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Resumo

Carros autônomos têm a importante tarefa de reconhecer o estado (e.g., vermelho, verde, ou
amarelo) dos semáforos que são relevantes, i.e., que definem orientação para o carro. Abordagens
comuns consistem em usar a imagem capturada de uma câmera prospectiva para detectar
semáforos na cena e classificar os estados dos respectivos semáforos. Essas abordagens têm duas
limitações principais: (i) além de computacionalmente demorada, detecção geralmente requer
anotações caras, como caixas delimitadoras dos objetos alvos; e (ii) ainda há necessidade de um
processo de tomada de decisão no qual semáforos relevantes devem ser diferenciados dos demais.
Este trabalho trata essas limitações investigando duas abordagens baseadas em aprendizado
profundo para reconhecer o estado dos semáforos relevantes: classificação-direta e detecção-com-
classificação. Na primeira, ambas as limitações são tratadas treinando o sistema para classificar
diretamente o estado dos semáforos relevantes na imagem. Na segunda, o reconhecimento do
estado é realizado detectando semáforos na imagem com seus respectivos estados classificados;
então a segunda limitação é tratada com heurísticas diferentes para selecionar um exemplo
relevante. Além disso, um sistema de regressão profundo com uma nova função de perda
resiliente a outliers é proposto para prever as coordenadas de um semáforo relevante no plano
da imagem, de modo que uma das heurísticas consiste na seleção da detecção mais próxima
dessas coordenadas. Ambas as abordagens foram avaliadas com diferentes conjuntos de dados do
mundo real. As conclusões gerais são de que a abordagem de classificação-direta pode alcançar
desempenho comparável à detecção-com-classificação com maior número de imagens de treino
facilmente anotadas; e que simples heurísticas baseadas em regra têm resultados comparáveis à
heurística do sistema de regressão. Além disso, avaliação qualitativa com instâncias desafiadoras
revelou que ambas as abordagens têm nível de desempenho semelhante em captar a informação
contextual necessária para inferir o semáforo relevante. O sistema de regressão também é avaliado
sozinho. Os resultados são promissores e indicam que as coordenadas previstas também podem
ser usadas para ajudar um classificador mais barato a trabalhar em uma região de interesse.

Palavras-chave: Reconhecimento de semáforo. Aprendizado Profundo. Carros autônomos.
Sistemas avançados de assistência ao motorista.





Abstract

Self-driving cars have the important task of recognizing the state (e.g., red, green, or yellow) of
the traffic lights that are relevant, i.e., that define guidance to the car. Common approaches consist
of using the image captured from a forward-looking camera to detect traffic lights in the scene
and classify the respective traffic lights’ states. These approaches have two main limitations: (i)
besides computationally time-consuming, detection usually requires expensive annotations, such
as target objects’ bounding boxes; and (ii) there is still need for a decision-making process in
which relevant traffic lights should be distinguished from the others. This work address these
limitations by investigating two deep learning-based approaches to recognize the relevant traffic
lights’ state: direct-classification and detection-with-classification. In the first, both limitations
are addressed by training the system to direct classify the state of the relevant traffic lights in
the image. In the second, the state recognition is accomplished by detecting traffic lights in
the image with their respective states classified; then the second limitation is addressed with
different heuristics to select a relevant exemplar. Also, a deep regression system with an novel
outliers resilient loss is proposed to predict the coordinates of a relevant traffic light in the
image plane, such that one of the heuristics consists in selecting the closest detection to these
coordinates. Both approaches were evaluated with different real-world datasets. The overall
conclusions are that the direct-classification approach can achieve comparable performance
to detection-with-classification with higher number of easily annotated training images; and
that simple rule-based heuristics have comparable results to the regression system’s heuristic.
Additionally, qualitative assessment with challenging instances revealed both approaches have
similar performance level on grasping the contextual information required to infer the relevant
traffic light. The regression system is also evaluated alone. The results are promising and indicates
that the predicted coordinates can also be used to assist a cheaper classifier to work on a region
of interest.

keywords: Traffic Light Recognition. Deep Learning. Self-driving cars. Advanced Driver Assis-
tance Systems.
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1 Introduction

Several tasks that were only performed by humans in the past are being automatized
with the current advances on artificial intelligence. With the large number of cars circulating
around the world, common driving tasks (e.g., keeping the vehicle in the lane, avoiding collisions,
recognizing the traffic lights’ state, etc.) turn into very attractive targets of automatic systems.

1.1 Motivation

The more people use visual cues (e.g., signalization) to guide driving, the more valu-
able are assistive technology capable of visually perceiving and interpreting traffic signals to
autonomous cars and advanced driver assistance systems (ADAS). One of the main tasks related
to intelligent vehicles is the recognition of traffic lights’ state. A more specific and perhaps more
directly useful problem is to recognize the state of the relevant traffic lights, i.e., to identify the
state of the traffic light (or traffic lights, in case of redundant ones) that define guidance to the
car. Although it seems trivial for humans, there are some challenges: the light bulb might be
dimming (i.e., not as bright as usual), traffic lights can be partially occluded, a scene may depict
several traffic lights in different states, there is not a unique position for them in the scene, etc. In
addition, even though traffic lights usually have a well-defined shape, they may vary in different
countries.

Several methods have addressed the problem of detecting traffic lights and recognizing
their state. Some methods exploit different sensors in their perception systems, but some of
these sensors (e.g., SONAR, RADAR, and LIDAR) are not fully capable of identifying the
state of a traffic light (FAIRFIELD; URMSON, 2011). Even when the position of a traffic
light is known, cameras are still required to classify its state. To tackle this issue, a common
approach (PHILIPSEN et al., 2015; JENSEN et al., 2016) leverages the image captured from a
forward-looking camera to detect all traffic light instances in the scene and classify the state of
each detected traffic light.

Even though this approach has been shown applicable over the years (CHARETTE;
NASHASHIBI, 2009b; LEVINSON et al., 2011; JENSEN et al., 2015), it presents two main
limitations: (i) the first step (detection) can be computationally costly and usually demands
expensive annotations (e.g., bounding-boxes of every traffic light). In this scenario, every traffic
light present in the scene must be annotated using the expensive annotation; and (ii) there is
still need for a decision-making process in which relevant traffic lights should be distinguished
from the others. This critical step is almost always disregarded in literature since publications are
focused on detecting/recognizing any traffic light in a scene. However, it is of great importance
for the practical use of such systems. Some works in the literature use expensive localization
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systems to map pre-annotated positions of the traffic lights back to the current image (JOHN et
al., 2014; MU et al., 2015; JANG et al., 2017; POSSATI et al., 2019). With this information, the
system can correctly choose the relevant traffic light in the scene. Nevertheless, such solution
requires a much more complex setup with, for example, maps, annotation of relevant traffic
lights per lane, and a good online localization system.

1.2 Proposal

This work address the detection aproach’s limitations by investigating two deep learning-
based approaches to recognize the state of relevant traffic lights: direct-classification and
detection-with-classification.

Both approaches receive as input images taken from a forward-looking camera installed
on a vehicle and output, for each image, the state of the relevant traffic light, which can be either
red-or-yellow, green, or none. The red and yellow states are grouped together to cope with the
lack of yellow samples.

1.2.1 direct-classification

In real-traffic context drivers are not required to locate every traffic light in the field-of-
view to further decide whether to proceed or to stop. In fact, the driver attention is somehow
“captured” by few traffic lights, usually those considered relevant to the driver’s route. Intelligent
vehicles could imitate this behavior by learning the recognition task without need of prior traffic
lights detection. This perspective presents three main advantages: (i) the whole process becomes
less time-consuming, mainly because there is no detection step; (ii) it requires a much cheaper
annotation: a single label per image indicating the state of the relevant traffic light instead of
bounding boxes; and (iii) there is no need for a further decision-making process to decide which
of the detected traffic lights is the one of interest.

