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“One, remember to look up at the stars and not

down at your feet. Two, never give up work.

Work gives you meaning and purpose, and life

is empty without it. Three, if you are lucky

enough to find love, remember it is there and

don’t throw it away”.

Stephen Hawking

“Imagination will often carry us to worlds

that never were, but without it we go nowhere”.

Carl Sagan
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Abstract

Smart Walkers (SWs) are robotic devices that may be used to improve balance and locomo-

tion stability of people with lower-limb weakness or poor balance. Such devices may also offer

support for cognitive disabilities and for people that cannot safely use conventional walkers,

as well as allow interaction with other individuals and with the environment. In this context,

there is a significant need to involve the environment information into the SW’s control strate-

gies. In this Ph.D. thesis, the concept of Human-Robot-Environment Interaction (HREI) for

human locomotion assistance with a smart walker developed at UFES/Brazil (turned UFES’s

Smart Walker - USW) is explored. Two control strategies and one social navigation strategy are

presented. The first control strategy is an admittance controller that generates haptic signals

to induce the tracking of a predetermined path. When deviating from such path, the pro-

posed method varies the damping parameter of the admittance controller by means of a spatial

modulation technique, resulting in a haptic feedback, that is perceived by the user as a hard

locomotion towards the undesired direction. The second strategy also uses an admittance con-

troller to generate haptic signals, which guide the user along a predetermined path. However,

in this case, the angular velocity of the smart walker is implemented as a function of a virtual

torque, which is defined using two virtual forces that depend on the angular orientation error

between the walker and the desired path. Regarding the navigation strategy, it involves social

conventions defined by proxemics, and haptic signals generated through the spatial modulation

of the admittance controller for a safe navigation within confined spaces.

The USW uses a multimodal cognitive interaction composed of a haptic feedback and a visual

interface with two LEDs to indicate the correct/desired direction when necessary. The pro-

posed control strategies are suitable for a natural HREI as demonstrated in the experimental

validation. Moreover, this Ph.D. thesis presents a strategy to obtain navigation commands for

the USW based on multi-axial force sensors, in addition to a study of the admittance control

parameters and its influence on the maneuverability of the USW, in order to improve its HREI.

Keywords: Admittance Control, Spatial Modulation, Cognitive Assistance, Social Interaction,

Haptic, Smart Walker.
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Glossary

cHRi Cognitive Human-Robot Interface.

FLC Fourier Linear Combiner.

FSR Force Sensor Resistor.

HREI Human-Robot-Environment Interaction.

HRI Human-Robot Interaction.

IMU Inertial Measurement Unit.

KTE Linear Estimation Error.

LRF Laser Ranger Finder.

MSE Mean Square Error.

NTA Center for Assistive Technology.

pHRi Physical Human-Robot Interface.

ROS Robotic Operative System.

SCI Spinal Cord Injury.

SFM Social Force Model.

SLAM Simultaneous Localization and Mapping.

SW Smart Walker.
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USW UFES Smart Walker.

WFLC Weighted-Frequency Fourier Linear Combiner.

WHO World Health Organization.
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Chapter 1

Introduction

This work focuses on a Human-Robot-Environment Interaction (HREI) strategy for human

mobility assistance using a smart walker developed by UFES/Brazil (USW). The integration

of Human-Robot Interaction (HRI) concepts into the USW allows establishing natural chan-

nels of communication between the walker and the human. This Ph.D. thesis also presents a

multimodal cognitive interface that provides a guidance system for the user during navigation.

Thus, the USW not only works to allow a gait assistance but also offers a cognitive assistance.

Additionally, the USW involves social conventions and human behavior within its HREI to al-

low a suitable interaction with the environment and other people. This chapter presents some

remarks regarding the motivation of this research, the goals, and the justification.

1.1 Motivation

Functional mobility is fundamental to the independence and daily living of people, as it is an

essential skill to ensure satisfactory quality of life and wellbeing [1]. Mobility difficulties can

often be linked to the elderly population and, which, according to the World Health Organiza-

tion, between 2017 and 2050 the number of people aged over 60 years is projected to grow more

than twofold, from 652 million to 2.1 billion. Especially, in Latin America and the Caribbean,

the older population is projected to increase from 76 to 198 million. By 2050, the elderly pop-

1
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ulation that lives in developing regions is projected to grow 79 percent more, reaching nearly

2.1 billion individuals [2].

Elderly are the main population to suffer from impaired and cognitive disabilities that affect the

locomotion [3]. However, independent locomotion may be also affected by injuries, neurological

diseases or surgical interventions, which affect not only the autonomy of individuals but may

also cause social isolation and premature psychological and cognitive degradation [4]. Diseases

are the most common reason of locomotion impairments in people aged from 65 to 84 years

old [5]. Stroke, Parkinson’s disease, Alzheimer’s dementia, degenerative joint disease, acquired

musculoskeletal deformities, intermittent claudication, and impairments after an orthopedic

surgery may also result in locomotion problems [3].

Due to mobility impairments, several studies have been conducted to develop assistive devices

that aid people with gait disabilities to allow them to improve balance and increase inde-

pendence during locomotion [6]. Conventional assistive devices for mobility, such as walkers,

crutches, and canes have been used to improve balance and body weight support in these

people [7].

Conventional walkers may be prescribed to people with lower extremity weakness or poor

balance to improve stability, and to facilitate mobility by increasing their partial body weight

support [8]. Walkers may also be used to decrease the risk of falling, with positive reflexes

in the quality of life. However, conventional walkers can be difficult to maneuver [7] and,

as a result, hard to navigate. Moreover, users may also require active support for guidance,

orientation and localization as they may suffer from cognitive disorders [9]. In these cases,

a higher level of assistance can be required to promote independent locomotion than the one

found on conventional walkers.

Robotic concepts have been integrated with conventional walkers to allow the development

of SWs, which can offer a whole new range of functionalities, contributing to health support,

gait assistance, and increased autonomy in daily life [10]. SWs are devices that can provide

physical support, sensorial and cognitive assistance, health monitoring and advanced human-

robot interaction [11]. These devices are often able to provide extended features, such as gait



and navigation assistance, sit-to-stand transfer, obstacle avoidance and fall prevention [6], which

can be used in control strategies for mobility assistance, providing comfort, safety, and easy

maneuverability of the walker [8].

This Ph.D. thesis is based on previous researches that were developed either inside of our

research group called on Center for Assistive Technology (NTA) or within the execution of

collaboration projects. One of the main works developed by NTA was [12], which focuses on

Human-Robot Interaction (HRI) strategy for human mobility assistance using an SW.

Until now, innovative (HRIs) have been developed with the aim to generate a natural relation

between user and walker [12, 13]. However, this kind of strategies still does not integrate the

capacity to generate a natural interaction with the environment, due to the use of sensors on

the user or environment [10]. Therefore, it is necessary to develop strategies with a natural

Human–Robot–Environment interaction (HREI) for the SW, without use of external sensors

on the user or environment. Such new strategies for the SW have also to involve physical

assistance, cognitive assistance, sensorial assistance and social interaction, providing the user

with an active role during navigation.

1.2 Objectives

The main objective of this research is to propose, develop and implement novel strategies for a

natural Human–Robot–Environment Interaction that allow assisting the SW’s users, in order

to provide them a safe navigation. The following specific objectives are proposed to reach such

strategy.

1. Perform a literature study regarding smart walkers.

2. Implement a strategy to detect the human motion intentions during walker-assisted gait

using force sensors for a natural Human-Robot Interaction.

3. Design multimodal cognitive interaction strategies that allow guiding the user during

navigation with the smart walker.
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4. Develop Human–Robot–Environment control strategies for a walker-assisted gait that

promote a natural interaction between user and SW.

5. Develop a navigation strategy that provides the user with social interaction possibility

whit other people around.

6. Design and implement a Human–Robot–Environment control strategy to guide visually

impairment people using the smart walker.

1.3 Justification

There is a growing interest in developing robotic assistive devices for elderly and people with

physical and cognitive disabilities [14]. Similar to conventional walkers, SWs are used to provide

mobility assistance to people with disabilities that present lower motor function and low balance,

by improving their autonomy, and, more generally, by improving their quality of life [11].

Through sensorial information, an SW can guide people with mobility impairments to navigate

within semi-structured or structured environments, and, when providing guidance, it is expected

that its navigation strategies produce a natural and intuitive HRI. In this context, it is necessary

to develop interaction strategies and interfaces to detect the human motion intention in order

to obtain a natural and safety HRI. By doing so, the user can interact at physical and cognitive

levels with the device during navigation, which must respond in natural ways to the human

motion intention while guaranteeing safety for the often frail user.

According to the literature [12, 15, 16], the human motion intention in robotic walker can be

measured or estimated through the use of force sensor and/or laser sensor. For example, through

force sensors installed under the SWs forearm or hand supports, motion intention can relate

with linear and angular velocity [10, 15, 16]. On the other hand, laser sensor have been used

in order to obtain human-robot formation [12, 13], in which the human is the leader of the

formation with the SW.

Regarding the controllers used to generate an HRI in SWs, one of the strategies commonly



used to develop a natural interaction between the human and the SW is the admittance control

[15,16]. This control strategy emulates a dynamic system and provides the user with a sensation

of interaction with the SW. The admittance controller depends on the users’ force/torque

sensing, and allows detecting the user’s motion intention in a natural way, without the need of

external sensors in either the user or the environment. However, this kind of controller only

has impact on the HRI.

Many technological solutions to enable natural channels of communication between the walker

and the user have been developed. It is inevitable to involve physical assistance, and sensorial

assistance within the gait assistance. The first two kinds of assistance are integrated in a

natural way on the HRI of the SW [12, 13, 16–18]. Regarding sensorial assistance, most of the

HREI needs either wearable sensors and actuators on the user, or sensors at the environment

[15, 19, 20], which might be unnatural and be uncomfortable for the user. Also, the HREI

strategies normally include the definition of predetermined paths [15, 16, 21], restricting the

process of decision-making by the user during navigation, putting him/her to a secondary role.

Therefore, it is necessary to develop a strategy with natural HREI that stimulates the cognitive

system, for example, through decisions making, giving an active role to the user at navigation.

Furthermore, it is necessary to take into account that the user shares the same space of the

robot. For this reason, the navigation strategies not only must be in the capacity to offer

navigation assistance, sit-to-stand transfer, obstacle avoidance, and fall prevention [6], but also

have concepts of social interaction.

Whenever SWs are employed to assist human navigation, these devices must not only empower

locomotion, but also allow social interaction. In addition, as a user makes use of an SW, the

control algorithms responsible for navigation must take into consideration social conventions

and human behavior to allow for proper interaction with the environment and other people

[22, 23]. Therefore, it is important also to integrate some cognitive capabilities to the device

when used in shared spaces.

Literature regarding SWs has overlooked social concepts, and navigation systems have been

implemented in similar ways to traditional robotics [6, 24, 25], not including user requirements
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related to social interaction. In this context, it is necessary to guarantee a natural incorporation

of SW into social spaces by implementing navigation strategies that allow a suitable interaction

between the user and other humans that are present in the environment. This way, it is possible

to avoid social isolation and premature psychological and cognitive problems due to the absence

of social interaction of the SW’s user, especially when the user is an elderly [4].

In summary, one of the most important challenges for the SWs is to provide control strategies

that allow a natural Human-Robot-Environment Interaction (HREI), as well as an intuitive and

easy way to transmitting the human motion intention to the SW. Thus, multimodal interfaces

to allow easy communication between the user and the SW are required. Also, in spite of many

studies involving social aspects within the robots navigation strategies, this requirement has not

been taken account in SW’s navigation strategies. For this reason, the novel HREI strategies

proposed here includes social interaction concepts in order to obtain a better user experience

during navigation with the SW.

1.4 Ph.D. Thesis Organization

This document is composed of seven chapters. Chapter 1 introduces the motivation, the research

goals, and the justification of this Ph.D. thesis.

Chapter 2 presents the description of the population most likely to have mobility impairments,

and a short description of the common devices used by gait assisted. Furthermore, state of the

art around SWs is described, as well as the current trend in SWs, from HRI to HREI.

Chapter 3 explains the method used in the UFES’s Smart Walker (USW) to detect the human

motion intention in a natural way, which is based in an admittance control strategy. Also

presents the behavior of the admittance control and the influence on the maneuverability of

the USW, as a consequence of the values assigned to the parameters in this control strategy

can influence the user experience, due to the USW maneuvering can be hardest or easily.

Chapter 4 exposes a new proposal of controller that continuously modifies dynamic parameters



of the admittance controller to induce the user to follow a predetermined path in a natural and

intuitive way. In addition, taking advantage of the physical contact between the user and the

USW, a haptic feedback is generated to induce the user to follow such predetermined path.

Chapter 5 describes a new strategy to navigate with the USW in confined spaces. Also, the

social interaction into the USW navigation is introduced, and the definition of social zones

allows a safe navigation for the user.

Chapter 6 presents a study of the haptic feedback signals that are present when an user is

guided by the USW. In this case, in order to keep the user along the path, the human intention

to turn does not affect the guidance, hence minimizing the errors and providing feedback over

the correct direction to follow.

Finally, Conclusions, Future Works, and Contributions are presented in Chapter 7.



Chapter 2

Human Mobility Impairments and Smart

Walkers as Assistive Devices

Human gait depends on a complex interaction of the nervous, musculoskeletal and cardiores-

piratory systems [26]. The gait can be affected by age and neurological diseases, which may

produce the loss of personal independence, and affect the quality of life [1]. Neurological diseases

can impact the human mobility at different levels, causing partial or total loss of the locomo-

tion capacity, especially, when the person is an elderly [3]. Depending on the impairment level,

there are specific assistive devices to improve balance in order to offer support during the gait,

such as crutches, walkers and canes [27, 28]. However, when the user requires active support

for guidance orientation, and localization, such devices may not be ideal. In these cases, more

assistance can be required to promote the independent locomotion than the one found on the

conventional assistive devices. In this context, SWs gain a great interest in the assistance for

people with mobility impairments.

2.1 Human Mobility and Disabilities

Mobility is one of the fundamental human faculties and can be defined as the ability of an

individual to move his or her body within an environment or between environments, and the

8



ability to manipulate objects [29], in order to perform daily activities easily.

Such dysfunctions are common among the elderly and can be associated with the loss of inde-

pendence [3] and cognitive problems [30], resulting in a degradation in their quality of life and

wellbeing [1]. Besides, the elderly population has increased worldwide in recent years [2].

According to the World Health Organization (WHO), the global population aged 60 years

overpass 652 million in 2017, more than twice as large as in 1980, when there were 382 million

older persons worldwide [2]. Furthermore, it is expected that in the developing regions, people

aged over 60 years will be 2.1 billion for 2050 [2]. Specifically, in Latin America, the number

of people aged over 60 years is projected to grow 160.7 percent by 2050 [2]. This increment of

the elderly part of the population is also observed in the other areas of the world [2].

Also, WHO reports that the proportion of older people living alone has increased in recent

years [2]. It is essential to take into account this tendency due to the increasing of many

health disorders with age [31]. Moreover, many of physical impairments linked with aging are

associated with neurological conditions, orthopedic problems and medical conditions [26] and,

within these, neurological diseases are the most common reason for locomotion impairment in

people aged over 65 [7].

Stroke has been considered the leading cause of neuromuscular damages worldwide [32] and

one of the most common causes of walking disabilities, with approximately 60 percent of the

individuals suffering from persistent problems in walking [33]. As a consequence of stroke, the

individual also presents abnormal muscle activation and impaired postural control [33, 34].On

the other hand multiple Sclerosis is a disease that can produce disturbances of balance and

motor coordination [26]. It is important to consider that cerebral diseases may also reduce

the individual’s quality of life through visual dysfunction [35], which may also be supported

with assistance devices. Cerebral palsy affects the gait too, due to the permanent disorders

of movement and the non-progressive disturbances that occur in the infant’s brain [36]. In

this case, children and young adults need to make a higher effort to maintain the coordination

between muscles and motor control [37]. It is estimated that the 11.3 percent of the children with

cerebral palsy used a hand-held mobility device to improve efficiency, stability, and posture [36].
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Cardiopulmonary and musculoskeletal diseases are other factors that generate a slow gait speed

in elderly and may also cause reductions in vision, standing balance, and physical activity [3].

Dementia diseases (e.g., Alzheimer) produce a concurrent and progressive cognitive impairment,

but can also be considered as one of the diseases that affect the gait [3]. Such disease may

produce a fear of falling, and as a consequence, generate a gait disorder [3]. Spinal Cord Injury

(SCI) is another condition that affects the human mobility. People with SCI are exposed to

fall while walking because of the loss of balance, affecting the patient independence and their

quality of life [38]. In this context, almost all rehabilitation therapies are related to recovering

independence and mobility [39]. In addition, declining gait speed is a frequent condition that

affects the cognitive system, independence, and quality of life [40]. For this reason, developing

assisted-gait devices that also stimulate the cognitive system in a positive way is an interesting

topic, especially for the elderly.

2.2 Mobility Assistive Devices

The ability to move freely enables the individual with the capacity of doing typical life activ-

ities. However, these tasks might be compromised when mobility impairments are presented.

According to the WHO, there are more than 1 billion people with any kind of disability world-

wide [41], and this population may benefit from assistive technologies, such as mobility assistive

devices [42].

Such as aforementioned, several mobility assistive devices can be used in gait rehabilitation

and assistance scenarios. Among these devices, canes (see Fig. 2.1a), crutches (see Fig. 2.1b),

wheeled knee walkers (see Fig. 2.1c) and walkers (see Fig. 2.2a) are commonly found. Fur-

thermore, wheelchairs (e.g. manual or powered) (see Fig. 2.1d), tricycles and scooters are also

used. Likewise, as shown in Fig. 2.1e, orthoses (e.g. callipers, braces, and splints), as well as,

prostheses (i.e. artificial lower limbs) have been developed [42].

In this context, assistive devices are appropriate for people who exhibit gait impairments as

well as for elderly with mobility difficulties. These devices are designed to enhance people’s



quality of life and to provide critical functional benefits: independence, user’s weight support,

and safety [7]. This kind of devices may also have an impact on the prevention of injuries, falls

and premature death [42]. This way, mobility assistive devices are frequently involved in users’

daily living, assisting their activities and facilitating their social connectedness.

