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eral do Esṕırito Santo, como requisito para
obtenção do grau de doutor em F́ısica.

Universidade Federal do Esṕırito Santo –UFES
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ABSTRACT

General relativity has a great success in describing the dynamics of the Solar System

and also in the description of gravitational waves. However, its limits are evident in the

study of large scales and quantum levels. In this latter scenario it is known that general

relativity is not perturbatively renormalizable, hence proposed approaches as functional

renormalization have been applied in order to solve this problem. However, the use of such

mechanisms gives rise to extensions of general relativity that can generate signatures of the

quantum medium at larger scales. In this thesis we study a particular extension of general

relativity from renormalization group and we test if such signatures are present at scales

at the level of the Solar System. In addition, there is a reasonable understanding that

general relativity does not explain the behavior of rotation curves without the hypothesis

of a dark matter. The fact that galaxies have very low rotation velocities in relation to the

speed of light and a weak gravitational field and that, in this regime, general relativity is

simply Newtonian gravity, it suggests that general relativity corrections are inefficient for

dark matter effects. We study in this thesis alternatives to the interpretation described

above and we propose a model that tests them in their own way. In addition, we study

the feasibility of a scenario of coexistence between dark matter and modified gravity

assuming that the fifth force from the gravity modification is coupled differently to baryons

and dark matter. We investigate the possibility that the galaxy rotation curves can be

explained in the framework of modified gravity models that introduce a Yukawa term in

the gravitational potential. We aim at constraining the modified gravity parameters β and

λ, that is, the strength and the range of the Yukawa fifth force. We include baryonic gas,

disk and bulge components, along with a Navarro-Frenk and White (NFW) halo of dark

matter. Each galaxy rotation curve is modeled with three free parameters, beside the two

global Yukawa parameter. The preference of the observational data in favor or against this

new parameterization is studied through Bayesian inference. The Bayesian evidence in

favor of a NFW profile plus Yukawa term is higher than 8σ with respect to the standard

gravity parametrization.

Keywords: dark matter, galaxies, general relativity, rotation curves, modified gravity.



RESUMO

A relatividade geral tem um grande sucesso na descrição da dinâmica do Sistema Solar e

também na descrição das ondas gravitacionais. Porém, seus limites são evidentes no estudo

de grandes escalas e em ńıveis quânticos. Neste último cenário sabe-se que a relatividade

geral não é perturbativamente renormalizável, assim propostas como renormalização

funcional têm sido aplicadas a fim de solucionar este problema. Porém, o uso de tais

mecanismos dão origem a extensões de relatividade geral que podem gerar assinaturas

do meio quântico em escalas maiores. Nessa tese estudamos uma particular extensão de

relatividade geral oriunda da aplicação de grupos de renormalização funcional e testamos se

tais assinaturas estão presentes em escalas a ńıvel do Sistema Solar. Além disso, têm-se um

razoável entendimento de que relatividade geral não explica o comportamento das curvas de

rotação sem a hipótese de uma matéria escura. O fato de que galáxias possuem velocidades

de rotação muito baixas em relação a velocidade da luz e um campo gravitacional fraco e

que nesse limites relatividade geral é simplesmente gravitação Newtoniana, sugerem que

correções de relatividade geral são ineficientes para efeitos de matéria escura. Estudamos

nesta tese alternativas a interpretação descrita acima e propusemos um modelo que as teste

de maneira própria. Além disso, estudamos a viabilidade de um cenário de coexistência

entre matéria escura e gravidade modificada assumindo que a quinta força advinda da

modificação da gravidade se acopla diferentemente aos bárions e à matéria escura. Nós

investigamos a possibilidade de que curvas de rotação de galáxia podem ser explicadas

no contexto de gravidade modificada que introduzem um termo de Yukawa no potencial

gravitacional.Nosso obketivo é restringir os parêmateros de gravidade modificada β e λ,

que são, respectivamente, a força e o alcance da quinta força de Yukawa. Inclúımos em

nossa análise o gás, disco estelar, bojo juntamente com um halo de matéria escura do tipo

Navarro-Frenk e White (NFW). Cada curva de rotação é modelada com três parâmetros

livres além dos de Yukawa que são globais. A preferência dos dados observacionais em

favor ou contra essa nova parametrização é estudada via inferência Bayesiana. A evidência

Bayesiana em favor de um perfil de NFW mais Yukawa é maior do que 8σ com respeito à

parametrização de galáxias tradicional.

Palavras-chave: curvas de rotação, galáxias, gravidade modificada, relatividade geral,

matéria escura.
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INTRODUCTION

The dynamics of the standard cosmological model(LCDM) after cosmic inflation

derives from three pillars: gravity, dark matter and dark energy. Naturally, the baryons are

present too, but their contribution to the universe, mainly in later times, is negligible. The

standard model is a concordance model, i.e. it explains the accelerated expansion and the

structure formation. The first phenomenon is attributed to dark energy while the second

one is to dark matter.

The gravity behind the standard model is General Relativity, the most accepted

modern theory of gravity. Besides its elegant description, based on differential geometry,

GR explains successfully the motion of planets around the Sun, e.g. Mercury’s precession

orbit. But GR finds its own limits in the “dark universe” scenario, i.e. dark matter and dark

energy are inserted as extra ingredients to the energy content of the universe. Moreover,

there are diverse motivations for extending gravity beyond General Relativity [6, 7, 8],

including: quantum gravity, avoidance of singularities, understanding inflation, theoretical

and observational improvements on dark matter, alleviating coincidence issues related to

dark energy, and others.

In this thesis we investigate the possibility of a GR extension based on the Renor-

malization Group (RG) framework applied to gravity. Specially, here we will focus on the

realization that was named RGGR [9, 10]. There are some procedures for testing gravity

beyond Newtonian gravity, and the most used one is the Parametrized Post Newtonian

(PPN) formalism. Here we consider two versions of the PPN formalism: the Eddington-

Robertson-Schiff parametrization and the Will-Nordtvedt to a class of RG extensions of

GR that includes RGGR as a particular case, but considering in this study the presence of

the external potential effect which is an effect inherent to RGGR and works as a (partial)

screening mechanism.

The possibility of an existence of dark matter appeared for the first time, in

literature, when Zwicky [11] perceived the “missing mass” on dynamics of galaxy clusters

which was not consistent with only luminous matter. But, the evidences of a dark matter

became more relevant forty years later, when Vera Rubin [12] inferred the necessity of

an extra matter for explaining the rotation curve of Andromeda. Notwithstanding the

indirect evidences that support its existence, dark matter remains a mystery and there

is no current sign of a direct detection [13, 14]. Despite the success of the LCDM in the

description of the observed universe, certain features are not covered by standard model,

for example, at galactic scales there is the Tully-Fisher [15, 16, 17] relation which is an

empirical relation between the mass (or luminosity) of a galaxy and its asymptotic rotation
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velocity. The latter inconvenience of standard model in galaxies motivated the emergence

of a modified gravity known as Modified Newtonian Dynamics [18, 19, 20] (MOND) which

assumes a fundamental acceleration scale, namely a0, such that for accelerations smaller

than a0 the gravitational force decays with distance slower than Newtonian one. In a recent

work [21], analyzing 193 disk galaxies and using Bayesian inference, the authors show that

the existence of such fundamental acceleration in galaxies is zero and MOND can not be

seen as a fundamental theory but rather as a phenomenological one.

In the context of galaxies, we investigate two possibilities, one that galaxies rotation

curves could be explained in the framework of GR without dark matter by using certain

peculiar geometries, and the other possibility considers dark matter but the existence of

an interaction between dark matter and baryons described by a fifth force. The latter

one is predicted considering the weak field limit of relativity of several modified gravity

theories. To exemplify the first possibility, two relativistic approaches are selected. For

some galaxies, the rotation curve fits of these approaches seem satisfactory, but these

publications, namely [22, 23, 24, 25, 26, 27], lack a detailed investigation with respect to

the baryonic matter data inferred from observations. The main feature of those approaches

is to use the observational rotation curve as an imput for deriving the total matter density

of galaxies. Models that use this inverse route have not been yet properly tested and

confronted with results from other approaches. To address this issue we propose [28] the

effective Newtonian rotation curve method.

For the second possibility, the coexistence of dark matter and modified gravity is

considered, in particular those that predicts Yukawa-like corrections to the Newtonian

potential when the weak field limit of relativity is performed (e.g. f(R), Scalar-tensor-

vector-gravity, Nonlocal gravity, Scalar-tensor). We tested this scenario with rotation

curves from the newest catalogue SPARC. We found a strong evidence in favor of this

scenario, dark matter plus modified gravity, compared to the standard one. Finally, the

main content of this thesis was published in [28, 29, 30, 31].

This thesis is organized as follows: In the first chapter we review the basis of general

relativity; in Chapter 2 we present the modified gravity theories, in particular, the ones that

predict Yukawa-like corrections at weak field regime and a particular extension of general

relativity considering renormalization group effects. In Chapter 3 it is reviewed the basis

of parametrized post-Newtonian formalism followed by Chapter 4 where we analyze the

renormalization group effects at Solar System. In Chapter 5 we review important aspects

of spiral galaxies which are important for developing subsequent chapters. In Chapter 6 we

review the main tools for statistical analysis of the gravity models discussed in this thesis.

In Chapter 7 we present the approaches for galaxies rotation curves description based in

general relativity and modified gravity as well their comparison with observational data. In

Chapter 8 we present the main conclusions of this thesis as well the perspectives for future
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works. In the end, one has two appendices, namely Appendix A and B, where aspects

about renormalization group effects in large scales are more detailed.
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1 GENERAL RELATIVITY

This chapter is dedicated to briefly review the fundamentals of GR. More detailed

reviews, with a similar approach to the one used here, can be found in [32, 33].

General relativity, is the most favored theory for describing gravity. Besides its

simplicity suggesting that the gravity is a manifestation of spacetime curvature induced

by the presence of matter or energy, GR passes through accurated observational tests, for

example the Solar System dynamics [34] and gravitational waves emission [35]. The field

equations of GR, or simply Einstein equations, which describes quantitatively how much

the spacetime curvature is deformed due the matter are a set of second-order differential

equations whose solution is the rank-2 tensor gµν , namely the metric tensor, which is the

fundamental quantity in Einstein gravity. In the most general case, gµν has ten components.

In order to construct the Einstein equations one needs to find a proper way to

describe the source term, i.e. the matter or energy. In other words, one must relate the

matter (energy) with a tensor, in order to describe covariantly the matter distribution.

Besides its covariant behaviour, the tensor which will describe matter in Einstein equations,

that is, the energy-momentum tensor T µν , needs to have components that identify properties

of fluids. Namely, T 00 describes the total energy density which is equal to ρc2 (c is the

speed of light), in any coordinate system; T 0i, with i = 1, 2, 3 is the heat conduction

term; T ij is the stress tensor. The standard procedure for obtaining the energy-momentum

tensor is via Noether’s theorem. However, the latter leads, in general, to a non-symmetric

energy-momentum tensor. But, in the context of general relativity, the matter fields couple

to matter, hence a symmetric energy-momentum tensor is needed [36]. The conservation

of energy-momentum tensor in any coordinate system is given by

∇µT
µν = ∂µT

µν + ΓµµρT ρν + ΓνµρT µρ = 0, (1.1)

where ∇µ is the covariant derivative and the coefficients Γµαβ are the Christoffel symbols

which relates with the metric tensor via

Γµαβ = 1
2g

µρ(gρα,β + gρβ,α − gαβ,ρ) , (1.2)

where the commas represent the partial derivative with respect to spacetime coordinates.

The equation above can be obtained if one considers ∇µg
µν = 0.

Now, after identify the source term for Einstein equations one needs to link its

effects with gravity in the same equations. Since gravity is described as a curvature of

spacetime geometry, it is intuitive to connect the metric tensor with the curvature tensor.

Hence, a first candidate is the Riemann tensor, namely Rα
βγδ, which is composed by second
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derivatives of the metric tensor. But, Rα
βγδ is a rank-4 tensor while the energy-momentum

tensor is a rank-2 tensor hence it is difficult to connect geometry with matter in a simple

equation. Another candidate containing second-order derivatives of the metric tensor that

is also a rank-2 tensor is the Ricci tensor Rµν ≡ Rα
µαν . Hence, a good suggestion for

Einstein equations could be Rµν = κT µν , but the latter equation is not compatible with

equation (1.1) due ∇µR
µν 6= 0, in general. However, if one looks at the Bianchi identities,

namely

Rα
βγδ;ε +Rα

βδε;γ +Rα
βεγ;δ = 0 , (1.3)

where “;” means the covariant derivative and contracting the above equation with δαγ g
βδ,

one finds

Gαβ
;β = 0 , (1.4)

where

Gαβ ≡ Rαβ − 1
2g

αβR (1.5)

which is called Einstein tensor and is a better candidate for the left-hand side of Einstein

equations which becomes now

Rαβ − 1
2g

αβR = κTαβ , (1.6)

with κ = 8πG
c4 where G is the Newton’s gravitational constant. Now, using that ∇µg

µν = 0
the equation (1.6) can be trivially extended

Rαβ − 1
2g

αβR + Λgαβ = κTαβ , (1.7)

where Λ is the cosmological constant.

However, many theories both at the classical and quantum level are expressed using

the variational principle and the main element of this approach is an action, which is a

scalar. Writing a physical theory using an action one enables to see straightforwardly, for

example, the symmetries of interest or conserved quantities. Furthermore, by demanding

that an action of a given physical theory is invariant under symmetry, one ensures that

the field equations of such theory is also invariant under that symmetry. The derivation of

Einstein equations using the variational principle was performed by Hilbert and the action

that generates the field equations (1.7) is known as Einstein-Hilbert action, namely

SEH = 1
2κ

∫
(R− 2Λ)

√
−g d4x+ Sm , (1.8)

where R is the Ricci scalar, g is the determinant of gµν and Sm is matter action. Following

[37], let us derive the Einstein equations via variational principle. Varying the action SEH

with respect to the metric field gµν one has

δSEH = 1
2κ

∫ [
δ(
√
−g)(gµνRµν − 2Λ) +

√
−gδgµνRµν +

√
−ggµνδRµν

]
d4x+δSm . (1.9)
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Now, using that gµνRµν = ∇α

(
gµνδΓαµν − gµαδΓνµν

)
≡ ∇αV

α one finds∫
gµνδRµν

√
−g d4x =

∫
∇αV

α
√
−g d4x = 0 , (1.10)

where we used the Gauss’s theorem. Now, using the relation δ(
√
−g = −(1/2)

√
−ggµνδgµν

the equation (1.9) becomes

δSEH = 1
2κ

∫
(Rµν −

1
2gµνR + Λgµν)δgµν + δSm . (1.11)

Defining the energy-momentum tensor of matter as follows

Tµν ≡ −
2√
−g

δSm
δgµν

, (1.12)

one has

δSEH = 1
2κ

∫
(Rµν −

1
2gµνR + Λgµν − κTµν)δgµν

√
−g d4x . (1.13)

Hence, the Einstein equations (1.7) are obtained demanding that δSEH = 0. Einstein

gravity shows how the spacetime curves due the presence of matter. Hence, it is possible

to deduce the motion of test particles in this curved spacetime. Due the influence of

gravity only, i.e. the curvature of spacetime, the test particles will move along geodesics.

The geodesic equation is the one that describes the motion of these particles and can

be obtained starting from the energy-momentum conservation (1.1) and writing it, in a

convenient way, as

∇µT
µν = 1√

−g
∂µ(
√
−gT µν) + ΓνσµT µσ = 0 , (1.14)

where it was used

Γµσµ = ∂σ ln
√
−g = 1√

−g
∂σ
√
−g. (1.15)

The energy-momentum tensor of a test particle with rest mass m can be written as follows

[32]

T µν(x) = m√
−g

∫
żµżνδ4(x− z(τ))dτ , (1.16)

where the dots means the derivation with respect to proper time τ . Hence, inserting the

equation above into equation (1.14) one finds∫
żµżν

∂

∂xµ
δ4(x− z(τ))dτ + Γµσµ

∫
żµżσδ4(x− z(τ))dτ = 0 . (1.17)

Now, observing that Dirac’s delta depends only on the difference xµ − zµ, then one can

replace ∂/∂xµ by −∂/∂zµ and noting that

żµ
∂

∂zµ
δ(x− z(τ)) = d

dτ
δ4(x− z(τ)) , (1.18)
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one can use the relation above in equation (1.17), integrate by parts and collect the terms

together, in order to find ∫
(z̈ν + Γνσµżµżσ)δ4(x− z(τ))dτ = 0 . (1.19)

It is clear that for this integral to vanish, one requires that the expression in the

integrand to equal zero, hence one recovers directly the standard geodesic equation.

Einstein gravity is a generalization of Newton’s gravity, hence in some limit one

can recover, starting from Einstein equations, the Newtonian equations for gravity, i.e.

∇2Φ = 4πGρ. This approach is know as the weak-field limit of Einstein equations and

consists in to consider the spacetime slightly curved, which means in terms of the metric

tensor, gµν = ηµν + hµν , with |hµν | � 1 and stationary, i.e. ∂tgµν = 0. In order to apply

the weak-field limit it is convenient to express the Einstein equations as follows

Rµν = κ

(
Tµν −

1
2gµνT

)
, (1.20)

where T = gµνTµν . The only component of the equation above that one needs to consider

is the (00), hence

R00 = κ

(
T00 −

1
2g00T

)
. (1.21)

From the definition of the Riemann curvature tensor one can obtain the (00) component

of the Ricci tensor which is given by

Rµ
0µ0 = R00 = ∂0Γµ0µ − ∂µΓµ00 + Γν0µΓµν0 − Γν00Γµνµ , (1.22)

where the Γ’s are the Levi-Civita connection given by equation (1.2). Thus, considering only

the linear part of equation (1.20) and assuming the fact that the metric gµν is stationary

one finds

R00 ≈ −∂iΓi00 ≈ −
1
2δ

ij∂i∂jh00 . (1.23)

Assuming that the source of the gravitational field is a perfect fluid and moreover the

pressure is negligible compared with the energy density, i.e. p/c2 � ρ, one has that the

energy-momentum tensor to be that of dust Tµν = ρUµUν which yields T = −ρ, where we

used UµUµ = −1. Hence, the right-hand side of the equation (1.21) now reads as

κ

(
T00 −

1
2g00T

)
≈ 1

2ρc
2 , (1.24)

where we used U0 ≈ c. Therefore, using the result above and the equation (1.23), the

equation (1.20) reduces to
1
2δ

ij∂i∂jh00 ≈ −
1
2κρc

2 . (1.25)

Now, considering that h00 = −2ΦN/c
2 and remembering that κ = 8πG/c4, one finally

obtains

∇2ΦN = 4πGρ , (1.26)

which is the Poisson’s equation for Newtonian gravity.
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2 MODIFIED GRAVITY

If general relativity is the correct description of gravity hence, according the LCDM,

around 96% of all content in Universe is composed by matter and energy that do not

interact eletromagnetically. Gravity being described by GR in galaxies and cluster of

galaxies, some amount of dark matter is required to explain the observations. As well, more

recently, dark energy is necessary to explain the accelerated expansion of the Universe.

Such necessity favors the possibility that GR is not the correct theory in largest scales.

However, Lovelock’s theorem [38, 39] ensures that the only field equations which contains

second derivatives of metric tensor, in a four dimensional space from a scalar density

Lagrangian of the form L = L(gµν), are the Einstein equations (1.7). Hence, whether one

wants to describe a theory of gravity that produce field different from GR, one has to

add more propagating degrees of freedom, that is, either scalars, vectors or tensors. Is

equivalent to consider the presence of higher derivatives of the metric tensor in the field

equations.

Also, modifications to gravity can emerge from attempts of a definitive quantum

gravity theory. The well known Extended theories of gravity (ETGs) [7] are approaches

based on adding higher-order curvature invariants (e.g. R2, RµνR
µν , RµναβR

µναβ) and

non-minimally coupled scalar fields to geometry (such as φ2R). The latter terms can be

seen as corrections or enlargements of GR.

In this chapter, we review modified gravity models and their elements present in

literature which are relevant for next chapters where we analyzed such theories against

observations of the Solar System dynamics and internal dynamics of galaxies, e.g. rotation

curves. The review on modified gravity models are mainly based on [37, 8].

2.1 f (R) theories

A simple generalisation of Einstein-Hilbert action is to consider instead of the Ricci

scalar a function of it, namely f(R)

S = 1
2κ

∫
f(R)

√
−g dx4 + Sm(gµν ,Ψm) , (2.1)

where Ψm are the matter fields. Note that the general covariance and Lorentz invariance

which are within Einstein gravity are preserved in this modification. On the another hand,

the field equations obtained from the action above depends on the variational principle

adopted. Namely, if one assumes that the action is a functional of the metric only and

hence the connection is the Levi-Civita one (1.2), this is known as metric formalism. The

Palatini formalism considers the action (2.1) as a functional of metric and connection and
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hence they are independent fields in the theory. In this section, we will focus in the metric

formalism, hence variating the action (2.1) with respect to the metric gµν one finds

F (R)Rµν −
1
2f(R)gµν −∇µ∇νF (R) + gµν�F (R) = κTµν , (2.2)

where F (R) ≡ ∂f/∂R and the differential operator � ≡ gµν∇µ∇ν . The trace of equation

above gives

3�F (R) + F (R)R− 2f(R) = κT , (2.3)

where T is the trace of energy-momentum tensor, i.e. T = gµνT
µν .

If one expands the equation above using the decomposition of the following quanti-

ties: ϕ ≡ F (R), gµν and Tµν into background plus perturbations, namely: ϕ = ϕ0(1 + δϕ),

gµν = ηµν + hµν and Tµν =
(0)
T µν +δTµν , the equation (2.3) now reads [40, 41](
∂2

∂t2
−∇2

)
δϕ+m2

ϕδϕ = κ

3ϕ0
δT , (2.4)

where we used δT ≡ ηµνδTµν and

m2
ϕ ≡

1
3

[
f,R(R0)
f,RR(R0) −R0

]
, (2.5)

where f,R and f,RR are the respective first derivative and second derivative with respect to

the Ricci scalar and R0 means the Ricci scalar at the cosmic background.

Let us consider now a body with spherical symmetry and mass M , constant density

ρ inside a radius rc and vanishing density outside the sphere, i.e. r > rc. In this case, the

equation above becomes (inside the sphere)

d2

dr2 δϕ+ 2
r

d

dr
δϕ−m2

ϕδϕ = − κ

3ϕ0
ρ , (2.6)

where ρ ≡ δT . Hence, the solution of the equation above is

δϕ = C1
e−mϕr

r
+ C2

emϕr

r
, for r > rc (2.7)

δϕ = C3
e−mϕr

r
+ C4

emϕr

r
+ 8πGρ

3ϕ0
, for r < rc (2.8)

where C1, C2, C3, C4 are integration constants and we used c = 1. Requiring that ϕ tends

to ϕ0 implies in δϕ → 0 for r → ∞, when r > rc, which sets C2 = 0. Now, demanding

that δϕ must to be finite at r = 0 one needs C4 = −C3 and, finally ordering the equality

of δϕ at the boundary r = rc. Considering the latter requirements and according [41], if

mϕrc � 1 one obtains the following solutions

δϕ ≈ 2GM
3ϕ0r

e−mϕr , for r > rc (2.9)
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δϕ ≈ 4πGM
3ϕ0

(
r2
c −

r2

3

)
, for r < rc . (2.10)

It is convenient to define a new metric variable

ĝµν ≡ ϕgµν . (2.11)

Hence, the field equations (2.2) now reads as [41]

Ĝµν−
3

2ϕ2∂µϕ∂νϕ+ĝµν
(

3
4ϕ2 ĝ

αβ∂αϕ∂βϕ+ 1
2ϕ

(
R(ϕ)− f(R(ϕ))

ϕ

))
= 8πG

ϕ
Tµν , (2.12)

where Ĝµν is the Einstein tensor considering the metric ĝµν . The linearisation of the

equation above one gives the Einstein gravity with a rescaled Newton’s constant Ĝ
(1)
µν =

8π(G/ϕ0)δTµν , hence the usual result (as already seen in Chapter 1) for the (00) and

(ij) components of the metric pertubation tensor are h00 = 2GM/(ϕ0r) and hij =
2GM/(ϕ0r)δij. Thus, the linearized metric gµν is

gµν = ĝµν
ϕ
≈ ηµν + hµν − ϕ0ηµν . (2.13)

Now, using equation (2.9) one can show that the metric outside the sphere of mass M and

radius rc is approximately

ds2 = gµνdx
µdxν ≈ −

(
1− 2GM

ϕ0r
− 2GM

3ϕ0r
e−mϕr

)
dt2 +

(
1 + 2GM

ϕ0r
− 2GM

3ϕ0r
e−mϕr

)
dx2 .

(2.14)

Since g00 ≈ −1− 2Φgrav where Φgrav is the gravitational potential which gives the acceler-

ation of test particles. Hence, from the equation above one has for a point mass source

Φgrav = −GM
ϕ0r

(
1 + 1

3e
−mϕr

)
. (2.15)

Note that the first term in the above is the standard Newtonian potential with a

rescaled Newton’s constant accompanied of a Yukawa-like term. One can associate the

mass mϕ with a lenght-scale λ which identifies where the Yukawa correction becomes

important, the mentioned relation is given by λ = 1/mϕ
1.

