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“To every thing there is a season, and a time to every purpose under the heaven: a
time to be born, and a time to die; a time to plant, and a time to pluck up that which is
planted; a time to kill, and a time to heal; a time to break down, and a time to build up;
a time to weep, and a time to laugh; a time to mourn, and a time to dance; a time to
cast away stones, and a time to gather stones together; a time to embrace, and a time to
refrain from embracing; a time to get, and a time to lose; a time to keep, and a time to
cast away; a time to rend, and a time to sew; a time to keep silence, and a time to speak;
a time to love, and a time to hate; a time of war, and a time of peace.”

(King Solomon, Ecclesiastes 3:1-8)



To my beloved wife Suellen



Acknowledgements

I would like to thank, first God, for the life, health, and wisdom given to complete this
work.

I would like to thank all my family and especially my wife Suellen for being by my side at
all times.

I would like to thank my advisor Lucia Catabriga, one more time, for all her effort and
dedication.

I would like to thank my colleague Sérgio Bento, a strong partnership.

I would like to thank the other colleagues on the Computational Mechanics group, Andrea,
Isaac, Paulinho, Ramoni, and Riedson.

I would like to thank my colleague Brenno Lugon by the outstanding implementation of
the SPIKE preconditioner.

I would like to thank all colleagues from the LCAD (High Performance Computing
Laboratory), in particular, colleagues Rodrigo Berriel, Matheus Nogueira, and Marcos
Spalenza.

At long last, I would like to thank you all that directly or indirectly contributed to make
this work possible.



Abstract
We propose an alternative approach to parallel preconditioning for 2D finite element
problems. This technique consists in a proper domain decomposition with reordering that
produces narrow banded linear systems from finite element discretizations, allowing to apply,
without significant efforts, traditional preconditioners as Incomplete LU Factorization (ILU)
or even sophisticated parallel preconditioners as SPIKE. Another feature of that approach
is the facility to recalculate finite element matrices whether for nonlinear corrections or for
time integration schemes. That means parallel finite element application is performed indeed
in parallel, not just to solve the linear system. We also employ preconditioners based on
element-by-element storage with minimal adjustments. Robustness and scalability of these
parallel preconditioning strategies are demonstrated for a set of benchmark experiments.
We consider a group of two-dimensional fluid flow problems modeled by transport and
Euler equations to evaluate ILU, SPIKE, and some element-by-element preconditioners.
Moreover, our approach provides load balancing and improvement to MPI communications.
The load balancing and MPI communications efficiency are verified through analyzer tools
as TAU (Tuning Analysis Utilities).

Keywords: Parallel preconditioners, Narrow banded linear systems, Finite element
method, Domain decomposition, Storage schemes.



Resumo
Neste trabalho é proposta uma abordagem de precondicionamento paralelo para problemas
bidimensionais de elementos finitos. Essa técnica consiste em uma decomposição de domínio
especial que produz sistemas lineares de banda oriundos de discretizações de elementos
finitos, permitindo aplicar, sem maiores esforços, precondicionadores tradicionais como a
fatoração LU incompleta (ILU) ou mesmo precondicionadores paralelos sofisticados como
o SPIKE. Uma outra característica dessa abordagem é a facilidade para recalcular as
matrizes de elementos finitos seja para correções não-lineares ou mesmo para esquemas
de integração no tempo. Isso significa que uma aplicação paralela de elementos finitos é
executada de fato em paralelo, não apenas os sistema lineares são resolvidos em paralelo.
Além disso, precondicionadores baseados em armazenamento elemento-por-elemento podem
ser aplicados com o mínimo de ajustes. A robustez e a escalabilidade dessa abordagem de
precondicionamento paralelo é demonstrada através de uma série de experimentos. Um
conjunto de problemas bidimensionais de fluxo de fluido modelados pelas equações do
transporte e de Euler é considerado para avaliar os precondicionadores ILU, SPIKE, e
alguns outros precondicionadores elemento-por-elemento. Mais que isso, essa abordagem
fornece balanceamento de carga e melhorias nas comunicações MPI. As eficiências tanto
do balanceamento de cargas e como das comunicações MPI são verificadas através de
ferramentas de análise como o TAU (Tuning Analysis Utilities).

Palavras-chave: Precondicionadores paralelos, Sistemas lineares de banda, Método dos
elementos finitos, Decomposição de domínio, Esquemas de armazenamento.
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1 Introduction

Numerous practical computational fluid dynamics simulation problems require the
solution of large and sparse linear systems. Saad (2003) comments that the complexity
and size of the new generations of linear and nonlinear systems are some reasons that have
made iterative methods more attractive than direct methods. Vorst (2003) emphasizes
that, for such systems, it is required to exploit parallelism in combination with suitable
solution techniques. There are many iterative methods for solving large and sparse linear
systems of equations. Some of these methods are so-called Krylov projection-type methods,
and they include popular methods as Conjugate Gradients (Hestenes and Stiefel, 1952),
MINRES (Paige and Saunders, 1975) , SYMMLQ (Paige and Saunders, 1973), Bi-Conjugate
Gradients (Fletcher, 1976), QMR (Freund and Nachtigal, 1991), Bi-CGSTAB (Sleijpen
and Fokkema, 1993), CGS (Sonneveld, 1989), LSQR (Paige and Saunders, 1982), and
GMRES (Saad and Schultz, 1986). Indeed, according to Wathen (2015), to solve such
linear systems using an iterative method based on Krylov subspace may be a good option
only if it converges with few iterations. That might be the case if a good preconditioner is
applied. So, in the last decades, many efforts have been made to achieve that goal.

Benzi (2002) presents an essential survey about preconditioning of large linear systems.
The author advocates in favor of algebraic methods, which use only information contained
in the coefficient matrix. For him, the main classes of algebraic methods comprehend
incomplete factorization techniques and sparse approximate inverses. He also states that,
despite their popularity, incomplete factorization methods have their limitations, which
include potential instabilities, difficult parallelization, and lack of algorithmic scalability. On
the other hand, for Toselli and Widlund (2006), robust parallel solvers for many practical
problems need proper preconditioning which cannot be constructed just by simple algebraic
techniques, but the partial differential equations and respective discretizations must be
taken into account.

Iterative methods based on Krylov subspaces, such as GMRES, have become an
excellent option to solve large and sparse linear systems. This is because, the inner product
and the matrix-vector product, the two main operations of Krylov subspaces methods,
demand less memory and can be paralyzed more easily. In consonance with Saad (2003),
the great question to ask is whether or not it is possible to find preconditioning techniques
that have a high degree of parallelism, as well as good intrinsic qualities. As already stated,
iterative solvers, such as GMRES, have slow convergence as the principal drawback. That
determines the use of preconditioners. As stated by Wathen (2015):

“The convergence of GMRES has attracted a lot of attention, but the absence
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of any reliable way to guarantee (or bound) the number of iterations needed
to achieve convergence to any given tolerance in most situations means that
there is currently no good a priori way to identify the desired qualities of
a preconditioner. This is a major theoretical difficulty, but heuristic ideas
abound.... In this sense, preconditioning will always be an art rather than a
science”.

The advance of numerical methods for large algebraic systems is central in the
development of efficient code for computational fluid dynamics, elasticity, and other core
problems of continuum mechanics. There is a significant number of software packages (Ei-
jkhout et al., 1998) which have incorporated iterative methods, as well as large algebraic
system techniques, to solve linear systems for general applications. An example is the
Portable, Extensible Toolkit for Scientific Computation (PETSc) (Balay et al., 2017)
that is a suite of data structures and routines which provides the building blocks for the
implementation of large-scale application code. Besides that, PETSc is a sophisticated set
of software tools that supports many of the mechanisms needed within parallel application
code, such as parallel matrix and vector assembly routines.

A natural idea to obtain parallelism is to split massive dimensional problems into
subproblems, where each one is solved separately and an approximation of the overall
problem solution is generated. As stated by Toselli and Widlund (2006), in practical
applications, finite element or other discretizations reduces the problem to the solution of
an often huge algebraic system of equations. Thus, solving one huge problem on a domain
can not be a good option, it may be convenient to solve many smaller problems on smaller
subdomains a certain number of times. Such process is named domain decomposition. There
are many works in domain decomposition related to the selection of subproblems that ensure
faster rates of convergence for the iterative method. Therefore, domain decomposition
methods provide preconditioners that can accelerate Krylov subspace methods. Wathen
(2015) cites domain decomposition, in the purest form, as a block diagonal preconditioner
where each separate subproblem is represented by a single diagonal block which may or
may not have an overlapping, that is, which may or may not share some variables with
other subproblems. Wathen (2015) also points out that an important issue is how to
treat the variables either in the overlap regions or on the introduced boundaries between
subdomains.

Despite the popularization of Krylov’s iterative methods for parallel computation,
the robustness of direct methods has been unquestionable even for sparse matrices. In the
80s or even earlier, a series of parallel solvers based on narrow banded linear systems was
developed (Arbenz and Gander, 1994). These solvers were established using direct methods
which guaranteed robustness but questionable scalability. The solver’s performances were
only considered reasonable if the bandwidth was narrow. A interesting survey (Davis et
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al., 2016) presented the recent efforts to produce solvers based on direct methods. It gives
an in-depth presentation of the many algorithms and software available for solving sparse
matrix problems, both sequential and parallel.

In 2006, the SPIKE (Polizzi and Sameh, 2006), a parallel preconditioner based
on solvers of narrow banded linear systems, has been proposed. SPIKE was initially
presented as a parallel solver for direct methods. However, it achieved better performance
as an algebraic preconditioner based on the domain decomposition concept. According
to Manguoglu et al. (2010), preconditioners based on narrow banded systems present
robustness and scalability. However, in several applications, the resulting linear systems
do not have narrow band. Because that, some reordering method, as reverse Cuthill-
McKee (RCM) (Liu and Sherman, 1976), Spectral (Barnard et al., 1995), or Weighted
Spectral (Manguoglu et al., 2010) should be applied to obtain a possible narrow banded
linear system.

As reported by Polizzi and Sameh (2007), the SPIKE algorithm is a hybrid solver, once
it can take advantage of the robustness of direct methods and the lower computational
cost of iterative methods. A variant of SPIKE, named PSPIKE (Sathe et al., 2012),
combines iterative methods with the direct solver PARDISO (Parallel Direct Sparse Solver
Interface) (Schenk and Gärtner, 2006). Developers present the PARDISO software as
a thread-safe, high-performance, robust, memory efficient and easy to use for solving
large sparse symmetric and unsymmetric linear systems of equations on shared-memory
and distributed-memory multiprocessors. Specifically, PARDISO solves the systems on
each node based on a shared-memory parallelization, whereas the communication and
coordination between the nodes are established by the distributed parallelization of the
preconditioned iterative solver. In order to obtain a suitable preconditioning by SPIKE, a
series of combinatorics should be employed to preprocess the coefficient matrix. A banded
structure of the input matrix is required; then, several reordering techniques are applied to
the original matrix to cover all entries of the matrix, ideally by the diagonal blocks. If all
entries are confined within the blocks, an iterative solver based on Krylov subspace could
converge in a few iterations. However, in practical applications this situation does not
occur very often; thus, a realistic goal would be to find a preconditioner such that possibly
all heavy-weighted entries are included in the block structures, and some small-weighted
entries are not - that is, make some changes of rows and columns such that coefficients
with greater value are closer to the main diagonal. In our work (Lima et al., 2017), we
tested combinatorial techniques used to preprocess a linear system that would be solved
using the SPIKE preconditioner. We also analyzed the computational efforts to improve
the convergence of the original linear system.

Our initial goal was to propose the SPIKE as a parallel preconditioner for general
purpose in finite element analysis. Unfortunately, finite element applications present
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different issues when the subject is preconditioning. A nonlinear steady-state problem, for
example, demands a significant amount of GMRES iterations per nonlinear correction
while transient problems require less GMRES iterations per time step. So, the general
combinatorics proposed in SPIKE preprocessing demonstrated a great overhead once
working in a kind of “fork and join” is needed. That is, finite element matrices are
calculated and combinatorial techniques should be applied, both in sequential form; after
that the finite element matrix is split and the linear system using the parallel preconditioner
SPIKE is solved. Because of that, we suggested an alternative arrangement to use SPIKE
avoiding excessive overhead. In our work (Lima et al., 2016), we focused on combinatorial
techniques that could be applied just once, precisely in the beginning of the process, which
allows solving finite element applications indeed in parallel. Using such procedures, we
aim to reduce the bottleneck created by the use of parallel computing for only a few parts
of the problem numerical solution.

Therefore, we established a domain decomposition based on algebraic system solvers
that provide scalability and better convergence properties. We highlight that our approach
does not work in a kind of “fork and join”. Once a proper preprocessing is established, the
entire work is done in parallel, from reading finite element data, through the resolution
of linear systems using preconditioners, to postprocessing. Thus, the hybrid SPIKE
preconditioner can be applied to general 2D finite element applications. Furthermore, some
difficulties related to the use of parallel versions of incomplete LU factorizations can be
overcome. Also, our domain decomposition enables parallelization of element-by-element
local preconditioners for finite element problems with one or more degrees of freedom per
node.

1.1 Contributions of this thesis

In this work, we propose an alternative approach to parallel preconditioning for 2D
finite element problems. This technique consists in a particular domain decomposition
with reordering schemes that produces narrow banded linear systems from finite element
discretization where we can apply, without significant efforts, traditional preconditioners
as Incomplete LU Factorization (ILU) or even sophisticated parallel preconditioners as
SPIKE. In particular, such adaptations applied to sequential incomplete LU factorizations
lead to a kind of block Jacobi preconditioner with local ILU factorizations. Another
feature of that approach is the facility to recalculate finite element matrices whether
for nonlinear corrections or for time integration schemes. That means that the parallel
finite element application is performed indeed in parallel, not just the solver of the linear
system. We also employ preconditioners based in element-by-element storage with minimal
adjustments. Moreover, our approach provides load balancing and improvements to MPI
communications.
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1.2 Thesis outline

This Ph.D. Thesis is organized as follows. Chapter 2 provides general ideas about
preconditioning; parallel preconditioning; preconditioning for narrow banded linear systems
such as SPIKE preconditioner and their relations with preconditioning for finite element
analysis; and some considerations of local and global preconditioning. Chapter 3 presents a
short overview of domain decomposition; introduces our domain decomposition approach;
and demonstrates how our domain decomposition approach provides an a priori narrow
banded linear system for finite element analysis. Chapter 4 describes in detail how to
promote the parallel solution of a finite element application using a suitable preconditioning.
In Chapter 5, numerical experiments are performed aiming to analyze the behavior of four
benchmark problems when they use local and global preconditioners in combination with
our domain decomposition approach. Chapter 6 lays out the Thesis’s conclusions.

1.3 Publications related to this thesis

This section presents the publications related to thesis research.

• B. A. Lugon, L. M. Lima, M. T. P. Carrion, L. Catabriga, M. C. S. Boeres,
and M. C. Rangel, Combinatorial Optimization Techniques Applied to a Parallel
Preconditioner Based on the SPIKE algorithm. 1st. Pan-American Congress on
Computational Mechanics (PANACM 2015), 27–29 April, 2015 - Buenos Aires,
Argentina (Presentation);

• L. M. Lima, B. A. Lugon, and L. Catabriga, An Alternative Approach of the SPIKE
Preconditioner for Finite Element Analysis. 23rd International Conference on High
Performance Computing (HiPC 2016), 19–22 December, 2016 - Hyderabad, India;

• L. M. Lima, L. Catabriga, M. C. Rangel, and M. C. S. Boeres, A Trade-off Analysis
of the Parallel Hybrid SPIKE Preconditioner in a Unique Multi-core Computer. 17th
International Conference on Computational Science and Its Applications (ICCSA
2017), 3–6 July, 2017 - Trieste, Italy.

• L. K. Muller, L. M. Lima, and L. Catabriga, A Comparative Study of Local
and Global Preconditioners for Finite Element Analysis. XXXVIII Iberian Latin-
American Congress on Computational Methods in Engineering (CILAMCE 2017),
5–8 November, 2017 - Florianópolis, Brazil.

• L. M. Lima, S. S. Bento, R. Baptista, P. W. Barbosa, I. P. Santos, and L. Catabriga,
An Alternative Approach of Parallel Preconditioning for 2D Finite Element Problems.
13th World Congress in Computational Mechanics (WCCM 2018), 22–27 July, 2018
- New York, USA; (accepted)
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• L. M. Lima, S. S. Bento, R. Baptista, P. W. Barbosa, I. P. Santos, A. M. P. Valli,
and L. Catabriga, An Alternative Domain Decomposition to Local and Global Parallel
Preconditioners for 2D Finite Element Problems,..., 2018. (to be submitted to a
journal)
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2 Preconditioning

As pointed out by Olshanskii and Tyrtshnikov (2014), for very large systems arising
in real-life applications, direct methods are often computationally nonfeasible. Although
direct methods with lower complexity are known, they are more sensitive to roundoff
errors and are more involved from the algorithmic viewpoint. In many cases, iterative
methods for finding an approximate solution are more attractive. They represent a rich and
lively research area with a representative number of published articles and books. Vorst
(2003) emphasizes a particular class of iterative methods, that is, the so-called Krylov
projection-type methods which include the popular methods such as Conjugate Gradients,
MINRES, SYMMLQ, Bi-Conjugate Gradients, QMR, Bi-CGSTAB, CGS, LSQR, and
GMRES. In addition, Wathen (2015) declares that preconditioning in conjunction with
iterative methods is often the vital component in enabling the solution of large and sparse
linear systems. Wathen also presents GMRES as the most common method to solve linear
systems arising from large, sparse and unsymmetric matrices. However, it is not practical
if many iterations are required. In short, GMRES combined with a good preconditioner
becomes a suitable option for solving large and sparse linear systems arising from general
finite element discretizations.

2.1 A Brief Note About Preconditioning

The concept of preconditioning is quite simple. Given a linear system Ax “ b, the
main idea behind a good preconditioner is to obtain an appropriate matrix M such that
M´1A is well-conditioned (Saad, 2003). Theoretically, the best choice for M is A, but
apparently to find A´1 is more laborious than to solve the system Ax “ b. In this way, there
is a trade-off problem, where it is necessary to improve the condition number of the matrix
M´1A and at the same time to solve the preconditioned linear system M´1Ax “M´1b

more efficiently than the original linear system Ax “ b. The effect of the new matrixM´1A

appears in the matrix-vector operation of the Krylov projection-type methods algorithm.
In practice, instead of determining M´1 explicitly, the preconditioning is achieved for each
matrix-vector product operation p “M´1Av, as follows: first, the matrix-vector z “ Av is
computed and then the action of M´1 in p “M´1z is obtained through the resolution of
the linear system Mp “ z. From a practical point of view, since M is conveniently chosen,
solving the preconditioned system Mp “ z is more efficient both in memory consumption
and in the number of arithmetic operations involved.

Once the preconditioning matrix M is known, there are three ways to use the
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preconditioner. It can be applied to the left:

M´1Ax “M´1b. (2.1)

Alternatively, it can be applied to the right:

AM´1u “ b, with x ”M´1u. (2.2)

Note the right preconditioning needs a change of variables u “Mx and the solution
of a linear system concerning the vector of unknowns u.

Finally, a typical situation is when the preconditioner is obtained in the factorized
form:

M “MLMR (2.3)

where, ML e MR are lower and upper triangular matrices, respectively. In that case, the
preconditioner must be split as follows:

M´1
L AM´1

R u “M´1
L b, with x ”M´1

R u. (2.4)

For symmetric matrices is common to use the split preconditioning as presented
in (2.4). However, there are other ways of preserving symmetry, or taking into account
advantage of the symmetry, even if M is not available in the factored form (Chan et al.,
1998).

One of the most genuine forms to define a preconditioner is to perform the incomplete
factorization of the original matrix A. It requires a decomposition A “ LU ´R where L
and U have the same structure of nonzero elements as the lower and upper parts of A,
respectively, and R is the residual or factorization error. Such incomplete factorization,
named as ILUp0q, is easily computable. On the other hand, it can result in many iterations
of the Krylov projection-type methods.

To remedy this problem, as can be seen in the work of Chow and Saad (1997),
several incomplete factorization preconditioners have been developed considering a more
substantial number of fill-ins in L and U . That is, a significant amount of nonzero
coefficients is introduced during the elimination process at positions where they were
initially null. In general, the most accurate ILU factorizations require a smaller number of
iterations to converge, but the computational effort to provide the factors is high.

For finite element discretizations, as well known, assembling the entire global matrix
is not always reasonable. In these cases, the preconditioners construction would be at the
element level, named local or element-by-element preconditioner. The first works that
proposed the construction of element-by-element preconditioners were (Hughes et al.,
1983b) and (Ortiz et al., 1983). The work of Daydé et al. (1996) presents an efficient
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alternative technique based on local preconditioning. The main idea of this technique
suggests to factorize the element matrices into their corresponding LU factors and to
replace the global backward and forward substitution operations associated with the LU
factorization by a series of similar local operations into element level. Another analogous
way of producing local preconditioners has been the edge-based form. Moreover, local
preconditioners based on the edges, when compared to the element-based preconditioners,
result in less processing time (Catabriga et al., 1998).

Sparse Approximate Inverses (SAI) (Grote and Huckle, 1997) preconditioners rep-
resent another alternative to improve linear systems convergence. As stated by Benzi
(2002), approximate inverse techniques rely on the assumption that, for a given sparse
matrix A, it is possible to find a sparse matrix M which is a good approximation, in some
sense, of A´1. However, this is not at all obvious, since the inverse of a sparse matrix is
usually dense. According to Anzt et al. (2018), SAI preconditioners typically show good
parallel performance but often fail to provide substantial convergence improvement. On
the other hand, incomplete factorization preconditioners are often better preconditioners,
but the sequential nature of exact triangular solves makes the preconditioner application
particularly expensive on parallel architectures.

2.2 Parallel Preconditioning

Parallel computing is almost unanimous when dealing with massive computing tasks.
Iterative methods, in turn, have become attractive to solve large and sparse linear systems,
since they demand less storage and offer ease parallel implementation when compared with
direct methods. In the mid-1990s, Yousef Saad (1994) stated that the degree of parallelism
of the Krylov subspaces methods using standard preconditioners was limited and could
lead to reduced performance when used on massively parallel computers. He identified
this difficulty and considered two alternatives based on multi-coloring and polynomial
preconditioning ideas. Besides that, methods which deal specifically with sparse matrices,
such as those derived from finite element methods in unstructured meshes (Koric et al.,
2014), have received particular attention.

Parallelizable preconditioners have proved to be indispensable since the parallel
computing has became widespread. Saad (2003) states that methods based on incomplete
factorization are more sequential in design, and although there are parallel variants, often
speed of convergence is compromised by ordering and separating variables to obtain the
necessary independence of calculations. The author emphasizes the importance of Multigrid
and Algebraic Multigrid (AMG) methods, whose parallel forms retain much of the power
of sequential implementation. Saad also enunciated that sparse approximate inverses were
developed because they appeared to be a tractable way to compute a purely algebraic
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(‘given a matrix’) preconditioner in parallel. However, their effectiveness remains unclear.
In consonance with Wathen (2015), very simple preconditioning, such as diagonal scaling,
is obviously parallel. However, the efficiency of such approach is limited. Moreover, Wathen
(2015) affirms that the paradigm of domain decomposition is ideal for parallel computation
since it arose from such purpose.

There are two classes of algebraic preconditioners that come from domain decomposi-
tion approaches, namely, preconditioners based on overlapping and preconditioners based
on nonoverlapping (Giraud and Tuminaro, 2006). Additive Schwarz preconditioners are
the most common overlapping representatives. Parallel implementation of these precondi-
tioners requires a factorization of a Dirichlet problem on each processor in the setup phase.
Each invocation of the preconditioner requires two neighbor-neighbor communications. In
general, more significant overlap usually leads to faster convergence up to a certain point at
which increasing the overlap does not further improve the convergence rate. Unfortunately,
more substantial overlap implies greater communication and computational requirements.
The Restricted Additive Schwarz (RAS) (Cai and Sarkis, 1999) preconditioner is a variant
of the classical additive Schwarz method which avoids one communication step when ap-
plying the preconditioning. Even within overlapping regions, each unknown is updated by
only one sub-domain, while contributions from all overlapping sub-domains are summed in
the classical additive Schwarz method. This variant does not have a natural counterpart in
a mesh partitioning framework which by construction has overlapping sets of vertices. The
concept of Schur complement establishes the main category of preconditioners subject to
nonoverlapping domain decomposition. Moreover, the principal drawback of this approach
is the fact that the interface between two adjacent sub-domain interiors has two layers.
That means the corresponding Schur complement system is twice as large as necessary.
Unfortunately, this complicates parallel implementation and load balancing decisions.

Giraud and Tuminaro (2006) also state that domain decomposition methods are more
effective and require less tuning when they are employed as a preconditioner to accelerate
the convergence of a Krylov method. In a parallel distributed framework, the construction
and the application of these preconditioners should also be readily parallelizable. In the
context of the solution of linear systems arising from partial differential equations (PDEs),
domain decomposition preconditioners can be given from an algebraic perspective. For
finite differences, the linear system is fully assembled, and the domain decomposition
techniques correspond to matrix splittings. For finite elements, in turn, the prevalent
practice is only partially assembling matrices on interfaces. That is, each processor is
restricted so that it constructs matrix contributions coming only from finite elements
belonged by the processor. In this case, domain decomposition techniques correspond to
split the underlying mesh as opposed to split the matrix. From a parallel point of view,
they require different data structures and possibly enable different algorithmic choices.
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2.3 Preconditioning for Narrow Banded Linear Systems

Let A be a square sparse matrix of order n. The bandwidth bw of A is defined by

bwpAq “ max
i,j:aij‰0

|i´ j|. (2.5)

The matrix A is a banded matrix if its bandwidth is reasonably small, that is, bw ăă n.
A linear system composed by a banded matrix is called narrow banded linear system.
Conforming to Gallopoulos et al. (2016), a narrow banded linear system AX “ F presents
at least two advantages: (i) possibility to extract a suitable preconditioning matrix M from
A; (ii) favorable conditions to implement on a parallel architecture with higher efficiency.

Let AX “ F be a large and sparse linear system with narrow bandwidth such that
it can be divide into p partitions:

AX “

»

—

—

—

—

—

—

—

–

A1 B1

C2 A2 B2
. . . . . . . . .

Cp´1 Ap´1 Bp´1

Cp Ap

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

X1

X2
...

Xp´1

Xp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

F1

F2
...

Fp´1

Fp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ F (2.6)

where Ai, Bi, Ci are block matrices and Xi and Fi are block vectors (i “ 1, . . . , p).

Gallopoulos et al. (2016) also suggest large sparse systems, mainly those derived
from the finite element method, can become narrow banded systems just using graph
manipulation schemes. Reverse Cuthill-McKee (RCM) (Liu and Sherman, 1976), Spec-
tral (Barnard et al., 1995), or Weighted Spectral Ordering (WSO) algorithms promote a
suitable matrix rearrangement such that a chosen central band produces a good precondi-
tioner for Krylov iterative methods. Commonly, such operations produce a positive effect
on the preconditioning of the linear system since they lead to a robust narrow banded
linear system. However, for problems whose assembly and reassembly of the finite element
matrices are numerous, such modifications can become almost infeasible to the parallel
processing due to computational demand.

Some efforts have been made to produce suitable preconditioning based on narrow
banded linear systems arising from partial differential discretizations. Ortigosa et al. (2003)
proposed an assessment of the behavior of the memory hierarchy and communication
pattern in the parallel implementation of the conjugate gradient method for banded
matrices which arise from finite difference or finite element methods on diverse computer
architectures. The work (Chen and Taha, 2014) presents a parallelized iterative solver for
large sparse linear systems (whose matrices are already in banded form) implemented on
a GPGPU cluster.