(a) (b) (c) (d) (e)

Figure 2.1: Examples of mobility assistive devices: a) Canes; b) Crutches; c) Wheeled knee
walker; d) Manual wheelchair; e) Active orthoses.

The selection of a suitable device depends on the patient’s weight bearing restriction, daily

ambulation requirements, fitness level, cognitive function, and balance [43]. For instance, canes

are used to increase gait stability by improving the base of support, by they also provide tactile

information about the ground. However, as canes support only a single weak lower limb, gait

symmetry is compromised [7]. Moreover, the effort of hand holding the cane might produce

carpal tunnel syndrome [44], and, additionally, cane-assisted gait decreases the step length [45].

Another frequently prescribed assistive devices are the auxiliary crutches. Crutches are helpful

for patients with lower-limb injury, who need to use their arms, not only for balance but

weight bearing and propulsion [7]. One crutch can support 80 percent of weight body, and two

crutches provide 100 percent weight support [7]. Even though auxiliary crutches are familiar

and readily available, they are often described by patients as awkward, difficult to use and have

demonstrated to demand a substantial energy cost [43]. In order to address such issue, wheeled

knee walkers (see Fig. 2.1c) have been developed, which, compared with crutches, are used to

improve the comfort, stability, and mobility [43].

Walkers appear as other important option within the assistive devices, as they are characterized

by their structural simplicity, low cost, and rehabilitation potential [12]. In addition, they
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provide support during locomotion while empowering the individual’s gait capacity as well as

improving his/her stability for those with lower limb weakness or poor balance. Therefore,

walkers are used for facilitating and improving mobility by increasing the patient’s base of

support and supporting the patient’s weight [7]. In addition, there is evidence pointing that

walker-assisted gait is related to psychological benefits as they increase confidence and safety

perception during ambulation [46].

(a) (b) (c)

Figure 2.2: Walkers frames: a) Standard; b) Front-wheeled; c) Rollator.

There are many types of established walkers in the market. The standard frame is the most

stable one (see Fig. 2.2a), which is based on a four-legged rigid metal frame with rubber tips

on the end of each leg. The standard walker generates a slower gait since the patient must

completely lift the walker off the ground at each step. This may be challenging for frail older

people with decreased upper body strength [7]. The extra level of force required to maneuver

such devices constrains its use for those who also present severe levels of metabolic, cardiac or

respiratory dysfunctions [47].

A front-wheeled walker (see Fig. 2.2b), also known as two-wheeled walker, is a variation of the

standard one, which is characterized by the presence of two wheels on the front legs, affecting

ground contact [12]. This walker is less stable than a standard walker, but maintains a more

normal gait pattern and is better for those who are unable to lift a standard walker [7], as the

energy cost is lower compared with the conventional walker [48].

Four-wheeled walker, commonly called rollators, are useful for higher functioning patients who

do not need walkers as a base of weight support. This kind of walker presents wheels attached



to its four legs and brakes on its handlers. The use of rollators allows faster locomotion and

more natural gait patterns. Often, these devices include a seat, being particularly useful for

those with respiratory diseases or congestive heart failures, who often need to stop ambulating

and sit down to rest [7]. Despite the four-wheeled walker easiness to propel, it is not appropriate

for patients with significant balance problems or cognitive impairments, as it can roll forward

unexpectedly, ending up in falls [7].

Walkers have a positive influence in health and wellbeing of users and their families, however,

conventional walkers can present difficulties for maneuvering [7], resulting in greater attentional

demands to navigate. In this context, some degree of cognitive abilities is required to maneuver

the walker. In fact, active support for guidance, orientation and localization are needed, since

physical assistance is not enough.

2.3 Technological Advances in Walkers

Robotic concepts have been integrated to conventional assistive devices to allow the develop-

ment of smart devices, with the aim of offering a whole new range of functionalities, contributing

to health support, gait assistance, and the increase of autonomy in daily activities [12]. The

so-called SWs [10] are devices that can provide physical support, sensorial assistance, cognitive

assistance, health monitoring, in addition to advanced human-robot interaction. By leveraging

the intrinsic physical assistance provided by those devices, sensorial information, for example,

may be used to guide people with mobility impairments. By doing so, the user interacts at

a physical and at a cognitive level with the device, which must respond in natural ways to

the human motion intention while guaranteeing safety for the often frail user. These devices

are used for extended features, such as gait and navigation assistance, sit-to-stand transfer,

obstacle avoidance, and fall prevention [6].
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2.3.1 Passive and Active Walkers

Many research groups have worked over the last few decades on SWs, which usually are inspired

by rollator frames. According to the literature evidence, SWs can be classified into two groups:

passive and active walkers.

The first one corresponds to passive walkers, as they allow the user to be in full control over the

locomotion. This kind of walkers may use sensors to obtain the orientation, localization, and to

avoid obstacles [9]. Usually, these devices contain mechanical actuators to stop the locomotion,

but not to insert energy. The COOL Aide [49] is a passive walker built on a commercial three-

wheeled walker frame, with two force sensors on the handles and two encoders used to estimate

the walker’s velocity, position, and heading, and a Laser Ranger Finder (LRF) sensor used to

provide a map of the environment surrounding. The MARC [50] passive version is a three-

wheeled walker that lacks propulsion and rely on their user to provide forward motion. This

walker is equipped with sonar, infrared sensors and wheel encoders to determine its localization

in a local environment. In [9], a standard rollator walker with externally mounting sensors is

used, which is equipped with laser scanners and vibration motors attached to each handle for

tactile feedback about the environment.

The second group is composed of active walkers, which have a propulsion system based on

motors to assist and propel the user locomotion. Likewise, as passive walkers, these devices are

equipped with sensors to help the navigation and to guide the user through a free path within

an environment.

Guido [51] is a SW developed by Haptica (Dublin, Ireland), which has sonar sensors to avoid

short-range obstacles and to detect transparent objects, table edges and overhangs that the

laser sensor would miss. The laser sensor is used to detect down drops, and a PC104 300 MHz

is the onboard processor for motors control and processing task. The XR4000 [52] is a robot

mobile platform with an omnidirectional drive. The robot is equipped with two ultrasonic

transducers, two infrared near-range sensors, and a LRF sensor, in order to perceive obstacles

at various heights. The LRF sensor is used for navigation (mapping, localization and path



planning).

The ABSGo++ [53] is a 4-wheeled motorized walker equipped with a LRF sensor to measure

the distance between the walker and the user. Cameras are used for leg/foot tracking and

upper body monitoring. Also, there are autonomous localization and navigation functions.

The JARoW [54] is a walker with three motorized omnidirectional wheels, which are used to

allow moving forward and backward, slide sideways, and rotate on the same spot. It also

contains proximity sensors to detect the user’s lower limb localization. The NeoASAS [55]

uses a sensor system for the characterization of the HRI during assistive gait and force sensors

integrated into the upper base support to detect the human motion intention. The SW of the

PAMM system [15] has a force-torque sensor mounted under the user’s handle to detect the

human motion intention, and onboard sensors monitor the user’s basic vital signs. The system

also uses wireless communication with a central computer in order to receive updated planning

information and to provide information on the health and user localization.

Another SW is the i-Walker [18], which is a standard rollator modified with sensors and ac-

tuators to promote upright control and walking for people with mild/moderate stroke. Two

hub motors are the actuators integrated into the rear wheels, which are used to brake and

help the user gait. This walker also has two modified handlebars with brake handles and force

sensors to determine and adjust the amount of help that each motor should be giving to the

user gait. The MARs [16] is the mobility assistance platform of MOBOT project [56]. This

SW is a rollator-type equipped with supportive handlebars and a range of sensors to measure

environment (LRF sensor) and human gait (LRF sensor and Kinect), and an Inertial Measure-

ment Unit (IMU) used to estimate the robot angular acceleration. The CAIROW [21] is an SW

with sensors to determine its localization in an indoor environment and to detect the user gait.

Force sensors on the handles are used to perform human-interactive functions. The Devices

for Assisted Living (DALi) uses a walking assistant called c-Walker [57], which has an Intel

Barebone mini desktop to do processing tasks, such as image processing, situation assessment,

trajectory planning, and guidance. The SW orientation is composed of encoders mounted on

wheels and an IMU. Furthermore, it uses a Kinect in front of it to detect obstacles in the

environment and to track people moving close to it.
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Hence, through sensors, a SW may obtain information to improve both the HRI and the HREI.

Nevertheless, it is also necessary to use HRI and HREI for strategies that facilitate the user

experience with the SW, which is the subject of the next topic.

2.4 Current Trend in Smart Walkers: From Human-Robot

to Human-Robot-Environment and Social Interaction

When SWs are employed to assist the human locomotion, the cognitive and physical processes

of the user are involved [12]. Both are necessary, as the SW may use this information to learn,

adapt and/or optimize its functions and interact with the user and the environment in a natural

way.

As the user and walker share the same space, the user should have an active role in the HRI and

HREI to promote the user safety, planning ability, reasoning capacity, execution of locomotion

and finally, social interaction. Furthermore, the walker needs specific functions, such as the

identification of the user’s motion intention, health monitoring, gait monitoring, mapping, lo-

calization, path planning, and obstacle detection and avoidance, and thus, to have autonomous

capabilities for cooperating directly with humans on the working space. Also, these functions

generally are necessary to improve the HRI and the HREI.

Research works have focused on HRI, which is usually supplied through sensors to detect the

motion intention. In Guido [51], force sensors at the handlebars are used to detect the user

intention. JAIST [54] and CAIROW [21] use a laser sensor to detect the user’s leg position and

generate velocity control commands for the SW.

In [12], the human movement intention is captured by force sensors on the arm support whereas

an LRF sensor detects the legs’ pose in relation to the walker. The user interacts in this case on

a physical and cognitive level with the walker, as the SW follows the user velocity, and his/her

motion intention, resulting in a natural channel of communication.

In [13], a controller for a human-robot formation is introduced, in which the human is the leader



of the formation. LRF and ultrasound sensors are used to detect the user location and motion

intention. In this context, SWs can offer support for people with physical disabilities and those

that cannot operate conventional walkers, reinforcing personal autonomy and improving their

daily living. However, when users also presents cognitive impairments, it may be necessary to

assist them at a different level. In this context, guidance and navigation functionalities may be

an interesting approach to assist them to reach the desired objective directly.

Despite the intense scientific and technological development around the SWs, little attention has

been paid to HREI. In [16], a shared control is proposed, whose control architecture integrates

cognitive, sensorial and physical assistance. A path following technique is also used to support

the cognitive assistance and, a LRF sensor is used for obstacle avoidance. CAIROW [21] has

functions for path following, localization and obstacle avoidance. All these SWs can guide

people, however, none of them allow the user to make decisions about navigation.

In PAMM [15], an adaptive controller is implemented to guide the user back to a predetermined

trajectory when the user deviates from it. It also detects its localization at the environment

and, based on a performance evaluation, its controller generates a virtual force input based on

the environment information to guide the user. The shared control included in PAMM allows

that the user makes decisions about the SW, but, when the user deviates from the predeter-

mined trajectory, the controller guides the user back to it, although the authors understand

that additional forces generate by the walker control strategy must be avoided, as external

perturbations may compromise the user’s balance [15].

The i-Walker [18] promotes cognitive assistance, helping the user’s guidance in everyday sit-

uations like moving uphill, downhill, turning left/right, and/or standing still, standing up,

among others. Force sensors placed at the handlebars are used to detect the user’s motion

intention, whereas sensors installed on the environment helps navigation and promotes cogni-

tive assistance. Nevertheless, the use of external sensors requires an extra investment to offer

cognitive aid focused on memory reinforcements and activities of daily living support, also

requiring known or predetermined environments for navigation, which could limit the user’s

independence.
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In [9] and [20], the SWs provide sensorial assistance for blind people navigation. In these

walkers, haptic feedback signals are provided through both the vibration of a belt and the walker

handles to indicate the spatial information and navigation commands. In both cases [9, 20], a

laser sensor provides information for obstacle detection. The interpretation of the navigation

commands requires a user’s cognitive process, which introduces natural delays and may induce

fatigue in the user [58].

There are research works involving new sensors and control strategies to improve the SWs

capabilities in different contexts [12,15,18,59]. However, most of the HREI strategies found in

the literature needs either wearable sensors and actuators on the individual, or sensors at the

environment. Also, when the user is an elderly and he/she is navigating with help from such

devices, in some cases, a travel path can be programmed for an easy displacement, and the user

does not make any decision about the SW, relieving the user from greater efforts and cognitive

process. In this case, the user is just being guided by the SW, with a secondary role in the

HREI [9, 15, 60]. Therefore, it is necessary to develop strategies with natural HREI, and thus,

stimulate the cognitive system through decisions making, giving an active role to the user at

navigation.

On the other hand, when SWs are employed to assist human navigation, such devices must not

only empower locomotion but also provide tools for allowing social interaction and improve the

HREI. As a user makes use of an SW, the control algorithms responsible for navigation should

take into consideration social conventions and human behavior to allow for proper interaction

with the environment and other people [61]. Therefore, it is essential to integrate some cogni-

tive capabilities to the device when used in shared spaces. Inspired by the proxemics studies

developed by Hall [62], some social conventions have been established in robot navigation to

avoid or interact within the different social spaces of human depending on the task.

However, literature regarding SWs has traditionally overlooked this kind of social behaviors, and

navigation systems [6,24,25] have been implemented in similar ways to traditional robotics, not

including the interaction with objects of the environment. For example, in [63] the Robot Op-

erating System (ROS) navigation stack and SLAM (Simultaneous Localization and Mapping)



Gmapping library were adopted, which are used for autonomous robots navigation in mobile

robotics. These algorithms do not permit the user to interact with another person during navi-

gation, as detected objects are considerate obstacles that should be avoided. In [15,50,64], path

following and obstacle avoidance techniques are used to guide the user to the final destination.

As people are perceived as obstacles, social interaction is also not permitted. Others SWs uses

haptic [19] or acoustic [65] signals to guide navigation. In both cases [19,65], the interpretation

of the navigation commands requires an user’s cognitive process, and introduces natural delays

that may induce fatigue in the user [58]. Furthermore, in both studies [19, 65], all obstacles in

the environment are seen as objects to avoid.

SWs are typically employed in environments such as hospitals, clinics and nursing homes, and,

in such indoor environments, the ability to move through confined spaces (i.e., corridors) is

necessary. However, works in the literature that address such kind of navigation are focused on

robotic wheelchairs [66,67] and traditional mobile robots [68,69]. As regards to SWs, the project

DALi developed the c-Walker to offer assisted navigation in complex indoor environments [57],

and to guide older adults across complex public spaces [23]. The c-Walker can detect and inter-

pret human behavior in the environment in order to plan the route of navigation, and through

haptic bracelets and audio signals, the user receives feedback for trajectory correction. Also,

people on the surrounding environment are seen as dynamical obstacles, and their trajectory

is calculated using the social force model (SFM) [70], to avoid collisions. Nevertheless, such

strategy does not foresee the SW’s user engaging in a conversation with other people during

navigation.

If the SW’s user cannot interact with another people during navigation, the distress, depression

and emotional problems may appear and affect his/her health, especially when the user is an

elderly [14]. In this context, it is necessary to integrate social interaction concepts into the SW

control strategy. According to the literature, social navigation depends on the environment

and of socio-cultural rules [71]. Specifically, through proxemics [62], spatial distances can be

defined to avoid obstacles using social rules and/or to allow a companion during locomotion

with the SW, to finally have social concepts into the SW navigation and improve the HREI.
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2.5 UFES’s Smart Walker (USW)

The robotic platform used in this work is shown in Fig. 2.3a. An embedded computer PC/104-

Plus standard is used to control and perform processing tasks, which consists of a 1.67 GHz

Atom N450 with 2 GB of flash memory (hard disk) and 2 GB of RAM memory. This computer

is integrated into a real-time architecture based on Matlab-Simulink Real-Time xPC Target

Toolbox. A laptop is additionally used to program the embedded computer and to store exper-

imental data when necessary. It is connected to the PC/104-Plus by Ethernet using the User

Datagram Protocol (UDP).

(a)

(b)

Figure 2.3: a) UFES’s Smart Walker (USW); b) Interaction layers.



The USW integrates two interaction layers; one for HRI and another one for HREI (see Fig.

2.3b). The implemented HRI strategy is performed relying on both physical and cognitive

interfaces [10, 12] based on two kinds of sensors: a pair of 3D force sensors (model MTA400 -

Futek, US), installed under the forearm supporting platforms, and a LRF sensor (model Hokuyo

URG-04LX) to obtain the distance between the user’s legs and the walker [12].

The HREI strategy is based on the environmental and displacement information, which is de-

fined by the following sensors: odometry, determined through a 9 DOF inertial sensor BNO055,

and an optical shaft encoders H1 (US Digital, US), which measures the wheels velocities. Both

sensors are used to provide the robot’s pose (position and orientation) in real-time. Another

LRF sensor, a RP-LIDAR (Robo Peak, China), is located in front of the SW, which is used as

sensory assistant, recovering environment information to detect walls, obstacles and people.

As a conclusion of this chapter, the HRI and HREI implemented have improved the SWs

capabilities in different contexts. However, some strategies have unnatural interaction between

user and walker, as they need external sensors on the user and/or environment to offer safe

navigation. Furthermore, many strategies leave the user in a secondary role during navigation.

In this context, it is necessary to develop control strategies that allow a natural HREI, thus

avoiding taking away the user control of the robot, giving to him/her the main role during

navigation, and contributing in a positive way to the cognitive system of the user. In addition,

to facilitate the HREI, it is necessary to include social concepts within the SW’s control to

promote social-aware navigation, and as a result, to improve the social acceptance of the SW

and promote the user social interaction.



Chapter 3

Admittance Controller Applied to

Walker-Assisted Gait

Such as aforementioned in Chapter 2 (see Section 2.3), SWs provide users with physical, sen-

sorial and cognitive support as well as assistance for guidance, orientation and localization [8].