2.2 Scalar-tensor theories

The insertion of scalar fields as a mediator of gravity in addition to the metric

tensor field started with the Brans-Dicke theory [42] which is a simple modification of

GR that inserts a scalar field in attempt to incorporate the Mach’s principle, which says

that the inertia is defined with respect to the entire mass distribution in the Universe,

1 Here, we are using c = ~ = 1, where ~ is the Planck’s constant divided by 2π
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and also to reproduce the Dirac’s idea that the Newton’s constant G varies in time. The

Brans-Dicke gravity is a particular case of scalar-tensor theories whose the action is given

by

SST =
∫ [1

2f(R, φ)− 1
2χ(φ)gµν∇µφ∇νφ

]
+ Sm(gµν ,Ψm) , (2.16)

where we used units such that κ = 1.

The action above covers a wide range of theories, for example f(R) and Brans-

Dicke gravity. Namely, f(R) is achieved just requiring f(R, φ) = f(R) and χ = 0. The

Brans-Dicke case is recovered when f(R, φ) = φR and χ = ωBD/φ, where ωBD is the

constant Brans-Dicke parameter. A simple generalization of Brans-Dicke theory can be

achieved if one adds a potential V (φ) to the original action, hence f(R, φ) = φR− V (φ).
The action (2.16) is written in Jordan frame or also known as the physical frame where

the the energy-momentum is covariantly conserved, i.e. it obeys the standard conservation

equation (1.1). A conformal transformation to the metric tensor, i.e. ĝµν = Ω2gµν , can be

applied in order to write the action (2.16) in the Einstein frame where the field equations of

the theory assumes the form of Einstein equations plus scalar fields contributing ordinarily.

Hence, choosing the conformal transformation as

Ω2 = F = ∂f

∂R
. (2.17)

And considering theories such that

f(R, φ) = F (φ)R− 2V (φ) (2.18)

one obtains the action (2.16) in the Einstein frame as follows (for details, please see [37])

SEST =
∫ [

R̂

2 −
1
2 ĝ

µν∇̂µψ∇̂νψ − V(ψ)
]√
−ĝ d4x+ Sm(ĝµνF−1,Ψm) , (2.19)

with V = V/F 2 and

ψ =
∫ √3

2

(
F,φ
F

)2

+ χ

F
dφ . (2.20)

Note that the insertion of ψ is for writing the action (2.19) with a canonical kinetic term.

In the Einstein frame the scalar field couples to matter uprising a fifth force interaction.

The strenght of this coupling, namely Γ, can be computed via

Γ ≡ −F,ψ2F = −F,φ2F

[
3
2

(
F,φ
F

)2

+ χ

F

]−1/2

. (2.21)

Focusing on scalar-tensor theories which the coupling Γ is a constant, e.g. f(R) gravity,

from equations (2.20) and (2.21) one finds [43]

F = e−2Γψ , χ = (1− 6Γ2)F
(
dψ

dφ

)2

. (2.22)
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Hence, using the relations above the action (2.16) in Jordan frame becomes

SST =
∫ [1

2F (ψ)R− 1
2(1− 6Γ2)F (ψ)gµν∇µψ∇νψ − V (ψ)

]√
−g d4x+ Sm(gµν ,Ψm) .

(2.23)

Note that when Γ tends to zero the action above is the one for a minimally coupled scalar

field ψ with potential V (ψ). Summarizing, the conformal transformation of the metric,

ĝµν = Ω2gµν with Ω2 = F (ψ), transforms the action (2.23) from Jordan to Einstein frame

action, equation (2.19), with constant coupling Γ.

If one sets ϕ ≡ F = e−2Γψ it is straightforward to see that the action above yields

the Brans-Dicke action with a potential V , namely

SST =
∫ [1

2ϕR−
ωBD
2ϕ gµν∇µϕ∇νϕ− V (ϕ)

]√
−g d4x+ Sm(gµν ,Ψm) . (2.24)

The actions (2.23) and (2.24) are equivalents if the relation below, between the

parameter ωBD and Γ, is satisfied. Namely,

3 + 2ωBD = 1
2Γ2 . (2.25)

Now, taking the variation of the action (2.24) with respect to the metric gµν and

the scalar field ϕ, one finds

Rµν−
1
2gµνR = 1

ϕ
Tµν−

1
ϕ
gµνV+ 1

ϕ
(∇µϕ∇νϕ−gµν�ϕ)+ωBD

ϕ2

[
∂µϕ∂νϕ−

1
2gµνg

αβ∇αϕ∇βϕ

]
,

(2.26)

(3 + 2ωBD)�ϕ+ 4V − 2ϕdV
dϕ

= T . (2.27)

The relation between f(R) gravity and scalar-tensor theories can be found if one

considers the relations below

ϕ = F (R) , V = 1
2(RF − f(R)) . (2.28)

Using the relation in the above it is easy to see that f(R) gravity is a Brans-Dicke theory

with a potential V and ωBD = 0, i.e. f(R) is a particular case of scalar tensor theories.

Moreover, from equation (2.25) and setting ωBD = 0 one finds that the coupling for f(R)
gravity, in the metric formalism, is Γ = −1/

√
6.

2.3 Renormalization group extended general relativity (RGGR)

In this section we present the fundamentals of an extended gravity based on

RG effects. Several works in literature focused on the application of this framework to
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gravity[44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61] in the context

of quantum field theory in curved spacetime [47, 62] or in quantum-gravity[57, 63, 64]. In

these approaches the gravitational constant G and the cosmological constant Λ obey a

running which is given by renormalization group equations. But, before to proceed a brief

parentheses about renormalization in quantum field theories in flat-space is deserved.

Quantum field theories, as one knows, offers an excelent framework for describing

the fundamental interactions (e.g. QCD or QED). But, some undesired divergences start

to appear when those theories are evaluated at very short distances (UV regime). The

renormalization procedure is proposed in order to solve this issue, that is, removing those

divergences and guaranteeing the entire description of the fundamental interactions. The

divergences commonly appear in integrals, which in turn, are associated to the loops

in Feyman diagrams, hence a divergence could be avoided if one considers a pragmatic

procedure by choosing a large, but finite, cut-off. But, in this case your theory would be

dependent of your cut-off and this can not be physical. The procedure mentioned before is

called regularization (e.g. the dimensional regularization used in QCD). After this, one

needs to remove the cut-off dependence and, at this point, the renormalization becomes

important. The addition of appropriated counterterms in the action would be responsible

for eliminating the cut-off dependence ensuring the renormazibility of the theory. One

choice of this renormalization scheme is to transfer the cut-off dependence to the coupling

constants and in this way to see how they behave according the energy scale of interest,

this is called renormalization group procedure. Now, the coupling constants are dependent

on a scale parameter, namely µ. Hence, the running of coupling constants are given by the

solution of the renormalization group equation

β(g) = dg

d lnµ , (2.29)

where g is the coupling constant and β(g) is called β−function and it gives the renormal-

ization group flow.

Another point concerning RG effects is a very well understood result, in the context

of QFT in flat-space, that is the Appelquist-Carazzone decoupling [65] which, in essence,

says that the β−functions are zero at low-energy limit or IR energy scale, i.e, there is

no running for coupling constants at IR. There is an effort for generalizing this result to

gravity (e.g. in [66]) but it is not possible to guarantee the no running of G and Λ at IR

limit. Therefore, large scale variations of these ‘constants’ can be a sign of these RG effects.

In [10] was proposed an action in order to describe th RG effects in gravity and we

will call this realization as RGGR,

S =
∫ [

R− 2Λ{µ}
16πG(µ) + λ (µ− f(g, γ,Ψ))

]√
−g d4x+ Sm, (2.30)

where S = S[g, γ, µ, λ,Ψ], Sm = Sm[g,Ψ], Ψ stands for any matter fields of any nature,

and µ is the RG scale whose relation with other fields is in a constraint-like way throught
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the Lagrange multiplier λ. The field γαβ is a tensor which works as a reference metric and

it is important for the energy-momentum conservation and for stating a covariant scale

setting. As we mentioned above, the constants G and Λ now are depending on the RG

scale µ. According to [10] G is fixed at the action level while, i.e. its form does not depend

on the other fields. For instance, if G = µ2 for Solar System, then G(µ) has to be the same

for galaxies and cosmology. However, Λ{µ} is not universal instead is system dependent,

i.e. it is not fixed at action level, but it can be derived from field equations.

Now, it is important to specify the function G(µ) that we will use hereafter (already

derived in different approaches [46, 47, 67, 68, 69]):

G−1(µ) = G0(1 + 2ν lnµ), (2.31)

where ν is a small dimensionless constant, and GR is recovered for ν = 0. G0 is the

gravitational constant at some spacetime point.

The action (2.30) in general violates the energy-momentum conservation since it

is not possible to split the action as S = Sg[g,ΦG] + Sm[g,Ψ], where ΦG are fields which

do not appear in Sm and Ψ are fields that do not appear in Sg. The term which prevents

the spliting of the action is λ, hence in general we have ∇αT
αβ ∝ λ. But if we consider a

particular class of scale settings, i.e. f functions, namely[10]:

µ = f
(
UαUβhαβ

)
, (2.32)

where hαβ ≡ gαβ − γαβ and Uα denotes the four-velocity field, and variating the action

(2.30) with respect to γαβ we obtain

λf ′UαUβ = 0. (2.33)

We have two possible solutions: i) if f ′ = 0 implies that µ is a constant, and we have

standard GR. ii) if λ = 0 at the level of the field equations we have the energy-momentum

conservation, i.e. ∇αT
αβ = 0.

Furthermore, the variation of the action S with respect to the metric gαβ reads

Gαβ + Λgαβ = 8πGTαβ, (2.34)

where

Gαβ ≡ Gαβ + gαβG2G−1 −G∇α∇βG
−1, (2.35)

2 ≡ gαβ∇α∇β, and ∇α is the usual covariant derivative. From the energy-momentum

conservation it is possible to derive[70, 71, 10]

∇α

(
Λ
G

)
= 1

2R∇αG
−1. (2.36)

The equation (2.36) can be also derived if we variate the action (2.30) with respect to µ.
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2.3.1 The noncovariant scale setting

An issue that must to be clarified by any RG approach to gravity is the physical

meaning of scale µ, i.e. what is the relation between the scale µ and the other quantities.

In other words, one has to specify the f function. Previous works, e.g.[9], adopted a non

covariant scale setting which is introduced in the context of stationary, slow-velocity and

weak-field regime

µ =
(

Φ
Φ0

)α
, (2.37)

where Φ0 and α are constants which caracterizes the system and Φ is the Newtonian

potential. The scale setting in equation (2.37) is an approximation to the covariant one

(2.33), as described in Appendix B.

Some interesting implications for dark matter distribution in galaxy systems has

been achieved by using (2.37)[9, 72, 73, 71, 74, 3, 75], including good results which are

achievable even without dark matter.

As we said above α is not an universal constant, actually it depends of the system.

In the context of galaxy rotation curves (e.g., [9, 3]), α changes from galaxy to galaxy.

Considering the scale setting, introduced by equation (2.37), into the equation for G,

namely (2.31), one can replace the two constants α and ν by a single system-dependent

constant ν̄ ≡ να and all the dynamical tests will depend on it. In particular, for Solar

System dynamics it was found in [76] that |ν̄�| . 10−17 and in [77], using a more precise

data for the Solar System, one arrived the condition |ν̄�| . 10−21.

2.3.2 The external potential effect

As one can notice, according equation (2.37) which stabilishes the relation between

µ and Φ, gravity is sensitive to the Newtonian potential value in the sense that the

dynamics of a such system may change due a constant shift of the Newtonian potential. In

particular, if we consider a static and spherically symmetric system it is possible to show

the presence of an additional effective mass term from RGGR, namely δMRGGR , which

can be expressed as

δMRGGR(r) ≡ (Φ′RGGR − Φ′)r2

= ν̄
r

1 + 4πr
M(r)

∫∞
r
ρ(a)a da

, (2.38)

where ΦRGGR is the effective potential of RGGR. Note that if the mass distribution, in the

equation above, is such that of a particle with mass M , the integral in the denominator

of the equation above is zero for r > 0, hence the effective additional term will increases

linearly with r and consequently the additional force, which is the difference between

the derivatives of the potentials in equation (2.38), will decreases with r. However, if we
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consider a mass distribution for r > 0 the integral is not zero anymore and the term

δMRGGR can be suppressed. Note that the integral in equation (2.38) brings with it external

contributions, i.e. contributions from the environment where the system is included and

the larger ammount of mass outside a given region, the smaller the non-Newtonian effects

in that region. Indeed, the equation (2.38) represents the external potential contribution

in terms of an external mass density effect. In conclusion, the external potential acts as a

screening mechanism for RGGR reducing the non-Newtonian contributions and this effect

is already part of the theory. Now we will extend the results above to generic systems.

Consider S ′ a subsystem of a system S, much smaller than S. The subsystem is so

small that we can consider the average Newtonian potential of S, namely Φs, as a constant.

Here, the use of the term “average” means that the substructures of the system S are

irrelevant and hence not individually considered. Hence the Newtonian potentials of S and

S ′ can be written as,

Φs = φs + φe , (2.39)

Φs′ = φs′ + Φs|s′

= φs′ + φs|s′ + φe

= φs′ + φe′ + φe . (2.40)

In the above, φs stands for the Newtonian potential generated by the system S, and φe

refers to the total external contribution.

Since the subsystem S ′ is much smaller than the system S the total external

contribution to S ′ can be computed as Φs|s′ which is the potential of the system S

evaluated at S ′. The entire external potential contribution to the subsystem S ′ is composed

by two terms. One is the same of the system S, which is natural since S ′ is a small part

of S, the other is φe′ = φs|s′ . The next step is to evaluate the consequences for G in the

system and the subsystem. Hence, let us consider the following expression for G at the

system S

G−1
s (φs) = G−1

0

(
1 + 2ν̄s ln φs + φe

Φ0

)
. (2.41)

As we said before, Φ0 is a reference potential, it means that we can change it. In particular,

let us consider φe as our reference potential. In this way, the expression for G−1
s becomes

G−1
s (φs) = G−1

e

[
1 + 2ν̄e ln

(
1 + φs

φe

)]
, (2.42)

with Ge and ν̄e such that

G−1
e ν̄e = G−1

0 ν̄s, (2.43)

G−1
e = G−1

0

(
1 + 2ν̄s ln φe

Φ0

)
. (2.44)
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Using the relations above and changing the reference potential it is also possible to express

the expression for G at the subsystem S ′ as

G−1
s′ (φs′) = G−1

0′

(
1 + 2ν̄s′ ln

φs′ + φe′ + φe
Φ0′

)

= G−1
e′

[
1 + 2ν̄e′ ln

(
1 + φs′ + φe

φe′

)]
. (2.45)

The constant φe satisfies |φe| � |φs| which means that |φe| � |φe′|, hence again at

system S and subsystem S ′ the expression for G reads

G−1
s (φs) ≈ G−1

e

(
1 + 2ν̄e ln φs

φe

)
, (2.46)

G−1
s′ (φs′) ≈ G−1

e′

[
1 + 2ν̄e′ ln

(
1 + φs′

φe′

)]

≈ G−1
e′

[
1 + 2ν̄e′

(
φs′

φe′
− 1

2
φ2
s′

φ2
e′

)]
, (2.47)

where we used that ln(1 +X) = lnX +O(1/X), for |X| � 1, and ln(1 + x) = x− x2/2 +
O(x3), for |x| � 1. In equation (2.47) is assumed φs′/φe′ < 1 and this is a useful condition

for Solar System test, as we will show later, namely in Chapter 4.

2.3.3 GR and RG perturbations

Here we will describe a perturbation scheme which will be important for a better

comprehension of the Chapter 4 and the next Subsection 2.3.4. Hence, consider the

following scheme about the metric
(0)
g αβ:

gαβ =
(0)
g αβ +

(1,0)
g αβ +

(0,1)
g αβ +..., (2.48)

Tαβ =
(0)
T αβ +

(1,0)
T αβ +

(0,1)
T αβ +..., (2.49)

G(µ) ≡ 1 + δG(µ) = 1+
(1)
G (µ) + ... (2.50)

Λ(µ) ≡ Λ0 + δΛ(µ) = Λ0+
(1)
Λ (µ) + ... (2.51)

The metric
(0)
g αβ satisfies the Einstein equation with the energy momentum tensor

(0)
T αβ, the gravitational constant G0 (which is set to be 1) and the cosmological constant

Λ0. Now, just claryfing the notation: the terms
(n,0)
X αβ refer to the perturbation within GR,

namely, n refers to the order in a post-Newtonian expansion. The terms of the type
(n,m)
X αβ

are the RG correction of the mth order to the respective GR perturbation of order n.
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The background here is assumed to be Minkowski, i.e,

(0)
g αβ= ηαβ, Λ0 = 0,

(0)
T αβ= 0. (2.52)

Within this context, it was demonstrated in [10] that, up to first order in both of

the perturbations, if the solution of the Einstein equation , namely G̃β
α = 8πT̃ βα , is g̃αβ

then the solution for the equation (4.10) is given by the conformal transformation

gαβ = G g̃αβ +O(2, 2), (2.53)

where O(m,n) represents the terms of the m-th or higher order on the GR perturbation,

and of n-th or higher order on the RG perturbation. In order to familiarize the reader

with respect to the notation and review an important result that can be found in [9, 10],

consider g̃αβ = ηαβ + h̃αβ and gαβ = ηαβ + hαβ and also using the equation (2.53),

hαβ = gαβ − ηαβ

= (ηαβ + h̃αβ)G− ηαβ +O(2, 2). (2.54)

Hence, in particular,

h00 = −2Φ−
(1)
G +O(2, 2)

= −2Φ + 2ν lnµ+O(2, 2). (2.55)

The h00 is the effective potential of RGGR, i.e. is the potential which gives the acceleration.

The result above shows the relation between this effective potential and the Newtonian

one.

2.3.4 Point particle solution of RGGR

An important result which will be useful for the comprehension of next chapters,

in particular the Chapter 4, is the point particle solution in RGGR. In this subsection

we will present a detailed derivation of the point-particle solution from field equations

of RGGR (4.10). There are other derivations of point-particle solutions for RGGR in

literature, e.g. [9], but using the conformal transformation, equation (2.53), which holds

only up to first-order perturbations in both GR and RG expansions. However, the direct

method (using the field equations) enable us to find the point-particle solution up to order

O(∞, 2), i.e. arbitrary order in the GR expansion while only second-order in RG parameter

ν̄.

Hence, consider a spacetime with a proper symmetry for a point-like solution which

in turn can be written, without loss of generality, as

ds2 = g00(r)dt2 + g11(r)dr2 + r2dΩ2, (2.56)
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with dΩ2 = dθ2 + sin2(θ) dφ2. Using the latter line element, it is straightforward to shown

the identities:

Gνµ = 0 ∀µ 6= ν,

G2
2 = G3

3 . (2.57)

For practical reasons, two field equations from equation (4.10) can be used in a such way

that Λ does not appear explicitly, in other words

G0
0 = G1

1 , (2.58)

G1
1 = G2

2 . (2.59)

From the first equation above it is possible to deduce a relation between the metric

components, namely g11 and g00, up to first-order in ν̄:

g11 = − K
g00

[
1 + 2ν̄

(
r
µ′

µ
− ln µ

µ1

)]
+O(∞, 2), (2.60)

where a prime means derivative with respect to r and K and µ1 are integration constants.

The latter can be absorbed using a time redefinition, namely t→ t/
√
K(1 + 2ν̄ lnµ1). To

see this, just note that

K

(
1 + 2ν̄

(
r
µ′

µ
− ln µ

µ1

))
≈

≈ K(1 + 2ν̄ lnµ1)
(

1 + 2ν̄
(
r
µ′

µ
− lnµ

))
, (2.61)

up to first order in ν̄.

From equations (2.59) and (2.60), the solution for the g00 component of the metric

fields is

g00 = −1 + C1

r
+ C2r

2 + 2ν̄
(

1− 3C1

2r

)
lnµ+O(∞, 2), (2.62)

where C1 and C2 are integration constants. In the case of GR, i.e. ν̄ = 0, the constants are

the mass at r = 0 and the cosmological constant, respectively. As expected, the solution

derived above is an extension of the Schwarszchild-de Sitter solution.

2.4 Scalar-tensor-vector-gravity

In [78] it was proposed a Scalar-Tensor-Vector modification of Einstein-Hilbert

action, also know in literature as MOG (MOdified Gravity) theory, in order to capture

renormalization group flow effects. In MOG, the gravitational constant G is treated as

a scalar field and an additional one is introduced, namely µ, and also a vector field φµ.

Following [79, 78], the action for MOG2 is given by

SMOG = Sg + Sφµ + Ssf + Sm , (2.63)
2 Using the metric signature (+,−,−,−) and c = 1
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where

Sg = − 1
16π

∫ 1
G

(R + 2Λ)
√
−g d4x (2.64)

is the Einstein-Hilbert action and Λ is the cosmological constant,

Sφµ = − 1
4π

∫
γ

[
1
4B

µνBµν + Vφµ(φµφµ)
]√
−g d4x , (2.65)

is the action for the massive vector field φµ, where Bµν = ∂µφν−∂νφµ and γ is the coupling

constant between the massive vector field and the matter,

Ssf = −
∫ 1
G

[
1
2g

αβ

(
∇αG∇βG

G2 + ∇αµ∇βµ

µ2

)
+ VG(G)

G2 + Vµ(µ)
µ2

]√
−g d4x , (2.66)

is the action for the scalar fields µ and G. The terms Vφµ(φµφµ), VG(G) and Vµ(µ) are the

potentials of the vector field and scalar fields, respectively. Varying the action SMOG with

respect to the metric field gµν one finds

Gµν − Λgµν +Hµν = −8πGTµν , (2.67)

where

Hµν = G(gµν�G−1 −∇µ∇νG
−1) , (2.68)

and Tµν is the total energy-momentum tensor, where by using the equation (1.12) one has

Tµν = −2√
−g

δSMOG

δgµν
= −2√
−g

δ(Sm + Ssf + Sφµ)
δgµν

= Tµν + Tµν + Tµν + Tµν , (2.69)

where each term after last equality is the energy-momentum tensor for the matter, the

scalar fields G, µ and the massive vector field φµ. Explicitly, for G, µ and φµ one has

Tµν = − 1
G3

[
∇µG∇νG− 2∂VG(G)

∂gµν
− gµν

(
1
2g

ρσ∇ρG∇σG− VG(G)
)]

, (2.70)

Tµν = − 1
µ2G

[
∇µµ∇νµ− 2∂Vµ(µ)

∂gµν
− gµν

(
1
2g

ρσ∇ρµ∇σ − Vµ(µ)
)]

, (2.71)

Tµν = γ

4π

[
Bσ
νBµσ − gµν

(
1
4B

ρσBρσ + Vφµ(φµφµ) + 2
∂Vφµ(φµφµ)

∂gµν

)]
. (2.72)

Therefore, varying the action (2.63) with respect to the scalar fields one obtains, for G

and µ [78]

�G+ V
′

G(G) + Θ = − 1
G2

(
T + Λ

4πG

)
, (2.73)

where

Θ = −3G−1
(

1
2∇αG∇αG+ VG(G)

)
+ G

µ2

(
1
2∇αµ∇αµ− Vµ(µ)

)
+ 3G2

16π∇α∇αG−1 ,

(2.74)
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and

2µ+ V
′

µ(µ) + Ξ = 0 , (2.75)

where

Ξ = −
[
G−1∇ρG∇ρµ+ 2

µ
∇ρµ∇ρµ+ γ

4πµ
2∂Vφµ(φµφµ)

∂µ

]
, (2.76)

where the last term comes from the fact that the potential Vφµ(φµφµ) = −1
2µ

2φµφµ.

Moreover, varying the action (2.65) with respect to the massive vector field φµ one has

∇νB
µν − µ2φµ = −4π

γ
Jµ , with Jµ ≡ − 1√

−g
δSm
δφµ

, (2.77)

where Jµ is the matter current density.

The purpose of this section is to show that the fifth force mediated by the massive

vector field φµ is described by a repulsive Yukawa force, when the weak-field limit is

considered. An important equation for obtaining the weak-field limit is the geodesic

equation because it gives to us, in the slow motion regime, the effective potential, i.e.

the potential that yields the acceleration of the test particle. Hence, the action for a test

particle is given by

Sm =
∫

(−m− γQ5U
µφµ)
√
−g dτ , (2.78)

where m is the rest mass of the test particle and Q5 is the fifth force charge. The relation

between Q5 and m is Q5 = κm, where κ is a constant. The equations of motion for the

test particle come from δSm/δx
µ = 0. Hence, variating the action (2.78) with respect to

δxµ one obtains
dUµ

dτ
+ ΓµαβUαUβ = γκBµ

αU
α . (2.79)

Clearly, the usual geodesic equation (1.19) is recovered when γ = 0. The equation above is

the standard geodesic equation with an extra repulsive force, arising from the fifth force,

which depends on the velocity of the test particle. Now, focusing in the weak-field limit of

MOG. Here, we will present the main results obtained by [79, 78] therefore further details

about the calculations the reader is invited to see the latter references.

