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Titre : Méthodes robustes dans le séries chronologiques multivariées

Mots clés : Séries chronologiques multivariées, robustesse, valeurs aberrantes, domaine temporel, domaine
fréquentiel.

Résumé :
Ce manuscrit propose de nouvelles méthodes d’esti-
mation robustes pour les fonctions matricielles d’au-
tocovariance et d’autocorrélation de séries chronolo-
giques multivariées stationnaires pouvant présenter
des valeurs aberrantes aléatoires additives. Ces
fonctions jouent un rôle important dans l’identifica-
tion et l’estimation des paramètres de modèles de
séries chronologiques multivariées stationnaires. Les
données aberrantes aléatoires peuvent impacter le
niveau d’une ou plusieurs composantes du vecteur
multivarié. Ceci augmente la variabilité globale de
la série, ce qui a un impact sur le périodogramme
matriciel et conduit à une diminution des valeurs
de la fonction matricielle d’autocorrélation. Nous
proposons tout d’abord de nouveaux estimateurs
des fonctions matricielles d’autocovariance et d’auto-
corrélation construits en utilisant une approche spec-
trale à l’aide du périodogramme matriciel qui est l’es-
timateur naturel de la densité spectrale matricielle.
Comme dans le cas des estimateurs classiques des
fonctions d’autocovariance et d’autocorrélation ma-
tricielles, ces estimateurs sont affectés par des ob-
servations aberrantes. Ainsi, toute procédure d’iden-
tification ou d’estimation les utilisant est directe-
ment affectée, ce qui entraı̂ne des conclusions er-
ronées. Pour atténuer ce problème, nous proposons
l’utilisation de techniques statistiques robustes pour
créer des estimateurs résistants aux observations
aléatoires aberrantes.
Dans un premier temps, nous proposons de nou-
veaux estimateurs des fonctions d’autocorvariance
et d’autocorrélation de séries chronologiques uni-
variées. Les domaines temporel et fréquentiel sont
liés par la relation existant entre la fonction d’autoco-
variance et la densité spectrale. Le périodogramme
étant sensible aux données aberrantes, nous obte-
nons un estimateur robuste en le remplaçant par
le M -périodogramme. Le M -périodogramme est ob-
tenu en remplaçant dans le calcul des estimations
des coefficients de Fourier liés au périodogramme,
la régression standard des moindres carrés par la
M -régression robuste. Les propriétés asymptotiques
des estimateurs sont établies. Leurs performances
sont étudiées au moyen de simulations numériques
pour différentes tailles d’échantillons et différents
scénarios de contamination. Les résultats empiriques
indiquent que les méthodes proposées fournissent
des valeurs proches de celles obtenues par la fonc-
tion d’autocorrélation classique quand les données

ne sont pas contaminées et resistent à différent
scénarios de contamination. Ainsi, les estimateurs
proposés dans cette thèse sont des méthodes al-
ternatives utilisables pour des séries chronologiques
présentant ou non des valeurs aberrantes.
Les estimateurs obtenus pour des séries chronolo-
giques univariées sont ensuite étendus au cas de
séries multivariées. Cette extension est simplifiée
par le fait que le calcul du périodogramme croisé
ne fait intervenir que les coefficients de Fourier
de chaque composante de la série. De nouveau,
la relation de dualité entre les domaines tempo-
rel et fréquentiel est utilisée via le lien entre la
fonction matricielle d’autocovariance et la densité
spectrale matricielle d’une série chronologique mul-
tivariée stationnaire. Le M -périodogramme matriciel
apparaı̂t alors comme une alternative robuste au
périodogramme matriciel pour construire des estima-
teurs robustes des fonctions matricielles d’autocova-
riance et d’autocorrélation. Les propriétés asympto-
tiques sont étudiées et des expériences numériques
sont réalisées. Comme exemple d’application avec
des données réelles, nous utilisons les fonctions pro-
posées pour ajuster un modèle autoregressif par la
méthode de Yule-Walker à des données de pollution
collectées dans la région de Vitória au Brésil (parti-
cules de diamètre inférieur à 10 micromètres, PM10).
Enfin, l’estimation robuste du nombre de facteurs
dans les modèles factoriels de grande dimension est
considérée afin de réduire la dimensionnalité. Il est
bien connu que les valeurs aberrantes aléatoires af-
fectent les matrices de covariance et de corrélation et
que les techniques qui dépendent du calcul de leurs
valeurs propres et vecteurs propres, telles que l’ana-
lyse en composantes principales et l’analyse facto-
rielle, sont affectées. Ainsi, en présence de valeurs
aberrantes, les critères d’information proposés par
Bai & Ng (2002) tendent à surestimer le nombre de
facteurs. Pour atténuer ce problème, nous proposons
de remplacer la matrice de covariance standard par
la matrice de covariance robuste proposée dans ce
manuscrit. Nos simulations de Monte Carlo montrent
qu’en l’absence de contamination, les méthodes stan-
dards et robustes sont équivalentes. En présence
d’observations aberrantes, le nombre de facteurs es-
timés augmente avec les méthodes non robustes
alors qu’il reste le même en utilisant les méthodes ro-
bustes. À titre d’application avec des données réelles,
nous étudions des concentrations de polluant PM10

mesurées dans la région de l’Île-de-France en France.



Title : Robust methods in multivariate time series

Keywords : Multivariate time series, robustness, outliers, time domain, frequency domain.

Abstract :
This manuscript proposes new robust estimation me-
thods for the autocovariance and autocorrelation ma-
trices functions of stationary multivariates time se-
ries that may have random additives outliers. These
functions play an important role in the identification
and estimation of time series model parameters. Ran-
dom additive outliers can impact the level of one or
more components of the multivariate vector. This in-
creases the overall variability of the series, which has
an impact on the periodogram matrix and leads to
a decrease in the values of the autocorrelation ma-
trix function. We first propose new estimators of the
autocovariance and of autocorrelation matrices func-
tions constructed using a spectral approach conside-
ring the periodogram matrix periodogram which is the
natural estimator of the spectral density matrix. As in
the case of the classic autocovariance and autocor-
relation matrices functions estimators, these estima-
tors are affected by aberrant observations. Thus, any
identification or estimation procedure using them is di-
rectly affected, which leads to erroneous conclusions.
To mitigate this problem, we propose the use of robust
statistical techniques to create estimators resistant to
aberrant random observations.
As a first step, we propose new estimators of auto-
covariance and autocorrelation functions of univariate
time series. The time and frequency domains are lin-
ked by the relationship between the autocovariance
function and the spectral density. As the periodogram
is sensitive to aberrant data, we get a robust esti-
mator by replacing it with the M -periodogram. The
M -periodogram is obtained by replacing the Fourier
coefficients related to periodogram calculated by the
standard least squares regression with the ones cal-
culated by the M -robust regression. The asymptotic
properties of estimators are established. Their perfor-
mances are studied by means of numerical simula-
tions for different sample sizes and different scena-
rios of contamination. The empirical results indicate
that the proposed methods provide close values of
those obtained by the classical autocorrelation func-
tion when the data is not contaminated and it is re-
sistant to different contamination scenarios. Thus, the

estimators proposed in this thesis are alternative me-
thods that can be used for time series with or without
outliers.
The estimators obtained for univariate time series are
then extended to the case of multivariate series. This
extension is simplified by the fact that the calculation
of the cross-periodogram only involves the Fourier co-
efficients of each component from the univariate se-
ries. Again, the duality relationship between time and
frequency domains is considered via the link between
the autocovariance matrix function and the spectral
density matrix stationary multivariate time series. The
M -periodogram matrix is a robust periodogram matrix
alternative to build robust estimators of the autoco-
variance and autocorrelation matrices functions. The
asymptotic properties are studied and numerical ex-
periments are performed. As an example of an appli-
cation with real data, we use the proposed functions
to adjust an autoregressive model by the Yule-Walker
method to Pollution data collected in the Vitória re-
gion Brazil (particles smaller than 10 micrometers in
diameter, PM10).
Finally, the robust estimation of the number of fac-
tors in large factorial models is considered in order
to reduce the dimensionality. It is well known that the
values random additive outliers affect the covariance
and correlation matrices and the techniques that de-
pend on the calculation of their eigenvalues and ei-
genvectors, such as the analysis principal compo-
nents and the factor analysis, are affected. Thus, in
the presence of outliers, the information criteria pro-
posed by Bai & Ng (2002) tend to overestimate the
number of factors. To alleviate this problem, we pro-
poseto replace the standard covariance matrix with
the robust covariance matrix proposed in this manus-
cript. Our Monte Carlo simulations show that, in the
absence of contamination, the standard and robust
methods are equivalent. In the presence of outliers,
the number of estimated factors increases with the
non-robust methods while it remains the same using
robust methods. As an application with real data, we
study pollutant concentrations PM10 measured in the
Île-de-France region of France.



Tı́tulo : Métodos robustos em séries temporais multivariadas

Palavras-Chave : Séries temporais multivariadas, robustez, observações discrepantes, domı́nio do tempo,
domı́nio da frequência.

Resumo :
Este manuscrito é centrado em propor novos
métodos de estimação das funções de autoco-
variância e autocorrelação matriciais de séries
temporais multivariadas com e sem presença de
observações discrepantes aleatórias. As funções
de autocovariância e autocorrelação matriciais de-
sempenham um papel importante na análise e na
estimação dos parâmetros de modelos de série
temporal multivariadas. Primeiramente, nós propo-
mos novos estimadores dessas funções matriciais
construı́das, considerando a abordagem do domı́nio
da frequência por meio do periodograma matricial,
um estimador natural da matriz de densidade es-
pectral. Como no caso dos estimadores tradicionais
das funções de autocovariância e autocorrelação ma-
triciais, os nossos estimadores também são afeta-
dos pelas observações discrepantes. Assim, qual-
quer análise subsequente que os utilize é diretamente
afetada causando conclusões equivocadas. Para mi-
tigar esse problema, nós propomos a utilização de
técnicas de estatı́stica robusta para a criação de es-
timadores resistentes às observações discrepantes
aleatórias.
Inicialmente, nós propomos novos estimadores das
funções de autocovariância e autocorrelação de
séries temporais univariadas considerando a conexão
entre o domı́nio do tempo e da frequência por meio
da relação entre a função de autocovariância e a
densidade espectral, do qual o periodograma tra-
dicional é o estimador natural. Esse estimador é
sensı́vel às observações discrepantes. Assim, a ro-
bustez é atingida considerando a utilização do M -
periodograma. O M -periodograma é obtido substi-
tuindo a regressão por mı́nimos quadrados com a
M -regressão no cálculo das estimativas dos coefi-
cientes de Fourier relacionados ao periodograma. As
propriedades assintóticas dos estimadores são esta-
belecidas. Para diferentes tamanhos de amostras e
cenários de contaminação, a performance dos esti-
madores é investigada. Os resultados empı́ricos in-
dicam que os métodos propostos provem resultados
acurados. Isto é, os métodos propostos obtêm va-
lores próximos aos da função de autocorrelação tra-
dicional no contexto de não contaminação dos da-
dos. Quando há contaminação, os M -estimadores
permanecem inalterados. Deste modo, as funções de
M -autocovariância e de M -autocorrelação propostas
nesta tese são alternativas viáveis para séries tempo-

rais com e sem observações discrepantes.
A boa performance dos estimadores para o cenário
de séries temporais univariadas motivou a extensão
para o contexto de séries temporais multivariadas.
Essa extensão é direta, haja vista que somente os co-
eficientes de Fourier relativos à cada uma das séries
univariadas são necessários para o cálculo do per-
iodograma cruzado. Novamente, a relação de dua-
lidade entre o domı́nio da frequência e do tempo
é explorada por meio da conexão entre a função
matricial de autocovariância e a matriz de densi-
dade espectral de séries temporais multivariadas. É
neste sentido que, o presente artigo propõe a ma-
triz M -periodograma como um substituto robusto à
matriz periodograma tradicional na criação de esti-
madores das funções matriciais de autocovariância
e autocorrelação. As propriedades assintóticas são
estudas e experimentos numéricos são realizados.
Como exemplo de aplicação à dados reais, nós apli-
camos as funções propostas no artigo na estimação
dos parâmetros do modelo de série temporal multiva-
riada pelo método de Yule-Walker para a modelagem
dos dados MP10 da região de Vitória/Brasil.
Finalmente, a estimação robusta dos números de fa-
tores em modelos fatoriais aproximados de alta di-
mensão é considerada com o objetivo de reduzir a
dimensionalidade. É sabido que dados discrepantes
afetam as matrizes de covariância e correlação. Em
adição, técnicas que dependem do cálculo dos au-
tovalores e autovetores dessas matrizes, como a
análise de componentes principais e a análise fatorial,
são completamente afetadas. Assim, na presença de
observações discrepantes, o critério de informação
proposto por Bai & Ng (2002) tende a super-
estimar o número de fatores. De forma a resol-
ver esse problema, nós propomos substituir a ma-
triz de covariância amostral usual pela matriz M -
covariância robusta proposta no segundo artigo. Nos-
sas simulações de Monte Carlo mostram, como es-
perado, que dentro do cenário de não contaminação,
os métodos usuais e robustos são equivalentes. Já
na presença de observações discrepantes o número
estimado de fatores obtidos considerando os autova-
lores e autovetores da matriz de covariância usual au-
menta, enquanto ao se utilizar os autovalores e au-
tovetores da matriz M -covariância estima-se correta-
mente o verdadeiro número de fatores. Em um pro-
blema real, são considerados os dados de MP10 da
região de Ilê-de-France/França.
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Chapter 1

Introduction

1 General Introduction

Environmental and climate change impact our lives and the air pollution is one of the biggest
health-threatening problems faced by many countries across the globe. The effects of air pollu-
tion on human beings are widely investigated and statistical models have been heavily employed
in order to establish the association between air pollution levels, meteorological variables, and
acute health effects. At this point, air pollutants are usually monitored and recorded over time
at multiple sites of interest. Therefore, they may be viewed as a multivariate time series. Due to
the nature of air pollution phenomenon, air pollution time series are complex to analyze. Thus,
models which adequately describe the physical behavior of the pollution variables are essential
for accurately modeling and forecasting the data.

One common issue present in air pollution time series data is the occurrence of high levels of
pollutant concentrations influenced by external events that can cause changes in the dynamic
of the series. These high-level observations may be due to exogenous forces, such as unfavor-
able meteorological conditions, failure in the control process, high pollution episodes, etc. In
this context, apart from the negative impacts on the environment and on human health, they
may cause undesirable statistical properties such as estimates with large bias, spurious model
choices and statistical decisions and, in time series, the reduction of the power correlation among
other problems. In the statistical methods, these phenomena are usually caused by outliers or
aberrant or atypical observations. Therefore, high levels of pollutants cause a similar effect on
the statistical functions such as outliers does. From this empirical connection property between
outliers and high-levels of concentrations arises the unstable and noneffective problem in any
statistical analysis in the air pollution area. Therefore, the use of a robust method becomes
a crucial step in any statistical methodology when dealing with pollutant concentrations and
correlated variables.

As well discussed in the literature of time series, among all types of outliers, additive outliers
are the most harmful type of aberrant observations and can significantly destroy the correlation
structure of a time series see, for example, Chan (1992, 1995), Molinares et al. (2009), Cotta,
Reisen, Bondon & Stummer (2017) and the references therein. In the study of time series,
the sample mean, autocorrelation (ACF), and partial autocorrelation (PACF) functions play
a fundamental role on some steps of the analysis and model estimation, and are known to be
highly affected by atypical observations. Consequently, if not dealt properly this issue may lead
to spurious results and wrong conclusions.

Given this background, one possible way to mitigate the effects of additive outliers in the statis-
tical analysis is to use methods that are robust against outliers. The robust estimation theory
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has been extensively studied by the statistical community since the 1970s following the seminal
works of Huber and Maronna Huber (1964), Maronna (1976). Several efforts have been done by
the time series analysis community in order to weaken the impact of aberrant observations. A
concise review of the fundamentals can be found in Zoubir et al. (2012) and a review of some
robust methods for the estimation of the autocovariance and autocorrelation function can be
found in Dürre et al. (2015).

In this context, as an approach for solving this problem, Ma & Genton (2000) proposed a highly
robust estimator of the autocovariance function (ACOVF) and autocorrelation function, denoted
by γ̂Qh and ρ̂Qn , respectively. These estimators are based on the Qn scale estimator proposed
by Rousseeuw & Croux (1993), whose asymptotic properties were studied by Lévy-Leduc et al.
(2011b) for univariate time series. The highly robust performance of γ̂Q motivated its adoption
by Molinares et al. (2009) to obtain an estimator of the spectral density function which is robust
against additive outliers for the univariate scenario. For the multivariate time series context,
Cotta, Reisen, Bondon & Stummer (2017) extended γ̂Qh and ρ̂Qn to accommodate multiple
time series. The estimators of Ma & Genton (2000) and Cotta, Reisen, Bondon & Stummer
(2017) does not yield a non-negative definite sample covariance matrix. Thus, the development
of robust ACF and ACOVF multivariate estimators that yield non-negative definite matrix is
still an open problem and this is one contribution of this thesis.

In addition, time series analysis in the frequency domain is based on the study of the spectral
density function from which the periodogram is an estimator. As demonstrated by Molinares
et al. (2009), the periodogram lacks robustness properties against outliers. Thus, robust methods
to minimize the effect of outliers on the estimation of periodogram have to be considered. In
this direction, different robust periodogram methods have been proposed by the literature, see,
for instance, Molinares et al. (2009), Zhang & Chan (2005), Li (2008, 2010), Sarnaglia et al.
(2016), Reisen, Lévy-Leduc & Taqqu (2017), among others.

Furthermore, it is known that the periodogram can be also computed from the least squares
estimates of the Fourier coefficients and is hence sensitive to outliers in data. Thus, to mitigate
this problem, one may consider the use of robust regression methods, e.g., a robust regression
method, instead of the standard least square method. The M -periodogram is obtained by
replacing the standard least squares regression with the robust M -regression method. Recently,
this approach has been considered by Sarnaglia et al. (2016) and Reisen, Lévy-Leduc & Taqqu
(2017) providing good results in the estimation of the coefficients of Periodic autoregressive
and moving average model (PARMA) models and the fractional parameter of autoregressive
fractionally integrated moving average (ARFIMA) models, respectively.

Moreover, a very important time series result establishes that, under some assumptions, the time
and frequency domains are connected by the Fourier transforms of the autocovariance function
and the spectral density. In this thesis, this relationship is considered to propose estimation
methods for the autocovariance and autocorrelation functions starting from an estimator of the
spectral density. Firstly, the standard periodogram case is considered. However, this approach
is not robust and the resulting estimators are sensitive to outliers. The robustness property is
achieved when considering the M -periodogram. Thus, the resulting robust autocovariance and
autocorrelation functions are positive semi-definite by construction since the periodogram or the
M -periodogram is always positive.

Nowadays, thanks to the development of air quality monitoring technology of data sampling
units, air pollution data may be collected by air quality monitors scattered across different areas
of the region in short time intervals. In this scenario, the collected air pollution time series
data may be of order millions and it is coined as Big Data. This high dimension presents new
challenges from theoretical and applied points of view due to the enormous number of parameters
and coefficients to be estimated by many standard statistical techniques. Another issue arrives
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when the number of variables is much bigger than the quantity of sampling units. In addition,
the large quantity of variables also poses a problem to the standard descriptive and graphing
statistical tools. Many researchers have developed Big Data visualization techniques, analytic
models and machine learning based models to conduct data analysis to achieve better accuracy
in evaluation and prediction.

In this direction, one possible approach to deal with time series of high dimension is to consider
dimension reduction techniques such as principal component analysis (PCA) and factor analysis
(FA) before analyzing the data using standard statistical techniques, e.g, time series or multi-
variate analysis. This approach has been considered in Reisen, Sgrancio, Lévy-Leduc, Bondon,
Monte, Cotta & Ziegelmann (2019), Stock & Watson (2002), for air pollution and economic data,
respectively. However, since PCA and FA techniques are built using the sample covariance or
correlation matrices, they are sensitive to outliers occasioning a spurious dimension reduction
or a wrong selection of the number of factors. Therefore, in order to mitigate this problem, a
possible solution is to use robust estimators of these matrices. This approach is considered in
the recent works of Cotta (2014) and Reisen, Sgrancio, Lévy-Leduc, Bondon, Monte, Cotta &
Ziegelmann (2019) where robust estimation methods were applied to PCA and FA, respectively,
in an air pollution data set. In this direction, this thesis proposes a robust variant of the infor-
mation criteria given in Bai & Ng (2002) for selecting the number of factors in an approximate
factor model.

Based on the issues discussed above, that is, robust methods in the time and frequency domain
to compute a robust autocovariance matrix and time series with high dimension becomes the
main core of this thesis. As the first and second contributions, it is proposed a robust estimation
method of the autocorrelation and autocovariance matrix functions of stationary univariate and
multivariate time series, respectively, starting from the spectral domain. The third contribu-
tion is to introduce a robust method for estimating the number of factors in an approximate
factor model. As additional contributions, the methodologies are used in real data related to
pollutant variables collected at at the stations of the Automatic Air Quality Monitoring Net-
work (AAQMN) of Greater Vitória (GV) and of Île-de-France (IDF) regions with the aim to
verify the effect, if any, of high pollution levels in the estimation model and in the dimension
reduction. These applications become very important in the context to show how these series
can be analyzed with different aims when using robust ACF functions. These contributions
are presented in three papers, which are shown in the third, fourth and fifth chapters of this
thesis. Not that, since all theoretical results are new and due to some analytical complexities,
the asymptotic properties of the estimation methods are not totally established here and they
are left for future work. However, the finite sample size investigations clearly demonstrate that
the methods perform quite well and support their use in real problems.

In the first paper, we present a robust estimation method for the autocorrelation and autocovari-
ance functions of stationary univariate time series. Some theoretical properties of the estimators
are proved and their finite sample size performances are investigated through a numerical sim-
ulation study.

The second paper extends the results of the first paper in order to accommodate multivariate
time series. We provide some theoretical results regarding the proposed estimators and their
performance are also investigated by means of numerical experiments. An application to real
data is conducted in order to demonstrate the usefulness of the method.

In the third paper, we propose a robust method for estimating the number of factors in an
approximate factor model. We study the effect of additive outliers on the standard estimator
of the number of factors and we employ the robust estimator proposed in the second paper to
robustify the estimation of the number of factors. We analyze through simulations our proposed
method and an application to real data is also considered.
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This thesis is structured as follows: This introduction, the research objectives, the study region
and the real data used in the applications of the proposed models are presented in Chapter 1.
Chapter 2 presents a brief review of the bibliography regarding some robust statistical mod-
els and concepts that are essential for the development and understanding of the thesis. As
mentioned before, Chapters 3, 4 and 5 are the original contributions and results of this thesis,
described in the form of three articles. The general conclusions, final comments, and further
research lines are presented in Chapter 6, followed by the references used in this manuscript. To
end this, Appendix A displays papers that I have made contributions during my Ph.D. period.
Note that these papers are directly connected, from the theoretical and empirical point of views,
with this thesis.

2 Objectives

2 .1 General

To analyse multivariate data using any statistical technique or model it is crucial, as one of the
first steps, to compute the sample covariance matrix which, in more complex data, such as the
case of time series with aberrant observations and/or high dimension, this sample function may
give unprecise estimates, as well discussed in the literature. In this context, this thesis proposes
to use matrices encountered in time series analysis and Fourier vector basis to obtain the matrix
that will approximately diagonalize the sample covariance matrix of univariate and multivariate
time series with absolutely summable autocovariance function and series with high dimension.
In addition, a robust diagonal matrix is suggested to obtain a robust ACF matrix which dis-
plays the robustness property against abrupt observations and heavy-tailed distributions. These
proposed methodologies can be very useful in practical situation when dealing with a high dimen-
sion reduction, cluster and discriminant analysis, PCA, FA, regression methods among others
which are statistical tools widely used in the Air Pollution area. Therefore, the analysis and
interpretation of the dynamic of PM10 pollutants measured at the stations of the Automatic
Air Quality Monitoring Network (AAQMN) of Greater Vitória (GV) and of Île-de-France (IDF)
regions are also part of the contribution of this thesis in the sense to verify the effect, if any, of
high pollution levels in the estimation model and in the dimension reduction:

2 .2 Specific

The specific objectives are:

• To propose methods for the estimation of autocovariance and autocorrelation functions of
univariate and multivariate time series from the connection between time and frequency
domains;

• To propose robust alternatives for the estimation of autocovariance and autocorrelation
functions of univariate and multivariate time series considering the M -periodogram;

• To propose a robust method based on the proposed robust M -covariance estimator to
estimate the factors and to select the number of factors when additive outliers are present
in an approximate factor model;

• To study and interpret the dynamic behavior of PM10 pollutant data measured at the
stations of the Automatic Air Quality Monitoring Network (AAQMN) of Greater Vitória
and Île-de-France regions;

• To make available to the scientific community all computer codes and programs created
in this thesis to make this research reproducible.
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3 Regions of study

3 .1 Brazil

The Greater Vitória Region (GVR) is located on the southeast coast of Brazil (latitude 20o 19S,
longitude 40o20W) with a population of approximately 1.900.000 inhabitants. The climate is
tropical humid with average temperatures ranging from 24oC to 30oC. The region has many ports
being an important cargo transport hub in Brazil. Also, there are many industries presented in
the region, such as steel plants, iron ore pellet mill, stone quarrying, cement and food industry
and asphalt plant. Figures 1.1 and 1.2 present the main pollution sources of the region.

Figure 1.1: Industries present in the region.

The region is characterized by mountainous regions: in the Northwest (Mestre Álvaro) and in
the West (Região Serrana), some plains (Airport and mangrove) and plateaus (Planalto Serrano)
in the North. In the southern, a plain region (Barra do Jucu). All portions are interspersed by
rockies of small and medium size. These conditions, in general, are favorable to wind circulation
and the dispersion of pollutants.

This region is the main economic pole of the state which represents approximately 63.13 % of
the state’s Gross Domestic Product (GDP), where 65.55 % of this sector comes from the tertiary
sector, 34.03 % of the secondary sector and 0.42 % of the sector the economy. In this region,
steel, pelletizing, mining (quarries), cement, food industry, asphalt plant, etc are found.

The automatic air pollution monitoring network of GVR is consisted by nine monitoring sta-
tions distributed in the cities of this region as follows: three stations in Serra (Cidade Conti-
nental,Laranjeiras and Carapina), three stations in Vitória (Jardim Camburi, Enseada do Suá
and Vitória Centro), two stations in Vila Velha (Vila Velha Centro and Ibes) and one station in
Cariacica (at the regional food distribution center, CEASA). Figure 1.3 presents the geographical
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Figure 1.2: Main roads of the region.

location of each station.

The network monitors the following pollutants: Respirable Particles (PM2.5), Inhalable Particles
(PM10) Total Suspended Particles (TSP), Sulfur Dioxide (SO2), Nitrogen Monoxide (NO), Ni-
trogen Dioxide (NO2), Nitrogen Oxides (NOx), Carbon Monoxide (CO), Ozone (O3), Methane
(CH), Non-methane Hydrocarbons (HCnM) and Total Hydrocarbons (HC). In addition to these
pollutants, some meteorological parameters are monitored: Wind Direction (WD), Wind Speed
(WS), Standard Deviation of Wind Direction (STDWD), Rainfall (R), Relative Humidity (RH),
Temperature (T), Atmospheric pressure (P) and Solar radiation (SR). Not all pollutants and
meteorological parameters are monitored by all stations, the list of pollutants and parameters
monitored by each station is presented in Table 1.1.

Table 1.1: Pollutants and meteorological parameters measured at the AAQMN from RGV.
Station PM2.5 PM10 PTS SO2 NO NO2 NOx CO O3 CH HCnM HCT Meteo. Parameters

Cidade Continental x x x x WD,WS
Laranjeiras x x x x x x x x
Carapina x x WD,P,R,SR,STDWD,T,RH,WS
Jardim Camburi x x x x x x
Enseada do Suá x x x x x x x x x x x x WD, STDWD,WS
Vitória Centro x x x x x x x x x x
Ibes x x x x x x x x x x x x WD, STDWD,WS,T,RH
Vila Velha Centro x x
Cariacica x x x x x x x x WD, STDWD,WS,T,RH

This thesis considers the data obtained at the stations of the AAQMN of GVR. The data
analyzed are hourly concentrations of atmospheric pollutants or meteorological parameters of
each station measured in the period from January 2005 to December 2011. The pollutants
studied are the PM10 and the SO2. The data set was made available by the Instituto Estadual
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Figure 1.3: Geographical location of the stations of GVR.

do Meio Ambiente (IEMA).

3 .2 France

The Île-de-France (IDF) is a region of France which encompasses Paris and its neighboring
cities and departments, namely the departments of Val-d’Oise, Seine-et-Marne, Seine-Saint-
Denis, Ville-de-Paris, Hauts-de-Seine, Val-de-Marne, Essonne, and Yvelines. This region is the
most populated the metropolitan area containing Paris and the surrounding area has around 12
million inhabitants, 18% of the population of France IAU (2018). The population is concentrated
in the highly urbanized area of Paris and immediately surrounding cities. The outer parts of
the Ile-de-France remain largely rural, where agriculture land, forest and natural spaces occupy
78 percent of the region. This most important economic region of France concentrates nearly 30
percent of the French GDP and accounts for 23.2% of France’s workforce. IAU (2018).

The IDF has a more mature and broader network of stations than RGV. However, as in the case
of the AAQMN of RGV, not all stations monitor all pollutants. Thus, a list of IDF stations
with their respectively monitored pollutants are presented in Table 1.2. Figure 1.4 presents the
geographical location of each station.

The data analyzed are hourly concentrations of atmospheric pollutants of each station measured
in the period from March 17th to June 11th of 2019 (91) days (T = 91) The pollutant studied
is the PM10. The data set was made available by the European Environmental Agency.
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Table 1.2: Pollutants measured at the AAQMN from IDF.
City Station(code) PM2.5 PM10 NO2 SO2 O3 CO

Paris FR04004 x x x
Paris FR04012 x x x
Paris FR04014 x
Paris FR04031 x x
Paris FR04037 x x
Paris FR04060 x
Paris FR04071 x
Paris FR04118 x x
Paris FR04131 x x
Paris FR04135 x
Paris FR04141 x
Paris FR04143 x x x x x
Paris FR04179 x x
Paris FR04329 x x x
Hauts-de-Seine FR04002 x x x
Hauts-de-Seine FR04017 x x x
Hauts-de-Seine FR04150 x x
Val-de-Marne FR04034 x x x x x
Val-de-Marne FR04099 x
Val-de-Marne FR04101 x x
Val-de-Marne FR04146 x
Seine-Saint-Denis FR04018 x x x
Seine-Saint-Denis FR04058 x x x x
Seine-Saint-Denis FR04059 x
Seine-Saint-Denis FR04100 x x
Seine-Saint-Denis FR04123 x x
Seine-Saint-Denis FR04156 x x x
Seine-Saint-Denis FR04319 x x x
Seine-et-Marne FR04069 x x
Seine-et-Marne FR04098 x x x
Seine-et-Marne FR04122 x x x
Seine-et-Marne FR04142 x
Seine-et-Marne FR04173 x
Seine-et-Marne FR04324 x
Seine-et-Marne FR04328 x x x x
Essonne FR04049 x
Essonne FR04066 x x x
Essonne FR04149 x x
Essonne FR04180 x
Essonne FR04323 x
Yvelines FR04029 x x
Yvelines FR04038 x x
Yvelines FR04063 x x
Yvelines FR04181 x x x
Val-d’Oise FR04023 x x
Val-d’Oise FR04024 x x
Val-d’Oise FR04048 x x
Val-d’Oise FR04051 x
Val-d’Oise FR04158 x x
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Chapter 2

Brief review of the literature

As mentioned in Chapter 1, the field of robust statistics is not new and several robust techniques
have been proposed to deal with diversified types of outliers. Since this thesis is about robust
statistical methods, we shall present some a brief description of the definitions and what is
already done by the literature.

Data from the most diverse areas of knowledge may present the presence of discrepant observa-
tions, outliers, and the failure to adopt adequate techniques capable of behaving this data can
lead to inconsistent results. Fox (1972) defines as outliers observations that are not in accord
with the others from the same data set. Rousseeuw & Van Zomeren (1990) defined as outliers
those observations that deviate from the estimates provided by a statistical model suggested by
the bulk of the data set. Huber & Ronchetti (2009) define robust statistics as those that are
insensitive to small deviations from the original assumptions, usually, the data have a Gaussian
or assumed to be known distribution. Note that despite being related robust statistics are not
necessarily non-parametric statistics.

Maronna et al. (2006) define robust statistics as a tool to increase the reliability and accuracy of
the model and the statistical analysis. Tukey (1975) affirms that it is possible to use classical,
non-robust statistics and robust statistics concomitantly, but one must proceed with caution
when the two methods provide different values. Thus, one can consider robust statistics as a
statistic that is not sensitive to outliers.

These outliers observations may be due to several factors:

• Measurement error;

• Typesetting error;

• External interventions;

• Extreme observations

• Unexpected alteration of physical conditions.

There are several statistical methods for determining whether or not an observation is an outlier.
However, even if an observation is identified as a possible outlier by some statistical method, in
certain areas of knowledge, it is a real and observed observation and may have some impact, for
example, to the environment and human health. In this context, one can not simply exclude
it.

Besides, some methods may identify as outliers observations that are not. For example, the
3-sigma rule identifies as outliers observations that are distant from the sample mean by two
or three times the standard deviation. When considering the Gaussian distribution, where the
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interval of three standard deviations around the mean contains approximately 99.7 % of the
observations, it is expected to identify some observations as outliers.

The common choice made by a wide range of scientists and practitioners to mitigate this problem
is to exclude the suspected observations’ values from the data set. However, as pointed out by
(Maronna et al. 2006, chap. 1), the removal of an atypical observation may lead to other
complications since the exclusion is based on subjective decisions.

One possible way of dealing with outliers is to replace the outlying observation with a more
plausible value in the approach called filtering. However, since this approach completely modifies
the original time series data, it is not considered in this thesis. Therefore, one viable option
to mitigate this adversity without modifying the original data set is to use robust statistical
methods.

In the context of time series, one may classify outliers as four types of outliers: additive outliers,
innovational outliers, level shifts, and temporary changes. Each one of them affects affect the
observed time series in its particular way. As pointed by Tsay et al. (2000), the effect of an
outlier depends not only on its size and the underlying model but also on the interaction between
the size and the dynamic structure of the model, especially with multivariate time series. This
thesis is focused on additive outliers since they are the most harmful type as they negatively
affect the correlation structure of the time series.

Related to additive outliers in univariate time series, Chan (1992, 1995) studied the impact of
additive outliers on the autocovariance and autocorrelation functions. As pointed out by the
authors, the increment in the variance of the time series due to the presence of additive outliers
will decrease the autocorrelation values. The work of Molinares et al. (2009) presents the impact
on the periodogram, an estimator of the spectral density.

For multivariate time series, the impact on the autocorrelation and autocovariance matrix can be
found in Cotta, Reisen, Bondon & Stummer (2017) and similar conclusions to the univariate case
are obtained when outliers are present in one or more elements of the time series vector.

In the past, some robust autocorrelation estimators have been proposed but the lack of compu-
tational power has limited the adoption of these techniques. Nowadays, because of an increment
in the processing power of modern computers, the usage of robust methodologies is a work-
able task. Nonetheless, most of these estimators rely on the computation of robust pair-wise
covariances and correlations, but the resulting estimator is not positive semi-definite.

Considering this approach, Ma & Genton (2000) proposed a highly robust estimator of the
autocovariance function (ACOVF) and autocorrelation function (ACF), denoted by γ̂Qh and
ρ̂Qn , respectively. These estimators are based on the Qn scale estimator proposed by Rousseeuw
& Croux (1993), whose asymptotic properties were studied by Lévy-Leduc et al. (2011b) for
univariate time series. For the multivariate context, Cotta, Reisen, Bondon & Stummer (2017)
extended γ̂Qh and ρ̂Qn to accommodate multiple time series. Although the estimators of Cotta,
Reisen, Bondon & Stummer (2017) do not yield a positive semi-definite matrices, they were
used by Reisen, Sgrancio, Lévy-Leduc, Bondon, Monte, Cotta & Ziegelmann (2019) to robustly
estimate the number of factors with air pollution data.

Robust ACF and ACOVF may also be obtained by methods based on Signs and Ranks, popular
nonparametric statistics. However, they are not very robust against outliers and some trans-
formations required for them to be unbiased may destroy the positive semidefiniteness of the
estimators Dürre et al. (2015).

Another approach is to interpret the autocorrelation function as a linear regression and then
to apply some robust regression method for its calculation. This method was suggested by
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Chang & Politis (2016) and also does not yield a positive semi-definite estimator without being
modified.

Some positive semi-definite estimators for the ACF are available in the literature are built from
the relationship between the ACF and PACF. However, to obtain an estimator of the ACOVF,
the variance of the series must be robustly estimated beforehand.

Alternatively, one might construct an estimator for ACF and ACOVF by robustly estimating,
considering, for example, the minimum covariance determinant estimator, the whole autocorre-
lation matrix at a given lag starting from the data organized in a suitable matrix. The resulting
estimator is positive semi-definite, but it does not have the Toeplitz structure with constant
off-diagonals.

It is possible to find a review and comparison of some robust methods in Dürre et al. (2015). In
this direction, a common problem shared by many of the robust estimation methods is that they
do not yield a positive semi-definite covariance or correlation matrix and/or a Toeplitz matrix.
In order to solve this problem, many estimators rely on some modification to be positive semi-
definite with a Toeplitz structure. In this direction, our approach proposed in this thesis has
the advantage that yields a positive semi-definite correlation matrix with Toeplitz structure
with no approximation nor modification of the original data set, such as trimming or outlier
removal.
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Chapter 3

Paper 1: Robust autocovariance
estimation from the frequency
domain for univariate stationary
time series

In this Chapter, we present the first original contribution of this thesis: the robust estimation of
the autocovariance and autocorrelation functions of univariate stationary time series. The key
idea is to consider the connection between time and frequency domains where the autocovariance
function and spectral density are linked through the Fourier transform to construct estimators
for the autocovariance function starting from an estimator of the spectral density. We present
some theoretical results for our estimators. A simulation study evaluates the performance of the
estimators for small sample size with and without occurrence of additive outliers.

