

of meaningful real-world concepts pertinent to the IoT domain that need to be modeled in the 

application software. 

This thesis presents LAURA – Lean AUtomatic code generation for situation-awaRe 

Application, a service-oriented architecture to support the development, deployment and 

execution of Situation-aware or Business-aware IoT applications, which realize the set of 

integrated facilities listed above. LAURA components operate in coordinated way to provide 

high-level stakeholders with an easier process for developing dynamic real-world IoT 

applications in scenarios such as those shown in Figure 1. 

 

1.3 Domain Challenges 

 
Figure 1 highlights relevant IoT scenarios with their respective domain challenges. 

These IoT scenarios were selected based on their relevance. Smart HVAC systems, for example, 

are highlighted due to energy concerns. The use of IoT solutions in such systems can reduce 

investment costs by up to 40% and allow an energy efficiency by between 7% and 35% 

(Acciona S.A., 2013). The demand for IoT and smart technologies in the HVAC industry is 

growing due to their potential to increase the energy efficiency, reduce costs and improve 

comfort (Kingatua, 2017). HVAC systems equipped with IoT technologies offers numerous 

benefits to building owners, occupants and facility managers by allowing users to automatically 

monitor and control a wide range of variables, such as temperature, water usage, lighting, 

occupancy and CO2 levels, as well as to provide real-time status of almost all components. 

Healthcare systems are a matter of interest. The world health spending is forecast to 

exceed $18 trillion by 2040 (IHME, 2016; murabet et al., 2018; Townsend, 2019). The use of 

IoT technologies in healthcare and medical sectors has brought significant improvement to 
 

 
 

 
 

1 Event-driven applications can be caracterize as asynchronously oriented communications based-on a 

full decoupling interaction in space and time (Eugster et al., 2003). 
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medical services, including: reducing emergency room waiting times, ensuring the availability 

and accessibility of critical hardware, addressing chronic diseases, tracking staff, patients and 

inventory, and enhancing drug management, among other benefits (Matthews, 2018). IoT 

technologies can also contribute to the implementation of remote monitoring solutions such as 

Ambient Assisted Living (AAL) systems through patient remote monitoring and follow-up in 

harmony with the treatment of patients who prefer or need to live at home. 

Smart agriculture, another relevant IoT application scenario (highlighted in Fig. 1) is a 

worldwide issue, a popular research topic in farming industry and academia, and also a more 

recent subject of concern. The global population is set to reach 9.7 billion by 2050 (Nations, 

2019). To feed this increase in population, the farming industry must therefore fully embrace 

new technologies such as IoT, which have the potential to improve and transform agriculture 

in many aspects. Data collected by smart agriculture sensors such as weather conditions, soil 

quality, crop growth progress and cattle health, can enable growers and farmers to reduce waste 

and enhance productivity. IoT and smart technologies can assist farmers and producers in 

finding new approaches to driving efficiency and improving operations through the use of 

connected devices, such as RFID tags and wearables, and the application of predictive analytics 

on real-time data. 

The following section discuss some Domain Challenges (DC) that are common to the 

development of smart real-world applications in these three examples of relevant IoT scenarios 

as well as those scenarios depicted in Fig 1. 

Domain challenge 1 (DC1): the capacity to change business rules or application 

configuration parameters at any time due to the competitive aspects or specific needs, as there 

may be a situation where energy savings are more important than pleasant temperature 

sensations. 

For example, in an HVAC system, the rules may either change, or differ according to 

the geographic location, climate or type of enterprise/ This requires resources and flexibility for 

everyone involved in the development and deployment of the solution to change the behavior 

of the SVAC system. Thus, when a rule changes, it should be relatively easy to make changes 

through high-level languages without requiring neither knowledge of low-level aspects related 

to the operation of the IoT application nor hardware platforms, and without the need for manual 

reprogramming. 
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Domain challenge 2 (DC2): The ability to deal with scenarios composed by numerous 

contextual sources, in a simpler manner. For example, in healthcare systems, there are different 

data sources that may also be influenced by response time. Thus, it may be necessary to model 

the rules for decision-making in a medical emergency system that is dependent on the 

processing of various events, e.g. data from the sensors coupled to the patient, availability and 

data informed by the doctor, data from a smart traffic system that can indicate the best routes, 

data from emergency services with available ambulances near the patient, data specific to the 

hospital availability, including the stock of medicines indicated for the patient's concern. In this 

case, with the many variables involved in complex decision-making, it is necessary to have 

user-friendly language that facilitates the modeling of the solution and also the possibility of 

offering timely responses according to the criticality of the applications. In this case, the action 

cannot come from the cloud. 

Domain challenge 3 (DC3): The ease and ability to engage a multidisciplinary team to 

work in a simple and more intuitive manner over different abstraction levels. For example, the 

BPM expert should be able to make business rule changes at any time, based on their expertise, 

with minimal additional effort. On the other hand, the Situation/Rule expert also should be able 

to change the situations/rules in user-friendly language and closer to the way the problem is 

perceived in the real world by the Domain expert. 

Domain challenge 4 (DC4): The capability to deal with heterogeneous, dynamic and 

flexible real-world environments, allowing developers to choose technologies, standards, 

languages and devices that are easier to adapt or integrate with the existing IT solutions. For 

example, depending on the country or region, there may be advantages to adopting certain types 

of technology. In this way, the solution should offer a fully decoupled approach that allows one 

to choose different types of hardware platforms, without the need to change higher-level aspects 

of the application. 

LAURA architecture seeks to tackle these four (4) challenges by promoting the 

flexibility required to meet the demands of adaptive real-world IoT applications. Indeed, the 

increase of interest in applications in the aforementioned IoT scenarios will demand solutions 

capable of dealing with requirements that may change at any time. These solutions should 

provide features such as portability, scalability, and full decoupling capacity in order to support 

a complex and heterogeneous IT business environment which is composed of a wide variety of 

technologies integrated with enterprise systems. This makes the support solutions such as 

LAURA a strategic component for the deployment of IoT applications. 
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1.4 Research Hypothesis 

 
Based on the findings in the previous sections, some basic principles were defined and 

categorized into three dimensions as described below: 

Theory dimension: The conceptual and functional description of an architecture 

facilitates the understanding and especially the decoupling between the function of each layer 

with its respective modules, elements and the technological choices that can be made at the time 

of deployment according to the specific needs; 

Practice dimension: The definition of a deployment architecture and the development 

of real-world final Situation-Aware and Business-Aware, via some experiments and empirical 

evaluation, allows the conceptual architecture to be validade and acts as a proof of concept that 

can be implemented according to technological choices or specific interests; 

Relevance dimension: The final result of the proposed work should be useful, relevant, 

coherent and compatible with the business model of the company that intends to use the 

architecture. Thus, the proposed architecture must support good practice, the market reality and 

the corporate environment. 

Taking into account the context, motivations, and principles presented in the previous 

sections, the research hypothesis of this thesis can be formulated as following: 

A flexible, fully decoupled, general, and open source IoT architecture equipped with 

selected facilities, such as those proposed in this research work, can contribute to overcome 

the challenges of building real-world Situation-Aware and/or Business-Aware final IoT 

applications. Such architecture should promote the participation of multidisciplinary teams, 

in which each professional has well-defined roles and works on his/her specific leve of 

expertisel, according to his/her professional profile. 

 

1.5 Research Objectives 

 
There are three foundations that guide the objectives of this thesis: the conceptual 

support (theory), the deployment and experiments (practice) and the strategic interests of the 

business model (relevance). In this way, the General Objective (GO) of this thesis is to 

propose a conceptual IoT architecture fully decoupled in all layers, which does not require 

or depend on specific platform, middleware, framework, enterprise service bus, ecosystem 
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or tool, and that providestotal freedom and independence to modify, adapt or integrate any 

part of the architecture according to the specific needs of the stakeholders. 

Based on this GO the following Specific Objectives (SO) have been proposed: 
 

SO1: Specify a lean IoT reference model based on standard IoT models, such as IoT-

A and SSN (Bauer et al., 2013). 

SO2: Define an applied architecture, indicating the appropriate technological choices, 

including languages and systems needed to deploy IoT real-world applications based on 

LAURA conceptual architecture components; 

SO3: Put into practice the applied architecture, proposing real-world scenarios and 

applications in order to: 

(i) Evaluate the performance of LAURA in different traffic conditions to 

show how the proposed architecture is capable of supporting different 

application types with different requirements, 

(ii) Perform an Empirical Evaluation with developers to confirm the 

relative ease support of LAURA to simplify the development and 

deployment of final Situation-Aware and Business-Aware IoT 

applications. 

The ‘Lean’ aspects of LAURA architecture are made throung: (i) The use of a more 

simplified reference model focused on the most used aspects, abstracting concepts that are not 

commonly used in practice or in enterprise applications. For example, lower level aspects of 

node or network programming that are commonly deployed regards of the reference model; (ii) 

The architecture proposed that allows the execution of interactive applications and especially 

the reprogramming capability of the sensor nodes in a running network according to the 

performance evaluation that was accomplished. 

In order to achieve the previously stated objectives, it was necessary to develop the 

following Activities: 

A1: Develop a systematic mapping study in order to investigate modeling and automatic 

code generation solutions for IoT that use model-driven or business process approaches. Create 

a knowledge base of these initiatives. 

A2: Develop a systematic mapping study in order to investigate architectures that 

support the deployment of IoT applications and, at the same time, simplify the development 
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of final Situation-Aware applications such as LAURA architecture. Create a knowledge base 

of these initiatives. 

A3: Identify and delimit the context surrounding the problem domain. 
 

A4: Identify, characterize and classify the problems, opportunities, motivations, and 

approaches used by solutions found in A2; 

A5: Define the objectives of the proposed solution according to the investigations 

obtained in Activities `A3` and `A4`. 

A6: Design and develop the conceptual architecture and the deployment architecture 

according to the knowledge base obtained in Activities `A1` and `A2` and with the definitions 

made in activity `A5`; 

A7: Develop real-world IoT experiments and empirical evaluation to put into practice 

the applied architecture in order to produce proof of concept and evaluation of LAURA. 

A8: Evaluate the proposed architecture, verifying that it meets the requirements 

obtained by activity `A5` and from the results and tests obtained in Activity `A7`. 

 

1.6 Methodological Aspects 

 
The methodological support for the construction of this thesis was based on the theory 

and practice of Design Science Research (DSR) presented in (Hevner and Chatterjee, 2010). 

DSR is a research paradigm that aims to understand and explain a relevant design problem and 

its solution in order to create an innovative and useful ICT artifact in applications that meet 

some functional requirements. The understanding of a design problem is related to the 

knowledge that allows predicting how some phenomenon behaves. Three DSR cycles are 

defined to conduct any design problem project. Figure 2 presents an overview of the three DSR 

cycles with the indication of the thesis work activities planned for each cycle. 
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Figure 2 - Design science research cycles (Hevner and Chatterjee, 2010) with 
activities. 

 

The Relevance Cycle connects the contextual environment with the design science 

activities and defines the criteria for the evaluation of the results. The key aspect in this cycle 

is the identification and characterization of problems and opportunities in the domain problem 

environment. The Rigor Cycle is based on the existing domain knowledge base and must add 

new knowledge to this base through the obtained results. The rigor is related to the choice and 

application of appropriate methods and theories for the creation and evaluation of the produced 

artifacts. The Design Cycle is the kernel of any DSR project performing the most fundamental 

and difficult work. A consistent work in this cycle requires good arguments with a good 

evaluation of them based on the requirements (inputs from relevance cycle) until reaching the 

desired result. The DSR cycles defined for conducting this thesis will be presented below `. 

The Rigor Cycle is covered through the activities ̀ A1` and ̀ A2` The analysis and results 

of these activities is presented in (Teixeira et al., 2017b) and also in Chapter 2. These activities 

helped the identification of stakeholder roles and profiles used in related work and support the 

specification of LAURA architecture stakeholders roles according to the thesis objectives. 

The Relevance Cycle was made through the activities `A3`, `A4` and `A5`. The 

environment, domain problem and requirements were presented in the previously sections. 

These activities helped the definition of research challenges and contributions of this thesis 

The Design Cycle was made through the activities `A6` and `A8`. The analysis and 

results of these activities will be presented in Chapters 3, 4 and 6. 
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1.7 Organization of this Thesis 

 
The remainder of this thesis is organized in the following way: 

 

 

 Chapter 2. - Related Works and System Requirements: performs a systematic 

mapping review, which aims to identify similar work and identify research gaps, and 

presents the system requirements. 

 Chapter 3. - LAURA Architecture: presents the domain reference model and the 

specification of the proposed conceptual architecture. The chapter also presents the 

technologies, standards and languages used in the applied architecture. 

 Chapter 4. - Application Scenario, Experiments and, Empirical Evaluation: 

presents the application scenario used throughout this thesis, which is based on a real- 

world problem, i.e., the real-time monitoring of the quality of medical products. It 

also introduces the proof of concept of LAURA Applied Architecture, which is based 

on the proposed application scenario. Three experiments were developed, including 

a performance measurement experiment. The empirical evaluation of LAURA is also 

discussed in this chapter. 

 Chapter 5. - Conclusions: presents the final considerations, the research 

contributions, the connections with other studies, and future perspectives that point 

out where new investigations can be developed. 
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Chapter 2. Related Work and System Requirements 

 
In order to identify a more scientifically consistent and rigorous selection of related 

works for analyses and comparison in this thesis, a search was made within the same seven 

scientific digital libraries that we have used in our previous work (Teixeira et al., 2017b) and 

considered relevant sources of research in the IoT area. Those digital libraries are listed in Table 

1. 

Table 1 - Scientific Digital Library Sources. 
 

Scientific Digital Library Universal Resource Location 

IEEE Xplore http://ieeexplore.ieee.org 

ACM Digital Library http://portal.acm.org 

Science Direct http://www.sciencedirect.com 

Springerlink http://www.springerlink.com 

Web of Science http://www.webofknowledge.com 

Scopus http://www.scopus.com 

Compendex http://www.engineeringvillage.com 

 
The entire process of planning, searching, analyzing, refining, modifying and adapting 

the search string in order to obtain the selected papers helped to reinforce and confirm the initial 

hypothesis that, in the scientific literature, there are few architectures with properties or 

characteristics that are similar to the LAURA conceptual architecture proposal. Thus, this 

process follow a mapping protocol in order to identify the related works in a consistent way 

(Kitchenham and Charters, 2007; Kitchenham et al., 2011). The spreadsheet containing the 

entire systematic review process is available in the 'Related-works-Systematic-Mapping' 

repository of the LAURA project at GitHub (Teixeira et al., 2017a). 

This mapping study helped to confirm the importance, effectiveness and relevance of 

the properties and elements proposed in this conceptual architecture, indicating real possibilities 

for future modifications and improvements that would permit the addition of new layers, 

elements and concepts. For example, the inclusion of the `Fog Layer` in the conceptual 

architecture was the direct result of the analysis process of the selected papers (Aazam and Huh, 

2014; Al-Doghman et al., 2016; Bonomi et al., 2012; Chen, 2017; Chen et al., 2017; Hu et al., 

2017). This, in turn, demonstrated the flexibility, adaptability, decoupling and freedom that 

LAURA conceptual architecture provides. 

In order to obtain a search string capable of identifying relevant studies, three pilot tests 

were performed using the IEEE Xplore. This is considered to be the source that returns the 

http://ieeexplore.ieee.org/
http://portal.acm.org/
http://www.sciencedirect.com/
http://www.springerlink.com/
http://www.webofknowledge.com/
http://www.scopus.com/
http://www.engineeringvillage.com/
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largest number of results related to this area of study (Teixeira et al., 2017b). The spreadsheet 

containing the stages, raw data, information, records and the analysis of the systematic protocol 

used in this study are available in the 'Related-works-Systematic-Mapping' repository of the 

LAURA project at GitHub (Teixeira et al., 2017a). The mapping spreadsheet protocol has five 

tabs. The Planning tab indicates the objectives, the Search String used in the advanced or expert 

options of each digital library, the selection criteria used and some relevant information. There 

is a tab for each ‘Stage’ of the mapping protocol that follows the same methodology used in the 

previously developed mapping study already mentioned. 

Pilot Test 1 was performed on August 2, 2017 using the search string ("Internet of 

things") AND ("Architecture"). The search returned a total of 2,815 publications. After 

completing Stage 1 and reviewing 35 papers in Stage 2, it became clear that this search string 

was too broad to obtain relevant works and therefore new terms were introduced in order to 

refine the search results. 

On August 7, 2017, Pilot Test 2 was performed with more specific search strings. New 

terms were added, reducing the number of unrelated papers in the search results. For example, 

the string "Context-aware" AND "Internet of Things" AND "Architecture" has returned 93 

papers; the string "rule-based" AND "Internet of Things" AND "Architecture" has returned in 

16 studies. A total of 118 publications has been analyzed in Pilot Test 2. 

Both Pilot Tests 1 and 2 have returned publications that had either no relevance at all 

to the objectives of LAURA architecture, or were general architectures, with no support for 

the deployment of situation-aware or business-aware final IoT applications. Some of them do 

not address aspects related to the physical layer or lower levels. In addition, some studies also 

do not present enough information for an analysis or comparison with the proposed 

architecture. This can be verified in (Gong et al., 2012; Mainetti et al., 2015). In other cases, 

it was verified that some studies are dependent on a specific middleware (Cardozo et al., 2016; 

d. Matos et al., 2015; Mathes et al., 2009), framework (Barbero et al., 2011; Carlson et al., 

2012; Ta-Shma et al., 2018), enterprise service bus (Prado et al., 2017), or focus only on higher 

level aspects (Mormul et al., 2017) in their solution. These results demonstrate the need to 

enrich the search with more specific terms to effectively obtain publications related to the 

objectives and characteristics of LAURA architecture, particularly its vocation for the use in 

CPS scenarios. 

The initial search string was inspired by previous mapping study already mentioned. It  
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was divided into three parts, but in practice, it is a single string. Part 1 (left side) contains the 

terms related to the IoT. The central part has the term "Architecture" and the third part (right 

side) the terms related to the ‘Situation-Aware’ or ‘Business-Aware’ applications terms. 

