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Resumo
O paradigma de computação de borda transfere a capacidade de processamento de

grandes centros de dados remotos para centros de dados menores e distribuídos na borda
da rede. Essa mudança exige soluções de virtualização de funções de rede (network func-
tions virtualization, NFV) que possam gerenciar e combinar eficientemente um grande
número de serviços dinâmicos em um centro de dados com poucos recursos, ao mesmo
tempo que garantam que os requisitos de desempenho sejam atendidos.

No entanto, os mecanismos de roteamento das redes de centros de dados tradicionais
não são adequados para a composição dinâmica desses serviços, pois são complexos, rígi-
dos, sujeitos a grandes atrasos de propagação de informações de controle e com escala-
bilidade limitada pelo tamanho das tabelas de encaminhamento. Além disso, as soluções
tradicionais de encadeamento de funções de serviço (service function chaining, SFC) são
frequentemente desacopladas das decisões de roteamento de rede e restringem as opções
de seleção de caminhos por parte da engenharia de tráfego. Dessa forma, o orquestrador
NFV não consegue explorar toda a capacidade da rede.

Para resolver esses problemas, esta tese investiga uma proposta de SFC que seja pro-
gramável, expressiva, escalável, e ágil para permitir a orquestração dinâmica e eficiente da
infraestrutura de rede de centros de dados de borda. Essa proposta é composta por três
soluções inter-relacionadas que exploram tecnologias de virtualização e programabilidade
de redes de centros de dados com equipamentos de rede comoditizados. A primeira de-
las, chamada VirtPhy, é uma arquitetura programável que tira proveito das propriedades
topológicas de centros de dados centrados em servidores para orquestração de NFV. A
segunda solução, chamada KeySFC, é um esquema de SFC independente de topologia,
que explora o conceito de redes fabric com uma separação clara entre: (i) comutadores de
borda baseados no paradigma de redes definidas por software (software-defined network-
ing, SDN) que classificam fluxos para SFC; e (ii) comutadores de núcleo que executam
um mecanismo de roteamento de fonte baseado no sistema numérico de resíduos (residue
number system, RNS), que elimina a necessidade de tabelas de encaminhamento. Por fim,
a terceira solução, chamada PolKA, é um mecanismo que estende o roteamento de fonte
com RNS usando Galois Fields de dois elementos, GF(2), de forma que a representação
binária usada no sistema de roteamento seja mais próxima às operações disponibilizadas
em equipamentos de rede comoditizados.

Como prova de conceito, foram implementados protótipos de todas as soluções pro-
postas com tecnologias de produção de redes de centros de dados, tais como OpenFlow,
OpenStack, Open vSwitch e P4. Os resultados dos testes funcionais e de desempenho
mostraram que as propostas conseguem habilitar o encadeamento de funções de rede em
centros de dados para computação de borda de forma programável, expressiva, escalável,
ágil e com baixo custo. Dessa forma, o esquema de SFC proposto consegue entregar ao
orquestrador de NFV mecanismos que permitam que a engenharia de tráfego tome de-
cisões otimizadas na seleção de caminhos de redes. Esta tese também abre caminho para
a exploração em esquemas de SFC de várias propriedades do roteamento de fonte baseado
em RNS, que podem agregar funcionalidades como segurança, reação rápida a falhas e
encaminhamento sem reescrita do pacote.



Palavras-chave: NFV, SFC, computação de borda, SDN, redes de centros de dados,
RNS, equipamentos comoditizados, roteamento de fonte.



Abstract
The edge computing paradigm transfers processing power from large remote data

centers (DCs) to distributed DCs at the edge of the network. This shift requires the
ability to provide network functions virtualization (NFV) solutions that can efficiently
manage and combine a large number of dynamic services in a resource-constrained DC,
while ensuring that performance requirements are met.

However, the routing mechanisms of traditional data center networks are not adequate
for the dynamic composition of these services, because they are complex, rigid, subject to
large delays in the propagation of control information, and limited by the size of switches’
routing tables. In addition, traditional service function chaining (SFC) solutions in the
service overlay are often decoupled from routing decisions in the network underlay, and
restrict path selection options by traffic engineering. In this way, the NFV orchestrator
cannot explore the full capacity of the network.

To tackle these issues, this thesis investigates a programmable, expressive, scalable,
and agile SFC proposal that allows dynamic and efficient orchestration of the network
infrastructure of edge DCs. This proposal is composed of three interrelated solutions that
exploit virtualization and programmability technologies of DC networks with commodity
network equipment. The first one, called VirtPhy, is a programmable architecture that
takes advantage of the topological properties of server-centric DCs for NFV orchestration.
The second solution, called KeySFC, is a topology-independent SFC scheme that exploits
the concept of fabric networks with a clear separation between: (i) edge switches based
on software-defined networking (SDN) that classify flows for SFC; and (ii) core switches
that implement a source routing mechanism based on the residue number system (RNS),
which eliminates the need for routing tables. Finally, the third solution, called PolKA, is
a mechanism that extends RNS-based source routing using Galois Fields of two elements,
GF(2), so that the binary representation of the routing system is closer to the available
operations in commodity network equipment.

As proof-of-concept, prototypes of all proposed solutions were implemented with pro-
duction DC technologies, such as OpenFlow, OpenStack, Open vSwitch and P4. The
results of functional and performance tests showed that the solutions can enable SFC in
edge DCs in a programmable, expressive, scalable, agile and low cost manner. Thus, the
proposed SFC scheme provides mechanisms to the NFV orchestrator that allow traffic
engineering to make optimized decisions in the selection of network paths. This thesis
also paves the way for exploring various RNS-based source routing properties in SFC
schemes, which can provide features such as route authenticity, fast failure reaction, and
forwarding without packet rewrite.

Keywords: network functions virtualization, software-defined networking, service func-
tion chaining, edge computing, data center networks, source routing, commodity equip-
ment, residue number system.
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Chapter 1

Introduction

Network functions virtualization (NFV) has attracted a lot of attention in recent
years as a potential solution for reducing costs and providing scalable network services
[Mijumbi et al. 2016]. In parallel, emerging trends in telecommunication networks, such
as edge computing, internet of things, smart cities, and industry 4.0, portend new types of
services and transfer processing power from large remote data centers (DCs) to distributed
DCs at the edge of the network [Martini et al. 2015, Mao et al. 2017].

Current DC networks are composed by a large set of network functions that can be
connected in order to provide a network service. Most of the times, this composition
of network functions is done in a static way, but NFV enables dynamic methods to
manage and combine a set of service functions (SFs). Thus, the adoption of NFV in
edge data centers brings new challenges, because this shift requires the ability to provide
NFV solutions that can efficiently orchestrate a large number of dynamic services in a
resource-constrained DC.

In this scenario, one of the fundamental challenges in NFV is how to enable the
composition of customized services by steering a large number of flows across a set of
SFs to provide service function chaining (SFC) [Halpern and Pignataro 2015]. It is worth
noting that SFC changes the traditional end-to-end routing paradigm in DC networks
(DCNs), because it requires the dynamic insertion of virtualized nodes between source
and destination: packets from source are steered to a host and delivered to a virtualized
SF to be processed; then, packets return to the network and are routed to the next
SF, repeating these steps until they reach the destination [Dominicini et al. 2017]. This
is a far more complex challenge than routing between two end nodes, since it involves
capturing, classifying, and steering the traffic for each virtualized SF.

To provide composite services, a service overlay topology is built "on top" of the
existing network underlay topology [Quinn and Nadeau 2015]. To ensure such services
achieve maximum performance, the network controller or distributed agents in charge
of traffic engineering should be able to select among all possible paths in the underlay
network according to dynamic demands [Jyothi et al. 2015], when deciding the routing
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paths between SFs.
However, there are fundamental problems in traditional SFC approaches that compro-

mise efficient network orchestration. Firstly, most of the current works underestimates the
importance of the network infrastructure that interconnects the physical servers hosting
the SFs. Indeed, they normally perceive the network as a mere way to provide connectiv-
ity for the overlay, but the topology has great impact on network orchestration. In this
way, the SFC solutions are frequently decoupled from the routing decisions on the un-
derlay [Quinn et al. 2018], since they leave to the routing mechanisms the responsibility
of deciding how to deliver packets between SFC segments. Secondly, routing mechanisms
of traditional DCNs are not designed for these dynamic and composite service requests,
because they are usually complex, rigid, and subject to large propagation delays of control
information [Martinello et al. 2014, Soliman et al. 2012, Bhamare et al. 2016]. Thirdly,
the number of states is limited by the size of forwarding tables in switches [Jin et al. 2016],
and the traffic engineering is usually restricted to a set of shortest paths between SFC
endpoints. This may prevent the orchestrator to select non-shortest paths for avoiding
congestion or faulty paths [Tso et al. 2016].

Therefore, the traffic engineering of SFC requests is restricted to sub-optimal solutions,
because current SFC mechanisms do not allow: to explore all the network capacities of the
underlay topology when mapping the service overlay; and to explicitly select amongst all
the existing paths per chain segment and agilely modify these paths for variable demands.

On the other hand, emerging networking architectures and equipment are allowing
for softwarization of DCNs and flexible dataplane programmability at line rate, both at
the switch and the network interfaces, opening up unprecedented opportunities for the
development of innovative networking solutions [McCauley et al. 2019, P4.org 2017].

In this context, this thesis investigates a SFC solution that can provide greater syn-
ergy between the NFV orchestration and the underlying DC infrastructure. This section
describes the limitations of current SFC mechanisms of the network underlay, defines
the research problem, and presents our proposal to build a SFC solution that solves this
problem.

1.1 Research problem

This section describes the SFC workflow, the problem of embedding SFC requests in the
network infrastructure, and the existing gaps in the SFC mechanisms of the underlay
network to deploy state-of-the-art optimization solutions for NFV orchestration. Finally,
it defines the research question and hypotheses investigated by this thesis.
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Figure 1.1: SFC embedding: service overlay mapped into underlay network.

1.1.1 SFC workflow

Fig. 1.1 shows the embedding of a SFC request in the NFV Infrastructure using the
concept of service overlay layer (or simply overlay) and network underlay layer (or simply
underlay).

The overlay is represented by a graph that defines the logical connections between VMs
in SFC. This graph is known as the virtual network function forwarding graph (VNF-FG)
that is the representation of a connection chain of SFs in which the order is important.
The underlay is represented by a topology graph with links between physical nodes. We
consider that each hop in the overlay is an SFC segment, which can be mapped to zero
or more hops in the underlay. Thus, an end-to-end network service can be described as a
VNF-FG interconnected by a network infrastructure underlay [ETSI NFV ISG 2014].

For example, Fig. 1.1 shows a VNF-FG (VMsrc→ SF1→ SF2→VMdest) that has three
SFC segments: VMsrc→ SF1, SF1→ SF2, and SF2→VMdest. The virtual machines (VMs)
of this chain are placed into servers S1, S2, S3 and S4, respectively. The first segment is
mapped to two hops in the underlay network (SW1→ SW2 and SW2→ SW4), the second
segment is mapped to a single hop in the underlay network (SW4→ SW3), and the third
segment is mapped to a single hop in the underlay network (SW3→ SW5).

Fig. 1.2 shows how the main components of the NFV architecture interact in the
SFC workflow [ETSI NFV ISG 2014, Zhang et al. 2018] (more details about the ETSI
NFV reference architecture on Section 2.4.2). Initially, the Orchestrator receives service
requests from customers and the service modeling generates SFC description models for
the VNF-FGs. After that, the NFV Orchestrator gathers information about the physical
infrastructure, including server resource usage and network status, to define the available
capacity from processing nodes and network. Based on this information, the NFV Orches-
trator takes two decisions: (i) placement: deciding the optimal location of SFs in physical
servers, considering service requirements and resource constraints [Mijumbi et al. 2016];
and (ii) SFC: deciding on how to steer the traffic flows across an ordered set of SFs that
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Figure 1.2: SFC workflow. Adapted from [Zhang et al. 2018].

compose the service [Halpern and Pignataro 2015].
Then, these decisions are distributed to the Infrastructure Manager for resource allo-

cation, which includes the placement of SFs and determination of paths between them.
In the next step, SFC descriptions and the selected paths are distributed to the software-
defined networking (SDN) controller, which translates the policy requirements into rules
for traffic steering in the data plane. The traffic steering mechanisms refer to the opera-
tions involved in directing the traffic to reach the intermediate SFs of a specific chain, and
consider two routing levels [Hantouti et al. 2018]: (i) an overlay routing between SFC el-
ements, and (ii) an underlay routing to ensure network reachability (e.g., IP, and MPLS).
Finally, the service is fully provisioned for the customers.

1.1.2 VNF-FG embedding and deployment gaps

The embedding of SFC requests in the network infrastructure, as described in the last
section, is known in the literature as the VNF-FG embedding (VNF-FGE) problem, which
is 𝒩𝒫-hard [Herrera and Botero 2016, Luizelli et al. 2017].

Consider the following notation for the VNF-FGE problem: n is a physical server
node; t is a SF type; v is a SF instance of type t in a physical node n; r is a service
request; and p ∈ P(r) is a path in the set of possible paths to provision a request r. A
service request r = ⟨s(r),d(r),T(r),b(r)⟩ consists of the source node s(r), the destination
node d(r), the bandwidth demand b(r), and a service chaining containing the sequence
of SF types through which the traffic must pass, T(r) (e.g., T(r) = 𝑡1 → 𝑡2 → 𝑡3).

The VNF-FGE problem consists in allocating the instances v in the physical hosts
(placement decision) and defining the paths p (SFC decision) for a set of service requests in
order to find an optimal solution according to a specific objective function (e.g., minimize
the number of SF instances [Luizelli et al. 2015], and minimize OPEX [Bari et al. 2015]).

A example of the VNF-FGE problem is shown in Fig. 1.3 for a topology composed by
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Figure 1.3: VNF-FGE example.

Figure 1.4: Traffic engineering workflow. Adapted from: [Tso et al. 2016].

four interconnected physical server nodes: 𝑖, 𝑗, 𝑘, and 𝑙. It abstracts the interconnection
topology between the servers, represented as a green cloud in the figure. The service
request 𝑟1 defines a 100 Mbps traffic originated in virtual node VM𝑠𝑜𝑢𝑟𝑐𝑒 (hosted at server
𝑖) and addressed to virtual node VM𝑑𝑒𝑠𝑡 (hosted at server 𝑙). This traffic must pass through
a SF instance of type 𝑡1, then, through a SF instance of type 𝑡2, and finally, through a SF
instance of type 𝑡3, before it reaches the final destination. In this example, an instance
of 𝑡1 and a instance of 𝑡2 (both allocated in server 𝑗), and a instance of 𝑡3 (allocated in
server 𝑘) will serve this request. Thus, in this example, the NFV Orchestrator chose the
path 𝑝1 = ⟨𝑖,𝑗,𝑘,𝑙⟩, considering the servers.

The Orchestrator runs a VNF-FGE algorithm that makes embedding decisions, ac-
cording to the defined optimization objectives [Herrera and Botero 2016]. One of its re-
sponsibilities is to perform traffic engineering, which selects the paths (or routes) for each
SFC segment for efficient resource usage. Fig. 1.4 illustrates a typical traffic engineering
workflow, consisting of a control loop with the following steps [Tso et al. 2016]: (i) mon-
itoring and evaluation of metrics of interest; (ii) based on the monitoring information,
the selected VNF-FGE algorithms perform computation of an optimal resource usage
solution; (iii) the solution is deployed on the network infrastructure.
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Many important works have investigated optimization models and heuristic al-
gorithms to solve the VNF-FGE problem using simulations [Bhamare et al. 2016,
Herrera and Botero 2016], considering different optimization objectives (e.g., minimize
OPEX [Bari et al. 2015], the number of SF instances [Luizelli et al. 2015], or de-
ployment costs). In [Bari et al. 2016] and [Luizelli et al. 2015], the authors formal-
ized the placement and chaining problem and proposed an Integer Linear Program-
ming (ILP) model and a heuristics to solve the problem. Other works developed
models and heuristics to tackle the scalability of this problem for larger scenarios
[Mechtri et al. 2016, Luizelli et al. 2017, Beck and Botero 2017]. Another relevant ap-
proach is the study of the VNF-FGE problem in multi-domain or multi-cloud scenarios
[Bhamare et al. 2017, Sun et al. 2019].

Moreover, DC traffic presents significant workload variation in short timescales due to
the start and end of user requests in a shared infrastructure [Tso et al. 2016]. To adapt to
such dynamic workloads, some works also developed solutions to enable the reallocation
of previously determined placement and chaining decisions according to NFV demands
[Leivadeas et al. 2017, Draxler et al. 2018, Miotto et al. 2019].

These optimization solutions require deployment options that allow the selection of
any available resource and enable the exploitation of the rich path redundancy of the
underlying DC network. For instance, the traffic engineering may need to select a set
of paths and load-balance between them, choose non-shortest paths for avoiding con-
gestion or faulty paths, or quickly change paths to adapt to highly variable demands
[Jyothi et al. 2015, Tso et al. 2016]. Also, to ensure that the actual resource usage is
compatible with the resource allocation models, the traffic engineering must be able to
specify each networking element in the path for each SFC segment.

In summary, the SFC mechanisms in the underlay should meet the following require-
ments in order to enable the deployment of the optimization models for traffic engineering:

• Programmable: Flow control is decoupled from network hardware and managed
by software using application programming interfaces (APIs).

• Expressive: It is possible to select any available path between two endpoints, and
specify each forwarding element in a path between two endpoints.

• Scalable: It supports the encoding of a diverse set of paths between each source-
destination pair for the SFC segments and minimizes the control plane overhead.

• Agile: It allows quick changes to the paths, considering the convergence time to
apply these changes in all the affected nodes.

However, while many optimization solutions have been proposed in the literature,
much less attention has been dedicated to the development of the underlay SFC net-
working mechanisms that enable the deployment of such resource allocation solutions
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in the network infrastructures of DCs (highlighted in red in Fig. 1.4). According to
[Bhamare et al. 2016], the optimization studies for SFC lack practical values and need
modifications to suit to the SFC architecture, while the problem of deployment of dynamic
function chains is an open challenge that needs to be addressed. In [Hantouti et al. 2018],
authors present a comprehensive survey of traffic steering techniques for SFC and con-
clude that current solutions are not efficient enough to be deployed in real-life networks,
mainly due to scalability and flexibility limitations. The next section details the problems
of current solutions for SFC deployment.

1.1.3 Problems of current SFC solutions

As discussed in the previous section, a SFC solution has to allow the network orches-
tration to react in a timely and flexible manner to workload variation and should not
restrict the traffic engineering on the selection of paths for the SFC segments. In this
way, the network orchestration can make optimal use of the underlay resources according
to dynamic demands. Nevertheless, current SFC mechanisms do not offer the
levels of programmability, expressiveness, scalability, and agility that are nec-
essary to deploy the current state-of-the-art resource allocation solutions in
the network underlay.

The first problem is that many existing SFC mechanisms consider the network under-
lay that interconnects the servers in Fig. 1.3 as a mere way to provide connectivity to the
service overlay layer. They normally do not offer adequate mechanisms for traffic engineer-
ing to define the paths between SFC segments, and sometimes leave the responsibility of
selecting paths to routing methods that are separated from the SFC decisions in the over-
lay. For instance, in the network service headers (NSH) protocol [Quinn et al. 2018], the
decisions for routing (in the underlay) and SFC (in the overlay) are completely decoupled
and executed by different mechanisms.

The second problem is that, even when the SFC solutions allow the traffic engineering
to specify all networking nodes in a path, their underlay routing mechanisms have limited
scalability and require the insertion of additional constraints in the resource allocation
models. For example, traditional flow-based methods for SFC install a large number of
flow rules in the switches to steer traffic and the number of states is limited by the size
of forwarding tables [Jyothi et al. 2015]. Therefore, the path options are commonly re-
stricted to a single shortest path or a small set of shortest paths between each pair of
segment endpoints. Another example is the Segment Routing protocol [Clad et al. 2018],
which can enable SFC over a MPLS infrastructure, but restricts the maximum number
of nodes that can be specified in a path depending on the MPLS equipment (about 3
or 5 [Abdullah et al. 2019]) and delegates the routing between these nodes to the un-
derlying network mechanisms. In this way, the traffic engineering algorithms have to
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take into account specific constraints of path encoding as additional objective functions
[Moreno et al. 2017], which may lead to inefficient traffic distribution and network con-
gestion [Abdullah et al. 2019].

The third problem is that most SFC solutions, such as traditional flow-based methods
for SFC and the NSH protocol, rely on rigid table-based routing mechanisms in the
underlay. Thus, a path migration may involve changing table entries in all the forwarding
elements of that path, which may lead to control plane overhead and long convergence
time to configure changes. Therefore, it is difficult to provide agile path selection in
response to highly dynamic traffic requests.

The fourth problem is that SFC mechanisms normally only support network infras-
tructures that employ dedicated network equipment (e.g., switches and routers) to forward
traffic, which are known as network-centric topologies. Thus, they miss an opportunity
to exploit SFC in server-centric or hybrid topologies, where servers are directly intercon-
nected and perform both forwarding and processing tasks [Dominicini et al. 2017].

The described problems have direct impact on NFV orchestration for large data cen-
ters, and are also present in smaller infrastructures used for edge DCs, where resource
constraints are more pronounced and efficient resource usage is essential. Moreover, edge
DCs require low cost solutions that can be deployed with commercial off-the-shelf (COTS)
equipment (low capital expenses) and reduced operating costs related to configuration of
forwarding states (low operational expenses).

1.1.4 Research question

To tackle the aforementioned problems, this thesis aims to address the following question:

• How to design a programmable, expressive, scalable, and agile SFC solution
that enables dynamic and efficient orchestration of the network underlay?

More specifically, this thesis investigates this research question considering the scope
of edge data centers with COTS equipment, as described in Section 1.2.

1.1.5 Hypotheses

To investigate the defined research question, we formulated the following hypothesis:

• Algorithmic forwarding can replace forwarding tables in the design of
scalable SFC solutions. Differently from table-based methods, algorithmic for-
warding defines the output port based on information about the current and destina-
tion nodes using a fixed logic [Abts and Kim 2011]. Thus, this approach can reduce
the number of forwarding states for SFC. The routing algorithm can be specific of
some topologies [Chen et al. 2011], such as the XOR operation in the hypercube
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[Dominicini et al. 2017], or a topology-independent algorithm, such as the residue
number system (RNS) [Martinello et al. 2014].

• Using strict source routing (SSR), it is possible to specify any topolog-
ical path between SFC segments and design agile and expressive SFC
solutions. Differently from per-hop methods, in SSR, the responsibility of defining
the route belongs to the source of packets (or edge nodes), which can specify all
the elements of the path to destination [Sunshine 1977, Filsfils et al. 2018]. The
route information can be inserted in the packet header, and used by each node to
define the output port. Thus, it reduces the control plane overhead to create and
modify paths, and can achieve optimal throughput performance when compared
to per-hop approaches [Guo et al. 2010, Soliman et al. 2012, Martinello et al. 2014,
Filsfils et al. 2015, Jyothi et al. 2015, Jin et al. 2016].

• The residue number system (RNS) can be used in the design of SFC so-
lutions to provide SSR with algorithmic forwarding. The RNS is a number
system based on the Chinese remainder theorem (CRT) [Chang et al. 2015]. The
route information is represented as a number according to RNS and the nodes re-
ceive identifiers as pairwise co-prime numbers. Using this mechanism, the output
port in each node can be directly calculated by the modulo (remainder of division)
of the route identifier of the packet by the node identifier, without using tables
[Martinello et al. 2014]. In addition, the properties of RNS can provide some spe-
cial features, such as fast failure reaction and packet forwarding without header
modification (see Section 3.2.1).

• SDN and fabric paradigms offer a programmable solution for the automa-
tion and control of SFC. SDN solutions promote the separation between the
control plane and the data plane, allowing a logically centralized controller to dy-
namically manage and program network elements [Farhady et al. 2015]. In this ap-
proach, a controller deploys, in software, several networking functionalities, such as
traffic engineering, network monitoring, and routing algorithms [Kotronis et al. 2012].
Another important concept that has been applied to SDN is the idea of fabric net-
works [Casado et al. 2012, Martinello et al. 2014], which separates edge and core
network elements. The edge provides flexible and complex network services, while
the core is only responsible for basic and efficient packet transport. This approach
can be extended to intra-DC server-based networking, more specifically to the SFC
problem with the use of SDN-enabled software switches in the edge and algorithmic
forwarding in the core.

• SFC solutions can be implemented in any DCN and take benefit from
topology characteristics to execute traffic steering using COTS equip-
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ment. Most NFV solutions only focus on network-centric DCNs, neglecting the
potential contribution of hybrid and server-centric DCNs. This work, on the other
hand, argues that SFC solutions should support any DCN. In this way, the appli-
cation can select the topology that better suits its requirements. Moreover, server-
centric and hybrid topologies have been traditionally used in high performance com-
puting (HPC) systems. Many of these topologies have their own efficient routing
mechanisms, offer high path diversity, and can leverage high performance SFs while
reducing capital expenditures (CAPEX), as they can be built using COTS servers
[Li and Yang 2016, Li et al. 2016].

1.2 Scope

Although the solutions presented here could be applied to a wide variety of SFC use cases,
such as core networks or multi-cloud scenarios, the focus of this thesis is to enable SFC in
private or public edge data centers, as illustrated in Fig. 1.5. The selection of edge data
centers delimiters the following scope for the application of our SFC proposals:

• The solutions are designed for edge DCs based on COTS servers and switches.

• The scale depends on the processing requirements of the client edge applications, but
we intend to cover DCs ranging from some dozen of servers (e.g., private enterprise
edge DCs for specific purpose, such as Industry 4.0 or healthcare) up to hundreds
of servers (e.g., distributed public DCs that represent edge clouds for Internet of
Things applications, such as Smart Cities or Smart Homes).

• The topologies of these edge DCs may be network-centric, server-centric, or hybrid,
as explained in Section 2.1.

• The main focus is a single DC scenario with several users (multi-tenancy) in a single
administrative domain. The multi-cloud case where a service chain is distributed
over servers hosted at different DCs and administrative domains is discussed in
Section 5.3.

• SFs may include traditional network layer functions as well as application functions
in upper OSI layers.

• Chains may contain cycles, as long as the physical paths of each SFC segment are
loop free. For instance, we support chains where the flow passes more than one time
through the same SF.

• We don’t explore the specific case of chains with branches. Though, this can be
studied in future works with the exploration of multicast in PolKA, as discussed in
Section 8.2.
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Figure 1.5: Example scenarios for edge data centers.

1.3 Objectives

In order to answer the defined research question and test the hypothesis, this work has
the following general objectives:

• To develop a NFV orchestration architecture that supports server-centric topolo-
gies, and is interoperable with industry standards for NFV to perform SFC tasks.

• To develop an SFC scheme that supports any DCN (network-centric, server-
centric, or hybrid), and is based on SSR, algorithmic forwarding, RNS, SDN, and
fabric networks.

• To develop a efficient RNS-based source routing mechanism that can be im-
plemented using COTS network hardware.

As a specific objective, this work aims to implement prototypes of all the proposed
solutions to be used as proof-of-concept for functional and performance tests in a close-
to-production environment.
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1.4 Proposal and contributions

The first observation of this research was that current NFV solutions are tailored to
network-centric DCNs. Thus, many options of COTS topologies based on server-centric
or hybrid DCNs that could be adopted for low cost edge DCs were not yet exploited. The
second observation was that traditional approaches to SFC base their routing mechanisms
in tables, which restricts the way the traffic engineering can select and change paths for
SFC in the underlay network.

Based on these observations, we proposed VirtPhy, a programmable NFV orches-
tration architecture based on server-centric networks. To this end, VirtPhy applied the
concept of server-based network fabric to SFC: core software switches execute algorithmic
forwarding, and SDN-enabled edge software switches use flow tables only for classifying
SFC flows. The main contributions of VirtPhy are:

• We proposed how server-centric DCNs can fit in the NFV ETSI reference architec-
ture and provide efficient SFC with algorithmic routing, while eliminating the need
for tables and hardware switches.

• We explored routing mechanisms for SFC that consider characteristics of the under-
lay network topology (e.g., XOR routing in the hypercube topology), and can take
advantage of the node position to place SFs in servers that are already part of the
path between source and destination.

• We implemented and evaluated a hypercube prototype of VirtPhy using OpenStack
and OpenFlow technologies, proving it is viable to deploy these ideas in production
DCs. The software switches in the servers were implemented using Open vSwitch
(OvS), and the datapath in core nodes was modified to perform algorithmic XOR
routing.

VirtPhy offers a way to explore the specificities of server-centric DCNs, and their
inherited routing algorithms that can offer efficient forwarding mechanisms. On the other
hand, the solution cannot be implemented in topologies that do not provide their own
routing algorithms. Furthermore, the choice of using per-hop algorithmic forwarding does
not allow the full path specification by the traffic engineering mechanisms. So, the study
of VirtPhy pointed out that a more expressive and flexible SFC scheme could be designed.

To explore the advantages brought by VirtPhy and tackle its limitations, we pro-
posed a novel SFC scheme, called KeySFC, that explores SSR in SFC. To this
end, it uses a topology-independent algorithmic forwarding mechanism based on RNS
[Martinello et al. 2014]. For each SFC segment, SDN-enabled edge software switches
classify flows for SFC and embed a RNS identifier in the packet header, which encodes
the information about all the forwarding elements in the path. When packets reach the
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(hardware or software) core switches, the forwarding engine executes a modulo operation
over the path identifiers and the node identifiers to discover the output ports. In this way,
it eliminates table lookups in core nodes, reducing the number of forwarding states and
control plane overhead.

The contributions of KeySFC can be summarized as follows:

• We proposed an SFC scheme that supports the use of different topologies (server-
centric, network centric, or hybrid).

• We proposed an SFC scheme that offers the following features to traffic engineering
for each chain segment: (i) selection of any available path, (ii) specification of all
the forwarding elements in the path, and (iii) agile path migration.

• We implemented and validated KeySFC in a proof-of-concept testbed orchestrated
by OpenStack, demonstrating its feasibility in production DCs. Results for latency,
jitter, and throughput indicate that the selected RNS-based SSR mechanism can
provide efficient packet transport.

For KeySFC, we extended the VirtPhy prototype to add support for RNS-based SSR,
and the necessary SDN control plane functionalities. The data plane implementation was
accomplished by modifying the OvS datapath to perform the modulo operation.

However, the use of software switches in the core has performance limitations for
scenarios that require very low latency and jitter. Besides, the modulo operation
does not map to the instruction set of commodity network hardware. The work in
[Martinello et al. 2017] demonstrated it is possible to achieve high performance by imple-
menting KeyFlow in NetFPGAs, but it requires specialized hardware.

To meet both cost and performance requirements, we propose PolKA, a novel SSR
approach that can be implemented in programmable network switches. To this end,
we reinterpreted the original RNS-based SSR mechanism, based on integer arithmetic
[Wessing et al. 2002, Martinello et al. 2014], to a binary polynomial arithmetic using Ga-
lois field (GF) of order 2 [Shoup 2009, Bajard 2007].

The main contributions of PolKA are:

• We brought RNS-based SSR expressiveness closer to elementary binary operations.
The immediate benefit of this approach is to enable the reuse in RNS-based SSR of
commodity embedded network functions that are based on polynomial arithmetic.
Also, to the best of our knowledge, this is the first time a work applies the CRT
theorem with Galois field to solve routing problems.

• We developed a technique that allows the execution of the polynomial modulo op-
eration by reusing common CRC (cyclic redundancy check) operations, which are
also based on GF(2) polynomials and supported by P4 standard architectures.
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Figure 1.6: Overview of works proposed in this Thesis.

• We implemented the proposal in P4 emulated and hardware prototypes. The tests
demonstrated that it is possible to take advantage of RNS properties using PolKA
without loosing performance when compared to traditional SSR methods.

• We integrated PolKA as the SSR mechanism of KeySFC scheme, demonstrating our
SFC solution can be implemented in commercial P4-enabled network equipment.

In summary, this thesis proposes three interrelated solutions: (i) VirtPhy, a novel
NFV orchestration architecture based on server-centric topologies (presented in Chapter
4); (ii) KeySFC, a topology-independent SFC scheme that uses RNS-based SSR and
network fabric (presented in Chapter 5); and (iii) PolKA, an algorithmic SSR mechanism
based on RNS and Galois Field polynomials that can be implemented over commodity
network hardware (presented in Chapter 6).

The combination of these three solutions builds up a powerful framework to enable
SFC in edge DCs. Fig. 1.6 shows an overview of works proposed in this thesis, and their
correlation to traditional approaches.

1.5 Text Structure

The remainder of this work is structured as follows. In Chapter 2, we give some important
background to understand this work. Then, Chapter 3 describes in more details the state
of the art, and the comparison with related works. Chapter 4 presents our proposal
and prototype for a NFV orchestration architecture, called VirtPhy. Chapter 5 proposes,
implements and evaluates our SFC scheme based on SSR, named KeySFC. Then, Chapter
6 describes a proposal, called PolKA, for a novel SSR mechanism. Chapter 7 describes the
integration between PolKA and KeySFC. Finally, we outline the conclusions and future
works in Chapter 8.



Chapter 2

Background

This chapter describes some of the fundamental background and key concepts that are
relevant to understand this work, including DCNs, routing, edge computing, NFV, and
SFC. In addition, Appendix A provides a brief outline of the enabling technologies in
SDN and cloud computing for the solutions proposed in this thesis.

2.1 Data center networking

DCs are the infrastructure that enables the operation of cloud computing platforms. They
can host hundreds of thousands of physical servers and networking equipment that are
located in the same environment due to common environmental, safety, and maintenance
requirements [Barroso et al. 2013]. However, the rapid adoption of the cloud computing
paradigm has brought several challenges for researchers and providers as current DC
architectures still cannot fully meet the requirements of low cost, scalability, security,
flexibility, resilience, quality of service, performance, and energy efficiency required by
cloud computing [Bilal et al. 2014].

In this context, several of these challenges are directly related to the increasing demand
for connection and bandwidth between the servers that compose the DCs as the processing
capacity and the number of these servers increases. On one hand, it is possible to add
processing and storage capacity to the DC by simply increasing the number of processing
and storage elements. On the other hand, there is no direct solution to horizontally
increase the capacity of networks [Barroso et al. 2013, Abts and Kim 2011]. In addition,
management and migration of virtual machines (VMs) bring new addressing and routing
challenges, requiring network state to be changed dynamically.

Several architectures have been proposed to create efficient and scalable DC net-
works, such as Fat-Tree [Al-Fares et al. 2008], VL2 [Greenberg et al. 2009], Hypercube
[Saad and Schultz 1989], DCell [Guo et al. 2008] and BCube [Guo et al. 2009]. These
proposals can be classified as network-centric or server-centric architectures, according to
the need for dedicated network equipment to forward traffic.
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Figure 2.1: Example of fat-tree topology. Source: [Al-Fares et al. 2008].

The network topology defines how nodes are connected, and plays a central role in
both the performance and cost of the network [Abts and Kim 2011]. In this work, we
focus on DCNs that can leverage good performance for edge DCs at less cost by exploring
commodity switches and servers.

2.1.1 Network-centric DCNs

Network-centric architectures use dedicated network equipment to forward network traf-
fic. Traditional DCNs consists of a tree of routers or switches with progressively more
specialized equipment in the top of the network hierarchy, such as three-tiered or two-
tiered networks [Al-Fares et al. 2008]. The problem with these approaches is that they
become very expensive, but do not deliver full aggregate bandwidth. To tackle these issues
some solutions, such as Fat-tree[Al-Fares et al. 2008], Portland [Niranjan et al. 2009] and
VL2 [Greenberg et al. 2009] have emerged with the objective to replace fewer larger and
expensive switches by various small commodity switches.

Fig. 2.1 shows an example of a Fat-tree DCN with three levels: the edge switches that
connect the servers to the aggregation switches, which, in turn, are connected to the core
switches. This is typically how network-centric topologies, consisting of physical servers
grouped in racks that are interconnected through top-of-rack (ToR) switches, can scale in
number of servers and guarantee interconnectivity.

2.1.2 Server-centric and Hybrid DCNs

Server-centric architectures do not demand dedicated network equipment, and use servers
for both forwarding and data processing tasks. Hypercube [Saad and Schultz 1989], Torus
[Abts and Kim 2011], and Twin [Vassoler et al. 2014] are examples of server-centric topolo-
gies. Fig. 2.2 shows an example of a Twin and a Hypercube topology, both with 8 nodes
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Figure 2.2: Example of server-centric topologies with 8 nodes and 12 links: (a) Twin, and
(b) Hypercube. Source: [Vassoler 2015].

and 12 links.
The choice of network topology defines important aspects such as average and max-

imum hop count, fault tolerance, number of links per number of servers, and routing
properties. For example, when compared to other traditional topologies, Twin topolo-
gies have a low link cost, and present special properties of resilience under both normal
and faulty operating conditions [Vassoler et al. 2014]. Other topologies present inherent
routing mechanisms that can be used to achieve better performance, such as the XOR
mechanism in the Hypercube.

Other topology models are a hybrid of the basic network-centric and server-centric
interconnection models, where forwarding tasks are performed by commodity servers
and switches. Example of hybrid topologies are DCell [Guo et al. 2008], and BCube
[Guo et al. 2009], which are able to reduce number of links and network diameter, re-
spectively [Vassoler et al. 2014].

In the last years, server-centric networks have been relegated to a secondary role when
DCs started to demand thousands to tens of thousands of computers. In this work, we
show that server-centric topologies can be a suitable option for edge DCNs, which need
high performance with low costs, but require a smaller scale of servers.

Another trend in this direction is server-based networking, which offloads the network-
ing processing tasks to low cost networking co-processor devices (or SmartNICs1) in the
servers. With this approach, it is possible to save CPU cycles to process application tasks,
while moving virtual switching tasks to these specialized devices.

1https://www.netronome.com/
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Table 2.1: Routing methods classification. Adapted from [Abts and Kim 2011].

Classification Method Description

Routing decision Source routing
The routing path is determined at the source and
the path computation only needs to be done once
for each packet.

Per-hop routing
At each hop enroute to the destination, the packet
goes through path computation to determine
the next hop.

Forwarding Algorithmic
Based on the current node and destination
information, a fixed logic can be used to determine
the output port.

Table-based
A lookup table can be implemented whose inputs
are either the source and destination, and the
table returns the appropriate output port.

Hop count Minimal routing
Minimal number of hop count between source and
destination is traversed. Depending on the topology,
there might be multiple minimal paths.

Nonminimal routing
The number of hop count exceeds the minimal hop
count. The objective may be to increase path diversity
and/or improve network throughput.