In this approach, classification networks were leveraged to recognize their state without
any prior detection. The challenge is the end-to-end learning of the state of the relevant traffic
lights when each training image is only assigned a simple label indicating its relevant state.

1.2.2 detection-with-classification

This aproach is based on state-of-the-art detection networks to locate traffic lights, and
different strategies were evaluated to select a relevant traffic light among the detections (if any).
Also, a deep regression system with a novel outliers resilient regression loss is proposed to
predict the coordinates of a relevant traffic light in the image plane, such that one of the heuristics
consists in selecting the closest detection to these coordinates. This approach requires extensive
bounding box annotation to enable the detection of traffic lights.
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1.3 Contributions

This work is mainly composed by two papers’ contributions: A paper submitted to
Computer Vision and Image Understanding jounal, that is being reviwed, and a paper accepted
on XVI Encontro Nacional de Inteligência Artificial e Computacional conference.

The contribution include two local datasets (IARA-TL and VITÓRIA) and; the classifi-
cation annotation of these datasets and also of two publicly available and well-known data sets:
LISA (JENSEN et al., 2016; PHILIPSEN et al., 2015) and LaRA (CHARETTE; NASHASHIBI,
2009b; CHARETTE; NASHASHIBI, 2009a; PARISTECH, 2015); a modification of ResNet-50
architecture (HE et al., 2016) for regression and a novel outliers resilient regression loss; and the
evaluation results of the investigated aproaches on IARA-TL, VITÓRIA, LaRA and LISA.

The overall conclusions are that the classification-based system can achieve comparable
performance to the detection-based system with higher number of training images; and that simple
rule-based heuristics have comparable results to the regression system’s heuristic. Nevertheless,
annotating images for detection is significantly more expensive, and such models usually require
more processing time to be trained and evaluated. Additionally, qualitative assessment with
challenging instances revealed both approaches have similar performance level on grasping the
contextual information required to infer the relevant traffic light. The regression system is also
evaluated alone. The results are promising and indicates that the predicted coordinates can also
be used to assist a cheaper classifier to work on a region of interest.

1.4 Structure

The rest of this document is organized as following: Sect. 2 presents fundamental con-
cepts and the related work; in Sect. 3 the systems are proposed; Sect. 4 defines the experimental
methodology adopted; Sect. 5 shows the results and discuss then; and Sect. 6 shows the conclu-
sions and future work.
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2 Theoretical background

2.1 Convolution Neural Networks

Convolutional Neural Network (CNN) is a type of Deep Neural Network (DNN) that
presents convolutional layers. Convolutional layers have as inputs the pixel values of an image of
two spatial dimensions and one channels dimension and as output (before aplying the activation
function) pixel values of an image whose each channel is the result of applying a convolution
filter over the input image. This way, the convolutional layer’s connections are a tiny subset
of the connections of a fully connected layer between the input and the output, with still an
extra constraint: the neurons that output values from the same output’s channel share the same
parameters, the values of the respective convolution filter, but connecting with different neurons
of the input, i.e., aplying the filter in different positions of the input image.

Convolutional layers have as advantages: (i) being less prone to overfitting than a much
more parameterized fully connected layers; (ii) they generalize features spatially, since the same
filters are applyied over different positions; and (iii) they can learn known important filters that
extract features related to close pixels relations, like edges, without the need to manually define
these filters.

2.1.1 Classification

CNNs can be used for solving classification problems by defining on the last layer one
output logit value for each class of the problem that is desired to be the greater possible when
feeding the network with images of the correspondent class, and the lower possible otherwise.
For reaching this goal, it is defined a loss function that measures how distant the logits values are
from the goal with respect to the ground truth class. Commonly this loss is the cross entropy
applyied over a softmax of the logits. With the loss value its possible to calculate the gradients
of the network’s parameters with the backpropagation algorithm. And with the gradients its
possible to apply training algorithms like stochastic gradient descent, that will hopefully bring
the network closse to the desirable behavior.

SqueezeNet (IANDOLA et al., 2016) (v1.1) and ResNet-50 (HE et al., 2016) are examples
of classification CNNs used in this work. SqueezeNet has an architecture that aims to have a very
low number of parameters while still having good performance. ResNet-50 has an relativelly
deep architecture which is more prone to learn identity functions, due to it residual connections,
wich helps preventing overfitting by allowing less complex features to propagate it values on
deeper layes.
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2.1.2 Regression

Alternativelly, CNNs can be used for solving regression problems by defining on the last
layer outputs that represent the regressed values and a loss that measures how much that values
are distant from the ground truth values.

An example of a modified ResNet-50 architecture (HE et al., 2016) for regression and
appropriate loss are proposed in this work.

2.1.3 Detection

Detection CNNs are more complex arquitectures that involves different strategies to infer
a variable number of spatial delimitations in the image, if any, and possible classificating them.
Faster R-CNN (REN et al., 2015) and YOLOv3 (REDMON; FARHADI, 2018) are example
of detection CNNs used in this work that infer bounding-boxes, defined by four regressed
coordinates, all associated with an classification.

YOLOv3 is simplier and faster than Faster R-CNN, but has lower perfomance level.

2.2 Related work

The Traffic Light Recognition (TLR) problem is important to provide a smooth driving
experience and safety, but is challenging since they appear as tiny light spots on complex
landscape. In a recent survey (JENSEN et al., 2016), the authors illustrated a general vision-
based TLR pipeline in three main stages: detection, (state) classification, and tracking. While
detection intends to locate possible targets, in classification each detected traffic light is assigned
a unique label (e.g., red, green, or yellow) with the purpose of identifying its state. A posterior
tracking procedure can be applied to improve temporal coherence, handle occluded traffic lights,
etc, but it is out of the scope of this work.

The related works usually include a detection procedure mainly to reduce the processing
time of further classification stage. However, the detection itself may be computationally costly
to ensure real-time performance when using conventional image processing or feature extraction
procedures (GONG et al., 2010; DIAZ-CABRERA; CERRI; SANCHEZ-MEDINA, 2012; MU
et al., 2015; BARNES; MADDERN; POSNER, 2015; JENSEN et al., 2015). Also, approaches to
locate the relevant traffic lights very often use prior location and/or maps information (JOHN et
al., 2014; MU et al., 2015; JANG et al., 2017; POSSATI et al., 2019) whose availability depends
on expensive annotation processes. To a better view of the TLR literature, detection and state
classification are briefly discussed.

Detection can be categorized as model or learning-based (JENSEN et al., 2016). Model-
based approaches rely on color (GONG et al., 2010; DIAZ-CABRERA; CERRI; SANCHEZ-
MEDINA, 2012; LI et al., 2018), shape (CHIANG et al., 2011; GóMEZ et al., 2014), and/or
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structural (CHARETTE; NASHASHIBI, 2009a; CHARETTE; NASHASHIBI, 2009b; DIAZ-
CABRERA; PIETROCERRI; PAOLOMEDICI, 2015) assumptions about the traffic lights ap-
pearance (e.g., lamp colors, bulbs shape, bulbs arrangement on the black box). Since these
assumptions rarely hold in real-world scenes, literature has turned to learn traffic lights from
large amounts of data in a variety of situations. Most of the learning-based approaches combine
popular hand-crafted features with well-known classifiers. The works (LINDNER; KRESSEL;
KAELBERER, 2004) and (FRANKE et al., 2013) used Haar-like features together with a cascade
of classifiers, whereas (MU et al., 2015; BARNES; MADDERN; POSNER, 2015; JENSEN
et al., 2015) applied Histogram of Oriented Gradients (HoG) with Support Vector Machines
(SVM).