According to the literature, the human motion intention in robotic walker can be measured or

estimated through the use of force and/or laser sensors. For example, PAMM [15], MARs [16],

ISR-AIWALKER [17] and i-Walker [18] employ force/torque sensors mounted under the walker’s

handle to serve as the main Physical Human-Robot Interface (pHRi) and Cognitive Human-

Robot Interface (cHRi), which are used to develop the HRI strategy. Force-sensing resistors

(FSR) and LRF sensor are used in a multi-sensor fusion method to detect the human walking

intention [72]. In [12], the human movement intention is captured by force sensors installed

under the forearm supporting platforms. Regarding the SW control, a control strategy com-

monly used to develop a natural interaction between the human and the SW is the admittance

control [10,15,16].

Admittance control can be used to develop a natural interaction between the human and the

SW, and also to generate signals to indicate the path to be followed in a real environment

through haptic feedback. The admittance control emulates a dynamic system and provides

the user with a sensation of interaction with the SW. This chapter presents the development

22



of a strategy to detect the human motion intention to command a SW, based on previous

studies of [12,73,74]. The user’s cadence oscillation and other noises present in the force signals

are filtered by the combination of Fourier Linear Combiner (FLC) and Weighted-Frequency

Fourier Linear Combiner (WFLC) filters [12]. This way, taking advantage of the physical

contact between the user and the SW, an interface to detect the human motion intention in a

natural and intuitive way is also presented. In addition, this chapter presents a study of the

influence of the admittance control parameters on the linear and angular velocities of the SW,

as this can affect the HRI, and, as a consequence, the user experience.

This chapter is organized as follows. First, it describes the pHRi and cHRi, presenting also

the admittance control strategy and the adaptive filters. Second, it describes the experimental

setup and the strategy of interaction. Finally, it shows the discussion of the experimental results

and the respective conclusions.

3.1 Admittance Control Strategy

The USW employs an impedance controller [10,16] to relate linear and angular velocities with

the force signals that are produced naturally on the forearms when the user is assisted by the

SW, thus establishing a comfortable speed for locomotion. This way, it leverages the physical

interaction between the SW and the user to generate the navigation commands (see Fig. 3.1).

Figure 3.1: Physical Human-Robot interface based on force sensors.

The signal on the Fy axis captured by each sensor is processed to infer the user’s motion

intention, and the signal on the Fz axis is used as one of the safety parameters to assure

adequate partial body weight support. The force (F (t)) and torque (τ(t)) signals are calculate
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according to 3.1 and 3.2:

F (t) = −FLY (t) + FRY (t)

2
(3.1)

τ(t) = −FLY (t)− FRY (t)
2

× d, (3.2)

where FLY is the left arm forward force, FRY is the right arm forward force, and d is the

horizontal distance between the sensors.

F (t) and τ(t) signals are used by the admittance controller to generate the desired linear νc(t)

and angular ωc(t) velocities for the walker, defined as:

νc(t) =
F (t)−mν ν̇(t)

dν
(3.3)

ωc(t) =
τ(t)−mωω̇(t)

dω
, (3.4)

where the masses mν and mω, and the damping dν and dω are parameters that have to be

adjusted, as they have a direct influence on the HRI. Section 3.3 shows the experiment used to

assign the value of the admittance control parameters.

Both velocities are also used to impose not only the start and end of the locomotion with the

SW, but also a comfortable gait speed. Furthermore, these velocities are sent to each motor of

the SW using the Eq. 3.5 and 3.6 [75].

MotorLeft = νc(t)− ωc(t)
D

2
, (3.5)

MotorRight = νc(t) + ωc(t)
D

2
, (3.6)

where D is the distance between the SW wheels.



3.2 Navigation Commands Recognition

When the user is walking supported by the SW, natural trunk oscillations during gait are

converted into force interaction signals. Additional mechanical vibrations caused by floor ir-

regularities were also observed on force interaction signals in [76].

As shown in previous works [76, 77], it is necessary to apply an adaptive filtering strategy to

obtain a more suitable force signal to be used with the proposed control strategy.

Figure 3.2: Block diagram to eliminate the cadence from force signals.

Relying on past developments of the research group [12], the author also applies the combi-

nation of the Fourier Linear Combiner (FLC) [78] algorithm to estimate and cancel cadence

components of each input signal (FLY and FRY ), and a Weighted-Frequency Fourier Linear

Combiner (WFLC) [12] for the estimation of the cadence signals obtained from the signals

acquired by the LRF sensor (see Fig. 3.2).

Other mechanical vibrations caused by floor or wheels irregularities are filtered by traditional

low pass filtering topologies, as such components are more easily separable from the force com-

ponents related to the motion intention. In this work, we applied a second order Butterworth

low-pass filter (cutoff frequency of 0.8 Hz) to reject high frequency components that are not

associated with the gait cadence.
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3.3 Experimental Study

Twenty subjects without previous training with the SW participated in the experiments. A

computer was used to record both the SW velocities and user data, such as discharged force

on the SW, force, and torque. The masses of the participants are 66.72 ±13.63 kg, and their

heights are 1.66 ±0.075 m. Two different experiments were proposed to validate the filter

behaviour and to establish the value of the admittance control parameters.

3.3.1 Experiment 1. Following a Straight Line

The first experiment focused on the linear velocity parameters. For this, the protocol 4-Meter

Walk Test (4MWT) presented in [6] was used, which is enough to the controller reach the

steady-state conditions. The user was asked to walk a straight line with the SW (see Fig. 3.3).

The special interest of this experiment was at the start and the end of the locomotion with the

SW, due the fact that the movement needs to be natural and the SW must not have any inertia

that makes its locomotion difficult, i.e., the user has not to do an additional force to start or

stop his/her displacement. In this experiment, the mass mν was decreased 2 kg, starting at the

value equivalent to 50 % of the user’s weight (which was an empirical criterion), until finding

a parameter value where the user could have an easy locomotion with the SW. Once the user

started feeling comfortable maneuvering of the SW, these parameters were fine-tuned in steps of

0.5 kg until finding the suitable value, thus, the user had to walk the straight line n-times. The

damping dν parameter, on the other hand, was adjusted in order to have a comfortable gait.

Wrong values of these parameters make hard breaking the inertia moment at the beginning of

the locomotion and difficult to stop the SW.

3.3.2 Experiment 2. Following the Lemniscate Curve

At the second experiment, the mass mω decreased each 1 kg, starting at the value equivalent

to 20 % of the subject’s weight (which was an empirical criterion). Once the user could do the



movement without feeling any effort on the lower limbs or on the hip, the mass was fine-tuned in

steps of 0.05 kg until finding the suitable value, this way, the user had to follow the path n-times

until finding the correct value. In order to determine the damping value, a path performing a

lemniscate curve (see Fig 3.4) was used. This kind of path was chosen due to it is possible to

analyze the performance of the controller in straight and in curve-shaped trajectories exciting

its dynamics. Each participant was asked to do one and a half eight-shaped curve, starting

from the middle of the path indicated on the floor. The damping dω value was then adjusted

for each user, such that a movement without any effort was achieved. Both the dynamics of

the SW and the user have an influence on the maneuverability of the SW. Furthermore, it

was necessary to do another adjust to mω, as the inertia introduced for this mass affected the

USW’s maneuverability, which occurred at the exit and entry of the curve.

Figure 3.3: Experiment 1, where the subjects were asked to follow a straight line.

Figure 3.4: Experiment 2, where the users were asked to follow a lemniscate curve indicated
on the floor.

In both experiments, bigger parameter values of mass and damping that lead to an easy SW’s

maneuverability were determined. This criterion was defined just in the point when the user
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began to do the locomotion in a natural way and without any force/torque that reflected an

effort on the legs or hip. For smaller values, the user could drive the SW without any difficulty.

3.4 Experimental Results and Discussion

First, it was necessary to verify the behavior of the algorithm established to eliminate the

cadence-related component, which was filtered from the force signal (y − axis). For this, data

recorded of one participant following the lemniscate curve was used. Figure 3.5 shows the

behavior of the adaptive filter. It can be observed that the oscillations detected by the force

sensors, caused by the user’s cadence, which was 0.5 step/seg, and mechanical vibrations of the

SW, were eliminated.

Figure 3.5: Adaptive filter behavior.

Regarding the study of the admittance control parameters and its influence on the user expe-

rience, the results are presented below.

3.4.1 Experiment 1: Following the Straight Line

The quantitative variables like the users’ height and weight do not seem to have any relation to

the linear velocity of the admittance control parameters. However, after analyzing the recorded

data, a proportional relation between the user’s discharge force on the SW and mν was found

with an exponential trend (see Fig. 3.6). Such as it can be seen from the figure, for users with

small discharge force, the mass value was also small.



A damping dν , with a mean of 10.35 ± 1.38, was found, which only influenced the comfort gait

speed. Nevertheless, it is necessary to limit the control signal of the linear velocity to 0.5 m/s,

due to the DC motors limitation. This limit is close to the gait speed estimate for usual pace

in elderly people with mean age equal to 70 years old and without any gait disorder [79].

The relationship between the user’s discharge force on the SW and the mass mν of the linear

velocity (see Eq. 3.3) can be defined by the following mathematical model:

mν(t) = A.r(Dischargeforce), (3.7)

where A = 8.47 and r = 1.05. This model can be implemented in the embedded computer of

the USW in order to automatically compute the value of mν . By fixing the value of dν to 10.35

kg/s, the linear velocity parameters of the admittance controller can be computed on-line.
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Figure 3.6: Tendency of user discharge force with respect to the mass mν .

From Experiment 1, it was observed that mass is the parameter that has the highest influence

on the SW maneuverability. An erroneous value of this parameter makes the start and the end

points of the SW locomotion very difficult.

Figure 3.7a shows the behavior of the main variables of the controller for an easy locomotion.

For this case, the controller data were: mass mν = 15 kg, damping dν = 10.35 kg/s and

dischargeforce = 10N . The user parameters were: height = 1.67 m and weight = 72 kg. With

the same user, the results depicted in Figure 3.7b were obtained using a mass value of mν = 22
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kg. This last value lead to a very difficult locomotion with the USW.

(a)

(b)

Figure 3.7: a) Controller behavior with a good selection of admittance control parameters
(mν = 15 kg, dν = 10.35 kg/s); b) Controller behavior with an erroneous mν value (mν = 22
kg, dν = 10.35 kg/s).

In Figure 3.7a, it is possible to see that the linear velocity slowly decreases around 20 s, where

a natural stop of the user locomotion occurs. However, when the controller has a wrong mass

value, the user has to do additional movements to manipulate the SW and stop it (see second

20 of Fig 3.7b). It is also possible to observe that force and torque are higher in Figure 3.7b,

compared to Figure 3.7a. This is the result of setting the controller parameters according to



the user discharge force. Moreover, when the linear velocity equation has an erroneous mass

value, the user has to do a high compensating force to stop the SW (see after the dotted line

of Fig 3.7a and 3.7b). This action can generate torque signals on the user and affect his/her

balance as well as produce a collision between the user and the SW, if the SW does not have

a restriction for negative linear velocities. In addition, the Mean Square Error (MSE) of the

linear velocity oscillates between 0.11 m/s and 0.13 m/s, and the angular velocity oscillates

between 0.015 rad/s and 0.016 rad/s.

3.4.2 Experiment 2: Following the Lemniscate Curve

Once the linear velocity parameters were established, the angular velocity parameters were

adjusted. In this experiment, no relationship, neither linear nor non-linear, was found between

the height, weight or discharge force of the user and the mω parameter. Figure 3.8 shows the

distribution of user discharge force with respect to mω.
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Figure 3.8: User discharge force with respect to mω.

The results of this second experiment suggest that the parameter mω depends on the dynamics

of the SW and the user. Furthermore, the linear velocity value of the SW, when entering the

curve, strongly influences the SW maneuverability during the execution of the curve. According

to the data registered during the experiment, it is recommended to set this value to 0.01% of

mν , if an online calculation is required, as this criterion allows move the SW without any effort.
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The selection of this value can be supported by the fact that it was typically lower than the

upper limit accepted by each participant during the experiment. Moreover, with this value, the

user does not put any additional effort on the lower limbs or on the hip.

Concerning the damping parameter dω, the recorded mean value was 20 ± 0.5 m/kg. In

addition, the results suggest that its value affects the user angular locomotion speed. Hence,

for a comfortable steering velocity during the curves, dω could be set to 20 m/kg.

(a)

(b)

Figure 3.9: a) Following the eight-shaped curve with a good selection of admittance control
parameters (mω = 0.26, dω = 20); b) Following the lemniscate curve with bad admittance
control parameters (mω = 0.35, dω = 20).



Figure 3.9a shows the controller behavior used to follow the path shown in Figure 3.4. The

parameter values for the linear velocity were the same as those defined for Figure 3.7a. The

controller behavior for a good parameter selection is shown in Figure 3.9a, whereas Figure 3.9b

shows the controller curves for a bad selection of mω. From Figure 3.9a, it can be observed that

the user had to apply a lower force to drive the SW compared to the one depicted in Figure

3.9b. Furthermore, when the mω is wrongly defined, the user has to apply additional force and

torque in order to control the SW when exiting the curve (see red dotted line in Fig 3.9b).

This can affect the balance of the user and increase the risk to fall. In addition, the MSE of

the linear velocity oscillates between 0.2 m/s and 0.23 m/s, and the angular velocity oscillates

between 0.1 rad/s and 0.15 rad/s.

The data and the results produced during this study confirm that the interaction between the

user and the SW can be affected by the admittance control parameters. Thus, a good selection

of these variables results in a natural locomotion of the SW. On the other hand, the locomotion

during the curve can be made more comfortable if the linear velocity is limited.

As the conclusions of this chapter, the admittance control strategy proposed here allows a

natural locomotion with the USW. Also, it was shown that with this control strategy the user

can regulate a comfortable gait speed. In addition, the use of only force sensors to define

a natural HRI is reflected on the computational efficiency and low processing of the control

algorithm in real time. This experimental study allowed obtaining good results in terms of

user’s locomotion performance, according to his/her motion intention. This way, the interface

developed here allowed a natural interaction between the user and the SW without the need of

external sensors on either the user and/or the environment.

A good set of filter parameters allowed correctly detecting the human motion intention, and

through the use of an admittance control strategy, the SW attended such motion intention.

Once established the suitable filter, this chapter showed that the motion intention was executed

in real time, and the signal oscillations and noise were canceled.

According to the study of the influence of the admittance control parameter within the HRI,

it was noticed that the damping parameters influenced the comfortable gait speed in the navi-
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gation with the USW. Conversely, the inertia added by the mass parameters affected the start

and stop locomotion movements, as well as the start and end of the curve. From these results,

it is clear that a good selection of parameters might prevent possible falls and collisions of the

user, and, on its turn, avoid compromising the user’s health during navigation.

The model established in this chapter to calculate the admittance control parameters will be

used in an offline way in the next chapters. However, a mathematical model to compute the

different admittance control parameters, in an online way, will be investigated in a future work.

Apart from this, the next chapter describes new control strategies to improve the HRI with a

real environment using haptic feedback to guide the user navigation. This way, novel strategies

to allow a natural and intuitive HRI will be developed.



Chapter 4

Human-Robot-Environment Interaction

Based on Spatial Modulation of

Admittance Controller for Smart Walker

Navigation

This chapter presents the proposal, implementation and validation of a new strategy for con-

tinuously modifying the dynamic parameters of the admittance controller to induce the user to

follow a predetermined path in a natural and intuitive way. The proposed method generates a

spatial modulation of the damping parameter, simulating a virtual canal for locomotion through

variable friction, and inducing a sensation of hard navigation whenever the user deviates from

the right path or is outside of such virtual canal. The user perceives such sensation through

the physical contact between his/her forearms and the SW structure. Furthermore, the user

receives a haptic feedback as an increment in the difficulty of locomotion also when he/she is

steering in the wrong direction. This way, the user needs to search the right direction and

intuitively find the easy maneuver. The proposed controller uses a multimodal cognitive inter-

action with the user through two channels. The first one is composed of a cHRi and a pHRi,

which uses a haptic feedback that results from the physical interaction between user and SW.

35
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The second channel is a cHRi, which uses a visual interface through two LEDs that indicate

the direction that the SW should take to follow the correct path. This control strategy induces

the user to follow the path in a natural and intuitive way, providing a “feeling” of command

over the SW. Also, the user’s cognitive system is stimulated through decision making when

direction correction is needed.

4.1 Background

Few works consider the variation of the admittance controller parameters for the user interact

with the environment. In [15], the author proposes a shared control with a cost function for

the force signal, which combines the proximity to obstacles, the deviation from the planned

trajectory and human stability criteria. The shared control varies the force gains to provide

more authority to the human or the robot. This way, the force signal of the admittance

controller is variated. However, the user’ motion intention may be affected because the user’s

force/torque signals do not command the smart walker. This change of robot control authority

may produce a confusion sensation in the user and affects his/her cognitive system. With the

control strategy presented in this chapter, the SW maneuverability is affected based on the

damping parameter variation, but the user’s motion intention is maintained. Nevertheless, the

user needs to make decisions about keeping effort to drive the SW or correcting the locomotion

direction and have an easier navigation. In [16], a shared control is proposed in order to on-

line adapt the damping parameter of the admittance controller using the drift diffusion (DD)

model proposed by [80]. That model describes the decision-making in humans as a process in

which decisions are based on past decisions, and the decision criteria are continuously adjusted

in order to maximize the reward obtained throughout task execution [16]. Based on the DD

model, decision maker blocks for sensorial, cognitive and physical assistance decide the level

of robot assistance. As the user moves far away from the main task (desired path, obstacle

avoidance), the controller assigns a higher decision making power to the robot, which makes

the user lose maneuverability control on the robot. The strategy proposed in this chapter

never takes away the user control of the robot. Furthermore, it allows varying, in real-time the



damping parameter of the admittance controller based on its spatial information, and gives the

user a main role in the HREI through a haptic sensation to discern the best path to follow.

This chapter is organized as follows. First, it describes the control strategy for the HREI and

how the admittance parameters are modulated. Second, it describes the experimental setup,

showing the way the user is guided along the path. Then, it shows the experimental results,

as well as the discussion about them. Finally, conclusions about the controller strategy are

presented.