A family of solvers namely SPIKE (Manguoglu et al., 2009)(Sathe et al., 2012) is
another representative of narrow banded linear system solvers. According to the authors,
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they are a family of parallel hybrid linear system solvers that are more robust than other
available preconditioned iterative methods, and more scalable than parallel sparse direct
solvers. Initially, SPIKE solvers worked just with narrow banded systems. Currently, the
PSPIKE+ (Zhu and Sameh, 2017), as it is now named, also has become an excellent
option for a medium-band linear system. That means the preconditioner consists of
non-overlapping diagonal blocks plus small off-diagonal coupling blocks (Sathe et al.,
2012).

2.4 The SPIKE Preconditioner

The SPIKE preconditioner (Polizzi and Sameh, 2006) provides a preconditioning
matrix M which is a high-quality approximation of A (the original matrix of the linear
system AX “ F in Eq. (2.6)) and whose corresponding linear system can be solved in
parallel. SPIKE was conceived as a hybrid parallel solver for narrow banded linear systems.
Once it takes advantage of the robustness of direct methods and the lower computational
cost of iterative methods. Furthermore, if the linear systems are diagonally dominant, the
truncated SPIKE version can be used as a preconditioner for external iterative scheme.
Three phases define the SPIKE preconditioner: first, the preprocessing phase, in which
the narrow banded matrix M is obtained; second, the factorization of the matrix M ; and,
finally, the postprocessing, where the preconditioning actually acts.

Combinatorial strategies – detailed in Sec.2.4.1 – are used in the first phase to
transform the original sparse matrix A into a banded matrix as stated in Eq. (2.6).
The banded matrix A is divided according to the appropriate number of processors. The
preconditioning matrixM is formed from the banded matrix A, taking their diagonal blocks
Ai (i “ 1, 2, ..., p) and extracting respective coupling block matrices Bi (i “ 1, 2, ..., p´ 1q
and Ci (i “ 2, ..., p), where p is the number of partitions. Ai has dimension ni ˆ ni in each
partition i and the coupling blocks Bi and Ci have dimension kˆk, where k value is chosen
conveniently (Manguoglu et al., 2010). To finalize the first phase, the preconditioning
matrix M is obtained discarding the coefficients outside the coupling blocks Bi and Ci.

The second phase begins when the banded matrix A is factored into DS, where
D is a diagonal block matrix and S is named the SPIKE matrix. Figure 2.1 illustrates
a factorization divided in four partitions. D is equal A without coupling blocks. S has
diagonal blocks Ii given by the corresponding identity matrix and dense matrices Vi

(i “ 1, 2, ..., p´ 1) and Wi (i “ 2, ..., p) whose dimension are ni ˆ k.

The SPIKE matrices Vi and Wi are defined as:

Vi “ A´1
i

˜

0
Bi

¸

e Wi “ A´1
i

˜

Ci

0

¸

, (2.7)
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and we can calculate them solving the systems

AiVi “

˜

0
Bi

¸

e AiWi “

˜

Ci

0

¸

, (2.8)

These systems are solved using LU factorizations, with Ai “ LiUi, and can be represented
in a reduced form as

LiUirVi,Wis “
“` 0

Bi

˘

,
`

Ci
0
˘‰

. (2.9)

The bottom of the SPIKE Vi (denominated V pbqi ) can be computed using only the
bottom k ˆ k blocks of L and U . Similarly, the top of the SPIKE Wi (denominated W ptq

i )
may be obtained if it performs the UL-factorization. Thus, after some communications, a
good approximation of S, named S̃, is built and the preconditioning matrix M “ DS̃ is
defined. Then a parallel LU -factorization is applied to each partition of S̃.Capítulo 4. SPIKE 27
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Figura 4.6: Decomposição A = D × SFigure 2.1 – Matrix A factorization into DS: example with four partitions.

In the last phase, called postprocessing, the preconditioning is performed, whenever
the iterative method calls for a matrix-vector product like Ãu “ z and Ã “ M´1A.
Obviously, the M´1 matrix is not computed, but a parallel solution of the linear system
Mx̃ “ z is obtained in two steps:

D̃ig̃i “ zi (2.10)

S̃ix̃i “

«

I V
pbq

i

W
ptq
i`1 I

ff«

x
pbq
i

x
ptq
i`1

ff

“

«

g
pbq
i

g
ptq
i`1

ff

“ g̃i (2.11)

The application of SPIKE preconditioner to solve the system AX “ F is presented in
Algorithm 1.

2.4.1 Combinatorial techniques applied to SPIKE preprocessing

The main step of the SPIKE algorithm is concerned with the computation of a
narrow banded linear system, where reordering procedures permute the original matrix
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Algorithm 1 Solve a linear system AX “ F using SPIKE preconditioner for p processors
Require: Given matrix A stored in compact format.
1: Apply reordering techniques to reduce the matrix bandwidth of A.

{Improvements in preconditioning can be reached if other combinatorial techniques
are utilized in matrix A (see (Sathe et al., 2012))}

2: Employ on the right side vector F the same techniques applied to matrix A in step 1.
3: Perform the partitioning of A and obtain preconditioning matrix M .
4: Send Ai, Bi and Ci blocks to processor i.

{processor 1 has only B1 and processor p only Cp}
5: Make LU and UL factorization of Ai blocks using PARDISO (Schenk and Gärtner,

2014) software in parallel.
6: Solve with PARDISO: LiUirV

pbq
i ,W

ptq
i s “

“` 0
Bi

˘

,
`

Ci
0
˘‰

.

{Processor 1 calculates only V pbq1 and processor p only W ptq
p }.

7: Send matrix W ptq
i of size k to processor i´1 and assembles truncated reduced matrices

S̃i from Eq. (2.10) of size 2k.
{Processor 1 only receives data and processor p, only sends it}.

8: Apply LU factorization in truncated reduced matrices S̃i of Eq.(2.11).
9: Use a parallel iterative solver as GMRES (Saad and Schultz, 1986). In each iteration,

after an efficient matrix-vector product Au “ z, solve the system Mx̃ “ z.
{In the beginning of this step, send to processor i the corresponding partition of matrix
A and vector b}
{Truncated system S̃ix̃i “ gi of Eq.(2.10) is also performed by PARDISO}

10: Gather all partition xi of vector solution and undo the reordering applied in step 1.

A. That aims to have all its entries covered by the diagonal blocks Ai or by the coupling
blocks Bi and Ci (Sathe et al., 2012). A matrix organized with diagonal and coupling
blocks can be denoted as a matrix with a SPIKE structure (see Fig. 2.1). As in real
applications, this ideal matrix format is hard to achieve; a good approximation should be
a banded matrix with its heavy-weighted entries confined into the block matrix structures.

After applying the reordering procedures, a suitable preconditioning matrix can be
obtained if three steps are managed. First, find the diagonal blocks; second, guarantee
their non-singularity (i.e., they must admit an inverse); and, third, organize the original
matrix into diagonal and coupling blocks, moving the most significant entries into the
coupling blocks. These three goals can be respectively formalized as graph partitioning,
graph matching, and quadratic knapsack problem (Sathe et al., 2012). Graph algorithms
seem to be handy tools to transform the original matrix if they are designed to perform
search procedures and solve these known combinatorial problems.

The application of the combinatorial strategies to the original matrix A defines the
SPIKE preconditioner matrix M . For this purpose, the matrix A is multiplied by scaling
factors and permutation matrices (reordering procedures) on the left and right. Therefore,
row permutations are applied to move large entries onto the diagonal (graph matching
problem), and techniques for solving the quadratic knapsack problem (used to maximize
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Figure 2.2 – Combinatorial strategies to obtain the SPIKE preconditioner matrix M from
an original matrix A - An example of four partitions.

a quadratic objective function subject to a linear capacity constraint) are employed to
maximize the entries weights in the coupling blocks. Finally, the matrix partitioning is
performed for parallelization purposes. Figure 2.2 illustrates a sequence of combinatorial
techniques applied to an original matrix A to obtain the respective SPIKE preconditioner
matrix M divide into four partitions.

In the factorization phase of the SPIKE algorithm (Algorithm 1, line 5) the diagonal
blocks Ai must be solved by a direct method using LU{UL factorizations, which can be
applied only if these blocks are non-singular. Every preconditioning matrix M can be
associated to a graph G employing the adjacency information of every matrix row. Thus,
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the non-singularity of M can be achieved if a perfect matching (Sathe et al., 2012) is found
in G, in a way that it can move the most significant elements to the main diagonal. A
perfect matching in G is a set of independent edges that are incident to all vertices of G.
For more details on graph concepts, see (Diestel, 2017).

An example of the algorithm to obtain a perfect matching in G is called weighted
bipartite matching and is available in HSL_MC641 (Duff and Koster, 2001). This algorithm
returns row permutations that maximize the smallest element on the diagonal, maximize
the sum of the diagonal entries and also finds scaling factors that may be used to scale
the original matrix. Therefore, the nonzero diagonal entries of the permuted and scaled
matrix are equal to one in absolute value, and all the off-diagonal entries are less than or
equal to one, also in absolute values.

Three different algorithms can perform the matrix reordering and almost always
are able to assure a narrow banded linear system: reverse Cuthill-Mckee (RCM) (Liu and
Sherman, 1976), spectral algorithm (Barnard et al., 1995), and weighted spectral ordering
(WSO) (Manguoglu et al., 2010). All of them try to put almost all entries onto the SPIKE
structure and leave only a few elements uncovered. The WSO algorithm also attempts to
move the most significant coefficients as close as possible to the main diagonal, ensuring a
more efficient SPIKE preconditioner.

Any matrix A can be seen as the adjacency matrix of the associated graph G. The
RCM algorithm visits all vertices of G, according to some criterion. The order of the
vertices visited corresponds to a permutation of rows and columns of the matrix A. The
algorithm uses the inverse order of the performed visits to reduce the bandwidth and the
envelope of the matrix A (Liu and Sherman, 1976). The Spectral and WSO algorithms
consider the concept of the algebraic connectivity, also known by Fiedler vector of the
unweighted or weighted Laplacian matrix of the original matrix A. These algorithms
compute a symmetric permutation that reduces the profile and wavefront of A by using
a multilevel algorithm (Manguoglu et al., 2010). Both algorithms codes are available in
HSL_MC732.

For an efficient parallelization of the SPIKE algorithm, the partitioning step needs
to balance the processor loads during each phase of Algorithm 1, considering strategies
to reduce the communication cost. An outstanding option is to consider the well known
chains-on-chains partitioning problem (Pınar and Aykanat, 2004) to model this step. The
MinMax algorithm, used in this work, finds the exact solution of the chains-on-chains
partitioning problem in polynomial time (Manne and Sorevik, 1995).

Considering the blocks A1, . . . , Ap of the banded matrix (see, as an example, the
last part of Fig. 2.2), it is important to have k ˆ k coupling matrices Bi and Ci`1, for
1 http://www.hsl.rl.ac.uk/catalogue/mc64.html
2 http://www.hsl.rl.ac.uk/catalogue/hsl_mc73.html
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i “ 1, . . . , p´ 1, with many of their entries as close as possible to the diagonal blocks. One
possibility to achieve that matrix structure pattern is to consider the quadratic knapsack
problem and to solve it by the DeMin heuristic – this heuristic starts with the given N as
an initially infeasible solution and discards the row or column with the least contribution
to the remaining matrix until a k ˆ k matrix is obtained – as described in (Sathe et al.,
2012).

Although the SPIKE preconditioner presents robustness and scalability as it can be
noticed in (Sathe et al., 2012), our work (Lima et al., 2017) showed that the combinato-
rial strategies require a considerable preprocessing time what for general finite element
applications could cause excessive computational runtime for the preconditioning step. In
another work (Lima et al., 2016), we suggested a version of the SPIKE algorithm that
could be applied to the finite element context. Such version intents to improve SPIKE’s
performance for problems where the finite element matrices are recalculated at each time
step (or nonlinear iteration). Thus, combinatorial strategies as Scaling, Matching, and
Knapsack Problem are neglected. That is why all matrix rearrangements need to be made
in the preprocessing phase just once. That is, the matrix sparsity pattern is assigned
before the finite element matrix coefficients are obtained. For the same reason, reordering
algorithms as Weighted Spectral Ordering (WSO) are also disregarded.

2.4.2 The SPIKE preconditioner for finite element context

The traditional SPIKE preconditioner was proposed supposing the matrix of the
linear system is already known. However, the finite element matrices are assembled while
each element contribution is calculated across the whole domain. The SPIKE approach
produces a linear system with suitable properties for preconditioning, but the matrix
coefficients cannot indeed be calculated in parallel. That causes a momentary loss of
balance in memory usage and increases execution time.

In the SPIKE parallel processing, only one CPU (as a Master) reads and calculates
all data arising from a unique mesh. After preprocessing, the Master distributes matrix
coefficients throughout the network. Such data, depending on the application, considering
mesh size, and degrees of freedom, can be enormous. Beyond that, other difficulties can
include transient and nonlinear problems because the resulting matrices may need to be
recalculated in each time step or each nonlinear iteration.

These difficulties become more apparent if a cluster of workstations is used, for
example. Solving the problem in parallel requires jobs submission in a queue, which in
turn gives priority according to the number of processors and memory usage. In this
case, dividing a problem of size ω among p processors would not mean allocating memory
proportional to ω

p
for each processor. After all, one of the processors must compute the

whole matrix data sequentially. Then a preprocessing step would divide data across all
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processors by using Message Passing Interface (MPI)(Dongarra et al., 2013) or saving the
information in a disk. Thus the SPIKE application could cause an unnecessary overload in
the cluster.

In the meantime, we proposed a SPIKE preconditioner approach (Lima et al., 2016)
able to unify reasonable preconditioning properties and an efficient parallel recalculation
of the finite element matrices. This alternative SPIKE does not store the linear system
matrix A initially, as considered in Algorithm 1. It is performed literally in parallel. Thus,
step 4 of Algorithm 1 is eliminated, avoiding the amount of prior communication reported
in step 9. In the next chapter, a well-elaborated preprocessing scheme, which assure the
success of our SPIKE proposal is stated.

2.5 Our Preconditioning Approach

We propose a domain decomposition technique that allows building an a priori
narrow banded linear system, as described in Eq. (2.6), arising from 2D finite element
discretizations. This narrow banded linear system format is adapted to the context of
parallel computing in combination with global preconditioners based on Compressed
Storage Row (CSR) (Saad, 2003) format and local preconditioners based on element-
by-element structures. The SPIKE preconditioner and an adaptation of incomplete LU
factorization are chosen as the global preconditioners representatives. Some simple local
preconditioners based on element-by-element structures according to our experiments
proposed in (Muller et al., 2017) are also evaluated.

2.5.1 Global preconditioners

Our studies on the SPIKE (Lima et al., 2016) preconditioner, as well as the application
of combinatorial optimization techniques (Lima et al., 2017), have led to the development
of an alternative approach to 2D finite element problems. Since SPIKE is a representative
of domain decomposition preconditioners, it is almost immediate, to reflect on the fact
that other forms of parallel preconditioning could be created. As reported by Benzi (2002),
domain decomposition techniques can be used to introduce parallelism in incomplete
factorization methods. Likewise, when the subdomains are solved approximately using
an incomplete factorization, the resulting preconditioner can be thought as a “parallel
ILU” strategy. Nevertheless, as emphasized by Benzi, the convergence can become very
slow for solvers based on Krylov subspaces. Thus, our experience with the SPIKE enabled
extending our parallel approach to ILU preconditioners.
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2.5.2 Incomplete LU -factorization

ILU are one of the most used preconditioners in the recent years. For this reason,
Wathen (2015) states that GMRES with ILU preconditioner is a ‘go-to’ technique for many
practical problems. On the other hand, ILU preconditioners were widely believed to be
ill-suited for implementation on parallel computers with more than a few processors (Benzi,
2002). The reason is due to the fact that ILU computations – in general Gaussian elimination
operations – offer limited scope for parallelization. Benzi (2002) also highlights a series
of excellent works about parallel incomplete LU factorizations. In spite of those papers’
evidence, the Benzi’s last sentence about parallel ILU preconditioners can be emphasized:

“It has now become clear that high parallelism can be achieved with ILU
preconditioners, albeit considerable sophistication and ingenuity are needed if
one is to develop efficient implementations”.

Such words stimulate our research because using our domain decomposition approach,
the sequential ILU preconditioners can be readily employed in parallel computation. In
our work, an application of the most common sequential incomplete LU factorization is
chosen, that is, the well-known ILUm (Meijerink and Vorst, 1977), where m represents
the number of fill-in levels admitted.

In this work, we consider the ILU implementations as block Jacobi preconditioners,
that is, block Jacobi with local ILU factorizations. From a theoretical point of view, a
parallel incomplete LU factorization is employed just by taking the preconditioning matrix
M as an approximation of the SPIKE preconditioner matrix (see Fig. 2.2). That is, for
each partition i, the coupling blocks Bi’s and Ci’s are neglected and only the sequential
ILU of the blocks Ai’s are considered (SPIKE performs complete LU{UL-factorizations
using the PARDISO (Schenk and Gärtner, 2014) library).

2.5.3 Local preconditioners

This section presents the local parallel preconditioners developed in this thesis.
(Muller et al., 2017) proposed versions of well known sequential element-by-element
preconditioners, as: a diagonal preconditioner (DIAGe), a block diagonal preconditioner
(BlockDIAGe), Gauss-Seidel preconditioners (SGSe and BlockSGSe), and LU factorization
preconditioners (LUe and BlockLUe). Prefix “Block” means that the preconditioner was
designed for problems with more than one degree of freedom per node. Suffix “e”, in turn,
denotes that the preconditioner is stored in element-by-element format. Considering our
domain decomposition approach that is going to discuss in detail in Chapter 3, these
preconditioners can be put in the parallel context with minimal adjustments. The parallel
local preconditioners are described below.
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Assume a domain decomposition with element overlaps such that the global banded
matrix A, indicated in Eq. (2.6), partitioned into p divisions, can be represented as:

A “
p
ď

i“1
A

EBE

i with A
EBE

i “

neli

A
e“1

Ae (2.12)

where, for a specific partition i, A
EBE

i is a substitute structure for blocks Ci, Ai, and Bi

from Eq. (2.6) (for element-by-element schemes, the global matrix is never assembled);
Ae is an elementary finite element matrix of size ndof ¨ nnoelˆ ndof ¨ nnoel (ndof is the
number of degrees of freedom per node and nnoel is the number of nodes per element);
and neli is the number of elements of the partition i. Operator A is an abstraction to
represent the relations between the local matrices Ae within a partition i. In practice, this
assembly is never performed when the element-by-element storage scheme is used.

Our local preconditioners are based on the diagonal (or block-diagonal for ndof ą 1)
of local matrices Ae. A scaling is used as a pre-preconditioner to normalize the coefficients
of A by its diagonal coefficients (or block diagonal). The original system defined in Eq. (2.6)
may be rewritten as ÃX “ F̃ in which

Ã “
p
ď

i“1
Ã

EBE

i with Ã
EBE

i “

neli

A
e“1

Ãe (2.13)

and

F̃ “
p
ď

i“1
F̃

EBE

i with F̃
EBE

i “

neli

A
e“1

F̃ e, (2.14)

where Ãe and F̃ e are local scaling of Ae and F e:

Ãe
“

»

—

–

A´1
I Ae

11 A´1
I Ae

12 A´1
I Ae

13

A´1
J Ae

21 A´1
J Ae

22 A´1
J Ae

23

A´1
K Ae

31 A´1
K Ae

32 A´1
K Ae

33

fi

ffi

fl

(2.15)

and

F̃ e
“

»

—

–

A´1
I F e

1

A´1
J F e

2

A´1
K F e

3

fi

ffi

fl

, (2.16)

with Ae
11, Ae

12, Ae
13, Ae

21, Ae
22, Ae

31, Ae
32, and Ae

33 block matrices of dimension ndofˆndof for
each element matrix Ae. The submatrices AI , AJ , and AK also have dimension ndofˆndof
but represent the global block matrices according to the number of degrees of freedom of
the global nodes I, J , and K, respectively. F e

1 , F e
2 , and F e

3 , in turn, are blocks of dimension
ndof ˆ 1 for each element vector F e. The inverse of each global block matrix AI , with
1 ď I ď nnodesi (nnodesi defines the number of nodes in a partition i of the mesh), is
calculated explicitly.
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REMARK 1: The scaling described in this section is not the combinatoric operation
enunciated for SPIKE preconditioner described in Sec. 2.4.1.

REMARK 2: The scaling (or block-scaling) is proposed with exactly 3 subgroups because
only triangular linear elements are considered in our finite element formulations.

REMARK 3: To obtain a block AI , all the contributions of the matrices of the elements
that have node I as a common node are added. For example, if a node I is surrounded by
6 elements, the contributions of these 6 element matrices must be considered to compute
the block AI . For simplicity, consider a problem with one degree of freedom per node.
In this case, AI would be a real number represented by the sum of all coefficients of the
element matrices that are related to the node I. In the general case, when ndof ą 1, AI

will be a matrix block of dimension ndofˆ ndof.

REMARK 4: After the calculation of the block AI inverse matrix, is necessary to check
if some row of AI – or degree of freedom – is associated with Dirichlet boundary conditions.
In the affirmative case, the corresponding row and column of A´1

I should be set with the
row and column of the equivalent identity matrix.

REMARK 5: We set zeros in the element vector F̃ e positions in which the Dirichlet
boundary condition is defined.

2.5.3.1 DIAGe and BlockDIAGe Preconditioners

The numerical results of the DIAGe and BlockDIAGe preconditioners are equivalent
to the scaling processes, as described in Eqs. (2.13) and (2.14). That is, such preconditioners
are basically a simulation of a scaling. There are two possibilities to perform this issue:

(i) DIAGe and BlockDIAGe are executed just once as a scaling described in Eqs. (2.13)
and (2.14), exactly to perform the GMRES algorithm on the linear system AX “ F ;

(ii) DIAGe and BlockDIAGe are not executed as described in Eqs. (2.13) and (2.14).
After each matrix-vector product, we perform some convenient scalar multiplications
on each resulting vector. The effective preconditioning is a simple multiplication
of the diagonal (or block diagonal) over the vector resulting from matrix-vector
product.

Despite the preconditioners need to be applied for every iteration when a matrix-
vector product is required, the runtime of the DIAGe or BlockDIAGe for the second
possibility is smaller when compared to diagonal (or block diagonal) scalings presented
by the first possibility. Thus, we establish that henceforth, the application of the DIAGe
and BlockDIAGe preconditioners will always occur according to the second possibility
described.
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2.5.3.2 LUe and BlockLUe Preconditioners

Let Āe be an approximation of each element matrix Ãe:

Āe “

»

—

–

Indof Ae
12 Ae

13

Ae
21 Indof Ae

23

Ae
31 Ae

32 Indof

fi

ffi

fl

, (2.17)

where Ae
mn, with 1 ď m,n ď 3, are block matrices of dimension ndof ˆ ndof for each

element matrix Ãe and Indof is the identity matrix of order ndof.

Preconditioners LUe and BlockLUe are defined simply as LU decompositions of Āe

in element level. The preconditioning matrix Mi can be defined as

Mi “

neli

A
e“1

Āe “

neli

A
e“1

LeU e. (2.18)

For each matrix-vector pi “ M´1
i Ã

EBE

i vi, with Ã
EBE

i defined as in the Eq. 2.13,
preconditioners LUe and BlockLUe are applied following two main steps:

Step 1: Perform the matrix-vector product zi “ Ã
EBE

i vi;

Step 2: Calculate the lower and upper triangular systems from pi “M´1
i zi,

pi “M´1
i zi ùñMipi “ zi ùñ

neli

A
e“1
pLeU epe

“ ze
q

plower triangularq ùñ Leqe
“ ze

and
pupper triangularq ùñ U epe

“ qe.

REMARK 6: The triangular systems Leqe
“ ze and U epe

“ qe are solved for each element.
That is, a single loop with e “ t1, ..., nelu is executed whenever the preconditioner is
applied.

2.5.3.3 SGSe and BlockSGSe Preconditioners

SGSe and BlockSGSe are split preconditioners given by the preconditioning matrices
MLi and MRi. These matrices are obtained by the trivial Gauss-Seidel decomposition of
matrix Āe (defined in Eq. 2.17) at the element level as

MLi “

neli

A
e“1

Le with Le
“

»

—

–

Indof O O

Ae
21 Indof O

Ae
31 Ae

32 Indof

fi

ffi

fl

(2.19)
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and

MRi “

1

A
e“neli

U e with Ue “

»

—

–

Indof Ae
12 Ae

13

O Indof Ae
23

O O Indof

fi

ffi

fl

. (2.20)

For each matrix-vector pi “ML
´1
i Ã

EBE

i MR
´1
i vi, preconditioners SGSe and BlockSGSe

are applied following three main steps:

Step 1: Calculate the upper triangular system from wi “MR
´1
i vi,

wi “MR
´1
i vi ùñMRiwi “ vi ùñ

1

A
e“neli

pU ewe
“ ve

q ;

Step 2: Perform the matrix-vector product zi “ Ã
EBE

i wi;

Step 3: Calculate the lower triangular system from pi “ML
´1
i zi,

pi “ML
´1
i zi ùñMLipi “ zi ùñ

neli

A
e“1
pLepe

“ ze
q .
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3 Domain Decomposition

As stated by Korneev and Langer (2018), domain decomposition methods nowadays
provide powerful tools for constructing efficient parallel solvers for large-scale systems of
algebraic equations arising from the discretization of partial differential equations. The
classical alternating Schwarz method and the classical substructuring technique have
led to advanced overlapping and nonoverlapping domain decomposition solvers. In this
context, preconditioners can be analyzed from a unified point of view now called Schwarz
theory. This chapter is organized in two sections: an overview of the traditional domain
composition approaches and a detailed description of our alternative domain decomposition
approach.

3.1 Traditional Domain Decomposition Approaches

Toselli and Widlund (2006) refer to domain decomposition as a splitting or approx-
imation of a partial differential equation into coupled problems on smaller subdomains
forming a partition of the original domain. The authors state that this approach may be
employed in three different ways: it may enter at the continuous level, where different
physical models may be used in different regions; or at the discretization level, where it
may be convenient to employ different approximation methods in different regions; or
in the solution of the algebraic systems arising from the approximation of the partial
differential equation. They also emphasize these three aspects are very often interconnected
in practice.

More recently, Dolean et al. (2015) presented an excellent overview of the most
popular domain decomposition methods for partial differential equations. The authors
introduce the main classes of domain decomposition algorithms: Schwarz, Optimized
Schwarz, Neumann-Neumann, and FETI (Finite Element Tearing and Interconnecting).
Schwarz’s method appeared initially in 1870 (Schwarz, 1870) but since then it has suffered
many modifications. The most popular one is the Restricted Additive Schwarz (RSA) (Cai
and Sarkis, 1999) that is the default parallel solver in PETSc (Balay et al., 2017). The
significant advantages of RSA algorithms occur specifically when the overlap is minimal.
In this case, RSA is equivalent to a Block-Jacobi Method (Saad, 2003). Optimized Schwarz
methods, in turn, are based on classical domain decomposition, but they use more efficient
transmission conditions than the conventional Dirichlet conditions at the interfaces between
subdomains. Neumann-Neumann methods (Mandel, 1993) require pseudo inverses for
local Neumann solves which can be ill-posed either in the formulation of the domain
decomposition problem or in the formulation of the domain decomposition preconditioner.
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FETI methods (Farhat and Roux, 1991) are based on the introduction of Lagrange
multipliers on the interfaces to ensure a weak continuity of the solution.