Abstract

It is well-know that, under some assumptions, PN ΓN P′N −2πDN converges to zero uni-
formly as N → ∞, where ΓN is the covariance matrix of the first N observations from a
stationary {Yt}t∈Z process with absolutely summable covariances and spectral density f(.),
DN is a diagonal N×N matrix with elements of f(.) and PN is a vector of eigenvalues of ΓN .
In this context, this paper proposes two estimates of ΓN in the frequency domain by using
the standard periodogram and a M−periodogram function. The asymptotic properties of
the proposed estimators are established. The empirical investigation shows that the methods
display estimates fairly close to the ACF function in the context of non-contaminated data.
On the other hand, in the presence of additive outliers, the M -estimator remains unaffected
to the presence of additive outliers while, as expected, when using the the classical peri-
odogram the estimates are totally corrupted. Therefore, the ACF M -estimator proposed
here becomes an alternative method to estimate ΓN in time series with and without out-
liers. These methodologies can be very useful in the context of estimating models with a
high-dimension time series data set.

1 Introduction

Atypical observations (outliers) are present in time series of diversified origins. It is well-known
that outliers significantly affect the correlation structure of a time series even when only one
atypical observation is present, see, for example, Chan (1992, 1995), Molinares et al. (2009) and
the references therein. As a possible approach for solving this problem, Ma & Genton (2000)
proposed a highly robust estimator of the autocovariance function (ACOVF) and autocorrelation
function (ACF), denoted by γ̂QN

and ρ̂QN
, respectively. These estimators are based on the Qn
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scale estimator proposed by Rousseeuw & Croux (1993), whose asymptotic properties were
studied by Lévy-Leduc et al. (2011b) for univariate time series.

As noticed by Ma & Genton (2000), their robust ACOVF estimator does not provide a non-
negative definite sample covariance matrix. Although this is an undesirable property for an
autocovariance function estimator, the highly robust performance of γ̂QN

motivated its adoption
by Molinares et al. (2009) to obtain an estimator of the spectral density function which is robust
against additive outliers.

Time series analysis in the frequency domain is based on the study of the spectral density
function from which the periodogram is an estimator. As demonstrated by Molinares et al.
(2009), the periodogram lacks robustness properties against outliers. Therefore, robust methods
to minimize the effect of outliers on the estimation of periodogram have to be considered. In
this direction, different robust periodogram methods have been proposed by the literature, see,
for instance, Molinares et al. (2009), Zhang & Chan (2005), Li (2008, 2010), Sarnaglia et al.
(2016), Reisen, Lévy-Leduc & Taqqu (2017), among others.

It is known that the periodogram can be obtained directly from a least squares estimates of the
Fourier coefficients and is hence sensitive to outliers in data. Thus, to mitigate this problem,
one may consider the use of robust regression methods, e.g., a robust M -regression, instead of
the standard approach.

Recently, this approach has been considered by Sarnaglia et al. (2016) and Reisen, Lévy-Leduc
& Taqqu (2017) providing good results in the estimation of the coefficients of PARMA models
and the fractional parameter of ARFIMA models, respectively.

In addition, under some assumptions, PN ΓN P′N −2πDN converge to zero uniformly as N →∞,
where ΓN is the covariance matrix of the first N observations from a stationary {Yt}t∈Z process
with absolutely summable covariances and spectral density f(.), DN is a diagonal N ×N matrix
with elements of f(.) and PN is a vector of eigenvalues of ΓN . This fact establishes the connection
between time and frequency domains by means of the Fourier transform.

In this paper, two contributions are established. Firstly, it is demonstrated that the elements
of PN Γ̂N P′N −2πDN also converge to zero uniformly as N → ∞, where Γ̂N is built from the
standard periodogram with suitable window. The second contribution suggests replacing the

standard periodogram with the robust M -periodogram in order to obtain Γ̂
M
N .

The outline of this paper is as follows: Besides the introduction, Section 2 discusses the esti-
mation of the ACOVF and ACF from the robust M -periodogram. Section 3 summarizes the
simulation experiments and the robust performance of the estimators comparing them to Ma &
Genton (2000)’s. Concluding remarks are given in Section 6 .

2 The model and the estimation of the autocovariance func-
tion

Let {Yt}, t = 1, 2, ..., be a stationary process with autocovariance function γY (h) = Cov[Yt, Yt+h],
h = 0, 1, ..., which satisfies

(A1)
∑∞

h=−∞ |γY (h)| <∞.

Under Assumption (A1), the spectral density of {Yt}, t = 1, 2, ..., is defined as

f(λ) =
1

2π

∞∑

h=−∞
γY (h)e−ihλ, for all λ ∈ [−π, π]. (3.1)
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Let {Y1, Y2, ..., YN} be the firstN observations of {Yt}t∈Z. The covariance matrix of {Y1, Y2, ..., YN}
is defined by

ΓN = [γ(i− j)]Ni,j=1. (3.2)

The following properties establish, from the time to the frequency domain, a very useful ana-
lytical connection between functions, that is, they allow to interpret the spectral density as a
multiple of the matrix of covariance of the process multiplied by orthogonal vectors. Actually,
this has similar interpretation of the classical result of spectral diagonalization of an any positive
semi-definite square matrix.

Proposition 1. Let A be an N ×N regular circulant matrix with first row [a0, . . . , aN−1].

1. A has eigenvectors gj with (not necessarily distinct) eigenvalues

δj =

N−1∑

h=0

ahω
jh = p(ωj) =

N−1∑

h=0

ahω
h
j , j = 0, 1, . . . , N − 1, (3.3)

where ωj = ωj, p(ωj) = a0 + a1ωj + . . .+ aN−1ω
N−1
j , and

gj = N−1/2[1, ωj , ω2j , . . . , ω(N−1)j]′. (3.4)

2. Setting j = 0 in (1), δ0 = a0 + a1 + ...+ an−1 is always an eigenvalue.

3. The eigenvectors are mutually orthogonal, that is, g∗j gk = 0 if k 6= j and g∗j gk = 1 for
k = j, where g∗j is the conjugate transpose of gj.

4. If F is an N×N Fourier matrix then, it is unitary and FAF ∗ = ∆, that is AF ∗ = F ∗A,
where ∆ = diag[δ0, δ1, . . . , δN−1]. Also A = F ∗∆F .

Proof. This proposition is directly derived from 8.18 to 8.28 in Seber (2008).

The following Corollaries are straightforward derived from Proposition 1.

Corollary 1. If A is symmetric regular circulant then:

1. ah = aN−h, h = 1, . . . ,m, where

m =

{
N/2 N even

(N − 1)/2 N odd.
(3.5)

2. The eigenvectors are gj given by Proposition 1.

3. The eigenvalues of A are

δj =
N−1∑

h=0

ah cos(2πjh/n), j = 0, . . . , N − 1. (3.6)

4. A spectral decomposition of A is

A =

N−1∑

j=0

δjgjg
∗
j . (3.7)
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Corollary 2. Let δj be an eigenvalue of A as in Corollary 1. Then, for N odd, the pair of real
orthogonal eigenvectors corresponding to δj are

cj = (δj + δN−j)/
√

2 =
√

2/N [1, cosλj , cos 2λj , . . . , cos(N − 1)λj ],

and
sj = i(δN−j + δj)/

√
2 =

√
2/N [1, sinλj , sin 2λj , . . . , sin(N − 1)λj ],

for j = 1, . . . , [N/2] and setting c0 =
√

1/N [1, 1, 1, . . . , 1]. Additionally, PN AP′N = ∆s where
∆s = diag[δ0, δ1, δ1, . . . , δ[N/2], δ[N/2]] and PN = [c0, c1, s1, . . . , c[N/2], s[N/2]]

′ . For the case when

N is even, both δ0 and δn/2 have multiplicity 1 and PN = [c0, c1, s1, . . . , 2
−1/2 cN/2]′. Again,

PN AP′N = ∆s.

Proposition 2. Let ΓN be the covariance matrix of the first N observations from {Yt}t∈Z which
satisfies (A1), and let f(.) be its spectral density as given by (4.6). Let λj = 2πj/N, j =
0, . . . , [N/2], where [.] denotes the integer part of N/2. Let DN be an N ×N matrix,

DN =

{
diag{f(0), . . . , f(λ[N/2]), f(λ[N/2])} if N is odd,

diag{f(0), . . . , f(λ(N−2)/2), f(λ(N−2)/2), f(λN/2)} if N is even.
(3.8)

and let PN be the eigenvectors which will lead to the diagonalization of ΓN defined in Corollary
2. Then, the components xNij of the matrix

PN ΓN P′N −2πDN , (3.9)

converge to zero uniformly as N →∞ ,i.e. sup1≤i,j≤N |x(N)
ij | → 0.

Proof. Consider the results given in Corollaries 1 and 2 and let A = circ[γ(0), γ(1), γ(2),
. . . , γ(2), γ(1)]. Since the elements of the matrix ∆s − 2πDN are bounded in absolute value
by
∑
|h|>[N/2]|γ(h)| which converges to zero as N →∞, it suffices to show that

|PN,iAP′N,j −PN,i ΓN P′N,j | → 0 uniformly in i and j. (3.10)

We have

|PN,i(A− ΓN ) P′N,j | =
∣∣∣∣∣
c∑

m=1

(γ(m)− γ(N −m))
m∑

k=1

(pikpj,N−m+k − pi,N−m+kpjk)

∣∣∣∣∣ , (3.11)

where c = [(N − 1)/2]. This expression is bounded by

4n−1

(
2

c∑

m=1

m|γ(m)|+ 2

c∑

m=1

m|γ(N −m)|
)
≤ 8

c∑

m=1

m

N
|γ(m)|+ 8

N−1∑

m=N−c

c

N
|γ(m)|.

The first term converges to zero as n → ∞ by the dominated convergence theorem since the
summand is dominated by |γ(m)| and

∑∞
m=1 |γ(m)| < ∞. The second term also goes to zero

since it is bounded by
∑∞

m=[N/2] |γ(m)|. Since both terms are independent of i and j, the proof
is complete. Similar proof of (3) is given in, for example, Brockwell & Davis (2013), Proposition
4.5.2.

Related to Proposition 3, the following remark gives the upper and lower bounds of the covari-
ance matrix of {Y1, Y2, ..., YN} , among many other interesting properties which can be derived
from.
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Remark 1. Let {Yt} be a stationary process with spectral density f(.) such that

w = inf
λ
f(λ) > 0 and W = sup

λ
f(λ) <∞,

and denote by λ1, . . . , λN (λ1 ≤ . . . ≤ λN ) the eigenvalues of the covariance matrix of {Y1, Y2, ..., YN}.
Then,

2πw ≤ λ1 ≤ λN ≤ 2πW. (3.12)

The proof of Remark 1 is given in Brockwell & Davis (2013).

Apart from its mathematical interpretation, Proposition 3 can also lead to a very useful and
elegant result, from statistical and applied point of view, when dealing with a sample from the
process from which time series models are built, estimated and tested. This is one of the main
core of this paper and it is discussed as follows.

Let now {Y1, Y2, ..., YN} be a sample of {Yt}t∈Z and f̂N (.) be an estimator of the spectral density
in (4.6). Given D̂N as an estimator of DN in (4.9) by replacing f(.) with f̂N (.), an alternative
estimator of ΓN can be obtained by

Γ̂N = 2πP′N D̂N PN . (3.13)

where PN was defined previously.

The focus is now on the properties of f̂N (.) related to f(.) that allow the convergence of γ̂N (.)
towards γ(.). Let {Yt}t∈Z be a second order stationary process. Given a sample {Y1, Y2, ..., YN},
the classical periodogram function, at the Fourier frequency λj = 2πj/N, j = 1, . . . , [N/2], is
defined as

IN (λj) =
1

2πN

∣∣∣∣∣
N∑

k=1

Yk exp(ikλj)

∣∣∣∣∣

2

. (3.14)

Although the periodogram is a natural estimator of f(.), it is well-known that IN (.) is not a
consistent estimator of f(.) in the sense that the variance of IN (.) does not go to zero as N goes to
infinite. In addition, IN (.) has an erratic and wildly fluctuating form. These features make the
periodogram to be a poor estimator of the spectral density f(.) see, for example, Priestley (1981).
Sinse {Yt}t∈Z is a stationary process with autocovariance function that satisfies Assumption 1,
one way to obtain an estimator of the spectral density with reduced variance is simply to omit
some terms of IN (.) which correspond to the tail of the sample autocovariance function. In
general, omitting the terms in IN (.) will increase the bias, however if these correspond to the
tails of the sample ACF satisfying Assumption 1, this will not seriously affect the bias of this
”new” periodogram. In this context, the new periodogram is given as follows and it is usually
called truncated window periodogram.

Before introducing a class of consistent estimators of the spectral density of {Yt}t∈Z, the following
assumptions are introduced:

(A2) {MN := M} is a sequence of positive integers with M →∞ and M
N → 0 as N →∞.

(A3) {WN (.)} is a sequence of weight functions with WN (k) = WN (−k) and WN (k) ≥ 0, for all
k.

(A4)
∑

|k|≤M
WN (k) = 1 and

∑

|k|≤M
W 2
N (k)→ 0 as N →∞.
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In view of (A1)-(A4), a consistent class of estimators has the form

f̂T,N (λj) = (2π)−1
m∑

k=−m
WN (k)IN (λj+k). (3.15)

For more details of the properties of f̂T,N see, for example, Brockwell & Davis (2013), Priestley
(1981) and Fuller (1996).

Theorem 1. Let {Y1, Y2, ..., YN} be a sample observation of a second order stationary time
series {Yt}t∈Z satisfying (A1). Let f̂T,N (.) be an estimator of the spectral density of {Yt}t∈Z
satisfying (A2) to (A4). Define D̂N as in (4.9) but replacing f(.) with f̂T,N (.). Let Γ̂N as in
(3.13) where γ̂N (h) is obtained. Then,

Γ̂N − 2πP′N DN PN = op

(
1√
N

)
as N →∞. (3.16)

Proof of Theorem 3. Let ei = [δ�ij ]
N
i,j=1 where δ�ij = 1 if i = j and δ�ij = 0 if i 6= j.

γ̂N (h)− γ(h) = e′h+1(Γ̂N − ΓN ) e1

= 2π(PN eh+1)′(D̂N −DN ) PN e1

=
1

N
{f̂T,N (0)− f(0) +

√
2

[N/2]∑

j=1

(f̂T,N (λj)− f(λj)) cos(λjh)}
(3.17)

By Cauchy–Schwarz inequality

((PN eh+1)′(D̂N −DN ) PN e1)2 =
1

N2
{1 +

[N/2]∑

j=1

cos(λjh)2}{(f̂N (0)− f(0))2

+

[N/2]∑

j=1

(f̂T,N (λj)− f(λj))
2}

≤ {1 + 2[N/2]}{(f̂T,N (0)− f(0))2

+

[N/2]∑

j=1

(f̂T,N (λj)− f(λj))
2}.

(3.18)

Based on (A2) to (A4),

E[(PN eh+1)′(D̂N −DN ) PN e1]2 ≤ 1

N
sup
−πλπ

E[|f̂T,N (λ)− f(λ)|2] (3.19)

where
sup
−πλπ

E[|f̂T,N (λ)− f(λ)|2]→ 0,

by Remark 1 on page 353 in Brockwell & Davis (2013). Hence, f̂T,N (.) converges in mean square
to f(.) uniformly on [−π, π].

As discussed in Reisen, Lévy-Leduc & Taqqu (2017) among others, one alternative way to
derive the periodogram function IN (λj) is based on the Least Square (LS) estimates of a two-
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dimensional vector β′ = (β(1), β(2)) in the linear regression model

Yi = c′Niβ + εi = β(1) cos(iλj) + β(2) sin(iλj) + εi , 1 ≤ i ≤ N, β ∈ R2 , (3.20)

where εi denotes the deviation of Yi from c′Niβ, E[εi] = 0 and E[ε2
i ] < ∞. In the sequel (εi) is

assumed to be a function of a stationary Gaussian process, see (4.23) for a precise definition.
Then,

β̂LS
N (λj) = Arg min

β∈R2

N∑

i=1

(Yi − c′Ni(λj)β)2 , (3.21)

where
c′Ni(λj) = (cos(iλj) sin(iλj)) . (3.22)

The solution of (3.21) is
β̂LS
N (λj) = (C ′C)−1C ′Y , (3.23)

where Y = (Y1, . . . , YN )′, C and C ′C are defined by

C =




cos(λj) sin(λj)
cos(2λj) sin(2λj)

...
...

cos(Nλj) sin(Nλj)


 (3.24)

and

C ′C =

( ∑N
k=1 cos(kλj)

2
∑N

k=1 cos(kλj) sin(kλj)∑N
k=1 cos(kλj) sin(kλj)

∑N
k=1 sin(kλj)

2

)
=
N

2
Id2 (3.25)

where Id2 is the identity matrix 2 by 2. Hence,

β̂LS
N (λj) =

2

N
C ′Y =

2

N

(
N∑

k=1

Yk cos(kλj)

N∑

k=1

Yk sin(kλj)

)′
= (β̂

LS,(1)
N (λj), β̂

LS,(2)
N (λj))

′.

(3.26)
In view of (3.14),

IN (λj) =
N

8π
‖β̂LS

N (λj)‖2 =
N

8π

(
(β̂

LS,(1)
N (λj))

2 + (β̂
LS,(2)
N (λj))

2
)

=: ILS
N (λj) , (3.27)

where ‖ · ‖ denotes the classical Euclidean norm and β̂LS
N (λj) = (β̂

LS,(1)
N (λj), β̂

LS,(2)
N (λj))

′ is the
least square estimates of β′ = (β(1), β(2)) see, for example, Fajardo et al. (2018) and Reisen,
Lévy-Leduc & Taqqu (2017) and references therein. Note that IN (λj) in (3.27) can be derived
for different choices of εi, i = 1, . . . , N .

It is now discussed an alternative spectral estimator which is robust against outliers and heavy-
tailed distribution.

For the results discussed here, it is supposed that, in Equation 3.20,

εi = G(ηi) , (3.28)

where, G is a non null real-valued and skew symmetric measurable function (i.e. G(−x) =
−G(x), for all x) and (ηi)i≥1 is a stationary Gaussian process with zero mean and unit variance.
Additional assumptions of (ηi)i≥1 will be given in the sequel of the paper.

Let now ψ(.) be a function satisfying the following assumptions.

(A5) 0 < E[ψ2(ε1)] <∞ .
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(A6) The function ψ is absolutely continuous with its almost everywhere derivative ψ′ satisfying
E[|ψ′(ε1)|] < ∞ and such that the function z 7→ E[|ψ′(ε1 − z) − ψ′(ε1)|] is continuous at
zero.

(A7) ψ is nondecreasing, E[ψ′(ε1)] > 0 and E[ψ′(ε1)2] <∞.

(A8) ψ is skew symmetric, i.e. ψ(−x) = −ψ(x), for all x.

It is now introduced the M -periodogram which presents similar performance (from theoretical
and empirical meaning) to IN (λ), λ ∈ [−π, π], but with robustness property against additive
outliers and asymmetric and heavy-tail distributions. The M -periodogram is based on the M -

estimator β̂M
N of the parameter β defined in Equation (3.20). The M -estimator β̂M

N = (β̂
(1)
N , β̂

(2)
N )′

is defined as the solution (t1, t2) of

N∑

i=1

cos(iλj)ψ(Yi − cos(iλj)t1) = 0 and
N∑

i=1

sin(iλj)ψ(Yi − sin(iλj)t2) = 0. (3.29)

β̂
(1)
N and β̂

(2)
N can be also seen as the minimizers with respect to t1 and t2, respectively, of

∣∣∣∣∣
N∑

i=1

cos(iλj)ψ(Yi − cos(iλj)t1)

∣∣∣∣∣ and

∣∣∣∣∣
N∑

i=1

sin(iλj)ψ(Yi − sin(iλj)t2)

∣∣∣∣∣ , (3.30)

where ψ satisfies the same assumptions as in Koul & Surgailis (2000). By analogy to (3.27), the
robust periodogram IMN (λj) at λj = 2πj/N, j = 1, . . . , [N/2], is defined by

IMN (λj) =
N

8π
‖β̂M

N (λj)‖2 =
N

8π

(
(β̂

(1)
N (λj))

2 + (β̂
(2)
N (λj))

2
)
. (3.31)

The asymptotic properties of β̂M
N are established in the short and long-range dependence frame-

works in Reisen, Lévy-Leduc, Cotta, Bondon & Ispany (2019), Reisen, Lévy-Leduc & Taqqu
(2017) and Reisen, Lévy-Leduc & Taqqu (2017), respectively. In the case of this paper, that is,
in short-range dependence process, the following assumptions are introduced.

(A9) Let ηt, t ∈ Z, be i.i.d. standard Gaussian random variables and let aj be real numbers
such that

∑
j≥0 |aj | <∞ and a0 = 1. Then,

εi =
∑

j≥0

ajηi−j .

(A10) ψ is the Huber function that is ψ(x) = max[min(x, c),−c], for all x in R, where c is a
positive constant.

Theorem 2. Assume that (A9) and (A10) hold and that β = 0 in (3.20) so that Yi = εi. Then,
for any fixed j, β̂M

N defined by (3.30) satisfies

√
N

2
(F (c)− F (−c))β̂M

N (λj)
d−→ N

(
0,∆(j)

)
, N →∞ ,

where F is the c.d.f. of ε1 and

∆(j) =
∑

k∈Z
E{ψ(ε0)ψ(εk)}

(
cos(kλj) sin(kλj)
− sin(kλj) cos(kλj)

)
.

Theorem 2 is proved in Section 5 of Reisen, Lévy-Leduc, Cotta, Bondon & Ispany (2019).
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Corollary 3. Under the assumptions of Theorem 2, IMN (λj) defined in (3.31) satisfies for any
fixed j,

IMN (λj)
d−→ X2 + Y 2

4π(F (c)− F (−c))2
, as N →∞ ,

where

X ∼ N
(

0,
∑

k∈Z
E{ψ(ε0)ψ(εk)} cos(kλj)

)
, Y ∼ N

(
0,
∑

k∈Z
E{ψ(ε0)ψ(εk)} cos(kλj)

)

and
Cov(X,Y ) =

∑

k∈Z
E{ψ(ε0)ψ(εk)} sin(kλj).

The proof of Corollary 3 is a straightforward consequence of Theorem 2 and (3.31).

As previously mentioned, the main objective of this paper is to obtain a robust ACF function
which satisfies all assumptions of the definition of ACF presented in Proposition 1.5.1 and
Definition 1.5.1 (non-negative definiteness) (Theorem 1.5.1) in Brockwell & Davis (2013). In
order to obtain such estimator, in (3), the diagonal elements of matrix DN is replaced by the
robust spectral estimator IMN (.). This leads to the following equation

Γ̂
M
N = 2πP′N D̂

M
n PN , (3.32)

where D̂
M
N is defined similarly as (4.9) but replacing f(.) by IMN (.).

Based on the above discussion and the simulation results presented in Section 3 , the follow
statement is proposed:

Statement 1. Let {Y1, Y2, ..., YN} be a sample observation of a second order stationary time
series {Yt}t∈Z satisfying (A1). Let IMN (.) be an estimator of the spectral density of {Yt}t∈Z and

define D̂N as in (4.9) but replacing f(.) with IMN (.). Let Γ̂N as in (3.32) where γ̂MN (h) is ob-

tained. Suppose that (A1) to (A10) hold. Then, γ̂MN (h) − γ(h) = op

(
1√
N

)
as N → ∞ for

h = 0, . . . , N − 1.

Due to some analytical complexities, the proof of this result will be left for the version of the
paper that will be submitted.

Now, given a sample {Y1, Y2, ..., YN} of {Yt}t∈Z, the N ×N autocorrelation matrix ρ̂N and its
robust version ρ̂MN are, respectively,

ρ̂N =
Γ̂N
γ̂11

, (3.33)

and

ρ̂MN =
Γ̂
M
N

γ̂M11

, (3.34)

where γ̂11 = γ̂N (0) and γ̂M11 = γ̂MN (0). Finally, the ACOVF and ACF, γ̂N (.) and ρ̂N (.), and their

robust counterparts, namely γ̂MN , ρ̂MN , are extracted from the rows of the circulant matrices Γ̂N ,

ρ̂N Γ̂
M
N and ρ̂MN , respectively.
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3 Monte Carlo experiments

This section reports a Monte Carlo simulation study to investigate the performance of the ro-
bust sample ACOVF and ACF estimators discussed previously. For the numerical experiments,
the data generating process of {Yt}t∈N is an autoregressive process of order 1 (AR(1)) as fol-
lows:

Yt = φYt−1 + εt, (3.35)

where |φ| < 1 and εt is a zero mean Gaussian white noise process with variance σ2.

Let {Y1, Y2, ..., YN} be a realization of {Yt}t∈N, the standard biased ACF estimator is

ρ̂(h) =
γ̂(h)

γ̂(0)
, −N < h < N (3.36)

where

γ̂(h) = N−1

N−|h|∑

t=1

(Yt+|h| − Ȳ )(Yt − Ȳ ), −N < h < N (3.37)

where Ȳ = N−1
∑N

t=1 Yt.

The contaminated process {Zt}t∈N is

Zt = Yt + ωδt, (3.38)

where ω is the magnitude of the outliers affecting {Yt}. {δ}t∈N are independent random variables
with Pr(δt = −1) = Pr(δt = 1) = p/2, and Pr(δt = 0) = 1 − p with 0 < p < 1. Notice that δt
is the product of Bernoulli(p) and Rademacher independent random variables. It follows that
E[δt] = 0 and Var[δt] = p.

For the purpose of comparison between the proposed sample ACF and the Robust ACF of
Ma & Genton (2000), the latter is summarized in the sequel. Given a sample {Y1, Y2, ..., YN}
of {Yt}t∈Z, based on the QN scale estimator proposed by Rousseeuw & Croux (1993), Ma &
Genton (2000) suggested the following highly robust estimator of the ACOVF

γ̂QN
(h) =

1

4

[
Q2
N−h(U + V )−Q2

N−h(U − V )
]
, (3.39)

where U and V are vectors containing the initial N − h and the final N − h observations of
{Y1, Y2, ..., YN}, respectively. Then, the autocorrelation function can be obtained from

ρ̂QN
(h) =

Q2
N−h(U + V )−Q2

N−h(U − V )

Q2
N−h(U + V ) +Q2

N−h(U − V )
, (3.40)

where U and V are also vectors containing the initial N−h and the final N−h of {Y1, Y2, ..., YN}.
It can be shown that |ρ̂QN

(h)| ≤ 1.

The asymptotic results of the above robust autocovariance in time series with short and long
memory properties were the motivation for the papers of Lévy-Leduc et al. (2011b) and Lévy-
Leduc et al. (2011a). Theorem 4 in Lévy-Leduc et al. (2011b) presents the central limit theorem
for the autocorrelation given by (3.39). The non-positive definiteness property of (3.39) was
one of the motivations to propose a new robust autocovariance and autocorrelation function
estimators.

In the simulations, φ = 0.7, σ2 = 1, ω = 15 and p = 0.05, 0.10 and 0.15 are set. The sample sizes
are N = 200, 500 and 1000, and each experiment is replicated 1000 times. Two scenarios are
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considered: (i) the samples are uncontaminated (p = 0), and (ii) the samples are contaminated
(p 6= 0). Under both scenarios, the comparison between the estimators is done by contrasting the
plots and the averages of empirical root mean square error (RMSE) and bias of the theoretical
ρ(h) = φh with ρ̂(h), ρ̂MN (h) and ρ̂QN

(h), for h = 0, 1, . . . , 8.

In this direction, Figure 4.1 displays the plots of ρ(h) and the means of ρ̂(h), ρ̂N (h), ρ̂MN (h)
and ρ̂QN

(h) for the uncontaminated scenario. The case of p = 0.05 is shown in Figure 4.2. For
the uncontaminated case, we observe similar behavior in all the plots indicating that all the
estimators capture the correlation structure of the series. The effects of additive outliers appear
by comparing the true correlation to the sample estimates under a contaminated scenario, see
Figure 4.2. Not surprisingly, ρ̂(h) and ρ̂N (h) were completely affect while ρ̂M (h) and ρ̂QN (h)
provided values much closer to the theoretical ones. Related to Figures 4.1 and 4.2, Figure 3.3
and 3.4 show the boxplot of the simulated ACF values for both scenarios, respectively.
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Figure 3.1: Autocorrelation function of zt. From left to right and top to bottom, plots are ρ(h),
ρ̂(h), ρ̂N (h), and ρ̂M (h), ρ̂QN (h) when p = 0.
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Figure 3.2: Autocorrelation function of zt. From left to right and top to bottom, plots are ρ(h),
ρ̂(h), ρ̂N (h), and ρ̂M (h), ρ̂QN (h) when p = 0.05.

In Table 4.1, we present the root mean squared errors (RMSE) of ρ̂(h), ρ̂N (h), ρ̂MN (h) and ρ̂QN
(h)

as N increases, for h = 0, 1, . . . , 8 and p = 0. The results for the contaminated scenario p 6= 0
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Figure 3.3: Boxplots of estimated ACF of zt when p = 0.
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Figure 3.4: Boxplots of estimated ACF of zt when p = 0.05.

are displayed in Tables 4.3, 3.4 and 3.5, for p = 0.05, p = 0.10 and p = 0.15, respectively.
From Table 4.1, we observe that the samples and the robust estimators have RMSE close to
the each other in the absence of contamination. As expected, ρ̂(h) and ρ̂N (h) performed best.
Comparing ρ̂MN (h) and ρ̂QN

(h), we find that ρ̂QN
(h) has a slight better performance than ρ̂MN (h)

for h = 1. Therefore, ρ̂MN (h) and ρ̂QN
(h) are useful even in the context which the presence of

additive outliers is uncertain.
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Table 3.1: RMSE of ρ̂(h), ρ̂N (h), ρ̂MN (h) and ρ̂QN
(h), for h = 0, 1, . . . , 8 and p = 0.

N 1 2 3 4 5 6 7 8

ρ̂(h)
200 0.0514 0.0794 0.0962 0.1060 0.1118 0.1137 0.1141 0.1134
500 0.0347 0.0540 0.0645 0.0696 0.0726 0.0729 0.0742 0.0752
1000 0.0231 0.0352 0.0425 0.0475 0.0506 0.0521 0.0528 0.0532

ρ̂N (h)
200 0.0510 0.0753 0.0894 0.0983 0.1049 0.1079 0.1085 0.1092
500 0.0344 0.0526 0.0626 0.0676 0.0706 0.0709 0.0724 0.0738
1000 0.0230 0.0347 0.0415 0.0463 0.0494 0.0510 0.0517 0.0524

ρ̂MN (h)
200 0.0635 0.0832 0.0926 0.0987 0.1030 0.1050 0.1050 0.1060
500 0.0461 0.0610 0.0670 0.0699 0.0707 0.0701 0.0707 0.0719
1000 0.0352 0.0437 0.0464 0.0485 0.0502 0.0509 0.0511 0.0518

ρ̂QN
(h)

200 0.0533 0.0835 0.1018 0.1131 0.1218 0.1235 0.1252 0.1270
500 0.0373 0.0589 0.0702 0.0761 0.0785 0.0777 0.0794 0.0810
1000 0.0251 0.0383 0.0459 0.0503 0.0538 0.0555 0.0564 0.0576

Table 3.2: Bias of ρ̂(h), ρ̂N (h), ρ̂MN (h) and ρ̂QN
(h), for h = 0, 1, . . . , 8 and p = 0.

N 1 2 3 4 5 6 7 8

ρ̂(h)
200 -0.0193 -0.0279 -0.0322 -0.0340 -0.0316 -0.0305 -0.0298 -0.0292
500 -0.0078 -0.0126 -0.0136 -0.0150 -0.0161 -0.0167 -0.0167 -0.0164
1000 -0.0054 -0.0081 -0.0091 -0.0104 -0.0113 -0.0112 -0.0110 -0.0092

ρ̂N (h)
200 -0.0186 -0.0175 -0.0134 -0.0089 -0.0024 0.0013 0.0036 0.0050
500 -0.0073 -0.0081 -0.0055 -0.0041 -0.0035 -0.0031 -0.0026 -0.0020
1000 -0.0051 -0.0058 -0.0051 -0.0051 -0.0050 -0.0043 -0.0038 -0.0018

ρ̂MN (h)
200 -0.0384 -0.0367 -0.0287 -0.0201 -0.0104 -0.0041 -0.0008 0.0015
500 -0.0273 -0.0279 -0.0216 -0.0160 -0.0117 -0.0086 -0.0065 -0.0046
1000 -0.0250 -0.0254 -0.0206 -0.0162 -0.0130 -0.0096 -0.0070 -0.0038

ρ̂QN
(h)

200 -0.0170 -0.0252 -0.0294 -0.0302 -0.0293 -0.0269 -0.0284 -0.0302
500 -0.0078 -0.0131 -0.0146 -0.0151 -0.0161 -0.0162 -0.0157 -0.0158
1000 -0.0053 -0.0080 -0.0089 -0.0097 -0.0106 -0.0100 -0.0097 -0.0082

Now, considering the occurrence of outliers, in Table 4.3, we see that the RMSE of the sample
estimate is much larger than the RMSE of the robust estimators when the percentage of con-
tamination is 5%, and, thus, confirming that even a small fraction of contamination can make
the sample ACF useless. Moreover, the RMSE of the robust estimators are almost the same
in the uncontaminated and the contaminated cases, but, again, ρ̂QN

(h) performs better than
ρ̂MN (h) for h = 1, 2, 3.

Table 3.3: RMSE of ρ̂(h), ρ̂N (h), ρ̂MN (h) and ρ̂QN
(h), for h = 0, 1, . . . , 8 and p = 0.05.

1 2 3 4 5 6 7 8

ρ̂(h) 0.6377 0.4510 0.3186 0.2252 0.1617 0.1186 0.0887 0.0693
ρ̂N (h) 0.6365 0.4493 0.3165 0.2228 0.1591 0.1160 0.0866 0.0673
ρ̂MN (h) 0.1418 0.1151 0.0940 0.0798 0.0722 0.0677 0.0659 0.0659
ρ̂QN

(h) 0.0432 0.0642 0.0741 0.0768 0.0786 0.0783 0.0797 0.0809

To empirically investigate the breakdown point of the proposed estimator, the RMSE of ρ̂MN (h)
as the percentage of outliers in {zt} increases are presented in Tables 4.3 and 3.4, respectively.
Comparing both tables, note that increasing the percentage of outliers reduces the performance
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of both estimators. However, not surprisingly, ρ̂MN (h) and ρ̂QN
(h) are less affect by the outliers,

although ρ̂QN
(h) still performs slightly better than ρ̂MN (h).

Table 3.4: RMSE of ρ̂(h), ρ̂N (h), ρ̂MN (h) and ρ̂QN
(h), for h = 0, 1, . . . , 8 and p = 0.10.

1 2 3 4 5 6 7 8

ρ̂(h) 0.6574 0.4645 0.3280 0.2339 0.1668 0.1220 0.0916 0.0713
ρ̂N (h) 0.6558 0.4627 0.3256 0.2317 0.1644 0.1197 0.0894 0.0694
ρ̂MN (h) 0.2317 0.1717 0.1268 0.0984 0.0803 0.0711 0.0668 0.0625
ρ̂QN

(h) 0.0549 0.0722 0.0779 0.0787 0.0786 0.0783 0.0799 0.0800

Table 3.5: RMSE of ρ̂(h), ρ̂N (h), ρ̂MN (h) and ρ̂QN
(h), for h = 0, 1, . . . , 8 and p = 0.15.

0 1 2 3 4 5 6 7 8

ρ̂(h) 0.6587 0.4688 0.3325 0.2363 0.1700 0.1228 0.0922 0.0725
ρ̂N (h) 0.6572 0.4669 0.3304 0.2339 0.1678 0.1211 0.0904 0.0709
ρ̂MN (h) 0.3091 0.2232 0.1630 0.1195 0.0943 0.0766 0.0677 0.0612
ρ̂QN

(h) 0.0738 0.0860 0.0861 0.0834 0.0835 0.0804 0.0802 0.0795

4 Conclusion

This paper presented a new estimation method for the autocovariance and autocorrelation func-
tions of stationary univariate processes with absolutely summable autocovariance function. The
procedure consists in replacing the traditional periodogram by the robust M -periodogram in the
inverse diagonalization procedure of the matrix containing the estimated spectral density. The
proposed method is also robust to additive outliers. Therefore, the authors suggest the use of
the proposed method in a time series in which there are occurrences of additive outliers and/or
heavy-tail distribution.
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Chapter 4

Paper 2: A robust alternative
method for the estimation of the
covariance and the correlation
matrices for multivariate time
series

A natural extension of the estimators proposed in the first paper constructed in order to consider
multivariate stationary time series. The approach is similar of the one from the first paper. That
is, first we obtain the Fourier or robust Fourier coefficients from each series individually. Then,
from the Fourier coefficients we construct the periodogram matrix which is used to construct the
estimator of the autocovariance matrix function of the time series vector. A simulation study
is presented to investigate the performance of the estimators for some finite sample sizes. An
application to an air pollution data set is also considered.

This Chapter presents the second original contribution:

Abstract

This paper extends the results from Cotta, A. Reisen & Bondon (2017) for the case of
multivariate time series with absolutely summable autocovariance function. A very impor-
tant time series result establishes that, under some assumptions, the time and frequency
domains are connected by the Fourier transform of the autocovariance and the spectral den-
sity. This connection allows each element of the matrix HNΓY

NH
∗
N − 2πDN converges to

zero uniformly as N → ∞, where, ΓY
N is the covariance matrix of the first N observations

from a r-dimensional stationary process {Yt}t∈Z with absolutely summable covariances and
spectral density matrix fY (.), DN is a 2N × 2N diagonal matrix with elements of fY

ij (.)

and HN is a matrix of eigenvectors of ΓY
N . That is, the first method considers the duality

connection between the autocovariance matrix function and the spectral density matrix and
implements an inverse diagonalization procedure considering the periodogram matrix and
the Fourier transform vector basis in order to obtain a new estimator for ΓY

N . However,
as in the standard sample autocovariance matrix function case, this new estimator is also
sensitive to additive outliers. The robustness property is achieved by replacing the standard
periodogram matrix with the M -periodogram matrix. The asymptotic properties of the two
proposed estimators are established. The finite sample size investigation shows that both
methods perform close to the standard sample autocovariance matrix function in the case
of non-contaminated data. Under the contaminated data scenario, the estimator built using
the M -periodogram matrix remains unaffected while, as expected, the one employing the
classical periodogram matrix is totally corrupted. Hence, the autocovariance and autocor-
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relation matrices M -estimators proposed are a viable alternative estimators of ΓY
N and ρYN ,

respectively, for multivariate time series with and without outliers.

1 Introduction

It is well-known that outliers may lead to a complete destruction of the correlation structure
and, thus, leading to model misspecification and wrong conclusions. See, for example, Chan
(1995), Molinares et al. (2009), Cotta, Reisen, Bondon & Stummer (2017) and the references
therein. This issue is found for univariate and multivariate time series. However, as pointed by
Tsay et al. (2000), most of the outliers studies are devoted only to the univariate time series or
to the multivariate time uncorrelated processes.