4.2 Control Strategy for Smart Walker Navigation

A novel control strategy, shown in Figure 4.1, is introduced here, which relies on the admittance

controller proposed in [16] to obtain the user’s motion intention. The admittance controller

emulates a dynamic system and gives the user a feeling as if he/she is interacting with the

system specified by the admittance model [16]. A path following controller [75] is used to guide

the user through a predetermined path. The objective of the path following controller is to

provide a desired orientation to the SW. The admittance modulator takes the orientation error

and the user’s torque intention to change, in real-time, damping parameters of the admittance

controller. A supervisor is used to establish safe parameters for the user. Each block in Figure

4.1 is explained in the following sections.

The user’s motion intention is determined, such as described in Chapter 3. Using the pHRi

composed of the force sensors localized under user forearms platforms (see Fig. 3.1), the signals

from the y axes of each sensor are used to obtain force and torque measurements (box 1 Fig.

4.1), depending on the arm motion, as shown in 3.1 and 3.2. For the linear control velocity

νc(t) and angular control velocity ωc(t), (box 2 Fig. 4.1), the procedure described in Chapter

3 is used, which is calculated as shown in 3.3 and 3.4, respectively.

To guide the user through a predetermined path, a path following controller is used (box 3

Fig. 4.1), which uses the kinematic model of an unicycle-like mobile robot [81]. The use of the

kinematic model for controlling the movement of the SW is based on the fact that the assistance
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device moves with slow velocities and accelerations. In that sense, it is not necessary to apply

a dynamic model, as the dynamic imposed by the admittance control is slow when compared

with the robot dynamics.

Figure 4.1: Block diagram of the controller with admittance modulation.

As the user has the domain of the walker, the path following controller provides the reference

orientation. Such desired orientation is calculated through the control structure for path fol-

lowing developed by Andaluz et al. [75]. The reference point is placed in the middle of rear

wheels axis, at the initial user’s feet position. In closed loop, the equation is defined in the

following way: ẋd
ẏd

 = νp + νa, (4.1)

where νp is the path velocity vector and νa is the path attraction velocity vector. Hence, the

full equation is represented by:

ẋd
ẏd

 =

νrcosθp + lxtanh
(
kx
lx
x̃
)

νrsinθp + lytanh
(
ky
ly
ỹ
)
 , (4.2)

where νr is the path desired velocity; θp is the path reference orientation, defined by the tangent

of the nearest point to the path; lx and ly establish the saturation limits of position error; kx

and ky are constant gains that determine the slope of the tanh; x̃ and ỹ are the position errors

of the robot with respect to the path; and νr is a reference velocity (see Fig 4.2).



Figure 4.2: Predetermined path for following.

The function in closed loop (Eq. 4.2) is used to calculate the desired orientation θd (box 4 Fig.

4.1) shown in 4.3 (see Fig. 4.2), which is generated from the orthogonal vectors ẋd and ẏd, and

is the strategy proposed to relate the path following controller with the HREI.

θd = atan

(
ẏd
ẋd

)
(4.3)

4.2.1 Admittance Spatial Modulator

The key difference from the controller used here compared to the classical admittance controller,

is that it allows the variation of its dynamic parameters according to sensors input signals. The

admittance modulator (box 5 Fig. 4.1) is in charge to generate the signals that produce the

haptic sensation of the control strategy proposed here.

Figure 4.3: Block diagram of the admittance modulator.

The new strategy of the admittance spatial modulator is used to change the damping parameter

of Equations 3.3 and 3.4 as a function of information collected from the environment. Hence,



40 Chapter 4. HREI Based on Spatial Modulation of Admittance Controller

the reference velocities are defined as:

νc(t) =
F (t)−mν ν̇(t)

dν(t)
(4.4)

ωc(t) =
τ(t)−mωω̇(t)

dω(t)
(4.5)

The damping dν(t) and dω(t) are the dynamic parameters of the admittance control, which

allows the desired HREI, and can increase or decrease the linear velocity νc(t) and angular

velocity ωc(t).

The admittance modulator is in charge of establishing a dynamic signal that modifies the damp-

ing parameter in the admittance controller, thus generating the haptic feedback through the

pHRi. This modulator has as input variables the desired orientation θd and the SW orientation

θ (see Fig. 4.3). The angular position error (θ̃), shown in Eq. 4.6, is calculated with respect

to the actual orientation θ of the SW. Such errors occur when the robot has diverted from its

path.

θ̃ = θd − θ (4.6)

Now, it is necessary to establish the function that modifies in real-time, the parameters of

the admittance control, and, in this way, guides the user along the predetermined path. The

damping parameter implicitly hints the correct direction of the path following, decreasing when

the device is on the correct path.

From Eq. 4.4, the parameter mν remains constant, and dν has an inverted Gauss behavior (see

Fig. 4.4), as this function offers changes with soft transitions, which are reflected in the user

experience. The function describing the curve in Figure 4.4 is shown in Eq. 4.7.

dν(t) = dνmax − ddmaxe
(
− θ̃
δdν

)2

, (4.7)

where, dνmax is the maximum limit of dν(t); ddmax is the maximum decrease of velocity damping

(see Eq. 4.4); and δdν is the parameter that determines the width of dν(t) function (see Eq.

4.4).



Figure 4.4: Curve of damping force dν .

This way, when θ̃ is zero, the damping is minimum, allowing the SW to move with great facility.

The bigger the orientation error, the bigger is the locomotion difficulty with the SW. Also, the

linear velocity νc(t) decreases.

To define dν , it is necessary to take into account (see Fig. 4.4):

dνmax: maximum damping wished for linear velocity (see Eq 4.4)

ddmax: maximum variation of dν(t) function. (dνmax − dνmin).

δdν : θ̃ for maximum damping.

For ωc, the same restriction as in νc is taken, i.e., mω remains constant. In Eq. 4.5, the

definition of dω is given by:

dω(t) = diω +Gdωtanh

(
1

Pdω
τ θ̃

)
, (4.8)

where diω is the initial damping value in the angular velocity ωc(t); Gdω is the gain variation

of the torque damping (see Ec. 4.5), and Pdω is the variation slope of curve of dω.

It is necessary to take into account the restriction presented in Eq. 4.9 to avoid having negative

values in dω(t)

diω > Gdω (4.9)
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When θ̃ is positive and the user’s torque τ induces a negative ωc, and vice versa, it implies that

the walker’s user intents to correct the angular position error (see Fig 4.5). In this context,

when θ̃ becomes smaller, dω tends to decrease. On the contrary, the user has to apply more

effort to turn the SW.

To define dω, it is necessary to take into account (see Fig. 4.6):

diω: (maximum damping desired (dωmax) + minimum damping desired (dωmin))/2.

Gdω: (maximum damping desired (dωmax) - minimum damping desired (dωmin))/2.

Pdω: defined by empirical criterion in function of haptic feedback.

Figure 4.5: Criterion for orientation correction.

Figure 4.6: Curve of torque damping dω.



The spatial modulation of dν and dω can be adjusted on the limits where the user starts to feel

the haptic feedback (i.e. mobility difficulty when the walker does not follow a predetermined

path). The user interprets the SW movement within the limits as a virtual mobility canal that

allows easier locomotion. Furthermore, the cognitive interface provided by the haptic feedback

interacts with the user through a process of decision-making about the path to follow, keeping

the brain active.

4.2.2 Safety Supervisor

Although the USW offers a stable assistance for walking, it is necessary to establish safety

parameters for the user through a sensory assistant and a cognitive interface, in order to have a

safe HREI. In this case, a supervisor (box 6 Fig. 4.1) with three safety layers was implemented.

The first safety rule regards the user’s partial body weight support on the SW platform, which

has a threshold of 0.6 kgf in the z axis of each force sensor. If a threshold is not surpassed,

no motor/control command is sent to the drivers. In this manner, a suitable posture or body

weight support is necessary for the system to operate. Otherwise, the robot remains blocked to

allow the user to position himself/herself. Once the controller detects that the threshold was

reached in each sensor, νc(t) and ωc(t) assume the values defined by the control strategy.

Figure 4.7: Obstacle detecting zone.

In the second safety rule, a protection zone with 70 cm of radio around the RP-LIDAR laser

sensor is defined (see Fig. 4.7), therefore, if the laser sensor detects an obstacle within the

interest zone (box 7 Fig. 4.1), νc(t) and ωc(t) become zero to avoid a possible collision; if the
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contrary happens, they acquire the values of velocity provided by the controller. As obstacle

avoidance is not the object of this study, this simple solution was implemented to guarantee

user’s safety when navigating with the robotic device.

The third safety rule defines a lower limit of 20 cm and an upper limit of 50 cm of distance

between the user and the SW. This way, when the user drives the SW backwards and the LRF

sensor measures a distance smaller than the established lower limit, νc(t) and ωc(t) become

zero to avoid collisions between the user’s legs and the SW. Furthermore, when the LRF sensor

measures a distance higher than the upper limit, νc and ωc also become zero to avoid user falls.

Otherwise, the SW is driven by the velocities obtained from the proposed controller.

4.2.3 Visual Cognitive Interface

Two LEDs are used as cHRi with the user (Fig. 4.8). Such visual interface (box 8 Fig. 4.1)

indicates to the user the correct orientation when the walker is outside the predetermined path.

As the controller establishes a virtual mobility canal for easier locomotion, a limit of ± 250 for

θ̃ was defined, because, under this limit, dν takes a value that allows an easier maneuverability

with the SW.

Figure 4.8: Position of LEDs on the USW.

Also, the limit in θ̃ allows that the visual channel of the multimodal cognitive interface does

not saturate the user’s vision. Once θ̃ surpasses the error limit, this cHRi indicates the turn

intention that the user should make, and, this way correcting the error in θ̃. Then, LEDs

light on according to the turn recommendation. When the user achieves the correct direction,

the two LEDs turn off. The visual interface assists cognitively the user to achieve the correct

direction to come back to the predetermined path, complementing the haptic feedback.



4.3 Experimental Study

Eight people (28.5 ± 5.42 years old) without any history of gait dysfunctions and with no

previous training with the SW participated of the experiments. During the experiments, the

following data was recorded: 1. The control signals (ωc, νc, dν , dω, θ̃); 2. SW position (x, y); 3.

Linear and angular velocities of the SW; 4. LEDs signals; User-walker interaction parameters

(F and τ); 5. User legs distance to SW (using LRF sensor).

Table 4.1: Virtual mass values and user weight.

User No. Weight [kg] mν [kg] mω [kg]

1. 53.6 1.8 1.3
2. 57.4 1.3 1
3. 58 1.3 1
4. 60.4 1.8 1.4
5. 61.4 2 1.5
6. 65.4 3.8 3.5
7. 71.7 3.3 3
8. 101.6 3.8 3.5

Two different paths unknown by the participants were proposed, which were used to evaluate

the controller performance and the cognitive interaction. In order to improve the HREI, the

user weight was taken into account. It was found an empirical relation between the discharge

force of the user on the SW and the values to be assigned to the constants mν and mω in

Equations 4.4 and 4.5, respectively. The weight range of participants was 53.6 kg to 101.6 kg

(see Table 4.1). Once the constants of virtual mass were known, it was verified that the user

could move the SW comfortably through a short path in straight line. The other constants

values used in the controller were determined empirically from the experiments with the control

strategy, which are described in Table 4.2.

4.3.1 Following Straight Segments

The aim of this experiment was to observe the controller behavior using the multimodal cog-

nitive interface and the haptic feedback. Here, the user voluntarily went outside the predeter-
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mined path. The start point of the experiment was at x = 0 and y = 0. A path made of three

segments linked with angles of 90o was used (see Fig. 4.9a). This path has a first segment of

2.6 m in a straight line, then a left turn of 90o, followed of a straight segment of 1.5 m, and at

last, a right turn of 90o for a final segment of 10.4 m in a straight line. The points of the path

were set every 0.2 m. On the first part of the experiment, the user was asked to follow LED

indications of the SW until reaching the end point, which was 5.2 m from the start point. On

the second part, in the first turn, the user was asked to ignore the controller recommendations

and try to maintain it in the straight direction, in such a way that the user could feel the

controller action through the haptic feedback. When the SW became difficult to maneuver,

the user was asked to follow the visual interface by LEDs and re-direct the walker in the right

direction.

Table 4.2: Values of constants used in the control strategy.

Path following
Constant Value

kx 0.7
ky 0.7
lx 3
ly 3
νr 0.3 m/s
Spatial modulator of dν
Constant Value

dνmax 30
ddmax 29.5
δdν 0.8
mν see Table 4.1
Spatial modulator of dω
Constant Value

diω 4
Gdω 3.5
Pdω 2
mω see Table 4.1



4.3.2 Finding the Circle Path

This experiment was conducted to validate the path following controller, and to observe the

controller guiding action when the user was outside of the path. In this experiment, as a

hypothetical case, the user starts the locomotion outside the predetermined path (see Fig.

4.9b). A circle was used as predetermined path, with radio of 2 m and center at x = 3 and

y = 0. The start point of the experiment was at x = 0 and y = 0. At this experiment, the

user had greater interaction with the haptic feedback compared to the experiment No. 1. In

this case, the user had to feel the changes of locomotion difficulty of the SW to find the path.

In the first experiment, the user had to find the circle path using the haptic feedback only. In

the second experiment, the user had to use the multimodal cognitive interface to find the circle

path.

Figure 4.9: Experiments with different paths. (a) Experiment 1. Following straight segments.
(b) Experiment 2. Finding the circle path.

4.3.3 Supervisor Functionality

This experiment was conducted to verify the supervisor functionality. A straight line path of

15 m was used, and it was checked if the linear and angular velocities became zero when the

SW was very close to obstacles, or when the threshold in the z axis for the two sensors was not

exceeded. The obstacles were located at coordinates (6, 0) and (9, 0). The bad user’s posture

was simulated at the beginning and the end of the predetermined path in this experiment.
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4.4 Results and Discussions

4.4.1 Following Straight Segments

In the first experiment, users were asked to follow a predetermined path while complying

with recommendations from the multimodal cognitive interaction. Figure 4.10a shows the

results from one participant for the first part of the experiment. It can be seen that the LEDs

indications were useful to provide hints about the predetermined path, allowing the user to

stay on the path most of the time.

Figure 4.10: Following the straight path. (a) Path following considering cognitive interface
information. (b) Path following with induced error.

A representative result of the second part of the experiment related to the path of straight

segments is shown in Fig. 4.10b. In this case, the data collected from user 7 (see Table 4.1)

was used. In such case, the user was asked to go ahead at the straight path and to ignore

the turn recommendation given by the visual cognitive interface. By doing so, when deviating

from the predetermined path, the user felt the haptic feedback provided by the controller. As

a consequence, physical interaction forces between the user and the walker increased while

the user attempted to keep going forward (see Fig. 4.11). Once the user started to feel the

controller action, the user was asked to follow the visual recommendation of the LEDs and to

do a turn movement to the correct orientation. After following the controller recommendations



through the multimodal cognitive interface for a while, the user was once again asked to deviate

from the predetermined path intentionally to force a reaction of the control strategy (see Fig

4.10b at 8 m of distance in x axis, approximately). Once the user could not keep going forward

with the SW, the user was asked to follow the LEDs recommendations, rotating in the correct

orientation and returning in the direction to the predetermined path.

Figure 4.11: Spatial modulation curve of dν and haptic force response of the straight path of
Fig. 4.10b. Up to down: Control and SW linear velocities, user’s force signal, θ̃ signal and dν
signal.

A smaller guiding force is produced when the SW is on the predetermined path (see Fig. 4.11).

In that situation, the parameter dν assumes its minimum value, but, once dν increases, it is

observed that the user has to make more force to keep the locomotion (see black line spacing

sections Fig. 4.11). While the walker is on the predetermined path, the force applied in the

y axis of the sensors is between 0.2 kgf and 1 kgf , and the linear velocity of the device is

higher (0.3 m/s approximately). When the spatial modulation acts, the linear velocity of the



50 Chapter 4. HREI Based on Spatial Modulation of Admittance Controller

SW decreases to 0.05 m/s, and the user needs to apply higher forces in order to move the

SW. In this case, the SW is out of the predetermined path and the applied force is around or

higher than 5 kg (see Fig. 4.11 -Force). At the strong curves of the predetermined path, i.e.,

on 90o curves, the spatial modulator of dν becomes saturated (see Fig. 4.11, left and right turn

sections). The user interprets this as an uncomfortable effort that does not allow keeping going

ahead. When the exit from the predetermined path is gradual, the user feels as the effort to

move the SW goes increasing progressively. Thus, the user has to increase the force applied

on the SW in order to move ahead (see Fig. 4.11, between 8 m and 12 m of distance in x

axis section). In this case, the haptic feedback of the controller has a natural and intuitive

interaction, generating a comfortable user’ experience, as he/she does not make an effort to

maneuvering the SW.

Figure 4.12: Spatial modulation curve of dω and haptic torque response of the predetermined
path in Fig. 4.10b. Up to down: SW angular velocities, user’s torque signal, θ̃ and dω.

Figure 4.12 shows the control signals related to the torque. In this case, when an error in θ̃ is



present, it can be observed that the signal of dω begins to increase. The user feels the haptic

feedback when performing a change towards the wrong orientation on its own axis (see Fig

4.12 -Torque). In this context, when the user rotates around its own axis with the intention

of correcting the angular position error θ̃, the torque needs to decrease (see red dotted line on

Fig. 4.11 and Fig. 4.12, at the left turn section). Therefore, the linear velocity of the SW

begins to increase. Once it is found in the correct direction, it is not necessary to apply torque

anymore, hence, the angular velocity decreases to 0 rad/s approximately. The section between

8 m to 12 m of distance in the x axis of Fig. 4.11 and Fig. 4.12 shows that the SW goes

out of the predetermined path intentionally. It can be observed that when the user begins to

rotate towards the predetermined path, the torque applied by the user to manipulate the SW

begins to decrease. When the correct orientation is reached, the linear velocity increases and

the angular velocity decreases to become 0 rad/s (see Fig. 4.12 -Torque).

Additionally, Fig. 4.12 shows that when the user applies a torque in a wrong direction (see Fig

4.12), the value of the dω increases and the angular velocity of the SW decreases. This leads

the user to apply more torque to keep rotating. Nevertheless, when the user wants to correct

the angular position error θ̃ or follow the visual cognitive interface, the value of dω becomes

minimum. In such case, the torque and θ̃ have contrary signs. This is reflected to the user as

a soft turn movement, easing the SW maneuverability.

