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RESUMO 

 

A detecção precoce de retinopatia diabética (RD) é essencial, pois o tratamento oportuno 

pode reduzir ou até impedir a perda da visão. Além disso, a localização automática das regiões 

da imagem da retina que podem conter lesões pode auxiliar os especialistas na tarefa de 

detecção da doença. Ao mesmo tempo, imagens de baixa qualidade não permitem um 

diagnóstico médico preciso e causam o inconveniente de o paciente ter de retornar ao centro 

médico para repetir o exame de fundo do olho. 

Nesta tese, argumentamos que é possível propor um sistema com base na avaliação da 

qualidade da imagem e na localização de lesões vermelhas para detectar automaticamente RD 

com desempenho semelhante ao de especialistas, considerando que uma segmentação 

aproximada é suficiente para produzir um marcador discriminante de uma lesão. 

Um sistema automático robusto é proposto para avaliar a qualidade das imagens de 

retina visando auxiliar os profissionais de saúde durante um exame de fundo de olho. Propomos 

uma rede neural convolucional (CNN) pré-treinada em imagens não médicas para extrair 

características gerais de imagem. Os pesos da CNN são ajustados através de um procedimento 

de ajuste fino, resultando em um classificador de bom desempenho ajustado com uma pequena 

quantidade de imagens rotuladas. 

Também projetamos um modelo de localização de lesões usando uma abordagem de 

aprendizado profundo baseada em regiões. Nosso objetivo é reduzir a complexidade do modelo 

e melhorar seu desempenho. Para esse fim, desenvolvemos um procedimento (incluindo dois 

modelos de redes neurais convolucionais) para selecionar as regiões utilizadas no treinamento, 

de modo que os exemplos desafiadores recebessem atenção especial durante o processo de 

treinamento. Usando anotações de região, uma predição de RD pode ser definida na imagem 

inicial, sem a necessidade de treinamento especial. Nossa abordagem baseada em região 

permite que o modelo seja treinado com apenas 28 imagens, resultando em desempenho 

semelhante a trabalhos que usaram mais de um milhão de imagens rotuladas. 

O desempenho da CNN para avaliação da qualidade foi medido através de dois bancos 

de dados publicamente disponíveis (DRIMDB e ELSA-Brasil) usando dois procedimentos 

diferentes: validação cruzada intra-banco de dados e inter-banco de dados. A CNN alcançou 

uma área sob a curva característica de operação do receptor (AUC) de 99,98% no DRIMDB e 

uma AUC de 98,56% no ELSA-Brasil no experimento interbancos (ou seja, com treinamento e 

testes não realizados no mesmo conjunto de dados). Esses resultados mostram a robustez do 



 

 

modelo proposto para vários dispositivos de aquisição de imagens sem a necessidade de 

adaptação especial, tornando-o um bom candidato para uso em cenários operacionais. 

O modelo de localização da lesão foi treinado no banco de dados de Retinopatia 

Diabética Padrão, Nível de Calibração 1 (DIARETDB1) e testado em vários bancos de dados 

(incluindo Messidor) sem qualquer adaptação adicional. Alcançou uma AUC de 0,912 - 95% 

IC 0,897-0,928 para a triagem de RD e uma sensibilidade de 0,940-95% CI 0,921-0,959. Esses 

valores são similares a outras abordagens do estado da arte. 

Os resultados sugerem que a hipótese da proposta é confirmada. 

 

Palavras-chave: Imagens de retina. Aprendizado profundo. Retinopatia diabética. Redes 

neurais convolucionais. Qualidade de imagem. Localização de lesão. 

 

 

 

  



 

 

ABSTRACT 

 

Detecting the early signs of diabetic retinopathy (DR) is essential, as timely treatment 

might reduce or even prevent vision loss. Moreover, automatically localizing the regions of the 

retinal image that might contain lesions can favorably assist specialists in the task of detection. 

At the same time, poor-quality retinal images do not allow an accurate medical diagnosis, and 

it is inconvenient for a patient to return to a medical center to repeat the fundus photography 

exam.  

In this thesis, we argue that it is possible to propose a pipeline based on quality 

assessment and red lesion localization to achieve automatic DR detection with performance 

similar to experts considering that a rough segmentation is sufficient to produce a discriminant 

marker of a lesion.  

A robust automatic system is proposed to assess the quality of retinal images aiming at 

assisting health care professionals during a fundus photograph exam. We propose a 

convolutional neural network (CNN) pretrained on non-medical images for extracting general 

image features. The weights of the CNN are further adjusted via a fine-tuning procedure, 

resulting in a performant classifier using only with a small quantity of labeled images. 

We also designed a lesion localization model using a deep network patch-based 

approach. Our goal was to reduce the complexity of the implementation while improving its 

performance. For this purpose, we designed an efficient procedure (including two convolutional 

neural network models) for selecting the training patches, such that the challenging examples 

would be given special attention during the training process. Using the labeling of the region, a 

DR decision can be given to the initial image, without the need for special training. Our patch-

based approach allows the model to be trained with only 28 images achieving similar results to 

works that used over a million of labeled images. 

The CNN performance for quality assessment was evaluated on two publicly available 

databases (i.e., DRIMDB and ELSA-Brasil) using two different procedures: intra-database and 

inter-database cross-validation. The CNN achieves an area under the receiver operating 

characteristic curve (AUC) of 99.98% on DRIMDB and an AUC of 98.56% on ELSA-Brasil in 

the inter-database experiment, where training and testing were not performed on the same 

database. These results suggest the robustness of the proposed model to various image 

acquisitions without requiring special adaptation, thus making it a good candidate for use in 

operational clinical scenarios. 



 

 

The lesion localization model was trained on the Standard Diabetic Retinopathy 

Database, Calibration Level 1 (DIARETDB1) database and was tested on several databases 

(including Messidor) without any further adaptation. It reaches an area under the receiver 

operating characteristic curve of 0.912 - 95%CI 0.897-0.928 for DR screening, and a sensitivity 

of 0.940-95%CI 0.921-0.959. These values are competitive with other state-of-the-art 

approaches. 

The results suggest that the given hypothesis is confirmed. 

 

Keywords: Retinal images. Deep learning. Diabetic retinopathy. Convolutional neural 

networks. Image quality. Lesion localization. 

 

 

  



 

 

LIST OF FIGURES 

 

Figure 1 - Typical eye fundus images ...................................................................................... 27 

Figure 2 - Proposed pipeline ..................................................................................................... 31 

Figure 3 - Cropping illustration ................................................................................................ 41 

Figure 4 - An example of 2-D convolution .............................................................................. 43 

Figure 5 - CNN architecture used: Inception v3 with different final layers ............................. 44 

Figure 6 - Typical loss value course during the training process for different types of 

experiments ............................................................................................................................... 46 

Figure 7 - Receiver operating characteristic curves for quality assessment experiments ........ 48 

Figure 8 - Localization model based on patches ...................................................................... 52 

Figure 9 - Retinal image and its lesions ground truths ............................................................. 61 

Figure 10 - Pre-processing illustration ..................................................................................... 64 

Figure 11 - Selection model architecture .................................................................................. 65 

Figure 12 - Patch rotations for lesion prediction ...................................................................... 67 

Figure 13 - Use of strides to speed up the segmentation process ............................................. 67 

Figure 14 - Distributions of area under the receiver’s operating characteristic curve (AUC) 

and sensitivity for both experiments on several datasets .......................................................... 75 

Figure 15 - Performance metric of the lesion detection in the DIARETDB1 test set .............. 79 

Figure 16 - Qualitative results of the red lesion localization .................................................... 80 

Figure 17 - Area under the curve (auc) distribution for diabetic retinopathy detection 

concerning the removal of poor-quality images ....................................................................... 81 

 

 

 

 

 

 

 

 

  



 

 

  



 

 

LIST OF TABLES 

 

 

Table 1 - Review of extant studies on retinal image quality .................................................... 35 

Table 2 - Values used in data-augmentation transformations .................................................. 42 

Table 3 - Performance of the deep neural network with different database configurations ..... 45 

Table 4 - Works that employ a classical image processing pipeline with different database 

configurations for lesion detection ........................................................................................... 54 

Table 5 - Summary of the papers that employed deep learning for DR or lesion detection .... 58 

Table 6 - Description of the datasets used in this work ............................................................ 63 

Table 7 - Distribution of poor-quality images per dataset ........................................................ 73 

Table 8 - Results for the DR screening experiment on several datasets ................................... 74 

Table 9 - Results for the DR need for referral experiments on several datasets ...................... 74 

Table 10 - Comparison of DR screening and need for referral using the Messidor dataset ..... 77 

Table 11 - Comparison of referable DR detection using the Messidor-2 dataset. Our approach 

is the only one that employs a patch-based CNN ..................................................................... 78 

 

 

 

  



 

 

  



 

 

LIST OF ABBREVIATIONS AND ACRONYMS  

 

ANN artificial neural network 

ASG Automatic seed generation 

AUC Area Under the Curve 

CADS Computer-Assisted Diagnostic System 

CI confidence interval 

CNN Fully Convolutional Neural Networks 

DIARETDB0 Standard Diabetic Retinopathy Database, Calibration Level 0 

DIARETDB1 Standard Diabetic Retinopathy Database, Calibration Level 1 

DM Diabetes Mellitus 

DM2 type II diabetes mellitus 

DME Diabetic Macular Edema 

DR Diabetic retinopathy 

DRIMDB Diabetic Retinopathy Image Database 

ETDRS Early Treatment Diabetic Retinopathy Study 

EyePACS Eye Picture Archive Communication System 

FOV Field Of View 

FROC Free-response receiver operating characteristic 

GAN Generative Adversarial Networks 

HE Hard exudates 

HEM Hemorrhages 

IDRiD Indian Diabetic Retinopathy Image Dataset 

ISC image structure clustering 

k-NN k-nearest neighbor 

MA Microaneurysms  

ME Macular Edema 

MSCF Multi-scale correlation filtering 

NV Neovascularization  

PDR Proliferative Diabetic Retinopathy 

PDR Proliferative Diabetic Retinopathy 

PLS Partial Least Square 

ReLUs Rectified linear units 



 

 

RGB  Red, Green, and Blue 

RIQA Retinal Image Quality Assessment 

RNFL Retinal Nerve Fiber Layer 

ROC Retinopathy Online Challenge 

ROI Region Of Interest 

SE Soft exudates 

Se Sensitivity 

Sp Specificity 

STARE Structured Analysis of the Retina 

STFM Spatiotemporal feature map classifier 

SVM Support Vector Machine 

WCSDR Welsh Community Diabetic Retinopathy Study 

WHO World Health Organization 

 

 

 



23 

 

CONTENTS 

 

 

1 INTRODUCTION .............................................................................................. 25 

1.1 PROBLEM DEFINITION .................................................................................... 27 

1.1.1 Clinical characteristics of diabetic retinopathy ....................................... 27 

1.1.2 Stages of diabetic retinopathy .................................................................. 28 

1.1.3 The retinal image ...................................................................................... 29 

1.2 HYPOTHESIS .................................................................................................. 29 

1.3 OBJECTIVES OF THE WORK ............................................................................. 30 

1.4 CONTRIBUTIONS ............................................................................................ 31 

1.5 TEXT STRUCTURE .......................................................................................... 31 

2 RETINAL IMAGE QUALITY ASSESSMENT .............................................. 33 

2.1 INTRODUCTION .............................................................................................. 33 

2.2 RELATED WORKS .......................................................................................... 33 

2.3 DATABASES ................................................................................................... 39 

2.4 METHODS ...................................................................................................... 40 

2.4.1 General description of the model ............................................................. 40 

2.4.2 Preprocessing ........................................................................................... 40 

2.4.3 Data augmentation ................................................................................... 41 

2.4.4 Deep neural networks ............................................................................... 42 

2.4.5 The architecture ........................................................................................ 44 

2.5 RESULTS ........................................................................................................ 46 

2.6 CONCLUSION ................................................................................................. 49 

3 DIABETIC RETINOPATHY DETECTION USING RED LESION 

LOCALIZATION AND CONVOLUTIONAL NEURAL NETWORKS ......................... 51 

3.1 INTRODUCTION .............................................................................................. 51 

3.1.1 Related Works ........................................................................................... 53 

3.2 MATERIALS AND METHODS ........................................................................... 60 

3.2.1 Databases ................................................................................................. 60 

3.2.2 Preprocessing ........................................................................................... 62 



24 

 

3.2.3 Model Training ........................................................................................ 62 

3.2.3.1 Patch labeling .................................................................................... 62 

3.2.3.2 Selecting the patches for fitting the final model ................................ 64 

3.2.3.3 Transfer learning ............................................................................... 66 

3.2.4 Calculation of the Lesion Probability Map.............................................. 66 

3.2.5 Inferring the Level of Diabetic Retinopathy (DR) from a Lesion Probability 

Map 68 

3.2.6 Performance Indicators for Diabetic Retinopathy (DR) Detection ......... 68 

3.3 EXPERIMENTS ............................................................................................... 69 

3.3.1 Experimental setup ................................................................................... 70 

3.3.1.1 Training on standard diabetic retinopathy database, calibration level 1 

(DIARETDB1) 70 

3.3.1.2 Tests on DIARETDB1 ...................................................................... 71 

3.3.1.3 Tests on standard diabetic retinopathy database, calibration level 0 

(DIARETDB0) 71 

3.3.1.4 Tests on Messidor .............................................................................. 71 

3.3.1.5 Tests on Indian diabetic retinopathy image dataset (IDRiD) ............ 71 

3.3.1.6 Tests on DDR .................................................................................... 72 

3.3.1.7 Tests on Kaggle ................................................................................. 72 

3.3.1.8 Tests on Messidor-2 .......................................................................... 72 

3.3.1.9 Testing the effects of image quality in diabetic retinopathy detection

 72 

3.3.2 Experimental Results................................................................................ 73 

3.3.3 Comparison with Other Works ................................................................ 75 

3.3.3.1 The effect of image quality in diabetic retinopathy detection ........... 79 

3.4 CONCLUSION ................................................................................................. 80 

4 FINAL CONCLUSIONS AND FUTURE WORKS ....................................... 83 

4.1 PERSPECTIVES ............................................................................................... 84 

4.2 PUBLISHED WORKS........................................................................................ 84 

5 REFERENCES ................................................................................................... 85 



25 

 

1 INTRODUCTION 

Diabetes mellitus (DM) is a chronic disease characterized by hyperglycemia (FAUST 

et al., 2012b). The World Health Organization (WHO) recognizes three significant forms of 

diabetes: type I, type II, and gestational diabetes, which have similar signs, symptoms, and 

consequences, but different causes and different distributions in the population 

(ALGHADYAN, 2011).  