In order to address this issue in a multivariate time series context, Cotta, Reisen, Bondon &
Stummer (2017) studied the impact of additive outliers on the autocovariance (ACOVF) and
autocorrelation (ACF) matrices functions and proposed robust estimation methods for these
functions as a way to mitigate the impact of outlying observations. The proposed estimators
are based on the univariate robust estimators proposed by Ma & Genton (2000) which make
use of the Qn scale estimator proposed by Rousseeuw & Croux (1993). Although highly robust,
the autocovariance functions of Ma & Genton (2000) and Cotta, Reisen, Bondon & Stummer
(2017) do not yield positive definite matrices.

The duality between time and frequency domains is given by the autocovariance function and
the spectral density connected though the Fourier transform. In this direction, Cotta, A. Reisen
& Bondon (2017) proposed two estimators for the autocovariance and autocorrelation functions
of univariate stationary time series. The ACOVF and ACF are obtained from the inverse
diagonalization procedure of the matrix containing the periodogram. The robust version of
the estimators is obtained by fitting a robust harmonic regression to obtain a robust version
of the discrete Fourier transform, and, thus the so-called M -periodogram that was studied by
Reisen, Lévy-Leduc & Taqqu (2017), Fajardo et al. (2018) and Reisen, Lévy-Leduc, Cotta,
Bondon & Ispany (2019) for short and long-memory processes. These estimators yield positive
definite matrices by construction since the periodogram and the M -periodogram are strictly
positive.

Therefore, in this paper, we shall extend to the multivariate stationary time series context the
robust estimator of the autocovariance and the autocorrelation functions proposed by Cotta,
A. Reisen & Bondon (2017) from the frequency domain. The robust estimators are obtained
from the robust M -periodogram matrix which is achieved by calculating the Fourier coefficients
from the robust M -regression. Then, the multivariate ACOVF and ACF are obtained.

The outline of this paper is as follows: besides the introduction, Section 2 presents the mul-
tivariate time series model and discusses the estimation of the ACOVF and ACF from the
cross-periodogram. Section 3 presents the robust ACOVF and ACF obtained from the M -cross-
periodogram. Section 4 summarizes the simulation experiments and the robust performance
of the estimators comparing them to the standard sample estimators. Concluding remarks are
given in Section 6 .

2 Time series model with additive outliers

2 .1 Linear Time Series

Let Yt = [Y1t, Y2t, . . . , Yrt]
′, t ∈ Z be a r-dimensional, r ∈ N, linear vector process defined

by
Yt = µ+

∑∞
j=0 Ψjεt−j , (4.1)
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where E(Yt) = µ and µ = [µ1, . . . , µr]
′, Ψ0 is the identity r×r matrix, Ψj , j = 1, . . . ,∞ are r×r

matrices of coefficients satisfying
∑∞

j=0 ‖Ψ‖2 <∞, where ‖Ψ‖ is the norm of matrix Ψ defined

by ‖Ψ‖2 = Tr(Ψ′Ψ). In 4.1, the εt form a vector white noise processes with Ψ = [ε1t, . . . , εrt]
′

such that E(εt) = 0 and Cov(εt, εt+h) = Σε 1{h=0}, where 1{h=0} = I, if h = 0 and I{h6=0} = 0
otherwise. Although the elements of {εt} at different times are uncorrelated, they may be
contemporaneously correlated.

It results from (4.1) that

ΓY (h) = Cov(Yt,Yt+h) =
∑∞

j=0 ΨjΣεΨ
′
j+h, h ≥ 0, (4.2)

is a r× r matrix where the (i, j)th element, i, j = 1, . . . , r, of ΓY (h) is denoted by γYij (h).

The lag-h, h ∈ Z autocorrelation matrix function of {Yt}t∈Z is defined by

ρY (h) = C−1/2ΓY (h)C−1/2, (4.3)

where C−1/2 = diag

[√
γY11(0), . . . ,

√
γYrr(0)

]
. The (i, j)th element of ρY (h) is

ρYij (h) =
Cov(Yit, Yj,(t+h))√
Var(Yit)Var(Yjt)

=
γYij (h)

√
γYii (0)γYjj (0)

. (4.4)

We here denote by Γ̂Y (h) and ρ̂Y (h) the standard sample estimates of ΓY (h) and ρY (h),
respectively, i.e., the estimate that we obtain by replacing the unknown covariances in (4.3) by
their sample estimates.

In the sequel, for simplicity of presentation and without loss of generality, let {Yt}t∈Z be a
bi-dimensional multivariate time series with r = 2, where Yt = [Y1t, Y2t]

′, which satisfies the
assumption

(A11)
∑∞

h=−∞ |γYij (h)| <∞, for i, j = 1, 2.

Under Assumption (A11), the spectral density matrix of {Yt}t∈Z is defined as

fY (λ) =
[
fYij (λ)

]2
i,j=1

=

[
fY11 fY12

fY21 fY22

]
, λ ∈ [−π, π], (4.5)

where

fYij (λ) =
1

2π

∞∑

h=−∞
γYij (h)e−ihλ. (4.6)

Let {Y1,Y2, . . . ,YN} be the first N , N ∈ N, observations of {Yt}t∈Z. The 2N × 2N covariance
matrix of {Y1,Y2, . . . ,YN} is defined by

ΓYN = [ΓYN,ij ]
2
i,j=1 =

[
ΓYN,11 ΓYN,12

ΓYN,21 ΓYN,22

]
, (4.7)

where ΓYN,ij = [γYN,ij(l −m)]Nl,m=1 and γYN,ij(.) = γYij (.).

Proposition 3. Let ΓYN be the covariance matrix of the first N , N ∈ N, observations from
{Yt}t∈Z which satisfies (A11), and let fY (.) be its spectral density matrix as given by (4.5). Let
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λk = 2πk/N, k = 0, . . . , N − 1. Let DN be an 2N × 2N matrix,

DN = [DN,ij ]
2
i,j=1 =

[
DN,11 DN,12

DN,21 DN,22

]
, (4.8)

where

DN,ij = diag[fYij (0), fYij (λ1), . . . , fYij (λ(N−1))]. (4.9)

Define a transformation matrix HN by

HN =

[
GN 0
0 GN

]
, (4.10)

where GN is an N × N matrix where the rows are the eigenvectors which shall lead to the
diagonalization of ΓYN , given by

gN,k = N−1/2[1, e−iπk/N , e−iπ2k/N , . . . , e−iπ(N−1)k/N ], k = 0 . . . , N − 1. (4.11)

Let H∗N be the conjugate transpose of HN .

Then, every element of the matrix

HNΓYNH
∗
N − 2πDN , (4.12)

converge to zero uniformly as N →∞.

See the proof in Fuller (1996), Theorem 7.4.1.

Proposition 3 is very interesting from statistical point of view as it establishes the connection
between time and frequency domains for multivariate stationary processes through the relation
between the autocovariance matrix and the spectral density matrix. We shall now focus on
considering this dual connection to construct an estimator for the autocovariance matrix function
starting from an estimator of the spectral density matrix.

Let {Y1,Y2, . . . ,YN} be a sample of {Yt}t∈Z and f̂YN (.) be an estimator of the spectral density

matrix in (4.5). Given D̂N as an estimator of DN in (4.8) by replacing fY (.) with f̂YN (.), an
estimator for ΓYN is given by

Γ̂?YN = 2πH∗N D̂NHN . (4.13)

Let {Y1,Y2, . . . ,YN} be a sample of {Yt}t∈Z, a natural estimator of the spectral density matrix of
{Yt}t∈Z is obtained by replacing γYij (.) with γ̂Yij (.) in (4.6) for i, j = 1, 2. Thus, the periodogram
matrix is defined by

IYN (λk) = [IYN,ij(λk)]
2
i,j=1 =

[
IYN,11(λk) IYN,12(λk)

IYN,21(λk) IYN,22(λk)

]
, (4.14)

where

IYN,ij(λk) =
1

2π

N−1∑

h=−(N−1)

γ̂YN,ij(h) exp(−ihλk), (4.15)
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and λk = 2πk/N , with k = 0, . . . , N − 1.

The focus is on the properties of f̂YN (.) related to fY (.) that allows the convergence of Γ̂?YN
towards ΓYN . As discussed in Priestley (1981), without a suitable lag window, the periodogram
matrix is not a consistent estimator of the spectral density since the variance of IYN (.) does not
go to zero as N →∞. In order to obtain a consistent class of estimators of the spectral density
matrix of {Yt}t∈Z, the following assumptions are introduced:

(A12) {MN} is a sequence of positive integers, MN →∞ and MN
N → 0 as N →∞.

(A13) {WN (.)} is a sequence of weight functions with WN (k) = WN (−k) and WN (k) ≥ 0, for all
k.

(A14)
∑

|k|≤MN

WN (k) = 1 and
∑

|k|≤MN

W 2
N (k)→ 0 as N →∞.

Under Assumptions (A11)-(A14), a consistent class of estimators has the form

I?YN (λk) = [I?YN,ij(λk)]
2
i,j=1 =

[
I?YN,11(λk) I?YN,12(λk)

I?YN,21(λk) I?YN,22(λk)

]
, (4.16)

where

I?YN,ij(λk) =
1

2π

MN,ij∑

h=−MN,ij

WN,ij(k)IYN,ij(λk+h), (4.17)

and λk = 2πk/N , with k = 0, . . . , N − 1. The quantity MN,ij is called truncation point and
the function WN,ij(.) is called lag window. It should be noted that as advocated in Priestley
(1981), there is no reason for the lag window nor the truncation point to be the same for all
(ij)-elements of I?YN (.). However, they should be chosen to match the rating of decay of each
γ̂YN,ij(.) function. Henceforth, it is assumed that all γ̂YN,ij(.) for i, j = 1, 2, have the same rate of
decay, truncation point and lag window.

Theorem 3. Let {Y1,Y2, . . . ,YN} be an N observed sample of a second order stationary time
series {Yt}t∈Z satisfying (A11). Let I?YN (.) be an estimator of the spectral density matrix of

{Yt}t∈Z. Define D̂N as in (4.9), but replacing fY (.) with I?YN (.). Let Γ̂?YN as in (4.13). Then,

Γ̂?YN − 2πH∗NDNHN = op

(
1√
N

)
as N →∞. (4.18)

Proof. Taken each DN,ij and D̂N,ij , Γ̂?YN,ij and ΓYN,ij as in (4.9), (4.13) and (4.7), respectively
, for i, j = 1, 2. When, i = j, the proof is presented in Theorem 1 of Cotta, A. Reisen &
Bondon (2017). The case when i 6= j is obtained by arguments completely analogous to those
of Theorem 1 in Cotta, A. Reisen & Bondon (2017).

3 Robust estimation from the robust M-cross-periodogram

3 .1 Additive outlier model

A parametric class of linear time series satisfying (4.1) is the vector autoregressive moving
average (VARMA) model of orders (p, q) defined by the difference equation

Φ(B)(Yt − µ) = Θ(B)εt, (4.19)
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where B is the backward shift operator (BYt = Yt−1), Φ(B) = I −∑p
i=1 ΦiB

i and Θ(B) =
I +

∑q
i=1 ΘiB

i where Φi and Θi are r × r matrices, and {εt} is a vector white noise process.
When the polynomials Φ(z) and Θ(z) satisfy det(Φ(z)) 6= 0 and det(Θ(z)) 6= 0 for all z ∈ C
such that |z| ≤ 1, (4.19) has a unique stationary causal and invertible solution and the matrices
Ψj are determined uniquely by Ψ(z) =

∑∞
j=0 Ψjz

j = Φ−1(z)Θ(z) for |z| ≤ 1. We suppose
that the observed time series {Zt} results from the contamination of {Yt} by additive random
outliers, i.e.,

Zt = Yt + Ωδt, (4.20)

where Ω = diag[ω1, . . . , ωr] and ωi, i = 1, . . . , r, is the magnitude of the outliers which affects
{Yit}, δt = [δ1t, . . . , δrt]

′ is a random vector indicating the occurrence of an outlier at time t. We
assume that {Yt} and {δt} are uncorrelated processes and that P(δit = −1) = P(δit = 1) = pi/2,
P(δit = 0) = 1 − pi for i = 1, . . . , r where 0 ≤ pi < 1. Then E(δit) = 0 and Var(δit) = pi.
We assume also that Cov(δt, δt) = Σδ = diag[p1, . . . , pr] and that Cov(δt, δt+h) = 0 when
h 6= 0.

It follows from (4.20) that E(Zt) = E(Yt), ΓZ(0) = ΓY (0) + ΩΣδΩ
′ and ΓZ(h) = ΓY (h) when

h 6= 0. Therefore

ρZij(h) =





γYij (h)√
(γYii (0)+piω2

i )(γYjj (0)+pjω2
j )
, h 6= 0,

γYij (0)+piω
2
i 1{i=j}√

(γYii (0)+piω2
i )(γYjj (0)+pjω2

j )
, h = 0.

(4.21)

We observe that ρZij(h)→ 0 as |ωi| → ∞ or |ωj | → ∞ when h 6= 0, these conclusions are deeper
analyzed in Remark 2. The recent works of Lévy-Leduc et al. (2011b,a) and Chan (1995) discuss
this problem in univariate time series with short and long memory properties.

Remark 2. Suppose that {Z1t,Z2t, . . . ,Znt} are r-dimensional time series observations follow-

ing model (4.20) and m is the observed number of additive outliers. Let ρ̂Zij(h) = γ̂Zij (h)/(
√
γ̂Zii (0)γ̂Zjj(0)),

for all i, j = 1, . . . , r. Then

a. For m = 1 (one outlier occurring only at Zi),

lim
n→∞

plim
ωi→∞

ρ̂Zij(h) = 0.

b. For m = 2 (two outliers occurring at Zit or/and at Zj,t) and assuming that γ̂Zij (h) 6= 0,
for Zit and Zjt, it follows

lim
n→∞

plim
ωi→∞
and/or
ωj→∞

ρ̂Zij(h) = 0.

In (a) and (b), wi and wj are the magnitudes of the additive outliers occurring at position i and
j, respectively.

3 .2 Robust estimation method

It is known that a given zero-mean stationary univariate time series {Yt}t=1,...,N can be rep-
resented as a sum involving N sines and cosines at the Fourier frequencies λk = 2πk/N, k =
0, . . . , N − 1. The classical periodogram of {Yt} at frequency λk is

IYN (λk) =
1

2πN

∣∣∣∣∣
N∑

t=1

Yt exp(−itλk)

∣∣∣∣∣

2

.
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As discussed in Reisen, Lévy-Leduc & Taqqu (2017), one alternative way to derive the peri-
odogram function IYN (.) is based on the Least Square (LS) estimates of a bi-dimensional vector
β′ = (β(1), β(2)) in the linear regression model

Yi = c′Niβ + εi = β(1) cos(iλj) + β(2) sin(iλj) + εi , 1 ≤ i ≤ N, β ∈ R2 , (4.22)

where εi denotes the deviation of Yi from c′Niβ and E[εi] = 0 and E[ε2
i ] <∞. In the sequel, (εi)

is assumed to be a function of a stationary Gaussian process.

It is supposed that
εi = G(ηi), (4.23)

where G is a non null real-valued and skew symmetric measurable function (i.e. G(−x) =
−G(x), for all x) and (ηi)i≥1 is a stationary Gaussian process with zero mean and unit variance.
Additional assumption of (ηi)i≥1 is given in (A19).

It can be shown that

IYN (λk) =
N

8π
||β̂(λk)||2 =

N

8π

(
β̂1(λk)

2 + β̂2(λk)
2
)
, (4.24)

where β̂(λk) is the least squares regression solution

β̂(λk) = argmin
β∈R2

N∑

t=1

(Yt − C ′t(λk)β)2, (4.25)

with the regressors Ct(λk) = [cos(tλk), sin(tλk)]
′.

We robustify the periodogram by replacing the least squares regression with theM -regression.

Let now ψ(.) be a function satisfying the following assumptions:

(A15) 0 < E[ψ2(ε1)] <∞ .

(A16) The function ψ is absolutely continuous with its almost everywhere derivative ψ′ satisfying
E[|ψ′(ε1)|] < ∞ and such that the function z 7→ E[|ψ′(ε1 − z) − ψ′(ε1)|] is continuous at
zero.

(A17) ψ is non-decreasing, E[ψ′(ε1)] > 0 and E[ψ′(ε1)2] <∞.

(A18) ψ is skew symmetric, i.e. ψ(−x) = −ψ(x), for all x.

(A19) Let ηt, t ∈ Z, be i.i.d. standard Gaussian random variables and let aj be real numbers
such that

∑
j≥0 |aj | <∞ and a0 = 1. Then,

εi =
∑

j≥0

ajηi−j .

proposition

(A20) ψ is the Huber function that is ψ(x) = max[min(x, c),−c], for all x in R, where c is a
positive constant.

The M -estimator β̂ψ(λk) is defined as the solution of

N∑

t=1

Ct(λk)ψ(Yt − C ′t(λk)β) = 0, (4.26)
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where ψ is defined by

ψ(x) =

{
x, if |x| ≤ c,
c sign(x), if |x| > c,

and c is some positive constant, see Reisen, Lévy-Leduc & Taqqu (2017). In the following,
c = 1.345 is adopted to ensure an efficiency of 95% for the regression estimator in Gaussian
case.

Similarly to (4.24), the robust M -periodogram is defined by

IYM,N (λk) =
N

8π
||β̂ψ(λk)||2 =

N

8π

(
β̂1,ψ(λk)

2 + β̂2,ψ(λk)
2
)
. (4.27)

For the univariate context, the asymptotic properties of βψ are established for the short and
long-range dependence frameworks in Reisen, Lévy-Leduc & Taqqu (2017), Fajardo et al. (2018)
and Reisen, Lévy-Leduc, Cotta, Bondon & Ispany (2019) .

Let now {Y1,Y2, . . . ,YN} be a sample observation of a bivariate second order stationary time
series {Yt}t∈Z. In view of (4.24), the cross-periodogram at frequency λk = 2πk/N, k = 0, . . . , N−
1. defined by (4.15) may be written as

IYN,ij(λk) =





N
2π β̂1,Yi(λk)β̂1,Yj (λk) λk = 0
N

8π
(β̂1,Yi(λk)β̂1,Yj (λk) + β̂2,Yi(λk)β̂2,Yj (λk)−

i(β̂1,Yi(λk)β̂2,Yj (λk)− β̂1,Yj (λk)β̂2,Yi(λk)))
λk 6= 0, i,j=1,2,

where β̂1,Yi(λk) and β̂2,Yi(λk) are defined by (4.25) and {Yt} is replaced by {Yit}, i = 1, 2.

Likewise, the M -cross-periodogram is defined by

IYM,N,ij(λk) =





N
2π β̂1,Yi,ψ(λk)β̂1,Yj ,ψ(λk) λk = 0
N

8π
(β̂1,Yi,ψ(λk)β̂1,Yj ,ψ(λk) + β̂2,Yi,ψ(λk)β̂2,Yj ,ψ(λk)−
i(β̂1,Yi,ψ(λk)β̂2,Yj ,ψ(λk)− β̂1,Yj ,ψ(λk)β̂2,Yi,ψ(λk)))

λk 6= 0, i,j=1,2.

where β̂1Yi,ψ(λk) and β̂2Yi,ψ(λk), are defined by (4.26) and {Yt} is replaced by {Yit}, i =
1, 2.

Therefore, the M -periodogram matrix is defined by

IYM,N (λk) = [IYM,N,ij(λk)]
2
i,j=1 =

[
IYM,N,11(λk) IYM,N,12(λk)

IYM,N,21(λk) IYM,N,22(λk)

]
. (4.28)

As previously mentioned, the main objective of this paper ipropositions to obtain a robust
ACOVF which satisfies all the assumptions of the definition of an ACOVF presented in Theorem
11.8.1 (non-negative definiteness) in Brockwell & Davis (2013). In order to obtain such estimator,
in (4.13), the elements of D̂N matrix are replaced by the robust spectral estimator IYM,N (.).
Thus,

Γ̂YM,N = 2πH∗N D̂M,NHN . (4.29)

Statement 2. Let {Y1,Y2, . . . ,YN} be a sample observation of a second order stationary time
series {Yt}t∈Z satisfying (A11). Let IYM,N (.) be an estimator of the spectral density matrix of
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{Yt}t∈Z and define D̂M,N as in (4.8) but replacing fY (.) with IYM,N (.). Let Γ̂YM,N as in (4.29).
Suppose that (A11) to (A20) hold. Then,

Γ̂YM,N − 2πH∗NDNHN = op

(
1√
N

)
as N →∞. (4.30)

Let U be a 2N × 2N ,

U =

[
u11 0
0 u22

]
, (4.31)

where
uii =

[
(γ̂YN,ii,11)−1/2

]
(4.32)

and uii, i = 1, 2, is an n× n matrix where all entries are the first element of ΓYM,N,ii.

The correlation and the robust correlation matrices, namely, ρ̂?YN (h) and ρ̂YM,N (h), are given
byproposition

ρ̂?YN = U Γ̂?YN U (4.33)

and

ρ̂YM,N = UM Γ̂?YM,NUM . (4.34)

where UM is defined as (4.31) but in (4.32) replacing the entries of Γ̂?YN with the ones from

Γ̂?YM,N .

The lag-h, h = 0, . . . , N−1, sample cross-covariance and cross-autocorrelation functions γ̂?YN,ij(h)

and ρ̂?YN,ij(h) are, respectively, extracted from the first row of Γ̂?YN,ij and ρ̂?YN,ij , for i, j = 1, 2. Their

robust counterparts functions, γ̂YM,N,ij(h) and ρ̂YM,Nij(h) are respectively extracted from the first

row of Γ̂YM,N,ij and ρ̂YM,N,ij , for i, j = 1, 2. Finally, the lag-h autocovariance and autocorrelation
matrices functions in the sense of (4.2) and (4.3), are constructed estimating all (i, j)th elements
for i, j = 1, 2. For example, the robust autocovariance and autocorrelation matrices functions
are:

Γ̂YM,N (h) =

[
γ̂YM,N,11(h) γ̂YM,N,12(h)

γ̂YM,N,21(h) γ̂YM,N22(h)

]
(4.35)

and

ρ̂YM,N (h) =

[
ρ̂YM,N,11(h) ρ̂YM,N,12(h)

ρ̂YM,N,21(h) ρ̂YM,N,22(h)

]
. (4.36)

4 Numerical experiments

The computational experiments were performed using the R programming language R Core
Team (2019) and the estimators proposed are available in the acfMperiod package Cotta et al.
(2019) on The Comprehensive R Archive Network (CRAN-R). In this section, the effect of
additive outliers on the estimation of the autocovariance matrix function is investigated for finite
sample size time series generated from a Gaussian VAR(1) model. The samples {Y1,Y2, . . . ,Yn}
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were generated from a bivariate stationary VAR(1) model defined by the difference equation,
Yt = ΦYt−1 + εt, where µ = 0

Φ =

[
0.7 0.0
0.5 0.7

]

and (εt) is a zero-mean Gaussian white noise with covariance

Σε =

[
1.00 0.0
0.0 1.00

]
.

The sample sizes are N = 200, 500, 800 and 1000, and each experiment is replicated 1000 times.
In this direction, two different scenarios are simulated: (i) uncontaminated scenario (p = 0)
and (ii) the samples are contaminated (p 6= 0). The samples of {Zt} are the contamination
of {Yt} and were contaminated according to (4.20) where, without loss of generality, only the
first component {Y1t} is contaminated with additive outliers where the parameters are ω1 = 15
and p1 = 0.0, 0.01, 0.05 and 0.1. For both scenarios, the effect of additive outliers on the
sample estimates and the robustness property of the proposed robust estimators are verified by
contrasting the empirical means as well as root mean squared errors (RMSE) and biases related
to the theoretical values.

We focus on the autocorrelation matrix function since in accordance with the discussion pre-
sented in Section 3 , it is affected by additive outliers for all lags, which is in contrast with the
covariance matrix function where only h = 0 is affected. In addition, the numerical experiments
for univariate case, e.g, (i, i)th elements of the autocorrelation or autocovariance matrices func-
tions when i = 1, 2, are reported in Cotta, A. Reisen & Bondon (2017). Thus, for simplicity, we
present only the case when i = 1 and j = 2.

Figure 4.1 plots the true value ρYN,12(h) and the mean of the estimates ρ̂YN,12(h), ρ̂?YN,12(h) and

ρ̂YM,N,12(h) for n = 800, p1 = 0 and h = 0, . . . , 8. As it can be seen, all three estimators
present similar behavior compared to the true values. Therefore, when handling real data
and the analyst is uncertain of the presence of outliers, ρ̂YM,N,12(h) may still be used. The

contaminated scenario p1 = 0.01 is shown in Figure 4.2. Now, the non-robust estimators ρ̂ZN,12(h)

are ρ̂?ZN,12(h) completely affected by outliers while the behavior of ρ̂ZM,N,12(h) remained slightly

unchanged. Therefore, in the scenario of certain occurrence of outliers, the use of ρ̂ZM,N,12(h) is
recommended.

We now direct our attention towards the RMSE and the BIAS of ρ̂YN,12(h), ρ̂?YN,12(h) and

ρ̂YM,N,12(h) as n increases for p1 = 0 and h = 0, . . . , 8, presented in Tables 4.1 and 4.2. From
Table 4.1, we observe that the samples and the robust estimators have RMSE close to each other
in the absence of contamination. As expected, for all lags, ρ̂YN,12(h) performed best followed by

ρ̂YM,N,12(h) and ρ̂?YN,12(h). As the sample size n increases, we observe a reduction of the RMSE for

all estimators. Thus, reinforcing that ρ̂YM,N,12(h) is useful even in the context which the presence
of additive outliers is uncertain.

The bias of the estimates are presented in Table 4.2. We can see that ρ̂YN,12(h) underestimates the

cross-correlation structure while ρ̂?YN,12(h) tends to overestimate it. For the case of ρ̂YM,N,12(h)
the values are overestimated for n = 200 and n = 500 and underestimated for n = 800 and
n = 1000. Again, all estimators presented good performance.

We now consider the contaminated scenario when p1 = 0.1. The cases when p1 = 0.01 and
p1 = 0.05 presented similar conclusions and they are not shown here but available upon request.
The RMSE of ρ̂ZN,12(h), ρ̂?ZN,12(h) and ρ̂ZM,N,12(h) as n increases for h = 0, . . . , 8 is presented in

Table 4.3. As one can see, the RMSE of ρ̂ZN,12(h) and ρ̂?ZN,12(h) presented similar values but are
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Figure 4.1: Simulation results: ρYN,12(h) and the mean of the estimates ρ̂YN,12(h), ρ̂?YN,12(h) and

ρ̂YM,N,12(h) for n = 800, p1 = 0 and h = 0, . . . , 8.

quite different from the ones of ρ̂ZM,N,12(h), indicating their destruction while the latter is more
robust for 10% of occurrence of outliers.

5 Real data application

In this real data example, we consider the estimation of the sample autocorrelation matrix
function of the particulate matter of diameter ≤ 10µg/m3 measured at Ibes and Vila Velha
Centro (VVCentro) stations of the automatic air quality monitoring network (AAQMN) of the
Great Vitória Region (GVR) stations from January 2005 to December 2009. This data set has
already been considered as a real data example in Ispány et al. (2018) and Souza et al. (2018).
Figure 4.3 shows the time series plots of the data. From the plots, it is possible to see the presence
of outlying observations which justifies the application of the proposed methodology.

In Figures 4.4 and 4.5, we present the plots of ρ̂YN (h) and ρ̂YM,N (h), respectively. Comparing
both plots, one may see that vertical scale of both plots are equivalent. This might indicate
that the presence of outlying observation is not strong enough in order to completely destroy
the correlation structure of the data. However, since ρ̂YN (h) and ρ̂YM,N (h) behave similarly when

the data is outlier free, ρ̂YM,N (h) is used in the sub sequential analysis.

We focus on the estimation of Φ matrix in (4.19). Thus, consider the following equations:

Σε = ΓY (0) +

p∑

j=1

ΦjΓ
Y (−j) (4.37)

and

ΓY (h) =

p∑

j=1

ΦjΓ
Y (h− j), h = 1, . . . , p. (4.38)

Replacing ΓY (h) in equations (4.37) and (4.38) by Γ̂YM,N (h) leads to Yule-Walker estimators
whose equation system is solved using the Whittle’s algorithm. This estimation method might
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Figure 4.2: Simulation results: ρYN,12(h) and the mean of the estimates ρ̂ZN,12(h), ρ̂?ZN,12(h) and

ρ̂ZM,N,12(h) for n = 800, p1 = 0.01 and h = 0, . . . , 8.

be affected if there are outliers among the data. Therefore, this estimation procedure may be
robustified replacing Γ̂YN (.) by Γ̂YM,N (h) given in (4.35).

Returning to the model analysis, VAR models from first up to the forth order were fitted using
the standard and robust Yule-Walker methods, and for parsimonious reasons, the working model
is a VAR(1). Figures 4.6 and 4.7 present, respectively, the standard and robust autocorrelation
matrix of the fitted VAR(1) model. Comparing the plots from Figures 4.6 and 4.7 with the ones
of Figures 4.4 and 4.5, we see that the VAR(1) filters, apart from the seasonality component,
were capable to capture the correlation structure of the pollutant series.

In addition, contrasting Figures 4.6 and 4.7, it is possible to observe that the ρ̂YM,N (h) presents

similar values as those of ρ̂YN (h). This is an expected result since the plots of Figures 4.4 and 4.5
also presented similar behaviour.

To end this example, we robustly estimated the parameters of the model. The plots of the
residuals are shown in Figures 4.8 and 4.9 for ρ̂YN (h) and ρ̂YM,N (h), respectively. Comparing the

Figures 4.6 and 4.8 it is also noted a similarity between the values of ρ̂YN (h) and ρ̂YM,N (h) which
is also expected in view of the similarity between Figures 4.4 and 4.5.

6 Conclusions

The effect of additive outliers on the estimation of the covariance and correlation matrix func-
tions of a stationary multivariate time series was addressed. Robust estimation methods for
these matrices were proposed and their performance empirically investigated through Monte
Carlo simulation. The numerical experiment results illustrated the good behavior in terms of
mean square error of the proposed robust estimators even when the data contain a considerate
number of atypical observations. A real data set was analyzed where the proposed robust co-
variance matrix estimator replaced the standard sample covariance estimator in the Yule-Walker
equations.
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Table 4.1: RMSE of ρ̂YN,12(h), ρ̂?YN,12(h) and ρ̂YM,N,12(h) as n increases for p1 = 0 and h = 0, . . . , 8.

n 0 1 2 3 4 5 6 7 8

ρ̂YN,12(h)

200 0.0980 0.1136 0.1225 0.1260 0.1262 0.1281 0.1302 0.1297 0.1302
500 0.0596 0.0699 0.0764 0.0796 0.0807 0.0812 0.0824 0.0834 0.0845
800 0.0453 0.0538 0.0595 0.0636 0.0662 0.0672 0.0678 0.0681 0.0684
1000 0.0409 0.0478 0.0520 0.0548 0.0572 0.0589 0.0599 0.0602 0.0603

ρ̂?YN,12(h)

200 0.1371 0.1477 0.1540 0.1576 0.1591 0.1627 0.1646 0.1652 0.1674
500 0.0784 0.0865 0.0923 0.0961 0.0976 0.0986 0.1003 0.1015 0.1026
800 0.0533 0.0611 0.0663 0.0701 0.0729 0.0746 0.0756 0.0763 0.0771
1000 0.0463 0.0525 0.0564 0.0590 0.0614 0.0631 0.0643 0.0649 0.0652

ρ̂YM,N,12(h)

200 0.1328 0.1432 0.1492 0.1529 0.1549 0.1583 0.1602 0.1605 0.1626
500 0.0766 0.0847 0.0907 0.0943 0.0957 0.0962 0.0970 0.0978 0.0988
800 0.0547 0.0617 0.0665 0.0696 0.0716 0.0728 0.0733 0.0738 0.0751
1000 0.0484 0.0534 0.0562 0.0579 0.0599 0.0618 0.0634 0.0638 0.0641

Table 4.2: BIAS of ρ̂YN,12(h), ρ̂?YN,12(h) and ρ̂YM,N,12(h) as n increases for p1 = 0 and h = 0, . . . , 8.

n 0 1 2 3 4 5 6 7 8

ρ̂YN,12(h)

200 -0.0213 -0.0286 -0.0338 -0.0367 -0.0367 -0.0367 -0.0379 -0.0372 -0.0359
500 -0.0050 -0.0077 -0.0096 -0.0092 -0.0093 -0.0095 -0.0104 -0.0110 -0.0129
800 -0.0065 -0.0087 -0.0104 -0.0117 -0.0122 -0.0118 -0.0112 -0.0104 -0.0097
1000 -0.0041 -0.0056 -0.0065 -0.0069 -0.0069 -0.0066 -0.0060 -0.0054 -0.0053

ρ̂?YN,12(h)

200 0.0323 0.0246 0.0193 0.0162 0.0163 0.0162 0.0151 0.0151 0.0162
500 0.0202 0.0175 0.0156 0.0161 0.0162 0.0159 0.0152 0.0146 0.0127
800 0.0081 0.0057 0.0041 0.0027 0.0023 0.0026 0.0032 0.0039 0.0047
1000 0.0077 0.0061 0.0054 0.0050 0.0049 0.0051 0.0056 0.0063 0.0064

ρ̂YM,N,12(h)

200 0.0114 0.0082 0.0074 0.0080 0.0101 0.0114 0.0121 0.0129 0.0152
500 0.0018 0.0028 0.0047 0.0081 0.0099 0.0114 0.0116 0.0118 0.0103
800 -0.0099 -0.0079 -0.0058 -0.0042 -0.0024 -0.0004 0.0012 0.0023 0.0032
1000 -0.0112 -0.0085 -0.0051 -0.0023 0.0001 0.0016 0.0030 0.0043 0.0050

Table 4.3: RMSE of ρ̂ZN,12(h), ρ̂?ZN,12(h) and ρ̂ZM,N,12(h) as n increases for p1 = 0.1 and h =
0, . . . , 8.

n 0 1 2 3 4 5 6 7 8

ρ̂ZN,12(h)

200 0.3594 0.2594 0.1896 0.1415 0.1121 0.0936 0.0839 0.0776 0.0758
500 0.3497 0.2458 0.1758 0.1278 0.0956 0.0746 0.0634 0.0572 0.0537
800 0.3507 0.2487 0.1767 0.1274 0.0930 0.0697 0.0557 0.0480 0.0431
1000 0.3478 0.2451 0.1739 0.1243 0.0908 0.0681 0.0542 0.0451 0.0400

ρ̂?ZN,12(h)

200 0.3507 0.2524 0.1846 0.1391 0.1124 0.0969 0.0894 0.0852 0.0861
500 0.3449 0.2412 0.1716 0.1243 0.0932 0.0736 0.0638 0.0591 0.0564
800 0.3479 0.2461 0.1741 0.1252 0.0910 0.0684 0.0550 0.0478 0.0436
1000 0.3453 0.2427 0.1716 0.1221 0.0888 0.0665 0.0530 0.0442 0.0397

ρ̂ZM,N,12(h)

200 0.1987 0.1602 0.1384 0.1233 0.1175 0.1158 0.1152 0.1166 0.1175
500 0.1814 0.1334 0.1047 0.0871 0.0780 0.0740 0.0721 0.0719 0.0728
800 0.1849 0.1345 0.1004 0.0803 0.0669 0.0597 0.0562 0.0552 0.0548
1000 0.1803 0.1300 0.0958 0.0740 0.0609 0.0527 0.0492 0.0478 0.0473

39



20
40

60
80

Ib
es

20
40

60
80

0 500 1000 1500

V
V

C
en

tr
o

Time

Figure 4.3: PM10 concentration measured at Ibes and VVCentro stations.
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Figure 4.4: ρ̂YN (h) of Ibes and VVCentro.
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Figure 4.5: ρ̂YM,N (h) of Ibes and VVCentro stations.
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Figure 4.6: ρ̂YN (h) of the residuals the fitted VAR(1) via Yule-Walker.
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Figure 4.7: ρ̂YM,N (h) of the residuals the fitted VAR(1) via Yule-Walker.
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Figure 4.8: ρ̂YN (h) of the residuals of fitted VAR(1) via robustified Yule-Walker.
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Figure 4.9: ρ̂YM,N (h) of the residuals of fitted VAR(1) via robustified Yule-Walker.
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Chapter 5

Paper 3: A robust method for
estimating the number of factors in
an approximate factor model

In the third paper, we pose a robust method for estimating the number of factors in approximate
factor model. It is empirically demonstrated that additive outliers increase the number of
estimated factors and a robust alternative suggested. The methodology consisted in replacing
the lag-0 covariance matrix with the lag-0 robust covariance matrix proposed in the second
paper. In the application section, we found that with the robust method only 1 factor can be
used to explain the dynamic behavior of PM10 data.

Abstract

This paper considers the approximate factor model for high-dimensional time series with
additive outliers for modeling the dynamic behavior of PM10 data measured at air quality
monitoring stations of Île-de-France region. We propose a robustification procedure of the
information criteria proposed by Bai & Ng (2002). The robust estimator of the number of
factors is obtained by replacing the standard covariance matrix with M -covariance matrix.
Simulations are carried out under the scenarios of multivariate time series with and without
additive outliers to assess the impact of additive outliers on the standard information criteria
and to analyze the finite sample size performance of the proposed robust estimator of the
number of factors. In the application section, the robust factor analysis is performed to
reduce the dimension of the data.

1 Introduction

Nowadays, thanks to the improvements in computer power and data storage capacity, data
scientist have now the possibility to work and study high dimensional data sets. As time passes
by more data is generated, the dimension increases and so does the number of parameters to
be estimated of many statistical models. Therefore, new techniques that accommodate high
dimensional data sets are needed. In this context, the factor analysis (FA) is, undoubtedly,
one of the most used techniques employed by the analyst for summarizing information while
reducing the dimension of a large amount of data.

The FA model assumes that the common factors are latent (not observed) and in order to the
model be identifiable some assumptions about the underlying factor structure are required. This
fact leads to the development of various factor models. In this direction, a common assumption
is that the covariance matrix of the idiosyncratic component is diagonal and this is the starting
point of the widely used orthogonal factor model. New factor models are created insofar this
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basic assumption is relaxed. The approximate factor model in the sense of Connor & Korajczyk
(1986) allows some correlation among the idiosyncratic component.

