
 

 

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO 

CENTRO TECNOLÓGICO 

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA 

 

 

 

FILIPE WALL MUTZ 

 

 

 

 

NOVEL TECHNIQUES FOR MAPPING AND LOCALIZATION 

OF SELF-DRIVING CARS USING GRID MAPS 

 

 

 

 

VITÓRIA 

2019 



 

 

 

 

FILIPE WALL MUTZ 

 

 

 

 

NOVEL TECHNIQUES FOR MAPPING AND LOCALIZATION 

OF SELF-DRIVING CARS USING GRID MAPS  

 

 

 

 

Tese apresentada ao Programa de Pós-Graduação em 

Informática do Centro Tecnológico da Universidade 

Federal do Espírito Santo, como requisito parcial 

para obtenção do Grau de Doutor em Ciência da 

Computação. 

 

 

 

VITÓRIA 

2019 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

DEDICATÓRIA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

À todos que me deram suporte nessa árdua jornada. 



 

 

 

 

AGRADECIMENTOS 

Aos meus pais, Elvira Wall (in memoriam) e Alfredo Mutz, por terem me ensinado o 

valor da educação e por terem me amado incondicionalmente. Considero-me 

abençoado por ter tido pais tão maravilhosos. À minha esposa Ana Paula Martins 

Guimarães Mutz por seu amor, suporte, companheirismo, e compreensão ao longo 

desta jornada. Ao professor doutor Raul Henriques Cardoso Lopes por me 

apresentar a carreira acadêmica e por me dizer que eu era capaz. Aos professores 

do departamento de informática da Universidade Federal do Espírito Santo por me 

proporcionarem uma ótima formação. Ao professor doutor Elias de Oliveira pela 

paciência e dedicação durante a iniciação científica. Ao professor doutor Alberto 

Ferreira De Souza por sua orientação e paciência ao longo do mestrado e 

doutorado. Você é uma das pessoas mais inteligentes que conheci e conviver com 

você me fez crescer como profissional e como pessoa. Ao professor doutor Thiago 

Oliveira-Santos por estar sempre presente e disposto a ajudar. Obrigado pela 

honestidade, pelas críticas construtivas, e por ser uma figura que me inspira. À 

professora doutora Claudine Badue pela motivação nos momentos difíceis e por 

mostrar a importância de buscarmos ser sempre melhores. Ao professor doutor 

Juergen Schmidhuber e ao doutor Paulo Rauber por seus ricos ensinamentos 

durante meu doutorado sanduíche no Istituto Dalle Molle di Studi Sull'Intelligenza 

Artificiale (IDSIA), na Suíça. Aos meus colegas do laboratório de computação de alto 

desempenho (LCAD) pelas discussões filosóficas e por todo carinho. Agradeço em 

especial ao doutor Lucas de Paula Veronese por ser tão grande amigo, por ser 

compreensivo e honesto com minhas falhas e continuar presente mesmo em face 

delas. Agradeço à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 

(CAPES) pelo suporte financeiro na forma de bolsas de doutorado e financiamento 

via programa de doutorado sanduíche no exterior (PSDE, processo nº 

88881.133206/2016-01). Por fim, agraço ao Instituto Federal do Espírito Santo 

(IFES; Campus Serra) pela concessão de afastamento integral remunerado para 

realização do doutorado (portarias nº 208/2015 e nº 147/2017).  

 



 

 

 

 

EPÍGRAFE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“A ciência se compõe de erros que, por sua vez, são os passos até a verdade.” 

Julio Verne 

 



 

 

 

 

RESUMO 

Este trabalho propõe novas técnicas para construção de mapas de grade de 

ambientes de grande escala, e para estimativa da localização de carros autônomos 

nestes mapas. A técnica de mapeamento é utilizada para criar mapas de grade de 

ocupação, de refletividade, coloridos e semânticos. A localização é baseada em 

filtros de partículas. Novos métodos para cálculo dos pesos das partículas usando 

informações semânticas e coloridas são apresentados. A rede neural profunda 

DeepLabv3+ é usada para segmentar semanticamente imagens capturadas por uma 

câmera frontal. A estimativa das poses do veículo para o mapeamento é modelada 

como um problema de Localização e Mapeamento Simultâneos (Simultaneous 

Localization and Mapping – SLAM). Valores iniciais das poses são obtidos usando o 

algoritmo GraphSLAM para fundir dados de odometria e GPS. Esses valores são 

refinados usando informações de fechamento de circuito. As poses otimizadas são 

utilizadas para construir mapas do ambiente. As localizações dos carros autônomos 

são calculadas em relação a estes mapas. As técnicas de localização e 

mapeamento foram avaliadas em vários ambientes complexos e de larga escala 

usando o automóvel robótico autônomo e inteligente (Intelligent and Autonomous 

Robotic Automobile – IARA). O impacto de usar diferentes tipos de mapas de grade 

na acurácia da localização assim como sua robustez a condições adversas de 

operação (e.g., iluminação variável, e tráfico intenso de veículos e pedestres) foram 

avaliadas quantitativamente. Até onde sabemos, as técnicas de mapeamento e 

localização, a metodologia para produção dos valores de referência para os 

experimentos, e a avaliação da acurácia da localização para diferentes mapas de 

grade são novidades. 

Palavras-chaves:  Robótica; Carros Autônomos; Localização; Mapas de Grade;  



 

 

 

 

ABSTRACT  

This work proposes novel techniques for building grid maps of large-scale 

environments, and for estimating the localization of self-driving cars in these maps. 

The mapping technique is employed for creating occupancy, reflectivity, colour, and 

semantic grid maps. The localization is based on particle filters. New methods for 

computing the particles’ weights using semantic and colour information are 

presented. The deep neural network DeepLabv3+ is used for visual semantic 

segmentation of images captured by a camera. The estimation of the vehicle poses 

for mapping is modelled as a Simultaneous Localization and Mapping (SLAM) 

problem. The values of the poses are obtained by using the GraphSLAM algorithm to 

fuse odometry and GPS data. These values are refined using loop-closure 

information. The optimized poses are used for building maps of the environment. The 

self-driving cars localizations are computed in relation to these maps. The mapping 

and localization techniques were evaluated in several complex and large-scale 

environments using a real self-driving car – the Intelligent and Autonomous Robotic 

Automobile (IARA). The impact of using different types of grid maps in the 

localization accuracy as well as its robustness to adverse conditions of operation 

(e.g., variable illumination, and intense traffic of vehicles and pedestrians) were 

evaluated quantitatively. As far as we know, the mapping and localization techniques, 

the methodology for producing the localization ground truth, and the evaluation of 

which type of grid map leads to more accurate localization are novelties. 

Keywords: Robotics; Self-driving Cars; Localization; Grid Maps; 

  



 

 

 

 

SUMÁRIO 

1. INTRODUCTION ..................................................................................................................................... 14 

1.1. HYPOTHESIS ........................................................................................................................................ 19 

1.2. OBJECTIVE .......................................................................................................................................... 20 

1.3. CONTRIBUTIONS .................................................................................................................................. 21 

1.4. OUTLINE ............................................................................................................................................. 24 

2. RELATED WORK .................................................................................................................................... 26 

2.1. SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) .................................................................... 26 

2.2. MAPPING WITH SEMANTIC INFORMATION ........................................................................................... 29 

2.3. LOCALIZATION .................................................................................................................................... 30 

3. THE IARA SELF-DRIVING CAR .......................................................................................................... 33 

3.1. HARDWARE ......................................................................................................................................... 33 

3.2. SOFTWARE .......................................................................................................................................... 36 

3.2.1. PERCEPTION ........................................................................................................................................ 36 

3.2.2. DECISION-MAKING .............................................................................................................................. 37 

3.3. MOTION MODEL.................................................................................................................................. 41 

4. SENSOR DATA PRE-PROCESSING ..................................................................................................... 42 

4.1. SENSORS SYNCHRONIZATION .............................................................................................................. 42 

4.2. ODOMETRY CALIBRATION .................................................................................................................. 43 

4.3. VELODYNE PRE-PROCESSING .............................................................................................................. 48 

4.4. VISUAL SEMANTIC SEGMENTATION .................................................................................................... 53 

4.5. FUSION OF VELODYNE AND IMAGES ................................................................................................... 54 

5. NOVEL TECHNIQUES FOR MAPPING AND LOCALIZATION .................................................... 59 

5.1. GRID MAPS ......................................................................................................................................... 59 

5.1.1. REFLECTIVITY AND COLOUR GRID MAPS ........................................................................................... 61 

5.1.2. OCCUPANCY GRID MAPS .................................................................................................................... 62 

5.1.3. SEMANTIC GRID MAPS ........................................................................................................................ 65 

5.1.4. COMPARISON OF GRID MAPS .............................................................................................................. 67 



 

 

 

 

5.1.5. TILLING ............................................................................................................................................... 69 

5.2. LOCALIZATION .................................................................................................................................... 69 

5.2.1. PREDICTION ........................................................................................................................................ 71 

5.2.2. CORRECTION ....................................................................................................................................... 72 

5.2.3. INITIALIZATION ................................................................................................................................... 75 

5.3. BUILDING GRID-MAPS ........................................................................................................................ 76 

5.3.1. FUSED ODOMETRY .............................................................................................................................. 77 

5.3.2. LOOP CLOSURES DETECTION AND DISPLACEMENT ESTIMATION ........................................................ 79 

6. EXPERIMENTS ........................................................................................................................................ 83 

6.1. IMPLEMENTATION ............................................................................................................................... 83 

6.2. DATASETS ........................................................................................................................................... 84 

6.3. EXPERIMENTS ..................................................................................................................................... 91 

6.4. METRICS ............................................................................................................................................. 92 

6.5. PARAMETERS ...................................................................................................................................... 92 

6.6. GROUND TRUTH GENERATION ............................................................................................................ 93 

6.7. RESULTS ............................................................................................................................................. 95 

7. CONCLUSION ........................................................................................................................................ 109 

  



 

 

 

 

LISTA DE FIGURAS 

Figure 1. Intelligent and Autonomous Robotic Automobile (IARA) that was the first Brazilian 

self-driving car to travel autonomously 74 km on urban roads and highways. A video that 

shows IARA operating autonomously is available at https://youtu.be/iyKZV0ICysc. ............ 20 

Figure 2. Sensors arrangement and their coordinate systems in the IARA self-driving car. ... 34 

Figure 3. Examples of camera images and point clouds captured by Velodyne in different 

environments. ........................................................................................................................... 35 

Figure 4. Overview of the software architecture of the IARA self-driving car. TSD denotes 

traffic signalization detection and MOT, moving objects tracking. ......................................... 38 

Figure 5. Examples of maps created by the mapper module. (a) Online map built using 

instantaneous data observed by the sensors during autonomous operation. (b) Offline map 

built before autonomous operation. (c) Merged map in which instantaneous data are fused 

with a priori data. ...................................................................................................................... 40 

Figure 6. Visualization of the method for synchronizing sensors’ data assuming that the 

camera is the slowest sensor. The number of rows in the queue represents the frequency of the 

sensors.  Queues with more rows represent more frequent sensors. The columns in the queues 

represent the data sample and the timestamp associated with the sample. .............................. 44 

Figure 7. Block diagram of the odometry calibration process. Blue boxes represent the inputs 

and outputs. Yellow boxes represent parameters that are optimized to minimize the distance 

between dead-reckoning and GPS positions. White elements represent transformations of the 

data. .......................................................................................................................................... 45 