Currently, DM represents a severe public health problem due to the high prevalence in 

the world, especially in developing countries, due to morbidity and because it is one of the 

primary cardiovascular and cerebrovascular risk factors. 

The appearance of chronic complications marks the natural evolution of diabetes, 

usually classified as microvascular: retinopathy (FAUST et al., 2012a; HARMAN-BOEHM et 

al., 2007), neuropathy (EWING; CLARKE, 1982), nephropathy (GUTHRIE; GUTHRIE, 2003), 

cardiomyopathy (GRUNDY et al., 1999), and macrovascular: coronary artery disease, 

cerebrovascular and peripheral vascular disease. All complications are responsible for: 

significant morbidity and mortality, with cardiovascular and renal mortality rates, blindness, 

limb amputation, and loss of function and quality of life lower than individuals without diabetes. 

With the aging of the population and lifestyle increasingly characterized by physical 

inactivity and eating habits that predispose to the accumulation of body fat, the tendency is to 

increase the percentage of patients with type II diabetes mellitus (DM2) (HARNEY, 2006). 

The longer survival time of diabetic individuals increases the chances of development 

of the chronic complications of the disease associated with the time of exposure to 

hyperglycemia. Such complications can be very debilitating to the individual and are very costly 

to the health system. In this context, 

• cardiovascular disease is the leading cause of death in individuals with DM2; 

• retinopathy represents the main cause of acquired blindness; 

• nephropathy is one of the major causes of joining dialysis and transplant programs; 

• Diabetic foot is an important cause of lower-limb amputations. 

As a consequence of the complications of the disease, diagnostic and therapeutic 

procedures (catheterization, coronary bypass, retinal photocoagulation, renal transplantation, 

and others), hospitalizations, absenteeism, disability, and premature death can be cited, which 

substantially increase the direct and indirect costs of health care of the diabetic population. This 
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framework highlights the importance of the prevention of both the disease and its chronic 

complications. 

The quantity of individuals with DM gives an idea of the magnitude of the problem, and 

estimates have been published for different regions of the world, including Brazil. Globally, 

135 million had the disease in 1995, 240 million in 2005. Studies predict that this number will 

reach 336 million in 2030, with two-thirds living in developing countries (BARCELÓ et al., 

2003; ORGANIZATION, 2011; WILD et al., 2004). 

According to data from the Brazilian Ministry of Health, there are about 11 million DM 

patients in this country. Approximately 6.3% of the Brazilian population with 18 years or more 

have diabetes, equivalent to 8.3 million people. Of this group, 3 million Brazilians do not know 

that they have the disease (SAÚDE; ESTRATÉGICAS., 2001). 

Diabetic retinopathy (DR) is caused by a failure in glycemic control in hyperglycemic 

patients. All diabetic patients may eventually develop DR (ALGHADYAN, 2011). The 

incidence rate of DR is 50% after ten years and 90% after 30 years of acquired DM. Usually, 

patients do not develop DR within five years from the onset of DM or before puberty. 

Approximately 5% of patients with DM2 have DR (HARNEY, 2006). Uncontrolled DM and 

its complications lead to DR which can result in vision loss and blindness. Patients with 

Proliferative Diabetic Retinopathy (PDR) have increased risk of heart attack, infarction, 

diabetic nephropathy, amputation, and death (AHMAD FADZIL et al., 2011; HARNEY, 2006). 

Early stages of DR may be clinically asymptomatic, and when the disease is detected at 

an advanced stage treatment may become difficult (YEN; LEONG, 2008). For this reason, DR 

must be detected as early as possible. Figure 1 shows standard and different levels of eye fundus 

images with DR.  

Manual diagnosis requires much effort to evaluate the images. Automatic systems, 

therefore, can significantly reduce time, cost, and effort. The growth of diabetes cases has led 

to an increase in automatic analysis tools in recent years. Besides, image processing, analysis, 

computer vision techniques, and increasing computer speed are being increasingly used in the 

medical sciences and are very relevant in modern ophthalmology. 
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Figure 1 - Typical eye fundus images 

 
Typical eye fundus images: (a) Normal; (b) mild non-proliferative diabetic retinopathy; (c) moderate 

non-proliferative diabetic retinopathy; (d) severe non-proliferative diabetic retinopathy; (e) 

proliferative diabetic retinopathy; (f) Macular edema. 

Source: (MOOKIAH et al., 2013). 

1.1 Problem definition 

1.1.1 Clinical characteristics of diabetic retinopathy 

Diabetic Retinopathy can cause various abnormalities in the retina, as explained below. 

1. Microaneurysms (MA) - are the first visible signs of retinal damage. Abnormal 

permeability and non-perfusion of retinal blood vessels cause the formation of MA. It 

is a red dot with a size smaller than 125 𝜇𝑚 and with margins (WILLIAMS et al., 2004). 

2. Hard exudates (HE)- are leaks of lipoproteins and proteins through abnormal vessels of 

the retina. They appear as small white or yellow-white deposits with sharp margins. 

They usually appear in clusters or rings located on the outer part of the retina (ETDRS, 

1991). 

3. Soft exudates or cotton wool (SE) - occur due to an obstruction in an arteriole. Reduced 

blood flow to the retina causes ischemia of the Retinal Nerve Fiber Layer (RNFL) that 

affects the axoplasmic flow and causes accumulation of axoplasmic debris in the axons 

of the retinal ganglion cells. The accumulation of debris appears as white "hairy" lesions 

in the fundus images called cotton wool spots (CHUI et al., 2009). 

4. Hemorrhages (HEM) - occur due to weak capillary leaks. It is found as a red dot with 

irregular margin and variable density. It is usually larger than 125 𝜇𝑚 (ETDRS, 1991). 
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5. Neovascularization (NV) - is the abnormal growth of new blood vessels on the inner 

surface of the retina. These blood vessels are weak and often bleed into glassy cavities, 

obscuring vision (VALLABHA et al., 2004). 

6. Macular Edema (ME) - is the swelling of the retina. It is caused due to the permeability 

of abnormal capillaries of the retina, causing leakage of fluids and solutes around the 

mácula. It affects the central vision (GIANCARDO et al., 2012). 

1.1.2 Stages of diabetic retinopathy 

Diabetic retinopathy with MA has a 6.2% chance of progressing to Proliferative 

Diabetic Retinopathy (PDR) within one year. Increased number of MA is an essential early 

feature to evaluate the progression of DR. Pre-PDR signs include venous loops, small vessel 

abnormalities within the retina, and many HEM blots (SCANLON, 2010). 

With the progression of ischemia, there is an increase in the likelihood of developing 

PDR within one year. This risk of development in one year increases from 11.3% to 54.8% 

from the early to the advanced stage. 

New blood vessels usually grow from the arterial and venous circulation. These patients 

have a 25.6% to 36.9% probability of having vision loss, if not appropriately treated. Also, eyes 

with PDR untreated for more than two years have a 7.0% chance of having vision loss and, if 

not treated for more than four years, have a 20.9% chance of vision loss. Vision loss drops to 

3.2% in two years of treatment and 7.4% in four years of treatment. 

Patients with mild DR do not require any specific treatment other than controlling 

diabetes and associated risk factors such as hypertension, anemia, and renal failure. These 

patients need to be monitored closely; otherwise, they may progress to more advanced DR 

stages. Recently, it has been shown that pre-PDR can regress to background DR through 

optimal control of diabetes. 

In the advanced stage of DR treatment is limited. In cases of marked neovascularization, 

several pan-retinal photocoagulation sessions may be necessary to prevent visual loss by 

vitreous HEM and traction retinal detachment. Inadequate laser treatment is one of the major 

causes of persistent neovascularization. Regression of neovascularization leaves phantom 

vessels or fibrous tissues. In most treated eyes, vision may remain stable once retinopathy 

remains constant. However, patients should be re-examined every 6 to 12 months.  

Vitrectomy may prevent vision loss in patients with advanced DR. Both laser 

photocoagulation and vitrectomy generate an additional risk of loss of vision and are not useful 
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in reviewing loss of visual acuity. Intraocular steroid injections showed temporal improvements 

in visual sensitivity in patients with Diabetic Macular Edema (DME). However, these can cause 

an increase in intraocular pressure and development of cataracts (SCANLON, 2010). 

1.1.3 The retinal image 

An eye fundus image is a 2D projection of the 3D structure of the retina. The intensity 

of the image represents the amount of reflected light. The eye fund camera consists of a 

microscope and a camera attached to it. The optic system is similar to the indirect 

ophthalmoscope, which offers vertical and amplified observations of the inner surface of the 

eye. The camera acquires observations of the retina area at an angle of 30 to 50 degrees, with 

amplification of 2.5 times. The use of auxiliary lenses can increase this amplification up to 5 

times (OPHTHALMIC PHOTOGRAPHERS’ SOCIETY, 2015). 

Color filters, fluorescein, and other types of dyes are used to perform the test. The 

following methods are used to perform the retinal examination for DR detection. 

• Fundus photography (red-free) - the image is captured using the amount of light 

reflected by a specific wavelength band. 

• Color Fundus Photography - the image is captured using reflected light in the RGB 

(Red, Green, and Blue) spectrum. 

• Indocyanine and fluorescein angiography - the image formed is based on the 

number of photons emitted by the fluorescein or indocyanine dyes that are injected 

into the bloodstream. 

In this work we use only Color Fundus Photography since it has a couple of advantages 

over the other methods described above. The red-free fundus photography uses only the green 

channel of the RGC fundus image, which might result in loss of valuable information. On the 

other hand, the fluorescein angiography requires contrast injection, which makes the exam more 

expensive and invasive. 

1.2 Hypothesis 

This work proposes an automatic DR detection system composed by a quality 

assessment model and a lesion localization model followed by a simple protocol to infer the 

DR level. 
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A complete computer-aided diagnostic system for DR detection must start by evaluating 

the quality of the retinal images since any analysis done in poor quality images (or non-retinal 

images) would be useless. 

A recent study on a big retinal dataset called UK Biobank showed that more than 30% 

of retinal images acquired by professional  retina acquisition devices do not have enough quality 

to be evaluated by an ophthalmologist (WELIKALA et al., 2016). In this context, a quality 

evaluation system would not only reduce errors generated by the retinal image classification 

algorithms but also reduce the necessity of the patients to return back to the health center to 

take another fundus photograph to replace the poor-quality ones. 

In the following stage, two steps compose the automatic DR detection system: i) lesion 

localization and ii) DR detection using retinal images. 

The lesion localization step is not strictly required, especially for systems based on deep 

learning since the entire image can be used as input without the classical lesion candidate 

selection and feature extraction. However, such models classify the images without marking 

the regions responsible for an eventual DR classification. Furthermore, for a real Computer-

Assisted Diagnostic System (CADS), that is a disadvantage since the ophthalmologist might 

want to check the reasons for the system's classification. On the other hand, a system with lesion 

segmentation capacity would accomplish this requirement for obvious reasons. 

As a hypothesis, we argue that it is possible to propose a pipeline based on quality 

assessment and red lesion localization to achieve automatic DR detection with performance 

similar to experts considering that a rough segmentation is sufficient to produce a discriminant 

marker of a lesion. 

Figure 2 illustrates the proposed pipeline. 

1.3 Objectives of the work 

In general, the objective of this work is to propose an automatic DR detection pipeline 

composed by a quality assessment model, followed by lesion localization model. 

More specifically, the objectives are 

• To propose models that work with different datasets, 

• To verify the importance of removing poor-quality images on the automatic DR 

detection performance, 

• To reduce the number of images needed to train the lesion localization model, 

• To reduce the computational cost of the lesion localization model. 
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Figure 2 - Proposed pipeline 

 
Source: author's own 

1.4 Contributions 

A couple of contributions have been made through the two parts of this thesis. In the 

quality assessment chapter, a robust retinal image quality assessment model using deep learning 

and transfer learning is presented whose results outperform state of the art (ZAGO et al., 2018). 

Next, in Chapter 3, a patch-based retinal image lesion segmentation approach (ZAGO 

et al., 2020) is proposed underlying the following contributions: 

• Fully Convolutional Neural Networks (CNN) method for lesion localization 

(without any manually designed feature), acting on patches extracted from an 

image that we finally use to give a DR diagnosis.  

• The strides usage (subsampling of patches) accelerates up to a factor of 25 the 

processing time compared to other CNN that does not use strides. 

• During the learning stage, the sample selection method helps the final model to 

focus on challenging samples, which increases the performance. 

• The designed model is shown robust to cross-validation over different databases, 

which is promising for practical applications. 

1.5 Text structure 

In Chapter 2 we describe the retinal image quality assessment model, both related works, 

the method description, and the results are referenced in this chapter.  

Next, in Chapter 3 the lesion localization approach is fully described. 
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Finally, Chapter 4 contains the conclusions and future works possibilities. 

 



33 

 

2 RETINAL IMAGE QUALITY ASSESSMENT 

2.1 Introduction 

A study involving an extensive retinal image database indicated that more than 25% of 

the images do not exhibit sufficient quality to allow a proper medical diagnosis 

(MACGILLIVRAY et al., 2015). In addition to the financial investment required to reacquire 

photographs of poor quality, it is inconvenient for a patient to return to a medical center to 

repeat the fundus photograph exam. Therefore, an automatic system for quality assessment can 

reduce the aforementioned problems by obtaining a second photograph immediately after the 

poor-quality photograph is taken. 

Hence, the goal of the present study is to develop a robust system for automatic retinal 

image quality assessment. CNN is an a priori interesting tool for the task as observed in several 

other applications. It exhibits the ability to extract generic features from a large set of images. 

Therefore, we considered a CNN pretrained on non-medical images to extract extremely 

general image features. Thus, our approach is extremely different from previous studies 

employing CNN for retinal images. 

Furthermore, following the recent trend on fine-tuning (TAJBAKHSH et al., 2016), we 

also adjusted the network parameters of the general network to extract retinal image- specific 

features by using only a small quantity of labeled images. 

2.2 Related Works 

Several researchers have worked on automatic retinal image quality assessment using 

various algorithms. The algorithms are divided into three groups based on the (i) generic image 

quality indicators, (ii) retinal image structures, and (iii) both generic image quality indicators 

and retinal structures. The main studies are reviewed in the following paragraphs and listed in 

Table 1 on page 35. 