In this context, one possible approach to estimate the factor model is to assume normality and to
use the maximum likelihood estimation or Kalman filter approaches. However, the assumption
of normality may be too strong when working with applied data. Another drawback is the
number of parameters to be estimated using the Kalman filter approach increases as the more
variables are considered.

The approach considered here implements the framework of Bai & Ng (2002), which employs
the principal component analysis (PCA) technique to estimate the latent factors. Nevertheless,
the PCA tool is the most popular estimation method due to its performance and ease of use. As
pointed out by many authors, the PCA method is sensitive to the occurrence of outliers among
the collected data Bai & Ng (2017). For example, Reisen, Sgrancio, Lévy-Leduc, Bondon, Monte,
Cotta & Ziegelmann (2019) showed that the number of factors is influenced by the presence of
additive outliers and proposed the use of a robust autocovariance function estimator to mitigate
the effect of additive outliers.

In addition, to be of high dimension due to a large number of variables measured at air pollution
monitoring stations scattered over different regions, it is well-known that air pollution data may
also present high peaks which may seem as outlying observations. In this scenario, the usual
solution is to remove observations that are suspicious to be outliers, but doing so, one is tacitly
implying the outliers to be errors which are not the case of most of the high peaks of air pollution
time series as they may cause serious harms to the human health and environment.

Nonetheless, these high-level observations can be seen as aberrant values from a statistical point
of view. In this direction, these outlying observation can directly affect the statistical properties
of the standard estimates such as the sample mean and sample covariance which will affect any
sub-sequential method, for example, the FA method making use of the standard PCA technique.
In this scenario, the usual solution is to remove observations that are suspicious to be outliers
but doing so, one is implicitly assuming the outliers to be errors. Thus, in this paper, robust
estimators are proposed for tackling this common issue.

Therefore, this paper considers multivariate time series with additive outliers using the FA
technique for dimension reduction where the number of factors is estimated using the criteria
of Bai & Ng (2002). In this context, it is here proposed and studied a robust version of the
estimators given in Bai & Ng (2002).

The paper is organized as follows: besides the introduction, Section 2 introduces the model and
the estimation procedure here considered. Section 3 discuss the impact of additive outliers on
the factor model and presents a robust methodology in order to mitigate the effect of the outlying
observations. Some Monte Carlo experiments are presented in Section 4 . The application and
the concluding remarks are in Sections 5 and 6 , respectively.

2 Model and estimation

Let N , N ∈ N, denotes the number of variables and T , T ∈ N, the sample size. For, i = 1, . . . , N
and t = 1, . . . , T , the observationXit is said to a have factor structure if it can be written as

Xit = λ′iFt + εit = Cit + εit, (5.1)

where Ft is a vector of common factors, λi is a vector of factor loadings associated with Ft, and
εit is the idiosyncratic component of Xit. Cit called the common component of Xit.
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The model is latent, i.e, the factors and their corresponding loadings, and the idiosyncratic
component are not observable. If the factors were to be observable, the model could be easily
estimated, for example, by multiple linear regression. Note that the Xit has a contemporaneous
relationship with Ft, thus (5.1) is referred as the static factor model. This is in contrast with
the dynamic factor model, in which Xit does not have a contemporaneous relationship with
the factors. Dynamic factor models are studied by Stock & Watson (2002) Geweke (1977) and
Sargent et al. (1977), among others and are beyond the scope of this paper. In this paper, a
robust estimator of the number of factors r, r ∈ N is proposed.

Let F 0
t and λ0

i denote the true common factors and their corresponding factor loadings. Thus,
(5.1) can be written as an N -dimensional time series with T observations. At a time t =
1, . . . , T,

Xt = Λ0F 0
t + εt, (5.2)

where Xt = (X1t, . . . , XNt)
′, Λ0 = (λ1, . . . , λN )′ and εt = (ε1t, . . . , εNt)

′.

(5.1) can also be written as a T−dimensional vector of random variables. For a given i,

Xi = F 0λ0
i + εi, (5.3)

where Xi = (Xi1, . . . , XiT )′, F 0
t = (F 0

1 , . . . , F
0
T )′ and εi = (εi1, . . . , εiT )′.

Finally, in matrix form,

X = F 0Λ0′ + ε, (5.4)

where X = (X1, . . . , XN ) and ε = (ε1, . . . , εN ) are T ×N matrices.

Model in (5.4) has the covariance structure of the static factor model is given by

ΣX = Λ0ΣFΛ0′ + Σε, (5.5)

where ΣX , ΣF and Σε are N ×N covariance matrices of X, F 0 and ε, respectively.

Let Tr(A) and ||A|| = (Tr(A′A))1/2 denote the trace and the norm of a matrix A, respectively.
According to Bai & Ng (2002), in order for the factor model be identifiable the following as-
sumptions are made:

(A21) E(||F 0
t ||4) < ∞ and T−1

∑T
t=1 F

0
t F

0
t
′ → ΣF as T → ∞ for some positive definite matrix

ΣF .

(A22) ||λi|| ≤ λ̄ < ∞, for some positive λ̄ and ||Λ0′Λ0/N −D|| → 0 as N → ∞ for some r × r
positive definite matrix D.

(A23) There exists a positive constant M <∞ such that for all N and T ,

1. E(εit) = 0, E(|εit|8) ≤M ;

2. E(ε′sεt/N) = E(N−1
∑N

i=1 εisεit) = γN (s, t),|γN (s, s)| ≤M for all s, and T−1
∑N

i=1

∑T
t=1 |γN (s, t)| ≤

M ;

3. E(εitεjt) = τij,t with |τij,t| ≤ |τij | for some τij and for all t, and N−1
∑N

i=1

∑N
j=1 |τij | ≤

M ;

4. E(εitεjs) = τij,ts and (NT )−1
∑N

i=1

∑
j=1N

∑T
t=1

∑T
s=1 |τij,ts| ≤M ;
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5. for every (t, s), E(|N−1/2
∑N

i=1(εisεit − E(εisεit))|4) ≤M .

(A24) E(N−1
∑N

i=1 || 1√
T

∑T
t=1 F

0
t εit||2) ≤M .

Under assumptions (A22) to (A24) the factor model here considered is the approximate factor
model in the sense of Chamberlain & Rothschild (1982). The approximate factor model in
contrast with the standard orthogonal factor model, allows some correlation in the idiosyncratic
component.

Many different approaches have been proposed by the literature to estimate the factor model.
In a small N setting, one may write the factor model in a state space form, assume normality
and use the maximum likelihood approach. However, since the number of parameters increases
with N , this approach requires an intensive computational effort. More details can be found in
Stock & Watson (1989).

Another possible approach to estimate (5.4) is to consider the least square approach by min-
imizing the squared sum of the residuals. That is, the estimates of λ and F are obtained by
solving the following optimization problem

V (F̃ , Λ̃) = argmin
Λ,F

(NT )−1
N∑

i=1

T∑

t=1

(Xit − λ̃iF̃t)2, (5.6)

where F̃ and λ̃ are the hypothetical values of the factors and their corresponding loadings.
Minimizing (5.6) in respect to F̃ is equivalent to maximizing Tr(Λ̃′X ′XΛ̃) subject to Λ̃′Λ̃/N =
I. In this context, the solution of (5.6) is obtained by setting Λ̂ equal to the eigenvectors
corresponding to the r largest eigenvalues of X ′X. Thus, the PC estimator of F is

F̂ = X ′Λ̂/N. (5.7)

A common issue related to the big data context arrives when the number of variables N is
much larger than the number of samples T . In this scenario, the rank of Σ̂X is no more than
min{N,T}. However, as noted by Connor & Korajczyk (1986), one might use the eigenvectors
associated with the T ×T XX ′ matrix. This approach is called asymptotic principal component
analysis (APCA) and provides a consistent estimator of the common factors under the following
additional assumptions

(A25) 1. 1
N

∑N
i=1 εitεis → 0, n 6= s;

2. 1
N

∑N
i=1 ε

2
it → σ2, for all t, as N →∞.

Thus, concentrating out Λ̂, minimizing (5.6) in respect to Λ̃ is equivalent to maximizing Tr(F̃ ′X ′XF̃ )
subject to F̃ ′F̃ /T = I. In this context, the solution of (5.6) is setting F̃ equal to the eigenvectors
corresponding to the r largest eigenvalues of XX ′, yielding the APC estimator of F .

As in Bai (2003) and Bai & Ng (2002) this paper considers the setting when both N and T →∞.
The space spanned by F̂ and F̃ are equivalent. Therefore, they can be used interchangeably
depending on the sizes of N and T to achieve a computationally simpler approach.

Now, the estimation of the number of factors is addressed. Supposing that the factors are
observed, Bai & Ng (2002) proposed information criteria for the estimation of the number of
factors in approximate factor models. They are
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ICp1(k) = ln(V̂k) + k(N+T
NT ) ln( NT

N+T );

ICp2(k) = ln(V̂k) + k(N+T
NT ) ln(min{N,T}2);

ICp3(k) = ln(V̂k) + k( ln(min{N,T}2)
min{N,T}2 ),

(5.8)

where V̂k is the minimized value of V (.) in (5.6) and k is a number of estimated factors.

Since outliers are present in the data, any approach that makes use of (5.6) will also be af-
fected. Next session presents the approximate factor model with additive outliers and develops
a robust methodology to coherently estimate the number of factors when additive outliers are
present.

3 Outliers and robust estimation

It is supposed that the observed process Xt results from the contamination of Zt by additive
random outliers, i.e.,

Xt = Zt + Ωδt, (5.9)

where Ω = diag(ω1, ..., ωN ) and ωi, i = 1, ..., N, is the magnitude of the outliers which affects
Zit, δt = (δ1t, ..., δNt)

′ is a random vector indicating the occurrence of an outlier at time t. It is
assumed that Xt and δt are uncorrelated processes and that P(δit = −1) = P(δit = 1) = pi/2,
P(δit = 0) = 1 − pi for i = 1, . . . , N where 0 ≤ pi < 1. Then E(δit) = 0 and Var(δit) = pi.
It is also assumed that Cov(δt, δt) = Σδ = diag(p1, ..., pN ) and that Cov(δt, δt+h) = 0 when
h 6= 0.

It follows from (5.9) that the effects of additive outliers on the level of the process is E(Zt) =
E(Xt). The effect of additive outliers on the autocovariance function of the process is ΓZ(0) =
ΓX(0) + ΩΣδΩ

′, with ΣX = ΓX(0) and ΣZ = ΓZ(0). ΓZ(h) = ΓX(h) when h 6= 0.

In view of (5.4), the factor model with additive outliers is

Z = FΛ′ + ε+ Ωδ. (5.10)

As can be seen from (5.10), the outliers that additively influence X are not within the factors.
The model under study here is in accord with the outlier models considered by Bai & Ng (2017)
and Baragona et al. (2007).

The effect of the additive outliers on the covariance structure of the factor model is

ΣZ = ΛΣFΛ′ + Σε + ΩΣδΩ
′. (5.11)

However, it is not possible to decompose and correctly eliminate the occurrence of additive
outliers from the observed series Z in a real data scenario. Therefore, the eigenvalues and their
corresponding eigenvectors are affected, and, consequently, the number of factors as well the
factors themselves. Therefore, in order to mitigate this issue, a robust methodology is here
proposed.

Some approaches have been discussed in order to transform the standard factor model robust
against additive outliers. From the optimization problem point of view, i.e., context of (5.6), one
could replace the least square estimates by some robust alternative, e.g, a different loss function
such as least absolute deviation (Kristensen (2014)), singular value threshold (Bai & Ng (2017)
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and Fan et al. (2013)) or Huber loss function (Huber (1992)). The latter was considered by
Fan et al. (2016) in factor models to perform a robust regression of the data onto the observed
covariates before carrying out the PCA estimation procedure.

It is here proposed to robustify F̂ and F̃ by replacing the traditional N ×N or T ×T covariance
matrices by their corresponding robustified version.

3 .1 Robust estimation of the covariance matrix from the robust M-cross-
periodogram

It is known that a given zero-mean stationary univariate time series Xt, t = 1, . . . , T, can be
represented as a sum involving T sines and cosines at the Fourier frequencies λk = 2πk/T, k =
0, . . . , T − 1. The classical periodogram of Xt at frequency λk is

IXT (λk) =
1

2πT

∣∣∣∣∣
T∑

t=1

Xt exp(−itλk)

∣∣∣∣∣

2

.

As discussed in Reisen, Lévy-Leduc & Taqqu (2017), one alternative way to derive the peri-
odogram function IXT (.) is based on the Least Square (LS) estimates of a bi-dimensional vector
β′ = (β(1), β(2)) in the linear regression model

Xi = c′T iβ + εi = β(1) cos(iλj) + β(2) sin(iλj) + εi , 1 ≤ i ≤ T, β ∈ R2 , (5.12)

where εi denotes the deviation of Xi from c′Tiβ, E[εi] = 0 and E[ε2
i ] <∞. In the sequel, (εi) is

assumed to be a function of a stationary Gaussian process.

It is supposed that
εi = G(ηi), (5.13)

where G is a non null real-valued and skew symmetric measurable function (i.e. G(−x) =
−G(x), for all x) and (ηi)i≥1 is a stationary Gaussian process with zero mean and unit variance.
Additional assumptions of (ηi)i≥1 is given in (A9).

It can be shown that

IXT (λk) =
T

8π
||β̂(λk)||2 =

T

8π

(
β̂1(λk)

2 + β̂2(λk)
2
)
, (5.14)

where β̂(λk) is the least squares regression solution

β̂(λk) = argmin
β∈R2

T∑

t=1

(Xt − C ′t(λk)β)2, (5.15)

with the regressors Ct(λk) = [cos(tλk), sin(tλk)]
′.

The periodogram is robustified by replacing the least squares regression with theM -regression.

The M -estimator β̂ψ(λk) is defined as the solution of

T∑

t=1

Ct(λk)ψ(Xt − C ′t(λk)β) = 0, (5.16)

where ψ is defined by

ψ(x) =

{
x, if |x| ≤ c,
c sign(x), if |x| > c,
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and c is some positive constant, see Reisen, Lévy-Leduc & Taqqu (2017). In the following,
c = 1.345 is adopted to ensure an efficiency of 95% for the regression estimator in Gaussian
case.

Similarly to (5.14), the robust M -periodogram is defined by

IXM,T (λk) =
T

8π
||β̂ψ(λk)||2 =

T

8π

(
β̂1,ψ(λk)

2 + β̂2,ψ(λk)
2
)
. (5.17)

For the univariate context, the asymptotic properties of βψ are established for the short and
long-range dependence frameworks in Reisen, Lévy-Leduc & Taqqu (2017), Fajardo et al. (2018)
and Reisen, Lévy-Leduc, Cotta, Bondon & Ispany (2019) .

Let now X1, Y2, . . . , XT be a sample observation of a bivariate, N = 2, second order stationary
time series Xt. The cross-periodogram is defined by

IXT,ij(λk) =
1

2π

T−1∑

h=−(T−1)

γ̂XT,ij(h) exp(−ihλk), (5.18)

where, i, j = 1, 2, and γ̂XT,ij(.) is the standard sample estimator of the cross-covariance func-
tion.

In view of (5.14), the cross-periodogram at frequency λk = 2πk/T, k = 0, . . . , T − 1. defined by
(5.18) may be written as

IXT,ij(λk) =





T
2π β̂1,Xi(λk)β̂1,Xj (λk) λk = 0
T

8π
(β̂1,Xi(λk)β̂1,Xj (λk) + β̂2,Xi(λk)β̂2,Xj (λk)−

i(β̂1,Xi(λk)β̂2,Xj (λk)− β̂1,Xj (λk)β̂2,Xi(λk)))
λk 6= 0, i,j=1,2,

where β̂1,Xi(λk) and β̂2,Xi(λk) are defined by (5.15) and Xt is replaced by Xit, i = 1, 2.

Likewise, the M -cross-periodogram is defined by

IXM,T,ij(λk) =





T
2π β̂1,Xi,ψ(λk)β̂1,Xj ,ψ(λk) λk = 0
T

8π
(β̂1,Xi,ψ(λk)β̂1,Xj ,ψ(λk) + β̂2,Xi,ψ(λk)β̂2,Xj ,ψ(λk)−
i(β̂1,Xi,ψ(λk)β̂2,Xj ,ψ(λk)− β̂1,Xj ,ψ(λk)β̂2,Xi,ψ(λk)))

λk 6= 0, i,j=1,2.

where β̂1Xi,ψ(λk) and β̂2Xi,ψ(λk), are defined by (5.16) and Xt is replaced by Xit, i = 1, 2.

Therefore, the M -periodogram matrix is defined by

IXM,T (λk) = [IXM,T,ij(λk)]
2
i,j=1 =

[
IXM,T,11(λk) IXM,T,12(λk)

IXM,T,21(λk) IXM,T,22(λk)

]
. (5.19)

Let ΓXT be the covariance matrix of the first T , observations from Xt with absolutely summable
autocovariance function and let fX(.) be its spectral density matrix. Let λk = 2πk/T, k =
0, . . . , T − 1, and DT be an 2T × 2T matrix,

DT = [DT,ij ]
2
i,j=1 =

[
DT,11 DT,12

DT,21 DT,22

]
, (5.20)
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where

DT,ij = diag[IXM,T,ij(λ0), IXM,T,ij(λ1), . . . , IXM,T,ij(λ(T−1))]. (5.21)

Define a transformation matrix HT by

HT =

[
GT 0
0 GT

]
, (5.22)

where GT is an T × T matrix with rows given by

gT,k = T−1/2[1, e−iπk/T , e−iπ2k/T , . . . , e−iπ(T−1)k/T ], k = 0 . . . , T − 1. (5.23)

Let H∗T be the conjugate transpose of HT . Thus, we robustly estimate ΓXT by

Γ̂XM,T = 2πH∗T D̂M,THT . (5.24)

The lag-h, h = 0, . . . , N − 1, robust sample cross-covariance function γ̂XM,T,ij(h) is extracted

from the first row of Γ̂XM,T,ij for i, j = 1, 2. Finally, the lag-h autocovariance and autocorrela-
tion matrices are constructed estimating all (i, j)th elements for i, j = 1, 2. Thus, the robust
autocovariance matrix function is:

Γ̂XM,T (h) =

[
γ̂XM,T,11(h) γ̂XM,T,12(h)

γ̂XM,T,21(h) γ̂XM,T22(h)

]
(5.25)

It should be noted that the PCA or APCA procedure is calculated from the covariance matrix
function at lag h = 0.

4 Simulation study

This section reports simulation results related to the performance of the proposed methodology
for finite sample size. As in Bai & Ng (2002), the data generating process (DGP) is

Xit =
r∑

j=1

λijFtj +
√
θεit, (5.26)

where the factors are T × r matrices of N(0, 1) random variables. The contaminated data
generating process (CDGP) with additive outliers is

Zit = Xit + ωδit =
r∑

j=1

λijFtj +
√
θεit + ωδit. (5.27)

For the simulations, r = 1, 3 and 5 and the maximum number of factors is 8. N = 50, 100, 200, 500
and 1000. T = 50, 100, 200 and 500. Two scenarios are considered: (i) the samples are uncon-
taminated (pi = 0, i = 1, . . . , N), and (ii) the samples are contaminated (pi 6= 0). When pi 6= 0,
ω1 = 15 and ωi = 0, i = 2, . . . , N , i.e, the contamination occurs only in the first series of the
random vector with the probability of occurrence given in the tables. The reported empirical
results are based on 1000 replications. The simulations were performed using the R programming
language R Core Team (2019).
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The first objective of this empirical study is to verify the performance of the three information
criteria for estimating the number of factors estimated by APCA method as given in (5.8) under
influence of additive outlier model (5.9). In this scenario, the estimated number of factors is
expected to increase. The averages of r̂ are reported in Tables 5.1, 5.2 and 5.3, for r = 1, 2 and
5, respectively.

T N
pi = 0 pi = 0.01 pi = 0.05

IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

50 50 1.00 1.00 4.90 1.21 1.18 5.38 1.70 1.66 6.16
50 100 1.00 1.00 1.00 1.30 1.26 1.38 1.88 1.85 1.93
50 200 1.00 1.00 1.00 1.40 1.38 1.45 1.97 1.96 1.98
50 500 1.00 1.00 1.00 1.49 1.47 1.52 2.00 2.00 2.00
50 1000 1.00 1.00 1.00 1.54 1.53 1.56 2.00 2.00 2.00
100 50 1.00 1.00 1.00 1.16 1.14 1.21 1.60 1.57 1.69
100 100 1.00 1.00 1.00 1.22 1.18 1.38 1.80 1.75 1.92
100 200 1.00 1.00 1.00 1.30 1.26 1.40 1.95 1.93 1.99
100 500 1.00 1.00 1.00 1.35 1.34 1.44 2.00 1.99 2.00
100 1000 1.00 1.00 1.00 1.41 1.40 1.46 2.00 2.00 2.00
200 50 1.00 1.00 1.00 1.10 1.10 1.13 1.46 1.44 1.51
200 100 1.00 1.00 1.00 1.16 1.13 1.24 1.68 1.64 1.81
200 200 1.00 1.00 1.00 1.19 1.15 1.44 1.84 1.79 1.97
200 500 1.00 1.00 1.00 1.28 1.25 1.40 1.99 1.98 2.00
200 1000 1.00 1.00 1.00 1.29 1.27 1.38 2.00 2.00 2.00
500 50 1.00 1.00 1.00 1.03 1.03 1.03 1.21 1.19 1.24
500 100 1.00 1.00 1.00 1.05 1.05 1.06 1.35 1.32 1.45
500 200 1.00 1.00 1.00 1.08 1.07 1.15 1.58 1.53 1.76
500 500 1.00 1.00 1.00 1.11 1.08 1.39 1.88 1.81 2.00
500 1000 1.00 1.00 1.00 1.14 1.12 1.30 1.98 1.97 2.00

Table 5.1: Averages of r̂ for pi = 0, 0.01 and 0.05 when r = 1.

From Tables 5.1, 5.2 and 5.3, the effect of additive outliers in factor models appears by comparing
the estimated number of factors when pi = 0 with the case pi 6= 0. When pi = 0, the results
are in accord with the ones in Bai & Ng (2002). When pi 6= 0, as expected, the increment of
variability due to the presence of outliers leads to increase the number of estimated factors for
all information criteria for the percentage of contamination of 1% and 5%. In general, it is noted
that IC2 is less affected than the others.

The second objective is to verify and to compare the performance of the estimated number
of factors using the information criteria when the standard APCA method is replaced by the
robust methodology suggested in Section 3 . Let r̂M denote the estimated number of factors
considering the robust methodology. The primary interest here is to find out if the robust pro-
posed methodology is competitive in the absence of contamination and if it still provides reliable
results in a scenario where the data is contaminated. The results are reported in Tables 5.4, 5.5
and 5.6, for r = 1, 2 and 5, respectively.

From Tables 5.4, 5.5 and 5.6, when pi = 0 it is noted that the reported values are in accord with
the ones from Tables 5.1, 5.2 and 5.3. This indicates that the proposed robust method may still
be considered in a scenario where the occurrence of outliers is uncertain. On the other hand,
when there are outliers, i.e, pi 6= 0 in the tables, the results are also close to the ones where
pi = 0 of Tables 5.1, 5.2 and 5.3. Thus, in a scenario where there are outliers present in the
data, the robust methodology still provides useful results.

Other simulations with different degrees of contamination and data generating process present
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T N
pi = 0 pi = 0.01 pi = 0.05

IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

50 50 3.00 3.00 7.24 3.25 3.23 7.39 3.79 3.75 7.67
50 100 3.00 3.00 3.00 3.40 3.38 3.46 3.93 3.92 3.96
50 200 3.00 3.00 3.00 3.58 3.56 3.61 3.99 3.99 3.99
50 500 3.00 3.00 3.00 3.73 3.73 3.76 4.00 4.00 4.00
50 1000 3.00 3.00 3.00 3.85 3.84 3.86 4.00 4.00 4.00
100 50 3.00 3.00 3.00 3.22 3.19 3.25 3.74 3.71 3.80
100 100 3.00 3.00 3.00 3.35 3.32 3.47 3.90 3.88 3.97
100 200 3.00 3.00 3.00 3.46 3.44 3.54 3.98 3.97 4.00
100 500 3.00 3.00 3.00 3.64 3.62 3.69 4.00 4.00 4.00
100 1000 3.00 3.00 3.00 3.73 3.72 3.77 4.00 4.00 4.00
200 50 3.00 3.00 3.00 3.15 3.15 3.17 3.64 3.61 3.68
200 100 3.00 3.00 3.00 3.23 3.21 3.31 3.83 3.80 3.89
200 200 3.00 3.00 3.00 3.37 3.31 3.57 3.95 3.93 3.99
200 500 3.00 3.00 3.00 3.54 3.50 3.68 4.00 4.00 4.00
200 1000 3.00 3.00 3.00 3.61 3.59 3.70 4.00 4.00 4.00
500 50 3.00 3.00 3.00 3.10 3.09 3.10 3.43 3.42 3.45
500 100 3.00 3.00 3.00 3.12 3.12 3.17 3.65 3.63 3.71
500 200 3.00 3.00 3.00 3.20 3.18 3.30 3.83 3.82 3.92
500 500 3.00 3.00 3.00 3.34 3.28 3.66 3.98 3.98 4.00
500 1000 3.00 3.00 3.00 3.48 3.45 3.68 4.00 4.00 4.00

Table 5.2: Averages of r̂ for pi = 0, 0.01 and 0.05 when r = 3.

similar conclusions and are available upon request. The results presented in this section motive
the application of the proposed methodology to a real data problem.

5 Application to PM10

In this application section, 21 (N = 21) PM10 pollutant time series variables measured at the au-
tomatic air quality monitoring network (AAQMN) of Île-de-France (IDF) region are considered.
Figure 5.1 presents the geographic localization of each station.

The data are collected hourly and the working series are the daily average from March 17th
to June 11th of 2019 (91) days. Figure 5.2 shows the plots of PM10 concentrations for the
21 stations. We see that the series present high peaks of pollutant concentrations which can
be view, from a statistical point of view, as outlying observations. Thus, the proposed robust
information criteria is compared with the standard approach to verify whether these high levels
influence the number of estimated factors or not.

For example, the classical and robust autocorrelation functions (ACF) of FR04156 station are
displayed in Figure 5.3. Comparing the values of both plots, we see that the robust ACF values
are greater than the ones from standard ACF. This indicates that the high levels of PM10 at
FR04156 station reduce the standard sample ACF estimator values. Therefore, it is expected
that the standard and robust FA estimated models might present diverging conclusions.

The estimation of the number of factors was performed accordingly to (5.8) using the standard
and robust methodology. For the case of the standard estimator, all information criteria (ICp1,
ICp2 and ICp3) found r̂ = 3. On the other hand, all three robust information criteria found

r̂M = 1. Figure 5.4 presents F̂t of r̂ = 3, (a), (b) and (c), and r̂M = 1, (d).

In this context, we consider only the robust factor to construct the estimated concentrations
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T N
pi = 0 pi = 0.01 pi = 0.05

IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

50 50 5.00 5.00 7.93 5.27 5.25 7.95 5.84 5.82 7.98
50 100 5.00 5.00 5.00 5.43 5.42 5.49 5.96 5.95 5.98
50 200 5.00 5.00 5.00 5.63 5.62 5.66 6.00 6.00 6.00
50 500 5.00 5.00 5.00 5.84 5.83 5.86 6.00 6.00 6.00
50 1000 5.00 5.00 5.00 5.93 5.93 5.94 6.00 6.00 6.00
100 50 5.00 5.00 5.00 5.25 5.24 5.28 5.79 5.77 5.83
100 100 5.00 5.00 5.00 5.38 5.35 5.50 5.95 5.92 5.99
100 200 5.00 5.00 5.00 5.55 5.53 5.63 6.00 5.99 6.00
100 500 5.00 5.00 5.00 5.76 5.76 5.80 6.00 6.00 6.00
100 1000 5.00 5.00 5.00 5.87 5.86 5.90 6.00 6.00 6.00
200 50 5.00 5.00 5.00 5.21 5.20 5.23 5.67 5.66 5.71
200 100 5.00 5.00 5.00 5.30 5.29 5.38 5.89 5.88 5.94
200 200 5.00 5.00 5.00 5.47 5.43 5.63 5.98 5.97 6.00
200 500 5.00 5.00 5.00 5.69 5.67 5.79 6.00 6.00 6.00
200 1000 5.00 5.00 5.00 5.81 5.80 5.87 6.00 6.00 6.00
500 50 5.00 5.00 5.00 5.13 5.13 5.14 5.56 5.56 5.59
500 100 5.00 5.00 5.00 5.20 5.19 5.23 5.79 5.77 5.82
500 200 5.00 5.00 5.00 5.32 5.30 5.41 5.93 5.92 5.97
500 500 5.00 5.00 5.00 5.51 5.46 5.76 6.00 6.00 6.00
500 1000 5.00 5.00 5.00 5.69 5.66 5.84 6.00 6.00 6.00

Table 5.3: Averages of r̂ for pi = 0, 0.01 and 0.05 when r = 5.

of the 21 stations. Thus, Figure 5.5, presents the observed series (solid line) and estimated
one (dashed line), by considering the linear combination of the only estimated robust factor of
FR04156 (a) and FR04329 (b) stations. We observe that the measured data and the estimated
one are alike, including the high volatility and large peaks periods of PM10 concentrations.
Therefore, the estimated robust factor can be considered for forecasting in a context of smaller
dimension. See, for instance, Stock & Watson (2002).

6 Conclusions

In this paper, a robust FA method for high-dimensional with additive outliers is proposed.
The simulations show that additive outliers increase the number of factors estimated by the
standard information criteria. The information criteria applied to the robustified estimation
method presents better performance and is an alternative method when there is any evidence
of atypical observations in the multivariate time series data. The proposed methodology was
used to identify the number of factors of 21 PM10 pollutant time series obtained at the stations
of Île-de-France region. It was found that a total of 1 factor may be used to summarize the
information of all time series.
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T N
pi = 0 pi = 0.01 pi = 0.05

IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

50 50 1.00 1.00 1.02 1.01 1.01 1.04 1.07 1.05 1.27
50 100 1.00 1.00 1.00 1.00 1.00 1.01 1.06 1.04 1.15
50 200 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.04 1.10
50 500 1.00 1.00 1.00 1.00 1.00 1.00 1.08 1.07 1.09
50 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.18 1.18 1.19
100 50 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.01 1.03
100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.01 1.08
100 200 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.05
100 500 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.02
100 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.02
200 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
200 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
200 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.4: Averages of r̂M for pi = 0, 0.01 and 0.05 when r = 1.

T N
pi = 0 pi = 0.01 pi = 0.05

IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

50 50 3.00 3.00 3.02 3.01 3.01 3.04 3.07 3.05 3.07
50 100 3.00 3.00 3.00 3.00 3.00 3.01 3.06 3.04 3.05
50 200 3.00 3.00 3.00 3.00 3.00 3.00 3.05 3.04 3.07
50 500 3.00 3.00 3.00 3.00 3.00 3.00 3.08 3.07 3.09
50 1000 3.00 3.00 3.00 3.00 3.00 3.00 3.08 3.07 3.09
100 50 3.00 3.00 3.00 3.00 3.00 3.00 3.02 3.01 3.03
100 100 3.00 3.00 3.00 3.00 3.00 3.00 3.02 3.01 3.08
100 200 3.00 3.00 3.00 3.00 3.00 3.00 3.01 3.01 3.05
100 500 3.00 3.00 3.00 3.00 3.00 3.00 3.01 3.01 3.02
100 1000 3.00 3.00 3.00 3.00 3.00 3.00 3.01 3.01 3.02
200 50 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.01
200 100 3.00 3.00 3.00 3.00 3.00 3.00 3.01 3.00 3.00
200 200 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.01 3.01
200 500 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
200 1000 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
500 50 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
500 100 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
500 200 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
500 500 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
500 1000 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Table 5.5: Averages of r̂M for pi = 0, 0.01 and 0.05 when r = 3.
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T N
pi = 0 pi = 0.01 pi = 0.05

IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

50 50 5.00 5.00 5.02 5.01 5.01 5.04 5.07 5.05 5.23
50 100 5.00 5.00 5.00 5.00 5.00 5.01 5.06 5.04 5.05
50 200 5.00 5.00 5.00 5.00 5.00 5.00 5.05 5.04 5.10
50 500 5.00 5.00 5.00 5.00 5.00 5.00 5.08 5.07 5.10
50 1000 5.00 5.00 5.00 5.00 5.00 5.00 5.18 5.08 5.89
100 50 5.00 5.00 5.00 5.00 5.00 5.00 5.02 5.01 5.03
100 100 5.00 5.00 5.00 5.00 5.00 5.00 5.02 5.01 5.08
100 200 5.00 5.00 5.00 5.00 5.00 5.00 5.01 5.01 5.05
100 500 5.00 5.00 5.00 5.00 5.00 5.00 5.01 5.01 5.02
100 1000 5.00 5.00 5.00 5.00 5.00 5.00 5.01 5.01 5.02
200 50 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.01
200 100 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
200 200 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.01
200 500 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
200 1000 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
500 50 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
500 100 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
500 200 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
500 500 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
500 1000 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Table 5.6: Averages of r̂M for pi = 0, 0.01 and 0.05 when r = 5.
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Figure 5.1: Geographical location of the stations from IDF.
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Figure 5.2: Plots of the PM10 pollutant concentrations of the 21 stations of the AAQMN of IDF
(N = 21).
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Figure 5.3: Classical and robust autocorrelation functions of FR04156 station.
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Figure 5.4: Time series plots of the three estimated factors by means of standard method, (a),
(b) and (c), respectively. Time series plots of the only estimated factor considering the robust
approach (d).
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Chapter 6

Conclusions

1 General conclusions

This thesis considered the study of additive outliers in multivariate stationary time series. The
scientific contribution of this thesis is presented in three papers.

The first paper dealt with the robust estimation of the autocovariance and autocorrelation
functions of stationary univariate time series. The robust methodology is achieving by replacing
the periodogram with the robust M -periodogram. The M -periodogram is obtained by replacing
the standard least square estimates by the robust M -estimated in the computation of the Fourier
coefficients of the periodogram. The proposed model details were presented and the consistency
and asymptotic normality obtained. Then a comprehensive simulation study with finite samples
was conducted providing good robust results. Thus, this proposed methodology is useful when
dealing with additive outliers in stationary univariate time series processes.

The good performance and the results obtained by the robust estimation methodology proposed
by the first paper motivated it extension to stationary multivariate time series processes. In this
paper, the cross-periodogram was replaced with the robust M -cross-periodogram. The M -cross-
periodogram is obtained as in the first paper. That is, from the robust Fourier coefficients from
the univariate periodograms. The consistency and asymptotically normality of the estimators
was also studied. Their performance are also investigated by means of numerical experiments
and a real data set measured at the stations of the Automatic Air Quality Monitoring Network
(AAQMN) of Greater Vitória was analyzed. The robust methodology provided a better fit to
the data with additive outliers.

In the third paper, it was proposed a robust method for estimating the number of factors in
approximate factor model. It was empirically demonstrated that additive outliers increase the
number of estimated factors and a robust alternative was suggested. The methodology consisted
in replacing the lag-0 covariance matrix with the lag-0 robust covariance matrix proposed in the
second paper. The dynamic behavior of PM10 pollutant data measured at the stations of Île-
de-France region was studied. It was found that only one factor can summarize the pollution
behavior of the 21 stations.

The computer codes developed for this thesis are grouped in the package named acfMPeriod
readily available in the CRAN-R repository.

2 Perspectives

Some suggestion of future investigation lines are:
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• In the computation of M -periodogram, it could be interesting to replace the Huber’s
loss function with different loss functions and compare their performance under different
scenarios. This is the case for the univariate and multivariate papers.

• Related to the estimation of the factor model, it could be of interest to replace the squared
loss function by some robust alternative, i.e, Huber’s loss function. This approach will also
lead to the robustification of the estimation method.

• Another investigation line, is to consider the dynamic factor model where the static factor
relationship is relaxed.

• Still related to factor models, one could use the suggested methodology with other pollutant
variables.

• One might be interested to consider the proposed estimators with other statistical tools
such as principal component analysis, cluster analysis, canonical correlation analysis,
among others.
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IAU (2018), Chiffres-clés de la région Île-de-France. Available at http://www.cci-paris-
idf.fr/sites/default/files//crocis/wysiwyg/Chiffres-cles-2018derlight.pdf.
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Reisen, V. A., Sgrancio, A. M., Lévy-Leduc, C., Bondon, P., Monte, E. Z., Cotta, H. H. A.
& Ziegelmann, F. A. (2019), ‘Robust factor modelling for high-dimensional time series: An
application to air pollution data’, Applied Mathematics and Computation 346, 842–852.
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A Linear Algebra

A.1 Definitions

This Appendix presents some matrix definition used in this thesis.

Definition 1. An N ×N real or complex matrix A is a (regular) circulant if it has the form

A =




a0 a1 a2 . . . aN−1

aN−1 a0 a1 . . . aN−1

aN−2 aN−1 a0 . . . aN−1
...

...
...

...
...

a1 a2 a3 . . . a0



. (1)

The notation A = circ[a0, a1, . . . , aN−1] is also used since only the first row is necessary to define
a circulant matrix.

Definition 2. An N ×N real or complex matrix A is a (regular) symmetric circulant if it has
the form

A =




a0 a1 a2 . . . a2 a1

a1 a0 a1 . . . a3 a2

a2 a1 a0 . . . a4 a3
...

...
...

...
...

a1 a2 a3 . . . a1 a0



. (2)

The notation A = circ[a0, a1, . . . , a2, a1] is also used.

Definition 3. Let a1, a2 . . . , aN be a set of real numbers, V and V ′ are called N ×N Vander-
monde matrices if they have the form

V =




1 1 1 . . . 1
a1 a2 a3 . . . aN
a2

1 a2
2 a2

3 . . . a2
N

...
...

...
...

...

aN−1
1 aN−1

2 aN−1
3 . . . aN−1

N



. (3)

Definition 4. Let ω = exp2πi/N = cos(2π/N) + i sin(2π/N), where i =
√
−1, so that ω̄ =

exp−2πi/N . Also ωr = cos(2πr/N) + i sin(2πr/N). Then, the Fourier matrix F is defined by

F = N−1/2V (1, ω̄, ω̄2, . . . , ω̄N−1). (4)

F ? = F̄ = (N)−1/2 =




1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2N−2

...
...

...
...

...