Moreover, a partial differential equation when discretized over a certain grid or
mesh can be solved by numerous methods such as the finite differences method or the
finite elements method. The discretization also defines a system of linear equations that
can be represented by a sparse matrix. According to (Buluç et al., 2016), while it is
always possible to use that sparse matrix to do the actual computation over the mesh or
grid, sometimes this can be wasteful when the matrix need not be formed explicitly. In
this situation is recommended to provide the mesh partitioning using graph partitioning
solvers. In addition, (Buluç et al., 2016) presents a useful survey concern traditional graph
partitioning algorithms, recent advances, and a long list of the most used software, such
as,JOSTLE (Walshaw and Cross, 2002), the well-known METIS family (Karypis and
Kumar, 1998a)(Karypis and Kumar, 1998b), and SCOTCH (Pellegrini, 2012).

Performing domain decomposition for the numerical solution of partial differential
equations that assures robustness and scalability is most often a very complicated task.
Smith (1997) emphasizes that ensuring data locality, load balance, and low communication
is essential. In general, the division of subdomains can be seen as a graph partitioning
problem that naturally arises from the geometry of the discretized physical domain.
Moreover, the partitioning can be obtained by using data from the matrix rather than
the geometric information (e.g. in (Cai and Saad, 1996)(Balay et al., 2017)). Our domain
decomposition approach, firstly suggested in (Lima et al., 2016), is also based on the
matrix but we propose an efficient preprocessing of the mesh to set out the computation
of the finite element application totally in parallel. In the next subsection, this process is
described in details.

3.2 Alternative Domain Decomposition Approach

Our intent is to promote a domain decomposition approach that enables generating
finite element linear systems with a suitable sparsity pattern. That means to produce a
narrow banded linear system that provides more flexibility to apply preconditioning and
to reduce the communication overhead. Our new domain decomposition approach assumes
a series of adjustments. For the sake of simplicity, but not for the loss of generality, we
consider an example to clarify the explanation in the beginning of this section. Following,
we present the general ideas about the new domain decomposition approach.

3.2.1 A simple example to illustrate the new approach

In general, we follow some simple steps to apply our domain decomposition approach.
We read the finite element mesh and obtain the sparsity pattern of the associated linear
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system. This system, whose coefficients have not yet been calculated, is then reordered and
partitioned in a balanced way. Finally, we return to the mesh and apply the partitioning
of this conceptual linear system. This procedure is performed in a previous phase, even
before any computation of the finite element matrices has been made.

In order to improve our domain decomposition approach understanding, we consider
an example problem. Consider the unstructured finite element mesh of 22 nodes (nnodes)
and 28 elements (nel) of Fig. 3.1. This example represents a problem with 3 degrees of
freedom per node (ndof). The 7 highlighted nodes in gray are associated with 14 unknowns
highlighted in blue. The symbol “´” indicates prescriptions and the rest of the unrelated
nodes represents Dirichlet boundary conditions. We choose the highlighted gray nodes to
form the preliminary sparsity which will be denoted as sparsity pattern from the mesh
(see Fig. 3.2). Using a reordering algorithm as RCM (Liu and Sherman, 1976), we obtain
a vector of permutation Pmesh “ t7, 5, 6, 1, 4, 2, 3u in which the conceptual linear system
has rows and columns changed. Pmesh produces a better sparsity from the mesh. The
original structure has bandwidth equal to 5 (Fig. 3.2a) , while the reordered structured
has bandwidth equal to 2 (Fig. 3.2b).
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Figure 3.1 – A simple example mesh with 22 nodes and 28 elements. We indicate the
7 nodes (highlighted in gray) associated with 14 unknowns (highlighted in
blue).
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1 2 3 4 5 6 7

1 • • • • •
2 • • • •
3 • •
4 • • •
5 • • • •
6 • • •
7 • •

1

(a) Original

1 2 3 4 5 6 7

1 • •
2 • • • •
3 • • •
4 • • • • •
5 • • •
6 • • • •
7 • •

1

(b) Reordered

Figure 3.2 – Illustration of the sparsity pattern from the original mesh. (a) Original
sparsity pattern from the mesh nodes that are related with some unknown.
(b) Reordered sparsity pattern from these mesh nodes after using RCM.

The permutation Pmesh is used to produce the sparsity pattern of the finite element ma-
trix according to unknowns and degrees of freedom, generating the permutation Pmatrix. The
unknowns (highlighted in blue) associated with finite element discretization produce a struc-
ture with much larger dimension (see Fig. 3.4a), because each node is associated with about
3 unknowns. The permutation Pmatrix is generated considering the permutation Pmesh and
its inverse invPmesh arranging the groups of 3 unknowns associated with each node. Fig. 3.3
illustrates the relation between the finite element matrix sparsity permutation Pmatrix

with the permutation of the mesh Pmesh and the inverse permutation invPmesh for this
example problem. The matrix permutation Pmatrix “ t13, 14, 9, 19, 11, 12, 1, 2, 7, 8, 3, 4, 5, 6u
is applied to the sparsity pattern of the unknowns to produce a structure with a lower band-
width. Original finite element matrix sparsity presents bandwidth equal to 11 (Fig. 3.4a),
whereas the reordered structured has bandwidth equal to 6 (Fig. 3.4b).

Pmesh invPmesh Reordering of unknows. Pmatrix

7 1 (-,13,14) 13,14
5 2 (9,10,11) 9,10,11
6 3 (-,12,-) 12
1 4 (1,2,-) 1,2
4 5 (-,7,8) 7,8
2 6 (3,4,5) 3,4,5
3 7 (-,6,-) 6

1

Figure 3.3 – Relation between permutation vectors Pmesh, invPmesh, and Pmatrix for the
example problem.

After the finite element matrix sparsity pattern reordering, the algorithm chains-on-
chains partitioning (CCP) (Pınar and Aykanat, 2004) generates an appropriate division of
partitions. The CCP algorithm returns a vector of indices d with size according to the
number of partitions. Each partition is balanced taking into account the number of the
nonzero coefficients of the global finite element matrix. For this example, the partitioner
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vector d “ t1, 6, 9, 15u is obtained. Figure 3.5 shows the global finite element matrix
sparsity pattern divided into 3 partitions. Partition 1 represents data belongs exclusively
to rank 1 – analogously, Partitions 2 and 3 are an exclusive part of rank 2 and rank
3. Intersection of 1 and 2 represents the region of overlaps between Partition 1 and 2 –
analogously, Intersection of 2 and 3 denotes the region of overlaps between Partitions 2
and 3. The use of the CCP algorithm over the reordered finite element matrix sparsity
pattern (Fig. 3.4b) results the partitioning represented in Fig. 3.5a.

Finally, the partitioned model system (see Fig. 3.5a) is used to partition the finite
element mesh (see Fig. 3.5b). This sequential preprocessing is not complicated. As an
example, for each unknown in Partition 1 — degree of freedom numbers 13, 14, 9, 10, and
11 identify the related elements. For example, the degree of freedom 13 is related with
elements number 16, 18, 20, 22, 25, and 28. Analogously, this procedure is repeated for
each unknown in Partitions 2 and 3. The original finite element matrix sparsity pattern
with bandwidth 11 (Fig. 3.4a) is defined as a banded matrix with bandwidth 6 (Fig. 3.4b)
In practice, that partitioning gives a balanced load and fewer ranks sharing the same
partition. In short, our new domain decomposition approach allows intersections with
just two partitions. Elements associated with two partitions belong to an Intersection. In
Fig. 3.5a, they are colored light blue (Intersection of 1 and 2) and purple (intersection of 2
and 3).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 a1,1 a1,2 a1,3 a1,4 a1,5 a1,7 a1,8 a1,9 a1,10 a1,11 a1,12
2 a2,1 a2,2 a2,3 a2,4 a2,5 a2,7 a2,8 a2,9 a2,10 a2,11 a2,12
3 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8
4 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8
5 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8
6 a6,3 a6,4 a6,5 a6,6
7 a7,1 a7,2 a7,3 a7,4 a7,5 a7,7 a7,8
8 a8,1 a8,2 a8,3 a8,4 a8,5 a8,7 a8,8
9 a9,1 a9,2 a9,9 a9,10 a9,11 a9,12 a9,13 a9,14
10 a10,1 a10,2 a10,9 a10,10 a10,11 a10,12 a10,13 a10,14
11 a11,1 a11,2 a11,9 a11,10 a11,11 a11,12 a11,13 a11,14
12 a12,1 a12,2 a12,9 a12,10 a12,11 a12,12
13 a13,9 a13,10 a13,11 a13,13 a13,14
14 a14,9 a14,10 a14,11 a14,13 a14,14

1

(a) Original

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 a13,13 a13,14 a13,9 a13,10 a13,11
2 a14,13 a14,14 a14,9 a14,10 a14,11
3 a9,13 a9,14 a9,9 a9,10 a9,11 a9,12 a9,1 a9,2
4 a10,13 a10,14 a10,9 a10,10 a10,11 a10,12 a10,1 a10,2
5 a11,13 a11,14 a11,9 a11,10 a11,11 a11,12 a11,1 a11,2
6 a12,9 a12,10 a12,11 a12,12 a12,1 a12,2
7 a1,9 a1,10 a1,11 a1,12 a1,1 a1,2 a1,7 a1,8 a1,3 a1,4 a1,5
8 a2,9 a2,10 a2,11 a2,12 a2,1 a2,2 a2,7 a2,8 a2,3 a2,4 a2,5
9 a7,1 a7,2 a7,7 a7,8 a7,3 a7,4 a7,5
10 a8,1 a8,2 a8,7 a8,8 a8,3 a8,4 a8,5
11 a3,1 a3,2 a3,7 a3,8 a3,3 a3,4 a3,5 a3,6
12 a4,1 a4,2 a4,7 a4,8 a4,3 a4,4 a4,5 a4,6
13 a5,1 a5,2 a5,7 a5,8 a5,3 a5,4 a5,5 a5,6
14 a6,3 a6,4 a6,5 a6,6

1

(b) Reordered using the permutation Pmatrix

Figure 3.4 – Illustration of the finite element matrix sparsity pattern reduction using the
vector permutation Pmatrix. (a) Original finite element matrix sparsity pattern.
(b) Reordered finite element matrix sparsity pattern after using Pmatrix.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 a13,13 a13,14 a13,9 a13,10 a13,11
2 a14,13 a14,14 a14,9 a14,10 a14,11
3 a9,13 a9,14 a9,9 a9,10 a9,11 a9,12 a9,1 a9,2
4 a10,13 a10,14 a10,9 a10,10 a10,11 a10,12 a10,1 a10,2
5 a11,13 a11,14 a11,9 a11,10 a11,11 a11,12 a11,1 a11,2
6 a12,9 a12,10 a12,11 a12,12 a12,1 a12,2
7 a1,9 a1,10 a1,11 a1,12 a1,1 a1,2 a1,7 a1,8 a1,3 a1,4 a1,5
8 a2,9 a2,10 a2,11 a2,12 a2,1 a2,2 a2,7 a2,8 a2,3 a2,4 a2,5
9 a7,1 a7,2 a7,7 a7,8 a7,3 a7,4 a7,5
10 a8,1 a8,2 a8,7 a8,8 a8,3 a8,4 a8,5
11 a3,1 a3,2 a3,7 a3,8 a3,3 a3,4 a3,5 a3,6
12 a4,1 a4,2 a4,7 a4,8 a4,3 a4,4 a4,5 a4,6
13 a5,1 a5,2 a5,7 a5,8 a5,3 a5,4 a5,5 a5,6
14 a6,3 a6,4 a6,5 a6,6

1

(a) Finite element matrix sparsity partitioned by the CCP algorithm
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(b) Partitioned finite element mesh

Partition 1 Intersection of 1 and 2

Partition 2 Intersection of 2 and 3

Partition 3

1

Figure 3.5 – Finite element information divided into 3 partitions.

An obvious question would be: why do we not obtain Pmatrix directly from the finite
element matrix sparsity? Our experiments demonstrated that, for problems with a degree
of freedom per node greater than 1, the use of Pmesh in an intermediate way greatly reduces
the number of overlaps.

3.2.2 General ideas about the new domain decomposition approach

In this subsection, there is a detailed description of how to receive a sequential mesh
of finite elements and divide it into p partitions according to our domain decomposition
approach. Just 12 main steps are enough to perform this task. Figure 3.6 presents the
outline of these steps. A finite element mesh with nnodes nodes and nel elements is
considered. We also propose a series of algorithms to perform each step of our finite
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element domain decomposition. These algorithms are presented in Appendix A.

STEP 1: Read the whole data mesh in sequential form.

STEP 2: Obtain the adjacency list Lmesh.

STEP 3: Convert the adjacency list Lmesh to CSR format.

STEP 4: Obtain the vector of permutation Pmesh from
reordering of the Lmesh data.

STEP 5: Obtain the adjacency list Lmatrix.

STEP 6: Convert the adjacency list Lmatrix to CSR format.

STEP 7: Use Pmesh to obtain the vector of
permutation Pmatrix.

STEP 8: Reorder Lmatrix using the vector of
permutation Pmatrix.

STEP 9: Generate the separator vector d.

STEP 10: Divide elements into p partitions according to
separator vector d.

STEP 11: Divide nodes into p partitions according to
elements partitioned in STEP 10.

STEP 12: Divide finite element data into p data files.

Figure 3.6 – The overall domain decomposition framework summarized by performing 12
steps.

3.2.2.1 STEP 1: Read finite element mesh

This step guides the sequential reading of the entire finite element mesh. The mesh
data is arranged in a file with a specific format which is illustrated in Fig. 3.7. The first
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line of the file contains the number of nodes nnodes that form the finite element mesh.
The next nnodes lines correspond to the information for all nodes in the mesh. Values
xa and ya, with 1 ď a ď nnodes are the real coordinates of the node a. Terms typeab,
with 1 ď b ď ndof, indicate if the bth degree of freedom of the node a is an unknown
(typeab “ 1) or a prescribed node (typeab “ 0). For example in Fig. 3.1, node 16 has
3 degrees of freedom, with 2 unknowns and 1 prescribed node, so that, type16,1 “ 1,
type16,2 “ 1, and type16,3 “ 0. The following line displays the number nel of elements of
the mesh. The next nel lines contain the connectivity of each element of the mesh. In our
approach only triangular elements are used, so that each element is designated exactly by
three nodes.

ă nnodes ą
ă x1, y1 ą ă type1,1 ą ă type1,2 ą ¨ ¨ ¨ ă type1,ndof ą

ă x2, y2 ą ă type2,1 ą ă type2,2 ą ¨ ¨ ¨ ă type2,ndof ą

...
...

...

ă xnnodes, ynnodes ą ă typennodes,1 ą ă typennodes,2 ą ¨ ¨ ¨ ă typennodes,ndof ą

ă nel ą
ă node1,1 ą ă node2,1 ą ă node3,1 ą

ă node1,2 ą ă node2,2 ą ă node3,2 ą

...

ă node1,nel ą ă node2,nel ą ă node3,nel ą

Figure 3.7 – Sequential input file format.

3.2.2.2 STEP 2: Build the adjacency list Lmesh

After reading the mesh data, due to large sparsity arising from the finite element
mesh, an adjacency list named Lmesh is created. Lmesh stores only the sparsity pattern
designed by nodes which have at least one unknown associated with itself. For more details
on how to get Lmesh, check Section A.1 in Appendix A.

3.2.2.3 STEP 3: Convert the adjacent list Lmesh to CSR format

Aiming for high performance, the adjacent Lmesh is converted to the Compressed
Sparse Row (CSR) (Saad, 2003) format. As well known, CSR is a strategy to store a sparse
matrix. With this objective, three arrays are taken into account:

• A real array AA contains the real values aij stored row by row, from row 1 to n
(where n is the matrix order). The length of AA is nnz (the number of nonzero
coefficients aij);



Chapter 3. Domain Decomposition 47

• An integer array JA contains the column indices of the elements aij as stored in the
array AA. The length of JA is also nnz;

• An integer array IA contains the pointers to the beginning of each row in the arrays
AA and JA. Thus, the counter of IApiq is the position in arrays AA and JA where
the i-th row starts. The length of IA is n` 1 with IApn` 1q containing the number
IAp1q ` nnz, i.e., the address in AA and JA of the beginning of a fictitious row
number n` 1.

As an example, consider the matrix

A “

¨

˚

˚

˚

˚

˚

˚

˝

1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.

˛

‹

‹

‹

‹

‹

‹

‚

Matrix A may be stored using CSR format as follows:

AA 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

Since the sparsity pattern provided by Lmesh needs to be stored, only two arrays,
named, JAmesh and IAmesh are used (there is no real value aij to be stored in AAmesh).

3.2.2.4 STEP 4: Reorder sparsity pattern provided by Lmesh

This step includes the reordering of Lmesh data. At this moment, all information of
the adjacency list Lmesh is stored in two arrays; namely, JAmesh and IAmesh. During the
development of our research, we studied three algorithms to reduce matrix bandwidth and
profile:

• Reverse Cuthill-McKee (RCM) (Liu and Sherman, 1976);

• Spectral (Barnard et al., 1995);

• Weighted spectral ordering (WSO) (Manguoglu et al., 2010).

The Weighted Spectral Ordering (WSO) could not be used in this step because this
reordering requires the content of AAmesh. Thus, arrays JAmesh and IAmesh are passed as



Chapter 3. Domain Decomposition 48

arguments to the algorithms RCM or Spectral to reorder the sparsity pattern of Lmesh

and the vector of permutation Pmesh is obtained.

3.2.2.5 STEP 5: Build the adjacency list Lmatrix

In this step an adjacency list named Lmatrix is obtained. Different from the adjacency
Lmesh, Lmatrix stores the sparsity pattern of the finite element problem. It coincides with
the unknowns that will be solved in the linear system. For more details on how to build
Lmatrix, check Section A.2 in Appendix A.

3.2.2.6 STEP 6: Convert the adjacency list Lmatrix to CSR format

Similarly to STEP 3, this step suggests converting Lmatrix to CSR format. Thus,
Lmatrix is represented by two arrays; namely, JAmatrix and IAmatrix. Note, one more time,
there is no real value aij to be stored in AAmatrix.

3.2.2.7 STEP 7: Generate the permutation vector Pmatrix

In this step a vector of permutation named Pmatrix is generated. This array is a
rearrangement of the vector of permutation Pmesh. Pmatrix larger than Pmesh, since it
consider all unknowns of the finite element linear system. Pmatrix also keeps the order
proposed by Pmesh but reorganizes it by blocks of degrees of freedom per node. Therefore,
Pmesh is equivalent to Pmatrix when the number of degrees of freedom per node is 1.
Section A.3 of the Appendix A shows how to obtain the permutation vector Pmatrix from
the vector Pmesh.

3.2.2.8 STEP 8: Reorder Lmatrix data

As presented in STEP 6, Lmatrix data is stored in CSR format, more precisely in
the arrays JAmatrix and IAmatrix. As can be emphasized, this reordering step is a little
bit different from STEP 4. The RCM or the Spectral algorithms are not directly used to
reorder the CSR structures JAmatrix and IAmatrix. The permutation vector Pmatrix is used
to achieve this goal.

3.2.2.9 STEP 9: Generate separator vector d

This step defines the core part of the partitioning, that is, the generation of the
separator vector d. The primary purpose of the partitioning is to ensure load balance and
reduce communication overhead. Thus, each partition needs to be, approximately, of the
same size. In our case, it means having a very similar amount of nonzero coefficients. As
the other operations of our domain decomposition approach, partitioning was first thought
to meet the demands of the Spike preconditioner. Thus, the problem is to find the diagonal
block matrices Ai and the other block matrices Ci and Bi (see Eq. 2.6). Several heuristics
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were proposed to solve the general problem of partitioning in graphs, and the most known
are those proposed in (Kernighan and Lin, 1970) and (Fiduccia and Mattheyses, 1988).

In this thesis, the partitioning is modeled as a specific problem, named, Chains-on-
chains partitioning (CCP) (Pınar and Aykanat, 2004). The algorithm uses contiguous
regions of the matrix to perform the partitioning, in which, each row is visited one after
other. The objective is to find a sequence of p´ 1 separator indices to divide a task chain
with the computational weight associated to p consecutive parts, promoting load balancing.
In our applications, the tasks represent the n rows of the matrix; and its weights denote
the number of nonzero coefficients in the rows. The partitioning effect is to distribute the
nonzero coefficients in a balanced form among the processors. The CCP algorithm can be
solved in polynomial time when the algorithm M inMax (Manne and Sorevik, 1995) is
used to obtain the exact solution of the problem.

3.2.2.10 STEP 10: Split elements

In this step the elements are split into p partitions considering the separator vector
d. For each element e, the three nodes which compose the mesh connectivity are recovered.
Each degree of freedom of a given node is investigated using the separator vector d. If
a degree of freedom belongs to the partition i, the element e is also associated to the
partition i. Thus, every element is assigned to its corresponding partition. An element e
can belong to more than one partition. Because of this, our approach can be classified as
a domain decomposition with overlapping. Section A.4 of Appendix A brings more details
in how to execute this step.

3.2.2.11 STEP 11: Split nodes

After splitting the elements into p partitions, the nodes should be split according to
elements division. For each element that belongs to a specific partition, we verify what
nodes form this element, and assign these nodes to that specific partition. Section A.5 of
Appendix A shows how to perform this division of nodes.

3.2.2.12 STEP 12: Split data files

In the last step, the finite element data is divided according to the number of
partitions required. Let p be the number of partitions. We write the corresponding data
about nodes and elements in p files which will be employed in the parallel processing. The
mesh file input format of a given partition i (file Meshi) is presented in Fig. 3.8. The first
line of the file Meshi contains the number of nodes nnodesi that compose the partition
i. The next nnodesi lines correspond to the information for all nodes in the mesh of the
partition i. Values xa and ya, with 1 ď a ď nnodesi are the real coordinates of the node a.
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Every tuple ă ta,b, sa,b, Ida,b ą, with 1 ď a ď nnodesi and 1 ď b ď ndof, represents the
following information about the degrees of freedom of each node:

• ă ta,b ą : is an integer label to specify boundary conditions or parallel processing
type.

• ă sa,b ą: is an integer label that informs whether it should be sent or not to the
neighbor partition;

• ă Ida,b ą: is a mapping that assures the global and local interconnectivity that
allows the parallel computation;

The following line of the fileMeshi displays neli, the number of elements of the partition i.
The next neli lines contain the connectivity of the mesh represented by the neli elements.

ă nnodesi ą

ă x1, y1 ą ă t1,1, s1,1, Id1,1 ą ă t1,2, s1,2, Id1,2 ą ¨ ¨ ¨ă t1,ndof, s1,ndof, Id1,ndof ą

ă x2, y2 ą ă t2,1, s2,1, Id2,1 ą ă t2,2, s2,2, Id2,2 ą ¨ ¨ ¨ă t2,ndof, s2,ndof, Id2,ndof ą

...
...

...

ă xnnodesi , ynnodesi ą ă tnnodesi,1, snnodesi,1, Idnnodesi,1 ą ă tnnodesi,2, snnodesi,2, Idnnodesi,2 ą ¨ ¨ ¨

. ¨ ¨ ¨ ă tnnodesi,ndof, snnodesi,ndof, Idnnodesi,ndof ą

ă neli ą

ă node1,1 ą ă node2,1 ą ă node3,1 ą

ă node1,2 ą ă node2,2 ą ă node3,2 ą

...

ă node1,neli
ą ă node2,neli

ą ă node3,neli
ą

Figure 3.8 – Meshi: input file format.

Section A.6 in Appendix A describes, in detail, how to perform the mesh partitioning
that provides the corresponding local-global mapping and types of the degrees of freedom
in each partition i.
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4 Parallel Finite Element Application

Chapter 3 discussed how to take a sequential finite element mesh and divide it into p
partitions using our new domain decomposition approach. In this chapter the partitioning
is used to implement the finite element application in parallel, in which five main steps
are required

1. To read the parallel finite element mesh data;

2. To set the parallel structures to enable MPI updates;

3. To chose a storage scheme to accumulate the elementary matrices produced by finite
element method;

4. To execute the finite element application in parallel;

5. To analyze the postprocessing data.

Steps (1), (2), and (3) are presented in Section 4.1. Subsection 4.1.1 explains how to
read the parallel finite element mesh. Subsection 4.1.2 describes how to prepare the parallel
structures which allow executions in distributed memory with required updates. Besides
that, it reports how to perform the updates of finite element vectors. Subsections 4.1.3, 4.1.4,
and 4.1.5 approach the storage schemes which are used in our implementations, namely,
Compressed Sparse Row (CSR) (Saad, 2003) and Element-by-Element (EBE) (Hughes,
2012). The step (4) is discussed in Section 4.2, that is, the parallel processing of the
finite element method, which occurs inside a predictor-multi-corrector scheme or even a
loop of nonlinear iterations. In addition, two principal operations for parallel iterative
solvers based on Krylov subspace are reported, the parallel matrix-vector product (which
depends on storage scheme) and inner product. Finally, step (5) is summarized in Section
4.3, where the postprocessing generates output files to be visualized by the software
ParaView (Ayachit, 2015).

4.1 Parallel finite element preprocessing

In this section, the preprocessing that ensures an efficient parallel execution through-
out the finite element processing is discussed. Figure 4.1 shows an overview of the prepro-
cessing composed of two primary actions: the reading of the finite element mesh in parallel
and the creation of parallel structures to provide MPI updates. Besides, the second action
is subdivided conform to CSR or EBE storage formats.
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Reading of finite element mesh in parallel.

Creation of parallel structures to provide MPI updates.

CSR or
EBE?

Create CSR structures to represent
blocks Ai, Bi, and Ci for the nar-

rowband linear system (see Eq. 2.6)

Create auxiliary structures to assure high
performance to assemble and reassemble
the blocks Ai, Bi, and Ci in CSR format.

Create the structure A
EBE

i to store
elementary matrices Ae (see Eq. 2.9).

Reorder the blocks Ai, Bi, and Ci

using RCM or Spectral algorithms

Finite Element Processing.

CSR

EBE

Figure 4.1 – Overview of the parallel finite element preprocessing.
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4.1.1 Reading of finite element mesh in parallel

Suppose initial finite element mesh data is disposed in p files Meshi (see Fig.3.8).
Analogously to the sequential data reading, information of nodes and elements is read
in structures Node and Element (see Subsection A.1). Admit Node with size nnodesi

(number of nodes of the partition i) and fields coord (to store x,y coordinates), TyperJs,
with 1 ď J ď ndof (to identify a degree of freedom of a node according to Table 4.1) and
IdrJs, with 1 ď J ď ndof, (to map the global and local connectivity). Also, data structure
Node has another field named Type_Send, with size ndof, which identifies the degrees of
freedom of a given node according to Table 4.1. The structure Element, in turn, has size
neli (number of elements of the partition i) and a field V ertex to store nnoel (number of
nodes per element) nodes of neli elements.

Table 4.1 – Description of identifiers type to promote parallel processing.

Variable Value Meaning

Type

0 Dirichlet boundary conditions in partition i
1 Unknown in partition i related with partition i
2 Unknown in partition i´ 1 related with partition i
3 Unknown in partition i` 1 related with partition i

Type_Send

1 No need to send
2 Must be sent to partition i´ 1
3 Must be sent to partition i` 1
23 Must be sent to partitions i´ 1 and i` 1

4.1.2 Parallel structures to provide MPI update

As mentioned in the previous chapter, our new domain decomposition approach
allows intersections between just two partitions. That means, the partition i is related
only with the previous partition i ´ 1 and the posterior partition i ` 1 (partition 1 is
only related with partition 2 and partition p is only related with partition p´ 1). More
precisely, if i is a partition composed of ni unknowns it would be associated with ni´1

unknowns of partition i´ 1 and ni`1 unknowns of partition i ` 1. However, due to the
sparsity pattern provided by finite element calculation, the associations are much smaller.
In fact, the partition i needs to receive just nrecvbef indices from the partition i´ 1 and
nrecvaft indices from the partition i ` 1. Despise that, these partitions have sizes ni´1

(much larger than nrecvbef) and ni`1 (much larger than nrecvaft). Analogously, partition
i needs to send to partitions i´ 1 and i` 1 only nsendbef and nsendaft indices.