For Pilot Test 3, a new search string was written inspired on Part 1 search string that 

had obtained effective results and included the terms “cyber-physical”, "Architecture" and other 

terms related situation/context-aware applications. This was tested in IEEE Xplore on 

September 16 and 17, 2017. In the following, the search string and the results obtained will be 

presented: ("Wireless Sensor" OR "Cyber-physical" OR "Sensor networks" OR "Actuator 

Networks" OR "Internet of Things" OR "Web of Things") AND ("Architecture") AND 

(("Situation") OR ("Context-aware") OR ("Context aware") OR ("rule-based")) returned 465 

results from IEEE Xplore on September 16, 2017. In Stage 1, the results were recorded 

including the source, publication year and the title. Stage 2 started with assignment of an ID 

number for each paper and the reading and analysis of the titles and abstracts in order to 

eliminate any non-relevant papers that did not fit the selection criteria described in the 

spreadsheet (Teixeira et al., 2017a), leaving a total of 129 papers. In Stage 3, an analysis of the 

full paper was conducted using the same selection criteria as in the previous stage, leaving a 

total of 2 selected papers. The search string was considered effective in obtaining the required 

results and was then applied to the other digital libraries. 

It is important to note that adaptions were made according to the advanced search 

requirements for each source. All the adapted search strings are available in the ‘Planning’ tab 

of the previously cited spreadsheet. At each stage, a review of the results was conducted by the 

co-authors in order to minimize bias as much as possible. Despite the large number of papers 

that were identified in the search, there may still be publications that use non-standard terms, 

and therefore, were not returned. 

The final search string was used to search all the digital libraries and the selection 

criteria (Teixeira et al., 2017a) applied to obtain the final list of selected papers. A total of 7,656 

publications were returned: 465 from IEEE, 257 from ACM, 66 from Science Direct, 376 from 

Web of Knowledge, 731 from Scopus, 764 from Compendex and 4,996 from Springerlink. This 

process followed the stages described in the spreadsheet mentioned above and they were 

executed in September 16 and 17, 2017 and then an update was made from 2017 until may 

2019. 
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2.1 Related Work discussion 

 
We have analyzed related work on the light of the Domain Challenges (DC) identified in 

Section 1.3. This analysis is summarized in Table 2, as described following in section 2.2. 

Papers will be identified with a ‘#’ and an ID number to facilitate visualization in Table 2. 

The work presented in (Bai et al., 2007), identified as #01 in Table 1, presents a 5- layered 

architecture as follows: abstract hardware, service registry, context model, reasoning and 

application. The architecture also includes two cross-layer modules: one on energy management 

and another on supporting service-oriented, programmable context-aware applications in 

various scenarios, using heterogeneous devices and a synchronization method to ensure 

sensitivity to context changes. The dynamics of the solution follows an agent-oriented approach, 

i.e. an agent is created for each registered device. Agents become pro-active and capable of 

perceiving context event changes, which are inserted into a Rule-Based System for further 

inferencing. Another interesting functionality of this work is its energy efficiency capabilities, 

implemented by means of the Energy Optimization Module. This component implements 

techniques to save energy and unnecessary network traffic based on system’s situations 

(context). With respect to the DC, this work does not address DC1, DC2 and DC3. It only 

partially tackles DC4 by providing support to different hardware platforms through the “abstract 

hardware” layer. It also provides support for data storage by means of the Working Memory 

component as part of the Rule-Based System and fails to present information about how they 

deal with aspects related to the DC4. 

Paper (Choi and Rhee, 2012), identified as #02 in Table 1, presents a distributed Semantic 

Sensor Web Platform (SSWP) aiming at simplifying information processing through three 

levels: (i) aggregating raw data via Smart Gateway (SG) components and multiple interfaces; 

(ii) context virtual sensor descriptions, which are generated by SGs in order to make smart 

decisions and (iii) inferred context information (also known as situations) based on events 

received from multiple context providers and SGs. The paper applies the solution in an 

irrigation system scenario in which irrigation is activated based on data collected from sensors 

spread over the crop. The system is also capable of taking smart decisions based on events 

provided by external context providers such as changing truckers´ routes due to poor weather 

conditions and/or accident reports. Another interesting aspect of this work is the separation of 

semantic services from domain services by means of multiples SGs using (i) management 

functions such as aggregation, discovery and history management; (ii) brokering functions such 
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as service discovery, registry and abstraction; and (iii) storage and inferencing functions with 

ontology and rule-based systems. With respect to the DC, this work does not address DC1 and 

DC2. DC3 is partially addressed by means of the proposed architecture and its components, but 

it does not define which stakeholders are involved and their role in the development of 

applications. DC4 is almost fully addressed by means of SGs. 

The work discussed in (Jara et al., 2014), identified as #03, presents the “Digcovery” 

architecture, a global resource discovery and service-oriented framework aimed at facilitating 

the deployment of context-aware applications. This architecture deploys mechanisms to allow 

users to register sensors to discover various kinds of resources based on geo-location, resource 

types and mobile platforms. The architecture allows these external resources to interact with a 

scalable and elastic search engine in order to allow high complex queries (serialized as JSON 

messages) to be efficiently executed (with low response time). To achieve these objectives, the 

following strategies are proposed: (i) the integration of different kinds of systems, technologies 

and standards such as IPv6, 6lowPAN, EPC and legacy devices to transform any kind of service, 

device or resource into a semantic interoperable format via a JSON API; (ii) the use of a 

Digcovery component, which is a centralized point to manage and discover resources and 

services. This component is based on a common ontology and profiles from the IP-enabled 

smart objects alliance (IPSO) compatible with DNS-SD types to interoperate with final 

applications through standard API such as DNS, CoAP and REST APIs; (iii) the use of an 

ElasticSearch component to collect unorganized data from different directories in order to filter 

services and to integrate these services with different types of resources. This aims to provide 

methods to form a global organized lookup service capable of efficiently managing a distributed 

and heterogeneous set of repositories, filtered by resource type (e.g., temperature). This paper 

does not address DC1, DC2 nor DC3. DC4 is partially addressed by means of the Digcorevy 

Core APIs and Discovery Protocols components. 

The work discussed in (Kuo et al., 2008), identified as #04, proposes a heterogeneous 

middleware architecture and an open platform to develop context-aware applications based on: 

(i) a SensorInfo gateway component capable of hiding hardware discrepancy and deploying 

web-based API to facilitate the development of context and location-based applications; (ii) 

Location-based services capable of providing location estimation for the developers from 

different positioning systems; and (iii) Remote update features in order to support the update of 

sensor mote images from a web interface according to each platform. This work does not 

address DC2 and partially addresses DC1, DC3 and DC4. DC1 has been addressed by means 
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of the remote update features provided by the platform. DC3 has been addressed by means of 

the fully decoupled nature of the components and services of the architecture. Finally, DC4 has 

been addressed by the SensorInfo Gateway, but it fails to present information about how they 

offer APIs to final applications. 

The work presented in (Paphitou et al., 2015), identified as #05, introduces a generic context-

aware architecture featuring: (i) a Sensor set component capable of connecting different sensor 

platforms with a variety of context sensors; (ii) management application facilities, to offer 

services to develop context-aware via an exposed API; (iii) RESTful services, to support Web 

Services operations such as addition or deactivation of specific sensors; (iv) flexibility with 

respect to sensor configuration to change measurement frequency according to users’ 

requirements; and (v) information provisioning according to the sensors connecting to 

corresponding boards. This work does not address DC1, DC2 nor DC3. It tackles DC4 by 

supporting various types of platforms by means of exposed WSs. In addition, since RESTful 

services are supported, it facilitates the integration of external sensors. 

The work presented in (Cubo et al., 2014), identified as #06, proposes a Cloud-based service-

oriented platform to manage and orchestrate heterogeneous devices according to their behaviors 

based on the following strategies: (i) a lightweight model to characterize device behaviors, 

organize communication messages, and to compose devices using the concept of devices as 

services. In order to promote interoperability among devices, message exchange is realized via 

gateway in a generic and standardized manner; (ii) a web-based approach by means of an 

external cloud-based API; (iii) combination of devices via gateway according to their 

complexity or specificities; (iv) a discovery service, to discover, manage and orchestrate the 

interaction among devices based on specific scenario requirements; (v) a behavior-aware 

orchestration method to deploy a cloud-based (Google Cloud Platform) approach in order to 

use the concept of devices as services. Service subscriptions are based on standard languages 

such as WSDL, SOAP, WS-Discovery and SOAP-over-UDP and are used to manage event 

channels, which run on top of a protocol stack from IPv4, IPv6 and IP multicast network layer 

until SOA applications. This paper fails to address challenges DC1, DC2 and DC3. It 

contemplates DC4 given it provides a strong framework to deal with device heterogeneity. 

The work discussed in (Corredor et al., 2011), identified as #07, presents a Knowledge- Aware 

and Service-Oriented (KASO) ontology-based middleware to enable the development and 

deployment of real-world applications via common API services in the Cloud. By means of 

these services, sensors and actuators can be registered with a network hierarchy to minimize 
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the complexity of underlying mechanisms, such as resources allocation, orchestration, and 

service discovery. This work uses protocols, services and other mechanisms to enable the 

deployment of business process applications according to the following strategies: (i) 

minimizing service overhead via lightweight protocols and optimized service-orientation; (ii) 

reducing costs with ‘plug and play’ discovery mechanisms, which minimize manual node 

service configuration work; (iii) orchestrating resource-aware services to allow dynamic 

resource allocation to optimize resource allocation according to current situations; (iv) simple 

programming in order to simplify the development of complex scenarios for business process 

applications. This work does not address DC2 and DC3. It approaches DC1 given it provides 

ways for the development of final IoT applications. However, this work’s approach does not 

take into account the possibility of remotely changing the node code applications behaviors 

during system runtime, when considering the dynamic and constant changes in business rules. 

DC4 is addressed through the semantic-based framework, as previously discussed. 

The work discussed in (Avilés-López and García-Macías, 2009), identified as #08, proposes 

TinySOA, a service-oriented architecture capable of integrating external applications and 

facilitating the use of sensor networks to create abstractions at the level of Web Services (WS). 

The approach is based on a centralized server that incorporates the gateway, database, and 

communication functions, which define web services for accessing external applications and/or 

gathering data directly to/from the sensor network nodes. The architecture defines the following 

components: (i) node, to encapsulate sensing node functions, using well-known approaches to 

deal with node topology such as service discovery to promote hardware identification of sensing 

capabilities, actuator control and abstraction of hardware low-level aspects; (ii) gateway, to 

aggregate sensor node capabilities; (iii) registry, to store information about the infrastructure, 

user events and task management information to define how node data should be read; (iv) 

server, which acts as a web service provider, offering interfaces for each supported network and 

sending commands to network without the use of task management. This work does not address 

DC1, DC2 and DC3. It tackles DC4, but it fails to present information about the available APIs 

to final applications. 

The adaptive Web of Things (WoT) convergence platform proposed by (Yu et al., 2016), 

identified as #09, presents a global mechanism to help user communication through the Web or 

external applications based on a common semantic or non-semantic data in order to facilitate 

device interoperation. IoT devices in this platform define HTTP Rest interfaces. The platform 

is composed of: (i) registry, to support data conversion among non-semantic data and 
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support for semantic translation based on technologies such as RDF and SPARQL queries; (ii) 

retrieval and recommendation, to maintain virtual nodes and their data, including data 

synchronization services. This component also implements recommendation capabilities; (iii) 

ubiquitous process management (UPM) and engine, responsible for resource identification, 

services mashup with smart devices, thing-to-thing communication, and thing monitoring 

capabilities for collaboration. This work does not address DC2 and DC3. DC1 is partially 

addressed through the global mechanism to facilitate communication and DC4 is addressed by 

means of platform components previously presented. 

The work presented in (El-Mougy et al., 2019), identified as #10, presents features, concepts 

and aspects that address several of our DC. The approach is based on a conceptual architecture 

consisting of 4 layers (sensing, fog, Core and Application/services layers) that together fulfill 

requirements to develop personalized scalable IoT networks. The main goal is to offer 

optimized techniques to allocate the most appropriate application sensing resources considering 

dynamic requirements (such as unpredicted user needs). The following strategies are proposed: 

(i) virtualization of physical sensors networks (similar to VM-based approaches) in order to 

facilitate the dynamic allocation of resources through optimization algorithms, resource 

discovery, and application decomposition. Application decomposition is required when 

problems in the sensing layer occur (such as a physical defect or a security/privacy breach) or 

when resources need to be reallocated to meet changing requirements; (ii) migration of 

applications to the so called “Fog layer” in order to meet specific requirements, or when there is 

a more rigid latency requirement. The approach is capable of using various meta-information 

(such as data precision and freshness) to decide the best application deployment environment 

(such as the Cloud or the fog layer) considering these dynamic data; (iii) using information- 

centric networks to tackle mobility and traffic congestion requirements through pub/sub event- 

based mechanisms to provide proactive caching; (iv) supporting artificial intelligence and 

context awareness approaches to leverage mobility prediction, cognitive networking and 

adaptive duty cycling. These mechanisms allow, for example, reprogramming sensors 

according to users’ requests to meet changing application requirements. This work does not 

address DC1 and partially addresses DC3. It is the only one of the related works to address DC2 

by means of the Core Networking and Fog layers. DC4 is addressed by means of the optimized 

techniques and strategies previous presented. 

The context-aware system platform for Industrial IoT (IIoT) proposed by (Alexopoulos et al., 

2018), identified as #11, presents an infrastructure to support decision making for mobile 
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and static users organized as follows: (i) the context information layer based on an ontology 

model to dynamically support changing of applications and user contexts using standards such 

as UML, the Web Ontology language (OWL) and REST interfaces; (ii) the event-driven 

architecture (EDA) layer to support heterogeneous communication and decoupling aiming to 

facilitate the management of complex systems with independent features; (iii) the enterprise 

layer to provide business specific services which are key to reducing assembly errors and 

production costs, such as: services to help locate people on the factory floor to improve work 

task allocation and execution, and, to track available material and errors reports during the 

production process in order to support expert proactive actions. This work does not address 

DC1 and DC2 and partially addresses DC3. DC4 is addressed by means of the Event-driven 

approach and through the integration layer. 

 

2.2 System Requirements 

 
The previous section allows us to refine our challenges in terms of essential requirements that 

should be fulfilled by our solution (the LAURA architecture). Papers #7 and #9 tackle DC1 by 

offering infrastructures that support the deployment of business-oriented IoT applications. The 

IoT solution should offer facilities for BP modeling in a way in which the BPM Expert does 

not have to know the lower level aspects. Since this is a relevant feature for most of the scenarios 

we are interested in (Figure 1) we derive our first requirement R1: the architecture should 

define functions to allow easy deployment of business-aware IoT applications. 

DC1 has been (partially) addressed by papers #4, #7 and #9. Paper #4 introduces remote node 

update features which are interesting solutions to deal with dynamic business environments in 

order to avoid manual work. The use of VM-based WSN platforms, that have light-weight code-

dissemination functions, make the maintenance of the solution easier, avoiding manual node 

code reprogramming. Based on this, we derive another system requirement R2: the 

architecture should include mechanisms to allow remote reprogramming to cope with 

ever changing business environments. 

Paper #10 tackles DC2 by offering support for the deployment of fog-oriented IoT applications 

with facilities to (i) avoid unnecessary data being sent to final applications; and (ii) provide 

response time required by real time or critical applications, such as smart traffic application to 

make real-time decisions about traffic routes. In addition, they must be able to 
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deal with large quantities of data to process, infer, aggregate, compose and make temporal 

correlations. In this way, we define the system requirement R3: the architecture should 

provide mechanisms and features to deal with fog computing paradigm. 

All the papers partially tackle DC2 by offering support for the deployment of context- aware or 

situation-aware IoT applications, since this is a requirement for the search and selection of the 

related works. It is desirable that solutions offer facilities to support a user- friendly language, 

using the “situation” abstraction to represent situations as they occur in the real-world and also 

support the specification of situations decoupled from the low-level aspects. Thus, we define the 

system requirement R4: the architecture should provide mechanisms and features to allow 

the deployment of situation-aware applications. 

DC3 has been (partially) addressed by papers #2, #4, #10 and #11. No paper introduces 

mechanisms to reduce node processing by moving some operations or processing that are 

commonly performed on the nodes to the upper layers. Based on this, we define system 

requirement R5: the architecture should include components or mechanisms to reduce 

node processing. 

It is desirable that IoT solutions promote the engagement, adhesion and the definition of 

stakeholder roles compatible with those found in the market. In complex solutions that demands 

the participation of multiple stakeholders and multidisciplinary teams, this should be 

encouraged by the platform, however, each professional should have well-defined roles 

according to the profiles that can be commonly found in the labor market. Facilities to 

engagement and adhesion of stakeholders working on their specific abstraction levels have been 

addressed by papers #2, #4, #10 and #11. The solutions include the use of ‘Separation of 

Concern’ applied to the levels of abstraction compatible with professional profiles that are 

commonly found in the labor market or the use of a BPM-based approach to generate node 

codes in order to facilitate the work of the professionals working at the highest level layers of 

abstraction. Thus, we define system requirement R6: the architecture should provide 

facilities for the engagement of multidisciplinary stakeholders according to well-defined 

professional profiles. 

DC4 has been (partially) addressed by all papers by means of flexibility and freedom to use 

different WSN hardware platforms or IoT devices. Usually, companies adopt the solution that 

best meets their needs. The adopting of VM-based devices or WSN facilitates the adoption of 

new hardware platforms due to the fact that the programming language and OS system remains 
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the same. Incorporating a new platform is necessary to adapt the radio communication and 

sensor components according to the VM-based approach used. From these aspects, we define 

system requirement R7: the architecture should support different devices or hardware 

platforms. The use of decoupled and flexible gateways provides portability by offering support 

or facilities for using new platforms that are not yet used by the architecture. In this way, we 

define system architecture R8: the architecture should support portable data 

communication gateways to allow the use of new devices. 

Paper #3 is the only one that doesn't support facilities to store sensed data, which is an important 

feature to allow data analysis over periods of time, as it may be necessary to analyze data 

behavior over time window intervals to identify situations. Thus, we define system architecture 

R9: the architecture should support data storage. 

Papers #2, #3, #5, #6, #7, #9 and #11 provide support to the deployment of decoupled final IoT 

applications via REST API and paper #11 provides the same support via a Pub/Sub API. 

Business IT environments are usually heterogeneous, complex and prefer the use of cloud 

computing. The stakeholders, who are responsible for the development of final applications, 

must deal with many high-level aspects affected by those that work on the lower levels aspects. 

The use of user-friendly communication interfaces and well-established standards, with full 

decoupling of lower level technical aspects, is a strategy that can be used to allow flexibility for 

the deployment and integration of final applications for IoT solutions, according to business 

needs. In this way, the stakeholders only need to know the communication methods, patterns 

and formats available to access the data through the APIs. From the above aspects, we define 

system requirement R10: the architecture should provide facilities and freedom for the 

deployment of a range of decoupling final real-world IoT applications. 