2.2 Routing

The routing algorithm defines the path a packet takes from source to destination, and
explores the network capacities that can be potentially delivered by the topologies
[Chen et al. 2011]. Table 2.1 shows a classification of routing methods according to dif-
ferent metrics [Abts and Kim 2011].

OpenFlow networks traditionally adopt per-hop routing with table-based forwarding,
since a logically centralized SDN Controller distributes the forwarding states in the flow
tables of the network switches. These flow tables contain entries that match flows to
forwarding actions, and new flows trigger new state distribution to all the devices along
the path [Soliman et al. 2012]. Regarding the hop count, the path is calculated by the
SDN Controller, which can decide to choose the minimal routing or not, depending on
traffic engineering aspects.

The distribution and management of forwarding states in the network bring some
limitations to this approach, because the control plane signaling generates overhead traffic,
and the switches in the path have to wait for a response from the Controller when a
new flow arrives. Besides, table lookup is a time-consuming operation subject to high
variability depending on the number of entries [Martinello et al. 2014]. In addition, the
number of paths that can be represented is restricted to the size of forwarding tables.

On the other hand, source routing (SR) eliminates complex routing tasks from
core nodes by placing the responsibility of route selection at source or edge nodes
[Sunshine 1977], which add a route label in the packet header to specify the nodes in
the routing path. In this way, SR can decrease forwarding table sizes, facilitate mainte-
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Figure 2.3: Tableless strict source routing example.

nance, reduce control plane overhead, and support optimal throughput performance when
compared to per-hop table-based approaches [Martinello et al. 2014, Filsfils et al. 2015,
Jin et al. 2016, Jyothi et al. 2015, Ren et al. 2018, Guo et al. 2010, Soliman et al. 2012,
Stephens et al. 2011].

In some SR methods, such as multi-protocol label switching (MPLS), per-node for-
warding is based on lookup tables whose input is the route label of the packet header
(table-based forwarding). However, concatenating label-switched paths (LSPs) in MPLS
demands interactions via label distribution protocol (LDP) [Rosen et al. 2001].

As an alternative, there are tableless SR methods where the forwarding is based
on operations over the route label (algorithmic forwarding), rather than relying on
table lookups, centralized controllers or communication with distributed peer nodes
[Jin et al. 2016, Martinello et al. 2014]. For SDN systems, this also reduces the control
signaling and latency related to path setup convergence [Soliman et al. 2012].

Also, SR methods can be classified as [Jin et al. 2016]: (i) strict SR (SSR), if they
specify the entire routing path, as in SecondNet [Guo et al. 2010]; or (ii) loose SR, if
they determine only some hops that the packet must go through, as in Segment Routing
[Filsfils et al. 2015]. In this work, we reference as algorithmic SSR the methods that
use SSR with algorithmic forwarding.

Fig. 2.3 illustrates a generic algorithmic SSR approach in a fabric network with
centralized control, composed by two edge nodes and four core nodes (𝑠1, 𝑠2, 𝑠3, 𝑠4). When
a packet arrives, the ingress edge node communicates with the controller, which gathers
information about the network and calculates a route label (routeID) for that packet.
In this example, the routeID 𝑅1 maps a path specified by a set of nodes (nodeIDs =

{𝑠1, 𝑠2, 𝑠3}) and their respective output ports (portIDs = {1, 1, 3}). The ingress node adds
the routeID to the packet, and core nodes decide output ports based on an operation over
this label. When the packet reaches an egress edge node, the route label is removed.
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Port Switching is a conventional SSR method that implements algorithmic forwarding
by representing the routeID as a stack of ports and the forwarding operation as a stack
pop [Jin et al. 2016, Guo et al. 2010]. Other methods, as Segment Routing, represent the
path to any destination as a list of segment addresses [Filsfils et al. 2015] and update the
head pointer in each hop. In these methods, the list (or stack) is embedded by the ingress
node in the packet header, and used by each node in the path to take its forwarding
decision.

This thesis proposes to implement algorithmic forwarding by using a simple and effi-
cient arithmetic operation between a path or destination identifier and a node identifier.
This can be achieved by exploring specific routing algorithms provided by some topologies
[Chen et al. 2011], such as the XOR operation in the hypercube [Dominicini et al. 2017]
(adopted in the VirtPhy architecture in Chapter 4). Another alternative is the use of some
topology-independent SSR algorithm, such as the modulo operation using the Residue
Number System (RNS) [Martinello et al. 2014] (adopted in the KeySFC scheme in Chap-
ter 5). The next section describes how to use RNS-based SSR.

2.2.1 RNS-based SSR

The residue number system (RNS) [Garner 1959] has been known as an alternative number
system, based on the Chinese remainder theorem (CRT), that can satisfy certain critical
constraints in performance, security, and power consumption for various applications,
ranging from digital signal processors, cryptography, and networking [Chang et al. 2015].
It also appears as a promising way to enable SSR.

A RNS-based SSR mechanism represents the routeID as a number according to the
RNS [Chang et al. 2015] and the nodeIDs as pairwise co-prime numbers. Then, the out-
put port in each node is given by the modulo (remainder of division) of the routeID of
the packet by its nodeID .

The logic for computing routeIDs exploits mathematical properties from RNS
[Martinello et al. 2014]. Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁} be a multiset of the 𝑁 nodeIDs of
the core nodes on the desired path, in which all elements are pairwise co-prime numbers.
Besides, let 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑁} be a multiset of 𝑁 outgoing ports, where 𝑝𝑖 is the output
port of the packet at the core node 𝑠𝑖. Also, let 𝑀 be an upper bound value, defined as
𝑀 =

∏︀
𝑠𝑖∈𝑆 𝑠𝑖.

Then, a natural number 0 ≤ 𝑅 < 𝑀 can be represented by a residue set given a basis
modulo set 𝑆:

𝑅
RNS−→ {𝑝1, 𝑝2, . . . , 𝑝𝑁}𝑆, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 = 𝑅modulo 𝑠𝑖 (2.1)

To define a route, it is necessary to find out the value of 𝑅 (the explicit routeID), given
a modulo set 𝑆 (the nodeIDs), and its RNS representation 𝑃 (the core node output ports).
The Chinese Remainder Theorem states that it is possible to reconstruct 𝑅 through its
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Figure 2.4: Example of routeID computation. Adapted from [Martinello et al. 2014].

residues in a RNS as follows, where < 𝑎 >𝑏 ≡ 𝑎modulo 𝑏 [Martinello et al. 2017]:

𝑅 = <
∑︁
𝑠𝑖∈𝑆

𝑝𝑖 ·𝑀𝑖 · 𝐿𝑖 >𝑀 (2.2)

𝑀𝑖 = 𝑀/𝑠𝑖 (2.3)

𝐿𝑖 = < 𝑀−1
𝑖 >𝑠𝑖 (2.4)

Eq. (2.4) means that 𝐿𝑖 is the modular multiplicative inverse of 𝑀𝑖. In other words,
𝐿𝑖 is an integer number such that:

< 𝐿𝑖 ·𝑀𝑖 >𝑠𝑖= 1 (2.5)

Fig. 2.4 shows an example of a routeID computation based on RNS. For this path,
the routeID is 25, which binds the output ports 𝑃 = {1,1,0} to the nodes 𝑆 = {4,3,5},
respectively. In fact, < 25 >4= 1, < 25 >3= 1, and < 25 >5= 0.

The algorithm complexity for routeID computation is𝒪
(︀
𝑙𝑒𝑛(𝑀)2

)︀
[Shoup 2009], where

𝑙𝑒𝑛(𝑀) is the number of bits of the binary representation of M. It is important to note that
the routeID is computed by the SDN Controller only when chains are created or updated,
while core nodes only execute one modulo operation per packet. Also, in our scheme the
routeID represents the path between two servers and does not grow with respect to the
number of VMs and SFs, which is much larger and dynamic. Besides, the SDN Controller
may proactively compute the routeID for the paths between a pair of servers that the
NFV Orchestrator has decided to consider, and use this information when necessary to
apply orchestration decisions.

As explained in [Martinello et al. 2014], the bit length of the routeID depends on:
(i) the switch with the largest number of ports; (ii) the size of the core network; and
(iii) the number of hops for the selected path. The works in [Martinello et al. 2017,
Liberato et al. 2018, Ren et al. 2018, Ren et al. 2017] have already performed extensive
scalability analysis of the RNS scheme and showed that is possible to use legacy small
headers, such as MAC addresses, to encode the routeID for DCN topologies of reason-
able size. In addition, [Ren et al. 2018, Ren et al. 2017] proposed methods to reduce the
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Figure 2.5: Edge computing paradigm. Source [Shi and Dustdar 2016].

length of the routeID .

2.3 Edge Computing

Edge computing is a paradigm in which substantial computing and storage resources,
which also can be called cloudlets, micro data centers, or fog nodes, are placed close to
mobile devices or sensors at the Internet’s edge to deliver highly responsive cloud services
for mobile computing [Satyanarayanan 2017].

In edge computing, the cloud collects data from existing databases (as traditionally
done), and also from end devices (e.g., sensors and mobile phones), which act as both
data consumers and data producers, as shown in Fig. 2.5. The nodes at the edge DCs
may perform many computing tasks, such as data processing, caching, service delivery,
and privacy protection.

ETSI defines the term mobile edge computing (MEC) as a new platform that provides
IT and cloud computing capabilities within the radio access network (RAN) in close
proximity to mobile subscribers [ETSI MEC ISG 2014]. Moreover, Cisco proposed the
concept of fog computing as a generalized form of MEC where the definition of edge
devices is broader [Mao et al. 2017]. The terms mobile edge computing, edge computing,
and fog computing are overlapping, and will be used interchangeable in the context of the
present work.

In recent years, the interest in edge computing has grown dramatically as pointed out
by the last Gartner’s report [Kasey Panetta 2017] on “Hype Cycle for Emerging Technolo-
gies”, which classified edge computing as “innovation trigger” with mainstream adoption
expected by 2019-2022. As a result, we can foresee the emergence of this new kind of DC
that presents huge differences from centralized cloud DCs, since edge DCs are geographi-
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cally distributed, have much smaller scale in terms of resources, are located close to the
end users, and can support latency-critical applications [Mao et al. 2017]. To operational-
ize innovative services in edge computing, the mobile network operators (MNOs) will need
new technologies that enable the orchestration of services across many distributed DCs
as opposed to their traditional centralized model.

2.4 NFV

This section presents the main concepts related to NFV that are essential for understand-
ing this thesis.

2.4.1 Concepts and objectives

The presence of proprietary hardware-based network appliances, known as middleboxes,
is a key part of the operation of today’s computer and telecommunications networks, sup-
porting a diverse set of network functions such as firewalls, intrusion detection systems,
load balancers, NAT, caches, and proxies [Martins et al. 2014]. To get an idea, in corpo-
rate networks, the number of these middleboxes is equivalent to the number of routers
and switches deployed [Sherry et al. 2012].

However, the presence of these middleboxes brings several problems, such as
[Martins et al. 2014, ETSI NFV ISG 2014, Han et al. 2015]: networks have become very
complex with a wide variety of proprietary elements; the time to bring new services and
functionalities to the market is high, as it depends on the production of new hardware;
the operation of the networks is costly and depends on specialized knowledge in each pro-
prietary platform; the costs of acquiring equipment to meet network demands are high,
but they quickly reach obsolescence; lack of flexibility and scalability, as resources cannot
be moved according to demands, and need to be scaled to the peak scenario; there are big
barriers to innovation, since it requires a great investment to develop a device in hardware;
and the technologies of different manufacturers are incompatible with each other and do
not allow reuse of hardware and software.

To address these problems and implement a less costly and more agile network infras-
tructure, the concept of NFV proposes to transfer the network functions of commercial
appliances, with dedicated hardware and software, to off-the-shelf equipment executing
software-based functionality on commodity hardware with virtualization technologies for
processing, storage, and networking, as exemplified in Fig. 2.6.

The NFV objectives can be summarized as listed below [ETSI NFV ISG 2014]:

• Reduction of CAPEX when compared to dedicated hardware implementations. This
goal is achieved through the adoption of commodity hardware, the use of virtual-
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Figure 2.6: NFV implementation of network functions using virtualization techniques over
standard hardware. Source: [Han et al. 2015].

ization techniques, the reduction in the number of different hardware architectures,
and the resource sharing.

• Scalability and flexibility for instantiating network functions. With NFV, it is pos-
sible to decouple location from functionality, and allocate network functions in the
most appropriate places according to demands, increasing resiliency through virtu-
alization, and making resource sharing easier.

• Incentive to innovation and time reduction for a new product to reach the market
through software-based implementation.

• Reduction of operational expenses (OPEX) through the automation of procedures.

• Reduction of power consumption by migrating workloads and shutting down unused
hardware.

• Interoperability through open and standardized interfaces between the network func-
tions, the underlying infrastructure, and the associated management entities. In this
way, the elements of the NFV architecture can be implemented by different vendors.

These objectives have great impact on the business model of telecommunications net-
works. Thus, this sector has invested in the standardization of NFV, as discussed in the
next section. However, it is important to emphasize that the paradigm is applicable in
both computer networks and telecommunications networks; especially at a time when
both converge to a resource-delivery model based on cloud computing.

2.4.2 ETSI NFV reference architecture

The NFV concept gained momentum in 2013 with the creation of the Industry Spec-
ification Group (ISG), created within the European Telecommunication Standards In-
stitute (ETSI) to provide guidelines for a new network environment based on modern
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virtualization technologies in order to lower costs and increase efficiency and agility
[ETSI NFV ISG 2012]. The NFV ISG group has more than 200 member organizations,
including telecommunications service providers and network equipment manufacturers.
This section will give an overview of the reference architecture proposed by the ETSI
NFV ISG group in its standardization documents [ETSI NFV ISG 2014].

In the reference architecture, one of the main blocks is the Management and Or-
chestration (NFV MANO), which has the following components: NFV Orchestrator
(NFVO), VNF Manager (VNFM), and Virtualized Infrastructure Manager (VIM). The
NFV MANO block interacts with an SDN Controller, which controls both physical and
software switches.

Fig. 2.7 shows the high-level architecture, divided into the following main components
[ETSI NFV ISG 2014, Han et al. 2015, Rosa et al. 2014]:

• Virtualized network function2 (VNF): it is the software implementation of a network
function that is capable of running on the NFV infrastructure. Examples of network
functions include: routers, firewalls, home gateways, MME (Mobility Management

2The Service Function (SF) and Virtualized Network Function (VNF) terms will be used interchange-
ably in this document, as they represent the same concept for SFC in the terminology used by the Internet
Engineering Task Force (IETF) and the European Telecommunications Standards Institute (ETSI), re-
spectively. As defined by the IETF [Quinn and Nadeau 2015], SF is a function that is responsible for
specific treatment of received packets, and it can be realized as a virtual element or be embedded in a
physical network element. As defined by the ETSI [ETSI NFV ISG 2018], VNF is a implementation of
an NF that can be deployed on a Network Function Virtualization Infrastructure.
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Entity), PGW (Packet Data Network Gateway), authentication servers, and DHCP
servers.

• NFVO: it is responsible for managing and orchestrating software resources and the
virtualized hardware infrastructure for enabling network services.

• VNFM: it is responsible for managing the life cycle of a VNF (instantiation, scaling,
termination, query, and update).

• VIM: it is responsible for virtualizing and managing computing, network, and stor-
age resources, and controlling their interaction with VNFs. It allocates VMs in
hypervisors, and manages their network connectivity.

• NFV Infrastructure (NFVI): the physical hardware resources, including computing,
storage and network.

• Virtualization layer: it is responsible for abstracting the hardware resources and
connecting the VNFs to the virtualized infrastructure. This layer ensures that the
VNF lifecycle is independent of the hardware platforms used.

• Operational support systems (OSS): support the internal processes of the operator
such as network inventory, service provisioning, network element configuration, and
fault management.

• Business support systems (BSS): handle requests from users, supporting processes
such as billing.

2.5 SFC

The SFC is the instantiation of an ordered set of SFs and the subsequent steering of
traffic flows through those SFs [Halpern and Pignataro 2015]. SFC steers traffic that
would otherwise be routed straight from source to destination to pass through a chain
of virtualized nodes. This section explores a set of fundamental concepts required to
understand this paradigm shift.

Traditional SFC solutions rely on static wiring of rigid components, and complex
routing schemes to steer traffic through network functions [Quinn and Guichard 2014].
Thus, configuration and customization of services usually require significant changes in
network configuration, and leads to stretched deployment times and large operational
complexity [John et al. 2013]. Because these deployments are tightly coupled to network
topology, they also tend to be restricted to a specific service provider (SP) domain, hardly
being applicable in different scenarios [Quinn and Nadeau 2015].
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SFC has gained momentum in the past years, causing the IETF to pub-
lish several drafts and RFCs related to the theme [Quinn and Nadeau 2015,
Halpern and Pignataro 2015, Homma et al. 2016, Kumar et al. 2017,
Bottorff et al. 2017, Quinn et al. 2018, Clad et al. 2018]. One of the first docu-
ments of the series is RFC 7498, a problem statement for SFC defining key areas that
working groups could investigate towards new SFC solutions [Quinn and Nadeau 2015].

Another product of such effort is RFC 7665 [Halpern and Pignataro 2015], which pro-
poses a reference architecture for SFC, as illustrated in Figure 2.8. It is composed by the
following components:

1. Classifier: classify input packets to choose which service chain should be executed;

2. Service function forwarder (SFF): steer packets between SFs in the correct
order for each path;

3. Service functions (SFs): perform some computation over received packets and
may act at various layers of OSI protocol stack (e.g., at the network layer or appli-
cation layer);

4. Proxy: support SFs that are not aware of the SFC mechanisms (e.g. legacy service
functions).

Figure 2.8: Reference architecture from RFC 7665. Source: [Castanho et al. 2018].

An essential concept in this architecture is the Service Function Path (SFP).
According to RFC 7665, a SFP may identify the exact network nodes and SFs the packet
will visit when it traverses the network, or it can also be less specific using a sequence of
abstract SFs.
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As shown in Fig 2.8, packets are classified upon arrival to the network by the Classifier.
In this step, a packet is matched against a set of pre-configured rules and a SFP is chosen,
if one exists for that packet. A SFC encapsulation containing the corresponding path
information is added to the packet and it is sent to the next element in the architecture:
the SFF. This element is responsible for deciding which SF should be executed at any
given time for each path. The SFF also handles service chain termination and final
decapsulation of packets.

An SF may be SFC encapsulation aware or unaware. The former receives encapsu-
lated traffic from the SFF and acts on information in the SFC encapsulation. While the
latter has no idea that it is part of an SFC environment and receives data without SFC
encapsulation. To support SFC-unaware SFs a Proxy is used between the SF and the
Forwarder. The Proxy removes the encapsulation prior to sending packets to attached
SFs and reapplies the SFC encapsulation when returning them to the SFF.

According to RFC 7498 [Quinn and Nadeau 2015], a SFC solution should address the
following elements:

• Service Overlay: SFC utilizes a service overlay that creates a service topology to
provide service function connectivity, built "on top" of the existing underlay network
topology.

• Service Classification: Initial classification is used to select which traffic enters
in each service function chain. Within a given service function chain, packets may
be reclassified to modify the sequence of service functions.

• SFC Encapsulation: It carries information for creating the SFC data plane (e.g.,
chain identification and operation and management status) and for exchanging
metadata among classification points and service functions.

2.6 Concluding remarks

This chapter summarized the background concepts that serve as basis for the proposal of
this thesis. The next chapter will present a comparison of our proposal with the state of
the art.



Chapter 3

Comparison with the state of the art

This chapter describes how this thesis is positioned with respect to the state of the art.
Firstly, Section 3.1 explores the impact of the underlay network on SFC, shows the limi-
tations of current SFC solutions, and describes the principles we envision to address these
limitations. Afterwards, Section 3.2 compares our solutions with related works in the
areas of RNS-based SSR, NFV Orchestration, and SFC.

3.1 Discussion on the SFC underlay layer

Most of the current SFC solutions only support network-centric topologies and table-based
routing in the network underlay (more details on Section 3.2). However, as described in
Section 1.1, they do not offer adequate mechanisms to dynamically configure underlay
paths, and prevent the NFV Orchestrator to fully exploit the network capacity.

To tackle these issues, this section discusses how alternative interconnection topologies
and routing methods can be integrated in SFC solutions that offer greater synergy with
the network underlay. Firstly, we describe the limitations of current network infrastruc-
tures, and how they impact the SFC problem. Then, we explore how to use server-centric
topologies (see Section 2.1) and SSR mechanisms with algorithmic forwarding (see Sec-
tion 2.2) for providing SFC, and discuss how our SFC solutions differ from traditional
approaches.

3.1.1 Limitations of current network infrastructures

Traditional DC infrastructures for NFV are based on network-centric topologies, as pre-
sented in Fig. 3.1.a, and per-hop table-based routing methods (see Section 2.1 and Sec-
tion 2.2). For example, in two-tier and three-tier tree DC architectures, the servers hosting
the VNFs are the leaf nodes and the network elements are responsible for forwarding NFV
traffic between server nodes.

This approach presents some drawbacks: (i) traffic forwarding is managed exclusively
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Figure 3.1: Comparison between data center network architectures.

by expensive core, aggregation and edge network elements with high throughput capacity
to avoid over-subscription; (ii) network solutions are tied to proprietary hardware and
software with limited room for innovation; (iii) physical network infrastructure offers no
extra degree of freedom to the NFV Orchestrator, which is tied to costly VNF migration
operations when an overload event is detected; (iv) routing is typically done in layer 3

using IP routing tables and ARP flooding, increasing network latency; and (v) spanning
tree protocol (STP), used to build a logical topology that avoids loops, limits the bisection
bandwidth, impacting on the network performance.

One could argue that some of these problems can be solved by using SDN-enabled
switches. This approach allows layer 2 forwarding with the use of flow tables. Besides, the
NFV Orchestrator can interact with an SDN controller with a view of the whole network,
such that the Orchestrator efficiently decides where to place VNFs in the network and the
SDN Controller steers flows through service chains. On the other hand, this management
flexibility takes its toll: (i) the available features are restricted to the OpenFlow versions
implemented by each equipment and vendor firmware; (ii) the fundamental forwarding
mechanism, based on flow tables, cannot be modified; (iii) changes in resource allocation
decisions may involve modifications in the flow tables of all the networking elements of a
forwarding path, causing control signaling overhead and high latency for path setup con-
vergence; (iv) the size of lookup tables may become a limiting factor when the granularity
of flow descriptors increases [Mogul et al. 2010] and restrict the path selection of traffic
engineering to one or a small set of shortest paths [Davoli et al. 2015, Bhatia et al. 2015];
and (v) the management of OpenFlow switches across different hierarchical layers, espe-
cially in the core layer, is complex [Casado et al. 2012].

This can lead to network overload and prevent the NFV Orchestrator to explore all the
capacity of the network underlay when provisioning SFC requests. The next subsections
discuss how the exploitation of server-centric topologies (Fig.3.1.b) and SSR can help to
address these problems.
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3.1.2 Topology: Network-centric vs. server-centric DCNs

Figs. 3.2 and 3.3 show an example of the VNF-FGE problem (discussed in Section 1.1.2)
for network-centric and server-centric topologies, respectively.

The problem is divided in three layers: in the service overlay layer (Figs. 3.2.a and
3.3.a), the VNF-FG shows the service view and how the VNF nodes need to be intercon-
nected; in the server layer (Figs. 3.2.b and 3.3.b), the figures show in which physical server
each of the VNFs will be hosted and the logical connections that need to be established
in order do enable the communication between them; and, in the network underlay layer
(Figs. 3.2.c and 3.3.c), the figures show how the logical network will be provisioned in the
physical network. If the next hop of the SFC is a VNF in the same physical server (e.g.,
the link between VNF2 and VNF3), the SFC step will be accomplished by the internal
routing mechanism of the physical server; otherwise, the SFC will rely on the routing
mechanisms provided by the network.

The comparison of Figs. 3.2 and 3.3 gives an intuition on how the network infrastruc-
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Figure 3.2: VNF-FGE problem in network-centric topologies: (a) service overlay layer:
VNF forwarding graph; (b) server layer: VNF embedding in physical servers and logical
connections between servers; (c) network underlay layer: routing in physical network.
Adapted from: [Dominicini et al. 2017].
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Figure 3.3: VNF-FGE problem in server-centric topologies: (a) service overlay layer:
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Adapted from: [Dominicini et al. 2017].
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ture has great impact in the network utilization when embedding SFC requests. Because
of the specific nature of the SFC paradigm, the flows must enter and leave the servers
that host the VNFs. In server-centric topologies, the orchestrator can take advantage of
this characteristic to place the VNFs in servers that are already part of the routing path
between source and destination. On the other hand, the orchestration has to consider that
CPU capacity of servers is shared among forwarding tasks and VNF processing tasks.

In network-centric topologies, after leaving the physical server, the traffic may need
to go up and down in a set of switches until it reaches the next SFC hop. If the VNFs
of the SFC can be clustered in the same switch or in neighbor pods, this impact can be
minimized. However, the clusterization of VNFs per SFC request may come with the cost
of instantiating additional VNFs, even when there is an already existing VNF with spare
capacity in a distant pod.

One approach that can be used to provide SFC is based on flow identifiable information
[Homma et al. 2016]. In this method, a central entity configures each forwarding element
with flow entries to steer packets to the next SF in the chain depending on the headers of
the packet being handled. Fig. 3.4(a) shows a scenario, where the network functions are
implemented in appliances (physical network functions - PNFs) and connected to a SDN
hardware switch that contains the flow entries to enable SFC.

However, the NFV scenario is much more complex, because the network functions are
virtualized in a cloud environment. In a typical cloud, each physical server has two main
components: a hypervisor that manages the virtualization; and one or more software
switches that enable communication with VMs hosted in other servers, internal routing
between VMs in the same host, and isolation between different tenants using private
networks.

Fig. 3.4(b) shows the equivalent scenario of Fig. 3.4(a) for a network-centric cloud.
Now, the SFC flow entries need to be distributed across the software switches of the
physical servers and the hardware switches of the network infrastructure. In this case,

(a)

VNF VNF

VNF VNF

VNF VNF

(c)

VNF VNF

VNF VNF

VNF VNF

(b)

Figure 3.4: SFC scenarios: (a) Legacy networks: PNFs, and SDN hardware switches
for SFC. (b) Network-centric cloud: VNFs, and SDN software and hardware switches
for SFC. (c) Server-centric cloud: VNFs, and SDN software switches for SFC. Source:
[Dominicini et al. 2017].
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the routing in the physical network is responsibility of the hardware switches. Fig. 3.4(c)
shows the SFC scenario for a server-centric cloud, where there is no hardware switch and
flow entries for SFC are distributed in the physical servers, which are also responsible for
routing in the physical network.

Furthermore, in a NFV scenario, VNFs are distributed across physical servers and the
SFC scheme must cope with various concurrent and dynamic service requests. Therefore,
SFC entries need to be managed by the SDN Controller, which has full knowledge of
the network topology, the service requests, the VNFs that serve these requests, and the
specific virtual ports where each VNF is attached in each physical server.

Depending on application requirements, different use cases may benefit of particular
characteristics of network-centric, server-centric or hybrid topologies. In this work, we
investigate SFC mechanisms that can work with different DC architectures with COTS
equipment, extending the infrastructures that can be used to provide SFC in edge DCs.

3.1.3 Routing: per-hop table-based vs. algorithmic SSR

Fig. 3.5 presents the SFC layers for an example chain, and shows how the underlay
operations of current SFC approaches differ from the underlay operations of our approach,
which is based on algorithmic SSR.

Fig. 3.5.b shows how most of the current SFC solutions perform traffic steering. After
classification, the SFC encapsulation carries information used to determine the network
address of the SF to be executed in each SFC segment. The SFC encapsulation may
create a new SFC header, as in NSH [Quinn et al. 2018] and Segment Routing proposals
[Clad et al. 2018], or overload an existing header. To discover the address of the next SF,
some methods rely on tables as in the case of NSH that uses a chain identifier to perform
a table lookup operation, while other methods encode the SF addresses directly in the
header as in the case of Segment Routing. This SF address is often encapsulated in an
outermost header that is used for routing to the next SF.

After determining the address of the current SF, the packet is delivered to the un-
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derlying routing mechanism (e.g., MPLS or IP), where the forwarding is executed using
per-hop table lookups based on the destination address until it reaches the SF. At this
moment, the encapsulation information is checked again to find the address of the next
SF and this loop proceeds until the chain terminates, when the packet is decapsulated
and delivered to destination.

The problems with this traditional SFC approach are threefold: (i) the commonly
adopted underlying routing mechanisms cannot represent all the possible paths between
two endpoints due to limited capacity of switch forwarding tables; (ii) as they are based
on per-hop table lookup, the overhead to dynamically change a path is high, because it
may involve modifications in all the nodes in the path; and (iii) the traffic engineering
decisions are made in a decoupled way considering placement, chaining, and routing.

These issues have direct impact on the flexibility offered to the NFVO decision making
for optimal resource allocation. This leads to the problem that we tackle in this thesis
of designing a programmable, expressive, scalable, and agile SFC solution that enables
dynamic and efficient orchestration of the network underlay of edge DCs.

In this work, we advocate that the most appropriate solution is to use SSR with
algorithmic forwarding (or algorithmic SSR, see Section 2.2), in the core nodes, and SDN-
enabled edge nodes in the servers for SFC classification. Fig. 3.5.c illustrates how our
proposal uses algorithmic SSR for determining the specific SFP of each SFC segment.
The SFP identifies the exact network nodes and SFs the packet will visit when it tra-
verses the network [Halpern and Pignataro 2015]. The path information is inserted in the
encapsulation stage in the form of a routeID . This identifier is passed to the underlying
routing layer, where each hop can take forwarding decisions on the output port based on
a simple operation over the routeID .

The algorithmic SSR solution presents several benefits over traditional approaches.
Firstly, as already proved by other works [Jyothi et al. 2015], SSR allows traffic engi-
neering to exploit all existing paths, and, consequently, achieve maximum throughput.
Secondly, it enables traffic engineering to specify the entire path for each SFC segment.
Besides, the elimination of tables in core nodes can reduce the number of forwarding
states, and control plane signaling [Martinello et al. 2014, Jyothi et al. 2015]. Finally, if
the SFP needs to change to fit any dynamic demand, the source only needs to encap-
sulate a new routeID , and intermediary nodes will continue to operate over the received
identifier without any modification.

These benefits are particularly important when we consider the dynamic characteristics
of the NFV traffic: SFC requests constantly start and terminate; the sequence of SFs in
a chain may change during its life cycle; or traffic engineering may need to migrate paths
and SFs to guarantee optimal resource usage.

Fig. 3.6 illustrates an example scenario of dynamic chain migration due to security
demands. Initially, the NFVO computes the best routing and placement decisions to
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Figure 3.6: Comparison between flow entries (represented by stars) in traditional SDN
and algorithmic SSR approaches for dynamic migration from SFC1 (VMS→ IDS→VMD)
to SFC2 (VMS→FW→VMD).

embed SFC1 (VMS→ IDS→VMD) for a specific flow, considering overall resource uti-
lization and the need to steer the traffic through an IDS (intrusion detection system).
Then, when an attack is detected, the flow is directed to a firewall (FW) and migrated to
SFC2 (VMS→FW→VMD).

Fig. 3.6.a shows how a traditional SDN-based approach installs flow entries (repre-
sented as red stars) in all the elements in the forwarding path to guarantee the full
specification of an SFP for SFC1. When the SFC is migrated, Fig. 3.6.b shows that some
of these entries need to be removed and new ones (represented as blue stars) need to be
added to steer the traffic through SFC2.

On the other hand, Fig. 3.6.c shows that our algorithmic SSR approach only installs
flow entries (represented as red stars) in the SFC segments’ endpoints, in order to classify
the flow and include the routeID for SFC1. When the SFC is migrated, Fig. 3.6.d shows
that a small number of flow entries have to be modified (represented as blue stars) to
include the routeID for SFC2. Thus, our approach requires the installation and modifica-
tion of fewer flow entries and, consequently, can react faster to path changes. Moreover,
as the forwarding states are only maintained in the edges, our solution is more scalable
and less subject to inconsistencies than traditional approaches.

Other traditional SFC solutions either do not allow the specification of all elements of
the SFP or present limited scalability, as discussed in more details in Section 3.2.3.
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3.2 Related works

This section positions our work with respect to related works on RNS-based SSR, NFV
orchestration, and SFC.

3.2.1 RNS-based SSR

Port Switching is a traditional method for executing SSR that represents the routeID
as a stack of ports or addresses and the forwarding operation as a stack pop (see
Section 2.2). SecondNet [Guo et al. 2010], Segment Routing [Filsfils et al. 2015], and
Sourcey [Jin et al. 2016] are examples of works that explore Port Switching SSR.

RNS-based SSR is an alternative way of performing SSR that defines the output port
in each node by a modulo operation over the routeID (see Section 2.2.1). This thesis
argues that RNS-based SSR presents many interesting properties that do not exist in
Port Switching, such as:

1. Packet forwarding without header modifications: The forwarding operation
is the direct result of the modulo operation of the routeID of the packet by the
nodeID of the core node.

2. The order of the nodes in the path is irrelevant: It can be noticed in Equa-
tion 2.2 that the routeID does not store the information about the node sequence
the packet should traverse. Data from each node (nodeID and portID) belongs to its
own addend of the summation and does not influence the other summation addends.
As the finite summation is commutative, the node order is irrelevant to derive the
routeID .

3. The path information is not transmitted in the clear: Given the routeID of
a packet, it is still necessary to know the nodeID to discover the output port of that
packet in a specific node.

Therefore, RNS-based SSR can explore these properties to provide networking func-
tionalities that cannot be covered by Port Switching. The following topics exemplify some
potential applications of these properties:

1. Packet forwarding without header modifications: This property is impor-
tant for enabling scenarios where header modification is very difficult to implement,
like in all-optical switches [Wessing et al. 2002]. Besides, as packet rewriting is a
costly operation even for packet-switched networks, this can also be explored by
latency-critical applications if the modulo operation can be implemented with high
performance. Another potential application of this property is route authenticity:
since the packet header does not change throughout all the path, the source can sign
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the routeID information and the nodes could verify this signature before taking the
forwarding decision.

2. The order of the nodes in the path is irrelevant: This property allows em-
bedding redundant nodes in the routeID that are disjoint of the desired route. For
example, KAR [Gomes et al. 2016] is a fast failure reaction scheme that uses RNS-
based SSR and explores this property. It proactively adds redundant nodes in the
routeID to create resilient forwarding paths (called protection paths). Packets are
deviated from faulty links with routing deflections, and guided to their original
destination when they reach nodes that are part of the protection paths.

3. The path information is not transmitted in the clear: Public-Key cryptog-
raphy relies in the practical difficulty of factoring the product of two large prime
numbers. In RNS-based SSR, we do not deal with such large primes, but an ap-
proach that uses multiple nodeID keys per node or changes these keys frequently
can make it difficult for an attacker to predict or forge a path if the routeID is
captured.

RNS-based SSR was firstly explored by [Wessing et al. 2002] and applied to opti-
cal packet-switched networks to avoid header rewriting and label distribution protocols.
This idea was further integrated with SDN in core packet-switched networks by KeyFlow
[Martinello et al. 2014], which builds a fabric model that replaces the table lookup in the
forwarding engine by elementary operations relying on RNS. Then, other works, such as
KeySet [Ren et al. 2017] and KAR [Gomes et al. 2016] explored additional properties of
RNS to extend KeyFlow. KeySet explored techniques to reduce the length of the forward-
ing label, while KAR deviates packets from faulty links with routing deflections and guides
them to their original destination due to resilient paths added to the forwarding label.
However, all these works applied RNS to routing in core networks and did not explore
how to use these concepts for DCNs where virtualized SFs need to be chained to provide a
service. In turn, the works in [Jia 2014, Martinello et al. 2017, Liberato et al. 2018] eval-
uate the scalability of a RNS-based routing system for DCNs with 2-tier Clos topologies,
and demonstrated its ability in fulfilling latency constraints for multicast in DCs. but
they did not explore a solution for SFC.

The first work to suggest the application of RNS in SFC was [Zhao and Hu 2017],
but it does not provide any details on how to integrate or implement the proposal with
virtualized SFs in a DC. In CRT-Chain [Ren et al. 2018], the authors proposed a more
elaborate scheme for SFC in DCs using two RNS forwarding labels: one for routing in the
physical layer, and one for routing between the SFs in an overlay layer. However, their
simulated results focused only on reducing the labels length, and they did not provide any
implementation and validation for data and control planes. Moreover, their theoretical
proposal presents some critical limitations for real-world scenarios: (i) in contrast to our
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approach that performs one modulo operation per core node, their data plane is composed
by a loop that performs a modulo operation for each SF attached to each forwarder in
the path (even the SFs that are not part of the chain), which will add a huge delay in the
end-to-end service latency; (ii) it does not allow loops in the physical layer, which is not
acceptable if we consider that a traffic may be steered back and forward in the physical
network to traverse different SFs; and (iii) it does not allow more than one SF of the same
type in the same forwarder.

To tackle these issues, we propose KeySFC [Dominicini et al. 2019], a SFC scheme
that extends the idea of network fabric to intra-DC networking, using programmable
edge software switches, and core RNS-based switches. Besides, KeySFC architec-
ture supports network-centric, server-centric, and hybrid DCNs [Li and Yang 2016,
Dominicini et al. 2017]. Moreover, we implemented and validated a proof-of-concept of
KeySFC in a DC testbed using production technologies, such as OpenStack, OpenFlow
and OvS. Thus, to the best of our knowledge, KeySFC is the first work that proposes a
complete SFC scheme using RNS that is implementable and efficient for DCNs.

An obstacle for implementing RNS-based SSR is the fact that COTS network hard-
ware does not implement integer modulo operations. Therefore, all these works (including
KeySFC) either use software switches implementations [Martinello et al. 2014], or depend
on synthesizing integer division to ASICs or NetFPGAs [Liberato et al. 2018] Neverthe-
less, providing a low cost, high throughput, and low latency implementation is capital for
the success of RNS-based SSR.

To this end, we propose PolKA, a novel RNS-based SSR mechanism that explores
the Chinese Remainder Theorem in finite fields of two elements [Schroeder 2009]. This
shift from integer to polynomial arithmetic can enable performance optimization and
reuse of off-the-shelf network hardware, such as CRC (cyclic redundancy check), while
portending new network services. In addition, we demonstrate that PolKA can be de-
ployed in commercial programmable switches using P4 architecture (see Section A.1.2),
and implemented with similar performance to a traditional Port Switching SSR approach
[Jin et al. 2016, Guo et al. 2010]. Furthermore, we integrated the SSR mechanism of
PolKA in the KeySFC scheme, replacing its original RNS mechanism based on integers.
In this way, we enable the exploitation of RNS-based SSR and SFC in commercial hard-
ware equipment.