Figure 8. Visualization of point clouds from Velodyne (a) without considering the car 

movement (before calibration), and (b) considering the car movement (after calibration). Note 

that because the car is moving the start and end of the revolution do not match in (b). The 

orange arrow represents the sensors’ rotation direction and the yellow arrow in figure (b) 

highlights the part of the point cloud that does not match after calibration. ............................ 50 

Figure 9. Illustration of the reflectivity calibration table. The sensor is composed of 32 rays, 

two from which are presented in the figure. The indices of the lasers index the table along 

with the raw reflectivity reading and the index computed from the distance........................... 51 

Figure 10. Example of point clouds from Velodyne before (a) and after (b) the calibration of 

the reflectivity measurements. The images on right are zoomed in views of the images in the 

left. The regions highlighted with yellow braces correspond to a crosswalk and they should 

present nearly the same reflectivity. As the reader can observe in (a), without the calibration 

the reflectivity values present significant variation. Considering calibration (b), the reflectivity 

values are more uniform. .......................................................................................................... 52 



 

 

 

 

Figure 11. Steps used in our work for visual semantic segmentation of images using the deep 

neural network Deeplabv3+. The images are captured by the camera mounted on the self-

driving car. ................................................................................................................................ 53 

Figure 12. Projection of LiDAR points into the image plane. The matrix 𝑻𝒗 𝒊transforms the 

point P from the LiDAR to the camera coordinate system. The matrix F projects P into the 

image plane. .............................................................................................................................. 55 

Figure 13. Projection Velodyne points into the image plane. (a) The current image captured 

by the front-facing camera. (b) The point cloud captured at the same instant as the image. (c) 

Projection of the points into the image. .................................................................................... 56 

Figure 14. Visualization of the instantaneous map created by fusing data from Velodyne and 

camera. Figure (a) presents the complete Velodyne point cloud, and figure (b) presents the 

subset of points visible by the camera with their associated colours. ...................................... 57 

Figure 15. Projection of velodyne points into the image produced by the semantic 

segmentation deep neural network. .......................................................................................... 57 

Figure 16. Visualization of the instantaneous map created by fusing data from Velodyne and 

the image that results from the semantic segmentation. Similarly to Figure 14, figure (a) 

presents the complete Velodyne point cloud, and figure (b) presents the subset of points 

visible by the camera with their associated classes. ................................................................. 58 

Figure 17. An urban area used for demonstrating the different types of grid maps. The self-

driving car was driven though the path highlighted in teal and the data captured by the sensors 

were stored. The data was posteriorly processed and used for creating the grid maps presented 

in Figure 18. A detailed view of the area highlighted in red is presented in Figure 19, and 

different grid maps of the detailed area are presented in Figure 20. ........................................ 61 

Figure 18: Visualization of the different types of maps from the area presented in Figure 17. 

(a) Occupancy grid map. (b) Reflectivity grid map. (c) Semantic grid map. (d) Colour grid 

map. .......................................................................................................................................... 63 

Figure 19. Detailed view of the region marked in red in Figure 17. ........................................ 64 

Figure 20: Visualization of different types of maps of the region presented in Figure 19. (a) 

Occupancy grid map. (b) Reflectivity grid map. (c) Semantic grid map. (d) Colour grid map.

 .................................................................................................................................................. 64 

Figure 21. Technique for computing the evidence that a laser ray hit an obstacle. Assuming 

that the height of the sensor is known and that the car is moving in a plane, we can use the i-th 

laser from Velodyne for estimating the position in the floor that the next laser (the i+1-th 

laser) will hit if the area is free from obstacles. However, if an obstacle exists, then the ray 

size in the floor will be smaller than expected. The difference between the expected distance 

in the floor, and the distance measured by the sensor is used for computing the evidence that 

the ray hit an obstacle. .............................................................................................................. 66 



 

 

 

 

Figure 22. Illustration of semantic grid maps and the contents of their cells. In practice, 

instead of storing the probabilities of each class, the cells store counters representing the 

number of rays from each class that have hit the cell. .............................................................. 66 

Figure 23. Visualization of the tilling scheme used for limiting the memory consumption of 

the system. ................................................................................................................................ 70 

Figure 24. Graph representing the optimization problem described by Equation 18 and 

Equation 19. Nodes represent the estimated fused odometry poses, while the edges represent 

sensor measurements and their covariances (omitted in the figure). The blue edges represent 

GPS data, while the red edges represent the motion constraints induced by the odometry data 

and the motion model. .............................................................................................................. 78 

Figure 25: (a) Example of ghosting effect observed when revisiting a region and using fused 

odometry poses for projecting sensor data into the grid map. (b) The same region after 

considering loop closures in the optimization process. ............................................................ 79 

Figure 26. Graph representing the optimization problem described by Equation 22 and 

Equation 23. Loop closure constraints are represented in green. ............................................. 81 

Figure 27. Satellite view of the environment in the UFES dataset with the path of the self-

driving car highlighted in blue.................................................................................................. 86 

Figure 28. Variation in the illumination conditions and presence of distractors in the UFES 

dataset. The three images correspond to the same place. The top image is part of the UFES_M 

log, and middle image is part of the UFES_D log, and the bottom image is part of the 

UFES_N log. Note the higher number of parked cars in the test logs and the presence of light 

blobs and motion blur in the log recorded at night. .................................................................. 88 

Figure 29. Satellite view of the environment in the PARKING LOT dataset with the path of 

the self-driving car highlighted in blue..................................................................................... 89 

Figure 30. Satellite view of the environment in the AVENUE dataset with the path of the self-

driving car highlighted in blue.................................................................................................. 89 

Figure 31. Satellite view of the environment in the AIPORT dataset with the path of the self-

driving car in the log used for mapping highlighted in blue. ................................................... 90 

Figure 32. Satellite view of the environment in the URBAN dataset with the path of the self-

driving car in the log used for mapping highlighted in blue. ................................................... 90 

Figure 33. Grid maps created using the UFES_M log. (a) Occupancy grid map. (b) 

Reflectivity grid map. (c) Semantic grid map. (d) Visual grid map. ........................................ 95 

Figure 34. Grid maps created using the PLOT_M log. (a) Occupancy grid map. (b) 

Reflectivity grid map. (c) Semantic grid map. (d) Visual grid map. ........................................ 96 

Figure 35. Grid maps created using the URBAN_M log. (a) Occupancy grid map. (b) 

Reflectivity grid map. (c) Semantic grid map. (d) Visual grid map. ........................................ 97 



 

 

 

 

Figure 36. Grid maps created using the AV_M log. (a) Occupancy grid map. (b) Reflectivity 

grid map. (c) Semantic grid map. (d) Visual grid map. ............................................................ 98 

Figure 37. Grid maps created using the AIRPRT_M log. (a) Occupancy grid map. (b) 

Reflectivity grid map. (c) Semantic grid map. (d) Visual grid map. ........................................ 98 

Figure 38. Examples of intense traffic situations in the URBAN dataset. ............................. 101 

Figure 39. Good semantic segmentations produced by the deep neural network Deeplabv3+ 

under challenging conditions of illumination. The three images correspond to the same place, 

with the top image being from the UFES_M log, the second one being from the UFES_D log, 

and the last one being from the UFES_N log. ........................................................................ 104 

Figure 40. Another example of good semantic segmentations produced by the deep neural 

network Deeplabv3+ under challenging conditions of illumination. The three images 

correspond to the same place, with the top image being from the UFES_M log, the second one 

being from the UFES_D log, and the last one being from the UFES_N log. ........................ 105 

 

  



 

 

 

 

LISTA DE TABELAS 

Table 1. Advantages and disadvantages of different grid maps for self-driving cars 

localization................................................................................................................................ 68 

Table 2. Logs used for mapping and their characteristics. ....................................................... 84 

Table 3. Logs used for testing the localization system and their characteristics. ..................... 85 

Table 4. Parameters used for evaluating the localization technique......................................... 94 

Table 5. Results of the localization technique for the DIVERSE configuration. ................... 100 

Table 6. Results of the localization technique for the STABLE configuration. ..................... 102 

Table 7. Results of the localization technique in night conditions for the DIVERSE 

configuration. .......................................................................................................................... 103 

Table 8. Results of the localization technique in night conditions for the STABLE 

configuration. .......................................................................................................................... 106 

Table 9. Localization accuracy in the AIRPORT dataset with the DIVERSE configuration.107 

Table 10. Localization accuracy in the AIRPORT dataset with the STABLE configuration.107 

Table 11. Qualitative analysis of the localization accuracy for different grid maps and 

conditions. .............................................................................................................................. 108 

 



14 

 

 

 

1. INTRODUCTION 

The self-driving cars technology has the potential to change several aspects of 

the society, ranging from economy, to city organization and life style. If the 

technology succeeds to be adopted, jobs, businesses, and even the climate may be 

affected in the long term. One of the main positive impacts expected from self-driving 

cars is the reduction of accidents. According to the National Highway Traffic Safety 

Administration of the United States of America (USA), 94% of all accidents are 

caused by human error [1]. Several of these are due to tiredness, lack of attention, 

and emotional aspects of human drivers. Several of these accidents could have been 

prevented by the use of self-driving cars since they do not suffer from these 

conditions.  

According to a report from Securing America's Future Energy, a non-profit 

organization from Washington D.C., USA, the widespread adoption of self-driving 

cars could lead to nearly $800 billion in annual social and economic benefits to the 

the country by 2050 [2]. The authors of the report argue that most of this benefit will 

come from reducing the toll of vehicle crashes, giving productive time back to 

commuters, and improving USA’s energy security by reducing dependence on oil 

(according to the report, autonomous vehicles are likely to accelerate the transition to 

advanced fuels such as electricity and natural gas).  

Self-driving cars also have the potential to reduce costs of businesses that 

depend on the transportation of goods and people. According to the Bureau of Labor 

Statistics from the USA, nearly 4.2 million jobs existed in their country for driving-

related tasks in 2016 (bus driver, truck driver, and delivery truck driver) [3]. The costs 

related to these jobs are likely to be significantly reduced after the introduction of the 

self-driving technology. It is expected that the transportation time also will decrease 

since self-driving cars do not require sleep, bathroom breaks or stops for food. 

Besides that, it is possible to program self-driving cars for optimizing the use of their 

resources and by doing so expenses due to maintenance could be alleviated.  



15 

 

 

Besides businesses, self-driving cars can also benefit people that own cars for 

daily activities such as going to work and taking kids to school. For these users, cars 

are an expensive good that is most of time idle. And more, a complex “ecosystem” is 

maintained in houses (e.g., garages), and cities (e.g., large avenues, parking lots, 

overpasses) to support the use of cars. By using self-driving cars, the costs of car 

sharing businesses can be reduced which could make the service cheaper for the 

end user. With low cost car sharing services available, consumers will not need to 

acquire cars. With fewer cars, houses and cities can be restructured. Home 

driveways and garages may shrink in size or be repurposed. Existing garages could 

even be converted to additional living space. Parking lots that takes up considerable 

space in any city, could also be converted for other uses, possibly making cities more 

human-friendly.  

In order to advance the development of self-driving cars, the Defense Advanced 

Research Projects Agency (DARPA) organized three competitions in the last decade. 