Hand-crafted features have also been widely used to classify the state of traffic lights.
The works (GONG et al., 2010; KIM; PARK; JUNG, 2011) used Haar-like features with cascade
classifiers to determine the state of previously detected traffic lights, whereas (CAI; LI; GU,
2012) applied a simple nearest neighbor approach on Gabor features. In (CHIANG et al., 2011),
the authors adopted Local Binary Patterns (LBP) and SVM for state classification. The use SVMs
with HoG features was also explored in TLR (JANG et al., 2014; MU et al., 2015; MICHAEL;
SCHLIPSING, 2015), including the recent work of (LIU et al., 2017), which combines HoG
with LBP features.

Despite the relative success of hand-crafted features, late remarkable advances in deep
learning have encouraged its application in TLR, particularly with the use of Convolutional
Neural Networks (CNNs). In 2014, (JOHN et al., 2014) used CNNs to classify traffic lights
detected by means of GPS-based information and some image processing. In (SAINI et al., 2017),
the authors adapted (and reduced) the Lecun’s CNN for digits recognition in order to classify the
state of traffic lights. Nevertheless, traffic lights are detected by applying color segmentation and
HoG/SVM-based detection. In (WANG; ZHOU, 2018), the authors adapted the CaffeNet for
state classification. Their system, however, demands an even more expensive annotation, which
includes competitors objects (e.g., luminous artifacts or vehicle lights) and specific traffic lights
type (e.g., vertical/horizontal, three/four bulbs). Detection relies on color-based saliency map
computed over low-exposure image.

Deep neural networks have been also used to detect the traffic lights before the state
classification. In (WEBER; WOLF; ZÖLLNER, 2016), the authors adapted the AlexNet to
detect and classify the state of traffic lights. However, their system is not end-to-end since a
post-processing stage is performed outside the network to keep a single region proposal for
each traffic light. Following a similar idea, the work (BACH; REUTER; DIETMAYER, 2017)
proposed a CNN model on top of the GoogLeNet for detection and state classification. They
focus on fusing data in a multi-camera setup for long-range traffic light detection. With a different
architecture, the authors, in (BEHRENDT; NOVAK; BOTROS, 2017), customized YOLO in
order to locate traffic lights. State classification (based on a custom CNN) and tracking can be
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enabled to improve the detection. A more comprehensive investigation on YOLO-based traffic
light detection can be seen in (JENSEN; NASROLLAHI; MOESLUND, 2017). More recently,
in (PON et al., 2018), the authors modified the Faster R-CNN architecture to implicitly explore
the object hierarchy in the detection of traffic lights and signs and, in (MÜLLER; DIETMAYER,
2018), the authors extended the Single Shot Detector to also classify the state of traffic lights.

In addition to these works, there are also challenges and benchmarks for the problems
of traffic light detection and recognition. The Vision for Intelligent Vehicles and Applications
(VIVA) Challenge, for instance, comprises several benchmarks including the VIVA Traffic Light
Detection Challenge (INTELLIGENT; DIEGO, 2015). In our work, one of the datasets of the
experimentation came from this challenge: the LISA dataset. There are some initiatives from the
industry side as well. In the 2016 Nexar Challenge (NEXAR, 2016), for instance, competitors
had to develop a model to recognize the state of the traffic light in the car driving direction
(i.e., the relevant traffic light). The goal of this challenge is closely related to ours, but they also
wanted to have a small model size in addition to high accuracy. A downside of this challenge,
however, is that the Nexar dataset, studies and the proposed works are not publicly available due
to industry privacy.

Although recent works have demonstrated the tendency of using deep learning to solve
TLR, literature still lacks a more comprehensive evaluation on different publicly available
datasets. In addition, the deep learning-based methods do not address the state classification of
the relevant traffic light. Therefore, no baseline performance is currently available for this task.
Finally, deep learning detection methods require bounding-box annotation of the traffic lights.
In other words, there is no investigation on state classification based on weak annotation (i.e.,
image-level labels). These three limitations are addressed in this work.
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3 Proposed system
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Figure 1 – Overview of the proposed system. First, the training images are undergone manual la-
beling in which each image is assigned either red-or-yellow, green, none, or unknown.
While none indicates the absence of traffic lights, unknown implies the state of the
relevant traffic lights could not be determined. Images with this label are discarded,
and a subset of the images labeled as red-or-yellow or green are used to annotate
bounding boxes enclosing traffic lights. Two approaches were investigated. In the
detection-with-classification approach (top-flow), a deep network is trained to detect
all traffic lights in a scene. A heuristic decision is further performed to choose the
relevant traffic light among the detections. Direct-classification (bottom-flow), in
turn, leverages a classification network to directly predict the relevant state of the
scene. The training labels (red-or-yellow, green, none) match the possible network
predictions.

This work investigates two CNN-based approaches for state recognition of relevant
traffic lights in a scene (Figure 1): (i) direct-classification (bottom-flow) and (ii) detection-with-
classification (top-flow).

In the first case, were investigated how direct-classification networks addresses the
relevant state recognition problem when trained with just a single label per scene, i.e., red-or-

yellow, green, or none. This approach eliminates the need for detection and address the problem
directly. In other words, the perception of what/where is a relevant traffic light should be solved
only by the CNN-learned filters instead of rule-based heuristics.

In the second case, a detection network propose regions (bounding boxes) of the input
image containing traffic lights and predict (classify) their respective states. Then, a heuristic
is employed to choose the relevant traffic light among the detections based on positioning
assumptions. The selected traffic light’s label is taken as the system output. A particular drawback
of this approach is the tedious and expensive process of annotating traffic lights’ bounding boxes.
Also, the success of the task strongly depends on the performance of the detection and coherence
of the heuristic.

The next sections describe the manual annotation process and the approaches investigated
in this work.
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3.1 Manual annotation for classification and detection net-

works

The training of the proposed system leverages a proprietary collection comprising several
traffic scenes with size 640× 480 captured from a fixed forward-looking camera on top of a car.
These images were manually labeled in two steps. First, each image was labeled (image-level
annotation) as either none (i.e., no traffic lights), red-or-yellow, green, or unknown, the latter
indicating broken traffic lights, or situations where the annotators were not able to clearly decide
the traffic light state (e.g., discordant traffic lights associated to the same lane). Images labeled as
unknown were discarded for further stages. Red and yellow traffic lights were grouped together
into a single class due to the scarcity of yellow samples in the dataset, as usually observed in
traffic lights datasets. Although this direction differs from some works in the literature (WEBER;
WOLF; ZÖLLNER, 2016; NEXAR, 2016) that restrict themselves to recognize only red and
green states, it is more appropriate for the traffic rules that usually requires the cars to reduce
speed and stop with the yellow light. The transition case from green to yellow, if necessary (e.g.,
when car is already near to the traffic light), could be treated with temporal information (not
focus of this work).

In a second level, traffic lights’ bounding boxes and their respective states were annotated
for a subset of the remaining images not labeled as unknown. This annotation is required only
for the detection-with-classification approach, and is notably more expensive in terms of time
and effort than the image-level annotation because a single image may contain multiple traffic
lights. Each traffic light object also received one of the labels red-or-yellow, green, or unknown,
and those labeled as unknown were discarded before the training begins.

3.2 Direct-classification approach

Although detection networks work well in locating traffic lights, it does not consider
holistic information and cannot determine the relevant traffic light. To circumvent this prob-
lem, were investigated whether the recognition task can be solved end-to-end as a multi-class
classification problem. In this context, two well-known classification CNNs were evaluated:
(i) SqueezeNet (IANDOLA et al., 2016) (v1.1) and (ii) ResNet-50 (HE et al., 2016). Briefly,
SqueezeNet was chosen mainly due to it compactness, and ResNet CNN family is one of the
state-of-the-start architectures in classification tasks.