3.2.2 NFV Orchestration

NFV orchestration is a very complex problem that involves many differ-
ent areas and have been widely researched in the last years [Yi et al. 2018].
Many important works have extensively surveyed relevant aspects of NFV or-
chestration: optimal resource allocation [Herrera and Botero 2016, Tso et al. 2016,
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Laghrissi and Taleb 2019], MANO solutions [Mijumbi et al. 2016], network service or-
chestration [Rotsos et al. 2017, de Sousa et al. 2019], and SFC [Bhamare et al. 2016,
Medhat et al. 2017, Hantouti et al. 2018]. Each of these surveys summarizes more than
100 works.

Most of these works integrate NFV and SDN paradigms as a way to provide dy-
namic network services, which is also one of the pillars of our proposal. Standardiza-
tion efforts led by ETSI and by the Open Networking Foundation (ONF) have pub-
lished several specifications, aiming to point directions to a NFV-SDN architecture evo-
lution [ETSI NFV ISG 2014, ETSI NFV ISG 2015, Open Networking Foundation 2014].
In [Matias et al. 2015], the authors present the shift of NFV from a initial SDN-agnostic
initiative to a fully SDN-enabled NFV solution. Besides, they explore how the pro-
grammable network infrastructure can implement part of the VNF functionality. In
[Masutani et al. 2014], the authors discuss the requirements for integrating NFV and
SDN, focusing on the architecture design of NFV-enabled network nodes implemented
by commodity servers using OvS and Intel DPDK technologies. In [Zhang et al. 2018],
a typical SFC functional framework integrating SDN and NFV is proposed with service
modeling, resource allocation, and traffic steering components. Besides, they summarize
existing solutions and present challenges and opportunities for each of these components.
In [Tso et al. 2016], a converged resource management is proposed to provide optimization
across application, network, transport and physical layers. In their solution, the modules
communicate events to a SDN controller and receive global decisions back, integrating
node-local intelligence with centralized control to shorten the decision-making time.

Besides, a lot of progress has been made, and many commercial and academic so-
lutions were implemented in the MANO area [Mijumbi et al. 2016]. As NFV technol-
ogy matures, many commercial and open source frameworks were developed to be com-
pliant with ETSI NFV MANO reference architecture [ETSI NFV ISG 2014], such as
OPNFV1, Open Baton2, Open Source MANO (OSM)3, Cloudify4, and Tacker5. Also,
there are academic works that implement NFV orchestration architectures as surveyed in
[de Sousa et al. 2019], such as T-NOVA [Kourtis et al. 2017], Unify [Sonkoly et al. 2015],
and SONATA [Draxler et al. 2017].

However, to the best of our knowledge, most of the existing state-of-the-art frame-
works on dynamic NFV Orchestration only consider hardware-based switches to intercon-
nect VNF nodes. Despite being a promising area, the use of programmable server-centric
and hybrid infrastructures for NFV has been little explored in the literature. Some works
explore resource allocation in server-centric and hybrid topologies [Herker et al. 2015,

1https://www.opnfv.org/
2https://openbaton.github.io/
3https://osm.etsi.org/
4https://cloudify.co/
5https://docs.openstack.org/tacker/
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Luizelli et al. 2016], but they only rely on simulations and do not implement a orches-
tration solution in a DC testbed. The TRIIIAD architecture [Vassoler and Ribeiro 2017]
explored orchestration of IaaS in server-centric DCNs and served as basis for our proposal,
but it did not consider NFV, as explained in details in Section 3.2.2.1.

In the area of NFV orchestration, the contribution of this thesis is to propose
a NFV orchestration architecture based on server-centric topologies, called VirtPhy
[Dominicini et al. 2017], and specify how commodity servers enabled with specialized soft-
ware switches can be directly interconnected in a server-centric topology to provide a fully
programmable network infrastructure for SFC. In contrast to network-centric approaches,
VirtPhy distributes the SFC flow rules on the servers, instead of hardware switches.
Furthermore, we implement a prototype of VirtPhy in a DC testbed using production
technologies, such as OpenStack, OpenFlow, and OvS.

As previously discussed in this chapter, our main contribution lies on the development
of underlay SFC mechanisms that are part of the broader orchestration problem. Section
3.2.3 performs a more detailed analysis about related works in SFC.

3.2.2.1 TRIIAD Architecture

The TRIIIAD (TRIple-Layered Intelligent and Integrated Architecture for Data Centers)
architecture is an approach for cloud orchestration and network control [Vassoler 2015].
As shown in Fig. 3.7, it is composed by three horizontal layers and a vertical plane
[Vassoler and Ribeiro 2017]: the top layer offers IaaS (Infrastructure as a Service); the
middle layer provides a lightweight forwarding mechanism; the bottom layer works as a
distributed photonic switching plane; and the vertical plane is responsible for control,
management and orchestration of the other three layers.

TRIIIAD was pioneer in unfolding the potential of server-centric networks for pro-
viding cloud infrastructure. Also, it showed that it is possible to orchestrate such DCNs
using SDN in combination with OpenStack cloud computing platform. Using a cross-
braced hypercube prototype with 2x2 photonic switches, it demonstrated its capability
of reconfiguring the physical links layer and orchestrating the migration of VMs based on
server workloads. Another substantial contribution of TRIIIAD was the implementation
of an efficient kernel level forwarding mechanism in OvS datapath for the XOR algorithm
[Vassoler 2015].

The TRIIIAD proposal was developed in the same research group of this work, and it
was VirtPhy’s predecessor in exploring server-centric DCNs. TRIIIAD’s objective was to
provide cloud and network orchestration in the context of IaaS, and it was not designed to
meet specific NFV requirements. For instance, it was not designed to be compliant with
ETSI NFV standard, nor provide NFV functionalities, such as a mechanism for executing
SFC. In addition, TRIIIAD’s prototype was deployed in servers with very limited pro-
cessing power that did not have enough resources for deploying VNFs. Thus, the VirtPhy
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Figure 3.7: Layers of TRIIIAD architecture. Source: [Vassoler and Ribeiro 2017].

prototype was built on top of some lessons learned from TRIIIAD’s experience on general
cloud orchestration to extend its contributions to the NFV environment.

3.2.3 SFC

As described in Fig. 1.2, the SFC problem can be divided in three main phases: ser-
vice modeling, resource allocation, and traffic steering [Zhang et al. 2018]. In the service
modeling phase, a input service request generates a VNF-FG as output. This resulting
graph is given as input to the resource allocation phase, which generates the placement
and SFC decisions. Then, SFC decisions are deployed in the network infrastructure using
traffic steering mechanisms, which are the focus of this thesis. Therefore, the analysis of
this section considers the VNF-FGE problem was already solved in a previous resource
allocation step, which generated inputs for traffic steering mechanisms.

Based on the RFC 4665 reference architecture [Halpern and Pignataro 2015] (see Sec-
tion 2.5), many SFC solutions have been proposed. Several of them employ NFV and SDN
to enable network services, as surveyed in [Medhat et al. 2017, Hantouti et al. 2018]. In
[Homma et al. 2016], the authors classify the different SFC approaches in four types,
based on their forwarding methods: (1) flow identifiable information; (2) stacked head-
ers; (3) service chain identifiers with extra header; and (4) service chain identifiers with
overload of existing address field.

In this section, we use this classification to compare our work with related works that
also present traffic steering schemes. To this end, we select the main representatives
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Table 3.1: Comparison between SFC related works.

SFC proposal Implemented SFC method SFC encap Routing decision Forwarding Topology Control Plane

StEERING X (1) Flow identifiable
information None Per-hop routing Table-based Network-centric OpenFlow

Segment
Routing X (2) Stacked headers MPLS

or IPv6 Loose source routing Table-based and
Algorithmic (list pop) Network-centric IS-IS, BGP,

or OSPF

NSH X (3) Chain identifier,
extra header

VXLAN,
GRE,
or Ethernet

Per-hop routing Table-based Network-centric
BGP, or NSH
Extension
for OpenFlow

NetFloc X (4) Chain identifier,
existing header

MAC
address Per-hop routing Table-based Network-centric OpenFlow

VirtPhy X (4) Chain identifier,
existing header

MAC
address Per-hop routing Algorithmic (XOR) Server-centric OpenFlow

CRT-Chain (4) Chain identifier,
existing header

MPLS
or IPv6 Strict source routing Algorithmic (modulo) Network-centric Not described

KeySFC X (4) Chain identifier,
existing header

MAC
address Strict source routing Algorithmic (modulo) Any OpenFlow

of each of these four methods to compare the details of these solutions with KeySFC.
Table 3.1 summarizes this comparison, classifying then according to the techniques used
for SFC, routing, and control. Extensive surveys on traffic steering methods can be found
on [Bhamare et al. 2016, Medhat et al. 2017, Hantouti et al. 2018].

Method 1 consists of classifying packets based on flow identifiable information, such
as a 5-tuple (e.g., source IP and port, destination IP and port, and L4 protocol), at SFF.
A central entity configures each SFF with flow rules to forward packets to the next SF in
the chain depending on information contained in packet headers. This method does not
demand changes either to the network or the original packet format, because it is based on
flow tables and the SDN control plane. On the other hand, when we analyze scalability,
it is the least suitable for large networks with a high number of flows, and requires per-
hop table lookups. An example of this approach is StEERING [Zhang et al. 2013]: the
SDN controller installs flow entries into the switches and handles the service placement,
and OpenFlow-enabled switches are responsible for traffic classification and steering. It
allows for fine granular application policies and uses multiple forwarding tables to reduce
the number of flow rules, but it still suffers from scalability and agility issues because of
the large number of flow rules distributed in the switches [Hantouti et al. 2018].

In Method 2, the Classifier analyzes each packet entering the SFC domain, and stacks
a series of packet headers over the original packet. Each header includes a network address
(e.g., using MPLS or IPv6), and the outermost header addresses the next destination.
After receiving the packet, each SF or SFF processes it, removes the outermost header,
and uses the next header to find the next SF. This process repeats until all stacked
headers are removed and the packet reaches its final destination. This approach may
present MTU, fragmentation, and scalability issues when the number of SFs is high.

One of the most important works that uses Method 2 is Segment Routing, which
is a flexible source routing method that can enable SFC [Clad et al. 2018]. It can be
implemented by using a new type of IPv6 header that encodes segments as a list of
128-bit IPv6 addresses, but this approach present large overhead [Abdullah et al. 2019].
Also, it can be implemented using MPLS with no modification, since an ordered list of
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segments can be encoded as a stack of MPLS labels. The next segment to be process
is popped from the top of the stack after the completion of a segment, and a lookup
operation in the forwarding table is performed in each hop. Differently to traditional
MPLS networks, Segment Routing with MPLS distributes segment labels using simple
extensions to current IGP protocols, and LDP and RSVP-TE are no longer required for
populating the forwarding tables [Bhatia et al. 2015]. Besides, scalability is improved,
because only source nodes maintain state information and the size of forwarding table
remains constant regardless of the number of paths [Moreno et al. 2017].

The paths can be derived from a IGP Shortest Path First (SPF) algorithm, which
allows a packet to be forwarded along the Equal Cost Multi Path (ECMP)-aware shortest
path, or from a Segment Routing Traffic Engineered (SR-TE) path that allows a packet
to be steered along an explicit SSR path by using a combination of one or more short-
est segments [Abdullah et al. 2019]. However, this flexibility comes at the expense of in-
creased packet overhead and increased label processing in the network [Bhatia et al. 2015].
Moreover, the source node needs to push large segments list in order to realize long opti-
mal explicit paths, but most MPLS equipments can support a limited label stack depth
(about 3 to 5 labels), which may lead to inefficient traffic distribution and network con-
gestion [Abdullah et al. 2019]. In this way, the traffic engineering algorithms have to
take into account specific constraints of path encoding as additional objective functions
[Moreno et al. 2017]. Thus, although Segment Routing can be used for enabling SSR, it
commonly uses a loose source routing scheme that specifies a list with some SFFs and
SFs that the packet must go through, and delegates the routing between these elements
to the underlying network that employs ECMP shortest paths.

In contrast to Segment Routing, KeySFC employs a SSR scheme that does not restrict
the path selection by traffic engineering, eliminates forwarding tables, and performs simple
operations over service chain identifiers for computing the output port in each forwarding
element. KeySFC approach (as any other source routing approach that encodes the path
in the packet header) also has to consider the scalability of the routing header, as discussed
in Section 6.1.4. To the best of our knowledge, KeySFC is the first work to propose and
implement a SFC solution that uses algorithmic SSR, and can be applied in any DCN
topology (more details in Section 5.1.2).

In Methods 3 and 4, each chain receives a unique service chain identifier from
Classifier. Also, SFFs receive forwarding configuration, and consult this information to
discover the next hop based on the packet’s chain identifier. In this way, flow entries are
defined in a per-chain basis, instead of in a per-flow basis, using less flow entries when
compared to Method 1.

This chain identifier can be included in a new specific header, which is the approach
adopted in Method 3, as implemented in network service headers (NSH) solutions
[Quinn et al. 2018]. The NSH header carries two chain identifiers: a 3-byte Service Path
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Identifier (SPI), and an 1-byte Service Index (SI), the former indicating the selected chain,
and the latter the current position in the chain. The SI is decremented at each step of
execution by each SF (or by a Proxy). The SFFs in the path uses the SPI information
for performing a table lookup and deciding which SF should be executed at any given
time for each chain. Then, the address of the next networking element is encapsulated
in an outermost header, relying on the underlying routing methods to deliver the packet
between these elements. [Li et al. 2017, Mehmeri et al. 2017] are examples of works that
implement SFC solutions using NSH.

Although the NSH protocol presents great flexibility, it is necessary to change all
the forwarding elements and control mechanisms in the infrastructure to support it. In
addition, attachment of headers expands packet size, causing an increase of traffic, and
potential problems with MTU to handle fragmentation. Also, there is a strong separation
between the service overlay layer and the underlay network layer. In other words, the SFC
mechanism does not give any instruction about how to forward packets in the network
(only the order of services that must be traversed) [Quinn et al. 2018]. Therefore, the
routing decisions are decoupled from the chaining decisions and executed by different
mechanisms. Furthermore, this scheme uses per-hop tables both for discovering the next
SF and routing packets in each SFC segment, which leads to scalability and agility issues.

Other alternative, used by Method 4, is to include the chain identifier in existing
packet fields, like MAC address [Bottorff et al. 2017]. In [Trajkovska et al. 2017], the
authors propose a SFC mechanism named Netfloc, where packets entering a service chain
invoke new flows in the first and the last bridges of that service chain, which rewrite the
original MAC address to a virtual address. Traffic steering relies on L2-based OpenFlow
rules, processed by SDN switches that are configured by OpenDayLight SDN controller
[Hantouti et al. 2018]. However, their approach relies on various per-hop table lookups
and present limited scalability and agility, as discussed before.

KeySFC and CRT-Chain [Ren et al. 2018] [Dominicini et al. 2017] also rewrite exist-
ing headers to include chain identification, but they can achieve better scalability and
agility by replacing per-hop table lookups with algorithmic SSR using modulo operations.
VirtPhy [Dominicini et al. 2017] also explores algorithmic forwarding and MAC rewrite
for SFC with the use of a high performance forwarding mechanism based on XOR oper-
ations, but it does not allow the specification of underlay paths.

Aside from KeySFC and VirtPhy, all the described related works are tailored to
network-centric topologies. VirtPhy specifies how commodity servers can be directly
interconnected in server-centric topologies to provide SFC. KeySFC, on the other hand,
was designed with the objective of supporting any DCN topology.

Regarding the control plane, StEERING, NetFloc, VirtPhy, NSH, and KeySFC sup-
port OpenFlow. In Segment Routing, the segments are allocated and signaled by IS-IS,
OSPF or BGP. NSH also supports BGP in the control plane.
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Table 3.2: Related works and requirements.

Proposal
Requirement Programmable Expressive Scalable Agile

StEERING ○ ○
Segment Routing ○ Î Î ○
NSH ○
NetFloc ○ ○
VirtPhy ○ ○ Î
KeySFC ○ ○ ○ ○

Legend: ○completely meet the requirement Îpartially meet the requirement

Except for CRT-Chain, all the described works present implementations of their mech-
anisms. Especially, NSH and Segment Routing received a lot of attention from academia
and industry with several real-world deployments.

Table 3.2 summarizes how the described related works meet the requirements defined
in Section 1.1.2 for the underlay SFC mechanisms. CRT-Chain was not included, because
it does not provide enough information about the implementation of the SFC mechanism.

3.3 Concluding remarks

This chapter discussed how our work differs from related works and its contributions.
The next chapters will present the three solutions (VirtPhy, KeySFC, and PolKA) that
compose the proposal of this thesis.



Chapter 4

VirtPhy: NFV Orchestration
Architecture

VirtPhy is a novel NFV orchestration architecture based on server-centric topologies,
where server nodes represent both computing and networking resources, and hardware
switches are replaced by SDN software switches that can be directly configured by a NFV
Orchestrator integrated with a SDN Controller, as shown in Fig. 4.1.

This chapter describes the design principles, the architecture, and the prototype of
the VirtPhy orchestration architecture.

4.1 Proposal

This section describes the potential limitations, the design principles, and the architecture
of the VirtPhy proposal.

Figure 4.1: Network-centric approach vs. VirtPhy. Source: [Dominicini et al. 2017].
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Figure 4.2: Challenges, enablers, and design principles. Source: [Dominicini et al. 2017].

4.1.1 Challenges, enablers, and design principles

The design principles of the VirtPhy architecture were driven by the following NFV chal-
lenges in edge DCs: low cost; support to innovation; efficient and agile orchestration; and
low latency and high bandwidth.

Fig. 4.2 presents the enablers we envision to address the described challenges. Based
on these enablers, VirtPhy adopts the following design principles:

1. No hardware switches: The selection of a server-centric topology eliminates the
need for acquiring expensive switches, reducing CAPEX.

2. No proprietary hardware and software: Our solution is based on standard
x86 servers and open source protocols. Thus, it supports innovation and reduces
both CAPEX and OPEX, since it eliminates proprietary interfaces that demand
specialized professionals and cuts time to market at the deployment phase. This
also tackles problems such as: vendor lock-in, firmwares with partial implementation
of SDN functionalities, and innovation barriers for new forwarding/routing methods.

3. Programmable forwarding mechanisms: The server nodes have a kernel-level
software switch that enables the SDN Controller to program the forwarding mecha-
nism [Vencioneck et al. 2014]. This principle enables innovation, rapid deployment
of new concepts, and agile network orchestration.
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4. Dynamic rewiring of physical links: Programmable circuit switching mecha-
nisms (e.g., optical switches and FPGAs, depending on the network interface) allow
a SDN controller to dynamically reconfigure the network and create shortcuts to
heavy flows, reducing network latency and traffic on overloaded nodes.

5. Topology-aware orchestration: The NFV Orchestrator can make efficient deci-
sions based on server monitoring information and knowledge of the topology, reduc-
ing end-to-end latency as VNFs are placed and chained in a more optimized way.
For example, the Orchestrator can place VNFs in a service chain based on the less
overloaded neighbors, or place VNFs in servers that are part of the shortest path
between source and destination.

6. Elimination of routing and flow tables: To reduce latency on packet forwarding,
the interconnection topology should present a lightweight routing algorithm that
eliminates flow tables, enables layer 2 forwarding and reduces flow level signaling to
the SDN Controller.

7. Packet forwarding acceleration: Mitigation of operating system bottlenecks
can improve the performance of packet processing, increasing the throughput and
reducing the latency of VNFs (e.g, Intel DPDK, and offload to SmartNICs or FP-
GAs). Another way to accelerate packet forwarding is the adoption of algorithmic
forwarding.

4.1.2 Architecture design

Fig. 4.3 shows how VirtPhy fits in the ETSI NFV standard architecture
[ETSI NFV ISG 2014]. Our focus lies on the NFVI, and on the NFV MANO components.
Besides, specification [ETSI NFV ISG 2015] describes possible locations of an SDN Con-
troller in a NFV framework. In our case, the SDN Controller is part of the NFVI and
exchanges information about the network with the NFV Orchestrator via an orchestra-
tion interface [ETSI NFV ISG 2015]. In addition, to support persistence of infrastructure
information, a new communication interface between the VIM and the Data Repositories
was created.

The main components of VirtPhy architecture are shown in Fig. 4.3 and explained as
follows:

1. VIM: It manages the interaction of VNFs with hardware resources, as well as their
virtualization, by interacting directly with hypervisors. Also, it sets the VNF ad-
dress during its creation (or migration) according with the physical host. Besides,
it manages virtual networks.
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Figure 4.3: VirtPhy and ETSI NFV standard. Source: [Dominicini et al. 2017].

2. NFV Orchestrator (NFVO): It centralizes the orchestration of NFVI resources
and management of network services. It shares a common information base about
VNF instances and resources with the other components, such as the VIM and the
SDN controller.

3. VNF Manager: It is responsible for the life cycle management of VNF instances
(e.g., instantiation, monitoring, scaling, and termination).

4. SDN Controller: It is responsible for configuring software switches of server nodes,
for dynamically rewiring physical links using programmable circuit switches, and for
installing flow rules related to SFC.

5. Data Repositories: It stores data about service requests (e.g., VNF-FGs, and
users), VNFs (e.g., Ethernet MAC address, IP address, and host), physical hosts
workload (e.g., CPU, and memory), network traffic, and topology.

6. Hardware resources: The servers are interconnected in a server-centric topology
enabled with software switches and programmable circuit switches (e.g., optical
switches or FPGAs), which enable physical link rewiring.
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4.1.3 NFV orchestration architecture

Fig. 4.4 shows how VirtPhy enables NFV orchestration by the interaction of the main
components described in Section 4.1.2. The Data Repositories receive information about
physical servers and VNFs from the VIM and the VNF Manager, and information about
the network status and topology from the SDN Controller. This information helps the
Orchestrator to define the overall and available capacity from processing nodes and net-
working elements, and also what are the already existent VNF instances and where they
are located.

When new service requests arrive, the NFV Orchestrator accesses the Data Reposito-
ries, computes the status of the physical infrastructure and runs an Optimization Module
to take placement and SFC decisions, as described in Section 1.1.2. The user can specify
service requests and corresponding VNF-FGs in TOSCA language1 using a REST API
to communicate with the Orchestrator, which stores a mapping in the Data Repositories
between each VNF from the VNF-FGs and the corresponding identifiers from the VIM
and SDN Controller. If the service request is updated, the NFV Orchestrator takes new
decisions for placement and SFC.

Since one VNF can serve one or more service requests, depending on VNF capacity and
security settings, the NFV Orchestrator may decide to serve a new request by assigning

1http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html

http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
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it to an existing VNF, by creating a new VNF in a specific host or by migrating an
existing VNF to a more suitable host. Based on its centralized view of the physical
infrastructure, the NFV Orchestrator send the placement decisions to the VIM, which is
responsible to send migration and creation commands to the hypervisors in the selected
physical servers, and to create the virtual networks that establishes connectivity between
VNFs. Note that physical topology information is used for routing purposes, but this
information is transparent for the VNFs, which have their own virtual networks and IP
addressing, enabled by technologies such as VLANs, VXLAN or GRE tunnels. VirtPhy
also enables an extra degree of freedom to the orchestration, since it is possible to modify
the topology by changing the state of programmable circuit switches, such as optical
switches or FPGAs. To this end, the NFV Orchestrator sends the commands to the SDN
controller that, in turn, sends a message to a SDN Enabler component, which translates
messages to the programmable circuit switches.

With the VNFs allocated, the NFV Orchestrator sends the SFC decisions to the SDN
Controller, which communicates with the software switches of physical servers in order
to create flow rules in these switches. The main idea behind our proposed scheme is that
any traffic flow that traverses these switches and matches the flow rules for a given service
request will be redirected to the next VNF in the ordered SFC. In this way, source and
destination can communicate transparently, even when their traffic is steered through
a long SFC sequence. To be able to create the flow rules, the SDN Controller needs
to know information about the SFC requests and the VNFs that serve these requests.
Thus, the NFV Orchestrator needs to share this information with the SDN Controller by
saving all these details in the Data Repositories. Moreover, as VirtPhy adopts underlying
server-centric topologies, the flow rules are distributed in the software switches of several
physical servers instead of in few centralized hardware switches, reducing flow tables size.
More details about the SFC scheme will be given in Section 4.2.4.

Finally, the servers contain a monitor module responsible for reporting to the VIM
information about CPU usage, memory usage, and overload events. The SDN Con-
troller also receives network monitoring information and overload events from the soft-
ware switches. These overload events are sent to the NFV Orchestrator, which has to
reevaluate placement and SFC decisions and apply changes in the infrastructure in order
to meet the requirements of service requests.

4.1.4 NFV in a server-centric infrastructure

The fundamental problem of server-centric approaches is that server CPU is shared among
processing tasks (i.e., VNFs) and network tasks (i.e., routing/forwarding). This can lead
either to poor VNF performance or limited bandwidth bisection between servers due to
busy CPUs in intermediate elements. This implies more complex orchestration when
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compared to network-centric approaches whereas those tasks are decoupled.
Although VirtPhy already uses a lightweight kernel-level routing/forwarding, it takes

precedence over user-level processes (i.e., VNF processing). Therefore, mechanisms should
be available to avoid CPU saturation on server nodes due to transit traffic (traffic origi-
nated when the node is not the final destination, but it is used for forwarding purposes).
As a corrective mechanism, circuit switches can be used for reconfiguring physical links in
order to bypass overloaded intermediate nodes. Note, however, that changing the physical
topology may affect the routing mechanism for the whole network.

This issue could be solved by limiting the number of circuit switching elements and
their placement in the topology. Orchestrator must be aware of those constraints to avoid
route loops and other routing problems. One preventive mechanism is to monitor an
adaptive CPU threshold that limits the amount of transit traffic in a server node: the
higher the CPU usage of a node, the lower is the acceptable limit of traffic transit for that
node. If at any time this threshold is exceeded, the Orchestrator actuates on the network.

In practice, these mechanisms can be well coordinated by a Orchestrator with a central-
ized view, either proactively, when making placement and SFC decisions for new services,
or reactively, when receiving overload events from server nodes. If the Orchestrator re-
ceives CPU, network, or memory overload events, one possible action is to migrate VNFs
from the overload server node to another one with lower load or to scale the VNFs to meet
the increasing demand. If the event is transit traffic overload, the Orchestrator could also
check the transit traffic over the neighbors of that server node. If it is possible to redirect
the transit traffic to another server, it could reconfigure the physical link.

Another way to avoid the consumption of CPU cores with forwarding tasks is to offload
networking processing tasks to network co-processors, such as SmartNICs 2. In this way,
the resources of the software switch datapath are liberated for VNF processing tasks.

Despite the mechanism selected by the Orchestrator, it has to consider the impact of
each action on the network as whole. In fact, the stability of the entire network depends
on the continuous monitoring of all the network nodes to support informed decisions on
how the Orchestrator can actuate to efficiently use the infrastructure to enable existing
and new VNF requests. In [Dominicini et al. 2016], the work investigated the effects of
the forwarding tasks on user processes performance at server nodes in a server-centric
hypercube topology and demonstrated VirtPhy’s ability to redistribute transit traffic to
save CPU for user processes. In the proposed scheme, it was also possible to reconfigure
the connections to reduce the average number of hops for some flows, without affecting
the node degree and without imposing modifications in the original routing strategy.

Appendix B performs a preliminary investigation, using a ILP model, if server-centric
topologies can efficiently provision diverse NFV workloads for edge DCs when compared
to network-centric topologies.

2https://www.netronome.com/products/smartnic/overview/



74

4.2 Proof-of-concept

This section covers the practical implementation aspects of applying the VirtPhy refer-
ence architecture presented in the previous section to a specific topology in a real cloud
environment. As a proof-of-concept, we chose the OpenStack cloud platform in a DC
where servers are interconnected in a hypercube server-centric topology. Other topologies
could be used, such as mesh or torus [Mirza-Aghatabar et al. 2007], as long as it is possi-
ble to implement tableless algorithmic forwarding. The hypercube topology was selected
because it has a native routing algorithm, allows insertion of 2𝑋2 optical switches in its
faces, and presents multiple paths between pairs of nodes.

4.2.1 The hypercube topology and routing mechanism

The routing in hypercube is based on a algorithmic mechanism, in which a server uses
a single XOR operation over its neighbors to find the next hop. This scheme is simple,
efficient, and free of lookups in route tables. Besides, one important property of this
mechanism is the intrinsic fault tolerant capability. If the closest neighbor is not available,
the routing protocol can send the packet to another neighbor.

We use the addressing scheme from TRIIIAD [Vassoler 2015], which is inspired in
Portland [Niranjan et al. 2009], where a global identifier is replaced by a positional iden-
tifier. Particularly, the MAC address is divided in two parts: the first most significant 32
bits represent the hypercube address of the physical server, and the other remaining 16
bits identify the specific VNF in that physical server (VNF ID), as shown in Fig. 4.5.

Fig. 4.5 shows an example of how a packet is routed when VNF2 at server 1 sends
packets to VNF1 at server 3. Initially, VNF2 sends a ARP request broadcast message
with the IP of VNF1. This message is intercepted by the software switch of server 1
and forwarded to the SDN controller that resolves the address and returns an ARP reply
message to the software switch, which, in turn, delivers the message to VNF2. Then,
VNF2 can normally send data to VNF1 using the IP address. When a server node
receives a packet, the software switch extracts the hypercube address from the 32 more
significant bits of the MAC destination field and executes a XOR over this address and
its own hypercube address to find the neighbor closest to the packet destination, and
forwards the packet to it. The MAC destination field is preserved during all the path
from VNF2 at server 1 to VNF1 at server 3. When it reaches the destination physical
server (server 3), the second part of the MAC destination address (the VNF ID) is used
to identify VNF1 in that server. Note that intermediate nodes forward packets directly
in the software switch layer as there is no VM involved in the intermediary hops.

All ARP information is centralized in the Data Repositories, managed by the VIM and
accessed by the SDN Controller. In this way, the NFV Orchestrator can migrate a VM
without changing its IP address, transparently to layer 3. Nevertheless, in the migration,
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Figure 4.5: Forwarding mechanism using MAC to locate and identify a VNF. Source:
[Dominicini et al. 2017].

the NFV Orchestrator communicates with the VIM to update the MAC address of the
VM to reflect its new position in hypercube. Moreover, the proposed solution has the
following advantages over traditional SDN solutions:

• The forwarding mechanism only needs to read the MAC destination address from
the Ethernet frame, instead of analyzing Ethernet, IP and TCP headers.

• Considering routing, the SDN Controller is only used to map IP/MAC pairs, since
servers execute forwarding using hypercube routing mechanism in a decentralized
way without communicating with the SDN Controller and overloading the network
with control messages;

• As each physical server has its own software switch that supports OpenFlow proto-
col, they can be directly and individually managed by the SDN Controller.

4.2.2 The testbed

The testbed is a 3D-hypercube [Saad and Schultz 1989] composed by eight server nodes.
We used twelve servers with Linux Ubuntu: eight physical servers, one NFV Orchestrator,
one OpenStack Controller node, one OpenStack Network node, and one SDN Controller.
Each physical server has five Ethernet NICs: three are used to create the 3D-hypercube
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topology, one is used for a data network that is connected to the OpenStack Network
node, and one is used for a management network that is connected to the OpenStack
Controller node. We used 1Gbps links and servers with 16GB memory and Intel Xeon
E5-2620 2.4 GHz processors. Our testbed does not included optical switches, because
their effect was already investigated in [Dominicini et al. 2016].

In Fig. 4.5, we show the logical organization of a server node: at the top, there are the
VNFs; in the middle, there is the host operating system that integrates the hypervisor,
based on libvirt, to the OvS software switch and the monitor module; and on the bottom,
there are the actual hardware resources. The monitor module is implemented as a daemon
running in user space. We use the OvS implementation from TRIIIAD [Vassoler 2015],
which modifies the original OvS in such way that the SDN controller can set the node
forwarding mechanism (e.g., XOR or flow tables), using OpenFlow messages. To perform
routing and forwarding in kernel level, this OvS version implements the hypercube routing
algorithm in the OvS datapath module.

The VIM and the VNF Manager components were implemented using OpenStack
[Openstack 2017], with some modifications to enable VirtPhy features. For instance,
the functions to create and to migrate VMs were modified to setup the MAC addresses
according with the proposal. The NFV Orchestrator was implemented in Python and
has the following main functionalities: (i) to receive service requests; (ii) to run the
Optimization Module to produce placement and SFC decisions; (iii) to communicate
placement decisions to VIM and VNF Manager; (iv) to communicate SFC decisions to
the SDN Controller; (v) to take actions when receiving overload events; and (vi) to manage
Data Repositories.

The SDN Controller was implemented using the Ryu platform [Ryu 2015] and has the
following main functionalities: (i) to discover and monitor available nodes and links; (ii)
to build the virtual hypercube topology; (iii) to install SFC rules; and (iv) to configure
server nodes according with their position in the hypercube. This last task depends on
two custom OpenFlow messages exchanged between the SDN Controller and the OvS in
each server node, as shown in Fig. 4.5. The first message sends the hypercube node
address and defines the XOR as the routing mechanism. The second message sends the
node neighbors and the respective physical port of each neighbor. When our modified
version of OvS receives these messages, it reconfigures its datapath module to forward
the packets using the hypercube routing function, which chooses the next hop without
exchanging information with the SDN controller.

4.2.3 SFC using SDN

In [Vacaro et al. 2016], the authors present a scheme that uses OpenFlow switches, legacy
network functions appliances, and virtual MACs (VMACs) to enable dynamic SFC. The
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MAC2/IP2

SFF
MAC3/IP3

1
2

3

Switch S1

Figure 4.6: Basic SFC strategy using SDN. Source: [Dominicini et al. 2017].

Table 4.1: Flow table at switch S1.

Rule Match Action

1 SourceIP=IP1 Modify Dest_MAC to VMAC1;
Output to port 2.

2 Dest_MAC=VMAC1 Modify Dest_MAC to MAC2;
Output to port 3.

main idea is that, for each hop, you replace the destination MAC by a VMAC, which will
be used as a match condition in a flow rule that steers the traffic to the next VNF in a
SFC. Thus, the VMAC is a path indicator and can receive any value as long as there is
no real MAC with the same value in the network domain.

Fig. 4.6 exemplifies this idea: source and destination are not aware of the chaining
between them, and all nodes are connected to a OpenFlow switch S1. SFF is a network
function that only receives packets and forwards them back to receiving interface. The
traffic is originated in source node (switch port 1), pass through SFF node (switch port 2),
and, finally, reaches the destination node (switch port 3). The strategy installs flow rules
in the switch S1 according to Table 4.1, and the SFC will happen as follows: (i) source
node sends a packet to destination node; (ii) packet reaches switch port 1 and matches rule
1, which changes Destination MAC to VMAC1 and redirects the packet to SFF (switch
port 2); (iii) SFF node receives the packet and forwards it back to the same interface;
(iv) packet reaches switch port 2 and matches rule 2, which changes Destination MAC to
MAC2 and redirects the packet to the destination (switch port 3); (iv) destination node
receives exactly the same packet sent by source node.

This strategy has some benefits as it is simple, scalable, low cost and compliant with
legacy network appliances, as long as the appliances are connected to SDN switches
[Vacaro et al. 2016]. However, as already explained in Section 3.1, the NFV scenario
is more complex, and involves software switches in the physical servers to interconnect
VMs and isolate tenants. Section 4.2.4 will show how this basic strategy was extended in
VirtPhy.
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4.2.4 SFC in OpenStack and Hypercube

This section explains how we designed a SFC approach that is compliant with VirtPhy
reference architecture and works in a OpenStack DC where servers are interconnected
in a hypercube server-centric topology. Our proposal decouples SFC from routing and
considers the following aspects:

• As explained in Section A.2.1, server nodes in OpenStack present a networking
structure based on two OvS bridges: a br-int bridge that is responsible for dis-
tributing the packets to the correct VMs when they reach the physical server; and
a br-eth bridge that handles communication between VMs that reside in different
physical servers. As a implementation decision in the physical servers, we split the
functionality of the software switch from VirtPhy reference architecture in two soft-
ware switches: the br-int and the br-eth. The first (br-int) will be responsible for
intercepting traffic and for directing it to the right VNF in the SFC sequence. Thus,
the OpenFlow rules for executing SFC will be installed in the br-int bridge of each
physical server. The later (br-eth) will be responsible for executing the hypercube
routing based on XOR operation between physical servers (see Section 4.2.1).

• We take benefit of our proposed hypercube addressing scheme (see Section 4.2.1)
to extend the SFC strategy presented in Section 4.2.3 and create VMACs that
already represent the address of the physical server that hosts the next VNF in the
chaining. For instance, if the next hop in the chaining is a VNF that is hosted
by a server node with hypercube address 3, the VMAC will necessarily have the
format 00:00:00:03:XX:XX, where XX:XX can be any hexadecimal digit as long as
there is no VM in that physical server with this VNF ID (e.g., 00:00:00:03:11:3B).
In that way, the SFC strategy is transparent to the br-eth bridges of the hosts in
the routing path, which only check the hypercube address (first 32 bits of MAC
destination field) for routing. When the packets reach the host where the VNF is
actually hosted, the full VMAC will match an existing rule that was pre-installed
by the SDN controller in the br-int, and the traffic will be redirected to the correct
VNF.

• The NFV Orchestrator runs the Optimization Module to generate placement and
SFC decisions. The SDN controller is responsible to convert these SFC decisions
in flow rules for each one of the br-int bridges of the physical servers. As already
explained, our strategy does not install any flow rule in br-eth bridges.

• OpenStack automatically installs a set of iptables rules in the Linux bridge connected
to each VM to provide a protection against ARP spoofing (e.g., a host can only send
packets to the network with its own MAC source and IP source pair). To enable some



79

NFV use cases with forwarding functions that would be blocked by this protection
(e.g., router, firewall, and NAT), our implementation disables the related rules for
the specific ports that are connected to the VNFs.

VMsource

VMdest

VNF1

000

011010

001

Figure 4.7: SFC example in a hypercube with degree 3. Source: [Dominicini et al. 2017].