The algorithms that use generic image quality indicators do not segment the retinal 

image nor use its anatomical structure. These methods typically use simpler techniques 

requiring less computational power. 

Lee and Wang (LEE; WANG, 1999) were the pioneers in Retinal Image Quality 

Assessment (RIQA) and used histogram models to create an index (Q index) to classify retinal 

images into two classes: good or poor quality. Lalonde et al. (LALONDE; GAGNON; 
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BOUCHER, 2001) modified Lee et al.’s models to operate locally instead of globally, and they 

graphically indicated that their features can separate good- and poor-quality retinal images in 

their database. Generic image features were also used in (BARTLING; WANGER; MARTIN, 

2009) and evaluated on a private database by a group of specialists, who obtained a kappa 

agreement coefficient of 𝜅 =  0.55, which is used to measure inter-rater reliability. If two raters 

completely agree, then 𝜅 =  1 and if there is no agreement between them, 𝜅 =  0. 

Pires et al. (PIRES DIAS; OLIVEIRA; DA SILVA CRUZ, 2014) published one of the 

most relevant studies on the subject. They used several public databases in conjunction with 

two proprietary ones. Their features were extracted according to focus, contrast, and 

illumination histograms, and they tested several classifiers. They reported an Area Under the 

Curve (AUC) of the receiver operating characteristic curve for a quality evaluation of 99.87%. 

Moreover, in 2014, Nugroho et al. (NUGROHO et al., 2015) used a naive Bayes  classifier and 

contrast measurement to classify 47 images. They obtained a sensitivity (Se) of 97.6%, a 

specificity (Sp) of 80.0%, and an accuracy (Acc) of 89.3%. 

Yao et al. (YAO et al., 2016) used generic quality parameters including entropy, texture, 

symmetry, and frequency components, and a Support Vector Machine (SVM) classifier to 

obtain an Sp of 93.08% and an AUC of 96.19%. 

In (MAHAPATRA et al., 2016), the authors used convolutional neural networks (CNNs) 

to assess the retinal image quality. They combined features from a local saliency map and from 

a CNN trained on more than 20,000 images of a proprietary database using random forest and 

SVM classifiers. After the cross-validation, they obtained a Se of 97.9%, a Sp of 97.8%, and an 

Acc of 97.9%. 

Abdel-Hamid et al. (ABDEL HAMID et al., 2016) proposed a classifier based on a 

wavelet and a hue-saturation-value space to assess the sharpness, illumination, homogeneity, 

Field Of View (FOV), and outlier features. Their study used several databases and achieved an 

AUC of 99.8% via an SVM classifier. 

Recently, Saha et al. (SAHA et al., 2018) proposed a methodology similar to ours. They 

used a pretrained CNN and a subset of the EyePACS dataset labeled by three specialists (only 

one of whom was an ophthalmologist) to fine-tune their network. Their algorithm was tested 

on a subset of the same database with 123 poor-quality and 3,302 good-quality retinal images. 

Although similar methods were used, in our work, novel scenarios to assess the robustness of 

our approach to different datasets are proposed (called inter-dataset cross-validation, where 

CNN is trained on a database and tested on another). 
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Alternatively, algorithms based on retinal image anatomical structure use specific 

characteristics of the retinal image to assess its quality. Typically, the methods initially segment 

the structures, such as the blood vessels, and subsequently use the elements to assess the image 

quality. 

Usher et al. were the first to use segmented vessels to infer the image quality (USHER; 

HIMAGA; DUMSKYJ, 2003). They used a private database consisting of retinal images from 

2546 patients and employed a kappa agreement coefficient to compare the results of the study 

to the annotation of the experts ( 𝜅 =  0.67 ). In 2006, Niemeijer et al. (NIEMEIJER; 

ABRÀMOFF; VAN GINNEKEN, 2006) applied image structure clustering (ISC) to extract 

features and an SVM classifier to obtain an AUC of 99.68% on a proprietary database of 1,000 

retinal images. 

 

Table 1 - Review of extant studies on retinal image quality 

Methodology Year Database Approach Performance 

Usher et al. 

(USHER; 

HIMAGA; 

DUMSKYJ, 

2003) 

2003 Proprietary 

Blood vessels 

segmentation, 

kappa index 

𝜅: 0.67 

Niemeijer et al. 

(NIEMEIJER; 

ABRÀMOFF; 

VAN 

GINNEKEN, 

2006) 

2006 Proprietary 

Histograms, 

image 

structure 

clustering 

(ISC), SVM 

AUC: 99.68% 

Bartling et al. 

(BARTLING; 

WANGER; 

MARTIN, 

2009) 

2009 Proprietary 
Sharpness, 

ilumination 
𝜅: 0.55 

Davis et al. 

(DAVIS et al., 

2009) 

2009 
MESSIDOR, 

Proprietary 

Artificial 

added noise, 

CieLAB, PLS 

AUC: 99.3% 
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Methodology Year Database Approach Performance 

Paulus et al. 

(PAULUS et al., 

2010) 

2010 Proprietary 

Clustering, 

sharpness, 

texture 

Se: 96.90% 

Sp: 80.00% 

Acc: 91.70% 

AUC: 95.30% 

Hunter et al. 

(HUNTER et 

al., 2011) 

2011 Proprietary Rule-based 

Se: 100.0% 

Sp: 93.00% 

Acc: 94.00% 

Yu et al. (YU et 

al., 2012) 
2012 Proprietary 

Global 

histogram, 

texture, blood 

vessels 

segmentation, 

non-reference 

perceptual 

sharpness 

metric, PLS 

Se: 99.00% 

Sp: 80.00% 

AUC: 98.10% 

Nugroho et al. 

(NUGROHO et 

al., 2015) 

2015 HEI-MED 

Blood vessels 

segmentation, 

Naive Bayes 

Se: 97.60% 

Sp: 80.00% 

Acc: 89.30% 

Pires Dias et al. 

(PIRES DIAS; 

OLIVEIRA; 

DA SILVA 

CRUZ, 2014) 

2014 

DRIVE, 

Messidor, 

ROC, 

STARE, 

Proprietary 

Histograms, 

Neural 

Networks 

Se: 99.49% 

Sp: 99.76% 

AUC: 99.87% 

Yao et al. (YAO 

et al., 2016) 
2016 Proprietary 

Statistical 

characteristics, 

entropy, 

texture, 

symmetry, 

frequency 

components, 

Se: 93.08% 

Acc: 91.38% 

AUC: 96.19% 
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Methodology Year Database Approach Performance 

blur metric, 

SVM 

Welikala et al. 

(WELIKALA et 

al., 2016) 

2016 UK Biobank 

Blood vessels 

segmentation, 

SVM 

Se: 91.59% 

Sp: 92.49% 

AUC: 98.28% 

Abdel-Hamid et 

al. (ABDEL-

HAMID et al., 

2016) 

2016 

DRIMDB, 

DR1, DR2, 

HRF, 

MESSIDOR 

Wavelet, 

sharpness, 

illumination, 

homogeneity, 

field 

definition, 

SVM 

AUC: 94.40% 

Mahapatra et al. 

(MAHAPATRA 

et al., 2016) 

2016 Proprietary CNN, SVM 

Se: 97.90% 

Sp: 97.80% 

Acc: 97.90% 

This work 

(ZAGO et al., 

2018) 

2018 

DRIMDB, 

ELSA-

Brasil 

Inter-

databases 

cross-

validation, 

CNN 

AUC: 99.98%, 

Se: 97.10% 

Sp: 100.0% 

𝜿 ∶  𝟎. 𝟗𝟕 

(tested on DRIMDB) 

AUC: 98.56% 

Se: 92.00% 

Sp: 96.00% 

𝜿: 𝟎. 𝟖𝟖 

(tested on ELSA) 

Source: author's own 

Elliptical local vessel density was the technique used in (GIANCARDO et al., 2008) as 

a quality metric for retinal images. The authors used automatic extraction of blood vessels and 

classified the images from their proprietary database composed of 84 images via the k-nearest 

neighbor algorithm. Their proposed method achieved an accuracy of 100% on the identification 
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of good-quality images, 83% on that of fair-quality images, 0% on that of poor-quality images, 

and 66% on that of outlier images. Hunter et al. (HUNTER et al., 2011) based their study on 

the UK National Screening Committee guidelines and achieved an Se of 100%, a Sp of 93%, 

and an Acc of 94% in a database with 200 retinal images.  

More recently, a novel database named UK Biobank, (UK BIOBANK, 2013) which is 

extremely rich in terms of size and variety of health data records, has been provided to 

researchers. It shows the potential to bring new pertinent results to the health care community 

generally. Welikala (WELIKALA et al., 2016) used blood vessel features and an SVM classifier 

to analyze the quality of the retinal images of UK Biobank. From a subsample of 800 images, 

they obtained a Se of 95.33% and a Sp of 91.13%. An important conclusion of their study is 

that more than 26% of the images from UK Biobank (and potentially from all the large studies 

that involve fundus photography) were considered as inadequate. Another study from the same 

group (MACGILLIVRAY et al., 2015) indicated that only 36% of the patient records had both 

eye images that were appropriate for analysis, thereby confirming the importance of good 

automatic quality assessment systems. 

Finally, other studies were based on both generic and specific features. 

Paulus et al. (PAULUS et al., 2010) used generic features including sharpness and 

texture in conjunction with unsupervised clustering to group the anatomical structures to assess 

the quality of 301 retinal images and obtained an AUC of 95.3%. Yu et al. (YU et al., 2012) 

used generic and vessel features with a Partial Least Square (PLS) classifier on a database with 

1884 retinal images and obtained an AUC of 95.8%. 

A previous review showed that several methods have already been proposed to detect 

retinal images of adequate or inadequate quality. Thus, several complex features have been 

introduced, each of which implies an important development stage. They are difficult to 

compare in terms of performance as each of them was designed and tested on a specific database 

for a given set of parameters including contrast and illumination. Therefore, it is difficult to 

predict their performance under different experimental conditions. Hence, a robust system can 

potentially assess the quality of images generated from different databases without any (or 

limited) need for adaptation. Thus, the system should rely on generic features that can represent 

the images present in every database.  

Next, we describe the databases we used in our study and provide a full description of 

our approach. A set of experiments is presented to validate our solution for RIQA. 
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2.3 Databases 

There are several publicly available databases with manual quality annotations. In this 

study, we selected the databases on the basis of the following criteria: (i) the database 

annotation was performed by experienced physicians, (ii) the images were classified as 

appropriate for medical analysis (gradable) or not (ungradable), and (iii) the database was public. 

Therefore, the following three databases were rejected according to the above criteria: 

• The HRF dataset (KÖHLER et al., 2013). This database consists of 18 image 

pairs from 18 human patients. Previous studies already noted that a few poor-

quality images of the database only exhibited a slight blur that does not define 

the image as ungradable (ABDEL-HAMID et al., 2016). The study itself did not 

explicitly specify the criteria used to annotate the database or specify the 

annotation method. 

• The DR1 and DR2 databases. Both databases were used in (ABDEL-HAMID et 

al., 2016) and (PIRES et al., 2012), and also present a few problems. The images 

were annotated by specialists. However, these studies did not clarify the criteria 

that should be used by the physicians to separate the retinal images. Additionally, 

after a manual inspection, it was observed that there are images with doubtful 

quality annotations, thereby indicating that it is necessary to review the 

annotations of the databases. 

We finally selected two databases, namely, DRIMDB and ELSA-Brasil, that met the 

proposed requirements. 

The Diabetic Retinopathy Image Database (DRIMDB) is a retinal image database 

created to evaluate the performance of quality assessment algorithms (SEVIK et al., 2014). It 

is composed of 216 retinal images divided into three classes: good (125), poor (69), and outlier 

(22 that were not used). It was created by the Retina Department of Ophthalmology, Medical 

Faculty, Karadeniz Technical University, Trabzon, Turkey. All images were captured by a 

Canon CF-60UVi fundus camera via a 60o FOV and stored as JPEG files at a resolution of 

570 × 760  pixels. The images were annotated by an expert, and good-quality images are 

suitable for use in medical diagnosis by an ophthalmologist. 

The aim of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) is to 

investigate the incidence and progression of diabetes and cardiovascular diseases and their 

biological, behavioral, environmental, occupational, psychological, and social factors in a 
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cohort of adults (AQUINO et al., 2012). The study population is composed of 15,105 active or 

retired employees of six public institutions from different regions in Brazil. The retinal images 

were annotated by experienced ophthalmologists with respect to diseases and quality. Although 

the size of the dataset is big, only a fraction of the records in the database were available to the 

author. Thus, the samples used in the study were composed of 25 poor-quality images and 817 

good-quality images. The retinal images were centered on the macula and optic disc of each 

eye and were obtained using a Canon CR-1 nonmydriatic system with an EOS 40D (10-

megapixel) digital camera (Canon, Tochigiken, Japan). 

2.4 Methods 

2.4.1 General description of the model 

The method consists of a preprocessing stage to crop the images within their Region of 

Interest (ROI) to reduce the quantity of data that should be processed by the network. It should 

be noted that no specific preprocessing is performed as a function of the different specificities 

of the images in the database, and, thus, the step remains extremely simple and generic. 

The resulting image is presented as the input of a CNN and pretrained with non-medical 

images. In the last stage, the last fully connected layers are retrained on a specific DR database 

to increase the global performance by learning the specific problem at hand. 

2.4.2 Preprocessing 

To crop the retinal image around the ROI, the method1 first blurs the image by using a 

5 × 5 Gaussian kernel to remove any outlier pixel from the background. Subsequently, the 

maximum background intensity 𝑚𝑎𝑥𝑏𝑔 in the first and last ⌊
𝑊

32
⌋ columns of the blurred image 

is considered, where 𝑊 corresponds to the number of columns of the image. 

This is followed by selecting the foreground pixels by considering every pixel in the 

blurred image, with the intensity exceeding 𝑚𝑎𝑥𝑏𝑔 + 10 . The image is cropped by using the 

smallest rectangle that contains all the foreground pixels. Figure 3 shows an example of the 

preprocessing stage. 

Before being presented to the CNN, all RGB channels of the images are normalized 

from the interval [0, 255] to [−1, 1]. 

                                                 

 

1 https://github.com/sveitser/kaggle_diabetic 
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Figure 3 - Cropping illustration 

(a) (b) 

  

(a) Initial retinal image and (b) corresponding preprocessed retinal image. 