3.3 Detection-with-classification approach

This approach works by first detecting the regions of interest in the scene modeled as
traffic lights’ bounding boxes. To this purpose, two state-of-the-art object detection networks
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were investigated: (i) Faster R-CNN (REN et al., 2015) and (ii) YOLOv3 (REDMON; FARHADI,
2018). These networks were trained to detect traffic lights in the wild, where detecting means
jointly regressing the objects’ location (bounding box) and predicting their respective class (state)
rather than sequential processing, as in (BEHRENDT; NOVAK; BOTROS, 2017). In this context,
deciding a relevant traffic light naturally implies determining the system output. The decision is
made heuristically based on traffic lights positions and/or dimensions properties.

3.3.1 Heuristics for deciding the relevant traffic lights

After the training, a detection network can be used to predict traffic lights in a scene, but
this is not enough. Among all the traffic lights, there is usually one (or more) that is actually
relevant for the driver, one that defines his/her instant decision (e.g., slowing the speed, start to
move). Ambiguous cases (even for humans) may arise when different decisions are possible for
the same lane. This type of decision would require information of the planned path, but this is
beyond the scope of this work.

In this work, five heuristics to select a traffic light were investigated: (i) select the closest
traffic light to the top-center point (1H); (ii) select the largest traffic light (1L); (iii) apply 1H after
selecting the two largest traffic lights (1H-2L); (iv) select the closest traffic light to the coordinates
outputted by a regression system, proposed in the next section (1C); and (v) select randomly a
traffic light (1R). The last criteria will be used as a baseline performance for the detection-with-
classification approach, as further described in the experiments. Figure 2 illustrates the decisions
made by the different heuristics.

Figure 2 – When applying the heuristics in the image shown, the green box would be selected
for 1H and 1H-2L, but the red box would be selected for 1L. The white box could
only be selected by 1C or (randomly) by 1R.

3.3.2 1C heuristic’s regression system

1C heuristic requires a deep regression model to predict the 2-d coordinates (a single point
per image) of a relevant traffic light in the image plane. The regression model – a convolutional
neural network (CNN) – is trained specifically to regress the coordinates of a particular traffic
light: the relevant traffic light closest to the top-center point (thereafter referred to as target).
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3.3.2.1 Relevant Traffic Light Localization

The pipeline of the proposed regression system (illustrated in Figure 3) is broadly divided
into the learning and test stages. The learning stage (left part of Figure 3) requires a collection
of images depicting traffic scenes which are annotated with the respective target’s position (2D
coordinates of the relevant traffic lights in the scene, indicated by the yellow cross marker). Then,
given an input image and its annotation, a deep convolutional neural network (CNN) is trained
as a regression model in order to predict the target position of the traffic light. In the test stage,
the current image captured with the car’s onboard camera is passed to the trained model in order
to regress the current target position. The remainder of this section focuses on describing the
deep regression model and the loss function proposed to guide the model training. Details of the
training procedure are presented in the next section.

`

TrainingManual annotation

(Predicted) Target's Position
Training images

`

Camera image

Learning stage Test stage

Regression

`

Trained
model

Figure 3 – Overview of the proposed method for relevant traffic light localization. The yellow
circle with a cross marks the position of the relevant traffic light in the image.

3.3.2.2 Deep Regression Model

The regression model (illustrated in Figure 4) is a deep neural network with input size
1024× 512× 3 comprising a backbone for feature extraction, and some fully connected layers
appended in the end. The backbone is a modified ResNet-50 architecture (HE et al., 2016)
(referred to as ResNet-50*) resulting from removing the average pooling layer (avg pool) and the
subsequent fully connected layer (fc 1000). Instead, the final features are obtained by convolving
the 32× 16× 2048 volume outputted by the last convolutional block of ResNet* (conv5_x) with
a 1× 1× 16 filter, with ReLU activation, and then flattening the resulting volume.

The regression part comprises a stack of 7 fully connected layers (fc 256) – each one
outputting 256-d features – followed by a single fully connected layer (fc 2) that outputs a 2-d
vector. ReLU is used as the activation function of the fc 256 layers, whereas an identity function
is applied in fc 2. Instead of directly predicting the target’s position p̂t = (x̂t, ŷt) ∈ [0, w]× [0, h],
with w = 1024 and h = 512, the model regresses normalized coordinates p̂m = (x̂m, ŷm) such
that:

x̂t = [(x̂m + 1)/2]w (3.1)

ŷt = ŷmh. (3.2)

This normalization preserves the aspect ratio, and maps the top-center position of the input image
onto (0, 0) in the (normalized) regression domain. The x̂m, ŷm values are expected to be (most of
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the time) within the ranges [−1, 1] and [0, 1], respectively. However, this is not ensured since the
image of the identity activation function (in fc 2) is unbounded. Therefore, the final prediction p̂t

is not restricted to the image frame, making it possible to predict the position of traffic lights that
are cut by the image boards with it middle point outside the image.
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Figure 4 – Deep regression model.

3.3.2.3 Loss Function

The loss function used to train the regression model was adapted from the Huber loss
function (HUBER, 1992) in order to be still less sensitive to outliers, i.e., to have less influence
of those predictions too far from ground-truth positions. Given a ground-truth position pt in
the image domain, a prediction p̂t is considered an outlier iff ||p̂t − pt||2 > 16. Therefore,
in the regression domain, p̂m is an outlier iff ||p̂m − pm||2 > 1/32, or, analogously, iff z =

32||p̂m − pm||2 > 1. Based on this last relation, the loss function was piecewise defined as

L(z) =

z2, if z ≤ 1

log(z2) + 1, otherwise.
. (3.3)

The function in (3.3) is also continuous and differentiable for z = 1, since z2 = log(z2) + 1 = 1

and d
dz
(z2) = d

dz
(log(z2) + 1) = 2. Our loss function is depicted in Figure 5 together with

2×Huber and L2 losses for comparison (Huber loss is doubled for better visualization and
comparison). Note the smoother behavior of the proposed function for z > 1.
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Figure 5 – The proposed loss function together with 2×Huber and L2 losses.
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4 Experimental methodology

Table 1 – Class distribution across datasets. All images from VITÓRIA are hard-to-decide.

full hard-to-decide

none red green total none red green total

PROP-TRAIN 5,052 3,091 13,672 21,815 - - - -
PROP-VAL 599 406 2,222 3,227 - - - -
PROP-BBOX-TRAIN 5,052 1,286 5,918 12,256 - - - -
PROP-BBOX-VAL 599 383 2,099 3,081 - - - -
IARA-TL 2,954 3,904 3,695 10,553 5 0 138 143
LaRA 2,149 4,208 3,208 9,565 83 481 597 1,161
LISA-DayTest 328 1,330 1,396 3,054 0 0 0 0
LISA-DayTrain 618 9,628 2,426 12,672 0 3,097 295 3,392
VITÓRIA - - - - 3,548 19,604 8,717 31,869

Figure 6 – Sample images of evaluation datasets. The rows, from top to bottom, represent the
datasets LISA, LaRA, IARA-TL, and VITÓRIA, respectively.

This section details the experimental methodology for evaluation of the proposed sys-
tem under the detection-with- and direct- classification approaches. The following topics are
addressed: datasets, performance metric of the recognition system, the experiments themselves,
and, finally, the hardware/software setup.
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4.1 Datasets

The training and validation of the detection and classifiction networks were conducted on
a proprietary dataset, whereas four collections were used to evaluate the systems’ performance:
LaRA and LISA, which are publicly available benchmarks commonly used in the intelligent
vehicle literature; IARA-TL refers to a local dataset produced with the IARA (Intelligent
Autonomous Robotic Automobile) platform, an autonomous vehicle developed by our research
group; and VITÓRIA, a local dataset comprising video sequences captured with a GoPro camera
mounted in the windshield of a regular vehicle focusing on recording challenging instances
for recognition. Also DTLD, another publicly available benchmark, is used for training and
testing the regression network for the 1C heuristic. The IARA-TL and VITÓRIA datasets are
contributions of this work. All test images were annotated following the same protocol described
in Sect. 3.1. Table 1 presents the class distribution across datasets, whereas Figure 6 depicts
samples of the evaluation datasets.