1 ωN−1 ω2N−2 . . . ω(N−1)(N−1)



. (5)
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a b s t r a c t 

This paper considers the factor modelling for high-dimensional time series contaminated 

by additive outliers. We propose a robust variant of the estimation method given in Lam 

and Yao [10]. The estimator of the number of factors is obtained by an eigen analysis of a 

robust non-negative definite covariance matrix. Asymptotic properties of the robust eigen- 

values are derived and we show that the resulting estimators have the same convergence 

rates as those found for the standard eigenvalues estimators. Simulations are carried out 

to analyse the finite sample size performance of the robust estimator of the number of 

factors under the scenarios of multivariate time series with and without additive outliers. 

As an application, the robust factor analysis is performed to reduce the dimensionality of 

the data and, therefore, to identify the pollution behaviour of the pollutant PM 10 . 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

In the last fifty years, issues related to air pollution have grown into a major problem, specially in developing countries, 

where the air quality has been degraded as a result of industrialization, population growth, high rates of urbanization and 

inadequate or non-existent policies to control air pollution. The problems caused by air pollution produce local, regional and 

global impacts. Among different environmental problems, air pollution is reported to cause the greatest damage to health 

and loss of quality of life see, for example, WHO [32] . The most common health problems caused by air pollution are asthma, 

rhinitis, burning eyes, fatigue, dry cough, heart and lung diseases and heart failure. The main pollutants are carbon monoxide 

(CO), sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), ozone (O 3 ) and inhalable particles with diameter smaller than 10 μm 

(PM 10 ). The papers by Brunekreef and Holgate [3] , Maynard [18] , WHO [31] , Curtis et al. [6] and Souza et al. [25] discuss 

the relationship between these pollutants and health problems. In addition, air pollution contributes to the degradation of 

the environment, the greenhouse effect among many others problems. 
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In recent studies related to air pollution, much attention has been paid to mathematical receptor models with the aim 

to measure and analyse the pollutant concentrations at the source of emission. For this, mathematical and statistical tools 

are used to identify the pollutant emission sources from chemical characteristics of the particles on the receiver and the 

pollutant emission sources see, for example, Seinfeld and Pandis [24] . In the literature, the most studied receptor models 

are:chemical mass balance (CMB), multivariate analysis, principal component analysis techniques (PCA), factor analysis (FA) 

model, multiple linear regression, cluster analysis and positive matrix factorization (PMF) (Watson et al. [30] ). In particu- 

lar, the classical FA has been widely used in air pollution analysis, specially for the identification of emission sources, the 

management of monitoring networks, regression analysis, cluster analysis and prediction. 

In many practical problems, it is quite common to have observations which accommodate the serial dependence of each 

component and the interdependence between different components, that is, the data are time-dependent. However, it should 

be noted that, among the studies that adopted the classical PCA and FA techniques, time-dependency of the data is a com- 

monly neglected feature. A common assumption of the multivariate statistical tools is that the data are independent in 

time, see e.g. Anderson [1] and Johnson and Wichern [9] . To deal with autocorrelated data in FA, Pea and Box [20] , Stock 

and Watson [26] , Lam et al. [11] and Lam and Yao [10] studied the factor modelling for multivariate time series from a 

dimension-reduction point of view. Contrarily to PCA and FA for independent observations, these papers look for factors 

which drive the serial dependence of the original time series. Further discussions and additional references can be found in 

Lam and Yao [10] . 

Since FA method allows to reduce the order of the estimated model, this technique has been widely used for forecasting. 

According to Stock and Watson [26] , the dimension reduction becomes a central concern for forecasting when the number 

of candidate predictor series is very large. This issue can make the forecast investigation impractical in a real application, for 

example in the use of vector autoregressive moving average (VARMA) models with a large number of variables. This high- 

dimensional problem is simplified by modelling the common dynamics in terms of a relatively small number of unobserved 

latent factors. Then, forecasting can be carried out in a two-step process: first, a time series of the factors is estimated from 

the predictors; second, the relationship between the variable to be forecast and the factors is estimated, for example, using 

a linear regression. 

Environmental time series are often of high dimension due to the large number of measurements recorded across many 

different locations. These data may also present interesting phenomena to be considered from an applied and theoretical 

point of view. Indeed, the concentration of pollutant may present high peaks, which can be seen as aberrant values from a 

statistical point of view. Outliers and high dimension data are common in many areas of applied mathematics. Therefore, the 

methodology proposed here can be widely used in many other areas where the multivariate techniques are the main tools 

to describe and interpret the data. This is the case of the health science area, Gosak et al. [7] , Perc [21] , Souza et al. [25] , 

air route network problems, Lordan et al. [15] , Zhang et al. [34] , environmental engineering, Zamprogno [33] and statistical 

process controls, Vanhatalo and Kulahci [29] , to cite a few. 

As is well known, outliers can affect the statistical properties of the estimates such as the sample mean and sample 

covariance, see e.g., Chang et al. [4] , Tsay [27] , Chen and Liu [5] and the references therein. Since the parameter estimation 

is connected with these sample functions, the final estimated time series model can be strongly affected by the outliers. 

When the series has additive outliers, one way to deal with model estimation is to use robust estimates of these statistics. 

For a univariate time series, Ma and Genton [17] proposed a robust sample autocorrelation function (ACF) based on the 

robust scale estimate Q n (.) suggested in Rousseeuw and Croux [23] . This robust ACF estimator was recently studied by Lévy- 

Leduc et al. [12]–[14] . 

This paper considers multivariate time series with additive outliers using the FA technique for dimension reduction. In 

this context, a robust version of the dimension reduction estimator given in Lam and Yao [10] is proposed. Some theoretical 

results are discussed and the method performance is investigated through Monte Carlo simulations. The proposed methodol- 

ogy is applied to PM 10 concentrations measured at the Automatic Air Quality Monitoring Network (AAQMN), Vitória, Brazil. 

The rest of the paper is organized as follows. In Section 2 , the model and the estimation methods are presented. 

Section 3 discusses the asymptotic properties of the robust eigenvalues. Section 4 presents some Monte Carlo experiments. 

Section 5 considers an application of the proposed methodology and some concluding remarks are provided in Section 6 . 

2. Factor model in time series 

2.1. The factor model and the estimate of the number of factors 

Let Z t , t ∈ Z , be a k -dimensional zero-mean vector of an observed time series and X t be an unobserved r -dimensional 

vector of common factors ( r ≤ k ). It is assumed that Z t is generated by 

Z t = P X t + ε t , (1) 

where P is an unknown k × r matrix of parameters of rank r , denominated the factor-loading matrix, and ε t is a k - 

dimensional zero-mean white-noise sequence with full-rank covariance matrix �ε , that is, ε t ∼ W N(0 , �ε ) . When r is 

small relative to k , the model presented in (1) is most useful, since it results in a multivariate time series with a reduced 

dimension and, consequently, leads to a much simpler multivariate time series for forecasting. The following assumption is 

introduced. 
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(A1) X t is a zero-mean multivariate stationary process, ε t ∼ W N(0 , �ε ) , X t and ε s are uncorrelated for any t and s , and 

P ′ P = I r , where I r denotes the r × r identity matrix. 

Assumption (A1) ensures identifiability in (1) , see Lam and Yao [10] and Pea and Box [20] for further details. It follows 

from (1) and (A1) that the covariance matrix function of Z t satisfies 

�Z (h ) = E [ Z t Z 

′ 
t+ h ] = 

{
P �X (0) P ′ + �ε when h = 0 , 

P �X (h ) P ′ when h � = 0 . 
(2) 

Given a sample Z 1 , . . . , Z n , the first step is to estimate the number of factors r and to compute an estimate ˆ P of the k × r 

factor loading matrix P . Then, the estimators of the factor process and the residuals are, respectively, given by 

ˆ X t = 

ˆ P ′ Z t , (3) 

and 

ˆ εt = (I k − ˆ P ˆ P ′ ) Z t . (4) 

For further details on the estimation of P , see Lam and Yao [10] . 

Let ˆ �Z (h ) denote the sample covariance matrix of Z t at lag h and let 

ˆ M = 

h 0 ∑ 

h =1 

ˆ �Z (h ) ̂  �Z (h ) ′ , (5) 

where h 0 is a prescribed positive integer. Following the lines of Lam and Yao [10] , the estimator of the number of factors r 

is given by 

ˆ r = arg min 

1 ≤i ≤R 

ˆ λi +1 / ̂
 λi , (6) 

where r < R < k is a constant and 

ˆ λ1 ≥ · · · ≥ ˆ λk are the eigenvalues of ˆ M . Lam and Yao [10] derive the asymptotic properties 

of the eigenvalues ˆ λi ’s under some assumptions, and they give some practical recommendations for selecting R . In the 

following, we propose a robust estimator of r . 

2.1.1. The robust estimator of the number of factors r 

Let Y t , t ∈ Z , be a univariate stationary Gaussian process. Given the observations Y 1: n = (Y 1 , . . . , Y n ) , the Q n (.) estimator of 

the standard deviation of Y 1 proposed by Rousseeuw and Croux [23] is the k th order statistic defined by 

Q n (Y 1: n ) = c {| Y i − Y j |; i < j} { k } , i, j = 1 , . . . , n, (7) 

where c = 2 . 2191 is a constant to guarantee consistency, k = 	 ( (n 
2 

)
+ 2) / 4 
 + 1 and 	 x 
 is the largest integer smaller than x . 

The asymptotic breakdown point of Q n ( Y 1: n ) is 50%. Following Ma and Genton [16] , from the observations (Z 1 , . . . , Z n ) , we 

propose to estimate �Z 
i, j 

(h ) = Cov (Z i,t , Z j,t+ h ) for all i, j = 1 , . . . , k, by 

ˆ γ Q,Z 
i, j 

(h ) = 

1 

4 

[
Q 

2 
n −h (Z i, 1: n −h + Z j,h +1: n ) − Q 

2 
n −h (Z i, 1: n −h − Z j,h +1: n ) 

]
, (8) 

where Z i, 1: n −h = (Z i, 1 , . . . , Z i,n −h ) and Z j,h +1: n = (Z j,h +1 , . . . , Z j,n ) . Let �Q , Z ( h ) be the matrix with entries ˆ γ Q,Z 
i, j 

(h ) , we define 

ˆ M 

Q as 

ˆ M 

Q = 

h 0 ∑ 

h =1 

ˆ �Q,Z (h ) ̂  �Q,Z (h ) ′ , (9) 

and the robust estimator ˆ r Q of r is obtained from (6) where the ˆ λi ’s are replaced by the eigenvalues ˆ λQ 
i 

’s of ˆ M 

Q . 

3. Theoretical results 

Here, we present some theoretical results to support the robust approach discussed in Section 2 . We introduce the fol- 

lowing assumption on X t . 

(A2) X t , t ∈ Z , is a zero-mean multivariate Gaussian stationary process satisfying ∑ 

h ≥1 

| �X 
i, j (h ) | < ∞ , for all i, j = 1 , . . . , r. 

It follows from (1) and (2) that ( Z t ) is also a zero-mean multivariate Gaussian stationary process satisfying ∑ 

h ≥1 

| �Z 
i, j (h ) | < ∞ , for all i, j = 1 , . . . , k. (10) 
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Table 1 

Relative frequency estimates of P( ̂ r = 3) for the uncontaminated process. 

n 50 100 200 400 800 1600 

k = 0 . 2 n 0.170 0.585 0.870 0.995 1 1 

k = 0 . 5 n 0.395 0.710 0.975 1 1 1 

k = 0 . 8 n 0.435 0.785 0.960 1 1 1 

Table 2 

Relative frequency estimates of P( ̂ r Q = 3) for the uncontaminated process. 

n 50 100 200 400 800 1600 

k = 0 . 2 n 0.150 0.450 0.850 0.980 1 1 

k = 0 . 5 n 0.320 0.680 0.950 1 1 1 

k = 0 . 8 n 0.390 0.690 0.950 1 1 1 

Table 3 

Relative frequency estimates for dimensional reduction when n = 100 . 

p = 0 p = 0 . 05 and ω = 15 p = 0 p = 0 . 05 and ω = 15 

ˆ r = 1 ˆ r = 2 ˆ r = 3 ˆ r = 1 ˆ r = 2 ˆ r = 3 ˆ r Q = 1 ˆ r Q = 2 ˆ r Q = 3 ˆ r Q = 1 ˆ r Q = 2 ˆ r Q = 3 

k = 0 . 2 n 0.110 0.305 0.585 0.380 0.330 0.290 0.140 0.410 0.450 0.180 0.380 0.440 

k = 0 . 5 n 0.100 0.190 0.710 0.380 0.360 0.260 0.100 0.220 0.680 0.160 0.310 0.530 

k = 0 . 8 n 0.040 0.175 0.785 0.430 0.360 0.210 0.040 0.270 0.690 0.060 0.290 0.650 

Theorem 1. Under assumptions (A1) and (A2) and for a fixed h 0 ≥ 1 , as n → ∞ , 

| ̂ λQ 
i 

− λi | = O p (u 

−1 / 2 
n ) , for i = 1 , . . . , k, 

where ˆ λQ 
i 

’s and λi ’s are the eigenvalues of ˆ M 

Q and 
∑ h 0 

h =1 
�Z (h ) �Z (h ) ′ , respectively. 

Remark 1. Lam and Yao [10 , Proposition 1] establish a similar result to Theorem 1 for the eigenvalues ˆ λi ’s of ˆ M . 

Proof of Theorem 1 directly follows from Lemmas 1–3 given below and proved in Section 7 . 

Lemma 1. Let ˆ A n be a sequence of k × k symmetric matrices and A be a k × k symmetric matrix such that ˆ A n − A = O p (u −1 
n ) as 

n → ∞ , where u n > 0 and u n → ∞ as n → ∞ . Then, as n → ∞ , 

| λi ( ̂  A n ) − λi (A ) | = O p (u 

−1 
n ) , for i = 1 , . . . , k, 

where λi ( ̂  A n ) ’s and λi ( A ) ’s are the eigenvalues of ˆ A n and A , respectively. 

Lemma 2. Let ˆ A n (h ) be a sequence of k × k symmetric matrices and A ( h ) be a k × k symmetric matrix such that ˆ A n (h ) − A (h ) = 

O p (u −1 
n ) as n → ∞ for each h = 1 , . . . , h max , where u n > 0 and u n → ∞ as n → ∞ . Then, as n → ∞ , 

h max ∑ 

h =1 

ˆ A n (h ) ̂  A n (h ) ′ −
h max ∑ 

h =1 

A (h ) A (h ) ′ = O p (u 

−1 
n ) . 

Lemma 3. Under assumptions (A1) and (A2), for all i, j = 1 , . . . , k and h ≥ 0, the robust autocovariance estimator ˆ γ Q,Z 
i, j 

(h ) of 

�Z 
i, j 

(h ) satisfies the central limit theorem, 

√ 

n ( ̂  γ Q,Z 
i, j 

(h ) − �Z 
i, j (h )) 

d −→ N(0 , ˜ σ 2 
i, j (h )) , 

as n → ∞ , where 

˜ σ 2 
i, j (h ) = E [ ψ(Z i, 1 , Z j, 1+ h ) 

2 ] + 2 

∑ 

� ≥1 

E [ ψ (Z i, 1 , Z j, 1+ h ) ψ (Z i,� +1 , Z j,� +1+ h )] 

and ψ is defined by (11) . 

4. Simulation study 

This section reports simulation results related to the performance of the proposed methodology for finite sample size. 

In this empirical study, r = 3 and X t is the VAR(1) model defined by X t = 	X t−1 + ηt , where the coefficient matrix 	 is 

diagonal with 0.6, −0.5 and 0.3 as the main diagonal elements, and ηt are independent zero-mean Gaussian vectors with 

identity covariance matrix. Since 	 and the covariance matrix of ηt are diagonal, the components of X t are independent. 
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Fig. 1. Plots of the PM 10 pollutant concentrations of the eight stations of AAQMN ( k = 8 ). 

The sample sizes are n = 50 , 100 , 200 , 400 , 800 and 1600, k = 0 . 2 n, 0 . 5 n, 0 . 8 n, and h 0 = 1 . Factor model (1) is obtained as 

follows. The elements of P are realizations of independent random variables with a uniform distribution on [ −1 , 1] . The 

random variables ε t are independent zero-mean Gaussian vectors with identity covariance matrix. The same simulation 

process is considered by Lam and Yao [10] . The empirical results are based on 10 0 0 replications. The simulations were ran 

using the R programming language. 

The main interest in this empirical study is to verify the performance of the statistics ˆ r and 

ˆ r Q in the context of a VAR(1) 

model with and without outliers. For this, the relative frequency estimates for the probabilities P ( ̂ r = r) and P ( ̂ r Q = r) are 

reported in Tables 1 and 2 , respectively. The results in Table 1 are similar to the ones in Table 1 of Lam and Yao [10] , i.e., 

ˆ r performs better as n and k increase. Table 2 shows that ˆ r Q slightly under performs ˆ r which indicates that ˆ r Q can also be 

used to estimate r . 

Now, let X 

∗
t be the contaminated version of X t defined by X 

∗
i,t 

= X i,t + ω i δi,t for all i = 1 , . . . , r, where ω i ≥ 0 is the mag- 

nitude of the outlier which impacts X i , t and δi , t indicates the presence or not of this outlier and its sign at time t . The 

random variable δi , t takes the values −1 , 1 , 0 with the respective probabilities p/ 2 , p/ 2 , 1 − p where 0 < p < 1 is the proba- 

bility of occurrence of the outlier. We assume that X i , t and δi , t are independent and that E (δi,t δ j,t+ h ) � = 0 only when i = j

and h = 0 . Here, we take p = 0 . 05 , ω 1 = 15 and ω 2 = ω 3 = 0 . Table 3 shows the relative frequency estimates for P ( ̂ r = 3) 

and P ( ̂ r Q = 3) . We see that P ( ̂ r = 3) decreases substantially with respect to the case p = 0 presented in Table 1 . This shows 

that ˆ r which is based on 

ˆ M in (5) is not robust to additive outliers, and this is not surprising since the sample covariance 

matrix ˆ �Z (h ) is not robust. On the other hand, we see that P ( ̂ r Q = 3) is almost similar in Tables 2 and 3 which shows the 

good robustness of ˆ r Q to additive outliers and indicates that the methodology proposed in this paper may be used when 

the presence of outliers in the series is uncertain. Table 3 also shows the estimated probability of the test to indicate ˆ r = 1 

or ˆ r = 2 . In the outliers case, the non-robust test has the tendency to increase the relative frequency estimates for P ( ̂ r = 1) . 

This spurious result is caused by the fact that outliers lead to an underestimation of the true ACF see, for example, Reisen 

et al. [22] . Other simulations with different degrees of contamination present similar conclusions and are available upon 

request. 
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Fig. 2. Classical ACF estimates of the PM 10 pollutant concentrations. 
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Fig. 3. Robust ACF estimates of the PM 10 pollutant concentrations. 

75



V.A. Reisen et al. / Applied Mathematics and Computation 346 (2019) 842–852 849 

Fig. 4. A scree plot (a) and the plot of the ratios (b) of the eigenvalues of ˆ M . 

Fig. 5. A scree plot (a) and the plot of the ratios (b) of the eigenvalues of ˆ M 

Q . 

5. Application to the pollutant PM 10 

Here, we present an application of our methodology for the PM 10 pollutant concentrations measured at the AAQMN in 

the Greater Vitória Region (GVR), Espírito Santo, Brazil. GVR is comprised of seven cities with a population of approximately 

1.9 million inhabitants in an area of 2319 km 

2 
. The AAQMN consists of eight monitoring stations distributed in the cities 

of GVR; Laranjeiras, Carapina, Camburi, Suá, Vitória (Center), Vila Velha (center), Ibes and Cariacica. The pollutant PM 10 , ex- 

pressed in μg/m 

3 was hourly measured from January 2008 to December 2009, k = 8 , and the daily average values (n = 731) 

are used in this study. This follows the same lines as the application considered by Lam and Yao [10] . Let Z t = (Z 1 ,t , . . . , Z 8 ,t ) 
′ , 

t = 1 , . . . , 731 , be the vector of the PM 10 concentrations, where Z i , t corresponds to PM 10 concentration at i th location. 

Fig. 1 shows the plots of the PM 10 concentrations for the eight stations. We see that the series present high levels of 

pollutant concentrations which can be identified, from a statistical point of view, as additive outliers. This is justified by 

the fact that these values produce a similar reduction of the sample autocorrelations as additive outliers do. The robust and 

non-robust approaches discussed previously, are used here to verify whether these high levels influence the factor model 

estimation or not. 
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Fig. 6. The time series plots of the two estimated factors by means of the robust method, (a) and (b), respectively. The observed concentrations of Laran- 

jeiras station (c) and the estimated concentrations of Laranjeiras station (d), in the same time period. 

The classical and robust ACF estimators displayed in Figs. 2 and 3 , respectively, exhibit a possible seasonal pattern of 

period s = 7 , which is not surprising since the data are daily. In terms of magnitude, the classical ACF estimator values at 

Vila Velha (center) station for example are 0.47, 0.12, 0.15 and 0.13 for lags h = 1 , 3 , 5 , 10 , respectively, while the ACF values 

based on the Q n function are 0.54, 0.25, 0.20 and 0.19. This shows that the high levels of PM 10 at Vila Velha (center) station 

reduce the sample ACF estimator values. Similar results are observed at the other stations. The effect of atypical observations 

on the estimation of the ACF function is discussed in Molinares et al. [19] for a univariate time series. 

From the above discussion, it is expected that the standard and robust FA estimated models present different conclusions. 

The estimates of the number of factors r are computed by performing an eigenanalysis of ˆ M and 

ˆ M 

Q given by (5) and (9) , 

respectively, with h 0 = 7 to capture the seasonality of the data set. The eigenvalues of (5) (the scree plot), in decreasing 

order, and their ratios are shown in Fig. 4 (a) and (b), respectively. The robust versions obtained from 

ˆ M 

Q are shown in 

Fig. 5 (a) and (b), respectively. We see that ˆ r = 1 while ˆ r Q = 2 . This confirms the expected result previously stated. The 

results are insensitive to the choice of h 0 as already noticed by Lam et al. [11] . 
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Fig. 6 (a) and (b) plot the two estimated factor time series ˆ X 1 ,t and 

ˆ X 2 ,t , respectively, given by (3) where the columns of 

the estimated factor loading matrix ˆ P are the ˆ r Q = 2 orthonormal eigenvectors of ˆ M 

Q corresponding to its ˆ r Q = 2 largest 

eigenvalues. 

Following similar lines as in Lam and Yao [10 , Section 5], we calculate the percentage of the variability of the pollutant 

Z t explained by ˆ P ˆ X t . For this, the PM 10 concentration at Laranjeiras station is used. The measured data and the estimated 

one by the linear combination of the two estimated factors are displayed in Fig. 6 (c) and (d), respectively. There is no 

apparent difference between these two plots, including during the high volatility and large peaks periods of PM 10 concen- 

trations. The quantity ‖ Bu ‖ 2 / ‖ u ‖ 2 = 0 . 0015 , where u is the vector of the 731 observations at Laranjeiras station and B is 

the projection matrix onto the orthogonal complement of the linear space spanned by the two vectors ( ̂  X 1 , 1 , . . . , ˆ X 1 , 731 ) and 

( ̂  X 2 , 1 , . . . , ˆ X 2 , 731 ) . Then, 99.85% of the PM 10 concentrations of Laranjeiras station can be explained linearly by the two es- 

timated factors. Finally, for forecasting purpose, this is simpler to use (1) than fitting a multivariate stationary time series 

model with dimension k = 8 to Z t . The h -step ahead forecast ˆ Z 

(h ) 
n + h of Z n is obtained by ˆ Z 

(h ) 
n + h = 

ˆ P ˆ X 

(h ) 
n + h , where ˆ X 

(h ) 
n + h is the 

h -step ahead forecast for X n , based on the estimated past values ˆ X 1 , . . . , ˆ X n , see Lam et al. [11] . 

6. Conclusions 

In this paper, a robust FA method for high-dimensional time series with additive outliers is proposed. Some theoretical 

results are discussed and verified through Monte Carlo experiments. The simulations show that additive outliers reduce the 

classical estimated factor dimension. The robust method presents better performance and appears as an alternative method 

when there is any evidence of atypical observations in the multivariate time series data, such as high levels of the pollutants 

in the pollution area. The proposed methodology was used to identify pollution behaviour of the pollutant PM 10 , which can 

be very useful for the management of the air quality network. 

7. Proofs 

Proof of Lemma 1. By Weyl’s Theorem, see Horn and Johnson [8 , p. 239], for all j = 1 , . . . , k, it follows that 

λ j ( ̂  A ) − λ j (A ) ≤ λk ( ̂  A − A ) ≤ sup 

1 ≤� ≤k 

| λ� ( ̂  A − A ) | . 

By exchanging the role of ˆ A and A , for all j = 1 , . . . , k, it follows that 

λ j (A ) − λ j ( ̂  A ) ≤ sup 

1 ≤� ≤k 

| λ� ( ̂  A − A ) | . 

Hence, 

sup 

1 ≤ j≤k 

| λ j ( ̂  A ) − λ j (A ) | ≤ sup 

1 ≤� ≤k 

| λ� ( ̂  A − A ) | = ‖ ̂

 A − A ‖ 2 , 

where ‖ X ‖ 2 denotes the largest absolute value of the eigenvalues of a matrix X . Since u n ( ̂  A n − A ) = O p (1) , the result 

follows. �

Proof of Lemma 2. The proof of this lemma directly follows from the application of the continuous mapping theorem; see 

van der Vaart [28 , Theorem 2.3]. �

Proof of Lemma 3. Observe that the autocovariance of the process (Z i,t + Z j,t+ h ) t≥1 at lag � is equal to 

γ (+) 
i, j 

(� ) = Cov [ Z i,t + Z j,t+ h , Z i,t+ � + Z j,t+ h + � ] = �Z 
i,i (� ) + �Z 

i, j (h + � ) + �Z 
j,i (� − h ) + �Z 

j, j (� ) , 

and that the autocovariance of the process (Z i,t − Z j,t+ h ) t≥1 at lag � is equal to 

γ (−) 
i, j 

(� ) = Cov [ Z i,t − Z j,t+ h , Z i,t+ � − Z j,t+ h + � ] = �Z 
i,i (� ) − �Z 

i, j (h + � ) − �Z 
j,i (� − h ) + �Z 

j, j (� ) . 

By (A2) and (10) , 
∑ 

� ≥1 | γ (+) 
i, j 

(� ) | < ∞ and 

∑ 

� ≥1 | γ (−) 
i, j 

(� ) | < ∞ . The proof of this lemma, thus, follows the same lines as the 

ones of Lévy-Leduc et al. [14 , Theorem 2] by replacing X i and X i + h by Z i , t and Z j,t+ h , respectively, and the summations on i 

by summations on t which leads to 

√ 

n − h 

(
ˆ γ Q 

i, j 
(h ) − �Z 

i, j (h ) 
)

= 

1 √ 

n − h 

n −h ∑ 

t=1 

ψ(Z i,t , Z j,t+ h ) + o P (1) , 

where 

ψ(x, y ) = 

1 

2 

(
�Z 

i,i (0) + �Z 
j, j (0) + �Z 

i, j (h ) + �Z 
j,i (−h ) 

)
IF 

⎛ 

⎝ 

x + y √ 

�Z 
i,i 
( 0) + �Z 

j, j 
(0) + �Z 

i, j 
(h ) + �Z 

j,i 
(−h ) 

, Q,	

⎞ 

⎠ 
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− 1 

2 

(
�Z 

i,i (0) + �Z 
j, j (0) − �Z 

i, j (h ) − �Z 
j,i (−h ) 

)
IF 

⎛ 

⎝ 

x − y √ 

�Z 
i,i 
(0) + �Z 

j, j 
(0) − �Z 

i, j 
(h ) − �Z 

j,i 
(−h ) 

, Q, 	

⎞ 

⎠ , (11) 

and IF is defined in Equation (20) of Lévy-Leduc et al. [14] . By applying Arcones [2 , Theorem 4], the result is obtained. �
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Abstract. The generalized additive model (GAM) is a standard sta-
tistical methodology and is frequently used in various fields of applied
data analysis where the response variable is non-normal, e.g., integer
valued, and the explanatory variables are continuous, typically normally
distributed. Standard assumptions of this model, among others, are that
the explanatory variables are independent and identically distributed
vectors which are not multicollinear. To handle the multicollinearity and
serial dependence together a new hybrid model, called GAM-PCA-VAR
model, was proposed in [17] which is the combination of GAM with
the principal component analysis (PCA) and the vector autoregressive
(VAR) model. In this paper, some properties of the GAM-PCA-VAR
model are discussed theoretically and verified by simulation. A real data
set is also analysed with the aim to describe the association between
respiratory disease and air pollution concentrations.

Keywords: air pollution, generalized additive model, multicollinearity,
principal component analysis, time series, vector autoregressive model

1 Introduction

In the recent literature of time series, there has been an outstanding growth
in models proposed for data that do not satisfy the Gaussian assumption. This
is mainly the case when the response variable under study is a count series
or an integer valued series. Procedures developed to analyse this kind of data
comprises, for example, observation driven models, see [3] and [6], integer valued
autoregressive (INAR) processes, see [1] and [2], or non-Gaussian state space
models, see [8] and [10].

This paper is based on the talk “An application of the GAM-PCA-VAR model to
respiratory disease and air pollution data” given by the first author.

80



Particularly in health and environmental studies, where the response variable
is typically a count time series, the generalized additive model (GAM) has been
widely used to associate the dependent series, such as the number of respiratory
or cardiovascular diseases to some pollutant or climate variables, see, for exam-
ple, [5], [13], [14], [16], [17] and [18] among others. Therefore, in general, the
researches related to the study of the association between pollution and adverse
health effects usually consider only one pollutant. This simple model choice may
be due to the fact that the pollutants are linearly time correlated variables, see
the discussion and references in the recent paper [17].

Recently, it has become common practice to use principal component analysis
(PCA) in regression models to reduce the dimensionality of an independent set
of data, especially the pollutants, which in some instances can include a large
number of variables. The PCA is highly indicated to this purpose, as it can
handle the multicollinearity problem that can cause biased regression estimates,
see, for example, [21].

Nevertheless, use of PCA in the time series context can bring some mis-
specifications in the fit of the GAM model, as this technique requires that the
data should be independent. This problem arises due to the fact that the princi-
pal components are linear combinations of the variables. In this context, as the
covariates are time series, the autocorrelation present in the observations are
promptly transferred to the principal components, see [20].

One solution to this issue was recently proposed by [17], see, also, [18], who
introduced a model which combines GAM, PCA and the vector autoregressive
(VAR) process. The authors suggest to apply the VAR model to the covariates, in
order to eliminate the serial correlation and produce white noise processes, which
in turn will be used to build the principal components in the PCA. The new
variables obtained in the PCA are finally used as covariates in the GAM model,
originating the so called GAM-PCA-VAR model. In their work, the authors have
focused on presenting the model and showing its superiority compared to the
sole use of GAM or the GAM-PCA procedures, but have not deepened on the
theoretical properties of the model.

Thus, to cover this gap, this work aims to state and prove some properties
of the GAM-PCA-VAR model, as well as to perform some simulation study to
check the results for small samples.

The paper is organized as follows. Section 2 presents the main statistical
model, GAM-PCA-VAR, addressed here and its related models as GAM, PCA
and VAR, in some detail. In Section 3 the theoretical results are proved for the
main model. Section 4 discusses the simulation results and Section 5 is devoted
to the analysis of a real data set. Section 6 concludes the work.

2 The GAM-PCA-VAR model

The generalized additive model (GAM), see [11] and [19], with a Poisson marginal
distribution is typically used to relate a non-negative integer valued response
variable Y with a set of covariates or explanatory variables X1, . . . , Xp. In GAM
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the expected value µ = E(Y ) of the response variable depends on the covariates
via the formula

g(µ) = β0 +

p∑

i=1

fi(Xi),

where g denotes the link function, β0 is the intercept parameter and fi’s are func-
tions with a specified parametric form, e.g., they are linear functions fi(x) = βix,
βi ∈ R, i = 1, . . . , p, or non-parametric, e.g., they are simple smoothing functions
like splines or moving averages. The unknown parameters β0 and fi, i = 1, . . . , p
can be estimated by various algorithms, e.g., backfitting or restricted maximum
likelihood (REML) method. However, if the data observed for variables Y and
Xi, i = 1, . . . , p, form a time series the observations cannot be considered as a
result of independent experiments and the covariates present strong interdepen-
dence, e.g., multicollinearity or concurvity, the standard fitting methods result
in remarkable bias, see, e.g., [7] and [17].

Let {Yt} ≡ {Yt}t∈Z be a count time series, i.e., it is composed of non-negative
integer valued random variables. We suppose that the explanatory variables form
a zero-mean stationary vector time series {Xt} ≡ {Xt}t∈Z of dimension p, i.e.,
Xt = (X1t, . . . , Xpt)

> where> denotes the transpose, with the covariance matrix
ΣX = E(XtX

>
t ). Let Ft denote the σ-algebra which contains the available

information up to time t for all t ∈ Z from the point of view of the response
variable, e.g., Xt is Ft−1-measurable. The GAM-PCA-VAR model is introduced
in [17] as a probabilistic latent variable model. In this paper, we define this model
in a more general form as

Yt | Ft−1 ∼ Poi(µt), (1)

Xt = ΦXt−1 +AZt (2)

with link

g(µt) = β0 +

p∑

i=1

∞∑

j=0

fij(Zi(t−j)), (3)

where Poi(·) denotes the Poisson distribution, the latent variables {Zt}, Zt =
(Z1t, . . . , Zpt)

>, form a zero-mean Gaussian vector white noise process of dimen-
sion p with diagonal variance matrix Λ = diag{λ1, . . . , λp}, where λ1 ≥ λ2 ≥
. . . ≥ λp, A is an orthogonal matrix of dimension p×p, Φ is a matrix of dimension
p×p, g is a known link function, β0 denotes the intercept, and fij ’s are unknown
functions. For a zero-mean Gaussian vector white noise process {Zt} with covari-
ance matrix Σ we shall use the notation {Zt} ∼ GWN(Σ). See also [4, Definition
11.1.2]. Clearly, for all i, the univariate time series {Zit} ∼ GWN(λi), and {Zit}
is mutually independent from {Zjt} for all j 6= i. We assume that all the eigen-
values of Φ are less than 1 in modulus which implies that equation (2) has a
unique stationary causal solution. In the case of a Poisson distributed response
variable the two widely used link functions are the identity link, g(z) = z, and
the canonical logarithmic link, g(z) = log z. The set (β0, {fij}, A, Λ, Φ) forms
the parameters of the GAM-PCA-VAR model to be estimated. We remark that
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in the case of canonical logarithmic link function no additional assumption is
needed for the parameters, while in the case of identity link function all the
parameters in equation (3), i.e., β0 and fij ’s, have to be non-negative. It should
be also emphasized that the underlying intensity process {µt} of {Yt} is also a
time series with a complex dependence structure, and µt is Ft−1-measurable for
all t ∈ Z. One can see that the time series {Xt} of covariates depends on {Zt}
by formula Xt =

∑∞
k=0 Φ

kAZt−k for all t, see [4, Example 11.3.1].

The dependence of the response time series {Yt} from the explanatory vector
time series {Xt} in the GAM-PCA-VAR model can be described by three trans-
formation steps. Clearly, by equation (2), the latent variable can be expressed
as Zt = A>Ut, where Ut := Xt − ΦXt−1 for all t. Thus, as the first step, the
intermediate vector times series {Ut} is derived from filtering {Xt} by a VAR(1)
filter. One can see that {Ut} ∼ GWN(ΣU ) where ΣU := AΛA>. Then, as the
second step, the latent vector time series {Zt} as principal component (PC) vec-
tor is derived by principal component transformation of the intermediate vector
white noise {Ut}. The transformation matrix of the PCA is given by the spectral
decomposition of ΣU . Finally, as the third step, the standard GAM with link
(3) is fitting for the response time series {Yt} using the latent vector time series
{Zt}. The impact of the VAR(1) filter in the first step is to eliminate the serial
correlation present in the original covariates. On the other hand, the impact of
the PCA in the second step is to eliminate the correlation in the state space of
the original covariates. Hence, the result of these two consecutive transforma-
tions is the latent vector time series {Zt} whose components, Zit, i = 1, . . . , p,
t ∈ Z, are independent Gaussian variables both in space and time. In the case
of logarithmic link function, large positive values in a coordinate of the latent
variable indicate locally high influence according to this latent factor. On the
contrary, large negative values indicate negligible influence on the response, see,
for example, [20]. The order of models in the acronym GAM-PCA-VAR corre-
sponds to these steps starting with the third one and finishing with the first
one.

The GAM-PCA-VAR model contains several submodels with particular de-
pendence structure. If Φ = 0 then the VAR equation (2) is simplified to a prin-
cipal component transformation. In this case, we suppose that there is no serial
correlation and we only have to handle the correlation in the state space of co-
variates. We have two transformation steps: PCA and GAM. This kind of models
is called GAM-PCA model that is intensively studied nowadays, see, e.g., [15]
and [22]. Beside the full PCA when all PCs are involved into the GAM, we can
fit a restricted PCA model by defining fij = 0 for all i > r and j ≥ 0 where
r < p. In this case, the first rth PCs are applied as covariates in the GAM step.
If the matrices in VAR(1) model (2) have the following block structures

Φ =

[
Φq 0
0 0

]
, A =

[
Aq 0
0 Ip−q

]
,

where the eigenvalues of the q× q matrix Φq are less than one in modulus, Aq is
an orthogonal matrix of dimension q×q (q ≤ p), and fi1(z) = βiz with βi ∈ R for
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i = 1, . . . , r (r ≤ q), fi1 is a general smoothing function for i = q+1, . . . , p, fij =
0 otherwise, then we obtain the model that was studied in [17] and applied in the
data analysis of Section 5. In this model it is supposed that the set of covariates
can be partitioned into two sets: (X1, . . . , Xq) are normal covariates, e.g., the
pollutant variables in the terminology of Section 5, while (Xq+1, . . . , Xp) are
so-called confounding variables as trend, seasonality, etc. The normal covariates
satisfy a q-dimensional VAR(1) model, however, instead of the all coordinates
of the innovation, only its first rth PCs are involved into the GAM taking into
consideration that the covariates present strong inter-correlation. Finally, we
note that our model can be further generalized by replacing equation (2) by
the more general VARMA or VARIMA or their seasonal variants (SVARMA or
SVARIMA) models.

Since the latent variables {Zt} form a Gaussian vector time series, given a
sample (X1, Y1), . . . , (Xn, Yn), the log-likelihood can be expressed in an explicit
form, see [17] for a particular case. Because this log-likelihood is rather com-
plicated a three-stage estimation method is proposed. Firstly, VAR(1) model is
fitted to the original covariates by applying standard time series techniques.
Secondly, PCA is applied for the residuals defined by Ẑt = Xt − Φ̂Xt−1,

t = 2, . . . , n, where Φ̂ denotes the estimated autoregressive coefficient matrix
in the fitted VAR(1) model. Thirdly, GAM model is fitted using the PCs. The
approach discussed above is similar to the principal component regression, see,
e.g., [12, Chapter 8], and it can be considered as a three-stage non-linear re-
gression method.