Normally, the division of subdomains can be seen as a graph partition problem
that naturally follows the geometry of the discretized physical domain. That means the
partitioning of the finite element physical domain takes into account the connectivity
of the elements themselves. Therefore, it is a natural division related to information of
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nodes and elements. Our approach also includes the partitioning of the physical domain,
but that task is performed in function of the linear system sparsity pattern derived from
the discretization methods (see Eq. 2.6). As that sparsity arises from a narrow banded
system, it may seem trivial to propose a set of messages to send and to receive through
the Message Passing Interface (MPI)(Dongarra et al., 2013) protocol. However, if some
cautions are not taken into account, MPI updates would be less efficient than what is
desired because message sizes can be much larger. In this way, four data structures ensure
a minimum amount of information traveling through the network. These structures are
the mapping vectors IdSend_bef , IdReceive_bef , IdSend_aft, and IdReceive_aft.
Fig. 4.2 illustrates how these structures map the relation between a partition i and the
neighboring partitions i´ 1 and i` 1. Note that vector IdSend_bef is a buffer to catch
nsendbef coefficients of partition i in order to send them to partition i´ 1. Analogously,
vector IdSend_aft catches nsendaft coefficients of partition i and sends them to partition
i` 1. On the other hand, vector IRecv_bef is a buffer to map nrecvbef coefficients that
are received in partition i from partition i´ 1. Similarly, vector IRecv_aft maps nrecvaft

coefficients received in partition i from partition i` 1.

IdSend bef

size “nsendbef”

IdRecv bef

size “nrecvbef”

IdSend aft

size “nsendaft”
IdRecv aft

size “nrecvaft”

Partition K

Partition K + 1

Partition K − 1

nK

nK−1

nK+1

1

Figure 4.2 – Four mapping vectors: relations between partition i and its neighboring
partitions i´ 1 and i` 1.

Section B.1 in Appendix B describes how to obtain these four mapping vectors.
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4.1.2.1 MPI update

In parallel computing, MPI updates are generally performed using vectors. Our
approach maintains this trend. Thus, a generic vector Ui of size ni from a partition i is
assumed. The main region of the vector Ui with ni coefficients will be named effective
calculation area region. In order to have the communication between the neighboring
partitions, two regions are considered:

• Previous communication region of the vector Ui with size nrecvbef;

• Posterior communication region of the vector Ui with size nrecvaft.

As can be emphasized, our domain decomposition enables MPI communications
with just two other partitions. That is, partition i communicates with partitions i ´ 1
and i` 1. Of course, partition 1 communicates only with partition 2 and partition p only
communicates with partition p´ 1. Thus, when the three Ui vector areas are considered, a
generic vector Ui has a final size ni` nrecvbef` nrecvaft. Figure 4.3 illustrates a complete
generic vector Ui.

1

nrecvbef

ni + nrecvbef

ni + nrecvbef + nrecvaft

Effective calculation area

Posterior communication region

Previous communication region

1

Figure 4.3 – A generic vector Ui.

In practice, a function to perform MPI updates must be developed. The Algorithm 2
describes how to perform MPI updates for any finite element generic vector Ui. That is,
whenever synchronizations over a generic vector Ui are necessary, that function is executed.
Specific data across effective calculation area of Ui are collected and sent to partitions i´ 1
and i`1. In particular, that information is loaded in buffers SBuff_bef and SBuff_aft
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and sent through MPI functions to corresponding partitions where it is unloaded properly
in the regions of communications (see Figs. 4.2 and 4.3).

Algorithm 2 MPI Update of a generic vector Ui.
for I “ 1, nsendbef do

SBuff_bef rIs Ð UirIdSend_bef rIss
end
for I “ 1, nsendaft do

SBuff_aftrIs Ð UirIdSend_aftrIss
end
if i “ 1 then

MPI_Isend(SBuff_aft, nsendaft,MPI_DOUBLE, 2)
MPI_Recv(RBuff_aft, nrecvaft,MPI_DOUBLE, 2)

end
else if i “ p then

MPI_Isend(SBuff_bef, nsendbef,MPI_DOUBLE, p´ 1)
MPI_Recv(RBuff_bef, nrecvbef,MPI_DOUBLE, p´ 1)

end
else

MPI_Isend(SBuff_bef, nsendbef,MPI_DOUBLE, i´ 1)
MPI_Isend(SBuff_aft, nsendaft,MPI_DOUBLE, i` 1)
MPI_Recv(RBuff_bef, nrecvbef,MPI_DOUBLE, i´ 1)
MPI_Recv(RBuff_aft, nrecvaft,MPI_DOUBLE, i` 1)

end
for I “ 1, nrecvbef do

UirIdRecv_bef rIss Ð RBuff_bef rIs
end
for I “ 1, nrecvaft do

UirIdRecv_aftrIss Ð RBuff_aftrIs
end

4.1.3 Finite element storage

As well known, finite element method produces elementary matrices that need to be
stored. Compressed Sparse Row (CSR) (Saad, 2003), Element-by-Element (EBE) (Hughes,
2012), and Edge-by-Edge (EDE) (Coutinho et al., 2001) are examples of ways to provide
this issue. Performance to resolve problems discretized by finite elements depends on storage
schemes. That happens because storage schemes are associated with the techniques used
to calculate matrix-vector products and the linear system preconditioning. This subsection
focuses on CSR format since it enables using preconditioners for narrow banded systems.
Concluding the subsection, the EBE scheme is adapted to our domain decomposition
context.

Figure 4.4 represents a generic resulting finite element narrow banded linear system
AX “ F – see also Eq. (2.6) – generated by our domain decomposition approach. We
assume that the system is divided into p partitions. In general, blocks Ai, Bi, and Ci, with
i “ 1, . . . , p, store finite element data produced inside each partition. Table 4.2 explains
the meaning and attributes of each theoretical parallel data structure used in all partitions.
We say “theoretical” because the real form of Ai, Bi, and Ci depends on the chosen storage
scheme.
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AX “

»

—

—

—

—

—

–

. . . . . . . . .
Ai Bi Ci

. . . . . . . . .

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

...
Xi´1
Xi

Xi`1
...

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

...
Fi´1
Fi

Fi`1
...

fi

ffi

ffi

ffi

ffi

ffi

fl

“ F

Figure 4.4 – Structures of partition i.

Table 4.2 – Structures of partition i.

Structure Size Meaning and Attributes
Ai ni ˆ ni Store finite element data produced inside partition i and

related just with partition i.

Bi ni ˆ nrecvaft Store finite element data produced inside partition i but
related with partition i ` 1. (There is no block B when
i “ p).

Ci ni ˆ nrecvbef Store finite element data produced inside partition i but
related with partition i ´ 1. (There is no block C when
i “ 1).

Xi nrecvbef ` ni ` nrecvaft Vector of unknowns of partition i. It has regions of commu-
nication with partitions i´ 1 and i` 1.

Fi nrecvbef ` ni ` nrecvaft Vector of independent terms of partition i. It has regions of
communication with partitions i´ 1 and i` 1.

4.1.4 Parallel CSR storage

Compressed Sparse Row (CSR) (Saad, 2003), described in Subsection 3.2.2.3, stores
a finite element matrix A using three global vectors: AA, JA and IA. With regard to
parallel computation, CSR concept is applied to blocks Ai, Bi, and Ci (see Table 4.2)
where they are replaced respectively by AAi, JAi, IAi, ABi, JBi, IBi, ACi, JCi, and ICi.

A finite element narrow banded linear system divided into 3 partitions is used to
illustrate how each parallel CSR structure works. Figure 4.5 shows this example describing
the structural vectors JAi, IAi, JBi, IBi, JCi, and ICi. The subscript i is omitted once
it only distinguishes between what would be the sequential case and the parallel case. In
practice, it can be suppressed since each variable only exists within its partition.

IBaux, IAidex_aft, ICaux, and IAidex_bef are auxiliary structures used to allow
the parallel CSR storage. IBaux and ICaux maps which rows of blocks Bi and Ci have
at least a nonzero coefficient. IAidex_aft and IAidex_bef , in turn, manage the CSR
multiplication of blocks Bi and Ci since these blocks have rows formed exclusively by
zeros, a fact which is not predicted in a traditional CSR scheme. In essence, there is no
need to visit ni rows of the block Bi once it has only nBi rows with nonzeros (nBi is
much smaller than ni); nor to visit ni rows of the block Ci once it has only nCi rows with
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nonzeros (analogously, nCi is much smaller than ni – see Fig. 4.6). Thus, for a suitable
parallel matrix-vector product, structures IAidex_aft and IAidex_bef map the effective
rows of blocks Bi and Ci in CSR format.

Structures IBaux and ICaux assign the corresponding rows to localize the multi-
plications performed by the blocks Bi and Ci. Once the values of finite element matrix
coefficients are not known yet in the preprocessing phase, the structures AAi, ABi, and
ACi are not shown. For now, it is enough to know that AAi, ABi, and ACi have the same
size as the respective vectors JAi, JBi, and JCi.

Section B.2 of Appendix B presents a series of algorithms to construct the CSR
structural vectors JAi, IAi, JBi, IBi, JCi, and ICi. That algorithms also produce the
auxiliary structures IBaux, ICaux, IAidex_aft and IAidex_bef .

4.1.4.1 Other structures for the parallel CSR storage

The elementary matrices produced by the finite element method must be stored
using a specific storage scheme. When CSR format is used, each element matrix Ae,
with size ndof ¨ nnoelˆ ndof ¨ nnoel, needs to be assembled on the global structures of
CSR scheme. However, for general applications of finite element method, especially those
involving algorithms of evolution in time or even calculations of nonlinearities, the time
to reassemble the matrices is a primordial factor. That is, if an effective strategy is not
adopted to regroup the data derived from the finite element method, storage using the
CSR format becomes impracticable. Thus, three auxiliary structures are proposed, namely,
CSRe

A, CSRe
B, and CSRe

C . Such structures assure the assembly of each matrix Ae in a
time complexity of Op1q.

Figure 4.7 illustrates how a given finite element matrix Ae from a specific partition i is
assembled in parallel CSR structures AAi, ABi, and ACi. In order to increase performance,
each matrix Ae is rearranged in a vector format. Thus, all coefficients ae

j of Ae, with
1 ď j ď pndof ¨ nnoelq2 are conveniently distributed between the structures AAi, ABi,
and ACi. To avoid an If-else conditional expression, each structure has a “scape” area,
that is, AAi, ABi, and ACi have their size increased in 1 unit to reach more performance.
Suppose coefficients ae

j1 , a
e
j2 , and a

e
j3 of a local matrix Ae, as in Fig. 4.7. For example, ae

j2

should be stored in a theoretical block Ai (see Fig. 4.4 and Table 4.2) of the partition i is
indeed stored in a CSR structure AAi (of course, JAi and IAi are also used to complete the
CSR storage). Thus, aiming to assure high performance, in the finite element preprocessing
phase, ae

j2 is mapped in CSRe
A with a index I2 (that index points out to the convenient

position of structure AAi, where ae
j2 is added). ae

j2 is also mapped in CSRe
B and CSRe

C

with indices nnzaft ` 1 and nnzbef ` 1 (that indices indicate ae
j2 did not belongs to the

theoretical blocks Bi and Ci, according to Fig. 4.4 – indeed theoretical blocks Bi and
Ci are replaced by CSR structures ABi and ACi). In addition, the coefficient ae

j2 is just
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 16 17 18 19 20 21 22 23
1 • • •
2 • • • • •
3 • • •
4 • • • • • • •
5 • • • • •
6 • • • • •
7 • • • • • • •
8 • • • • • • •
9 • • • • •
10 • • • • •
11 • • • •
12 • • • • • • •
13 • • • • • • •
14 • • • • • • •
15 • • • •
16 • • • • •
17 • • • • •
18 • • • • • • •
19 • • • • • • •
20 • • • •
21 • • • • •
22 • • • • • •
23 • • •

1

Partition 1 Intersection of 1 and 2

Partition 2 Intersection of 2 and 3

Partition 3

1

Partition 1
JA 1 2 3 1 2 3 4 6 1 2 3 2 3 4 5 6 7 8 3 4 5 7 2 4 6 8 4 5 7 8 4 6 7 8

IA 1 4 9 12 19 23 27 31 35

JB 1 2 1 4 5 2 3 4

IB 1 2 3 6 9

IBaux 5 6 7 8

IAidex aft 5 5 5 5 1 2 3 4 5

Partition 2
JC 1 3 2 4 4 3 4 3

IC 1 3 5 6 8 9

ICaux 1 2 4 5 6

IAidex bef 1 2 6 3 4 5 6 6 6

JA 1 6 7 2 3 4 2 3 4 2 3 4 5 4 5 6 1 5 6 7 8 1 6 7 8 6 7 8

IA 1 4 7 10 14 17 22 26 29

JB 1 1 3 2 3 2 2 4

IB 1 2 4 6 7 9

IBaux 3 4 5 6 8

IAidex aft 6 6 1 2 3 4 6 5 6

Partition 3
JC 1 2 3 4 5 2 3 5

IC 1 3 6 8 9

ICaux 1 2 3 4

IAidex bef 1 2 3 4 5 5 5 5

JA 1 3 5 2 3 4 6 1 2 3 5 6 2 4 6 8 1 3 5 6 7 2 3 4 5 6 7 5 6 7

IA 1 4 8 13 17 22 28 31

1

Figure 4.5 – Parallel CSR structures applied to a finite element narrow banded system
divided into 3 partitions.
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ni × nrecvbef

Ci

nCi
“nonzero rows”

Ai

ni × ni ni × nrecvaft

Bi

nBi
“nonzero rows”

1

Figure 4.6 – Nonzero rows of blocks Bi and Ci.

summed to “scape” area of ABi and ACi. The procedure is analogous if ae
j1 belongs to

theoretical block Ci and ae
j3 belongs to theoretical block Bi of the partition i. That is, ae

j1

is summed to ACi and “scape” area of AAi and ABi; ae
j3 , in turn, is summed to ABi and

“scape” area of AAi and ACi.

Ae
1 (ndof · nnoel)2j1

aej1

j2

aej2

j3

aej3

CSRe
A

1 (ndof · nnoel)2j1 j2 j3

nnzi + 1 I2 nnzi + 1

CSRe
B

1 (ndof · nnoel)2j1 j2 j3

nnzaft + 1 nnzaft + 1 I3

CSRe
C

1 (ndof · nnoel)2j1 j2 j3

I1 nnzbef + 1 nnzbef + 1

AAi
1 nnzi

· · ·+
nnzi + 1

aej1 + aej3

I2

· · ·+
aej2

ABi
1 nnzaft

· · ·+
nnzaft + 1

aej1 + aej2

I3

· · ·+
aej3

ACi
1 nnzbef

· · ·+
nnzbef + 1

aej2 + aej3

I1

· · ·+
aej1

1

Figure 4.7 – Schematic illustration of the parallel storage of Ae using parallel CSR struc-
tures AAi, ABi, and ACi in time complexity Op1q.

Section B.3 of the Appendix B describes how to build structures CSRe
A, CSRe

B, and
CSRe

C .
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4.1.4.2 Reordering of the blocks Ai, Bi, and Ci in CSR format

CSR data structures reordering is the last step of the finite element preprocessing.
Our objective here is to improve the preconditioning for blocks what leads to a better global
preconditioning. Thus, the blocks Ai, Bi, and Ci from Table 4.2 are reordered as PAiP

T ,
PBi, and PCi, where P is a permutation matrix. However, for implementations purpose,
P is considered as a vector. So, from this point P is assumed as a permutation vector
instead of a permutation matrix. Indeed, structures AJi, IAi, and CSRe

A are reordered
with effect over rows and columns of the block Ai and structures JBi, IBi, CSRe

B, ACi,
JCi, ICi, and CSRe

C are reordered with effect just over rows of blocks Bi and Ci.

In Appendix B, Section B.4, there is a set of algorithms to perform a unique a priori
reordering that is used to improve the preconditioning during the whole finite element
processing phase.

4.1.5 Parallel EBE storage

This section is concluded talking about the EBE storage scheme, introduced in the
1980s by Hughes et al. (1983b). Ever since, many efforts have been employed to simplify the
storage process of finite element matrices. This scheme is an alternative to reduce memory
consumption. Also, it allows an arbitrary ordering of the elements so that no limitation is
imposed by the mesh topology. According to Hughes et al. (1983a), the EBE procedures
are independent of bandwidth and thus achieve significant operation count advantages. In
consonance with the authors, the advantage increase in nonlinear applications to which
frequently refactorizations are necessary.

The traditional EBE format have been adapted to our domain decomposition ap-
proach in a straightforward way. Just one structure is considered to store each element
matrix Ae of a partition i, that is, A

EBE

i (other details about A
EBE

i , see Eq. (2.12)). Thus,
A

EBE

i has size neli ˆ pndof ¨ nnoelq2. As can be noted, each row of A
EBE

i is composed by
an elementary vector Ae (see Fig. 4.8).

Ae

1 (ndof · nnoel)2

1
2
...
e
...

neli

A
EBE

i

1

Figure 4.8 – Structure A
EBE

i : finite element data storage in EBE format.
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REMARK 7: All matrices Ae are stored in an array of vectors instead of an array of
matrices. This improves the performance because only 2 indices are used to retrieve the
data. That is, accessing ae

j , with 1 ď e ď neli and 1 ď j ď pndof ¨ nnoelq2 is much faster
than accessing ae

j,k with 1 ď j, k ď ndof ¨ nnoel.

4.2 Parallel finite element processing

In the previous section, there is a description of how to read the mesh data divided
into p partitions and to prepare the structures that enable the parallel processing of the
finite element application. This section gives a general idea of the finite element data
processing (see Fig. 4.9). Two categories of 2D finite element applications are considered:
steady-state and transient problems - both considering a nonlinear loop. For steady-state
problems, the stiffness matrix K and the load vector F are evaluated at nonlinear iteration.
Considering the predictor-multi-corrector (Hughes, 2012) algorithm for transient problems
are defined: the mass matrix M , the stiffness matrix K, and the residue vector R.

For each nonlinear iteration of the steady-state or transient problem a parallel precon-
ditioner solver based on the well known Generalized Minimal Residual (GMRES) (Saad and
Schultz, 1986) method is considered. For steady-state problems, GMRES solves KU “ F ,
in which a point fixed method is used once K and F are U dependent. In the context of the
predictor-multi-corrector transient algorithm, the GMRES is used to solve M˚∆dU “ R,
where M˚

“ M ` α∆tK is an effective matrix and ∆dU is the increment to update U
(vector of unknowns) and dU (vector of unknown derivatives) for each time step – ∆t is
the time-step and α is a time advancing parameter, considered in all experiment as 0.5.

The following two subsections describe how to accommodate the predictor-multi-
corrector scheme as well the loop of nonlinear iterations in our parallel process. After,
the remaining algorithms are detailed, namely, the parallel preconditioned GMRES, the
parallel matrix-vector products CSR and EBE, and, finally, the parallel inner product.

4.2.1 Parallel loop of nonlinear iterations

Algorithm 3 is used to perform the nonlinear loop of steady-state finite element
applications. We consider Ui and Fi as local representatives of the global solution vector
U and the load vector. Thus, Ki is one abstraction of the finite element matrix K in a
partition i. The real format of Ki depends on the storage scheme (CSR or EBE). The
superscripts j is the nonlinear iterations counter. The lines highlighted in red indicate
points where MPI syncronizations are required. The finite element matrix calculations
and assemblies as well as the GMRES solutions are performed according to the number of
nonlinear iterations. For each nonlinear iteration, finite element matrices are calculated
(see Fig. 4.7 for CSR and Fig. 4.8 for EBE storage format), preconditioners are set up (see
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Transient
Problem?

Predictor-multi-corrector:
• Build M , K, and R;

• Solve M∗∆dU = R with parallel precondi-
tioned GMRES, where M∗ = M + α∆tK.

Nonlinear loop:
• Build K and F ;

• Solve KU = F with parallel preconditioned GMRES.

Finite element post processing

yes

no

Figure 4.9 – Workflow of the Finite element data processing: transient or steady-state
problems.

Section 2.5), and a GMRES solution is required. Also, scaling operation is performed just
for LU and Gauss-Seidel local preconditioners (see Subsections 2.5.3.2 and 2.5.3.3).

Algorithm 3 Parallel loop of nonlinear iterations.
j Ð 0
do

MPI Update of U j
i .

Calculation and assembly of matrix Ki and vector F j
i from each elementary Ae.

Scaling of matrix K˚
i and vector F j

i .
Setup of the preconditioner.
Solve KiU

j`1
i “ F j

i using the parallel preconditioned GMRES.
Apply the parallel inner product to obtain the norm |U j

i |.
Apply the parallel inner product to obtain the norm |U j`1

i |.
j Ð j ` 1

while (j ă jMAX .AND. |U j
i |

|U j`1
i |

ą tol)

4.2.2 Parallel predictor-multi-corrector

The Algorithm 4 is a version of the implicit predictor-multi-corrector (Hughes,
2012) algorithm adapted to our parallel approach. Ui and dUi are generic finite element
representative vectors (see Fig. 4.3) of the global solution vector U and the global vector of
derivatives dU in a partition i and Ri is the residue vector for the partition i. Matrix M˚

has its representative in a partition i, that is,M˚
i (this local matrix can be stored in CSR or

EBE format). The superscripts n`1 and n mean, respectively, the time solution on indices



Chapter 4. Parallel Finite Element Application 64

n` 1 and n; the superscript j, in turn, is the multi-corrector counter. Lines of function
MPI Update (see Subsection 4.1.2.1), parallel inner products (see Subsection 4.2.6), and
parallel preconditioned GMRES (see Subsection 4.2.3) are highlighted in red. These are
points where the MPI syncronizations occur. There is a main loop for providing the time
evolution and for each time step there is an inner loop for multi-corrections. For each
multi-correction, finite element matrices are calculated and assembled (see Fig. 4.7 for
CSR and Fig. 4.8 for EBE storage format), preconditioners are set up (see Section 2.5),
and a GMRES solution is required. Besides, scaling operation is performed just for LU
and Gauss-Seidel local preconditioners (see Subsections 2.5.3.2 and 2.5.3.3).

Algorithm 4 Parallel predictor-multi-corrector.
do

Predictor phase:
j Ð 0
Un`1,0

i Ð Un
i ` p1´ αq∆tdUn

i

dUn`1,0
i Ð 0

Multi-corrector phase:
do

MPI Update of Un,j
i .

MPI Update of dUn,j
i .

Calculation and assembly of matrix M˚
i and vector Rn,j

i from each elementary Ae.
Scaling of matrix M˚

i and vector Rn,j
i

Setup of the preconditioner.
Solve M˚

i ∆dUi “ Rn,j
i using the parallel preconditioned GMRES.

Un,j`1
i Ð Un,j

i ` α∆t∆dUi.
dUn,j`1

i Ð dUn,j
i `∆dUi.

Apply the parallel inner product to obtain the norm |dUn,j
i |.

Apply the parallel inner product to obtain the norm |∆dUi|.
j Ð j ` 1

while (j ă jMAX .AND. |∆dU |
|dU |

ą tol)

tn`1 Ð tn `∆t
while (tn ď tfinal)

4.2.3 Parallel preconditioned GMRES

Algorithm 5 presents the parallel preconditioned GMRES which has been developed
to solve a narrow banded linear system AX “ F . Suppose all coefficients of the matrix
A and of the vector F are stored in p partitions according to CSR or EBE schemes (see
Figs.4.7 and 4.8). We also assume that subscript i means the structure belongs to partition
i. MPI syncronizations are highlighted in red and the preconditioning is highlighted in blue
considering right and to left computations. Specifically, only Guass-Seidel preconditioners
consider right computations (see Subsection 2.5.3.3). The parallel matrix-vector product
is executed by a specific algorithm, according to the storage scheme chosen. That is,
Algorithm 6 performs CSR format and Algorithm 7 performs EBE format.
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Algorithm 5 Parallel preconditioned GMRES.
Apply the parallel inner product to obtain the norm |Fi|.
do

j Ð 1.
Right Precondition Xi according to the setup of Algorithm 4 or 3.
Apply the parallel matrix-vector product U j

i Ð Ai ˚Xi.
Left Precondition U j

i according to the setup of Algorithm 4 or 3.
U j

i Ð Fi ´ U
j
i .

Apply the parallel inner product in U j
i to obtain ej .

U j
i Ð

1
ej
˚ U j

i .

ρÐ
?
ej .

do
Right Precondition U j

i according to the setup of Algorithm 4 or 3.
Apply the parallel matrix-vector product U j`1

i Ð Ai ˚ U
j
i .

Left Precondition U j`1
i according to the setup of Algorithm 4 or 3.

Gram-Schmidt orthogonalization:
for k “ 1, j ` 1 do

Apply the parallel inner product between Uk
i and U j`1

i to obtain hkj .
U j`1

i Ð U j`1
i ´ hkj ˚ U

j`1
i

end
Apply the parallel inner product to obtain hj`1,j .
U j`1

i Ð
1

a

hj`1,j

˚ U j`1
i

QR Algorithm:
for k “ 1, j ´ 1 do

aux1 Ð ck ˚ hkj ` sk ˚ hk`1,j

aux2 Ð ´sk ˚ hkj ` ck ˚ hk`1,j

hkj Ð aux1
hk`1,j Ð aux2

end
r Ð

b

h2
jj ` h

2
j`1,i

cj Ð hjj{r
sj Ð hj`1,j{r; hjj Ð r; hj`1,j Ð 0
j Ð j ` 1

while ( ρ

|Fi|
ą tol .AND. k ă kMAX)

j Ð j ´ 1
Solve the local triangular linear system hy “ e
for k “ 1, j do

Xi Ð Xi ` U
k
i ˚ yk

end
lÐ l ` 1

while ( ρ

|Fi|
ą tol .AND. l ă lMAX)

4.2.4 Parallel CSR matrix-vector product

The Algorithm 6 describes how to perform the parallel CSR matrix-vector product.
That is developed taking into account blocks Ai, Bi, and Ci, described in Table 4.2, which
are stored in CSR structures AAi, ABi, ACi (see Fig. 4.7) and mapped by the structures
JAi, IAi, JBi IBi, IBAux, JCi, ICi and ICaux (example in Fig. 4.5). Each call of CSR
matrix-vector product demands a MPI update.

REMARK 8: Each vector of a partition i is admitted as a generic finite element vector
(see Fig. 4.3). Since a generic vector has 3 regions: previous communication region (with size
nrecvbef), effective calculation area (with size ni), and posterior communication region (with
size nrecvbef); theses vectors are allocated with total size ni`nrecvbef`nrecvaft. However,
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Algorithm 6 CSR matrix-vector product.
MPI update of Ui.
Zi Ð 0
for I “ 1, nBi do

for J “ IBirIs, IBirI ` 1s do
ZirIBauxrIs ` nrecvbefs Ð ZirIBauxris ` nrecvbefs `ABirjs ˚ UirJBirJss

end
end
for I “ 1, nCi do

for J “ ICirIs, ICirI ` 1s do
ZirICauxrIs ` nrecvbefs Ð ZirICauxrIs ` nrecvbefs `ACirJs ˚ UirJCirJs ` ni ` nrecvbefs

end
end
for I “ 1, ni do

for J “ IAirIs, IAirI ` 1s do
ZirI ` nrecvbefs Ð ZirI ` nrecvbefs `AAirJs ˚ UirJAirJs ` nrecvbefs

end
end

the ranges r1, nrecvbefs and rni ` nrecvbef ` 1, ni ` nrecvbef ` nrecvaft] are used only for
MPI updates. The effective calculations occur inside the range rnrecvbef` 1, ni`nrecvbefs

whose size is ni.

4.2.5 Parallel EBE matrix-vector product

The EBE matrix-vector product, describe in Algorithm 7, is quite simple to implement.
Thanks to the particular construction of the LM structure (see Algorithm 18), parallel
EBE version is very similar to the sequential algorithm. As reported in Subsection 4.1,
finite element matrix data is represented trivially in EBE format when the structure A

EBE

i

(see Fig. 4.8) is considered. Each call of EBE matrix-vector product also demands a MPI
update.