4.1.1 PROPRIETARY

The detection and classification networks were trained using only the PROPRIETARY
dataset. The images were acquired by a camera mounted on the roof of a car in a resolution of
640× 480 pixels in RGB across 24 Brazilian cities during day-time. Unlike the datasets used in
the evaluation, this one is not sequential, presenting a larger variety of scenes and traffic light
objects.

The total of 25,042 images was partitioned into training (PROP-TRAIN) and validation
(PROP-VAL) sets. The partitioning was performed randomly and location-wise, which means
that instead of arbitrarily choosing individual samples for each set, it was ensured that all
images from the same location (city, or region, in case of too big cities) were placed in the
same set. In addition to the image-level annotation, 15,337 images (≈61% of the entire set)
from PROP-TRAIN and PROP-VAL received additional annotation of traffic lights’ bounding
boxes and their respective states to enable the training of the detection networks, giving rise
to PROP-BBOX-TRAIN and PROP-BBOX-VAL (Table 1). Despite the reduced quantity, the
annotation of these images requires much effort since it is performed at object level instead
of image level, and due to the images with multiple (traffic lights) objects. The positioning
distribution of the traffic lights can be seen in Figure 7.

4.1.2 LISA

The LISA Traffic Light dataset (JENSEN et al., 2016; PHILIPSEN et al., 2015) was made
available as a benchmark for the VIVA challenge (INTELLIGENT; DIEGO, 2015). The video
sequences were acquired in San Diego, USA, with a stereo camera centered on the vehicle roof,
of which the left camera was considered for frame extraction. Video was captured at 16 frames
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Figure 7 – Distribution of the (a) red-or-yellow traffic lights, and (b) green traffic lights in the
training dataset (PROPRIETARY). The distributions were normalized separately.

per second (FPS), and uncompressed in a total of 43,007 images with 1280× 960 pixels in RGB
format. The whole dataset was originally split into day- and night-time generated data, and these
sets were individually partitioned into train and test sets. For this work, the images were scaled
down to 640× 480 pixels, being only the sets recorded during the day (i.e., LISA-DayTrain and
LISA-DayTest) considered for experimental analysis.

4.1.3 LaRA

LaRA (CHARETTE; NASHASHIBI, 2009b; CHARETTE; NASHASHIBI, 2009a;
PARISTECH, 2015) was generated from video sequences of the urban traffic in Paris, France.
The acquisition was performed at 25 FPS with a single camera inside the car, on the back of
the rear-view mirror. Uncompressed data comprise 11,179 RGB images with 640× 480 pixels.
Unlike LISA, no train/test partition is officially provided, therefore the whole dataset was used
during evaluation.

4.1.4 IARA-TL

As mentioned, IARA-TL is one of the two novel datasets that our research group – High
Performance Computing Lab (LCAD1) – produced for traffic-related applications. This local
collection comprises day-time traffic scenes recorded in the city of Vitória, Brazil, being its name
borrowed from the IARA autonomous vehicle that has been developed by LCAD (BADUE et al.,
2019). This car has a Bumblebee XB3 stereo camera on top of it that captures images in RGB
format with 1280× 960 pixels. Only the right camera was considered for frame extraction, and
all frames were scaled down to 640 × 480 pixels. The uncompressed data comprise a total of
10,329 labeled frames, of which only traffic lights with at least six pixels wide (criterion similar
to the adopted in the LaRA dataset) were considered for labeling.

1 A research group from the Universidade Federal Espírito Santo (UFES).
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4.1.5 VITÓRIA

The VITÓRIA dataset was specifically produced for this work and consists in day-time
video sequences of the usual traffic of the city of Vitória, Brazil. This dataset focuses on hard-
to-decide cases, which are defined as scenes with one or more non-redundant (i.e., different
state) traffic lights close to the relevant traffic light. The driver was given a set of pre-defined
routes where hard-to-decide instances are likely to be found. A GoPro camera was mounted on
the windshield of a regular car and the acquisition was performed at 29.97 FPS (RGB format),
producing 1920 × 1200-size images. These images were later cropped (160 pixels from each
side, changing the ratio from 16:10 to 4:3) and resized to 640× 480 pixels. Unlike the other test
sets, VITÓRIA only keeps those scenes which are considered hard-to-decide cases.

4.1.6 DTLD

The DriveU Traffic Light Dataset (DTLD) (FREGIN et al., 2018), the largest publicly
available dataset of traffic lights, was assembled based on daytime records of 11 German cities
in different weather conditions. Scenes were originally captured by two cameras (stereo), being
the left camera data used to annotate traffic lights, resulting in more than 40,000 frames of
2048× 1024 pixels with more than 230,000 hand-labeled bound-boxes.

For our purposes, as discussed in Sect. 3.3.2.1, images without relevant traffic lights
were discarded since the proposed method assumes the car is already in a place where a decision
should be made, i.e., there is a relevant traffic light in the scene. Such information could come,
for example, from navigation systems based on inexpensive GPSs. The remaining images were
resized to 1024× 512 in order to fit the network’s input. The ground-truth annotation (i.e., traffic
light positions) was derived from the bounding boxes annotation by computing the middle point
of the boxes. The original DTLD train and test splits were leveraged, both including images from
the 11 cities. The images from Bremen and Fulda cities in the training split were used only for
validation. Trivial scenes with only relevant traffic lights were discarded from the test partition.

To increase variability in the training data, the images of the training partition were
submitted to an off-line data augmentation process. Two new instances were produced from
each training image. In some cases, a third additional instance was generated to reach the
total of 65,536 (216) instances. The augmentation process comprises four sequential operations:
(i) luminosity transformation, (ii) affine transformation, (iii) blur and (iv) horizontal flip. The
parameters of the operations were picked randomly for each image.

4.1.6.1 Luminosity Transformation

The luminosity transformation consists in multiplying the image pixels by a factor in
[flum(m), 2flum(m)], where flum is the function defined in (4.1) and m is the mean value of
the luminosity image (taken as the channel-wise maximum for each pixel). In summary, the
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transformation was designed to avoid over/underflow for high/low luminosity images.

flum(x) =


0.5, if x > 128

64/x, if 64 ≤ x ≤ 128

1.0, otherwise.

, (4.1)

4.1.6.2 Affine Transformation

The affine transformation comprises uniform scaling by a factor in [31/32, 33/32], rotat-
ing by an angle in [−π/64, π/64], and finally translating the image in both axis (independently)
restricted to the interval [−16, 16]. Background pixels (i.e., those not defined by the original
image) were assigned 128 for the three channels. This transformation is not applied only when
target is closer than 64 pixels from some of the image’s borders.

4.1.6.3 Blur

The blur is one between a gaussian blur with σ in [0, 1] or, with same chances, a median
blur with a 3× 3 kernel.

4.1.6.4 Horizontal Flip

In the end, some generated images are horizontally flipped. If two instances were gener-
ated from a training image, one of them was flipped. In the cases where three instances were
generated, one of them was flipped in half of the cases and two instances were flipped in the
other cases.

4.2 Performance metrics

The performance of the direct-classification and detection-with-classification systems
was measured in terms of the macro average of the accuracy (or simply macro-accuracy). The
macro average was used to account for the unbalance of the test sets. The macro-accuracy metric
for a multi-class problem is defined as

ACCmacro =
1

N

N∑
i=1

TPci
Pci

, (4.2)

where C = {c1, c2, . . . , cN} is the set of classes; TPci and Pci denote the number of True
Positives and Positives (from ground-truth) of the i-th class, respectively. In our case C = {none,
red-or-yellow, green}, thus, N = 3.