The first two steps of the above proposed parameter estimation method for
GAM-PCA-VAR model can be interpreted as consecutive orthogonalizations,
firstly in time and then in the state space of covariates. In [17, Remark] we
argued that the order of VAR filter and PCA can not be interchanged because the
orthogonalization in the state space does not eliminate the serial correlation and,
as the necessary next step, the orthogonalization in time by VAR filter bring back
the inter-correlation between the covariates. In what follows, we demonstrate this
phenomena by giving a simple example. Let {Xt} be a zero-mean causal VAR(1)
process defined by

Xt = ΨXt−1 +Wt,

where {Wt} is a zero-mean vector white noise process with variance matrix ΣW .
Suppose that the variance matrix ΣX of {Xt} is diagonal, i.e., the coordinates
of {Xt} can be interpreted as PCs after PCA. Then ΣW is not necessarily
a diagonal matrix, which implies that a VAR(1) filter may result in an inter-
correlated white noise. Namely, consider the following parameters ΣW = AΛA>

and Ψ = ASA>, where Λ and S are diagonal matrices and A is an orthogonal
matrix. In other words, we suppose that the orthogonal matrix A in the spectral
decomposition of ΣW diagonalizes the autoregressive coefficient matrix as well.
Then, we have, by formula (11.1.13) in [4], that

ΣX =
∞∑

j=0

Ψ jΣW (Ψ>)j =
∞∑

j=0

ASjΛSjA> = Adiag

{
λi

1− s2i

}
A>.
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Let σ2 > maxi{λi} arbitrary and define si :=
√

1− λi/σ2 for all i. Clearly, Ψ is a
causal matrix since all its eigenvalues are less than 1 in modulus and ΣX = σ2I,
i.e., the coordinates of {Xt} are uncorrelated. However, the innovation variance
matrix ΣW can be arbitrary proving that the application of VAR filter for a non-
intercorrelated vector time series can give inter-correlated vector white noise in
its coordinates.

Now, we present some particular examples of GAM-PCA-VAR models.

Example 1. One of the simplest GAM-PCA-VAR models is the model with di-
mension p = 1 and log-linear link function. In this case, there is only one covariate
{Xt}, and the VAR equation (2) is an AR(1) model

Xt = φXt−1 + Zt, (4)

where |φ| < 1 which guarantees the existence of a unique stationary causal
solution, {Zt} ∼ GWN(λ), λ > 0. We remark that A = 1 in equation (2) in
order for the model to be identifiable. The link is log-linear expressed as

logµt = β0 + β1Zt. (5)

The parameter set of this model is (β0, β1, λ, φ) with parameter space R2×R+×
(−1, 1). In this model, there is no dimension reduction. Clearly, Zt = Xt−φXt−1,
thus the response depends on the covariate through the link

logµt = γ0 + γ1Xt + γ2Xt−1, (6)

where there is a one-to-one correspondence between the parameter sets (β0, β1, φ)
and (γ0, γ1, γ2) defined by the equations γ0 = β0, γ1 = β1 and γ2 = −φβ1
provided φ 6= 0. However, if we fit the standard GAM by using the link (6) with
covariates Xt and Xt−1 at time t, we take no count of the interdependence in
time series {Xt} which can result in biased and inconsistent estimators of the
GAM parameters.

Example 2. Define a particular two-dimensional (p = 2) GAM-PCA-VAR model
with logarithmic link function in the following way. The two-dimensional covari-
ate vector process {Xt}, Xt = (X1t, X2t)

>, satisfies the VAR(1) model

[
X1t

X2t

]
=

[
φ1 0
0 φ2

] [
X1(t−1)
X2(t−1)

]
+

[
cosϕ − sinϕ
sinϕ cosϕ

] [
Z1t

Z2t

]
,

where |φ1| < 1, |φ2| < 1 and {Zit} ∼ GWN(λi) with λi > 0, i = 1, 2, which are
independent from each other. Note that the set of two-dimensional orthogonal
matrices, A, can be parametrized by an angle parameter ϕ ∈ [0, 2π). We assume
that the link is

logµt = β0 + β1Z1t.

The parameter set of this model is (β0, β1, ϕ, λ1, λ2, φ1, φ2) and the parameter
space is R2 × [0, 2π) × R2

+ × (−1, 1)2. Note that, in this model, there is a PCA
step as a dimension reduction since only the first coordinate {Z1t} of the vector
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innovation is involved into the GAM as covariate. One can see that the response
depends on the covariates through the link

logµt = γ0 + γ1X1t + γ2X2t + γ3X1(t−1) + γ4X2(t−1),

where γ0 = β0, γ1 = β1 cosϕ, γ2 = β1 sinϕ, γ3 = −β1φ1 cosϕ and γ4 =
−β1φ2 sinϕ. Thus, the intensity process {µt} depends on all coordinates of Xt

and Xt−1. Clearly, there is a one-to-one correspondence between the two param-
eter sets (β0, β1, ϕ, φ1, φ2) and (γ0, γ1, γ2, γ3, γ4).

Example 3. A seasonal one-dimensional GAM-PCA-VAR model with linear link
function can be defined in the following way. Suppose that the one-dimensional
covariate process {Xt} satisfies the SARs(1) model:

Xt = φXt−s + Zt,

where |φ| < 1, {Zt} ∼ GWN(λ) with λ > 0 and s ∈ Z+ denotes the seasonal
period. The link is linear and is given by

µt = β0 + β1f(Zt),

where f : R → R+ is a known function and β0, β1 ∈ R+ are parameters. The
parameter set of this model is (β0, β1, λ, φ) with parameter space R3

+ × (−1, 1).
The response variable depends on the original covariates through the link

µt = β0 + β1f(Xt − φXt−s).

If the function f is sufficiently smooth we have by approximation f(Xt−φXt−s) ≈
f(Xt)− φf ′(Xt)Xt−s, and then

µt = γ0 + γ1f1(Xt) + γ2f2(Xt, Xt−s), (7)

where f1, f2 are known functions and γ0 = β0, γ1 = β1 and γ2 = −β1φ. Thus, the
response depends on the original covariate and its s-step lagged series through
the standard GAM. However, the covariates in equation (7) are clearly depen-
dent.

3 Theoretical results

In this section, we prove some theoretical results for particular classes of GAM-
PCA-VAR models. Consider the log-linear model defined by the link

logµt = β0 +

p∑

i=1

∞∑

j=0

βijZi(t−j), (8)

where β0, βij ∈ R, i = 1, . . . , p, j ∈ Z+. The first proposition is about the
existence of log-linear GAM-PCA-VAR models.
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Proposition 1. Suppose that σ2 :=
∑p
i=1 λi

∑∞
j=0 β

2
ij is finite. Then the GAM-

PCA-VAR model with log-linear link (8) has solution {(Yt,Xt)} which is a
strictly stationary process and E(Yt) = E(µt) = exp(β0 + σ2/2) for all t ∈ Z.

Proof. By conditioning we have that

E(Yt) = E(E(Yt | Ft−1)) = E(µt) = E(exp(logµt)) = exp(β0 + σ2/2) (9)

is finite since, by equation (8), logµt ∼ N (β0, σ
2), i.e., µt has a lognormal

distribution, and the moment generating function of ξ ∼ N (β0, σ
2) is given by

Mξ(t) := E(exp(tξ)) = exp(β0t+(σt)2/2). Thus, the non-negative integer valued
random variable Yt is finite with probability one for all t ∈ Z. The vector time
series {Zt} forms a Gaussian white noise. Hence it is strictly stationary process
with backshift operator B(Zt) = Zt−1 for all t ∈ Z. Since both stochastic
processes {Yt} and {Xt} depend on {Zt} through time-invariant functionals, we
have the strict stationarity of {(Yt,Xt)} and B(Xt) = Xt−1, B(Yt) = Yt−1 for
all t ∈ Z. ut

In the next proposition, we prove that all moments of the log-linear GAM-
PCA-VAR model are finite.

Proposition 2. Suppose that σ2 defined in Proposition 1 is finite. Then all
moments of the stochastic process {(Yt,Xt)} are finite. In particular, we have,
for all t ∈ Z,

Var(Yt) = exp(2β0 + σ2)(exp(σ2)− 1 + exp(−β0 − σ2/2)),

Var(µt) = exp(2β0 + σ2)(exp(σ2)− 1).

Proof. Let r ∈ N. Define the rth factorial of a non-negative integer k as k[r] :=
k(k − 1) · · · (k − r + 1) and let k[0] := 1. For the rth factorial moment of Yt we
have by conditioning that

E(Y
[r]
t ) =

∞∑

k=0

k[r]P(Yt = k) = E
∞∑

k=0

k[r]P(Yt = k | Ft−1)

=E
∞∑

k=r

µkt
(k − r)!e

−µt = E(µrt )

for all t ∈ Z. Similarly to (9), we have that the factorial moments are finite, since

E(Y
[r]
t ) = E(µrt ) = E(exp(r logµt)) = exp{β0r + (σr)2/2}. (10)

Since the higher order moments can be expressed by the factorial moment via
the formula

E(Y r) =
r∑

j=0

S(r, j)E(Y [j]),

where S(r, j)’s denotes Stirling numbers of the second kind, the finiteness of
all higher order moments follows easily. Since {Xt} is a Gaussian process all
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its moments are finite. Finally, the existence of mixed moments follows by the
Cauchy-Schwarz inequality.

From Equation (10), we have

Var(µt) =E(µ2
t )− E2(µt) = exp(2β0 + (2σ)2/2)− exp(2β0 + σ2)

= exp(2β0 + σ2)(exp(σ2)− 1).

Finally, the formula for Var(Yt) can be derived by

Var(Yt) = E(Var(Yt | Ft−1)) + Var(E(Yt | Ft−1)) = E(µt) + Var(µt). ut

The existence of all moments for the log-linear GAM-PCA-VAR process is
to be compared with the same result for the integer valued GARCH, so-called
INGARCH, process, see [9, Proposition 6]. This implies that the log-linear GAM-
PCA-VAR process possesses second and higher order structures, e.g., the auto-
correlation function, the spectral density function, the cumulants and the higher
order spectra exist. Let ρY denotes the autocorrelation function of the time series
{Yt}.

Proposition 3. For the auto- and cross-correlation functions of the GAM-
PCA-VAR process {(Yt,Xt)} with intensity process {µt}, we have ρY (h) =
cY ρ(h), ρµ(h) = cµρ(h) and ρY µ(h) = cY µρ(h) where

ρ(h) := exp




p∑

i=1

λi

∞∑

j=0

βi(j+|h|)βij


− 1, h ∈ Z \ {0},

and the constants cY , cµ, cY µ are defined by

cY := (exp(σ2)−1+exp(−β0−σ2/2))−1, cµ := (exp(σ2)−1)−1, cY µ :=
√
cY cµ.

Moreover, Cov(Yt+h,Xt) = Cov(µt+h,Xt) = E(Yt+hXt) = E(µt+hXt) = C(h)
with

C(h) := exp(β0 + σ2/2)×
{∑∞

k=0 Φ
kA(λ ◦ βh+k) if h ≥ 0,∑∞

k=0 Φ
k−hA(λ ◦ βk) if h ≤ 0,

(11)

where λ := (λ1, . . . , λp)
>, βj := (β1j , . . . , βpj)

>, j ∈ Z+, and ◦ denotes the
entrywise (Hadamard) product.

Proof. Let h ∈ N. One can see that for the intensity process we have µt+h =

µ
(1)
th µ

(2)
th where

logµ
(1)
th := β0 +

p∑

i=1

h∑

j=1

βi(h−j)Zi(t+j), logµ
(2)
th :=

p∑

i=1

∞∑

j=0

βi(j+h)Zi(t−j).
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Clearly, µ
(1)
th is independent of Ft−1 and Yt, while µ

(2)
th is Ft−1-measurable. Hence,

we have by conditioning that

E(Yt+hYt) =E(YtE(Yt+h | Ft+h−1)) = E(µt+hYt) = E(µ
(1)
th µ

(2)
th Yt)

=E(µ
(1)
th )E(µ

(2)
th E(Yt | Ft−1)) = E(µ

(1)
th )E(µ

(2)
th µt) = E(µt+hµt)

since µt is independent of µ
(1)
th . This gives the result for h > 0. On the other

hand, for all h > 0, again by conditioning, E(Yt+hµt) = E(µt+hµt). Thus

Cov(Yt+h, Yt) = Cov(µt+h, µt) = Cov(Yt+h, µt), h ∈ Z \ {0}.
Since

E(µt+hµt) = E(µ
(1)
th µ

(2)
th µt) = E(µ

(1)
th )E(µ

(2)
th µt)

similarly to equation (9) we have

E(µt+hµt) = exp


2β0 +

1

2

p∑

i=1

λi



h−1∑

j=0

β2
ij +

∞∑

j=0

(βi(j+h) + βij)
2






= exp




p∑

i=1

λi

∞∑

j=0

βi(j+h)βij


E(µt+h)E(µt).

Thus, the first part of the proposition follows by Proposition 2.
Next we prove the formula (11) for the cross-correlations of response and

covariate variables. Clearly, by conditioning, E(Yt+hXt) = E(µt+hXt) for all

h ∈ Z+. On the other hand, for all t ∈ Z, h ∈ Z+, we have Xt+h = X
(1)
th +X

(2)
th

where

X
(1)
th :=

h∑

k=1

Φh−kAZt+k, X
(2)
th :=

∞∑

k=0

Φh+kAZt−k.

One can see that X
(1)
th is independent of Ft−1 and Yt, while X

(2)
th is Ft−1-

measurable. Thus, we have that

E(Xt+hYt) =E((X
(1)
th +X

(2)
th )Yt) = E(X

(1)
th )E(Yt) + E(X

(2)
th E(Yt | Ft−1))

=E(X
(1)
th )E(µt) + E(X

(2)
th µt) = E(Xt+hµt).

Hence E(Yt+hXt) = E(µt+hXt) for all h ∈ Z and it is enough to compute the
cross-correlation between {Xt} and {µt}. Let h ≥ 0. For all ` ∈ {1, . . . , p},
k ∈ Z+ let Ih`k := {1, . . . , p} × Z+ \ (`, k + h) and define the random variables

log ξth`k := β0 +
∑

(i,j)∈Ih`k

βijZi(t+h−j), log ηth`k := β`(k+h)Z`(t−k).

Then µt+h = ξth`kη
th
`k , where the factors in this decompostion are independent.

Since E(µt+hXt) =
∑∞
k=0 Φ

kAE(µt+hZt−k) and, using the fact that for Z ∼
N (0, λ) and β ∈ R we have E(Z exp(βZ)) = βλ exp(λβ2/2),

E(µt+hZ`(t−k)) = E(ξth`kη
th
`kZ`(t−k)) = E(ξth`k)E(ηth`kZ`(t−k)) = E(µt+h)β`(k+h)λ`,
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we obtain the formula (11). The proof is similar in the case of h < 0. ut

Remark 1. It is easy to see that if βij = βji for all i, j, then the function ρ is

given by ρ(h) = exp(
∑p
i=1 λiβ

|h|
i /(1−β2

i ))−1, h ∈ Z. If βi’s are all positive then
ρ is positive everywhere and we have autocorrelation functions which are similar
to what is displayed in Figure 1. For the one-dimensional model in Example 1 we
have the cross-correlation function (CCF) C(h) = exp(β0 + λβ2

1/2)λβ1φ
−h for

h ≤ 0 and C(h) = 0 for h > 0. If φ > 0 then, according to positive or negative
β1, we obtain everywhere positive or negative CCFs. For example, see the CCFs
in Figure 2 between the response (Admissions) and pollutants CO, NO2 that
are positive and the CCFs between the response (Admissions) and O3, SO2 that
are negative at every lag, respectively.

Consider another widely used link function, the linear one, and define the
linear GAM-PCA-VAR model by the link

µt = β0 +

p∑

i=1

∞∑

j=0

βijf(Zi(t−j)), (12)

where β0, βij ∈ R+, i = 1, . . . , p, j ∈ Z+ are parameters and f : R → R+ is a
known function, e.g., f(z) = exp(z). Let ϕ(x |λ) denote the probability density
function of the normal distribution with mean 0 and variance λ.

Proposition 4. Suppose that, for all i = 1, . . . , p,
∑∞
j=0 βij < ∞ and τi :=∫∞

−∞ f(x)ϕ(x |λi)dx < ∞. Then the GAM-PCA-VAR model with linear link
(12) has a strictly stationary solution {(Yt,Xt)}. Moreover, E(Yt) = E(µt) =
β0 +

∑p
i=1 τi

∑∞
j=0 βij.

Proof. The proof is similar to the proof of Proposition 1. ut

Clearly, the assumptions of Proposition 4 do not necessarily garantee the
existence of higher order moments of linear GAM-PCA-VAR process. Indeed,
the rth order moment E(Y rt ) is finite if and only

∫∞
−∞ fr(x)ϕ(x |λi)dx < ∞ for

all i where r ≥ 1.

4 Simulation study

In order to evaluate the effect on the parameter estimation of a GAM model in
the presence of temporal correlation in the covariate {Xt}, a simulation study
was conducted. The data were generated according to the model discussed in
Example 1. Three estimation methods were considered: the standard GAM with
only one covariate where the estimated parameters were β0 and β1 (M1); the
standard GAM with two covariates, the original one and its 1-step lagged se-
ries, where the estimated parameters were β0, β1, β2 and φ = −β2/β1 (M2); the
full GAM-PCA-VAR model by the procedure described in Section 2 where all
parameters β0, β1, φ, λ were estimated (M3).
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For the model discussed in Example 1 the data were generated under β0 =
0.2, β1 = 1, λ = 2 and three scenarios were considered as φ = −0.7, 0.3, 0.9 to
model strong negative, small positive and strong positive correlations, respec-
tively. In order to model the impact due to some unobservable variables, e.g.,
environmental ones in the context of the next section, independent N (0, 0.1)
distributed random variables were added to the predictor of logµt for all t ∈ Z.
The sample size n = 1000 and the number of Monte Carlo simulations was equal
to 100. The empirical values of mean, bias and mean square error (MSE) are
displayed in Table 1. All results were obtained by using R-code.

Table 1. Simulation results for model in Example 1

Estimation method φ Parameter Mean Bias MSE

M1: GAM with Xt −0.7 β0 = 0.2 0.699 0.499 0.253
β1 = 1 0.507 -0.492 0.244

M2: GAM with Xt, Xt−1 β0 = 0.2 0.204 0.004 0.001
β1 = 1 0.999 -0.001 0.0002
φ = −0.7 -0.7 0 0.0001

M3: GAM-PCA-VAR β0 = 0.2 0.205 0.005 0.001
β1 = 1 0.999 -0.001 0.0002
φ = −0.7 -0.695 0.004 0.0005
λ = 2 2.003 0.003 0.008

M1: GAM with Xt 0.3 β0 = 0.2 0.302 0.102 0.012
β1 = 1 0.905 -0.095 0.009

M2: GAM with Xt, Xt−1 β0 = 0.2 0.209 0.009 0.001
β1 = 1 0.998 -0.002 0.0002
φ = 0.3 0.3 0 0.0002

M3: GAM-PCA-VAR β0 = 0.2 0.209 0.009 0.001
β1 = 1 0.999 -0.001 0.0002
φ = 0.3 0.306 0.006 0.0008
λ = 2 1.995 -0.005 0.009

M1: GAM with Xt 0.9 β0 = 0.2 1.002 0.802 0.651
β1 = 1 0.191 -0.809 0.655

M2: GAM with Xt, Xt−1 β0 = 0.2 0.2 0 0.001
β1 = 1 1 0 0.0002
φ = 0.9 0.899 -0.001 0

M3: GAM-PCA-VAR β0 = 0.2 0.203 0.003 0.001
β1 = 1 1 0 0.0002
φ = 0.9 0.899 -0.001 0.0001
λ = 2 2.007 0.007 0.0086

In the case of standard GAM estimation (M1) it can be seen that the es-
timate of β1 is heavily affected by the autocorrelation structure present in the
covariate, by presenting a negative bias which increases in absolute value as |ϕ|
increases. The estimated MSE also increases substantially with |ϕ|. On the other
hand, it can also be seen that the fitted standard GAM model tends to severely
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overestimate β0. Contrarily, the estimation methods M2 and M3 work equally
well, the estimates of the parameters are very close to the true values with no-
ticeably small MSE. The undoubted advantage of method M3 against M2 is that
an AR(1) model is also fitted for the covariate where the innovation variance λ
is estimated and which can be applied later in the prediction. In this procedure
firstly the covariate variable is predicted by equation (4) and then the response
variable is predicted by the GAM using the link (5).

5 Application to air pollution data

In this study, the number of hospital admissions (Admissions) for respiratory
diseases (RD) as response variable was obtained from the main childrens emer-
gency department in the Vitória Metropolitan Area (called Hospital Infantil
Nossa Senhora da Gloria), ES, Brazil. The following atmospheric pollutants as
covariates were studied: particulate material (PM10), sulphur dioxide (SO2), ni-
trogen dioxide (NO2), ozone (O3) and carbon monoxide (CO). For details, e.g.,
descriptive statistics and basic time series plots, see [17]. The data analysed in
this section can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

The graphs of the sampling functions of the autocorrelations and partial
autocorrelations in Figure 1 show that the series of the number of hospital ad-
missions for RD possesses seasonal behaviour, which was to be expected for
this phenomena. Another characteristic observed in the series was an apparently
weak stationarity. Similar graphs for the pollutant series can be found in [17].
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Fig. 1. Sample autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the response variable.

Figure 2 shows the sample cross-correlation functions (CCF) between the
response and pollutant covariates. As we discussed in Remark 1 four CCF’s
among them present similar behaviour: the impact of pollutants CO and NO2 is
positive while the impact of SO2 and O3 are negative to the response variable
at every lag. This observation is consistent with the PCA result presented in
[17], see Table 5, where CO and NO2 form a joint cluster for PC1. On the other
hand, all CCF’s possess seasonal behaviour as well.
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Fig. 2. Sample cross-correlation function (CCF) of the response and pollutant vari-
ables.

Figure 3 shows the sample cross-correlation functions (CCF) between the
response variable and the first three PCs derived from applying PCA for the
vector of pollutants. In Section 3.2 of [17], see Table 5 there, one can see that
the first three components correspond to 83.2% of the total variability. The
temporal behaviour of the PCs is also presented in the autocorrelation plots
of [17, Figure 4]. The autocorrelations and the cross-correlations displayed here
presented heavy seasonality as well. On the other hand, the shape of the CCFs
for the response and PCs can also be classifed into similar groups to the CCFs
in Figure 2. The CCF of PC1 is similar to the one of the PM10. The CCF of
PC2 displays only negative correlations similar to SO2 and O3, while the CCF
of PC3 (Figure 3) displays only positive correlations, see CO and NO2 in Figure
2.

In order to filter the vigorous seasonality both in the response and pollu-
tant variables, seasonal ARMA filters with a 7-day period were applied. The
pollutant vector time series and the one-dimensional response time series were
filtered by SVAR7(1) and SARMA7(1, 1) processes, respectively. The residuals
obtained by these filters indicate remaining significant correlations, see the CCFs
between these residuals in Figure 4. The significant cross-correlations and their
respective lags are presented in Table 2. Clearly, the correlations which belong
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Fig. 3. Sample cross-correlation function (CCF) of the response and first three PCs.

to the negative lags are spurious. However, the correlations which belong to the
positive lags measure the true impact of a covariate. For example, there are sig-
nificant correlations at lag 2 for pollutants PM10, NO2 and CO equally which
could mean that the influence of these pollutants to the response indicates 2
days delay. Contrarily, the influence of the pollutants SO2 and O3 presents far
delays.

Table 2. Significant cross-correlations and their respective lags between the response
and pollutants after the filtering

RD×SO2 RD×NO2

Lag -19 -14 -6 12 23 -12 2 4 14 22
Value -0.063 -0.062 -0.042 -0.047 -0.051 -0.044 -0.050 0.048 0.053 -0.044

RD×PM10 RD×CO RD×O3

Lag 2 23 -12 2 6 9 25
Value -0.044 -0.043 -0.053 -0.048 0.045 0.054 -0.055

Figure 5 shows the sample CCF between the residuals of the response variable
and the first three PCs after the filtering. The significant cross-correlations and
its respective lags are presented in Table 3. It should be emphasized that there
are strong coincidences in the lags between Table 2 and 3. For example, the
lag 2 in PC1 corresponds to the pollutants PM10, NO2 and CO, the lag 6 in
PC1 corresponds to the pollutant CO, while lag 25 in PC1 corresponds to the
pollutant O3. The lag 12 in PC2 corresponds to the pollutant SO2. Finally, the
lag 14 corresponds to the pollutant NO2 and the lag 23 to the pollutants SO2 and
NO2. These correspondences are compatible with the clustering derived in [17,
Table 7]. The fitted GAM-PCA-VAR model with its goodness-of-fit measures
are reported in [17] as well. We note that in this fitted model fij = 0 was chosen
for all j > 0. In view of the above results the GAM-PCA-VAR model with link

logµt = β0 +

p∑

i=1

∑

j∈Ii
fij(Zi(t−j))
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Fig. 4. Sample cross-correlation function (CCF) between the response and pollutant
variables after the filtering.

can also be a possible candidate, where Ii denotes the set of lags which belong
to the significant cross-correlation between the residuals of the response and the
ith PC. This model can be fitted by using the procedure described in Section 2.
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Fig. 5. Sample cross-correlation function (CCF) between the response and PCs after
the filtering.
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Table 3. Significant cross-correlations and their respective lags between the response
variable RD and PCs after the filtering

RD×PC1 RD×PC2 RD×PC3

Lag -14 -12 2 6 25 -5 -2 5 12 1 14 23
Value -0.051 -0.046 -0.057 0.046 0.043 -0.048 -0.046 0.048 -0.047 0.042 -0.078 -0.045

6 Conclusions

A hybrid called GAM-PCA-VAR model composed by three statistical tools, the
VAR model, PCA and the GAM, with Poisson marginal distribution, was devel-
oped in a more general framework than in [17]. A three-stage estimation method
was proposed and studied by simulation for some examples. Some theoretical
properties were also proved. The model was applied to describe the dependence
between the number of hospital admissions for respiratory diseases and air pol-
lutant covariates.

An extension of the proposed estimation method for the GAM-PCA-VAR
model by a variable selection procedure which ensures that only the significant
PCs with their respective lags are involved into the model will be pursed in
future works.
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J. M.: Generalized additive models with principal component analysis: an appli-
cation to time series of respiratory disease and air pollution data. J. Roy. Stat.
Soc. C-App., DOI: 10.1111/rssc.12239, (2017)

18. Souza, J. B., Reisen, V. A, Santos, J. M., Franco, G. C.: Principal components
and generalized linear modeling in the correlation between hospital admissions
and air pollution. Rev. Saude Publ. 48(3), 451–8 (2014)

19. Wood, S. N.: Generalized Additive Models: An Introduction with R. 2nd edn.
Chapman and Hall/CRC (2017)

20. Zamprogno, B.: PCA in time series with short and long-memory time series.
PhD Thesis at the Programa de Pós-Graduação em Engenharia Ambiental do
Centro Tecnológico, UFES, Vitória, Brazil. (2013)
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Abstract

This paper contributes to the analysis, interpretation and use of the principal component
analysis (PCA) of the variance-covariance matrix of a multivariate time-correlated linear pro-
cess. The effect of ignoring the autocorrelation structure of the process when applying and
interpreting PCA is investigated. The spurious impact of the time-correlation on the eigen-
values is studied. To mitigate this impact, a pre-filtering procedure to whiten the data is
suggested. The results are justified theoretically and empirically. The proposed methodology
is used to identify redundant particulate matter measurements in the Great Vitória Region
(GVR) in Brazil. Among the eight considered monitoring stations, it is found that three are
needed to characterize the region.

Keywords: Principal component analysis, autocorrelation, cross-correlation, eigenvalue, air pollu-
tion.

1 Introduction

PCA is one of the most widely used multivariate techniques to reduce the dimension of a data
set while keeping most of the variability of the data. To clarify how important this technique
is, Richman (1986) showed that between 1983 and 1985 over 60 PCA applications, or similar
techniques appeared in meteorological/climatological journals. More recently, between 1999 and
2000, 53 of the 215 articles of International Journal of Climatology applied PCA which represents
25%, a rate not achieved by any other statistical technique (Jollife 2002, page 71).

The use of PCA not focuses only on reducing the dimension of the data. For example, Karar
& Gupta (2007) used PCA as a cluster analysis to identify sources of pollution and Romero et al.
(1999), White et al. (1991) and Cohen (1983) applied PCA to identify homogeneous sub-regions of
climatic stations in a large geographical area. Besides the use of PCA as a cluster analysis, several
studies used the technique to extenuate the multicollinearity in a regression analysis context and
to detect outliers, see e.g., Liu (2009), Wang & Pham (2011a), Souza et al. (2014), Souza et al.
(2018) and Reisen et al. (2019). PCA is also a step procedure in other multivariate techniques
such as factor analysis, canonical correlation analysis and discriminant analysis, among others.

In the air quality area, the identification of pollution sources using PCA has been considered
by many authors, for example, Statheropoulos et al. (1998), Borbon et al. (2002), Wang & Shooter
(2004), Karar & Gupta (2007) and Shi et al. (2009), among others. In the network management
context, Pires et al. (2008a,b) used PCA with monitored pollutant concentrations data to manage
the monitoring network of the metropolitan area of Porto (Portugal) to reduce costs. The authors
proposed to select only one station among those belonging to a same cluster and having similar
concentrations behaviours. They concluded that six stations instead of ten are sufficient to measure
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the level of concentration of sulphur dioxide (SO2), and no more than two stations are required
for monitoring the particulate matter less than 10 µm in diameter (PM10). Lu et al. (2011)
evaluated the performance of PCA and cluster analysis for the management of the local air quality
monitoring network of Hong Kong (China) with the aim to identify city areas with similar air
pollution behaviour and to locate emission sources. They found that the monitoring stations could
be grouped into different classes based on the air pollution behaviours.

One of the usual assumptions of PCA technique is the data independence. Nevertheless, PCA
is widely used with time series which are time-correlated, without justification. For example, the
pollution data considered in the above cited papers are time-dependent. Not taking into account
the temporal structure of the observations may lead to misleading analysis and interpretations.
It is important to recognize that the use of standard statistical methods like PCA, neglecting the
required data assumption may produce biased estimates and spurious results. The recent work of
Vanhatalo & Kulahci (2016) discuss the impact of temporal correlation in the statistical process
control with PCA. The authors presented some practical insights of ignoring the correlation struc-
ture of the data in PCA-based control charts. The effect of time-correlation on model estimation
using PCA is also one of the main contribution of Souza et al. (2018), where the multicollinearity
issue when using pollutants as covariates in the generalized additive model is solved using PCA,
and where it is suggested to use a multivariate time series model to remove the temporal corre-
lation of the covariates. Wang & Pham (2011b) also considered PCA in the regression model to
quantify the relationship between morbidity and pollutants; however, the temporal correlation of
the variables was ignored by the authors.

The purpose of this paper is to fill some gaps when applying PCA technique to multivariate
time series data. In this context, the objective is to evaluate the effect of different correlation
structures of a multivariate stationary process in the interpretation and inference of the principal
component (PCs) computed from the variance-covariance matrix. The study is justified empiri-
cally and theoretically, and a real data set of pollutant concentrations is considered as an example
of application. Proposition 1 shows that the PCs are autocorrelated and cross-correlated. Thus,
the paper suggests to pre-whitening the data with a linear model to attenuate the time-correlation
before applying PCA. This whitening technique has been considered by some authors in the econo-
metric area, but without discussing the consequence of neglecting the temporal correlation. For
example, Matteson & Tsay (2011) and Hu & Tsay (2014) applied vector autoregressive (VAR)
models to remove the serial correlation of time series of stock returns before carrying out PCA of
the residuals.

The paper is organized as follows: Section 2 presents the time series model and theoretical
properties of PCA with autocorrelated data. Monte Carlo simulations are considered in Section 3.
Section 4 discusses the real data application and Section 5 concludes the paper.

2 PCA with time series data

Let Xt = [X1t, . . . , Xkt]
′, t ∈ Z, be a k-dimensional linear process defined by

Xt = µ+

∞∑

j=0

Ψjεt−j , (1)

2
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where µ ∈ Rk, εt = [ε1t, . . . , εkt]
′ is a vector white noise process such that E(εt) = 0 and

Γε(h) = Cov(εt, εt+h) = E(εtε
′
t+h) =

{
Σε if h = 0,

0 if h 6= 0,
(2)

Σε is a nonsingular matrix, and the Ψj ’s are k× k matrices of real coefficients satisfying Ψ0 = I, I
being the identity matrix, and

∑∞
j=0 tr(ΨjΣεΨ

′
j) < ∞, where tr(A) denotes the trace of a square

matrix A. It follows from (1) and (2) that Xt is a second-order stationary process with mean µ
and covariance matrix

ΓX(h) = Cov(Xt, Xt+h) = E((Xt − µ)(Xt+h − µ)′) =
∞∑

j=0

ΨjΣεΨ
′
j+h, (3)

for all h ≥ 0. Although the elements of εt at different times are uncorrelated, they may be
contemporaneously correlated when Σε is not diagonal. In the following, we assume without loss
of generality that µ = 0.

In the analysis of a multivariate data set, PCA looks for linear combinations of the components
capturing the highest percentage of variation of the data. This technique depends exclusively on
the covariance or the correlation matrix of the data, see e.g., Anderson (2003), Jollife (2002)
and Johnson & Wichern (1998). PCA is well suited for time-independent observations since it
explains only the contemporaneous correlation of the data and does not take into account the
time-correlation. Specifically, PCA calculates the characteristic roots and vectors of ΓX(0). Let
λ1 ≥ . . . ≥ λk ≥ 0 be the non necessarily distinct eigenvalues of ΓX(0) with corresponding
orthonormal (with respect to the usual inner product) eigenvectors p1, . . . , pk. Then ΓX(0)pi = λipi
for i = 1, . . . , k, and P ′ΓX(0)P = Λ where P is the k×k matrix whose ith column is pi and Λ is the
k×k diagonal matrix whose ith diagonal element is λi, i.e., Λ = diag(λ1, . . . , λk), see e.g. Banerjee
& Roy (2014, Theorem 11.27). Equivalently, ΓX(0) admits the so-called spectral decomposition

ΓX(0) = PΛP ′ =
k∑

i=1

λipip
′
i. (4)

The PC vector process is given by Yt = P ′Xt, i.e., Yt = [Y1t, . . . , Ykt]
′ where Yit = p′iXt for

i = 1, . . . , k. The following proposition summarizes some properties of the covariance of Yt.

Proposition 1. Let Xt be defined by (1) where, without loss of generality, it is assumed that
µ = 0. Let λ1 ≥ . . . ≥ λk ≥ 0 be the eigenvalues of ΓX(0) with corresponding orthonormal
eigenvectors p1, . . . , pk, and Yit = p′iXt be the ith PC for i = 1, . . . , k. Then,

a) Var(Yit) = p′iΓX(0)pi = λi,

b) Cov(Yit, Yjt) = p′iΓX(0)pj = 0 when i 6= j,

c) Cov(Yit, Yj(t+h)) = p′i Cov(Xt, X
′
t+h)pj = p′iΓX(h)pj for i, j = 1, . . . , k and h 6= 0.

Remark 1. Propositions 1a,b) appear, for example, in Anderson (2003) and Johnson & Wichern
(1998) in the particular case of an uncorrelated process, that is when Xt = εt in (1). Proposition 1c)
shows that the autocovariances (i = j) and the cross-covariances (i 6= j) of the PCs are non zero.
This induces some issues discussed below in descriptive and inferential procedures of PCA in the
case of time series data.

3
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Remark 2. If some eigenvalues λi’s are equal, the corresponding eigenvectors pi’s and PCs Yit’s
are not uniquely defined. Nevertheless, the vector space generated by these eigenvectors is unique,
see e.g. Harville (1997, pages 537–538).

Remark 3. Let Xt be defined by (1). It follows from (3) that

tr(ΓX(0)) = tr(Σε) + tr(

∞∑

j=1

ΨjΣεΨ
′
j). (5)

Let An =
∑n

j=1 ΨjΣεΨ
′
j . We have,

tr( lim
n→∞

An) =
k∑

i=1

( lim
n→∞

An,(i,i)) = lim
n→∞

tr(An). (6)

Since An is a nonnegative definite matrix, tr(An) ≥ 0. Then, limn→∞ tr(An) ≥ 0, and we deduce
from (5) and (6) that tr(ΓX(0)) ≥ tr(Σε). Now,

tr(ΓX(0)) = tr(PΛP ′) =

k∑

i=1

λi =

k∑

i=1

Var(Yit).

Therefore, the PCs of Xt present more variability than the ones of εt. This can lead to a wrong
use of PCA technique if the time-correlation of Xt is ignored.

A parametric class of models satisfying (1) is the k-dimensional vector seasonal autoregressive
fractionally integrated moving average (VSARFIMA) model with season s ∈ N, non-seasonal orders
(p, d1, . . . , dk, q) and seasonal orders (P,D1, . . . , Dk, Q). This model is defined by the difference
equations

φ(B)Φ(Bs)Zt = θ(B)Θ(Bs)εt, (7)

Zit = (1−B)di(1−Bs)DiXit, (8)

for i = 1, . . . , k, where εt is a vector white noise with E(εt) = 0 and Γε(h) given by (2), and B is
the backward operator, i.e., BXt = Xt−1 for any process Xt. For any d ∈ R \ Z, the time series
(1−B)dXt is defined by

(1−B)dXt =
∞∑

k=0

bkXt−k,

where

bk =
k∏

j=1

j − 1− d
j

=
Γ(k − d)

Γ(k + 1)Γ(−d)

are the coefficients in the Taylor series for (1 − z)d when |z| < 1 and Γ(x) =
∫∞

0 tx−1e−tdt is the
Gamma function. It is assumed that (p, q, P,Q) are positive integers, 0 ≤ di + Di < 1/2 and
0 ≤ Di < 1/2 for i = 1, . . . , k. The matrix-valued polynomials φ(·), θ(·), Φ(·) and Θ(·) given by

φ(z) = I − φ1z − · · · − φpzp,
θ(z) = I + θ1z + · · ·+ θqz

q,

Φ(z) = I − Φ1z − · · · − ΦP z
P ,

Θ(z) = I + Θ1z + · · ·+ ΘQz
Q,

4
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satisfy that det(φ(z)Φ(zs)) 6= 0 and det(θ(z)Θ(zs)) 6= 0 for all z ∈ C such that |z| ≤ 1. These
two conditions are known as the causality and invertibility properties, respectively. Additional
conditions have to be imposed in order to obtain an identifiable model, see e.g. Brockwell & Davis
(2006, page 431) and Reinsel (1997, section 2.3). In (7)–(8), the matrix parameters φi’s, θi’s, Φi’s,
Θi’s, and the fractional orders di’s, Di’s are unknown and have to be estimated from the observed
data X1, . . . , Xn. When all di’s and Di’s are zero, Xt reduces to a VSARMA process and has a
short-memory correlation structure in the sense that the sequence of matrices ΓX(h) for h ∈ Z
is summable. Otherwise, Xt has a long-memory behaviour in the sense that the matrices ΓX(h)
are only square summable, see Chung (2012). Reisen, Zamprogno, Palma & Arteche (2014) and
Reisen, Sarnaglia, Reis Jr, Lévy-Leduc & Santos (2014) discussed the univariate SARFIMA model
and its estimation methods.