Through the signals of Fig. 4.11 and 4.12, it can be observed the feedback form that the

admittance spatial modulation controller has on the user. This haptic feedback becomes a

signal for the HREI and, consequently, a natural and intuitive way to guide the user on a

predetermined path.

At the experiment 1, the absolute error of linear and angular velocities of the controller was

analyzed. A metric termed the Kinematic Estimation Error (KTE) is shown in Eq. 4.10 [76],

which compares the path traveled to the predetermined path:

KTE =
√
|ε|2 + σ2, (4.10)
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where |ε|2 is the mean square of the errors between the predetermined path and the path

followed by the SW, and σ2 is the variance of this data. Thus, KTE also increases with the

increase of variance.

Figure 4.13: Errors in the following straight path. Group 1: Second part of the Experiment
1 (user 7 of Table 4.1). Group 2: Average data of path following by user in the first part of
the Experiment 1. (a) Linear velocity. (b) Angular velocity. (c) Kinematic Estimation Error
(KTE).

In Fig. 4.13, the bars of Group 1 refer to the data collected from the user 7 (see Table 4.1) in

the second part of the Experiment 1. The travel along the predetermined path shown in Fig.

4.10b is also performed by user 7. The data that correspond to the Group 2 are referred to the 8

users of the experiment. In addition, it can be observed that the linear velocity error oscillates

between 0.12 m/s and 0.15 m/s (see Fig. 4.13a), and the angular velocity error oscillates

between 0.075 rad/s and 0.08 rad/s (see Fig. 4.13b). This is because no participant had any

training with the SW, and, hence, some of them were cautious at the moment of manipulating

the walker. For some users, it was not easy to keep the motion close to the predetermined path,

because they did not know the path and could not see it. Therefore, they had to apply torques

mainly guided by the LEDs. This is evidenced in the absolute error average calculated for the

angular velocity (see Fig 4.13). Regarding the path following, it is shown that the user 7 had a

higher KTE error, as this user was intentionally asked to induce errors during the travel along

the predetermined path on the second part of the experiment. Nevertheless, the KTE with

variance ±0.019 to Group 1 and ±0.017 to Group 2 never went over 0.2 m in both cases (see

Fig. 4.13c), which seems to be adequate to comply the purpose of guiding the user.



4.4.2 Finding the Circle Path

In relation to Experiment 2, once the users learned how to handle the SW, this experiment was

aimed at finding the predetermined path, whose start point was away from them. Here, the

users were guided by the multimodal cognitive interaction, and by pHRi through the haptic

feedback which is given by the physical contact between the user and the SW. Two represen-

tative results can be observed in Figure 4.14. Figure 4.14a shows how the user was guided by

the haptic feedback until finding the circle, and Figure 4.14b shows how the user was able to

find the path aided by the multimodal cognitive interaction. When the haptic feedback is used,

the path followed by the user presents oscillations, due to the virtual limits of the canal for

easier locomotion defined by dν and dω through the spatial modulation. Once this limits are

overpassed, the controller begins to change dν and dω, and the user begins to feel the difficulty

for locomotion, establishing the zone where he/she can move.

Figure 4.14: Finding the circle path. (a) Finding the path with the haptic feedback. (b)
Finding the path with the multimodal cognitive interaction.

If the visual interface is used, the SW’s handling becomes softer and, consequently, it is easier

to maintain on the predetermined path, once this is found (see Fig. 4.14a). When the move-

ment is based on the LEDs recommendation and the haptic feedback, the virtual limits of the

channel, for easier locomotion, are determined a little bit after the LEDs begin to turn on in an

intermittent way. This way, the user knows that he/she has to do a soft turn in the direction
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provided by the LEDs, either right or left. On the contrary, if the LED is on always, but,

not in an intermittent way, the mobility with the SW is the hardest, as a consequence of the

admittance spatial modulation strategy. Also, it is observed that the user takes more time to

find the circle path when using the multimodal cognitive interaction, as he/she needs to pro-

cess more information. The LEDs signals and haptic feedback together imply a more complex

cognitive process. Such process introduces natural delays due to the information processing by

the user [58]. However, the path travel time may be reduced by training with the SW. The

effect of such training process is an ongoing study.

Figure 4.15: Kinematic estimation error (KTE ). Group 1: with haptic feedback. Group 2:
with multimodal cognitive interaction.

Figure 4.15 shows the statistic error calculated once the SW is on the predetermined path.

When the haptic feedback is used, the maximum position error is 0.3 m, once the user is on the

path (as shown in Fig. 4.14b). The position error value is due to the hard torque movement that

has to do the user to correct the SW direction. This error can decrease once the user has more

training with the handling of the SW, or by doing an adjustment of the virtual masses assigned

for mν and mω (see Table 4.1), because, depending on these values, the SW maneuverability

becomes easier or harder. The KTE calculated when the user is guided through the multimodal

cognitive interaction is 0.1617 ±0.0295 m (see Fig. 4.15). This value is lower compared with

the following error when the person is guided by the haptic feedback (0.3 ±0.1337 m).

The user does not keep all the time on the predetermined path when using only the haptic

feedback, which is a consequence of the movement within the limits established by the virtual



mobility canal for easier locomotion. Furthermore, with this experiment, it was verified that

the two channels of the multimodal cognitive interaction are complementary when guiding the

user along the predetermined path. The control strategy proposed in this work makes the

user feel comfortable when him/her is maneuvering the SW. The user has enough freedom in

controlling the SW movement, within limits established by the spatial admittance modulator.

4.4.3 Qualitative Evaluation

To evaluate the acceptance of the proposed control strategy, qualitative questionnaires were

applied after the participants had finished the two experiments. Figure 4.16 shows the results of

two main questions, which report the perception of the participants about the control strategy.

In general, the participants accepted the proposed control strategy and the multimodal cognitive

interaction. Although the average ratings were relatively high, Figure 4.16a shows a trouble

related to the way of guiding the user. We believe that the δdν value influenced the results,

as this parameter modify the width of dν(t) function. Hence, the virtual limits of the canal

for easier locomotion may be lower. Once determined the mass values, the participants agreed

that the handling of the SW was intuitive (see Fig. 4.16b). Also, comments on“safe-driving

the SW”, “ease of control”, “natural interaction”, “good velocity of locomotion” and “ease of

learning” were registered after the experiments.

Figure 4.16: Qualitative evaluation for the guided experiments. Questions: a) “I felt that the
SW was guiding me”; b) “I felt an intuitive interaction with the SW”.



56 Chapter 4. HREI Based on Spatial Modulation of Admittance Controller

4.4.4 Checking the Supervisor Functionality

Regarding the supervisor functionality, its performance was verified in two different experi-

ments. In the first one, the predetermined path of Experiment 1 (see Fig 4.10b) was used to

validate the visual interface. In the second experiment a straight line is used as predetermined

path to verify the two safety factors established for the controller supervisor. The initial po-

sition was at x = 0 and y = 0. During this straight path, a bad position of the user in the

SW was simulated through the force sensors. Furthermore, the supervisor answer was checked

when the sensor RP-LIDAR detected an obstacle within the protection zone (see Fig. 4.7).

Figure 4.17: Recommendation of turn by cognitive interface signals.

Figure 4.17 shows the LEDs activation every time that an error in θ̃ higher than ±0.43 rad or

±25o occurred. According to the predetermined path of Figure 4.10b, the LEDs recommended

a turn in the direction to correct the angular position error θ̃ (see dashed line section zones

of Fig 4.17). This way, it is easier to the user interpret the turn direction that he/she should

undertake in order to correct the orientation error and, consequently, to get into the zone where

the SW is easier to maneuver.

The performance of the safety supervisor parameters is shown in Figure 4.18. The different

situations where the linear and angular velocities of the SW became zero are represented in the



framed zones through red segmented lines. In zone (1), it can be observed that the controller

detects the force signal as an indicator of starting the mobility, however, the supervisor does

not detect force on the z axis in each sensor, therefore, the velocities of the SW become zero.

In zone (2), a bad user’s position on the SW is simulated, showing that the velocities continue

being zero, as long as the supervisor does not detect the signal of z axis in both sensors. In

zone (3), the RP-LIDAR sensor detects an object that enters into the protected region defined

in front of the SW, generating a flag for the supervisor. Then, the linear and angular velocities

of the SW become zero and the collision is avoided. Once there is no obstacle anymore, the

SW can take the velocity values provided by the control strategy. In zone (4), the LRF sensor

detects that the distances established for this safety rule were exceeded, generating a flag for the

supervisor. Then, the linear and angular velocities of the SW become zero. This way, the risk

of falls or collisions between the user and the SW are avoided. Moreover, it is evidenced that

when the supervisor detects a force in the z axis of both sensors that surpasses the threshold

established, and the controller has a force signal as a command of mobility, the SW achieves

the velocities calculated by the proposed control strategy.

It is worth mention that the controller proposed here not only can assist people with gait

disabilities, but also assist blind people [9]. This is another interesting topic of research around

the SWs with this spatial modulation controller.

As a conclusion, this chapter presented a new implementation and validation of a control

strategy that contributes for a natural interaction between Human–Robot–Environment using a

new criterion for admittance control, as it takes advantage of the generation of a haptic feedback

while the user navigates with the SW. In addition to the visual interface, the multimodal

cognitive interaction presented here makes more intuitive for the user the way to know which

is the correct path by where he/she should make locomotion. On the other hand, the spatial

modulation concept allows to establish virtual limits for an easier locomotion zone with the

SW. This contributes in a positive way for the cognitive system of the user, as it promotes the

interaction between the user and the environment through the user’s decisions.

One of the advantages of this controller is the use of only one sensor to define the natural
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interaction Human-Robot-Environment, which is reflected in the computational efficiency and

in the processing of the control algorithm in real time. In this case, the experimental study

allowed obtaining quite good results in terms of performance, at the moment of following or

finding a predetermined path for the locomotion with the walker. This was verified through real

experiments where the user, by means of the control strategy, could maintain himself/herself

within the path using the controller recommendations through multimodal cognitive interaction

with results of the pHRi and the cHRi used for the strategy proposed in this chapter.

Figure 4.18: Safety parameters of supervisor.

The use of a haptic feedback as a result from the physical interaction between user and SW

has contributed to the research area related to assistance tools for people’s mobility. Through



a sensation that is not visual or auditive, the user of the SW can obtain information that is

related to his/her environment, thanks to the physical interaction of the arms with the SW.

In the next chapters, new control strategy will be described, which will promote the haptic

feedback for the user of the SW. Additionally, algorithms for obstacle avoidance with concepts

of social interaction to complete the navigation system of the USW will be introduced.



Chapter 5

Admittance Modulation Technique Based

on Proxemics for Navigation in Confined

Spaces

The task of finding an adequate path to navigate across real environments is effortless to

individuals with no disabilities, but can become complex to people with cognitive or mobility

impairments [19], as the perception of the environment and the ability to navigate may be

compromised [23].

In this chapter, a new strategy to navigate with the USW in confined spaces, such as corridors,

is proposed. Using the admittance controller with spatial modulation proposed in the Chapter

4, the commands to navigate are given by the user. Such control strategy induces a sensation

of hard navigation whenever the SW detects the presence of obstacles, people coming towards

the SW, and walls, which are detected using a classifier based on unsupervised learning. The

direction that the SW takes for an easy navigation is recommended by a multimodal cognitive

interaction composed of a set of two LEDs and a haptic feedback that result from the physical

contact between the user’s forearms and the SW. Taking advantage of such contact, an appro-

priate HRI based on a haptic feedback and a non-verbal communication is generated, which is

recommended for assistive robotics [69].

60



The proposed strategy aims at providing a natural and intuitive interaction with the SW

while stimulating the cognitive capabilities through decision making when direction correction

is necessary. Proxemics zones [62] are brought within the SW for a safe navigation within

corridors, giving to the user the possibility of interacting with other people within the corridor.

The strategy proposed in here never takes away the user control of the robot and gives the user

the main role in the HREI.

This chapter is organized as follows. First, it describes the concepts of social interaction. Sec-

ond, it describes the navigation strategy used to confined spaces. Then, the experimental setup

is described, showing the way the user is assisted during navigation along the corridor. Finally,

it shows the experimental results, as well as the discussion about them, and the respective

conclusions.

5.1 Social Interaction in Walker-Assisted Gait

While navigating in indoor environments, the SW’s user may come across other people, which

may be considered either as obstacles to be avoided or people with whom to interact with

(e.g., engage in a conversation) [82]. In this context, it is important to guarantee the natural

incorporation of the SW into social spaces by implementing navigation algorithms that allow

the user to interact with other humans in a safe manner. Thus, the use of proxemics [83] can

guide such social spaces and, therefore, ease the communication and understanding of human

behavior by the SW.

Proxemics is the study of the distances (or spatial zones) that human unconsciously maintains

in various social and interpersonal situations [62, 83]. These distance depend on the human

behavior, environment configuration, and cultural factors. In this context, the way in which

people use the environment to socially interact with others defines those spatial zones. The

proxemics theory, as established by Hall [62], involves four spatial zones that regulate social

interactions: intimate distance, personal distance, social distance and public distance [84].

These kind of social zones have been applied to generate social rules in robotics and HRI
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literature. The main proxemics factors considered in robotics are speed [83], appearance [83],

direction of approach [83], and obstacle avoidance [23,85].

In the robotics literature, proxemics is mainly applied to mobile robotics, being used to establish

social navigation strategies. In [83], four kind of spaces for a socially-aware robot navigation

were included: the ones related to a single person, to groups of people interacting, to human-

object interaction, and to human-robot interaction. Such spaces are used to establish a collision

avoidance method with social cues. In [86], the robot takes measures in front of itself to de-

termine zones with the lowest human-presence. Those zones are modeled as elliptical potential

fields, and the best elliptical zone (i.e., the one with the lowest human presence) is defined as the

cognitive zone in which the robot can travel and avoid pedestrian collision. Another example

of proxemics applied to mobile robotics is addressed in [87], in which the robot estimates the

proxemics goal state according to a computational framework, based on probabilistic models

of social signals, such as speech and gesture produced by a human. All those strategies aim at

improving HREI through the inclusion of social interaction rules in navigation techniques.

Traditionally, HREI has been implemented in SWs in the same way as in mobile robots, by using

semicircle zones defined by a minimum distance [10, 16, 88] to interact with obstacles and/or

to calculate the travel safe path. These strategies have a good performance for detecting and

avoiding obstacles. However, when the SW navigates within confined spaces such as corridors,

the semicircles can be too restrictive. Such strategy often leads to perceiving the walls as

obstacles to avoid, inducing the SW to navigate on the middle of the corridor, which may be a

problem in human-shared spaces. Additionally, SWs usually present nonholonomic constraints,

which impact on obstacle avoidance. In addition, the possible presence of a companion person

walking together the SW, may be perceived as an obstacle to avoid.

Due to these particularities, traditional navigational algorithms may not be suitable to such

devices. An SW interacts in a physical level with its user, which shares the same space of

the robot, therefore, human-like navigation strategies must be developed for such devices. For

this reason, the search for different ways to model social zones to guide HREI can be seen as

an interesting approach, especially when navigating in confined human-shared spaces (see Fig.



5.1).

Figure 5.1: Social interaction with a navigation companion within a confined space.

Few works involving SW research have included social interaction strategies to improve the

HREI. The main work in this field is the c-Walker [23, 57], which makes use of Social Force

Model (SFM) to represent people as 2D circles with attractive and repulsive forces. In such

strategy, it is possible to model the force that attracts the SW’s user and other people towards

the same interest point, as well as the repulsive force that naturally prevents the user from

colliding with walls or other individuals. Regarding other assistive robots, a wheelchair that

navigates while sharing space with outsiders pedestrians is presented in [85]. In such work, the

user indirectly interacts with other people, as they share the same space passing by each other,

and the wheelchair computes a safe travel path to avoid disturbing other people.

When navigating in corridors, people normally walk in a straight line [89] and the social zone

projected to interact with other pedestrians can be modeled as an elliptical zone [86]. The

social model that introduces the ellipse shape to describe such social zone is the SFM [70, 83].

SFM defines a decreasing exponential function to generate repulsive forces to and from other

pedestrians with equipotential lines having the form of an ellipse that is directed into the

direction of motion. Thus, the SFM and the interpersonal distances proposed by proxemics are

two models that can be directly applied into SWs to generate new guidelines to detect obstacles

and to interact with other people within a corridor.

Figure 5.2 shows our proposal of social interactions zones to guide the implementation of navi-

gation algorithms in SWs. The two ellipses projected on the front of the SW are determined to
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allow a social interaction and improve the HREI when the SW is navigating within a corridor.

These two zones are described below:

• Interpersonal-social zone (IPSz) is established taking as bases the distances of the personal

and social spatial zones described by proxemics [84]. The personal zone (considered the

range from 0.46 m to 1.2 m) [84] is used to define the ellipse small axis, and the distance

of the social zone (from 1.2 m to 3.7 m) [84] defines the ellipse big axis. In this case,

the personal zone allows the contact between people, from relatively intimate to more

formal [84], avoiding the stress produced when the personal space is invaded by others [90].

The social zone allows avoiding obstacles within the corridor to a comfortable distance

for the SW’s user, while also allowing for more lateral space between the obstacle and

wall to navigate within the corridor.

Figure 5.2: Social interaction strategy on a corridor for an SW. Social zones: Interpersonal-
social zone (IPSz), Interpersonal-public zone (IPPz). Red points describing the virtual canal
of navigation to each person

• Interpersonal-public zone (IPPz) is defined from personal and public spatial zones de-

scribed by proxemics [84]. The personal zone is used in the same way that in IPSz, but

in this case, the small axis is smaller compared with the axis of the first ellipse. This

criterion was established to avoid conflicts between the two elliptical shapes, and to leave

the IPSz as the main zone of contact with other people. The distance of the public zone

(from 3.7 m to 7.6 m) [84] is used to define the ellipses big axis. The public zone is used



to avoid collisions with people that walk in opposite direction to the SW, and are in the

same virtual zone of navigation.