To explain our strategy, consider the example of Fig. 4.7, in which all the traffic from
𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 to 𝑉𝑀𝑑𝑒𝑠𝑡 must be steered to a 𝑉 𝑁𝐹1 of type 𝑡1. In our example, this function
receives the packets, do some processing, and send the packets back to the same interface.
In the initial scenario, 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 is already created in host 𝐻1 (hypercube address 000𝐵𝐼𝑁

or 0𝐷𝐸𝐶) at br-int port 5 with MAC 00:00:00:00:e4:7d, and 𝑉𝑀𝑑𝑒𝑠𝑡 is already created in
host 𝐻2 (hypercube address 001𝐵𝐼𝑁 or 1𝐷𝐸𝐶) at br-int port 5 with MAC 00:00:00:01:54:1b,
and there is no VNF of type 𝑡1 in the DC. When the orchestrator receives the service re-
quest, the Optimization module will analyze the physical infrastructure status to decide
where to place the 𝑉 𝑁𝐹1. Consider it decides to allocate 𝑉 𝑁𝐹1 at host 𝐻4 (hypercube
address 011𝐵𝐼𝑁 or 3𝐷𝐸𝐶) at br-int port 5 with MAC 00:00:00:03:bb:02. Because of hy-
percube inherit source routing mechanism, there is no need to decide the physical paths
between each node in the SFC, but it is still necessary to force the traffic that would
normally flow from 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 to 𝑉𝑀𝑑𝑒𝑠𝑡 via link 𝐻1-𝐻2 to go through 𝑉 𝑁𝐹1.

Table 4.2 shows the SFC rules that are installed in each of the physical servers for this
example. When 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 sends a flow traffic to 𝑉𝑀𝑑𝑒𝑠𝑡 the following events will happen:

1. At H1: The packet leaves 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒, and, reaches the br-int bridge. There, the
flow matches rule 1, causing the destination MAC field to be changed to VMAC1
(00:00:00:03:00:0a) and the packet to be forwarded to br-eth according to NOR-
MAL flow action. When the packet reaches br-eth, the forwarding mechanism
implemented in OvS applies the XOR operation over the hypercube address of
𝐻1 (000𝐵𝐼𝑁) with the hypercube address portion of the destination MAC address
(00:00:00:03:00:0a→ 011𝐵𝐼𝑁), which gives 000 𝑋𝑂𝑅 011 = 011, meaning there



80

Table 4.2: Flow rules for SFC example.

Rule Node MAC_Src MAC_Dst In_Port Action

1 H1 (000) H1_MAC * * Modify Dst_MAC to VMAC1;
Output: Normal.

2 H4 (011) * VMAC1 * Output: Port 5.

3 H4 (011) * VMAC1 5 Modify Dst_MAC to VMAC2;
Output: Normal.

4 H2 (001) * VMAC2 * Modify Dst_MAC to H2_MAC;
Output: Normal.

VMAC1 = 00:00:00:03:00:0a, VMAC2 = 00:00:00:01:00:0b, H1_MAC= 00:00:00:00:e4:7d,
H2_MAC= 00:00:00:01:54:1b.

are two possible moves: 010 (change second bit of 000) or 001 (change third bit of
000). Consider first option is chosen and the packet is forwarded to host 𝐻3 (hy-
percube address 010𝐵𝐼𝑁 or 2𝐷𝐸𝐶).

2. At H3: When the packet reaches br-eth, the forwarding mechanism in OvS applies
the XOR operation over the hypercube address of 𝐻3 (010𝐵𝐼𝑁) with the hypercube
address portion of the destination MAC address (00:00:00:03:00:0a → 011𝐵𝐼𝑁),
which gives 010 𝑋𝑂𝑅 011 = 001, meaning there is only one possible move: 011
(change third bit of 010). Therefore, packet is forwarded to host 𝐻4 (hypercube
address 011𝐵𝐼𝑁 or 3𝐷𝐸𝐶). Note the packet does not go up to br-int, because 𝐻3 is
only forwarding traffic.

3. At H4: When the packet reaches br-eth, the forwarding mechanism in OvS veri-
fies that the destination MAC address (00:00:00:03:00:0a) is a VM in that same
host, and forwards the packet to br-int. When the packet reaches br-int, the flow
matches rule 2, causing the packet to be forwarded to port 5, where 𝑉 𝑁𝐹1 is
connected. 𝑉 𝑁𝐹1 processes the packet and forwards it back to the same interface.
The returning packet again reaches br-int and matches rule 3, causing the destina-
tion MAC field to be changed to VMAC2 (00:00:00:01:00:0b) and the packet to be
forwarded to br-eth according to NORMAL flow action. When the packet reaches
br-eth, the forwarding mechanism in OvS applies the XOR operation over the hyper-
cube address of 𝐻4 (011𝐵𝐼𝑁) with the hypercube address portion of the destination
MAC address (00:00:00:01:00:0b→ 001𝐵𝐼𝑁), which gives 011 𝑋𝑂𝑅 001 = 010,
meaning there is only one possible move: 001 (change second bit of 011). Therefore,
packet is forwarded to host 𝐻2 (hypercube address 001𝐵𝐼𝑁 or 1𝐷𝐸𝐶).

4. At H2: When the packet reaches br-eth, the forwarding mechanism in OvS verifies
that the destination MAC address (00:00:00:01:00:0b) points to a VM in that
same host, and forwards the packet to br-int. When the packet reaches br-int, the
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flow matches rule 4, causing the destination MAC field to be changed to 𝑉𝑀𝑑𝑒𝑠𝑡

MAC (00:00:00:01:54:1b), and the packet to be forwarded to port 5, where 𝑉𝑀𝑑𝑒𝑠𝑡

is connected. Finally, the packet that reaches destination is exactly equal to the
packet that left source and, therefore, the SFC happens transparently to 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒

and 𝑉𝑀𝑑𝑒𝑠𝑡.

4.3 Evaluation

In order to evaluate the proposed orchestration architecture (Section 4.1) and its SFC
strategy (Section 4.2.4), three set of experiments were carried out in the testbed described
in Section 4.2.2. The first set aims to demonstrate that VirtPhy orchestration architecture
can provision a service chaining request. The second set aims to analyze the impact of the
proposed SFC strategy in the service performance, considering latency and jitter. Finally,
we present a throughput analysis of the proposed architecture. Each test was run 30 times
and the graphs present the mean of the different runs. Variance, standard deviation, and
confidence intervals are not shown because they were not significant.

The test scenario is illustrated in Fig. 4.8. Initially, virtual machines 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 and
𝑉𝑀𝑑𝑒𝑠𝑡 are hosted by servers 𝐻1 and 𝐻2, respectively. As shown in Fig. 4.8.a, the NFV
Orchestrator receives a service request 𝑟1 = ⟨𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒,𝑉 𝑀𝑑𝑒𝑠𝑡 : 5000,[𝑡1,𝑡2],200𝑀𝑏𝑝𝑠⟩,
i.e., a 200Mbps traffic originated in 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 and destined to 𝑉𝑀𝑑𝑒𝑠𝑡, port 5000, must
pass through a VNF of type 𝑡1 and VNF of type 𝑡2, in this order. For testing purposes,
we consider types 𝑡1 and 𝑡2 implement a socket application that receives the packets and
send them back to the same network interface.

From the service request, the NFV Orchestrator decides to place VNF 𝑆𝐹𝐹1 of type
𝑡1 and 𝑆𝐹𝐹2 of type 𝑡2 at servers 𝐻3 and 𝐻4, respectively. This placement decision

r1 = { VMsource, VMdest, [t1,t2], 200 Mpbs }

p1 = {H1, H3, H4, H2}

H1

SFF1

H3 H4 H2

SFF2
t1 t2

VMsource VMdest

(4.8.a)

VMsource VMdest

SFF2

000

011010

001

SFF1

(4.8.b)

Figure 4.8: SFC test: (a) Service request. (b) SFC scenario: 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑆𝐹𝐹1 →
𝑆𝐹𝐹2→ 𝑉𝑀𝑑𝑒𝑠𝑡. Source: [Dominicini et al. 2017].
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is passed to the VIM component, implemented in OpenStack as described in Section
4.2.2, that creates the virtual machines for 𝑆𝐹𝐹1 and 𝑆𝐹𝐹2 in the assigned host (with
the correct MAC addresses) and attaches then to a virtual network. All the VMs and
VNFs are connected to the same private network, which means they do not need the
intermediation of the Network node from OpenStack to communicate with each other
and use the hypercube connections for that purpose.

After the placement, the NFV Orchestrator communicates with the SDN Controller
that installs flow rules as shown in Table 4.3 according to our proposed SFC strategy
(Section 4.2.4): rules number 1, 3, 4, 7 , 8, and 11 are used to steer traffic in the direction
𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑆𝐹𝐹1 → 𝑆𝐹𝐹2 → 𝑉𝑀𝑑𝑒𝑠𝑡, and rules number 2, 4, 6, 8, 10, and 12 are
used to steer traffic in the opposite direction (𝑉𝑀𝑑𝑒𝑠𝑡 → 𝑆𝐹𝐹2 → 𝑆𝐹𝐹1 → 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒).
At this point, placement and SFC decisions are already applied in the testbed using our
orchestration architecture, as shown in Fig 4.8.b, and tests can be executed.
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Figure 4.9: SFC Test 1: iperf traffic for SFC 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑆𝐹𝐹1 → 𝑆𝐹𝐹2 → 𝑉𝑀𝑑𝑒𝑠𝑡:
(a) Traffic at source. (b) Traffic at SFF1. (c) Traffic at SFF2. (d) Traffic at destination.
Source: [Dominicini et al. 2017].

In the first test (Fig. 4.9), we consider only the one way traffic originated in 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒

and terminated in 𝑉𝑀𝑑𝑒𝑠𝑡. During the test duration, 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 sends a 200Mbps UDP
traffic using the iperf tool to 𝑉𝑀𝑑𝑒𝑠𝑡, port 5000, and this traffic must be steered to VNFs
𝑆𝐹𝐹1 and 𝑆𝐹𝐹2, in this order. Initially, as shown in the interval from 0 to 10𝑠 in Fig.
4.9, 𝑆𝐹𝐹1 and 𝑆𝐹𝐹2 are forwarding traffic. Because the VNFs receive the traffic and
send it back to the same interface, it is possible to see the total bandwidth (400Mbps)
perceived by them is twice the bandwidth sent by 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 (200Mbps), as shown in Figs.
4.9.b and 4.9.c. 𝑉𝑀𝑑𝑒𝑠𝑡 receives 200Mbps of traffic during this interval (Figs. 4.9.d).

From 10𝑠 to 20𝑠, the forwarding function at 𝑆𝐹𝐹1 is turned off and, as expected, we
can see the following consequences: traffic drops from 400 Mbps to 200 Mbps at 𝑆𝐹𝐹1

(Fig. 4.9.b), because traffic enters in network interface, reaches 𝑆𝐹𝐹1, but does not
return; and traffic drops to zero in 𝑆𝐹𝐹2 and 𝑉𝑀𝑑𝑒𝑠𝑡 (Fig. 4.9.c and 4.9.d), because it
was interrupted at 𝑆𝐹𝐹1. From 20𝑠 to 40𝑠, 𝑆𝐹𝐹1 is turned on again and the traffic
returns to initial conditions. From 40𝑠 to 50𝑠, the forwarding function at 𝑆𝐹𝐹2 is now
turned off and, as expected, we can see the following consequences: traffic continues at
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Figure 4.10: SFC tests for traffic passing through SFC and normal traffic going directly
from source to destination. (a) Test 2: Jitter over time. (b) Test 3: Latency over time.
Source: [Dominicini et al. 2017].

400 Mbps 𝑆𝐹𝐹1 (Fig. 4.9.b), because the interruption happens after 𝑆𝐹𝐹1; traffic drops
from 400 Mbps to 200 Mbps at 𝑆𝐹𝐹2 (Fig. 4.9.c), because traffic enters in network
interface, reaches 𝑆𝐹𝐹2, but does not return; and traffic drops to zero in 𝑉𝑀𝑑𝑒𝑠𝑡 (Fig.
4.9.d), because it was interrupted at 𝑆𝐹𝐹2. From 50𝑠 to 60𝑠, 𝑆𝐹𝐹2 is turned on again
and the traffic returns to initial conditions.

In the second test, we compare jitter in the SFC scenario with three hops (Fig. 4.8.b,
direction 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑆𝐹𝐹1→ 𝑆𝐹𝐹2→ 𝑉𝑀𝑑𝑒𝑠𝑡) with the normal scenario when traffic
goes directly from 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 to 𝑉𝑀𝑑𝑒𝑠𝑡 without SFC (one single hop). During the test
duration, 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 sends a 200Mbps UDP traffic using the iperf tool to 𝑉𝑀𝑑𝑒𝑠𝑡, and
𝑆𝐹𝐹1 and 𝑆𝐹𝐹2 are forwarding traffic without interruption. Fig 4.10.a shows that the
jitter has increased from approximately 0.06𝑚𝑠 to approximately 0.08𝑚𝑠 when performing
SFC. Thus, even with addition of two extra hops, the SFC didn’t cause great degradation
in the jitter, which is small in both scenarios.

To understand SFC impact over latency, a third test was performed using the ping
tool (Fig. 4.10.b). Similarly to the jitter experiment, we considered a scenario with the
same SFC (Fig. 4.8) and another scenario with direct communication between 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒

and 𝑉𝑀𝑑𝑒𝑠𝑡. This test is important, because, differently from tests 1 and 2, it needs
rules for both directions: 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑆𝐹𝐹1 → 𝑆𝐹𝐹2 → 𝑉𝑀𝑑𝑒𝑠𝑡 (ping request), and
𝑉𝑀𝑑𝑒𝑠𝑡 → 𝑆𝐹𝐹2 → 𝑆𝐹𝐹1 → 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 (ping reply). The results in Fig. 4.10.b show
that latency increases from approximately 1𝑚𝑠 to approximately 2𝑚𝑠 in the scenario with
SFC when compared with the scenario without SFC. This latency growth is acceptable
and expectable, because we added two more hops with SFC and the forwarding functions
were implemented in application layer using sockets.

The fourth test (Fig. 4.11) compares the throughput sent by 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒 with the
throughput received in 𝑉𝑀𝑑𝑒𝑠𝑡, in the SFC scenario (Fig. 4.8) and in the normal sce-
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Figure 4.11: SFC Test 4: Source throughput vs. Destination throughput for
SFC traffic and normal traffic going directly from source to destination. Source:
[Dominicini et al. 2017].

nario without SFC. We incremented the source throughput from 100Mbps to 800Mbps,
in a total of eight iterations. For each iteration, we sent a UDP traffic from 𝑉𝑀𝑠𝑜𝑢𝑟𝑐𝑒

to 𝑉𝑀𝑑𝑒𝑠𝑡 during 60s, using the iperf tool. For each source throughput value, Fig 4.11
shows the mean of all the destination throughput measurements considering the duration
of each iteration (60s). As expected, in the normal scenario without SFC (only one hop),
the packet loss is negligible, i.e., the destination throughput is approximately equal to the
source throughput. However, this graph also shows that even with the addition of two
more hops in the SFC scenario, the throughput perceived by the destination is very close
to the throughput sent by the source and, in the worst case, when the source throughput
is 800Mbps, the packet loss is at most 1.5%.

Since network functions (SFF1 and SFF2) use an application layer forwarding based on
sockets, results from Tests 3 and 4 could be further improved if we use lower layer network
functions or technologies that bypass the conventional Operating System network stack,
such as Intel DPDK.

4.4 Concluding remarks

With the proposal of VirtPhy, a fully programmable NFV orchestration architecture based
on server-centric topologies, we showed that DC network infrastructures and orchestration
mechanisms based on server-centric DCNs can meet the requirements of NFV services in
edge DCs. Moreover, we presented a distributed SFC scheme, which integrates NFV and
SDN to take benefit of the physical network topology and enable SFC in DC environments
based on software switches.
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Compared to traditional approaches, VirtPhy provides more information about in-
frastructure and topology, and also, more orchestration mechanisms to actuate in the
infrastructure in real time. Therefore, the NFV Orchestrator is able to make more effi-
cient and agile orchestration decisions. In addition, server-centric topologies along with
software switches and open source protocols allow VirtPhy to support innovation with
low cost, which is specially important for edge DCs. Moreover, the integration between
the NFV Orchestrator and the SDN Controller improves placement and SFC decisions,
while the adopted algorithmic routing scheme reduces control plane overload, allowing
VirtPhy to meet throughput and latency constraints for NFV services.

To demonstrate VirtPhy, we implemented a testbed in a real DC with a production
cloud platform based on the hypercube topology. The experiments showed the feasibility
of using VirtPhy orchestration mechanisms to provision NFV services that traverse a
chain of VNFs. Besides, results demonstrated that our distributed SFC solution is able to
minimize performance impacts on latency, jitter, and throughput, when steering a traffic
through a SFC.

As future work, we plan to investigate other routing schemes and server-centric topolo-
gies. In addition, we plan to tackle performance issues of software switches by imple-
menting Kernel-Bypass features with Intel DPDK, and to explore other technologies that
promise programmable packet processing at line rate, such as SmartNICs and NetFPGAs.

VirtPhy exploits specific properties of the underlying topology to perform SFC. This
can be considered an advantage for gaining performance in some cases. However, this
may also restrict the infrastructures where it can be deployed, especially because some
topologies do not provide a efficient routing algorithm, and some algorithms may not work
properly in the event of link or node failures. Moreover, for some use cases the use hybrid
or network-centric DCNs may be more adequate than server-centric DCNs. Besides, the
path selection may be limited by the algorithmic routing of the underlay.

The next chapter will extend the ideas developed in VirtPhy to present KeySFC, a
SFC scheme with topology-independent data plane implementation that can be deployed
in any DCN. It is based on RNS-based SSR and simple modulo operations for taking
forwarding decisions. In this way, KeySFC can cover broader SFC scenarios and achieve
improved expressiveness, while delivering good performance.



Chapter 5

KeySFC: SFC Scheme

This chapter proposes KeySFC [Dominicini et al. 2019], a new SFC scheme that explores
algorithmic SSR. We argue that to make optimal use of network capacity, it is crucial to
replace tables on the routing stage by an efficient algorithmic forwarding mechanism, using
tables only to classify flows for SFC. To that purpose, we extend the idea of network fabric
[Casado et al. 2012, Martinello et al. 2014] to intra-DC server-based networking, creating
a clear separation between (i) programmable edge elements that provide SFC classification
using software switches, and (ii) core elements that are only devoted to efficient packet
transport using a RNS-based SSR mechanism [Martinello et al. 2014] (see Section 2.2.1).
Also, in contrast to traditional SFC solutions that focus only on network-centric DCNs,
KeySFC supports server-centric and hybrid DCNs. Moreover, we implement and vali-
date KeySFC in a proof-of-concept testbed orchestrated by OpenStack, demonstrating its
feasibility in production DCs.

Section 5.1 presents the KeySFC proposal. Afterwards, we describe our proof-of-
concept implementation and its evaluation in Section 5.2. Finally, we outline the conclu-
sions and future works in Section 5.4.

5.1 Proposal

5.1.1 Architecture

The KeySFC architecture, shown in Fig. 5.1, complies with the ETSI NFV standard
[ETSI NFV ISG 2014], where hardware resources are managed by a MANO block, formed
by a VIM, VNFM, and a NFVO (see Section 2.4.2). The NFV Infrastructure block is
composed by COTS servers and switches, both programmable by an SDN Controller. In
addition, there is a data repository shared by these blocks.

The NFVO is responsible for traffic engineering, and generates placement and SFC
decisions based on service requests. When new requests arrive, the NFVO interacts with
the data repository, and computes the status of the NFV infrastructure to take placement
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Figure 5.1: KeySFC architecture, and example for chain VMS→ SF1→VMD.

and SFC decisions. The placement decisions are sent to the VIM and to the VNFM, and
the SFC decisions are sent to the SDN Controller. Then, the VIM interacts with hyper-
visors in the servers to create or migrate SFs, and to establish virtual networks between
them. The VNFM manages the life cycle of SFs. The SDN controller is responsible for
converting the SFC decisions into forwarding rules installed in the software switches of
the servers. A KeySFC-enabled server is composed by four elements (Fig. 5.1):

1. VMs that act as sources and destinations of packets.

2. VMs that host SFs.

3. An edge switch (in yellow), called Eswitch: a software switch that serves as both
ingress and egress element for traffic entering and leaving VM instances. It supports
the OpenFlow protocol, and is managed by the SDN Controller, which installs
forwarding rules to tag and steer SFC traffic.

4. A core switch (in green), named Cswitch, which connects to physical network inter-
faces, and handles communication between VMs that reside in different servers by
using a RNS-based SSR mechanism inspired in KeyFlow [Martinello et al. 2014]. It
can be implemented as a software or a hardware switch.

Fig. 5.1 also shows that KeySFC fits various DCN architectures designs. For ar-
chitectures based on hardware switches (i.e., network-centric, and hybrid DCNs), these
switches are implemented as core elements (e.g. Switches A and B). On the other hand,
in server-centric architectures, servers are directly interconnected, and there is no need to
have hardware switches as the server itself contains a Cswitch element for routing.

5.1.2 KeySFC underlay routing design

KeySFC replaces table lookup operations by a modulo operation using RNS-based SSR,
as described in Section 2.2.1. The adopted scheme can be applied in any topology, and
uses SSR to explicitly define all nodes in the SFP.

The routing in KeySFC relies on two identifiers: a node identifier, called nodeID , and
a route identifier, called routeID . The set of nodeIDs is composed by pairwise co-prime
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numbers, which are assigned by the SDN Controller to each Cswitch of the topology in a
network configuration phase. The routeIDs are tagged in the Ethernet header of packets,
as a design choice, when they traverse Eswitches (more details in Section 5.1.3.1). The
forwarding in each node is defined by the remainder of the division of the routeID of
the packet by the nodeID of the Cswitch, which gives the output port. Thus, forwarding
nodes perform a simple operation over L2 headers to find the output port.

The implementation of Cswitches can be done by modifying the datapath of devices
based on Open vSwitch (OvS), by using NetFPGAs [Martinello et al. 2017], or by explor-
ing devices that support the P4 language. Besides, KeySFC allows performance optimiza-
tion in the Cswitches of servers. Although the basic approach uses software switches (as
implemented in the prototype of Section 5.2), it can be extended by offloading forwarding
tasks to specialized devices (e.g., a networking co-processor SmartNIC).

5.1.3 How does KeySFC work?

5.1.3.1 KeySFC protocol

Since SFC is transparent to source and destination, the network needs mechanisms to
classify the traffic when it leaves the source, and steer the flow through the SFC. The
main idea behind our proposal is that any traffic flow that traverses Eswitches, and is
part of a chain, will be classified by matching pre-installed flow rules. Such rules are
installed by the SDN Controller and rewrite Ethernet MAC addresses in order to give a
new meaning for that set of bits, called virtual MAC (VMAC) in our approach.

The VMAC can use the 48 bits of the Destination MAC (DstMAC) address in the
Ethernet frame, or combine the 96 bits of DstMAC and Source MAC (SrcMAC) addresses.
The choice of whether to use one or two MAC addresses is coupled with the maximum bit
length of the routeID (as explained in Section 5.1.2), and depends on design choices when
deploying KeySFC, such as number of nodes, number of chains, and number of segments
per chain.

Fig. 5.2 shows the format of a VMAC address. It is is divided in two parts: the most
significant 16 bits represent the segID , and the remaining bits (32, if using only DstMAC,
or 80, if using DstMAC and SrcMAC) represent the routeID . The segID uniquely identifies
the current chain segment, and, when the segment ends, it is used to match a flow entry
that defines the next segment. The routeID is used by each hop in the forwarding path
to define the next hop using RNS-based SSR.

It is important to highlight that the use of the MAC address field to encapsulate the
SFC information was a design choice, and the same approach could be adapted to use
other kinds of encapsulation, such as NSH or MPLS headers, or even a new header. The
main advantages of using existing headers are the reduction of header overhead and the
compatibility with legacy forwarders and SFs. On the other hand, some SFs may require
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Figure 5.2: VMAC address format.

to read or modify the MAC addresses. This can be solved with the addition of a Proxy
between the SFFs and SFs, as defined in RFC 7665 [Halpern and Pignataro 2015].

When receiving SFC decisions from the NFVO, the SDN Controller splits each chain
in segments, and calculates the VMAC for each segment. Then, it installs flow entries in
Eswitches to tag packets with the corresponding VMACs. Initially, the packet leaves the
source VM, and reaches the Eswitch of the host server. There, it matches a flow entry
that performs classification based on 5-tuple, and tags the first VMAC into the packet. If
the next SF in the chain is located in the same server, the packet is directly sent to that
SF. Otherwise, the packet is sent to the Cswitch. At each hop, the forwarding mechanism
in the Cswitches performs a modulo operation over the packet’s routeID to find the next
hop.

These stateless operations take place along the path until the packet reaches the server
hosting the endpoint SF of that SFC segment, and is forwarded to the Eswitch of that
server. There, the packet’s VMAC matches a flow entry that redirects the packet to the
SF. After processing, the SF sends the packet back to the Eswitch, where the current
VMAC matches another flow entry that tags the VMAC of next segment into the packet.

These steps are repeated for all segments, until the packet arrives at the host of the
destination VM. Finally, a flow entry at the Eswitch changes the VMAC field to the
original MAC addresses, and the packet is forwarded to the destination VM. It is impor-
tant to note that the packet that reaches destination is exactly equal to the packet that
left source. Moreover, only the endpoints of each SFC segment have to maintain states,
making our approach more scalable and agile than traditional table-based approaches.

5.1.3.2 A day in the life of a SFC request

This section provides a step-by-step example of how KeySFC executes a SFC request.
Consider the illustrative scenario shown in Fig. 5.3: a 5-node server-centric topology
that provisions the SFC VMS→ SF1→VMD. We have two segments: VMS→ SF1, and
SF1→VMD. The first segment is mapped to two hops in the underlay (S1→ S3, and
S3→ S4), and the second segment is mapped to a single hop (S4→ S2).

Initially, the controller assigns the nodeIDs to servers (9, 11, 13, 17, 19), splits the
chain in two segments, and calculates the identifiers: VMAC1 (routeID1 = 4051, segID1
= 10) for segment VMS→ SF1, and VMAC2 (routeID2 = 30, segID2 = 100) for segment
SF1→VMD. Then, it installs flow entries at Eswitches, as shown in Table 5.1. When
VMS sends traffic to VMD the following events happen:
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(5.3.a) Detailed scenario.

(5.3.b) Overlay and underlay.

Segment1 (VMS-SF1): VMAC1 
segID1= 10 | routeID1= 4051 

S1: <4051>19 = 4 
S3: <4051>17 = 5 
S4: <4051>13 = 8 

 
Segment2 (VNF-VMD): VMAC2 

segID2= 100 | routeID2= 30 
S4: <30>13 = 4 
S2: <30>11 = 8

(5.3.c) Forwarding operations.

Figure 5.3: KeySFC example (VMS→ SF1→VMD).

Table 5.1: Simplified flow tables at Eswitches.

# Server Match Action

1 S1 SrcIP=IP VMS; L4DstPort=P1 DstMAC=VMAC1; Out to Cswitch
2 S4 DstMAC=VMAC1 Out to SF1
3 S4 DstMAC=VMAC1; InPort=SF1 port DstMAC=VMAC2; Out to Cswitch
4 S2 DstMAC=VMAC2 DstMAC=MAC VMD; Out to VMD

1. At S1: A packet leaves VMS and reaches the Eswitch, where the flow matches rule
1, causing the DstMAC to be changed to VMAC1 and the packet to be forwarded
to the Cswitch. In the Cswitch, the modulo operation of routeID1 by the nodeID of
S1 gives < 4051 >19= 4. Thus, the output port is 4, and the packet is forwarded to
host S3.

2. At S3: When the packet reaches the Cswitch, the modulo operation of routeID1 by
the nodeID of S3 gives < 4051 >17= 5. Therefore, the packet is forwarded to port
5, which is connected to S4. The packet does not go up to the Eswitch, because S3
only forwards traffic.

3. At S4: When the packet reaches the Cswitch, the modulo operation of routeID1 by
the nodeID of S4 gives < 4051 >13= 8. Thus, it forwards the packet to the Eswitch,
where it matches rule 2, causing the packet to be sent to SF1. SF1 processes the
packet and forwards it back to the same interface. The returning packet reaches the
Eswitch and matches rule 3, causing the DstMAC to be changed to VMAC2, with
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the packet being sent to the Cswitch. There, computing the modulo of routeID2 by
the nodeID of S4 gives < 30 >13= 4. Therefore, the packet is sent to S2 via port 4.

4. At S2: When the packet reaches the Cswitch, the modulo operation of the routeID2
by the nodeID of S2 gives < 30 >11= 8. Thus, the packet is sent to the Eswitch,
where the flow matches rule 4, causing the DstMAC to be changed to the MAC
VMD, and the packet to be delivered to VMD.

5.1.4 KeySFC control plane

The control plane has five fundamental roles in KeySFC: (i) topology discovery and mon-
itoring; (ii) configuration of nodeIDs for Cswitches ; (iii) management of chain segments;
(iv) installation of flow rules in Eswitches according to SFC decisions; and (v) ARP proxy.

To perform these tasks, the SDN Controller has to have full knowledge of the network
topology, the SFC requests, the SFs that serve these requests, and the specific virtual ports
where each SF is attached in each physical server. The information about the SFCs and
the SFs is obtained via communication with the NFVO or queries to the data repository.
The discovery and monitoring of the network topology uses the LLDP protocol.

Based on its centralized view of the infrastructure, the SDN Controller is responsible
for a network configuration phase, where it assigns a set of co-prime numbers to the
nodeIDs of servers and hardware switches. This is accomplished by communicating with
Cswitches via OpenFlow protocol.

Afterwards, the Controller calculates two identifiers for all the segments of all active
chains: the routeID and the segID . Then, the Controller installs forwarding rules in
the Eswitches using the OpenFlow protocol. These rules are responsible to classify the
flows and guarantee that, when entering in each chain segment, the flow is tagged with
its respective identifiers. The correlation between each chain and its respective segment
identifiers is persisted in the shared data repository.

Finally, the SDN Controller also acts as an ARP Proxy in order to reduce the impact
of broadcast. When a VMS at Server 1 wants to send packets to a VMD hosted in other
server, VMS sends an ARP request broadcast message with the IP of VMD. This message
is intercepted by the Eswitch of Server 1 and forwarded to the SDN controller that resolves
the address and sends an ARP reply message to the Eswitch, which, in turn, delivers the
message to VMS. Then, VMS can send data to VMD using the discovered MAC.

One advantage of KeySFC is the significant reduction of control plane signaling. Con-
sidering routing, the SDN Controller only answers ARP queries, since Cswitches execute
forwarding in a decentralized way without control plane communication. Other steps,
such as topology management, configuration of nodeIDs, and installation of flow entries
can happen in a prior network configuration phase in a proactive manner. So, considering
SFC, only update or creation of chains generate control plane communication.
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Figure 5.4: KeySFC prototype testbed.

5.2 Proof-of-concept and evaluation

This section evaluates a proof-of-concept implementation of the KeySFC scheme, which
is described in Section 5.2.1. Firstly, we present reference SFC scenarios that can capture
some trade-offs for SF placement and chaining in Section 5.2.2. Then, in Section 5.2.3,
we execute functional tests to check the correct behavior of our traffic steering scheme.
Afterwards, Section 5.2.4 evaluates the performance of KeySFC by measuring latency and
jitter on an end-to-end service. Finally, in Section 5.2.5, we test some traffic engineering
scenarios that explore steering functionalities offered by KeySFC.

5.2.1 Prototype

We implemented a proof-of-concept prototype of the KeySFC scheme for the 5-node
server-centric topology of Fig. 5.4. It implements all the KeySFC architectural com-
ponents, as presented in Fig. 5.1: servers, NFVO, NFVM, VIM, and SDN Controller.

The OpenStack platform was selected as our VIM and VNFM because its server net-
working architecture is organized in two layers, implemented as OvS bridges, that could
be adapted to our scheme. To this end, the KeySFC RNS forwarding algorithm was
implemented in the OvS datapath module of Cswitches. The OpenStack deployment in-
cludes a Cloud and a Network Controller [Openstack 2017]. The SDN Controller was
implemented using the Ryu framework. The NFVO is a Python application that has a
CLI interface to receive SFC requests, and integrates with the OpenStack Controllers and
the SDN Controller.

The testbed is composed by 9 physical servers running Linux Ubuntu, as shown in
Fig. 5.4: 5 server nodes (S1-S5), one NFVO, one SDN Controller, one OpenStack Cloud
Controller, and one OpenStack Network Controller. Each server node has one Intel Xeon
E5-2620 2.4 GHz processor, 16GB of memory, and four or five 1Gbps Ethernet NICs:
one is connected to the OpenStack data network, one is connected to the OpenStack
management network, and the remaining are connected to other servers to build the
server-centric topology of Fig. 5.4.
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The basic behavior of a SF is to receive packets, to perform some processing that
may or not modify packets, and to send packets to the next hop. The time a SF spends
processing packets and the nature of the modification it performs in the packets is deeply
related to the specific application. In our proof-of-concept, to isolate the effects of the
SFC mechanism itself from the performance limitations of specific SFs, all the SFs in
our test scenarios implement a forwarding function. In this way, we can state that the
performance evaluation conducted in this paper is influenced only by the KeySFC scheme
and not caused by the behavior of one or more specific SF. To implement this forward
function, we create an OvS bridge inside the VM of the SF and install a single flow entry
to redirect the traffic back to Eswitch when it reaches the SF.

5.2.2 Reference SFC scenarios

One SFC segment is the path between two VMs, which can be of three types: source, SF,
or destination. When installing SFC rules, it is necessary to verify the following cases for
each segment:

1. Source and destination endpoints of that segment are SFs;

2. Source endpoint of that segment is also the source of the chain; or

3. Destination endpoint of that segment is also the destination of the chain.

For each case, it is necessary to verify the following subcases: (a) VMs are allocated in
the same server, and (b) VMs are allocated in different servers.

When the two endpoints of a segment are in different servers, a routeID must be
generated for routing in the physical network. Also, a flow entry in the Eswitch of the
source endpoint should include this identifier in the packet header, and send it to the
Cswitch. If the endpoints are in the same server, the flow remains in the Eswitch, but is
redirected to the input port of the VM that is the destination of that segment. Moreover,
for Case 3, where the VM is also the destination of the chain it is necessary to replace
the VMAC by the real MAC of the destination to terminate the chain.

To cover different combinations between these cases and subcases, we designed four
reference scenarios presented in Fig. 5.5. Scenario 1 (SC1) and Scenario 2 (SC2) have
one single SF, but the later covers the case where the SF is placed in the same server of
destination. Besides, SC1 involves segments with 1 and 2 hops in the physical network,
while SC2 involves segments with 0 and 3 hops in the physical network. On the other
hand, both Scenario 3 (SC3) and Scenario 4 (SC4) have two SFs, but, in SC4, both SFs
are placed in the same server. In addition, SC3 only involves segments with 1 hop in
the physical network, while SC4 involves segments with 0, 1, and 2 hops in the physical
network, diversifying the routing combinations to test KeySFC. The case where the source
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(5.5.a) SC1. (5.5.b) SC2. (5.5.c) SC3. (5.5.d) SC4.

Figure 5.5: Reference scenarios exploring different placement strategies: (a) in SC1, 1
SF and all VMs in different servers; (b) in SC2, 1 SF allocated with VMD; (c) in SC3, 2
SFs and all VMs in different servers; and (d) in SC4, 2 SFs allocated in the same server.
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Figure 5.6: Throughput results for functional tests: (a) in SC1, SF1 is off from 20𝑠 to
30𝑠; and (b) in SC3, SF1 is off from 20𝑠 to 30𝑠 and SF2 is off from 40𝑠 to 50𝑠.
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Figure 5.7: Jitter and latency results comparing reference scenarios with baseline (BL).

VM is allocated in the same server as a SF was also tested, but results were omitted
because they were similar to the case where the destination is allocated with a SF.

We compare the results of the reference scenarios with a baseline scenario (BL) pre-
sented in Fig. 5.7.a, when traffic goes from VMS to VMD without going through any SF.
To keep consistency, the end-to-end path in the underlay is always the same for all the
reference scenarios, only the SFs used in the overlay change.

5.2.3 Functional test

This first test is intended to verify the correct operation of KeySFC in our reference
scenarios (Fig. 5.5). We want to show that all traffic that leaves the source is intercepted
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and steered through the specified SFs in the right order, and arrives at destination. To
this end, we turn off one SF of the chain at a time, and check that nodes positioned after
such SF stop to receive traffic while the SF is not forwarding.

Fig. 5.6 shows the functional tests for scenarios SC1 and SC3, as specified in Fig.
5.5. Results for SC2 and SC4 were omitted, because they follow the same behavior as
SC1 and SC3, respectively. In Fig. 5.6, at instant 10𝑠, VMS starts to send a 200Mpbs
UDP traffic using the iperf tool to VMD, and this traffic must be steered through one
or two SFs, depending on the scenario. From 10 to 20𝑠, all the SFs are forwarding traffic.
SFs perceive a total bandwidth that is twice the bandwidth sent by VMS (200Mpbs),
because they receive traffic and send it back to the same network interface. VMD receives
200Mpbs of traffic during this interval. From 20𝑠 to 30𝑠, the forwarding function at SF1
is turned off, so traffic drops from 400Mpbs to 200Mpbs at SF1, because traffic enters
in network interface, reaches SF1, but does not return. Besides, traffic drops to zero in
VMD and SF2 (for scenarios with two SFs), because it was interrupted at SF1. At instant
30𝑠, SF1 is turned on again, and traffic returns to initial conditions, proving that it was
indeed passing through SF1.

In scenarios with two SFs, we repeat the same procedure for SF2, turning it off during a
10s interval, and we see that VMD stops receiving traffic, but nodes in a previous position
in the chain (i.e., VMS and SF1) continue to receive traffic normally. These tests show
that, for all scenarios, packets were indeed steered through each SF in the correct order,
and that VMD correctly receives traffic sent by VMS after the SFC.

5.2.4 Performance tests

5.2.4.1 Latency and jitter on reference scenarios

In this first set of performance tests, we measure end-to-end latency and jitter in the
reference scenarios (Fig. 5.5). Each test was run for 60𝑠, graphs present the mean of the
values in the interval, and bars represent standard deviation.

The first test (Fig. 5.7.b) aims to understand SFC impact on latency, and uses ping

to send an ICMP message from VMS to VMD. It needs SFC rules in both directions to
guarantee that both ICMP request and reply messages pass through the same SFs, but
in reverse order. The results show that latency increases from approximately 0.8𝑚𝑠 in
the baseline scenario to an average of 1.2𝑚𝑠 in scenarios with one SF, and to an average
of 1.5𝑚𝑠 in scenarios with two SFs. This impact in latency is expected, because SFC
scenarios add extra hops when passing through the SFs.

The second test, shown in Fig. 5.7.c, compares jitter in the reference scenarios to
the baseline. VMS sends a 200𝑀𝑏𝑝𝑠 UDP traffic using iperf to VMD, and SFs forward
traffic without interruption. Our first observation is that there are small differences in the
median: 0.05𝑚𝑠 for the baseline against approximately up to 0.06𝑚𝑠 in all SFC scenarios.
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Figure 5.8: Scenarios for evaluating the impact of SFC length.
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(5.9.a) Scenario of Fig. 5.8.a.
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(5.9.b) Scenario of Fig. 5.8.b.