Source: author’s own 

2.4.3 Data augmentation 

Deep neural networks are better trained with a large amount of data. However, if the 

dataset exhibits a limited amount of sample images, then it is possible to create new fake 

samples that are added to the available data. This is known as data augmentation 

(GOODFELLOW et al., 2014). The new samples are obtained through simple transformations 

of the initial images and correspond to “real-world” acquisition situations. Therefore, the 

following random transformations are performed on the available images: 

• Rotation: The image is randomly rotated around its center. 

• Vertical and horizontal shift: The image is randomly shifted vertically and 

horizontally. 

• Scale: The image is zoomed in or out by a factor. 

• Horizontal and vertical flip. 

• Contrast augmentation: Different contrast conditions are simulated by applying 

a transformation defined by 𝑦 =  128 + 𝛼(𝑥 −  128), where 𝑥  denotes the 

original image and α denotes a random number (QUELLEC et al., 2017). 

The values used in the random transformations are shown in Table 2 and follow 

(QUELLEC et al., 2017). 
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Table 2 - Values used in data-augmentation transformations 

Transformation Values 

Rotation [0𝑜, 360𝑜] 
Vertical and horizontal shift [0, 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ × 7%] 𝑝𝑖𝑥𝑒𝑙𝑠 

Scale [0.85,1.15] 
Horizontal and vertical flip 50% flip probability 

Contrast augmentation 𝛼 ∈ [0.6,1.67] 
Source: author's own 

2.4.4 Deep neural networks 

The modern term “deep learning” is related to machine learning frameworks with 

multiple levels of composition (GOODFELLOW et al., 2014). With respect to the subject of 

image processing, an extremely commonly used framework for deep learning is the CNN, 

which is an artificial neural network (ANN) with a special structure that is invariant to both 

rotation and translation. CNNs are typically composed of convolutional, pooling, and fully 

connected layers. An example of 2-D convolution is illustrated in Figure 4. 

In convolutional layers, a new feature map is calculated by the convolution between a 

learned kernel and the previous feature map (or input, for the first hidden layer) followed by an 

activation function. Currently, rectified linear units (ReLUs) (NAIR; HINTON, 2010) 

correspond to the most used activation function and are defined in Equation (1): 

 𝑓(𝑥) = max (0, 𝑥). (1) 

The adoption of ReLUs solves the issue of vanishing gradients, which hampers the 

training process of deep ANNs that use nonlinear activation functions (such as tanh or sigmoid).  

Conversely, the goal of the pooling layers is to accomplish shift invariance by reducing 

the spatial resolution of the feature maps. This is achieved by applying a simple moving window 

operation (the most frequently used operations include the average, maximum, and minimum) 

in the previous layer output instead of using a kernel followed by an activation function as 

performed by the convolutional layer. Finally, fully connected layers correspond to standard 

ANN structures in which every output unit is connected to all units in the previous feature map 

(GOODFELLOW et al., 2014). 

Deep CNNs exhibit an extremely high capacity of generalization because of their 

invariance to shift, rotation, and scale, and also because of the number of trainable parameters 

that they have, which can reach to the order of millions. However, the training process has its 

own issues. First, a large amount of labeled data is required to avoid under-fitting, and this can 
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be a problem for medical images. Additionally, a convergence issue exists and typically 

imposes several adjustments in the training parameters and architecture alike. 

 

Figure 4 - An example of 2-D convolution 

 
In this case we restrict the output to only positions where the kernel lies entirely within the image, 

called "valid" convolution. 

Source: (GOODFELLOW; BENGIO; COURVILLE, 2016) 

An alternative to training a CNN from scratch involves fine-tuning a network that was 

trained on a large unrelated labeled dataset. This technique has already been applied 

successfully in several areas of computer vision (AZIZPOUR et al., 2015; PENATTI; 

NOGUEIRA; DOS SANTOS, 2015; RAZAVIAN et al., 2014) and can reduce the 

aforementioned problems. 
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2.4.5 The architecture 

In order to use the fine-tuning technique, we must choose an architecture whose tuned 

weights are available. A few architectures meet this requirement and we choose Google’s 

Inception v3 (SZEGEDY et al., 2016) based on its good performance on other image 

classification tasks (SZEGEDY et al., 2016). 

The model’s weights were trained on the ImageNet database (JIA DENG et al., 2009) 

as available on the used framework. In its final configuration, the network had more than 24 

million parameters that were fine-tuned. The network was trained to classify images in one of 

the 1,000 classes of the ImageNet database (which include animals, plants, food, etc.). To adapt 

the model to our problem (which exhibits only two classes) and use only the general features, 

we replaced the last three fully connected layers with three layers with 1024, 512, and 2 units, 

respectively, as shown in Figure 5. The last layer exhibited the softmax activation function since 

it was desirable for the output to sum to 1, whereas the others were activated by a ReLU function. 

The sofmax activation function is the application of the standard exponential function to each 

input of the input vector and normalization of these values by dividing by the sum of all these 

exponentials. This ensures that the sum of the components of the output vector is 1, as describes 

below: 

 𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

. (2) 

All colored images were redimensioned to 299 × 299 × 3  since this dimension 

corresponded to the input size of Inception v3, and the output feature layer (the last one before 

the fully connected layers) exhibits 2048 units. 

Figure 5 - CNN architecture used: Inception v3 with different final layers 

 

Each rectangle represents a layer following according to its color. 

Source: author's own 

The model was trained by using the stochastic gradient descent algorithm with the 

following: 

• a mean squared error loss function, 
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• a learning rate starting at 0.01 and reduced by a factor of 10 when the validation 

error reached a plateau, 

• a momentum corresponding to 0.9, 

• batches of 16 images, 

• 100 steps per epoch, and 

• a limit of 500 epochs or fewer if the validation loss did not improve for 10 epochs. 

Using the two eye databases previously mentioned, we performed training and testing 

using two different protocols: (i) intra-dataset cross-validation in which three-fold cross-

validation was applied by using images from the same database, and (ii) inter-dataset cross-

validation in which the algorithm was trained by using images from one database and tested on 

another. 

 

Table 3 - Performance of the deep neural network with different database configurations 

Cross-

validation 

Database Fine-

tuning 

Cohen-

Kappa 

Sensitivity (%)  Specificity (%) Accuracy (%) AUC (%) 

Inter-

databases 

(mean and 

95% CI) 

DRIMDB no 0.03  

[0.01 − 0.04] 
 

51.28  

[47.11 − 55.45] 

51.67  

[47.50 − 55.84] 

51.45  

[47.28 − 55.62] 

53.9  

[50.5 − 59.7] 

yes 0.97 [0.96

− 0.99] 

100.0  

[100.0 − 100.0] 

97.18  

[95.8 − 98.56] 

98.55  

[97.55 − 99.55] 

99.9  

[99.3 − 100] 

ELSA-

Brasil 

no 0.60  

[0.53 − 0.67] 

80.00  

[74.46 − 85.54] 

80.00  

[74.46 − 85.54] 

80.00  

[74.46 − 85.54] 

84.4  

[73.0 − 93.7] 

yes 0.88  

[0.83 − 0.93] 

95.83  

[93.06 − 98.6] 

92.31  

[88.61 − 96.0] 

94.00  

[90.71 − 97.29] 

97.1  

[92.2 − 100] 

Intra-

databases 

(mean and 

std) 

DRIMDB no 0.91 ±  0.04 92.75 ±  2.51 98.55 ±  2.51 95.65 ±  2.17 98.74 ±  1.72 

yes 0.94 ±  0.03 95.65 ±  0.00 98.55 ±  2.51 97.10 ±  1.26 99.81 ±  0.33 

ELSA-

Brasil 

no 0.41 ±  0.20 79.63 ±  14.85 61.11 ±  24.06 70.37 ±  10.17 70.13 ±  23.33 

yes 0.75 ±  0.13 75.46 ±  13.20 100.00 ±  0.00 87.73 ±  6.60 97.40 ±  3.25 

Source: author's own 

For each experiment, 20% of the training set was used for the validation to reduce over-

fitting by early stopping the training algorithm. In all cases, both the validation and the test sets 

were balanced, equalizing the number of samples in each class through discarding some fair-

quality images. Finally, every network was trained in three ways as follows: 

1. Pretrained without fine-tuning: only the three newly added layers were trained. 

2. Pretrained with fine-tuning: all layers of the network were trained. 

3. From scratch: the network was fully trained and was initialized with random 

parameters rather than with pretrained parameters. 
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2.5 Results 

The experiments were divided into the following two parts: 

• Intra-database cross-validation: This involves three-fold cross-validation with 

images from a single database. The goal is to use the same methodology as that 

used in other studies for comparison purposes. 

• Inter-database cross-validation: This involves training with images from a 

database and testing on images from another database. The experiment was 

performed to demonstrate the robustness of our approach to changes in the 

characteristics of the images, and this was an aim while designing the novel 

system. 

In each experiment, the initial features were learned from the non-generic problem of 

ImageNet. Therefore, they were not specialized to the DR problem. The aim of the following 

stage was to specialize the network to the task at hand by using a DR database (DRIMDB and 

ELSA-Brasil). This was performed in two ways as follows: (i) with fine-tuning, where all 

weights of the model were retrained, and (ii) without fine-tuning, where only the last three 

layers were trained. 

Figure 6 - Typical loss value course during the training process for different types of 

experiments 

 

Source: author's own 

The processing was performed using Keras framework using a computer with an Intel 

Core i7-7700 CPU (@3.60 GHz × 8), 16 GB of RAM, and a GeForce GTX 1050 Ti GPU. A 

time period ranging from 15 to 120 min (15 to 114 epochs) was used in training the networks 
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based on the method (i.e., whether fine-tuning was applied or not) and on the database used. A 

typical loss value course during the training process is shown in Figure 6. It should be noted 

that it takes more time to train a network from scratch than to fine-tune a pretrained network. 

Furthermore, it is faster to train only the last layers since significantly fewer parameters are 

fine-tuned. 

Previous studies indicated that it is better to use pretrained CNNs for medical images 

than to train them from scratch (TAJBAKHSH et al., 2016). However, we tested the latter 

option to ensure that this also works for retinal images and, at least, for quality assessment 

purposes. The result is shown in Figure 7 and Table 3. When the network was trained from 

scratch, the result corresponded to an AUC of 95.02% ± 2.15 for DRIMDB and an AUC of 

70.06% ± 14.51 for ELSA-Brasil, and this was significantly worse than that of the other 

training configurations. This confirms the results obtained in (TAJBAKHSH et al., 2016), 

wherein fine-tuning a pretrained network was better than training it from scratch. This happens 

because the model learns good generic features when trained with such amount of distinct 

images, specially in the first layers as shown in (TAJBAKHSH et al., 2016). Even if the same 

amount of retinal images with quality labels were available, initializing the model with pre-

trained weights would be beneficial both in training speed and performance (TAJBAKHSH et 

al., 2016). 

An initial interesting result observed from our experiments was that acceptable results 

were noted while training with DRIMDB in pretrained networks without fine-tuning (i.e., only 

the last three layers were trained, thereby indicating that extremely general features were 

extracted, namely, the ones used to distinguish between the ImageNet classes). This indicates 

that the general features extracted from the DRIMDB images are better descriptors for RIQA 

since they resulted in good separation for both DRIMDB itself and ELSA-Brasil (for inter-

database cross-validation). 

As expected, the use of fine-tuning produced better results for all databases in terms of 

the AUC mean and standard deviation. 

The results involving fine-tuning were good when compared to those in other studies, 

as shown in Table 1, with an AUC of 99.81% ± 0.33 for DRIMDB and an AUC of 97.39% ±

3.25 for ELSA-Brasil. The improvements in the mean and, most importantly, in the standard 

deviation indicated that the fine-tuned network extracted better and more trustful features. 

Most studies published in the subject used the same database to train and test their 

algorithms. This means that there is no guarantee that their approach will work on new images 
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because images from the same database are similar in most cases in terms of features including 

the color distribution and contrast distribution. 

Figure 7 - Receiver operating characteristic curves for quality assessment experiments 

  
(a) (b) 

 
(c) 

ROC curves for networks trained (a) from scratch, (b) intra-database cross- validation, and (c) inter-

database cross-validation. 

Source: author’s own 

The experimental results indicate that the proposed method is robust with respect to the 

changes in a database and that the model can be used to classify retinal images in a real-world 

scenario since its performance was significantly high in terms of the aforementioned limited-

size datasets. Specifically, we achieved an AUC of 99.98% for DRIMDB and an AUC of 98.56% 

via fine-tuning for ELSA-Brasil for the inter-database experiment. 

An extant study (PIRES DIAS; OLIVEIRA; DA SILVA CRUZ, 2014) indicated 

comparable results and also used images from several databases. Nevertheless, in its experiment, 

all images from each class were attributed to a single database (all images from the gradable 

class corresponded to the MESSIDOR database, whereas all images from the ungradable class 

corresponded to the study’s proprietary database), and, thus, it was not clear whether the 

classifier was learning to separate gradable/ungradable images or MESSIDOR/proprietary 

database images. 
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2.6 Conclusion 

In this study, a pretrained deep neural network was adapted to deal with retinal image 

quality assessment. Fine-tuning was demonstrated as an efficient tool for CNN adaptation. 

Furthermore, the use of pretrained features avoided the burden of requiring a large amount of 

specific data and reduced the time spent during the learning phase. The major limitations of this 

work are the small number of available retinal datasets with quality labels and the small number 

of both fair and, mainly, poor-quality retinal images in the databases used. However, the results 

hold significant promise in terms of an efficient operational system specifically when the 

acquisition involves mobile devices. Finally, this study constitutes a first step toward the design 

of a global diabetic retinopathy detection system aiming in particular at an operational system 

for clinical usage. 

 





51 

 

3 DIABETIC RETINOPATHY DETECTION USING RED LESION 

LOCALIZATION AND CONVOLUTIONAL NEURAL NETWORKS 

3.1 Introduction 

Diabetic retinopathy (DR) is a common complication of diabetes and involves variations 

in retinal blood vessels. These variations can cause the blood vessels to bleed or leak fluid, 

distorting vision. It is the most prevalent cause of vision loss among individuals with diabetes 

and a significant cause of blindness among working-age adults. Fortunately, early detection, 

timely therapy, and adequate diabetic eye disease follow-up care can safeguard against the loss 

of vision. 

Therefore, it is crucial to offer easy methods of detection of this disease on a large scale. 