For the regression system alone, the accuracy was defined as the ratio between correct
choices (for all the test images) and the number of tested images. The “correct” choice means
(i) the selected traffic light is among the relevant ones or, more strictly, (ii) it is exactly the
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target traffic light when using the same criteria as in the training phase. Both scenarios were
investigated in the experiments.

4.3 Experiments

Quantitative experiments were conducted to verify whether the direct-classification
approach can achieve comparable performance to detection-with-classification when analyzed in
their best configurations. In addition, qualitative experiments performed on challenging instances
were carried out for better understanding the approaches’ behavior. Also, experiments are done
to evaluate the regression system alone and to compare the proposed loss with the Huber loss.

4.3.1 Quantitative experiments

For detection-with-classification assessment, the deep detectors Faster R-CNN and
YOLOv3 were combined with the heuristics for relevant traffic light selection (i.e., 1H, 1L, 1H-
2L, 1C, 1R), introduced in Sect. 3.3. The training was conducted on PROP-BBOX-TRAIN using
PROP-BBOX-VAL as validation, and evaluation on IARA-TL, LISA-DayTest, LISA-DayTrain,
and LaRA. To account for non-determinism, the training-test cycle was repeated 10 times with
different seeds, and the resulting macro-accuracy was recorded.

In the direct-classification approach, both SqueezeNet and ResNet-50 were trained in two
different ways. In the first, the models were trained on PROP-TRAIN, whereas, in the second,
the training was restricted to PROP-BBOX-TRAIN only. While the latter aims to compare the
different approaches using the same amount of images, the former allows to verify the impact
of additional data on the direct-classification’s performance. The evaluation followed the same
protocol of the detection-with-classification approach described in the previous paragraph.

4.3.2 Qualitative experiment

This experiment focuses on qualitatively evaluating the system’s behavior (under the two
recognition approaches) on the hard-to-decide samples. In particular, this experiment provides
insights of what the networks are “seeing” by observing the detection and selection (with differ-
ent heuristics) of the relevant traffic light obtained with Faster R-CNN, as well as by analyzing
the activation maps of the SqueezeNet’s last convolutional layer. The models already trained for
the quantitative experiments were leveraged for qualitative evaluation. The Faster R-CNN and
SqueezeNet architectures were used because they achieved the best performance in their respec-
tive approaches, as discussed in the next section. A video summarizing the qualitative results can
be found at https://www.dropbox.com/sh/dhjqjq3bsj9h5ug/AADjSD2oYqfQzxpE4aj5jAe1a?dl=0.
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4.3.3 Regression system alone experiments

The conducted experiments aim to assess the ability of the proposed method in selecting
relevant traffic lights, when used in conjunction with an ideal detector (i.e., the ground-truth
bounding boxes), in scenes containing (simultaneously) relevant and irrelevant exemplars. Since
the method outputs coordinates, a traffic light is said to be selected if it is the closest traffic
light with respect to the regressed point and (optionally) if the respective distance is not above a
predefined threshold.

The model was trained and tested with the proposed loss (Sect. 3.3.2.3) and with the
Huber loss as a performance baseline. A single training-test section was conducted for each loss.
Additionally, the method’s performance was also investigated for a subset of difficult instances,
here defined as those scenes whose the traffic light closest to the top-center position is not a
relevant one.

A video summarizing the qualitative results of the system trained with the proposed loss
can be found at https://www.dropbox.com/sh/dhjqjq3bsj9h5ug/AADjSD2oYqfQzxpE4aj5jAe1a?dl=0.

4.3.4 Training the detection networks

The detection models (Faster R-CNN (REN et al., 2015) and YOLOv3 (REDMON;
FARHADI, 2018)) should learn to locate traffic lights and recognize their states. This step relies
on the previously annotated data, which consists of bounding boxes and traffic lights’ states. The
training procedure follows the same protocol described in their corresponding original works.

4.3.5 Training the classification networks

SqueezeNet and ResNet followed a similar training scheme where only image-level
annotated data were used. These images were kept at their original size of 640× 480, which is
larger than the input size of the pre-trained models on ImageNet (224×224). Since SqueezeNet is
fully-convolutional, the larger input size does not increase the number of the network parameters,
but it implies more processing due to the larger feature maps. The same holds for ResNet because
it applies a global average pooling operation right before the fully connected layer.

Moreover, an off-line data augmentation process was performed to balance the number of
samples per class and increase the variability of the images. Basically, the augmentation consists
in applying horizontal flipping and pixel-wise arithmetic operations (addition and multiplication)
on randomly selected images in order to increase the number of samples of the two classes. The
models were initialized with pre-trained weights on ImageNet, except the last convolutional layer
of Squeezenet, and last (only) fully connected layer of ResNet, whose number of filters/neurons
was reduced to match the number of classes of the new task (i.e., red-or-yellow, green, none). In
these cases, the weights were initialized using the Xavier (GLOROT; BENGIO, 2010) algorithm.
The models were trained with mini-batches of 15 images (5 images per class) during 8 epochs.
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The learning rate was initially set to 2−9 and 2−16 for SqueezeNet and ResNet, respectively, and
was further decreased to half of its current value every two epochs. The traditional stochastic
gradient descent (SGD) algorithm was used for SqueezeNet, while Adam (KINGMA; BA, 2014)
was adopted for ResNet. Every half epoch the current model was evaluated on a validation set,
and the best model was saved for inferences.

4.3.6 Training the regression networks

The model was trained during 8 epochs with the Stochastic Gradient Descent (SGD)
algorithm (0.9 of momentum) using 16-size mini-batches (in fact, for hardware limitations,
images were passed in 8-size batches and the gradients for every 2 subsequent batches were
accumulated). The loss considered for each batch was the sum of the losses for it images. If
the mean loss was considered, it would be necessary to take the mean instead of accumulating
gradients. The training images were shuffled off-line and the resulting order was kept throughout
the epochs. A validation step was performed every 1

8
of epoch to determine the best model,

defined as that with lower average loss on the validation set. The initial learning rate was 2−14 for
the Huber loss and 2−16 for the proposed loss. In both cases, the learning rate was halved every
2 epochs. The model was initialized with pretrained weights for ImageNet (KRIZHEVSKY;
SUTSKEVER; HINTON, 2012), except for the altered layers, which were randomly initialized.
For compatibility with the pretrained model, the input images’ channels were normalized to
values in [−µ

σ
, 1−µ

σ
], being µ and σ the mean and standard deviation (normalized to values in

[0, 1]) of the respective channel averaged across the ImageNet instances.

4.4 Experimental platform

When measuring inference times, only the time for the network forward was considered,
thus ignoring image loading burden.

4.4.1 Detection and classification networks

The experiments were conducted on an Intel R© CoreTM i7-4770 PC with 16 GB of RAM
and a Titan Xp GPU. The original Darknet2 implementation was used for YOLOv3, while a
Tensorflow implementation3 was adopted for Faster R-CNN.

4.4.2 Regression network

The experiments were conducted in an Intel R© CoreTM i7-4770 CPU @ 3.40GHz with
16GB of RAM equipped with Linux Ubuntu 16.04 and 1 TITAN X (Pascal) GPU with 12GB

2 <https://github.com/pjreddie/darknet>
3 <https://github.com/endernewton/tf-faster-rcnn>

https://github.com/pjreddie/darknet
https://github.com/endernewton/tf-faster-rcnn
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of memory. Python 3.5 was used to implement the experiments. Training and inference were
performed using PyTorch 1.1 deep learning framework (PASZKE et al., 2017) configured with
CUDA 9.0 and cuDNN 7.3 for low-level computations. The average time (approximate value)
for training was 7 hours and 20 minutes, and the inference time per image was, on average, less
than 20 ms (more than 50 FPS).
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5 Results and discussion

This section starts by discussing separately the results obtained with the detection-with-
classification and direct-classification approaches. Next, a comparative analysis is done in order
to verify the feasibility of performing recognition relying only on classification models. Next,
the results on hard-to-decide scenarios are described. Next, the results of the regression system
alone are showed in different conditions comparing the proposed loss with the Huber loss; and
finally results in some scenarios are described.