Table 2 presents an analysis of the domain challenges (DC) and the corresponding system 

requirements, considering the related work. Some of the requirements marked with ‘no’ mean 

that they were not identified or there was not sufficient information available in the study to 

reach a conclusion. In these cases, when it was partially addressed in the paper, the cell contains 

a description of what was found. For example, (Choi and Rhee, 2012) did not refer to or specify 

if processing occurred. Therefore, it was considered as a ‘no’, as the proposal did not describe 

or identify if the data were previously processed or not. 

Aspects related to the treatment of context-aware or situation-aware issues were not 

characterized in Table 2, as it was considered a prerequisite for the selection of related works 

that is well characterized in the systematic mapping performed and available in the spreadsheet. 
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Therefore, all related work somehow deals with context-aware aspects. 

 

Table 2 - Domain Challenges and System Requirements. 
 

Domain 
challenges 

Requirements #01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 

 
 
 

DC1 

 

R1 

 

No 

 

No 

 

No 

 

No 

 

No 

 

No 

 

Yes 

 

No 

 

Yes 

 

No 

 

No 

R2 No No No Yes No No No No No No No 

DC2 
R3 No No No No No No No No No Yes No 

R4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

DC3 
R5 No No No No No No No No No No No 

R6 No Yes No Yes No No No No No Yes Yes 

 R7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
 R8 Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes 
 R9 Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes 

 
DC4 

  
Yes, 

but 

Yes, 

but 

 
Yes, 

but 

Yes, 

but 

Yes, 

but 

 
Yes, 

but 

Yes, 

but 

only 

Pub/ 

Sub 

API 

Yes, 

but 

 R10 No only only No only only only No only only 
   REST REST  REST REST REST  REST REST 

   API API  API API API  API API 

 

The entire process of planning and analyzing the papers to obtain the selected papers 

together with the analysis and discussion of related works helped to reinforce and confirm the 

initial hypothesis that, in the scientific literature, there are few architectures with properties or 

characteristics that are similar to the LAURA conceptual architecture proposal. 

The mapping study performed helped to confirm the importance, effectiveness and 

relevance of the properties and elements proposed by LAURA conceptual architecture, 

indicating real possibilities for future modifications and improvements that would permit the 

addition of new layers, elements and concepts. For example, the inclusion of the `Fog Layer` 

in the conceptual architecture was a direct result of the analysis process of the selected papers 

(Aazam and Huh, 2014; Al-Doghman et al., 2016; Bonomi et al., 2012; Chen, 2017; Chen et 

al., 2017; El-Mougy et al., 2019; Hu et al., 2017). This, in turn, demonstrated the flexibility, 

adaptability, decoupling and freedom that LAURA conceptual architecture provides. 

The analysis of each stage in the systematic mapping protocol, revealed that many 

studies present architectures that focus on a domain-specific problem (Hilal and Basir, 2015) 

or architectures that were designed for specific kinds of final applications (Jantunen et al., 2008; 

Zirpins, 2016). Some studies concentrate on the low-level (Sánchez López et al., 2012; Shu et 

al., 2016) or high-level aspects (Frömel and Kopetz, 2016; Happ et al., 2017) and others present 
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similar focus at the context/rule layer to the one proposed in the LAURA architecture (Da et 

al., 2014; Fonseca et al., 2016; Forsström and Kanter, 2014) although do not offer the flexibility 

and the full control of complex situations present in the entire LAURA architecture. In 

summary, this systematic related work analysis has shown that few studies present an equally 

streamlined and integrated approach that is geared to meet full multi-layer facilities. LAURA 

design, on the other hand, aims to simplify the development of situation-aware and business- 

aware IoT applications. 
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Chapter 3. LAURA Architecture 

 
This Chapter presents the design of LAURA architecture. The stakeholders that interact 

with LAURA, the proposed domain reference model, and the components of LAURA 

conceptual architecture are then described. The Chapter also elaborates on the technological 

issues and the choices made for the development of LAURA applied architecture. 

 

3.1 Stakeholders 

 
It is important to define the role of the stakeholders in any software project, especially 

those that are more complex and demand the participation of multidisciplinary teams. This is 

due to the fact that every stage, in the development, deployment, and maintenance of an IoT 

solution, is directly influenced by each stakeholder`s approach to the project. In the creation of 

a solution, the architecture will be influenced directly and in accordance with the requirements 

and the role that each stakeholder will play in the solution (Rodrigues et al., 2015; Tei et al., 

2015). 

One key aspect that facilitates the deployment of an architecture is that the roles are 

compatible with the professional profiles that can be found easily in the workplace. By 

decreasing the cognitive effort needed in the deployment of a solution, less training is needed 

for stakeholders, making this a more attractive option for the decision makers within a business 

context. When this is not taken into consideration, stakeholders may be required to take on roles 

that are not within their profile or demand additional knowledge. For example, Rodrigues 

(Rodrigues et al., 2015) defined the Domain Expert as a professional with basic software 

development skills, mainly in modifying UML models and the WSN expert was required to 

have the profile of a software developer. In theory, this approach is conceivable. However, 

considering the reality of the IT Business scenario, the level of training required to prepare 

employees to fit these roles, makes this approach less attractive in a business context. 

Another example, Tranquillini (Tranquillini et al., 2012) works under the assumption 

that the Domain Expert will have knowledge in BPM/BPMN as well as basic, low-level IoT 

knowledge. In addition, it is also necessary to have knowledge in modeling and automation 

process in BPMS solutions. This professional profile, however, is not commonly found in the 

labor market. It is also expected that the IoT Expert will have knowledge of software 
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development and the ability to make low-level programming or adjustments according to the 

IoT hardware platform used. In the real-world labor market, it is also uncommon to find 

someone with this level of BPMN knowledge. 

The above examples show how a design strategy can influence or complicate the use of 

an IoT architecture with similar characteristics to LAURA architecture. Its acceptability and 

feasibility to be adopted as a solution on large scale domains will depend greatly on the ease 

with which professionals can be found in the real-world market to fill the defined roles. 

Architectures that are based on common profiles are likely to be received favorably and 

help to reduce the lack of IoT professionals in the market. This, in turn, may contribute to the 

universalization of the development of an IoT solution within a real-world context that will 

continue to experience growth in the next few years. The following paragraphs describe the 

roles and profiles of stakeholders that were defined for the proposed architecture. 

The Domain Expert normally has training or experience in the field that the IoT solution 

will be applied in order to solve a specific problem. Domain Experts represent the group of 

people who will benefit most from the results that the IoT solution will provide. For example, 

the experts could be doctors, engineers, nurses, pharmacists, biologists, oceanographers, etc. 

Thus, this professional is one of the main users or interested in the IoT solution and, at the same 

time, is a member of the development team in order to assist or contribute with technical aspects 

of the domain problem to help the other stakeholders. It is expected that these professionals do 

not have any knowledge about the IoT platform or systems. 

The WSN or IoT specialist is defined as the IoT Expert, the professional specialized in 

IoT and who has knowledge of the different components in a solution, such as hardware 

platforms and the software that will be used. They are expected to have low-level programming 

knowledge such as the ability to manually program node codes. Furthermore, when using an 

automatic node code generation approach, these professionals may have some background 

knowledge and they only need to make small adjustments to the node code sensor. 

The BPM Expert is a specialist in BPM who has practical experience with BPMN 

modeling and business process automation with the use of BPM systems. He has superficial 

knowledge of IoT, similar to what has been described above for the Domain Expert, and also 

hold basic programming skills. 

The specialist in information systems is defined as the System Expert. He/she is the 

Information System Development Manager who, in many cases, performs the role of Software 
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Engineer. This professional is normally the Team Leader on IoT projects, providing supervision 

and support for the other stakeholders. The System Expert is required to have knowledge of IoT 

that is equivalent to the description of the Domain Expert. Depending on the size of the 

company, this professional may also perform the role of the BPM expert. 

The specialist in rule or situation design is defined as the Situation/Rule Expert, 

responsible for the creation of the rules and situations that will be used for the SituationAware 

final solutions. Finally, the System Operator usually works closely with the support of Domain 

Expert to get support for the use, management or operation of a IoT solution. This role is 

typically held by a technician or the person responsible for supervising and running the solution. 

He/she performs the required tasks to meet the needs and objectives of the solution, such as 

monitoring and reporting on the results obtained. 

The LAURA architecture design was made to support the professional profiles 

described above. In this way, the architecture aims to promote the involvement of 

multidisciplinary teams to simplify the work of those responsible for the development of the 

final IoT solution. 

 

3.2 LAURA domain reference model 

 
Figure 3 presents the LAURA domain reference model. The proposed model was 

inspired by previous initiatives such as IoT-A (Bauer et al., 2013), Butler and FI-WARE (Butler 

Consortium, 2013), IoT-lite (Bermudez-Edo et al., 2017), and SSN (Compton et al., 2012). The 

model offers stakeholders a lean and useful artifact that promotes a common ground of 

understanding of the abstract concepts, properties, attributes, relationships and semantics, 

necessary to develop their own version of LAURA applied final IoT solution, according to the 

requirements and specificities of the company domain problem. 

The proposed domain reference model is divided into two parts or visions that 

complements each other. The blue highlighted elements represent the concepts addressed in the 

‘Physical’ and ‘Core’ layers of LAURA architecture and the green highlighted elements 

represent the concepts addressed in the ‘Fog’, ‘Situation/Rule’ and ‘Application/Business 

Process’ layers. 
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Figure 3 - LAURA domain reference model. 

 

The blue highlighted elements represent the virtual view of things, devices, entities and 

other related virtual artifacts. The focus is to represent the general concepts used in the ‘Core’ 

layer. The lower level concerns related to hardware aspects, such as the type of device, sensor, 

tag or actuator, are not addressed by the domain model. 

The ‘Sensing Device’ is the virtual representation of a device, with sensors, that has a 

single identification ‘key’, defined as key and a ‘descriptor’ that helps the stakeholder to 

characterize its purpose or utility, e.g., ‘Living-room controller’, ‘Claire's mobile phone’, ‘Store 

Beacon’. The ‘Sensing Device’ can add one or more ‘Observed Properties’ that can be any 

property, quality or attribute that a ‘Sensing Device’ is able to observe or collect, for example, 

a temperature observation, humidity or location. 
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An ‘Observation’ is a set of values or physical world magnitudes identified for a certain 

property at a specific time. An observation of geolocation, for example, has, at least, two pairs 

of ’keyvalue’, latitude and longitude, respectively. Frequently, the magnitudes captured by 

´Observations´ are transmitted periodically in temporally ordered series (streams of data) with 

their respective ‘ObservableProperties’. An ‘ObservableProperty’ represents a topic that can be 

measured over time with shared conditions like source/sensor origin, measurement unit, 

accuracy. Examples of ‘ObservableProperty’ are the temperature of a specific place or area, the 

location of an certain individual, etc. ‘ObservableProperties’ and its stream of values can be 

available or “exposed” by means of ‘endpoints’ via an API. 

It is possible to associate characteristics or metadata, according to the necessity or 

preference of the stakeholder, in any instance of the blue highlighted entities. The ‘metadata’ 

has a ‘name’, ‘value’ and ‘kind’. Following this, some examples of ‘metadata’ values are: 

‘name’="devicemodel", ‘value’="MTM-CM5000-MSP", ‘kind’="String" (used to identify a 

device model); ‘name’="unit", ‘value’="Celsius", ‘kind’="String" (used to identify the 

magnitude unit of an ‘ObservedProperty’) and ‘name’="precision", ‘value’="0.3", 

‘kind’="Double" (used to define the precision of an Observation). 

The green highlighted elements are related to the concepts addressed in the ‘Fog’, 

‘Situation/Rule’ and ‘Application/Business Process’ layers. 

An 'Entity' is a virtual representation of a real-world individual, it is composed by 

properties and contexts ('Context') which are of the stakeholder’s interest. An 'Entity' must have 

a ‘key’ for a unique identification. In addition, it has a descriptor for human-friendly 

characterization, and a kind to designate its type, class or scheme. The tuple (50303, "Sergio", 

"Person") is an example of 'Entity' with its values referring to attributes ‘key’, ‘descriptor’ and 

‘kind’, respectively. An 'Entity' may present a set of 'Attributes', values that belong to an 

individual or thing that remains unchangeable during the existence of its owner in the 

application or scenario. A valid example of an 'Attribute' associated with the 'Entity' previously 

suggested would be (label = "birthday", value = "1987-03-16", type = "datetime"). 

A 'Context' makes up the state-of-affairs of an 'Entity', characteristics of an individual 

that are submitted to changes in the environment that it is inserted. The green highlighted 

elements are based on (Dockhorn Costa, 2007) and use a similar classification when 

distinguishing 'Context' in 'Intrinsic' and 'Relational'. An 'IntrinsicContext' represents properties 

that relate only to your bearer, e.g., "temperature", "location", "mood". A 'RelationalContext' 
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constitutes states shared between one or more 'Entity'. Good examples are "friendship", 

"proximity", "containment", "ownership", and so on. In both classifications ‘Context’ must 

have a key and kind, e.g., (key = "temp50303", kind = "Temperature"), (key = "prox50303- 

45231", kind = "Proximity"), and in such 'RelationalContext' it must be given a specific role or 

part within the relation to entities, like in an "ownership" context, one is expected to be labeled 

as the owner and the other one labeled as the owned. A 'RelationalPart' class helps in qualifying 

those participations. 

Besides its intrinsic or relational characteristics, every 'Context' has a relation with a 

‘ContextValue’ which represents its current state, quite similar to an 'Observation' in the 'Core' 

layer, in the sense that it's a temporal construct, a point-in-time event, and may present a 

composite of key-value pairs, a set of 'Entries', as it can be seen in Figure 3. 

The link between the 'Core' and 'Application/Business' layers is made by exposing 

contexts and observing properties of the 'Core' layer. This can be seen in the connection between 

'ContexSubscription' and ‘ObservableProperty’. The proposed model allows an association of 

a certain 'Context' to the consumption of streams of 'Observation', produced directly by 

'ObservableProperty'. Once the 'Context' is defined, it is possible to associate the 

'ContextSubscription', whose purpose is to maintain a subscription through an endpoint that 

refers to the URL or URI in which a particular 'ObservableProperty' was exposed. The technical 

characteristics related to how this link, subscription or observation should be performed are not 

part of the scope of this reference model. Furthermore, in the `ContexSubscription`, the 

stakeholder must be able to define a window rule in order to establish a time window to be used 

by the consumed part in order to interpret and send the 'Observation' group of interest. For 

example, it is possible that the consuming part needs to perform some pre-processing, such as 

an aggregation operation over a value of the last N 'Observation' (length window) or even 

'Observation' occurred in the last 10 minutes (time window). The applications of these 

operations are defined by means of a 'Formula'. 

 

3.3 LAURA Conceptual architecture 

 
The design of the conceptual architecture was made in the light of methodological 

aspects presented in section 1.6 and based on the mapping protocol made to identify the related 

works presented in chapter 2. The analyse of the related work allow the design of a five-tier 

architecture capable of meeting some domains challenges and requirements that were 
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previously presented in chapter 2. 

Figure 4 shows an overview of the LAURA layers, and the stakeholders who are actively 

involved at each layer. For didactic purposes, the following sections will present each layer 

using a bottom-up view, describing their main components as well as highlighting the 

requirements met in each layer and different activities performed for each of the stakeholders 

in correspondence of each layer. 

Figure 4 - LAURA Conceptual architecture overview. 
 

It should be observed that, for the sake of brevity and objectivity, we decided not to 

include in this document the whole set of material (forms, spreadsheets, tables, graphics, etc) 

produced during the thesis work. These materials can be easily accessed at GitHub repositories. 

Particularly for this chapter, the reader can get more detailed information regarding the issues 
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discussed here in our journal paper (Teixeira et al., 2017b) or in the spreadsheet (Teixeira et al., 

2016), which elaborates on the background topics here introduces, and discusses the results of 

our mapping protocol approach. 

 

3.3.1 ‘Physical Layer’ 

 
The 'Physical Layer' includes all low-level aspects related to the running of the WSN or 

IoT devices, such as specific details concerning the hardware, OS system and communication 

protocols adopted. LAURA assumes that there is a preconfigured network of WSN or IoT 

devices. In this layer, the IoT Expert defines the physical devices, platform, OS systems and 

the most appropriate topology of sensing, taking into account the objectives of the final 

application. In addition to the operating environment, the IoT devices keep the code responsible 

for receiving data collected from the monitored real-world space or physical object, and for 

sending them to the Sink node. 

The scenario presented in the introductory section shows the high expectation for new 

real-world IoT applications, whose demand is likely to experience a rapid growth in the coming 

years. However, researchers and companies have been interested in hardware and software 

technologies which have formed the basis of the IoT for a long time. For example, one of the 

most commonly used embedded Operating System (OS) for low-power WSN devices, TinyOS 

(Levis, 2012), was finished in 1999. 

Nowadays, there are many hardware platforms and system options for the development 

of IoT solutions (Gajjar et al., 2014; Teixeira et al., 2017b). This fact offers many possibilities 

for those who wish to develop or deploy some kind of IoT solution, but this same fact makes 

selecting the best options and technologies a more complex process involving many variables 

and aspects that are already complicated in a heterogeneous computational enterprise 

environment. 

Considering the dynamic nature of a IoT application and the corporate environment, a 

relevant aspect to be taken into account when selecting the hardware platforms and systems to 

be used in a solution is the ability to make dynamic updates (or automatic reprogramming) of 

the code that runs on network nodes. Specially in the corporative environment, this feature of 

automatic reprogramming is highly relevant as the application requirements may change at any 

moment due to a change in the BM or competitive forces. 

A dynamic code update is understood as how a specific solution is able to automatically 
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spread sensor codes through the use of radio links without manual serial programming in a 

running network (Dong et al., 2014). A network becomes less scalable when it is necessary to 

recover a device, manually update the node code and reinstall it in the original location, 

particularly when this is in an inhospitable location. 

A good reprogramming mechanism must be capable of updating the nodes in an 

efficient manner, with low interference in the running applications and avoiding, as much as 

possible, the increase of the processing and energy consumption of the nodes. There are several 

dissemination mechanisms. The Full-Image Replacement, for example, executes a complete 

replacement of the node code image. This approach is implemented by Deluge (Hui and Culler, 

2004), the native TinyOS dissemination protocol. TinyOS is the first and currently the most 

commonly used embedded Operating System (OS) for low-power WSN devices (Levis, 2012). 

One concern with this technique is the high use of bandwidth and power consumption during 

the image update. 

In Virtual Machine (VM) approaches (Balani et al., 2006; Branco et al., 2015), a high- 

level language is executed instead of a native platform code. After the compilation process is 

completed, the high-level code is transformed into a bytecode and broken up into small parts 

that can be transmitted through the network with low bandwidth use. 