Algorithm 7 EBE matrix-vector product.
MPI update of Ui.
Uirni ` nrecvbef ` nrecvaft ` 1s Ð 0
for I “ 1, neli do

countÐ 1
for J “ 1, nnoel ˚ ndof do

LJ Ð LM rIsrJs
ZirLJ s Ð 0
for K “ 1, nnoel ˚ ndof do

LK Ð LM rIsrKs

ZirLJ s Ð ZirLJ s `A
EBE

i rIsrcounts ˚ UirLKs

countÐ count` 1
end

end
end

REMARK 9: The EBE matrix-vector product can be implemented taking into account
that, generally nnoel and ndof, are constant values. Thus, an EBE version considering
one loop instead three is much faster. Whenever possible, it is better to unroll the loop.



Chapter 4. Parallel Finite Element Application 67

4.2.6 Parallel inner product

The parallel inner product of two generic finite element vectors Xi and Yi (see
Fig. 4.3) is easily implemented in Algorithm 8, once the effective calculation areas of
Xi and Yi can be accessed directly. Thus, sequential and parallel versions are almost
identical. The parallel inner product needs to finalize with a MPI_Allreduce operation,
that demands a considerable time to be performed. In our implementation it is required
just in this operations.

Algorithm 8 Parallel inner product of Xi and Yi.
sumÐ 0
for I “ nrecvbef ` 1, nrecvbef ` ni do

sumÐ sum`XirIs ˚ YirIs
end
MPI_Allreducepsum,GSUM, 1,MPI_DOUBLE,MPI_SUMq
return GSUM

4.3 Finite element postprocessing

As discussed in Section 3 and Subsection 4.1, all efforts have been made to produce
an a priori narrow banded linear system arising from finite element discretization. Such
system keeps the same sparsity pattern since its creation until the postprocessing. That is,
the unknowns receive labels that do not change. So, the postprocessing is a phase just to
print the final results using Paraview1 or a similar tool. Figure 4.10 shows an illustration
of the parallel solution of a finite element analysis application divided into 12 MPI ranks
(see Problem 1 in Chapter 5) using the Paraview plataform. The partition seems odd, but
it is important to remember that the decomposition was defined by the linear system and
not by the mesh.

1 <http://www.paraview.org> – The parallel multi-platform data analysis and visualization application
Paraview is used to visualize the final results.

http://www.paraview.org
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(a) View of the parallel solution

(b) yz-plane view perspective

(c) xz-plane view perspective

(d) xy-plane view perspective

Figure 4.10 – Paraview visualization: Illustration of a parallel solution with 12 MPI ranks.
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5 Numerical Experiments

In this chapter, the robustness and stability of our approach considering the parallel
preconditioning are demonstrated. Four finite element problems modeled by transport and
Euler equations are examined: a steady-state problem with 1 degree of freedom per node
(ndof “ 1); a transient problem with 1 degree of freedom per node (ndof “ 1); and two
other transient problems with 4 degrees of freedom per node (ndof “ 4). The well-known
numerical stabilization Streamline Upwind Petrov-Galerkin (SUPG) (Brooks and Hughes,
1982), coupled with the Y Zβ shock-capturing operator (Tezduyar and Senga, 2006) for
compressible Euler equations and adapted to transport equation according to Bazilevs et
al. (2007) is adopted to obtain accurate solutions.

Our approach is validated using local and global preconditioners. Local precondi-
tioning is performed taking into account Element-by-Element (EBE) storage. Six local
preconditioners are evaluated:

• DIAGe: a diagonal preconditioner used for problems with 1 degree of freedom per
node (see Subsection 2.5.3.1);

• LUe: a local LU factorization preconditioner used for problems with 1 degree of
freedom per node (see Subsection 2.5.3.2);

• SGSe: a local Gauss-Seidel preconditioner used for problems with 1 degree of freedom
per node (see Subsection 2.5.3.3);

• BlockDIAGe: a block diagonal preconditioner used for problems with more than one
degree of freedom per node (see Subsection 2.5.3.1);

• BlockLUe: a local LU factorization preconditioner used for problems with more than
one degree of freedom per node (see Subsection 2.5.3.2);

• BlockSGSe: a local Gauss-Seidel preconditioner used for problems with more than
one degree of freedom per node (see Subsection 2.5.3.3);

Global preconditioners, in turn, are based on Compressed Sparse Row (CSR) storage.
Theoretically, they can be applied to problems with any number of degrees of freedom per
node. Two global preconditioners are evaluated:

• ILUm: Incomplete LU factorization, where p represents the fill-in level (see Subsec-
tion 2.5.2);
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• SPIKEkt: a truncated SPIKE version which works together with PARDISO, where
k means the size of the coupling blocks and t means the amount of OpenMP threads
(see Section 2.4);

The parallel preconditioned GMRES, as described in Algorithm 5, is used to solve
the arising linear systems from finite element discretization. The GMRES solver tolerance
εGMRES “ 10´8 is considered for nonlinear problems and εGMRES “ 10´6 for transient
problems. In general, the number of nonlinear iterations is small for nonlinear and transient
applications for the experiments considered in this work. The GMRES solver tolerance
for the nonlinear problems is chosen smaller because the GMRES is resolved few times
- about 2 times. For the transient problems, the GMRES is resolved hundreds of times,
once it is required at nonlinear iterations of each time step. In all cases, Krylov’s base is
set with 30 vectors. The nonlinear tolerance is εnonlinear “ 10´3 for steady-state problems,
whereas for transient problems are considered 3 fixed nonlinear iterations for each time
step. Next two sections discuss the Software and Hardware used, and metrics to measure
the experiments’ performance. The following four sections present the evaluation of the
preconditioners’ behavior for the 2D finite element benchmark problems in the context
of our domain decomposition approach. The last three sections organize considerations
about the preconditioners tested, memory usage, load balance, MPI communications, and
our own domain decomposition approach.

5.1 Software and Hardware

5.1.1 Software used in the project development

Our codes have been developed in C language and compiled with Intel compiler
version 2017.5.239. The parallel environment takes into account the same Intel version
of the Message Passing Interface (MPI) protocol. Two optimization flags are also used,
named, -Ofast and -march=native. According to icc manual, -Ofast sets compiler options
-O3, -no-prec-div, and -fp-model fast=2. Flag -march=native, in turn, causes the compiler
to auto-detect the architecture of the build computer. Unfortunately, according to gcc
manual, this feature is only supported on GNU/Linux, and possibly was ignored by Intel
compiler.

5.1.2 Other software and libraries used

Few adaptations were proposed in the routine ILUK from ITSOL1 library (developed
by Yousef Saad’s team) to perform ILUm preconditioners. The algebraic factorization
is an ITSOL library function that predicts fill-in positions. It is executed just once,
1 <https://www-users.cs.umn.edu/~saad/software/ITSOL/>

https://www-users.cs.umn.edu/~saad/software/ITSOL/


Chapter 5. Numerical Experiments 71

because all transformations in the matrix sparsity pattern occur in the finite element
preprocessing phase (see Subsection 4.1). The most common vector routines ddot, daxpy,
dscal, dcopy, dzero were implemented based on codes of BLAS2 level1 version 3.8.0.
All SPIKE preconditioner steps involving complete LU factorizations and using direct
methods were solved through the library pardiso500-INTEL1301-X86-64 of PARDISO3

software.

Aiming to demonstrate the effectiveness and generality of our domain decomposition
approach, only unstructured meshes with nontrivial sparsity patterns are used. Every
problem is discretized by unstructured triangular meshes, using Delaunay triangulation
through the software Gmsh (Geuzaine and Remacle, 2009). Thus, algorithms for reducing
the bandwidth generated by such sparsity pattern are needed. For this task, two algorithms
are chosen: the reverse Cuthill- McKee(RCM) (Liu and Sherman, 1976), for which a
C language version of the function symrcm from the Octave 4.0 package was adopted;
Spectral (Barnard et al., 1995), which incorporates the Fortran routines of the hsl4 library.

5.1.3 Cluster Loboc

All tests were performed on the Cluster Lobo Carneiro (Loboc)5 from Núcleo
Avançado de Computação de Alto Desempenho (NACAD), Federal University of Rio
de Janeiro (UFRJ), Brazil. Loboc has 504 CPUs Intel Xeon E5-2670v3 (Haswell), total-
izing 6048 cores. It has 252 processing nodes, and each node has 64GB of RAM and 24
cores (48 with Hyper-Threading). The cluster’s network is an Infiniband FDR - 56 Gs
(Hypercube) and the operating systems is the Suse Linux Enterprise (SLE).

5.2 Performance Metrics

A series of measurements are made for each experiment. Initially, tables with the
number of GMRES iterations according to each preconditioner and CPU time to solve
every situation are presented. The total runtime includes: the finite element preprocessing
(Subsection 4.1), the finite element processing (Subsection 4.2) and, the postprocessing
(Subsection 4.3). CPU time, speedup, efficiency, total memory usage, and memory usage
per processing node, are also shown. Finally, a tool named TAU6 (Tuning Analysis Utilities)
is used to investigate the proportional CPU time spent by each function for different
preconditioners. TAU also provides analysis of the Message Passing Interface (MPI)
operations.
2 <http://www.netlib.org/blas/#_level_1>
3 <http://www.pardiso-project.org/>
4 <http://www.hsl.rl.ac.uk>
5 <http://portal.nacad.ufrj.br/recurso-icex.html>
6 <https://www.cs.uoregon.edu/research/tau/home.php>

http://www.netlib.org/blas/#_level_1
http://www.pardiso-project.org/
http://www.hsl.rl.ac.uk
http://portal.nacad.ufrj.br/recurso-icex.html
https://www.cs.uoregon.edu/research/tau/home.php
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5.2.1 Runtime: CPU time, speedup, and efficiency

The CPU time of each experiment is analyzed using the following criteria: each
experiment is performed five times. The lowest and the longest CPU times are eliminated,
and the average of the remaining three intermediate CPU times is taken as the reference
value. Two other metrics are also employed: speedup and efficiency. A processing node
always uses its full capacity, then partitions are divided into multiples of 24, as enunciated
in Subsection 5.1.3. Thus, both metrics are redefined proportionally to 24 MPI ranks:

• Speeduppnq “
CPU time of 24 MPI ranks
CPU time of n MPI ranks

• Efficiencypnq “ 10024 ¨ Speeduppnq
n

REMARK 10: Because that proportionality to 24 MPI ranks, the ideal speedup will be
represented by a line passing through the points (24,1), (48,2), (72,3), (96,4), (192,8) and
(384,16).

REMARK 11: When we apply our domain decomposition approach, all sequential por-
tions of the experiments are executed a priori – such parts are analyzed in the beginning
of each section, in the tables entitled “Domain Decomposition Approach - Bandwidth, Pre-
processing CPU time, and Memory Usage”. The other parts of the experiments are strictly
parallel and are investigated in details for each numerical example. Thus, our speedup and
efficiency metrics do not consider the limitations imposed by the Amdahl (Amdahl, 1967)
and Gustafson’s (Gustafson, 1988) laws. As result, the experiments can present superlinear
speedups (Gustafson, 1990) and efficiencies above 100%.

REMARK 12: In the context of high performance computing, the efficiency metric can
be evaluated using two common notions of scalability: strong and weak scaling (Khare et
al., 2012). Strong scaling spread the same size problem across more nodes. Weak scaling
keeps the problem-per-node size constant while increasing the number of nodes. Our
efficiency metric considers only the strong scaling.

5.2.2 Memory usage

Memory usage of each preconditioner is evaluated. We use the Valgrind7 package in
combination with the tool named Massif8 with that purpose. Each experiment is executed
by appending to each MPI call a statement similar to valgrind - -tool “ massif. As a
7 <http://valgrind.org/>
8 Massif is a heap profiler. It performs detailed heap profiling by taking regular snapshots of a program’s

heap. It produces a graph showing heap usage over time, including information about which parts of
the program are responsible for the most memory allocations.<http://valgrind.org/info/tools.html#
massif>

http://valgrind.org/
http://valgrind.org/info/tools.html#massif
http://valgrind.org/info/tools.html#massif
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result, files massif.out are generated according to the number of MPI ranks. The variables
mem_heap_B and mem_heap_extra_B arising from files massif.out store the amount of
memory used at each instant. Thus, it is enough to take in each MPI rank the maximum
value of mem_heap_B, say max_mem_heap_B, and add it to the corresponding value of
mem_heap_extra_B, say used_mem_heap_extra_B, to get the peak memory usage in
that rank. These values allow to define the two following metrics:

• Total memory usage: memory usage in each MPI rank is calculated as

max_mem_heap_B` used_mem_heap_extra_B.

All the memory usage of the ranks are added and the total memory usage is obtained.

• Average memory usage per processing node: in order to obtain the average
memory usage in the processing nodes, it is sufficient for each case to divide the
total memory usage by 24, 48, 72, 96, 192, or 384 to find the average memory usage
in 1, 2, 3, 4, 8, or 16 processing nodes, respectively.

Load balancing can also be measured by checking the variation of the amount of
memory used in each MPI rank. If the difference between the maximum and minimum
value of memory usage in each rank is relatively small, this indicates domain decomposition
has been successful. Thus, for each experiment, we measure the load balancing measured
of a local preconditioner and a global preconditioner.

5.2.3 Functions runtime analysis

TAU is a tool that allows evaluating the runtime of each function of a serial or
parallel program. In applications involving MPI, each rank produces a log file containing
information about all functions executed. This tool also allows analyzing the average
runtime of the functions. From the implementation point of view, there are several
functions whose runtime could be measured. We evaluate the runtime of the same ten
functions or groups of functions in order to systematically analyze the code. Runtimes
of the other functions are assigned to a group named Others. The following is the list of
functions whose runtime is analyzed:

• Build_Matrices: responsible of building the matrix of the coefficients as well as
the vector of independent terms of the linear systems derived from the finite element
method. For the steady-state problem, it builds the matrix K and the vector F . For
transient problems, it builds matrices M , K and the load vector R. Besides, the
effective matrix M˚ is also calculated. For details, see Fig. 4.9;

• Matrix_Vector_Product: process each matrix-vector product according to the
chosen storage method. For details, see Subsections 4.2.4 and 4.2.5;



Chapter 5. Numerical Experiments 74

• Preconditioner: responsible for applying the preconditioning. Therefore it is applied
soon after each matrix-vector product. For details, see Algorithm 5;

• Preconditioner_Setup: prepare the structures to be used in the preconditioning
step. As an example, complete or incomplete factorizations of finite element matrices
can be cited. For details, see Algorithms 4 and 3;

• Scaling: this operation is only performed in cases involving the local preconditioners
LUe, SGSe, BlockLUe and BlockSGSe. For details, see Subsection 2.5.3.

• Vectors: this operation is formed by the set of all most common vector operations,
namely ddot, daxpy, dscal, dcopy, dzero, as implemented in BLAS level 1.

• MPI_Allreduce: native MPI function to get the sum of all MPI ranks’ partial
internal products. For details see the Algorithm 8;

• MPI_Barrier: native MPI function to promote the synchronization of MPI ranks.
It was applied to the input of data and more effectively in the preconditioners LUe,
SGSe, BlockLUe and BlockSGSe.

• MPI_Isend: native MPI function to send the requested data to a designated MPI
rank. The prefix “I” in Isend indicates the sending is asynchronous. This function
was used within the context of the update function presented in the Algorithm 2.

• MPI_Recv: native MPI function to receive the requested data from a designated
MPI rank. This function was used within the context of the update function presented
in the Algorithm 2.

• Others: represents the remaining functions.

5.3 Sine hill in a rotating fluid flow field - Problem 1 : Steady-
State case with ndof=1

Our first experiment is a steady-state problem with 1 degree of freedom per node.
The exact solution consists in a pure advection of a sine hill in a rotating fluid flow field
as presented in (Brooks and Hughes, 1982). Figure 5.1 shows the problem statement,
modeled by the steady-state advection-diffusion equation. The computational domain
is a square domain, Ω “ r´10, 10s ˆ r´10, 10s, the constant diffusivity is ε “ 10´8, the
source term is f “ 0, and the velocity field is β “ p´y, xqT . Such values characterize an
advection-dominated problem so that the condition on OA is almost purely advected along
circular streamlines. Because of the shock capture term Y Zβ (Bazilevs et al., 2007), this
problem becomes a nonlinear example. Thus, there is a parallel loop of nonlinear iterations
which is solved using the Algorithm 3.
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Figure 5.1 – Advection in a rotating fluid flow field: Problem statement.

Three sizes of unstructured mesh are considered, namely SmallMesh with 2,356,673
nodes and 4,708,008 elements; MediumMesh with 5,290,192 nodes and 10,572,382 ele-
ments; and LargeMesh with 10,794,301 nodes and 21,577,168 elements. Table 5.1 shows
the CPU time, bandwidth sizes, and memory usage related to the domain decomposition
approach applied to all meshes reordered by RCM and Spectral algorithms. The CPU
time to obtain the domain decomposition using Spectral algorithm was estimated because
the bandwidth size was not enough to divide the linear system into 192 partitions. The
estimated domain decomposition time using the Spectral algorithm was considered to be
the sum of the reordering time using the Spectral algorithm and the time of the domain
decomposition obtained by the RCM algorithm minus the reordering runtime, once the
difference between both decompositions is just the reordering algorithm. As expected, as
the mesh grows, CPU time increases considerably and the CPU time is directly related to
the bandwidth.

Table 5.1 – Problem 1 : Domain Decomposition Approach - Bandwidth, Preprocessing
CPU time, and Memory Usage.

Bandwidth
before

reordering

Bandwidth
after

reordering

Time for
Reordering
(in seconds)

Total time to
preprocess the

domain decomposition
into 192 partitions

(in seconds)

Memory Usage
(in MB)

SmallMesh (RCM) 2,350,225 2,606 6.929 63.49 1461
MediumMesh (RCM) 5,278,451 3,869 17.17 139.13 3217
LargeMesh (RCM) 10,779,780 5,527 39.06 292.40 6843
LargeMesh (Spectral) 10,779,780 120,127 89.29 342.63* 6967

*estimated CPU time: Spectral failed to split into 192 partitions.

Figure 5.2 presents the Problem 1 solution for SmallMesh obtained with the pre-
conditioner ILU2 and 24 MPI ranks. The graphic is plotted using Paraview software after
the postprocessing phase (see Section 4.3).

In this experiment, nine preconditioning cases are evaluated. Three of them are local
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Figure 5.2 – Problem 1 : Solution for SmallMesh with the preconditioner ILU2 and 24
MPI ranks.

preconditioners based on EBE storage, namely DIAGe, LUe, and SGSe. The remaining cases
are global preconditioners based on CSR storage taken from incomplete LU factorizations
(ILUm) and SPIKE preconditioners. ILUm preconditioners assumed fill-in level m as
2, 3, and 10, that is, preconditioners ILU2, ILU3, and ILU10. (For Problem 1, ILU0
and ILU1 did not converge – as reported by Benzi (2002), for many problems arising
from Computational Fluid Dynamic, such as cases of highly nonsymmetric and indefinite
matrices, there is the necessity of a level of fill-in greater than zero). SPIKE preconditioners
have two parameters: the coupling blocks size k and the number of threads per MPI rank t.
Empirically, we fix k “ 50 in this work. It is a reasonable size for the coupling blocks, taking
into account the number of floating point operations, as reported by Lima et al. (2017).
An amount of 2, 4, and 8 threads per MPI rank is used for each SPIKE preconditioner.
That cases are namely SPIKE502, SPIKE504, and SPIKE508. Problem 1 is a nonlinear
steady-state problem, however, all solutions needed just two nonlinear steps to achieve the
tolerance.

In this section, the preconditioners’ performance is also analyzed when the sparsity
of the mesh is reordered by RCM and Spectral algorithms. As mentioned earlier, partitions
are divided into multiples of 24 precisely, so that a processing node always uses its full
capacity. Thus, nine sets of numerical experiments are performed considering 24, 48, 72, 96,
and 192 partitions. In the particular case of SPIKE, the grouping of MPI ranks per node
was somewhat different. Because the architecture allows 48 hyper-threads per processing
node, SPIKE502 is grouped in 24 MPI ranks per node, SPIKE504 is grouped with 12
MPI ranks per node, and finally SPIKE508 is grouped with 6 MPI ranks per node. Thus,
compared with SPIKE502, SPIKE504 uses the double number of nodes and SPIKE508
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uses the quadruple number of nodes for each simulation.

Tables 5.2, 5.3, and 5.4 present, the total CPU time (in seconds) and the num-
ber of GMRES iterations (iter) for all preconditioners, respectively to SmallMesh,
MediumMesh, and LargeMesh. For all cases we consider 24, 48, 72, 96, 192 MPI ranks
and the sparsity of the mesh reordered by the RCM algorithm. Table 5.5, in turn, presents
the same information for LargeMesh, but Spectral algorithm reorders the sparsity of
the mesh. In this case, particularly, experiments with 192 MPI ranks are not performed,
because the reduction of the bandwidth size was not enough to divide matrix order into 192
partitions (see Table 5.1). Note that, once the mesh size is fixed, the preconditioner DIAGe
yields a nearly constant number of iterations. Such behavior is expected since this precon-
ditioner is just a scaling based on the main diagonal of the matrix (see Subsection 2.5.3.1).
Local preconditioners LUe and SGSe present a number of iterations much smaller than
that reached with the preconditioner DIAGe. However, these preconditioners suffer a
relative increase in the number of iterations when the number of processors increases. The
preconditioner LUe becomes less attractive than SGSe as the mesh size increases. This
behavior is more significant when the mesh reordering is obtained by Spectral algorithm.

All global preconditioners present a considerable increase in the number of iterations
as the number of MPI ranks increases. That behavior is also expected because these
preconditioners are applied to smaller and smaller blocks Ai (Fig. 4.4 defines blocks Ai

with i=1,2,..., the number of MPI ranks). For higher indices of fill-ins, greater is the
increase of the number of iterations as the number of MPI ranks grows. Initially, ILU3
presented the best results. However, this configuration changes when the mesh and the
number of MPI ranks increase. For 192 MPI ranks, ILU2 becomes the best option for all
meshes.

The number of threads does not change the number of iterations for the SPIKE
preconditioners, that is, SPIKE502, SPIKE504, and SPIKE508 have an identical number
of iterations for the same number of MPI ranks. However, runtime decreases, since matrix
factorizations and triangular linear system calculations are performed by more threads in
each MPI rank. Note also the preconditioner ILU10 has a closer behavior to SPIKE508

(number of iterations and CPU time). However, the preconditioner SPIKE508 uses the
quadruple of processing nodes than that used for the preconditioner ILU10. The Spectral
reordering did not provide significant improvement taking into account the number of
GMRES iterations.

Figures 5.3, 5.4, and 5.5 show, respectively to SmallMesh, MediumMesh, and
LargeMesh, the CPU time, speedup, and efficiency for the parallel preconditioners
DIAGe, LUe, SGSe, ILU2, ILU3, ILU10, SPIKE502, SPIKE504, and SPIKE508 considering
24, 48, 72, 96, 192 MPI ranks and the sparsity of the mesh reordered by the RCM
algorithm. Graphics are organized in groups of local (on the left) and global (on the right)
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Table 5.2 – Problem 1 - SmallMesh - RCM reordering: CPU time and the number of
GMRES iterations from 24 to 192 partitions.

Number of MPI ranks
Preconditioner 24 48 72 96 192

time iter time iter time iter time iter time iter
DIAGe 260.76 14188 111.33 14198 76.45 14191 58.16 14172 30.45 14169
LUe 117.51 4940 53.31 4953 36.40 5001 28.37 5005 15.35 5050
SGSe 134.17 4609 61.30 4614 41.24 4627 31.28 4634 15.51 4665
ILU2 13.17 578 7.28 663 5.29 752 4.46 862 3.02 1291
ILU3 12.39 498 7.00 578 5.43 692 4.55 780 3.31 1242
ILU10 16.19 369 11.29 546 8.76 659 7.47 768 5.50 1215
SPIKE502 54.03 372 35.91 571 26.59 675 21.63 776 15.90 1257
SPIKE504 27.07 372 18.35 571 13.76 675 11.46 776 7.84 1257
SPIKE508 19.04 372 12.88 571 9.75 675 5.30 776 3.64 1257

Table 5.3 – Problem 1 - MediumMesh - RCM reordering: CPU time and the number of
GMRES iterations from 24 to 192 partitions.

Number of MPI ranks
Preconditioner 24 48 72 96 192

time iter time iter time iter time iter time iter
DIAGe 1443.83 18782 466.51 18772 249.00 18782 174.55 18774 92.30 18777
LUe 598.04 6159 195.12 6209 109.49 6173 78.61 6182 42.36 6231
SGSe 713.64 6320 231.38 6324 136.99 6329 98.25 6334 53.25 6355
ILU2 43.62 647 20.20 789 13.67 820 10.67 863 6.50 1095
ILU3 41.10 573 19.65 705 13.97 767 11.38 816 7.39 1064
ILU10 50.22 443 29.55 625 21.30 691 17.39 763 11.10 1002
SPIKE502 160.34 451 99.30 650 65.32 682 52.80 765 35.13 1072
SPIKE504 75.09 451 49.04 650 33.15 682 26.98 765 17.64 1072
SPIKE508 51.49 451 33.98 650 23.24 682 18.81 765 12.38 1072

Table 5.4 – Problem 1 - LargeMesh - RCM reordering: CPU time and the number of
GMRES iterations from 24 to 192 partitions.

Number of MPI ranks
Preconditioner 24 48 72 96 192

time iter time iter time iter time iter time iter
DIAGe 5764.58 26497 2306.58 26495 1103.99 26496 698.01 26495 270.70 26497
LUe 4199.05 15502 1660.85 15310 872.14 16111 563.58 16375 206.52 15082
SGSe 2941.33 9052 1157.74 9058 577.77 9066 378.73 9070 155.89 9089
ILU2 125.52 842 64.30 937 38.42 1062 30.61 1193 18.67 1513
ILU3 101.53 638 57.10 786 35.84 918 27.99 998 18.87 1362
ILU10 128.45 525 75.85 672 46.24 700 38.64 812 27.53 1208
SPIKE502 361.44 465 226.19 660 139.03 662 121.39 807 83.86 1219
SPIKE504 171.41 465 106.54 660 68.96 662 60.55 807 42.21 1219
SPIKE508 112.54 465 72.02 660 46.94 662 41.36 807 32.13 1219

Table 5.5 – Problem 1 - LargeMesh - Spectral reordering: CPU time and the number of
GMRES iterations from 24 to 96 partitions.

Number of MPI ranks
Preconditioner 24 48 72 96

time iter time iter time iter time iter
DIAGe 7088.83 26498 2589.99 26497 1220.89 26497 748.22 26496
LUe 4564.25 13658 2564.67 21064 1392.53 24031 725.58 20123
SGSe 3683.03 9055 1290.89 9060 629.04 9065 390.45 9072
ILU2 152.81 996 78.89 1109 50.58 1371 41.10 1560
ILU3 119.15 730 64.48 843 42.29 1048 33.33 1144
ILU10 118.78 461 77.64 652 55.98 841 51.79 1083
SPIKE502 327.40 380 221.61 626 160.70 796 148.15 1023
SPIKE504 157.86 380 104.29 626 81.09 796 76.19 1023
SPIKE508 100.46 380 69.56 626 55.95 796 52.43 1023
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preconditioners. Figure 5.6 shows the same information for LargeMesh, but Spectral
algorithm reorders the sparsity of the mesh.

Local preconditioners DIAGe, LUe, and SGSe present superlinear speedups. That
behavior becomes more notable as the mesh size increases. We can not see any particular
reason that could explain this behavior. Possibly, for larger partitions, the cache memory
is misused. Note also among the local preconditioners, LUe presents the best CPU time
for the meshes SmallMesh and MediumMesh. However, for the mesh LargeMesh, LUe
loses its position for the preconditioner SGSe. LUe is also more sensitive when the mesh is
reordered by the Spectral algorithm.