5.1 Detection-with-classification quantitative results
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Figure 8 – Performance of the detection-with-classification approach based on 10 runs.

The results for the detection-with-classification approach were arranged in the four
box-plots (one per dataset) shown in Figure 8. Each box represents a detection model (i.e., Faster
R-CNN and YOLOv3), and each pair of boxes are associated with a heuristic (i.e., 1H, 1L,
1H-2L, 1C, 1R). Results account for the statistics of 10 runs in terms of the macro-accuracy.

Clearly, Faster R-CNN consistently outperformed YOLOv3 for all datasets. In a total
of 20 dataset/heuristic combinations, Faster R-CNN achieved higher accuracy than YOLOv3
in 17 cases. For the remaining three cases, which are related to the LISA-DayTrain dataset, the
difference was not significant.



44 Chapter 5. Results and discussion

Reducing the analysis to the Faster R-CNN model, the heuristic 1H achieved the highest
average macro-accuracy on IARA-TL, LISA-DayTrain, and LISA-DayTest, however only on
LISA-DayTrain the difference in performance was significant. LaRA was the most challenging
dataset for the task of the relevant traffic light recognition since it yielded the lowest accuracy for
both models, as showed in Figure 8. For this dataset, Faster R-CNN performed better with the
1C heuristic, but with no significant difference to the random selection strategy (1R), the baseline
result. Moreover, the heuristics relying on traffic light position (i.e., 1H and 1H-2L) yielded the
poorest results for LaRA. This fact can be explained by the frequent occlusion of the top-center
pixels of LaRA’s images. In this context, the redundant traffic lights (usually located on the side
of the road) are barely selected as the relevant one since they are far from the top-center position.

The overall results also showed that the random heuristic (1R) performed similar to the
best-performed heuristic of each dataset, except for LISA-DayTrain. By analyzing Figure 8, it
is difficult to notice any improvement from the heuristic 1H over 1R for the datasets IARA-TL
and LISA-DayTest. For a better evaluation, the system performance were verified for instances
where the heuristics’ influence is emphasized over the detectors’. This was accomplished by
restricting the test to images that contain any traffic light (based on the ground-truth annotation)
for which Faster R-CNN detected at least three bounding boxes. In this context, the difference
in average accuracy between 1H and 1R, respectively, increases from 0.62 to 4.72 percentage
points (pp) on IARA-TL, from −1.27 (the negative value means 1H performed worse than 1R)
to 1.62 pp on LaRA, and from 0.36 to 0.86 pp on LISA-DayTest.

5.2 Direct-classification quantitative results
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Figure 9 – Results of the classification-based approach using all training set and restricted to
images with bounding boxes annotation.

The box-plots in Figure 9 show the performance of the classification models across the
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test datasets (both full and reduced training sets are considered, as discussed in Sect. 4.3.1). Each
box of a pair represents a classification model (i.e., SqueezeNet or ResNet-50), and accounts for
10 macro-accuracy values. Considering the reduced set (PROP-BBOX-TRAIN), SqueezeNet
was significantly better than ResNet-50 for LaRA and LISA-DayTest, whereas ResNet-50 was
superior in LISA-DayTrain. For IARA-TL there was no significant difference in performance.
Using all available images, the two models performed very similar for IARA-TL and LISA-
DayTrain. For LaRA, however, SqueezeNet significantly outperformed ResNet-50 in nearly 6
pp.

Overall, the most remarkable performance discrepancy was observed for LaRA, where
SqueezeNet was significantly better in both training scenarios. This is likely caused by insufficient
data to effectively train ResNet, even performing augmentation to increase the variability to the
training set. As result, the model tends to quickly overfit the training images and is not able
to generalize for unknown data, which is even more serious due to the high variability of the
LaRA scenes. Furthermore, LaRA yielded the lowest average accuracy, as also observed for the
detection approach. A plausible reason for this is the structural differences between the training
and test scenes. Besides, this dataset has several distractors (e.g., vehicle lights, luminous panels,
reflection distortions), and traffic lights are often blurred due to the poor image quality.

5.2.1 Detection-with- vs. direct-classification
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Figure 10 – Comparison of the best performing models of the detection-with-classification
and direct-classification approaches. For SqueezeNet, results were reported for the
reduced (SqueezeNet-bbox) and entire training set (SqueezeNet-all).

For comparative evaluation, the best performed models of each approach were selected:
the Faster R-CNN with 1H heuristic (detection model) and SqueezeNet (classification model).
Figure 10 shows the performance results across the datasets. For SqueezeNet, results training with
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both the reduced (PROP-BBOX) and full training set (PROP-TRAIN) were reported, respectively,
as SqueezeNet-bbox and SqueezeNet-all.

Training with the reduced dataset, SqueezeNet was outperformed by Faster R-CNN
on all datasets but LISA-DayTest, where SqueezeNet’s accuracy was significantly better. As
seen in Figure 10, the general rule is that SqueezeNet demands larger training sets (i.e., more
images) in order to approximate the Faster R-CNN’s performance. Therefore, the detection-with-
classification approach would be preferred in terms of accuracy performance if one has access
to a fully annotated training set, i.e., a collection where all the images have bounding-box and
image-level annotation.

On the other hand, if the application context implies continuous updating (increasing)
of the training images, the simple annotation process of image-level labels can lead to a higher
amount of labeled images when compared to annotation of bounding-boxes. In other words, the
effort in assembling a larger training set to improve the classification model could be balanced
by the cheaper annotation process. With additional training data, as shown in Figure 10, Faster
R-CNN and SqueezeNet performed similarly on IARA-TL, whereas for LaRA the performance
difference drops dramatically from 10.66 to 2.85 pp, and from 10.12 to 5.71 pp for LISA-
DayTrain. In this scenario, SqueezeNet becomes attractive since it runs at more than 240 FPS,
while Faster R-CNN can operate at nearly 10 FPS.
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Figure 11 – Performance comparison between YOLOv3 (with 1H heuristic) and SqueezeNet.

To address time efficiency, also was analyzed YOLOv3 with 1H heuristic as an alternative
to Faster R-CNN (Figure 11) since YOLOv3 is able to perform real-time (≈34 FPS). Training
on the reduced set, SqueezeNet was outperformed by YOLOv3 on LaRA and LISA-DayTrain,
while they were similar on IARA-TL. SqueezeNet performed better only on LISA-DayTest. With
the full training set, SqueezeNet outperformed YOLOv3 on IARA-TL, and matched the YOLO’s
performance on LaRA. For LISA-DayTrain, YOLOv3 was still better, however the difference in
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accuracy dropped from 7.75 to 3.34%.

5.3 Qualitative experiments

Figure 12 – Samples of hard scenarios (top row) and qualitative results for Faster R-CNN
(middle row) and SqueezeNet (bottom row). The ground-truth traffic lights are
enclosed by boxes in the top row, and the relevant traffic light state is labeled on
the upper-left corner. Detections outputted by Faster R-CNN are represented by
boxes, and the heuristic selection output is indicated by the labels 1H, 1L, 1H-2L.
In the bottom row, the activation in red and green reflects, respectively, the spatial
probability distribution for the red-or-yellow and green traffic lights, the network’s
final prediction is labeled on the upper-left corner of each image.

Figure 12 shows samples of challenging instances with the respective detections outputted
by Faster R-CNN (including the relevant traffic light selection) and the SqueezeNet’s activation
maps. The red, green, and blue colors in the activation maps are, respectively, evidence of the
red-or-yellow, green, and none classes. Mixed colors indicated activation of two or three classes
(e.g., yellow indicates red-or-yellow and green together).