5.2 Human-Robot-Environment Interaction (HREI)Within

Confined Spaces

As depicted in Fig. 5.3, the strategy to navigate in confined spaces relies on an admittance

controller with spatial modulation, as proposed in Chapter 4, to obtain the user’s motion

intention and to command the navigation. The admittance controller emulates a dynamic

system, providing the user with a feeling of direct interaction with the system specified by

the admittance model [16]. The desired orientation of the SW is calculated using zones for the

social interaction, based on an obstacle avoidance strategy proposed in [91], and a classifier that

identifies the elements within the corridor, such as people and walls. The admittance modulator

takes the orientation error and the user’s torque intention to dynamically tune the admittance

controller damping parameters [10]. On top of those systems, a supervisor is implemented to

establish safe parameters for the user. Each one of the blocks depicted in Fig. 5.3 is described

below.

The control strategy allows the user to establish a comfortable speed for locomotion, as motion

intention is determined through the two force sensors localized under the forearms supporting

platforms (see Fig. 3.1). This way, it leverages the physical interaction between the SW and

the user to generate the navigation commands. The signal on the Fy axis captured by each

sensor is processed to infer the user’s motion intention, and the signal on the Fz axis is used as

one of the safety parameters to assure adequate partial body weight support. The force (F (t))

and torque (τ(t)) signals (output of box 1, in Fig. 5.3) are calculate according to Eq. 3.1 and

3.2.

To detect the user’s motion intention, the method described in Chapter 3, which was inspired

in [12], was used here once the data were recorded, applying the FLC and WFLC algorithm to
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estimate and cancel cadence component of each input signal FLY (t) and FRY (t). Thus, signals

of force F (t) and torque τ(t) more stable are obtained.

Figure 5.3: Block diagram of the navigation strategy.

The signals F (t) and τ(t) are, then, used by the admittance controller (box 2 Fig. 5.3) to

generate the desired linear νc(t) and angular ωc(t) velocities for the walker, defined by Eq. 4.4

and 4.5.

νc and ωc are also used to impose not only the start and end of the locomotion with the SW, but

also a comfortable gait speed. Moreover, the HREI dynamics is modified through the masses

(mν and mω) and damping (dν , dω) parameters.

The user can move freely within the corridor. However, when the user has mobility and/or

cognitive impairments, it is important to implement an obstacle avoidance strategy to assist

his/her navigation (box 3 Fig. 5.3). The obstacle avoidance is based on [91], which relates

the obstacle position relative to the SW for calculating the desired orientation (θd), and thus

avoiding obstacle. The proposed strategy generates an ellipsoidal repulsion zone around the

SW for collision avoidance with static people, and walls (see Fig. 5.4). Consider the equation

of each ellipse in the SW framework, expressed in polar coordinates by:

cos2β

a2
+
sin2β

b2
=

1

r2
, (5.1)



where r > 0 is the ellipse radial coordinate, and β ∈ [−π/2, π/2] the angular coordinate. a, b > 0

are the lengths of the big and smaller axis of the ellipse, respectively.

Figure 5.4: Zones to detect obstacles.

The RP-LIDAR sensor is used to measure the distances li, i = 1, ..., nt and orientations βi, ∈

[−π/2, π/2] related to the SW to the objects in the corridor (see Fig. 5.4); nt is the number of

measurements detected for each object found in each sensor turn.

The procedure to calculate the desired orientation to avoid an obstacle is described below. Note

that such procedure is the same for both ellipses.

For each laser detection event, the distances li and the orientations βi are captured. These

measures are organized into two vectors respectively, and each sample (i.e., every 200 ms) of

the RP-LIDAR sensor is updated. Then, Equation 5.1 and βi are used to calculate the radials

coordinates ri of the ellipse. Once calculated the ri vector, it is necessary to calculate the

distance di (see Eq. 5.2), which determines the obstacle distances within the ellipse zone.

d̃i = ri − li (5.2)

Vector d̃i is used to generate an α parameter, which discerns about the obstacle that has the

higher collision influence. The function to determine the obstacle influence factor is shown in

Eq. 5.3.



68 Chapter 5. Admittance Modulation Based on Proxemics for Navigation

αi = C1e
−(

d̃i
σ
)2 , (5.3)

where C1 is a gain that modifies the influence factor of α, and σ is the standard deviation of

the Gaussian distribution to calibrate the width of the Gaussian area. It is important to note

that σ is selected by considering the physical dimension of the SW, and it is set as the smallest

value that allows the robot to pass through two close obstacles safely. The influence factor αi

is used to calculate the obstacle orientation (θo), which is defined as:

θo = C2tanh

(
1

nt

nt∑
i=1

βi.αi

)
, (5.4)

where C2 is a second gain that can increment θo, which increment is reflected in the obstacle

avoidance way.

When the obstacle enters the repulsion zone, the influence factor αi on θo increases. Finally,

to establish the desired orientation θd (box 3 Fig. 5.3) to avoid the obstacle, it is necessary to

calculate the complementary angle of θo, shown in Eq. 5.5.

θd =


−θo − π

2
if θo < 0

−θo + π
2

if θo > 0

0 if θo = 0

(5.5)

The admittance modulator (box 4, in Fig. 5.3) works in the same way as was described in

Chapter 4 (see Section 4.2.1), and in [10]. Such modulator is in charge of establishing a dynamic

signal that modifies the damping parameter in the admittance controller, thus generating the

haptic feedback. This modulator has as input variables the torque τ(t) and the angular position

error (θ̃) (see Fig. 5.3). θ̃ is calculated with respect to the SW orientation θ and the desired

orientation θd (see Eq. 5.6). Such orientation errors only occur when the avoidance strategy

detects an obstacle within the elliptical zones.



θ̃ = θd − θ (5.6)

The haptic feedback implicitly guides the user to an obstacle-free zone by modifying, in real-

time, the admittance control damping parameters. The modulation of the damping parameters

of the admittance controller was previously presented in the Chapter 4 and is briefly described

below.

From Eq. 4.4 the parameter mν is constant, and dν(t) has an inverted Gauss behavior. The

Gauss function offers changes with soft transitions, which reflect directly into user’s quality of

experience. The user feels that moving forward with the SW is harder when the obstacle is

closer. The function is shown in Eq. 4.7. Regarding Eq. 4.7, when θ̃ is zero, the damping is

minimum, allowing the SW to move with the smallest restriction.

For ωc, the same restriction as in νc is taken (i.e., mω remains constant). In Eq. 4.5, the

definition of dω(t) is given by Eq. 4.8. When θ̃ is positive and the user’s torque τ(t) induces a

negative ωc, and vice versa, it implies that the SW’s user intents to correct θ̃. In this context,

when θ̃ becomes smaller, dω tends to decrease. In this manner, the user has to apply more

effort to turn the SW.

The spatial modulation of dν(t) and dω(t) can be adjusted according to the user experience.

This way, the haptic feedback can produce a higher or lower sensation of mobility difficulty

with the walker in presence of people or walls. Furthermore, the haptic feedback never takes

off the user’s control over the SW, encouraging the user on the decision-making regarding the

path to follow.

5.2.1 Social Navigation for the USW

The social navigation (box 5 Fig. 5.3) strategy developed for the USW navigation involves social

conventions, which are established through a classifier and two ellipsoidal shapes, according to

Section 5.1 (see Fig. 5.5). The first ellipse (IPSz) is used to avoid static obstacles and allows
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side-by-side company of caretakers, doctors or visitors during navigation with the SW (see Fig.

5.6a). The second ellipse (IPPz) is used to avoid possible collisions with people that are walking

in the same virtual path of the SW navigation, but on the contrary direction of the SW (see

Fig 5.6b), no matter whether the person has a higher or lower speed compared with the SW

velocity. In this context, it takes into account the premise that people walk in straight lines

within corridors, and only change their virtual path of navigation to overpass other people or

to avoid an obstacle.

Figure 5.5: Blocks diagram of the social navigation.

(a) (b)

Figure 5.6: a) IPSz ellipse strategy; b) IPPz ellipse strategy.

When the SW’s user is navigating within a corridor, he/she deviates from walls, fixed obstacles

and mobile obstacles (such as people). In this context, the social interaction strategy proposed

here is complemented by a classifier based on unsupervised learning to identify these obstacles

(fixed and mobile) and walls. From the RP-LIDAR measurements, the algorithm performs the

clustering of the possible obstacles using the density-based spatial clustering of applications

with noise (DBSCAN) technique [92] . The algorithm requires two parameters: the first one is

the minimum distance to clustering two point; the second is the minimum quantity of points



included in a cluster. Furthermore, the algorithm has a clustering based on cluster density

planned to discover clusters in an arbitrary way [92].

In addition, the classifier not only separates the objects that are within the ellipse zones, but

also eliminates individual points that are considered as noise. After clustering the obstacles

and filtering the single points, a linear regression is performed for each group of points classified

as objects, and determines if the obstacle is fixed or mobile, or whether it is a wall.

Once applying the linear regression, the Pearson correlation coefficient (R2) is used to determine

the difference between a wall and an obstacle. Such coefficient is an adjustment measure of

the linear model and varies between 0 and 1, explaining the dependence degree of the observed

values [93]. The higher is R2, more representative is the model, which is adjusted to the sample,

indicating that the samples group is close to a straight line. This way, the classifier proposed

here defines that values above a threshold of R2 = 0.96 identifies the clustering as a wall,

whereas the values below such threshold are considered obstacles.

To differentiate between fixed and mobile obstacles, the obstacle relative velocity is calculated,

with the SW velocity subtracted from the obstacle velocity. Thus, for relative velocity different

from zero, the obstacle is considered mobile (see Fig. 5.6b).

Once the obstacle and its kind are identified, it is necessary to define the obstacle avoidance

strategy using social interaction conventions. This task is accomplished through the algorithm

shown below (see Algorithm 1).

Depending on each ellipse, Algorithm 1 is complemented with other conditions. For the IPSz

ellipse, the classifier only detects noise, walls and/or fixed obstacles. When a wall is detected, it

is recommended a θd = π/4, which is enough to produce a hardest maneuverability on the SW

when it moves in the direction of a wall. When the classifier detects an obstacle, the orientation

value is given by the obstacle avoidance strategy.

The IPPz ellipse is in charge of preventing a collision with another person that navigates along

the same virtual path of the SW within the corridor, but in the opposite direction. In this case,

θd takes the value assigned by the obstacle avoidance strategy. As a consequence, through the
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multimodal cognitive interaction, the SW is recommended to change its navigation direction,

however, the user is who takes the decision. After that, the classifier may detect a wall within

the IPPz ellipse (see Fig. 5.6b). In this situation, the θd value is ignored and the SW’s user has

more space to navigate within the corridor. However, if the user keeps going forward and the

wall is detected within the IPSz ellipse, θd is considered as the orientation to avoid the wall.

Another condition where the θd value is ignored is when the classifier detects a person walking

in the same navigation direction of the SW. Thus, when θd is ignored, the SW has an easier

navigation.

Algorithm 1 Obstacle = measures(RP-LIDAR)
if Obstacle > 0 then
e = 0.3 ;minimum distance between two points.
MinPts = 3 ;minimum number of points for a cluster.
IDX = DBSCAN(Data, e,MinPts)
k = max(IDX) ;index that defines the cluster quantity.
for j = 0 : k do
Object = Data(IDX == j)
if isempty(Object) then
if size(Object) >=MinPts then
do linear regression
do calculate of R2

if R2 >= threshold then
wall

else if R2 = 0 then
noise

else
if V elObject ≈ 0 then
Fixed obstacle

else
Person

Once the obstacle avoidance strategy is established, the multimodal cognitive interaction (box

6 Fig. 5.3) is in charge of recommending an orientation towards an obstacle-free zone. As

presented in Chapter 4, the first cognitive channel or cHRi is a visual interface, which makes

use of two LEDs (Fig. 4.8). In this case, the visual interface indicates to the user the correct

orientation that the walker has to take to avoid the obstacle. A limit of ± 25o for θ̃ was defined,

as under this limit, the control strategy allows an easier maneuverability with the SW [10]. Once

θ̃ surpasses the error limit, the LEDs indicate the turn the user should make to correct the

error in θ̃. The LEDs light according to the direction of the turn recommendation. When the



user achieves the correct direction, both LEDs turn off.

The second cognitive channel uses both cHRi and pHRi to generate the haptic feedback, as the

spatial modulator of the admittance control can increase or decrease the linear velocity νc(t)

and angular velocity ωc(t) of the SW. This way, this channel of the multimodal interaction is

used to increment the difficulty of locomotion with the SW when the user is steering towards

the wrong direction.

Regarding the Supervisor (box 7 Fig. 5.3), such as was defined in Chapter 4 (see Section

4.2.2), this strategy uses three of the safety rules. The first safety rule regards the user’s partial

body weight support on the SW platform, as the user has to overpass a minimum threshold

established in the z axis of each force sensor. The second safety rule relates to the proxemics

zones, in which, an intimate social zone [62,84] with 45 cm of radio around the RP-LIDAR laser

sensor is defined. This way, if the laser sensor detects an obstacle within the intimate zone,

the walker velocities (νc, ωc) become zero to avoid a possible collision; otherwise, they acquire

the values of velocity provided by the controller. Another safety rule defines a lower limit of 20

cm and an upper limit of 50 cm of distance between the user and the SW. This way, when the

LRF sensor measures a distance smaller than the established lower limit or above the upper

limit, νc and ωc become zero to avoid collisions between the user and the SW. Otherwise, the

SW acquires the velocities obtained from the admittance controller.

5.3 Experimental Study

Nine people (30.55 ±4.58 years old) without any gait impairments and any previous training

with the SW participated of the experiments. These people without mobility impairments

were chosen to participate in the experiments as the main purpose of this work is to validate

the social navigation strategy in confined spaces. Pathological gait will be the focus of future

investigation. A computer was used to record the experiment data and to program the control

strategy implemented in the SW’s embedded hardware. The data recorded comprise: HRI

parameters as F , τ and user legs distance to SW, control signals (ωc, νc, dν , dω, θd), SW’s linear
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and angular velocities, and visual signals from the LED. In addition to the HREI information

obtained with the RP-LIDAR sensor, the SW position (x, y, θ) is also stored.

Table 5.1: Constants values used in the control strategy.

Obstacle avoidance
Constant C1 C2

Value 20 20
Social Navigation Ellipses
Constant aIPSz bIPSz aIPPz bIPPz
Value 1.5 0.6 6 0.5
Spatial modulator of dν
Constant dνmax ddmax δdν mν

Value 100 90 0.3 1

Spatial modulator of dω
Constant diω Gdω Pdω mω

Value 60 59 1 1

Spatial modulator of dω
Constant diω Gdω

Value 60 59

As it was empirically found in Chapter 4, mν and mω are related to the discharge force of the

user on the SW. The selected participants all had almost the same weight (68.66 kg ± 3.89).

The values assigned to the masses were mν = 1 kg and mω = 1 kg. Such values of the control

parameters were determined for all participants, in order to they got a comfortable use of the

SW. Then, it was verified that the user could move with the SW comfortably through a straight

line of 4 m and also avoid obstacles. Such constants are described in Table 5.1. Regarding the

safety rule, it was established in an empirical way with a minimum threshold of 6 N for the z

axis of each force sensor.

Figure 5.7a shows the axis and distances in each elliptical shape. Considering that the corridor

in which the SW is navigating is 3 m wide, the big axis of the IPSz ellipse was defined as 1.5

m long to allow sufficient maneuvering space. The big axis of the IPPz ellipse was defined

according to the maximum RP-LIDAR distance range (6 m), which should give sufficient time

for the user to react and avoid collision with people coming towards the SW (see Fig. 5.7b).

Two experiments were proposed to evaluate the navigation strategy performance and the mul-



timodal cognitive interaction (see Section 5.3.1 and 5.3.2). In both experiments, the user was

asked to start the navigation in a point localized at the corridor center.

(a)

(b)

Figure 5.7: a) Ellipses distances design; b) Corridor distances, wide = 3 m, length = 28 m.

5.3.1 Navigating Through a Controlled Scenario

The first experiment aimed at validating our social navigation strategy in five controlled and

practical situations that could happen when navigating in a corridor. Figure 5.8 illustrates

these scenarios. In this experiment, besides the volunteer interacting with the SW, one person

simulated the different situations proposed in each one of the experiment runs. At the first

moment of the experiment, the SW user began the locomotion being accompanied by another

person, as if they were engaged in a conversation, on approximately the first 4m (Situation 1,

Fig. 5.8). The Situation 2 simulated a person walking in front of the SW in the same moving

direction (Situation 2, Fig. 5.8).

This situation was simulated to show that the social navigation strategy ignores to the person
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that moves in the same SW direction with a higher velocity as the SW, as it does not represent

a collision risk. Then, in Situation 3, the person would stop moving to simulate a fixed obstacle

(Situation 3, Fig. 5.8). This case shows the performance of the obstacle avoidance algorithm

and the functionality of IPSz ellipse. Another scenario is represented in the Situation 4, which

shows when a person crosses in front of the SW (Situation 4, Fig. 5.8). Here, the user perceives

the quick reaction of the multimodal cognitive interaction, feeling haptically the presence of a

mobile obstacle, and knows the way to avoid the collision.

Figure 5.8: Situations within a corridor. Situation 1: navigation with accompanying person.
Situation 2: person walking in front of the SW. Situation 3: person represents a fixed obstacle.
Situation 4: person crosses in front of the SW. Situation 5: person walks in the opposite
direction to the SW.

Finally, in Situation 5, the person started to walk in the opposite direction to the SW (Situation

5, Fig. 5.8). In this case, the functionality of the IPPz ellipse is shown to avoid the incoming

person.

5.3.2 Navigating Through an Uncontrolled Scenario

The second experiment was conducted to validate the social navigation strategy in a real envi-

ronment (see Fig. 5.9). Once the user was related to the SW maneuverability, he/she was asked

to navigate through the corridor in the presence of several students. In this case, the students

were not instructed in any way about the experiment or how to behave, in the hope for natural

reaction while observing the SW navigation. This way, the social navigation strategy and the

multimodal interaction channels were validated in a real situation within a confined space with

fixed and mobile obstacles.



Figure 5.9: Natural situations within a corridor.