LAURA follows a VM-approach, which means that the `Physical Layer` is composed 

of one or more virtual machines based on a VM infrastructure, called Terra System (Branco et 

al., 2015), built on top of TinyOS (see section 3.4). This infrastructure combines a reactive 

programming language and a component-based virtual machine, which allows for different VM 

customizations using the same high-level language and compiler. 

From a design point of view, the LAURA Physical Layer consists of a sink element 

(Sink node) and a set of connection elements (Interfaces). The Sink Node is responsible for 

exchanging data packets and node image updates between the IoT devices and the upper layers 

via communication channels. The data of the phenomena of interest are sensed by sensor nodes 

and IoT devices and they are periodically sent to the Sink node, which is responsible for 

packaging and sending the messages from the sensor nodes to the upper layers. Each message 

travels from the Sink node to the Core Layer Gateway or from the Sink node to the Fog Layer 

using a dedicated communication channel and a specific communication mechanism for 

sending and receiving messages. In addition, the Sink Node coordinates the reprogramming 

process with the IoT nodes and interoperates with the Core Layer ‘Dissemination Module’ via 

a communication channel to receive and forward the node images to the WSN nodes. 
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In this layer, LAURA offers three communication interfaces. One communication 

channel is responsible for sending and receiving data packets between the IoT device and the 

‘Communication Module’ of the `Core Layer`. This channel is used when it is not necessary or 

possible to use the features provided in the ‘Fog Layer’. 

For example, when the network nodes code process collected data locally, minimizing 

the amount of packets sent. 

Another example would be in situations where there are technical limitations that 

prevent the deployment of a device to act as a `Fog Layer`, forcing the packets to go directly to 

the ‘Core Layer’. 

The second communication channel is used exclusively for node code reprogramming. 

This channel exchanges packets containing only the updated node code data between the IoT 

devices and the ‘Dissemination Module’ located at `Core Layer`. 

The third communication channel is used for communication with ‘Fog Layer’ when it 

is intended to use the features of reducing, filtering or aggregating data. This aims to achieve 

requirement R3. 

It is worth to mention that the VM approach and the communication solution provided 

by LAURA at Physical Layer provides the IoT Expert, regardless the domain and type of 

application shown in Figure 1, with an uniform way of programming and dealing with 

heterogeneous hardware platforms and devices. This seeks to meet requirement R7. 

 

3.3.2 ‘Fog Layer’ 

 
The systematic review carried out in chapter 2 and the particular analysis of application 

requirements and characteristics revealed that the traditional model of Cloud Computing is 

unable to give adequate support to some particular IoT applications when: (i) it is necessary to 

deal with applications that produce or consume large quantities of data from the edge of the 

network. According to a Cisco prediction, data produced by people, things or machines will 

reach approximately 500 zettabytes by 2019 and 45% of this data will be analyzed, processed 

and stored on edge devices (Hu et al., 2017). By introducing techniques and mechanisms to 

filter, aggregate or prevent unnecessary, invalid or redundant data from being transferred to the 

Cloud or uppers layers it is possible to considerably reduce the volume of sent data; (ii) the 

application requires a short response time of between milliseconds to seconds. The round-trip 
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delay from the devices to the Cloud and vice versa can take minutes and this period of time 

may be impracticable in some cases (Cisco, 2015; Yi et al., 2015). For example, in a Healthcare 

IoT system (Rahmani et al., 2018) the response time of vital signs is a very critical aspect that 

requires rapid processing and action that can normally be done by a device located at the edge 

or closer to the sensors; (iii) the application requires mobility support in a widely geo- 

distribution environment or location awareness (Bonomi et al., 2012). By using mobility 

mechanisms, it is possible to decouple the device identification from the physical location via 

distributed directory systems (Chen, 2017). For example, a smart traffic light system that 

controls some sensors in a specific area in order to detect the presence of bikers and people, 

calculates the distance of an approaching vehicle and takes actions when necessary. In this case, 

the devices must interact quickly with the smart lights, sending warnings to prevent accidents; 

(iv) it is necessary to deal with a heterogeneous environment (Hu et al., 2017) by supporting 

different types of data that is sent from a wide variety of devices with different types of 

hardware, languages, operating systems and communications systems. In this way, it is 

necessary to dynamically deal with different requirements, especially low latency, which can 

change at any time according to the conditions of a specific moment of the communication 

links. For example, an application that aims to prevent manufacturing line shutdowns needs a 

response in milliseconds from the devices to restore the power. Low latency makes the 

difference between an incident that can be quickly controlled without causing major disruption 

to a disaster due to a cascading system failure (Cisco, 2015). 

In response to the challenges presented above, Cisco first introduced the concept of Fog 

Computing (Aazam and Huh, 2014; Cisco, 2015; Marín-Tordera et al., 2017). Fog can be 

considered an extension of the Cloud, with widely spread devices (also called ‘fog nodes’) 

capable of storage (usually temporary), processing and communication with the final 

application in order to support new services and applications with specific QoS demands. 

LAURA architecture proposes a ‘Fog Layer’ to reduce, filter or aggregate, in the space 

or time dimensions, the sent data from ‘Physical Layer`, preventing, as much as possible, 

unnecessary or invalid data packets from being transmitted to the upper layers. For example, 

the imprecision of the measures can be offset by some kind of statistical processing in Fog 

Layer. Therefore, in order to associate the sensed data, Quality of Context (QoC) parameters 

(e.g. Coverage, Up-to-dateness, Frequency, Accuracy, and Significance) (Buchholz et al., 2003; 

Gray and Salber, 2001; Hoffman, 2016; Toninelli et al., 2009) can be checked, allowing the 

final applications verify the usefulness or the temporal validity of this data, according to its 
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purposes. In this way, it is possible to add QoC features in this layer to prevent unnecessary or 

invalid data from being sent to the upper layers. 

The idea is to include a Fog node with a power supply, high processing and memory 

capacity, between the ‘Physical Layer’ and ‘Core Layer’. The Fog node is usually located at 

the edge of the network but may be placed anywhere in the network between applications and 

the network or sensor nodes. It can be co-located alongside smart gateways. 

LAURA ‘Fog layer’ is responsible for: (i) managing the communication channel 

between the `Sink node` and `Physical Layer` to receive sensed data; (ii) the standardization of 

data packets before forward to the ‘Fog node’ module in order to facilitate the data processing 

and promote the ‘separation of concerns’; (iii) managing of communication with the ‘Fog node’ 

within the layer itself through a Pub/Sub channel in order to promote the decoupling. 

The ‘Fog node’ module consists of a ‘Situation platform’ with a rule-based engine that 

supports a CEP computing paradigm. The ‘Situation platform’ must be capable of encapsulating 

the features provided by the CEP engine and offers a user-friendly language and mechanisms 

that support modeling and processing of situation specification, detection and lifecycle control. 

The situation types and rules will be created by the Situation/Rule expert with the 

support of the other stakeholders, mainly the Domain expert. The objective is to establish 

particular situations of interest or complex contexts in which the data can be filtered or 

aggregated, without causing any type of difficulty or prejudice for the final application. 

The ‘Fog Layer’ seeks to meet requirement R3. The layer is currently under 

development; thus, it is not fully available in this version of LAURA deployment architecture. 

The architecture design takes into account that the fog layer may not be used depending on the 

specificity of the design whose requirements may not require this layer. 

 

3.3.3 ‘Core Layer’ 

 
The ‘Core Layer’ plays a key role in abstracting and decoupling the low-level aspects 

that are commonly found in the ‘Physical Layer’, providing communication interfaces for the 

application layer. The Core Layer minimizes the processing and the complexity of the ‘Physical 

Layer’ or ‘Fog Layer’, offering to the applications homogeneous access to low-level services 

executed by IoT devices. Additionally, the Core Layer is responsible for the dissemination of 

new node code image received from the Application Layer. Thus, this layer has the purpose of 
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providing the necessary support to meet the major requirement R10. The System Expert works 

at this layer registering the entities and contexts derived from the specific domain of the 

problem, configuring core API services and eventually defining situation rules that will trigger 

specific actions in the IoT application. 

The main components of this layer are the Gateway, the Dispatcher, the Complementary 

Functions container, and the Database. The layer also holds the 'Core API services', which are 

communication facilities running at the Core Layer in behalf of the applications. 

The Gateway is a central element for the operation of this layer. It is divided into two 

modules: Communication and Dissemination. The 'Communication Module' is a software 

artifact that must be able to process and delivery packets quickly and that can be configured or 

adapted to maintain interoperability with different types of communication channels according 

to the technological choices made by lower layers. This module is responsible for sending and 

receiving data packets to and from Physical or Fog Layers, performing message conversion to 

a standard lightweight data-interchange format that is independent of language and easy for 

human manipulation or for machines to parse and generate it. 

This feature seeks to meet R8 due to the capacity to offer portability and flexibility, by 

abstracting and transforming low-level IoT data packets to a common layout. Furthermore, it 

also enables other modules and layers to process information easily, regardless of the type or 

the data structure used in the Physical Layer. 

Another gateway module is the `Dissemination Module`. It hosts a code dissemination 

service, which is needed for any final application. The dissemination starts when a new image 

is received from the API and through the `Dispatcher`. After the new node code image has been 

received, this module establishes a communication channel with any kind of device available 

in the `Physical Layer` (Sink Node or any IoT device), according to specific features of the IoT 

platform used. As aforementioned, this feature seeks to meet requirement R2 and avoids the 

need for manual node code reprogramming. 

The `Dispatcher` is a key part of the Core API services that sends and receives data 

packets or updated node code data packets in different data flows, according to the type of API. 

This element seeks to meet R9 due to the capacity to interacts with the Database performing 

data persistence to maintain a record of the sensed data, according to the parameters or rules 

defined in the architecture. The persistence of data in a Database is justified by the fact that 

some applications need to access and maintain the data for a certain period of time. It is common 
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that final users are interested in the statistics or history of the data for a certain period of time, 

according to the characteristics and objectives of the applications. 

The Core API services are accomplished through widely adopted open standards and 

based on SOA paradigm. The SOA is an architectural style for software development that is 

currently one of the preferred options in major companies. SOA aims to simplify the relations 

between distinct software systems, improving their operation and facilitating the incorporation 

of new elements. Therefore, if there are changes in the needs of the business, companies can 

respond these changes quickly. Ultimately, SOA can help to reduce maintenance costs and 

increase the company`s ability to adapt faster to fluctuations in the environment (Seridi and 

Seriai, 2012). 

In service-orientation, one of the most important concepts is the Web Service (WS) 

(Santanna, 2010; Vujovic et al., 2014). WS is a software service accessible via Uniform 

Resource Identifier (URI) and a Uniform Resource Locator (URL) and standard protocols such 

as Hypertext Transfer Protocol (HTTP). WS follows a series of standards and communication 

interfaces that allow the exchange of messages between a client and the server. The Web 

Services Description Language (WSDL) is a standard based on Extensible Markup Language 

(XML) syntax, which is used to describe a WS mechanism. 

Another widely used standard that has been attracting more interest in recent years is 

JavaScript Object Notation (JSON). This is a lightweight data-interchange format that is 

independent of language. The format used is based on JavaScript Programming Language 

making it easy for human manipulation or for machines to parse and generate it (International, 

2013). These features make JSON a good choice of data-interchange language. 

In adopting SOA, mainly for solutions or frameworks whose interfaces are well defined 

and standardized, the programmer does not need to be concerned with network protocols, 

platforms, packet sizes or other low-level details. The use of WS facilitates the IoT 

development, mainly when it is necessary to communicate with a service outside the IoT area 

(Nissanka and Zhao, 2008). In our previous work (Teixeira et al., 2017b) it was verified that 

61% of the 59 selected papers in the mapping review address some kind of SOA to support IoT 

applications. 

There are two transport components that are widely used in WS: Simple Object Access 

Protocol (SOAP) and the REpresentational State Transfer (REST) (Vujovic et al., 2014). REST 

is the most common standard used due to the small format messages and lightweight processing, 
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which make it easy to learn and deploy. These characteristics make REST an attractive option 

for the developer who wishes to communicate a IoT solution with final Service-oriented 

applications. 

Meanwhile, RESTful does not have all the interoperability features required to meet the 

needs of some types of IoT applications. For example, RESTful is not adequate when there is 

an application with many simultaneous demands or requires a short response time from the 

sensed data. This type of demand is common in real-time applications or when the state of the 

connection is relevant. In these cases, the Publisher/Subscriber (Pub/Sub) exchanged message 

can be an alternative solution capable of suppressing the demands of this type of application 

(Eugster et al., 2003). 

The Pub/Sub is an interaction paradigm standard that provides three dimensions of 

dynamic and decoupling event services between publishers and subscribers: (i) space 

decoupling: the parties involved in a communication do not need to know each other nor how 

many are participating in the interaction; (ii) time decoupling: those involved do not have to 

participate at the same time; (iii) synchronization decoupling: the parts do not block each other, 

that is, they work asynchronously and notify the other part in case of an unexpected event. 

The decoupling of the production and consumption in an interaction process increases 

the scalability. In the Pub/Sub communication, the interested client takes on the role of 

‘subscriber’, informing the publisher the topics of interest. The Publisher has the role of ‘server’ 

and is responsible for the generation of channels of communication. Each message is redirected 

to its respective channel and attends the needs of the interested clients (subscribers). For 

example, a IoT application can use a Pub/sub service to define a topic of interest for each 

measurement such as temperature or humidity. In this way, it is possible to have several 

subscribers interested in receiving data on specific topics. 

The Pub/Sub is a comprehensive and flexible standard that can be used with different 

communication protocols and has a variety of private and public deployment solutions. An 

example is the use of WebSocket (Saint-Andre, 2011) to develop final Web applications based 

on the Pub/Sub standard. 

There are three types of APIs in this version of LAURA, as shown in Figure 4: (i) the 

Pub/Sub API is used when the response time is a concern or there is a lot of traffic; (ii) the 

WebSocket API is used when the final application (commonly Web applications) requires this 

type of communication; and (iii) a REST API is used when the response time is not a concern. 



55 
 

The Pub/Sub communication interfaces allow final IoT applications to receive sensed 

data in real time from the ‘Physical layer’ devices. Applications interested in a specific data 

flow subscribe to any available channel provided by Core Layer to receive the data. In this case, 

the ‘Core Layer’ acts as Publisher in the communication. The Pub/Sub channels are also 

permanently connected to the 'Situation/Rule Layer' in order to send the sensed data to the 

'Situation Platform'. 

The WebSocket API defines a second form of data access and exists to meet the 

demands of Web applications that are interested in the sensed data. The option to offer this 

specific API is due to the growing demand for real-time Web applications and because it is a 

W3C standard. 

The Rest API supports final applications or any kind of communication that do not 

require real-time data. Thus, in order to allow more specific queries to previous data records, 

the Core Layer offers the RESTful API as a third alternative to Physical Layer data access. 

Through this API, the applications can perform on-demand queries, searching, for example, 

data of a specific sensor of the network or temperatures that reached a certain threshold It also 

enables queries to the Database in order to access data previously saved by the Dispatcher. 

There are three data flows that are handled by the ‘Dispatcher’. The first one refers to 

the sensed data that comes from the ‘Physical layer’ through the ‘Communication module’. 

The second flow refers to data coming from superior layers to the ‘Physical layer’ or 

`Fog layer`. This data flow is usually related to actions to be performed on a particular sensing 

device or actuator. Once the data is received, the 'Communication Module' performs the 

necessary data conversions before forwarding it to the physical layer. This is the inverse process 

of what is done when the data is received from the physical layer. In general, the operation of 

this component is simple: after identifying the need for measurement conversion of the received 

data, the respective conversion function is performed to transform it in a user- friendly format 

that it is normally used by the final applications. The third data flow refers to new node code 

images coming from the upper layers and that is directed to the 'Physical layer'. This flow is a 

specific kind of data, related to reprogramming functions, and it is handled by the 

'Dissemination Module'. 

The `Sensor Node Complementary Function` is a Core Layer component that 

encompasses several auxiliary functions. This component seeks to meet R5. By moving certain 
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types of the processing out of the sensor node, it becomes possible to reduce complexity, 

processing and energy consumption into the network. 

 

3.3.4 ‘Situation/Rule Layer’ 

 
The main objective of the ‘Situation/Rule Layer’ is to allow an easy connection between 

situation-aware final applications and any kind of chosen situation platform or engine. In this 

way, the application is able to receive triggered situations according to the programming done 

previously by the Situation/Rule Expert. The central component of this layer is the Situation 

Platform whose objective is to process situations and create a service-oriented access in an easy 

and practical way so that the applications only need to program the actions to be performed in 

response to the triggered situations. For example, a BPM-based application can initiate a 

process according to a triggered situation and program a flow of BPMN actions. 

An IDC study from 2016 made predictions about the impact of new technologies and 

organizational innovations on businesses. One of these indicates that by 2020, 50% of 

companies will use cognitive computing to automate marketing and sales interactions with 

customers. The traditional telesales services, which are inconsistent and expensive, will be 

replaced with a virtual sales representative system created with a rule-based learning algorithm 

(Murray et al., 2016). 

The requirements of a business system change with a certain frequency. The changes 

may occur due to competitive forces or with changes to the BM (Bali, 2009). Furthermore, 

business systems are becoming increasingly complex and there has been a growth in process 

automation in various types of BP, mainly from the influence of the IoT on the company BM. 

Considering this, there is a demand for a model or development paradigm that is more suitable 

for a context in which there are constant changes to the business requirements, directly affecting 

the rules of the BP. In this way, the rule-oriented development paradigm, or declarative 

programming, offers a series of advantages providing fast answers to the constant changes that 

may occur at any moment. 

It is possible to highlight the following advantages in using Rule-oriented systems: (i) 

rules are easier for a Domain expert or any employee from the administration area to 

understand; (ii) changing or adding a new rule is easier when compared with imperative 

programming style based on if-else aligned instructions. 
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These advantages have already been noticed by rule-oriented system developers; 

however, there are few difficulties or important issues that must be observed when adopting 

this kind of methodology or support solution (Zacharias, 2008). One of the biggest 

disadvantages in the development of rule-based applications is the lack of tools for debugging 

error support. Other drawbacks include solutions with underdeveloped tool support. Business 

Rule Management Systems, (BRMS) such as JBoss/Drools, are considered a solution for 

minimizing the negative aspects and concerns described above (RedHat, 2017a). 

Drools is an open source Java-based Business Logic integration Platform (BLiP) project 

that is backed by the JBoss Community and Red Hat, under the Apache License. The work on 

the Drools rule engine began in 2001. Nowadays, Drools is a part of the KieGroup (RedHat, 

2017b), an open source project for business system automation and management. 