The first, named DARPA Grand Challenge, was realized at the Mojave Desert, USA, 

in 2004, and required driverless cars to navigate a 142 mi long course throughout 

desert trails within a 10h time limit [4]. All competing cars failed within the first few 

miles. The DARPA Grand Challenge was repeated in 2005 and required robotic cars 

to navigate a 132 mi long route through flats, dry lake beds, and mountain passes, 

including three narrow tunnels and more than 100 sharp left and right turns [4]. This 

competition had 23 finalists and 4 cars completed the route within the time limit, with 

the Stanford University’s car, “Stanley” [5], claiming first place.  

The third competition, known as the DARPA Urban Challenge [6], was held at 

the former George Air Force Base, California, USA, in 2007, and required self-driving 

cars to navigate a 60mi long route throughout a simulated urban environment 

together with other self-driving and human driven cars, within a 6h time limit. The 

cars had to obey California traffic rules. This competition had 11 finalists and 6 cars 

completed the route in time. The Carnegie Mellon University’s car, “Boss” [7], claimed 

first place.  

After the DARPA challenges, research on driverless cars has accelerated in both 

academia and industry around the world. Although most of the university research on 



16 

 

 

self-driving cars has been conducted in the USA, Europe and Asia, some relevant 

investigations have been carried out in China, Brazil and other countries. The IARA 

self-driving car [8, 9, 10, 11] developed at the Universidade Federal do Espírito Santo 

(UFES), for instance, was the first Brazilian driverless car to travel autonomously 74 

km on urban roads and highways. 

In order to standardize the evaluation of self-driving cars, the SAE International 

(formerly simply SAE, or Society of Automotive Engineers) published a classification 

system to assess the level of autonomy of self-driving cars [12]. According to their 

system, the level of autonomy may range from level 0 to level 5. This classification is 

based on the amount of intervention and attentiveness required from the human 

driver.  In level 0, the car is equipped with assistance systems capable of issuing 

warnings and momentarily intervening on the car. In this level, however, the system 

has no sustained control over the car. In level 5, on the other hand, the cars’ 

autonomy system has continuous and complete control of the car and no human 

intervention is required and even allowed in any circumstance.  

Nowadays, there are already several solutions for achieving the first levels of 

autonomy. Among others, we can cite the vehicles with lane keeping functionalities, 

or frontal collision avoidance. Most of these solutions identify elements of the traffic 

infra-structure such as lane marks, and traffic signs, without using and storing 

information about them [13, 14, 15, 16].  

For achieving level 5, however, self-driving cars must be able of operating in 

complex and dynamic environments such as city centres, residential areas, and 

suburbs. Currently, the existence of proper traffic infra-structure cannot be 

guaranteed in all of these scenarios. Unless governments and private organizations 

commit to structure cities to support self-driving cars, the solutions based on the 

online detection of traffic elements are insufficient. An additional challenge for 

achieving level 5 of autonomy is dealing with the limited field-of-view of sensors. 

Elements necessary for a proper decision-making such as traffic signs, and the 

geometry of the road ahead may be located beyond the range observable by the 

sensors. Moreover, even if a proper infra-structure exists and their elements are in 



17 

 

 

the sensors’ field-of-view, obstacles around the vehicle may occlude parts of the 

environment hindering their identification.  

These limitations of systems based on the online identification of traffic elements 

can be overcome using a priori information about the environment, such as a map. 

This map could store the geometry of roads as well as annotations regarding traffic 

rules, and the positions of traffic signs and traffic lights. In areas where the traffic 

infra-structure is lacking or cannot be directly observed by sensors, the necessary 

information could be accessed in the map.  

In order to use this information, the localization of the self-driving car in relation 

to the map needs to be known. One could think of Global Positioning System (GPS) 

as a solution for this localization problem. However, the accuracy and availability of 

GPS data cannot be guaranteed, especially in urban areas. Although the accuracy of 

GPSs can be improved by using base stations with known position such as Real-

Time Kinematic GPS, availability remains an issue. Satellite signals are affected by 

atmospheric conditions and tall objects such as buildings and trees that block the 

direct reception of signals [17]. These factors may cause position “jumps” ranging 

from a few meters to dozens of meters as well as deviations from the correct GPS 

position that change slowly over time.   

Most of the previous works addressed the localization problem using probabilistic 

approaches [18, 19, 17, 20, 21, 22, 16, 23, 24, 25]. Besides the pose (position and 

orientation) of the vehicle in the map, these approaches can be used for estimating 

additional parameters such as the current velocity of the car, the steering wheel 

angle, and hidden (unobserved) biases and gains. The set of parameters estimated 

during localization will be referred as the vehicle state. The probabilistic approaches 

for localization usually consist of iterating prediction and correction steps. These 

steps are repeated continually one after another. In the prediction step, the state 

estimate is updated to account for changes in the state since last localization step, 

e.g., due to motion. In the correction step, the likelihoods of the states are estimated 

by comparing the sensors’ data collected online with the a priori map. Assuming that 

the vehicle is in a given state and using the map as a model of the environment, it is 

possible to predict the sensors’ measurements. States are considered more likely if 



18 

 

 

the measurements predicted using the map are consistent with the data captured by 

the sensors.  

In order to use the probabilistic approaches for localization, the map must 

contain the information necessary for predicting the sensors’ observations. Different 

types of information can be used for localization of self-driving cars. Among others, 

we can cite visual landmarks [26], poles and trees [27, 28], occupancy structure [19, 

20, 29, 30], reflectivity from Light Detection And Ranging sensors (LiDAR) [23, 24, 

25, 31, 32], heights of objects [25, 32], satellite and aerial images [31], road 

intersections [33, 34], and high-level road maps [34, 35].  

Most of the localization techniques in the literature employ landmarks maps or 

metric maps. Landmarks maps can be efficiently stored and transmitted if the 

average number of landmarks per meter is small. On the other hand, using these 

maps require detecting landmarks in online data and matching them with the 

landmarks from the map. Both, the detection and matching problems can be 

challenging. Among the metric maps, the most commonly used are the grid maps. In 

grid maps, the environment is discretized in squared cells with fixed predefined size. 

These cells usually store statistics representing features of the objects contained in 

the cell.  

In this work, we propose techniques for creating grid maps of complex large-

scale environments (the term large-scale environment is not precisely defined in the 

literature, however it usually refers to outdoor/urban environments) and for estimating 

the localization of self-driving cars in these maps. This mapping technique can be 

used for creating occupancy, reflectivity, color, and semantic grid maps. Occupancy 

and reflectivity grid maps are the most commonly used types of maps for localization 

in urban environments. Autonomous vehicles can profit from the use of semantic grid 

maps since they can be compacted and used for perception and planning. In 

semantic grid maps, cells are classified according to the type of objects they contain. 

Although there is a substantial body of literature proposing techniques for creating 

semantic maps [36, 37, 38, 39, 40, 41, 42, 43], as far as we know the feasibility of 

using them for estimating the localization of self-driving cars was not evaluated 

before. In order to create semantic grid maps, the data from the sensors must be 



19 

 

 

segmented in different classes of objects. In this work, a pre-trained deep neural 

network – the DeepLabv3+ [44] – is used for visual semantic segmentation of images 

captured by a camera. 

Vision is one of the most important human senses. However, using the colours of 

objects for localization can be challenging due to variations in the illumination and 

due to the presence of shadows. To try and minimize the negative impact of these 

factors, the entropy correlation coefficient (ECC) is employed for comparing online 

colour data with the information stored in colour grid maps. Precise range data from a 

LiDAR are fused with the images (colour and semantic) and used for projecting their 

information into the grid map.  

The accuracy achieved by the proposed localization technique when using each 

type of grid map (occupancy, reflectivity colour, and semantic) is evaluated. 

Experiments are performed in several large-scale environments using a real self-

driving car, the Intelligent and Autonomous Robotic Automobile (IARA; Figure 1), 

developed in the Laboratório de Computação de Alto Desempenho (LCAD, 

http://www.lcad.inf.ufes.br/) at Universidade Federal do Espírito Santo (UFES; 

http://ufes.br/). Localization systems for self-driving cars must be robust to 

challenging conditions of operation such as variable illumination, intense traffic of 

vehicles and pedestrians, unexpected changes in the environment, and outdated 

maps. All of these challenging conditions and others are present in the performed 

experiments.  

 

1.1. Hypothesis 

The main hypothesis that guides this research is that it is possible to estimate 

the localization of a self-driving car in large-scale environments (even in challenging 

conditions of operation) with an average accuracy smaller or equals than 0.2m using 

data from odometer, IMU, camera, and LiDAR, some type of priori grid-map among 

occupancy, reflectivity, colour, and semantic grid maps, and an algorithm based on 

particle filters. In order to evaluate this hypothesis, the grid maps have to be built. 

Hence, we also evaluate the hypothesis that it is possible to create occupancy, 

http://www.lcad.inf.ufes.br/
http://ufes.br/


20 

 

 

reflectivity, colour, and semantic grid maps of large-scale environments using the 

previously mentioned sensors.  

 

1.2. Objective 

Our main goal is to design, develop, and evaluate novel techniques for building 

grid maps of large-scale environments and for estimating the localization of self-

driving cars in relation to these maps. Furthermore, for the sake of completeness, we 

describe the specific objectives of this research: 

• Provide a grid-mapping technique that can be used for building occupancy, 

reflectivity, colour, and semantic grid-maps of large-scale environments (even in 

challenging conditions of operation).  

• Provide techniques for accurately estimating the localization of self-driving cars in 

relation to grid-maps.  

• Explore different types of grid maps for localization. 

• Apply and evaluate the proposed techniques in real world scenarios using a self-

driving car. 

 

Figure 1. Intelligent and Autonomous Robotic Automobile (IARA) that was the first Brazilian self-driving 

car to travel autonomously 74 km on urban roads and highways. A video that shows IARA operating 

autonomously is available at https://youtu.be/iyKZV0ICysc. 

https://youtu.be/iyKZV0ICysc


21 

 

 

1.3. Contributions 

The main contributions of this work are the novel mapping and localization 

techniques and their evaluation in diverse large-scale environments. The mapping 

technique improves the method presented in a previous work from the same author 

[8]. The main novelties in relation to the previous work are the following: 

• In the previous work, loop closures were detected using GPS which can 

present high level of noise. Detecting and handling incorrect GPS 

measurements can be challenging. Hence, in this work, an alternative 

approach is proposed. Loop closures are detected using an initial guess for 

the car poses obtained by fusing GPS and odometry data in a first step. 

• In the previous work, the Generalized Iterative Closest Point algorithm (G-

ICP) [45] is used for estimating the car poses in subsequent visits to loop 

closure regions. Although the G-ICP frequently produces good results, it 

eventually produces highly incorrect outcomes. These incorrect outcomes are 

hard to detect and they cause divergence in the pose estimation process. In 

this work, the proposed localization system is employed for computing the car 

poses in loop closure regions.  

• In the previous work, the mapping technique is applied for building occupancy 

and reflectivity grid maps. In this work, semantic and colour grid maps are 

also built. To do so, data from LiDAR and camera are fused together. 

The localization technique is based on particle filters [17, 20, 21, 22, 16]. 

Occupancy and reflectivity grid maps were employed in previous works for 

localization [23, 24, 25, 34, 29]. As far as we know, semantic grid maps and the ECC 

measure for comparing colour data have not been used for localization before. 

Moreover, a comparison of which type of grid map leads to more accurate self-driving 

car localization is lacking in the literature. This is a novel and important contribution 

of this work. A key challenge of this evaluation is the production of a satisfactory 

ground truth. We demonstrate that the same infra-structure used for handling loop 

closures during mapping can be successfully applied to produce the ground truth.  