5.4 Results and Discussions

5.4.1 Navigating Through a Controlled Scenario

In the first experiment, users were asked to follow the navigation recommendations from the

multimodal cognitive interaction in each of the different situations proposed in Section 5.3.1.

Once the data was recorded, figure 5.10 shows the path navigation for one participant within

the corridor. The two channels of the multimodal cognitive interaction could hint the direction

that the user should follow in each of the five simulated situations.

Figure 5.10: Controlled situations within a corridor. Corridor dimensions: w = 3 m, l = 28 m

Fig. 5.10 also shows the classifier behavior. During displacement in Section 1 (see Fig. 5.10),

the RP-LIDAR detects an object near the SW, however, as this object lies side-by-side with

the SW, it is not within the IPSz or IPPz ellipses, and the classifier ignores it. In this way, the

social navigation strategy allows the companion of a person during the locomotion.

Then, the accompanying person starts walking in front of the SW (Section 2, Fig. 5.10),

stopping after walking 5 m (Section 3, Fig. 5.10). While the person was walking in front of the

SW, the classifier identified that the person had a positive relative velocity, which means that
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the person is moving in the same direction of the SW and faster, thus not representing any

risk of collision. Nevertheless, just when the person started to walk in front of the SW, he/she

gets in the IPSz ellipse, and the classifier identifies him/her as an obstacle during a short time

(black cluster on Section 2 in Fig. 5.10). The duration of this event was not enough to produce

any haptic feedback on the user (see force and torque signals of Section 2 in Fig. 5.11 and 5.12,

respectively).

Section 4 of Fig. 5.10 shows the situation in which the accompanying person crosses in front of

the SW. The classifier identifies the person as an obstacle to avoid, and thus a haptic feedback

is generated. Such reaction can be seen in the force and torque signals of Fig. 5.11 and Fig.

5.12, respectively.

Finally, the Section 5 of Fig. 5.10 presents the situation when a person is walking towards the

SW. As the person approaches the SW, he/she is detected by the classifier within the IPPz

zone. As this person is moving with a negative relative velocity, the θd value is taken into

account, producing an error θ̃. The SW then deviates to the left as the person was coming by

the right side of the SW (see Fig. 5.10, Section 5).

Regarding the haptic feedback strategy, Fig. 5.11 illustrates the forward forces detected by

the force sensors and the control signals from the haptic strategy. When there is no value on

θ̃ signal different to zero, the user is able to maneuver the SW, but imposing forward forces

lower than 5 N (see Fig. 5.11). As a consequence of the θ̃ value, dν assumes its minimum

value (dν = 10), and the SW is allowed to move with higher linear velocities, which is limited

to 0.38 m/s. The velocity limitation is set as people prefer to interact with mobile robots with

velocities between 0.25 m/s and 0.38 m/s [83]. While the control strategy does not detect

any obstacle within the social zones established, the SW follows the user motion intention (see

Section 1,2 and 4 in Fig. 5.11).

Once the control strategy recommends a turn to avoid an obstacle, the haptic feedback changes

the way that the user’s force affects the SW, demanding a bit more effort to maintain the speed

(see red asterisks in Fig. 5.11). When the admittance modulator acts, the linear damping

increases, thus diminishing the SW’s velocity. When there is no more obstacles detected, the



control parameters change to the initial state. The parameters values of the spatial modulator

were chosen for the user to feel a quick change in the haptic feedback when an obstacle is

detected. That is the reason for the abrupt changes in dν signal (see Fig 5.11, dν signal). In

addition, the MSE of the linear velocity oscillates between 0.1 m/s and 0.16 m/s.

Figure 5.11: Spatial modulation curve of dν and haptic force response of the social navigation.
From top to bottom: a) Control and SW linear velocities; b) User’s force signal; c) θ̃ signal;
and d) dν signal. All the corridor situations are described in Sections 1 to 5.

Figure 5.12 shows the control signals related to the torque. When an error in θ̃ is generated,

dω changes along (see Fig. 5.12, dω signal). The haptic feedback is perceived (and increases) as

the θ̃ error increases. While there are no detected obstacles within the IPSz and IPPz zones,

the torque applied by the user is low (close to zero). As a consequence, the angular velocity of

the SW is approximately zero (see Section 1 and 2 at Fig. 5.12). When an obstacle is detected,

the user must rotate in the opposite direction of the angular position error (see the beginning of

Section 3 in Fig. 5.12) [10]. Once the SW orientation is corrected or an obstacle is not detected

anymore, the torque applied by the user decreases (see red asterisks in Fig. 5.12) and the user is

able to maneuver freely again. In addition, the MSE of the angular velocity oscillates between

0.055 rad/s and 0.066 rad/s.

When an obstacle close to the SW is detected (Situation 4, Fig. 5.8), the user knows about
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the obstacle presence through the haptic feedback channel of multimodal cognitive interaction,

and not by the two LEDs channels, due to the user does not have time to review the visual

cHRi indications. Therefore, the best channel to indicate the obstacles detection close to the

SW in an intuitive way is the haptic feedback. However, when the obstacle is detected within

the IPPz zone, the user has time enough to review the LEDs indications and follow the turn

recommendation given by such visual channel.

Figure 5.12: Spatial modulation curve of dω and haptic force response of the social navigation.
From top to bottom: a) Control and SW angular velocities; b) user’s torque signal; c) θ̃ signal;
and d) dω signal. All the corridor situations are described in sections 1 to 5.

Through the signals of Figs. 5.11 and 5.12, it can be seen the effect imposed by the haptic

feedback on the user. Through such interaction channel, the user can perceive, in an intuitive

way, the HREI and, consequently, have a safer navigation.

On the other hand, the average linear velocity of all participants was 0.244 m/s ± 0.1196,

which is within the limits recommended by [83]. Also, all participants were able to arrive at

the end of the corridor, following, in a natural and intuitive way, the HREI strategy established

for the SW.

The performance of the visual cognitive channel is shown Fig. 5.13. It can be seen that



the activation of the LEDs occurs every time the error θ̃ is higher than ±0.43 rad or ±25o.

recommending the SW to turn direction to correct the angular position error (see Fig. 5.13).

This adds another feedback channel to interact with the user, easing the user’s interpretation

and understanding of the HREI.

Figure 5.13: Recommendation of turn by the multimodal cognitive interface using the LEDs
channel. All the proposed at the corridor situations are described in sections 1 to 5.

5.4.2 Navigating Through an Uncontrolled Scenario

During the second experiment, the SW’s user was asked to navigate within the same corridor

again in an uncontrolled scenario. The focus of this experiment was to observe the behavior

of the SW’s user and other people, therefore, none of the other individuals navigating in the

corridor were informed about the role that they should have during the experiment (see Fig.

5.14) in order to emulate a very realistic situation.

Figure 5.15 shows a representative result of this experiment. It can be observed that the control

strategy ignored individuals that were not tagged by the classifier. Also, at the beginning of

this experiment run, one person passes near the SW in the same direction, and the user does
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not need to change his/her direction. This is a clear example of the ellipse functionality within

the social navigation strategy proposed here. During the experiment, some people naturally

deviated from the SW (see black asterisk in Fig. 5.15), but, when people could not see the SW,

the SW’s user was able to avoid them using the navigation strategy recommendations (see red

asterisk in Fig. 5.15). One of the situations presented in the Experiment 1 (Situation 5, Fig

5.8) occurs in this experiment (see green asterisk of Fig. 5.15). It can be seen that the user can

correct his/her path travel when a person comes in the SW direction (Section 5, Fig. 5.15). In

addition, it can be observed that the wall collisions are avoided too.

Figure 5.14: Real environment within the corridor.

Figure 5.15: Real situations within a corridor. Corridor dimensions: w = 3 m, l = 28 m

The use of the two channels of the multimodal cognitive interaction allows enough freedom to

maneuver the SW. Also, the shapes of the social interaction zones allow having more space

to navigate in confined spaces, due to the strategy proposed here ignoring obstacles that do

not affect the SW navigation. Moreover, during the experiments, the users evaluated the SW

speed as a “good velocity for locomotion”. Other comments listened during the experiments are

related to the safety perception during guidance and the intuitive interaction between user and

robot.



In this chapter, the performance of safety rules of the supervisor was not verified as such

evaluation was realized already in the Chapter 4.

As a conclusion, this Chapter presented a new strategy for HREI, which includes social zones

within the SW’s control to allow a social-aware navigation in confined spaces. In addition, the

use of the social zones defined by proxemics may contribute to the social inclusion of the SW’s

user, as it allows a natural interaction with other people of the environment, following social

conventions too. Here, it is necessary to take into account that the SW has a person within its

activity area. For this reason, strengthen the social factors for the SW navigation may improve

the quality of life and wellbeing of SW’s users, in addition to improve the social acceptance of

the SW.

Furthermore, the navigation strategy proposed here involves a classifier and ellipse shapes for

the social zones, which allows a wide navigation area within the corridor, due to many of the

detected obstacles (fixed and mobile) may be ignored. In this context, this strategy improves

the HREI and allows that the user of the SW can navigate in a safe way with a comfortable

velocity. This was verified through real experiments where the user, by means of the multimodal

cognitive interaction, was able to navigate within the corridor using the SW’s recommendations

to overpass the different situations that were forced during the travel.



Chapter 6

Haptic Feedback to Guide Visually

Impaired People Across Complex

Environments

Many technological solutions to guide blind people have explored the HREI. For example,

force sensors have been used in Smart Canes as physical interfaces to detect the user’s motion

intention [94]. Complementarily, ultrasonic [94, 95] and laser [9, 16] sensors have been used

to detect obstacles and to provide navigational information. Wearable sensors and vibrators

motors have also been used together with Smart Canes to assist navigation of blind people [96].

However, the use of these wearable sensors and actuators might be unnatural and uncomfortable

for the user, due to the interpretation of the navigation commands requires a user’s cognitive

process, which may induce fatigue [58]. Also, when the user has a poor balance control, a Smart

Cane may not provide enough physical assistance.

Passive SWs (see Chapter 2 - Section 2.3.1) have been used to offer physical and sensorial

assistance to blind people [9, 97]. In contrast, although active SWs offer full motion control of

the device and provide maximum assistance in navigation and guidance [6], there have been

little literature that reports their use oriented to guide the visually impaired. Nevertheless, it

is also necessary to pay more attention to the HREI and, especially, to the user experience, as

84



at the end, is he/she who evaluates the SW performance. Several HREI solutions require either

the use of wearable sensors by the user [96] or the placement of landmarks [94] and sensors

on the environment. Moreover, HREI should be natural and intuitive for the user in order to

provide a good usability and user experience, allowing its continued use [10].

In this chapter, the USW uses an admittance controller to guide visual impaired people.

Through the use of haptic feedback, the control strategy guides the mobility of the visually

impaired through a desired path. This way, the user can impose not only the start and end

of the locomotion with the SW, but also a comfortable gait speed. The SW’s angular velocity

control is implemented as a function of a virtual torque, which depends on the angular posi-

tion error of the SW. The proposed controller relies upon cognitive interaction through haptic

feedback, which results from the physical interaction between the user and the SW. This way,

such controller informs the user about the direction to follow. In order to keep the user along

the path, inputs interpreted as independent intention to turn do not affect the guidance, hence

minimizing the tracking error and providing feedback over the correct direction to follow. Fur-

thermore, this work attempts to identify important interaction parameters that must be taken

into account during guidance to provide for a good user experience; such as the restraints on

SW velocities, and design of the desired path.

This chapter is organized as follows. First, it describes the related works that use SWs as the

assistance tool for people with blind and gait impairments. Then, it describes the proposed

control strategy and the experimental setup. Additionally, it shows the experimental results

and the discussion about them. Finally, conclusions are presented.

6.1 Related Works

Many research groups have worked over the last few decades on healthcare with focus on

assisting mobility and visually impaired people [9, 95, 98]. Several assistive devices have been

developed to improve user’s quality of life, each better suited to different special needs [61].

As smart canes might not offer proper weight support or assistance for those with moderate
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severe gait disorders [99], due to they are usually employed only to assist the displacement of

people with some degree of blindness [99], most of the works that relate to ours are within

smart walkers field [9, 99].

On a classic work, Lacey [100] presents PAM-AID, a passive smart walker aimed to guide the

elderly blind. Aware of the environment, such walker takes as inputs the user’s desires (e.g.,

move forward or turn left) to guide through corridors, providing warnings of nearby obstacles.

In a later work [97], it was also able to steer the user around such obstacles. Some of the users

who tested the system reported that a point-to-point guidance feature would be of interest, so

the user would input a desired location to be guided to. This was later resolved on Guido [51],

an evolution of the PAM-AID, which was able to guide the user to specific places by generating

a path based on a simultaneous localization and mapping feature.

On a more recent work [9], authors attempt to navigate people with visual and walking impair-

ments using an off-the-shelf passive walker modified with laser sensors. It relies on pHRi with

two vibro-tactile interfaces, which could be used independently or combined, to provide naviga-

tional information. Such interfaces consisted of “vibrating handles” and a “vibration belt” with

multiple motors worn around the waist. The walker presented one operation mode in which the

user was only informed about surrounding obstacles, and another operation mode to guide the

user to a specific location. This point-to-point guidance leveraged mapping features to conduct

the user throughout a path, avoiding both static and dynamic obstacles. Experiments revealed

that users preferred the haptic interface on the handles over the belt, which was considered a

rather obtrusive interface.

Experiments with blindfolded subjects have been performed on works for passive smart walkers

[101] and [102]. [102] used the walker’s brakes as means of influencing the direction of motion

for obstacle avoidance, whereas [101] leveraged the input of a specific destination to generate a

path and used the brakes to assure that the user would remain over the desired path.

The aforementioned passive walkers either aimed to assist people with some degree of both

visual and mobility impairments or were tested by blindfolded subjects. Other works explored

point-to-point guidance on active smart walkers, though not mainly focused on the blind pop-



ulation. [103] presented Care-O-Bot II, a SW capable of guiding the user throughout an estab-

lished path while respecting user’s inputs. Both pHRi and cHRi based on force sensors were

implemented to evaluate the interaction and control velocities, and the guidance feature allowed

for obstacle detection and path deviations. A similar strategy had been previously presented

by [52], which introduced an active walker able to weigh user’s force inputs against the desired

path in order to guide while maintaining some degree of freedom for deviations. A so-called

“forced mode” was also implemented by [52], and user inputs were only considered for switching

motion on and off, removing from the user any further control over the direction of the walker.

Other similar shared-control strategies have been presented by [49] and [15].

Interaction methods that rely on haptic interfaces were more commonly employed when guiding

the user. While vibration signals are used on passive walkers, strategies based on force sensors

and dynamic motors to provide haptic feedback to guide and interact with the user are pre-

dominant on active devices. As HRI began to grow as an independent field, user evaluation of

the interaction per se gained attention over the robotics aspects of the systems. [100] evaluated

system’s usability and safety through user rating. In [9], users rated the performance of the

walker and also answered to a qualitative questionnaire over how they perceived the interaction.

The active SWs researched on this work did not evaluate the HRI, though [6] states that full

motion control provides maximum assistance in navigation and guidance, referencing both [52]

and [103] studies. A range of information and control parameters impacts HREI. For instance,

the design of the path to be followed, the obstacle avoidance strategies, and the design of the

HRI itself are reflected in the user experience during guidance. Nevertheless, the SW should

not only offer physical, sensorial and cognitive assistance, but also offer a natural and intuitive

way of navigate through the environment.

6.2 Guidance Control Strategy

The control strategy uses the path follower control proposed by [75], which is leveraged to

provide the desired orientation of the SW in relation to the path. An admittance controller is
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used to detect user’s motion intention to control the locomotion of the SW [10]. As there is a

pre-established path to be followed, the path follower controller weights both the robot’s current

position and desired orientation to stay on or to get on the path. The admittance controller then

sets velocities according to the physical interaction with the user and the desired orientation.

In order for the interaction to be perceived as natural while still not allowing the user to deviate

from the path, the robot’s linear velocity is directly linked to user’s interaction forces, whereas

the steering velocities depend also the desired orientation. In other words, the user has no direct

input in consciously changing the SW’s orientation, which is mainly dictated by the device’s

relative position to the path, in order to guarantee that the user will not deviate from it.

Figure 6.1: Block diagram of the controller strategy to guide visually impaired people.

The force sensors (see Fig. 3.1) are responsible for capturing the user’s intention of movement,

and data from each sensor are translated into a forward force, henceforth referred to merely as

the force (box 1 Fig. 6.1). The human force FH(t) and torque τH(t) are obtained from the y

axis signals of each force sensor, as shown in Equations 3.1 and 3.2, respectively (see Chapter

3).

To detect the user’s motion intention, the method proposed in Chapter 3 is used here in offline

mode, i.e., once the data were recorded. In addition to a FLC algorithm, inspired in [12], which

is used to estimate and cancel cadence component of each input signal (FLY (t) and FRY (t)),

a Weighted-Frequency Fourier Linear Combiner (WFLC) algorithm is also used in order to

perform the filtering of the force sensors signals. Thus, more stable signal of force FH(t) and

torque τH(t) are obtained.



In the admittance controller, responsible to control the SW velocities, FH(t) is related to the

linear control velocity νc(t) [10], as shown in Equation 3.3.

Here, it is necessary to recall that the mass mν and damping dν parameters are used to define

the HREI dynamics. As the user intention to turn does not affect the guidance, the human

torque (τH(t)) is measured only for evaluating the cognitive interaction through the haptic

feedback obtained by the user’s physical contact with the SW. The angular control velocity

ωc(t) (i.e., the angular velocity output from the admittance controller) is used to point and

conduct the user into the desired path and, further, maintain the user on the path.

(a) (b)

Figure 6.2: Virtual force modulation. a) Left turn. b) Right turn.

To guide the user through the desired path, the path following controller [75] described in

Chapter 4 is used. The closed loop equation used by Andaluz et al. [75] (see Eq. 4.2) allows

obtaining the desired orientation θd to the SW (see Eq. 4.3).

Once, defined θd, it is possible to calculate the orientation error θ̃ between the desired orientation

θd and the SW orientation θ. Thus, θ̃ is calculated in the same way as shown in Eq. 4.6.