Several devices enable the acquisition of retinal images, but manual diagnosis and evaluation 

of images requires significant effort. Thus, automatic systems can reduce time, cost, and effort 

significantly and be a valuable tool for practitioners, especially considering the increasing 

number of diabetes cases.  

The first attempts at automatic systems involved the use of classical image processing 

techniques, but quite recently, the introduction of deep networks and, in particular, 

convolutional neural networks (CNNs) has had a significant effect on medical image analysis. 

Indeed, such approaches are producing impressive results in the classification of many types of 

diseases, as well as in the localization and segmentation of regions of interest (LITJENS et al., 

2017). These results are obtained because of the availability of a vast quantity of labeled data. 

DR detection, which is the subject of the present study, is no exception, as it is generally 

performed through the analysis of retinal images.

In contrast to classical image processing systems, which use predefined features as an 

intermediate stage for classification, CNN models can directly propose a classification from 

raw pixel images and independently extract the appropriate representation of the images. 

Following this line of thinking, several authors have proposed CNN models for 

indicating the degree of DR or the presence of a disease in a given image. These models are 

very effective, but, if learned from scratch, they require a large quantity of labeled data, which 

are not always available. Moreover, the performance is very dependent on the statistics of the 

data used for learning. Therefore, the resulting system may not be robust when used with a 

different type of data from a different acquisition environment.  
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 In practice, these models, which do not explicitly explain their method of decision-

making, are not suited for interaction with clinicians. Nevertheless, it is important for clinicians 

to understand why the model made its decision and in particular, which region in the images 

influenced the DR diagnosis. 

For this reason, we decided to focus the present work on building an automatic DR 

system based on a CNN approach, but specifically, one that explicitly relies on a localization 

of lesions that can be assessed by an expert. We do not aim to precisely segment the lesions, 

but to localize them, and to produce some probability that the lesion may induce DR or not. 

The chosen method is inspired by the work of Ciresan et al. (CIREŞAN et al., 2013) in 

cancerology, and it uses a deep CNN to classify patches of an image as lesion or non-lesion. 

Therefore, the system is able to localize the regions with lesions for further DR detection.  

In practice, the CNN takes patches of the initial retinal image as inputs and produces a 

probability of a lesion being present in each patch. The resulting probability map is post-

processed to ultimately decide whether DR is present or not. This model can be seen in Figure 

8. 

As the first signs of DR in the retina are generally microaneurysms (MAs) and 

hemorrhages, we focus on localizing these lesions, called "red lesions," instead of bright lesions 

or neovascularizations (which are later signs of DR). 

 

Figure 8 - Localization model based on patches 

 

The convolutional neural network (CNN) input is a single patch of the retinal image, and, for each 

patch, the output is the probability of a lesion being in the analyzed patch. 

Source: author’s own 

Training such a CNN requires the availability of a database with explicit labeling of the 

regions by an expert. In contrast to what occurs when a CNN is trained on a global image, even 

if the training database is of limited size, we obtain a large number of input data (as one image 

of size 512 pixels x 512 pixels gives rise to 1,310,720 patches). Therefore, finding efficient 

protocols for choosing adequate samples has a significant impact on the final quality of the 

system. 
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We propose a novel strategy for selecting challenging samples by relying on a two-stage 

construction: a simple classifier allows for the detection of misclassified samples, which are 

used to enrich the initial training database for the final classifier in a second stage. In this way, 

the performance of the classifier is increased. This is one of the solutions which makes this 

study original. 

The high number of patches also raises a problem in terms of complexity in the 

production phase (once the learning phase is completed). The modification that we introduced 

relies on a subsampling of the image. Indeed, as we search for only a raw localization of the 

lesion and not a precise segmentation, we can downsample the image, and consider only a 

sampling of the patches for analysis. The use of strides accelerates the process by up to a factor 

of 25 as compared to other CNNs that do not use strides. 

We also expect such an approach to be more generic than global models working 

globally on an image, as the final decision will result from a focused local analysis. We will 

show in the experimental part of the study that this is indeed the case, in particular, as compared 

to other state-of-the-art models. 

As no large databases of labeled retinal lesions are available, we propose, like other 

authors, to use a pre-trained CNN with transfer learning to classify patches of retinal images as 

lesion or non-lesion. 

3.1.1 Related Works 

State-of-the-art automatic DR detection techniques can be roughly classified into two 

types: older studies that rely on classical image processing techniques for detecting, segmenting, 

and analyzing lesions in images depending on their precise characteristics, and more recent 

studies, that rely on CNNs to perform both feature extraction and classification. 

Because MAs and hemorrhages are generally the first signs of DR, several works have 

focused on these diseases, particularly for the early detection of DR. Hence, we focus our 

review on those works. 

There are many studies that use the classical image processing pipeline, and some of 

them are summarized in Table 4. We have limited ourselves to the studies that detect MAs and 

hemorrhage lesions, as their presence is significant for the early detection of DR. 

Most works on this subject use the following pipeline. 
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• Preprocessing: enhancing the retinal image to make the lesions more visible. 

• Lesion candidate selection: filtering, morphological transformations, and 

thresholding are the techniques commonly used to select candidates. 

• Feature extraction: features such as perimeter, area, and average intensity are 

obtained from the lesion candidates. Commonly-used features include perimeter, 

area, and average intensity. 

• Classification: the candidates are classified into lesion or non-lesion based on 

the characteristics of the extracted features. 

Table 4 - Works that employ a classical image processing pipeline with different database 

configurations for lesion detection 

Authors Year Approach Databases Results 

Larsen et al. (LARSEN et 

al., 2003) 

2003 Commercial system 

against experts 

Welsh Community 

Diabetic Retinopathy 

Study (WCSDR) 

Image level lesion 

detection 

Specificity (𝑆𝑝) =
0.714 

Sensitivity (𝑆𝑒) =
0.967 

Area under the 

receiver’s 

operating 

characteristic curve 

(𝐴𝑈𝐶) = 0.903 

𝜅 = 0.659 

Niemeijer et al. 

(NIEMEIJER et al., 2005) 

2005 Classical image 

processing, k-nearest 

neighbor (k-NN) 

140 images. Screening 

program in the 

Netherlands and 

another private one 

Image level red 

lesion detection 

𝑆𝑒 = 1.0 

𝑆𝑝 = 0.87 

Balasubramanian et al. 

(BALASUBRAMANIAN; 

PRADHAN; 

CHANDRASEKARAN, 

2008) 

2008 Automatic seed 

generation (ASG), 

implicitly hybrid 

classifier called 

spatiotemporal feature 

map classifier 

(STFM) 

Private dataset of 63 

images 

Lesion level 

𝑆𝑒 = 0.87 

𝑆𝑝 = 0.955 

Zhang et al. (ZHANG et 

al., 2009) 

2009 Multiscale 

Correlation Filtering 

and dynamic 

thresholding, 

Coarse and fine level 

Retinopathy Online 

Challenge (ROC) 

dataset 

Lesion level 

Free-response 

receiver operating 

characteristic 

(FROC) curves 
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Authors Year Approach Databases Results 

Kande et al. (KANDE et 

al., 2009) 

2009 Matched filtering 

relative entropy-based 

thresholding  

morphological top-hat 

transformation 

support vector 

machines (SVMs) 

Private dataset with 80 

retinal images, Standard 

Diabetic Retinopathy 

Database, Calibration 

Level 0 (DIARETDB0) 

and Standard Diabetic 

Retinopathy Database, 

Calibration Level 1 

(DIARETDB1) 

Lesion level 

𝑆𝑒 = 0.962 

𝑆𝑝 = 0.995 

Kande et al. (KANDE; 

SAVITHRI; SUBBAIAH, 

2010) 

2010 Histogram matching, 

contrast stretching, 

median filtering, 

matched filter, 

relative entropy-based 

thresholding, 

morphological top-hat 

transformation, a 

connected component 

analysis was applied 

to binary objects, 

SVMs 

Private dataset, 

Structured Analysis of 

the Retina (STARE), 

DIARETDB0, and 

DIARETDB1 

Image level lesion 

detection 

𝑆𝑒 = 1.0 

𝑆𝑝 = 0.91 

𝐴𝑈𝐶 = 0.962 

Zhang et al. (ZHANG et 

al., 2010) 

2010 An approach based on 

multi-scale 

correlation filtering 

(MSCF) and dynamic 

thresholding 

100 images from ROC 

and DIARETDB1 

Lesion level 

FROC curves 

Quellec et al. (QUELLEC 

et al., 2011) 

2011 Filters with trained 

parameters, k-NN 

26 images from a 

program in the 

Netherlands, 

74 from Abràmoff’s 

retinal referral clinic 

(private) 

Diabetic 

retinopathy (DR) 

detection 

𝐴𝑈𝐶 = 0.927 

Sánchez et al. (SÁNCHEZ 

et al., 2011) 

2011 Testing an existing 

system against experts 

Messidor DR detection 

Expert A 

𝐴𝑈𝐶 = 0.922 

95%𝐶𝐼 =
[0.902– 0.936] 

Expert B 

𝐴𝑈𝐶 = 0.865 

95%𝐶𝐼 =
[0.789– 0.925] 
CAD System 
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Authors Year Approach Databases Results 

𝐴𝑈𝐶 = 0.876 

95%𝐶𝐼 =
[0.856– 0.895] 

Rocha et al. (ROCHA et 

al., 2012) 

2012 Using a visual word 

dictionary 

to build a specific 

projection space for 

each class of interest, 

SVM 

DR1 White lesion 

detection 

𝐴𝑈𝐶 = 0.953 

red lesion detection 

𝐴𝑈𝐶 = 0.933 

 

Antal et al. (ANTAL; 

HAJDU, 2012) 

2012 Using a fusion of 

several preprocessing 

and feature extractors, 

simulated annealing 

199 images selected 

from three databases, 

ROC, 

DIARETDB1, private 

 

Zhang et al. (ZHANG et 

al., 2014) 

2014 Mathematical 

morphology, 

contextual features, 

random forest 

DIARETDB1, 

e-ophtha EX, 

Messidor, 

Hamilton Eye Institute 

Macular Edema Dataset 

(HEI-MED) 

DR Detection 

Trained on 

Messidor and 

tested on HEI-

MED 

𝐴𝑈𝐶 = 0.82 

Messidor 

𝐴𝑈𝐶 = 0.93 

HEI-MED 

𝐴𝑈𝐶 = 0.94 

Seoud et al. (SEOUD et 

al., 2016) 

2016 Dynamic Shape 

Features, random 

forest 

Six datasets DR Detection 

Messidor 

𝐴𝑈𝐶 = 0.899 

Source: author's own 

The second period corresponds to the wider, more recent one, which started in the 

domain of DR detection, with the use of CNN-based systems. Most of the studies use CNNs 

globally on the images without any detection of regions (ABRÀMOFF et al., 2016; GARGEYA; 

LENG, 2017; GULSHAN et al., 2016b; QUELLEC et al., 2017; TING et al., 2017), and only 

few approaches consider lesion detection before DR classification (CHUDZIK et al., 2018; 

ORLANDO et al., 2018). To that end, the retinal image is split into patches that constitute the 

input to the network. 
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In that regard, a few papers have been published on lesion detection using deep learning 

(CHUDZIK et al., 2018; ORLANDO et al., 2018). The studies that employed CNNs are 

summarized in Table 5. 

In particular, two studies are related to the present one, as they also employ patch-based 

CNN. 

Orlando et al. (ORLANDO et al., 2018) selected lesion candidates using traditional 

image processing, and used manually-designed features together with CNN features for 

classification by a random forest classifier.  

A lesion probability map is built by assembling the outputs of the classifier in the 

position of each candidate analyzed. The authors conducted several experiments, but two of 

them are more important in the context of this study: one experiment was conducted to evaluate 

the lesion localization and another to assess the DR detection capability of the proposed pipeline. 

In contrast to (ORLANDO et al., 2018), our approach is entirely based on deep learning, which 

increases the genericity concerning different datasets.  

A patch-based CNN MA detection method was developed by Chudzik et al. (CHUDZIK 

et al., 2018). They aimed to segment the regions rather precisely to detect MA. Their processing 

pipeline was simple and composed of preprocessing, patch extraction, and classification. A 24-

layer CNN was used to segment the potential lesions, and a voting method was employed to 

generate the final probability map. A Dice coefficient loss function was used to solve the 

problem of imbalanced data. Our work differs from (CHUDZIK et al., 2018) in several aspects. 

First, our goal is to localize the lesions for further DR detection instead of segmenting them, 

and this allows us to select only some patches of the image, thereby speeding up the prediction 

process. We believe that a rough segmentation is sufficient to produce a discriminant marker 

of a lesion. In addition, our approach does not require any retraining when the model is applied 

to a new dataset. The model learns to detect lesions (localization) on a given database and is 

tested in terms of DR on other databases. 

To summarize, the main contributions and novelties brought by the present study are 

the following. 

• We designed a fully automatic CNN method for lesion localization (without any 

manually-designed features), acting on patches extracted from an image that are 

ultimately used to provide a DR diagnosis.  
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• The usage of strides (subsampling of patches) accelerates the processing time by 

up to a factor of 25 as compared to other CNN methods that do not use strides. 

• During the learning stage, the sample selection method helps the final model 

focus on challenging samples, thereby increasing the performance. 

• The designed model is shown to be robust to cross-validation over different 

databases, which is promising for practical applications. 

Section 3.2.1 is devoted to a description of the databases considered in this work and a 

precise explanation of the main stages of the model. It includes a description of the CNN, 

procedure for patch labeling, challenging patches selection for the training, subsampling 

method for accelerating the lesion localization, and process of DR detection from the global 

image. In Section 3.3, we present our results by using cross-dataset validation to prove the 

robustness of our method and compare them with those from recent literature. 

Table 5 - Summary of the papers that employed deep learning for DR or lesion detection 

Authors Year Approach Databases Results 

Abràmoff et 

al. 

(ABRÀMOFF 

et al., 2016) 

2016 

Set of image-level 

convolutional neural 

networks (CNNs) followed 

by random forest 

Trained on up to 

1,250,000 images, 

manually 

annotated, 

tested on 

Messidor2 

Need for referral 

DR 

𝑆𝑒 = 0.968 

95%𝐶𝐼

= [0.933

− 0.988] 

𝑆𝑝 = 0.870 

95%𝐶𝐼

= [0.842

− 0.894] 

𝐴𝑈𝐶 = 0.980 

95%𝐶𝐼

= [0.968

− 0.992] 

2016 
An ensemble of 

InceptionV3 networks, 

Private, Eye 

Picture Archive 

Need for referral 

DR on Messidor-2 
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Authors Year Approach Databases Results 

Gulshan et al. 