As was pointed before, the weak-field limit of a metric theory is achieved performing

a perturbation around a Minkowkski background metric ηµν , i.e. gµν = ηµν + hµν . But,

MOG also present two scalar fields and one additional massive vector field. Thus, the

perturbation for these quantities are given by

G = G0+
(1)
G , (2.80)

µ = µ0+
(1)
µ (2.81)

and

φµ =
(0)
φ µ +

(1)
φ µ , (2.82)
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where G0 is the gravitational constant in Minkowski space, µ0 is a constant that will be

fixed as the mass of the vector field and for convenience let us label simply as µ. It will be

assumed that
(1)
µ is negligible. In the background there is no gravity source for the vector

field, hence
(0)
φ µ is zero and for convenience one sets

(1)
φ µ≡ φµ. Moreover, one perturbs the

total energy-momentum tensor about the background, namely

Tµν =
(0)
T µν +

(1)
T µν . (2.83)

Considering the perturbations in the above, the field equation for the scalar field G

gives

2
(1)
G= − G0

16π
(1)
R , (2.84)

where
(1)
R is the first-order perturbation of the Ricci scalar. In the derivation of equation

(2.84), it was used the trace of the total energy-momentum tensor, from equation (2.73),

as T = (1/8πG)(R + 4Λ− 3G2G−1).

Now, considering the equations (2.80), (2.81) and (2.82) in equation (2.67) one

yields
(1)
Rµν −

1
2

(1)
R ηµν = −8πG0(T(1)

µν + T (1)
µν ) . (2.85)

Taking the trace of the previous equation and considering that T (1)
µν � T(1)

µν one finds

(1)
R= 8πG0T(1) , (2.86)

where for such systems that the pressure is negligible one has T = ρ. Replacing the result

above in the equation (2.84), for the stationary case, one gets

∇2

 (1)
G

G0

 = 1
2G0ρ . (2.87)

From the equation (2.87) one perceives that
(1)
G /G0 ∼ G0ρ ∼ (v/c)2, where v is the

internal velocity of the virialized system. Thus, in the case of systems such as Solar

System, galaxies or even cluster of galaxies, the deviation from G0, namely δG, is such

that δG ∼
(1)
G /G0 ∼ 10−7− 10−5. Therefore, one can keep only the background value for G.

The (00) component of Rµν , in the weak-field limit, is
(1)
R00= 1

2∇
2h00. Hence, one

obtains, from equations (2.85) and (2.86),

1
2∇

2h00 = −4πG0ρ (2.88)

Assuming that the current Jµ is conserved, i.e. ∇µJ
µ = 0 and adopting the gauge

condition ∇µφ
µ = 0, for the stationary case, the equation (2.77) becomes

∇2φ0 − µ2φ0 = −4π
γ
J0 , (2.89)
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whoose the solution is

φ0(x) = 1
γ

∫
e−µ|x−x′|

|x− x′|
J0(x′)d3x′ . (2.90)

In order to find the effective potential let us consider the weak-field limit of the

geodesic equation for MOG, equation (2.79). Hence, considering first-order on perturbations

and slow motion regime, i.e. v � c, one finds from the spatial component of the equation

(2.79)

∇ · a − 1
2∇

2h00 = −γκ∇2φ0 , (2.91)

where a is the acceleration of the test particle which relates with the effective potential

Φeff via a = −∇Φeff . Thus, replacing 1
2∇

2h00 from the equation (2.91) into equation

(2.88) one has

∇2(Φeff − κγφ0) = 4πG0 . (2.92)

Comparing the equation above and the equation (1.26) is straightforward to identify the

ΦN as

ΦN = Φeff − κγφ0 . (2.93)

Inserting the solution of equation (2.90) and setting J0 = κγρ, the equation (2.93) becomes

Φeff (x) = −G0

∫
ρ(x′)
|x− x′|

d3x′ + κ2
∫
e−µ|x−x′|

|x− x′|
d3x′ . (2.94)

Here, it is seen that the first term is the usual attractive gravitational potential while the

second one is a repulsive Yukawa force. In order to complete the weak-field limit one has

to find the value of κ. For simplicity, let us consider a point mass M as the source of the

gravitational field, i.e. ρ(x′) = Mδ3(x′). Hence, the effective potential becomes

Φeff (x) = −G0M

x
+ κ

Me−µx

x
, (2.95)

where x ≡ |x|. Considering scales such that µx� 1, the exponential in the second term

can be expanded and one can identify the Newtons’s constant GN , as follows

Φeff (x) = −(G0 − κ2)M
x

− µκ2M . (2.96)

Since the last term does not contributes to the dynamics of the test particle one has

GN ≡ G0 − κ2. However, if one applies the limit µx→∞ one finds only the first term in

equation (2.96). Thus, G0 is the gravitational constant at infinity.

Finally, replacing κ2 in equation (2.94) one rewrites the effective potential as follows

Φeff (x) = −G0

[∫
ρ(x′)
|x− x′|

(
1− G0 −GN

G0
e−µ|x−x′|

)
d3x′

]
. (2.97)

Defining δ ≡ G0−GN
GN

, the effective potential reduces to

Φeff (x) = −GN

[∫
ρ(x′)
|x− x′|

(1 + δ − δe−µ|x−x′|)d3x′
]
. (2.98)
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3 THE PARAMETRIZED POST-
NEWTONIAN FORMALISM

This chapter is dedicated to present a short review of the PPN formalism and its

utility as a tool for testing gravity against Solar System experiments. The chapter was

written based mainly on the References [34, 2] and further details about the formalism

can be found therein.

The metric theories of gravity can be compared with each other and with experi-

ments in a simple manner when they are taken at the slow-motion and weak-field limit.

This regime, known as post-Newtonian limit, is enough to cover all the Solar System tests.

Namely, the Solar System is very well described by Newton’s gravity until the precision

of 10−5, but it can not account for Mercury’s additional perihelion shift of ∼ 5 × 10−7

radians per orbit. Hence, a “post” Newtonian theory is required.

At the moment, let focus on the regime very well described for Newton’s gravity,

that is, the Newtonian limit of metric theories of gravity. At this limit the test bodies

move according to

a = ∇U, (3.1)

where a is the body’s acceleration and U is the Newtonian gravitational potential which is

the solution of Poisson’s equation, namely1

∇2U = −4πρ, U(x, t) =
∫

ρ(x′, t)
|x′ − x|

d3x′, (3.2)

where ρ is rest-mass density and ∇2 ≡ δij∂i∂j.

From the prespective of a metric theory of gravity if the latter is weak, the metric

is the Minkowski metric plus a small perturbation, namely hµν , as follows

gµν = ηµν + hµν , (3.3)

with |hµν | � 1. Furthermore, in the Newtonian limit one does not consider time dependence

in the metric fields, i.e. ∂tgµν = 0. The motion of the test particle due the influence of the

gravitational field, equation (3.3), is given by the geodesic equation. The time component

of the latter just gives to us that the affine parameter, along the geodesic, is the time

coordinate, namely t, while the spatial component of the geodesic equation reads

d2xi

dt2
= −Γi00 = 1

2δ
ijh00,j. (3.4)

1 We use geometrized units, i.e. c = G = 1
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Hence, the equation above can yield the Newtonian gravitation, i.e. equation (3.1), only if

h00 = 2U. (3.5)

Hence, the weak field regime (3.3) becomes

g00 ' −1 + 2U, gij ' δij . (3.6)

In order to understand better the post-Newtonian limit let establish a “bookkeeping”

system in order to have a small parameter to expand in. As it was pointed out before,

the Newtonian gravitational potential, namely U , at the Solar System, is U ∼ 10−5, in

geometrized units. Hence, considering that the Solar System is a virialized system, one

can relates the velocity of its constituent, i.e. the planets, with its gravitational potential,

in other words one has

v2 . U . (3.7)

Also, the matter content of the Sun and the planets is under a pressure p, but this

pressure is smaller than ρU , which is the matter’s gravitational energy density. Thus,

p

ρ
. U . (3.8)

If there are other forms of energy, e.g. thermal energy, they are also small. Usually,

is computed the ratio between those forms of energy and the rest-mass density. This ratio

is called specific energy density Π and relates with U by

Π . U . (3.9)

The small quantitites stated above can be related between themselves throught the

gravitational potential U . Hence, one has an order of smallness:

U ∼ v2 ∼ p

ρ
∼ Π ∼ O(2) , (3.10)

where O(1) are single powers of v. Thus, U2 ∼ O(4), Uv ∼ O(3) and so on.

Furthermore, if the evolution of the Solar System as a whole is determined by the

motions of the planets, one has

∂

∂t
∼ v · ∇ =⇒ |∂/∂t|

|∂/∂x|
∼ O(1) . (3.11)

Now, we are able for analyzing the post-Newtonian limit of any metric theory of gravity

only requiring the knowledge of

g00 up to O(4),

g0i up to O(3),

gij up to O(2) . (3.12)
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If one considers that the matter content of the Solar System is described by a fluid, one

has that the energy momentum tensor is given by

T µν = (ρ+ ρΠ + p)UµUν + pgµν (3.13)

which in turn, in order to obtain the post-Newtonian limit, one must to expand

T 00 up to O(4),

T 0i up to O(3),

T ij up to O(2) . (3.14)

One can imagine that the post-Newtonian system resides in a homogeneous isotropic

universe and adopting a coordinate system such that the outer regions are far from the

post-Newtonian system and at rest with respect to the frame in which the universe is

isotropic, the metric, in these outer regions, looks like

ds2 = −dt2 +
[
a(t)
a0

]2(
1 + kr2

4a2
0

)−2

δijdx
idxj + hµνdx

µdxν , (3.15)

where a(t) is the cosmological scale factor, and a0 ≡ a(t0). The constant k whoose values

can be 0,±1 is the curvature parameter. Hence, the first two terms in equation (3.15) are

the FLRW line element for a homogeneous isotropic cosmological model and the last term

is the local system , i.e. the post-Newtonian one, which can be seen as a perturbation. If

one chooses a particular moment t0 at a given radius r0, the metric (3.15) can be written

as

ds2 = (ηµν + h′µν)dxµ
′
dxν

′
, (3.16)

where the following coordinate transformation was used

t′ = t, x′i = xi(1− kr2
0/4a2

0)−1 . (3.17)

Thus, one ignores the variation of the cosmological scale factor a(t) with time and the space-

time metric of the post-Newtonian system, e.g. the Solar System, as being asymptotically

Minkowski.

As already mentioned, the matter content of the Solar System is idealized as a

fluid. Hence, the post-Newtonian limit of any metric theory of gravity can be obtained

solving the field equations and expressing the metric expansion, consistent with the post-

Newtonian approximation, in terms of the post-Newtonian functionals of the matter

variables (e.g. ρ, p or Π)) or simply post-Newtonian potentials. Thus, the most general

way for expressing the post-Newtonian metric is simply writing down the all possible

post-Newtonian potentials, each multiplied by some coefficient, and adding them to the

Minkowski metric in order to obtain (3.15). Naturally, there are endless ways to build

these post-Newtonian potentials and in order to obtain a formalism that is manageable,

one should to make some assumptions and restrictions which will be listed below:
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• The terms included into the post-Newtonian approximation should tend to zero

when |x− x′| becomes large. Here, x is the field point and x′ is located inside the

matter. This condition ensures asymptotic flatness.

• The metric should be dimensionless hence the coordinates are chosen accordingly.

• The components of the metric corrections h00, h0i and hij must to transform under

spatial rotations as a scalar (e.g. ρ, v2, v′ · (x − x′) etc); vector (e.g. vi, (x− x′)j)
and tensor, (e.g. (x− x′)i(x− x′)j) respectively.

• The post-Newtonian potentials should be generated only by matter variables, e.g. ρ,

p, Π or v, and not by their gradients. Clearly, this restriction is just a convenience

and, if necessary, it has to be relaxed.

• The post-Newtonian potentials have to be “simple”.

Thus, with those restrictions, it is possible to write down the possible post-Newtonian

terms which may appear.

According the statements above, gij should to transform as a three-dimensional

tensor with respect to spatial rotations. Thus, the only terms allowed to O(2) are

Uδij, Uij , (3.18)

where Uij is given by

Uij ≡
∫
ρ(x′, t)(x− x′)i(x− x′)j

|x− x′|3
d3x′. (3.19)

Conveniently, we can express Uij in terms of an another potential, namely χ(x, t), given by

χ(x, t) ≡ −
∫
ρ(x′, t)|x− x′|d3x′ ,

χ,ij = −δijU + Uij, ∇2χ = −2U . (3.20)

Thus, the terms that one has to consider, in our post-Newtonian expansion, to O(2) are

Uδij, χ,ij . (3.21)

The components of the metric tensor g0i to O(3) must to transform as a vector

under spatial rotations. Hence, the terms which are allowed are:

Vi,Wi , (3.22)

where

Vi ≡
∫
ρ(x′, t)v′i
|x− x′|

d3x′ ,

Wi ≡
∫
ρ(x′, t)v′ · (x− x′)(x− x)i

|x− x′|3
d3x′ . (3.23)
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The post-Newtonian potentials Vi,Wi are related with the functional χ via

χ,0i = Vi −Wi . (3.24)

Finally, the components g00 to O(4) must to be scalars under rotations. Hence, the

terms that must to be considered are:

U2,ΦW ,Φ1,Φ2,Φ3,Φ4,A,B (3.25)

where

ΦW ≡
∫
ρ′ρ′′

x− x′

|x− x′|3
·
(

x′ − x′′

|x′ − x′′|
− x′ − x′′

|x′ − x′′|

)
d3x′d3x′′,

Φ1 ≡
∫

ρ′v′2

|x− x′|
d3x′, Φ2 ≡

∫
ρ′U ′

|x− x′|
d3x′,

Φ3 ≡
∫

ρ′Π′
|x− x′|

d3x′, Φ4 ≡
∫

p′

|x− x′|
d3x′, (3.26)

A ≡
∫
ρ′[v′ · (x− x′)]2
|x− x′|3

d3x′, B ≡
∫

ρ′

|x− x′|
(x− x′) · dv

′

dt
d3x′.

The last item in the previous list is the most subjective restriction. Hence, if one analyzes a

metric theory of gravity and other possible post-Newtonian potentials appear (e.g. ViVjU
−1,

Φ1Φ3U
−2 or UijUij) the formalism has to change accordingly.

The post-Newtonian potentials satisfy some useful relationships:

∇2Vi = −4πρvi, Vi,i = U,0,

∇2Φ1 = −4πρv2, ∇2Φ2 = −4πρU,

∇2Φ3 = −4πρΠ, ∇2Φ4 = −4πp,

∇2(ΦW + 2U2 − 3Φ2) = 2χ,ijU,ij,

χ,00 = A+ B − Φ1 . (3.27)

Now, one has the elements to write down a general post-Newtonian metric considering

a fluid. The metric theories of gravity will differ from each other, with respect to the

post-Newtonian metric, by the coefficients that multiply each term in the metric. Hence, if

one replaces the coefficients by parameters one obtains a parametrized metric such that the

particular values of those parameters, i.e. the coefficients, are a particular metric theory of

gravity. This parametrized metric is the PPN metric, and the parameters are the PPN

parameters.

The use of parameters to write down a general form for the post-Newtonian metric

is called PPN Formalism. But, a primitive version of this formalism, hence a particular

case of PPN metric, was developed and designed by Eddington, Robertson and Schiff. The

Eddington-Robertson-Schiff formalism does not consider the Solar System as a fluid instead
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it considers the Sun as a point source and the planets as test bodies. The post-Newtonian

metric in this formalism is given by [34, 80]

g00 = −1 + 2M
r
− 2(β − γ)

(
M

r

)2

,

g0i = 0,

gij =
(

1 + 2γM
r

)
δij , (3.28)

where M is mass of the Sun, and β and γ are the PPN parameters.

Schiff in [81] generalized the metric (3.28) in order to incorporate the Lense-Thirring

effect that is a relativistic correction to the precession of a gyroscope near a rotating mass,

for example the Earth. Baierlein [82] developed a primitive PPN formalism considering

a fluid. But, the full PPN formalism was developed pioneerly by Nordtvedt[83] but still

considering point masses. In [84, 85] Will generalized the latter formalism in order to

incorporate the fluid description. As in Eddington-Schiff-Robertson expansion, equation

(3.28), for each term in the post-Newtonian metric one has a PPN parameter (or a

combination of them) in front of it. The total number of parameters is ten and they are

denoted γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3 and ζ4. Hence, the PPN metric becomes

g00 =− 1 + 2U − 2βU2 + (2γ + 2 + α3 + ζ1 − 2ξ)Φ1 +

+ 2(3γ − 2β + 1 + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3 +

+ 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A− 2ξΦW ,

g0i =− 1
2(4γ + 3 + α1 − α2 + ζ1 − 2ξ)Vi − (3.29)

− 1
2(1 + α2 − ζ1 + 2ξ)Wi ,

gij = (1 + 2γ U) δij .

In equation (3.29) one perceives that there is a linear combination of PPN parameters.

These linear combinations were chosen such that the parameters γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3

and ζ4 have a physical meaning. Below it is shown the Table 1 and Table 2 containing the

interpretation of the PPN parameters and their strongest limits, respectively.

The parameters γ and β are the same present in the Eddington-Robertson-Schiff

expansion, equation (3.28), and they are associated to the classical tests of gravity. The

parameter ξ is different from zero if the respective theory of gravity predict effects such

preferred location, e.g. anisotropy in the local gravitational constant due to the external

matter distribution, this effect is also called as “Whitehead” effect. The parameters

α1, α2, α3 measures if there are preferred-frame effects while α3, ζ1, ζ2, ζ3, ζ4 measure if a

theory predicts violation of conservation laws for total momentum.
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Parameter Interpretation Value in GR Value in Value in
semiconservative fully conservative

theories theories

γ space-curvature produced 1 γ γ
by a point rest mass

β nonlinearity present 1 β β
in the superposition

for gravity

ξ preferred 0 ξ ξ
location

α1 preferred 0 α1 0
α2 frame 0 α2 0
α3 0 0 0

α3 violation of 0 0 0
ζ1 energy-momentum 0 0 0
ζ2 conservation 0 0 0
ζ3 0 0 0
ζ4 0 0 0

Table 1 – PPN parameters and their interpretation. Adapted from [2].

Parameter Limit
γ − 1 2.3× 10−5

β − 1 8.× 10−5

ξ 4.× 10−9

α1 4.× 10−5

α2 2.× 10−9

α3 4.× 10−20

ζ1 2.× 10−2

ζ2 4.× 10−5

ζ3 1.× 10−8

ζ4 -

Table 2 – Limits on the PPN parameters, considering only the strongest limits for each
parameter [2]. The ζ4 does not have a direct measurement. These limits apply
to the absolute value of each parameter.
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4 THE SOLAR SYSTEM ANALYSIS OF
RGGR

4.1 The Eddington-Robertson-Schiff expansion for RGGR

In [76, 77] were performed the Solar System test of RGGR. The bounds on the

dimensionless parameter ν̄� ≡ α�ν were found to be respectively |ν̄�| . 10−17 and

|ν̄�| . 10−21. In [71, 3], it was shown that ν̄ is about ∼ 10−9 − 10−7 and approximately

runs linearly with the msystem mass. The later values on ν̄ agree with the first bound[76]

while they do not agree with the second one[77]. Also, these previous works that derived

constraints to ν̄ have not considered the external potential effect which is inherent to the

RGGR approach, as discussed in Subsection 2.3.2, and acts as a screening mechanism.

Here, one presents the PPN analysis including the external potential effect.

Although the results presented here are derived using the noncovariant scale setting,

equation (2.37), the same results can be also extended to the covariant one as is shown in

the Appendices A and B.

In order to apply the PPN formalism, one considers the Solar System as a subsystem

of the Galaxy, i.e. the system S will be the Milky Way and the subsystem S ′ will be the

Solar System. The Milky Way it will be refered by the subscript “MW” and the Solar

System by “�”. The estimates for the value of φMW|�, which is the Newtonian potential

of the Milky Way evaluated at the Solar System, using [86, 87] is −5× 10−7 if only the

baryonic matter is considered, or −2.1× 10−6 if either baryonic matter and standard dark

matter is taken into account. Since, according previous works, e.g. [9], the RG effects

mimic dark matter-like effects, the exact value of φMW|� lies between the two cases.

In Figure 1 one can note the Newtonian potential generated by the Sun (φ�) across

the Solar System and the values of φMW|� either with or without dark matter. The data

used to derive the Solar System contribution can be found in [88]. If the Solar System is

the subsystem of the Milky Way then the external potential φ′e is φMW. As one can see in

Figure 1, for all the planets one has φ�/φe′ . 10−2, which proves that the expansion in

equation (2.47) can be used.

Regarding to the PPN approach, as a first step it will be analyzed in the context

of Eddington-Robertson-Schiff, equation (3.28), computing the parameters γ and β. After,

it will be presented a detailed analysis of RGGR considering the full PPN approach and

also with the covariant expression for the scale setting µ. But first, it is important to

remember the reader that in PPN formalism one leads with an order of smallness which is

v2 ∼ (M/r) ∼ O(2), where v is the velocity of test particle.
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Figure 1 – The Newtonian potential generated by the Sun φ� across the Solar System,
and the value of the Newtonian potentials generated by the Galaxy at the Solar
System (φMW|�). The letters “P” and “A” after Mercury refers to its perihelion
and aphelion.

Within the point-like Eddington-Robertson-Schiff post-Newtonian parametrization,

in order to obtain γ and β, one must to compare the equations (2.60) and (2.62) with the

equation (3.28).

First, one perceives that a minimum requirement for satisfying the parametrization

is |C2|r2 ≈ 0 and C1/r ∼ O(2). Considering this, the equations (2.60) and (2.62) becomes

g00 = −1 + C1

r
+ 2ν̄

(
1− 3C1

2r

)
lnµ+O(∞, 2) ,

g11 = 1 + C1

r
+ 2ν̄

[
r
µ′

µ
+ C1

(
µ′

µ
− lnµ

2r

)]
+O(4, 2) , (4.1)

where C2 is not considered anymore and O(n,m) refers to terms of nth order or higher

in C1, and terms of mth order or higher in ν̄. The lnµ can be expanded as in equation
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(2.47). For convenience, one writes the dependence on r explicitly, hence one has

φ�
φe′
≡ k

r
. (4.2)

Thus, with these considerations,

g00 = −1 + C1

r
+ k

r
ν̄

(
−2− k

r
− 2k2

3r2 + 3C1

r
+ 3kC1

2r2 + k2C1

r3

)
+O(∞, 4, 4),

g11 = 1 + C1

r
+ 2k

r
ν̄

(
1 + 3C1

2r

)
+O(2, 4, 2), (4.3)

where O(∞, 4, 4) are the terms of arbitrary order in C1, of second or higher order in ν̄ and

fourth or higher order in k, the same for O(2, 4, 2).

To proceed with the formalism one has to relate the expansions above, i.e. one must

to know if, for example, C2
1/r

2 can be neglected while k2ν̄/r2 is preserved. Considering the

Mercury planet, one has that the terms of O(2) are the same order of φ�(r') = −2.7×10−8,

which is the Newtonian potential generated by the Sun at Mercury’s orbit. Hence, this

must correspond to −M/r. One expects that ν̄ must to be small, namely for galactic

internal dynamics, the upper bound for ν̄ was |ν̄| . 10−7 [9], which will be assumed as a

starting point, but a stronger bound will be shown later.

The value for k/r' can be obtained from equation (4.2), and it corresponds to

O(0.34) in the case that one considers only baryonic matter and O(0.5) for the case with

standard dark matter.

Considering the above statements, the relation between the expansions is now

clarified. Now, one can proceed with the PPN analysis, hence the equations (4.3) and (4.3)

are expressed as

g00 ≈ −1 + C1

r
− k

r
ν̄

(
2 + k

r

)
, (4.4)

g11 ≈ 1 + C1

r
+ 2k

r
ν̄ . (4.5)

Comparing the equations (3.28) and (4.4) one obtains the relation between C1 and

M , which is

C1 = 2M + 2ν̄k . (4.6)

The parameter γ is found from the coefficient of r−1. Thus,

γ = 1 + 2ν̄k
M

= 1− 2ν̄
φe′

. (4.7)

From Solar System experiments, the parameter γ is constrained to |γ−1| . 10−5[2].

Since |φe′ | ∼ 10−6, one derives that |ν̄| . 10−11.
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Now, the parameter β is obtained from the coefficient of r−2, in equation (4.4), the

value of γ and the equation (3.28), the parameter β reads as

β = 1 + ν̄k2

2M2 = 1 + ν̄

2φ 2
e′
. (4.8)

According the Solar System experiments |β − 1| . 10−4 [2], the above implies that

|ν̄�| . 10−16. (4.9)

This result emphasizes that the external potential is essential for the PPN applica-

tion in the form of the equation (3.28). Also, there is now a concordance with the previous

results from galactic internal dynamics.