As the size of the meshes increases, global preconditioners become about an order
of magnitude faster than local preconditioners. Speedup and efficiency graphs also show
significant improvement with the increase of the mesh. From the point of view of efficiency,
the ILU2 preconditioner presents the best results, although in some locations the SPIKE508

preconditioner reveals greater efficiency (SmallMesh mesh with 96 and 192 MPI ranks).
In short, global preconditioners with lower fill-in number achieve better speedup and
efficiency.

Figures 5.7a, 5.8a, and 5.9a show, respectively to SmallMesh, MediumMesh, and
LargeMesh, the total memory usage for the parallel preconditioners DIAGe, LUe, SGSe,
ILU2, ILU3, ILU10, SPIKE50 (case with only 1 thread) considering 24, 48, 72, 96, 192
MPI ranks and the sparsity of the mesh reordered by the RCM algorithm. Figure 5.10a,
in turn, shows the same information for LargeMesh, but Spectral algorithm reorders
the sparsity of the mesh. Local preconditioners require less memory consumption than
global preconditioners. The preconditioner SPIKE50, in particular, consumes an expressive
amount of memory since it needs to store the complete LU factorization of the coefficient
matrix. Such storage causes a significant number of fill-ins. For this same reason, ILU
preconditioners use more memory as the fill-in level is increased. For smaller meshes,
the variation of total memory usage as the number of partitions grows is more relevant.
However, as the mesh increases or when it is reordered by the Spectral algorithm, the
memory consumption becomes almost constant independent of the number of MPI ranks.

Figures 5.7b, 5.8b, and 5.9b show, respectively to SmallMesh, MediumMesh, and
LargeMesh, the bar min and max graphs of average memory usage per node for the local
preconditioner DIAGe and the global preconditioner ILU2 considering 1, 2, 3, 4, and 8
processing nodes and the sparsity of the mesh reordered by the RCM algorithm. The main
bar value represents the average memory usage for a specific number of processing nodes.
The min and max bar values represent the minimum and maximum memory usage by
some MPI rank among all MPI ranks. Figure 5.10b, in turn, shows the same information
for LargeMesh, but Spectral algorithm reorders the sparsity of the mesh. As expected,
the average memory usage per processing node is reduced almost proportionally as more
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Figure 5.3 – Problem 1 - SmallMesh - Reordering RCM: CPU time, speedup, and effi-
ciency.
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Figure 5.4 – Problem 1 - MediumMesh - Reordering RCM: CPU time, speedup, and
efficiency.
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Figure 5.5 – Problem 1 - LargeMesh - Reordering RCM : CPU time, speedup, and
efficiency.
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Figure 5.6 – Problem 1 - LargeMesh - Reordering Spectral : CPU time, speedup, and
efficiency.
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nodes are used. There is not a very large discrepancy between the minimum and maximum
memory values used in each MPI rank. This fact suggests that our domain decomposition
approach, even initially proposed for global preconditioners with CSR storage, has also
been successful in load balancing for local preconditioners with EBE storage.
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Figure 5.7 – Problem 1 - SmallMesh - Reordering RCM : Memory Usage.

Figures 5.11, 5.12, and 5.13 show, respectively to SmallMesh, MediumMesh, and
LargeMesh, the functions runtime analysis for the parallel preconditioners DIAGe, LUe,
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Figure 5.9 – Problem 1 - LargeMesh - Reordering RCM : Memory Usage.



Chapter 5. Numerical Experiments 87

24 48 72 96

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Number of MPI ranks

M
em

o
ry

[M
B
]

Memory Usage

DIAGe LUe SGSe ILU2 ILU3 ILU10 SPIKE50

(a) Total Memory Usage (All Preconditioners)

1 2 3 4

2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000
11,000
12,000
13,000
14,000

Number of Processing Nodes

M
em

or
y
[M

B
]

Memory Usage

DIAGe
ILU2

(b) Average Memory Usage per Node (DIAGe and ILU2)

Figure 5.10 – Problem 1 - LargeMesh - Reordering Spectral : Memory Usage.
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SGSe, ILU2, ILU3, ILU10, SPIKE502, SPIKE504, and SPIKE508 considering 24 and 192
MPI ranks and the sparsity of the mesh reordered by the RCM algorithm. Graphics are
organized into groups of local and global preconditioners. Figure 5.14, in turn, shows the
same information, but Spectral algorithm reorders the sparsity of the mesh. Particularly,
in this case, experiments with 96 MPI ranks are presented instead of 192 because Spectral
reordering failed to split the domain into 192 partitions.

Build_Matrices runtime is almost imperceptible because in this experiment it was
run only twice since this experiment is a steady-state case. GMRES iterations performed
by local preconditioners are significantly higher than those performed by global precon-
ditioners. The local preconditioners have a higher demand for matrix-vector products
(function Matrix_Vector_Product) and another vector operations (function Vectors).
Preconditioners LUe and SGSe are the largest demanders of MPI_Barrier because they
require additional synchronizations. Once SGSe is a split preconditioner, it needs twice
synchronization — the preconditioning is applied in two steps, that is, to the right and
to the left. LUe and SGSe are the only preconditioners that use the function Scaling but
they demand a negligible runtime from that function.

In the context of ILU preconditioners, a higher fill-in level allows the reduction
of the number of iterations. However, ILU10 incomplete factorizations (see function
Preconditioner_Setup) demand a longer runtime than ILU2 incomplete factorizations,
for example. Note in addition, the solutions of the triangular systems (see function
Preconditioner) by ILU preconditioners with higher higher fill-in levels are also more
costly, because the generated triangular systems become less sparse as the fill-in level
increases.

In the case of SPIKE preconditioners, the number of threads has influenced the
runtime of several functions. The solutions of the triangular systems (see function Pre-
conditioner), for example, need half CPU time when four threads are used instead of two
threads. That suggests the runtime of the solutions of the triangular systems for ILU
preconditioners could also be reduced if PARDISO was used. Another point of SPIKE that
calls attention is the use of the MPI_Recv function. Compared to other preconditioners,
MPI_Recv demands a much longer runtime. This fact is justified by the exchange of
messages required by the coupling blocks (each coupling block has size k ˆ k, see Section
2.4).

As expected, MPI_Allreduce runtime is proportionally larger for smaller meshes
combined with a high number of MPI ranks. MPI_Allreduce runtime is also influenced by
the number of GMRES iterations, because MPI_Allreduce is generally used to finalize an
inner product operation. Runtimes of MPI_Isend and MPI_Recv can also be negligible
(exceptions just to the SPIKE cases). Finally, RCM and Spectral reordering methods do
not present significant differences in the functions runtime analysis.
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Figure 5.11 – Problem 1 - SmallMesh - Reordering RCM: Functions runtime analysis.
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Figure 5.12 – Problem 1 - MediumMesh - Reordering RCM : Functions runtime analysis.
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Figure 5.13 – Problem 1 - LargeMesh - Reordering RCM : Functions runtime analysis.
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Figure 5.14 – Problem 1 - LargeMesh - Reordering Spectral : Functions runtime analysis.
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5.4 Rotating cone - Problem 2 : Transient case with ndof=1

The second problem is a transient problem with 1 degree of freedom per node.
The exact solution, modeled by the transport transient advection-diffusion equation as
described by Brooks and Hughes (1982), consists of a rigid rotation of the cone about the
center of the mesh. Figure 5.15 shows the problem statement, where the computational
domain is a square domain, Ω “ r0, 10s ˆ r0, 10s, diffusivity constant is ε “ 10´8, source
term is f “ 0, the velocity field is β “ p´y, xqT . The time advancing is solved using
the parallel predictor-multi-corrector algorithm as described in Algorithm 4. The final
time tfinal “ 6.28 and the time step ∆t “ 10´2 are chosen corresponding to a full 360o

rotation of the cone. For each time step is set 3 fixed multi-corrections. In short, the
parallel preconditioned GMRES (see Algorithm 5) runs exactly 1884 times to solve this
experiment.
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Figure 5.15 – Rotating cone: Problem statement.

An unstructured mesh with 1,321,646 nodes and 2,639,290 elements is used. Table
5.6 shows the CPU time, bandwidth sizes, and memory usage concern our domain decom-
position approach corresponding to divide the sequential mesh into 192 partitions using
the RCM or Spectral algorithm. Besides, the reduction of bandwidth size is presented
when both reordering algorithms are used.

Table 5.6 – Problem 2 : Domain Decomposition Approach - Preprocessing Bandwidth,
CPU Time, and Memory Usage.

Bandwidth
before

reordering

Bandwidth
after

reordering

Time for
Reordering
(in seconds)

Total time to
preprocess the

domain decomposition
into 192 partitions

(in seconds)

Memory Usage
(in MB)

Mesh (RCM) 1,317,181 2,077 3.74 36.744 843
Mesh (Spectral) 1,317,181 6,129 10.01 43.014 832

Figure 5.16 presents the Problem 2 solution at time t “ 6.28 seconds, obtained with



Chapter 5. Numerical Experiments 94

the ILU0 preconditioner and 24 MPI ranks. The graphic is plotted using Paraview software
after postprocessing phase (see Section 4.3).

Figure 5.16 – Problem 2 : Solution at t “ 6.28 seconds with the ILU0 preconditioner and
24 MPI ranks.

This experiment also evaluates local and global preconditioners. DIAGe, LUe, and
SGSe are taken as local preconditioners representatives. We analyze Incomplete LU
factorizations and SPIKE preconditioners in the global preconditioners context. The
incomplete LU factorizations (ILUm) are used with fill-in levels 0, 1 and 2 which generate
the preconditioners ILU0, ILU1, and ILU2. Only the SPIKE preconditioner SPIKE504 is
analyzed, which means we use coupling block size k “ 50 and 4 threads per MPI rank. Like
in Problem 1, SPIKE504 uses the double number of processing nodes to run. In this section,
the preconditioners’ performance is also compared when RCM and Spectral algorithms
reorder the sparsity of the mesh. Thus, there are two sets of numerical experiments
considering 24, 48, 72, 96, and 192 MPI ranks.

Tables 5.7 and 5.8 present the total CPU time and the average number of GMRES
iterations per GMRES execution (iterav) – the total number of GMRES iterations divided
by the number of GMRES executions to solve the problem (1884). Those tables show,
respectively, the parallel preconditioners DIAGe, LUe, SGSe, ILU0, ILU1, ILU2, and
SPIKE504 considering 24, 48, 72, 96, 192 MPI ranks and the sparsity of the mesh reordered
by RCM and Spectral algorithms. Local preconditioners DIAGe, LUe, and SGSe keep their
iterav almost constant when the number of MPI ranks increases. LUe presents the best
results both to iterav and to the CPU time. The reordering procedure does not influence the
behavior of the ILU preconditioners. ILU0 is the best option when global preconditioners
are used. SPIKE504 does not present competitive CPU times though iterav be very similar
to ILU preconditioners for RCM and Spectral algorithms.
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Table 5.7 – Problem 2 - RCM reordering : CPU time and the average number of GMRES
iterations from 24 to 192 partitions.

Number of MPI ranks
Preconditioner 24 48 72

time iterav time iterav time iterav

DIAGe 1157.21 65.8 559.76 64.3 388.07 64.2
LUe 355.12 11.5 178.52 11.6 123.09 11.6
SGSe 771.58 24.5 380.89 24.7 252.06 24.6
ILU0 372.57 12.8 186.10 14.8 119.64 16.0
ILU1 375.43 12.4 190.54 14.3 124.21 15.5
ILU2 420.88 12.4 212.63 14.3 142.58 15.5
SPIKE504 3342.97 12.7 1662.48 14.2 1192.77 15.6

Number of MPI ranks
Preconditioner 96 192

time iterav time iterav

DIAGe 285.89 65.0 133.60 65.5
LUe 89.77 11.6 43.29 12.0
SGSe 179.38 24.5 72.14 24.4
ILU0 84.72 17.0 43.97 20.5
ILU1 91.79 16.8 45.16 20.1
ILU2 105.01 16.8 50.73 20.3
SPIKE504 984.38 16.8 751.13 20.3

Table 5.8 – Problem 2 - Spectral reordering : CPU time and the average number of GMRES
iterations from 24 to 192 partitions.

Number of MPI ranks
Preconditioner 24 48 72

time iterav time iterav time iterav

DIAGe 1143.83 64.3 568.31 63.5 382.85 62.5
LUe 361.24 11.5 179.82 11.6 120.65 11.6
SGSe 777.93 24.7 381.19 24.4 244.92 24.6
ILU0 375.45 12.9 182.54 14.6 117.09 15.9
ILU1 377.18 12.5 187.87 14.3 124.60 15.6
ILU2 428.71 12.4 215.12 14.1 145.16 15.6
SPIKE504 3516.93 13.6 1793.40 15.6 1210.62 16.5

Number of MPI ranks
Preconditioner 96 192

time iterav time iterav

DIAGe 276.98 63.5 113.60 63.9
LUe 87.67 11.7 38.18 12.0
SGSe 176.75 25.0 64.69 24.6
ILU0 82.74 16.9 42.39 20.3
ILU1 89.51 16.7 44.73 20.1
ILU2 106.50 16.8 50.10 19.9
SPIKE504 998.26 16.6 755.26 20.0

Figures 5.17 and 5.18 show CPU time, speedup, and efficiency for the parallel
preconditioners DIAGe, LUe, SGSe, ILU0, ILU1, ILU2, and SPIKE504 considering 24,
48, 72, 96, 192 MPI ranks and the sparsity of the mesh reordered by RCM or Spectral
algorithms. Graphics are organized into groups of local and global preconditioners. All
local preconditioners present superlinear speedup, but LUe is about three times faster
than DIAGe and twice as fast as SGSe. ILU preconditioners present scalability for both
reordering algorithms. Although scalability of SPIKE504 does not decrease dramatically,
the CPU time for all experiments is one order of magnitude higher compared to LUe and
ILU preconditioners.

Figures 5.19a and 5.20a show the total memory usage for the parallel preconditioners
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Figure 5.17 – Problem 2 - Reordering RCM : Graphics of CPU time, speedup, and effi-
ciency.
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Figure 5.18 – Problem 2 - Reordering Spectral : CPU time, speedup, and efficiency.
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DIAGe, LUe, SGSe, ILU0, ILU1, ILU2, SPIKE50 (case with only 1 thread) considering
24, 48, 72, 96, 192 MPI ranks and the sparsity of the mesh reordered by the RCM or
Spectral algorithms. As in Problem 1, local preconditioners require less memory usage than
global preconditioners. The preconditioner SPIKE50 also consumes a significant amount of
memory because of the complete LU factorizations. ILU preconditioners use more memory
as the fill-in level is increased. The increase in total memory usage as the number of
MPI ranks grows is noticed more sharply when compared to the analysis presented in
Problem 1. This happens because in the transient experiment studied in Problem 2 the
mesh is coarser and the matrix of coefficients has a much smaller order and the number of
partitions is maintained. Thus, overlap regions are proportionally larger.

Figures 5.19b and 5.20b show the bar min and max graphs of average memory
usage per node for the local preconditioner DIAGe and the global preconditioner ILU0
considering 1, 2, 3, 4, and 8 processing nodes and the sparsity of the mesh reordered by the
RCM or Spectral algorithms. As a consequence of the overlap regions are proportionally
large, the average memory usage in 8 processing nodes is about 5 times lower than the
average memory usage in a single processing node – in Problem 1 was about 7 times. The
discrepancy between the minimum and maximum memory values used in each MPI rank
in this experiment is similar to that presented in Problem 1.

Figures 5.21 and 5.22 show the functions runtime analysis for the parallel precon-
ditioners DIAGe, LUe, SGSe, ILU0, ILU1, ILU2, and SPIKE504 considering 24 and 192
MPI ranks and the sparsity of the mesh reordered by the RCM or Spectral algorithms.
In general form, all global preconditioners demand similar runtimes to perform functions
Build_Matrices, Matrix_Vector_Product, and Vector. That is because they presented
similar average number of GMRES iterations (see Tables 5.7 and 5.8). Local precondi-
tioners Build_Matrices runtime is slightly smaller when compared with corresponding
global preconditioners functions. That occurs due to complexity of CSR matrix assembly
(see Subsection 4.1.4). On the other hand, local preconditioners Matrix_Vector_Product
runtimes are the largest. Even so, the preconditioner LUe is the fastest because the runtime
of the functions Preconditioner and Precontitioner_Setup are much smaller compared to
the corresponding functions of ILU preconditioners (fact assured by the smaller number of
GMRES iterations obtained by the preconditioner LUe – see Tables 5.7 and 5.8). Complete
LU factorizations provided by SPIKE preconditioners make function Preconditioner_Setup
runtime extremely long. On the other hand, ILU preconditioners achieve similar number
of GMRES iterations when compared with SPIKE504, but ILU runtimes are notoriously
smaller. As reported in steady-state case (Problem 1), SPIKE preconditioners demand
much more MPI_Allreduce and MPI_Recv runtimes. Again, RCM and Spectral reordering
algorithms do not present significant differences in the functions runtime analysis.
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Figure 5.19 – Problem 2 - Reordering RCM : Memory Usage.
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Figure 5.20 – Problem 2 - Reordering Spectral : Memory Usage.
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Figure 5.21 – Problem 2 - Reordering RCM : Functions runtime analysis.

5.5 Explosion - Problem 3 : Transient case with ndof=4

The third problem considered is a transient problem with 4 degrees of freedom per
node. That problem, known as explosion problem, is described in (Toro, 2013) and studied
by Bento et al. (2016). The 2D Euler equations are solved in a 2.0ˆ 2.0 square domain in
the xy´plane. The initial condition consists of the region inside of a circle with radius
R “ 0.4 centered at p1, 1q and the region outside the circle, see Fig. 5.23. The flow variables
are constant in each of these regions and are separated by a circular discontinuity at time
t “ 0. The two constant states are chosen as

ins

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ρ “ 1.0

u “ 0.0

v “ 0.0

p “ 1.0

out

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ρ “ 0.125

u “ 0.0

v “ 0.0

p “ 0.1

(5.1)

The time advancing is solved using the parallel predictor-multi-corrector algorithm as
described in Algorithm 4. The final time tfinal “ 0.25 and the time step ∆t “ 10´3
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Figure 5.22 – Problem 2 - Reordering Spectral : Functions runtime analysis.

are chosen to represent the numerical solution. For each time step is set 3 fixed multi-
corrections. In short, the parallel preconditioned GMRES (see Algorithm 5) runs exactly
750 times to solve each experiment.

1 2

1

2

1

Figure 5.23 – Explosion: Problem statement.

An unstructured mesh with 531,166 nodes, 1,059,798 elements is used. Table 5.9 shows
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the CPU time, bandwidth sizes, and memory usage concern our domain decomposition
approach applied to divide the sequential mesh into 384 partitions using the RCM or
Spectral algorithms. Besides, the reduction of bandwidth size can be noted when both
reordering algorithms are used. As can be seen, the number of unknowns is about four
times greater than the number of nodes because it is a problem with 4 degrees of freedom
per node. The CPU time to obtain the domain decomposition using Spectral was also
estimated – as in Problem 1, because the bandwidth size was not enough to divide the
linear system order into 384 partitions.

Table 5.9 – Problem 3 : Domain Decomposition Approach - Bandwidth, Preprocessing
CPU time, and Memory Usage.

Bandwidth
before

reordering

Bandwidth
after

reordering

Time for
Reordering
(in seconds)

Total time to
preprocess the

domain decomposition
into 384 partitions

(in seconds)

Memory Usage
(in MB)

Mesh (RCM) 2,114,275 5,255 6.10 54.58 2663
Mesh (Spectral) 2,114,275 10,727 7.73 56.21* 2094
*estimated CPU time: Spectral failed to split into 384 partitions.

Figure 5.24 presents the Problem 3 density solution at time t “ 0.25 second, obtained
with the preconditioner ILU0 and 24 MPI ranks. The graphic is plotted using Paraview
software after postprocessing phase (see Section 4.3).

Figure 5.24 – Problem 3 : Density solution at t “ 0.25 second with the preconditioner
ILU0 and 24 MPI ranks.

Table 5.10 presents the total CPU time and average number of GMRES iterations per
GMRES execution (iterav) – the total number of GMRES iterations divided by the number
of GMRES executions to solve the problem (750). This table shows, respectively, the
parallel preconditioners BlockDiage, BlockLUe, BlockSGSe, ILU0, and ILU1 considering
24, 48, 96, 192, 384 MPI ranks and the sparsity of the mesh reordered by the RCM
algorithm. Table 5.11, in turn, presents the same information, but the Spectral algorithm
reorders the sparsity of the mesh until 192 partitions. No version of SPIKE preconditioner
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is considered because preliminary tests demonstrated very high CPU time to perform this
application. This behavior can be explained once, the number of point float operations
in each partition is larger for matrices derived from problem with more than 1 degree of
freedom per node, resulting in greater CPU time in the Preconditioner_Setup function.

As can be noted, the number of GMRES iterations performed by the BlockDIAGe
preconditioner is basically constant. Such behavior is expected since this preconditioner is
just a block scaling based on the main block diagonal of the matrix (see Subsection 2.5.3.1)
and it has the same effect of preconditioning independent of the number of MPI ranks.
Local preconditioners BlockLUe and BlockSGSe present a number of GMRES iterations
(iterav) much smaller than that reached by the preconditioner BlockDIAGe, however,
the CPU times are larger. According to our work (Muller et al., 2017), that fact occurs
probably because of block scaling operations (see Subsection 2.5.3) demand a substantial
runtime.

For this experiment, the number of GMRES iterations performed by ILU precondi-
tioners increased only about 30% – small, if it is compared with ILU preconditioners for
Problem 1, where number of GMRES iterations increased about 150%. CPU times of the
Spectral algorithm cases are slightly smaller, but the RCM algorithm has the advantage
to get a more significant number of partitions. BlockDiage presented the best CPU times
until 96 partitions, however, for 192 or more partitions preconditioner ILU0 became more
advantageous.

Table 5.10 – Problem 3 - RCM reordering : CPU time and the average number of GMRES
iterations from 24 to 384 partitions.

Number of MPI ranks
Preconditioner 24 48 72

time iterav time iterav time iterav

BlockDIAGe 334.54 13.7 161.75 13.8 109.28 13.7
BlockLUe 428.41 8.2 206.32 8.2 141.48 8.3
BlockSGSe 442.32 7.5 216.81 7.5 146.31 7.6
ILU0 382.23 7.4 195.75 8.0 130.36 8.3
ILU1 453.44 7.4 232.10 8.0 154.34 8.2

Number of MPI ranks
Preconditioner 96 192 384

time iterav time iterav time iterav

BlockDIAGe 83.81 13.7 49.83 13.7 35.26 13.7
BlockLUe 110.81 8.4 65.87 8.4 46.47 8.7
BlockSGSe 112.75 7.5 67.18 7.5 45.41 7.6
ILU0 98.50 8.6 47.57 9.3 23.35 10.5
ILU1 115.92 8.6 56.45 9.3 26.98 10.5

Figure 5.25 shows the CPU time, speedup, and efficiency for the Problem 3 considering
24, 48, 72, 96, 192, and 384 MPI ranks and the sparsity of the mesh reordered by the
RCM algorithm. Graphics are organized in groups of local and global preconditioners.
Figure 5.26, in turn, shows the same information, but the Spectral algorithm reorders the
sparsity of the mesh until 192 partitions. Local preconditioners BlockDIAGe, BlockLUe,
and BlockSGSe present scalability until 192 partitions. However, for 384 partitions, the
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Table 5.11 – Problem 3 - Spectral reordering : CPU time and the average number of
GMRES iterations from 24 to 192 partitions.

Number of MPI ranks
Preconditioner 24 48 72

time iterav time iterav time iterav

BlockDIAGe 337.95 13.7 159.16 13.7 105.28 13.8
BlockLUe 427.61 7.9 201.62 8.0 134.20 8.1
BlockSGSe 444.15 7.5 210.86 7.5 139.46 8.5
ILU0 374.67 7.4 192.60 8.0 128.59 8.3
ILU1 449.01 7.4 228.99 8.0 152.79 8.3

Number of MPI ranks
Preconditioner 96 192

time iterav time iterav

BlockDIAGe 79.97 13.7 45.50 13.7
BlockLUe 102.75 8.1 59.89 8.2
BlockSGSe 106.16 7.5 61.36 7.5
ILU0 96.50 8.6 46.90 9.2
ILU1 114.32 8.5 55.44 9.2

speedup and the efficiency dropped significantly. Such behavior is related to the fact
that EBE matrix-vector products for problems with ndof ą 1 tend to suffer more with
the overlapping generated by the greater number of partitions. As can be emphasized,
BlockLUe and BlockSGSe reduced the number of iterations, but the performance is not
substantial when compared with the preconditioner BlockDIAGe. Speedup and efficiency
of ILU preconditioners point out good scalability.

Figure 5.27a shows the total memory usage for the parallel preconditioners BlockDIAGe,
BlockLUe, BlockSGSe, ILU0, and ILU1 considering 24, 48, 72, 96, 192, and 384 MPI
ranks and the sparsity of the mesh reordered by the RCM algorithm. Figure 5.28a, in
turn, shows the same information, but the Spectral algorithm reorders the sparsity of
the mesh until 192 partitions. The difference between the total memory usage of global
preconditioners and the total memory usage of local preconditioners becomes more evident.
Global preconditioners use more memory during processing, however, this difference tends
to decrease as the number of MPI ranks increases.

Figure 5.27b shows the bar min and max graph of average memory usage per node
for the local preconditioner BlockDIAGe and the global preconditioner ILU0 considering
1, 2, 3, 4, and 8 processing nodes and the sparsity of the mesh reordered by the RCM
algorithm. Figure 5.28b, in turn, shows the same information, but Spectral algorithm
reorders the sparsity of the mesh. In this case, particularly, experiments with 192 MPI
ranks are presented instead of 384. Again, different mesh reordering algorithms do not
imply substantial changes in memory consumption. Also in this experiment, there is no
large discrepancy between the minimum and maximum memory values used in each MPI
rank.

Figure 5.29 shows the functions runtime analysis for the parallel preconditioners
BlockDIAGe, BlockLUe, BlockSGSe, ILU0, and ILU1 considering 24 and 384 MPI ranks
and the sparsity of the mesh reordered by the RCM algorithm. Figure 5.30, in turn, presents



Chapter 5. Numerical Experiments 106

24 48 96 192 384
101

102

103

Number of MPI ranks

cp
u
ti
m
e
(i
n
se
co
n
d
s)

CPU Time

BlockDIAGe

BlockLUe

BlockSGSe

1

(a) Time (Local Preconditioners)

24 48 96 192 384
101

102

103

Number of MPI ranks

cp
u
ti
m
e
(i
n
se
co
n
d
s)

CPU Time

ILU0

ILU1

1

(b) Time (Global Preconditioners)

24 48 96 192 384

2

4

6

8

10

12

14

16

Number of MPI ranks

sp
ee
d
u
p

Speedup

BlockDIAGe

BlockLUe

BlockSGSe

Ideal

1

(c) Speedup (Local Preconditioners)

24 48 96 192 384

2

4

6

8

10

12

14

16

Number of MPI ranks

sp
ee
d
u
p

Speedup

ILU0

ILU1

Ideal

1

(d) Speedup (Global Preconditioners)

24 48 96 192 384
50

60

70

80

90

100

110

Number of MPI ranks

%

Efficiency

BlockDIAGe

BlockLUe

BlockSGSe

1

(e) Efficiency (Local Preconditioners)

24 48 96 192 384
50

60

70

80

90

100

110

Number of MPI ranks

%

Efficiency

ILU0

ILU1

1

(f) Efficiency (Global Preconditioners)

Figure 5.25 – Problem 3 - Reordering RCM : CPU time, speedup, and efficiency.
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Figure 5.26 – Problem 3 - Reordering Spectral : CPU time, speedup, and efficiency.
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Figure 5.27 – Problem 3 - Reordering RCM : Memory Usage.
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Figure 5.28 – Problem 3 - Reordering Spectral : Memory Usage.
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the same information, but the Spectral algorithm reorders the sparsity of the mesh until
192 partitions. When 24 MPI ranks are considered, BlockDIAGe present the best overall
runtime even its Matrix_Vector_Product demands the greatest runtime. As the number of
MPI ranks increases, ILU preconditioners become the best options, because the runtimes
of the Preconditioner and Preconditioner_Setup ILU functions decrease significatively.
Function Build_Matrices keeps similar behavior as in Problem 2 – Build_Matrices is
slower for global preconditioners because CSR assembly is more complex (see Subsection
4.1.4). Note the Matrix_Vector_Product function demands a greater runtime for local
preconditioners, i.e., in our implementation, CSR matrix-vector products are more efficient
than EBE ones.