(GULSHAN 

et al., 2016b) 

trained on 100,000+ 

images, multiple grades per 

image, two images per 

subject 

Communication 

System 

(EyePACS)-1, and 

Messidor-2 

𝐴𝑈𝐶 = 0.999 

95%𝐶𝐼 = 

[0.986 − 0.995] 

 

Gargeya et al. 

(GARGEYA; 

LENG, 2017) 

2017 

Small image-level CNN, 

data augmentation using 

rotation, brightness, and 

contrast, trained on 75,000+ 

images 

EyePACS-1 (train) 

and Messidor-2 

(test) 

Need for referral 

DR on Messidor-2 

𝐴𝑈𝐶 = 0.94 

𝑆𝑒 = 0.93 

𝑆𝑝 = 0.87 

Ting et al. 

(TING et al., 

2017) 

2017 

Ensembles of eight image-

level CNNs, all using an 

adaptation of the Visual 

Geometry Group 

(VGG)Net architecture 

Private dataset 

DR Screening 

𝐴𝑈𝐶 = 0.936 

95%𝐶𝐼 =

[0.925 − 0.943] 

Need for referral 

𝐴𝑈𝐶 = 0.958 

95%𝐶𝐼[0.956 −

0.961] 

Quellec et al. 

(QUELLEC et 

al., 2017) 

2017 

Image-level CNN with 

pixel-level visualization, an 

ensemble of CNNs 

Private, Kaggle, 

DIARETDB1 

Need for referral 

on Kaggle test-set 

𝐴𝑈𝐶 = 0.954 

Chudzik et al. 

(CHUDZIK et 

al., 2018) 

2018 
Patch-based CNN, dice loss 

function. 

E-Ophtha, 

DIARETDB1, and 

ROC 

FROC Curves 

Orlando et al. 

(ORLANDO 

et al., 2018) 

2018 

Classical candidate 

selection, patch-based CNN 

followed by random forest 

E-Ophtha, 

DIARETDB1, and 

Messidor 

DR Screening on 

Messidor 

𝐴𝑈𝐶 = 0.893 

𝑆𝑒 = 0.911 
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Authors Year Approach Databases Results 

with manually designed 

features added 

Need for referral 

on Messidor 

𝐴𝑈𝐶 = 0.934 

𝑆𝑒 = 0.972 

𝐴𝑈𝐶 = 0.954 

Source: author's own 

3.2 Materials and Methods 

3.2.1 Databases 

Seven datasets were used in our experiments: the Standard Diabetic Retinopathy 

Database. Calibration level 0 (DIARETDB0), Standard Diabetic Retinopathy Database. 

Calibration level 1 (DIARETDB1) (KAUPPI et al., 2007), Kaggle, Messidor (DECENCIÈRE 

et al., 2014), Messidor-2, Indian Diabetic Retinopathy Image Dataset (IDRiD) (PORWAL et 

al., 2018b), and DDR (LI et al., 2019). 

DIARETDB0 (KAUPPI et al., 2006) consists of 130 fundus images; 20 are normal, and 

110 contain signs of DR. The dataset has annotations concerning the presence of red small dots, 

hemorrhages, hard exudates, soft exudates, and neovascularization on the image level. 

DIARETDB1 (KAUPPI et al., 2007) is composed of 84 retinal images with signs of DR, 

and 5 considered normal. It contains 28 images in the training set, and 61 in the test set. The 

entire dataset was analyzed by four experts who delineated the lesions by type: soft exudates, 

hard exudates, red small dots, and hemorrhages. Five levels of lesion agreements are possible, 

0, 0.25, 0.5, 0.75, and 1, indicating how many experts labeled each pixel as a lesion. Figure 9 

shows a retinal image and its ground truths from this dataset. The different gray levels in the 

ground-truth images indicate the level of agreement. Each pixel is associated with one of 5 

values (0 means no lesion, whereas the others indicate a lesion with a certain degree of 

confidence). 

The Kaggle retinal dataset is available in a competition platform website and was 

proposed for a DR detection competition in 20152. It consists of 88,702 color fundus images, 

including 35,126 for training and 53,576 for testing. There are two images per subject, one per 

                                                 

 

2 https://www.kaggle.com/c/diabetic-retinopathy-detection/ 
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eye. An expert evaluated each image for the presence of DR with a scale of 0–4, according to 

the Early Treatment Diabetic Retinopathy Study (ETDRS) scale (WILKINSON et al., 2003). 

Figure 9 - Retinal image and its lesions ground truths 

(a) 

(b) (c) 

For each type of evaluated lesion, the Standard Diabetic Retinopathy Database Calibration Level 1 

(DIARETDB1)  provides a ground truth image composed by the superposition of each expert’s 

annotation. (a) shows retinal image and ground truths, (b) shows the hemorrhages' ground truth, and 

(c) shows the red small dots' ground truth. The brighter the dots appear, the more the experts agree. 

Source: (KAUPPI et al., 2007) 

Messidor contains only image-level labels and indicates DR presence through macular 

edema grades. It comprises 1,200 fundus images acquired from different ophthalmic institutions 

in France (DECENCIÈRE et al., 2014). There are four levels of DR in this dataset: R0, 

composed of images indicating a healthy retinal image; R1, composed of images with very mild 

signs of DR; R2, composed of images with signs of DR that require the attention of an 

ophthalmologist; and R3, composed of images indicating a proliferative DR retinal image. 
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The public Messidor-2 dataset contains 1,748 fundus images from 874 subjects in a 

region of France. Although the publishers do not provide public labels, referable DR 

annotations are available from another research group3. 

Another dataset used in this work is IDRiD, which contains 516 images annotated 

according to a DR severity level (0-4). The dataset is divided into a training (413) and test set 

(103). 

The last dataset used in the present work is the DDR dataset, acquired from 147 hospitals 

in China. It consists of 13,673 fundus images, annotated with the severity of DR as determined 

by multiple experts. The test set is composed of 4,105 images. These datasets are summarized 

in Table 6.  

In our work, DIARETDB1 was used to train the models, as it labels lesions at the pixel 

level. In that regard, all of the remaining datasets were used to validate the models for DR 

classification, as they provide DR-level annotations. When possible, a comparison with other 

approaches in the literature on the same dataset is provided. 

3.2.2 Preprocessing 

The retinal images (𝐼𝑟𝑒𝑡) are enhanced using a high-boost filter as proposed in (VAN 

GRINSVEN et al., 2016), to make the lesions more visible: 

 

 𝐼𝑒𝑛(𝜎) = 𝛼 ⋅ 𝐼𝑟𝑒𝑡 + 𝜏 ⋅ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 𝜎) ∗ 𝐼𝑟𝑒𝑡 + 𝛾. (3) 

 

Here, 𝛼 = 4, 𝜏 = −4, 𝜎 = 𝜒 30⁄ , 𝛾 = 128, 𝜒 is the width of the image, 𝐼𝑟𝑒𝑡 values are 

between 0 and 255,  and the operator ∗ represents a 2D convolution. This pre-processing tends 

to remove the background and enhance any structure with color variations such as lesions and 

blood vessels. The result of the preprocessing can be observed in Figure 10. This preprocessing 

is performed on all datasets. 

3.2.3 Model Training 

3.2.3.1 Patch labeling 

The patch-based method is inspired by Cireşan et al.’s work (CIREŞAN et al., 2013) on 

cancer detection. A patch is a 𝑝 × 𝑝 region centered on a particular pixel. 

                                                 

 

3    https://medicine.uiowa.edu/eye/abramoff 
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Table 6 - Description of the datasets used in this work 

Dataset 
Number of 

images/subjects 

No DR 

(%) 

DR at any 

level 
Camera 

Number 

of 

referees 

DIARETDB0 (KAUPPI 

et al., 2007) 
130 20 (15.4) 110 (84.6) Unknown 

not 

informed 

DIARETDB1 (KAUPPI 

et al., 2007) 
89 5 (5.6) 84 (94.4) Unknown 4 

Kaggle training set* 4 15,919 
11,583 

(73.4) 

4,186 

(26.5) 
Various 1 

Messidor 

(DECENCIÈRE et al., 

2014) 

1,200 546 (45.5) 654 (54.5) Topcon 
not 

informed 

Messidor-2* 5 874 684 (78.2) 190 (21.7) Topcon 3 

Indian Diabetic 

Retinopathy Image 

Dataset (IDRiD) test set 

(PORWAL et al., 2018a) 

103 34 (33) 69 (67) Kowa 
not 

informed 

DDR (LI et al., 2019) 4,105 
1,880 

(45.8) 

2,225 

(54.2) 
Topcon 4 

* Two images per subject      

Source: author's own 

We aim to provide a classification of each patch extracted from a given retinal image 

into two clusters: lesion or non-lesion. (We could imagine more classes, as DIARETDB1 

provides finer labeling, but we want to make the entire process as simple as possible.)  

As DIARETDB1 provides labels for several types of lesions, the first step is to combine 

the labels of the types of lesions we are interested in – hemorrhages (𝐼𝑙𝑎𝑏𝑒𝑙
ℎ𝑒𝑚 ), and red small dots 

                                                 

 

4    https://www.kaggle.com/c/diabetic-retinopathy-detection/data 

5    https://medicine.uiowa.edu/eye/abramoff 
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(𝐼𝑙𝑎𝑏𝑒𝑙
𝑟𝑠𝑑 ). To achieve that, each label image (Figure 9) is binarized by a hard threshold – any pixel 

with a label larger than zero is considered positive. Next, the union of the binarized individual 

labels is taken as the final pixel-level label: 

 𝐼𝑙𝑎𝑏𝑒𝑙 = (𝐼𝑙𝑎𝑏𝑒𝑙
ℎ𝑒𝑚 > 0) ∪ (𝐼𝑙𝑎𝑏𝑒𝑙

𝑟𝑠𝑑 > 0). (4) 

 

Figure 10 - Pre-processing illustration 

(a) (b) 

  

(a) Initial retinal image of the DIARETDB1 dataset and (b) corresponding pre-processed retinal 

image. 

Source: author’s own 

As the database is labeled at the pixel-level, we need a protocol to combine the outputs 

of the pixels in the patch, thereby producing a single output for each patch. Thus, a patch is 

considered as a lesion if any pixel in a radius of 𝑟 pixels around its center is labeled as a lesion. 

In this work, the values of 𝑝 = 65 and 𝑟 = 16 were used, considering images that are 512 

pixels wide.  

3.2.3.2 Selecting the patches for fitting the final model 

The DIARETDB1 dataset is used as the training set, and its images are divided into 

training and test sets, as proposed in the database itself. Instead of training and validating the 

model using all available patches (which would result in more than 23 million samples, 

considering that the preprocessed images are 512 × 512 and that there are 262,144 patches per 

image), a sample selection strategy was used. 
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We operate in two stages, using two different networks. First, for each image of the 

training set, all lesion pixels and the same number of random non-lesion pixels are selected to 

fit a five-layer CNN (Figure 11) called the selection model, for a small number of epochs. This 

model quickly converges, because the dataset with pre-selected patches is balanced in terms of 

lesion and non-lesion pixels. 

Figure 11 - Selection model architecture 

 

Selection model description. The input is a retinal image patch, and the output is the probability that 

the input patch contains a red lesion. 

Source: author’s own 

However, this model performs poorly. Indeed, it tends to misclassify some non-lesion 

patches, as it has not been trained with enough patches with anatomic structures, which may be 

confused with lesions. We, therefore, use this model to select more challenging non-lesion 

patches (ones that are misclassified by the selection model) for use in the final model, for 

performing the last step of transfer learning retraining. 

More precisely, we classify all patches of the training set with this selection model. Then, 

we select all lesion patches and 50,000 non-lesion patches. However, instead of choosing them 

randomly, they are chosen as follows: 

• All non-lesion patches of a retinal image are sorted according to the prediction 

error of the selection model. 

• 50,000 patches with greater prediction errors are used in the final training 

process. 

• The prediction error of each patch is used as a weight in a back-propagation 

algorithm (sample weight), to give more importance to patches that have been 

challenging the selection model (where the error was greater) (CIREŞAN et al., 

2013). 
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Using this approach, the final model will be more robust, as it is trained with samples 

that confused the selection model. 

3.2.3.3 Transfer learning 

For the final model, we used the Visual Geometry Group (VGG)16 model 

(SIMONYAN; ZISSERMAN, 2014) because of its high generalization capacity, and because 

we already have ImageNet pre-trained weights available. The model is initialized with the 

weights trained on the ImageNet dataset, and is tuned using the patches selected by the selection 

model as described earlier. 

The entire training process is patch-based, as the model is trained using a pair (𝑥𝑖 , 𝑦𝑖) 

where 𝑥𝑖 is an input patch of a retinal image, and 𝑦𝑖 is the output label of this patch (as defined 

in Section 3.2.3.1). 

The classification of a pixel is slightly different and is described in the next section. 

3.2.4 Calculation of the Lesion Probability Map 

It is well known that data augmentation improves the performance of CNNs. We 

therefore average the model's output of five rotations of the patch, as proposed by Ciresan et al. 

(CIREŞAN et al., 2013). This process is illustrated in Figure 12. 

The problem with this approach is that the segmentation of each 512 × 512 image 

would require the model to predict 1,310,720 patches, which, using a GPU GeForce GTX 

1050Ti, would take 20 minutes. A total of 16 days would be required to segment the entire 

Messidor database. 

Considering that the goal is to detect the presence of lesions rather than to provide a 

precise segmentation, we propose to use a reduced number of patches per image, by considering 

only part of the image's pixels, as illustrated in Figure 13. 

Instead of considering all pixels of the image, we select pixels spaced by 𝑆 pixels from 

each other, horizontally and vertically. In this way, the number of patches that must be analyzed 

in an image is reduced by 𝑆2. Subsequently, the resulting segmented image is resized back to 

the original dimensions, using extrapolation. 

A question that may arise is that using strides could result in missing some lesions. 

Given that i) a patch is considered as lesion if any pixel in a radius of 16 pixels around its center 

is labeled as a lesion and, ii) we propose the usage of a 5 pixels stride, even if there is a lesion 

with 1 pixel of area, which is very unlikely, it would be considered in several patches given the 

used protocol. 
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Figure 12 - Patch rotations for lesion prediction 

 

Model predicts the lesions by averaging the output for several rotations of the patch. To generate the 

rotated patches, the original image is rotated around the center pixel. 