4.2 The Will-Nordtvedt formalism applied to RGGR

In the previous section we analyzed RGGR using the static and spherically symmet-

ric solution in order to infer the PPN parameters, namely γ and β, comparing the point-like

solution with the Eddington-Robertson-Schiff expansion. But, a theory which is compatible

with the classical test for gravity, namely the bending of the light and the Mercury’s

precession, not necessarily is compatible with other experiments. The Will-Nordtvedt

version of PPN considers more tests, as one can see in Chapter 3 there are ten parameters

being nine of them observationally constrained. Also, the Will-Nordtvedt formalism is

based on fluids and not on particles.

Hence, in order to apply the full PPN parametrization, first one has to write down

the field equations of RGGR, namely

Gαβ + Λgαβ = 8πGTαβ, (4.10)

where

Gαβ ≡ Gαβ + gαβG2G−1 −G∇α∇βG
−1, (4.11)

2 ≡ gαβ∇α∇β, and ∇α is the covariant derivative. However, it seems natural to neglect Λ
since, according equation (2.51), should be a correction to the cosmological constant Λ0

that is already neglected in the pure GR case. Thus, it is useful to write the last equation

as

Rαβ = G

[
8π
(
Tαβ −

1
2gαβ T

)
+∇α∇β

(
G−1)+ 1

2gαβ2
(
G−1) ] . (4.12)

In [76, 77, 29] the Λ term was not considered in the Solar System analysis of RGGR.

After, it will be shown that the effects of inserting Λ are not in the scope of Will-Nordtvedt

formalism because Λ can not be an analytical function and still be compatible with

asymptotic flatness.
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Initially, it will be considered the noncovariant form for the scale setting µ, as we did

in Section 4.1. Further details on the covariant formulation is given later, but antecipating

the main result: the covariant version leads to the appearence of post-Newtonian potentials

which are not covered by the standard Will-Nordtvedt expansion and a generalization of

latter formalism is required in order to include those post-Newtonian potentials, as was

already pointed out in Chapter 3. In the Eddington-Robertson-Schiff parametrization,

Subsection (4.1), it was used a particular form for the scale setting µ, namely equation

(2.37) together with equation (2.31) for the running of G. Here, one generalizes the latter

procedure simply demanding that G can be written as a function of U , being the latter

given by equation (3.2). Hence, the expression for G now reads as

G−1(µ) = G−1(U) = G−1
e + 2

∞∑
n=1

νnU
n. (4.13)

Clearly, GR is recoverd when νn = 0. In the equation above, Ge is the value of G(U) when

U = 0 or can be seen as the external value of G. In other words, the Newtonian potential

becomes to zero far from the Sun, but the values of G may depend on the environment of

the Solar System.

Following the procedures elucidated in Chapter (3), up to the post-Newtonian

order, the metric components: g00, g0i and gij must to be know to order O(4), O(3) and

O(2). Thus, up to the desired order, the respective components of the Ricci tensor can be

expressed as

R00 =− 1
2∇

2h00 −
1
2
(
hkk,00 − 2hk0,k0

)
− 1

4 |∇h00|2 +

+ 1
2 h00,l

(
hlk,k −

1
2 h

k
k,jδ

j
l

)
+ 1

2 h
klh00,lk , (4.14)

R0i =− 1
2
(
∇2h0i − hk0,ik + hkk,0i − hki,k0

)
, (4.15)

Rij =− 1
2
(
∇2hij −h00,ij +hkk,ij −hki,kj −hkj,ki

)
, (4.16)

where the commas mean simple derivatives. Furthermore, the following quantity up to

required order

∇α∇β

(
G−1) = (G−1),αβ − Γλαβ(G−1),λ ,

= 2ν1
(
U,αβ −ΓλαβU,λ

)
+ 4ν2

(
U,α U,β +UU,αβ

)
+O(6) . (4.17)

The initial step is to compute the Newtonian limit, i.e. one must to evaluate the

h00 to order O(2). Hence, using equations (4.14) and (3.13)up to the required order

R00 = −1
2 ∇

2h00 and T00 = −T = ρ . (4.18)
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Therefore,

∇2h00 = −8πGeρ+ 2Geν1∇2U (4.19)

and, from equation (3.2)1,

h00 = 2 Ge

GN

(1 +GNν1)U . (4.20)

In order to be in agreement with the Newtonian physics,

h00 = 2U , (4.21)

thus we must set

Ge(1 +GNν1) = GN . (4.22)

The equation above sets the relation between Ge and GN . Since this relation is now clear,

henceforth we use

GN = 1 . (4.23)

Thus,

Ge = 1
1 + ν1

. (4.24)

Now, the hij to order O(2). Hence, imposing the three gauge conditions

hµi,µ −
1
2h

µ
µ,i = 2Geν1U,i , (4.25)

the equation (4.16) reduces to

∇2hij = −8πGeρδij − 2Geν1∇2Uδij . (4.26)

The above equation is easily integrated,

hij = 2
(

1− 2 ν1

1 + ν1

)
U δij , (4.27)

where one uses the equation (4.24).

The next step is to compute h0i to order O(3). Proceeding with a one more gauge

condition

hµ0,µ −
1
2h

µ
µ,0 = −1

2h00,0 + 3Geν1U,0 (4.28)

then the equation (4.15) becomes

∇2h0i +GeU,0i = 16πGeρvi . (4.29)

In the equation above one used the equation (3.20) also with equation (3.23).Therefore,

from equation (4.29) it results

h0i = − 7Vi
2(1 + ν1) −

Wi

2(1 + ν1) . (4.30)

1 Here, we restores GN
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Finally, one must to compute the h00 up to O(4). Hence, one has to develop a bit the right-

side of the equation (4.12). To this end, some components of the Levi-Civita connection

up to the required order are required, namely

Γi00 =− U,i , (4.31)

Γkij =
(

1− 2 ν1

1 + ν1

)(
U,iδ

k
j + U,jδ

k
i − U ,kδij

)
. (4.32)

In the same way, for the quantity below, up to O(4), one finds

T00 −
1
2 g00T = 1

2 ρ
[
1 + 2

(
v2 − U + Π

2 + 3p
2ρ

)]
. (4.33)

By considering the gauge fixing conditions, equations (4.25) and (4.28) and using

the following relation

|∇U |2 = ∇2
(
U2

2 − Φ2

)
, (4.34)

the equation (4.14) can be integrated, leading to

h00 = 2U − 2
[
1 + ν2

1 − ν2(1 + ν1)
(1 + ν1)2

]
U2 + 4Φ1

1 + ν1
+ 2Φ3

1 + ν1
+ 6Φ4

1 + ν1
+

+
[

4 (1− ν1 + ν2
1)

(1 + ν1)2 − 4ν1

1 + ν1

]
Φ2 +O(6) . (4.35)

With the equation above, one concludes the PPN formalism applied to RGGR.

Now, one just infers the PPN parameters and one compares them with the observational

values, Table 2. Hence, the metric up to post-Newtonian order reads as

g00 =− 1 + 2U − 2
[
1 + ν2

1 − ν2(1 + ν1)
(1 + ν1)2

]
U2 +

(
1− ν1

1 + ν1

)(
4Φ1 + 2Φ3 + 6Φ4

)
+

+ 4
[
1− 4ν1 + ν2

1
(1 + ν1)2

]
Φ2 , (4.36)

g0i =
(

1− ν1

1 + ν1

)(
− 7Vi

2 −
Wi

2

)
,

gij = δij + 2
(

1− 2ν1

1 + ν1

)
U δij .

To extract the PPN parameters one must to compare the above equation with

equation (3.29). From coeficients of U in gij and U2 in g00, one infers that γ and β.

According Table 2, one finds

|ν1| < 1.2× 10−5 , |ν2| < 8× 10−5 . (4.37)
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It is important to remember that the values above are constraints associated only to the

parameters γ and β and does not correspond to all observational constraints.

Considering that ν1 and ν2 are small and hence neglecting second order contributions

on them, the other PPN parameters are given by

γ = 1− 2ν1 ,

β = 1− ν2 ,

α2 = −ν1 ,

ζ2 = −2(ν1 + ν2) , (4.38)

ζ3 = −ζ4 = −ν1 ,

α1 = α3 = ξ = ζ1 = 0 .

Now, using the results above and the observational constraints of all PPN param-

eters, listed in Table 2, one can put strongest constraints on the parameters ν1 and ν2

which are displayed in Table 3. One perceives that they do not come from γ and β, but

from α2 and ζ2.

Table 3 – Strongest constraints on ν1 and ν2 from all the observational constraints on the
PPN parameters.

Constraint Origin

|ν1| < 2× 10−9 α2 constraint

|ν2| < 2× 10−5 ζ2 constraint

With the result above, the PPN analysis is showing that RGGR presents effects

associated to preferred location, due the nonzero α1 and α2, and violation of the total energy-

momentum conservation law, due the nonzero values for ζ2, ζ3 and ζ4. The appearance

of the latter parameters, in principle, one could indicates that RGGR has fundamental

problems. Actually, the PPN results are showing that we are not using a full covariant

action and some approximation is being used. Interestingly, as it is shown in Appendix A

and B, for Eddington-Robertson-Schiff approximation there is no difference between the

covariant and noncovariant approach, or the method itself does not see the difference. But,

here it is being used a more general approach, namely the Will-Nordtvedt formalism, and

the limitations of using the noncovariant approach start to appear. Hence, the formalism

itself suggest to proceed with the full covariant action and this is done later, including

also the effects from Λ.

However, in the previous analysis it was not considered the external potential effect.

Hence, it is interesting to see what happens now with the bounds on ν parameter if is

inserted the external potential effect. In particular, if the upper bound obtained in Section
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4.1 remains unchanged, since we are using a more general parameterized post-Newtonian

approach, perhaps some changes could to appear. Thus, let us assume the particular

expression for G(U), equation (2.31) with the scale setting µ given by equation (2.37).

Remembering that in this scenario, with an external potential, G depends on the matter

distribution inside the system under investigation as well the matter distribution outside

it. Hence, one writes

ρ = ρs + ρe ,

U = Us + Ue , (4.39)

where ρs refers to the matter density contribution that is inside the system under consid-

eration, while ρe refers to the external mass density. The same for Us and Ue. Thus, with

the latter considerations the expression for G becomes

G−1 = G−1
e

[
1 + 2ν̄ ln

(
1 + Us

Ue

)]
,

= G−1
e

(
1 + 2ν̄ Us

Ue
− ν̄ U

2
s

U2
e

)
+ ... (4.40)

with G(Ue) = Ge (or, equivalently, G|Us=0 = Ge) and Us < Ue. The expression above is

compatible with equation (4.13) replacing U by Us. Hence, one has

ν1 = ν̄

GeUe
,

ν2 = − ν̄

2GeU2
e

. (4.41)

The structure responsible for generating the external potential effect, subsequent

to the Solar System structure, is the Milky Way whose Newtonian potential at the Solar

System position is about Ue ∼ 10−6 (for details plea,se see Figure 1), thus

|ν̄| . 10−17 for Ue ∼ 10−6. (4.42)

The bound above is slightly stronger than the bound obtained in Section 4.1 for the same

value of the external potential. The disagreement comes from the fact that it is being used

the Will-Nordtvedt formalism and the strongest bound does not come from β but from ζ2.

4.2.1 Λ term and violation of asymptotic flatness

Here, this Section is dedicated to show possible effects of inserting the Λ into the

Will-Nordtvedt PPN approach. One of the possible effects that could arise is the restoring

of energy-momentum conservation, for example if the insertion of Λ would generate ζ2 = 0.

But, it will be shown that the insertion of Λ is useless if one wants to preserve asymptotic

flatness.
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The Λ term includes the Λ0 constant, which is the cosmological constant when

ν = 0, and RG corrections on powers of ν (as is already shown in Section 2.3.3). In GR

it is already know that the impact of cosmological constant in Solar System dynamics is

negligible [89]. Thus, as a starting point in our analysis, one will consider

Λ0 = 0 . (4.43)

However, in [10] it is shown that in vacuum, i.e. Tµν = 0, writing Λ = Λ0 + O(ν)
and G = G0 +O(ν) one has

Λ = Λ0G0G
−1 +O(ν2) . (4.44)

Hence, using that Λ0 = 0 one finds Λ = 0 + O(ν2). The result above shows that within

the approximation in which the Solar System is composed by point particles (the Sun and

planets), Λ does not play a role up to one post-Newtonian order. On the other hand, when

the Solar System is treated as a fluid the use of the Will-Nordtvedt PPN picture may lead

a different answers, for example a difference on β parameter[34].

As pointed out in Section 2.3, the expression for Λ as a function of the scale setting

µ is derived from field equations and hence it is not universal, i.e. the dependence on

µ changes from system to system. Thus, for the Solar System dynamics Λ should be a

function of µ and analogously what was done for G in equation (4.13), one reads

Λ = Λ0 +
∞∑
n=1

ΛnU
n . (4.45)

The field equations (4.12) with Λ become

Rµν = G

[
8π
(
Tµν −

1
2gµν T

)
+∇µ∇ν

(
G−1)+ 1

2gµν2
(
G−1) ]+ Λgµν . (4.46)

Now, proceeding analogously to what was done in Section 4.2, one has to find

the metric solution up to order O(4). Initially, one has to compute the zeroth order on ν

contribution of equation (4.46) which results on equation (4.43), as expected. Next, the

Newtonian limit which means to compute h00 up to O(2), Thus,

h00 = 2U − Λ1χ , (4.47)

where we are assuming GN = 1. Note that the above expression is a extension of equation

(4.21), the potential χ is the one defined by equation (3.20).

As already reported in Chapter 3, in PPN formalism the post-Newtonian potentials

should tend to zero at large distances and χ is a potential that diverges at infinity. Therefore,

Λ1 = 0 . (4.48)



Chapter 4. The Solar System analysis of RGGR 55

With this result the remaining chance of appearing some contribution from Λ is at O(4).
Since the Λ contribution does not include derivatives, its contribution can be easily

calculated from previous computations, namely equation (4.35). Hence, the h00 up to O(4)
now reads as

h00 = 2U − 2
[
1 + ν2

1 − ν2(1 + ν1)
(1 + ν1)2

]
U2 + 4Φ1

1 + ν1
+ 2Φ3

1 + ν1
+ 6Φ4

1 + ν1
+ (4.49)

+
[

4 (1− ν1 + ν2
1)

(1 + ν1)2 − 4ν1

1 + ν1

]
Φ2 + 2Λ2ℵ ,

where ℵ is a new post-Newtonian potential defined as

ℵ = − 1
4π

∫
U ′2

|x− x′|
d3x′ . (4.50)

The other metric components are the same as in equation (4.36).

Considering large distances, the new post-Newtonian potential ℵ defined above

diverges logarithmically since U decays linearly with distance. Hence, in order to preserve

asymptotic flatness one has

Λ2 = 0. (4.51)

With the above, the contributions of inserting Λ is completely eliminated up to post-

Newtonian order. It is clear, with the above result, that if one desires to measure some

dynamical effects of inserting Λ (for instance if inserting it one may obtain the restoring

of the energy-momentum conservation at post-Newtonian order) it is necessary to extend

the Will-Nordtvedt formalism.

4.2.2 Covariant scale setting and new post-Newtonian potentials

In this subsection, it is investigated the effects of a full covariant version for the

scale setting µ in the Will-Nordtvedt version of PPN formalism. As pointed out before,

some non zero values for PPN parameters specially associated to the special frame effects

and non conservation of energy and momentum are the main motivation that a covariant

version for µ needs to be taken into account in the PPN analysis.

Here, the covariant extension used is the one proposed by [10, 29], and its form is

µ = f(Ψ), (4.52)

with

Ψ ≡ hαβu
αuβ , (4.53)

where, uα is the fluid four-velocity, hαβ ≡ gαβ − γαβ, and γαβ is the reference metric, which

one uses the Minkowski metric.
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Expanding G−1 as the same manner than in equation (4.13), but now in a power

series of Ψ, one has

G−1 = G−1
f +

∞∑
n=1

σnΨn , (4.54)

where, Gf is the value of G when Ψ = 0. Hence, the field equations (4.12) up to the

required order for PPN analysis become

Rαβ = Gf (1−Gfσ1Ψ)
[
8π
(
Tαβ −

T

2 gαβ
)

+ σ1∇α∇βΨ + σ2∇α∇βΨ2+

+ 1
2gαβσ12Ψ + 1

2gαβσ22Ψ2
]
. (4.55)

From condition uµu
µ = −1 one finds

u0 =

√
1 + v2

1− h00
. (4.56)

Hence, Ψ is expanded as follows

Ψ = h00 + h2
00 + h00v

2 + 2h0iv
i + hijv

ivj +O(6) . (4.57)

At the Newtonian order, it is possible to find the relation between Gf and GN as follows

Gf = GN

1 + σ1GN

. (4.58)

Hereafter, we set GN = 1. Note that the equation above is similar to the relation shown in

equation (4.22). Now, solving the field equations (4.55) for h00 and hij up to O(2), after

h0i up to O(3) one has

h00 = 2U +O(v4) , (4.59)

hij = 2
(

1− 2σ1

1 + σ1

)
Uδij +O(v4) , (4.60)

h0i = − 1
1 + σ1

(
7
2 Vi + 1

2 Wi

)
+O(v5) . (4.61)

Finally, one proceeds to obtain h00 up to O(4) and the resulting expression is

h00 = 2U − 2
[
1− σ1 + 2σ2(1 + σ1)

1 + σ1

]
U2 + 4Φ1 + 4

(
1− 3σ1

1 + σ1

)
Φ2 + 2Φ3 + 6Φ4 +

+ 2σ1Uv
2 − 7σ1Viv

i − σ1Wiv
i +O(v6) . (4.62)

Note that the three last terms in the above are not covered by the standard

Will-Nordtvedt PPN formalism, i.e. new potentials appear. Theories which predicts extra

potentials in PPN formalism are not rare in literature[90, 91]. Therefore, if one desires the

PPN analysis of RGGR on its covariant extension one needs to extend the Will-Nordtvedt

formalism in order to include those extra potentials.
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5 SPIRAL GALAXIES

In this chapter we present a review about spiral galaxies based on [92, 93]. The

main purpose of this chapter is to show the components of such systems, some important

observational aspects of them and how to use them to test gravity. Spiral or disk galaxies

are systems which are composed, roughly, by a thick, rotationally supported disk plus a

bulge component plus a dark matter halo. In face-on systems it is possible to see the spiral

structure in details like: the young stars, HII regions, dust and molecular gas.

The observations of disk galaxies, in their majority, has shown that, for some

radial interval, the surface brightness per unit of area of the disk can be modelled by an

exponential profile:

I(R) = I0 exp(−R/RD) , (5.1)

where I0 is the central luminosity surface density, RD is the exponential scale length and R

is the cylindrical radius. In edge-on galaxies, some vertical distribution of stars is perceived

and well fitted by an exponential profile as well. Namely,

I(z) ∝ exp (−|z|/z0) , (5.2)

where z0 is the scale of height above the plane z = 0. Hence, this shows that the disk galaxies

are not an ideal infinitesimal disk. Sometimes, it is common to consider an “isothermal”

disk for the vertical distribution such that the velocity dispersion is independent of the

height z0. In this case, the vertical distribution h(z):

h(z) = h0 sech2
(
z

2z0

)
where z0 =

(
〈v2
z〉

8πGh0

)
. (5.3)

Note that the vertical distribution is close to the exponential one except near to the plane.

In order to evaluate the kinematics of disk galaxies it is necessary to compute the

gravitational potential, which in turn, needs the mass density distribution. It is reasonable,

in principle, to consider that the mass is distributed as the light, hence, it is defined the

mass-to-light ratio, Υ? ≡ M?/L, which converts light into mass. But this conversion is

far from to straightforward. If we analyze a single star one can see that its luminosity

depends on several parameters (e.g. metallicity, initial mass and color index). Galaxies,

however, are not a simple stellar population rather they are a sum of several ones, hence,

the determination of a density mass of a galaxy requires a model that specifies which

stellar populations are generating its luminosity. These models are the stellar population

synthesis models (SPS)(for further details, please see [94]). With SPS it is possible to infer

the mass-to-light ratio and obtain the mass density, which in cases that the luminosity is

separable in radial times the vertical distribution, it has a quite general profile

ρ(R, z) = Υ?(R, z)I(R)f(z) , (5.4)



Chapter 5. Spiral galaxies 58

where f(z) represents the vertical distribution which can be the equation (5.2), equation

(5.3) or even an intermediate case, i.e., between the exponential and isothermal case:

f(z) ∝ sech(z). The spatial dependence in Υ? exists because each stellar population can

have different spatial distribution. This is in agreement with observations since the central

regions of a galaxy are dominated by redder (oldest) stars while the external regions are

dominated by bluer (youngest) ones.

As the luminosity, the Υ? is defined according to the band in which the measure-

ments are performed. At optical band the determination of Υ? is very affected by dust,

initial mass function, age and chemical composition (metalicity). For surface photometry,

the near-infrared (NIR) is the most indicated band to see the stellar structure since the

absorption of the radiation by dust is lower compared, for example, the optical case.

Moreover, at NIR the SPS models suggest that the dependence between Υ? and star

formation history is weak and Υ? can be considered as constant[95]. Hence, hereafter in

our analysis Υ? will be considered as a free parameter.

As mentioned above, spiral galaxies have not only a disk structure but a stellar

bulge as well. Typically, the bulge-disk decomposition is obtained by fitting the surface

brightness considering a sum of an exponential for the disk and a spherical bulge [96], and

the latter it is usually modeled with the Sèrsic profile [97] which is given by

Ibulge(R) = Ie exp
(
−βn

[(
R

Re

)1/n

− 1
])

, (5.5)

where Re is the radius which contains the half of total surface brightness of the bulge

and Ie is the surface brightness at re. Actually, the Sèrsic profile is mostly used to model

surface brightness of elliptical galaxies, however some studies (e.g. Ref.[98, 96]) have shown

that bulges contains similarities with elliptical galaxies. In Some galaxies cataloques, e.g.

[99], the bulge is considered as an exponential disk but with a scale length RB smaller

than an usual disk since the bulge structure is more compact. Bulges which are modeled

as disk are called pseudo-bulges. Analogously to the disk case, we can compute a mass

density distribution for the bulge just multiplying the surface brightness by a mass-to-light

ratio which will be considered as a free parameter as well.

5.1 Rotation curves

The observed rotation curve of a spiral galaxy is the circular velocity Vc(R) and it is

measured using the 21-cm line radio emission of the neutral hydrogen (HI). This radiation

arises from the spin-flip transitions of the HI when both electron and proton have the spins

aligned, the latter corresponds a higher energy configuration hence the electron spin flips

to anti parallel configuration in order to minimize the energy. This transition, known as

hyperfine transition, is extremely rare so that the spontaneous occurrence of this transition
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takes around 10 million years. But, due the fact that the HI is the most abundant element

in the Universe and since this radiation is not absorbed by the interstellar medium, in

practice it is possible to measure this radiation using radio interferometers. At innermost

regions of a galaxy the use of HI data for rotation curve can be problematic since the

observations of HI have low angular resolution. Hence, for innermost regions in a galaxy,

the radiation emitted by the ionized hydrogen (HII) is a better option. Such radiation is

called Hα and arises when hydrogen electron falls from state n = 3 to n = 2. The HII

regions are the ones which there are star formation and where the neutral hydrogen is

excited by the youngest stars. Containing a wavelength of 628.281 nm, the Hα radiation is

in the visible spectra (at the red part) and offers a higher resolution than HI data. Thus,

it is frequent to find in literature hybrid rotation curves or HI/Hα rotation curves, that is,

the observational data is composed by Hα at the innermost region and HI at the outer

region of a galaxy.

After corrections (e.g. inclination effects) it is assumed that the observed rotation

curve data corresponds to circular velocity of a disk, or in some cases a sum of a disk

and a spherical bulge. Beyond that, the flat behaviour observed in rotation curves (for

a majority spiral galaxies at large radii) suggests that matter dominant is a darker halo.