A generic rule-based system should contain the following elements: (i) Facts: this is 

either raw data or something that happened or is happening and portrays an objective reality 

(Laudon and Laudon, 2003; MerriamWebster, 2014); (ii) Rules: representations of knowledge 

that define how an action will be performed according to one or more conditions. Commonly, 

the rule is an ‘if-then’ clause defined as a tuple with a precondition and a consequence. 

Preconditions contain the premises that need to be satisfied and the consequence is a set of 

actions to be performed if the preconditions are matched (Flasiński, 2016; Pereira, 2012; 

Rattanasawad et al., 2013) (iii) Working memory: the memory space that contains the factual 

instances related to a specific knowledge domain. This space is available to be exploited by an 

inference engine in a current knowledge session (Raymundo, 2013); (iv) Inference engine (or 

Rule engine): the ‘heart’ of a rule-based system, responsible for seeking, analyzing and 

evaluating factual instances according to the rule patterns, executing any kind of pattern- 

matching algorithm ; (v) Rule base: the place where rules are stored. 

A strategic question of any BRMS is the ease with which the rules can be understood 

by non-experts. A user-friendly language can increase the participation of all stakeholders. 

Table 3 presents an example of a simple Drools rule. Line 3 shows an example of restriction 

and the line 5 shows the executable action. 
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Table 3 - Simple Drools rule example. 
Line Instruction 

01 

02 

03 

04 

05 
06 

rule “temperature alert” when 

Freezer(temperature > -5) 

then 

System.out.println(“product at risk”); 
end 

 
Despite the possibilities and advantages that Business Rule Management Systems 

(BRMS) can offer, e.g. JBoss/Drools (RedHat, 2017a), there are groups of IoT real-world 

applications with specific features that traditional BRMS are unable to provide (Aliverti et al., 

2016). This group of applications demands, for example, the analysis of facts over the time, the 

ability to deal with and make inferences of large numbers of events from multiple sources, infer 

relationships, and others in order to allow complex events to be detected (De Maio et al., 2014; 

Fülöp et al., 2012). These types of applications require a Complex Event Processing (CEP) 

computing paradigm (Gartner, 2017). For example, a fraud detection system needs to check, in 

real-time, a large number of events from different locations, including the transaction timestamp 

and duration and expiration date, in order to detect complex situations that cannot be identified 

in few events (Aliverti et al., 2016). 

Ideally, in scenarios like these, the system should be capable of providing the Domain 

Expert with the means to specify how the system should respond, abstracting the low-level 

technical aspects, with a user-friendly language that is closer to the way in which the problem 

is expressed in the real world. These specific methods and ways to specify complex real-world 

situations lead to the concept of Situation Awareness (SA) (Endsley, 1995). SA refers to the 

perception of environmental contexts and events, taking into consideration its relationship in 

space and time, understanding its meaning and the projection of its general state in a ‘Domain 

of Discourse’. In other words, a situation refers to how a stakeholder defines a state of affairs 

in reality (Adi et al., 2000; Ye et al., 2012). 

Although conventional CEP-based systems, e.g., ESPER (EsperTech Inc., 2017), 

Drools, StreamInsightTM (Microsoft, 2017), are capable of aggregating, composing, reasoning 

over and deriving composite events, few are able to represent and manage situations from a 

specific domain in an expressive and user-friendly manner. Conventional CEP-based systems 

fall short in its ability to support the situation-awareness concept by itself since events in these 

systems are only detected when they occur, i.e., when they finish at the same time or before the 

present moment. A situation, on the other hand, can be detected in the first instant that it appears, 
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without knowing when or if it will end. An event does not support the concepts of “happening 

now”, however, it is an intrinsic part of the situation concept. 

Real-world IoT domains like those depicted in Figure 1 are composed by innumerous 

context sources. In these domains the potential situations that can result from the combination 

of environmental context and events is enormous, i.e., the states of affairs in reality that may be 

of interest of the stakeholders and applications are considerably large. Therefore, it is highly 

recommended that the IoT platform provide situation management support for dealing with 

those real-world IoT applications. In fact, one of the distinguishing features of LAURA is the 

situation/rule layer, which is managed by a rule-based platform based on Drools. 

A situation refers to how a stakeholder defines a state of affairs in reality (Adi et al., 

2000; Ye et al., 2012). Situation, as composite events, inherit event dimensions such as: 

composition, aggregation and temporal correlation with other situations or events. In addition, 

situations present an activeness dimension. A situation is said to be active while those properties 

satisfy predicates captured in the situation type logical expression. It ceases to exist when those 

properties no longer satisfy the defined predicates. In this case, the situation is said to be a past 

situation. The point, in time, in which a particular situation instance is detected, is called the 

`situation activation instant’ and the point, in time, in which the situation ceases existing, is 

called `situation deactivation instant’. 

SCENE (Costa et al., 2016) is the rule-based platform adopted by LAURA. It connects 

CEP-based and situation-aware approaches by leveraging the Drools general-purpose rule 

system and Drools Fusion CEP module as a mechanism for situation detection and lifecycle 

management. The Fusion module offers an event schema, stream processing, temporal 

correlation and time-window operators, seamlessly integrated with its Drools Rule Language 

(DRL). 

The ‘Situation platform’ is composed of a rule-based engine that supports CEP 

computing paradigm and a platform, system or tool that is capable of encapsulating the features 

provided by CEP engine, offering a user-friendly language and mechanisms that support 

modeling and processing of situation specification, detection and lifecycle control. In addition 

to meet requirement R4, this platform also seeks to meet requirement R1 since the BPM Expert 

can model a BP from a triggered situation, minimizing the need to know the lower level aspects, 

as situations are modeled by the Situation/Rule or System Expert. 
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3.3.5 ‘Application/Business Process Layer’ 

 
As we argued in the Introduction, enterprise infrastructure should promote the 

participation of high-level users in the development of IoT applications. BPM experts, for 

example, should continue using their preferred graphical modeling notation, leaving low-level 

details to a model compiler and a run-time system. Business Process Model and Notation 

(BPMN) ((OMG), 2015), for example, graphic language, is the de-facto standard of modeling 

business processes, being suitable for non-expert IT professionals to model BPs without 

needing low-level knowledge or extensive training. 

LAURA’s Application/Business is the place where BPM Experts, Domain Experts, and 

other high-level users interact with LAURA. In this sense, this layer provides functionalities 

related to the development of final applications. It provides a place in which domain 

applications and business processes can be visually specified, i.e., the rules of business 

application and the situations of interest are modeled through a graphical interface. This layer 

is also responsible for starting the process of transforming the specification diagrams created 

by the developer into node/device processable instructions, so the machine can execute the 

model. 

The ‘Application/Business Layer’ also set a place where the users can get information 

and monitor the state of the IoT devices. For example, they can identify available sensor nodes 

with their respective endpoints, including the APIs and methods available for use by final 

applications. They can also upload and automatically disseminate sensor node codes or 

associate the endpoints with the access keys of the stakeholders according to established 

profiles and permissions. The layer contains components that offers dashboard reports and 

graphs to aid the work of the IoT experts who is usually responsible for maintaining and 

monitoring the solution. 

This layer provides a way for the integration of final applications with one or more IoT 

devices through standardized communication interfaces, freeing developers from any concerns 

about systems or technologies related to the lower layers or the operation of IoT devices. In this 

way, the developer only needs to be informed about the available APIs so that the final 

application can access the data collected by the sensors. This allows total decoupling from the 

low-level technical aspects. The stakeholder, responsible for the creation or integration of the 

final applications can gain easier access to the sensed data or triggered situations through a Web 
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system. The only requirement is that this person knows the endpoint or the URI of the resource, 

methods and access keys needed to receive sensed data from the IoT devices. 

Ultimately, the ‘Application/Business Process Layer’ provides a place where the 

stakeholders can create or modify their applications at any time according to new demands or 

needs of the company business. 

 

3.4 LAURA applied architecture 

 
This section presents LAURA applied architecture based on the conceptual architecture, 

and according to the technological choices that were discussed previously in section 3.3. The 

choices made are fundamental in simplifying the work of the developer of the final application. 

Some deployment considerations will also be presented, regarding the technologies, languages, 

standards, systems, libraries and tools used to develop LAURA applied architecture, which is 

depicted in Figure 5. The main differences between the applied and conceptual architecture are 

highlighted in this figure. 

Concerning the ‘Physical Layer’, we have mentioned that LAURA uses a VM approach 

based on Terra System. There are three basic elements in a network based on Terra (Figure 6): 

(i) a Céu-T script language – that relies on the reactive Céu language proposed by (SantAnna 

et al., 2013) - which is used for node (bytecode) programming; (ii) a set of customized 

components that are defined according to the node platform and application type; and (iii) the 

Terra virtual machine (VM-T), which controls the bytecode execution and handles the output 

and input events. 

Among many interesting features found in Terra System, the following three were 

central in our decision to choose Terra as the VM-oriented implementation at the Physical 

Layer. The first feature refers to the availability of high-level programming resources and 

functions. This speed up and makes easier the programming of low-level tasks. The second 

important characteristic is its native support for dynamic code update by means of bytecode 

dissemination, which is an attractive solution regarding bandwidth consumption. The choice of 

a VM-based approach and Terra System in particular aims to achieve requirement R2. 

The third feature is related to the possibility of using the same node code for different 

platforms. As the bytecode runs on the VM-T of the node, the code is the same regardless of 

the hardware platform, making it a portable solution that can be adapted for use with new types 
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of hardware devices. Thus, it is possible to use or adapt the VM nodes for different types of 

hardware platforms, making such a solution more interesting to use in heterogeneous 

environments. This seeks to meet requirement R7. 

Figure 5 - LAURA applied architecture overview. 
 

It is also noticed that current Terra System implementation uses Active Message (AM) 

mechanism to exchange message between IoT devices or WSN nodes (Eicken et al., 1992). 

Active Message is a message driven asynchronous network communication mechanism that 

reduces processing and communication overheads between the devices in a network 

communication (Levis et al., 2005). Besides, the communication channels between the Sink 

node and the `Core Layer’ makes use of the TOSSAM (Silvestre, 2017), a library that supports 

different types of communications based on the AM protocol. 
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The realization of the ‘Core Layer’ encompasses the deployment of the following 

modules: (i) ‘Terra Gateway’, which acts as the ‘Communication Module’; (ii) ‘Terra Core’, 

which provides the ‘Core API services’; and (iii) ‘Terra Dia’, which realizes the ‘Dissemination 

Module’. MySQL (MySQL, 2017) was the technological choice for the database. These 

modules, the other elements and the communications channels are illustrated in Figure 5. To 

maintain compatibility and standardization, some of the technological choices, made in the 

lower layers, were also applied in ‘Core layer’. For example, TOSSAM channels are used as a 

way to connect this layer with the `Physical layer` or `Fog layer`. 

Figure 6 – Terra System basic elements (Branco et al., 2015). 
 

Terra Gateway (Martinelli, 2017) accomplishes the tasks designed to the 

‘Communication Module’ . It is responsible for communicating the sensor network with the 

Core layer through a TOSSAM communication channel. In addition, it maintains a Pub/Sub 

communication channel with ‘Sensor node Complementary Functions’, allowing real-time 

interoperability with other components of ‘Terra Core’ module. In this way, it receives and 

forwards data originating from the Terra System network to the Terra Core component, 

enabling the full decoupling of lower level aspects from communication interfaces that will be 

made available for the final applications. Furthermore, Terra Gateway is also responsible for 

the conversion of AM data packet to a JSON standard structured string in order to facilitate 

sensor data manipulation and processing, making the solution more portable and flexible. JSON 

– JavaScript Object Notation – is a lightweight data interchange format based on JavaScript 

Programming Language (International, 2013). 

‘TerraDia’2 (Martinelli, 2017; Ribeiro, 2016) implements the Dissemination Module 

proposed at Core layer. It is responsible for transmitting new node code image packets to the 

 
 

 

2 https://github.com/laura-architecture/terra-dia 
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Sink node, via a TOSSAM channel, providing remote reprogramming features to WSN nodes, 

contributing to achieve requirement R2. TerraDia interoperates with the Sink node to transmit 

the bytecode blocks using the native Terra System dissemination process. 

The ‘Terra Core’ API services is illustrated in Figure 5 by gray highlighted parts. It is a 

JavaScript Node.js (Expressjs, 2017) application module, responsible for providing the three 

standardized communication interfaces (API REST, Pub/Sub and WebSocket) defined in this 

layer. . For the Pub/Sub API, ZeroMQ library (ZeroMQ, 2017) was the deployment choice. For 

the WebSocket API, the Socket.io (Socket.io, 2017) library was selected. Finally, for the REST 

API, the Express Framework (Expressjs, 2017) was employed. 

In addition, there is a permanent Pub/Sub channel between ̀ Terra Gateway` and ̀ Sensor 

nodes complementary Functions` that allows decoupling and accelerates message forwarding. 

This process will only occur in the absence of a ̀ Fog Layer`. Otherwise, the conversion process 

of an AM packet to a JSON object will have already taken place when the packet is received 

by the Terra Gateway in the `Fog Layer`. 

The implementation of the `Dispatcher` aimed at performing the functions, actions and 

features previously described in Section 3.3.3 (Core layer). Thus, after converting the data to a 

useful measure and updating the JSON object, the Dispatcher is invoked with the purpose of 

forwarding the message containing the sensed data to the deployed `Terra Core` APIs. In 

addition, the data is persistent with the recording in a MySQL (MySQL, 2017) database. As 

aforementioned, such persistence, in the database, is justified by the need for applications to 

access and maintain the data for a certain period of time. 

The ‘Situation/Rule Layer’ basically takes advantage of SCENE situation platform 

(Costa et al., 2016; Pereira et al., 2013) to provide situation detection and lifecycle management. 

SCENE is a rule-based platform adopted by LAURA that connects CEP-based and situation- 

aware approaches by leveraging the Drools general-purpose rule system and Drools Fusion 

CEP module as a mechanism for situation detection and lifecycle management. The Fusion 

module offers an event schema, stream processing, temporal correlation and time-window 

operators, seamlessly integrated with its Drools Rule Language (DRL). 

From a deployment perspective, data are received by SCENE platform from lower 

layers via Pub/Sub API using ZeroMQ library and are readily processed in accordance with the 

situation rules previously defined. The detected situations are then made available as services 

to final Situation-Aware applications. 
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Situation types are specified in SCENE by means of structural and behavioral aspects, 

which are realized by Situation Classes and Situation Rules, respectively (Costa et al., 2016). 

Situation Class specializes the predefined class SituationType. 

Situation specification in SCENE occurs as follows. Firstly, SCENE requires the 

definition of structural aspects. In this phase, a user-defined Situation Class should specify the 

specific roles played by domain entities in that situation type. For example, in a Fever Situation 

type, if the domain entity Person is playing a role febrile, it should be explicitly defined as such. 

In SCENE approach, situation properties are tagged as roles using the @SituationRole Java 

annotation. 

When a situation is activated, a situation fact is inserted in the working memory 

representing that specific situation occurrence. From this point on, SCENE starts lifecycle 

management of that particular situation. 

As previously mentioned, the ‘Application/Business Process Layer’ encompasses a set 

of capabilities that aim at facilitating the communication between a wide variety of final 

applications and LAURA lower layers via available APIs. These facilities are made available 

through a ‘Management Tool’, which assumes the role of centralizing element of the layer, i.e., 

this tool provides a portal to a set of LAURA services. In addition, the Management Tool offers 

dashboard reports and graphs to aid the work of the IoT expert who is usually responsible for 

maintaining and monitoring the solution. 

The 'Management Tool’ is actually a ‘WEB APP’, which assists the users in the 

management of their solutions, offering centralized management facilities of all the endpoints 

with the respective permissions and access keys according to the stakeholder profile. With the 

use of this tool, it is possible to: (i) identify, test and evaluate the data received, identifying its 

origin and performance information; (ii) associate the endpoints with the access keys of the 

stakeholders, according to established profiles and permissions; (iii) use a user-friendly 

interface to upload new codes (bytecodes) that will be automatically disseminated through the 

Core Layer's ‘Dissemination Module’; (iv) use a node code generation solution for WSN from 

BPMN specifications, allowing the BPM expert to generate codes that runs on the LAURA VM 

nodes (Agrizzi, 2018). 

One of LAURA’s application-level facilities is the ‘Terra Web Control’ (TWC). TWC 

uses a Websocket API and a RESTful API to access the communication interfaces available on 

`Terra Core`. TWC provides key features to the IoT expert by generating data traffic and other 
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relevant information regarding the running of the IoT devices. In addition, if a problem or error 

in the application occurs, it can also be used as an alternative way to monitor the physical 

entities data via the API WebSocket and Rest. It is also able to interoperate by means of the 

API Pub/Sub, receiving triggered situations from the SCENE Platform. 

Another application-level facility is the ‘Terra Dia App’, a Web application that offers 

the mean by which the IoT expert can remotely upload a new node code. This Web application 

establishes communication with TerraDia3 module in Core layer, via WebSocket API, 

uploading a new node code that will then be transmitted remotely to the network nodes. The 

source code and additional documents about TWC and TerraDia are available in the repositories 

of LAURA project at GitHub (Teixeira et al., 2017a). A step-by-step guide explaining how to 

download and execute the ready-to-use LAURA VM is available in the repository ‘how-to-use- 

laura’4 of the same GitHub address. 

Another example of LAURA’s application-level facility is `TerraGen` (Agrizzi, 2018), 

the LAURA’s solution for node code generation from BPMN specifications. `TerraGen` 

provides BPM experts, who have basic programming skills, a way to generate WSN node codes. 

`TerraGen` implements an approach for transforming BPMN 2.0 language elements into Céu- 

T reactive language constructors, allowing the generation of codes or code blocks with 

equivalent and coherent semantics in Terra System, the virtual machine used in LAURA 

architecture. The source code and other `TerraGen`5 documents are also available at the 

LAURA’s project repository. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3 
https://github.com/laura-architecture/terra-dia 

4 
https://github.com/laura-architecture/how-to-use-laura 

5 
https://github.com/laura-architecture/terra-generation 



67 
 

Chapter 4. Application Scenario, Experiments, and 

Empirical Evaluation 

 
The application scenario proposed is an IoT application called Medicine Quality Control 

(MQC). MQC is a situation-aware application for real-time monitoring of medical products that 

must be maintained within a specific temperature range inside the refrigerator or freezer. If an 

undesired situation occurs, it would be necessary to take an action to avoid the loss of the 

product. This scenario is applicable to any other group of applications with similar 

characteristics or requirements, such as the monitoring of vaccines, horse semen in labs or 

specialized institutions, food and drinks in bars, restaurants, hotels, and supermarkets. 