Figure 5.9: Latency results when chain length varies from 1 to 10.

Even when one or two hops are added in the chain, there is no considerable degradation
in jitter, keeping it quite small. Also, the box plot shows that the distributions are well
behaved, varying from 0.04 to 0.07𝑚𝑠 for the 75 percentis, with jitter reaching 0.1𝑚𝑠 only
in the worst case of SC1. Thus, these results indicate that the KeySFC scheme has no
strong impact on jitter, which remains very small independently of the number of SFs for
the reference scenarios. Also, the distributions can be considered statistically equivalent
for all scenarios, which can be later explored by jitter sensitive applications.

5.2.4.2 The impact of chain length in latency

This test investigates how the chain length impacts end-to-end latency in KeySFC. To this
end, we analyze latency growth by increasing chain length from 1 (VMS→ SF1→VMD)
to 10 (VMS→ SF1→ SF2→ SF3→ SF4→ SF5 → SF6→ SF7→ SF8→ SF9→ SF10→
VMD). In each of these steps, we add one extra SF between VMS and VMD.

We analyze two placement scenarios: when all SFs are allocated in the same server
(Fig. 5.8.a), and when consecutive SFs are allocated in alternating servers (Fig. 5.8.b).
In the first scenario, the hops between SFs are executed in the Eswitch of the same server,
so packets do not need to be routed in the physical network. On the other hand, in
the second scenario, each segment in the overlay is mapped to one hop in the physical
layer, passing through the Eswitches and Cswitches of two servers. The second scenario
is also relevant to prove that KeySFC is able to represent loops in the physical network,
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considering the end-to-end chain.
Fig. 5.9 shows average latency values measured using ICMP in different chain lengths

for both scenarios. The bars represent the standard deviation of our measurements, and
each test was run 60 times. Both charts show that latency grows in a close-to-linear fashion
for up to 10 SFs in the chain. As the second scenario (Fig. 5.8.b) involves routing in the
physical network, we note an overall increase in the latency measurement. Nevertheless,
this growth goes only from 3.2𝑚𝑠 in the first scenario to 4.3𝑚𝑠 in the second scenario,
even in the worst case when the chain length is 10, showing the routing in the physical
network is efficient.

5.2.5 Traffic engineering enabled by KeySFC

One of the main contributions of KeySFC is to provide the appropriate SFC mechanisms
to the NFVO, so traffic engineering can select any path and take optimal placement and
chaining decisions. This section explores some traffic engineering scenarios that can be
enabled by KeySFC.

5.2.5.1 Allocation of maximum bandwidth with path migration

Consider the NFVO has to embed the following SFC request in our test topology: VMS→
SF1→VMD. The goal is to dynamically provide the maximum bandwidth to a TCP flow
in a SFC.

Fig. 5.10.a shows VMS and VMD are allocated in servers S1 and S2, respectively.
Besides, there are two different paths with length 2 that connect VMS to SF1. Initially,
these paths present the following background traffic:

• Path 1: S1→ S5→ S4: with 400𝑀𝑏𝑝𝑠 UDP traffic.

• Path 2: S1→ S3→ S4: with 800𝑀𝑏𝑝𝑠 UDP traffic.

At the beginning of this experiment, the SFC request is embedded in Path 1, as shown
in Fig. 5.10.a, because it is the best choice. We send a TCP flow using iperf that will
use all the available bandwidth in the SFC. Fig. 5.10.c shows that the throughput at VMD

starts at approximately 560𝑀𝑏𝑝𝑠.
As NFV demands are very dynamic in a DCN, at any moment, the NFVO may

discover there is an alternative that may improve the bandwidth utilization for the TCP
flow under evaluation. This happens at instant 60𝑠, when Path 2 becomes idle and the
NFVO migrates this TCP flow from Path 1 to Path 2, causing the throughput at VMD

to increase to 980𝑀𝑏𝑝𝑠, as shown in Figs. 5.10.b and 5.10.c.
To perform the described path migration, the NFVO communicates with the SDN

Controller, which only have to execute a very simple flow mod operation to modify a



100

VMS VMD

SF1

S5 

S1 

S3 S4 

S2 

800Mbps

800Mbps

400Mbps

400Mbps

Legend: 

TCP Flow

UDP Flow

(5.10.a) Path 1

VMS VMD

SF1

S5 

S1 

S3 S4 

S2 

400Mbps

400Mbps

(5.10.b) Path 2

0 50 100 150
Time (s)

0

200

400

600

800

1000

G
oo
d
p
u
t
(M

b
p
s)

Change from Path 1 to Path 2

(5.10.c) Throughput at VMD

Figure 5.10: Traffic engineering for migration from Path 1 to Path 2: (a) Path 1 with con-
current 400Mbps UDP traffic, (b) Path 2 with no concurrent traffic, and (c) Throughput
results at VMD during migration test.

Table 5.2: Flow entries at S1 for paths 1 and 2.
Path Server Match Action

1 S1 SrcIP=IP VMS; L4DstPort=P1 DstMAC=VMAC1; Output to Cswitch
2 S1 SrcIP=IP VMS; L4DstPort=P1 DstMAC=VMAC2; Output to Cswitch

single flow entry at the Eswitch of S1. Table 5.2 shows the original flow entry that
embeds VMAC1 into the packet, which contains the routeID for Path 1. For selecting
Path 2, the only field that has to change is the action “DstMAC=VMAC2”, shown in the
second line of Table 5.2, as VMAC2 embeds the new route through Path 2. Even for
longer paths, no other changes would be required in the hops along the path, thanks to
strict SR. Once this single flow mod operation is executed, all the packets that leave VMS

will be tagged with the routeID of the new path.
Comparing KeySFC with traditional SFC schemes based on SDN approaches, the

path migration would involve changing flow entries in all the hops along the old and in
the new paths. Depending on the path length, this can represent a long delay to update a
large number of flow entries in switches that might be distributed, leading to consistency
problems and packet loss in a TCP flow. This time to reconfigure a path becomes even
more significant for chains with a large number of segments.

5.2.5.2 Agile path selection with replication of SFs

Apart from seamless path migration, the KeySFC mechanism allows to use replication
of distributed SFs instances that might be selected on demand. In this way, the NFVO
component can offer an extra degree of freedom by allowing the migration to a path that
uses a replicated SF instance. The goal is still to dynamically achieve the maximum
available bandwidth for a TCP flow that crosses VMS→ SF1→VMD.

Fig. 5.11.a shows VMS and VMD are allocated in servers S1 and S4, respectively.
Besides, there are three instances of the SF of type SF1 allocated in servers S2, S3, and
S5. Also, there are three different paths with length 3 that connect VMS to VMD passing
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Figure 5.11: Traffic engineering scenarios for different paths using SF redundancy: (a)
Path 1 with 600Mbps UDP traffic, (b) Path 2 with 400Mbps UDP traffic, and (c) Path 3
with no concurrent traffic.
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Figure 5.12: Throughput results when SFC migrates from Path 1 to Path 2, and from
Path 2 to Path 3 (see Figure 5.11).

through one instance of SF1. In the initial condition, these paths present the following
background traffic:

• Path 1: S1→ S2→ S4: with 400𝑀𝑏𝑝𝑠 UDP traffic.

• Path 2: S1→ S5→ S4: with 500𝑀𝑏𝑝𝑠 UDP traffic.

• Path 3: S1→ S3→ S4: with 500𝑀𝑏𝑝𝑠 UDP traffic.

Initially, the SFC request is embedded in Path 1, as shown in Fig. 5.11.a, and, as
in the previous experiment, we send a TCP flow using iperf to use all the available
bandwidth. Fig. 5.12 shows the flow is able to achieve approximately 530𝑀𝑏𝑝𝑠 at VMD.

At instant 60𝑠, the NFVO detects the utilization of Path 2 decreased to 300𝑀𝑏𝑝𝑠,
and decides to migrate the SFC from Path 1 to Path 2 using an extra SF1 instance that
was already provisioned, as shown in Fig. 5.11.b. In a similar way, at instant 130𝑠, Path
3 becomes idle, and the SFC migrates from Path 2 to Path 3, as shown in Fig. 5.11.c.
Fig. 5.12 presents throughput results when NFVO migrates the SFC from Path 1 to
Path 2, and from Path 2 to Path 3. In this test, we can see that the first migration was
able to increase the bandwidth from about 530𝑀𝑏𝑝𝑠 to about 660𝑀𝑏𝑝𝑠, and the second
migration was able to increase the bandwidth to about 980𝑀𝑏𝑝𝑠.

The cost of performing these operations in terms of flow entry modifications is the
same as the previous example: a flow mod operation. We highlight here one of the main
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Figure 5.13: Example of Multi-domain SFC.

contributions of our KeySFC scheme: NFVO takes placement, routing, and chaining
decisions in an integrated way. This integration allows traffic engineering tasks to make
optimal use of networking and processing resources. In most of current SFC approaches,
routing is a separate responsibility of the data plane, so SFC decisions are not integrated
to routing decisions. Also, data plane routing frequently restricts the NFVO to choose
one from a set of shortest paths, and, consequently, prevents traffic engineering to find an
optimal path for a SFC.

5.3 Multi-domain SFC

The proposals of this thesis focus on a single SFC domain. However, KeySFC scheme
could be extended to solve the SFC problem when SFs are distributed in multiple DCs
and administrative domains. Fig. 5.13 shows examples of SFC in single and multiple
domains.

The solution to the multi-domain problem does not require major adaptations in the
KeySFC scheme. Each domain can manage its own keys, and the switches/routers that
interconnect the domains (represented in orange in the figure) can act as SFC gateways.
When a flow crosses a domain, the SFC gateways have to match a flow entry containing
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the segID of the outgoing flow, and rewrite the VMAC according to the new segID and
routeID of the particular domain the flow is going to enter. A global orchestrator have to
manage these identifiers in SFC gateways across the different domains, and synchronize
this information with local orchestrators.

5.4 Concluding remarks

This chapter proposed, implemented, and evaluated KeySFC: a SFC scheme built up
over algorithmic SSR designed as a fabric network, separating edge and core switching
elements. With our proof-of-concept prototype orchestrated by OpenStack we demon-
strated that KeySFC is a feasible solution to the dynamic SFC problem in production
DCs. While current solutions are tailored to network centric DCNs, we showed that it is
possible to deploy SFC in any DCN topology, extending the infrastructures that can be
used to provide SFC.

In addition, performance results showed that the selected SSR mechanism based on
RNS can provide efficient packet transport with low latency and low jitter. We showed
also that our fabric SFC scheme is efficient in steering the SFC traffic by evaluating
different SFC scenarios. Finally, our PoC indicates KeySFC can provide programmable,
expressive, agile, and scalable mechanisms for the NFV orchestration to select and modify
paths for SFC according to the traffic engineering needs.

The dataplane implementation of KeySFC needs to be able to perform the modulo
operation over the routeID bits. However, the modulo and division operations do not
map to the instruction sets of most of the available network hardware. Although it
is possible to modify the datapath of devices based on OvS, as done in the prototype
of KeySFC, or develop a new implementation using NetFPGAs [Martinello et al. 2017],
both alternatives require a steep learning curve, and deep understand on how their internal
structures work. In addition, the former presents limited performance, and the later needs
specialized hardware that presents high cost per unit performance when compared to
traditional ASIC approach.

To tackle these issues, we present in the next chapter a new source routing mechanism,
named PolKA, to replace KeyFlow in the KeySFC scheme. This new mechanism is also
based on RNS, but it is implementable over COTS network hardware.



Chapter 6

PolKA: SSR Mechanism

PolKA (Polynomial Key-based Architecture) is a RNS-based SSR mechanism that applies
the Chinese Remainder Theorem (CRT) to finite fields of two elements [Schroeder 2009].
This shift from integer to polynomial binary arithmetic can enable performance optimiza-
tion and reuse of off-the-shelf network hardware, such as CRC, while portending new
network services. Furthermore, we investigate if PolKA can be deployed in commercial
programmable switches using P4 architecture and implemented with similar performance
to a Port Switching SSR approach. In this way, we can enable the exploitation of RNS-
based SSR in commercial hardware equipment.

This chapter is structured as follows. Section 6.1 proposes PolKA SSR mechanism,
demonstrates how it enables unicast and multicast SSR, and analyzes the scalability of
the routeID . Section 6.2 presents the design of PolKA and Port Switching according to
P4 Architecture. Section 6.3 describes and evaluates emulated and hardware prototypes
of PolKA and Port Switching. Finally, Section 6.4 discusses conclusions.

6.1 Proposal

This section proposes PolKA for unicast and multicast SSR, providing examples on how
to use the mechanism, and a scalability analysis.

6.1.1 Mathematical background

This section describes the mathematical foundation of PolKA mechanism. More informa-
tion can be found in [Herstein 1975, Shoup 2009].

Galois Field (GF): Let GF(2) = {0,1} be the GF of order 2. Bear in mind that the ele-
ments of GF(2) are residue classes modulo 2, and 𝑎 = 𝑏 in GF(2) means that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 2,
i.e., 𝑎− 𝑏 is a multiple of 2. The arithmetic operations of addition and multiplication in
GF(2) are defined modulo 2.
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Polynomial Ring over GF(2): The set of all polynomials in one variable 𝑡 with coeffi-
cients defined over GF(2) is a ring considering the arithmetic operations of addition and
multiplication modulo 2. If 𝑓(𝑡) = 𝑎𝑛𝑡

𝑛 + 𝑎𝑛−1𝑡
𝑛−1 + . . . + 𝑎1𝑡 + 𝑎0 is a polynomial over

GF(2), where 𝑎𝑛 ̸= 0, 𝑛 is defined as the degree of 𝑓(𝑡), denoted by 𝑑𝑒𝑔(𝑓). The length
of 𝑓(𝑡), denoted by 𝑙𝑒𝑛(𝑓), is defined by 𝑙𝑒𝑛(𝑓) = 𝑑𝑒𝑔(𝑓) + 1.

Euclidean Division Theorem for Polynomials: Let 𝑓(𝑡) and 𝑔(𝑡) be polynomials in one
variable 𝑡 over GF(2), where 𝑔(𝑡) ̸= 0. Then there exist unique polynomials 𝑞(𝑡) and 𝑟(𝑡)

over GF(2) such that 𝑓(𝑡) = 𝑔(𝑡).𝑞(𝑡) + 𝑟(𝑡), where either 𝑟(𝑡) = 0 or 𝑑𝑒𝑔(𝑟) < 𝑑𝑒𝑔(𝑔).
The polynomial 𝑟(𝑡) is called the remainder of the division of 𝑓(𝑡) by 𝑔(𝑡), and will be
denoted by < 𝑓(𝑡) >𝑔(𝑡).

Polynomial congruence: Given 𝑓(𝑡), 𝑔(𝑡), and ℎ(𝑡) polynomials over GF(2), we write
𝑓(𝑡) ≡ ℎ(𝑡) 𝑚𝑜𝑑 𝑔(𝑡), and say that 𝑓(𝑡) is congruent to ℎ(𝑡) modulo 𝑔(𝑡), if 𝑓(𝑡) =

𝑎(𝑡) · 𝑔(𝑡) + ℎ(𝑡) holds for some polynomial 𝑎(𝑡) over GF(2).

Irreducible Polynomials: A non-zero polynomial 𝑔(𝑡), is called a divisor of 𝑓(𝑡) over GF(2)
if 𝑓(𝑡) = 𝑎(𝑡).𝑔(𝑡), for some polynomial 𝑎(𝑡) over GF(2). Two polynomials 𝑓(𝑡) and 𝑔(𝑡)

over GF(2) are coprime if their only common divisor is 1. A non-constant polynomial
𝑓(𝑡) over GF(2) is called irreducible over GF(2) if its only divisors are possibly a constant
polynomial and itself.

Chinese Remainder Theorem (CRT) for polynomials: Let 𝑠1(𝑡), 𝑠2(𝑡), . . . ,𝑠𝑁(𝑡) be monic
pairwise coprime polynomials over GF(2) and let 𝑀(𝑡) =

∏︀𝑁
𝑖=1 𝑠𝑖(𝑡). There exists a unique

polynomial 𝑅(𝑡) over GF(2) with 𝑑𝑒𝑔(𝑅) < 𝑑𝑒𝑔(𝑀), satisfying 𝑅(𝑡) ≡ 𝑜𝑖(𝑡) 𝑚𝑜𝑑 𝑠𝑖(𝑡), for 𝑖 =

1,2, ...,𝑁 , where:

𝑅(𝑡) = < �̃�(𝑡) >𝑀(𝑡) (6.1)

�̃�(𝑡) =
𝑁∑︁
𝑖=1

𝑜𝑖(𝑡) ·𝑚𝑖(𝑡) · 𝑛𝑖(𝑡) (6.2)

𝑚𝑖(𝑡) = 𝑀(𝑡)/𝑠𝑖(𝑡) (6.3)

𝑛𝑖(𝑡) ·𝑚𝑖(𝑡) ≡ 1 𝑚𝑜𝑑 𝑠𝑖(𝑡) (6.4)

The computation of the polynomials 𝑛𝑖(𝑡) is based on the definition of polynomial con-
gruence given above, and can be implemented using the Extended Euclidean Algorithm
for polynomials, which basically consists of Euclidean Division Theorem applied several
times.
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6.1.2 Unicast source routing

PolKA proposes a source routing unicast mechanism that uses CRT for polynomials over
GF(2). In this way, the RNS computation of the routeID relies on finite field arithmetic
[Chang et al. 2015, Shoup 2009, Bajard 2007]. From now on, all the polynomials in this
paper will be considered as polynomials over GF(2).

The forwarding in PolKA relies on three polynomial identifiers: a route identifier,
called routeID , a node identifier, called nodeID , and a output port identifier, called portID .
In each core node, the forwarding operation is defined by the remainder of the division of
the routeID of the packet by the nodeID of the core node, which gives the portID of the
output port.

In order to do this, note that a polynomial 𝑓(𝑡) = 𝑎𝑛𝑡
𝑛 + 𝑎𝑛−1𝑡

𝑛−1 + . . .+ 𝑎1𝑡
1 + 𝑎0𝑡

0

can be represented by the bit string 𝑎𝑛𝑎𝑛−1 . . . 𝑎1𝑎0. Thus, an identifier is represented by
a bit string formed by the coefficients of a polynomial, which are either 0 or 1. Also, the
bit length of the identifier is 𝑙𝑒𝑛(𝑓).

Let S = {𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑁(𝑡)} be a multiset of the N polynomials to be assigned
to the nodeIDs of the core nodes on the desired path by the controller of the topology,
in a network configuration phase. The set S must be composed by pairwise co-prime
polynomials. In this work, we assume that the elements of S are irreducible polynomials.
Since the output ports are the remainder of the division of the routeID by the nodeID , we
must have 𝑑𝑒𝑔(𝑠𝑖(𝑡)) ≥ ⌈log2(𝑛𝑝𝑜𝑟𝑡𝑠)⌉, where 𝑛𝑝𝑜𝑟𝑡𝑠 denotes the number of node ports,
so we have enough polynomials to assign to all ports.

Besides, let O = {𝑜1(𝑡), 𝑜2(𝑡), . . . , 𝑜𝑁(𝑡)} be a multiset of 𝑁 polynomials satisfying the
condition that 𝑑𝑒𝑔(𝑠𝑖) > 𝑑𝑒𝑔(𝑜𝑖), where 𝑜𝑖(𝑡) is the polynomial assigned to the output
port of the packet at the core node 𝑠𝑖(𝑡), for 𝑖 = 1,2, . . . 𝑁 . Note that the coefficients of
the output port polynomial map the bits of the port labels. For instance, if the output
port polynomial is 𝑜𝑖(𝑡) = 1 · 𝑡2 + 1 · 𝑡, it maps the port 110 and the packet is forwarded
to port label 110.

To calculate the routeID for packets that traverse this path, we compute 𝑅(𝑡) that
satisfies the following condition:

𝑅(𝑡) ≡ 𝑜𝑖(𝑡) mod 𝑠𝑖(𝑡), 𝑓𝑜𝑟 𝑖 = 1,2, . . . 𝑁 (6.5)

For each node, the modulo of the routeID polynomial, 𝑅(𝑡), of a packet by its nodeID
polynomial, 𝑠𝑖(𝑡), gives the portID polynomial, 𝑜𝑖(𝑡). Such 𝑅(𝑡) is calculated using the
CRT (see Section 6.1.1) and the algorithm complexity is 𝒪

(︀
𝑙𝑒𝑛(𝑀)2

)︀
[Shoup 2009]. Note

that 𝑅(𝑡) is computed by the controller, while nodes only execute one simple modulo
operation per packet.

Example 1: Fig. 6.1.a shows an example of how to apply PolKA to unicast source
routing in a topology composed by nodes 𝑠1, 𝑠2, and 𝑠3, which have 2, 4, and 8 ports,
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o1 = (1)dec = (1)bin o2 = (2)dec = (10)bin o3 = (6)dec = (110)bin
(6.1.a) Unicast: polynomial 𝑜𝑖 directly represents label of the transmitting port.

S1 S2 S3
0 1

o1 = (10)bin o2 = (0110)bin o3 = (10010100)bin
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53
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(6.1.b) Multicast: polynomial 𝑜𝑖 represents transmitting states of ports.

Figure 6.1: Example of source routing using PolKA.

respectively. The degrees of the polynomials assigned to 𝑠1, 𝑠2, and 𝑠3 must be equal or
greater than 1, 2, and 3, respectively, in order to encode 2 ports at 𝑠1, 22 ports at 𝑠2, and
23 ports at 𝑠3. Let the following irreducible polynomials be assigned to 𝑠𝑖 nodes:

𝑠1(𝑡) = 𝑡+ 1 = 11

𝑠2(𝑡) = 𝑡2 + 𝑡+ 1 = 111

𝑠3(𝑡) = 𝑡3 + 𝑡+ 1 = 1011

Considering the path (𝑠1 → 𝑠2 → 𝑠3), the output port set 𝑂 is composed by the polyno-
mials:

𝑜1(𝑡) = 1, 𝑜2(𝑡) = 𝑡 = 10, 𝑜3(𝑡) = 𝑡2 + 𝑡 = 110

The polynomial 𝑅(𝑡) has to satisfy the conditions of Eq. (6.5):

𝑅(𝑡) ≡ 1 mod (𝑡+ 1)

𝑅(𝑡) ≡ 𝑡 mod (𝑡2 + 𝑡+ 1)

𝑅(𝑡) ≡ (𝑡2 + 𝑡) mod (𝑡3 + 𝑡+ 1)
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Using the CRT for polynomials in Section 6.1.1, we calculate:

𝑀(𝑡) = (𝑡+ 1) · (𝑡2 + 𝑡+ 1) · (𝑡3 + 𝑡+ 1)

𝑚1(𝑡) = 𝑠2(𝑡) · 𝑠3(𝑡) = (𝑡2 + 𝑡+ 1) · (𝑡3 + 𝑡+ 1)

𝑚2(𝑡) = 𝑠1(𝑡) · 𝑠3(𝑡) = (𝑡+ 1) · (𝑡3 + 𝑡+ 1)

𝑚3(𝑡) = 𝑠1(𝑡) · 𝑠2(𝑡) = (𝑡+ 1) · (𝑡2 + 𝑡+ 1)

From Eq. (6.4), there are polynomials 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) that satisfy the following
conditions:

𝑥1(𝑡) · 𝑠1(𝑡) + 𝑛1(𝑡) ·𝑚1(𝑡) = 1

𝑥2(𝑡) · 𝑠2(𝑡) + 𝑛2(𝑡) ·𝑚2(𝑡) = 1

𝑥3(𝑡) · 𝑠3(𝑡) + 𝑛3(𝑡) ·𝑚3(𝑡) = 1

Solving these equations, we find the polynomials 𝑛𝑖(𝑡):

𝑛1(𝑡) = 1, 𝑛2(𝑡) = 1, 𝑛3(𝑡) = 𝑡2 + 1

Finally, we can calculate 𝑅(𝑡) according to Eq. (6.1):

�̃�(𝑡) = (𝑡2 + 𝑡+ 1)(𝑡3 + 𝑡+ 1) + 𝑡(𝑡+ 1)(𝑡3 + 𝑡+ 1)+

(𝑡2 + 𝑡)(𝑡+ 1)(𝑡2 + 𝑡+ 1)(𝑡2 + 1) = 𝑡7 + 𝑡6 + 𝑡5 + 𝑡2 + 1

𝑅(𝑡) =< �̃�(𝑡) >𝑀(𝑡)= 𝑡4 = 10000

Therefore, each packet that traverses the path defined in Fig. 6.1 should embed
the routeID 10000 in its header, so each switch in the path can discover the portID by
dividing this routeID by its own nodeID . For example, the remainder of the division of
𝑅(𝑡) = 10000 by 𝑠3(𝑡) = 1011 is 𝑜3(𝑡) = 110.

6.1.3 Multicast source routing

Although multicast is not the focus of this work, the mechanism presented for unicast
can be easily extended to multicast routing, where a single sender can send a copy of
the packet to multiple receivers. To this end, the coefficients of the 𝑜𝑖(𝑡) polynomial now
represent the transmitting state of the ports (i.e., 0 do not transmit, 1 transmit a packet
copy), and we must have 𝑑𝑒𝑔(𝑠𝑖) ≥ 𝑛𝑝𝑜𝑟𝑡𝑠. Thus, all the formulation of Section 6.1.2
remains the same, except the meaning of 𝑜𝑖(𝑡).

For instance, the polynomial 𝑜𝑖(𝑡) = 𝑎2𝑡
2 + 𝑎1𝑡 + 𝑎0 maps the state 𝑎2𝑎1𝑎0, which
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means that there are 3 ports in the node 𝑠𝑖, and each coefficient represents the state of
one port. If the output port polynomial is 𝑜𝑖(𝑡) = 𝑡2 + 𝑡 = 110 then 𝑎2 = 1, 𝑎1 = 1, and
𝑎0 = 0. This means that port2 is transmitting, port1 is transmitting, and port0 is not
transmitting.

Example 2: Fig. 6.1.b shows an example of how to apply PolKA to multicast SSR
in the same topology of example 1. Now, the degrees of the polynomials assigned to
𝑠1, 𝑠2, and 𝑠3 must be equal or greater than 2, 4, and 8, respectively, to represent the
necessary number of transmitting states at each node. Consider the following irreducible
polynomials are assigned to the 𝑠𝑖 nodes:

𝑠1(𝑡) = 𝑡2 + 𝑡+ 1 = 111

𝑠2(𝑡) = 𝑡4 + 𝑡+ 1 = 10011

𝑠3(𝑡) = 𝑡8 + 𝑡4 + 𝑡3 + 𝑡+ 1 = 100011011

Considering the path (𝑠1 → 𝑠2 → 𝑠3) and the transmitting states of Fig. 6.1.b, the
output ports set O is composed by:

𝑜1(𝑡) = 𝑡 = 10

𝑜2(𝑡) = 𝑡2 + 𝑡 = 0110

𝑜3(𝑡) = 𝑡7 + 𝑡4 + 𝑡2 = 10010100

Following the same calculations of the example 1, it is possible to compute the routeID
polynomial for multicast:

𝑅(𝑡) = 𝑡13 + 𝑡11 + 𝑡9 + 𝑡8 + 𝑡5 + 𝑡3 + 𝑡2 = 10101100101100

6.1.4 Scalability of the bit length of the routeID

The bit length of 𝑅(𝑡), 𝑙𝑒𝑛(𝑅), for both unicast and multicast depends on the path
length 𝑁 and the degree of the polynomials assigned to the nodes in the path. Since
𝑀(𝑡) =

∏︀𝑁
𝑖=1 𝑠𝑖(𝑡), where 𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑁(𝑡) are the nodeID polynomials, 𝑙𝑒𝑛(𝑅) is

given by:

𝑙𝑒𝑛(𝑅) = 𝑙𝑒𝑛(< �̃�(𝑡) >𝑀(𝑡)) ≤
𝑁∑︁
𝑖=1

𝑑𝑒𝑔(𝑠𝑖) (6.6)

Algorithm 1 shows a pseudo-code for investigating the scalability of 𝑙𝑒𝑛(𝑅). For the
sake of simplicity, we consider all nodes have the same number of ports. The function
MAXLEN (line 1 ) computes the maximum 𝑙𝑒𝑛(𝑅), given: the number of ports in each
node (𝑛𝑝𝑜𝑟𝑡𝑠), the number of nodes (𝑠𝑖𝑧𝑒), and the topology diameter (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟). More-
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Algorithm 1 Computation of the maximum 𝑙𝑒𝑛(𝑅).
1: function maxlen(𝑛𝑝𝑜𝑟𝑡𝑠, 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝑠𝑖𝑧𝑒, 𝑖𝑠_𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡)
2: if (𝑖𝑠_𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡) then
3: 𝑚𝑖𝑛𝑑𝑒𝑔 ← 𝑛𝑝𝑜𝑟𝑡𝑠 ◁ Multicast
4: else
5: 𝑚𝑖𝑛𝑑𝑒𝑔 ← ⌈log2(𝑛𝑝𝑜𝑟𝑡𝑠)⌉ ◁ Unicast
6: 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑖𝑟𝑟𝑒𝑑_𝑝𝑜𝑙𝑦_𝑙𝑖𝑠𝑡(𝑚𝑖𝑛𝑑𝑒𝑔,𝑠𝑖𝑧𝑒)
7: 𝑝𝑎𝑡ℎ𝑙𝑖𝑠𝑡← 𝑔𝑒𝑡_𝑙𝑎𝑠𝑡_𝑖𝑡𝑒𝑛𝑠(𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡,𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟)
8: 𝑙𝑒𝑛𝑔𝑡ℎ← 0
9: for 𝑒𝑙𝑒𝑚 ∈ 𝑝𝑎𝑡ℎ𝑙𝑖𝑠𝑡 do
10: 𝑙𝑒𝑛𝑔𝑡ℎ← 𝑙𝑒𝑛𝑔𝑡ℎ+ 𝑑𝑒𝑔(𝑒𝑙𝑒𝑚);
11: return 𝑙𝑒𝑛𝑔𝑡ℎ ◁ Maximum 𝑙𝑒𝑛(𝑅)

Table 6.1: Maximum 𝑙𝑒𝑛(𝑅) for example topologies.

Topology 𝑛𝑝𝑜𝑟𝑡𝑠 𝑑𝑖𝑎𝑚. 𝑠𝑖𝑧𝑒
Bits for
unicast

Bits for
multicast

2-tier S=16 L=16* 24 3 32 21 72
Fat-tree 16 pods 16 5 320 55 80
ARPANET 4 7 20 42 44
GEANT2 8 7 30 49 56
Internet2 3 21 56 164 165

* Two-tier topology with 16 spine switches and 16 leaf switches.

over, it is necessary to specify if the computation is for multicast. Note that, for multicast,
𝑑𝑒𝑔(𝑠𝑖) ≥ 𝑛𝑝𝑜𝑟𝑡𝑠 (line 3 ), while, for unicast, 𝑑𝑒𝑔(𝑠𝑖) ≥ ⌈log2(𝑛𝑝𝑜𝑟𝑡𝑠)⌉ (line 5 ). So the
representation of 𝑅(𝑡) for multicast may require more bits than for unicast.

A list of nodeID polynomials (𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡) is generated (line 6 ), which consists of 𝑠𝑖𝑧𝑒 ir-
reducible polynomials with degree greater than or equal to the minimum degree (𝑚𝑖𝑛𝑑𝑒𝑔).
Note that we select polynomials with the lowest possible degree (e.g., if 𝑚𝑖𝑛𝑑𝑒𝑔 = 5, we
start assigning one of the 6 existing irreducible polynomials of degree 5 to nodes, and, if
necessary, we use the 9 existing irreducible polynomials of degree 6, and so forth). Thus,
𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 is already ordered by degree. Finally, we select the very worst case scenario in
which the polynomials in 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 with the greatest degrees are assigned to the nodes in
the longest possible path (i.e., the diameter). To this end, we pick the 𝑥 last elements of
𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 (line 7 ), where 𝑥 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, and calculate the maximum 𝑙𝑒𝑛(𝑅) according to
Eq.(6.6) (lines 9 and 10 ).

Table 6.1 shows the result of the presented scalability analysis for two common DC
topologies (fat-tree and two-tier), and three well-known continental backbone topologies
[Routray et al. 2013] (ARPANET, GEANT2, and Internet2). For backbone topologies, as
the number of ports varies for each node, we considered 𝑛𝑝𝑜𝑟𝑡𝑠 as the maximum number
of ports of any node. DC networks usually present switches with high number of ports
and small diameter, while backbone networks usually present switches with few ports and
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Table 6.2: Maximum 𝑙𝑒𝑛(𝑅) for different unicast SSR mechanisms in DC topologies.

Topology nports diam. size servers PolKA KeyFlow Port Swit.

2-tier S=06 L=06
24 3 12 108 18 19 15
48 3 12 252 21 20 18
96 3 12 540 21 22 21

2-tier S=12 L=12
24 3 24 144 21 22 15
48 3 24 432 21 23 18
96 3 24 1008 24 24 21

2-tier S=16 L=16
24 3 32 128 21 23 15
48 3 32 512 24 23 18
96 3 32 1280 24 25 21

2-tier S=24 L=24 48 3 48 576 24 25 18
96 3 48 1728 24 26 21

2-tier S=36 L=36 48 3 72 432 27 27 18
96 3 72 2160 27 27 21

2-tier S=48 L=48 96 3 96 2304 27 29 21

Fat-tree

4 5 20 16 30 31 10
8 5 80 128 45 44 15
16 5 320 1024 55 56 20
24 5 720 3456 60 63 25
32 5 1280 8192 65 67 25

Hypercube

3 3 8 8 14 13 6
4 4 16 16 24 24 8
5 5 32 32 35 36 15
6 6 64 64 48 50 18
7 7 128 128 67 67 21
8 8 256 256 88 86 24
9 9 512 512 108 107 36
10 10 1024 1024 130 130 40

larger diameter. Therefore, our topology set covers diverse and realistic use cases.
From a practical perspective, there are two design choices for embedding the routeID :

(i) add extra headers, which causes transmission overhead; or (ii) reuse existing headers.
For the topologies under worst case analysis in Table 6.2, the maximum 𝑙𝑒𝑛(𝑅) results
show that PolKA fits existing packet headers for unicast and multicast (e.g., 96 bits
of Ethernet source and destination addresses, 256 bits of IPv6 source and destination
addresses, or a stack of MPLS labels with 20 bits per label). The atypically large diameter
(21) of Internet2 may impose an extra header depending on the protocol stack.

As one of the main goals of this chapter is to develop a unicast SSR mechanism that
can replace KeyFlow (integer RNS-based SSR mechanism) in the KeySFC scheme, we
extended the previous scalability analysis focusing on unicast SSR in DC topologies. The
results of PolKA are compared with KeyFlow, and also with Port Switching, which is
the most traditional mechanism used for unicast SSR. In Table 6.2, we consider different
configurations of two well-known network-centric topologies (two-tier and fat-tree) and
one server-centric topology (hypercube).
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It is important to note that in network-centric topologies the core nodes are represented
by switches, while in server-centric networks the core nodes are represented by the servers
itself, since servers are responsible for both computing and forwarding in this kind of
architecture. A direct consequence of this consideration is that server-centric networks
use more core nodes to interconnect an equivalent number of servers when compared to
network-centric networks, and, consequently, demand more bits to encode the routeID .

The results for the maximum 𝑙𝑒𝑛(𝑅) are very close for PolKA and KeyFlow ap-
proaches. PolKA is better or equal to KeyFlow in almost all the cases, except in the
ones that are highlighted in the table. This means that replacing KeyFlow by PolKA
within the KeySFC scheme does not incur in reserving extra bits for the routeID header
field.

On the other hand, the Port Switching method consumes less bits for representing
the routeID than the RNS-based SSR approaches, specially in the cases where the size of
the topology is high and the number of ports per node is low (fat-tree and hypercube).
This happens because these cases demand a large number of irreducible polynomials (for
PolKA) or prime number (for KeyFlow), causing the selection of polynomials of high
degree or large integer numbers even when the node does not demand many ports.

When deploying RNS-based SSR, it is important to understand that, depending on
the topology, the cost to exploit the special features from RNS may be to reserve more
bits for representing the routeID in the packet header. Nevertheless, our scalability anal-
ysis considers the worst case scenario, and there are known techniques to make opti-
mal assignment of nodeIDs and reduce the bit length of the routeID [Ren et al. 2017,
Liberato et al. 2018].

6.1.5 Control plane

The control plane functionalities in PolKA are very similar to KeyFlow, with the difference
that, instead of dealing with integers, the nodeIDs and routeIDs are the binary coefficients
of GF(2) polynomials, as described in Section 6.1.2.

One of the main roles of the control plane is topology discovery and monitoring,
since other steps depend on full knowledge of the network. The SDN Controller is also
responsible for a network configuration phase, where it assigns unique nodeIDs to each
core node. With the knowledge of the number of nodes and the number of ports of each
node, the controller has to calculate the N irreducible polynomials for the nodeIDs while
ensuring the degree of each polynomial supports the number of ports of that node (for
unicast: 𝑑𝑒𝑔(𝑠𝑖) ≥ ⌈log2(𝑛𝑝𝑜𝑟𝑡𝑠)⌉).

When a new flow reaches an edge switch, the packet is forwarded to the SDN con-
troller, which defines an end-to-end path across the core network for that flow. Then, the
controller calculates the routeID , and installs a new table entry in the edge switch, which
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is responsible to include the routeID in the packet headers before forwarding the flows to
the core network. This procedure of installing the entries in the edge switches can also
be done proactively by the SDN Controller.

The calculation of the routeID depends on the nodes in the path, the output port of
each of theses nodes, and the interconnection topology. Based on that, the computation
involves a series of basic arithmetic operations over GF(2), and the calculation of the
multiplicatives inverses, as explained in Section 6.1.2. This last step uses the Extended
Euclidean Algorithm for GF polynomials.

When the packet is forwarded in the core network, the modulo operation replaces
table lookup by performing the remainder of the division between the routeID embedded
in the packet with the nodeID of each node. This is a great advantage, because there is
significant reduction in control plane signaling when compared to traditional approaches,
since core switches execute forwarding in a decentralized way without communicating
with the Controller.

6.2 Design based on P4 architecture

This section studies how to design PolKA and a Port Switching SSR method according
to P4 Architecture (see Section A.1.2). From now on, we will refer to the Port Switching
method as Sourcey [Jin et al. 2016], since it is a prominent example of a Port Switching
SSR method. In Section 6.3, this design will be used to build a Proof-of-Concept of PolKA
and Sourcey in emulated and physical testbeds.