22 

 

 

Besides the previously mentioned contributions, the following papers were 

published during the Ph.D.:  

• Lucas de Paula Veronese, José Guivant, Fernando A. Auat Cheein, Thiago 

Oliveira-Santos, Filipe Mutz, Edilson de Aguiar, Claudine Badue, and Alberto 

F. De Souza. “A Light-Weight Yet Accurate Localization System for 

Autonomous Cars in Large-Scale and Complex Environments”. In 

Proceedings of IEEE International Conference on Intelligent Transportation 

Systems (ITSC). 2016.  

• Filipe Mutz, Lucas de Paula Veronese, Thiago Oliveira-Santos, Edilson de 

Aguiar, Fernando A. Auat Cheein, Alberto Ferreira de Souza. “Large-scale 

Mapping in Complex Field Scenarios using an Autonomous Car”. Expert 

Systems with Applications, v. 46, pp. 439-462. Pergamon. 2016.  

• Alberto Ferreira De Souza, Jacson Rodrigues Correia da Silva, Filipe Mutz, 

Claudine Badue, Thiago Oliveira-Santos. “Simulating Robotic Cars Using 

Time-Delay Neural Networks”. In Proceedings of the IEEE International Joint 

Conference on Neural Networks (IJCNN). 2016.  

• Vinicius Cardoso, Josias Oliveira, Thomas Teixeira, Claudine Badue, Filipe 

Mutz, Thiago Oliveira-Santos, Lucas Veronese, Alberto F. De Souza. “A 

Model-Predictive Motion Planner for the IARA Autonomous Car”. In 

Proceedings of the IEEE International Conference on Robotics and 

Automation (ICRA). 2016.  

• Filipe Mutz, Vinicius Cardoso, Thomas Teixeira, Luan F. R. Jesus, Michael A. 

Golçalves, Rânik Guidolini, Josias Oliveira, Alberto F. De Souza. “Following 

the Leader using a Tracking System based on Pre-trained Deep Neural 

Networks”. In Proceedings of the IEEE International Joint Conference on 

Neural Networks (IJCNN). 2017.  

• Rânik Guidolini, Alberto F. De Souza, Filipe Mutz, Claudine Badue. “Neural-

Based Model Predictive Control for Tackling Steering Delays of Autonomous 



23 

 

 

Cars”. In Proceedings of the IEEE International Joint Conference on Neural 

Networks (IJCNN). 2017.  

• Paulo Rauber, Filipe Mutz, Jürgen Schmidhuber. “Hindsight Policy 

Gradients”. In Proceedings of the Hierarchical Reinforcement Learning 

Workshop – Neural Information Processing Systems (NIPS). 2017.  

• Rafael Correia Nascimento, Claudine Badue, Thiago Oliveira-Santos, Alberto 

Ferreira De Souza, Filipe Mutz, Fábio Daros Freitas, Christian Daros Freitas. 

“Avaliação de Oportunidades de Investimentos no Mercado Futuro Brasileiro 

na Escala de Dezenas de Segundos”. In Proceedings of the Simpósio 

Brasileiro de Pesquisa Operacional. 2018. 

• Vagner Gon Furtado, Eduardo Max Amaro Amaral, Filipe Mutz, Flavio 

Severiano Lamas de Souza, Karin Satie Komati. “Conversão Semi-automática 

de Algoritmos Sequenciais de Processamento Digital de Imagens para 

Algoritmos Paralelos na Arquitetura CUDA”. Revista de Empreendedorismo, 

Inovação e Tecnologia (REIT-IMED). 2018. 

• Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, Jürgen Schmidhuber. 

“Hindsight Policy Gradients”. In Proceedings of the International Conference 

on Learning Representations (ICLR). 2018. 

• Thomas Teixeira, Filipe Mutz, Vinicius B. Cardoso, Lucas Veronese, Claudine 

Badue, Thiago Oliveira-Santos, Alberto F. De Souza. “Map Memorization and 

Forgetting in the IARA Autonomous Car”. 2018. Arxiv preprint: 

https://arxiv.org/abs/1810.02355. 

• Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro 

Azevedo, Vinicius Brito Cardoso, Avelino Forechi, Luan Ferreira Reis Jesus, 

Rodrigo Ferreira Berriel, Thiago Meireles Paixão, Filipe Mutz, Thiago Oliveira-

Santos, Alberto Ferreira De Souza. “Self-Driving Cars: A Survey”. 2019. Arxiv 

preprint: https://arxiv.org/abs/1901.04407. 

• Lucas Amorim, Filipe Mutz, Claudine Badue, Alberto De Souza, Thiago 

Oliveira-Santos. “Simple and Effective Load Volume Estimation in Moving 

https://arxiv.org/abs/1810.02355
https://arxiv.org/abs/1901.04407


24 

 

 

Trucks using LiDARs”. In Proceedings of SIBGRAPI – Conference on 

Graphics, Patterns and Images. 2019. 

• Rupesh Srivastava, Pranav Shyam, Wojciech Jaśkowski, Filipe Mutz, Jürgen 

Schmidhuber. “Upside-Down Reinforcement Learning: Don’t Predict Rewards 

– Just Map them to Actions”. Under review in the Neural Information 

Processing Systems (NeurIPS). 2019.   

 

1.4. Outline  

After this introduction, the work is organized as follows.  

• Chapter 2 reviews the literature related to Simultaneous Localization and 

Mapping (SLAM), large-scale mapping, and localization of self-driving cars.  

• Chapter 3 describes the IARA self-driving car which is used for evaluating 

the proposed techniques. The architectures of hardware and software are 

presented in details.  

• Chapter 4 introduces the methods used for pre-processing the sensors’ 

data. Among others, the chapter presents the methods for calibrating 

odometry and reflectivity measurements, and for fusing data from LiDAR 

and camera.  

• Chapter 5 presents the main contributions of our work: the novel 

techniques for building grid maps and for estimating the localization of a 

self-driving car in them. In particular, occupancy, reflectivity, colour, and 

semantic grid maps are described, along with the techniques for using 

them for localization and for building them.   

• In Chapter 6, we present the experimental methodology to evaluate the 

proposed techniques and the results achieved. In particular, the technique 

to produce the ground truth to evaluate the localization is described.   



25 

 

 

• In Chapter 7, the conclusions of the work are presented along with a set 

of potential directions for future works. 



26 

 

 

2. RELATED WORK  

This chapter discusses previous works on mapping, localization, and 

simultaneous localization and mapping (SLAM). In particular, we emphasize methods 

that can be applied for mapping large-scale environments and for estimating the 

localization of self-driving cars. The remaining of the chapter is organized as follows. 

Section 2.1 surveys seminal and current works on Simultaneous Localization and 

Mapping (SLAM). Section 2.2 discusses methods that used semantic information for 

building maps. Finally, Section 2.3 presents methods from previous works for 

estimating the localization of self-driving cars.  

 

2.1. Simultaneous Localization and Mapping (SLAM) 

The problem of mapping unknown environments is usually addressed using 

probabilistic approaches. These approaches can be classified into online and offline. 

Online algorithms use the Markov assumption, i.e., they estimate the most recent 

state of the self-driving car and the map assuming that the past (previous data and 

estimates) is irrelevant. Offline SLAM algorithms, on the other hand, try and solve the 

Full-SLAM problem which consists of estimating all of the vehicle states along a path 

and the map using for it the complete set of data available. 

The SLAM algorithms based on Kalman filters such as the Extended Kalman 

Filter [46], the Unscented Kalman Filter SLAM [47], and Iterated Sigma Point Kalman 

Filter SLAM [48] are examples of online algorithms. These methods update the state 

estimate, the map and their uncertainties using a sequence of prediction and 

correction steps. During the prediction step, a motion model is used to expand the 

parameters search space by raising their covariance. In the correction step, on the 

other hand, a measurement model is used to enhance the probability of likely regions 

of the search space and to shrink the covariance around these values [21, 20].  

Even being the standard solution to the SLAM problem for several years, the 

EKF-SLAM algorithm has drawbacks that prevent its use in outdoor and/or large-



27 

 

 

scale environments [49, 21, 22, 16, 50, 51]. Once the poses and the map are 

represented in a joint state, adding new poses and new map variables (e.g., 

landmarks) increases the dimensionality of the state’s mean and covariance 

matrices. This unbound growth of the state matrices makes the solution unfeasible to 

large-scale applications. Additionally, the simple act of visiting poses and observing 

landmarks leads to a computationally expensive update of the full mean and 

covariance matrices. Besides these drawbacks, the EKF-SLAM can also diverge due 

to several conditions, such as the incorrect matching of landmarks, and the presence 

of strong nonlinearities or discontinuities in the motion model and in the 

measurement model. 

Montemerlo et al. introduced the FastSLAM and the FastSLAM 2.0 algorithms 

[50][51]. FastSLAM uses Monte Carlo Sampling techniques (Particle Filters) to 

factorize the SLAM posterior into a product of conditional map distributions and a 

distribution over robot paths. This factorization (called Rao–Blackwellization) enables 

the introduction of nonlinear motion models and notably speeds up the SLAM 

algorithm. In the FastSLAM framework, each particle represents a possible path 

travelled by the robot and a map.  

Thrun and Montemerlo state that the main disadvantage of online SLAM 

algorithms is their inability to revisit sensors data, in special to handle loop closures 

[52]. Lu and Milios introduced offline techniques for estimating the localization of a 

robot when performing SLAM [53]. Their work as well as subsequent works [54, 55, 

56] showed that it is possible to increase the accuracy of the localization estimates 

by memorizing the data until the estimation process is complete and only then 

building the map. Golfarelli, Maio, and Rizzi showed that the SLAM posterior 

probability can be modeled as a sparse graph [57]. Moreover, the optimization of this 

sparse graph leads to a sum of nonlinear quadratic factors. When optimizing this 

objective function (the sum of nonlinear quadratic factors), it is possible to obtain the 

most likely map and poses given the sensor data.  

Thrun and Montemerlo proposed the GraphSLAM algorithm [52] which builds on 

top of these works. In the GraphSLAM, nodes represent model variables (the vehicle 

states and the map), and edges represent sensors measurements and their 



28 

 

 

covariances. In outdoor applications, the number of map variables (e.g., landmarks) 

tends to be large. Attempting to reduce the computational cost of the method, the 

authors propose to marginalize the map variables out of the posterior distribution. 

They do so by transforming the restrictions imposed by the map in relationships 

between poses. In particular, the paths of the vehicle in different visits to loop closure 

regions become dependent. These dependencies are modelled as edges in the 

graph. In order to add these edges, the displacement between the paths must be 

estimated along with the covariance of the estimates.  

Levinson, Montemerlo, and Thrun propose to solve the displacement estimation 

problem using map-matching. They assume that the orientation of the vehicle is 

known, and estimate the displacement in the longitudinal and lateral directions [23]. 

Although it is a valid procedure when there are orientation measurements with almost 

zero error, the method would require a limiting amount of computation if the 

orientation has to be calculated. Levinson and Thrun, and posteriorly Mutz et al. used 

the Generalized Iterative Closest Point algorithm [45] for estimating the poses of a 

vehicle in subsequent visits to loop closure regions. 