Hence, galaxy rotation curves, in principle, can be used to infer the distribution of this

halo. The circular velocity can be computed considering that the centripetal force is the

sum of central forces due to the disk (gas and stars), stellar bulge and dark matter halo

at the plane z = 0. However, we know that the resulting force is F = −∇ΦN , where

ΦN is the total Newtonian gravitational potential. Hence, we can relate the centripetal

acceleration with the Newtonian potential and obtain the circular velocity as follows

V 2
c (R) = R

∂ΦN

∂R
. (5.6)

The Newtonian potential, on the other hand, can be obtained solving the Poisson’s

equation, ∇2ΦN = 4πGρ, which in turn has the following general solution

ΦN(x) = −G
∫

ρ(x′)
|x− x′|

d3x′ . (5.7)

The luminous matter distribution can be obtained using the surface brightness

profiles mentioned previously for the disk (stars and gas) and bulge times a mass-to-

light ratio (Υ?). The surface density distribution of the gaseous component is accurately

obtained by observations and it is not necessary any assumptions about it. The dark halo

contribution to the circular velocity is straightforward computed given its distribution. AT

the end of the day, we have the following formula for the circular velocity

V 2
c (R) = V 2

gas(R) + Υ?DV
2
stars(R) + Υ?BV

2
bulge(R) + V 2

DM(R) . (5.8)

Clearly, under the same reasons mentioned above we can compute the circular

velocity for each component just using equation (5.6). In the case of a generic disk, for
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convenience setting Υ? = 1, it is possible to reach an expression for the circular velocity

using the equations (5.7), (5.6), (5.1) and (5.4)

V 2
disk(R) = G√

R

∫ ∞
0

∫ +∞

−∞

[
K(y)− 1

4
( y2

1− y2

)(R′
R
− R

R′
+ z′2

RR′
)
E(y)

]
y
√
R′ρ(R′, z′)dR′dz′ ,

(5.9)

where

y2 = 4RR′
(R +R′)2 + z′2

(5.10)

and K(y) and E(y) are the complete elliptical integrals of first and second kind respectively

which are defined as follows

K(y) ≡ F (π/2, y) =
∫ π/2

0

dφ√
1− y2 sin2 φ

, E(y) ≡ E(π/2, y) =
∫ π/2

0

√
1− y2 sin2 φ dφ .

(5.11)

Notwithstanding infinitesimally thin disks are not realistic, the exponential thin

disk is frequently used for modelling rotation curves and disk formation. Hence, in this

case we just have ρ(R, z) = Σ(R)δ(z) and the surface matter density is given by

Σ(R) = Σ0 exp(−R/RD) , (5.12)

where MD = 2πΣ0R
2
D is total mass of the disk. But, we can write the total mass in terms

of the stellar mass-to-light times the total luminosity. Thus, the surface mass density reads

Σ(R) = Υ?D
L

2πR2
D

exp(−R/RD) . (5.13)

One of the main evidences of dark matter is obtained by observations of galaxy

rotation curves. As we already pointed out earlier, the light of the stellar and gaseous parts

are converted into mass densities, from the latter one derives the respective Newtonian

potentials and hence their individual contribution to the rotation curve, equation (5.8).

Considering this, these contributions can not reproduce the observed rotation curve and this

difference is commonly atributed to dark matter. The usual procedure for computing the

dark matter contribution to rotation curves is to assume a dark matter profile depending

on some free parameters which can be fitted to the observed data.

5.2 Observational data for rotation curves

Here, we describe the datasets used in this thesis, specially the ones that were used

in [100, 31]. The first sample of rotation curves that we will discuss is the one derived

from THINGS [101]. The THINGS project is a survey that measured the HI emission of 34

nearby galaxies. The high-resolution, about few parsecs1, of the radio-interferometer NRAO

1 1 parsec≈ 3.26 light-years.
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Very Large Array, allied to the proximity of galaxies, enabled to obtain high quality HI data.

Using these HI data from THINGS in [99] the rotation curves of 19 galaxies were selected

according the following requirements: i) the inclination angle i (e.g. for face-on systems

i = 0◦ while in edge-on i = 90◦) such that 40◦ ≤ i ≤ 80◦. At lower inclinations the rotation

starts to be measured within a two-dimensional disk and the projected rotation velocity, i.e.

the velocity along the line-of-sight, decreases its amplitude, hence the dispersion velocity

from the gaseous and stellar component becomes a contaminant. At higher inclinations,

close to edge-on configuration, it is difficult to determine the rotation velocity because

of the crossing between the line-of-sight and the wide range of projected velocities; ii)

galaxies which do not present non-circular motion.

As a general result, each rotation curve derived from THINGS presents few hundreds

of observed points, at least one order of magnitude higher than previous samples, e.g.

[102]. In THINGS [99] it was not used the Hα data were not used for the innermost region;

instead the proper HI data (because of the high-resolution in the radio measurements) was

used for deriving rotation curves. Moreover, using the relation between mass-to-light and

colors present in [101], namely

log(ΥK
? ) = 1.43(J −K)− 1.38 , (5.14)

where the observations of J and K bands are obtained from 2MASS Large Galaxy[103], an

accurated treatment of the stellar component was performed. Once again, the equation

above is dictated by SPS models. Hence, observing the J and K bands immediately the

ΥK
? is fixed.

Since the photometry of galaxies in Spitzer Infrared Nearby Galaxy Survey (SINGS)

are measured at 3.6µm, according [104], it is possible to convert ΥK
? to Υ3.6

? using SPS

models, as follows

Υ3.6
? = 0.92ΥK

? − 0.05 , (5.15)

such that the radial variation of the mass-to-light ratio becomes

Υ3.6
? (R) = Υ3.6

? C(R) , (5.16)

where C(R) means the radial variation of J and K colors and Υ3.6
? = M?/L3.6 where L3.6 is

the luminosity at 3.6µm. Using the magnitude profile M3.6 ∝ −2.5 log I, whose units are

mag/arcseg2, obtained from SINGS it is possible to reach the surface brightness profile of

the stellar disk as being

I3.6
D (R) ∝ 10−0.4[M3.6(R)−D3.6

� ] , (5.17)

where D3.6
� ≡M3.6

� + 21.56 [104] andM3.6
� is the absolute solar magnitude at 3.6µm band.

Hence, it is straightforward to obtain the surface density of the stellar disk,

ΣD(R) ∝ Υ3.6
? C(R) cos[i(R)]10−0.4[M3.6(R)−M3.6

� ] , (5.18)
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where the factor cos i is due the deprojection of the surface density. Note that we explicitly

show the radial dependence of inclination and the mass-to-light ratio. The radial dependence

of inclination is due the model used to derive the rotation curves, namely the tilted ring

model (for further details, please see [99]). The radial dependence in the mass-to-light

ratio, as we already said, occurs because of the different stellar populations within the

galaxy. Finally, the density matter for the stellar disk, assuming that a profile as sech2 is

the one for the vertical distribution, is given by

ρD(R, z) = ΣD(R) 1
2zD

sech2
(
z

zD

)
, (5.19)

where one considers zD = RD/5 [99].

The bulge in this sample is modelled as a pseudo-bulge. According [99], in the

region where the central component dominates there is no data enough for fitting a R1/n

parametrization, equation (5.5). Hence, the stellar part is characterized by an “inner disk”,

equation (5.18), plus an “outer disk” which is the pseudo-bulge. Finally, for the gaseous

component the surface density is obtained directly from observation of HI and one assumes

a thin disk. Hence, the matter density is

ρgas(R, z) = ΣHI(R)δ(z) , (5.20)

where δ(z) is the Dirac’s delta.

The next sample used in this thesis, is the one published in [4]. The sample contains

five late-type, HSB and bulgeless galaxies whose rotation curves are hybrids, that is, the

innermost region of rotation curve is measured using Hα emission while the outer one

is obtained via HI data. The method used to derive the rotation curves, called Warped

Modified Envelope Tracing, is an alternative to the tilted ring. The method is indicated

for galaxies which the velocity fields, directly associated to the HI measurements, are not

well defined and when the galaxies present high inclinations. The error bars of the rotation

curves include effects associated to erros of the inclination measurements and asymmetry

of the galaxy.

The five galaxies were chosen from a sample of 967 galaxy rotation curves in

[105]. The criterias used to this particular choice are: suitable inclination, symmetry and

good resolution. The observations of luminous matter at I band reveals that the stellar

component distributes as an exponential disk with a disk scale lenght given by [106]. The

gaseous component, as the stellar one, is assumed to lie within a thin disk and its surface

distribution is obtained via HI measurements. A factor of 1.33 is taken into consideration

in order to include the presence of helium in gaseous component.

The last sample that we will comment is the one presented in [107]: the SPARC

sample. It consists of 175 nearby galaxies with hybrid (HI/Hα) rotation curves from

previous works (e.g. [102, 105, 108]) and a surface photometry based on measurements
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at 3.6µm band. The errors of the rotation curves are obtained according to the following

equation [109]:

δ2
V =

√
δ2
Vfit

+
(
Vapp − Vrec

4

)2

, (5.21)

where Vapp and Vrec are, respectively, the velocities obtained from fits of the approaching

and receding sides of the disk. The δ2
Vfit

is the error derived from the fit of the disk as a

whole. The equation (5.21) includes deviations from circular motions and asymmetries.

However, it is not included, in the error bars of the rotation curves, the errors due the

assumed inclination.

The mass modelling of the luminous part in SPARC sample proceed as follows:

the gaseous component is modelled as a thin disk, equation (5.20), and a factor of 1.33
is considered in order to include helium distribution. Hence, Vgas is computed from HI

surface measurements, namely ΣHI, and using the equation (5.9). The modelling of the

stellar component is made from the surface brightness at 3.6µm, and for large radii an

exponential disk is used. The estimation of the disk scale lenght RD is done by fitting

the exponential function at the outer parts of the surface brightness profiles. The vertical

distribution of the disk is modelled as an exponential with scale height zD=0.196RD
[110].

The bulge-disk decomposition in SPARC sample is performed as follows: first one identifies

the radius such that the central component dominates, this radius is labelled as RB. After,

one subtracts an exponential fit of the stellar disk at R < RB and the remnant luminosity

(assuming spherical symmetry) is used to compute the Vbulge.
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6 STATISTICAL METHODS

In this chapter we clarify some elements of statistics that will be used in this thesis

(e.g. maximum likelihood estimation, Bayes’s theorem, probability density functions), for

a detailed review on these elements the reader is invited to consult [111, 112, 37].

In a statistical inference, an important quantity is the random variable which is

a quantity that can assume random values in a measurement operation or in a serie of

experiments. The mathematical description of the behavior of random variables is assured

by a probability density function (PDF) which models how often certain value can appear.

Let us write the corresponding PDF as p(x|M(θ)) which means the probability of the

data given the model, where x is the random variable, θ is the set of unknown parameters,

namely θ ≡ {θ1, θ2, ..., θm}, and M represents the model, that is, our knowledge about

the measurements. The “|” is for separating random variables from parameters. If the

measurements of each xi is done in an independent way, the theory of probability ensure

us that

L(D|M(θ)) ≡
∏
i

p(xi|M(θ)), (6.1)

where D is the sample data which is a part of a population (collection of all possible

samples or an infinity number of measurements) and the quantity L is called likelihood.

The likelihood is a function of data and parameters, hence if the dataset is fixed

one can variate the parameters in order to maximize L. This process is known as maximum

likelihood estimation (ML) and, in practice, it consists by solving the following system of

equations
∂L
∂θi

= 0, i = 1, ...,m . (6.2)

Note that now one can write the parameters θ in terms of the random variables, that is,

the data. In other words, if we can solve the equation (6.2) we can write the parameters

θ in terms of real numbers (values), hence we can obtain the best values for θ which

maximizes the likelihood L. Let us denote those best values for the parameters as θ̂. The

approach of calculating the parameter distribution in terms of data is known as frequentist

statistics. Hence, repeating the experiment several times, under the same conditions, at the

end of the day one can assign the distribution of θ̂. However, the frequentist approach does

not consider the previous knowledge about the parameters, that is, the prior information

about them acquired by previous experiments. If we are interested in to insert properly

the previous knowledge in our inference we have to switch to the Bayesian statistics.

Hence, one can estimate the probability distribution of parameters given the data, namely

P(M(θ)|D). The function P is called posterior and in order to address it we can use the
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Bayes’s theorem, given by

P (M |D) = P (D|M)P (M)
P (D) , (6.3)

where P (M |D) is the probability of having theory given data, P (D|M) is the probability

of having data given theory, lastly P (D) and P (M) are the probabilities of having data

and theory. In terms of our notation, the equation (6.3) becomes

P(M(θ)|D) = L(D|M(θ))π(θ)
E(D) , (6.4)

where E is called evidence and it is given by

E =
∫
L(D|M(θ))π(θ)dnθ . (6.5)

Its non-dependence on the parameters θ makes the evidence only a normalization constant.

6.1 Sampling methods

In the situation when the vector of parameters θ is large, the pursuit for the ML

estimators θ̂ and the posterior P may be costly. For example, if we consider a grid approach

for sampling a m-dimensional posterior considering m = 10 and 10 values per dimension,

we need to perform 1010 computations. Although the implementation of grid approach is

simple, manageable and its parallelization is easily feasible, in higher dimensional problems

the time for sampling the entire posterior becomes huge. An alternative to the grid approach

is the random sampling, the most popular at present days is the MCMC. The reason for

the preference for random sampling than grid one is due the fact that the grid loses time

sampling regions with small probability, i.e. the PDF tails.

As the name suggest, MCMC is composed by two elements: the Markov process

and the Monte Carlo method. The latter one, developed in [113], has an interesting usage

in Bayesian analysis and we will discuss a bit about it in next paragraph.

An advantage of Bayesian inference is that one can marginalize over nuisance

parameters which can be understood as parameters whose the interest in them is lower

with respect to others. A PDF that is result of a marginalization, namely P(Θ|D) (here

we have omitted the model M for simplicity), is mathematically described by

P(Θ|D) =
∫
P(Θ, α|D)dα , (6.6)

where Θ is a subset of θ such that θ = {Θ, α}. Indeed, sometimes marginalizations could

be very discouraging (for example if one wants to compute the evidence, equation (6.5),

one needs to marginalize over all parameters), specially on high dimensional situations. At

this point that Monte Carlo is interesting and the application of it for such inconvenient is
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called Monte Carlo integration. It consists into replacing a complicated integration of some

function f over some domain V by checking if N random points, x1, x2, ..., xN , over V ′ (a

superset of V) are within V , hence estimating the area (here in a heuristic sense) of V as

the area of V ′ times the fraction of points inside V . Hence, translating it exactly, one has∫
fdV ≈ V〈f〉 ±

√
〈f 2〉 − 〈f〉2

N
, (6.7)

where

〈f〉 ≡ 1
N

N∑
i=1

f(xi), 〈f 2〉 ≡ 1
N

N∑
i=1

f 2(xi) . (6.8)

The Markov process or Markov chain is a set of random variables which the present

value of a given variable depends only on the preceding value of it. The process can be

summarized as follows

Prob(θi+1|{θi}) = Prob(θi+1|θi) . (6.9)

When the Markov process reaches the equilibrium, it is said that the chain has a stationary

distribution, i.e. the distribution looks the same if one runs forward or backward in time.

In terms of the joint probability, one has

Prob(θi+1|θi) = Prob(θi|θi+1) , (6.10)

in other words, it is symmetric. The relation in the above is called balance or reversibility

condition. After the convergence, the final chains are used in the Markov integration,

equation (6.7), i.e. one has the MCMC.

An important quantity in MCMC algorithms is the transition probability which, in

a continuum space, is given by

K(x, y) = Prob(xi+1 = y|xi = x) . (6.11)

In the case of discrete space, the transition probability is a matrix Kxy. What differs

MCMC algorithms from each other is the choice of the transition probability. There are

many MCMC algorithms in literature, e.g. Metropolis-Hastings, Gibbs sampling, Nested

sampling. One of the most traditional is the Metropolis-Hastings [114] and it consists of a

transition probability given by K(x, y) = q(y|x)α(x, y) where q is an arbitrary function

called proposal distribution and α is called acceptance ratio. In MH, the acceptance ratio

is given by α(x, y) = min
[
1, f(y)q(x|y)

f(x)q(y|x)

]
, where the f function is the desired distribution or

target distribution, e.g. P(M(θ)|D).

The effectiveness of MH algorithms depends on the choice of the proposal distribu-

tion where effectiveness here means how correlated the samples are. In order to guarantee

the convergence of the chains the samples needs to be independent. There are suggestions

for MH algorithms in literature (e.g. [115], the adaptive MH ) which try to optimize the
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proposal distribution. An interesting solution for the optimization of proposal distribution

was presented by [116]: the ensemble approach. The basic idea is that there are walkers, the

elements of the ensemble, which interact with each other in order to improve their proposal

distributions. In [117], it is presented an elegant way to do this, the procedure is called

affine-invariant sampler. Now, we describe briefly how the affine-invariant sampler works

[1]: Let us consider an ensemble of K walkers, namely S = {Xk}, and its complementary

set S ′ = {Xi,∀i 6= k}. The proposal distribution of a walker Xk is based on the real-valued

parameter space, i.e. the “positions”, of the k−1 walkers in S ′. In other words, the position

of a walker Xk is updated to Y by drawing a walker Xj from S ′ according the following

relation

Y = Xj + Z[Xk(t)−Xj] , (6.12)

where Z is a random variables provided by the distribution g(Z = z). Note that if g obeys

g(z−1) = zg(z) , (6.13)

the equation (6.12) is symmetric. The acceptance ratio is given by

α = min

[
1, ZN−1 p(Y )

p(Xk(t))

]
, (6.14)

where N is the dimension of the parameter space. The procedure is repeated for each

walker in the ensemble. In [117], the following function g is recommended

g(z) ∝
{

1√
z

if z ∈ [ 1
a
, a]

0 otherwise
(6.15)

where a is a parameter called “stretch move” and the default value for it is 2. In this

thesis we have used a python package which implements this affine-invariant sampler called

emcee: the MCMC hammer, available in <http://dan.iel.fm/emcee/current/> developed

by [1].

6.2 Convergence diagnostics

An important point for every MCMC sampler is the convergence of the chains.

There are several proposed ways by diagnosing this convergence in literature (for a detailed

review, please see [118]), but there is no a schedule by detecting convergence properly,

instead what we can detect is the convergence failure. Hence, convergence diagnostics

are not the enough conditions but they are necessary in any MCMC application. The

diagnostic convergence chosen in this thesis is the autocorrelation time which enable us to

estimate the minimum number of interactions (steps) in order to produce independent

chains. This minimum quantity is called burn-in, a certain number of steps which one

needs to discard afterwards. A detailed explanation about autocorrelation diagnostic is

http://dan.iel.fm/emcee/current/
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performed in [119]. Here, we will focus only in the essential points of this convergence

diagnostic.

An important quantity to define is the autocorrelation function ρf ,

ρf (τ) = Cf (τ)
Cf (0) , (6.16)

with

Cf (τ) = 1
M − τ

M−τ∑
t=1

[f(X(t+ τ))− 〈f〉] [f(X(t))− 〈f〉] , (6.17)

where 〈f〉 = 1
M

∑M
t=1 f(X(t)), X(t) is the sampled random variable of the parameter space,

and M is the total length of the chain. Cf is a function which measures the covariance

between samples separated by a time lag τ . The independent samples are obtained at

certain value of τ , namely τ̂ , such that Cf (τ̂) → 0. Hence, τ̂ offers a lower bound of

minimal posterior samplings that are necessary for producing independent samples. The

equation below gives the τ estimation

τest(N) = 1 + 2
N∑
τ=1

ρf (τ) , (6.18)

where N starts at N �M .
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7 TESTING GRAVITY WITH GALAXY
ROTATION CURVES

This chapter is dedicated to show the inference of approaches either based on GR

or modified gravity with respect to observational rotation curve data that would either

indicate a complete elimination or a partial one of dark matter in galaxies. In [28], we

tested two specific models based on GR. In order to test them properly, we present a new

method and using it we find that neither of two tested models can fit the observational

data in a satisfactory way. In [31], we investigated frameworks of modified gravity which

introduces a Yukawa correction in gravitational potential, as we already shown in Chapter

2. We assumed that the fifth-force couples to dark matter and to baryons in a different

way. By constraining of the parameters β and λ which are, respectively, the strength and

the range of the fifth-force, we found that the Yukawa correction improves the fit with

respect to the observed rotation curves. Beyond that, we performed a Bayesian analysis

and we found an evidence in favor of a dark matter plus Yukawa term higher than 8σ with

respect to the standard case.

7.1 Models based on general relativity

Galaxies are stationary systems in which the Newtonian potential is small, about

10−6 ∼ 10−8 in units that c = 1. Beside this, the typical speeds of these systems are a

few hundred kms−1 in c = 1 units. In other words, these numbers are suggesting that

corrections coming from GR to Newtonian dynamics are negligible, smaller than 1 percent

hence they are completely covered by the uncertainties of astrophysical data. Thus, if

Newtonian gravity is, in practice, the underlying theory for modeling the internal dynamics

of the galaxies, it is not possible to reproduce the observed rotation curve without assuming

a dark matter profile.

Some authors, namely [22, 25, 26, 27, 120], claim that GR is the correct gravitational

theory and these small numbers actually could affect the distribution of dark matter in

galaxies and the corrections on rotation curves, arising from GR, could be larger than 10

per cent.

7.1.1 The Cooperstock-Tieu approach

The Cooperstock-Tieu (CT) approach [22, 23, 24, 25, 26] assumes that a galaxy

can be modeled as pressureless fluid in a axisymmetric stationary spacetime. Hence, the

latter can be written, in c = 1 units and using the cylindrical coordinates (r, φ, z), as
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follows

ds2 = −ew(dt−Ndφ)2 + e−wr2dφ2 + eν−w(dr2 + u dz2), (7.1)

where w,N, ν, u are functions that only depend on the coordinates r, z. The line element

above is the most general in terms of the desired symmetry [121] although it is not the

most convenient to work with galactic dynamics. Since the fluid that fills the spacetime is

dust it is possible to reduce the number of functions which the metric (7.1) depends on,

just choosing coordinates in a convenient way. Hence, the line element becomes [27]

ds2 = −(dt−Ndφ)2 + r2dφ2 + eν(dr2 + dz2). (7.2)

An asymptotic observer at rest with respect to the galaxy centre measures a rotation

given by [25, 27]

V = N

r
. (7.3)

The N fuction is determined by Einstein field equations, equation (1.6), in particular by

the following equation

Nrr +Nzz −
Nr

r
= 0 . (7.4)

Solving the differential equation for N above is straightforward to deduce V using equation

(7.3. Hence, the solution for z > 0 is given by [22]

VCT(r, z ≥ 0) = −
∑
n

Dne
−knzJ1 (knr) , (7.5)

where Jα is a Bessel function of the first kind, and kn and Dn are arbitrary constants. The

velocity profile can connected with mass density from the following GR equation

N2
r +N2

z

r2 ≈ 8πGρ . (7.6)

Hence, the solution proposed by CT approach shows a non-Newtonian solution

for velocity in galaxies. The arbitrary constants Dn can be fixed using the observational

rotation curve data. If higher precision is demanded the larger is the number of Dns to be

fitted. The authors claim that 10 coefficients is enough for fitting some sets of galaxies.

The kn constants corresponds to nth root of the Bessel function J0(kn rmax), where rmax is

the radius of the farthest observed circular velocity data of a given galaxy. Actually, it is

not surprising that the velocity formula in equation (7.5) fits the observed rotation curve,

because CT solution for velocity is just Fourier-Bessel series at z = 0, which can fit any

curve in the interval (0, rmax). The non-triviality of CT solution is its vertical distribution,

i.e. whether CT approach is correct the mass density, inferred by equation (7.6), has to

match the observed baryonic density. There is a work, namely [122], that criticizes the

CT approach with respect to the dispersion velocity of stars outside the galactic plane, in

the specific case of [122] the galaxy analyzed was the Milky Way. The criticism is valid
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but too restrict for invalidating the model. The CT approach received also criticisms from

the theoretical side (please see [123, 27], for further details), for example the extension of

equation (7.5) by using V (r, z) = V (r,−z) is problematic although the authors claimed to

have answered in [25].

7.1.2 The Balasin-Grummiler approach

The Balasin-Grummiler (BG) approach considers the same assumptions of the CT

one, i.e. the line element, equation (7.1), the same energy-momentum tensor, i.e. that of

a presureless fluid. But, the BG solution includes the symmetry about the z = 0 plane,

what does not occur in the case of equation (7.5).

The GR field equations for (7.2) and considering the energy-momentum tensor as

T νµ = ρUµU
ν read

2rνr +N2
r −N2

z = 0 , (7.7)

rνz +NrNz = 0 , (7.8)

νrr + νzz + 1
2r2 (N2

r +N2
z ) = 0 , (7.9)

Nrr +Nzz −
Nr

r
= 0 , (7.10)

N2
r +N2

z

r2 = 8πGρ eν . (7.11)

For equation (7.10) BG present the following solution

N(r, z) = A0 +
∫ ∞

0
cos(λz)(rλ)A(λ)K1(λr)dλ , (7.12)

where A(λ) is a “sufficiently regular” arbitrary function, A0 is a constant and K1 is a

modified Bessel function of the second kind. Here, it is possible to see that the selection of

A(λ), in front of the observed rotation curve, characterizes that the rotation curve is the

physical imput. A suitable choice for A(λ) leads to the following velocity formula

VBG(r, z) = (R− r0)V0

r
+ V0

2r
∑
±

(√
(z ± r0)2 + r2 −

√
(z ±R)2 + r2

)
, (7.13)

with, |z| < r0. Hence, at z = 0,

VBG(r, 0) = V0

r

(
R− r0 +

√
r2

0 + r2 −
√
R2 + r2

)
. (7.14)

Note that the profile above is composed by three stages:i) the linear behavior for r . r0;

ii) the constant velocity for r0 . r . R; iii) the 1/r behavior for r � R (although the

R parameter can not be accurately derived since the transition to a decreasing rotation

curve cannot be seen up to latest rotation curve data).
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At the much lower velocities regime compared with speed of light and assuming

that r < r0, the BG approach should to coincide with Newtonian gravity. At this regime,

[27] shows that ν is close to a constant. Moreover, the authors of [27] claim that the

corrections arisen from GR could reduce the necessity of dark matter in 30 per cent.