The MQC application will be used to monitor and control the temperature of Botulinum 

Toxin Type A (onabotulinumtoxinA) bottles that will be used for esthetic or medical treatments 

by dermatologists. The bottles are normally delivered frozen and vacuum-packed in sterile glass 

bottle containing 100 units of onabotulinumtoxinA. The bottles are received in a small 

Styrofoam box lined with gel ice bricks that maintain the product within the recommended 

temperature range for 24 hours or more, allowing it to be transported without affecting the 

quality. After receiving the Styrofoam box with vials, it must be stored immediately in a freezer 

at -5º Celsius or below. According to industry recommendations, after the product is diluted 

with 0.9% sterile saline, it must be kept in the refrigerator between 2ºC and 8ºC for a maximum 

of 3 days. This application scenario is only concerned with monitoring bottles that have not yet 

been diluted. Therefore, the bottles must be maintained at a temperature equal to or below -5ºC 

in a freezer. As soon as the Styrofoam boxes are received, the package should be checked to 

assure that the bottles have arrived in appropriate conditions to ensure that they are appropriate 

for use. 

MQC is able to identify any undesired situations, alerting the system users in real-time 

and allowing them to respond and potentially preventing product loss. For example, in the case 

of power loss the application may stop receiving sensed data and be programmed to send an 

alert requiring a response from the user. According to this response, the `Situation Platform` 

can even trigger new situations. This allows constant interaction and greater sensitivity to the 

real-time context. 

The same quality control scenario was used to create a BPMS Situation-Aware 

application. In this scenario, processes are modeled in BPMN by the BPM expert, reacting to 
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the situations previously defined by the Situation/Rule Expert. The starting event begins when 

a pre-defined situation is triggered. The number of modeled processes in BPMN will depend 

on the actions required by the Domain Expert and suggestions from the other stakeholders. A 

process can specify alert actions for the user, such as, email, SMS or a message sent to other 

system. 

The following sections present a proof of concept of LAURA Applied Architecture, 

which was used to support the proposed application scenario. This proof of concept is composed 

by the following: two modeling application implementations and, a performance and an 

empirical evaluation experiment. The experiment 1 (modeling application) uses an IoT Arduino 

platform to deploy the Medicine Quality Control (MQC) application described above. The 

temperature of Botulinum Toxin Type A bottles can be monitored via a mobile application that 

allows users to prevent product losses by making appropriate decisions when undesirable 

situations are detected. Experiment 2 (modeling application) uses the same scenario as 

Experiment 1, however, a Business-aware application was modeled using jBPM tool. The 

experiment 3 uses TelosB (MEMSIC Inc., 2003), IRIS (Memsic, 2009a) and MicaZ (Memsic, 

2009b) (MEMSIC, 2016)WSN nodes to monitor the physical quantities of the temperature and 

luminosity. The experiment 3 (performance evaluation) is not directly related to the scenario 

abovementioned. This experiment was the objective to evaluate how LAURA responds to a 

high or unexpected overhead while processing the sensed data. 

The following sections contain the procedures and necessary steps to develop the 

experiments. For the sake of brevity, we do not include here all the complementary material 

(forms, spreadsheets, tables, graphics) produced during the empirical evaluation. The reader 

can find this material at LAURA Project GitHub 'experiments' and 'how-to-use-laura' 

repositories (S. Teixeira et al., 2017a) and the forms made for the Empirical evaluation: 

(Teixeira, 2018a) and (Teixeira, 2018b). 

 

4.1 Experiment 1 - MQC Situation-Aware modeling application 

 
This modeling application intends to show the main steps for building a final situation- 

aware application (called MQC application). We assume that the ready-to-use LAURA VM is 

used and configured according to the tutorial available in the repository ‘how-to-use-laura’ at 

GitHub (Teixeira et al., 2017a). 
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In accordance with LAURA domain reference model, the ‘1st Step’ encompasses the 

requirement analysis made by a System expert, who draws a UML class diagram that represents 

the domain application scenario in terms of its entities, static attributes, intrinsic contexts and 

relations to other entities through relational contexts. Figure 7 presents the UML model 

developed for the proposed domain, using a simple stereotype entity-context terminology. 

The entity with a kind Person (which comes to be the user of the application) wants to 

observe one or more Products that are sensitive to variations in temperature. Thus, a relational 

context Observation exists between them. Furthermore, the Product must be kept in a pre- 

determined temperature range, according to the manufacturer’s recommendations or its 

characteristics, avoiding loss or damage of the product. A Container has a Temperature control 

system (which translates in an intrinsic context Temperature) and it can store one or more 

products, therefore a relation context of containment or Storage exists between a Product entity 

and a Container entity. In this way, the temperature of the Product can be considered the same 

as that of the Container in which it is stored. Both, Container and Person present an intrinsic 

context Geolocation, in order to provide information like the distance between an observer and 

where the observed product is being stored. 

 

Figure 7 - The UML class diagram that represents the model of the specified scenario 
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According to the application scenario, the dermatologist needs to monitor vacuum- 

packed in sterile glass bottles of onabotulinumtoxinA that are stored in two freezers. One of the 

freezers is in the office and the other one is at home. Each freezer has a DS18B20 (Integrated, 

2018) waterproof temperature sensor connected to a Arduino (“Arduino,” 2016) board. 

The MQC modeling application serves as an interaction point with the doctor, secretary 

or whoever is in charge of watching and keeping the previously mentioned products safe, 

delivering alerts, notifications or even asking for user's immediate actions in order to prevent 

any loss. 

To interoperate with this application, a MQC service is built on top of the LAURA 

Context Broker, a service that fits into the Situation/Rule layer, and that provides a RESTFul 

API to manage the context-aware scenarios revealed by the previous presented domain 

reference model. Working along with a situation inference engine (SCENE), the MQC service 

can go from subscribing to events from sensing device's properties (ObservableProperties) 

through feeding domain entities contexts and composing them into meaningful situations. 

The ‘2nd Step’ comprises the task performed by the System expert in order to register 

the entities and context derived from the specific domain of the problem model as shown in 

figure 7. The model was realized in LAURA Context Broker through its RESTFul API methods, 

first inserting all entities instances (Person, Product, Container) and context instances 

(Temperature, Geolocation, Observation and Storage). The relevant API operations for this 

matter are presented in Table 4 and described ahead: (1) creates a new Entity instance, in which 

a kind and a descriptor must be provided, and if it succeeds, a new 'entityId' is created; (2) 

fetches entities (it can be filtered by kind) from the broker; (3) adds an 'attribute' - a static value 

for an entity instance, e.g., 'name', 'email' - to an existent entity (4) adds a new 'Intrinsic Context' 

to an existent entity. A kind and label must be provided, e.g., 'Temperature', 'Geolocation', and 

if it succeeds, a new 'contextId' is created; (5) sets a new value for a given intrinsic entity's 

context; (6) creates an Relational Context between entities, entityId's for the related entities 

must be provided, as well as the label for the part/role which one takes in the relation if it 

succeeds; (7) fetch any relational contexts, (they can be filtered by kind) from the broker; (8) 

sets a new value for a given Relational Context. 
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Table 4 - LAURA Context Broker RESTFul API methods 
Methods endpoints 

01 POST /entities 

02 GET /entities?kind=${kind} 

03 POST /entities/${entityId}/attributes 

04 POST /entities/${entityId}/contexts 

05 POST /entities/${entityId}/contexts/${contextId}/value 

06 POST /relations 

07 GET /relations?part=${label}&entityId=${id}&entityKind=${kind} 
08 POST /relations/${contextId}/value 

 
The exchange format for all API operations is JSON. Table 5 presents a JSON 

representation for an entity instance of the 'Person' kind. For the sake of objectivity, the payload 

schemas are left outside this work. More detailed schemas for all the payloads expected by the 

API can be found in the 'LAURA-Context-Broker' repository of the LAURA project at GitHub 

(Teixeira et al., 2017a). 

Table 5 - LAURA Context Broker JSON Example for Person entity 

 
 

Once the entity-context model was set, the ‘3rd Step’ encompasses the binding of 

contexts to appropriate virtual sensors (provided by Terra Gateway), i.e., associating a 

particular context to a particular observation provider (a sensor node with an unique identifier) 

so its observed values can be automatically fed into the Context Broker once the Terra Gateway 

receives new readings right from the physical device. Table 6 presents API methods to handle 

context bindings (known as ContextSubscriptions in the reference model). In that sense one 

{ 

"id": 56534, 
"kind": "Person", 

"descriptor": "Dr. Mary Sue", 

"contexts": [ 

{ 

"id": 6553, 

"kind": "Geolocation", 

"value": { 

"timestamp": 1531208030, 

"entries": { 

"latitude": -20.3582821, 

"longitude": 40.333145 

} 

} 

} 

], 
"attributes": { 

"name": "Mary Sue", 

"email": "marysue@laura.com", 

"role": "Doctor" 

} 

} 

mailto:marysue@laura.com
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could bind the Dr. Mary Sue`s (entityId: 56534 from Table 5 example) specific Geolocation to 

a device (the GPS from the Dr. Mary Sue`s smartphone) previously configured to send those 

coordinates through Terra Gateway. 

 
Table 6 - LAURA Context Broker – Context Binding RESTFul API methods 

Methods endpoints 

01 POST /entities/${entityId}/contexts/{contextId}/bindings 

02 GET /entities/${entityId}/contexts/{contextId}/bindings 
03 GET /entities/${entityId}/contexts/{contextId}/bindings/{bindingId} 

 
The ‘4th Step’ comprises the activities of modeling and creation of situations by the 

Situation/Rule Expert according to the analysis of the requirements and the domain problems 

in the view of the Domain expert with the support of the System expert. Eight specific situation 

types were identified: (i) ‘Observed Situation’, characterized when a Person indicates his/her 

interest in monitoring a specific product. (ii) ‘Absent Sensor Reading’ that describes a situation 

in which there is a breakdown in communication or data reception for a pre-determined period 

of time; (iii) ‘Exceeding Threshold Situation’, when a temperature measurement is beyond the 

acceptable range for a certain product; (iv) ‘Exceeding Safety Distance Situation’, when a 

Person is at a distance from the Container that is far to be considered safe; (v) ‘Estimated Time 

of Arrival (ETA) Greater than Estimated Time-to-Threshold (ETT) Situation’, when the 

estimated time for a Person to reach a Container is greater then the estimated time that it would 

take for the Container to reach an unsafe temperature previously defined for that product; (vi) 

‘All Observers are with ETA Greater than ETT Situation’, when all Observers are found in 

situation (v); (vii) ‘Busy Situation’, when an Observer indicates that he/she is busy or 

unavailable to act in response to a situation (vi); (viii) ‘Attending Situation’, when an Observer 

indicates that he/she is available to act in response to the situation (vi). Tables 7 to 9 present the 

specification of some of these situation types in SCENE. The complete list of situation type 

definitions can be found in the ‘experiments’ repository of the LAURA project at GitHub 

(Teixeira et al., 2017a). 
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Table 7 - The AbsentSensorReading situation declaration in SCENE. 
Line Instruction 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 
17 

declare AbsentSensorReading extends Situation 

container: Entity @part end 

rule AbsentSensorReading @role(situation) @type(AbsentSensorReading) 

when 
temperature: IntrinsicContext(kind=="temperature") container: 

Entity(kind=="Container") from 

temperature.bearer not ( 

ContextValue(context == temperature) over window:time( 1m30s ) 

) 

then 

SituationHelper.situationDetected(drools); 
end 

 

 
Table 8 - The ExceedingThreshold situation declaration in SCENE. 

Line Instruction 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 
17 

declare ExceedingThreshold extends Situation product: Entity @part 

end 
rule ExceedingThreshold @role(situation) @type(ExceedingThreshold) 

when 
containment: RelationalContext(kind=="Containment") 

RelationalPart(label=="contained", relation==containment, product: entity) 

RelationalPart(label=="container", relation==containment, container: entity) 

temperature: IntrinsicContext(kind=="temperature", bearer == container, 

value.entries["temperature"]( >= product.attributes["maxThreshold"] || 

<= product.attributes["minThreshold"] )) 

) 

then 

SituationHelper.situationDetected(drools); 
end 
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Table 9 - The ObserverETAGreaterThanETT situation declaration in SCENE. 
Line Instruction 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 
24 

declare ObserverETAGreaterThanETT extends Situation observer: Entity @part 

container: Entity @part product: Entity @part end 

rule ObserverETAGreaterThanETT @role(situation) 

@type(ObserverETAGreaterThanETT) when 

observation: RelationalContext(kind=="Observation", value.entries["status"] != 

"BUSY") 

RelationalPart(relation == observation, label=="observer", observer: entity) 

RelationalPart(relation == observation, label=="observed", product: entity) containment: 

RelationalContext(kind="Containment", value.entries["status"] == "ON") 

RelationalPart(relation == containment, label=="contained", entity == product) 

RelationalPart(relation == containment, label=="container", container: entity) 

ett: IntrinsicContext(kind=="EstimatedTimeToThreshold", bearer == product) 
eta: RelationalContext(kind=="EstimatedTimeOfArrival", value.entries["eta"] > 

ett.value.entries["ett"]) 

RelationalPart(relation == eta, label=="person", entity == observer) 

RelationalPart(relation == eta, label=="container", entity == container) then 

SituationHelper.situationDetected(drools); end 

 

 
All SCENE situation type specifications were written in a single DRL file which was 

then uploaded to the SCENE Situation Engine and from that moment on, the MQC Service is 

all set and able to detect new situations based on incoming sensor data. In addition, the MQC 

Service provides a Situation Subscription API along with a specific websocket channel for client 

applications and/or services to listen for alerts about situations they are interested in. 

 

4.2 Experiment 2 - MQC Business-Aware modeling application 

 
This experiment (modeling application) is based on the same application scenario and 

situation types that were previously presented. The purpose of this experiment is to show that 

it is relatively simple to configure a business-aware application using LAURA architecture, 

with special attention to the activities performed by the BPM expert. We assume that the 

activities performed by the Situation/Rule and System experts in Experiment 1 were 

successfully performed. Following paragraphs present the main steps for configuring a final 

BPM application from the point of view of the BPM expert. 
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The ‘1st Step’ comprises the activities of specifying and modeling some BP in BPMN 

that can define the actions that must be executed from the triggered situations. Based on the 

previously defined situations, it is necessary to define the processes that must be executed to 

achieve the desired goals. Following steps present examples of processes for this application 

scenario using a java-based tool called jBPM to model and execute BP in BPMN. 

The ‘2nd Step’ comprises the activities of configuring the communication channels 

between the jBPM and the LAURA architecture in order to enable interoperability between the 

APIs of the Situation Layer (SCENE platform) and the jBPM. Therefore, to start the processes 

from situation activations in the SCENE platform, a permanent Pub/Sub communication 

channel is established through a websocket connection that uses the Pub/Sub standard. In 

addition, a REST call is needed to query situations and its participants, during a BP. In this way, 

jBPM subscribes to SCENE and waits for messages containing the name of the situation that is 

configured in SCENE. As soon as messages are received, the situation name is verified to select 

the commands to be executed. 

Another activity that should be performed in this step is programming the process code 

to establish the connection between jBPM and SCENE. According to the received message, 

this process executes a loop to identify the situation that should be triggered. It is expected that 

the System expert makes the initial programming of this code and that the BPM expert changes 

or includes a new `case` block code that appears soon after the ‘switch(situation)’ command, 

as can be seen in figure 8. Note that each ‘case’ indicates the process that will be started from 
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the triggered situation, indicating the file with extension `.bpmn2` that contains the processes 

such as the BP that will be presented in figure 13. 

Figure 8 - Overview of the initial part of the running process code that establishes the 

connection between jBPM and SCENE. 

Figure 8 shows an overview of the initial part of the process code that is running in 

background into the jBPM to establish the connection and, according to the received message, 

executes a loop to identify the situation that will be triggered. As jBPM is java-based, it was 

chosen to develop this code in Java. According to the BPMS tool adopted, the team of 

developers must decide how best to make these configurations and procedures according to the 

facilities provided by the BPMS tool. It is expected that the System expert makes the initial 

programming of this code and that the BPM expert changes or includes a new ̀ case` block code 

that appears soon after the ‘switch( situation )’ command. Note that each ‘case’ indicates the 

process that will be started from the triggered situation, indicating the file with extension 

`.bpmn2` that contains the BP that will be presented in figure 13. 
 

Therefore, whenever it is necessary to include a new process, the BPM expert only needs 

to include a new ‘case’ block code according to the example shown in Figure 8. The line that 

starts with 'CreateRuntimeManager' creates all process into the knowledge base with the default 

settings. The second and third lines have the objectives of creating a running instance of the 

Rule Engine as a KieSession. Finally, the line that starts with 'KsessionObserving' has the 

function of initializes the process ‘medicine.contro.Observing’ into the session previously 

created. 
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The ‘3rd Step’ comprises the activities of configuring the BP in BPMN that have been 

modeled in the ‘1st Step’ in order to access the communication channels to interoperate with 

MQC service(‘Situation/Rule Layer’) as previously reported in Experiment 1. Figure 9 shows 

an example of a script that needs to be configured into the ‘Script task’ of the process showed 

in figure 11. The Script code contains the instruction to send an e-mail to all other observers. 

When working with a BP from a triggered situation, it is expected that there are several 

processes running simultaneously, since we may have more than one situation occurring at the 

same time. The BPM expert models processes defining the actions that should be performed 

when situation notifications are received. Some processes are simpler or more direct and others 

demand more actions according to the situation. 

 

Figure 9 - The Script code configured into the script task `Alerts others about 

Observed’ which will be shown in the BP of figure 11. 

Next, we show some examples of processes that were modeled in BPMN to meet the 

objectives of the application scenario. When working with a BP from a triggered situation, it is 

expected that there are several processes running simultaneously, since we may have more than 

one situation occurring at the same time. The BPM expert will model each process according 

to what they want to be done after each triggered situation. Some processes are simpler or more 

direct and others demand more actions according to the situation. Figure 10 presents the process 

when the 'i' - 'Observed Situation' is activated. That is, whenever a person indicates he/she is 

interested or not in monitoring a specific product, an alert is sent to everyone else monitoring 

the same product. 
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Figure 10 - The process in BPMN that started when the situation ‘i’ is activated or 

deactivated. 

For the sake of brevity and objectivity, a brief clarification will be made on the BPMN 

elements used in this experiment. Only the most common BPMN elements were used. Thin- 

border circles labeled 'Start' and thick-bordered circles labeled 'End' indicate, respectively, the 

start and end of a process. In the proposed approach, the 'Start' events are triggered when a 

situation is triggered. It was also used time events that are associated with the circles with the 

image of a clock and the description of the time that will elapse during the flow between two 

elements as can be seen in figure 12. 