As mentioned in Remark 3, when Xt is time-correlated, the PCs of Xt have a larger variance
than the ones of εt. One way to mitigate this effect is to apply to Xt a multivariate linear filter,
such as the VSARFIMA filter before applying PCA. In this context, PCA tools are applied to εt
in place of Xt in (7). This issue is one of the contribution of this paper.

The VAR(1) model is the particular case of (7)–(8) where Xt satisfies the difference equation
Xt = ΦXt−1 + εt with Φ a matrix parameter. This model is very simple and is widely used in
modelling multivariate time series. Proposition 2 illustrates the effect of temporal correlation on
the PCs Yt when Xt is a VAR(1) process. This result can be extended to more general processes.
For example, this is well-known that the VAR(p) model can be written as a VAR(1) process, see
e.g. Lutkepohl (2005, page 15) and Hamilton (1994, page 259).

Proposition 2. Let Xt be a VAR(1) process where all the eigenvalues of Φ are less than one
in modulus. Let the vector process Yt = (Y1t, · · · , Ykt)′ where Yit, i = 1, · · · , k are defined as in
Proposition 1. Then ΓX(h) = ΓX(0)(Φh)′ and ΓY (h) = ΛP ′(Φh)′P for all h ≥ 0.

Proof. It follows from Brockwell & Davis (2006, Example 11.3.1) that Ψj = Φj in (1). Then (3)
implies that ΓX(h) = ΓX(0)(Φh)′ for all h ≥ 0. Thus, ΓY (h) = P ′ΓX(h)P = P ′ΓX(0)(Φh)′P =
P ′PΛP ′(Φh)′P = ΛP ′(Φh)′P for all h ≥ 0.

Remark 4. In the particular case where Φ = diag(φ1, . . . , φk) with |φi| < 1 for i = 1, . . . , k, we
deduce from (3) that the (i, j)th element of ΓX(h), ΓijX(h) is given by

ΓijX(h) =
∞∑

l=0

φli Σij
ε φ

l+h
j = φhj /(1− φiφj)Σij

ε ,

for all h ≥ 0. If Σε is diagonal, consequently, ΓX(h) is also diagonal, the eigenvectors of Σε and
ΓX(h) are the vectors (e1, . . . , ek) of the natural basis of Rk, and the eigenvalue of Σε, resp. ΓX(h),
associated to ei is Σii

ε , resp. φhi /(1−φ2
i )Σ

ii
ε . Nevertheless, if some of the φi’s are distinct, we deduce

from Proposition 2 that ΓY (h) is not necessarily diagonal for h > 0. This is an interesting case
where the components of Xt are not cross-correlated but the components of the PCs are. If, φi = φ
for i = 1, . . . , k and Σε is any nonnegative definite matrix, ΓX(h) = φh/(1 − φ2)Σε for all h ≥ 0,
the eigenvectors of ΓX(h) and Σε are the same, while the eigenvalues of ΓX(h) are the ones of
ΓX(0) multiplied by φh/(1 − φ2). Furthermore, it follows from Proposition 2 that ΓY (h) = φhΛ
for all h ≥ 0. In this case, the components of Xt are cross-correlated when Σε is not diagonal, but
the components of the PCs are not.

5
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Example 1. Consider the case where k = 2 and Xt is the VAR(1) process defined by

Φ =

[
0 φ
0 0

]
and Σε =

[
α 0
0 1− α

]

where 0 < α < 1. Then det(I − Φz) = 1 6= 0 for all z ∈ C for any φ ∈ R. We have

X1t = φ ε2(t−1) + ε1t,

X2t = ε2t.

Then

ΓX(0) =

[
α+ φ2(1− α) 0

0 1− α

]
and ΓX(h) = φ(1− α)

[
0 δ−1(h)

δ1(h) 0

]

for all h 6= 0, where

δa(h) =

{
1 if h = a,

0 otherwise.

We have λ1 = α+φ2(1−α) if 2α−1+φ2(1−α) ≥ 0, which is the case when α ≥ 1/2 for any φ ∈ R,
and if α ≤ 1/2 and φ2 ≥ (1 − 2α)/(1 − α). In the other cases, λ1 = 1 − α. This simple example
illustrates the effect of the time-correlation which is related to parameter φ on the eigenvalues of
ΓX(0). In particular, when α ≤ 1/2, the eigenvector with the largest eigenvalue of Σε is (0, 1)′,
whereas the eigenvector with the largest eigenvalue of ΓX(0) is (1, 0)′ if φ2 ≥ (1− 2α)/(1− α).

The MA(1) model is the particular case of (7)–(8) where Xt satisfies the difference equation
Xt = εt + Θεt−1 with Θ a matrix parameter. Proposition 3 gives the expressions of ΓX(h) and
ΓY (h) when Xt is a MA(1) process. As for the VAR(1) model, this result can be extended to more
complicated processes.

Proposition 3. Let Xt be a MA(1) process where all the eigenvalues of Θ are less than one in
modulus and Yt defined as previously. Then

ΓX(h) =





Σε + ΘΣεΘ
′ if h = 0,

ΣεΘ
′ if h = 1,

0 if h > 1,

and ΓY (h) =





Λ if h = 0,

P ′ΣεΘ
′P if h = 1,

0 if h > 1.

Proof. The results follow readily from the difference equation Xt = εt + Θεt−1.

Remark 5. In the particular case where Θ = diag(θ1, . . . , θk) with |θi| < 1 for i = 1, . . . , k, we
deduce from Proposition 3 that

ΓijX(h) =





(1 + θiθj)Σ
ij
ε if h = 0,

θjΣ
ij
ε if h = 1,

0 if h > 1.

If Σε is diagonal, so is ΓX(h) and the eigenvalue of Σε, ΓX(0) and ΓX(1) associated to ei is Σii
ε ,

(1 + θ2
i )Σ

ii
ε and θiΣ

ii
ε , respectively. If, θi = θ for i = 1, . . . , k, Σε, ΓX(0) and ΓX(1) have the same

eigenvectors, while the eigenvalues of ΓX(0) and ΓX(1) are the ones of Σε multiplied by 1 + θ2 and
θ, respectively. Furthermore, in this case, we deduce from Proposition 3 that ΓY (1) = θ/(1+θ2)Λ.
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Example 2. Consider the case where k = 2 and Xt is the MA(1) process defined by

Θ =

[
θ1 θ2

0 0

]
and Σε =

[
α 0
0 1− α

]

where 0 < α < 1. Then det(I + Θz) = 1 + θ1z 6= 0 for all z ∈ C such that |z| ≤ 1 if and only if
|θ1| < 1. We have

X1t = ε1t + θ1 ε1(t−1) + θ2 ε2(t−1),

X2t = ε2t.

Thus

ΓX(0) =

[
α(1 + θ2

1) + θ2
2(1− α) 0

0 1− α

]
and ΓX(h) = θ2(1− α)

[
0 δ−1(h)

δ1(h) 0

]

for all h 6= 0. We have λ1 = α(1 + θ2
1) + θ2

2(1 − α) if 2α − 1 + αθ2
1 + θ2

2(1 − α) ≥ 0, which is the
case when α ≥ 1/2 for any θ1, θ2, and if α ≤ 1/2 and αθ2

1 + θ2
2(1−α) ≥ 1− 2α. In the other cases,

λ1 = 1−α. As in Example 1, the eigenvector with the largest eigenvalue of ΓX(0) and Σε may be
different when the time-correlation if large enough. Finally, observe that when θ1 = 0, Xt is the
VAR(1) process of Example 1 where φ is replaced by θ2, and then the same results can be derived
by replacing φ by θ2.

In practice ΓX(0) is unknown and must be estimated from a set of observations X1, . . . , Xn of
Xt. The sample estimate of ΓX(0) is

Γ̂X(0) =
1

n

n∑

t=1

XtX
′
t, (9)

Γ̂X(0) is symmetric and non-negative definite with spectral decomposition

Γ̂X(0) = BLB′, (10)

where L = diag(l1, . . . , lk), l1 ≥ . . . ≥ lk ≥ 0 being the eigenvalues of Γ̂X(0), and B is an
orthonormal matrix whose ith column bi is an eigenvector associated to li for i = 1, . . . , k. Suppose
that the eigenvalues of ΓX(0) are distinct, i.e., λ1 > . . . > λk. In this case, P is unique in (4). Let
D =

√
n(L − Λ) and G =

√
n(B − P ). Taniguchi & Krishnaiah (1987, Theorem 1) showed that

for model (1) satisfying additional assumptions, the joint distribution of D and G converges as n
tends to infinity. If Xt is Gaussian, then the limiting joint distribution of D and G is normal with
D and G independent and the diagonal elements of D are independent.

A major concern about using PCA is how many PCs should be selected. Several criteria are
proposed in the literature such as the eigenvalues plot of Jollife (2002) and the mean eigenvalue test
of Perez-Neto et al. (2005). Assume that the random variables Xt are mutually independent and
identically distributed with finite moments and λ1 > . . . > λk > 0. Fujikoshi (1980, Theorem 1)
generalized Anderson (2003, Theorem 13.5.1) to non Gaussian data and showed that

√
n(li − λi)

has the limiting normal distribution N(0, 2λ2
i + κi4), where κi4 is the fourth-order cumulant of the

ith component Xit of Xt for all i = 1, . . . , k. Therefore, an asymptotic confidence interval (ACI)
of significance level α for λi is

li −
√

2l2i + κ̂i4
n

zα
2
≤ λi ≤ li +

√
2l2i + κ̂i4

n
zα

2
, (11)
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where κ̂i4 is the sample estimate of κi4, F (zα
2
) = 1− α

2 and F is the cumulative distribution function
of the N(0, 1) random variable. Now, let τm = (λ1 + · · ·+λm)/(λ1 + · · ·+λk) be the fraction of the
variance explained by the first m PCs, where 1 ≤ m < k, and Rm = (l1 + · · ·+ lm)/(l1 + · · ·+ lk)
an estimate of τm. Fujikoshi (1980, Theorem 3) implies that

√
n(Rm−τm) has the limiting normal

distribution N(0,
∑k

i=1 T
2
i (2λ2

i +κi4)) where Ti = (ci−τm)/(λ1+· · ·+λk) and ci = 1 for i = 1, . . . ,m
and zero otherwise. Therefore, an ACI of significance level α for τm is

Rm −

√∑k
i=1 T̂

2
i (2l2i + κ̂i4)

n
zα

2
≤ τm ≤ Rm +

√∑k
i=1 T̂

2
i (2l2i + κ̂i4)

n
zα

2
, (12)

where T̂i = (ci −Rm)/(l1 + · · ·+ lk). In Section 3, the ACI’s (11) and (12) are used.

3 Numerical experiments

This section presents finite sample size studies to illustrate and to quantify empirically the effect of
time-correlation on the interpretation and testing of PCA. First, we consider the simple Examples 1
and 2 and show the behavior of the estimates l1 and l2 of λ1 and λ2, respectively, for different
values of φ, θ1, θ2 and for the sample sizes n = 30, 100, 500. Then we study more complex VAR(1)
models with four components. The number of replications in our Monte Carlo simulations is 1000.

We consider Example 1 where Xt is a Gaussian process and we set α = 0.4. If φ = 0, Xt = εt,
λ1 = 1−α = 0.6 and the eigenvector associated to λ1 is (0, 1)′. For each replicate m = 1, . . . , 1000,
we denote by l1m and l2m the eigenvalues of Γ̂X(0) with l1m ≥ l2m and we build the ACI of
significance level 0.95 for λ2 given by (11), i.e., [l2m(1 ± 1.96

√
2/n)]. We report in Table 1 the

percentage of replicates for which 0.4 is outside this ACI as n and φ increase. According to the
results in Example 1, λ2 = 0.4 + 0.6φ2 if |φ| ≤ 1/

√
3, and λ2 = 0.6 if |φ| ≥ 1/

√
3. Therefore, for a

given n large enough, for l2m to be a good estimate of λ2, the percentage in Table 1 increases as
|φ| increases. When n is small, the results becomes unreliable because l2m may be severely biased
and the length of the ACI is large.

Table 1: Percentage of replicates for which 0.4 is outside the 95 % ACI of λ2 for the Gaussian
AR(1) process.

φ
n

30 100 500

0 10 5.5 5.1
0.2 10 6.3 5.2
0.5 4.1 21 100
0.6 3.5 40 100
0.8 5 61 100
0.9 5.2 65 100

We consider Example 2 where Xt is a Gaussian process and we set α = 0.4. If θ1 = θ2 = 0,
Xt = εt, λ1 = 1 − α = 0.6 and the eigenvector associated to λ1 is (0, 1)′. As before, we build the
ACI of significance level 0.95 for λ2, [l2m(1± 1.96

√
2/n)]. We report in Table 2 the percentage of

replicates for which 0.4 is outside this ACI as n, θ1 and θ2 increase. According to the results in
Example 2, λ2 = 0.4(1 + θ2

1) + 0.6θ2
2 if 0.4θ2

1 + 0.6θ2
2 ≤ 0.2, and λ2 = 0.6 if 0.4θ2

1 + 0.6θ2
2 ≥ 0.2.
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Therefore, as in Table 1, the percentage increases as |θ1| and |θ2| increase for n large enough, and
the results are unreliable when n is small.

Table 2: Percentage of replicates for which 0.4 is outside the 95 % ACI of λ2 for the Gaussian
MA(1) process.

(θ1,θ2)
n

30 100 500

(0,0) 12 6.3 5.1
(0.1,0.1) 15 6.4 5.4
(0.25,0.25) 10 5.5 50
(0.4,0.4) 3 24.8 100
(0.5,0.5) 5 50 100
(0.1,0.8) 5.7 60 100
(0.8,0.8) 5.6 65 100

We consider different VAR(1) models Xt = ΦXt−1 + εt with the same matrix Σε given by

Σε =




10 0 0 0
0 5 0 0
0 0 3 0
0 0 0 1


 ,

and the matrix parameters Φ displayed in Table 3. The white noise model Xt = εt is denoted
by Model 1. It follows from Remark 4 that Models 1, 2 and 3 have the same eigenvectors which
correspond to the natural basis of R4, have a diagonal matrix ΓX(h) for all h ∈ Z, and ΓX(h) = 0
for all h 6= 0 in the case of Model 1. Furthermore, the eigenvalue of ΓX(0) in Models 2 and 3
associated to ei is Σii

ε /(1 − φ2
i ), where Φ = diag(φ1, . . . , φ4). Since all φi’s are equal in Model 2,

the eigenvalues of ΓX(0) in Models 1 and 2 are proportional, which is not the case in Models 1
and 3. Contrarily to the three first models, Models 4 and 5 present cross-correlations between
the components of Xt at different lags h. According to Proposition 2, ΓX(h) = ΓX(0)(Φh)′ for
all h ≥ 0. Therefore, if the entries of ΓX(0) are nonnegative, large positive entries of Φ implies
large positive cross-covariances. In this sense, Model 5 presents stronger cross-covariances than
Model 4.

Table 3: Matrix parameters Φ of VAR(1) Models 2 to 5.

Model 2 Model 3

0.3 0.0 0.0 0.0 0.8 0.0 0.0 0.0
0.0 0.3 0.0 0.0 0.0 0.5 0.0 0.0
0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0
0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3

Model 4 Model 5

0.3 0.0 0.1 0.1 0.3 0.5 0.7 0.4
0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0
0.2 0.0 0.3 0.0 0.0 0.0 0.3 0.0
0.0 0.1 0.0 0.3 0.8 0.6 0.0 0.3
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The matrices ΓX(0) of the VAR(1) models are presented in Table 4. For each model, we see
that tr(ΓX(0)) ≥ tr(Σε), as mentioned in Remark 3.

Table 4: Covariance matrices ΓX(0) of the VAR(1) Models 2 to 5.

Model 2 Model 3

10.99 0.00 0.00 0.00 27.78 0.00 0.00 0.00
0.00 5.49 0.00 0.00 0.00 6.67 0.00 0.00
0.00 0.00 3.30 0.00 0.00 0.00 3.30 0.00
0.00 0.00 0.00 1.10 0.00 0.00 0.00 1.01

Model 4 Model 5

11.11 0.01 0.88 0.04 29.29 1.09 0.79 25.43
0.01 5.49 0.00 0.18 1.09 5.49 0.00 1.37
0.88 0.00 3.90 0.00 0.79 0.00 3.30 0.21
0.04 0.18 0.00 1.17 25.43 1.37 0.21 38.98

Table 5 shows for each VAR(1) model, the eigenvalues λi’s of ΓX(0) with their respective
percentage of variability λi/(λ1 + · · · + λ4). These percentages are the same for Models 1 and 2
since the λi’s are proportional. Model 3 presents more variability than Models 1 and 2 because
λ1 is much larger than the other eigenvalues. Since the parameters Φ of Models 2 and 4 are close,
the associated eigenvalues of ΓX(0) and their percentages of variability are similar. Now, the large
positive cross-covariance in Model 5 compared to Model 2 increases drastically the variability of
the eigenvalues of ΓX(0) and the first PC captures almost all the variability. This is a problem
of great practical relevance, for instance in the context of reducing the data dimension. These
results are comparable to the simulations presented by Vanhatalo & Kulahci (2016) on the impact
of different degrees of correlation on the statistical process chart control.

Table 5: Eigenvalues of ΓX(0) of the VAR(1) Models 1 to 5 with their percentages of variability.

Model λ1 λ2 λ3 λ4 % λ1 % λ2 % λ3 % λ4

1 10.00 5.00 3.00 1.00 52.63 26.32 15.79 5.26
2 10.99 5.49 3.30 1.10 52.63 26.32 15.79 5.26
3 27.78 6.67 3.30 1.01 71.68 17.20 8.51 2.61
4 11.21 5.50 3.79 1.16 51.73 25.39 17.51 5.37
5 60.09 8.29 5.44 3.24 77.98 10.75 7.06 4.21

Let τ2 = (λ1 +λ2)/(λ1 + · · ·+λ4) be the fraction of the variance explained by the first two PCs,
and R2 = (l1 + l2)/(l1 + · · ·+ l4) an estimate of τ2. For Models 1 and 2, we have τ2 = 15/19. For
each VAR(1) model and for each replicate m = 1, . . . , 1000, we simulate a Gaussian process Xt,
we denote by l1m ≥ · · · ≥ l4m the eigenvalues of Γ̂X(0), R2m = (l1m + l2m)/(l1m + · · ·+ l4m), and

we build the ACI of significance level 0.95 for τ2 given by (12), i.e., [R2m±1.96
√

2
∑4

i=1 T̂
2
iml

2
im/n]

where T̂im = (ci − R2m)/(l1m + · · · + l4m), c1 = c2 = 1 and c3 = c4 = 0. We report in Table 6
the percentage of replicates for which 15/19 is outside this ACI for different sample sizes n. As
expected, Models 1 and 2 present similar results and the percentage gets closer to 5% as n increases.
Model 4 is very interesting because although it is quite close to Model 2, the percentage for n = 500
is 36 instead of 5. This is due to the length of the ACI which also depends on R2m. Therefore, even
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a moderate cross-covariance may induce a large difference in the rejection rate when the eigenvalues
are estimated. For Models 3 and 5, the variability of the eigenvalues concentrate on the first PC,
we have τ2 ' 0.888 which explains why the percentages are very high, even with a small sample
size. Therefore, as already mentioned, in practical situations, when the vector of observations is
time-dependent, PCA methodology must be used with caution. The cross-covariance between the
components of the observations cannot be neglected.

Table 6: Percentage of replicates for which 15/19 is outside the 95 % ACI of τ2 for the Gaussian
VAR(1) Models 1 to 5.

Model
n

30 100 500

1 10.2 7.5 5
2 11.6 8 6
3 70 97.5 100
4 11 7.4 36
5 70 100 100

We have seen that nonnegative entries in ΓX(0) associated to large positive entries of Φ imply
large positive cross-covariances in ΓX(h) for all h ≥ 0 and increase the percentage of variability of
the first PC. Now, we present some simulations with more general VAR(1) models. Specifically,
we consider the VAR(1) models Xt = ΦXt−1 + εt with the same matrix Σε given by

Σε =




127 30 47 62
30 58 33 70
47 33 64 58
62 70 58 172


 ,

and the matrix parameters Φ displayed in Table 7. The white noise model Xt = εt is denoted by
Model 6.

Table 7: Matrix parameters Φ of VAR(1) Models 7 to 10.

Model 7 Model 8

0.2 0.0 0.0 0.0 -0.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0
0.0 0.0 -0.5 0.0 0.0 0.0 -0.1 0.0
0.0 0.0 0.0 -0.3 0.0 0.0 0.0 0.9

Model 9 Model 10

0.4 0.1 0.3 0.1 0.6 0.3 0.6 0.03
0.0 0.8 0.4 0.0 -0.1 0.2 -0.1 0.2
0.2 0.0 0.3 0.0 0.1 -0.8 0.4 0.5
0.0 0.0 0.6 -0.4 0.2 0.0 0.1 -0.5

The covariance matrices ΓX(0) of the VAR(1) Models 7 to 10 are presented in Table 8. For each
model, we have tr(ΓX(0)) ≥ tr(Σε) in agreement with Remark 3. The trace of ΓX(0) represents
the total variability of the PCs of Xt and increases from Model 6 to Model 10.
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Table 8: Covariance matrices ΓX(0) of the VAR(1) Models 7 to 10.

Model 7 Model 8

132.29 30.00 42.73 54.39 169.33 24.00 49.47 44.29
30.00 58.00 33.00 70.00 24.00 77.33 31.43 116.67
42.73 33.00 85.33 89.23 49.47 31.43 64.65 53.70
54.39 70.00 89.23 337.25 44.29 116.67 53.70 477.78

Model 9 Model 10

240.04 193.95 104.52 81.18 575.20 44.82 183.86 120.35
193.95 399.10 110.20 101.54 44.82 74.72 43.80 46.26
104.52 110.20 94.66 72.40 183.86 43.80 175.62 42.00
81.18 101.54 72.40 203.96 120.35 46.26 42.00 234.47

Table 9 shows the eigenvalues λi’s of the matrices ΓX(0) for each VAR(1) model and their
respective percentage of variability λi/(λ1 + · · · + λ4). Comparing with Table 5, we see that
the cross-covariances in Models 7 to 10 do not have drastic effects in the interpretation of PCA
compared to Model 6.

Table 9: Eigenvalues of ΓX(0) of the VAR(1) Models 6 to 10 with their percentages of variability.

Model λ1 λ2 λ3 λ4 % λ1 % λ2 % λ3 % λ4

6 276.42 87.71 34.22 22.65 65.66 20.83 8.13 5.38
7 402.11 125.27 50.32 35.17 65.61 20.44 8.21 5.74
8 525.90 177.62 54.26 31.32 66.65 22.51 6.88 3.97
9 626.19 164.90 112.36 34.31 66.78 17.58 11.98 3.66
10 690.65 204.24 115.34 49.78 65.16 19.27 10.88 4.70

Figures 1 and 2 plot sample autocorrelation and cross-correlation functions for n = 1000 of
some PCs in the cases of Models 6 and 8, and Models 9 and 10, respectively. Figure 1a) shows that
the PCs are neither autocorrelated nor cross-correlated in the case of a white noise. Figure 1b)
shows that the PCs may be cross-correlated when the matrix parameter Φ is diagonal but the
diagonal elements are not all equal. Figure 2 shows that the full correlation structure of the data
is transferred to the PCs in the case of general matrices Φ and Σε. These observations corroborate
and illustrate Proposition 2 and Remark 4.
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(a) Model 6.
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(b) Model 8.

Figure 1: Sample autocorrelation and cross-correlation functions of some PCs in Models 7 and 8.
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(a) Model 9.
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(b) Model 10.

Figure 2: Sample autocorrelation and cross-correlation functions of some PCs in Models 9 and 10.

The above numerical experiments confirm that positive temporal cross-correlations between
the components of Xt have an impact on PCA. Therefore, it is necessary to introduce procedures
that allow the use of PCA with multivariate time-correlated data. This paper proposes to pre-
processing the data with a multivariate linear filter in order to whiten the data before applying
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PCA. The linear filter belongs to the parametric class of VSARFIMA models, for example. Note
that transforming the data with linear filters to attenuate the temporal structure in multivariate
techniques was also addressed in the recent work of Jaimungal & Ng (2007), Greenaway-McGrevy
et al. (2012) and Hu & Tsay (2014).

4 Application to PM10 data

We consider PM10 concentrations with the aim to manage the air quality monitoring using PCA and
cluster analysis, without neglecting the temporal correlation structure of the data. We investigate
whether or not the temporal correlation of the variables affects PCA and its interpretation. This
issue is not addressed by Pires et al. (2008a,b), for example. Furthermore, we identify the cities
areas with similar PM10 behaviours.

The data set is collected at the automatic air quality monitoring network (AAQMN) in the
GVR in Brazil and is composed by the observations of eight monitoring stations located in urban
areas of four cities in the GVR. Additionally to PM10 concentrations, the AAQMN monitors
the total suspended particles (TSP), ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO),
hydrocarbons (HC) and meteorological variables. The PM10 concentrations were measured from
January 2005 to December 2009. Their daily averages at the eight stations constitute the time
series Xt which is plotted in Figure 3.
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Figure 3: PM10 concentrations of the AAQMN.

The sample autocorrelation functions of each component of Xt are plotted in Figure 4. This
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figure shows a strong weekly seasonal behaviour which is expected with daily pollution data. In
addition, the sample autocorrelations are positive, decrease slowly in the first lags, in the lags
multiple of seven and in the lags between the seasonal periods, which is typical of a long memory
seasonal time series.
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Figure 4: Sample autocorrelation functions of PM10 concentrations.

We fit a VSARFIMA model with season s = 7 to Xt. We use the estimator proposed by
Reisen, Zamprogno, Palma & Arteche (2014) with the bandwidth m = n0.5 to estimate the eight
fractional parameters di’s and Di’s in (8). These estimates, d̂i’s, D̂i’s, and their estimated standard
deviations, σ̂(d̂i)’s, σ̂(D̂i)’s are displayed in Table 10. We see that these parameters are significant
for each station.

Table 10: Fractional parameters estimates for PM10 data.

Station d̂ σ̂(d̂) D̂ σ̂(D̂)

Laranjeiras 0.2588 0.0019 0.1170 0.0093
Carapina 0.2792 0.0022 0.1787 0.0107
Camburi 0.2377 0.0079 0.2282 0.0393
Sua 0.2339 0.0048 0.0694 0.0240
VixCentro 0.2194 0.0027 0.1052 0.0132
Ibes 0.2801 0.0022 0.0512 0.0112
VVCentro 0.2832 0.0029 0.1270 0.0144
Cariacica 0.1992 0.0026 0.0844 0.0128

For each i = 1, . . . , 8, we build the series Ẑit = (1−B)d̂i(1−Bs)D̂iXit and we fit a VSARMA
model (7) to Ẑt. Following the standard methodology, we choose the orders (p, q, P,Q) with an
information criterion, namely the bias-corrected Akäıke information criterion (AICC), see Brock-
well & Davis (2006, Section 9.2). This criterion selects a simple VAR(1) model with the following
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matrix parameter

Φ̂ =




0.27 −0.13 0.17 −0.06 −0.03 0.13 −0.01 0.02
0.02 −0.05 0.10 0.01 −0.05 −0.01 0.08 0.12
0.08 −0.05 0.07 −0.04 0.07 0.07 −0.05 0.09
0.18 −0.07 0.04 0.06 0.01 0.02 0.01 0.06
0.09 −0.01 0.04 0.01 0.04 −0.03 0.07 0.09
0.08 −0.01 0.09 −0.02 −0.06 0.09 0.00 0.08
0.06 0.02 0.02 −0.05 0.02 −0.03 0.09 0.06
0.04 0.00 0.06 0.00 −0.08 0.06 0.05 0.06




.

Apart the first diagonal element, all the coefficients of Φ̂ are quite small, which indicates that the
fractional filtering giving Ẑt extracts almost all the temporal correlation of Xt. Figure 5 plots the
sample autocorrelation functions of each component of the residual ε̂t = Ẑt − Φ̂Ẑt−1 and clearly
shows that these components are white noises.
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Figure 5: Sample autocorrelation functions of the residuals of the fitted VSARFIMA model to
PM10 concentrations.

Now, we investigate the temporal correlation effect in the analysis and interpretation of PCA
applied to PM10 data. The sample estimate Γ̂X(0) of ΓX(0) is given by (9) and its spectral
decomposition is (10). Let Γ̂ε̂(0) = (1/n)

∑n
t=1 ε̂tε̂

′
t with the spectral decomposition Γ̂ε̂(0) =

CMC ′, where M = diag(m1, . . . ,mk), m1 ≥ . . . ≥ mk ≥ 0 are the eigenvalues of Γ̂ε̂(0), and C is
an orthonormal matrix whose ith column ci is an eigenvector associated to mi for i = 1, . . . , k.

In Table 11, the four columns corresponding to the PCA of Γ̂X(0) display the eigenvectors
bi’s, the eigenvalues li’s, the proportions li/(l1 + · · · + l8)’s and the cumulative proportions (l1 +
· · · + li)/(l1 + · · · + l8)’s for i = 1, . . . , 4. The four columns corresponding to the PCA of Γ̂ε̂(0)
display the eigenvectors ci’s, the eigenvalues mi’s, the proportions mi/(m1 + · · · + m8)’s and the
cumulative proportions (m1 + · · · + mi)/(m1 + · · · + m8)’s for i = 1, . . . , 4. For both PCA, the
main part of the variability is captured by the first PC, namely 61% for the PCA of Γ̂X(0) and
57% for the PCA of Γ̂ε̂(0). The proportions for the other PCs are quite similar for both PCA.
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To classify the monitoring stations in clusters, we select for each PC the stations with the highest
factor loading in absolute value. The coefficients in bold are larger than 0.37 in absolute value.
Selecting these coefficients, we retain the cluster CL1 : VixCentro, Ibes and Cariacica for the 1st
PC of Γ̂X(0), the cluster CL2 : Laranjeiras and Carapina for the 2nd PC of Γ̂X(0), the cluster
CL3 : VVCentro for the 3rd PC of Γ̂X(0), the cluster CL4 : Camburi and Sua for the 4th PC of
Γ̂X(0), and the cluster CL1 : Sua, VixCentro and Ibes for the 1st PC of Γ̂ε̂(0), the cluster CL2 :
Laranjeiras, Carapina and Cariacica for the 2nd PC of Γ̂ε̂(0), and the cluster CL3 : CL4 : Camburi
and VVCentro for the 3rd and the 4th PC of Γ̂ε̂(0). Note that four PCs are necessary in the PCA
of Γ̂X(0) to encompass the eight stations, while three PCs are enough in the PCA of Γ̂ε̂(0).

Table 11: PCA of original and filtered PM10 concentrations.

Station
PCA of Γ̂X(0) PCA of Γ̂ε̂(0)

1 2 3 4 1 2 3 4

Laranjeiras -0.3002 0.7193 -0.1756 0.1460 -0.3067 0.7090 -0.0529 0.1606
Carapina -0.3554 -0.4004 0.2628 0.1750 -0.3536 -0.5233 0.0368 0.0669
Camburi -0.3472 0.1700 0.0502 0.7019 -0.3166 0.0560 0.7079 0.5055
Sua -0.3632 0.2163 0.0406 -0.6118 -0.3722 0.2283 -0.3546 -0.1360
VixCentro -0.3864 -0.2265 -0.1026 -0.1629 -0.3856 -0.0222 -0.2168 -0.2125
Ibes -0.3869 0.1787 0.2359 -0.2271 -0.3935 0.0625 -0.1563 0.1426
VVCentro -0.3055 -0.2942 -0.8391 0.0141 -0.3222 -0.0087 -0.4764 -0.7571
Cariacica -0.3721 -0.2766 0.3542 0.0507 -0.3669 -0.4044 -0.2652 0.2383
Eigenvalue 4.8971 0.7744 0.6282 0.4973 4.5586 0.7462 0.6412 0.6050
Proportion 61.22 9.68 7.85 6.22 56.98 9.32 8.01 7.56
Cumulative 61.22 70.90 78.75 84.97 56.98 66.30 74.31 81.87

Figure 6 shows the average daily profile of daily average PM10 concentrations at the monitoring
stations, grouped by the correspondent PC/CL category. Similar profiles of PM10 concentrations
are observed in all sites belonging to the same PC/CL category. However, it is clear that the
associations PC/CL obtained with Γ̂ε̂(0) are better balanced and discriminate the data more
clearly.
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Figure 6: Average daily profile of PM10 concentrations grouped by the PC/CL category.

Following the same approach as Pires et al. (2008a,b), the number of monitoring stations that
should be maintained among the eight corresponds to the maximum number of selected PCs. Based
on the PCs of Γ̂X(0), the four stations Ibes, Laranjeiras, VVCentro and Camburi are maintained,
while the analysis of the PCs of Γ̂ε̂(0) leads to retain only the three stations, Ibes, Laranjeiras and
Camburi. The equipment of the others stations may be moved to alternative areas of interest to
cover a larger area of the GVR.

Figure 7 plots the sample autocorrelation functions of the PCs of original and filtered PM10

concentrations. Figure 7a) shows that the PCs are autocorrelated in the case of a correlated time
series which is in accordance with the results of Proposition 1. Since the filtered time series ε̂t is
almost a white noise, the autocorrelations in Figure 7b) are very small.
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Figure 7: Sample autocorrelation functions of the PCs of original and filtered PM10 concentrations.

5 Conclusion

This paper has investigated the effect of time-correlation on PCA technique. It was shown that
the PCs are generally cross-correlated and that the variability of a linear process is larger than
the variability of its innovation. Explicit calculations were presented in the case of simple linear
parametric models. The theoretical results were illustrated empirically by means of Monte Carlo
simulations.

It was found that PCA tool can still be used when a weak autocorrelation is present, since
from a descriptive and an inferential point of view, the time-correlation does not affect drastically
the final results. However, when a strong correlation structure is present, it is recommended to
apply a linear filter for whitening the data before PCA.

An application of the proposed methodology to the identification of redundant air quality
measurements was considered. It was pointed out that the data science practitioner must proceed
with caution when interpreting the cluster analysis.
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Abstract. The periodogram function is widely used to estimate the spectral density of
time series processes and it is well-known that this function is also very sensitive to outliers.
In this context, this paper deals with robust estimation functions to estimate the spectral
density of univariate and periodic time series with short and long-memory properties. The
two robust periodogram functions discussed and compared here were previously explicitly
and analytically derived in Fajardo et al. (2018), Reisen et al. (2017) and Fajardo et al.
(2009) in the case of long-memory processes. The first two references introduce the robust
periodogram based on M−regression estimator. The third reference is based on the robust
autocovariance function introduced in Ma and Genton (2000) and studied theoretically and
empirically in Lévy-Leduc et al. (2011). Here, the theoretical results of these estimators are
discussed in the case of short and long-memory univariate time series and periodic processes.
A special attention is given to the M− periodogram for short-memory processes. In this case,
Theorem 1 and Corollary 1 derive the asymptotic distribution of this spectral estimator. As
the application of the methodologies, robust estimators for the parameters of AR, ARFIMA
and PARMA processes are discussed. Their finite sample size properties are addressed and
compared in the context of absence and presence of atypical observations. Therefore, the
contributions of this paper come to fill some gaps in the literature of modeling univariate
and periodic time series to handle additive outliers.

Time series, M -estimation, QN -estimation, long-memory, periodic processes, robustness.

1 Introduction

It is well known that outlying observations may completely destroy most of the standard estimators
and several authors developed robust approaches in order to mitigate the impact of additive
outliers, specially in time series models which is the process considered in this paper. However,
most of the work is devoted to the robust estimation of the location, scale and other statistical
tools. In this direction, the classical periodogram is the natural estimator of the spectral density
of a time series and recent studies indicate that the periodogram is highly sensitive to the presence
of outliers, and, thus, it becomes useless in any sub-sequential analysis. As a viable approach to
attenuate this issue, the M−regression method applied to build alternative spectral estimators
given in Fajardo et al. (2018) and Reisen et al. (2017)) and the QN−periodogram introduced in
Fajardo et al. (2009) are some methodologies proposed recently in the literature of time series to
handle additive outliers.

The M -periodogram is discussed in Fajardo et al. (2018) and Reisen et al. (2017) for the
long-memory time series. The short-range process was still an open problem and is one main
contribution of this paper. The asymptotic property of the M−periodogram is derived for the
process which is identified to have short-memory property such as an ARMA model (Theorem 1).
As a second contribution of this paper, the recent results given Fajardo et al. (2018) and Reisen
et al. (2017), for long-memory model, are summarized and these methods are compared empirically
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with QN−periodogram and the classical periodogram which is widely used in modelling time series
data. Here, these methods are empirically studied and compared in time series with and without
additive outliers with the aim to verify their finite sample size robustness properties, that is, to
verify their capacity to accommodate the additive outlier’s effect.

The use of M− and QN−periodograms in periodic ARMA (PARMA) models is also discussed
here in the context of handling atypical or aberrant observations (additive outliers). This becomes
the third contribution of this paper.

This paper is organized as follows: Section 2 discusses robust periodograms based onM−regression
method and QN function for short and long-memory time series. Section 3 presents some simu-
lation results for the methods discussed in Section 2. Section 4 gives some applications of the
alternative periodograms in short and long-memory and periodic processes.