The local preconditioners BlockLUe and BlockSGSe reduce the number of GMRES
iterations (see Tables 5.10 and 5.11) but, do not reduce the execution time. The runtime
of the functions Scaling, MPI_Barrier and even of the functions Preconditioner and Pre-
conditioner_Setup make these local preconditioners a bad choice to solve this experiment.
As in the previous experiments, MPI_Allreduce runtime is proportionally larger for a high
number of MPI ranks. Runtimes of MPI_Isend and MPI_Recv can also be considered
proportionally tiny. RCM and Spectral reordering methods also do not present significant
differences in the functions runtime analysis.
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(a) Functions analysis for 24 MPI ranks
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(b) Functions analysis fort 384 MPI ranks

Figure 5.29 – Problem 3 - Reordering RCM : Functions runtime analysis.
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(b) Functions analysis for 192 MPI ranks

Figure 5.30 – Problem 3 - Reordering Spectral : Functions runtime analysis.

5.6 Wind tunnel - Problem 4 : Transient case with ndof=4

The last problem considered is another transient problem with 4 degrees of freedom
per node and also modeled by the Euler Equations. This two-dimensional test problem
was initially introduced by Emery (1968) and since then this problem has proven to be a
useful test for a large number of methods in fluid dynamics. The computational domain is
shown in Fig. 5.31 and the inflow data on the left boundary is set up by
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u “ 3.0

v “ 0.0

p “ 1.0

. (5.2)

Along the walls of the tunnel reflecting boundary conditions are applied, and no boundary
condition is imposed at the outflow boundary. The time advancing is solved using the
parallel predictor-multi-corrector algorithm as described in Algorithm 4. The final time
tfinal “ 0.5 and the time step size ∆t “ 10´4 are chosen to represent the numerical solution.
For each time step is set 5 fixed multi-corrections. In short, the parallel preconditioned
GMRES (see Algorithm 5) runs exactly 25000 times to solve each experiment.
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Figure 5.31 – Wind tunnel: statement problem.

An unstructured mesh with 534,143 nodes and 1,065,084 elements is used. Table 5.6
shows the CPU time, bandwidth sizes, and memory usage concern our domain decomposi-
tion approach applied to divide the sequential mesh into 384 partitions using the RCM
algorithm to reorder the sparsity of the mesh. When ndof ą 1 the sparsity of the linear
system does not coincide with the sparsity of the mesh (see example in Figs. 3.1, 3.2,
3.3, and 3.4). Despite that, our domain decomposition approach allows reducing matrix
bandwidth significantly.

Table 5.12 – Problem 4 : Domain Decomposition Approach - Bandwidth, Preprocessing
CPU time, and Memory Usage.

Bandwidth
before

reordering

Bandwidth
after

reordering

Time for
Reordering
(in seconds)

Total time to
preprocess the

domain decomposition
into 384 partitions

(in seconds)

Memory Usage
(in MB)

Mesh (RCM) 2,128,947 2,890 6.16 50.77 2698

Figure 5.32 presents the Problem 4 density solution at time t “ 0.5 second, obtained
with the preconditioner ILU0 and 24 MPI ranks. The graphic is plotted using Paraview
software after postprocessing phase (see Section 4.3).

Figure 5.32 – Problem 4 : Density solution at t “ 0.5 second with the preconditioner ILU0
and 24 MPI ranks.

Table 5.13 presents the total CPU time and the average number of GMRES iterations
per execution (iterav) – the total number of GMRES iterations divided by the number
of GMRES executions to solve the problem (25000). This table, shows, respectively, the
parallel preconditioners BlockDIAGe, ILU0, and ILU1 considering 24, 48, 72, 96, 192, 384
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MPI ranks and the sparsity of the mesh reordered by RCM algorithm. iterav is practically
constant for BlockDIAGe preconditioner and presents a small increment for ILU0 and ILU1
cases when the number of MPI ranks increases. The CPU time for ILU0 preconditioner
was smaller when compared with BlockDIAGe. For 384 MPI ranks, ILU0 was almost twice
faster. Increasing fill-in level from 0 to 1 was not enough to achieve better CPU time.

Table 5.13 – Problem 4 - RCM reordering: CPU time and the average number of GMRES
iterations from 24 to 384 partitions.

Number of MPI ranks
Preconditioner 24 48 72

time iterav time iterav time iterav

BlockDIAGe 18813.94 26.4 8721.81 26.5 5783.12 26.5
ILU0 14651.05 10.3 7494.81 10.9 4982.09 11.1
ILU1 17535.63 10.2 8915.44 10.8 5981.97 11.0

Number of MPI ranks
Preconditioner 96 192 384

time iterav time iterav time iterav

BlockDIAGe 4378.62 26.5 2435.90 26.5 1610.61 26.5
ILU0 3714.72 11.2 1840.70 12.4 856.47 13.0
ILU1 4395.41 11.1 2208.41 12.3 1034.39 12.9

Figure 5.33 shows the CPU time, speedup, and efficiency for the Problem 4 con-
sidering 24, 48, 72, 96, 192, and 384 MPI ranks and the sparsity of the mesh reordered
by the RCM algorithm. As can be noted, preconditioner BlockDIAGe’s speedup and
efficiency decrease as the number of MPI ranks grows. On the other hand, speedup and
efficiency of ILU preconditioners improve as the number of MPI ranks increases. In short,
ILU preconditioners point out to better scalability when compared to preconditioner
BlockDIAGe.

Figure 5.34a shows the total memory usage for the parallel preconditioners BlockDIAGe,
ILU0, and ILU1 considering 24, 48, 72, 96, 192, and 384 MPI ranks and the sparsity of the
mesh reordered by the RCM algorithm. The total memory usage of global preconditioner is
larger than of local preconditioner. However, this difference tends to decrease as the number
of MPI ranks increases. Figure 5.34b shows the bar min and max graph of average memory
usage per node for the local preconditioner BlockDIAGe and the global preconditioner
ILU0 considering 1, 2, 3, 4, 8 and 16 processing nodes and the sparsity of the mesh
reordered by the RCM algorithm. Again, there is no significant discrepancy between the
minimum and maximum memory values used in each MPI rank what suggests a good load
balancing independent of the storage scheme.

Figure 5.35 shows the functions runtime analysis for the parallel preconditioners
BlockDIAGe and ILU0, considering 24 and 384 MPI ranks and the sparsity of the mesh
reordered by the RCM algorithm. Runtimes of BlockDIAGe functions Preconditioner
and Preconditione_Setup are substantially smaller when compared with corresponding
ILU runtime functions. However, one more time, ILU Matrix_Vector_Product runtime
is smaller smaller and offsets the BlockDIAGe overall runtime. Again, MPI_Allreduce
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Figure 5.33 – Problem 4 - Reordering RCM : CPU time, speedup, and efficiency.

runtime grows as the number of MPI ranks increases. Runtimes of MPI_Isend and
MPI_Recv, as in the previous experiments, are almost undetectable.

5.7 Considerations about the preconditioners tested

Although our domain decomposition approach was initially designed for the global
preconditioner SPIKE (Lima et al., 2016), it was possible to extend this approach to the
context of other global preconditioners such as incomplete LU factorization. More than that,
this extension also included local preconditioners. In the following we give a summary of
the behavior of each of the preconditioners applied to our domain decomposition approach.
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Figure 5.35 – Problem 4 - Reordering RCM : Functions runtime analysis.

5.7.1 Preconditioner DIAGe

The preconditioner DIAGe consists primarily of a matrix scaling, that is, a division
of each matrix coefficient by their corresponding coefficient in the diagonal matrix. In
consonance with Wathen (2015), preconditioners as DIAGe, which are a type of rescaling
of the matrix, present good results when used in a well-conditioned matrix which is just
poorly scaled. Unfortunately, in general, diagonal preconditioning is likely to achieve very
little regarding reducing iterations or computation time. Besides, there are situations
where the DIAGe does not reduce the number of iterations for an acceptable range. On
the other hand, Rychkov (2017) reports the effect that a functional reorganization of the
elements can provide in the execution of the product matrix-vector element by element,
particularly in the scalability for parallel computation. This condition can be noted in
Problem 1: the speedup reaches values much higher than expected as the size of the mesh
increases. For larger partitions, the disorder of the elements possibly generated a bad use
of the cache memory (See Figs. 5.3c, 5.4c, and 5.5c). For the Problem 2, DIAGe presented
scalability, but the large number of GMRES iterations did not allowed better performance
(see Tables 5.7 and 5.8).

5.7.2 Preconditioner LUe

LUe is a local preconditioner based on LU factorization of each element matrix
and developed for problems with ndof “ 1. This preconditioner did not present the best
performance when applied in a steady-state problem (Problem 1), for a more refined
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mesh (see Tables 5.4 and 5.5). However, for smaller meshes, it was the best representative
of local preconditioners (see Tables 5.2 and 5.3). For the transient problem modeled by
transport equation (Problem 2) , preconditioner LUe provided the best performance of
all (see Tables 5.7 and 5.8). The preconditioner LUe as well as the preconditioner DIAGe
presented superlinear speedups (see Figs. 5.3c, 5.4c, 5.5c, 5.17c, and 5.18c).

5.7.3 Preconditioner SGSe

SGSe is also a local preconditioner developed for problems with ndof “ 1. It is
based on Gauss-Seidel factorization of each element matrix. In general form, it assumed
an intermediary position among local preconditioners since its performance was better
than DIAGe but worst than LUe. However, for larger meshes, SGSe was the best local
preconditioner representative.

5.7.4 Preconditioner BlockDIAGe

The preconditioner BlockDIAGe can be considered a natural expansion of DIAGe
for ndof ą 1. The matrix diagonal is seen as a diagonal of blocks, where each block
has size ndof ˆ ndof. However, unlike what was observed for problems with ndof “ 1,
BlockDIAGe achieved more expressive performance than the other local preconditioners
per block, namely BlockLUe and BlockSGSe (See Figs. 5.25a and 5.26a). BlockDIAGe
still showed scalability up to a certain number of partitions. However, above 192 MPI
ranks, it showed a marked drop in speedup and efficiency (see Figs. 5.25, 5.25, and
5.33). BlockDIAGe could be stored in structures based on edges instead of elements,
since the result of the preconditioning obtained by both is equivalent. Coutinho et al.
(2001) suggested edge-by-edge storage combined with preconditioner BlockDIAGe which
presented expressive results (Lins et al., 2009).

5.7.5 Preconditioners BlockLUe and BlockSGSe

BlockLUe and BlockSGSe are the representatives of LUe and SGSe for problems
with ndof ą 1. As opposite of local preconditioners with ndof “ 1, these preconditioners
did not overcome. They reduced the number of GMRES iterations considerably, but not
the runtime when compared with the BlockDIAGe preconditioner.

5.7.6 Incomplete LU Factorizations Preconditioners

ILU preconditioners became an excellent surprise. Many authors question the fea-
sibility of building an efficient parallel ILU preconditioner. In the book Iterative Krylov
Methods for Large Linear Systems by Vorst (2003), the following statement can be found:
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“For large enough problem sizes the inner products, vector updates, and matrix-
vector product are easily parallelized and vectorized. The more successful pre-
conditionings, i.e., based upon incomplete LU decomposition, are not easily
parallelizable. For that reason often the use of only diagonal scaling as a
preconditioner on highly parallel computers.”

Similarly, in the book Parallelism in Matrix Computations by Gallopoulos et al. (2016),
authors also state:

“Compared to the parallel banded LU-factorization schemes in the existing
literature, the Spike algorithm reduces the required memory references and
interprocessor communications at the cost of performing more arithmetic oper-
ations... A distinct feature of the Spike algorithm is that it avoids the scalable
parallel scheme of obtaining the classical global LU factorization of the narrow-
banded coefficient matrix”.

Despite these observations, our domain decomposition approach has provided the almost
immediate adequation of the sequential ILU preconditioners to the context of finite
element parallel applications. Such adaptations applied to sequential incomplete LU
factorizations lead to a kind of block Jacobi with a local ILU factorizations. In addition,
ILU preconditioners provided the best results for the experiments performed. In general,
the best option would be to choose the ILU preconditioner with the lowest possible fill-in
level associated with the mesh reordering obtained by the RCM algorithm. That is because
RCM is more effective to reduce the bandwidth of the associated linear system, which for
our domain decomposition approach means more partitions. In short, ILU preconditioner
with lower fill-in level associated with the greatest number of MPI ranks would result in
the shortest runtime for the 2D finite element applications. It is worth mentioning that
such adaptations applied to sequential incomplete LU preconditioners leads to a kind
of Jacobi block with local ILU factorizations and not a strictly parallel form of a ILU
preconditioner.

5.7.7 SPIKE Preconditioners

SPIKE preconditioners as described in (Sathe et al., 2012) demonstrated robustness
and scalability to solve linear systems from problems of the most miscellaneous application
areas (Manguoglu et al., 2010). Thanks to a group of combinatorial techniques that can
be applied in the matrices if the linear systems (see Subsection 2.4.1). However, the
application of these combinatorial techniques required a considerable runtime (Lima et
al., 2017), which would make almost infeasible to use the SPIKE preconditioner in the
context where the matrices should be reconstructed (for example, nonlinear or transient
finite element problems).
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Unlike ILU preconditioners, the reordering of Ai blocks does not present gains for the
SPIKE preconditioners, that is because the complete LU factorization proposed for this
preconditioner is made using the software PARDISO as a black box, where the Ai blocks
(see Fig. 4.4) are inserted in the CSR storage format, regardless of its sparsity pattern.
SPIKE preconditioners presented regular performance only for Problem 1 (steady-state
case). SPIKE performance was equivalent to ILU preconditioners, just when 8 threads
per MPI process are considered. However, the number of processing nodes required by
SPIKE preconditioners was four times higher to achieve such performance. Concerning the
time-advancing problem (Problem 2), results are even less expressive, since the processing
time to obtain the solution of such problems with SPIKE preconditioner is at least an
order of magnitude higher than the other preconditioners.

5.8 Considerations about memory usage, load balance, and MPI
communications

Local preconditioners consumed less memory than global preconditioners. Among
the local preconditioners, LUe and BlockLUe consumed more memory, because they need
to store the LU factorization of each element matrix. SPIKE preconditioners require a
massive amount of memory since they store the complete factorizations of the global finite
element matrices, for each rank, in addition to the coupling blocks (these blocks are dense
with size k ˆ k, see Subsection 2.4). ILU preconditioners memory usage, in turn, depends
on the fill-in level chosen.

Our domain decomposition approach is based on the division of the mesh data taking
into account the sparsity pattern of the linear system associated with the two-dimensional
finite element problems. More precisely, chains-on-chains partitioning (CCP) (Pınar and
Aykanat, 2004) algorithm has been used. That algorithm aims to achieve load balancing
according to the number of non-zero coefficients of the linear system matrix derived from
the finite element discretization. As can be seen in the column charts entitled “Average
Memory Usage per Node”, the memory usage in each MPI rank is balanced for both the
global preconditioners (CSR storage) and local preconditioners (EBE storage).

All graphics entitled “Functions Runtime Analysis” provide an evaluation of the
runtime of main MPI routines, that is, MPI_Allreduce, MPI_Barrier, MPI_Isend, and
MPI_Recv. As can be observed, MPI_Allreduce is the only routine whose runtime
stands out (MPI_Barrier also stands out, but only in specific cases involving the local
preconditioners LUe, SGSe, BlockLUe, and BlockSGSe because they require additional
synchronizations). As well known, MPI_Allreduce is performed only after an inner product
which depends on the number of MPI ranks and the number of iterations of the solver. On
the other hand, the proportionality of the routines MPI_Isend and MPI_Recv is almost
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imperceptible in the charts (MPI_Recv also stands out in SPIKE preconditioners cases
because it depends on additional communication for coupling blocks, see Section 2.4).
That means the domain decomposition approach is efficient enough to reduce the message
exchanges which need to be performed by the update function (see Algorithm 2).

5.9 Considerations about the domain decomposition

The domain decomposition as presented in Section 3.2 provided good results when
associated with convenient preconditioning. Moreover, that approach can be applied in
Opnq time and Opn `

n

ndof
q memory usage, where n is the order of the linear system

associated with finite element discretization and ndof is the number of degrees of freedom
per node. This fact can be explained once the algorithm demands one list to store a linear
system pattern sparsity and another one to store the mesh pattern sparsity.

More specifically, the CPU time to preprocess the sequential mesh was relatively
small compared to the overall runtime for processing the parallel application. Problem 4,
for example, demanded just 50 seconds to apply our domain decomposition (see Table 5.12)
while the parallel finite element processing using 384 MPI ranks required more than 800
seconds (see Table 5.13). The quantity of partitions is another issue. If p is admitted as the
maximum number of partitions, p is limited by the quotient between the matrix order n
and the linear system bandwidth bw. In Problem 4, for example, since the matrix order is
n “ 2, 128, 947 and bandwidth is bw “ 2, 890, it is possible to get up to 2, 128, 947

2, 890 “ 736
as the maximum number of partitions.
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6 Conclusions

6.1 Review of results

An alternative domain decomposition approach for finite element analysis that
provides robustness and scalability has been proposed. Due to this proper domain de-
composition, finite element discretizations lead to narrow banded linear systems that can
be preconditioned using either global preconditioners (CSR storage) or local precondi-
tioners (Element-by-Element storage). Versions of sequential preconditioners as DIAGe,
LUe, SGSe, BlockDIAGe, BlockLUe, BlockSGSe, and ILUm can be easily adjusted for
parallel computing. We also consider the SPIKE preconditioner – a sophisticated parallel
preconditioners based on narrow banded linear systems. Two reordering algorithms en-
abled our approach, namely, reverse Cuthill-McKee (RCM) (Liu and Sherman, 1976) and
Spectral (Barnard et al., 1995).

The local preconditioner DIAGe did not present a considerable reduction in the
number of GMRES iterations and CPU time, but presented scalability. LUe and SGSe
preconditioners achieved better CPU times when applied to the transient problem. The
BlockDIAGe preconditioner, applied to problems with ndof ą 1, has been well adjusted to
the parallel finite element processing since it presented favorable CPU time and scalability.
The local preconditioners BlockLUe and BlockSGSe, developed for problems with ndof ą 1,
did not present good results: although they have reduced the number of GMRES iterations,
their overall runtimes exceeded acceptable values.

Our approach enabled an almost straightforward adaptation of the sequential ILU
preconditioners to the context of parallel computing. Moreover, ILU preconditioners have
presented good scalability, for steady-state or transient problems, considering one or more
degrees of freedom per node – as emphasized previously, our ILU preconditioner version is a
kind of block Jacobi preconditioner with local ILU factorizations and not a strictly parallel
form of the ILU preconditioner. On the other hand, SPIKE preconditioners demonstrated
to be unsuitable for such finite element applications because it demanded excessive runtime
and memory usage to perform the complete LU factorizations, particularly for transient
problems.

In general, RCM and Spectral reordering schemes presented similar results regarding
the preconditioning obtained for the set of experiments studied in this work. However, the
RCM algorithm can be considered more efficient since it allowed to use a larger number of
MPI ranks.
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6.2 Future work

In this work, we proposed a domain decomposition approach for 2D parallel precon-
ditioning finite element problems allowing all phases of the parallel computation indeed
occurs in parallel. The domain decomposition permits: the reading of the finite element
data mesh, the build of the finite element matrices and solutions of the preconditioned
linear systems, and the postprocessing where the output data files are generated to be
visualized by Paraview software. Our approach has well adapted to parallel preconditioners
using CSR and EBE storage schemes. In addition, it guaranteed load balancing and a
significant reduction in the size of MPI messages.

In order to contribute to continuous improvement in the development of our approach
and even the implementation of the related algorithms, we suggest some future work:

• To extend the domain decomposition approach to computational fluid dynamics
problems governed by Navier-Stokes Equations. To employ auxiliary preconditioning,
as proposed in (Elman, 1999), for assuring GMRES effectivity when either the
discretization mesh size or the viscosity approaches to zero;

• To use the PARDISO software for solving ILU triangular linear systems;

• To use Graphical Processing Unit (GPU) for accelerating matrix-vector products.
Bertaccini and Durastante (2018) state that GPU combined with CSR storage is
the fastest way to perform the matrix-vector products for preconditioned large and
sparse linear systems;

• To use OpenMP for assembling finite element matrices. Guo et al. (2015) suggests
a suitable form to assembly finite element matrices where an OpenMP parallel
algorithm uses graph coloring to identify independent sets of elements that can be
assembled concurrently with no race conditions;

• To extrapolate the domain decomposition approach to contexts where meshes are so
large that they do not fit into a single processing node as stated in (Devine et al.,
2009)(Sahni et al., 2009). In particular, to 3D finite element applications.
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A Extra algorithms for the domain decom-
position steps - Fig.3.6

A.1 The adjacency list Lmesh algorithm

The global matrix for a 2D finite element application is highly sparse and their rows
are composed by an average of 7 ¨ ndof nonzero coefficients, where ndof means the number
of degrees of freedom per node. CSR format is used to store such matrices, but in general
situations, it is not possible to predict structures AA, JA, and IA (see Subsection 3.2.2.3).
Thus, finite element mesh data can be read in an adjacency list what in practice means
a vector of linked lists. In order to obtain our decomposition approach, finite element
mesh data is initially stored in an adjacency list named Lmesh. Algorithm 9 illustrates
how to obtain the adjacent list Lmesh, STEP 2 in Fig. 3.6. Variables nnodes and nel
represent the number of nodes and the number of elements of the mesh. Variables ndof
and nnoel, in turn, means the number of degrees of freedom per node and the number
of nodes per element. Admit node_in_L as a vector with size nnodes which maps the
nodes that are associated with at least one unknown. Also, admit Element as a structure
with size nel and a field V ertex to store nnoel nodes. Node is other structure with size
nnodes and fields coord (to store x and y coordinates), TyperJs (to identify which degree
of freedom of a node is an unknown or not) and IdrJs (to enumerate the unknowns), with
1 ď J ď ndof. Precisely, Lmesh is a vector of nmesh linked lists, where nmesh is the number
of nodes that are associated with at least one unknown. The function insert represents a
sorted insertion in a linked list without repetition. The vector Idmesh also has size nnodes
and enumerates the nodes whose status in node_in_L is TRUE. In short, Algorithm 9
enables predicting finite element mesh sparsity pattern in a vector of linked lists named
Lmesh. Note Lmesh has memory complexity of Opnmeshq, because it maps nmesh rows and
every row maps an average of 7 positions. As n

ndof
, where n is the order of the linear

system arose from 2D finite element problem, is a good approximation to nmesh, memory
complexity of Lmesh can be redefined as Op n

ndof
q.

A.2 The adjacency list Lmatrix algorithm

As stated in Section 3.2, our domain decomposition approach demands two adjacency
lists. One is used to store the mesh sparsity pattern (in this case Lmesh, which has been
already presented) and the another to store the sparsity pattern of the linear system arose
from finite element discretization, that is, Lmatrix. Algorithm 10 shows how to obtain the
adjacency list Lmatrix, STEP 5 in Fig. 3.6. That algorithm is quite similar to Algorithm 9.
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Algorithm 9 To obtain the adjacency list Lmesh from mesh sparsity pattern
for I “ 1, nnodes do

node_in_LrIs Ð .FALSE.
for J “ 1, ndof do

if NoderIs.T yperJs “ 1 then
node_in_LrIs Ð .TRUE. {break}

end
end

end
for K “ 1, nel do

for I “ 1, nnoel do
va Ð ElementrKs.V ertexrIs
if node_in_Lrvas “ .TRUE. then

for i “ 1, nnoel do
vb Ð ElementrKs.V ertexris
if node_in_Lrvbs “ .TRUE. then

LmeshrIdmeshrvass Ð insertpIdmeshrvbsq

end
end

end
end

end

The structures Node and Element have already been defined in Algorithm 9. As mentioned
before, NoderIs.T yperJs “ 1 means that Jth degree of freedom of the Ith node is an
unknown. Field IdrJs of structure Element enumerates the unknowns. Precisely, Lmatrix

is a vector of n linked lists, where n is the order of the linear system arose from 2D finite
element problem. The function insert represents a sorted insertion in a linked list without
repetition. In short, Algorithm 10 enables predicting sparsity pattern of the finite element
linear system in a linked list named Lmatrix. Note Lmatrix has memory complexity of Opnq,
because it maps n rows and every row maps an average of 7 ¨ ndof positions.

Algorithm 10 To build the adjacency list Lmatrix from finite element matrix sparsity
for K “ 1, nel do

for I “ 1, nnoel do
va Ð ElementrKs.V ertexrIs
for II “ 1, ndof do

if Nodervas.T yperIIs “ 1 then
for J “ 1, nnoel do

vb Ð ElementrKs.V ertexrJs
for JJ “ 1, ndof do

if Nodervbs.T yperJJs ‰ 0 then
aÐ Nodervas.IdrIIs
bÐ Nodervbs.IdrJJs
Lmatrixras Ð insertpbq

end
end

end
end

end
end

end
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A.3 Permutation Pmatrix from permutation Pmesh algorithm

As discussed in Section 3.6, in order to provide our domain decomposition approach,
the sparsity pattern of the finite element linear system is not reordered directly from
RCM or Spectral algorithms. There is a intermediate step in which RCM or Spectral
algorithm generate a permutation vector Pmesh – used to obtain another permutation
vector Pmatrix. Thus, Algorithm 11 shows how to obtain Pmatrix from the permutation
Pmesh, STEP 7 in Fig. 3.6. Variable nmesh is the number of nodes that are associated with
at least one unknown. The vector invPmesh, with size nmesh, is the inverse permutation
of Pmesh. Paux, with size nnodes ˆ ndof, is an auxiliary structure. Node and Idmesh are
the same structures defined in Algorithm 9. In short, Algorithm 11 receives the vector
Pmesh with size nmesh and return the permutation vector Pmatrix with size n, where n is
the order of the linear system from 2D finite element problem.

Algorithm 11 To obtain permutation Pmatrix from permutation Pmesh

for I “ 1, nmesh do
invPmeshrPmeshrIss Ð I
for J “ 1, ndof do

PauxrIsrJs Ð ´1
end

end
for I “ 1, nnodes do

if node_in_LrIs “ .TRUE. then
aÐ IdmeshrIs
for J “ 1, ndof do

PauxrinvPmeshrassrJs Ð NoderIs.IdrJs
end

end
end
nÐ 0
for I “ 1, nmesh do

for J “ 1, ndof do
if PauxrIsrJs ‰ ´1 then

nÐ n` 1
Pmatrixrns Ð PauxrIsrJs

end
end

end

A.4 Algorithm of elements partitioning

The Algorithm 12 divides the elements into p partitions considering a separator
vector d, STEP 10 in Fig. 3.6. A vector of linked lists ElemByPart, with size nel, is used
to promote the partitioning. Structures Element and Node, variables n, nel, and nnoel
are defined as in the Algorithm 9. The function insert is a sorted insertion in a linked list
without repetition and Search is an search function in a linked list. Initially, the inverse
permutation vector invPmatrix from Pmatrix is built. The separator vector d, as described
in STEP 9 of Subsection 3.2.2, gives p ´ 1 indices that allow finding which partition a
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specific element belongs to. As can be highlighted, some elements can be in more the one
partition. That is, there is a element overlapping.