A common assumption in probabilistic approaches to SLAM is that sensors’ data 

follow Gaussian distributions. In some cases, scaling factors and additive offsets can 

be used for transforming biased sensors’ measurements into Gaussian distributed 

data. Perera et al. and posteriorly Kummerle propose the estimation of sensors’ 

biases using a probabilistic framework [58][59]. They augmented the vehicle state by 

adding bias variables. In this case, the poses and biases are calculated together 

during the estimation process. An important feature of their approaches is the ability 

to change (even dramatically) the biases on-the-fly. This feature guarantees 

recoverability to unpredicted events. Inspired by these works, we also add 

parameters representing biases into the state of our system. 

Given the sensors’ data and the poses of the self-driving car, the mapping 

problem reduces to projecting the data into the map. The choice of which information 

is stored in the map and how it will be represented depends on the application. Metric 

representations usually decompose the state space into regularly spaced cells. For 

self-driving cars, the most common representation of the state space are the grid 



29 

 

 

maps [16]. In grid maps, the environment is discretized into squared cells with fixed 

predefined size (usually of the order of decimeters). An alternative metric 

representation is the Octree-based map proposed by Hornung et al. [60], which 

stores information with varied 3D resolutions. Compared to grid maps with varied 3D 

resolutions, OctoMaps (octree-based map) store only the space that is observed and, 

consequently, are more efficient in terms of memory consumption. However, 

OctoMaps treat updates of sensor data and estimation of obstacles’ occupancy in a 

uniform and discrete manner. Consequently, they are slower than grid maps with 

uniform resolution [61].  Although OctoMaps represent a significant advantage in 

terms of memory consumption, intense computational complexity makes them 

unfeasible for applications that require real-time operations. 

Another alternative metric representation is a hybrid map proposed by Droeschel 

et al. which stores occupancy and distance measurements with varied resolutions 

[62]. For this, measurements are stored in grid cells of increasing size from the center 

of the car. Thus, computational efficiency is gained by having a high resolution in the 

proximity of the sensor and a lower resolution as the distance from the sensor grows. 

This follows characteristics of some sensors with respect to distance and 

measurement density (e.g., angular resolution of laser sensors). 

 

2.2. Mapping with Semantic Information 

The creation of semantic grid maps has been an active area of research [36]. 

Zhao and Chen used RGB-D sensors for creating 3D semantic maps of indoor 

scenes [37]. In the work, semantic segmentations are computed by a support vector 

machine (SVM) classifier using features extracted from RGB-D data. The 

segmentations are then integrated using dense conditional random fields (CRF).  

Vineet et al. used a stereo camera for creating 3D semantic grid maps of large-

scale environments [38]. The camera path is estimated using visual odometry. The 

visual data are projected in the map using the depth maps computed by stereo-

matching algorithms. The authors claim that algorithms based on stereo cameras 

produce data that are noisier than LiDARs’ measurements, but they are suitable for 

both, large robots, and wearable glasses / headsets. McCormac et al. applied a 



30 

 

 

similar approach posteriorly [39], but using convolutional neural networks (CNNs) for 

semantic segmentation, and the ElasticFusion algorithm for path estimation.  

Yang, Huang, and Scherer used CNNs and CRFs for semantic segmentation of 

sensors’ data which are integrated in 3D semantic grid maps [40]. Similarly, 

Sengupta, Sturgess, and Torr used two CRFs to build 2D semantic grid maps of 

urban areas [63]. The first one is used for instantaneous visual semantic 

segmentation, while the second one is used for aggregating the segmentations in the 

map.  

Neither of the previous works evaluate the feasibility of using the semantic grid 

maps for localization. Semantic landmarks maps have already been used for 

localization [64, 65]. Landmarks maps consist of a point cloud of landmarks, each of 

which containing a 3D position, and, potentially, additional features (e.g., the visual 

appearance in the landmark neighborhood). Atanasov et al. proposed augmenting 

landmarks with semantic labels to try and improve the localization performance [64, 

65]. Using maps based on landmarks for localization requires solving the landmark 

matching problem which is particularly challenging in large-scale environments. 

Inspired by the benefits of using semantic information in landmarks maps for 

localization, in this work we evaluate the feasibility of using semantic grid maps for 

localization. 

 

 

2.3. Localization 

Levinson and Thrun [24] proposed a localization method that uses reflectivity 

grid maps for estimating the localization of self-driving cars. They used the multi-layer 

LiDAR Velodyne HDL-64E LIDAR in their work. An unsupervised calibration method 

is proposed for calibrating the Velodyne HDL-64E’ laser beams so that they all 

respond similarly to the objects with the same brightness. A 2-dimension histogram 

filter [20] is employed to estimate the self-driving car position. Their method has 

shown a root mean squared (RMS) lateral error of 9 cm and a RMS longitudinal error 

of 12 cm. 



31 

 

 

Veronese et al. [31] proposed a localization method based on particle filters that 

compares satellite aerial maps with re-emission maps. Aerial maps are downloaded 

offline from sources in the Internet, like OpenStreetMap, and remission maps are 

built online from LIDAR reflectance intensity data. A particle filter algorithm is 

employed to estimate car’s pose by matching remission maps to aerial maps using 

the normalized mutual information (NMI) measure to calculate the particles likelihood. 

The method was evaluated on a 6.5 km dataset collected by the IARA self-driving car 

and achieved position estimation accuracy of 89 cm. One advantage of this method 

is that it does not require building a map specifically for the method. 

Hata and Wolf [66] proposed a localization method based on road feature 

detection. Their curb detection algorithm uses ring compression analysis and least 

trimmed squares [66] to analyze the distance between consecutive concentric 

measurements (or rings) formed by a multilayer LiDAR (Velodyne HDL-32E) scan. 

The road marking detection algorithm uses Otsu thresholding [67] to analyze LiDAR 

reflectance intensity data. Curb and road marking features are stored in a grid map. 

A particle filter algorithm is employed to estimate the car pose by matching road 

features extracted from multilayer LIDAR measurements to the grid map. The method 

was evaluated on the autonomous vehicle “CARINA” [68], and has shown lateral and 

longitudinal localization estimation errors of less than 30cm.  

Veronese et al. [29] proposed a localization method based on particle filters that 

computes the particles’ likelihood by matching 2D online occupancy grid-maps and 

2D offline occupancy grid-maps. Two map-matching distance functions were 

evaluated: an improved version of the traditional Likelihood Field distance between 

two grid-maps, and an adapted standard Cosine distance between two high-

dimensional vectors. An experimental evaluation on the IARA self-driving car 

demonstrated that the localization method is able to operate at about 100 Hz using 

the Cosine distance function, with lateral and longitudinal errors of 13cm and 26cm, 

respectively. 

Wolcott and Eustice [25] proposed a probabilistic localization method that 

models the world as a multiresolution grid map. Each cell of the map stores the 

parameters of mixtures of Gaussians representing the height and reflectivity of the 



32 

 

 

environment. An extended Kalman filter (EKF) localization algorithm is used to 

estimate the car’s pose by registering 3D point clouds against the multiresolution-

maps. The method was evaluated on two driverless cars in adverse weather 

conditions and presented localization estimation errors of about 15cm. 

 



33 

 

 

3. THE IARA SELF-DRIVING CAR  

This chapter presents the IARA self-driving car. The Intelligent and Autonomous 

Robotic Automobile (IARA, Figure 1) is a research autonomous vehicle developed at 

the Laboratório de Computação de Alto Desempenho (LCAD) of the Universidade 

Federal do Espírito Santo (UFES). IARA was the first Brazilian driverless car to travel 

autonomously 74 km on urban roads and highways. The novel techniques presented 

in this thesis are integrated in IARA’s architecture of software, and evaluated in the 

real world using the self-driving car.  The remaining of the chapter is organized as 

follows. The architectures of hardware and software of IARA are described in 

Sections 3.1 and 3.2, respectively. IARA’s software architecture is organized in 

perception and decision-making modules which are detailed in Sections 3.2.1 and 

3.2.2. Finally, Section 3.3 introduces IARA’s motion model.  

 

3.1. Hardware 

IARA is based on a 2011 Ford Escape Hybrid, which was adapted for 

autonomous driving by Torc Robotics (https://torc.ai/) and by LCAD’s team. To power 

IARA’s computers and sensors, we take advantage of the 330 Volts battery used by 

the electric powertrain of the Ford Escape Hybrid. For running its autonomy software 

pipeline, IARA is equipped a workstation Dell Precision R5500, with 2 Xeon X5690 

six-core 3.4GHz processors and one NVIDIA GeForce GTX-1030. 

IARA’s sensors comprise wheel’s odometers, two multi-layer LiDARs (a 

Velodyne HDL-32E and a SICK LD-MRS), three stereo cameras (two PointGrey 

Bumblebee XB3, and a StereoLabs ZED), an IMU (Xsens MTi), and a dual RTK GPS 

(based on the Trimble BD982 receiver). The sensors used in this work are the 

Velodyne HDL-32E LiDAR, the front-facing Bumblebee XB3 camera, the Xsens MTi 

IMU, the Trimble RTK GPS, and the wheels’ odometers. For conciseness, these 

sensors will be referred just by Velodyne, camera, IMU, GPS, and odometer from 

now on. The arrangement of the sensors in IARA as well as their coordinate systems 

are illustrated in Figure 2. The coordinate system of IARA, located in the centre of the 

https://torc.ai/


34 

 

 

rear axle is also depicted in this figure. In all coordinate systems except the camera’s 

one, the x-axis points forward, the y-axis points to the left, and the z-axis upwards. 

The camera coordinate system is rotated in relation to the others, with the x-axis 

pointing to the right, y-axis downwards, and z-axis pointing forward. Some of IARA’s 

modules require knowing the relative poses among the coordinate systems. These 

relative poses were measured manually.  

 

 

Figure 2. Sensors arrangement and their coordinate systems in the IARA self-driving car. 

 

The data produced by the sensors is as follows. The GPS measures the position 

of the sensor in the world coordinate system. These measurements have variable, 

but bounded, error. If the car velocity is higher than a predefined threshold, the car 

orientation is estimated using consecutive GPS positions. Else, only the positioning 

data are considered. The odometer measures the car’s linear velocity and the 

steering wheel angle. The IMU provides acceleration and angular velocity 



35 

 

 

measurements in the directions of the x, y, and z axes, as well as an orientation 

measurement in the world coordinate system obtained using a magnetometer. The 

stereo camera system captures simultaneously two images using a pair of cameras. 

These cameras are mounted side-by-side horizontally with an offset between them. 

In this work, only the right image of the pair is used. The Velodyne is composed of 32 

lasers assembled one above the other. Each of the lasers measures the distance to 

the nearest object and the reflectivity of its surface. The set of 32 range and 

reflectivity readings are assumed to be obtained at the same time and it is referred as 

a shot. A rotating motor turns the 32 lasers around the vertical axis. For each shot, 

the sensor also returns the horizontal angle of the rotating motor. By turning around 

the vertical axis, the sensor is capable of providing a 3D view of the environment 

around the car. Figure 3 presents examples of Velodyne point clouds captured in 

different environments.  

 

  

  

  

Figure 3. Examples of camera images and point clouds captured by Velodyne in different environments. 