The diamond shape represents the gateway element that is used for divergent or 

convergent flow control behavior in a process. The rounded corner rectangle represents the 

activity that is performed in a BP. This activity can be atomic or non-atomic. The activity can 

be a task or sub-process. In this experiment, we used only the `Script tasks` that is executed by 

a system (there may be a task executed by a person). Finally, the arrow connecting two elements 

is used to represent a sequence flow direction. 

Figure 11 presents the process that is initiated when the 'ii' - 'Absent Sensor Situation' 

is activated. That is, when the breakdown occurs in communication or data reception for a pre- 

determined period of time. In this case, an alert will be sent to all those monitoring the same 

product. 

 

 

 

 

 

Figure 11 - The process in BPMN that starts when situation ‘ii’ is activated. 

 

 
Figure 12 presents the process that is initiated when situation 'iii' - 'Exceeding Threshold 

Situation' is activated. In other words, when the temperature of the Botulinum Toxin bottles is 

beyond the acceptable range of below or equal to -5 ° C. If a measurement outside the range 
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occurs, there is a 40 second delay to avoid a false alert. Following this, the temperature is 

checked again to verify if situation 'iii' is still active. If not, an alert is sent to all monitoring 

parts, informing them that the temperature is outside the acceptable range. Otherwise, the 

process terminates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 –The process in BPMN that started when the situation ‘iii’ is activated. 

Table 10 presents the script codes that have been configured into the two script tasks of 

the process presented in Figure 12. The Script task 'ExceedingThreshold' makes a REST call to 

verify if the situation that initiated this process is still active. The other task contains the 

instruction to send an e-mail to all observers. 

Table 10 - Script codes configured into the two script tasks of the process showed in figure 12. 
Task name Configured script code instructions 

ExceedingThreshold kcontext.setVariable("ExceedingThreshold", 

ws.getExceedingThreshold("http://localhost:3000/getExceedingThresho 

ld")); 

if (ExceedingThreshold.situation.type == "ExceedingThreshold") { 

kcontext.setVariable("ExceedingThresholdActivated", true); 

} else { kcontext.setVariable("ExceedingThresholdActivated", false); 
} 

Alert everyone about 

"ExceedingThreshold" 
notification.sendEmail("ExceedingThreshold"); 

 

 
Figure 13 presents the process that is started when Situation 'vi'-' All Observers are with 

ETA Greater than ETT Situation' is activated, that is, when everyone monitoring the product is 

at a close enough distance to prevent the product from spoiling. 
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There is a 40 second delay to avoid a false alert. After 40 seconds, a check is made to 

see if Situation 'vi' is still active. If not, the process is terminated. If the situation remains active, 

a check is made to verify if there is someone in Situation `i`. At the same time, a simultaneous 

check is made to verify if Situation `vii` is active, making it possible to alert all available parts. 

Once a person has been notified, there is a wait time of 180 seconds to allow a minimum 

response time to he/she sees and responds to the alert. After the delay, a check is made to verify 

if a response has been received indicating there is at least one person available and able to solve 

the problem in both Situations 'i' and 'viii'. In this case, the process is terminated. 

If there is no available observer, there is an increase in the number of attempts. A total 

of 20 attempts were stipulated, corresponding to approximately one hour (maximum time that 

justifies warning before the product is lost). Until reaching the maximum number of attempts, 

the process returns to the initial checkpoint, and continues to verify if the Situation 'vi' is active. 

Once the maximum number of attempts has been reached, a final alert is sent to all observers 

and the process terminates. 

Figure 13 - The process in BPMN that started when the situation ‘vi’ is activated. 
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This experiment has shown that it is relatively easy for the BPM experts to configure 

their own business-aware application to use LAURA architecture, without having to know the 

lower-level technical aspects. The complete code and all other instructions used in this 

experiment are available in the 'experiments/Experiment-2/' repository of the LAURA project 

at GitHub (Teixeira et al., 2017a). 

 

4.3 Experiment 3 - LAURA Architecture performance evaluation 

 
This complementary evaluation (the empirical evaluation is the main assessment 

directly related to the objectives of this thesis) aims at verifying if the proposed architecture is 

capable of processing and delivering sensed data to final applications within a satisfactory end- 

to-end latency. The evaluation consists of various experiments using different topologies, 

configurations and sample times. Measurements (in milliseconds) were taken to record the time 

that the package takes to be processed between the Terra Gateway and the Terra Web Control 

final application. Breakpoints to register time are placed at data arrival in the Terra Gateway 

and in the Terra Web Control. The difference between these time measurements is calculated 

in order to find the length of the latency. The average latency is calculated using the simple 

arithmetic mean based on the latency of each received package. An average latency can be 

calculated for temperature and another for the luminosity. Therefore, this evaluation does not 

present an in-depth analysis, but it was considered important to make the assessment of a end- 

to-end latency. 

This evaluation consists of three experiments: Experiment 3.1 evaluates the average 

delay when packets are sent in bursts to Terra Gateway. Experiment 3.2 evaluates the average 

delay in a real-world application scenario comparing different sample times. Experiment 3.3 

evaluates the influence of the dissemination process in the running application. New node codes 

(bytecodes) are disseminated into the WSN to observe if there is any significant delay or loss 

of sensed data in the running application during this process. 

These experiments analyzed latency for different types of topologies. Since Terra 

System is the WSN chosen for the LAURA applied architecture, we have used Terra-based 

WSN topologies. Moreover, an average latency can be stipulated for each WSN and an overall 

average measurement for all WSNs used in this evaluation. In addition, it was not taken into 

account the latency between the reading of the sensed data in the node until the arrival of the 

package in the sink node. According to (Delsing et al., 2010), a WSN based on IEEE 802.15.4, 
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with transmission rate of approximately 250kbps, has a latency variation of 5 to 20ms for each 

communication hop also taking into account any communication interferences. Therefore, the 

average delay when processing sensed data using LAURA architecture is equivalent to one 

more communication hop in a WSN. Thus, if we add 20ms (for the worst-case hop) to the final 

latency obtained in our experiments, we will have the end-to-end latency of the LAURA applied 

architecture from reading the sensed data until the arrival of the data in the final application. 

The LAURA architecture proposal is designed to be a generic platform, capable of 

supporting different application types with different requirements, mainly in interactive 

applications that are typical in a IoT application scenarios. The majority of users of different 

types of low-latency interactive multimedia streaming applications find acceptable a delay of 

40ms. Taking into consideration that the time between a mouse click until the message arrives 

in the application is at least 30ms, 70ms is an acceptable delay for these applications (ITU-T, 

2014). There is no fixed threshold for acceptable delays in interactive applications, however, 

an end-to-end latency of less than 100ms is considered acceptable for most interactive 

applications (Mandjes et al., 1999). For example, the high-quality gaming scenario experiences 

responses of at least 100ms (Petlund, 2009). The ITU G.114 recommendation (Brosh et al., 

2010) states that the maximum delay (worst case scenario) required for interactive application 

is 400ms. For an audio conferencing application, ITU-T guidelines indicate that users are 

satisfied with a latency less than 150ms (Petlund, 2009). 

In Experiment 3.1, we evaluate the average latency in high traffic conditions 

determining the average delay in a data burst scenario to Terra Gateway. This experiment was 

performed with three Terra System-based WSNs, containing a Sink Node linked to a 

Mib600CA (MEMSIC, 2016) gateway with Ethernet connection in each WSN. Each node was 

fitted with temperature and luminosity sensors. All WSNs were connected by Ethernet 

connections to a computer running Terra Gateway, Terra Web Control and other components 

and specific modules in LAURA applied architecture. Table 9 presents each WSN 

configuration, the components and extra content related to the experiment 3.1. All results, 

additional data and information about experiment 3.1 are available in the `Experiment’6 

repository in the LAURA Architecture GitHub Project. Each experiment or sampling period 

created a text file for each WSN containing all the data packages received in the Terra Gateway. 

 

 
 

 

6 
https://github.com/laura-architecture/experiments/tree/master/Experiment-3/Exp3.1 
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All the data generated in the modeling applications and experiments are also available in 

GitHub. 

 
Table 11 - Performance evaluation - Experiment 3.1: Throughput analysis in high traffic 

conditions for 5 minutes 

WSN Sink node Unique Node 
Temperature 

Average Delay 

01 Mib600ca + Micaz - ID:10 TelosB – ID:11 11ms 

02 Mib600ca + IRIS - ID:20 IRIS – ID:21 10ms 

03 Mib600ca + Micaz – ID:30 MicaZ – ID:31 11ms 

 
Each node was programed to send bursts every 5 seconds to its corresponding Sink 

Node. Each burst had 5 temperature readings within 800ms intervals. The reading ranges used 

in our experiments were chosen because they are smaller than what is normally used for a group 

of applications similar to the application scenario. This allowed Terra Gateway to receive 15 

packages every 5 seconds from 3 WSNs containing the temperature readings. Over a 5 minutes 

period, 277 packages were captured from WSN1, 335 packages from WSN2 and 363 packages 

from WSN3. The difference in the number of received packages was expected due to each node 

having a different processing capacity. The Terra node code used in this experiment is also 

available in the same GitHub repository mentioned above. The average delay of all WSNs in 

this scenario was 11ms. Adding a 20ms for the latency within the WSN (from the reading of 

data to the sink node) we have an end-to-end latency of 31ms. Therefore, the end-to-end latency 

observed in this evaluation can 70 or 100ms, as previously discussed. Furthermore, non- 

interactive monitoring real-world IoT applications as previously presented in figure 1 of the 

introduction section are usually more flexible and do not require such a short latency. 

Experiment 3.2 evaluates the average delay in WSNs topologies, such as the one 

depicted in Figure 14. In order to evaluate the communication performance, it was decided to 

configure each WSN with a linear topology following the specifications of (Alfayez et al., 

2015). We chose the use of Linear topology for this experiment given the latency and energy 

consumption challenges imposed by these types of WSN. For example, the linear topology 

limits the number of neighbors that a node can have or forces a single route in which data are 

sent from one node to the next. Thus, the nodes closer to the Sink node tend to get overloaded 

and can even lose packages. 

This experiment measured temperature and luminosity using the same nodes from 

experiment 3.1. However, we have used an increased number of nodes within each Terra 

System WSN as shown in fig 14. Table 12 presents each LWSN configuration, components 
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and other information. All results, data and additional information about experiment 3.2 are 

available in the `Experiments’7 repository in the LAURA Architecture GitHub 

 
Table 12 - Performance evaluation – Experiment 3.2: Throughput analysis in typical LWSN 

applications for 5 minutes. 
Sampling times: Temperature every 5s and Luminosity every 8s 

WSN Sink node Nodes Average Delay 

01 Mib600ca + Micaz - ID:10 
TelosB - ID:11 to 15 (5 

nodes) 

Temperature: 14ms 

Luminosity: 12ms 

02 Mib600ca + IRIS - ID:20 
IRIS with MDA100 sensor 
- ID 21 to 29 (9 nodes) 

Temperature: 13ms 

Luminosity: 16ms 

 

03 

 

Mib600ca + Micaz – ID:30 

MICAZ with MDA100 

sensor - ID 31 to 34 
(4 nodes) 

Temperature: 17ms 

Luminosity: 14ms 

 
In this experiment, the measurements used three different configurations for the sample 

times. Table 13 shows temperature readings taken every 5 seconds and luminosity readings 

every 8 seconds per node for each WSN. The average data transfer latency was 14ms after a 

period of 5 minutes. This average delay can be considered satisfactory according to the same 

arguments previously presented in experiment 3.1. While recording the length of the delay in 

the Terra Web Control, it was observed that, over a shorter period of under 5 minutes, the 

differences among average delays ware small, with a tendency to remain stable over longer 

periods. Therefore, 5 minutes was considered enough time to make a reliable calculation of the 

average delay time. This was also true for the other experiments in the performance evaluation. 

 
Table 13 - Performance evaluation – Experiment 3.2: All general average delay of each 

sampling times for 5 minutes. 

Sample Sampling times 
General Average 

Delay of all WSN 

01 
Temperature: every 5 seconds 
Luminosity: every 8 seconds 

14ms 

02 
Temperature: every 35 seconds Luminosity: 

every 38 seconds 
6ms 

03 
Temperature: every 55 seconds 
Luminosity: every 58 seconds 

6ms 

 
The Terra node code used in these experiments and the other data and information are 

available in the same GitHub repository previously mentioned along with all the sensed data 

 

 

 
 

 

7 
https://github.com/laura-architecture/experiments/tree/master/Experiment-3/Exp3.2 
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captured for each sample time. Table 13 shows the general average delay of all WSN for each 

sampling time executed for 5 minutes. 

These experiments indicate that the LAURA Architecture introduces an average latency 

that is acceptable for the groups of applications we have considered. Our experiments were 

performed under a controlled environment to simulate the behavior of real-world applications; 

however, we have introduced more intense traffic than what is usually observed in this 

particular group of applications. Figure 14 summarizes the Scenario topology used in 

experiments 3.2 and 3.3. 

Experiment 3.3 evaluates communication performance under unusual conditions that 

may occur in IoT Real-World application scenarios when it is necessary to update the code of 

the nodes simultaneously to the operation of the network. For this experiment, significant loss 

of sensed data was registered. The bytecode from Sample 3 (see Table 13) replaced the code 

from Sample 1 in all nodes of the LWSNs. Bytecode dissemination lasted an average of 16 

seconds for each LWSN. In this way, it was possible to verify that approximately 3 temperature 

and luminosity readings have been lost due to the sampling time of sample 1. Dissemination 

time and package loss were considered satisfactory as the dissemination of a new bytecode is 

something that can be programmed when stakeholders are able to monitor the process avoiding 

any days or moments when data loss would be critical. Moreover, this process allows the node 

codes to be updated in a faster and more practical way that a manual update process. All results, 

raw data, additional information and some videos that show the realization of experiment 3.3 

are available in the 'experiments'8 repository in LAURA Architecture GitHub. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

8 
https://github.com/laura-architecture/experiments/tree/master/Experiment-3/Exp3.3 
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Figure 14 - Performance evaluation- Experiment 3.2 e 3.3 - Scenario topology with 3 linear 

WSNs. 

 

4.4 LAURA Empirical Evaluation 

 
This section presents an empirical evaluation of LAURA architecture from the point of 

view of two of its stakeholders: the BPM Expert and the System Expert. This evaluation was 

conducted from December 2018 to February 2019, with a sample of 30 participants, who were 

divided into two groups, according to their professionals’ profile. 

To select the participants, open invitations were sent to BPM professionals through 

associations such as ABPMP (ABPMP International, 2018) and other affiliates scattered around 

the globe. In addition, invitations were sent to system developers in universities and companies 

in general mainly through LinkedIn. 

The entire process of planning, executing and analyzing the results of this evaluation 

was based on (Juristo and Moreno, 2010; Wohlin et al., 2012). Figure 15 presents an overview 

of LAURA architecture experimental evaluation process steps and learning cycle. The steps of 

the experimentation process are: The steps of the experimentation process are: (i) Definition of 

a general hypothesis and transformation of this hypothesis into evaluation questions; (ii) 

Definition of the scope, planning and description of the experiment design; (iii) Setting up the 

profile and the ‘point of view’ of the participants; (iv) Setting up a period for the evaluation in 

which the participants perform the proposed experiments and evaluate the LAURA 
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architecture; (v) In this step, data are collected, tabulated and categorized; (vi) This step refers 

to data validation. This is done to avoid inconsistencies, possible errors or failures in the entire 

evaluation process; (vii) During this step, the data are analyzed and interpreted to verify if the 

results are enough and able to confirm the hypotheses; (viii) in the last part of the evaluation 

process, the results are presented and discussed. The details of each step of the empirical 

evaluation are presented below. 

 

Figure 15 – Overview of LAURA architecture empirical evaluation processes steps and 

learning cycle inspired by (Juristo and Moreno, 2010; Wohlin et al., 2012). 

 

4.4.1 Hypothesis 

 
The general hypothesis is that LAURA architecture simplifies the task of developing 

IoT applications for those stakeholders of LAURA ‘Application/Business Process Layer’ who 

are not aware of the lower-level technical aspects related to the development and deployment 

of IoT solutions. 

This general hypothesis was divided into more specific hypotheses that were 

transformed into evaluation questions, using three factors of the Technology Acceptance Model 

(TAM) (Avilés-López and García-Macías, 2009; Venkatesh and Davis, 1996): the perceived 

application ‘Easy of Use’, `Usefulness`, and `Intention` of use of the LAURA architecture. 
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Additionally, a question was elaborated to verify if the presented problem is equivalent or 

comparable to real-world problems that normally are treated in a corporate environment. We 

use the Likert (Harpe, 2015) rating scale from 'strongly disagree' as the value ‘1’ to 'strongly 

agree' as the value ‘5’. Table 14 presents the evaluation question and their respective rationales. 

 

Table 14 - The evaluation questions and their respective rationales 
Evaluation question Rationale 

Taking in account your 

background professional 

experience, is the problem 

presented in the application 

scenario considered similar or 

equivalent to a real-world 

problem? 

Taking into consideration that LAURA architecture aims to 

support real-world IoT solutions and considering that this 

evaluation proposes a simulated real-world scenario, it is 

important to know if the problem described in the application 

scenario is equivalent to those commonly found in an enterprise 

environment. The participant of this experiment is a qualified 

professional to confirm if the problem presented is comparable to 

a real-world problem. 

BPM expert evaluation: 
Is it easy to configure/adapt the 

BP with the use of LAURA to 

solve the proposed problem 

through a BPM workflow? 
 

System expert evaluation: 

Is it easy to configure/adapt the 

application you developed with 

the use of LAURA to solve the 

proposed problem? 

Evaluation of the perceived easy-of-use. According to Davis it 

can be defined as "the degree to which a person believes that 

using a particular system would be free of effort". In this way, 

this question seeks to evaluate whether the APIs, provided by 

LAURA architecture, is easy to use and offer simple abstraction 

when used by the developer of the IoT final solution. 

Was LAURA useful to solve the 

proposed problem? 

Evaluation of the architecture usefulness. According to Davis, it 

can be defined as "the degree to which a person believes that 

using a particular system would enhance his or her job 

performance". In this way, this question seeks to evaluate 

whether the LAURA allows relatively easy integration between 

LAURA and the final application that the developer intends to 

use and that is capable of solving the proposed problem in the 

best way as possible. 

Assuming you have to use an IoT 

architecture to solve a problem, 

like to the one previously  

presented  through a 

BP in BPMN, would you use 

LAURA architecture to solve it? 

Evaluation of the intention of use. It is easy to use (configure or 

reconfigure) the BP to solve a problem using LAURA 

architecture. 