2 Robust periodograms

Let {Yt}t∈Z be a second order stationary process. Since this paper deals with short and long-
memory processes, additional assumptions on the process {Yt}t∈Z will be given in the sequel
of the paper. For a sample {Y1, Y2, ..., YN}, the classical periodogram function, at the Fourier
frequency λj = 2πj/N, j = 1, . . . , [N/2], is defined as

IN (λj) =
1

2πN

∣∣∣∣∣
N∑

k=1

Yk exp(ikλj)

∣∣∣∣∣

2

. (1)

Next subsections deal with alternative periodogram functions which present similar performance
(from theoretical and empirical meaning) to IN (λ), λ ∈ (−π, π), but with robustness property
against additive outliers and asymmetric and heavy-tail distributions.

2.1 M-periodogram

One alternative way to derive the periodogram function IN (λj) is based on the Least Square (LS)
estimates of a two-dimensional vector β′ = (β(1), β(2)) in the linear regression model

Yi = c′Niβ + εi = β(1) cos(iλj) + β(2) sin(iλj) + εi , 1 ≤ i ≤ N, β ∈ R2 , (2)

where εi denotes the deviation of Yi from c′Niβ and E(εi) = 0 and E(ε2i ) <∞. In the sequel (εi) is
assumed to be a function of a stationary Gaussian process, see (10) for a precise definition. Then,

β̂LS
N (λj) = Arg min

β∈R2

N∑

i=1

(Yi − c′Ni(λj)β)2 , (3)

where
c′Ni(λj) = (cos(iλj) sin(iλj)) . (4)

The solution of (3) is

β̂LS
N (λj) = (C ′C)−1C ′Y , (5)

where Y = (Y1, . . . , YN )′, C and C ′C are defined by

C =




cos(λj) sin(λj)
cos(2λj) sin(2λj)

...
...

cos(Nλj) sin(Nλj)


 (6)

and

C ′C =

( ∑N
k=1 cos(kλj)

2
∑N
k=1 cos(kλj) sin(kλj)∑N

k=1 cos(kλj) sin(kλj)
∑N
k=1 sin(kλj)

2

)
=
N

2
Id2 (7)
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where Id2 is the identity matrix 2 by 2. Hence,

β̂LS
N (λj) =

2

N
C ′Y =

2

N

(
N∑

k=1

Yk cos(kλj)

N∑

k=1

Yk sin(kλj)

)′
= (β̂

LS,(1)
N (λj), β̂

LS,(2)
N (λj))

′. (8)

In view of (1),

IN (λj) =
N

8π
‖β̂LS

N (λj)‖2=
N

8π

(
(β̂

LS,(1)
N (λj))

2 + (β̂
LS,(2)
N (λj))

2
)

=: ILSN (λj) , (9)

where ‖·‖ denotes the classical Euclidean norm and β̂LS
N (λj) = (β̂

LS,(1)
N (λj), β̂

LS,(2)
N (λj))

′ is the
least square estimates of β′ = (β(1), β(2)) see, for example, Fajardo et al. (2018) and Reisen et al.
(2017) and references therein. Note that IN (λj) (9) can be derived for different choices of εi,
i = 1, . . . , N .

It is supposed here that
εi = G(ηi) . (10)

In (10), G is a non null real-valued and skew symmetric measurable function (i.e. G(−x) = −G(x),
for all x) and (ηi)i≥1 is a stationary Gaussian process with zero mean and unit variance. Additional
assumptions of (ηi)i≥1 will be given in the sequel of the paper.

Let ψ(.) be a function satisfying the following assumptions.

(A1) 0 < E[ψ2(ε1)] <∞ .

(A2) The function ψ is absolutely continuous with its almost everywhere derivative ψ′ satisfying
E[|ψ′(ε1)|] <∞ and such that the function z 7→ E[|ψ′(ε1 − z)− ψ′(ε1)|] is continuous at zero.

(A3) ψ is nondecreasing, E[ψ′(ε1)] > 0 and E[ψ′(ε1)2] <∞.

(A4) ψ is skew symmetric, i.e. ψ(−x) = −ψ(x), for all x.

It is now introduced the M -periodogram based on the M -estimator β̂M
N of the parameter β defined

in Equation (2). The M -estimator β̂M
N = (β̂

(1)
N , β̂

(2)
N )′ is defined as the solution (t1, t2) of

N∑

i=1

cos(iλj)ψ(Yi − cos(iλj)t1) = 0 and

N∑

i=1

sin(iλj)ψ(Yi − sin(iλj)t2) = 0. (11)

β̂
(1)
N and β̂

(2)
N can be also seen as the minimizers with respect to t1 and t2, respectively, of
∣∣∣∣∣
N∑

i=1

cos(iλj)ψ(Yi − cos(iλj)t1)

∣∣∣∣∣ and

∣∣∣∣∣
N∑

i=1

sin(iλj)ψ(Yi − sin(iλj)t2)

∣∣∣∣∣ , (12)

where ψ satisfies the same assumptions as in Koul and Surgailis (2000). By analogy to (9), the
robust periodogram IMN (λj) at λj = 2πj/N, j = 1, . . . , [N/2], is defined by

IMN (λj) =
N

8π
‖β̂M

N (λj)‖2=
N

8π

(
(β̂

(1)
N (λj))

2 + (β̂
(2)
N (λj))

2
)
. (13)

2.1.1 M−Periodogram in short-memory processes In this subsection the asymptotic prop-
erties of β̂M

N are established in the short-range dependence framework. For this, the following
assumptions are introduced. This result helps to establish the theoretical properties of the robust
periodogram IMN given in Corollary 1.

(A5) Let ηt, t ∈ Z, be i.i.d. standard Gaussian random variables and let aj be real numbers such
that

∑
j≥0|aj |<∞ and a0 = 1. Then,

εi =
∑

j≥0
ajηi−j .
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4 Reisen et al.

(A6) ψ is the Huber function that is ψ(x) = max[min(x, c),−c], for all x in R, where c is a positive
constant.

Theorem 1. Assume that (A5) and (A6) hold and that β = 0 in (2) so that Yi = εi. Then, for

any fixed j, β̂M
N defined by (12) satisfies

√
N

2
(F (c)− F (−c))β̂M

N (λj)
d−→ N

(
0,∆(j)

)
, N →∞ ,

where F is the c.d.f. of ε1 and

∆(j) =
∑

k∈Z
E{ψ(ε0)ψ(εk)}

(
cos(kλj) sin(kλj)
− sin(kλj) cos(kλj)

)
.

Theorem 1 is proved in Section 5.

Corollary 1. Under the assumptions of Theorem 1, IMN (λj) defined in (13) satisfies for any fixed
j,

IMN (λj)
d−→ X2 + Y 2

4π(F (c)− F (−c))2 , as N →∞ ,

where

X ∼ N
(

0,
∑

k∈Z
E{ψ(ε0)ψ(εk)} cos(kλj)

)
, Y ∼ N

(
0,
∑

k∈Z
E{ψ(ε0)ψ(εk)} cos(kλj)

)

and
Cov(X,Y ) =

∑

k∈Z
E{ψ(ε0)ψ(εk)} sin(kλj).

The proof of Corollary 1 is a straightforward consequence of Theorem 1 and (13).

2.1.2 M-periodogram for long-memory processes Now, consider the following assumption
for (ηi)i≥1 in the case of long-memory process. The results in this subsection are well detailed in
Fajardo et al. (2018).

(A7) (ηi)i≥1 is a stationary zero-mean Gaussian process with covariances ρ(k) = E(η1ηk+1) satisfy-
ing:

ρ(0) = 1 and ρ(k) = k−DL(k), 0 < D < 1 ,

where the function L is slowly varying at infinity and is positive for large k. Recall that a
slowly varying function L(x), x > 0 is such that L(xt)/L(x) → 1, as x → ∞ for any t > 0.
Constants and logarithms are example of slowly varying functions.
Moreover, the spectral density f of (ηi)i≥1 can be expressed as:

f(λ) = |1− exp(−iλ)|−2df∗(λ) , (14)

where d ∈ (0, 1/2) and f∗ is an even, positive, continuous function on (−π, π], bounded above
and bounded away from zero.

Note that
D = 1− 2d , (15)

where D is defined in Assumption (A7) and d is the standard long-memory parameter notation
given in the literature of long-memory models. The fact that (ηi)i≥1 is required to satisfy (A7)
essentially means that both L(x), x ≥ 1 and f∗(λ), λ in (−π, π] satisfy some smoothness properties.
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Theorem 2. Assume that (A7), (A1), (A2), (A3) and (A4) hold and that β = 0 in (2) so that

Yi = εi. Then, for any fixed j, β̂M
N (λj) defined by (12) satisfies

√
N

2
β̂M
N (λj) =

J1
E[ψ′(ε1)]

{√
2

N

N∑

i=1

(
cos(iλj)
sin(iλj)

)
ηi

}
+ op(N

(1−D)/2) , as N →∞ , (16)

where J1 = E[ψ(G(η))η] 6= 0, η being a standard Gaussian random variable and D = 1 − 2d.
Moreover,

ND/2β̂M
N (λj)

d−→ N
(

0,
J2
1

(E[ψ′(ε1)])2
Γ̃

)
, N →∞ , (17)

where

Γ̃ = lim
N→∞

4

N2−D
∑

1≤k,`≤N
cNk(λj)c

T
N`(λj)ρ(k − `) (18)

= 8π × (2πj)−2df∗(0)

(
L1 0
0 L2

)
. (19)

In Relation (18), the vector cNk(λj) is defined in (4),

L1 =
1

π

∫

R

sin2(λ/2)

(2πj − λ)2

∣∣∣∣
λ

2πj

∣∣∣∣
−2d

dλ− 1

π

∫

R

sin2(λ/2)

(2πj − λ)(2πj + λ)

∣∣∣∣
λ

2πj

∣∣∣∣
−2d

dλ , (20)

and

L2 =
1

π

∫

R

sin2(λ/2)

(2πj − λ)2

∣∣∣∣
λ

2πj

∣∣∣∣
−2d

dλ+
1

π

∫

R

sin2(λ/2)

(2πj − λ)(2πj + λ)

∣∣∣∣
λ

2πj

∣∣∣∣
−2d

dλ . (21)

Corollary 2. Under the assumptions of Theorem 2, the periodogram IMN defined in (13) satisfies

ND−1IMN (λj)
d−→ (Z2

1 + Z2
2 ) , as N →∞ , (22)

where (Z1, Z2) is a zero-mean uncorrelated Gaussian vector with covariance matrix equal to

J2
1

8π(E[ψ′(ε1)])2
Γ̃ , (23)

with Γ̃ defined in (18).

Theorem 2 and Corollary 2 are proved in Fajardo et al. (2018).

2.2 QN -periodogram

Another possible approach to obtain the classical periodogram (1) is to write it in terms of the
sample autocovariance function

IN (λj) =
1

2π

N−1∑

h=−(N−1)
γ̂(h) cos(hλj), (24)

where λj = 2πj/N, j = 1, . . . , [N/2] and γ̂(h) is the classical sample autocovariance function for a
sample {Y1, ..., YN} .

A straightforward approach to robustify 24 is to plug in a robust autocovariance function
replacing the classical one. This methodology is now addressed.

For a sample x1, ..., xN Rousseeuw and Croux (1993) proposed a robust scale estimator function
QN (·) which is based on the τth order statistic of

(
N
2

)
distances {|xj − xk|, j < k}, and can be

written as
QN (x) = κ× {|xj − xk|; j < k}(τ), (25)
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where κ is a constant used to guarantee consistency (κ = 2.2191 for the Gaussian distribution)
and τ = b(

(
N
2

)
+ 2)/4c+ 1. The above function can be evaluated using the algorithm proposed by

Croux and Rousseeuw (1992), which is computationally efficient.
Based on QN (·), Ma and Genton (2000) proposed a highly robust estimator for the autoco-

variance function:

γ̂QN (h) =
1

4

[
Q2
N−h(u + v)−Q2

N−h(u− v)
]
, (26)

where u and v are vectors containing the initial N−h and the final N−h observations of x1, ..., xN ,
respectively. The robust estimator for the autocorrelation function is

ρ̂QN (h) =
Q2
N−h(u + v)−Q2

N−h(u− v)

Q2
N−h(u + v) +Q2

N−h(u− v)
. (27)

It can be shown that |ρ̂QN (h)|≤ 1 for all h.
Now, returning to (24), the robust QN -periodogram for a sample {Y1, ..., YN} is defined by

IQNN (λj) =
1

2π

N−1∑

h=−(N−1)
γ̂QN (h) cos(hλj), (28)

where λj = 2πj/N, j = 1, . . . , [N/2].

The theoretical properties of IQNN are still under study. Therefore, in the sequel, the asymptotic
properties of γ̂QN are summarized for short and long memory processes. These are well detailed
in Lévy-Leduc et al. (2011).

2.2.1 Main asymptotic results for short memory process In the short-memory scenario,
the process under study (Yi)i≥1 satisfies the following assumption (see, also, Lévy-Leduc et al.
(2011)):

(A8) (Yi)i≥1 is a stationary zero-mean Gaussian process with autocovariance sequence γ(h) =
E(Y1Yh+1) satisfying: ∑

h≥1
|γ(h)|<∞ .

Theorem 3. Assume that (A8) holds and let h be a non negative integer. Then, the autocovariance
estimator γ̂QN (h) satisfies the following Central Limit Theorem:

√
N (γ̂QN (h)− γ(h))

d−→ N (0, σ̌2
h), N →∞,

where
σ̌2(h) = E[ζ2(Y1, Y1+h)] + 2

∑

k≥1
E[ζ(Y1, X1+h)ζ(Yk+1, Yk+1+h)] , (29)

and the function ζ is defined by

ζ : (x, y) 7→
{

(γ(0) + γ(h)) IF

(
x+ y√

2(γ(0) + γ(h))
, Q,Φ

)
− (γ(0)− γ(h)) IF

(
x− y√

2(γ(0)− γ(h))
, Q,Φ

)}
.

(30)

where IF is defined by

IF(x,Q,Φ) = κ

(
1/4− Φ(x+ 1/κ) + Φ(x− 1/κ)∫

R φ(y)φ(y + 1/κ)dy

)
, (31)

where Φ and φ denote the c.d.f. and p.d.f. of a standard Gaussian random variable, respectively
with κ defined in (25).

Theorem 3 is proved in Lévy-Leduc et al. (2011).

126



An overview of robust spectral estimators 7

2.2.1 Main asymptotic results for long-memory process The following results concern the
robust autocovariance function for long-memory process see, also, Lévy-Leduc et al. (2011).

(A9) (Yi)i≥1 is a stationary zero-mean Gaussian process with autocovariance γ(h) = E(Y1Yh+1)
satisfying:

γ(h) = h−DL(h), 0 < D < 1 ,

where L is slowly varying at infinity and is positive for large h. Note that, as previously stated,
D = 1− 2d.

Theorem 4. Assume that (A9) holds and that L has three continuous derivatives. Assume also
that Li(x) = xiL(i)(x) satisfy: Li(x)/xε = O(1), for some ε in (0, D), as x tends to infinity, for
all i = 0, 1, 2, 3, where L(i) denotes the ith derivative of L. Let h be a non negative integer. Then,
γ̂QN (h) satisfies the following limit theorems as N tends to infinity.

(i) If D > 1/2, √
N (γ̂QN (h)− γ(h))

d−→ N (0, σ̌2(h)) ,

where

σ̌2(h) = E[ζ2(Y1, Y1+h)] + 2
∑

k≥1
E[ζ(Y1, Y1+h)ζ(Yk+1, Yk+1+h)] ,

ζ being defined in (30).
(ii) If D < 1/2,

β(D)
ND

L̃(N)
(γ̂QN (h)− γ(h))

d−→ γ(0) + γ(h)

2
(Z2,D(1)− Z1,D(1)2)

where β(D) = B((1 − D)/2, D), B denotes the Beta function, the processes Z1,D(·) and
Z2,D(·) are defined as follows:

Z1,D(t) =

∫

R

[∫ t

0

(u− x)
−(D+1)/2
+ du

]
dB(x), 0 < D < 1 , (32)

Z2,D(t) =

∫ ′

R2

[∫ t

0

(u− x)
−(D+1)/2
+ (u− y)

−(D+1)/2
+ du

]
dB(x)dB(y), 0 < D < 1/2 , (33)

and

L̃(N) = 2L(N) + L(N + h)(1 + h/N)−D + L(N − h)(1− h/N)−D , (34)

where B is the standard Brownian motion. The symbol
∫ ′

means that the domain of integra-
tion excludes the diagonal.

Theorem 4 is proved in Lévy-Leduc et al. (2011).

3 Monte Carlo simulation

In this section, small sample size experiments are conducted with the aim to clarify the empirical
performance of the spectral estimates discussed previously in a different context such as time
series with additive outliers. Based on this, some standard questions, such as (1) what is the best
method to be used in a real application? (2) which method ( if any) should be considered when
dealing with outliers? (3) Does the large observation ( if any) make similar outlier´s effect on the
statistical time series modelling functions, that is, on the ACF and periodogram functions? among
others, are expected to be answered or, at least, clarified.
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Let {Xt}t=1,...,N be a sample from a Gaussian second order stationary process and let {Yt}t=1,...,N

be a sample of the process defined by

Yt = Xt + ωWt (35)

where the parameter ω represents the magnitude of the outlier, and Wt is a random variable with
probability distribution

P (Wt = −1) = P (Wt = 1) = δ/2 and P (Wt = 0) = 1− δ ,

where E[Wt] = 0 and E[W 2
t ] = Var(Wt) = δ. Note that (35) is based on the parametric models

proposed by Fox (1972). Wt is the product of Bernoulli(δ) and Rademacher random variables;
the latter equals 1 or −1, both with probability 1/2. Xt and Wt are independent random variables.
Note that, if ω = 0.0 {Yt} is an outlier free time series.

In order to compare the performance of M - and QN -periodogram, a Monte Carlo investiga-
tion was carried out under different contamination scenarios. For the simulations, the number of
replications was 5000, the samples {Xt} of size N = 500 were generated according to a model
autocorrelation structure, which is given in what follows, and the contaminated data Yt were gen-
erated from (35) with δ = 0.01 for magnitudes ω = 0 (no outliers) and 10.

The comparison between the methods is performed by estimating α in the linear regression
log(I(λj)) ' const + α log(λj) + Ej , j = 1, . . . , N0.7, where I(.) is either IN (.), IMN (.) or IQNN (.).
The data were generated based on

Xt = (1−B)−dZt =
∑

j≥0

Γ(j + d)

Γ(j + 1)Γ(d)
εt−j , (36)

where εt is an AR(1) model, that is, εt = φεt−1 + ηt, where ηt, t = 1, ..., N , are i.i.d. standard
Gaussian random variables.

In the finite sample size investigation, the model correlation structures are divided in two cases:

1. An AR(1) model with φ = 0.6 and d = 0.
2. An ARFIMA(0, d, 0) model with d = 0.3.

Figure 1 displays the plots of the empirical densities of α̂IN , α̂IMN and α̂
I
QN
N

for the case of

AR(1) models without contamination (ω = 0). Although, α̂IMN has a slight better performance than
α̂
I
QN
N

, that is, the first method and the classical periodogram presented very close densities, all the

methods provided similar results showing that, even for small sample sizes, the empirical density is
very close which corroborate the theoretical results discussed previously. Based on the asymptotic
theory and the empirical results all three methods can be used to estimate the spectral density
of a time series when there is no contamination of additive outliers. This opens an important
contribution in the context that alternative spectral estimators such as IMN and IQNN can be used
instead of the classical periodogram IN in the step procedure for modelling time series data. For
example, these estimators can be an alternative tools to be used in the Whittle function to obtain
the parameter estimates. This will be also discussed in what follows. Note that, the disadvantage
of IQNN over IMN and IN is that the ACF using QN (.) does not have the positive definite property.

When the data is contaminated with additive outliers the scenario changes significantly. As
well known, the periodogram, which depends on the classical autocovariance, is corrupted by the
outliers. Therefore, the alternative methods are almost unaffected. This is displayed in Figure 2
in which ω = 10 and δ = 0.01. The empirical density of α̂IN is shifted to the right side which is
an expected result since the variance increases with outliers. The empirical densities of α̂IMN and
α̂
I
QN
N

remain almost unchangeable.

In the case of long-memory process, the empirical density plots are given in Figures 3 and 4 for
non-contaminated and contaminated time series, respectively. Similar conclusions of the AR case

128



An overview of robust spectral estimators 9

−0.8 −0.6 −0.4 −0.2 0.0

0.
0

1.
0

2.
0

3.
0

D
en

si
ty

α̂IN

α̂IN
M

α̂IN
QN

Fig. 1. Densities of α̂IN , α̂IM
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for AR(1) models with φ = 0.6 and ω = 0.
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for AR(1) models with φ = 0.6, δ = 0.01 and ω = 10.
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are drawn. That is, in the uncontaminated scenarios, all three methods displayed similar densities
although the method M and the classical one (periodogram) are very close. In the contaminated
case, the classical one is totally affected by the additive outliers. Reinforcing that the ACF using
QN does not have the positiveness property.
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Fig. 3. Densities of α̂IN , α̂IM
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and α̂
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when d = 0.3, N = 500 and ω = 0.
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and α̂
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when d = 0.3, N = 500, δ = 0.01 and ω = 10.

4 Applications of M and QN -periodograms

4.1 Robust estimation of the fractional parameter

Based on the theoretical results discussed previously, this section introduces some applications
related to the use of M−regression and QN estimation functions. The application is divided in
two cases: (a) Estimation of the fractional parameter d in long-memory processes; (b) Estimation
in periodic AR (PAR) processes. Some finite sample size investigation is also addressed in the
context of time series with and without outliers.

(a) Estimation of the fractional parameter in long-memory process

The estimation methods of the fractional parameter d discussed here are derived from the
well-known semi-parametric regression method (GPH) originally proposed by Geweke and Porter-

Hudak (1983). The regression estimation methods based on IMN and IQNN were previously intro-
duced in Reisen et al. (2017) and Fajardo et al. (2009), respectively, papers where the reader will
find more details related to theoretical and empirical results of these estimation methodologies.

(A10) (εi)i≥1 is a stationary mean-zero Gaussian process with spectral density given in Assumption
(A7).

For estimating the fractional parameter d of long-memory processes having their spectral den-
sity satisfying (14), it is usual to use the standard GPH (Geweke and Porter-Hudak (1983))
estimator defined in the following. This estimator is motivated heuristically by starting from

log(f(λj)) = −2d log(|2 sin(λj/2)|) + log(f∗(λj)) = −2dXj + log(f∗(λj))

= log(f?0 )− 2dXj + log(f?j /f
?
0 ), (37)
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where Xj = log|2 sin(λj/2)| and f?j = f?(λj). If

εRj = log

(
IN (λj)

f(λj)

)
, (38)

then
log(IN (λj)) = εRj + log(f(λj)),

and, by (37),
log(IN (λj)) = log(f?0 )− 2dXj + log(f?j /f

?
0 ) + εRj . (39)

The GPH estimator is given by

d̂GPH =
−0.5

∑mN
j=1(Xj − X̄) log(ILSN (λj))∑mN

k=1(Xk − X̄)2
, (40)

where Xj = log|2 sin(λj/2)|, X̄ =
∑mN
j=1Xj/mN , ILSN (λj) is defined in (9) and mN is a function

of N .
Based on the above discussion, one way to define a M−regression estimator of d consists in

replacing ILSN in (40) by IMN defined in (13):

d̂M =
−0.5

∑mN
j=1(Xj − X̄) log(IMN (λj))∑mN

k=1(Xk − X̄)2
, (41)

where Xj = log|2 sin(λj/2)|, X̄ =
∑mN
j=1Xj/mN and mN is a function of N which is specified in

Theorem 5.
The theoretical properties of d̂M are established under the following assumptions. The random

process (εj) is obtained through a moving average process:

εj =
∑

k≤j
aj−kζk , aj = L(j)j−(1+D)/2 , j ≥ 1 , (42)

for some D in (0, 1), where L(·) is a positive slowly varying function at infinity and where the
random variables ζk are i.i.d. with zero mean and variance 1. It is assumed that the distribution
of ζ0 satisfies ∣∣E(eiuζ0)

∣∣ ≤ C(1 + |u|)−δ , u ∈ R . (43)

where C < ∞ and δ > 0 are constants. Note that, Conditions (42) and (43) imply that the
cumulative distribution function Fε0 of ε0 is infinitely boundedly differentiable, see Koul and
Surgailis (2000).

Theorem 5. Let Yi = εi, for all i in {1, . . . , N}, where εi satisfy (42) and (A10). Assume that
1/D is not an integer and that β = 0 in (2). Assume moreover that E(ζ4∨2k

?

0 ) < ∞, where
k? = [1/D], ζ0 is defined in (42) and satisfies (43), ν1 6= 0, ν2 = 0 and ν3 6= 0, where the νk are
defined by

νk =

∫ ∞

0

ψ(y)
[
1− (−1)k

]
f (k)(y)dy, for all integer k ≥ 0 , (44)

where ψ is the Huber function. Then, if 1/3 < D < 1,

√
mN (d̂M − d)

d−→ N (0, π2/24), as N →∞, (45)

where d̂M is defined in (41) and mN = Nβ with 0 < β < (1−D)/3.

This result is proved in Reisen et al. (2017).
Another way of defining a robust estimator of d is to consider:

d̂QN =
−0.5

∑mN
j=1(Xj − X̄) log(IQNN (λj))∑mN

k=1(Xk − X̄)2
, (46)
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where Xj = log|2 sin(λj/2)|, X̄ =
∑mN
j=1Xj/mN , IQNN (λj) is defined in (28) and mN is a function

of N . For further information, see Fajardo et al. (2009). The asymptotic property of d̂QN is still
an open problem, however, the empirical results given in Fajardo et al. (2009) support the use of
this method under time series with and without outliers. The performance of fractional estimators
d̂GPH , d̂M and d̂QN is the motivation of the next subsection for long-memory time series with and
without additive outliers.

4.1.1- Finite sample size investigation

In this subsection, the numerical experiments were carried out in accordance with the model
of Section 3. For the simulations, N = 500, ω = 10 and δ = 0.01 for 5000 replications. The results
are displayed in Figures 5, 6 and Table 1. Since there is not short-memory component in the model
mN was fixed at N0.7 for all tree methods.

Figure 5 presents the boxplots with the results of d̂GPH , d̂M and d̂QN estimators for the

uncontaminated scenario. d̂M and d̂QN seem to present positive bias and, surprisingly, d̂QN displays
smaller deviation. However, in general, all methods perform similarly, i.e., all estimation methods
leaded to comparable estimates close to the real values of d.

Figure 6 displays the boxplots of d̂GPH , d̂M and d̂QN when the series has outliers. As can be
perceived from the boxplots, the GPH estimator is clearly affected by additive outliers while the
robust ones keep almost the same picture as the one of the non-contaminated scenario, except that
the bias of d̂QN becomes negative, that is, this estimator tends to overestimate the true parameter.

The empirical mean, bias and mean square root are displayed in Table 1. This numerically
corroborates the results discussed based on Figures 5, 6, that is, the estimators have similar
performance in the absence of outliers in the data. While the performance of d̂GPH changes
dramatically in the presence of outliers, the estimates from d̂QN and d̂M keep almost unchangeable.
As a general conclusion, the empirical result suggests that all the methods can be used to estimate
the parameter d when there is not a suspicion of additive or abrupt observation. However, in the
existence of a single atypical observation, the methods d̂QN and d̂M should be preferred. Similar

conclusions are given in Fajardo et al. (2009) and Reisen et al. (2017) for d̂QN and d̂M , respectively.

Table 1. Empirical Mean, Bias and RMSE of d̂GPH , d̂M and d̂QN when ω = 10 and δ = 0, 0.01, 0.05.

d δ
MEAN BIAS RMSE

d̂GPH d̂M d̂QN d̂GPH d̂M d̂QN d̂GPH d̂M d̂QN

0.3
0.0 0.3029 0.2950 0.2933 0.0029 -0.0049 -0.0066 0.0601 0.0596 0.0558
0.01 0.2226 0.2899 0.3052 -0.0773 -0.0101 0.0052 0.0972 0.0581 0.0584
0.05 0.1225 0.2681 0.3236 -0.1775 -0.0318 0.0236 0.1873 0.0689 0.0682
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Fig. 5. Boxplots of d̂GPH , d̂M and d̂QN when δ = 0.
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Fig. 6. Boxplots of d̂GPH , d̂M and d̂QN when δ = 0.05 and δ = 0.1, respectively.

4.2 Qn and M-estimators in PARMA models

One of the most popular periodic causal process is the PARMA model which generalizes the
ARMA model. {Zt}t∈Z is said to be a PARMA model if it satisfies the difference equation

∑pν
j=0 φν,jZrS+ν−j =

∑qν
k=0 θν,kεrS+ν−k, r ∈ Z (47)

where for each season ν ( 1 ≤ ν ≤ S) where S is the period, pν and qν are the AR and MA orders,
respectively, φν,1, . . . , φν,pν and θν,1, . . . , θν,qν are the AR and MA coefficients, respectively, and
φν,0 = θν,0 = 1. The sequence {εt}t∈Z is zero-mean and uncorrelated, and has periodic variances
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with period S, i.e. E(ε2rS+ν) = σ2
ν for ν = 1, . . . ,S. In the following, p = maxν pν , q = maxν qν ,

φν,j = 0 for j > pν , θν,k = 0 for k > qν , and (47) is referred as the PARMA(p, q)S model (see, for
example, Basawa and Lund (2001) and Sarnaglia et al. (2015)).

To deal with outliers effect in the estimation of PAR model, Sarnaglia et al. (2010) proposed
the use of the QN (.) function in this model. Following the same lines of the linear time series
model described previously, the QN (.) function is used to compute an estimator of the periodic
autocovariance function γ(ν)(h) at lag h and this sample ACF based on QN (.) estimator, denoted

here as γ
(ν)
Q (h), replaces the classical periodic ACF γ(ν)(h) in the Yule-Walker periodic equations

(see, for example, McLeod (1994) and Sarnaglia et al. (2010)) to derive an alternative parameter
estimator method for a periodic AR model. The authors derived some asymptotic and empirical
properties of the proposed estimator. They showed that the method well accommodate the effect
of additive outliers, that is, it presented robustness against these type of observations in the finite
sample size series as well as in a real data set.

Let now Z1, ...ZN , where N = nS, be a sample from PAR process which is a particular case
of the model definition in (47) with qν = 0 and let now QN (.) for PAR process be defined as

Q
(ν)
N (Z) = QN ({ZrS+ν}0≤r≤N ) . (48)

Based on Q
(ν)
N (Z), the authors derived the sample ACF for periodic stationary processes

γ̂
(ν)
Q (h). Under some model assumptions, they proved the following main results.

1. For a fixed lag h, γ̂
(ν)
Q (h) satisfies the following central limit theorem: As N −→∞,

√
N
(
γ̂
(ν)
Q (h)− γ(ν)(h)

) D−→ N (0, σ̌2
h) ,

where γ(ν)(h) is the periodic ACF function and σ̌2
h is the variance, more details are given in

Sarnaglia et al. (2010).

2. The Q
(ν)
N Yule-Walker estimators (φ̃ν,i)1≤i≤pν ,ν=1,...,S satisfy φ̃ν,i − φν,i = OP (N−1/2) for all

i = 1, . . . , pν and ν in {1, . . . ,S}.

Recently, Solci et al. (2018) compared the Yule-Walker estimator (YWE), the robust least

squares estimator (Shao (2008)) and the ACF Qn estimator (γ̂
(ν)
Q (h), denoted here RYWE, in

the context of estimating the parameters in PAR models with and without outliers. Their main
conclusion is similar to the cases discussed previously, that is, for the case of ARFIMA model

γ̂
(ν)
Q (h) displayed good performance in estimating the parameters in PAR models, periodic samples

with and without outliers. As expected, the YWE estimator performed very poorly with the
presence of outliers in the data. One of their simulation results is reproduced in the table below
(Table 2) in which n = 100, 400 (cycles), S = 4, εt is a Gaussian white noise process and δ =
0.01 (outlier’s probability) and magnitude ω = 10. The results correspond to the mean of 5000
replications.

135



16 Reisen et al.

Table 2. Bias and RMSE for Model 1 and outliers with probability δ = 0.01.

ω εt n φν,1

YWE RYWE
Bias RMSE Bias RMSE

0 N (0, 1)

100

0.9 -0.007 0.077 -0.003 0.103
0.8 -0.002 0.065 0.004 0.084
0.7 0.000 0.063 -0.001 0.083
0.6 -0.005 0.066 -0.003 0.083

400

0.9 -0.001 0.037 -0.001 0.047
0.8 -0.001 0.031 0.000 0.038
0.7 -0.001 0.032 0.001 0.038
0.6 0.000 0.032 0.000 0.039

7 N (0, 1)

100

0.9 -0.181 0.247 0.014 0.120
0.8 -0.118 0.176 0.012 0.096
0.7 -0.105 0.157 0.015 0.091
0.6 -0.097 0.151 0.012 0.091

400

0.9 -0.183 0.203 0.017 0.055
0.8 -0.129 0.144 0.012 0.046
0.7 -0.108 0.124 0.013 0.044
0.6 -0.103 0.119 0.014 0.043

As an alternative estimator of φ̃ν,i, Sarnaglia et al. (2016) proposed the use of M−periodogram
function to obtain estimates of the parameters in PARMA models. The estimator is based on
the approximated Whittle function suggested in Sarnaglia et al. (2015). Basically, the Whittle
M−estimator of PARMA parameters is derived by the ordinary Fourier transform with the non-
linear M -regression estimator for periodic processes in the harmonic regression equation that leads
to the classical periodogram. The empirical simulation investigation in Sarnaglia et al. (2016)
considered the scenarios of periodic time series with presence and absence of additive outliers.
Their small sample size investigation leaded to a very promising estimation method under the
context of modelling periodic time series with additive outliers and heavy-tailed distributions.
The theoretical justification of the proposed estimator is still an open problem and it is now a
current research theme of the authors.

Table 3 displays results of a simple simulation example to show the empirical performance of the
Whittle M−estimator with the Huber function ψ(x) (Huber (1964)) compared to the maximum
Gaussian and Whittle likelihood estimators to estimate a PAR(2) model with parameters φ1,1 =
−0.2, φ2,1 = −0.5, σ2

1,1 = 1.0 and σ2
2,1 = 1.0. The sample sizes are N = nS = 300, 800 (n = 150,

400, respectively) and the Huber function was used with constant equal to 1.345, which ensure
that the M -estimator is 95% as efficient as the least squares estimator for univariate multiple
linear models with independent and identically distributed Gaussian white noise. The sample root
mean square error (RMSE) was computed over 5000 replications. The PAR(2) model with additive
outliers was generated with outlier’s probability δ = 0.01 and magnitude ω = 10. The values with
“∗” refer to the RMSE for the contaminated series.

Table 3. Empirical RMSE results for estimating an PAR(2) model.

Method N φ1,1 σ2
1,1 φ2,1 σ2

2,1

300 0.067; 0.121∗ 0.117; 1.366∗ 0.079; 0.252∗ 0.111; 1.363∗

MLE 800 0.048; 0.101∗ 0.079; 1.122∗ 0.046; 0.239∗ 0.074; 1.253∗

300 0.068; 0.121∗ 0.117; 1.368∗ 0.079; 0.252∗ 0.111; 1.364∗

WLE 800 0.048; 0.101∗ 0.079; 1.122∗ 0.046; 0.239∗ 0.074; 1.253∗

300 0.067; 0.067∗ 0.147; 0.179∗ 0.083; 0.089∗ 0.147; 0.189∗

RWLE 800 0.051; 0.054∗ 0.118; 0.149∗ 0.051; 0.058∗ 0.108; 0.152∗
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In the absence of outliers, in general, all estimators present similar behaviour. Relating to the
estimation of the variance of the innovations, the MLE and WLE seem to be more precise which is
an expected result since the data is Gaussian with zero-mean and these two methods are asymp-
totically equivalents. The RMSE of the estimators decreases as the sample size increases. When
the simulated data has outliers, as an expected result the MLE and WLE estimates are totally
corrupted by the atypical observations while the RWLE estimator presents generally accurate es-
timates. This simple example of simulation leads to the same conclusions of the models discussed
previously in which M−regression method was also considered.

The methods discussed above give strong motivation to use the methodology in practical situa-
tions in which periodically correlated time series contain additive outliers. For example, Sarnaglia

et al. (2010) applied the robust ACF estimator γ̂
(ν)
Q (h) to fit a model for the quarterly Fraser

River data. Sarnaglia et al. (2016) and Solci et al. (2018) analysed air pollution variables using
the robust methodologies discussed in these papers. In the first paper, the authors considered
the daily average SO2 concentrations and, in the second one, it was analysed the daily average
PM10 concentrations. Both data set were collected at Automatic Air Quality Monitoring Network
(RAMQAr) in the Great Vitória Region GVR-ES, Brazil, which is composed by nine monitoring
stations placed in strategic locations and accounts for the measuring of several atmospheric pol-
lutants and meteorological variables in the area. In general, the models well fitted the series and
all these applied examples revealed outliers effects on the estimates.

137



18 Reisen et al.

5 Proof of Theorem 1

By Propositions 1 and 4 and Example 1 of Wu (2007) the assumptions of Theorem 1 of Wu (2007)
hold. Thus, √

N

2
(F (c)− F (−c))β̂M

N (λj)
d−→ N

(
0,∆(j)

)
, N →∞ ,

with
∆(j) =

∑

k∈Z
E{ψ(ε0)ψ(εk)}∆(j)

k ,

where

∆
(j)
k = lim

N→∞
2

N

N−|k|∑

`=1

(
cos(`λj)
sin(`λj)

)
(cos((`+ k)λj) sin((`+ k)λj)) .

Observe that

∆
(j)
k = lim

N→∞
2

N

N−|k|∑

`=1

(
cos(kλj)+cos((2`+k)λj)

2
sin(kλj)+sin((2`+k)λj)

2− sin(kλj)+sin((2`+k)λj)
2

cos(kλj)−cos((2`+k)λj)
2

)

=

(
cos(kλj) sin(kλj)
− sin(kλj) cos(kλj)

)
+ lim
N→∞

2

N

N−|k|∑

`=1

(
cos((2`+k)λj)

2
sin((2`+k)λj)

2
sin((2`+k)λj)

2
− cos((2`+k)λj)

2

)
.

By observing that

1

N

N−|k|∑

`=1

cos((2`+ k)λj) =
cos(kλj)

N

N−|k|∑

`=1

cos(2`λj) +
sin(kλj)

N

N−|k|∑

`=1

sin(2`λj)

=
cos(kλj)

N
cos(λj(N − |k|−1))

sin(λj(N − |k|))
sin(λj)

+
sin(kλj)

N
sin(λj(N − |k|−1))

sin(λj(N − |k|))
sin(λj)

tends to zero as N tends to infinity and that the same holds for N−1
∑N−|k|
`=1 sin(2` + k), this

concludes the proof.
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