36 

 

 

3.2. Software  

IARA’s software architecture is organized into perception and decision-making 

systems. The perception system is responsible for estimating the state of the car and 

for creating a representation of the environment internal to the self-driving car. This 

representation contains among other things, the approximate positions of static 

obstacles in the environment, the states of moving vehicles and pedestrians, and the 

rules of the road. The decision-making system is responsible for planning and 

executing commands to drive the car from its initial position to the final goal defined 

by the user. The commands are chosen considering the car state, the internal 

representation of the environment, traffic rules and the comfort of the passengers.  

Figure 4 shows a block diagram of the main subsystems of IARA’s software 

architecture. The figure depicts how each subsystem connects with the others. The 

perception system is organized in modules for mapping, localization, moving object 

tracking, and traffic sign detection. The decision-making system is subdivided into 

path planning, behaviour selection, trajectory planning, obstacle avoidance, and 

control subsystems.  

 

3.2.1. Perception 

The mapper module [69, 29] has two modes of operation, the offline mode and 

the online mode. The offline mode is employed before autonomous operation for 

building maps of previously unseen environments. The maps created in this mode 

are called offline maps and they are intended to represent the static structure of the 

environment as realistically as possible. During autonomous operation, the mapper 

module works in online mode. In this mode, instantaneous data are used for creating 

online maps that represent the part of the environment observed by sensors, 

including dynamic obstacles. The online maps are merged with the offline maps for 

producing merged maps which integrates the instantaneous and a priori information 

about the environment. The merged maps contain information regarding both static 

and dynamic objects. Examples of instantaneous, offline, and merged occupancy 

grid maps are presented in Figure 5 (a), Figure 5 (b), and Figure 5 (c), respectively.  



37 

 

 

The localizer module [29] is responsible for estimating the car’s current state. 

The state contains the car’s pose (position and orientation) in relation to the offline 

map. It may also contain additional information, such as, linear velocities, angular 

velocities, and/or calibration parameters. The localizer module estimates the car state 

using a probabilistic approach.  

For detecting and tracking moving objects, the moving objects tracking module, 

or MOT, is employed. Horizontal (lane markings) and vertical (i.e. speed limits and 

traffic lights) traffic signalization must be recognized and obeyed by self-driving cars. 

The traffic signalization detection module, or TSD, is responsible for the detection 

and recognition of traffic signalization.  

 

3.2.2. Decision-making 

Given the information obtained by the perception subsystem, the decision-

making subsystem plan and execute commands for driving the self-driving car in 

direction to a user-defined final goal. The route planner module computes a route, 𝑊, 

in the offline maps, from the current state to the final goal. A route is a sequence of 

way points, i.e. 𝑊 = {𝑤1, 𝑤2, … , 𝑤|𝑊|}, where each way point, 𝑤𝑖, corresponds to a 

position, i.e. 𝑤𝑖 = (𝑥𝑖, 𝑦𝑖), in the offline maps.  

Given a route, the path planner module computes an odd set of paths, P =

{𝑃1, 𝑃2, … , 𝑃𝑐, … , 𝑃|P|} taking in consideration the car state and the internal 

representation of the environment as well as traffic rules. A path is a sequence of 

poses, i.e., 𝑃𝑗 = {𝑝1, 𝑝2, … , 𝑝|𝑃|}. The central path, 𝑃𝑐, is aligned as best as possible 

with 𝑊. The paths at its left side (P𝑙 = {𝑃1, 𝑃2, … , 𝑃𝑐−1}) and at its right side (P𝑟 =

{𝑃𝑐+1, … , 𝑃|P|}) have the same initial pose of 𝑃𝑐, but they depart from 𝑃𝑐 to the left and 

to the right with different levels of aggressiveness.  



38 

 

 

 

Figure 4. Overview of the software architecture of the IARA self-driving car. TSD denotes traffic 

signalization detection and MOT, moving objects tracking. 

 

Controller

Obstacle 

Avoider

Localizer

Motion

Planner
State

Modified Trajectory

Odometry

Behavior 

Selector

Path   & Goal

Path

Planner

Mapper

Sensors

Perception System

Decision Making

System

Trajectory

Efforts

Offline Maps

Paths

Route

Planner

Route

MOT

TSD

Internal representation

of the environment



39 

 

 

IARA’s path planner employ the same approach used in the 2005 DARPA Grand 

Challenge. In this approach, instead of using an algorithm (e.g., A* search) for 

computing a path online, we assume that a set of paths obtained a priori is given as 

input for the module. These paths are represented by a road definition data file 

(RDDF). The RDDF is composed of a sequence of car poses, which were stored 

while IARA was conducted by a driver along a path of interest. The path planner 

extracts a path from a subset of the RDDF. This path is composed by a sequence of 

equally spaced poses starting from the car’s current pose to a goal pose some 

meters ahead.  

The behaviour selector module is responsible for choosing the current driving 

behaviour, such as lane keeping, overtaking, and traffic light handling. It does so by 

selecting a path, 𝑃𝑗 in P, a pose in 𝑃𝑗 a few seconds (about five seconds, usually) 

ahead of the current state – the decision horizon – and the desired velocity at this 

pose. The composition of a pose in 𝑃𝑗 and its desired velocity results in a goal. The 

behaviour selector chooses a goal in the path considering the current driving 

behaviour, and avoiding collisions with static and moving obstacles within the time 

frame defined by the decision horizon. It receives as input the online map, IARA’s 

current state, the path, and a set of annotations, such as the positions of speed 

bumps, security barriers, crosswalks and speed limits, and the positions and states of 

traffic lights. Then, it defines a goal state in the path some seconds ahead of IARA’s 

current state, and adjusts the goal state’s pose and velocity, in order to make the car 

behave properly according to the scenario, such as stopping on red traffic lights, 

reducing the velocity to avoid collisions, or stopping in busy crosswalks.  

The motion planner module [9] is responsible for computing a trajectory, 𝑇, from 

IARA’s current state to the goal state chosen by the behaviour selector. The 

trajectory is composed by a sequence of control commands, each one comprised of 

linear velocity, steering wheel angle and execution time. Besides the car state and 

the goal state, the module also takes in consideration the path, and the online map 

for computing the trajectory. It employs a model-predictive approach that (i) follows 

the path given by the behaviour selector, (ii) satisfies the car’s kinematic and 

dynamic constraints, (iii) avoids obstacles in the map, and (iv) provides comfort for 

the passengers.  



40 

 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Examples of maps created by the mapper module. (a) Online map built using instantaneous data 

observed by the sensors during autonomous operation. (b) Offline map built before autonomous 

operation. (c) Merged map in which instantaneous data are fused with a priori data.  

 

The obstacle avoider module [10] receives as input the trajectory computed by 

the motion planner and updates it, if necessary, to avoid collisions. The updates 

typically consist of reducing the velocity of the car. The module receives as input the 

online map, IARA’s current state, and the trajectory. Then, it simulates the trajectory 

execution along the online map. If the trajectory intercepts an obstacle, the module 

decreases the linear velocity of the commands to prevent the collision.  

Finally, the controller module [11] receives as input the motion planner trajectory, 

eventually updated by the obstacle avoider, and computes efforts commands for the 

steering wheel, throttle and brakes actuators. These efforts are sent directly to the 

car, and they are chosen so that the car executes the modified trajectory as best as 

the physical world allows. In IARA, a Proportional Integral Derivative (PID) approach 

is employed. Using the trajectory and odometry data, the controller module estimates 

an error measurement that accounts for how far IARA’s current steering wheel angle 

and velocity are from those specified in the trajectory. Actuation commands are, then, 

computed to try and minimize this error. 

 

 



41 

 

 

3.3. Motion Model 

In this Section, we describe IARA’s motion model. The motion model provides a 

way of estimating the car movement in an interval of time given the car’s linear 

velocity and steering wheel angle. We assume that the car moves in the ground 

plane (𝑧 = 0), and that the pitch and roll angles are perfectly measured by the IMU. 

These values (z, pitch, roll) are not updated by the motion model.  

Given the previous assumptions, the car pose can be represented by a triplet 

(𝑥, 𝑦, 𝜃), in which the first two coordinates represent the car position in the ground 

plane, and the third coordinate represents its heading direction. Assume that in 

instant 𝑡, the car pose is (𝑥𝑡, 𝑦𝑡, 𝜃𝑡), and, after that, it moves with linear velocity 𝑣 and 

steering wheel angle 𝜑 for ∆𝑡 seconds. According to the Ackermann motion model 

[70], the car pose after the movement (𝑥𝑡+1, 𝑦𝑡+1, 𝜃𝑡+1) is given by: 

𝑥𝑡+1 = 𝑥𝑡 + 𝑣 cos 𝜃𝑡  ∆𝑡 (1) 

𝑦𝑡+1 = 𝑦𝑡 + 𝑣 sin 𝜃𝑡  ∆𝑡 (2) 

𝜃𝑡+1 = 𝜃𝑡 +
𝑣 tan(𝜑)

𝐿
 ∆𝑡 (3) 

where 𝐿 is the distance between the front and rear axles. 

The car path can be estimated using the measurements provided by the 

odometer and the motion model. The path obtained by this procedure is called the 

cars’ dead-reckoning [17]. Note that the instantaneous noise in the odometry 

measurements impact all future poses of the path. This fact implies that the error in 

the poses accumulates over time causing a divergence in relation to the true path of 

the vehicle. 



42 

 

 

4. Sensor Data Pre-Processing 

This chapter describes the steps for pre-processing the sensors’ data. In Section 

4.1, the methodology for synchronizing data from different sensors is presented. 

Then, in Sections 4.2 and 4.3, respectively, the techniques for calibrating odometry 

measurements and the reflectivity of Velodyne are described. Section 4.4 briefly 

introduces the deep neural network used for visual semantic segmentation, and the 

steps for pre-processing images before using them as input for the neural network. 

Finally, in Section 4.5, the method for fusing images and point clouds from Velodyne 

is presented.  

 

4.1. Sensors Synchronization  

Sensors capture data samples simultaneously and at different rates. For each 

data sample, the sensors provide a timestamp representing the instant in which the 

data was captured. The timestamp of the less frequent sensor is chosen as the 

reference for synchronization. A synchronization step is performed whenever a 

sample from the less frequent sensor is received. Since the remaining sensors 

capture data with higher frequency, we can assume that at least one sample from 

each sensor will be available between two synchronization steps.  

A queue is maintained for each sensor, except for the less frequent one. In these 

queues, we store all samples received since the last synchronization step along with 

their timestamps. When a sample from the less frequent sensor is received, we 

search in the queues for the most synchronized samples. One sample is returned 

from each sensor queue. The returned sample is the one in which the difference 

between the sample timestamp and the reference timestamp is the smallest. The 

samples returned from the queues and the sample from the less frequent sensor are 

grouped together in a data package.  

In this work, a log is defined as the set of data packages recorded while driving 

the self-driving car throughout an environment. For building a map, the mapping 



43 

 

 

module receives as input the whole log at once. The localization module, on the other 

hand, estimates the current car state using only the most recent data package. The 

camera and the Velodyne are the less frequent sensors, respectively. The camera is 

not necessary for mapping and localizing using occupancy grid maps or reflectivity 

grid maps. Thus, in this case, the Velodyne is the reference sensor for 

synchronization. When using the colour and semantic grid maps, however, the 

sensors’ data are synchronized using the camera’s timestamps.  

Figure 6 presents a visualization of the method for synchronizing sensors’ data 

assuming that the camera is the slowest sensor. The number of rows in the queues 

represents the frequency of the sensors.  Queues with more rows represent more 

frequent sensors. The data packages are built by searching in each queue for the 

message with the nearest timestamp in relation to the timestamp of the slowest 

sensor (the camera in the example). 