It is important to note that some of the design choices can be changed according to
application requirements and target platform features. For example, the SSR information
could be embedded in a new header or in an existing header (e.g., MAC addresses), as
done in Section 5. In addition, the number of bits required to represent the port depends
on the maximum number of ports of the switches in the network, and the maximum length
of SSR headers depends on the network diameter. Moreover, limitations of the selected
target may impose restrictions that affect the design choices.

6.2.1 Sourcey pipeline

With Port Switching SSR, the source adds a stack of output ports in the packet, which will
be used by each switch in the network to forward the packet. We adapted and extended
the source routing solution provided in P4.org tutorials 1. This solution includes the
port stack as a new header after the Ethernet header and selects a special etherType:
TYPE_SR=0x1234. Each item of the source routing stack has a bos (bottom of stack)
bit and a port number. The bos bit is 1 only for the last entry of stack. At ingress,

1https://github.com/p4lang/tutorials/tree/master/exercises/source_routing

https://github.com/p4lang/tutorials/tree/master/exercises/source_routing


114

portEthernet IP databos portbosportbos ...

(6.2.a) Sourcey header.

routeIDEthernet IP data

(6.2.b) PolKA header with fixed length.

routeIDEthernet IP datalength

(6.2.c) PolKA header with variable length.

Figure 6.2: Comparison between SSR headers for Sourcey and PolKA.

each switch must pop an item from the stack and set the egress port according to the
specified port number. Then, at ingress, it should pop an entry from the stack and
set the egress port accordingly. The last hop should also revert back the etherType to
TYPE_IPv4=0x800. Figure 6.2.a shows the format of Sourcey header.

The original solution has two main shortcomings: (i) it is not transparent to end-
hosts, which must encapsulate SSR headers; and (ii) it unnecessarily parses the whole
SSR header in each hop, producing a loop. To overcome these limitations, we designed a
new pipeline in which the switches are responsible for encapsulating, decapsulating, and
forwarding the packets according to the SSR header, and each hop only parses a single
SSR header, as shown in Fig. 6.3.a.

When the packet reaches the switch, the first step is to parse the Ethernet header and
check the etherType. If it is TYPE_IPv4 (left side), the packet came from the end-host
and the switch must parse the IPv4 header and encapsulate the SSR header. Each switch
has a table, which was previously populated by the SDN Controller and provides the
mapping between the destination IP address (DestIP) and the routing path, represented
by the list of output ports. The result of this table lookup is an action that will set the
first output port and call a function that will encapsulated 𝑛 SSR headers, where 𝑛 is the
number of hosts in the path. Also, the etherType is changed to TYPE_SR, so the next
switches can detect they must use SSR.

If the etherType is TYPE_SR (right side), the switch parses the first SSR header,
get the output port, and pops this header from the stack. If the bos bit is set to one,
it means this is the last hop and the etherType is changed to TYPE_IPv4. Instead of
the pop operation, another possible implementation for progressing in the list is to have
an index to the current position, which is incremented in each hop. Nevertheless, both
options involve a packet rewrite in each hop.

6.2.2 PolKA pipeline

PolKA explores RNS to encode the list of output ports for SSR. Thus, instead of a list
of ports, the PolKA header contains a routeID . Fig. 6.2.b shows the format of PolKA
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Figure 6.3: Comparison between Sourcey and PolKA complete pipelines.

header with a fixed field for storing the routeID , after the Ethernet header. This length
will depend on some topology characteristics like the diameter and the path length, as
explained in 6.1.4. Another possible implementation is to use an extra field that contains
the lenght of the routeID , which would have variable length, as shown in Fig. 6.2.c. As a
design choice, we selected the fixed length header, because the tests of Section 6.3 show
this approach is more efficient.

As shown in Fig. 6.3.b, the left side of PolKA pipeline for encapsulating the SSR
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header is similar to Sourcey, but the result of the table lookup is an action that sets the
first output port and calls a function that encapsulates a single routeID , representing the
routing path.

In the right side of the pipeline, when etherType is TYPE_SR, as PolKA only needs
read access to the packet headers, it uses the lookahead method provided by P4 language
that evaluates a set of bits from the input packet without advancing the packet index
pointer. To discover the output port, the switch has to perform a modulo operation
between the routeID in the packet and its own nodeID . Since this binary modulo operation
with variables is not supported by P4 16 language, one contribution of this thesis is to
enable it in P4 switches by reusing CRC operations, as presented in Section 6.2.5.

Besides, PolKA does not provide the notion of progression in the list, so there is no
information in the header to identify the last hop. This is not a problem in fabric networks
(as discussed in Section 6.2.4), because the packet delivery to an edge switch represents
the end of the SSR path. However, in other cases, it may be necessary to separate a
range of ports (e.g., the higher port numbers) that represent the switch ports connected
to end-hosts. If the output port is one of these ports, the SSR header containing the
routeID must be removed and the etherType is changed to TYPE_IPv4.

6.2.3 Headers and lookup tables

This section discusses the design using P4 of the headers and lookup tables used by
the pipelines of Fig. 6.3. More information about P4 architecture can be found in Sec-
tion A.1.2.

Code 6.1 and Code 6.2 shows the P4 code for defining the headers for Sourcey and
PolKA according to the design of Fig. 6.2.

1 #de f i n e MAX_HOPS 10
2 typede f b i t <48> macAddr_t ;
3 typede f b i t <32> ip4Addr_t ;
4

5 header ethernet_t {
6 macAddr_t dstAddr ;
7 macAddr_t srcAddr ;
8 bit <16> etherType ;
9 }

10

11 header srcRoute_t {
12 bit <1> bos ;
13 bit <15> port ;
14 }
15

16 header ipv4_t {
17 bit <4> ve r s i on ;
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18 bit <4> i h l ;
19 bit <8> d i f f s e r v ;
20 bit <16> tota lLen ;
21 bit <16> i d e n t i f i c a t i o n ;
22 bit <3> f l a g s ;
23 bit <13> f r a gO f f s e t ;
24 bit <8> t t l ;
25 bit <8> pro to co l ;
26 bit <16> hdrChecksum ;
27 ip4Addr_t srcAddr ;
28 ip4Addr_t dstAddr ;
29 }
30

31 s t r u c t headers {
32 ethernet_t e the rne t ;
33 srcRoute_t [MAX_HOPS] srcRoutes ;
34 ipv4_t ipv4 ;
35 }

Code 6.1: Sourcey: example P4 code for defining headers.

1 typede f b i t <48> macAddr_t ;
2 typede f b i t <32> ip4Addr_t ;
3

4 header ethernet_t {
5 macAddr_t dstAddr ;
6 macAddr_t srcAddr ;
7 bit <16> etherType ;
8 }
9

10 header srcRoute_t {
11 bit <160> route Id ;
12 }
13

14 header ipv4_t {
15 bit <4> ve r s i on ;
16 bit <4> i h l ;
17 bit <8> d i f f s e r v ;
18 bit <16> tota lLen ;
19 bit <16> i d e n t i f i c a t i o n ;
20 bit <3> f l a g s ;
21 bit <13> f r a gO f f s e t ;
22 bit <8> t t l ;
23 bit <8> pro to co l ;
24 bit <16> hdrChecksum ;
25 ip4Addr_t srcAddr ;
26 ip4Addr_t dstAddr ;
27 }
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28

29 s t r u c t headers {
30 ethernet_t e the rne t ;
31 srcRoute_t srcRoute ;
32 ipv4_t ipv4 ;
33 }

Code 6.2: PolKA: example P4 code for defining headers.

Our implementation of the Sourcey pipeline (Fig. 6.3.a) uses variable number of SSR
headers depending on the number of hops in the path stack. Although P4 language allows
to extract, assign and deparse variable-length headers, it does not directly support the
encapsulation of variable size headers. One solution is to create one encapsulating action
for each stack size, as shown in the examples of Table 6.3 and Code 6.3. Code 6.4 shows
an example of an action that adds two SSR headers to the packet.

Table 6.3: Sourcey: example lookup table.

Key Action Action Data
10.0.1.2/32 add_header_1hop eport=3, dstAddr=00:00:00:00:02:02, bos1=1, p1=1
10.0.1.3/32 add_header_2hops eport=3, dstAddr=00:00:00:00:03:03, bos1=0, p1=3, bos2=1, p2=1
10.0.1.4/32 add_header_3hops eport=3, dstAddr=00:00:00:00:04:04, bos1=0, p1=3, bos2=0, p2=3, bos3=1, p3=1

1 t ab l e sr_encap {
2 key = {
3 hdr . ipv4 . dstAddr : lpm ;
4 }
5 a c t i on s = {
6 add_header_0hop ;
7 add_header_1hop ;
8 add_header_2hops ;
9 add_header_3hops ;

10 add_header_4hops ;
11 add_header_5hops ;
12 add_header_6hops ;
13 add_header_7hops ;
14 add_header_8hops ;
15 add_header_9hops ;
16 add_header_10hops ;
17 tdrop ;
18 }
19 s i z e = 1024 ;
20 de fau l t_act i on = tdrop ( ) ;
21 }

Code 6.3: Sourcey: example P4 code for declaration of lookup table.

1 ac t i on add_header_2hops ( egressSpec_t eport , macAddr_t dmac ,
2 bit <1> bos0 , b i t <15> p0 ,
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3 bit <1> bos1 , b i t <15> p1 ) {
4 standard_metadata . egress_spec = eport ;
5 hdr . e the rne t . dstAddr = dmac ;
6 hdr . srcRoutes [ 0 ] . s e tVa l i d ( ) ;
7 hdr . srcRoutes [ 0 ] . bos = bos0 ;
8 hdr . srcRoutes [ 0 ] . port = p0 ;
9 hdr . srcRoutes [ 1 ] . s e tVa l i d ( ) ;

10 hdr . srcRoutes [ 1 ] . bos = bos1 ;
11 hdr . srcRoutes [ 1 ] . port = p1 ;
12 }

Code 6.4: Sourcey: example P4 code for declaration of an action.

On the other hand, the pipeline of PolKA (Fig. 6.3.b) uses a fixed size header to en-
capsulate the routeID . Thus, a single action can be used to add the SSR header regardless
of the number of hops, as shown in the examples of Table 6.4, Code 6.5, and Code 6.4.

Table 6.4: PolKA: example lookup table.

Key Action Action Data
10.0.1.2/32 add_sr_header eport=3, dstAddr=00:00:00:00:02:02, routeID =4294771599
10.0.1.3/32 add_sr_header eport=3, dstAddr=00:00:00:00:03:03, routeID =159022805856541
10.0.1.4/32 add_sr_header eport=3, dstAddr=00:00:00:00:04:04, routeID =17263697437380439085

1 t ab l e sr_encap {
2 key = {
3 hdr . ipv4 . dstAddr : lpm ;
4 }
5 a c t i on s = {
6 add_sr_header ;
7 tdrop ;
8 }
9 s i z e = 1024 ;

10 de fau l t_act i on = tdrop ( ) ;
11 }

Code 6.5: PolKA: example P4 code for declaration of a lookup table.

1 ac t i on add_sr_header ( egressSpec_t eport , macAddr_t dmac , b i t <160> routeID ) {
2 standard_metadata . egress_spec = eport ;
3 hdr . e the rne t . dstAddr = dmac ;
4 hdr . srcRoute . s e tVa l i d ( ) ;
5 hdr . srcRoute . routeID = routeID ;
6 }

Code 6.6: PolKA: example P4 code for declaration of an action.
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Figure 6.4: Example fabric network in DCs.

6.2.4 Discussion on fabric networks and pipeline differences

In Chapter 5, we argued that the solution for efficient SFC lies on the use of fabric
networks, where core switches execute efficient packet forwarding and edge switches per-
form complex tasks (e.g., encapsulation and SFC classification). Also, this fabric network
structure is commonly adopted in DC networks, which already have a clear distinction
between software edge switches in the servers that host VMs and core hardware switches,
as shown Fig. 6.4

In accordance with this approach, Sourcey and PolKA pipelines can be divided into
an edge pipeline and a core pipeline. In this way, edge switches perform encapsulation
and decapsulation of SSR headers, and core switches can be very simple and only execute
forwarding without tables.

Fig. 6.5 shows the core pipelines for Sourcey and PolKA. Note that these core pipelines
execute forwarding based on an operation over the SSR header (e.g., pop or modulo
operation) and do not depend on any table lookup. Section 6.3 will present a prototype
that compares the original pipelines with their fabric versions.

It is important to highlight the following characteristics of our Sourcey pipeline im-
plementation that differ from our PolKA pipeline implementation (see Fig. 6.2, Fig. 6.3,
and Fig. 6.5):

• Sourcey presents a variable number of SSR headers, depending on the number of
hops in the routing path and the switch position in the path. Each hop performs
a pop operation in the header stack, decreasing the stack size until the last hop
removes the last SSR header. On the other hand, PolKA header has a fixed length
and stores the routeID .

• Sourcey needs to create one encapsulating action for each stack size depending on
the path length (e.g., add_header_1hop, add_header_2hops, add_header_3hops,
...), which increases the number of code lines and memory for deploying the edge
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Figure 6.5: Comparison between Sourcey and PolKA core pipelines.

pipeline code. More information in Section 6.3.

• In Sourcey, each core switch performs a packet rewrite of the packet header when
performing the pop operation (yellow in Fig. 6.5.a) to get the current output port
and update the stack. On the other hand, in the PolKA core pipeline (Fig. 6.5.b),
the packet remains unchanged for the entire routing path as the routeID is the same
for all hops.

• In Sourcey, the output port is directly available in the SSR header, while PolKA
requires an arithmetic operation over the routeID to calculate the output port.

Considering these differences, our hypothesis is that, if we can perform the modulo
operation of PolKA with equivalent performance to the rewrite operation of Sourcey, we
could take advantage of RNS special properties discussed in Section 3.2.1 without loosing
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performance when compared to traditional Port Switching methods. To this end, the next
section presents a proposal for enabling the modulo operation in P4-enabled hardware.

6.2.5 Reuse of CRC hardware for implementing modulo

The binary polynomial and integer modulo operations with non-constant operands are
not natively supported by commodity network hardware and are not available in standard
P4 language. However, PolKA enables the exploitation of binary polynomial arithmetic
operations that could be more easily mapped to network hardware than integer arithmetic.

For instance, CRC hardware provides wire-speed implementations of a binary modulo
operation with a fixed polynomial base [Peterson and Brown 1961], and is evolving for
supporting configurable polynomials [Grymel and Furber 2011, Microchip 2018]. In fact,
we developed a technique that allows the execution of the binary modulo by reusing
common CRC operations, which are supported by P4 standard architectures. In this way,
PolKA can be deployed in P4-enabled switches and the modulo operation can be executed
in CRC hardware with better performance.

6.2.5.1 Technique description

CRC codes are an important error-detection technique commonly employed in today’s
networking equipment. Similar to PolKA approach, in the CRC technique, the bit string
coefficients are 0 and 1 values, manipulated using polynomial arithmetic operations to
represent a quotient remainder.

Firstly, sender and receiver have to agree on a fix polynomial (𝐺), called generator,
which is a 𝑟 + 1 bit pattern used to generate the error-detection code. The idea is
that, for any binary data to be protected (𝐷), with length of 𝑑 bits, the sender will
calculate additional 𝑟 bits (𝑅), and append them to 𝐷 in such a way that the result is
a polynomial with 𝑑 + 𝑟 bits that is exactly divisible by 𝐺 using modulo-2 arithmetic
[Kurose and Ross 2013]. Fig. 6.6 shows an example of the CRC format.

R: CRC codeD: data

d+r r 0

d bits r bits

Figure 6.6: Example of CRC format.

Thus, the computation of the CRC code depends on the remainder of the data shifted
left by 𝑟 bits, divided by the generator polynomial: 𝑅 =< 𝐷 · 2𝑟 >𝐺.

Fig. 6.7 shows an example of the CRC calculation for 𝐺 = 1001, 𝐷 = 101110, 𝑟 = 3,
and 𝑑 = 6. The result for the CRC code is 𝑅 = 011. The quotient is not relevant, in this
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Figure 6.7: Example of CRC calculation. Adapted from [Kurose and Ross 2013].

case.
Since most of the network commodity hardware already supports CRC operations,

we could try to map the routeID as D, the nodeID as G, and the output port as R in
order to calculate the output port in each core node as: 𝑅 = portID =< routeID >nodeID.
However, PolKA does not perform a shift left operation over the routeID bits as done in
the CRC strategy.

As the degree of G is 𝑟, this problem can be solved if we separate the routeID in two
parts: routeID = 𝐷 * 2𝑟 + 𝑑𝑖𝑓 , where 𝑑𝑖𝑓 is the 𝑟 least significant bits of the routeID .
Firstly, we shift right the routeID by 𝑟 bits to produce the data 𝐷, which will be the input
of the CRC function. Then, the bits that were lost with the shift right operation (𝑑𝑖𝑓) can
be added back to the calculated CRC remainder in the end of the computation to produce
the output port. Since the degree of the portID obtained is less than 𝑟, the unicity property
in division algorithm for polynomials assures that the outcome polynomial coincides with
the remainder obtained by direct division of routeID by the nodeID . Also, in binary
arithmetic, both the addition and subtraction operations are identical to the logical XOR
operation. These steps are described as follows:

1. 𝐺 = nodeID, 𝑟 = 𝑑𝑒𝑔𝑟𝑒𝑒(𝐺)

2. 𝐷 = routeID÷ 2𝑟 (SHIFT RIGHT)

3. 𝑑𝑖𝑓 = routeID−𝐷 * 2𝑟 (SHIFT LEFT, XOR)

4. 𝑅 =< 𝐷 * 2𝑟 >𝐺 (CRC)
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5. portID = 𝑑𝑖𝑓 +𝑅 (XOR)

The example below illustrates how to use this method to calculate the output port
when routeID = 101110001, and nodeID = 1001.

1. 𝐺 = 1001, 𝑟 = 3

2. 𝐷 = routeID÷ 2𝑟 = 101110001÷ 23 = 101110

3. 𝑑𝑖𝑓 = routeID−𝐷 * 2𝑟 = 101110001⊕ 101110000 = 001

4. 𝑅 =< 𝐷 * 2𝑟 >𝐺=< 101110000 >1001= 011

5. portID = 𝑑𝑖𝑓 +𝑅 = 001⊕ 011 = 010

Indeed, the direct modulo operation produces the same result:
portID =< routeID >nodeID=< 101110001 >1001= 010

Using this method, the switch can calculate the output port by using two SHIFT
(steps 2 and 3), one CRC (step 4), and two XOR operations (steps 3 and 5), which is
more computationally efficient in terms of clock cycles than executing a integer division
or modulo-2 division.

Besides the basic modulo operation, the CRC technique may execute extra operations
for the CRC standard codes (e.g., CRC32 or CRC16) and some parameters have to be
configured, such as "Reversed", "Init-Value", and "XOR-out" 2. PolKA sets these pa-
rameters to default values in order to enable basic quotient remainder: Reversed=False,
Init-Value=0x0, XOR-out=0x0.

6.2.5.2 CRC support in P4

P4 language supports CRC operations through the use of external libraries, called externs,
which are architecture-specific code that can be manipulated by P4 programs through
APIs [P4.org 2017, da Silva et al. 2018]. The configuration of customized generator poly-
nomials is a requirement for reusing the CRC operation for the modulo operation and
depends on the selected P4 architecture model and its respective externs. The PSA
[P4.org 2019c, P4.org 2019b] and v1model architectures [P4.org 2018b, P4.org 2019a] sup-
port the specification of an arbitrary CRC polynomial of 16 and 32 bits. Code 6.7 and
Code 6.8 show the definition of the hash externs and the supported hash algorithms for
PSA and v1model architectures, respectively.

1 enum PSA_HashAlgorithm_t {
2 IDENTITY,
3 CRC32,

2https://barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code

https://barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code
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4 CRC32_CUSTOM,
5 CRC16,
6 CRC16_CUSTOM,
7 ONES_COMPLEMENT16,
8 TARGET_DEFAULT
9 }

10

11 extern Hash<O> {
12 Hash (PSA_HashAlgorithm_t a lgo ) ;
13 O get_hash<D>( in D data ) ;
14 O get_hash<T, D>( in T base , in D data , in T max) ;
15 }

Code 6.7: PSA: hash extern and supported hash algorithms. Source: [P4.org 2019b]

1 enum HashAlgorithm {
2 crc32 ,
3 crc32_custom ,
4 crc16 ,
5 crc16_custom ,
6 random ,
7 i d en t i t y ,
8 csum16 ,
9 xor16

10 }
11

12 extern void hash<O, T, D, M>(out O r e su l t , in HashAlgorithm algo , in T base
, in D data , in M max) ;

Code 6.8: v1model: hash extern and supported hash algorithms. Source:[P4.org 2019a]

The support on specific targets will depend on how they implement the architecture
models. For instance, the software switch bmv2 simple_switch and the hardware switch
Tofino from Barefoot support customized CRC polynomials, while Netronome SmartNICs
implement some of the functionalities of v1model and only support fixed CRC polynomials.

Code 6.9 shows a example P4 code that implements the modulo operation with CRC,
using the technique described in Section 6.2.5.1. It receives the routeID , which was
previously parsed from the input packet, and executes the steps for calculating the output
port using one CRC operation (implemented in the hash extern of v1model), two shift
operations and two XOR operations.

1 ac t i on srcRoute_nhop ( ) {
2 bit <16> nbase=0;
3 bit <64> ncount =4294967296∗2;
4 bit <16> nr e s u l t ;
5 bit <16> nport ;
6

7 bit <160> rout e id = meta . route Id ;
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8 bit <160> ndata = rout e id >> 16 ;
9 bit <16> d i f = ( bit <16>) ( rou t e id ^ ( ndata << 16) ) ;

10 hash ( nre su l t , HashAlgorithm . crc16_custom , nbase , { ndata } , ncount ) ;
11 nport = n r e s u l t ^ d i f ;
12 meta . port= ( bit <9>) nport ;
13 }

Code 6.9: Example P4 code for calculating the output port using CRC operation.

6.3 Proof-of-concept and evaluation

The proof-of-concept (PoC) aims to demonstrate and evaluate the main functionalities
of PolKA in comparison to a traditional Port Switching approach, named Sourcey. To
this end, we built two prototypes of the solution proposed in Section 6.1 and designed
in Section 6.2 using P4 16 language: (i) an emulated setup on Mininet based on bmv2
(behavioral model)[P4.org 2019d] software switch to evaluate end-to-end scenarios, and
(ii) a physical setup that uses Netronome SmartNICs3 to evaluate forwarding in a single
hop scenario. Thus, this section addresses two main goals of this thesis: (i) to prove
PolKA can be deployed in commercial programmable switches that support P4; and (ii)
to prove PolKA can be implemented with similar performance to a Port Switching SSR
approach.

6.3.1 Emulated setup with Mininet and bmv2

6.3.1.1 P4 target and architecture

The second version of the behavioral model framework, nicknamed bmv2, lets developers
implement their own P4-programmable architecture as a software switch [P4.org 2019d].
The selected target was simple_switch, which is a software switch that runs on a general
purpose CPU (e.g., Intel, and AMD) [P4.org 2019e, P4.org 2018a]. It was selected because
it is currently the most complete implementation of the functionalities specified by P4 14
and P4 16 languages. Other target implementations have restrictions on specific features
that were necessary for implementing PolKA, such as configuration of CRC polynomials.

The v1model architecture is the de-facto architecture for most P4 developers
[P4.org 2019e], because it was designed to match the architecture defined in the P4 14
language specification [P4.org 2018b]. Besides, it is included with the p4c compiler and
supports both P4 14 and P4 16 programs. The P4 16 language [P4.org 2017] also has
a Portable Switch Architecture (PSA) [P4.org 2019c], but the implementation in bmv2

using the target psa_switch is not yet complete. Since the psa_switch still does not
have a mature implementation and the v1model architecture with bmv2 simple_switch

3https://www.netronome.com/

https://www.netronome.com/
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target supports P4 16 language with all the pipeline blocks and functionalities required
for PolKA implementation, v1model was selected for this prototype.

It is important to highlight that bmv2 simple_switch is a user space implementa-
tion with focus on functionality and feature testing rather than production performance4.
There are other high performance open source implementations of P4 software switches
and compilers (e.g., PISCES5, P4ELTE6, and MACSAD7), but to the best of our knowl-
edge they do not yet cover all the features required by PolKA. As these implementations
evolve, it will be possible to test our prototype with higher loads. For the time being,
the solution was to limit the link rates in our emulated prototype to avoid reaching the
processing capacity limits of the bmv2 simple_switch implementation. In addition, we
compiled bmv2 with the appropriate compile time and runtime flags for improving perfor-
mance: ’CXXFLAGS=-O2’ –disable-logging-macros –disable-elogger.

6.3.1.2 Setup description

The physical setup consists of one server Dell PowerEdge T430, with one Intel Xeon
E5-2620 v3 2.40GHz processor, and 64GB of RAM.

To build our emulated environment in this server, we used p4app8, which is a tool
that can build, run, debug, and test P4 programs using a Docker image containing the
P4 compiler, bmv2, and Mininet. It creates a container with an emulated network using
Mininet, where it is possible to execute experiments with special functionality like com-
piling P4 programs and configuring bmv2 switches. However, this original design presents
limited flexibility, since it exposes a JSON configuration file with fixed options to the
user and only allows the execution of a single P4 program. Recently, a branch of p4app9

was released that converts p4app into a Python library that wraps-up Mininet, providing
more flexible ways to configure the emulated topology and run different P4 programs on
different switches. This functionality is crucial to emulate fabric networks, which require
different P4 programs for edge and core elements.

Table 6.5 shows the versions of the software used in this prototype.

6.3.1.3 P4 control plane implementation

The control plane in PolKA has the following main functionalities: (i) compute the
nodeIDs and configure the core switches with their respective identifiers; and (ii) compute
the routing paths for the traffic flows, calculate the routeIDs for the paths, and configure

4http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-July/000412.html
5http://pisces.cs.princeton.edu/
6http://p4.elte.hu/
7https://github.com/intrig-unicamp/macsad/
8https://github.com/p4lang/p4app/tree/master/
9https://github.com/p4lang/p4app/tree/rc-2.0.0/

http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-July/000412.html
http://pisces.cs.princeton.edu/
http://p4.elte.hu/
https://github.com/intrig-unicamp/macsad/
https://github.com/p4lang/p4app/tree/master/
https://github.com/p4lang/p4app/tree/rc-2.0.0/
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Table 6.5: Emulated setup: software versions.

Software Name Version
Operating System Ubuntu server 16.04.6 LTS
Kernel Linux 4.4.0-148-generic
P4 compiler p4c 1.1.0-rc1
Software switch bmv2 simple_switch 1.13.0
Emulation tool Mininet 2.3.0d5

the table entries in the edge switches that will be responsible for the encapsulation and
decapsulation of routeIDs.

For the RNS computation of nodeIDs and routeIDs, as described in Section 6.1.2, we
developed a Python library that uses the package sympy.polys.galoistools of the sympy
library10 for GF(2) arithmetic operations. For the prototype, the following main functions
were implemented for GF(2) polynomials:

• Generate k irreducible polynomials of minimum degree n:
create_list_irrpoly_mindeg(k, n)

• Calculate the routeID polynomial for a routing path, given the list of nodeID poly-
nomials (nodelst) and the list of portID polynomials (portlst):
calculate_routeid(nodelst, portlst)

The topology discovery and path computation were considered static inputs for the
control plane application, because it is not the focus of this work.

The bmv2 simple_switch accepts TCP connections from a controller, which can be
used to program the runtime behavior of each switch device [P4.org 2019d]. The for-
mat of control messages is defined by a Thrift API and a CLI (simple_switch_CLI)
connects to the Thrift RPC server running in each switch process [P4.org 2019e]. The
bmv2 simple_switch also supports P4 Runtime11, a silicon-independent and protocol-
independent API for control plane applications that can be auto-generated from an un-
ambiguous definition of a packet processing pipeline in P4. However, it was not possible
to use it in this prototype, because it does not yet support the configuration of CRC
parameters.

For the configuration of core and edge switches, we developed a control plane applica-
tion in Python that communicates with the switches using the CLI commands. Code 6.10
shows usage examples of the CLI commands used in this prototype:

1 #Usage : set_crc16_parameters <name> <polynomial> < i n i t i a l remainder> <f i n a l
xor value> <r e f l e c t data?> <r e f l e c t remainder?>

2 #Example : Set CRC genera tor polynomial 0x1002b with d e f au l t parameters .
3 set_crc16_parameters c a l c 0x002b 0x0 0x0 f a l s e f a l s e

10https://www.sympy.org/
11https://p4.org/p4-runtime/

https://www.sympy.org/
https://p4.org/p4-runtime/
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4 #Usage : table_add <tab l e name> <act i on name> <match f i e l d s > => <act i on
parameters> [ p r i o r i t y ]

5 #Example : Add tab l e entry that encapsu l a t e s a PolKA header
6 table_add sr_encap add_sr_header 1 0 . 0 . 2 . 1 / 32 => 1 00 : 0 0 : 0 0 : 0 0 : 0 2 : 0 1

179902035595884
7 #Usage : tab l e_de l e t e <tab l e name> <entry handle>
8 #Example : De lete t ab l e entry
9 tab l e_de l e t e sr_encap 1

10 #Usage : table_modify <tab l e name> <act i on name> <entry handle> [ ac t i on
parameters ]

11 #Example : Modify t ab l e entry that encapsu l a t e s a PolKA header
12 table_modify sr_encap add_sr_header 1 => 1 00 : 0 0 : 0 0 : 0 0 : 0 2 : 0 1

179902035595884

Code 6.10: Commands of switch CLI used by control plane application.

6.3.1.4 P4 data plane implementation

The following P4 16 programs were developed using v1model:

• sourcey.p4: implements all edge and core functionalities of Sourcey pipeline de-
scribed in Fig. 6.3.a;

• sourcey-edge.p4: implements only encapsulation and decapsulation functionalities
of Sourcey pipeline described in Fig. 6.3.a;

• sourcey-core.p4: implements only core functionalities of Sourcey pipeline de-
scribed in Fig. 6.5.a;

• polka.p4: implements all edge and core functionalities of PolKA pipeline described
in Fig. 6.3.b;

• polka-edge.p4: implements only encapsulation and decapsulation functionalities
of PolKA pipeline described in Fig. 6.3.b;

• polka-core.p4: implements only core functionalities of PolKA pipeline described
in Fig. 6.5.b;

• polka-varheader.p4: implements all edge and core functionalities of PolKA pipeline,
but uses a different PolKA header with variable length as described in Fig. 6.2.c
(instead of fixed length header);

Table 6.6 shows the source lines of code (SLOC) metric for these programs, which
were used for implementing the following solutions:

• Sourcey: all switches deploy sourcey.p4.
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Table 6.6: P4 programs: Source lines of code (SLOC).

Program SLOC
sourcey.p4 821
polka.p4 192
polka-var.p4 746
sourcey-core.p4 105
sourcey-edge.p4 871
polka-core.p4 121
polka-edge.p4 147

• Sourcey Fabric: edge switches deploy sourcey-edge.p4 and core switches deploy
sourcey-core.p4.

• PolKA: all switches deploy polka.p4.

• PolKA Fabric: edge switches deploy polka-edge.p4 and core switches deploy
polka-core.p4.

• PolKA-Var: all switches deploy polka-varheader.p4.

As explained in Section 6.1.4 the number of bits that are necessary to represent the
routeID and, consequently, the size of the PolKA header depends on some topologies
characteristics. However, bmv2 simple_switch only supports the specification of CRC
polynomials of 16 and 32 bits (see Section 6.2.5.2). Therefore, although, in theory, we
could use polynomials of much smaller degree to implement our tests, in practice, our PoC
has to adopt polynomials of degree 16. As our test topologies have a maximum diameter
of 10, we defined the size of the PolKA header as 160 bits (worst case scenario). In order
to get a fair comparison, we defined the Sourcey header as 16 bits (1 bit for bos and 15
bits for representing the ports), so, in the worst case of 10 nodes in the path, the array of
Sourcey headers would achieve 160 bits.

6.3.1.5 Test scenarios and experiments

The following test scenarios were designed to test the developed solutions:

1. Linear: The scenario of Fig. 6.8 contains 10 switches connected in a linear topology,
each switch is connected to one host and runs both core and edge functionalities. The
objective is to compare PolKA and Sourcey solutions with increasing number of hops
in the core network (e.g., from 0 for path 𝐻1 → 𝐻11 to 9 for path 𝐻1 → 𝐻10). We
also compare two different PolKA solutions with fixed and variable-length headers.

2. Fabric: The scenario of Fig. 6.9 is similar to the previous scenario, but each switch
was split into a core and edge switch. In this way, we can measure the impact of
the fabric solutions.
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Figure 6.9: Linear fabric topology.

3. Two-tier: This scenario represents a two-tier DC topology with fabric separation
(Fig. 6.12.a), where spine switches and leaf switches run core functionalities and
servers contain an edge switch that interconnects VMs. The objective is to demon-
strate how PolKA and Sourcey, as SSR solutions, can provide agile path migration.

As discussed in Section 6.3.1.1, the link rates were limited to 10Mbps to avoid reaching
the processing capacity limits of the bmv2 simple_switch implementation. For the tests,
we considered small packets as Ethernet frames of 98 bytes (IP payload of 64 bytes), and
big packets as Ethernet frames of 1242 bytes (IP payload of 1208 bytes).

The following experiments were designed for the test scenarios:

1. Round Trip Time (RTT): host 𝐻1 sends 1 ICMP packet/s during 65s to each
of the other hosts using ping tool. First 5 samples are discarded. This test was
executed with small and big packets. Also, in one test a background UDP traffic
of 5Mbps (half of link capacity) with same destination of the ICMP traffic was
generated in parallel.

2. Jitter: host 𝐻1 sends a UDP traffic of 5Mbps (half of link capacity) to each of the
other hosts during 70s using iperf tool. First 5 samples are discarded. This test
was executed with big packets.

3. Flow completion time (FCT): host 𝐻1 transmits a file of 100Mb over a TCP
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Figure 6.10: Linear scenario: comparison between PolKA and PolKA-Var solutions.

connection to each of the other hosts using iperf tool. The test was repeated 3
times. This test was executed with big packets.

All the graphs show average and standard deviation for the related measurements.

6.3.1.6 Linear and fabric scenarios

Firstly, we compared PolKA and PolKA-Var solutions as described in Sec. 6.3.1.4 for the
linear topology of Fig. 6.8. The RTT experiment in Fig. 6.10 shows the PolKA solution
with fixed header presents lower latency when compared with PolKA-Var solution with
variable header size. Moreover, the PolKA-Var implementation is more complex than
PolKA implementation (see Table 6.6 for SLOC comparison). Thus, the PolKA solution
with fixed header was adopted for comparison with Sourcey.

Fig. 6.11 shows the comparison between PolKA and Sourcey solutions (including their
fabric versions) for the RTT, Jitter, and FCT experiments for the topologies of Fig. 6.8
and Fig. 6.9.

In the RTT small packet (Fig. 6.11.a), RTT big packet (Fig. 6.11.b), and RTT back-
ground traffic (Fig. 6.11.c) experiments, it is possible to observe that some behaviors are
repeated: (i) the latency grows linearly with the increase of the number of hops for all the
solutions; (ii) fabric solutions add a bit more latency, because they use the linear fabric
topology, which have two extra hops in the path between two end hosts compared to the
non-fabric solutions that use the linear topology; (iii) Sourcey fabric and non-fabric solu-
tions present better latency perfomance than their respective PolKA solutions; and (iv)
the standard deviation is small and in the same order of magnitude for all the solutions.

Besides, there is no significant difference in the results for different packet sizes in the
RTT experiments. This is because Mininet does not consider transmission time in the
emulation. Also, the background traffic did not significantly affected the RTT results. In
addition, the jitter (Fig. 6.11.d) is small and equivalent for all the solutions. Finally, the
FCT experiments (Fig. 6.11.e) show that all the solutions require approximately the same
time to transfer the file and the standard deviation is small.



133

0 1 2 3 4 5 6 7 8 9

Number of hops in the core network

0

2

4

6

8

10

12

14

16

R
T
T

(m
s)

Sourcey

PolKA

Sourcey Fabric

PolKA Fabric

(6.11.a) RTT small packet.
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(6.11.b) RTT big packet.
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Figure 6.11: Linear and fabric scenarios: comparison between Sourcey and PolKA solu-
tions.

The fact that Sourcey has a better latency performance than PolKA is related to two
facts: Sourcey looses one SSR header per hop, so the average packet header size is smaller
than the fixed header used by PolKA; and the CRC operation for PolKA in this emulated
prototype is executed in software. Nevertheless, the difference between the two solutions
is small and can decrease if the CRC operation is performed in hardware, as we show in
Section 6.3.2.
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(6.12.a) Migration of TCP flow A (𝐻11_1 → 𝐻21_1) from Path 1 to Path 3.
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(6.12.b) Sourcey: throughput at destination 𝐻21_1.
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(6.12.c) PolKA: throughput at destination 𝐻21_1.

Figure 6.12: Two-tier scenario: agile path migration of TCP flow for allocation of maxi-
mum bandwidth in Sourcey and PolKA.

6.3.1.7 2-Tier scenario

Fig. 6.12.a shows a two-tier DC topology, which contains two spine switches (𝑆1 and 𝑆2)
and four leaf switches (𝐿1, 𝐿2, 𝐿3, and 𝐿4), all running core functionalities. Each leaf
switch is connected to two servers (𝑆𝑖𝑗), which have one edge switch (𝐸𝑖𝑗) to interconnect
VMs (𝐻𝑖𝑗_𝑘).

We run the same experiments for Sourcey and PolKA using the core and edge P4
programs described in Section 6.3.1.4. The first experiment shows how traffic engineering
can benefit from SSR mechanisms for allocation of maximum bandwidth with agile path
migration.

At instant 10s, flow A (𝐻11_1 → 𝐻21_1) and flow B (𝐻12_1 → 𝐻31_1) start TCP
traffics with big packets using iperf tool. Initially, flow A is allocated to Path 1 (𝐻11_1−
𝐸11−𝐿1− 𝑆1−𝐿2−𝐸21−𝐻21_1) and flow B is allocated to Path 2 (𝐻12_1−𝐸12−𝐿1−
𝑆1 − 𝐿3 − 𝐸31 −𝐻31_1), as shown in Fig. 6.12.a.

Thus, these flows compete for bandwidth at link 𝐿1 − 𝑆1 in the interval of 10s to 40s.
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The effects of the TCP congestion control mechanism for fair share of total bandwidth
can be seen in the graphs of Fig. 6.12.b and Fig. 6.12.c that show the throughput at the
destination of flow A (𝐻21_1) for Sourcey and PolKA, respectively.