The orientation error is the spatial information used to set the virtual forces (see Fig. 6.2a

and 6.2b), which are further used to define the virtual torque τv(t) (see Eq. 6.1, 6.2, and 6.3).

Hence, the equations are represented by:

F1(t) = k(1 + tanh(θ̃)), (6.1)
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F2(t) = k(1− tanh(θ̃)), (6.2)

τv(t) =
F1(t)− F2(t)

2
.d, (6.3)

where k is gain constant used for properly setting forces, and d is the distance between sensors.

Then, the virtual torque (see Eq. 6.3) is used to calculate the angular control velocity ωc(t)

(see Eq. 6.4) of the admittance controller [10], which is used to guide the user in a natural and

intuitive way on the desired path.

ωc(t) =
τv −mωω̇(t)

dω
, (6.4)

In Eq. 6.4, the mass mω and damping dω also participate in the HREI dynamics.

The end-result of this control strategy is that the user is able to control the movements of the

SW during the interaction, and the human turn intention, which is not taken into account for

ωc(t), may not be perceived as a restriction. When the user desires to steer in a way that

would lead to path deviation, the haptic feedback indicates the correct path to the user, and,

as result, the correct direction to follow is presented to the user.

The SW has a safety supervisor, which is in charge of determining if the user can start the

locomotion with the SW or not. The supervisor has two safety factors. The first one regards

the user’s partial body weight support on the SW platform, which has a threshold of 5 N

(empirically obtained) in the z axis of each force sensor. If a threshold is not surpassed, no

motor/control command is sent to the drivers. Once the controller detects that the threshold has

been reached in each sensor, νc(t) and ωc(t) assume the values defined by the control strategy.

In the second safety rule, a semicircle protection zone with 70 cm of radio in front RP-LIDAR

laser sensor is defined. Thus, if the laser sensor detects an obstacle within the interest zone, νc(t)

and ωc(t) become zero to avoid collisions. This simple solution was implemented to guarantee



user’s safety when navigating with the robotic device.

6.3 Controller Simulation and Path Design

The control strategy was simulated in Matlab to verify the behaviors of the SW during straight

paths and curves. In such simulation, the USW kinematic model and an approximation of its

dynamic model were used. The admittance control strategy inserts inertia in the system by the

massmν of the linear velocity equation (see Eq. 3.3). When the robot must steer along the path,

the value of the linear velocity, inertia given by the admittance control, and the path attraction

induced by the path following controller are combined to generate the steering movement. All

those factors might affect the stability and balance of the user, as the maneuverability may be

hardest. In order to understand how this might impact on the guidance and how it is related

to the way the desired path is established, the simulations accounted for multiple path designs.

Figure 6.3 shows the simulation results of three different path designs. The linear velocity of

the simulated SW was limited to 0.58 m/s, as this is the typical gait speed for an usual pace in

elderly without any gait disorder [79]. The forward force FH was constant and established in

8 N , which results in maximum linear velocity. The other parameters of the guidance control

strategy were defined in such a way that the robot could follow the desired path.

Figures 6.3a and 6.3b show that the robot surpasses the desired path, due to the sharp shape of

the curve and the inertia inherent to the controller. These result in intense additional angular

movement to correct the orientation error and bring the robot back the desired path. .

Figure 6.3c presents a soft curve with radius of 1.4 m. Now, the robot follows the desired path

and does not present any additional movement to keep on the path. Although the human factor

is usually not considered for path generation in traditional robotics, soft curves along a path

are natural to humans, and the absence of oscillatory movements may take an important role

in the user’s experience during physical interaction with robots.

In that sense, both the maximum allowed linear velocity and the curve form directly affect
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the travel along the path. Thus, it is necessary to limit the maximum value of linear velocity

and the minimum value of the curve radius. Furthermore, the inertia added by the admittance

controller plays a positive role on guidance when these limits are included.

(a) (b)

(c)

Figure 6.3: Control strategy simulated for different paths designs. a) Path with a curve of 90o;
b) Path with a curve of 120o; c) Path with a soft curve (radius= 1 m.

6.4 Experimental Setup

Fifteen people (eight women) without previous training with the USW, and without any history

of gait or visual impairments participated in the experiments. The height of participants ranged

from 1.53 m to 1.72 m, and the body mass ranged from 54 kg to 73 kg. All participants were



healthy young individuals with no disabilities. Experiments took place in a real non-structured

environment, and the path designed to guide the user from starting to ending point required

the user and the SW to go over different surfaces (rug and corridor floor) and pass nearby tables

and decoration objects. This path (see Fig. 6.4) consisted of three line segments linked by two

soft curves and was previously unknown to the participants. The first line segment is 2.2 m

long (see Figure 6.5, box 1) and is followed by a 160o curve with 1.6 m radius (see Figure 6.5,

box 2). The third segment composing the path is a 5.6 m straight line (see Figure 6.5, box 3).

A 90o curve with 1 m radius (see Figure 6.5, box 4) links the last segment, a 4.4 m straight

line (see Figure 6.5, box 5).

Figure 6.4: The pre-established path to be followed by participants.

The guidance was performed over the designed path to evaluate the proposed controller per-

formance and the subsequent HREI. The parameters of the guidance control strategy were

determined empirically from previous experiments, focusing on the comfort of user. The con-

trol parameters are described in Table 6.1.

The experiment consisted of two parts: on the first part, the user was unaware of the path and

was required to use a blindfold during guidance. During the second part of the experiment,

the guidance was performed without the blindfold. In both experiments, through force sensors

localized under the forearm support of the SW, the user was able to interact and transmit the
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movement intention to start or stop the locomotion, and also regulate the desired speed. During

the first part of the experiment, the HREI and the controller behavior were observed to assess

the proper functioning of the guidance strategy when there was no visual feedback to the user.

Later, during the second part, special attention was paid to the haptic feedback behavior and

the physical and cognitive interactions while maneuvering the SW along the path. The linear

velocity was limited to 0.25 m/s in both parts of the experiment as a security factor. This

limit in the linear velocity is enough to provide good and comfortable locomotion and guidance

during the interaction with the USW.

Figure 6.5: Scenery of the experiment. The participant starts from the building entrance (box
1) and is guided to a room (box 5).

Table 6.1: Parameters values used in the control strategy.

Path following

Constant kx ky lx ly νr
Value 0.7 0.7 3 3 0.3
Admittance Control

Constant dν dω mν mω k
Value 10 20 8 5 3



6.5 Results and Discussions

In the experiments, the participants interacted with the SW in the desired way. All experiments

used the same initial pose (Figure 6.5, box 1) and path. Figures 6.6a and 6.6b show odometry

data from two participants, one of them performing the first test, wearing the blindfold (Figure

6.6a), and the other one, the second test, without the blindfold (Figure 6.6b). It can be seen

that in both cases the controller was able to guide and maintain the user along the desired

path. Due to the absence of sharp curves and the fact that the user always starts in a point

inside the desired path, there were no path deviations, as expected.

(a) (b)

Figure 6.6: Following the desired path. a) User wearing the blindfold. b) User without the
blindfold.

Figure 6.7 shows a representative result of the first part of the experiment, when the subject is

wearing the blindfold. It can be observed the physical interaction forces between the user and

the walker, and the control signals. Once the SW starts the movement, a small force signal

(around 0.2 N) is demanded from the user to maintain the locomotion with the SW along the

desired path. With the user wearing a blindfold, the controller haptically induces a torque

on the he/she, due to the physical interaction between the user and the SW. In the straight

segments of the desired path, the torque signal τH(t) due to the HRI is around zero. However,
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such torque can be clearly perceived during the curves, being particularly stronger in the second

curve of the desired path. At the beginning of that curve, the torque τH(t) detected is contrary

to the curve direction (see red dotted line in second curve zone in Fig. 6.7), as the user was not

able to perceive the beginning of the curve and attempted to keep going straight ahead. Once

the user interprets the haptic feedback, the user follows the interaction and applies torque in

the same direction of the curve. This interaction was perceived as natural and intuitive, and the

controller strategy is able to indicate to the user the path to follow. The mean linear velocity

is 0.14 m/s, and the angular velocity only appears on the SW in the curve zones (maximum

absolute value of 0.43 rad/s). The orientation position error is approximately zero, because

the guidance controller strategy keeps the user on the desired path (see Figure 6.7).

Figure 6.7: Following the desired path using the blindfold. Up to down: user’s force signal
FH(t), user’s torque signal τH(t), Control and SW linear velocities, Control and SW angular
velocities, θ̃ signal.

Figure 6.8 shows a representative result of the second part of the experiment, performed without

the use of the blindfold. In this case, as the user felt more comfortable, he/she was able to use

his/her own visual feedback, force and torque signals, which assumed larger values than when

the user was wearing the blindfold, as the user was more confident and felt that he/she had

the control over the SW maneuverability (see Fig. 6.9b). In the straight line, the mean force



value was of 1.5 N , with a maximum value of 5.4 N , and the human torque applied by the user

was around 0 N.m. It can be observed that the user applied torque signal before the beginning

of the second curve (see the red dotted line in Figure 6.8), which happened because the user

was able to see the environment by where he/she was moving without being fully aware of the

desired path to follow. Even though the user applied τH(t), the SW only took the turn direction

when the curve began on the desired path. The absolute maximum torque value applied by the

user was 12.6 N.m.

Figure 6.8: Following the desired path without use of blindfold. Up to down: user’s force signal
FH(t), user’s torque signal τH(t), Control and SW linear velocities, Control and SW angular
velocities, θ̃ signal.

As the user shown in Fig. 6.8 felt safer in this experiment (see Fig. 6.9a), the linear velocity

was always the maximum limited value, which was 0.25 m/s. This same behavior was observed

on the signals obtained from 10 participants. In this case, the maximum absolute value of

the angular velocity was 0.48 rad/s, and the orientation position error was also approximately

zero. In both parts of the experiment, all participants followed the desired path using the

haptic feedback of the control strategy (see Fig. 6.9c), which, according to the perception of

participants, allowed an intuitive interaction between the user and the SW (see Fig. 6.9d).
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(a) (b) (c) (d)

Figure 6.9: Qualitative evaluation for the guided experiments. Questions: a) “I felt safe handling
the SW”. b) “I felt that I controlled the SW”. c) “I felt that the SW was guiding me”. d) “felt
an intuitive interaction with the SW”. Group 1. Following the desired path using the blindfold.
Group2. Following the desired path without use of blindfold.

Figure 6.10 shows the mean velocities obtained by the users in the experiments, and the respec-

tive errors. It can be seen that the mean velocities tend to increase when the users does not

wear the blindfold. The mean linear velocity passes from 0.1931 ±0.027 m/s to 0.2168 ±0.019

m/s, and the mean angular velocity passes from 0.1064 ±0.014 rad/s to 0.1164 ±0.009 rad/s.

We believe that this is due to the fact that the users, who present no visual impairment, feel

more comfortable and confident when not wearing the blindfold, leading to an increase on their

gait speed. The mean error in the linear velocity is similar for both cases. In the case of the

mean error in the angular velocity, the error is higher in the second part of the experiment, due

to the SW arrived at the curve with a higher linear velocity and, according to the controller

strategy, the angular velocity is directly proportional to the linear velocity.

During the experiments, though many of the users reached the maximum linear velocity, no

one commented on such limitation, which seems to be perceived as merely due the natural

inertia of the SW. Users, in general, talked about the limiting speed value as a “good velocity

for locomotion”. Moreover, they reported the perception of safety during guidance, and the

interaction itself was considered intuitive along the desired path. In this sense, the control

strategy does not require from the user a higher effort to maneuver the SW, allowing for

guiding people through a desired path in a natural way.



(a) (b)

Figure 6.10: Group 1: Average data from all runs of the first part of the experiment. Group
2: Average data from all participants without the use of the blindfold. (a) Statistic of linear
velocity. (b) Statistic of the angular velocity.

As a conclusion, this chapter presented a control strategy that allows the HREI to guide blind

people with gait disorders. The haptic feedback given by the physical contact between the user

and the SW allows guiding these people without the use of wearable devices or signals that

require an additional cognitive process that may induce fatigue. With the haptic feedback, an

intuitive information about the path to be followed is provided, and the user is easily able to

manage the use of the SW.

The control strategy proposed here allowed a comfortable experience for the users when they

were guided by the SW. The mass and damping parameters of the admittance controller did

not demand a higher effort by the user, and hence, the SW was easily manipulated. By limiting

the velocities of the SW and choosing a coherent path design, the control strategy had a good

behavior and transmitted comfort and safety to the user.



Chapter 7

Conclusions and Future Works

Such as previously presented, there is a significant need to include the environment percep-

tion within the interaction layers when is navigating with an SW. This Ph.D. thesis used the

environment information to propose and validate control strategies for a HREI (Human-Robot-

Environment Interaction). Such strategies were implemented on a walker-assisted gait, which

was used to assist people with mobility impairments. These control strategies demonstrated

to demand less effort on the user to maneuvering the SW, as the control parameters can be

adjusted to have an easy locomotion.

Two new control strategies for HREI were proposed and validated here. On the one hand, a

proposal that contributes to a natural interaction among Human–Robot-Environment using a

new criterion for admittance control strategy was presented. The spatial modulation concept

allowed the guiding of the user in a natural and safe way through a path. Moreover, it gave

the user enough sensation to understand that he/she had control over the device. Considering

the second strategy, the user is able to impose the start and end of the locomotion with the

SW, but not a turn intention. In this case, the control strategy generates the angular velocity

to guide the user through a path in a comfortable and safe way. This strategy can be used to

assist people with impaired postural control, (e.g.: post-stroke people who have one side with

paralysis), as it only needs the user motion intention to keep forward with the SW.

One of the advantages of these control strategies is the use of sensors integrated into the SW
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to detect the user motion intention, as it provides comfort and easy maneuverability of the

walker. The lack of sensors placed on the user’s body and the absence of landmarks or sensors

installed on the environment make the presented solutions suitable for real-life applications.

This research also introduced a natural and intuitive HREI based on a haptic feedback as

result from the physical interaction between the user and the SW. Such haptic signal was used

to guide the SW’s user across an environment in a safe and efficient way. In addition, the use

of the haptic feedback allowed getting, in an intuitive way, the environment information. We

believe that this can contribute, in a positive way, for the user’s cognitive system, as it promotes

the process of decision-making about the path to follow, which could be useful to enhance the

design of assistive and rehabilitation devices.

Furthermore, the use of haptic feedback together the visual cHRi (cognitive Human-Robot in-

terface) allowed obtaining a multimodal cognitive interaction between user and SW, which is

used to give intuitive recommendations about the path that should be followed. This was veri-

fied through real experiments where the user, by means of the multimodal cognitive interaction,

was able to follow the path. Also, through the pHRi (physical Human-Robot interface) and the

cHRi (cognitive Human-Robot interface) used in this work, the user was able to establish, in a

natural and intuitive way not only the start and the end of the locomotion, but also regulate

the desired speed.

The multimodal cognitive interaction was also used in a navigation strategy, which included

the social interaction within the SW by mean of spatial zones defined through elliptic shapes.

In this case, the use of the haptic feedback and the LEDs allowed enough freedom to maneuver

the SW, as they do not saturate any user vital sign during navigation. This was also verified

through real experiments where the user was able to navigating in a safe way along a corridor.

Spatial zones defined by ellipses shapes, not only allowed having more space to navigate in

confined spaces, but also offered the opportunity to interact with other people during navigation

using social conventions. This kind of solutions is reflected in the user quality of life and

wellbeing. In addition, it establishes a research field that, according to the literature, has not

been fully explored for SWs.



102 Chapter 7. Conclusions and Future Works

As future work, a clinical protocol is being prepared to validate the control strategies and

the multimodal cognitive interaction with patients, as clinical evaluation and the adaptation

of the control strategies is an important future task for rehabilitation. Experiments will be

conducted with people with motor disabilities (e.g.: post-stroke patients) to evaluate the inter-

action schemes developed and the communication channels used by the multimodal cognitive

interaction.

New control strategies are also being developed to promote the haptic feedback for the user

of SWs. Also, it is necessary implement a strategy to generate the value of the admittance

controller parameters in real time, in order to improve the HREI.

With the RP-LIDAR sensor, the aim is to have more information about the environment to be

used in probabilistic techniques, such as SLAM, to define, in real time, the path that the SW

should follow to reach a specific location. Moreover, video cameras are being integrated on the

SW to improve the social navigation strategy. This way, new algorithms can be implemented for

detection and classification of other obstacles within the environment, which can empower the

features of the SW during navigation. Therefore, new control strategies should be developed

to include simple tasks, such as directing the SW to a specific object into the environment,

and, for example, assist the user to pick up a glass on a table, or, improve the social factors

addressed in this research. In this sense, safer navigation strategies for the user must also be

implemented. In addition, it will be necessary to develop new HREI strategies, in which the

user has an active role. Here, new interfaces between the user and the SW must be implemented

on the SW to improve the interaction strategies.

SWs are assistive devices that provide benefits to the mobility of impaired people. However,

these devices have been slightly explored in real scenarios. For this reason, the control strategies

proposed in this Ph.D. thesis should be tested in real environments, such as hospitals, nursing

homes, and clinical settings, observing also, the behavior of these devices when operating close

to other people, which is an important information to improve the HREI.



7.1 Contributions

The work contributions of this Ph.D. thesis are the development of novel HREI control strategies

and a multimodal cognitive interaction to guiding the SW’s user during navigation. Objectively,

the most important technical and scientific contributions of the research presented in this work

are listed below.

1. Proposal and validation of an HRI strategy using force sensors to recognize the human

motion intention.

2. Study of the influence of the admittance control parameters on the Human-Smart walker

interaction.

3. Use of the physical contact between the user and the SW to generate haptic feedback to

indicate the path that should be followed by the user.

4. Design and implementation of a multimodal cognitive interaction to indicate the right

direction, and intuitively find the easy navigation with the SW. Such cognitive interaction

is composed of the haptic feedback and visual interface.

5. Design and validation of a new control strategy for HREI based on an admittance con-

troller with spatial modulation and a haptic feedback to guide the user through a prede-

termined path.

6. Proposal and validation of a social navigation strategy that uses social conventions in-

spired by proxemics.

7. Development of a control strategy to guide visually impaired people through a predeter-

mined path using haptic feedback.
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