 

4.2. Odometry Calibration  

During initial experiments, we observed that the linear velocity and the steering 

wheel angle values measured by the car odometer, as well as the GPS timestamps 

are biased. The biases in the GPS timestamps are likely to be caused by latency in 

the process of acquiring data. An odometry calibration subsystem was developed to 

try and correct the biases in the odometry measurements and in the timestamps of 

GPS.  The subsystem is an improvement of the method presented by Mutz et al. [8]. 

It is based on the idea that if the odometry measurements are correct, then the dead-

reckoning [71] path estimated using these measurements will be consistent with the 

path measured by the GPS. The calibration parameters are estimated using an 

optimization approach in which we search for the parameters values that minimize 

the distance between the GPS path and the dead-reckoning path. 

 



44 

 

 

 

Figure 6. Visualization of the method for synchronizing sensors’ data assuming that the camera is the 

slowest sensor. The number of rows in the queue represents the frequency of the sensors.  Queues with 

more rows represent more frequent sensors. The columns in the queues represent the data sample and the 

timestamp associated with the sample.  

 

A block diagram of the subsystem is presented in Figure 7. In the figure, blue 

boxes represent the inputs and outputs of the subsystem, yellow boxes represent the 

calibration parameters that we want to estimate, and the white circles and boxes 

represent transformations in the data. The subsystem receives as input odometry 

and GPS measurements from a log along with their timestamps. It outputs the 

calibration parameters, the corrected odometry measurements, and an error value 

that is related to the quality of the calibration.  



45 

 

 

 

Figure 7. Block diagram of the odometry calibration process. Blue boxes represent the inputs and outputs. 

Yellow boxes represent parameters that are optimized to minimize the distance between dead-reckoning 

and GPS positions. White elements represent transformations of the data.  

 

Before presenting a formal description of the subsystem, it is worth making a few 

definitions. Let: 

• 𝑔𝑡 = (𝑔𝑡
𝑥, 𝑔𝑡

𝑦
, 𝑔𝑡

𝜃) be the gps position associated with the timestamp t + Lgps, 

where Lgps is the bias in the GPS’ timestamps. An offset is subtracted from the 

gps positions to avoid numerical issues. The offset is chosen so that origin of 

the world coordinate system is translated to 𝑔0. During synchronization, GPS 

measurements may be assigned to different data packages depending on the 

value of Lgps;  

• 𝑣𝑡 and 𝜑𝑡 be the raw linear velocity and steering wheel angle measured by the 

odometer at timestamp t;  

• 𝜑𝑡̅̅ ̅ = 𝑚𝜑 (𝜑𝑡 + 𝑎𝜑) be the corrected steering wheel angle, where 𝑎𝜑 and 𝑚𝜑 

are additive and multiplicative correction factors, respectively.  

• 𝑣�̅� = 𝑣𝑡  𝑚𝑣 be the corrected linear velocity, where 𝑚𝑣 is a multiplicative 

correction factor. The velocity component has no additive bias because the 



46 

 

 

odometer provides a precise zero measurement. An additive factor could lead 

to an illusion of motion when the vehicle is not moving;  

• 𝑜𝑡 = (𝑜𝑡
𝑥, 𝑜𝑡

𝑦
, 𝑜𝑡

𝜃) be the car pose at instant t estimated by dead-reckoning. This 

pose is given by 𝑜𝑡 = 𝑜𝑡−𝑑𝑡
⨁ 𝑀(𝑣�̅�, 𝜑𝑡̅̅ ̅, 𝑑𝑡), where 𝑑𝑡 is the time elapsed since 

the previous data package, M represents the motion model introduced in 

Section 3.3, and ⨁ is the operation of composition of poses [72]. The value of 

𝑀(𝑣�̅�, 𝜑𝑡̅̅ ̅, 𝑑𝑡) is an estimate of the car movement in 𝑑𝑡 seconds, assuming 

linear velocity 𝑣�̅�, and steering wheel angle 𝜑𝑡̅̅ ̅.  

• 𝑜0 = (𝑜0
𝑥 , 𝑜0

𝑦
, 𝑜0

𝜃) be the initial dead-reckoning pose. The orientation 

component, 𝑜0
𝜃, is not known and its value is estimated together with the 

calibration parameters. The position in which the GPS is mounted in the car is 

known. Hence, for any GPS sample and given the vehicle orientation, the rear 

axle position (which corresponds to the car position) can be computed. In 

particular, the values of 𝑜0
𝑥, 𝑜0

𝑦
 can be computed from 𝑔0 (that is measured by 

the GPS) and 𝑜0
𝜃 (that is optimized by the system). 

•  the position components, 𝑜0
𝑥 and 𝑜0

𝑦
 are computed using the fact that the 

pose, and (ii) 𝑔0 corresponds to the origin of the world coordinate system.  

The parameters estimated by the odometry calibration subsystem are 

𝐿gps, 𝑚𝑣, 𝑚𝜑 , 𝑎𝜑 , 𝑜0
𝜃. These values are obtained by solving the following optimization 

problem: 

𝑥∗ = argmin𝑥 J(𝑥) (4) 

where 𝑥 represents a set of values for the parameters 𝐿gps, 𝑚𝑣, 𝑚𝜑 , 𝑎𝜑 , 𝑜0
𝜃, 𝑥∗ 

represents the optimal values of the parameters, and J is the objective function which 

is defined as the sum of the squared differences between the GPS positions and the 

respective dead-reckoning positions: 

𝐽(𝑥) = ∑(𝑔𝑡
𝑥 − 𝑜𝑡

𝑥)2 + (𝑔𝑡
𝑦

− 𝑜𝑡
𝑦
)
2

𝑡

 (5) 



47 

 

 

The Global Best Particle Swarm Optimization algorithm (GBEST-PSO) [73, 74, 

VER09] is employed to search for a solution for the optimization problem. The 

GBEST-PSO is an evolutionary algorithm inspired by the movement of a flock of 

birds through the environment as they search for places with abundance of 

resources.  

The algorithm assumes a fixed-size population of n individuals. Each individual is 

located in a position of the search space. The position of the individual defines a 

potential solution (values for the parameters 𝐿gps, 𝑚𝑣, 𝑚𝜑 , 𝑎𝜑 , 𝑜0
𝜃) for the optimization 

problem. The individuals are initialized at random positions of the search space, 

assuming a uniform distribution. After initialization, the individuals “move” over the 

search space (their positions and velocities are updated) for a number of iterations. 

As birds in an environment, the individuals tend to move towards the most promising 

regions, i.e., the positions of the search space in which the value of the objective 

function is the smaller. After the pre-defined number of iterations, the solution for the 

optimization problem is given by the position with the smallest value of the objective 

function considering all individuals and all iterations.  

More formally, let 𝑃𝑡 = [𝑝1
𝑡 , … , 𝑝𝑛

𝑡 ] be the positions of the individuals at iteration 𝑡, 

where 𝑝𝑖
𝑡 is the position of the i-th individual, and 𝑉𝑡 = [𝑣1

𝑡, … , 𝑣𝑛
𝑡] be their respective 

velocities. In all iterations of the algorithm, the velocities and positions of the particles 

are updated. The velocities are updated considering the current position of the 

particle, the best position of the particle over all the iterations, and the best position 

considering all particles and all iterations. The best position of the particle is called 

the particle personal best position and for the i-th particle in the t-th iteration it is 

represented by 𝑏𝑖
𝑡. The best position over all particles is referred as the global best 

and it is represented by 𝑔𝑡 in the t-th iteration. The velocity is updated to encourage 

the movement of the particles from their current positions in the direction of their 

personal bests and the global best positions. The velocity is updated by a weighted 

sum of two vectors, the first one connecting the current position and the personal 

best position, and the second one connecting the current position and the global best 

position:  

𝑣𝑖
𝑡+1 = λ [𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑏𝑖
𝑡 − 𝑝𝑖

𝑡) + 𝑐2𝑟2(𝑔
𝑡 − 𝑝𝑖

𝑡)] (6) 



48 

 

 

where 𝑟1 and 𝑟2 are random numbers sampled from 𝑈𝑛𝑖𝑓(0, 1), 𝑐1 and 𝑐2 are pre-

defined positive constants, and λ is a constriction coefficient given by:  

λ =
2

|2 − 𝜌 − √𝜌2 − 4𝜌|
 (7) 

where 𝜌 = 𝑐1 + 𝑐2.  

The factors c1r1and c2r2 control the particles’ tendencies of moving in direction to 

the personal or the global best positions, respectively. The constants c1 and c2 are 

fixed hyperparameters used to favour the personal or the global best directions. The 

values r1 and r2 add randomness to the particles’ movements which is positive for 

exploration. The constriction coefficient can be viewed as a recommendation to the 

particle to “take smaller steps” [74].   

After updating the velocities of the particles, their positions are updated by 

adding the velocities: 

𝑝𝑖
𝑡+1 = 𝑝𝑖

𝑡 + 𝑣𝑖
𝑡+1 (8) 

Clerc and Kennedy analysed the impact of the hyperparameters in the 

performance of the algorithm and they found that choosing 𝑐1 = 𝑐2 = 2.05 leads to a 

good performance on average and these values are used in accordance to them [74].  

 

4.3. Velodyne Pre-processing 

The pre-processing of Velodyne point clouds consists of eliminating invalid 

readings, correcting the points’ positions considering the movement of the vehicle, 

and calibrating the reflectivity measurements. The points of Velodyne’s point clouds 

are described in spherical coordinates, i.e., they are represented by a vertical angle, 

a horizontal angle, and a range value. Points whose ranges are equal to zero or 

bigger than 70 meters are considered invalid. These measurements usually 

correspond to incorrect readings due to refraction of rays. Likewise, points that hit the 

car are also discarded since they do not contain useful information for neither 

localization, mapping, nor decision making.  



49 

 

 

The point clouds are described in relation to the sensors’ coordinate system. In 

order to project the points to the world coordinate system, the pose of the sensor in 

the car, as well as the pose of the car in the world have to be known. However, if the 

car is moving, the car pose in the beginning of the sensor revolution around the z-

axis will be different from the car pose in the end of the revolution. To account for this 

fact, the car movement since the beginning of the revolution is estimated for each 

shot using the motion model presented in Section 3.3. This estimate is used to 

“correct” the car pose before projecting the points of the shot to the world coordinate 

system. A visualization of point clouds from Velodyne without considering the car 

movement, and considering it are presented in Figure 8 (a) and in Figure 8 (b). Note 

that because the car is moving the start and end of the revolution do not match in 

Figure 8 (b). 

Due to physical properties of the 32 lasers of Velodyne such as their power and 

the sensibility of their sensors, the lasers can return different reflectivity values when 

they hit objects with the same brightness. This lack of consistency among the lasers 

is problematic for both mapping and localization [24]. We employed a novel method 

for calibrating the reflectivity of the different lasers. The method is similar to the one 

proposed by Levinson and Thrun [24]. Visualizations of point clouds before and after 

calibration are presented in Figure 10 (a) and (b), respectively.  