At instant 40s, the traffic engineering decides to exploit alternative idle links and
migrates flow A from Path 1 to Path 3 (𝐻11_1−𝐸11−𝐿1−𝑆2−𝐿2−𝐸21−𝐻21_1). From
this moment, there is no more competition between flow A and flow B and the graphs
show that flow A reaches destination consuming the total link bandwidth of 10Gbps.

To perform the described path migration, the SDN Controller only has to modify a
single flow entry at the edge switch 𝐸11 for destination 𝐻21_1 (IP address 10.0.2.1/32).
Table 6.7 and Table 6.8 show the original entry that embeds the SSR header for Path
1 for Sourcey and PolKA, respectively. For selecting Path 3, the only action data field
that has to change in this example is the p1 field in Sourcey, as shown in the second
line of Table 6.7. For PolKA, the only field that has to be modified is the routeID
to embed the new route through Path 3, as shown in Table 6.8. Code 6.11 shows the
simple_switch_CLI commands for dynamically modifying this entry for path migration
in Sourcey and PolKA. Once this single table_modify operation is executed, all the
packets of flow A that leave 𝐻11_1 will be tagged with the route information of the new
path.

Table 6.7: Sourcey: Table entries at edge switch 𝐸11 for destination 𝐻21_1.

Path Key Action Action Data
1 10.0.2.1/32 add_header_3hops iport=1, dstAddr=00:00:00:00:02:01, bos1=0, p1=1, bos2=0, p2=2, bos3=1, p3=3
3 10.0.2.1/32 add_header_3hops iport=1, dstAddr=00:00:00:00:02:01, bos1=0, p1=2, bos2=0, p2=2, bos3=1, p3=3

Table 6.8: PolKA: Table entries at edge switch 𝐸11 for destination 𝐻21_1.

Path Key Action Action Data
1 10.0.2.1/32 add_sr_header iport=1, dstAddr=00:00:00:00:02:01, routeID=71955628459531
3 10.0.2.1/32 add_sr_header iport=1, dstAddr=00:00:00:00:02:01, routeID=179902035595884

1 #Command usage : table_modify <tab l e name> <act i on name> <entry handle> =>
2 #[ ac t i on parameters ]
3 #Migrat ion o f Flow A to Path 3 in Sourcey :
4 table_modify tunnel_encap_process_sr add_header_3hops 1 =>
5 1 0 0 : 0 0 : 0 0 : 0 0 : 0 2 : 0 1 0 2 0 2 1 3
6 #Migrat ion o f Flow A to Path 3 in PolKA :
7 table_modify tunnel_encap_process_sr add_sr_header 1 =>
8 1 0 0 : 0 0 : 0 0 : 0 0 : 0 2 : 0 1 179902035595884

Code 6.11: Usage example of simple_switch_CLI command for modifying table entry.

The second experiment investigates the effect of path reconfiguration in the packet
loss. To that end, we use the same topology of the previous experiment (Fig. 6.12.a). At
instant 10s, we start a single 5Mbps UDP flow with big packets from 𝐻11_1 to 𝐻21_1,
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(6.13.a) PolKA: throughput at source (𝐻11_1).
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(6.13.b) PolKA: throughput at 𝑆1.
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(6.13.c) PolKA: throughput at 𝑆2.
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(6.13.d) PolKA: throughput at destination (𝐻21_1).

Figure 6.13: Migration of UDP flow from Path 1 to Path 3 with no concurrent traffic in
PolKA.

with no concurrent traffic. Initially, this UDP flow is allocated to Path 1 (𝐻11_1 −𝐸11 −
𝐿1 − 𝑆1 − 𝐿2 − 𝐸21 − 𝐻21_1). Then, at instant 40s, we migrate this flow to Path 3
(𝐻11_1−𝐸11−𝐿1−𝑆2−𝐿2−𝐸21−𝐻21_1), changing one single flow entry at edge switch
𝐸11, as explained in the previous experiment.

Fig. 6.13 shows the throughput measurements of this second experiment for PolKA
using bwm-ng tool at source (Fig. 6.13.a), spine switch 𝑆1 (Fig. 6.13.b), spine switch 𝑆2

(Fig. 6.13.c), and destination (Fig. 6.13.d). The graphs show the traffic correctly pass
through 𝑆1 when Path 1 is selected (10s to 40s) and through 𝑆2 when Path 3 is selected
(40s to 70s).

Considering the limits of throughput and packet per second rate of our setup with
bwm2 simple_switch, this experiment was executed with throughputs of 1Mbps, 2Mbps,
3Mbps, 4Mbps, 5Mbps, 6Mbps, 7Mbps, and 8Mbps, and repeated 30 times for each
throughput rate. Comparing the total traffic sent by source with the total traffic received
at destination, no packet loss was registered. The same behavior was observed for tests
with Sourcey.
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6.3.2 Physical setup with SmartNICs

In the bmv2 prototype, the CRC operation is executed in software using a table lookup
implementation12. However, one of the main benefits of exploring the CRC operation
in PolKA is the possibility to implement the modulo operation in hardware with better
performance.

A P4 hardware target can be a switching ASIC, a FPGA, or a generic compute,
while a hardware platform is a switch (using ASIC), a smartNIC (using FPGA), or a
server machine13. To support P4, a target has to support a P4 compiler backend. This
section evaluates PolKA and Sourcey solutions in a hardware prototype developed using
Netronome SmartNICs.

6.3.2.1 SmartNICs features

The SmartNICs give access to the following timestamps to P4 programs :

• intrinsic_metadata.ingress_global_timestamp: 64-bit value representing the time
at packet ingress within the MAC chip component.

• intrinsic_metadata.current_global_timestamp: 64-bit value representing the cur-
rent time with respect to the time within the MAC block.

The timestamps are composed of a 32-bit seconds value in the top 32-bits and a 32-bit
nanoseconds value in the lower 32-bits. This prototype uses these hardware timestamps
to measure forwarding latency.

The Netronome SmartNIC partially implements the functionalities of v1model for
P4 16, but it currently supports only fixed CRC polynomials, such as standard CRC-
32 and CRC-CCITT (CRC-16). This restricts the use of its CRC hardware, because
PolKA requires to set different polynomials with default parameters for each core node.
Nevertheless, it is possible to measure forwarding latency in one core node as proposed in
the next section.

6.3.2.2 Setup description

The physical setup is illustrated by Fig. 6.14 and consists of two servers: (i) S0: a device
under test (DUT), running the core functionalities; and (ii) S1: a traffic generator (TG),
running the edge functionalities, and transmitter (TX) and receiver (RX) functionalities
in separate network namespaces. Both servers are Dell PowerEdge T430, with one Intel
Xeon E5-2620 v3 2.40GHz processor, 16GB of RAM, and one Netronome Agilio CX
2x10GbE SmartNIC (Fig. 6.15). Table 6.9 shows the versions of the software used in this
prototype.

12https://github.com/p4lang/behavioral-model/blob/master/src/bm_sim/crc_map.cpp
13https://github.com/hesingh/p4-info

https://github.com/p4lang/behavioral-model/blob/master/src/bm_sim/crc_map.cpp
https://github.com/hesingh/p4-info
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Figure 6.14: SmartNIC setup.

Figure 6.15: Netronome Agilio CX 2x10GbE SmartNIC. Source: https://www.
netronome.com/products/agilio-cx/

The P4 programs deployed on the SmartNICs are adaptations of the core and edge
codes for Sourcey an PolKA described in Section 6.3.1.4. The adaptations of the core codes
(polka-core.p4 and sourcey-core.p4) only ensure compatibility with some bit lengths
supported by the SmartNICs. The new edge codes extend (polka-edge-tstmp.p4 and
sourcey-edge-tstmp.p4) the original codes to encapsulate both the SSR headers and a
timestamp header, which is composed by an egress (𝑡𝑠𝑜𝑢𝑡) and an ingress timestamp (𝑡𝑠𝑖𝑛)
and inserted after the IP header. Fig 6.16 shows the new format of the packet with the
timestamp header for executing latency measurements.

At namespace ns0 in server S0, the packets are generated at TX using an IPv4 traffic
generator tool (e.g., pktgen or ping) and forwarded to virtual interface V0, which is
attached to the SmartNIC. The P4 program that runs on the SmartNIC receives these
packets from TX and encapsulates the SSR header (PolKA or Sourcey) and the timestamp

https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
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Table 6.9: Physical setup: software versions.

Software Name Version
Operating System Ubuntu server 18.04.1 LTS
Kernel Linux 4.15.0-29-generic
P4 compiler nfp4c 1.0.1-766d9d3cd66
Software Development Kit Network Flow Processor SDK 6.1-preview

portEthernet IPbos ... datatsout tsin

15 bits1 bit

2-18 bytes

portbos

15 bits1 bit

portbos

15 bits1 bit14 bytes 20 bytes 16 bytes

(6.16.a) Sourcey.

Ethernet IProuteID datatsout tsin

18 bytes14 bytes 20 bytes 16 bytes

(6.16.b) PolKA.

Figure 6.16: Timestamps header.

header.
When the packet leaves the ingress block in the edge pipeline, the value of intrin-

sic_metadata.current_global_timestamp is assigned to 𝑡𝑠𝑜𝑢𝑡. Then, it goes to the deparser
block and is transmitted over physical interface P0.

The packet reaches physical interface P0 at server S1 and is processed by the core
code at the SmartNIC, which is responsible for parsing the SSR header and computing
the output port. Since it is not possible to configure customized CRC polynomials in
the SmartNICs, we use a standard CRC operation with a fixed CRC-16 polynomial.
In this way, we execute all the PolKA pipeline steps (including the CRC operation) to
measure their contribution in the total latency, but, instead of using the result of the CRC
operation to select the output port, we select a fixed output port. As a result, the packet
is delivered to physical interface P1 at server S1, which is connected to physical interface
P1 at server S0.

The edge code at S0 parses the packet and the assigns the value of intrinsic_metadata.
ingress_global_timestamp to 𝑡𝑠𝑖𝑛. Then, it removes the SSR header and delivers the
packet to virtual interface V1 at namespace ns1. At ns1, we capture all the packets that
arrive at V1 with tcpdump tool and save the output to a *.pcap file. Finally, we parse
the files offline with scapy to extract the forwarding latency in the core for each packet
as: 𝑡𝑠𝑖𝑛 − 𝑡𝑠𝑜𝑢𝑡.
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Table 6.10: SSR headers based on destination IP address

DestIP SSR Header in Sourcey SSR Header in PolKA
10.0.100.1 (bos1, p1) routeID=1
10.0.100.2 (bos1, p1),(bos2, p2) routeID=4294771599
10.0.100.3 (bos1, p1),(bos2, p2),(bos3, p3) routeID=159022805856541
10.0.100.4 (bos1, p1),(bos2, p2),...(bos4, p4) routeID=17263697437380439085
10.0.100.5 (bos1, p1),(bos2, p2),...(bos5, p5) routeID=1149398238047081127332954
10.0.100.6 (bos1, p1),(bos2, p2),...(bos6, p6) routeID=59723885083156140294227912283
10.0.100.7 (bos1, p1),(bos2, p2),...(bos7, p7) routeID=2194656173762523641939709652656780
10.0.100.8 (bos1, p1),(bos2, p2),...(bos8, p8) routeID=32763471027773366297233451711039667216
10.0.100.9 (bos1, p1),(bos2, p2),...(bos9, p9) routeID=16050698998725239657676330566116710828499122

Table 6.11: SmartNIC test scenarios: deployed P4 programs.

# Test scenarios Core Edge
1 PolKA polka-core.p4 polka-edge-tstmp.p4
2 PolKA Baseline wire.p4 polka-edge-tstmp.p4
3 Sourcey sourcey-core.p4 sourcey-edge-tstmp.p4
4 Sourcey Baseline wire.p4 sourcey-edge-tstmp.p4

6.3.2.3 Test scenarios and cases

The objective is to measure the average core forwarding latency for a single hop in PolKA
and Sourcey when the path lengths increases. Here, we consider the path length as the
number of core nodes that must be considered in the SSR header to reach the destination.
For each test execution, the traffic generator tool at TX varies the IP destination address.
The last digit of the IP destination address represents the number of core nodes. For
example, if IP destination is 10.0.100.1, the number of core nodes to the destination is
1, while IP destination 10.0.100.9 represents 9 core nodes to the destination. Table 6.10
shows the SSR headers that are converted to table entries in the edge to match the
respective IP destination address and encapsulate the appropriate headers.

Table 6.11 shows the four test scenarios and the respective edge and core P4 programs.
The wire.p4 code is a simple P4 program that receives packets and forward them do port
physical P1 without any further processing. We use this program to create baseline to
compare PolKA and Sourcey results.

We investigate these scenarios considering the variation of two parameters:

• Packet size:

– small: Ethernet frame of 98 bytes (IP payload of 64 bytes).

– large: Ethernet frame of 1242 bytes (IP payload of 1208 bytes).

• Throughput:

– low: one ICMP packet/second, 100 packets in total, generated with ping tool.

– high: 1Gbps UDP packets, 1000 packets in total, generated with pktgen tool.
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(6.17.a) Low throughput and small packets.
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(6.17.b) Low throughput and big packets.
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(6.17.c) High throughput and small packets.
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(6.17.d) High throughput and big packets.

Figure 6.17: Comparison of test cases for Sourcey and Sourcey Baseline scenarios.

Thus, for each of the test scenarios, four test cases where measured:

1. Small packet and low throughput.

2. Big packet and low throughput.

3. Small packet and high throughput.

4. Big packet and high throughput.

6.3.2.4 Test results

Fig 6.17 and Fig 6.18 show the average core latency and standard deviation results for
Sourcey and PolKA test scenarios in comparison with their baselines. In all the four
test cases, the results from Sourcey and PolKA scenarios follow the same behavior of the
baseline scenarios and add a fixed value to the latency as expected, because of the extra
processing to calculate the output port.
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(6.18.a) Low throughput and small packets.
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(6.18.b) Low throughput and big packets.
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(6.18.c) High throughput and small packets.
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(6.18.d) High throughput and big packets.

Figure 6.18: Comparison of PolKA and PolKA Baseline test cases.

Also, in the test cases with low throughput for Sourcey (Fig 6.17.a and Fig 6.17.b) and
PolKA (Fig 6.18.a and Fig 6.18.b), it is possible to observe that the increase in the packet
size causes an upward vertical shift in the latency, because of the increased transmission
time. Comparing the test cases with big packets for Sourcey (Fig 6.17.b and Fig 6.17.d)
and PolKA (Fig 6.18.b and Fig 6.18.d), it is possible to observe that the increase in the
throughput has little impact when the packet size is big.

On the other hand, the scenario with small packets and high throughput (Fig 6.17.c
for Sourcey and Fig 6.18.a for PolKA) has much higher packet per second (pps) rate,
which causes an increase in the average latency and in the related standard deviation.

Fig. 6.19 compares the results in the four test cases for Sourcey and PolKA scenarios,
without showing the baselines. Within each test case, the average latency and standard
deviation in PolKA virtually do not vary when the path length increases, while in Sourcey
the average latency grows linear when the path length increases. This linear increase
in the latency measurements for Sourcey is emphasized in the test case with high pps
(Fig. 6.19.c), when the standard deviation is high for both PolKA and Sourcey. This is
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(6.19.a) Low throughput and small packets.
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(6.19.b) Low throughput and big packets.
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(6.19.c) High throughput and small packets.
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(6.19.d) High throughput and big packets.

Figure 6.19: Comparison of Sourcey and PolKA test cases.

due to the stress caused both in the edge and core components to process high pps rates.
However, even in the best case for Sourcey, when the path length is one and the

SSR header in Sourcey is much smaller (16 bits in Sourcey against 144 bits in PolKA),
the average latency in the PolKA implementation is almost equivalent to the Sourcey
implementation. More investigation needs to be carried out in a hardware prototype
that allows tests in multi-hop topologies to understand how the contribution in each hop
will be combined in end-to-end scenarios, but the results collected so far indicate that the
PolKA implementation using CRC hardware is promising and can offer at least equivalent
performance to the Sourcey implementation.

6.4 Concluding remarks

Herein, a binary polynomial representation of a RNS-based SSR mechanism, called PolKA,
was proposed, implemented and tested for unicast and multicast SSR. To the best of our
knowledge, this is the first work to apply the CRT theorem in conjunction with finite
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fields polynomials to solve routing problems.
Moreover, our P4-based emulated and hardware prototypes demonstrated it is possible

to deploy RNS-based SSR in commercial network equipment by reusing CRC hardware,
with performance equivalent to traditional Port Switching approaches. As discussed in
Section 2.2.1, this achievement has the potential to enable a new range of complex net-
work applications that explore RNS intrinsic features, such as fast failure reaction, optical
switching, and route authenticity. In Chapter 7, we apply the results obtained in this
chapter to propose a solution for integrating PolKA with KeySFC, enabling the imple-
mentation of SFC with RNS-based SSR in commodity equipment.

Future works include extensions of our hardware prototype for supporting end-to-
end test scenarios using Tofino switch and a software implementation of CRC in the
SmartNICs. Furthermore, we envision that PolKA is more than a way of supporting RNS-
based SSR implementations in commodity network hardware platforms. Chapter 8.2 will
discuss how we envision to extend PolKA.



Chapter 7

Integration of PolKA and KeySFC

In Chapter 5, the proposal of KeySFC used an integer RNS-based SR mechanism, which
is based on RNS over integer arithmetic. There, the implementation of the prototype
was done in OvS. Now, this section explores how PolKA can be integrated as the SR
mechanism of KeySFC with a P4 implementation of RNS over GF(2) polynomials.

7.1 Design

The tests in Section 6.3 evaluated the application of PolKA in unicast SR scenarios, where
source and destination have no VNF inserted between them. KeySFC enables the steering
of a certain flow through a list of VNFs.

The architecture of KeySFC requires a fabric network, composed by core and edge
switches, that is already supported by PolKA. In KeySFC, the traffic flows that traverse
edge switches match pre-installed flow entries that rewrite Ethernet MAC addresses to a
VMAC. The VMAC is divided in two parts (see Fig. 5.2): the most significant 16 bits
represent the segID , and the remaining bits (32, if using only DstMAC, or 80, if using
DstMAC and SrcMAC) represent the routeID . The segID uniquely identifies the current
chain segment and the routeID defines the next hop using RNS-based SR.

However, since our prototype in bmv2 is limited to CRC-16 polynomials, the bit length
of the routeID does not fit the Ethernet frame. Thus, as a design choice, we decided to
embed the routeID in a new header between Ethernet and IP headers, as done for unicast
SR in Section 6.3, and embed the segID in the Ethernet DstMAC as a VMAC, as done
in Chapter 5.

The core pipeline (Fig. 6.5.b) used for unicast SR does not need any change, but
the edge functionalities (Fig. 6.3.b) need to change to enable traffic steering according
to Fig. 7.1. This new edge pipeline for SFC includes the original table for encapsulat-
ing SR headers (table sr_encap, green diamond in Fig. 7.1) and also a new table for
performing SFC (table sfc_process, blue diamond in Fig. 7.1), as shown in Code 7.1 for
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Figure 7.1: SFC edge pipeline.

table declaration and Code 7.2 for action declaration. It considers two cases for a ingress
packet:

• (I) It came from a VM: encapsulate SR header and VMAC.

– (I.a) From end host.

– (I.b) From VNF.

• (II) It came from core with destination to a VM (VNF or end host): decapsulate
SR header.

1 t ab l e sr_encap {
2 key = {
3 hdr . ipv4 . dstAddr : lpm ;
4 }
5 a c t i on s = {



147

Table 7.1: Table entries in edge switches for example SFC.

Sw. # Table Key Action Action Data
𝐸1 1 sr_encap 10.0.4.4/32 add_sr_header eport=3, dstAddr=fe:00:00:01:04:04, routeID =2147713608

𝐸2
2 sfc_process fe:00:00:01:04:04, iport=3 sfc_to_vm eport=2
3 sfc_process fe:00:00:01:04:04, iport=2 add_sr_header eport=3, dstAddr=fe:00:00:02:04:04, routeID =715686143

𝐸3
4 sfc_process fe:00:00:02:04:04, iport=3 sfc_to_vm eport=2
5 sfc_process fe:00:00:02:04:04, iport=2 add_sr_header eport=3, dstAddr=00:00:00:00:04:04, routeID =4294771545

𝐸4 6 sfc_process 00:00:00:00:04:04, iport=3 sfc_to_vm eport=1

6 add_sr_header ;
7 tdrop ;
8 }
9 s i z e = 1024 ;

10 de fau l t_act ion = tdrop ( ) ;
11 }
12

13 t ab l e s f c_proce s s {
14 key = {
15 hdr . e the rne t . dstAddr : exact ;
16 standard_metadata . ingre s s_port : exact ;
17 }
18 a c t i on s = {
19 add_sr_header ;
20 sfc_to_vm ;
21 tdrop ;
22 }
23 s i z e = 1024 ;
24 de fau l t_act ion = tdrop ( ) ;
25 }

Code 7.1: P4 code for table declaration.

1 ac t i on sfc_to_vm ( egressSpec_t port ) {
2 standard_metadata . egress_spec = port ;
3 s rcRoute_f in i sh ( ) ;
4 }
5

6 ac t i on add_sr_header ( egressSpec_t port , macAddr_t dmac , b i t <160> routeID ) {
7 standard_metadata . egress_spec = port ;
8 hdr . e the rne t . dstAddr = dmac ;
9 hdr . srcRoute . s e tVa l id ( ) ;

10 hdr . srcRoute . routeID = routeID ;
11 hdr . e the rne t . etherType = TYPE_SR;
12 }

Code 7.2: P4 code for action declaration.

Fig 7.2 shows an example SFC with two VNFs: 𝐻1 → 𝑉 𝑁𝐹2 → 𝑉 𝑁𝐹3 → 𝐻4. Ini-
tially, the SDN Controller assigns nodeIDs to S1 (0x1002b), S2 (0x1002d), S3 (0x10039),
and S4 (0x1003f), and installs the table entries for steering the traffic. For this example,
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Figure 7.2: KeySFC with PolKA: example SFC.

Table 7.1 shows the table entries in the edge switches. When H1 sends traffic to H4 the
following events happen:

1. At 𝐸1: The packet leaves H1 and reaches 𝐸1, where it matches entry 1, receiving
a SR header with routeID1= 2147713608, and causing the DstMAC to be changed
to VMAC1 (fe:00:00:01:04:04), and the packet to be forwarded to 𝑆1 at port 3. In
𝑆1, the modulo operation of routeID1 by the nodeID of 𝑆1 gives port=2 and the
packet is forwarded to 𝑆2. In 𝑆2, the modulo operation of routeID1 by the nodeID
of 𝑆2 gives port=1 and the packet is forwarded to 𝐸2.

2. At 𝐸2: the packet matches entry 2, which removes the SR header and sends the
packet to port 2. Then, VNF2 processes the packet and forwards it back to the
same interface. The returning packet reaches 𝐸2 and matches entry 3, receiving
a SR header with routeID2= 715686143, and causing the DstMAC to be changed
to VMAC2 (fe:00:00:02:04:04), with the packet being sent to 𝑆2 at port 3. There,
computing the modulo of routeID2 by the nodeID of 𝑆2, gives port=3 and the packet
is forwarded to 𝑆3. In 𝑆3, the modulo operation of routeID2 by the nodeID of 𝑆3

gives port=1 and the packet is forwarded to 𝐸3.

3. At 𝐸3: the packet matches entry 4, which removes the SR header and sends the
packet to port 2. VNF3 processes the packet and forwards it back to the same
interface. The returning packet reaches 𝐸3 and matches entry 5, receiving a SR
header with routeID3= 4294771545, and causing the DstMAC to be changed to the
original MAC of the destination H4 (00:00:00:00:04:04), with the packet being sent
to 𝑆3 at port 3. There, computing the modulo of routeID3 by the nodeID of 𝑆3 gives
port=3 and the packet is forwarded to 𝑆4. In 𝑆4, the modulo operation of routeID3
by the nodeID of 𝑆4 gives port=1 and the packet is forwarded to 𝐸4.

4. At 𝐸4: the packet matches entry 6, which removes the SR header and delivers the
packet to H4.
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Equivalent modifications in the pipeline and tables were implemented for Sourcey to
enable the comparison between the solutions.

7.2 Proof-of-concept and evaluation

We extended the emulated setup of Section 6.3.1 to test the integration of PolKA with
KeySFC according to the design of the previous section.

The first set of experiments performs SFC tests on a linear topology, similarly to the
tests of Section 6.3.1.6. Then, the second experiment explores a SFC migration scenario.
Moreover, KeySFC is a powerful SFC scheme that can be extended to support features
that explore RNS properties. So, the third experiment exemplifies a potential feature of
fast failure reaction.

7.2.1 Linear topology

In this experiment, the test topology is similar to the linear fabric topology, but each edge
switch is connected to one host and one VNF. The experiments are the same described
in Section 6.3.1.5.

Before the experiments start, the SDN controller installs the table entries for all the
chains and configures the nodeIDs of core switches. Similar to the KeySFC prototype
of Chapter 5 the VNFs run a simple forwarding function. To implement this function,
a Python script with raw sockets receives packets from one network interface and return
then to the same interface without further processing or modification.

The first objective is to demonstrate that PolKA and Sourcey solutions can be used
by KeySFC to enable traffic steering. The second objective is to evaluate PolKA and
Sourcey solutions in two scenarios: (i) increasing the number of VNFs in the chain (chain
length) (Fig. 7.3.a), and (ii) increasing number of hops per SFC segment (Fig. 7.4.a).

Fig. 7.3 shows the comparison between PolKA and Sourcey solutions for the RTT
(Fig. 7.3.b), Jitter (Fig. 7.3.c), and FCT (Fig. 7.3.d) experiments in the example of
Fig. 7.3.a with increasing chain length (e.g., from 0 for SFC 𝐻1 → 𝐻2 to 8 for SFC 𝐻1 →
𝑉 𝑁𝐹2 → 𝑉 𝑁𝐹3 → 𝑉 𝑁𝐹4 → 𝑉 𝑁𝐹5 → 𝑉 𝑁𝐹6 → 𝑉 𝑁𝐹7 → 𝑉 𝑁𝐹8 → 𝑉 𝑁𝐹9 → 𝐻10).

Fig. 7.4 shows the comparison between PolKA and Sourcey solutions for the RTT
(Fig. 7.4.b), Jitter (Fig. 7.4.c), and FCT (Fig. 7.4.d) experiments in the example of
Fig. 7.4.a with increasing number of hops per SFC segment (e.g., 1 for SFC 𝐻1 →
𝑉 𝑁𝐹2 → 𝐻3, 2 for SFC 𝐻1 → 𝑉 𝑁𝐹3 → 𝐻5, 3 for SFC 𝐻1 → 𝑉 𝑁𝐹4 → 𝐻7, and 4

for SFC 𝐻1 → 𝑉 𝑁𝐹5 → 𝐻9).
For both test scenarios, it is possible to observe that some behaviors are repeated: (i)

the latency grows linearly with the increase of the chain length and the number of hops
per segment for Sourcey and PolKA solutions, (ii) Sourcey solution has a slightly better
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E1 E10E2 E3

S1 S10S2 S3

H1 VNF1 H2 VNF2 H10 VNF10H3 VNF3

E4

S4

H4 VNF4

SFC0: H1-H2 : 0 hop 
SFC1: H1-VNF2-H3 : 1 hop
SFC2: H1-VNF2-VNF3-H4 : 2 hops
...
SFC8: H1-VNF2-VNF3-VNF4-VNF5-VNF6-VNF7-VNF8-VNF9-H10 : 8 hops

(7.3.a) SFC description.
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Figure 7.3: SFC tests for increasing chain length: comparison between Sourcey and PolKA
solutions.

RTT latency than PolKA solution, (iii) the standard deviation for RTT is small and in
the same order of magnitude for PolKA and Sourcey solutions, (iv) the jitter is small and
equivalent for both solutions, and (v) the FCT experiments show that all the solutions
require approximately the same time to transfer the file and the standard deviation was
small. As discussed in Section 6.3.1.6, the performance of the PolKA solution can be
improved if the CRC operation is performed in hardware.
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Figure 7.4: SFC tests for increasing number of hops per SFC segment: comparison be-
tween Sourcey and PolKA solutions.

7.2.2 Programmable, expressive, scalable, and agile migration

The objective of this experiment is to show a practical example that explores how the
combination of KeySFC and PolKA can provide the ability to migrate paths of the SFC
segments in a programmable, expressive, scalable, and agile way.

To this end, we explore the example discussed in Fig. 3.6 of Section 3.1.3, which
illustrates an example scenario of dynamic chain migration due to security demands. In
the example, the SDN-based approach needs to installs flow entries in all the elements in
the forwarding path, while our algorithmic SSR approach only installs flow entries in the
SFC segments’ endpoints.
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Figure 7.5: KeySFC with PolKA: SFC migration example.

Table 7.2: Table entries in edge switches before SFC migration.
Sw. # Table Key Action Action Data
𝐸1 1 sr_encap 10.0.7.7/32 add_sr_header eport=3, dstAddr=fe:00:00:01:07:07, routeID =103941321831683

𝐸3
2 sfc_process fe:00:00:01:07:07, iport=3 sfc_to_vm eport=2
3 sfc_process fe:00:00:01:07:07, iport=2 add_sr_header eport=3, dstAddr=00:00:00:00:07:07, routeID =1187790491324897019619195

𝐸7 4 sfc_process 00:00:00:00:07:07, iport=3 sfc_to_vm eport=1

Table 7.3: Table entries in edge switches after SFC migration.
Sw. # Table Key Action Action Data
𝐸1 5 sr_encap 10.0.7.7/32 add_sr_header eport=3, dstAddr=fe:00:00:01:07:07, routeID =10417762529131015975

𝐸10
6 sfc_process fe:00:00:01:07:07, iport=3 sfc_to_vm eport=2
7 sfc_process fe:00:00:01:07:07, iport=2 add_sr_header eport=3, dstAddr=00:00:00:00:07:07, routeID =18289869304896468450

𝐸7 4 sfc_process 00:00:00:00:07:07, iport=3 sfc_to_vm eport=1

Fig. 7.5 shows the equivalent topology of the example of Fig. 3.6, which is emulated in
our bmv2 prototype. Initially, the flow is steered through an IDS function (SFC1 in red).
The paths are represented by the set of servers and their respective output ports, which
are used to calculate the routeIDs. For the first SFC segment, the selected physical path
in the core network is represented by nodes S = {𝑆1, 𝑆2, 𝑆3} and ports O = {2, 3, 1}. For
the second SFC segment, it is represented by nodes S = {𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7} and ports O
= {3, 3, 3, 3, 1}.

Then, when an attack is detected, the flow needs to be redirected to a firewall function
(SFC2 in blue). For the first SFC segment, the selected physical path in the core network
is represented by S = {𝑆1, 𝑆8, 𝑆9, 𝑆10} and O = {3, 3, 3, 1}. For the second SFC segment,
it is represented by S = {𝑆10, 𝑆11, 𝑆6, 𝑆7} and O = {3, 3, 3, 1}.

In Fig. 7.5, the red stars represent the flow entries installed for SFC1. The blue stars
represent the new flow entries that are necessary to be installed for the migration to SFC2.
Table 7.2 and Table 7.3 show the table entries in the edge switches before and after the
SFC migration, respectively. The routeIDs in the flow entries 1, 3, 5, and 7 specify the
physical paths of the SFC segments.
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Figure 7.6: Migration of UDP flow from SFC 1 to SFC 2 in KeySFC with PolKA.

At instant 10s, we start a 5Mbps UDP flow from 𝑉𝑀𝑆 to 𝑉𝑀𝐷, with no concurrent
traffic. Initially, this UDP flow is allocated to SFC1. Then, at instant 40s, we migrate
this flow to SFC2, changing one single flow entry at edge switch 𝐸1, and creating two new
flow entries at edge switch 𝐸10. The two flow entries at edge switch 𝐸3 are deleted and
the flow entry at edge switch 𝐸7 is maintained.

Fig. 7.6 shows the throughput measurements of this experiment using bwm-ng tool at
source (Fig. 7.6.a), core switch 𝑆3 (Fig. 7.6.b), core switch 𝑆10 (Fig. 7.6.c), and destination
(Fig. 7.6.d). The graphs show the traffic correctly pass through 𝑆3 when SFC1 is selected
(10s to 40s) and through 𝑆10 when SFC2 is selected (40s to 70s).

7.2.3 Exploitation of RNS properties: fast failure reaction

The goal of this experiment is to show an example of how KeySFC with PolKA can take
benefit of the special properties offered by RNS-based SR, as discussed in Section 3.2.1.
More specifically, it explores a property that states that the order of the nodes in the
path is irrelevant. Based on this property, it integrates a fast failure reaction mechanism
proposed by KAR [Gomes et al. 2016] to our SFC scheme.

KAR [Gomes et al. 2016] proposes the concept of resilient forwarding paths, called
protection paths. The main idea is to proactively add redundant nodes in the routeID
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Figure 7.7: Fast failure reaction for SFC VMS→VNF→VMD: (a) topology, (b) unpro-
tected path for segment VNF→VMD, and (c) protected path for segment VNF→VMD.

that are not part of the original route. When there is a link failure, packets are deviated
from faulty links with routing deflections and may occasionally reach these redundant
nodes, which are responsible to guide the packets back to their original route. In this
way, there is no need to communicate with a Controller or the source node to compute
an alternative path, because as soon as the forwarding node detects a failure it randomly
deflects the packet to one of its other healthy links.

Fig. 7.7.a shows an example scenario for SFC VMS→VNF→VMD. The path in
the core switches for the first SFC segment (VMS→VNF) is represented by nodes S =
{𝑆1, 𝑆2} and ports O = {2, 1}. The path for the second SFC segment (VNF→VMD)
is represented by nodes S = {𝑆2, 𝑆4, 𝑆6} and ports O = {4, 5, 1}, as shown in Fig. 7.7.b.
These paths are called unprotected paths, because they do not add any redundant node for
failure protection. Therefore, if any link of these paths fails, the packets will be dropped.

In the first part of this experiment, we emulate the test scenario of Fig. 7.7.a without
any protection and generate a failure in the link S4-S6 at instant 40s. Fig. 7.8 shows the
throughput measurements of this experiment using bwm-ng tool at source (Fig. 7.8.a), and
destination (Fig. 7.8.b). From 40s to 70s, the link S4-S6 is down and no traffic reaches
the destination.

In the second part of the experiment, we apply the protection mechanism based on
KAR for fast failure reaction. To generate the routeID of the second SFC segment
(VNF→VMD), we add the extra nodes 𝑆3, 𝑆5, and 𝑆7 with ports 5, 3, and 4, respectively.
In this way, when the link 𝑆4-𝑆6 fails, 𝑆4 can deflect the packets to any of its other links
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Figure 7.8: UDP test for unprotected path: results for failure of link S4-S6.

and the packets will be driven back to 𝑆6, as shown in Fig. 7.7.c. Thus, the protected
path for the second segment is represented by nodes S = {𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7} and ports
O = {4, 5, 5, 3, 1, 4}. Note that the protected path already contains the redundant nodes,
so no change is necessary in the routeID when the failure happens.

The KAR mechanism proposed in [Gomes et al. 2016] implements three fundamental
features: RNS-based SSR, failure detection, and deflection. It uses a emulated OpenFlow
prototype in Mininet to implement these features. However, the v1model architecture
with bmv2 simple_switch target does not offer a standard way to access port status
information directly in the P4 program1, which is necessary for failure detection.

To enable the integration of KAR’s fast failure reaction mechanism in our SFC proto-
type, we developed a simple control plane application that causes link failures and makes
port failure information available to the dataplane by populating a table of faulty ports
in affected switches. In addition, we modified the program of the core nodes to check
this table before transmitting the packet to the output port that was obtained via the
modulo operation. If there is a hit, the packet is randomly deflected to one of the other
healthy ports. Otherwise, the packet is transmitted normally. The generation of a ran-
dom value within a interval is provided by v1model and could also be replaced by a hash
function if the objective is to always select the same port per flow. More sophisticated
mechanisms for failure detection and other P4 targets can be explored in future works
[Cascone et al. 2017], as this is not the scope of this thesis.

Fig. 7.9 shows the throughput measurements of this second part of the experiment us-
ing bwm-ng tool at source (Fig. 7.9.a), destination (Fig. 7.9.b), core switch 𝑆3 (Fig. 7.9.c),
core switch 𝑆5 (Fig. 7.9.d), and core switch 𝑆7 (Fig. 7.9.e). At instant 10s, we start a
5Mbps UDP traffic from VM𝑆 to VM𝐷. At instant 40s, the link S4-S6 is disconnected
and maintained down until the end of the experiment. The graphs show the traffic is
uniformly deflected through 𝑆3, 𝑆5, and 𝑆7 after the failure. At the destination, the

1http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-May/000290.html

http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-May/000290.html
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(7.9.b) Throughput at destination (VM𝐷).
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(7.9.c) Throughput at S3 (Port 4).
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(7.9.d) Throughput at S5 (Port 2).
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Figure 7.9: UDP test for protected path: results for failure of link S4-S6 with the deflec-
tions of the fast failure reaction mechanism.

received traffic perceives a small loss until the failure is signalized by the control plane
and deflections start. Therefore, our scheme was able to react to the failure and deliver
packets to destination without any modification of the packets.

Then, we repeated the same test for a TCP traffic. Fig. 7.10 shows the throughput
measurements of this experiment using bwm-ng tool at source (Fig. 7.10.a), destination
(Fig. 7.10.b), core switch 𝑆3 (Fig. 7.10.c), core switch 𝑆5 (Fig. 7.10.d), and core switch 𝑆7

(Fig. 7.10.e). At instant 10s, we start a TCP traffic from VM𝑆 to VM𝐷. At instant 40s,
the link S4-S6 is disconnected and maintained down until the end of the experiment. The
graphs show the traffic is uniformly deflected through 𝑆3, 𝑆5, and 𝑆7 after the failure. At
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(7.10.b) Throughput at destination (VM𝐷).
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(7.10.d) Throughput at S5 (Port 2).
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Figure 7.10: TCP test for protected path: results for failure of link S4-S6 with the deflec-
tions of the fast failure reaction mechanism.

the destination, the received traffic perceives a small loss until the failure is signalized by
the control plane and deflections start.

No effect of TCP packet reordering was observed for this particular case. It is impor-
tant to outline that, depending on the scenario and the difference on the number of hops
of the alternative paths, the deflections may impact the TCP throughput due to packet
disordering. However, even in these cases, the ability to keep the network connectivity
during failures without any reconfiguration on the network nodes justifies the use of KAR
to enable network resiliency. Furthermore, as soon as the link connection is reestablished,
the deflections stop and the original path is used.