For each evaluation question presented in Table 14, it was made a qualitative question 

so that the participant could make relevant observations. Each open question with free text has 

the main objective of obtaining information from the participants that can contribute to the 

improvement of the evaluation (to be done during the pilot test) and mainly with comments that 

can contribute to the improvement of the LAURA architecture. Table 15 presents the qualitative 

question and its rationale that is made shortly after each evaluation question described in table 

14. 
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Table 15 - The qualitative question for each evaluation question. 
Evaluation question Rationale 

We will be grateful if you have 

any comments, suggestions, 

aspect or characteristic related to 

the above question. If you have 

nothing to say, simply write ‘no 

comments’ in the field below. 

The evaluation performed by professionals who had never used 

LAURA is relevant and important to scientific research. The 

labor market professional has a critical and pragmatic view of a 

solution. The participant can provide rich and consistent feedback 

with insights from a different point of view than the people 

involved in developing the LAURA architecture. In this 

way, this qualitative open question can provide relevant 

information to the improvement of the solution. 

For this Empirical evaluation, two evaluation forms were developed, one for each group 

of professionals - System Experts and BPM Experts - which served to guide the participants in 

conducting the experiment. The forms are very similar, but present some specific details for 

each group. The complete forms are available in (Teixeira, 2018a) and (Teixeira, 2018b), 

respectively. 

 

4.4.2 The scope, planning and design 

 
The BPM expert is hired to develop a BPMN-based application called Medicine Quality 

Control (MQC), which purpose is the real-time monitoring of medical products, as previously 

presented in the beginning of chapter 4. In order to perform the experiment, the BPM Expert 

must use a BPMS (jBPM tool was used). According to the guidelines in its respective form, the 

BPM Expert must configure a business process described in BPMN to integrate it with LAURA, 

accessing sensed data and configuring the contextual situations defined in the problem 

specification. 

The System Expert is hired to develop a similar final application, which is not BPM- 

based, but he/she must perform the same functionality as proposed in the application scenario. 

The System Expert must develop a client application using a programming language of his/her 

choice, to solve the same problem. Like the BPM Expert, the System Expert must follow the 

guidelines described in its respective form. 

After defining the application scenario, the steps and guidelines necessary to carry out 

the evaluation experiment were defined. Initially, there was a validation phase of the evaluation 

forms with the support of the Pilot participants. During this phase, adjustments and 

improvements were made to the guidelines contained in the documents, since the participants 

reported lack of information to be able to complete the evaluation. The constant concern, in this 

stage, was to adjust the forms so that the participants were able to understand the proposed 
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problem and the necessary steps to make the evaluation, but without losing the essence that the 

proposed evaluation seeks to portray a scenario equivalent to those found in the corporate 

environment, in which the professional experiences adverse circumstances and needs to seek 

information to perform a certain task. In this way, the form was gradually improved in order to 

provide the minimum information necessary for the participant to make the evaluation. 

In this step, it was also necessary to adjust the form in relation to the guidelines of the 

practical performing part of the experiment in the Virtual Machine (VM), since the pilot 

participants also reported difficulties in the use of VM LAURA. Examples of improvements 

made to the documents include improved API documentation and additional information about 

using jBPM. 

 

4.4.3 The profile and `point of view` of the participants 

 
The target participants of this empirical evaluation (BPM Experts and System Experts) 

are professionals who usually have little or no prior knowledge of lower-level aspects of IoT 

programming or infrastructures, and who has never worked with LAURA architecture. That is, 

the participants may even have some knowledge of IoT, but in this experiment, they will not 

have any kind of interaction with the lower-level aspects of the architecture. In case of the 

System Expert, he/she is expected to be a Software Engineer or a professional with similar 

profile, who has no or very little knowledge about BPM. To solve the problem proposed in the 

experiment, he/she has to develop an IoT application in Java, Python, Node or any other 

language, and use LAURA as an IoT infrastructure. Thus, the ̀ point of view` of the participants 

is related to the final application developer, at the abstraction level of the application layer, 

whose focus is related to the higher level aspects of the architecture. 

 

4.4.4 Operation phase: execution of the evaluation 

 
The evaluation was divided into two cycles: pilot evaluation and regular evaluation. 

Pilot evaluations were performed to validate the whole cycle of the experiment. After these 

pilot tests, the experiment was released to the regular participants. After reaching the minimum 

number of desired participants (at least 15 of each group, totaling 30 participants), the results 

were tabulated and discussed; 

The first cycle of evaluations was performed through individual invitations sent directly 
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to the pilot participants. After the analysis of the results of the pilot teste, it started the regular 

evaluation. After receiving the open invitation, the participant had access to the form containing 

all the information and necessary links to carry out the evaluation. After reading the guidelines 

he/she should download the VM to perform the evaluation. 

 

4.4.5 Data Collection 

 
After completing the experiment, the participant was asked to complete the evaluation 

form according to their profile. The collected data was exported to a spreadsheet and then 

categorized by generating tables and graphs with statistical data per group. No confidential data 

were exposed nor used in the reports. Data entered as confidential was awaited in a separate 

spreadsheet for consistency check and verification. An e-mail was sent to each participant to 

confirm their participation and discuss their impression of the assessment or to clarify any 

comments made in the field of observations as described in Table 15. 

The spreadsheet containing all raw data, tables and some graphics, without exposing 

confidential data, is available in repository ‘'experiments/Empirical-evaluation' of LAURA 

project at GitHub (Teixeira et al., 2017a). 

 

4.4.6 Data Validation 

 
Data validation prevents errors, failures or inconsistencies in the collected data. In this 

evaluation, the main validation process was performed through the pilot tests, in order to adjust 

the entire process of the evaluation. Four evaluations were done as pilot test: two participants 

for the BPM Expert and two for the System Expert evaluations. The pilot test served as the 

basis for the expected result for the other participations. The result of the regular evaluation 

followed the same trend of the pilot test, indicating a congruence of the results. 

For the remainder of this paper and in the spreadsheet containing all raw data, each 

participant, acting as a pilot test, is identified with ‘&Pilot-part-’ string plus an ID number. Each 

participant of the regular evaluation is identified with ‘&Part-’ string plus an ID number. The 

data obtained from the form was converted to a spreadsheet, including some graphs generated 

from the results. The confidential data indicated on the evaluation form have been 

mischaracterized so as not to expose any data from the participants. 
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4.4.7 Analysis and interpretation 

 
Data analyses were done based on the data collected in the two forms answered by the 

participants (one form for the BPM Expert and another for the System Expert). Answers were 

categorized and analyzed through tables in order to verify inconsistencies, checking the 

hypothesis previously presented and discuss new ideas or perceptions that may arise based on 

the analyzed results. 

The qualitative questions were analyzed to verify if there is something relevant that 

should be discussed. As aforementioned, in the pilot test stage, these analyses were 

fundamental, since they allowed validating or adjusting aspects of the evaluation. 

 

4.4.8 Results and discussion 

 
The evaluation participants reside mostly in Brazil (97%), have an academic 

background, and 30% have a master's or doctorate degree. The predominant area is services 

(50%), followed by the academic area (43%). Most (73%) have basic knowledge of IoT, 

however, most (67%) do not have advanced IoT knowledge. Participants with the System 

Expert profile used JavaScript(27%), Java(13%) or Node.js(10%). The average age of the 

participants is 32.3 years and they have a large professional background, on average, 6.6 years. 

To perform the experiment itself (from Stage 3 of the form) both groups took, on average, 1.8 

hours. 

These data reflect the professional profile of professionals who were contacted by 

linkedin, the university UFES or other institutions that attended the calls. After the contact with 

each participant, it was verified that all the evaluation takes approximately 4 hours to be made, 

because it takes an average of 3 hours to understand the problem and then, between one and 

two hours to perform the the evaluation. Thus, the time required to perform the evaluation is an 

important aspect that may inhibit the participation of professionals with little experience. 

However, the participants' report, through direct contact, the analysis of the open questions and 

the verified result of the research questions, showed that the participants found it relatively easy 

to use LAURA to solve the problem proposed. 

The text of the form and the proposed application scenario were carefully thought out 

and planned to propose a context similar to a real-world problem that might reflect the natural 

difficulties that occur when a professional needs to develop a solution to any problem. In this 
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case, there are some aspects that are new to most participants: (i) working on the development 

of a situation-aware final application for a scenario involving IoT; (ii) use of tools or 

technologies that they are not familiar with; (iii) working with a health care setting that is not 

common in their work environment. Therefore, an evaluation that involves these aspects 

requires a minimum time for understanding the problem considered consistent with the time 

spent by the participants. 

Table 16 presents the results of evaluation questions by both groups. It was computed 

the average (Avg) and its respective Standard Deviation (SD) for each TAM factors from each 

group. 

Table 16 - Results of evaluations for both groups of professionals. 

TAM factor 
BPM expert System expert Both groups 

Avg. SD Avg. SD Avg. SD 

Easy of Use 4.47 0.64 4.33 0.62 4.40 0.62 

Usefulness 4.60 0.51 4.73 0.46 4.67 0.48 

Intention of use 4.60 0.51 4.47 0.64 4.53 0.57 

 

Table 16 shows that the average of Likert rating scale of the both groups for all TAM 

factors are between 4 - 'agree' and 5 'strongly agree'. The SD was low (between 10 and 14% 

for both groups), indicating an uniformity in responses that are similar to the results of the pilot 

test (Gunver et al., 2017). In addition, the results of the answers to the first evaluation question 

indicate that the participants consider the problem equivalent to the ones commonly found in 

the real world. 

Thus, according to the participants’ views, the LAURA architecture has scored well for 

the TAM factors. This indicates its suitability to developers to solve similar problems in other 

IoT scenarios. The good averages obtained in both groups indicate that it is straightforward to 

integrate LAURA into the professionals’ development environment. Moreover, the good 

averages of `Usefulness` and `Intention` show a positive evaluation of the overall functionality 

offered by the architecture, particularly the facilities related to situation-awareness, suggesting 

that LAURA is useful to develop IoT situation-awareness applications in corporate 

environments. 
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4.4.9 Limitations of this evaluation 

 
Carrying out a complete evaluation of an IoT architecture, is not a simple task, since it 

involves the participation of various stakeholders working in several aspects of the solution, 

from the lowest to the highest level. In addition, an evaluation of this magnitude, involving the 

simultaneous participation of several professionals, would take longer to complete and 

sometimes the participants might not finish it. In any case, it would be interesting to evaluate 

the architecture from the point of view of the other LAURA stakeholders, for example, the IoT 

Expert and the Situation/Rule Expert. Their feedback and assessments in other levels of 

abstractions of the LAURA architecture could contribute to improve the proposed solution. 
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Chapter 5. Conclusions 

 
In this chapter, we summarize our main conclusions, briefly discussing LAURA design 

in the light of the identified challenges. 

In the introductory chapter, we have started our discussion drawing attention to the 

increasing interest in the development of business applications in diverse IoT real-world 

scenarios. We have emphasized the demand for infrastructures capable of meeting several types 

of IoT applications with requirements that may change any time. We also underlined that 

business environments are complex due to the wide variety of technologies, hardware and 

software solutions integrated with traditional systems. Therefore, we claimed that the solutions 

should provide flexibility, portability, and full decoupling capacity to support such complex 

and heterogeneous IT business environment. This way, business models could be redesigned 

to incorporate smart objects in the development process, facilitating the build and deliver of 

new IoT products and services. This makes the support solutions, such as the LAURA 

architecture, a strategic component for the deployment of IoT applications. 

An enormous diversity of standards and the interests of the big players or the challenges 

of putting a specific technology or standard into practice cause the IoT environment to continue 

being heterogeneous and with a wide range of technologies, languages and systems for the 

development of solutions. Gubbi (Gubbi et al., 2013) presents examples of standards for a range 

of different proposals that were the foundation for the development of the IoT. Considering the 

expected growth of the IoT solutions, it is reasonable to expect that standards will impact the 

success of new products and services. There is a strong prediction that there will be an increase 

in the demand for solutions with the capacity for storage, processing and the integration of 

large-scale applications on an independent platform with high reliability, scalability and 

autonomy to provide a flexible way to develop and deploy an IoT final applications. Gubbi 

reinforces the importance of the development of platforms qualified for offering APIs that are 

capable of dealing with the new demands, providing developers with the flexibility needed to 

build customizable applications with multiple programming models. 

Despite the growing demand for IoT solutions and the need for the use of standards or 

other solutions able to offer flexibility, adaptability, portability, interoperability and re- 

usability, in practice there is a wide variety of technologies, platforms and systems to develop 
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IoT solutions. In the case of the IoT, it is common to find specific solutions that are compatible 

with only one specific hardware platform. In these instances, the desired properties previously 

presented are invalid, as it is only possible to develop solutions that use a determined device 

technology, software environment, or operational system. 

LAURA architecture proposes to promote the flexibility required to meet the demands 

of adaptive applications. Indeed, the increase of interest in IoT applications in the most diverse 

scenarios will demand solutions capable of meeting several types of final IoT real-world 

applications with different requirements that may change any time. These solutions should 

provide flexibility, portability, scalability and full decoupling capacity to support a complex 

and heterogeneous IT business environment that is commonly composed of a wide variety of 

technologies integrated with ES. In addition, a BM can be redesigned to incorporate a way for 

people to build and deliver their product and services with integrated smart objects. This makes 

the support solutions such as the LAURA architecture a strategic component for the deployment 

of IoT applications. 

Furthermore, due to the complexity and multidisciplinary features, a solution must allow 

the participation of various stakeholders whose roles must be well defined. The specific profiles 

of these professionals should match those that can be commonly found in the labor market. This 

aspect is directly related to the ability to simplify the deployment of the final IoT application. 

This aspect improves the engagement and adhesion of each stakeholder that typically works on 

a specific abstraction level. These issues are also strategic, considering it has been predicted 

that there will be a deficiency in the number of qualified professionals to develop or deploy IoT 

applications in the next few years. For example, in 2027, it is expected that 59% of ICT 

professionals shortfall in programming skills (Oxford Economics and Cisco, 2017). This 

reinforces the importance of delivering WSN or IoT devices infrastructures with similar 

functionalities as provided by LAURA Architecture. 

 

5.1 Research Contributions and Connections with other Research 

Works 

One of the central challenges we have identified is the capacity of making changes in 

business rules or application configuration parameters to fulfill specific business demand, using 

high-level languages and approaches. LAURA addresses this challenge providing a 
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Situation/Rule layer, which employs a distinguishing situation platform to support the 

representation and management of situations in a more expressive and friendly way than 

traditional CEP approaches. In addition, at Application Layer, LAURA provides automatic 

node code generation from BPMN specifications, freeing the developer of business models 

from the task of knowing details of lower level programming aspects. Also, a web application 

allows high-level users to remote update the node code image using communication facilities 

provided by lower layers, particularly the Core Layer, speeding up the work and facilitating the 

interaction of high-level stakeholders with LAURA. 

The ability to deal in a simpler manner with IoT real-world scenarios, composed by 

numerous contextual sources, was another major challenge identified in our study. The choice 

for using VM-based approach – and Terra System in particular – greatly helped to address this 

essential problem. Its availability of high-level programming resources and functions provides 

an uniform way of communicating with IoT devices, regardless of the hardware platform. 

LAURA faces this challenge mostly at the Physical and Core Layers. Notice that the 

Situation/Rule Layer also contribute to address this challenge since the more contextual 

sources, the more potential contextual situations emerge or can be envisaged by applications. 

We also identified the complex challenge of engaging a multidisciplinary team in the 

process of developing real-world IoT application in business environments. LAURA solution 

for this challenge includes: (i) a “syntactic” view, represented by a layered architecture that 

provides a set of software components and well defined interaction points, which implement 

facilities and abstractions that are used by several professionals, with different roles and 

technical backgrounds, involved in the development of the IoT application; (ii) a “semantic” 

view, represented by LAURA reference model and the domain application model, together with 

the list of situations of interest. The LAURA reference model and the UML application model, 

in addition to the contextual situations specified, offer stakeholders a common ground of 

understanding of the essential concepts necessary to develop their final IoT solutions using 

LAURA. 

The choice for a fully decoupled architectural design also helped to tackle the challenge 

of dealing with adaptive environments. For example, allowing developers to choose 

technologies that are easier to adapt or integrate with the existing IT solutions. For example, a 

Fog node can be added to provide specific applications with functions like filtering, aggregating 

or avoiding sending invalid or unnecessary data to upper layers (i.e., offering to applications 

a quality of data monitoring function). Sensor node complementary functions can also be 
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included in LAURA Core Layer to allow the processing of specific node functions, aiming at 

reducing the node energy consumption. 

LAURA Empirical Evaluation attested that our proposal obtained a very positive 

acceptance from the BPM Experts and the System Experts professionals, who evaluated 

LAURA architecture with grades between 4 - 'agree' and 5 - 'strongly agree' for the perception 

of 'Usefulness', and 'Intention of Use'. This suggests the suitability of LAURA as a support 

infrastructure for the development of situation-aware or business-aware final IoT applications. 

It is important to note that from an academic standpoint, in addition to the production 

of scientific articles in qualified journals, a relevant contribution of this doctoral work was the 

creation of a research group in our Lab focused on developing IoT solutions based on LAURA 

system. Initial academic results include two bachelor monografs (Martinelli, 2017; Ribeiro, 

2016), and two master's dissertation, one finished (Agrizzi, 2018), and another in progress 

(Pereira, 2018). All these works deal with issues discussed in the upper layers of LAURA 

architecture. 

 

5.2 Future Perspectives 

 
Future work can occur on several levels and aspects, however, some issues deserve to 

be highlighted by the relevance in IoT or by the importance in the improvements that can be 

made in LAURA. Among them, we can point out: (i) sensor data filtering and aggregation based 

on QoC (Quality of Context) parameters, which would bring to LAURA greater quality of data 

awareness; (ii) development of a graphical language for modeling situations, which would 

provide the developer with a great readiness to specify situation types considering aspects such 

as composition of situations and their temporal reasoning; (iii) privacy and security support, 

relevant aspects of the IoT domain that were not exploited in this version of LAURA; (iv) 

improvements in the automatic node code generation solution to fully explore BPMN notation 

elements, and the inclusion of additional facilities, such as the creation of a plug-in that can be 

used in different BPMS. 

Part of this set of issues is under analysis at LPRM and there is a perspective that new 

master dissertations and undergraduation monographs will be developed in the near future, 

covering some of these research issues. Our proposal for the evolution of LAURA architecture 

is to engage students from UFES or other institutions to develop new functionalities or features, 
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including the outcome of work on the LAURA project repositories available on Github at 

http://laura-architecture.github.io. 

http://laura-architecture.github.io/
http://laura-architecture.github.io/
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