In our work [28], we proposed (as we will show in next subsection) the effective

Newtonian rotation curve method in order to test these two approaches properly. We also

assumed both approaches without dark matter.

7.1.3 The effective Newtonian rotation curve method

The purpose of this method is to evaluate properly models in which the mass

density is derived from the rotation curve. It is important to emphasize that this inverse

procedure is not possible in Newtonian gravity even assuming that all matter is enclosed

in a thin axisymmetric disk [93]. The essential feature of this method is to change the

unfamiliarity of matter density error bars by a model dependent transposition of error

bars from observed rotation curve to an effective Newtonian rotation curve. The method

ends providing an effective rotation curve which can be fitted by traditional Newtonian

procedures.

In literature, in a large number of works on rotation curve data, it is common to

present only the values of the baryonic density without its corresponding uncertainties.

Actually, the relevant uncertainties are encoded in the rotation curves error bars [5, 4], e.g.

violation of axial symmetry. Hence, to compare a model which derives the density profile

by certain means with the observed baryonic density is not obvious.

The effective Newtonian rotation curve method is based on two minimizations

procedures. The first one is to obtain the best fit values of the model parameters with

respect to the observational data, i.e. the ML estimators for the parameters. The second

minimization is important for deriving the baryonic parameters, e.g. stellar mass-to-light

ratio, and even the dark matter parameters. Now, we will describe the method [28]:

• The model circular velocity at z = 0, which is designated by V (r, pi), where pi

represent the model parameters, is fitted to the observed RC. This RC is described

by the table whose k-th line reads (rk, VObs,k, δVObs,k), where rk is the radius of the

galaxy whose corresponding circular velocity is VObs,k with a 1σ error bar given by

δVObs,k. The fit determines the best fit parameters p̄i and the corresponding error

bars δpi.

• From V (r, p̄i ± δpi) one can (numerically) determine the corresponding mass density

profile as a function of the model parameters, ρ(r, z, p̄i ± δpi), for instance from

equations (7.3, 7.6).
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• From ρ(r, z, p̄i ± δpi) one can determine the effective Newtonian circular velocity at

z = 0. The latter is written as VeN(r, p̄i ± δpi) and it is defined as being the circular

velocity derived from Newtonian gravity for the matter density ρ(r, z, p̄i ± δpi).

• The effective Newtonian RC data with error bars is built from VeN. These data can be

expressed as a table whose k-th line is given by (rk, V̄eN,k, δVeN,k), where rk assumes

the same values of the original data on the observational RC, V̄eN,k = VeN(rk, p̄i)
and δVeN,k is an approximation for the corresponding 1σ error bar, which is detailed

afterwards.

• The astrophysical expectation on the gas and stellar densities, together possibly with

a given dark matter profile, are used to derive the Newtonian circular velocity VN,

which will depend on baryonic parameters (like the mass-to-light ratios) and possibly

on dark matter parameters as well.

• If the gravitation theory being considered is compatible with both the observational

RC and the matter content assumed for the galaxy, then VeN and VN should be

mutually compatible. Hence, one fits VN to the effective Newtonian RC data, thus

deriving the baryonic (and dark matter) parameters, and deriving the quantities χ2

and χ2
red. The latter are the quantities that have physical information on the quality

of the fit and that can be compared to other approaches.

7.1.4 The fit procedure step by step

Here we detail the two fitting procedures contained in the effective Newtonian

rotation curve method in four steps.

• The derivation of p̄i and ρ. We assume that the observational errors for rotation

curves obey a Gaussian distribution. Hence, the likelihood is L ∝ e−χ
2/2. The ML

estimation, or the minimization of χ2, is used to compute the best-fitting parameters

for velocity formula V (r, pi) with respect to data. The quantity χ2 is given by

χ2
p =

N∑
k=1

(
V (rk, pi)− VObs,k

δVObs,k

)2

. (7.15)

The meaning of subscript p is only for emphasizing that the aim of χ2 is for finding

the ML estimators. The latter are denoted by p̄i, and N is the total number of

observational data points of the circular velocity VObs. By knowing V (r, p̄i) it is

straightforward to evaluate the matter density ρ(r, z, p̄i). Moreover, one can compute

ρ for all values of pi within the range established by the error bars δpi, therefore one

can obtain ρ(r, z, p̄i ± δpi).
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• The derivation of VeN. By solving the Poisson equation, namely ∇2Φ(r, z, p̄i) =
4πGρ(r, z, p̄i), and using the already known relation between circular velocity and

gravitational velocity, V 2
eN(r, p̄i) = r∂rΦ(r, p̄i), it is possible to derive VeN directly

using equation (5.9). Moreover, using equation (5.9) it is possible to derive VeN for

all values of pi allowed by the 1σ uncertainties, i.e. one can find the VeN(r, p̄i ± δpi).

• The effective Newtonian rotation curve. The aim of this step is to generate data,

including its error bars, that can be used for the next fitting procedure. The effective

Newtonian rotation curve data are given by (rk, V̄eN,k, δVeN,k), where k goes from 1 to

N . The quantity V̄eN,k is simply VeN(rk, p̄i) and δVeN,k is its corresponding 1σ error

bar. Here, it was used the same radial values rk from observational rotation curve.

The error bars of effective Newtonian rotation curve data are derived as follows:

firstly one finds Vmax,k and Vmin,k, which are respectively the maximum and the

minimum of VeN(rk, pi), with fixed rk, such that χ2(pi) ≤ χ2
min + ∆χ2, where ∆χ2

is the constant associated to a 1σ uncertainty considering the total number of the

model parameters (pi). This guarantees that Vmax,k is the maximum value achievable

for VeN,k inside the 1σ confidence region. In other words, it is being considered that

the PDF of the parameters pi is Gaussian which is an approximation valid up to

1σ level. Strictly, one had to compute the proper PDF for the parameters pi but

one understands that a Gaussian distribution for the parameters, or in others words

a Fisher approximation, is reasonable. In general, the error bars will be exactly

symmetric. In this case, one chooses, as the 1σ uncertainty, the maximum between

Vmax,k − V̄eN,k and V̄eN,k − Vmin,k. Note that the quantity ∆χ2 increases with the

number of parameters pi.

• The derivation of the baryonic and dark matter parameters. The matter content of all

galaxies is composed by baryons and dark matter, hence the total Newtonian circular

velocity is given by equation (5.8). Here, in other to test the two approaches, namely

CT and BG, the only free parameters will be the baryonic ones, namely Υ*B and

Υ*D, hence the dark matter contribution will not be considered for now, i.e. V 2
DM = 0.

Finally, the Newtonian circular velocity is V 2
N = V 2

N(r,Υ*B,Υ*D). Therefore, if a

model predicts the matter density in some way and the latter is compatible with

the matter distribution of such galaxy, then then VeN and VN should be mutually

compatible. The second and last minimization procedure also assumes that the error

follows a Gaussian distribution, thus one performs the minimization of the following

quantity

χ2 =
N∑
k=1

(
VN(rk,Υ∗D,Υ∗B)− V̄eN,k

δVeN,k

)2

. (7.16)

From the above quantity, the goodness of fit χ2
red can be used for comparison between

different approaches.
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7.1.5 Application to the Cooperstock-Tieu approach

In this section we present the result of applying the effective Newtonian rotation

curve method, according the last section, to the CT approach.

• The derivation of p̄i and ρ. In Table 5 is available the results for p̄i and its corre-

sponding error bars. In the case of CT approach the pi parameters corresponds to

the Dn constants in equation (7.5). For all galaxies that we tested we adopted the 10

parameters recommended by the authors in [22]. One can perceive that the first fit,

the CT approach easily fits the observed rotation curve. This can be measured from

the values of χ2
p,red, in Table 6. We also tested, for a few galaxies, that less than five

free parameters can provide good fits, i.e. χ2
p,red ∼ 1. Those galaxies have rotation

curves that typically increases slowly and smoothly and therefore do not need high

frequency terms of the equation (7.5). Although there are some examples in which

10 parameters are not enough, e.g. [26].

The matter density profile ρ is derived from the circular velocity V after the first

fitting procedure, that is, which determines the ML estimators for Dns. The derivation

of ρ comes from the combination of equations (7.3, 7.5, 7.6). As the equation (7.5)

states, the circular velocity in CT approach is defined within the interval (0, rmax).
Hence, if one wants to extend the matter density beyond rmax by using the equation

(7.5), according [23], requires different values for the constants Dn and kn in relation

with the previous ones already fitted from observational rotation curve. Indeed, from

phenomenological point of view, it is expected that the baryonic density of a galaxy

drops at larger radii. A viable approximation for the baryonic matter beyond the

last observed rotation curve data is

ρ(r ≥ rmax, z) = e(rmax−r)/rdρ(rmax, z), (7.17)

which is an extension based on a Freeman disc [124]. This approximation will end to

be a good one in gas rich galaxies, since the gas density decays slower than the stellar

one. Notwithstanding, the impact on VeN is negligible, since the approximation is

only beyond rmax.

• The derivation of VeN. Using the latter extension, the matter density is known

entirely. Hence, one can derives the VeN via equation (5.9). Due the high number

that VeN(r,Dn) depends on a difficult on next step arises. Nevertheless, the effec-

tive Newtonian circular velocity V̄eN(r) is immediately computed with the best fit Dn.

• The effective Newtonian RC data. These are expressed as (rk, V̄eN,k, δVeN,k) and the

main purpose of this step is to compute the error bars δVeN,k. In order to have this,
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Figure 2 – The RC curve analysis of ESO 116-G12 with the CT approach with three free model
parameters (pi). The fit of the total Newtonian circular velocity VN to the effective
Newtonian RC is not satisfactory (χ2

red � 10).

Table 4 – Results of the CT approach with three model parameters pi applied to the galaxy ESO
116-G12 (see Figure 2). This fit considers the full evaluation of the effective Newtonian
data with error bars. This table also includes a comparison to the corresponding
results when the same galaxy is modelled with baryonic matter and a NFW dark
matter halo [3].

Galaxy CT (3 parameters pi) NFW
χ2
p χ2

p,red χ2 χ2
red χ2 χ2

red

ESO 116-G12 31.60 2.63 1341.35 95.81 31.15 2.60

one should perform a minimization and maximization of VeN(r,Dn) considering the

constraint χ2(pi) ≤ χ2
min + ∆χ2 at each radius rk.

In the particular case of CT approach, is not trivial (computationally) to evaluate

δVeN,k since the approach requires 10 Dn parameters. However, it is not necessary at

all to compute δVeN,k in order to conclude that the CT approach is incompatible,

i.e. the VeN and VN do not agree sistematically. We analyzed the CT approach with

fewer than 10 free parameters in order to ilustrate this incompatibility. The galaxy

analyzed was the ESO 116-G12 and was considered only three Dn parameters. The

results are in Figure 2 and Table 4.The derived values of δVeN ranges from 0.6 km/s

to 4.5 km/s. With the exception of the first point, all the others have δVeN larger

than 1 km/s. The mean δVeN is about 3 km/s.

• The derivation of the baryonic paramters. With the effective Newtonian rotation

curve, one fits the VN and derives χ2, χ2
red, Υ∗B and Υ∗D. The results will be

commnented later.
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7.1.6 Application to the Balasin-Grumiller approach

The application of the effective Newtonian method it straightforward tothe BG

approach and much easier than CT one. The numerical integrals, in particular the equation

(5.9), are faster because the model often uses 3 free parameters pi and the extension for

the matter density ρ is already included in the BG approach.

• The derivation of p̄i and ρ. The parameters pi for BG approach are three, namely R,

r0 and V0 and the results from the ML estimation method for those parameters are

available in Table 5. The fits of the velocity formula in the BG approach, namely

equation (7.14), to the observed rotation curve are reasonable as one can see by the

values of χ2
p,red which are in the range from 0.5 to 1.6.

The quantity ρ is derived from the combination of the equations (7.3, 7.11, 7.14).

The extesion of ρ is already guaranteed in BG approach, pratically it depends on

a single parameter R. The values of this parameters vary from some kpc’s (for

some galaxies) to very large ones, that is, pratically with no maximum for R. This

kind of result occurs specially in galaxies whise the rotation curve increases up to rmax.

• The derivation of VeN. The effective Newtonian circular velocity VeN is directly

computed from equation. (5.9).

• The effective Newtonian RC data. Here, one computes the error bars δVeN,k. Perform-

ing the minimization and maximization of VeN(r, r0, V0, R) regarding the constraint

χ2(r0, V0, R) ≤ χ2
min + ∆χ2 at each radius rk. Hence, one derived constrained min-

imizations and maximizations with three free paramters, for each observational

rotation curve data and for each six galaxies. The error bars derived from the fore-

mentioned method were close to symmetric and therefore they were all symmetrized

considering the largest value. This was performed for all six galaxies that were applied

the BG approach.

• The derivation of the baryonic parameters. Fiitng the VN to the effective Newtonian

rotation curve the quantities χ2, χ2
red, Υ∗B and Υ∗D are derived straightforwardly.

In the next subsection the results are preented and commented.

7.1.7 Results

Here, we present the results of the fit procedures for CT and BG are in the Tables

5, 6 and 7, and the rotation curve plots are shown in Figure 3.
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Table 5 – The values of the pi parameters and its errors (δpi) for both the CT and BG
approaches.

CT approach
parameters DDO 154 ESO 116-G12 ESO 287-G13 NGC 2403 2D NGC 2841 NGC 3198 1D
D1 (km/s) 303± 10 962± 30 3455± 87 1864± 13 1.155± 0.017 4407± 54
D2 (km/s) 6.3+5.7

−5.8 34± 22 200+61
−69 111.2± 8.3 1303+91

−90 415± 31
D3 (km/s) 10.4± 4.4 27± 13 191+47

−46 103.5± 6.3 928+78
−76 280± 23

D4 (km/s) −1.1± 3.5 −4± 14 22± 44 26.5± 5.5 252± 55 55± 21
D5 (km/s) 4.8± 3.0 9.7+9.6

−9.7 60+49
−43 13.4± 5.0 293± 58 21.9± 5.9

D6 (km/s) −2.1± 2.8 1± 11 12± 23 11.4± 4.5 101+46
−47 5± 16

D7 (km/s) 1.4+2.7
−2.6 2.1+8.0

−7.9 1± 43 7.1± 4.1 112+46
−47 26± 14

D8 (km/s) −0.3+2.3
−2.4 −1.4± 8.4 3+16

−15 7.5± 3.8 17+40
−41 9± 14

D9 (km/s) 0.7± 2.0 0.6± 7.5 16+29
−28 8.7± 3.5 33+39

−38 11± 13
D10 (km/s) 0.2± 1.5 1.9± 6.5 −3+18

−16 7.9± 3.2 60+28
−27 −0.1± 11

BG approach
parameters DDO 154 ESO 116-G12 ESO 287-G13 NGC 2403 2D NGC 2841 NGC 3198 1D

R (kpc) 2.1+∞
−2.1 × 107 63+∞

−40 6.7+∞
−6.7 × 107 4.37+∞

−0.10 × 107 109+13
−11 78.9+12

−9.3

r0 (kpc) 1.18+0.13
−0.12 1.79+0.56

−0.38 1.308+0.095
−0.090 0.706+0.034

−0.033 0.31+0.14
−0.13 2.01+0.19

−0.18

V0 (km/s) 58.3+5.1
−1.8 146+40

−19 191.9+6.2
−2.3 141.14+0.77

−0.76 345.4+7.1
−6.8 197.3+6.8

−6.3

Table 6 – Results on χ2 and related quantities of the CT and BG approaches. The corresponding
plots are in Figure 3 [3].

Galaxy CT (10 parameters pi) BG NFW
χ2
p χ2

p,red χ2 χ2
red χ2

p χ2
p,red χ2 χ2

red χ2 χ2
red

DDO 154 5.93 0.12 103.56 1.73 26.46 0.45 53.29 0.89 50.42 0.87
ESO 116-G12 8.84 1.77 200.75 14.34 63.38 1.22 12.36 0.88 31.15 2.60
ESO 287-G13 13.96 0.87 358.70 14.35 37.68 1.63 2278.12 91.12 36.33 1.58
NGC 2403 2D 239.29 0.86 9200.02 32.17 275.66 0.96 17802.40 62.25 155.59 0.55
NGC 2841 58.18 0.44 23468.80 168.84 75.79 0.55 147.06 1.06 26.52 0.19
NGC 3198 1D 22.14 0.26 2918.39 31.38 59.54 0.65 3733.66 40.14 115.67 1.27

The CT approach demands much computational time than the BG ones, about

105 times more. Thus, an approximation for δVeN was necessary. The error bars on CT

approach were taken with thesame value of 4.5 km/s, which is based on the maximum

error obtained form the CT approcah with 3 free parameters already presented in Figure

2. Considering that additional parameters only yield more Bessel functions with higher

frequency, hence one expects that the error bars derived using ten free parameters did not

differ too much from the three parameters case.

The plots in Figure (3), show for the galaxies analyzed within the CT approach,

the behaviour of the effective Newtonian rotation curve, namely the grey dots in the plots,

does not agree with the Newtonian circular velocity VN. One perceives, looking to the six

galaxies analyzed, the VN is too high for small radii, and becomes too low at large radii.

This is a clear indication that a dark matter insertion would improve the fit. The effective
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Table 7 – Results on the stellar mass-to-light ratios of the CT and BG approaches shown
in comparison with the NFW profile results and the expected values from stellar
population considerations. Expected values on Υ∗ and NFW results are from [4, 5, 3].

Galaxy CT (10 parameters) BG NFW Expected
Υ*D Υ*B Υ*D Υ*B Υ*D Υ*B 〈Υ*D〉 〈Υ*B〉

DDO 154 4.18 - 3.24 - 1.25 - 0.2-0.6 -
ESO 116-G12 0.80 - 0.55 - 0.05 - 0.5-1.8 -
ESO 287-G13 1.16 - 0.63 - 1.69 - 0.5-1.8 -
NGC 2403 2D 2.39 0.00 0.23 2.17 0.32 0.63 0.2-0.8 0.3-1.2
NGC 2841 1.66 0.00 0.005 0.24 0.72 1.28 0.4-1.5 0.4-1.7
NGC 3198 1D 1.07 - 0.41 - 0.51 - 0.4-1.6 -

Newtonian rotation curve is the same, but the fit of the Newtonian circular velocity VN

changes due the addition of a new component, namely the VDM .

For BG approach, there is no systematics. But it is possible to perceive that curve

VN is too high at large radii which means that an addition of usual dark matter halos does

not yield an improvement of the fit.

Since the CT approach uses more parameters than BG one, it is expected that

the values of χ2
p in Table 6 are significantly lower for the CT approach than for the BG

one. A good fit with respect to the effective Newtonian rotation curve, measured by the

quantity χ2
p, is an indicative that the evaluated model works. It is not the most indicate for

comparing models because of the number of free parameters. In this case a better option

is the proper χ2 that is the physically meaningful fit.

Table 7 shows the stellar mass-to-light ratios. The expected ranges for ESO 116-G12

and ESO 287-G13 are the same stated by Gentile [4]. The other galaxies expectations come

from THINGS [5]. We considered a factor two of uncertainty to generate the stated ranges

in this table [125, 126], hence the lower bound is found by dividing the expected value

from [5] by two, and the upper bound by multiplying it by two. The CT approach has a

tendency towards higher Υ∗ values, while the BG one tends towards low Υ∗ values. This

indicates that, by adding a dark matter halo to these approaches, the CT one may benefit

from it, achieving better agreement with the expected Υ∗ values, but the BG approach

cannot improve and may worsen the Υ∗ concordance if the presence of dark matter is

considered.

7.2 Models based on Modified gravity

We already mentioned that rotation curves constitute one of the main evidences

for dark matter. This evidence is also based in the assumption that Newtonian gravity, or

in other words the weak-field limit of GR, is the gravity which plays a role in the internal

dynamics of those objects. Alternatively, there are some proposals which states the the
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Figure 3 – Rotation curves of the galaxies DDO 154, ESO 116-G12, ESO 287-G13 and NGC
2403 2D. The plots use the same conventions of Figure 2, with the addition that the
dashed dark red curve, when present, refers to the bulge circular velocity (Vbulge).
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Figure 3 – Rotation curves of the galaxies NGC 2841 and NGC 3198 1D.

underlying gravity at galactic scales may be not Newtonian [127, 128, 129, 130, 20, 131,

132, 133, 134, 135, 136, 137] and instead a new material component a different gravity

should be considered. In these models, when one applies the weak-field limit of relativity,

the problem reduces to a modification in the Newtonian potential. Here, we worked with

ones that predicts Yukawa-like corrections (as we already mentioned in Chapter 2), e.g.

f(R) and MOG. Namely, the Yukawa-like correction is given by

Φ(x) = −G
∫

ρ(x′)
|x− x′|

(
1 + βe−|x−x

′|/λ
)
d3x′ . (7.18)

where ρ(x) is the matter density distribution. It is also common in literature to refer this

extra interaction with matter as “fifth-force”. The strength of the latter is measured by

the parameter β while λ measures its range. As we briefly detailed in Chapter 2, many

modified gravity theories predicts a Yukawa-like correction to the Newtonian potential,

see for example [138, 139, 140, 131, 141, 142, 143, 144, 145, 79, 146]. Hence, according to

these works this extra interaction could be mediated by scalars [141, 142, 144, 145, 146],

massive vectors[138, 139, 131, 79] or even with two rank-2 tensor field[140, 143]. There are

several previous works thta we need to review in order to highlight the differences with our

work, for some of them the theoretical background was already clarified in Chapter 2. In

[145] the sum of a repulsive and an attractive Yukawa obtained from weak-field regime of

higher-order gravity model was investigated. Namely, the theory consists in by considering

an extension of GR such that the Ricci scalar, in Einstein-Hilbert action, is replaced
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by a general function f(X, Y, Z) where X ≡ R, Y ≡ RαβRαβ and Z ≡ RαβδγRαβδγ. In

[145] the Yukawa parameters are not fitted, rather the authors fixed the parameter to

λ1 = 100 kpc, λ2 = 10−2 kpc, and β1 = 1/3, β2 = −4/3, claiming that these values provide

a good fit for rotation curve of Milky Way and to NGC 3198. Although, they also conclude

that only baryons which obey the effective potential induced by f(X, Y, Z) is not sufficient

to reproduce entirely the behaviour of galaxy rotation curves, hence some amount of dark

matter is still necessary. Conversely, in [138] (see also [146]) repulsive Yukawa correction

could reproduce constant profiles for rotation curves ar large radii without the necessity of

dark matter with fifth-force parameters −0.95 ≤ β ≤ −0.92 and λ ' 25− 50 kpc.

In the sense of [138], one has to mention [140, 145] that are works which do not

consider dark matter at all but apply the prediction only to two or one galaxy. However,

in [79] one finds a full comparison of MOG theory (see Section 2.4) against nine observed

rotation curves from THINGS. It was assumed that β and λ could vary galaxy by galaxy and

in the end they computed the average values: β = −0.899±0.003 and λ = 23.81±2.27 kpc.

Finally, they used the latter values to fit the THINGS and the Ursa Major catalogue. The

THINGS was also used in [147] for an analysis of nonlocal gravity and the values are very

similar: β = −0.916± 0.041 and λ = 16.95± 8.04 kpc, again without dark matter.

The case of an attractive fifth force, i.e. positive values for β, were analyzed in a

few works. In [148], in the context of ST theories, only Low Surface Brightness galaxies

were analyzed. Restricting to only positives values for β in the fit, values from 1.83 to

11.67 were found, while the λ values ranged from 0.349 kpc to 75.810 kpc. On the other

hand, in the context of f(R) theories [144], the value of β was kept fixed to 1/3 according

f(R) predictions. The derived Yukawa correction to the Newtonian potential, equation

(2.15), was investigated in comparison with simulated datasets of galaxy rotation curves.

It is importante to emphasize that a strength β = 1/3 has been found to be compatible

also with the dynamics of clusters [149], again without dark matter.

Our work also considers the inclusion of dark matter and is closer in spirit to [150].

There, it was found that a repulsive Yukawa between baryons and dark matter provides

a good fit for LSB galaxies, namely UGC 4325, β=−1.0 ± 0.25 and λ=1.7 ± 0.6 kpc;

NGC 3109, β=−1.1 ± 0.16 and λ=1.2 ± 0.17 kpc; LSBC F571-8, β=−0.9 ± 0.18 and

λ=1.1± 0.1 kpc; NGC 4605, β=−1.1± 0.3 and λ=0.2± 0.02 kpc. In [150], due the fact

that only LSB were analyzed it was not used the baryonic component, since the LSD

typically are dominated by dark matter, and the dark matter halo was taken as a simple

power law.