Source: author’s own 

Figure 13 - Use of strides to speed up the segmentation process 

 

Each white square in the images represents an evaluated pixel. The output map is further re-sampled to 

the input retinal image. 

Source: author’s own 

 

When the size of the stride increases, the number of patches to be predicted decreases. 

A 512 × 512 image that initially required 1,310,720 predictions to be segmented, however 
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using stride 5, for example, would only require 52,428 predictions, taking only 48 seconds to 

be processed by the same hardware mentioned before. 

The probability map is an image with the same dimensions as the input image with pixel 

intensity values varying from 0 to 1, representing the probability of a particular pixel being a 

lesion. 

In summary, to obtain the lesion probability map from a retinal image using the trained 

model, (i) pixels are selected using strides, (ii) the model evaluates patches centered on the 

chosen pixels, (iii) the output map is resized to the original retinal image size through linear 

extrapolation. 

3.2.5 Inferring the Level of Diabetic Retinopathy (DR) from a Lesion Probability Map 

To classify a retinal image (𝐼𝑟𝑒𝑡) as indicating DR or not indicating DR, we must infer 

a single prediction value from its probability map. 

 Several approaches could be considered for this objective. For example, it would be 

possible to extract several features from the probability map generated by the model, such as 

the number of lesions, maximum value, minimum value, the average area of the lesions, and 

others and to build a new classifier to generate a class (or probability) from those features. 

As we want the system to remain generic and straightforward, we propose to represent 

the image by the maximum value of the probability map, as used in (SEOUD et al., 2016): 

 𝑃(𝑙𝑒𝑠𝑖𝑜𝑛 ∨ 𝐼𝑟𝑒𝑡) = 𝑚𝑎𝑥(𝑆(𝐼𝑟𝑒𝑡)). (5) 

Here, 𝑆(𝐼𝑟𝑒𝑡) is the red lesion probability map described above and 𝑃(𝑙𝑒𝑠𝑖𝑜𝑛 ∨ 𝐼𝑟𝑒𝑡) is 

the probability that a lesion is present in 𝐼𝑟𝑒𝑡. 

Indeed, this quantity:    

• tends to increase with the severity of DR; and 

• goes from 0 to 1 (or can be monotonically transformed to this range).         

3.2.6 Performance Indicators for Diabetic Retinopathy (DR) Detection 

The classifier's performances were described using the area under the receiver’s 

operating characteristic curve (AUC), sensitivity (Se), and specificity (Sp). 

Contrary to many authors, who present the average level of the performance indicator 

calculated over the entire dataset, we calculate the confidence intervals (CIs) using the 

following bootstrap method (DELONG; DELONG; CLARKE-PEARSON, 1988): 
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1. Given the data (𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ , (𝑥𝑛 , 𝑦𝑛),  where 𝑥𝑖  represents a retinal 

image, and 𝑦𝑖 the corresponding class (0 or 1): 

2. 𝑁𝑏𝑜𝑜𝑡 bootstrap empirical samples (𝑏∗) are created from the original data. 

3. The classifier (𝐶 ) performance indicator 𝜐𝐶  (AUC and mean squared error 

(MSE)) is calculated for each 𝑏𝑖
∗ bootstrap empirical sample. 

4. The average 𝜐𝐶
∗  ̅̅ ̅̅  is calculated for each 𝑏∗, where 𝜐𝐶

∗  is the performance indicator 

for the bootstrap sample 𝑏∗. 

5. As the bootstrap works by approximating the variation, for each bootstrap 

sample, the variation 𝛿𝐶
∗ = 𝜐𝐶

∗̅̅ ̅ − 𝜐𝐶̅̅ ̅ is calculated, where 𝜐𝐶̅̅ ̅ is calculated in the 

original sample. 

6. For a 95% confidence level, the percentiles 2.5 (𝑝.025( )) and 97.5 (𝑝.975( )) 

are taken from all 𝛿𝐶
∗. 

7. Finally, the CI for the mean of the performance indicator 𝜐𝐶 using the classifier 

𝐶 is calculated by [𝜐𝐶̅̅ ̅  − 𝑝.975(𝛿𝐶
∗̅̅ ̅), 𝜐𝐶̅̅ ̅  − 𝑝.025(𝛿𝐶

∗̅̅ ̅)]. 

This technique can also be used to conduct paired tests to compare 𝐶1 and 𝐶2 ,as follows. 

1. 𝑁𝑏𝑜𝑜𝑡 bootstrap empirical samples (𝑏∗) are created from the original data. 

2. The classifier performance indicator 𝜐𝐶𝑖
 is calculated for each 𝑏𝑖

∗  bootstrap 

empirical sample, for each classifier 𝐶1 and 𝐶2. 

3. As there is no guarantee that the distributions are normal, a one-sided Wilcoxon 

rank test is conducted with the sets 𝜐𝐶1
 and 𝜐𝐶2

 to compare the classifiers. 

As a result, the hypothesis test is accepted or rejected, and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is returned.  

We used 𝑁𝑏𝑜𝑜𝑡 = 2000. 

3.3 Experiments 

The model was trained on the DIARETDB1 database, and was tested for DR detection 

on the datasets described in Section 3.2.1. These datasets contain DR labels with different 

grades, and are also frequently used in the literature for automatic DR detection, thereby 

allowing comparison with other works. Keras framework has been used in all experiments. 
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Two experiments are proposed to assess the model’s capacity for detecting DR. As the 

first grades of DR correspond to images with a very mild level of DR that would not require 

any ophthalmic intervention, researchers have defined two different classification problems. 

1. DR screening: in this experiment, the objective is to detect any level of DR, i.e., 

to discriminate between normal images and any level of DR; this is challenging, 

as images with mild DR have very few signs of DR. 

2. DR need for referral: the goal in this problem is to separate images with a high 

level of DR, namely to cluster normal and mild DR versus all others. 

We use a stride of 5 pixels in all experiments. 

3.3.1 Experimental setup 

3.3.1.1 Training on standard diabetic retinopathy database, calibration level 1 (DIARETDB1) 

Following the method described in Section 3.2, the model was trained on the 

DIARETDB1 training set, which is composed of 28 retinal images with pixel-level annotations. 

The choice of the patch size was made empirically, by observing the lesions of the 

training set. The patch should be large enough to contain the largest lesions (such as 

hemorrhages), but not too large; otherwise, the small lesions would occupy a very small area 

of the patch. Given that 80% of the hemorrhages have a size smaller than 52 pixels and 80% of 

the red small dots have a size smaller than 22 pixels, we used patches of a size 𝑝 = 65 pixels, 

and a radius 𝑟 = 16 pixels. 

The selection model is a deep convolution network (LECUN et al., 1989). The details 

of the different layers are given in Figure 11 on page 65. The model was trained for 50 epochs 

with 25,920 lesion patches, and with the same number of random non-lesion patches. Both sets 

of patches were augmented by random rotations between 0 and 360 degrees, and with horizontal 

and vertical flips. This model is used to select the 50,000 most challenging non-lesion patches 

that will be used in the second stage, i.e., the ones leading to higher error. 

In the second stage, a model is built based on the VGG16 architecture (SIMONYAN; 

ZISSERMAN, 2014), where the last layers are replaced by three dense layers of size 512, 256, 

and 2, respectively. The model’s weights were initialized through the training of the network 

for another task (object detection on ImageNet dataset) and were tuned using the DIARETDB1 

training set for 1,000 epochs and using the stochastic gradient descent (SGD) algorithm with 

batches of 128 patches.  
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In the experiments, we used an initial learning rate of 0.01, with a momentum of 0.9. 

We implemented early stopping after 15 epochs without improvement on the MSE loss, 

together with a learning rate reduction by a factor of 0.5 after ten epochs without improvement 

on the validation set (20% randomly-selected patches out of the training set). 

3.3.1.2 Tests on DIARETDB1 

The DIARETDB1 test set was used to test the model’s ability to detect red lesions. In 

Section 3.2.3.1, we saw that labeling the lesion requires the choice of a threshold. We selected 

a threshold that maximized the 𝑓1 score, which is the harmonic average between recall and 

precision ( 𝑓1 = 2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)⁄ ). The selected threshold was 

0.39. 

Next, the bootstrap method was applied to calculate the distribution and CIs for recall, 

precision, and 𝑓1 score on the entire test set of DIARETDB1. 

3.3.1.3 Tests on standard diabetic retinopathy database, calibration level 0 (DIARETDB0) 

DIARETDB0 has only binary annotations on the presence of lesions. To use it for DR 

detection, a simple protocol was used: images containing labels for red small dots or 

hemorrhages were considered as indicating DR. Therefore, the only experiment tested on this 

dataset is the DR screening experiment. 

3.3.1.4 Tests on Messidor 

Messidor has been extensively used in the literature to evaluate DR detection 

approaches. As already described, the images are graded with DR levels from R0 (no DR) to 

R3. The experiments are designed in the following way: 

1- DR screening: {R0} versus {R1, R2, R3}; and  

2- DR need for referral: {R0, R1} versus {R2, R3}. 

3.3.1.5 Tests on Indian diabetic retinopathy image dataset (IDRiD) 

The IDRiD dataset separates images in groups ranging from 0 (no apparent DR) to 4 

(severe DR), according to the International Clinical Diabetic Retinopathy Scale (WU et al., 

2013). In the experiments, we divided the dataset into {0} versus {1,2,3,4} in the DR screening 

experiment, and {0,1} versus {2,3,4} in the DR need for referral experiment. Even if this 
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database provides training and test sets, we decided to use only the test set for comparison with 

other works. 

3.3.1.6 Tests on DDR 

The DDR dataset uses the DR grades from the International Classification of DR 

(INTERNATIONAL COUNCIL OF OPHTHALMOLOGY (ICO), 2017) (from 0 to 4), and a 

specific label for poor-quality images. Those poor-quality images were discarded from the 

analysis. We divided the dataset using the same groups as with the IDRiD dataset and tested 

our model on the test set only. 

3.3.1.7 Tests on Kaggle 

The Kaggle dataset uses the same grades as IDRiD, with the difference being that 

Kaggle contains two images per subject, i.e., one per eye. We made use of this extra information 

and carried out the two experiments described above using per-subject analysis as in other 

datasets. For each subject, we obtained two prediction values, and the maximum one was 

selected for classification. As the Kaggle dataset was proposed in a competition context, it only 

provides grades for the training set. For this reason, we applied our approach on the training set 

only. 

3.3.1.8 Tests on Messidor-2 

The Messidor-2 dataset also has two images per subject, and the same protocol as in 

Section 3.3.1.7 was employed. Only two grade levels are available for this dataset6: referable 

subjects, and non-referable subjects. For that reason, only the DR need for referral experiment 

is applied to this dataset. 

3.3.1.9 Testing the effects of image quality in diabetic retinopathy detection 

In order to assess the effect of image quality in the proposed DR detection method, we 

set up an experiment which included in the front end our quality assessment method. We 

propose a simple experiment: remove the bad quality images from the dataset and compare the 

results with all images. 

The experiment is composed by the following steps: 

1. The DR classes distributions of the entire dataset is observed; 

                                                 

 

6    https://medicine.uiowa.edu/eye/abramoff 
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2. All images from the dataset are classified by our quality assessment method and 

poor-quality images are removed; 

3. The DR detection metrics are calculated using the same bootstrap method 

described in section 3.2.6 with the difference that the bootstrap samples are taken 

following the same class distributions found in item 1 for the sake of comparison. 

Table 7 indicates the number of images versus DR level classified by our method 

as of poor quality.  

Table 7 - Distribution of poor-quality images per dataset 

Dataset DR level 
Number of 

images 

Number of 

poor-quality 

images 

% of poor-

quality 

images in 

that DR 

level 

Messidor 

0 546 34 6.23% 

1 254 7 2.76% 

2 247 19 7.69% 

3 153 34 22.22% 

Kaggle 

0 20684 2024 9.79% 

1 1927 110 5.71% 

2 4242 702 16.55% 

3 727 141 19.39% 

4 556 277 49.82% 
Source: author's own 

The objective of this experiment is to test the hypothesis that discarding poor-quality 

images improves the DR detection performance. 

3.3.2 Experimental Results 

In the state of the art, most of the works that apply deep learning for DR detection use 

hundreds of thousands of images to train the model, meaning a huge burden for the experts to 

label the images accordingly. As a difference from those works, our model was trained using 

only 28 images from the DIARETDB1 dataset, with pixel-level annotations. 

The results for these datasets are shown in Table 8 for the DR screening experiment, 

and in Table 9 for the DR need for referral experiment. The results are presented in terms of 

AUC and Se at a fixed Sp of 50%, as performed by other authors (ORLANDO et al., 2018; 

SÁNCHEZ et al., 2011; SEOUD et al., 2016). The metrics distributions can be seen in Figure 

14. From Table 8, we observe that our model provides a Se superior to 80% in all databases. 
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Given that the international guidelines recommend a Se ranging from 60% to 80% for DR 

screening (CHAKRABARTI; HARPER; KEEFFE, 2012; ROYAL COLLEGE OF 

OPTHALMOLOGY, 2019), our results suggest that our approach can be used in a real scenario 

for DR screening, with the ability to significantly reduce the burden on experts in triage 

programs. 

Table 8 - Results for the DR screening experiment on several datasets 

DR screening 

Dataset AUC (95% CI) Se (95% CI) (𝑺𝒑 = 𝟓𝟎%) 

Messidor .912 (.897–.928) .940 (.921–.959) 

Kaggle* .764 (.756–.773) .911 (.800–.823) 

IDRiD .818 (.742–.898) .841 (.753–.948) 

DDR .848 (.836–.861) .891 (.875–.908) 

DIARETDB0 .786 (.713–.875) .821 (.743–.969) 

* Per subject evaluation 

Source: author's own 

Table 9 - Results for the DR need for referral experiments on several datasets 

DR need for referral 

Dataset AUC (95% CI) Se (95% CI) (𝑺𝒑 = 𝟓𝟎%) 

Messidor .936 (.921–.950) .976 (.964–.992) 

Kaggle* .821 (.812–.829) .881 (.869–.891) 

IDRiD .796 (.715–.892) .859 (.776–.982) 

DDR .833 (.819–.846) .885 (.869–.903) 

Messidor-2* .944 (.927–.965) .984 (.968–1.00) 

* Per subject evaluation 

Source: author's own 

 

From Figure 14, we observe rather small CIs for all databases, except IDRiD and 

DIARETDB0. This is owing to their small number of test images, as described in Table 6 on 

page 63.  
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Figure 14 - Distributions of area under the receiver’s operating characteristic curve (AUC) 

and sensitivity for both experiments on several datasets 

 

 

Source: author's own 

3.3.3 Comparison with Other Works 

To compare our approach with other works, two datasets were employed: Messidor, and 

Messidor-2. We essentially considered works that tested their results on Messidor or Messidor-

2 datasets while training their models on a different dataset (cross-dataset validation), as it 
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corresponds to our protocol. We also considered the performance of 2 experts. The results are 

shown in Table 10. 