Algorithm 12 To divide elements according to separator vector d
for I “ 1, n do

invPmatrixrPmatrixrIss Ð I
end
for I “ 1, nel do

for J “ 1, nnoel do
v Ð ElementrIs.V ertexrJs
for i “ 1, p do

for JJ “ 1, ndof do
if Nodervs.T yperJJs ‰ 0 then

if dris ď invPmatrixrNodervs.IdrJJss ă dri` 1s then
ElemByPartrIs Ð insertpiq {break}

end
end

end
end

end
end

A.5 Node partitioning algorithm according to element division

The Algorithm 13 divides the nodes into p partitions considering the element division,
STEP 11 in Fig. 3.6. A vector of linked lists NodeByPart, with size nnodes, is used to
promote the partitioning. Structures Element and Node, variables n, nel, and nnoel
are defined as in the Algorithm 9. As in Algorithm 12, the function insert is a sorted
insertion in a linked list without repetition, and Search is a search function in a linked list.
Function Search verifies if an element I belongs to a specific partition i. In the affirmative
case, all nodes that form the element I should be splitted to the partition i.

Algorithm 13 To divide nodes according to element division
for I “ 1, nel do

for i “ 1, p do
if Searchpi, ElemByPartrIsq = .TRUE. then

for J “ 1, nnoel do
v Ð ElementrIs.V ertexrJs
NodeByPartrvs Ð insertpiq

end
end

end
end

A.6 Finite element mesh data partitioning algorithm

Algorithm 14 is used to divide the finite element mesh data into p files, STEP 12 in
Fig. 3.6. Admit count_nodes and count_elem as the number of nodes and the number of
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elements in a partition i. Variables Type, Typebef, Typeaft, and Type_Send are integers
used as labels to identify some attributes of the degrees of freedom for the parallel
processing according to Table A.1. Id is the local position of a specific unknown in the
partition i. The vector map is an association between the global numbering of a specific
node and the local numbering in the partition i. In addition, there are five functions in this
algorithm context. The function open initializes pointer FILE and has two parameters:
Meshi, the ith name of file mesh and a tag w that indicates a file in the write mode.
The function write prints all parameters in the corresponding file. The function counter
counts the number of occurrences of i in NodeByPart or ElemByPart. The function
catch_Type, defined in Algorithm 15, determines the type of degree of freedom of the
nodes according to parallel processing or boundary conditions (see Table A.1). Variables
nnodes and ndof are the number of nodes of the mesh and the number of degrees of
freedom per node. Structures Node, Element are the same defined in Algorithm 9. The
vector invPmatrix is the inverse permutation obtained from permutation vector Pmatrix

in STEP 7 of Subsection 3.2.2. The vector d is the separator d defined in STEP 9 of
Subsection 3.2.2. The vectors of linked lists ElementByPart and NodeByPart, in turn,
are detailed in Algorithms 12 and 13. In short, Algorithm 14 receives information of nodes
and elements splitted in p partitions and writes p files whose format is proposed in Fig. 3.8.
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Algorithm 14 To divide the mesh into p files
for i “ 1, p do

FILE Ð openpMeshi,“w”q
count_nodesÐ counterpNodeByPart, nnodes, iq
writepFILE, count_nodesq
count_nodesÐ 0
for I “ 1, nnodes do

if Searchpi,NodeByPartrIsq “.TRUE. then
writepFILE,NoderIs.coordq
for JJ “ 1, ndof do

TypeÐ catch_TypepNode, I, JJ, i, d, invPmatrixq

aÐ NoderIs.IdrJJs
IdÐ invPmatrixras ´ dris
if i ą 1 and Searchpi´ 1, NodeByPartrIsq “.TRUE. then

Typebef Ð catch_TypepNode, I, JJ, i´ 1, d, invPmatrixq

end
else

Typebef Ð 1
end
if i ă p and Searchpi` 1, NodeByPartrIsq “.TRUE. then

Typeaft Ð catch_TypepNode, I, JJ, i` 1, d, invPmatrixq

end
else

Typeaft Ð 1
end
if Type “ 0 or Type “ 2 or Type “ 3 then

Type_Send “ 1
end
else if Typebef “ 3 and Typeaft “ 2 then

Type_Send “ 23
end
else if Typebef “ 3 then

Type_Send “ 2
end
else if Typeaft “ 2 then

Type_Send “ 3
end
else

Type_Send “ 1
end
writepFILE, Type, Type_Send, Idq
count_nodesÐ count_nodes` 1
maprIs Ð cont_nodes

end
end

end
count_elemÐ counterpElemByPart, nel, iq
writepFILE, count_elemq
for I “ 1, nel do

if Searchpi, ElemByPartrIsq “.TRUE. then
for J “ 1, nnoel do

v Ð ElementrIs.V ertexrJs
writepFILE,maprvsq

end
end

end
closepFILEq

end
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Algorithm 15 To determine the type of a node
Function catch_TypepNode, I, JJ, i, d, invPmatrixq

if NoderIs.T yperJJs “ 0 then
TypeÐ 0

end
else if invPmatrixrNoderIs.IdrJJss ă dris then

TypeÐ 2
end
else if invPmatrixrNoderIs.IdrJJss ě dri` 1s then

TypeÐ 3
end
else

TypeÐ 1
end
return Type

Table A.1 – Description of degree of freedom types according to Algorithm 14

Variable Value Meaning

Type

0 Dirichlet boundary condition in partition i
1 Unknown in partition i related with partition i
2 Unknown in partition i´ 1 related with partition i
3 Unknown in partition i` 1 related with partition i

Typebef

0 Dirichlet boundary condition in partition i´ 1
1 Unknown in partition i´ 1 related with partition i´ 1
2 Unknown in partition i´ 2 related with partition i´ 1
3 Unknown in partition i related with partition i´ 1

Typeaft

0 Dirichlet boundary condition in partition i` 1
1 Unknown in partition i` 1 related with partition i` 1
2 Unknown in partition i related with partition i` 1
3 Unknown in partition i` 2 related with partition i` 1

Type_Send

1 No need to send
2 Must be sent to partition i´ 1
3 Must be sent to partition i` 1
23 Must be sent to partitions i´ 1 and i` 1
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B Extra algorithms for the parallel finite el-
ement preprocessing

B.1 Algorithms of structures IdSend_bef, IdRecv_bef, IdSend_aft
and IdRecv_aft

Suppose finite element mesh data is splitted into p partitions according to file format
proposed in Fig 3.8. As mentioned in Section 4.1, improving MPI communications means
minimizing the amount of information that should be transmitted over the network. Thus,
four structures, namely, IdSend_bef , IdRecv_bef , IdSend_aft and IdRecv_aft, are
demanded to manage MPI communication between partitions. Algorithm 16 aims to
construct the vectors IdSend_bef and IdRecv_bef for partitions from 2 to p. Algorithm
17, in turn, constructs the vectors IdSend_aft and IdRecv_aft for partitions from 1 to
p ´ 1. Terms neli and ndof represent the number of elements in a partition i and the
number of degree of freedom per node. Structures Node and Element are quite similar
to those defined in Section A.1. However, Node has new information in its fields named
Type_SendrJs, TyperJs and IdrJs, with 1 ď J ď ndof. Field Type_SendrJs stores an
integer label to identify if a specific degree of freedom information should be or not be
sent to neighboring partitions (see Table A.1). Field TyperJs stores another integer label
to identify if a specific degree of freedom represents a Dirichlet boundary condition, an
unknown in the partition i, or an unknown in neighboring partitions (see Table A.1). Field
IdrJs, in turn, stores an integer that maps local-global relation between a specific degree
of freedom and their corresponding numeration as an unknown of the linear system. In
addition, there is a long list of other auxiliary variables, whose description can be seen in
Table B.1.

Algorithms 16 and 17 have four main loop-blocks. The first loop-block has the
purpose of verifying how many (nsendbef, nrecvbef, nsendaft and nrecvaft) and which
(IdSend_bef , IdSend_aft, IdRecv_bef , and IdRecv_aft) degrees of freedom of the
partition i must communicate with the neighboring partitions. This communication always
occurs in two directions: sent messages and received messages (see Fig. 4.2). The vectors
IdSend_bef and IdSend_aft store which degrees of freedom they should send messages
to. These vectors contain integers within the range [nrecvbef, ni + nrecvbef] and therefore
they are ready to be used in communication (see Fig. 4.3). On the other hand, the vectors
IdRecv_bef and IdRecv_aft store which degrees of freedom should receive messages.
However, in this case, these vectors contain integers outside the expected ranges that would
be [1, nrecvbef] and [ni + nrecvbef, ni + nrecvbef + nrecvaft] (see Fig. 4.3). Thus, the
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vectors IdRecv_bef and IdRecv_aft need to have their contents adjusted to these ranges.
In this way, the next three loop-blocks of the algorithms fulfill this task. As the stored
indices are not sorted, the sort function qsort_array1 is executed and then the stored
indices have their values increased (or decreased) until they belong to the appropriate
ranges. Besides, these algorithms make a readjustment in the field Id of the structure
Node that contemplates the global-local mappings.

Algorithm 16 To obtain structures IdSend_bef , IdRecv_bef and to adjust Id of Node
nsendbef Ð 0
nrecvbef Ð 0
for I “ 1, nnodesi do

for JJ “ 1, ndof do
if NoderIs.T ype_SendrJJs “ 2 or NoderIs.T ype_SendrJJs “ 23 then

nsendbef Ð nsendbef ` 1
IdSend_bef rnsendbefs Ð NoderIs.IdrJJs

end
if NoderIs.T yperJJs “ 2 then

nrecvbef Ð nrecvbef ` 1
IdRecv_bef rnrecvbefs Ð NoderIs.IdrJJs
IdRecvAux_bef rnrecvbefs Ð I
IdDegreeRecvAux_bef rnrecvbefs Ð JJ

end
end

end
for I, nrecvbef do

SortIdRecv_bef rIs.array1 Ð IdRecv_bef rIs
SortIdRecv_bef rIs.array2 Ð I

end
qsort_array1(SortIdRecv_bef)
for I, nrecvbef do

while SortIdRecv_bef rIs.array1` nrecvbef ă I do
SortIdRecv_bef rIs.array1 Ð SortIdRecv_bef rIs.array1` 1

end
end
for I, nrecvbef do

aÐ SortIdRecv_bef rIs.array1
bÐ SortIdRecv_bef rIs.array2
IdRecv_bef rbs Ð a
NoderIdRecvAux_bef rbss.IdrIdDegreeRecvAux_bef rbss “ a` nrecvbef

end

B.2 Algorithms of the parallel CSR structures and their auxiliary
structures

Before creating the parallel CSR structures themselves, another structure named
LM is required. LM with size neli ˆ ndof has as task maps, element-by-element, all the
unknowns which cover a partition i, and the previous and posterior communication regions
of each generic vector Ui (see Fig. 4.3). Terms neli and ndof represent the number of
elements in a partition i and the number of degree of freedom per node. Algorithm 18
shows how to obtain LM from the structure Node proposed in Subsection 4.1.

Since LM is obtained, linked lists LA, LB, and LC to provide the CSR structural
vectors JAi, IAi, JBi, IBi, JCi and ICi should be generated. Algorithm 19 indicates how



Appendix B. Extra algorithms for the parallel finite element preprocessing 138

Algorithm 17 To obtain structures IdSend_aft, IdRecv_aft and to adjust Id of Node
nsendaft Ð 0
nrecvaft Ð 0
for I “ 1, nnodesi do

for JJ “ 1, ndof do
if NoderIs.T ype_SendrJJs “ 3 or NoderIs.T ype_SendrJJs “ 23 then

nsendaft Ð nsendaft ` 1
IdSend_aftrnsendafts Ð NoderIs.IdrJJs

end
if NoderIs.T yperJJs “ 3 then

nrecvaft Ð nrecvaft ` 1
IdRecv_aftrnrecvafts Ð NoderIs.IdrJJs
IdRecvAux_aftrnrecvafts Ð I
IdDegreeRecvAux_aftrnrecvafts Ð JJ

end
end

end
for I, nrecvaft do

SortIdRecv_aftrIs.array1 Ð IdRecv_aftrIs
SortIdRecv_aftrIs.array2 Ð I

end
qsort_array1(SortIdRecv_aft)
for I, nrecvaft do

while SortIdRecv_aftrIs.array1 ă I ` ni do
SortIdRecv_aftrIs.array1 Ð SortIdRecv_aftrIs.array1´ 1

end
end
for I, nrecvaft do

aÐ SortIdRecv_aftrIs.array1
bÐ SortIdRecv_aftrIs.array2
IdRecv_aftrbs Ð a
NoderIdRecvAux_aftrbss.IdrIdDegreeRecvAux_aftrbss “ a` nrecvbef

end

Algorithm 18 To obtain LM from Node
for I, neli do

posÐ 1
for J, nnoel do

v Ð ElementrIs.V ertexrJs
for JJ, ndof do

if Nodervs.T yperJJs “ 0 then
LM rIsrposs Ð nrecvbef ` ni ` nrecvaft ` 1

end
else

LM rIsrposs Ð Nodervs.IdrJJs
end
posÐ pos` 1

end
end

end
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Table B.1 – Description of variable of Algorithms 16 and 17

Variable Meaning and Attributions
nsendbef Number of unknowns to be sent to partition i´ 1.

nrecvbef Number of unknowns to be received from partition i´ 1.

nsendaft Number of unknowns to be sent to partition i` 1.

nrecvaft Number of unknowns to be received from partition i` 1.

IdSend_bef Vector of indexes of the unknowns to be sent to partition i´ 1.

IdSend_aft Vector of indexes of the unknowns to be sent to partition i` 1.

IdRecv_bef Vector of indexes of the unknowns to be received from partition i´ 1.

IdRecv_aft Vector of indexes of the unknowns to be received from partition i` 1.

IdRecvAux_bef Auxiliary vector involved in organization of IdRecv_bef .

IdRecvAux_aft Auxiliary vector involved in organization of IdRecv_aft.

IdDegreeRecvAux_bef Auxiliary vector involved in organization of degrees of freedrom of
IdRecv_bef .

IdDegreeRecvAux_aft Auxiliary vector involved in organization of degrees of freedrom of
IdRecv_aft.

SortIdRecv_bef Temporary structure with 2 fields used to sort IdRecvAux_bef .

SortIdRecv_aft Temporary structure with 2 fields used to sort IdRecvAux_aft.

to obtain LA, LB, and LC from LM . These linked lists have a field J – to store a column
index – and a field next – to store a pointer to the next list. Also, admit the function
insert as a sorted insertion in a linked list without repetition and ni as the number of
unknowns of the partition i. Terms nrecvbef and nrecvaft are defined according to Table
B.1. Variables nnzi, nnzaft, and nnzaft are the number of nonzero coefficients represented
respectively in the blocks Ai, Bi and Ci (see Table 4.2).

Finally, the CSR structural vectors JAi, IAi, JBi, IBi, JCi and ICi can be con-
structed. As can emphasized, the blocks Bi and Ci (see Fig. 4.6) can have rows with all
coefficients equal to zero. Thus, it is necessary to map the nBi rows containing the nonzero
coefficients of the block Bi into a set of ni possible rows. Similarly, the nCi rows of Ci

should be mapped in ni possible rows (see Fig. 4.6). For that, auxiliary vectors IBaux and
ICaux are used. Remember IAidex_aft and IAidex_idex, structures that enable the
parallel matrix-vector product, are also generated in this stage. Algorithm 20 demonstrates
how to fill all parallel CSR structures. In detail, the procedure create_JA_IA receives
the linked lists produced by Algorithm 19 and builds CSR structural vectors JAi, IAi,
JBi, IBi, JCi and ICi (see Algorithm 21).
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Algorithm 19 To obtain the linked lists LA, LB, and LC from LM
nnzi Ð 0
nnzbef Ð 0
nnzaft Ð 0
for I, neli do

for K, ndof ˚ nnoel do
II Ð LM rIsrKs if nrecvbef ă II ď ni ` nrecvbef then

for J, ndof ˚ nnoel do
JJ Ð LM rIsrJs if JJ ď nrecvbef then

nnzbef Ð insertpLC , II ´ nrecvbef ` 1, JJ, nnzbefq

end
else if nrecvbef ă JJ ď ni ` nrecvbef then

nnzi Ð insertpLA, II ´ nrecvbef ` 1, JJ ´ nrecvbef ` 1, nnziq

end
else if JJ ď nrecvbef ` ni ` nrecvaft then

nnzaft Ð insertpLB , II ´ nrecvbef ` 1, JJ ´ ni ´ nrecvbef ` 1, nnzaftq

end
end

end
end

end

Algorithm 20 To obtain JA, IA, JB, IB, IBaux, IAidex_aft ,JC, IC, ICaux, and
IAidex_bef
create_JA_IApLA, JA, IA, niq

if i ą 1 then
create_JA_IApLB , JB, IB, niq

nBi Ð 0
for I “ 1, ni do

if LBris ‰ .NULL. then
nBi Ð nBi ` 1
IAidex_aftrIs Ð nBi

IBauxrnBis Ð I
end

end
end
else if i ă p then

create_JA_IApLC , JC, IC, niq

nCi Ð 0
for I “ 1, ni do

if LCris ‰ .NULL. then
nCi Ð nCi ` 1
IAidex_bef rIs Ð nCi

ICauxrnCis Ð I
end

end
end

Algorithm 21 To create the CSR structural vectors JA and IA
Procedure create_JA_IApList, JA, IA, nq

for I “ 1, n do
currentÐÝ ListrIs
while current ‰ .NULL. do

countÐÝ count` 1
JAÐÝ current´ąJ
IArI ` 1s ÐÝ IArI ` 1s ` 1
currentÐÝ current´ąnext

end
end
for I “ 2, n do

IArI ` 1s Ð IArI ` 1s ` IArIs
end
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B.3 Extra algorithms to improve parallel CSR performance

Suppose finite element mesh data is splitted into p partitions. Terms neli, ndof, and
nnoel represent, respectively, the number of elements in a partition i, the number of degree
of freedom per node, and number of nodes per element. Auxiliary structures CSRe

A, CSRe
B,

and CSRe
C are used to improve the CSR storage performance. These three structures

have size neli ˆ pndof ¨ nnoelq2, and they enable assembling and reassembling the CSR
structures AAi, ABi, and ACi (vectors responsible for storing the coefficients of the blocks
Ai, Bi, and Ci, described in Table 4.2) without further efforts. Algorithm 22 shows the
main steps to create CSRe

A, CSRe
B, and CSRe

C using LM from Algorithm 18, linked
lists from Algorithm 19, and vectors IAidex_bef and IAidex_aft from Algorithm 20.
In addition, consider the function Search_Position figures out the position of a column
index inside a given linked list (see Algorithm 23).

Algorithm 22 To obtain CSRe
A, CSRe

B, and CSRe
C

for I “ 1, neli do
for i “ 1, pndof ˚ nnoelq2 do

CSRe
ArIsris Ð nnzi ` 1

CSRe
BrIsris Ð nnzbef ` 1

CSRe
CrIsris Ð nnzaft ` 1

end
for i “ 1, pndof ˚ nnoelq2 do

II Ð LM rIsris
if nrecbef ă II ď ni ` nrecbef then

for j “ 1, pndof ˚ nnoelq2 do
JJ Ð LM rIsrjs
v Ð pi´ 1q ˚ ndof ˚ nnoel` j
if JJ ď nrecbef then

posÐ Search_PositionpLBrII ´ nrecvbef ` 1s, JJq
CSRe

BrIsrvs Ð IBrIAidex_bef rII ´ nrecvbef ` 1ss ` pos
end
else if nrecbef ă JJ ď nrecbef ` ni then

posÐ Search_PositionpLArII ´ nrecvbef ` 1s, JJ ´ nrecvbef ` 1q
CSRe

ArIsrvs Ð IArII ´ nrecvbef ` 1s ` pos
end
else if JJ ď nrecbef ` ni ` nrecaft then

posÐ Search_PositionpLCrII ´ nrecvbef ` 1s, JJ ´ nrecvbef ´ ni ` 1q
CSRe

CrIsrvs Ð IBrIAidex_aftrII ´ nrecvbef ` 1ss ` pos
end

end
end

end
end

Algorithm 23 To calculate the position of a column index from a adjacency list
Function Search_PositionpList, valueq

PositionÐÝ 0
while List ‰ .NULL. do

PositionÐÝ Position` 1
if List´ąJ “ value then

break
end
ListÐÝ List´ąnext

end
return Position
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B.4 Parallel CSR structures reordering algorithms

As discussed in Subsection 4.1.4.1, to achieve high performance when using parallel
CSR structures, auxiliary structures CSRe

A, CSRe
B, and CSRe

C are created. Thus, all infor-
mation related to reorder the blocks Ai, Bi and Ci (see Fig. 4.4) is also involved with reorder-
ing the mentioned structures. As can be noted in the first lines of Algorithm 24, there are
procedures, namely, Matrix_Row_Permutation and Matrix_Column_Permutation.
Such procedures described in Algorithms 25 and 26 aim to reorder the structures JAi and
IAi referring to the block Ai, taking into account a permutation vector P . In addition,
these two procedures generate a new permutation vector PermCSRe

A that is used in the
reordering of structure CSRe

A. Another structure worth mentioning is LM , a standard
mapping of the neli elements for the EBE matrix-vector product, but also used in the
assembly of the residue vector. As can be observed, structure LM fits the same reordering
applied to structures JAi and IAi, since the permutation vector invP , inverse of P ,is
used. The field Id of the structure Node (details about structure Node see Subsection 4.1)
is also rearranged according to the reordering proposed by P . In the next two sets of
instructions, the blocks Bi and Ci are reordered, more specifically their CSR format repre-
sentatives. The structures IBaux, IdSend_aft, ICaux and IdSend_bef are rearranged
as well as the structures CSRe

B and CSRe
C . For this purpose, other two permutation

vectors with their respective inverse permutation are built. That is, PermCSRe
B with

inverse invPermCSRe
B and PermCSRe

C with inverse invPermCSRe
C . The procedure

Matrix_Sparse_Row_Permutation, described in Algorithm 27, has almost the same
purpose as the procedure Matrix_Row_Permutation. The difference lies in the fact that
Matrix_Sparse_Row_Permutation only works on reordering the rows of blocks Bi and
Ci and that these blocks are also sparse per rows, what does not occur with block Ai.
Another point to be highlighted is the use of a function named qsort_array3_array2,
presented in Algorithms 25 and 27. This function is a call of the sort algorithm Quick-
Sort (Knuth, 1997), and it aims to reorganize the structure Temp, taking as the first sort
criteria the data from field array3. Followed by second sort criteria through field array2
data.
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Algorithm 24 To reorder CSR structures according to permutation P
for I “ 1, nnzi do

PermCSRe
ArIs Ð I

end
Matrix_Row_Permutationpni, nnzi, JAi, IAi, P, PermCSR

e
Aq

Matrix_Column_Permutationpni, nnzi, JAi, IAi, P, PermCSR
e
Aq

for I “ 1,ă nnzi do
invPermCSRe

ArPermCSR
e
ArIss Ð I

end
invPermCSRrnnzi ` 1s Ð nnzi ` 1
for I “ 1, ni do

invP rP rIss Ð I
end
invP rni ` 1s Ð ni ` 1
for I “ 1, neli do

for J “ 1, pndof ¨ nnoelq2 do
CSRe

ArIsrJs Ð invPermCSRe
ArCSR

e
ArIsrJss

end
for J “ 1, ndof ¨ nnoel do

if nrecvbef ă LM rIsrJs ď nrecvbef ` ni then
LM rIsrJs Ð invP rLM rIsrJs ´ nrecvbef ` 1s ` nrecvbef

end
end

end
for I “ 1, nnodesi do

for J “ 1, ndof do
if NoderIs.T yperIs “ 1 then

NoderIs.IdrJs Ð invP rNoderIs.IdrJss
end

end
end
if i ą 1 then

for I “ 1, nBi do
IBauxrIs Ð invP rIBauxrIss

end
for I “ 1, nsendaft do

IdSend_aftrIs Ð invP rIdSend_aftrIss
end
Matrix_Sparse_Row_PermutationpnBi, nnzaft, JBi, IBi, IBAux, PermCSR

e
Bq

for I “ 1, nnzaft do
PermCSRe

BrIs Ð I
end
invPermCSRrnnzaft ` 1s Ð nnzaft ` 1
for I “ 1, neli do

for J “ 1, pndof ¨ nnoelq2 do
CSRe

BrIsrJs Ð invPermCSRe
BrCSR

e
BrIsrJss

end
end

end
if i ă p then

for I “ 1, nCi do
ICauxrIs Ð invP rICauxrIss

end
for I “ 1, nsendbef do

IdSend_bef rIs Ð invP rIdSend_bef rIss
end
Matrix_Sparse_Row_PermutationpnCi, nnzbef, JCi, ICi, ICaux, PermCSR

e
Cq

for I “ 1, nnzbef do
PermCSRe

CrIs Ð I
end
invPermCSRrnnzbef ` 1s Ð nnzbef ` 1
for I “ 1, neli do

for J “ 1, pndof ¨ nnoelq2 do
CSRe

CrIsrJs Ð invPermCSRe
CrCSR

e
CrIsrJss

end
end

end
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Algorithm 25 To permutate CSR structures according to rows of Block Ai

Procedure Matrix_Row_Permutationpn, nnz, JA, IA, P, PermCSRe
q

Temp_IAr1s Ð 1
k Ð 1
for I “ 1, n do

for J “ IArP rIss, IArP rIs ` 1s ´ 1 do
Temp_PermCSRe

rks Ð PermCSRe
rJs

Temp_JArks Ð JArJs
k Ð k ` 1

end
TempIArI ` 1s Ð k

end
for I “ 1, nnz do

PermCSRe
rIs Ð Temp_PermCSRe

rIs
JArIs Ð Temp_JArIs

end
for I “ 1, n` 1 do

IArIs Ð Temp_IArIs
end

Algorithm 26 To permutate CSR structures according to columns of Block Ai

Procedure Matrix_Column_Permutationpn, nnz, JA, IA, P, PermCSRe
q

for I “ 1, n do
invP rP rIss “ i

end
k Ð 1
for I “ 1, n do

for J “ IArIs, IArI ` 1s ´ 1 do
Temprks.array1 Ð PermCSRe

rJs
Temprks.array2 Ð invP rJArJss
Temprks.array3 Ð I
k Ð k ` 1

end
qsort_array3_array2pTemp, nnzq
for I “ 1, nnz do

PermCSRe
rIs Ð TemprIs.array1

JArIs Ð TemprIs.array2
end

end

Algorithm 27 To permutate CSR structures according to rows of Blocks Bi and Ci

Procedure Matrix_Sparse_Row_Permutationpn, nnz, JA, IA, IAaux, PermCSRe
q

for I “ 1, n do
TemprIs.array2 Ð I
TemprIs.array3 Ð IAauxrIs

end
qsort_array3_array2pTemp, nq
Temp_IAr1s Ð 1
for I “ 1, n do

for J “ IArTemprIs.array2s, IArTempris.array2` 1s ´ 1 do
Temp_PermCSRe

rks Ð PermCSRe
rJs

Temp_JArks Ð JArjs
k Ð k ` 1

end
Temp_IArI ` 1s Ð k

end
for I “ 1, n do

IAauxrIs Ð TemprIs.array3
end
for I “ 1, nnz do

PermCSRe
ris Ð Temp_PermCSRe

rIs
JArIs Ð Temp_JArIs

end
for I “ 1, n` 1 do

IArIs Ð Temp_IArIs
end
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