As in [150] we have constrained β and λ against galaxy rotation curve data. However,

our analysis in [31] differs itself from most previous works because i) we considered dark

matter; ii) we did not impose restrictions on the coupling sign and we assumed that

baryons and dark matter couples differently to fifth-force iii) we included the baryons, i.e.
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gas, disk and bulge for each galaxy together with a NFW dark matter halo; iv) we did not

fit β, λ individually to each galaxy, but rather look for a global fit, and finally, v) we have

used a much larger dataset, namely 40 galaxies from SPARC.

7.2.1 A species-dependent coupling

If we are considering that the fifth-force couples differently to dark matter (subscript

dm) and baryons (b), one has to introduce two coupling constants, namely αb and αdm. In

order to pedagogial, we will assume for now that the fifth-force is carried by a scalar field

with conformal coupling and canonical kinetic term. As it was already seen in Chapter

1 the geodesic equation can be derived via energy-momentum conservation. As already

discussed in Chapter 2 the presence of fifth force alters the standard geodesic equation,

hence for each component here, that is, dark matter and baryons the geodesic equation is

of the form

T µ(b)ν;µ = −αbT(b)φ;ν (7.19)

T µ(dm)ν;µ = −αdmT(dm)φ;ν (7.20)

where T µ(x)ν is the energy-momentum tensor of component x and T(x) its trace. The equation

for the scalar field is the Klein-Gordon equation which can be written as follows

T µ(φ)ν;µ = (αbT(b) + αdmT(dm))φ;ν (7.21)

Note that the total energy-momentum tensor is clearly conserved.

In the context of quasi-static approximation, that is, when we do not consider the

propagation of φ-waves, the total potential between two particles of species x, y acquires a

a Yukawa term as in equation (7.18) with strenght [151, 152, 150]

β = αxαy (7.22)

and a universal range λ = m−1, where m is the scalar field mass. As we discussed in

Chapter (5), in a galaxy the baryons which follows rotation curves feel the sum of the

potential determined by the baryons themselves and by dark matter. Consequently, baryons

feel a fifht force from baryon-baryon interaction and baryon-dark matter one. The first

interaction is chacterized by α2
b , while while the second one to αbαdm. However, the local

tests of gravity show that |αb| has to be very small, typically less than 10−2 [153, 154].

Thus, one can neglect the baryon-baryon interaction, that is, only assume that baryons

exert standard gravity on the others baryons. Therefore, this means that the Yukawa

strength coupling is β = αbαdm and along with the parameter λ one wishes determine

using galaxy rotation curves.

In many previoues works, as we pointed out in the previous section, the dark matter

component was not considered. Hence, according the interpretation given above, what
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they measured was the baryon-baryon strength, namely β = α2
b . The values for the latter

parameters, provided by fiiting the rotation curves, were negative. Thus, one has to modify

the picture mentioned above by introducing a non-canonical kinectic term (actually, a field

with imaginary sound speed, which then suffers of a gradient instability), or a vector boson

rather than a scalar one. Anyway, a value a value |αb| of order unity is in contradiction

with local gravity experiments. The only way to circumvent this is to assume that the fifth

force is screened on Earth experiments while stars are not.

7.2.2 The Yukawa correction

The general form for Yukawa-like corrections to the Newtonian potential is given

by

Φ(x) = −G
∫

ρ(x′)
|x− x′|

(
1 + βe−|x−x

′|/λ
)
d3x′ . (7.23)

Note thar we recover Newtonian gravity by setting β = 0, or at scales much larger

than λ. In scales much smaller than λ, gravity could be stronger or weaker than Newtonian,

depending on the sign of β, that we considered as a free parameter.

As we mentioned in Section 7.2 we will consider the dark matter component in our

analysis. Hence, we have to choose a specific dark matter profile in order to proceed with

the analysis. Thus, we will assume a dark matter profile derived from N -body simulations

of cold dark matter, the NFW profile

ρNFW(r) = ρs
r
rs

(1 + r
rs

)2 , (7.24)

where ρs is the characteristic density and rs is the scale radius. The N -body simulations

claims that there is a relation between ρs and rs [155, 156]. Usually, this relation is

written in terms of the concentration parameter c ≡ r200/rs and M200 ≡ (4π/3)200ρcritr3
200,

where ρcrit is the critical density. Hence, using the latter parameters it is possible to write

the NFW profile depending on a single parameter, namely M200. The relation between

(ρs, rs)→ (c,M200) is given by [92]

ρs = 200
3

c3ρcrit
ln(1 + c)− c

1+c
, (7.25)

rs = 1
c

(
3M200

4π200ρcrit

)1/3

(7.26)

For the galaxies analyzed in [31], it was assumed a c−M200 relation[155]

c(M200) = 100.905
(

M200

1012h−1M�

)−0.101

. (7.27)

Hence, the equation (7.26) becomes

rs ≈ 28.8
(

M200

1012h−1M�

)0.43

kpc , (7.28)
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where we used ρcrit = 143.84 M�/kpc3 and h = 0.671[157].

Therefore, inserting the equation (7.24) in equation (7.23) one can split the total

gravitational potential as the usual Newtonian potential for NFW profile, namely ΦNFW,

plus the contribution coming from modified gravity Φmg (∝ β). The latter can be integrated

analytically for NFW [158]

Φmg(r) = 2πGβρsr3
s

r

{
exp

(
−rs + r

λ

)[
Ei
(rs
λ

)
− Ei

(
rs + r

λ

)]
+

− exp
(
rs + r

λ

)
Ei

(
−rs + r

λ

)
+ exp

(
rs − r
λ

)
Ei
(
−rs
λ

)}
, (7.29)

where Ei(x) is defined as

Ei(x) = −
∫ ∞
−x

e−t

t
dt . (7.30)

Hereafter, we will refer the parameterization which consider gas, disk, bulge plus

NFW for dark matter profile (using the mass-concentration relation) as the “standard

model” and the same parametrization plus a Yukawa term as simply Yukawa model.

7.2.3 Analysis with SPARC dataset

The observed rotation curve used in [31] to evaluate Yukawa-like corrections

are taken from SPARC [107]. The details about this catalogue were already reported

in subsection 5.2. To evaluate the contribution of Yukawa corrections in kinematics of

disk galaxies, we have to use the total circular velocity, equation (5.6), adding now the

contribution form modified gravity, hence we have the following formula

V 2
c (r) = V 2

gas(r) + Υ∗DV 2
disk(r) + Υ∗BV 2

bulge(r) + V 2
NFW(r) + V 2

mg(r) , (7.31)

The velocities Vgas, Vdisk and Vbulge are actually available in astroweb.cwru.edu/SPARC.

But as an example we show in Table 8 the details of each baryonic component. The details

about how each component was derived is already commented in subsection 5.2 and for

further details the reader is invited to read [107]. For practical purposes in the derivation

of Vdisk and Vbulge, [107] assumed Υ*D = Υ*B = 1. This normalization is very useful since

we just need to rescale the problem inserting Υ*D,Υ*B as free parameters in our case.

We are considering that baryons obey standadr gravity, thatis, there is no fifth

force between baryon-baryon. Thus, the procedure performed by [107] can be adapted to

our purpose directly. Therefore, one can capture the functions Vgas(r), Vdisk(r) and Vbulge(r)
just using a cubic spline interpolation.

The components VNFW and Vmg are given by

V 2
NFW(r) = 4πGr3

sρs
r

[
− r

r + rs
+ ln

(
1 + r

rs

)]
(7.32)

http://astroweb.cwru.edu/SPARC
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Table 8 – Table for the galaxy UGCA442 emphasizing each baryonic component (there is
no bulge in this galaxy ). Σdisk is the surface density for the disk.

Radius Vobs Vgas Vdisk Σdisk

(kpc) (km s−1) (km s−1) (km s−1) (L�pc−2)
0.42 14.2± 1.9 4.9 4.8 11.0
1.26 28.6± 1.8 13.1 10.8 5.8
2.11 41.0± 1.7 19.6 13.6 2.7
2.96 49.0± 1.9 22.4 13.3 1.0
3.79 54.8± 2.0 22.8 12.6 0.7
4.65 56.4± 3.1 21.4 12.3 0.4
5.48 57.8± 2.8 18.7 12.0 0.2
6.33 56.5± 0.6 16.7 10.6 0.0

and

V 2
mg(r) = −2πGβρsr3

s

r

{
2r

rs + r
+ exp

(
rs + r

λ

)(
r

rs
− 1
)

Ei

(
−rs + r

λ

)
+ exp

(
−rs + r

λ

)
+

+ exp
(
−rs + r

λ

)(
1 + r

λ

)[
exp

(
2rs
λ

)
Ei
(
−rs
λ

)
+ Ei

(rs
λ

)
− Ei

(
r + rs
λ

)]}
.

(7.33)

7.2.4 Fitting the rotation curves

The procedure that we used in [31] in order to find the best-fit values for the free

parameters, namely {Υ∗D,Υ∗B,M200} for each galaxy plus {β, λ}, is the ML estimation

(already detailed in Chapter 6). It is considered that the errors of the observed rotation

curves follows a Gaussian distribution, so that one can build the likelihood for each galaxy

according the following expression

Lj(pj, β, λ) = (2π)−N/2
{

N∏
i=1

σ−1
i

}
exp

{
− 1

2

N∑
i=1

(
Vobs,j(ri)− Vc(ri, pj, β, λ)

σi

)2}
(7.34)

where pj = {Υ∗D,j,Υ∗B,j,M200,j},N is the number of observational points for each galaxy,

σi is the data error, Vobs,j(ri) is the observed circular where pj = {Υ∗D,j,Υ∗B,j,M200,j},N
is the number of observational points for each galaxy, σi is the data error, Vobs,j(ri) is

the observed circular velocity of the j-th galaxy at the radius ri and Vc(ri, pj, β, λ) is the

total rotation curve, which was expressed in equation (7.31). The values of Vobs,j(ri) are

provided by SPARC catalogue. AS already commented, we are considering β and λ as

global parameters hence in order to constrain them with respect to some set of galaxies

one needs to consider an overall likelihood which can be obtained just multiplying the

individual galaxy likelihoods. Therefore, the full likelihood is given by

L(p, β, λ) =
Ng∏
j=1

Lj(pj, β, λ) , (7.35)

where p = {p1, ..., pNg} and Ng is the total number of galaxies.
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The Bayes theorem, equation (6.4) estabilsh that the posterior distribution is

proportional to likelihood time the prior. In [31] we considered flat (uniform) prior for the

parameters. That is, the mass-to-light ratios, for bulge and disk, are bounded to 0.3 <
Υ∗D < 0.8 and 0.3 < Υ∗B < 0.8, which is in agreement with SPS models [159, 160]. For the

other parameters, that is, M200, β and λ a wide range is considered: 109 < M200/M� < 1014,

−2 < β < 2 and λ0 < λ/kpc < 100, where λ0 is the mean value among the smallest

observable radii when the Ng galaxies are considered. We imposed a lower limit on λ in

order to avoid undesired divergences when λ→ 0.

In order to find the ML estimators for the set of free parameters, we used sampling

methods for exploring the parameter space, in particular MCMC methods. We used the

affine-invariant ensemble sampler designed by [117], which is implemented by the very

well tested and stable open-source Python package emcee[1]. This sampling method offers

several advantages over traditional samplers, e.g. Metropolis-Hastings [114], among the

advantages are: high performance and few hand-tunning in the parameters.

7.2.5 Analysis and results

The SPARC catalogue contains 175 galaxies, therefore a complete analysis would

require 384 free parameters, that is, 175 Υ*D plus 175 M200 plus 32 Υ*B(many galaxies do

not show a bulge) plus β and λ. Even considering the affine-invariant ensemble sampler, the

number of parameters, for the entire SPARC catalogue, is too high and the computation

of the likelihood becomes discouraging. Hence, we decided to analyse randomly 4 sets

containing 10 galaxies each. Therefore, for two sets, namely B and D, one has 25 free

parameters each, while the sets A and B one has 23 free parameters each.

As we have already emphasized early, in Chapter 6, the issue of the convergence

is crucial for any MCMC performance. The strategy that we used for convergence of

the chains was the autocorrelation time (for details, please see Section 6.2 or in [119]).

Remembering the reader that the autocorrelation time (τ̂) is the quantity which defines

the minimum number of posterior samplings necessary for producing independent samples.

In Figure 4, we shown autocorrelation time estimations (τest) versus the number of

samples, each blue dot in Figure 4 is a evaluation of equation (6.18) for a certain number

of samples N . We started with N � M where M is the total length of the chain. We

increased the chains until to perceive a plateau, the latter gives to us a number, the

autocorrelation time τ̂ . After obtaining τ̂ we discard the number of iteractions Ndisc ∼ τ̂

and we compute the posterior for each free parameter in our galaxy sets considering the

remaining chain. The developers of emcee suggests that a chain with total length M = 50τ̂
is sufficient for generating independent samples. We tested this hypothesis running again

a MCMC routine considering now a shorter chain, namely M = 70τ̂ and Ndisc = τ̂ , and

indeed the results did not change. With respect to the acceptance ratio of emcee, in our
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Figure 4 – The autocorrelation time analysis (blue solid line) for each set of galaxies
respectively containing 10 objects each. When τ reaches the dotted line the
convergence of the chains is achieved, see [1].

Table 9 – The acceptance fraction af , the maximum likelihood estimation for (β, λ), the total goodness

of fit χ2
red,tot and the one calculated fixing β = 0, for each set of 10 galaxies and for the

combination of the data sets. kY (ksg) is the number of free parameters for the Yukawa model

(for standard gravity), while N is the number of data points. We also report the values for the

∆BIC, for 2 logB12, and the confidence level (CL), see text for more details.

Set af Best-fit values kY χ2
red,tot ksg χ2

red,tot|β=0 N ∆BIC 2 logB12 CL

β λ(kpc) σ
A 0.16 0.34+0.12

−0.10 10.27+2.89
−3.82 25 0.88 23 1.11 206 32.18 31.84 5.29

B 0.14 0.30± 0.08 7.42+2.94
−3.99 23 0.80 21 0.96 180 17.12 23.21 4.44

C 0.12 0.28+0.09
−0.08 8.18+5.39

−6.31 25 0.83 23 1.04 163 20.52 12.41 3.09
D 0.15 0.54+0.11

−0.10 4.15+0.81
−0.95 23 0.78 21 1.02 196 32.92 20.38 4.12

Combined - 0.34± 0.04 5.61± 0.91 90 0.82 88 1.03 745 91.61 87.83 8.26
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analysis we obtained values between 0.1 and 0.2 as can be seen in Table 9.

Furthermore, the main results are displayed in Table 9. There, we show the ML

estimations for the (β, λ) and their 1σ error bars, the acceptance fraction af and the

overall goodness of fit χ2
red,tot, that is, considering all galaxies of the same set together.

Note that there is an inprovement of χ2 from the standard model to the Yukawa one for

each set and also for the combination of all sets. The total data, that is, summing all data

points in the case of the combined analysis is 745 while the number of free parameters is

90. Namely, 40 Υ*D plus 40 M200 plus 8 Υ*B plus β and λ. Hence, a total of 655 degrees

of freedom.

In Table 10 we show the ML estimations for the set of parameters {Υ∗D,Υ∗B,M200}
and their respective 1σ error bars and also the goodness of fit χ2

red. In Table 11 we have

the same results but for the standard model, that is β = 0.

In Figure 5 we plotted, for each galaxy set, the marginalized distribution for the

parameters (β, λ) and the respective 1σ and 2σ contours and also one-dimensional PDF

for β and λ. At last, the rotation curves for each galaxy according equation (7.31), with

the ML estimations (best-fit values) displayed in Tables 10 and 9 are plotted in Figures

7,9,11 and 14. In the end, the combined posterior on β and λ is obtained just multiplying

the narginalized posteriors of each set, the combined result is also shown in Figure 5. The

global best-fit for the parameters β and λ along with 1σ error bars are also displayed on

Table 9.

Our results show an attractive Yukawa force, consequently a reduction in the

amount of dark matter for reproducing galaxy rotation curves is clearly expected. We

quantified this decreasing computing the quantity µ200 ≡ M200
M200(β=0)

whoose values are

plotted in Figure 6. In order to quantify the uncertainty in µ200 we propagated errors

using the largest value of the asymmetric errors bars. We quantified the ratios for the

other parameters Υ*D and Υ*B, namely γ*D ≡ Υ*D

Υ*D(β=0) and γ*B ≡ Υ*B

Υ*B(β=0) . Because of the

asymmetry of the error bars of Υ*D and Υ*B we proceed of the same manner than in µ200

for finding the uncertainties on the ratiosγ*D and γ*B. The average values for the ratios

are:〈µ200〉 = 0.80± 0.02, corresponding to a 20% of reduction of dark matter due the fifth

force. We also obtained the average values 〈γ*D〉 = 0.96± 0.01 and 〈γ*B〉 = 0.96± 0.04.

It is important to note that the counting of degrees of freedom described above is

actually ambiguous. Indeed, data are not compared only to a theoretical model depending

on some free parameters, instead, they are compared to the combination of a theoretical

model (the NFW profile) plus the observed baryonic component, rescaled by the mass-to-

light ratios. Because of this, we have to use the Bayesian approach in order to arises in

fact the difference between the models. In particular, we have to compute the evidence,

equation (6.5), and in this case the only difference which matter is the presence or not of
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Figure 5 – The marginalized distribution of the (β, λ) and the one-dimensional posterior
distribution according the set of 10 galaxies each and the combined analysis.

the Yukawa term. Now, particularizing the equation (6.5) for our case one has

E =
∫
L(p, β, λ)P(p, β, λ)dβdλdp , (7.36)

where P is the prior distribution. The Bayes ratio between the model 1 (β 6= 0) and model

2 (β = 0) is defined as

B12 =
∫
L1(p, β, λ)P1(p, β, λ)dβdλdp∫

L2(p)P2(p)dp . (7.37)

The expression above can be computed analitically is one considers both likelihood

and priors as Gaussian in the parameters. Considering this, the evidence becomes

E = Lmax

√
det P
det Q

exp
[
−1

2(θ̂αFαβ θ̂β + θ̄αPαβ θ̄β − θ̃αQαβ θ̃β)
]
, (7.38)
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Figure 6 – The ratio µ200 (black dots) and the respective error bars. The cyan dotted line
is the average value of µ200.

where −2 lnLmax = χ2
min, θα = {p, β, λ} for our general case; θ̂α are the best fit values

for the parameters and θ̄α are the prior means. The matrix Q is Q = F + P and

θ̃α = (Q−1)αβ[Fβσθ̂σ + Pβσθ̄σ], where F is the Fisher matrix and P is the inverse of the

covariance matrix of the prior. In our case, the prior is weak hence the exponetial term in

the last equation becomes to unity. Thus, the Bayes ratio becomes

B12 = e−
1
2 (χ2

min,1−χ
2
min,2)

√
det P1 det F2

det P2 det F1
. (7.39)

If one assumes that the prior is uncorrelated, that is, the matrix P is diagonal consequently

the determinant is the product of diagonal elements which are the inverse of the squared

errors. In our case, the prior is flat hence one considers the variance of an uniform

distribution as squared error. The model 1,2 shares most of the parameters hence the ratio

det P1/ det P2 all terms simplify except the β, λ. Hence the equation (7.39) becomes

B12 = e−
1
2 (χ2

min,1−χ
2
min,2) 1

pβpλ

√
det F2

det F1
, (7.40)

where pβ, pλ are the square root of the variance of the uniform distribution assumed for

β, λ.

In the combined analysis, the total Fisher matrix Fcomb, i.e. considering the combi-

nation of the Fisher matrices of all sets, is just a block diagonal matrix, since there is no
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correlation between the sets, where the diagonal entries are the Fisher matrices of each

set. Hence, it is imediat to calculate the determinant of Fcomb for models 1 and 2. We

assumed the same procedure described above for the combined prior matrix Pcomb, since

the minimum value λ0 changes according to the set.

By having B12, the probability P12 that the right model is 1 rather than 2 is

P12 = B12

1 +B12
. (7.41)

As a complement, we computed the Bayesian Information Criterion (BIC), which

is a Gaussian approximation to the evidence when the sample size is large. The expression

for BIC is given by [161]

BIC = −2 lnLmax + 2k lnN , (7.42)

where k is the number of free parameters and N is the number of data points. The values

of k for both models, namely kY for the Yukawa model and ksg for standard gravity, are

displayed in table 9 also with the number of data points N used in each set and in the

combined analysis. In our case, the likelihoods are Gaussian and hence we have again

−2 lnLmax = χ2
min. The relative BIC (∆BIC) is defined as

∆BIC ≡ BIC|β=0 − BIC|β 6=0 . (7.43)

The ∆BIC and the confidence level (CL) associated to P12 values for each set and

for the combined analysis are reported in Table 9. Expectedly, the BIC gives a rough

approximation to the Gaussian evidence. Both prefer the β 6= 0 model to an extremely

high significance, more than 8σ for the combined set.
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Table 10 – The maximum likelihood estimation for the Υ*D,Υ*B and M200 parameters,
and the goodness of fit χ2

red for each galaxy, for the Yukawa model.

Set Galaxy Best-fit values χ2
red

Υ∗D Υ∗B M200(1011M�)
A F568V1 0.60+0.20

−0.10 - 1.31+0.26
−0.38 0.35

A NGC0024 0.79+0.01
−0.01 - 0.73+0.10

−0.13 1.68

A NGC2683 0.64+0.04
−0.04 0.52+0.15

−0.21 1.71+0.29
−0.37 1.37

A NGC2915 0.32+0.01
−0.02 - 0.34+0.05

−0.06 0.98

A NGC3198 0.40+0.04
−0.05 - 1.94+0.13

−0.12 1.31

A NGC3521 0.49+0.01
−0.02 - 5.40+1.00

−1.26 0.37

A NGC3769 0.33+0.02
−0.03 - 0.86+0.11

−0.14 0.75

A NGC3893 0.46+0.04
−0.04 - 3.89+1.16

−1.00 1.26

A NGC3949 0.36+0.03
−0.05 - 3.99+2.09

−2.78 0.45

A NGC3953 0.62+0.07
−0.07 - 1.53+0.74

−1.27 0.73

B NGC3992 0.74+0.05
−0.03 - 6.52+0.92

−1.52 0.88

B NGC4051 0.40+0.05
−0.10 - 1.04+0.50

−0.79 1.27

B NGC4088 0.31+0.01
−0.01 - 1.63+0.30

−0.33 1.09

B NGC4100 0.67+0.03
−0.03 - 2.12+0.34

−0.37 1.20

B NGC4138 0.69+0.09
−0.05 0.53+0.10

−0.21 1.43+0.45
−0.65 2.67

B NGC4157 0.35+0.02
−0.03 0.45+0.09

−0.15 3.35+0.59
−0.58 0.76

B NGC4183 0.49+0.09
−0.14 - 0.59+0.10

−0.11 0.19

B NGC4559 0.31+0.01
−0.01 - 0.83+0.10

−0.10 0.43

B NGC5005 0.43+0.06
−0.11 0.50+0.07

−0.08 23.83+14.77
−22.32 0.08

B NGC6503 0.45+0.02
−0.03 - 0.90+0.09

−0.09 1.91

C UGC06983 0.51+0.11
−0.16 - 0.75+0.13

−0.16 0.69

C UGC07261 0.53+0.12
−0.21 - 0.18+0.05

−0.06 0.17

C UGC07690 0.68+0.11
−0.06 - 0.06+0.02

−0.02 0.89

C UGC07866 0.38+0.06
−0.08 - 0.01+0.03

−0.01 2.52

C UGC08490 0.78+0.02
−0.01 - 0.27+0.04

−0.04 0.78

C UGC08550 0.49+0.08
−0.17 - 0.08+0.02

−0.02 1.02

C UGC08699 0.71+0.05
−0.05 0.67+0.03

−0.05 3.09+0.52
−0.60 0.86

C UGC09992 0.43+0.10
−0.13 - 0.01+0.01

−0.01 1.98

C UGC10310 0.53+0.10
−0.22 - 0.13+0.03

−0.04 1.25

C UGC12506 0.78+0.02
−0.01 - 8.00+1.14

−1.00 1.22

D NGC7331 0.32+0.01
−0.01 0.49+0.08

−0.18 9.26+0.39
−0.36 0.87

D NGC7793 0.41+0.05
−0.05 - 0.46+0.09

−0.11 0.95

D NGC7814 0.76+0.04
−0.03 0.60+0.03

−0.03 9.63+0.93
−0.94 0.82

D UGC02259 0.72+0.08
−0.05 - 0.34+0.04

−0.05 2.84

D UGC03546 0.55+0.04
−0.04 0.38+0.04

−0.04 4.20+0.30
−0.29 1.05

D UGC06446 0.50+0.09
−0.19 - 0.25+0.03

−0.04 0.25

D UGC06930 0.40+0.06
−0.10 - 0.53+0.09

−0.09 0.62

D UGC06983 0.40+0.05
−0.09 - 0.74+0.09

−0.10 0.67

D UGC07261 0.49+0.09
−0.18 - 0.15+0.04

−0.05 0.11

D UGC07690 0.66+0.13
−0.07 - 0.05+0.01

−0.02 0.72
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Table 11 – The maximum likelihood estimation for the Υ*D,Υ*B and M200 parameters,and
the goodness of fit χ2

red|β=0 for each galaxy in the case of β = 0.