158

7.3 Concluding remarks

This chapter presented the integration between PolKA and KeySFC to provide a pro-
grammable, expressive, scalable, and agile SFC solution that can be implemented over
COTS equipment. As PolKA can be implemented in P4 programmable switches, it can
be used as the SSR mechanism of KeySFC scheme to improve performance and make
hardware implementation more feasible. Furthermore, we demonstrated KeySFC can be
extended to exploit RNS features, such as fast failure reaction. The next chapter will
summarize the contributions of this thesis and point out future works.



Chapter 8

Conclusion

This chapter describes the final considerations and highlights the contributions and future
works of this thesis.

8.1 Conclusions

Emerging trends such as Internet of Things, Smart Cities, and Industry 4.0 require the
dynamic composition of end-to-end services in edge DCs that can meet stringent per-
formance, cost, and flexibility requirements. In this context, NFV challenges network
operators to compose services by steering dynamic flows across a set of SFs.

However, traditional SFC solutions lack flexibility and efficiency due to the fact that
they are adaptations of the classical source-to-destination routing paradigm. As a result,
one may not be able to use all the existing paths for chaining specific segments, either
because the SFC decisions are completely decoupled from the routing decisions, or because
the path choice is constrained by the routing mechanism to a small set of shortest paths.
In addition, dynamic modification of chain paths may impact a large set of nodes, leading
to large operational complexities even for simple service modification tasks.

To address these issues, this thesis proposed a framework composed by three interre-
lated solutions (VirtPhy, KeySFC, and PolKA) for providing programmable, expressive,
scalable, and agile SFC solution that enables dynamic and efficient orchestration of the
network underlay of edge data centers with COTS equipment. The proposal builds upon
the following enablers: NFV, SDN, SSR, algorithmic forwarding, RNS, support for any
DCN, topology-aware orchestration, and fabric networks.

Chapter 4 presented VirtPhy, a NFV orchestration architecture based on server-centric
topologies. The main contributions of VirtPhy are: to demonstrate how server-centric
DCNs using COTS equipment can fit in NFV ETSI orchestration architecture; to pro-
pose topology-aware orchestration and the exploitation of algorithmic routing mechanisms
provided by the network underlay; and to demonstrate how table lookup can be replaced
by algorithmic forwarding in a efficient and programmable manner using SDN.



160

Chapter 5 presented KeySFC, a topology-independent SFC scheme that uses RNS-
based SSR. It advances the contributions of VirtPhy, and proposes a SFC scheme that
can be used by any topology (server-centric, network-centric, or hybrid). Moreover, it
reduces network overhead by applying the concepts of fabric networks. To this end,
it defines edge and core elements that provide SDN-based SFC and algorithmic SSR
functionalities, respectively. Furthermore, it provides a more expressive scheme to allow
the traffic engineering to specify any path for SFC segments and perform agile migration
between paths.

To test VirtPhy and KeySFC proposals we implemented and tested a proof-of-concept
prototype in a DC testbed that uses OpenStack, OpenFlow, and OvS. The results showed
our framework has the potential to meet performance, cost, and flexibility requirements
in production DC environments.

Chapter 6 presented PolKA, a novel RNS-based SSR mechanism based on binary
arithmetic. Its novelty lies in applying finite fields arithmetic and RNS for solving rout-
ing problems. This new representation allowed the development of a technique that allows
computationally efficient implementations of the modulo operation by reusing CRC hard-
ware. The proposal was implemented in P4 emulated and hardware prototypes that
demonstrated it can achieve similar performance to traditional Port Switching methods.

Chapter 7 demonstrated that, by integrating PolKA with KeySFC, we can provide a
programmable, expressive, scalable, and agile SFC solution, which can be implemented
over COTS equipment. In addition, our integrated SFC solution tested all the hypothesis
stated in Section 1.1.5 (SSR, algorithmic forwarding, RNS, support to any DCN, SDN,
and fabric networks) to tackle the research question of Section 1.1.4.

Using our expressive SFC solution, the traffic engineering can specify any path between
two endpoints of a SFC segment, and agilely migrate between paths using SDN in a
programmable manner. Besides our solution only needs to install flow rules in the SFC
segments’ endpoints, significantly improving scalability and agility when compared to
traditional table-based approaches. Thus, we provide a SFC solution that enables dynamic
and efficient orchestration of the network underlay of edge data centers and does not
restrict the traffic engineering on the selection of paths for the SFC segments.

This work also paves the way for exploring RNS-based SSR properties in SFC schemes
(as described in Section 3.2.1). In particular, we demonstrated an example of the inte-
gration of a fast failure reaction mechanism to the KeySFC scheme.

Finally, it is important to highlight that we implemented prototypes of all the proposed
solutions. Considering the four years time frame of this thesis, we followed the evolution
of cutting edge technologies for edge DCs during this period.

Section 8.2 details the next steps of this research.
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8.2 Future works

As described in Section 5.3, KeySFC scheme has the potential to offer an efficient
and modular solution to the SFC problem in multi-provider and multi-tenant scenarios
[Dietrich et al. 2017]. Besides, the integration of MANO solutions and optimized resource
allocation strategies from related works [Mijumbi et al. 2016], [Herrera and Botero 2016],
[Bari et al. 2015], [Luizelli et al. 2015] is an important extension of this work.

Offload of forwarding tasks and SFs to a networking co-processor, such as SmartNICs,
is also planned as future work. Performance tests in large DCN topologies with realistic
SFs are also in our roadmap. As carrier-grade services can benefit from our dynamic
mechanisms, the integration of KeySFC with operation and management (OAM) systems
will be addressed. Besides, we want to explore the use of metadata and network context
for policy enforcement strategies.

In addition, our solution has the advantage of enabling the traffic engineering to spec-
ify the complete forwarding paths in the network underlay. This can be explored by load
balancing mechanisms, which need to be able to classify the existing flows, isolate flows
with conflicting network requirements, and assign paths in a way that meets the flow
requirements without compromising other flows. As SSR solutions reduce the number of
flow entries installed in the network core it can offer scalable solutions to traffic engineer-
ing. We started to explore this approach for unicast routing [Valentim et al. 2019], and
plan to extend these studies for SFC scenarios.

Future works include two extensions of our hardware prototype of PolKA for support-
ing end-to-end test scenarios: (i) with Tofino switch, since it supports the customization
of CRC polynomials; and (ii) with SmartNICs by implementing CRC operations with
customized polynomials in software using a custom C plugin with a CRC lookup table
in local memory, which would cost few instructions per data byte. Besides, we plan to
exploit the use of alternative commodity modules, such as forward error correction (FEC),
DDR-DRAM, random number generators, and cryptographic hardware, whose arithmetic
is also based on GFs.

Furthermore, by bringing routing expressiveness closer to hardware operations, PolKA
opens the possibility to explore binary polynomial arithmetic in hardware description
languages. Therefore, RNS-based SR elements have the potential to be synthesized in
a smaller chip area with reduced power consumption. This also creates an opportunity
to replace the complex routing mechanisms that are commonly used by network on chip
(NoC) designs in many-cores systems [Ruaro et al. 2018] by PolKA, reducing costs and
gaining flexibility.

Moreover, we also envision the expressiveness of our polynomial mechanism may be
extended using GFs of higher orders for complex routing problems, like wavelength switch-
ing, multilayer networks, and network slicing. In particular, we plan to support chains
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with branches with the exploration of multicast forwarding trees in PolKA, according to
the mechanism proposed in Section 6.1.3.

Finally, this work can be extended with the exploitation of RNS properties to support
security and resilience use cases, as discussed in Section 3.2.1. An interesting application
of these properties is route authenticity: as the routeID remains the same throughout the
path, the source can sign the routeID information and embed this signature in the packet
header; then, each node can verify this signature before using the routeID to forward
packets.

8.3 Publications

Contributions directly related to the proposal are listed in reverse chronological order
through the following publications:

1. DOMINICINI, C. K. ; MARTINELLO, MAGNOS ; RIBEIRO, M. R. N. ; VAS-
SOLER, G. L. ; VILLACA, R. S. ; VALENTIM, R. ; ZAMBON, E. . KeySFC:
Agile Traffic Steering using Strict Source Routing for Enabling Efficient Traffic En-
gineering. Submitted to Elsevier Computer Networks Journal (in major
review phase).

2. DOMINICINI, C. K. ; MARTINELLO, MAGNOS ; RIBEIRO, M. R. N. ; VAS-
SOLER, G. L. ; VILLACA, R. S. ; VALENTIM, R. ; ZAMBON, E. . KeySFC:
Agile Traffic Steering using Strict Source Routing. In: Symposium on SDN Re-
search (SOSR), 2019, São Diego. Symposium on SDN Research (SOSR), 2019.

3. VALENTIM, R. ; DOMINICINI, C. K. ; VILLACA, R. ; RIBEIRO, M. R. N. ;
MARTINELLO, MAGNOS ; MAFIOLETTI, D. . RDNA Balance: Balanceamento
de Carga por Isolamento de Fluxos Elefante em Data Centers com Roteamento na
Origem. In: SBRC, 2019, Gramado. Simpósio Brasileiro de Redes de Computadores
e Sistemas Distribuídos, 2019.

4. CASTANHO, M. S. ; VIEIRA, MARCOS A. M. ; DOMINICINI, C. K. Cadeia-
Aberta: Arquitetura para SFC em Kernel Usando eBPF. In: XXXVII Simpósio
Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), 2019, Gra-
mado. XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Dis-
tribuídos (SBRC), 2019.

5. CASTANHO, M. ; DOMINICINI, C. K. ; VILLACA, R. S. ; MARTINELLO,
M. ; RIBEIRO, M. R. N. . PhantomSFC: A Fully Virtualized and Agnostic Service
Function Chaining Architecture. In: IEEE Symposium on Computers and Commu-
nications, 2018, Natal. IEEE ISCC, 2018.



163

6. DOMINICINI, C. K. ; VASSOLER, G. L. ; MENESES, L. F. ; VILLACA, R. S.
; RIBEIRO, M. R. N. ; MARTINELLO, M. . VirtPhy: Fully Programmable NFV
Orchestration Architecture for Edge Data Centers. IEEE Transactions on Network
and Service Management, v. 14, p. 1-1, 2017.

7. DOMINICINI, C. K.; VASSOLER, G. L.; RIBEIRO, M. R..; MARTINELLO,
M.. VirtPhy: A Fully Programmable Infrastructure for Efficient NFV in Small
Data Centers. IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), November 2016.

8. MAFIOLETTI, D. R., LIBERATTO, A. B., DOMINICINI, C. K., VILLACA, R.
S., MARTINELLO, M., RIBEIRO, M. R.. Latency Measurement as a Virtualized
Network Function using Metherxis. ACM SIGCOMM Computer Communication
Review, 46(4), 2016.

9. GOMES, R. R. ; DOMINICINI, C. K. ; LIBERATO, A. ; MARTINELLO, M.;
RIBEIRO, M. R. N. . Analytical Modeling Approach of Routing Deflection for Intra-
domain Networks. In: WPerformance - Workshop em Desempenho de Sistemas
Computacionais e de Comunicação, 2016, Porto Alegre-RS. Anais do CSBC, 2016.

10. MAFIOLETTI, D. ; LIBERATO, A. ; VILLACA, R. ; DOMINICINI, C. K.
; RIBEIRO, M. R. N. ; MARTINELLO, M. . Metherxis: Virtualized Network
Functions for Micro-second Grade Latency Measurements. In: ACM SIGCOMM
Workshop on Fostering Latin-American Research in Data Communication Networks
(LANCOMM 2016), 2016, Florianópolis-SC. Analis do LANCOMM, 2016.

11. GOMES, R. R. ; LIBERATO, A. ; DOMINICINI, C. K. ; RIBEIRO, M. R.
N. ; MARTINELLO, M. . KAR: Key-for-Any-Route Resilient Routing System.
In: Workshop on Dependability Issues on SDN and NFV (DISN), 2016, Toulouse.
Workshop on Dependability Issues on SDN and NFV (DISN), 2016.

The following publications (listed in reverse chronological order) were developed during
the PhD, and are not directly linked to this proposal. However, they helped to gain
important knowledge in the matter and, therefore, should also be considered relevant
contributions.

1. BOTH, CRISTIANO et al. FUTEBOL Control Framework: Enabling Experimen-
tation in Convergent Optical, Wireless, and Cloud Infrastructures. Accepted at
IEEE Communications Magazine (to appear).

2. DO CARMO, ALEXANDRE P. ; VASSALO, R. ; DE QUEIROZ, FELIPPE M. ;
PICORETTI, R. ; FERNANDES, M. R. ; GUIMARAES, R. S. ; DOMINICINI,
C. K. ; MARTINELLO, M. ; M. R. N. Ribeiro ; GARCIA, A. S. ; SIMEONIDOU,
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DIMITRA . Programmable intelligent spaces for Industry 4.0: Indoor visual local-
ization driving attocell networks. Transactions on Emerging Telecommunications
Technologies, v. 3, p. 20-40, 2019.

3. FRASCOLLA, VALERIO ; DOMINICINI, C. K. ; PAIVA, MARCIA ; CA-
POROSSI, GILLES ; MAROTTA, MARCELO ; RIBEIRO, MOISES ; SEGATTO,
MARCELO ; MARTINELLO, MAGNOS ; MONTEIRO, MAXWELL ; BOTH,
CRISTIANO . Optimizing C-RAN Backhaul Topologies: A Resilience-Oriented Ap-
proach Using Graph Invariants. Applied Sciences-Basel, v. 9, p. 136, 2019.

4. MARQUES, P. et al. Optical and wireless network convergence in 5G systems -
an experimental approach, 2018 IEEE 23rd International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks (CAMAD),
Barcelona, pp. 1-5, 2018.

5. DOMINICINI, C. K. ; MARTINELLO, M. ; WICKBOLDT, J. ; BOTH, C. ;
NEJABATI, R. ; MARQUEZ-BARJA, J. M. ; SILVA, L. . Enabling Experimental
Research Through Converged Orchestration of Optical Wireless and Cloud Domains.
In: EUCNC 5G and Beyond, 2018, Ljubljana, Slovenia. EUCNC, 2018.

6. CERAVOLO, I. ; CARDOSO, D. ; DOMINICINI, C. K. ; HASSE, P. ; VIL-
LACA, R. S. ; RIBEIRO, M. R. N. ; MARTINELLO, M. ; NEJABATI, R. ; SIME-
ONIDOU, D. . O2CMF: Experiment-as-a-Service for Agile Fed4Fire Deployment
of Programmable NFV. In: Optical Fiber Communication Conference (OFC) 2018,
2018, San Diego. SDN/NFV Demonstration Zone, 2018.

7. GOMES, R. L. ; MARTINELLO, M. ; DOMINICINI, C. K.; HASSE, P. ; VIL-
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Appendix A

Enabling technologies

This appendix aims to describe the main enabling technologies used by the solutions
proposed in this thesis. Firstly, we present concepts related to SDN, including OpenFlow
protocol, P4 language, OvS software switch, and Mininet emulation tool. Then, we
describe the concepts related to the OpenStack cloud platform.

A.1 SDN

SDN is a paradigm based on the following properties: (i) separation between control plane
and data plane, (ii) uniform and vendor-independent interface to the forwarding engine,
(iii) logically centralized control plane, and (iv) capability of virtualizing the underlying
physical network [Martinello et al. 2014].

In SDN, the control plane acts as a networking operating system, which observes
the entire state of the network from a central point and controls the forwarding plane,
or data plane, to define the behavior of each forwarding element (switch, router, access
point, or base station), hosting features such as routing protocols, access control, network
virtualization, and energy management [Lantz et al. 2010]. The idea is that a controller
can centralize communication with all programmable network elements, and offer a unified
view of the state of the network [Casado et al. 2010].

One of the great benefits of SDN is the ability to use this centralized view to per-
form detailed analysis and make decisions about the overall system operation and the
configuration of each network element. It is important to note that the controller is logi-
cally centralized, but it can be implemented in a distributed way by dividing the control
elements between different domains or by implementing a truly distributed controller,
which, for example, uses consensus algorithms to consolidate a view among its parts
[Guedes et al. 2012].

Another advantage of SDN is that network functionalities can be changed or added
after network deployment without modifying the hardware, allowing the network to evolve
at the same speed as software, rather than waiting for the development of standards and
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Figure A.1: Traditional networking architecture versus OpenFlow architecture. Source:
[Sherwood et al. 2009].

new hardware. Another particularly interesting benefit to DCNs is that high-level packet
manipulation decisions are made by a centralized controller, so that the data plane can
be implemented in low-cost commodity switches [Verdi et al. 2010].

A.1.1 OpenFlow

The OpenFlow standard is the most successful and widely adopted implementation of the
SDN paradigm. Its primary purpose is to provide a standard and open programming in-
terface that allows remote control of routing tables of forwarding devices such as switches,
routers and access points.

[Sherwood et al. 2009] compares a classical network architecture, where control and
data forwarding logics are located at the same device (for example, a switch) and com-
municate through an internal proprietary bus, with the OpenFlow architecture, where
control logic is transferred to an external controller that communicates with the device
responsible for forwarding logic using the OpenFlow protocol. This comparison is shown
in more detail in Fig. A.1.

According to the OpenFlow architecture, an OpenFlow switch has at least three com-
ponents [Mckeown et al. 2008], as shown in Fig. A.2:

• The Flow Table, which associates an action with each flow entry, to tell the switch
how to process each flow.

• The Secure Channel that connects the switch to the controller, allowing commands
and packets to be sent in order to protect data confidentiality and integrity.

• The OpenFlow Protocol, which provides an open, standard way for a controller
to communicate with a switch, and allows entries in the flow table to be defined
externally.
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Figure A.2: OpenFlow architecture. Source: [Mckeown et al. 2008].

The OpenFlow protocol abstracts forwarding/routing rules as flow entries, where the
collection of flow entries in a packet forwarder (a switch or router) is called a flow table
[Sherwood et al. 2009]. Each flow table entry associates a rule with a flow, and, if a
packet fits into a specific rule, the defined actions are taken, such as: forward the packet
to a specific port, change part of its headers, or forward it for inspection in the network
controller [Guedes et al. 2012]. If there is no rule defined for a given packet, a message is
sent to the controller, which defines a new flow entry. In this way, these rules allow remote
control of how packets that are part of a specific flow must be forwarded and processed
in each network element, according to the interests identified by the centralized view of
the controller.

A.1.1.1 OpenFlow Controllers

As discussed earlier, an OpenFlow controller manipulates the flow table entries in the
network elements through the OpenFlow protocol, and can act in a static or dynamic
way [Mckeown et al. 2008]. In the case of a static controller, the controller may be, for
example, a simple application running on a PC that statically establishes a set of flow
entries to enable the interconnection of some test computers during an experiment. In
the case of more sophisticated controllers, the controller can add and remove flow entries
dynamically during network operation and even allow different users and applications to
interfere with control decisions. There are currently a number of controllers that support
the OpenFlow protocol, such as: Floodlight 1, Ryu 2, ONOS3, and OpenDaylight4.

1http://www.projectfloodlight.org/floodlight/
2https://osrg.github.io/ryu/
3https://onosproject.org/
4https://www.opendaylight.org/



181

A.1.2 P4 language

P4 is a high-level language for programming the data plane of network devices in a
protocol-independent manner [Bosshart et al. 2014]. Differently from traditional switches,
the data plane functionality in P4 is not defined beforehand (e.g., match-action tables with
fixed protocol columns), but is described by a program. This ability to define the data
plane according to application needs is important to enable many innovative SDN packet
processing algorithms. For instance, these applications may need to perform table lookups
over new fields, or to perform general-purpose operations over the packet headers, as the
case of the solutions we propose in this thesis.

The first version of the P4 language, P4 14, was released in 2014 [Bosshart et al. 2014],
and assumes specific device capabilities that covers only a subset of programmable net-
working targets. It is based on an abstract forwarding model of a programmable switch
architecture, called PISA (Protocol-Independent Switch Architecture), consisting of a
parser and a set of match+action table resources, divided between ingress and egress, as
shown in Fig. A.3. The parser identifies the headers of incoming packets, which are used
by each match+action table to perform lookup on header fields and apply the correspond-
ing actions [P4.org 2018b]. In contrast to OpenFlow, P4 supports a programmable parser
with the definition of new headers, match+action stages can be in parallel or in series,
and actions are composed from protocol-independent primitives supported by the switch
[Bosshart et al. 2014].

In 2016, the second version of P4 language, P4 16 [P4.org 2017], was released as a
more mature and stable language definition. It does not assume device capabilities, which
instead are defined by target manufacturer via external libraries, called externs. In this
way, it can work for many targets, which can be any packet-processing system capable
of executing a P4 program, such as switches and NICs. Fig. A.4 shows a typical P4

Figure A.3: PISA architecture. Source: [P4.org 2018b].
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Figure A.4: Example of P4 workflow. Source: [P4.org 2017].

Figure A.5: Lookup table in P4. Source: [P4.org 2017].

workflow when programming a specific target, which provides: the hardware or software
implementation framework, an architecture definition, and a P4 compiler for that target.

P4 programs describe the data plane functionality that is configured at initialization
time. The compilation of a set of P4 programs produces two artifacts [P4.org 2017]: a
data plane configuration that implements the forwarding logic described in the program,
and an API that allows the control plane to manage the data plane objects.

A table in a P4 program describes a match-action unit that is composed by three fields:
key, action, and action data. Processing a packet using a match-action table executes the
following steps, shown in Fig. A.5 [P4.org 2017]: the key lookup in the table (the “match”
step) results in the execution of either a “miss” or action indication over the input data
(the “action step”), which may produce mutations of the input packet and associated
metadata. The control plane is responsible for populating the tables entries with specific
information based on static configuration, automatic discovery, or protocol calculations.
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A.1.3 Open vSwitch (OvS)

Open vSwitch (OvS) is an open source software switch with support for leading pro-
tocols and management interfaces such as OpenFlow, NetFlow, sFlow, IPFIX, RSPAN,
CLI, LACP, and 802.1ag. It has features comparable to physical switches, but with the
flexibility and speed of development of a software implementation. Thus, it facilitates
the network management in virtual environments, as well as offers additional functional-
ities not available hardware switches [Verdi et al. 2010]. The OvS follows the OpenFlow
architecture and presents good performance, because it separates the data plane into ker-
nel from the Linux operating system, while the control plane is accessed from the user
space [Guedes et al. 2012]. In this way, OvS is a powerful tool for implementing network
virtualization using the OpenFlow protocol.

A.1.4 Mininet

Mininet is a network emulation tool that provides light virtualization, extensible CLI,
and API, providing an environment for rapid prototyping in which it is possible to create,
interact and customize parts of a software-defined network [Lantz et al. 2010]. Using
Mininet, it is possible to create an OpenFlow or P4 virtual network, running in real
kernel, with switches, hosts, links and application code, in a single real machine or virtual
machine [Mininet 2018]. Thus, Mininet appears as a great alternative to develop, share
and experiment with SDN systems.

A.2 OpenStack

OpenStack5 is an open source software platform for public and private clouds that al-
lows the management of large pools of computing, storage, and network resources within
a DC. The resources are managed through a dedicated interface that enables adminis-
trators to control and provision resources for multiple users. Currently more than 200
hardware, software and service companies support the development of the platform, which
is maintained by a global community of developers.

One of the main goals of OpenStack is to build a cloud computing service that can
be installed on commodity hardware. As shown in Fig. A.6, the components responsible
for controlling groups of computers, storage, and network resources act on the hardware
layer to provide interfaces to upper layers. At the top of this structure, there are the
application layer and administration layer, which is represented by a web interface called
Dashboard.

The OpenStack platform has been used in various proof-of-concepts and use cases for
NFV. Despite still having limitations in relation to NFV requirements, it has been consid-

5https://www.openstack.org/
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Figure A.6: OpenStack Diagram. Source: https://www.openstack.org/software/

ered one of the main technologies to enable resource orchestration in NFV [Rosa et al. 2014].
This work uses the OpenStack platform as a enabling technology for implementing our
orchestration and SFC solutions.

A.2.1 Networking

Some of the prototypes of this thesis were implemented using OpenStack. Therefore,
understanding the inner working of OpenStack networking is crucial. In OpenStack,
the physical servers are called compute nodes and their internal networking structure is
described by Fig. A.7.

In this structure, VMs appear in the upper layer, connected to a Linux bridge, called
qbr, that implements security groups using iptables. These bridges are connected to the
integration bridge, br-int, which is an OvS bridge that interconnects the VMs running
on the compute node. The br-int is, then, connected to the br-eth OvS bridge, which
provides connectivity to the physical network interface cards. In the example of Fig. A.7,
when virtual machine VM1 sends an Ethernet frame to the physical network, it must
pass through nine devices inside of the host: TAP eth0, Linux bridge qbrxxx, veth pair
(qvbxxx, qvoxxx), OvS bridge br-int, veth pair (intbr-eth, phy-br-eth), OvS bridge br-eth,
and, finally, to one of the physical network interface cards [OpenStack Foundation 2015].

When a virtual private network needs to be created, the VIM configures the OvS of
server nodes, using VLAN tags. Thus, a tenant gets a subnet and range of private IPs that
are only accessible for a specific VLAN, where all his VMs are bridged. In the example of
Fig. A.7, the physical network supports VLAN IDs 101 and 102 and there are two private
virtual networks, net01 and net02, which have VLAN ids of 1 and 2. Flow rules in br-int
and br-eth execute VLAN translation between physical and private VLANs.

The OpenStack have various deployment options. In the prototypes of this thesis, we
used a deployment option composed by three types of nodes: a Controller node, which
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Figure A.7: Networking of compute node in OpenStack. Source [Dominicini et al. 2017].

provides management and provisioning services; a Network node, which is responsible for
L3 routing, NAT, and DHCP functionalities; and a set of compute nodes. VM instances
that are in the same virtual network and are hosted in the same server node, as VM1 and
VM2 in Fig. A.7, communicate directly via br-int bridge. On the other hand, if two VM
instances are hosted in the same server node, but are not in the same private network,
as VM1 and VM3 in Fig. A.7, their communication is intermediated by the Network
node, which acts as a L3 router. As another example, if two VMs are in the same virtual
network, but are hosted in different servers, the communication will pass through all the
bridge layers, up and down, but without the intermediation of the Network node, as the
communication does not involves L3 routing.



Appendix B

Comparison between the Fat-Tree and
the Hypercube topologies

This appendix aims to execute a preliminary investigation if server-centric DCNs can
efficiently provision diverse NFV workloads when compared to traditional network-centric
DCNs, considering edge DCs. To this end, we present a ILP model (See Section B.1) and
analyze two data center network topologies: the Fat-Tree, a traditional network-centric
topology where servers host VNFs and switches forward traffic, and the Hypercube, a well
known server-centric topology where servers play both forwarding and virtualization roles
[Vassoler et al. 2014]. In the next sections, we explore how the potential tradeoffs of each
topology affect NFV orchestration requirements in edge DCs.

This work was developed in conjunction with Leandro C. Resendo, Gilmar
L. Vassoler, Moises R. N. Ribeiro, Magnos Martinello, Eduardo Zambon, and
Renato de Moraes.

B.1 The optimization model

s

a1 a1 a1 a1 a2

t1 t1t2 t3 t1

r1 = { s, d, [t1,t2,t3], 100 Mpbs }

p1 = {s, i, j, d}

i j d

s,i,j,d : Physical nodes

t1,t2 ,t3: VNF types

a1,a2: VNF instances

r1 : Traffic request

p1 : Path    

wr1,p1 = 1

yi,t1,r1 = 1

yi,t2,r1 = 1

yj,t3,r1 = 1

yi,t1,r1

xi,t1,a1

wr1,p1

xi,t1,a1 = 1 

xi,t2,a1 = 1 

xj,t1,a1 = 1 

xj,t3,a1 = 1 

xj,t1,a2 = 1

Figure B.1: VNF-FGE model example.
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Herrera and Botero [Herrera and Botero 2016] present a survey of the VNF-FGE prob-
lem and a classification based on the following aspects: optimization objectives (e.g.,
minimize OPEX [Bari et al. 2015], the number of VNF instances [Luizelli et al. 2015],
or deployment costs), solution strategy (e.g., exact and heuristic [Bari et al. 2015,
Lin et al. 2016, Luizelli et al. 2015]), and application domain (e.g.,TSP [Bari et al. 2015],
NFV [Luizelli et al. 2015] and optical networks [Lin et al. 2016]). This survey shows that
several works have proposed optimization models to solve the VNF-FGE problem. How-
ever, they usually overlook the fact that VNF-FGE and interconnection topologies are
intertwined with each other.

To tackle this issue, this section proposes a novel modeling approach that takes into
account the influence of interconnects on NFV orchestration. It also outlines a com-
mon ground for comparing different aspects, such as CPU and link usage, from in-
terconnection schemes in network-centric and server-centric approaches. We develop
a novel optimization model that is able to represent both server-centric and network-
centric datacenter network topologies. More specifically, we formulate the VNF-FGE
problem [Herrera and Botero 2016] as an ILP implemented in CPLEX.

The following notation is used in our mathematical model: 𝑖 and 𝑗 are physical nodes;
𝑡 ∈ T is a VNF type; 𝑎 is a VNF instance of a VNF type; 𝑟 = ⟨𝑠(𝑟),𝑑(𝑟),T(𝑟),𝑏(𝑟)⟩ is a
traffic request; and 𝑝 ∈ P(𝑟) is a path (route) in the set of possible routes to provision
a request 𝑟. A traffic request 𝑟 contains the source node 𝑠(𝑟), the destination node 𝑑(𝑟),
the bandwidth demand 𝑏(𝑟), and a VNF service chaining containing the sequence of VNF
types through which the traffic must pass, T(𝑟) (e.g., T(𝑟) = 𝑡1 → 𝑡2 → 𝑡3).

Given: 𝐸[𝑖][𝑗]: topology adjacency matrix; 𝑁 : number of nodes in the network; CPU :
number of CPU cores of a physical node (equal for all nodes); CPU [𝑡]: number of CPU
cores required by each VNF type; Proc: processing capacity of a physical node (equal for
all nodes); Proc[𝑡]: processing capacity of each VNF type; Link : link capacity (equal for
all links); 𝛿𝑟,𝑝𝑖,𝑗 : 1 if request 𝑟 is provisioned by link 𝑖,𝑗 in path 𝑝, and 0 otherwise. This
link-path indicator is provided by Yen[Yen 1971]; and analogously, 𝛿𝑟,𝑝𝑖 is the node-path
indicator.

Variables: 𝑤𝑟,𝑝: 1 if demand 𝑟 is provisioned by path 𝑝, and 0 otherwise; 𝑥𝑖,𝑡,𝑎: 1

if VNF instance 𝑎 is of type 𝑡 and is provisioned by node 𝑖, and 0 otherwise; 𝑦𝑖,𝑡,𝑟: 1

if request 𝑟 is provisioned by a VNF instance of type 𝑡 at node 𝑖, and 0 otherwise. 𝑧𝑖:
processing load of physical node 𝑖. Fig. B.1 illustrates an example of a traffic request
posed by clients and how it is represented in our model.

Objective Function: To minimize the number of VNF instances needed to serve all
requests:

𝑚𝑖𝑛 :
∑︀

𝑖

∑︀
𝑎

∑︀
𝑡 𝑥𝑖,𝑡,𝑎 (B.1)

This function is a good indicator of how efficiently one can map traffic requests into
a given infrastructure. However, this can be easily changed to consider other costs, such
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as CAPEX.
Constraints: ∑︀

𝑡

∑︀
𝑎 CPU [𝑡]× 𝑥𝑖,𝑡,𝑎 ≤ CPU ; ∀𝑖 (B.2)∑︀

𝑟:𝑡∈T(𝑟) 𝑏(𝑟)× 𝑦𝑖,𝑡,𝑟 ≤
∑︀

𝑎 Proc [𝑡]× 𝑥𝑖,𝑡,𝑎;∀𝑖,𝑡 (B.3)

𝑦𝑖,𝑡,𝑟 ≤
∑︀

𝑎 𝑥𝑖,𝑡,𝑎; ∀𝑖,𝑡,𝑟 (B.4)∑︀
𝑝𝑤𝑟,𝑝 = 1; ∀𝑟 (B.5)∑︀
𝑟

∑︀
𝑝 𝛿

𝑟,𝑝
𝑖,𝑗 × 𝑏(𝑟)× 𝑤𝑟,𝑝 ≤ Link ; ∀𝑖,𝑗 (B.6)∑︀

𝑖 𝑦𝑖,𝑡,𝑟 = 1; ∀𝑟,𝑡 : 𝑡 ∈ T(𝑟) (B.7)

𝑤𝑟,𝑝 ≤
∑︀

𝑖

∑︀
𝑗 𝛿

𝑟,𝑝
𝑖,𝑗 × 𝑦𝑖,𝑡,𝑟; ∀𝑝,𝑟,𝑡 : 𝑡 ∈ T(𝑟) (B.8)

𝑧𝑖 =
∑︀

𝑎

∑︀
𝑡 Proc [𝑡]× 𝑥𝑖,𝑡,𝑎

+
∑︀

𝑝

∑︀
𝑟
𝑖 ̸=𝑠(𝑟)∧𝑖 ̸=𝑑(𝑟)

𝛿𝑟,𝑝𝑖 × 𝑏(𝑟)× 𝑤𝑟,𝑝; ∀𝑖 (B.9)

𝑧𝑖 ≤ Proc;∀𝑖 (B.10)

Eq. (B.2) ensures that the number of CPUs used by all VNF instances of all types
will not exceed the number of CPUs of the respective physical node. Eq. (B.3) ensures
that VNF instances of type 𝑡 provisioned by physical node 𝑖 can process all the requests
for network service 𝑡 in node 𝑖. Here, we consider that the processing capacity required
by request 𝑟 is equal to its traffic bandwidth. Eq. (B.4) ensures that, if request 𝑟 is
provisioned by node 𝑖 and requires a VNF instance of type 𝑡, there must be some instance
of VNF type 𝑡 at that node. Eq. (B.5) indicates that every request will be provisioned
by a single route, because traffic partitioning is not allowed. Eq. (B.6) ensures that the
link capacity is not exceeded. Eq. (B.7) ensures that all requests will be provisioned.
Eq. (B.8) ensures that VNF requests can only be provisioned by nodes that are part of
the route that provision this request. In the Fat-Tree configuration, the VNFs can only
be allocated on source and destination nodes, and thus Eq. (B.8) must be replaced by
𝑤𝑟,𝑝 ≤ 𝑦𝑠(𝑟),𝑡,𝑟 + 𝑦𝑑(𝑟),𝑡,𝑟; ∀𝑝,𝑟,𝑡 : 𝑡 ∈ 𝑟, where 𝑠(𝑟) and 𝑑(𝑟) are the source and destination
nodes from request 𝑟. Eq. (B.9) calculates the physical node processing load, where the
first term of the sum is related to the processing load of the VNFs instances and the
second term is related to transit traffic, which is zero for the Fat-Tree. Eq. (B.10) defines
the upper limit of processing load for the physical nodes.

B.2 Tradeoff analysis based on port cost

The Fat-Tree topology offers good scalability at the cost of investing in switches. On the
other hand, the Hypercube offers a higher number of links at server nodes (e.g., a 3D
hypercube offers 3 links per node versus 1 link per node in the Fat-Tree), but consumes
part of its processing capacity for forwarding traffic. Fig. B.2.a shows how the number
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Figure B.2: (a) Comparison between the Fat-Tree and the Hypercube: No. of links vs.
no. of servers, and CAPEX vs. no. of servers. (b) Results from ILP model: no. of
provisioned VNF instances, network utilization, and processing capacity utilization vs.
traffic factor.

of links and the CAPEX grow with the number of servers for both topologies, based on
data from Herker et al.[Herker et al. 2015]. One should consider the fact that per-port
cost in switches is roughly twice as much the cost of ports in network interface cards, for
10 GbE ports[Herker et al. 2015]. Hence, despite Hypercubes bearing more links, their
overall costs can be considerably lower than Fat-Trees. In addition, the rich connectivity
of Hypercubes may benefit complex NFV orchestration tasks.

B.3 Tradeoff evaluation for growing traffic demands

Our tests consider the Fat-Tree and the Hypercube topologies with 16 server nodes, which
have the same resource profile (4Gbps processing capacity and 16 CPU cores) and are
connected by 1Gbps links. The VNF profiles were based on Bari et al.[Bari et al. 2015]
with the following types, number of CPUs, and processing capacities: Firewall (4 cores,
900Mbps), Proxy (4 cores, 900Mbps), NAT (2 cores, 900Mbps), and IDS (8 cores, 600Mbps).
Each traffic request requires a service chaining of 3 VNF instances of different types (e.g.,
Firewall→ IDS→Proxy).

To simulate the system response under increasing demand, we vary a traffic factor (tf )
in six steps with the following values: 10, 15, 20, 25, 30, 35. The total traffic load of one
step is represented by a set of 120 requests, which are individually calculated by randomly
picking a baseline bandwidth (in Mbps) from 1, 2, 3, 4, 5 and multiplying it by the traffic
factor of that step.

Fig. B.2.b summarizes the results obtained when minimizing the number of VNF
instances. The first graph of Fig. B.2.b shows that VNF allocation presented similar
results for both topologies, considering requests were provisioned by the same number of
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VNFs instances for all levels of traffic.
Given that the connection between servers in the Fat-Tree is mediated by switches,

the Fat-Tree link utilization is higher than in the Hypercube, as shown in the second
graph of Fig. B.2.b. On the other hand, as Hypercube servers also process transit traffic,
Hypercube processing capacity utilization is higher than in Fat-Tree, as shown in the
third graph of Fig. B.2.b.

The link bottleneck in Fat-Tree was reached at the fifth step (tf = 30) when it was no
longer able to provision the requests. Since the servers have only one connection in the
Fat-Tree, the links saturate before the system reaches its maximum processing capacity.
In contrast, since the servers in the Hypercube have more links, it did not reach the link
bottleneck, but it was also only able to provision a solution up to tf = 30, due to its
processing capacity limitation.

In conclusion, the Hypercube is able to deliver equivalent orchestration efficiency as
the Fat-Tree at lower cost, provided its processing capacity bottleneck is respected. Al-
ternatively, part of the switch cost elimination in the topology design could be re-invested
in extra processing capacity in the Hypercube.

B.4 Analysis

This appendix presented some tradeoffs for the Fat-Tree and the Hypercube as repre-
sentative topologies, which can help cloud operators on designing NFV solutions in edge
DCs. Preliminary results indicated that server-centric architectures can support efficient
NFV orchestration due to its high connectivity and lower CAPEX when compared to
conventional network-centric topologies. In addition, there are some properties that can
be explored, such as other objective functions, multiple shortest paths between nodes, na-
tive stateless routing schemes, and distributed optical switching [Dominicini et al. 2016,
Cui et al. 2012]. These results can be further extended for other topologies with larger
number of nodes.