For both experiments on the Messidor dataset, our method resulted in AUC and Se 

values comparable or superior to those in the state-of-the-art, and even to specialists, indicating 

that our patch-based CNN approach can be successfully employed both to detect DR and to 

localize its signs. 

We infer that this level of success is owing to several factors. First, the patch selection 

approach tends to reduce the number of false positives of the classifier, because it enhances the 

importance of challenging samples. 

Second, when compared to Orlando's method (ORLANDO et al., 2018), we note the 

superiority of learning characteristics adapted to the classification task (rather than using hand-

crafted ones), which is also the conclusion of other works regarding medical images. 

In this study, we used a single database (DIARETDB1) for localizing the lesion. A 

question may arise whether using another database would improve the generalization ability, 

by increasing the diversity of lesion appearance.  

However, a careful analysis of the few datasets which present lesion annotations led us 

not to pursue this direction. Indeed, the Retinopathy Online Challenge (ROC) dataset 

(NIEMEIJER et al., 2010) labels are not entirely trustworthy, because they result from the union 

of four specialists’ annotations (and not in a grade, as done in DIABRETDB1). From the results 

of specialists (SÁNCHEZ et al., 2011), it is reasonable to affirm that because they make 

mistakes such as confusing artifacts with lesions, for example, and using the union of several 

specialists’ annotations tends to increase the number of false-positive labels, leading a model 

to learn incorrect features. 

Another possible public dataset is e-ophta (DECENCIÈRE et al., 2013), but we did not 

use it because it does not provide hemorrhage labels, which are important markers of DR.  

Finally, it seems that the choice of using only the DIARETDB1 dataset for learning was 

sufficient to ensure a good generalization ability with fast network convergence. 

The appropriate statistical method to make a proper comparison between classifiers is a 

paired test (STAPOR, 2018). Understandably, making a paired test is not always possible, 

because the results from other approaches must be available. We could do this only with 

Orlando’s et al. model (ORLANDO et al., 2018), as they kindly provided their results for all 

images of the Messidor database. 
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Table 10 - Comparison of DR screening and need for referral using the Messidor dataset 

Method DR screening DR need for referral 

 
AUC  

(95% CI) 

Se  

(95% CI) 

AUC  

(95% CI) 

Se 

(95% CI) 

Experts     

Expert A (SÁNCHEZ 

et al., 2011) 

.922 

(.902–.936) 
.945 .940 .982 

Expert B (SÁNCHEZ 

et al., 2011) 

.865 

(.789–.925) 
.912 .920 .976 

Classical image processing     

Sánchez, et al. 

(SÁNCHEZ et al., 

2011) 

.876 

(.856–.895) 
.922 .91 .944 

Rocha, et al.a 

(ROCHA et al., 2012) 
- - .862 - 

Giancardo, et al. 

(GIANCARDO et al., 

2013) 

.854 - - - 

Zhang, et al. 

(ZHANG et al., 2014) 
- - .930 - 

Seoud, et al. (SEOUD 

et al., 2016) 
.899 .939 .916 .962 

Deep learning     

Orlando, et al. 

(ORLANDO et al., 

2018) 

.893 

(.875–.912) 

.916 

(.894-.943) 

.935 

(.920–.950) 

.974 (.964-

1.00) 

This work 
.912 

(.897–.928) 

.940 

(.921-.959) 

.936 

(.921–.950) 

.976 

(.964-.992) 
a {R0} versus {R3}.     
b Does not use dataset cross-validation   

Source: author's own 

As the distributions of the result metrics are not normal, a Wilcoxon rank-sum test was 

applied to the results of both classifiers on the bootstrap sample, and the results can be seen in 

Figure 14. 

Concerning the DR screening experiment, which is the most challenging one, the 

Wilcoxon rank test (WILCOXON, 1945) for AUC indicated that our approach resulted in an 

AUC similar to that of Orlando et al. (ORLANDO et al., 2018) (𝑝 > 0.05) and a Se value 

greater than Orlando et al. ( 𝑝 ≪ 0.01 ). This is probably because of the patch selection 

procedure that we used for the final training.  
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Table 11 - Comparison of referable DR detection using the Messidor-2 dataset. Our approach 

is the only one that employs a patch-based CNN 

Method AUC (95% CI) Se (95% CI) Sp (95% CI) 
Number of 

training images 

Abràmoff, et al. 

(ABRÀMOFF et al., 2016) 
.980 (.968–.992) .968 (.933–.988) .870 (.842–.894) 

1,250,000 

Gulshan, et al. 

(GULSHAN et al., 2016a) 
.990 (.986–.995) .961 (.924–.983) .939 (.924–.953) 

128,175 

Gargeya, et al. 

(GARGEYA; LENG, 

2017) 

.940 .930 .87 

75,137 

This work .944 (.925–.966) .900 (.860–.961) .87 (.863–.871) 28 

Source: author's own 

In the Messidor-2 dataset, our approach resulted in an AUC value of 0.944 (95% CI: 

0.925 − 0.966) and an Se value of 0.900 (95% CI: 0.860 − 0.961) for a fixed Sp of 87%, as 

shown in Table 11. This fixed Sp point was chosen to compare our work with that of Gargeya 

et al. (GARGEYA; LENG, 2017). Our results are comparable to Gargeya et al. (GARGEYA; 

LENG, 2017), with a lighter training phase. Abramoff et al. (ABRÀMOFF et al., 2016) trained 

with many more images (1.25 million images against 28 images in our training set), but their 

results in terms of Se and Sp are comparable to ours. In contrast, Gulshan et al. (GULSHAN et 

al., 2016a) employed both a larger training set (128,175 images) and a different labeling 

protocol, which in turn produced better results in the Messidor-2 dataset.   

Indeed, the work of Gulshan et al. explained through a performance curve that when 

taking only the annotations of two ophthalmologists, as we did, their performance drops by 

approximately 30% in terms of Se, which is smaller than ours. 

From Table 6 on page 63, we can observe that one of the advantages of the patch-based 

approach is that it allows for training of the CNN with only a few images with pixel-level 

annotations. Therefore, for DR classification, we obtain results similar to those of other works 

that require a massive number of graded images. 

Apart from DR detection, our approach also performs lesion localization. We, therefore, 

designed another experiment on the DIARETDB1 test set to evaluate the performance of our 

lesion localization. The results are presented in Figure 15. We observe that the recall is 

relatively low. However, because of the redundancy of lesions (there is generally more than one 

lesion per image), the DR screening results are good, as shown in Figure 15. 
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Figure 15 - Performance metric of the lesion detection in the DIARETDB1 test set 

 

Source: author's own 

Figure 16 shows a qualitative result of lesion localization on an image from the Messidor 

database, i.e., a false-positive (left) detection, and a true-positive (right) detection, as obtained 

by our model.  

We can observe that the localization of red lesions produced by the system can be useful 

for specialists to focus their attention on a limited region of the image, thereby reducing the 

burden of evaluating the retinal image globally. Apart from using the complete model for DR 

detection, the system can also be used for potential lesion detection. In that case, a lower 

threshold can be used to increase the model's recall of image regions that might contain signs 

of DR. 

It is important to emphasize that manual image assessment is a difficult task even for 

experts, as it depends on small lesion localization in retinal images. 

3.3.3.1 The effect of image quality in diabetic retinopathy detection 

The two most commonly used public retinal images datasets with DR labels have been 

chosen to be used in this experiment: Messidor and Kaggle. 
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As expected, using only good-quality images improves the performance of the DR 

detection method as shown in Figure 17. In order to confirm through a statistical method that 

using only good-quality images improves the DR detection, a two-sample Z test has been 

applied resulting in 𝑝𝑣𝑎𝑙𝑢𝑒 ≪ 0.001 for both Messidor and Kaggle datasets. 

 

Figure 16 - Qualitative results of the red lesion localization 

(a) (b) 

Both images are composed of the original retinal image with the output of our approach superimposed 

and the localized lesions highlighted. The regions delimited by red squares are shown in detail at the 

right side of the retinal image. Figure (a) shows a false-positive example, which is an intersection 

between blood vessels and (b) three true-positive examples. 

Source: author’s own 

Although significantly different distributions have been found, the DR detection method 

might have some robustness to poor-quality images because it works on patches – a poor-quality 

image might have some regions with good quality – and also because the model has been trained 

without removing the poor-quality images from the dataset. 

This way, the methods based on classical image processing might be more benefited 

from the removal of poor-quality images. 

3.4 Conclusion 

The present study is devoted to the early detection of DR in retinal images using a CNN 

deep network approach. In contrast to many authors who use CNN globally on the pixels of the 

image to produce a label, our model deals with patches and can localize potential regions of 

lesions, providing a powerful tool for a specialist in retinal red lesion detection, and leading to 

further DR detection. 
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Figure 17 - Area under the curve (auc) distribution for diabetic retinopathy detection 

concerning the removal of poor-quality images 

 
(a) 

 
(b) 

Area under the curve (auc) distribution comparison for (a) Messidor and (b) Kaggle datasets using all 

images and only good quality images. 

Source: author’s own 
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Our main concern was to reduce the complexity of the model, while improving its 

performance. To this end, we designed an efficient procedure for selecting training patches, so 

that challenging examples would be given special attention during the training process. 

Moreover, as our aim was a crude localization of the regions rather than their precise 

segmentation, we under-sampled the images, leading to a drastic reduction in the processing 

time of generalization, which is important in a real application scenario. 

The classification decision is based on a probability map indicating the level of DR of 

each pixel. We used a simple procedure to deduce a label function for the complete image, with 

the advantage of not requesting any retraining step. More precisely, our approach separates the 

phase of lesion localization (learned by a CNN) and DR labeling as a direct outcome of the 

outputs of the CNN. In this way, our model can be used immediately on any database, without 

any further adaptation. 

Extensive experiments on several databases have shown that our approach outperforms 

other models tested under the same experimental conditions, namely, in a cross-validation 

context where the test and training databases are different. 

Moreover, in contrast to the state-of-the-art, training our model requires only a small 

number of images, which is of high value considering the burden of labeling large quantities of 

images. 

We also showed that removing the poor-quality images might improve the performance 

of the proposed DR detection pipeline. 

Future research could investigate building separate models for each type of lesion such 

as MAs, hemorrhages, and even bright lesions such as exudates. This would allow other 

databases to be used, such as e-ophta or DDR, and would allow us to make use of their large 

number of images. Another direction would be to consider other types of data (such as clinical 

data) to complement the data image to improve the recognition performance, rather than using 

costly specialist labeling. 
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4 FINAL CONCLUSIONS AND FUTURE WORKS 

In this thesis two issues involving retinal image processing have been studied. The first 

one is the quality assessment of retinal images and the second is the localization of red lesions 

which leads to DR detection. 

We used transfer learning on a deep neural network to assess quality of retinal images. 

This allowed a reduction of the images needed to train the model and reduced the time spent on 

this phase. Two limitations of this part of the work are the small number of public datasets with 

quality labels and the small number of poor-quality images in those datasets. However, cross-

dataset validation showed that the model developed is generic enough to be applied on images 

from different devices, which is very important since mobile retinal cameras are becoming more 

popular. 

Next, we proposed a patch-base lesion localization model in order to detect images with 

DR. Different from many other approaches that work on the image level, we decided to work 

at the pixel level providing a powerful tool for the specialist of retinal red lesion detection, 

leading to further DR detection. As our main goal was to provide a crude localization of the 

lesions rather than precisely segment them, it allowed us to greatly reduce the computational 

cost by under-sampling the evaluated patches while preserving the both the lesion localization, 

which is important for the specialist and the DR detection capability, important for usage in 

triage of DR patients. To ensure that our model was not dataset dependent we employed dataset 

cross-validation using several datasets and results similar to the state-of-the-art approaches was 

found. One of the advantages of our approach is the reduced number of labelled images needed 

in the training phase. While other approaches have been trained with hundreds of thousands of 

even more than a million images, our model has been trained using only 28 retinal images. 

Therefore, we have confirmed our hypothesis through experiments that it is possible to 

propose a pipeline based on quality assessment and red lesion localization to achieve automatic 

DR detection with performance similar to experts considering that a rough segmentation is 

sufficient to produce a discriminant marker of a lesion have been confirmed. 
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4.1 Perspectives 

Several works showed that DR detection models have performance similar to medical 

experts. An ensemble of models can be used to annotate retinal images datasets that don’t 

possess proper DR labels such as UK-Biobank and ELSA-Brasil. 

Both datasets mentioned above have retinal images of the same patients taken in 

different times which allows to evaluate the disease development though the analyses of the 

retinal lesions and other clinical data as well, allowing to investigate the factors that influence 

in the development of DR. 

A recent work proposed the use of  Generative Adversarial Networks (GAN) models to 

synthetize retinal images (COSTA et al., 2018). Different from other GAN models, their 

approach uses the blood vessels map as input in order to create a new retinal image from it. One 

of the problems is that for each blood vessels map a single image is created since there is no 

random variable as input as done in other GAN models. 

Adding stochasticity, i.e., allowing the model to create different images from the same 

blood vessels map, would greatly enhance the model`s usage to create big synthetic retinal 

images datasets. 

Another improvement would be to insert not only the blood vessels map as input but 

also lesions maps (of several types of lesions) allowing the model to create retinas with and 

without lesions. With that, models with much greater capacity would be able to be trained 

without manual annotations from the experts. 

4.2 Published works 

The publications resulting from this research, in chronological order, are listed below: 

1. ZAGO, Gabriel Tozatto e colab. Retinal image quality assessment using deep 

learning. Computers in Biology and Medicine, v. 103, n. September, p. 64–

70, Dez 2018. 

2. ZAGO, Gabriel Tozatto e colab. Diabetic retinopathy detection using red 

lesion localization and convolutional neural networks. Computers in Biology 

and Medicine, v. 116, p. 103537, 1 Jan 2020. 
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