Set Galaxy Best-fit values χ2
red|β=0

Υ∗D Υ∗B M200(1011M�)
A F568V1 0.63+0.16

−0.10 - 2.44+0.45
−0.58 0.63

A NGC0024 0.79+0.01
−0.01 - 1.24+0.10

−0.13 2.31

A NGC2683 0.68+0.05
−0.04 0.52+0.11

−0.21 1.97+0.33
−0.43 1.20

A NGC2915 0.32+0.02
−0.02 - 0.59+0.05

−0.06 1.17

A NGC3198 0.52+0.01
−0.01 - 2.09+0.04

−0.05 1.44

A NGC3521 0.51+0.01
−0.01 - 7.95+1.62

−1.51 0.29

A NGC3769 0.36+0.03
−0.06 - 1.20+0.14

−0.17 0.68

A NGC3893 0.49+0.04
−0.03 - 5.42+1.24

−1.18 1.27

A NGC3949 0.37+0.03
−0.06 - 8.55+4.75

−6.35 0.29

A NGC3953 0.65+0.07
−0.07 - 1.66+3.36

−1.41 0.54

B NGC3992 0.77+0.03
−0.02 - 6.88+0.61

−0.72 0.82

B NGC4051 0.43+0.07
−0.10 - 1.23+0.63

−0.99 0.92

B NGC4088 0.31+0.01
−0.01 - 2.08+0.30

−0.32 0.60

B NGC4100 0.72+0.03
−0.03 - 2.33+0.26

−0.29 1.28

B NGC4138 0.71+0.08
−0.04 0.53+0.17

−0.22 1.82+0.56
−0.72 1.50

B NGC4157 0.38+0.03
−0.03 0.46+0.09

−0.16 3.70+0.49
−0.45 0.55

B NGC4183 0.67+0.12
−0.06 - 0.65+0.07

−0.09 0.18

B NGC4559 0.33+0.02
−0.03 - 1.05+0.07

−0.06 0.24

B NGC5005 0.44+0.07
−0.09 0.51+0.08

−0.08 38.22+24.20
−36.48 0.09

B NGC6503 0.53+0.01
−0.01 - 1.06+0.02

−0.02 2.80

C UGC06983 0.65+0.14
−0.07 - 0.97+0.11

−0.14 0.71

C UGC07261 0.57+0.17
−0.15 - 0.29+0.07

−0.10 0.21

C UGC07690 0.70+0.10
−0.06 - 0.10+0.03

−0.03 0.67

C UGC07866 0.43+0.09
−0.13 - 0.01+0.02

−0.01 0.61

C UGC08490 0.79+0.01
−0.01 - 0.39+0.02

−0.03 1.52

C UGC08550 0.63+0.16
−0.08 - 0.12+0.01

−0.01 0.69

C UGC08699 0.77+0.03
−0.02 0.67+0.02

−0.02 3.70+0.26
−0.31 0.69

C UGC09992 0.47+0.10
−0.17 - 0.01+0.01

−0.01 0.32

C UGC10310 0.54+0.15
−0.23 - 0.19+0.04

−0.05 0.58

C UGC12506 0.79+0.01
−0.01 - 8.90+0.76

−0.64 1.73

D NGC7331 0.35+0.01
−0.01 0.48+0.09

−0.17 9.38+0.33
−0.33 0.83

D NGC7793 0.54+0.04
−0.04 - 0.60+0.12

−0.15 0.90

D NGC7814 0.77+0.04
−0.02 0.66+0.03

−0.03 11.40+0.79
−0.75 1.42

D UGC02259 0.77+0.05
−0.02 - 0.63+0.04

−0.04 6.35

D UGC03546 0.65+0.03
−0.03 0.37+0.03

−0.04 4.12+0.28
−0.27 0.98

D UGC06446 0.69+0.15
−0.08 - 0.44+0.04

−0.05 0.44

D UGC06930 0.51+0.14
−0.16 - 0.69+0.12

−0.14 0.28

D UGC06983 0.66+0.12
−0.09 - 0.96+0.10

−0.12 0.71

D UGC07261 0.57+0.16
−0.15 - 0.28+0.07

−0.08 0.19

D UGC07690 0.71+0.11
−0.07 - 0.09+0.03

−0.03 0.64
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Figure 7 – The rotation curves and their components: gas (dashed yellow line), disk
(dashed green line), bulge (dashed red line) and dark matter with Yukawa-like
corrections (dashed blue line). The black solid line is the overall best-fit (see
equation 7.31) and the values for the parameters are displayed on Tables 10
and 9, the orange solid line is the dark matter component for β = 0. The red
dots with error bars are the observational data taken from SPARC catalogue
and the grey ones are the residual of the fit. We have plotted the results for
the set A.
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Figure 8 – continued
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Figure 9 – Same as Figure 7, but for set B.
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Figure 10 – continued.
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Figure 11 – Same as Figure 7, but for set C.
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Figure 12 – continued.
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Figure 13 – Same as Figure 7, but for set D.
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Figure 14 – continued.
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8 CONCLUSIONS

In this thesis we consider the effects of modified gravity in the context of galaxies

and the Solar System. The latter system has no dark matter that is relevant for its internal

dynamics, but it constitutes one of the essential and hardest tests for any theory for gravity.

This presentation emphasises the published works [28, 29, 30, 31].

Here we consider three different approaches to standard and modified gravity that

have implications to dark matter: i) the nontrivial geometry approach, within GR, of CT

and BG (in Chapter 7, Section 7.1); ii) the Renormalization Group extended General

Relativity, which considers gravitational effects from infrared RG corrections (in Chapter

3); iii) and the Yukawa correction approach, whose explicit form is chosen such that it

is able to describe diverse gravitational models in their weak field limit (in Chapter 7,

Section 7.2).

The development and application of the effective Newtonian rotation curve method

has shown that both the approaches (BG and CT) have strong problems fitting galaxy

rotation curves without dark matter (the selected sample favours the BG approach over

the CT one). The method also indicates that if dark matter is considered, the BG approach

cannot improve its results significantly, but the CT approach can. Beyond the two GR

approaches tested here, we expect that the evaluation of other models could benefit from

the method that was introduced in [28] and in this thesis. Also in galaxies context, we

investigated the possibility of coexistence of dark matter and modified gravity on the

description of rotation curves assuming that the fifth force couples weakly to baryons but

with unrestricted strength to dark matter. Contrary to some previous works, our aim is

not to replace dark matter with modified gravity but to see how much modified gravity

can improve the rotation curve fit. Since baryons are assumed to be weakly coupled, we

do not need to invoke a screening mechanism, and the Yukawa term is left free with β and

λ as universal parameters for all galaxies. We considered four different sets of 10 galaxies

each and we found the region in the parameter space for λ and β that are allowed by the

data. To the best of our knowledge, this is the largest set ever analysed in the context of

modified gravity theories which predict Yukawa correction. We notice that the β value is

remarkably close to β = 1/3, the value predicted by one of the simplest modified gravity

model, the f(R) theory. However, as mentioned in subsection 7.2.1, we should interpret β

as the product of a small baryon coupling times a large dark matter coupling, neither of

which would be close to the f(R) prediction. So the underlying model can be identified

with a scalar-tensor theory with non-universal coupling, rather than the specific form f(R).
It is clear that we cannot conclude that standard gravity is ruled out. Rather, we found

that a model of the baryon components (gas, disk and bulge), plus a NFW profile for the
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dark matter, plus an attractive Yukawa term, fits much better the rotation curves of our

sample than a similar model but without the Yukawa correction. Whether this results

holds assuming different modelling for the baryon or the dark matter component, remains

to be seen.

In the Solar System context, we evaluate a particular realisation named RGGR

[9, 10] that is based and extends the approaches of [67, 68]. Considering the external

potential effect, we found that |ν̄�| . 10−16 from the PPN formalism. However, this effect

alone cannot fully explain the difference between the effective ν̄ in the Solar System from

that in a galaxy, in case RGGR does have a significant impact on galaxy dark matter. The

change of ν̄ from system to system may follow a linear correlation to the system mass, as

argued in [9, 3], and also be compatible with the bounds here derived for the Solar System.

The appendices develop further on the effective changes of ν̄ from system to system, but

the precise mechanism that may allow for a variation of ν̄ of about eight to ten orders

of magnitude from the Solar System to a galaxy, if there is one, it is still unclear. We

extended the Solar System analysis considering a fluid description of Solar System, that is,

with the Will-Nordtvedt formalism or usually called as PPN formalism. We find a slightly

stronger bound for RGGR, |ν̄�| . 10−17 (both of these bounds consider the Solar System

as part of the Milky Way). Moreover, it also address bounds for a more general class of

theories, whose relation between G and the Newtonian potential is given by the expansion

4.13. The bounds for such class are stated in Table 3.

Finally, with respect to the perspectives and future works we could emphasize the

impact on particle dark matter search within a modified gravity scenario. The local dark

matter density, ρ0, in our galaxy can be obtained from fitting the rotation curve assuming

for dark matter distribution a NFW halo. In a modified gravity scenario which predicts

the Yukawa correction to the Newtonian potential, in principle, this quantity can assume

a different value compared to the standard case (without Yukawa correction). The value

of ρ0 is important for experiments of dark matter detection, e.g. the Large Underground

Xenon (LUX) [13]. Those experiments assumes that the dark matter is made of WIMP

[162](Weakly Interacting Particle) and they were designed to measure the interaction

between dark matter particle and xenon atom. The local matter density is important to

infer the event rates and the cross-section of this interaction. Hence, in a scenario which is

allowed a fifth force interaction between baryons and dark matter, the local dark matter

density can assume a diferent value with respect to the standard case and, consequently,

one can infer the impact of modified gravity in experiments of dark matter detection.
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9789400701656. Dispońıvel em: <http://www.springerlink.com/content/hl1805/#section=
801705&page=1>. One citation on page 15.

7 CAPOZZIELLO, S.; LAURENTIS, M. D. Extended Theories of Gravity. Phys. Rept.,
v. 509, p. 167–321, 2011. 2 citations on pages 15 and 22.

8 CLIFTON, T. et al. Modified Gravity and Cosmology. Phys.Rept., v. 513, p. 1–189,
2012. 2 citations on pages 15 and 22.

9 RODRIGUES, D. C.; LETELIER, P. S.; SHAPIRO, I. L. Galaxy rotation curves from
General Relativity with Renormalization Group corrections. JCAP, v. 1004, p. 020, 2010.
6 citations on pages 15, 29, 32, 45, 47, and 104.

10 RODRIGUES, D. C.; CHAUVINEAU, B.; PIATTELLA, O. F. Scalar-Tensor gravity
with system-dependent potential and its relation with Renormalization Group extended
General Relativity. JCAP, v. 1509, n. 09, p. 009, 2015. 8 citations on pages 15, 27, 28, 32,
54, 55, 104, and 115.

11 Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica
Acta, v. 6, p. 110–127, 1933. One citation on page 15.

12 RUBIN, V. C.; JR, W. K. F. Rotation of the andromeda nebula from a spectroscopic
survey of emission regions. The Astrophysical Journal, v. 159, p. 379, 1970. One citation
on page 15.

13 AKERIB, D. et al. The large underground xenon (lux) experiment. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, Elsevier, v. 704, p. 111–126, 2013. 2 citations on
pages 15 and 104.

http://www.springerlink.com/content/hl1805/#section=801705&page=1
http://www.springerlink.com/content/hl1805/#section=801705&page=1


Bibliography 106

14 APRILE, E. et al. First Dark Matter Search Results from the XENON1T Experiment.
Phys. Rev. Lett., v. 119, n. 18, p. 181301, 2017. One citation on page 15.

15 Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M. An accurate measurement of
the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies. Astron.
Astrophys., v. 593, p. A39, set. 2016. One citation on page 15.

16 YEGOROVA, I. A.; SALUCCI, P. The Radial Tully-Fisher relation for spiral galaxies.
1. Mon. Not. Roy. Astron. Soc, v. 377, p. 507–515, 2007. One citation on page 15.

17 McGaugh, S. S. The Baryonic Tully-Fisher Relation of Gas-rich Galaxies as a Test of
ΛCDM and MOND. Astron. J., v. 143, p. 40, fev. 2012. One citation on page 15.

18 MILGROM, M. MOND impact on and of the recently updated mass-discrepancy-
acceleration relation. ArXiv: 1609.06642 [astro-ph.GA], 2016. One citation on page
16.

19 Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to
the hidden mass hypothesis. Astrophys. J., v. 270, p. 365–370, jul. 1983. One citation on
page 16.

20 MILGROM, M. Mond as modified inertia. EAS Publications Series, EDP Sciences,
v. 20, p. 217–224, 2006. 2 citations on pages 16 and 81.

21 RODRIGUES, D. C. et al. Absence of a fundamental acceleration scale in galaxies.
Nat. Astron., v. 2, p. 668–672, 2018. One citation on page 16.

22 COOPERSTOCK, F. I.; TIEU, S. Galactic Dynamics via General Relativity: A
Compilation and New Developments. Int. J. Mod. Phys., A22, p. 2293–2325, 2007. 4
citations on pages 16, 69, 70, and 75.

23 COOPERSTOCK, F.; TIEU, S. Galactic dynamics via general relativity and the
exotic dark matter enigma. Mod.Phys.Lett., A21, p. 2133–2142, 2006. 3 citations on
pages 16, 69, and 75.

24 COOPERSTOCK, F. I.; TIEU, S. General relativistic velocity: the alternative to dark
matter. Mod. Phys. Lett., A23, p. 1745–1755, 2008. 2 citations on pages 16 and 69.

25 CARRICK, J.; COOPERSTOCK, F. General relativistic dynamics applied to the
rotation curves of galaxies. Astrophys.Space Sci., v. 337, p. 321–329, 2012. 4 citations on
pages 16, 69, 70, and 71.

26 Magalhaes, N. S.; Cooperstock, F. I. Galactic mapping with general relativity and the
observed rotation curves. ArXiv e-prints, ago. 2015. 3 citations on pages 16, 69, and 75.

27 BALASIN, H.; GRUMILLER, D. Non-Newtonian behavior in weak field general
relativity for extended rotating sources. Int.J.Mod.Phys., D17, p. 475–488, 2008. 5
citations on pages 16, 69, 70, 71, and 72.
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143 Clifton, T.; Bañados, M.; Skordis, C. The parameterized post-Newtonian limit of
bimetric theories of gravity. Classical and Quantum Gravity, v. 27, n. 23, p. 235020, dez.
2010. One citation on page 81.

144 Cardone, V. F.; Capozziello, S. Systematic biases on galaxy haloes parameters from
Yukawa-like gravitational potentials. Mon. Not. Roy. Astron. Soc, v. 414, p. 1301–1313,
jun. 2011. 2 citations on pages 81 and 82.

145 STABILE, A.; SCELZA, G. Rotation Curves of Galaxies by Fourth Order Gravity.
Phys. Rev., D84, p. 124023, 2011. 2 citations on pages 81 and 82.

146 STABILE, A.; CAPOZZIELLO, S. Galaxy rotation curves in f(R, φ) gravity. Phys.
Rev., D87, n. 6, p. 064002, 2013. 2 citations on pages 81 and 82.

147 RAHVAR, S.; MASHHOON, B. Observational Tests of Nonlocal Gravity: Galaxy
Rotation Curves and Clusters of Galaxies. Phys. Rev., D89, p. 104011, 2014. One citation
on page 82.

148 MOTA, D. F.; SALZANO, V.; CAPOZZIELLO, S. Testing feasibility of scalar-tensor
gravity by scale dependent mass and coupling to matter. Phys. Rev., D83, p. 084038, 2011.
One citation on page 82.

149 CAPOZZIELLO, S.; FILIPPIS, E. D.; SALZANO, V. Modelling clusters of galaxies
by f(R)-gravity. Mon. Not. Roy. Astron. Soc., v. 394, p. 947–959, 2009. One citation on
page 82.

150 Piazza, F.; Marinoni, C. Model for Gravitational Interaction between Dark Matter
and Baryons. Physical Review Letters, v. 91, n. 14, p. 141301, out. 2003. 2 citations on
pages 82 and 83.



Bibliography 115

151 Damour, T.; Esposito-Farese, G. Tensor-multi-scalar theories of gravitation. Classical
and Quantum Gravity, v. 9, p. 2093–2176, set. 1992. One citation on page 83.

152 AMENDOLA, L. Linear and non-linear perturbations in dark energy models. Phys.
Rev., D69, p. 103524, 2004. One citation on page 83.

153 Will, C. M. The Confrontation between General Relativity and Experiment. Living
Reviews in Relativity, v. 4, p. 4, maio 2001. One citation on page 83.

154 Patrignani, C.; Particle Data Group. Review of Particle Physics. Chinese Physics C,
v. 40, n. 10, p. 100001, out. 2016. One citation on page 83.
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APPENDIX A – A SPECIFIC
COVARIANT SCALE SETTING

Consider the following simple realization of the covariant setting (2.32),

µ = f(UαUβhαβ) = A+B UαUβhαβ, (A.1)

where A and B are constants. This simple covariant scale setting was introduced in [10],

and it will be shown in detail in this and the next Appendix that, under certain reasonable

limits, it is as a covariant extension of the scale setting (2.37).

Adopting a comoving coordinate system (U i = 0), the scalar UαUβhαβ can be

expressed as, with γαβ = ηαβ,

UαUβhαβ = U0U0h00

= −h00

g00

= −
(

1 + 1
Gḡ00

)
(A.2)

= −1 + G−1

1− h̄00
.

In the above, it was used ḡ00 ≡ G−1g00. The above expression fixes a relation between µ

and h̄00. For a Minkowski background, following subsection 2.3.3, the relation between h̄00

and the Newtonian potential Φ, reads

h̄00 = −2Φ +O(2, 2), (A.3)

where it was used that the metric that solves the Einstein equation G̃αβ = 8πT̃αβ is g̃αβ,

whose time-time component satisfies g̃00 = −1 − 2Φ + O(2), and that g̃00 = G−1g00 +
O(2, 2) = ḡ00 +O(2, 2).

The function µ(h̄00), or µ(Φ), will not be an analytical function in general. Indeed,

considering the G(µ) expression as given in eq. (2.31), the equation (A.2) is a transcendental

one for µ.

Far away from any mass, hαβ should become zero (i.e., the metric gαβ should

coincide with the background), hence in this limit µ = A, which in turn implies that

G−1 = 1 + 2ν lnA. Using unities such that G|hαβ=0 = G0 = 1, one finds

A = 1. (A.4)

To avoid any singularity in G for any µ ∈ [1,∞), ν needs to be positive, and this is always

assumed henceforth.
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Combining the previous equations,

µ = 1 +B

(
−1 + G−1

1− h̄00

)
(A.5)

= 1 +B

(
−1 + 1 + 2ν lnµ

1 + 2Φ +O(2, 2)
)
.

This is a transcendental equation for µ, but it can be solved for Φ,

Φ = 1
2

(
1 + 2ν ln(1 + δµ)

1 + δµ
B

− 1
)

+O(ν2). (A.6)

In the above, we introduced δµ ≡ µ − 1 > 0. As expected, from the above one finds

limδµ→0 Φ = 0.

Up to this point, B is simply any real number, but from the previous results, and

two considerations, its value can be found. For sufficiently small δµ, Φ reads

Φ|
δµ� |B|
δµ� 1

≈ 1
2

(
2νδµ− δµ

B

)
= 1

2δµ(2ν −B−1). (A.7)

The first consideration is that the inequality Φ ≤ 0 must be satisfied, hence, since ν > 0,

0 < B ≤ 1
2ν . (A.8)

The second consideration is that when δµ→ 0 or equivalently when hαβ → 0, Φ should

smoothly go to zero, implying that

lim
δµ→0

∂δµΦ = 0. (A.9)

Therefore,

B = 1
2ν . (A.10)

With the above, equation (A.6) can now be simply written as

Φ = ν ln(1 + δµ)− νδµ+O(ν2). (A.11)

To clarify the meaning of the above equation, it is stating a correlation between δµ and

Φ, and this correlation, naturally, only exists if ν 6= 0. This correlation is the one that

comes from the covariant scale setting, and should be compared with the noncovariant

one (2.37). The above equation cannot be solved analytically to express either δµ or µ as

a function of Φ, hence equation (2.37) should be seen as a local analytical approximation

for the function µ(Φ).

Figure 15 shows a parametric plot on the evolution of δG as a function of Φ for

different values of ν. The highest value of ν used in that figure corresponds to the value used

in galaxies without dark matter [71, 3], and the smallest one is close to the Solar System
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bound derived in [77]. It can be seen that changes of many orders of magnitude on Φ
translate into a much smaller variation in δG. The range of Φ includes values corresponding

the surface of a neutron star (∼ 10−1), and down to 10−10, which is about the Newtonian

potential generated by the baryonic matter of dwarf galaxies at their farthest observed

rotation curve radius.
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Figure 15 – The relation between |δG| = |G− 1| ≈ 2ν lnµ (from equation 2.31) and |Φ|
(from equation A.6) for four different values of ν.
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APPENDIX B – THE NONCOVARIANT
SCALE SETTING AS AN

APPROXIMATION TO THE COVARIANT
ONE

Equation (2.37) implies that

α = 1
µ ∂µ ln (−Φ) , (B.1)

where ∂µ is the derivative with respect to µ. In equation (2.37), α appears as a constant,

but from the perspective of the covariant scale setting, α should in general be a function

of µ, as given by the above equation. If, for a given system, α is close to a constant, then

for that system the noncovariant scale setting may work as a good approximation. The

relation between α and Φ can be seen in Figure 16, which indeed shows that α changes

slowly even if Φ changes by some orders of magnitude.

By using the noncovariant approach, one is using an approximation to derive the

PPN parameters of the covariant approach. This approximation must be sufficiently precise.

One way to evaluate this error is to consider, from a given value of Φ, the relative error

between the two µ’s inferred from the eqs. (2.37, A.11). Since it is possible to analytically

express Φ(µ), it is more convenient to adopt the inverse route, that is, from a given µ,

to find the relative error between the potentials inferred by eqs. (2.37, A.11), which we

call here Φ and ΦA respectively. If the maximum relative error between Φ and ΦA, along

the Mercury’s orbit, is εmax
ν , then the PPN parameter γ, and consequently β, acquires an

additional uncertainty of ±γεmax
ν when inferred from the other approach. In particular, if

εmax
ν ∼ 10, it is no longer possible to use one approach (the noncovariant scale setting) to

state precisely the order of magnitude of either γ or β of the other approach (the covariant

scale setting case).

In order to show that both the approaches lead to compatible bounds for Mercury’s

orbit, we compare the Newtonian potential from equation (A.11), Φ(µ), to an approximated

potential given by equation (2.37), namely

ΦA(µ, µ0) ≡ µ1/α(µ0)Φ0(µ0), (B.2)

where α(µ) is given by equation (B.1), and Φ0(µ0) is such that ΦA(µ0, µ0) = Φ(µ0). In the

plot of Figure 16, the above approximation corresponds to a straight line approximation
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Figure 16 – The relation between α and Φ for different values of ν. It shows that the non-
covariant approximation, where α is a constant, can be a good approximation
for many systems, since large changes of Φ lead to much smaller changes on α.

at µ0 to the α(µ) curve. To quantify the approximation, we use the relative error that is

given by

εν(µ, µ0) ≡
∣∣∣∣1− Φ(µ)

ΦA(µ, µ0)

∣∣∣∣ . (B.3)

Without considering the external potential effect, the range of Φ values of relevance

is from −3.2 × 10−8 to −2.1 × 10−8. The contribution of the Milky Way to the local

potential depends on whether dark matter is being considered or not, but for both cases

it is about φMW(r�) ∼ 10−6 at the Solar System position. This means that the range of

variation of the Newtonian potential along the orbit of Mercury is [−(KMW + 0.032) ×
10−6,−(KMW + 0.021) × 10−6], where KMW is a number about the unity whose precise

value depends on the amount of dark matter in the Milky Way.
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Figure 17 shows that the relative error introduced by the approximation (2.37) is

small enough to allow for a PPN evaluation for the planet Mercury for all the relevant

values of ν. For the case without external potential effect, one can draw a similar plot as

that of Figure 17, with higher values of the relative errors, but no higher than 10−2.

Since the main focus here is on order of magnitude evaluations of the Solar System

bounds, the above shows that there exists a value for α such that equation (2.37) can

work as a satisfactory approximation to the covariant scale setting (A.1), considering the

post-Newtonian analysis of Mercury’s orbit.
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Figure 17 – The relative errors (B.3) introduced by the use of the approximation (2.37), in
the context of Mercury’s orbit with the external potential of the Galaxy. The
range of Φ in this plot spans the variation of the Newtonian potential through
the planet orbit added by 10−6. Dividing or multiplying the latter value by 5,
does not change the value of log10 ε significantly. The plot indicates that the
noncovariant scale setting works as a good approximation for the covariant
one, in the context of Mercury’s orbit.