The leftmost column depicts a situation where the car should obey the red traffic light that
rules the turn-left maneuver. While the heuristics 1L and 1H-2L yielded to the correct prediction,
1H interpreted a green traffic as the relevant one. SqueezeNet decided correctly the relevant
traffic light state, however it was influenced by the rear light (red spot) of a motorbike. Note the
predominance of yellow regions in the activation maps, which evidences the presence of traffic
lights. The red/green spots indicates the specific traffic light class. A similar situation is depicted
in the second scene, but only two traffic lights are present in the scene. Note that for two or less
traffic lights, 1H-2L and 1H always output the same result. In the shown case, both heuristics
were wrong, while 1L yielded the correct traffic light.

In the third scenario, the car should obey a green traffic light, however there is a red
traffic light at nearly the same distance from the car’s view. All the heuristics yielded to the
correct state since the red traffic light is far from the center position and its size is smaller than the
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others. Note that pedestrians traffic lights were also detected, nevertheless they were disregarded
by the selection heuristics. Although SqueezeNet led to the correct result, the activation maps
show the influence of pedestrians traffic lights’, which are more distant from the car. In the fourth
scenario, the red traffic light is larger and closer than the relevant (green) one for the current lane.
In this case, the selection heuristic had an essential role for the final result: while 1H and 1H-2L
return the correct traffic light, 1L assigns the wrong (red) traffic light, i.e., the largest one. The
SqueezeNet’s activation maps responded to both traffic lights, but the red activation was decisive
for the (wrong) final decision.

The last situation (rightmost column) evidences a limitation of both approaches. The
car is traveling in the rightmost lane, for which no traffic light is assigned. Nevertheless, there
are traffic lights in the scene, and they led detection-with-classification based assign one of
them as relevant for the current lane. This is a design issue that could be better handled if the
system was aware of the intended vehicle’s route before deciding the relevant traffic lights. The
direct-classification was also fooled by the green traffic lights in its visual field.

5.4 Regression system alone results
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Figure 13 – Selection of a relevant traffic light. The numbers inside the graph indicates the total
number of images of each subcase.

Figure 13 shows the method’s accuracy in selecting relevant traffic lights without set
any distance threshold. The curves were plotted considering the increasing number of relevant
exemplars present in the image (3+ indicates three or more exemplars). The numbers inside the
graph (i.e., 2340, 4386, etc.) represent the amount of images for each subcase (the quantities are
the same for both losses).

Clearly, the proposed loss yielded better accuracy than Huber loss, notably for the
challenging instances (Difficult). It can be noticed, nevertheless, that the losses tend to perform
more similarly (and better) with the increasing of relevant traffic lights in the scene. As expected,
the lower accuracy is observed for scenes with only one relevant traffic light (this exemplar is
also the target). Interestingly, for this case, the accuracy achieved with proposed loss on difficult
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cases (73.60%) also surpassed the Huber loss accuracy on the entire dataset (68.42%). Moreover,
grouping all the three subcases (i.e., 1+ relevant images), the Huber loss yielded accuracies
of 81.92% and 60.47% for the entire dataset and the difficult instances, respectively, whereas
the proposed loss yielded 88.59% and 76.62%. This shows a great improvement, mainly in the
difficult cases.
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Figure 14 – Selection of a relevant traffic light with threshold distance.

Figure 14 shows the accuracy of selecting relevant traffic lights, but now with the
additional distance threshold constraint. Different accuracies were obtained by varying the
distance threshold (horizontal axis). The right graph depicts the same information of the left
graph but restricted to the interval [0, 64].

As can be seen in the left graph, the four curves increases very sharply, reaching close to
the maximum for low distance thresholds. Note that the accuracy converge to the values obtained
by grouping the three subcases in Figure 13. This means that applying a relatively small threshold
does not affect significantly the performance. Based on this observation, the predicted position
could be used to restrict an area of interest surrounding a relevant traffic light. Therefore, instead
of using our method in conjunction with detectors, it could be leveraged to crop traffic lights
whose state could be determined by a classifier. The right graph shows more detailed the same
curves for smaller thresholds. Considering the entire test set, the Huber loss yielded accuracies
of 56.66% and 74.24% for the threshold values 16 and 32, respectively, whereas proposed loss
yielded accuracies of 80.22% and 84.49%.

Figure 15 shows a more strict scenario where accuracy is related to the ability of correctly
selecting the target traffic light. Comparing to Figure 14, the curves in Figure 15 present a
similar behavior (i.e., they quickly increase towards the maximum) but achieving slightly lower
accuracies. The maximum accuracies for the Huber loss were 76.35% and 56.98% for the entire
test set and the difficult cases, respectively, while the proposed loss yielded 82.91% and 72.21%.

Figure 16 shows results on several images from DTLD test partition. First row shows
very easy cases with multiple relevant. Second row shows successful cases with a relatively great
irrelevant traffic light next to the target. Third row shows difficult cases failures, mostly occur
when the irrelevant that is closer to the top-center position is also relatively great. Fourth row
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Figure 15 – Selection of the target traffic light with threshold distance.

shows false failures due to wrong annotated data. Fifth row shows failures where a relevant was
surrounded by many smaller irrelevant. Sixth row shows cases where the target traffic light is cut
by the image’s boards, in some of these cases the middle point of the traffic light is outside the
image and the model was also capable to predict a close position outside.

As can be seen the system delivery high quality predictions in most of the scenes and for
most of it failuers it is possible to identify reasons for difficulty, giving direction on what need to
be enhanced in future works.
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Figure 16 – Results on several images from DTLD test partition. Relevant and irrelevant traffic
lights are marked in the images with yellow and lower magenta squares, respectively.
The predicted coordinates are marked with a circle of the same color of the selected
traffic light square. A cyan line connects the prediction to its selection. First row
shows very easy cases. Second row shows successful cases with a great irrelevant
traffic light next to the target. Third row shows difficult cases failures. Fourth row
shows false failures due to wrong annotated data. Fifth row shows failures where a
relevant was surrounded by many irrelevant. Sixth row shows cases where the target
traffic light is cut by the image’s boards.
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6 Conclusions and future work

This work addressed the problem of recognizing the state of the relevant traffic lights
in a scene as an application for intelligent vehicles. In particular, it investigates the ability of
two deep learning-based approaches to solve the problem: detection-with-classification and
direct-classification.

Quantitative experiments were conducted to evaluate the proposed approaches on local
and publicly available datasets. Results showed that Faster R-CNN and SqueezeNet achieved the
best accuracy performance for detection-with-classification and direct-classification approaches,
respectively; and that simple rule-based heuristics have comparable results to the regression
system’s heuristic Although SqueezeNet requires additional training data to achieve accuracy
comparable to the system based on Faster R-CNN, SqueezeNet runs real-time (≈24 times
faster than Faster R-CNN), and yielded better accuracy when compared to the detection-with-
classification system with the real-time YOLOv3.

The qualitative experiments showed different situations where the models/heuristics
potentially struggle with. Since traffic scenes are inherently diverse, the different heuristics
for relevant traffic light selection will perform better under certain situations. Furthermore, the
analysis showed some limitations of both approaches in understanding the contextual information
which defines the relevant traffic light. Although they work well on standard scenarios, they
might get confused in some dubious situations. To deal with this issue, future work will address
the incorporation of navigation information (e.g., intended route, prior maps) to these deep
learning models.

The regression system is also evaluated alone. The results are promising and show that
the system can assist other detecting systems selecting a relevant from it detections. In addition,
they also show that the successful regressions are, mostly, very close to the selected relevant,
which makes it possible to define a region of interest to assist a cheaper classifying system.
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