Our method receives as input a log and the car poses associated with the data 

packages, and it outputs a calibration table. Each position of the calibration table 

stores a calibrated reflectivity value. Given a measurement from a laser (point in 

spherical coordinates and uncalibrated reflectivity value), a triple (𝑙, 𝑑, 𝑟) is built, 

where 𝑙 ∈ [0, 31] is the index of the laser that performed the measurement, 𝑑 ∈ [0, 10] 

is a class based on the distance from the sensor to the object hit by the laser, and 

𝑟 ∈ [0, 255] is the uncalibrated reflectivity. The values 𝑙, 𝑑, and 𝑟 are used to access 

a position of the calibration table (see Figure 9). The calibration table can be seen as 

a (discrete) function mapping triples in the format presented above to calibrated 

reflectivity values.  

 

 



50 

 

 

 

(a) 

 

(b) 

Figure 8. Visualization of point clouds from Velodyne (a) without considering the car movement (before 

calibration), and (b) considering the car movement (after calibration). Note that because the car is moving 

the start and end of the revolution do not match in (b). The orange arrow represents the sensors’ rotation 

direction and the yellow arrow in figure (b) highlights the part of the point cloud that does not match after 

calibration.  

  

movement 

movement 



51 

 

 

 

Figure 9. Illustration of the reflectivity calibration table. The sensor is composed of 32 rays, two from 

which are presented in the figure. The indices of the lasers index the table along with the raw reflectivity 

reading and the index computed from the distance. 

 

The distance-based class used to index the second dimension of the table is 

obtained as follows. First, the distance from the sensor to the object hit by the laser in 

the ground plane is computed. Then, we discretize the values of the distance in slots 

such that each slot is 50% bigger than the previous one. The class assigned to a 

measurement represents the slot that contains it. More formally, let 𝑔 be the distance 

from the sensor to the object in the ground plane. Then, if 𝑔 is smaller than a base 

threshold 𝑏, the class zero is assigned to the measurement. Else, the class is given 

by:  

class = truncate (
 log(𝑔−𝑏−1)

log(1.45)
+ 0.5). (9) 

where 1.45 represents the size of the first slot. This value was chosen empirically by 

visually inspecting the result of the calibration. The class 9 is returned if the result of 

the truncation is bigger than nine, and the class 0 is returned if it is smaller than zero.  

In order to create the calibration table, a grid map is built using the log and the 

car poses. Each cell of the grid map stores all Velodyne measurements that hit the 

cell, along with their respective lasers’ indices. We assume that the measurements 

that hit the same cell should have returned the same reflectivity values. This value is 

estimated by the mean of the uncalibrated reflectivity values considering all 

measurements of all cells. We assume that the sensor calibration does not change 

over time. The calibration table is produced using one log and used for all other logs.  



52 

 

 

  

(a) 

  

(b) 

Figure 10. Example of point clouds from Velodyne before (a) and after (b) the calibration of the 

reflectivity measurements. The images on right are zoomed in views of the images in the left. The regions 

highlighted with yellow braces correspond to a crosswalk and they should present nearly the same 

reflectivity. As the reader can observe in (a), without the calibration the reflectivity values present 

significant variation. Considering calibration (b), the reflectivity values are more uniform.  

 

 



53 

 

 

4.4. Visual Semantic Segmentation  

In order to obtain semantic information for mapping and localization, we 

performed visual semantic segmentation of the images captured by the front-facing 

camera. Visual semantic segmentation consists of assigning a class (e.g., building, 

pavement, tree, pedestrian, and car) to each pixel of an image. A deep neural 

network, in particular, the DeepLabv3+ model [44] pre-trained on the Cityscapes 

dataset1 [75] is used for segmenting the images. The pre-trained model was chosen 

because of its high accuracy in preliminary qualitative analyses.  

Before using the images as input to the deep neural network, they are pre-

processed. Figure 11 illustrates the steps for using the neural network for visual 

semantic segmentation. The images are captured with resolution of 640 x 480 pixels, 

and rectified prior to use. They are cropped by 40 pixels in the top and 110 pixels in 

the bottom, and resized to 513 x 264 pixels. This crop removes regions in the images 

that correspond in most part to the sky and parts of the self-driving car. Besides that, 

the crop and resize make the image consistent with the input size expected by the 

neural network.  

 

 

Figure 11. Steps used in our work for visual semantic segmentation of images using the deep neural 

network Deeplabv3+. The images are captured by the camera mounted on the self-driving car.  

 

 

 

1 The trained model was downloaded from https://github.com/rishizek/tensorflow-deeplab-v3-plus 

https://github.com/rishizek/tensorflow-deeplab-v3-plus


54 

 

 

4.5. Fusion of Velodyne and Images 

Velodyne’s point clouds can be fused with images for benefiting from both 

Velodyne’s precise range measurements, and colours and/or semantic labels from 

images. This sensors fusion is performed by projecting each 3D point captured by 

Velodyne into an image pixel, and associating the point with the pixel value. Figure 

12 illustrates the process of projecting points captured by Velodyne into the image 

plane.  

Let 𝑃 =  [𝑋, 𝑌, 𝑍, 1]𝑇 be a Velodyne point in the sensor coordinate system 

represented in homogeneous coordinates, and 𝑝 =  [𝑥, 𝑦, 𝑧]𝑇 be the projection of 𝑃 

into the image plane, also in homogeneous coordinates. The transform that 

computes 𝑝 from 𝑃 is given by:  

𝑝 =  𝐹  𝑇𝑣 
𝑖 𝑃 (10) 

where 𝑇𝑣
𝑖 is a 4 x 4 matrix that projects points from the sensor coordinate system to 

the camera coordinate system, and 𝐹 is a 3 x 4 matrix that projects points from the 

camera coordinate system into the image plane. The 𝐹 matrix is given by [76, 77]:  

𝐹 = [

𝑓𝑥 0 𝑐𝑥 0

0 𝑓𝑦 𝑐𝑦 0

0 0 1 0

] (11) 

where 𝑓𝑥 and 𝑓𝑦 are the focal length in 𝑥 and 𝑦 directions, and 𝑐𝑥 and 𝑐𝑦 are the 

coordinates of the centre of the image. The pixels column and row can be obtained 

from p by diving the x and y coordinates by 𝑧 [76], respectively. 

The subset of the Velodyne points visible by the camera are associated with the 

values of the pixels they hit. The point cloud resultant from the fusion of Velodyne’s 

data and colour images will be referred as a colour point cloud. Likewise, the 

expression segmented point cloud will be used to refer to the fusion of Velodyne’s 

point cloud with semantically segmented images. Figure 13 illustrates the points 

visible by the camera projected into the image plane. Figure 14 presents a 

comparison of an instantaneous map built using the complete point cloud from 

Velodyne and an instantaneous map built using the respective colour point cloud. 

Similarly, Figure 15 shows the complete process of semantic segmentation of images 



55 

 

 

along with the projection of points into the segmented image, and Figure 16 

compares the instantaneous maps built using the complete point cloud and the 

semantic point cloud.  

It is worth noting that the fusion of LiDAR and camera is not a requirement of the 

proposed method. Stereo cameras or any other sensor capable of producing depth 

information could be used by the mapping and localization techniques. The fusion of 

LiDAR and camera is motivated by the accuracy of the range measurements 

provided by the LiDAR.  

 

 

Figure 12. Projection of LiDAR points into the image plane. The matrix 𝑻𝒗 
𝒊 transforms the point P from 

the LiDAR to the camera coordinate system. The matrix F projects P into the image plane.  

 

 

 

 



56 

 

 

 

(a) 

 

(b) 

 

 

(c) 

Figure 13. Projection Velodyne points into the image plane. (a) The current image captured by the front-

facing camera. (b) The point cloud captured at the same instant as the image. (c) Projection of the points 

into the image.  

 



57 

 

 

(a) (b) 

Figure 14. Visualization of the instantaneous map created by fusing data from Velodyne and camera. 

Figure (a) presents the complete Velodyne point cloud, and figure (b) presents the subset of points visible 

by the camera with their associated colours.  

 

 

Figure 15. Projection of velodyne points into the image produced by the semantic segmentation deep 

neural network. 

  



58 

 

 

 
(a) 

 
(b) 

Figure 16. Visualization of the instantaneous map created by fusing data from Velodyne and the image 

that results from the semantic segmentation. Similarly to Figure 14, figure (a) presents the complete 

Velodyne point cloud, and figure (b) presents the subset of points visible by the camera with their 

associated classes.  

 



59 

 

 

5. Novel Techniques for Mapping and Localization 

This chapter describes the main contributions of this work: the novel techniques 

for building grid maps of large-scale environments and for estimating the localization 

of a self-driving car in them. Initially, Section 5.1 describes the types of grid maps 

considered in this work, i.e., occupancy, reflectivity, semantic, and colour grid maps 

are introduced. Then, the localization technique which employs these maps is 

presented in Section 5.2. Finally, the method employed for building grid maps is 

described in Section 5.3.  

 

5.1. Grid Maps 

In grid maps [78, 20], the environment is discretized in cells with fixed predefined 

size. Different types of information can be stored in the cells of the grid map 

depending on the application. In the context of self-driving cars, grid maps are 

commonly used for localization and decision making. Grid maps usually store 

statistics. The initial values of these statistics are chosen to reflect some prior 

knowledge about the environment. As sensors observe the actual state of the 

environment, the statistics are updated. If no prior knowledge is available, a uniform 

distribution is traditionally used for initializing the cells. 

For localization, it is important to store in the maps discriminant features of the 

environment (e.g., lane marks and buildings) such that the car pose can be estimated 

by matching sensors’ data and the map. For decision making, being able of easily 

classifying the cells as occupied by obstacles or free is important. Grid maps that can 

be used for both localization and decision making are preferable given that storing 

and operating with multiple maps of potentially large regions requires substantial 

computational resources.  

In this work, we are interested in evaluating the impact of using different types of 

grid maps in the accuracy of a localization algorithm. Under the assumption that cars 

move in the ground plane and aiming at minimizing the use of computing and 



60 

 

 

memory resources, 2D grid maps are employed instead of 3D grid maps. The types 

of grid maps considered are occupancy grid maps, reflectivity grid maps, semantic 

grid maps, and colour grid maps. Occupancy and reflectivity grid maps are the most 

common types of grid maps used in self-driving cars applications [16, 17]. Semantic 

grid maps are invariant to illumination conditions and sensor modality given robust 

methods for extracting semantic information from sensors’ data. Moreover, semantic 

grid maps can represent different information that might be useful for planning and 

decision making. Vision is one of the main senses used by humans, and colour data 

is rich, informative, and can aid the identification of features of the environment. For 

these reasons, colour and semantic grid maps are also considered. It is worth noting, 

however, that others types of grid maps exist in the literature and some of them were 

even used for localization.  Examples are height grid maps [25], lane side grid maps 

[30], joint height and reflectivity grid maps represented as mixtures of gaussians [25].  

In the following, we describe the contents of the grid maps used in this work and, 

in Chapter 5.3, the technique for creating grid maps is presented. An urban area 

(presented in Figure 17) is used for demonstrating the different types of grid maps.  

The self-driving car was driven through the path highlighted in blue and the data 

captured by the sensors were stored in a log file. The data was posteriorly processed 

and used for creating the grid maps presented in Figure 18. In particular, the 

occupancy, reflectivity, semantic, and colour grid maps are presented in Figure 18 

(a), Figure 18 (b), Figure 18 (c), and Figure 18 (d), respectively. In Figure 18 (a), blue 

pixels correspond to unobserved cells, while in the other maps unobserved cells are 

represented in grey.  A detailed view of the area highlighted in red in Figure 17 is 

presented in Figure 13. The different grid maps of the detailed area are presented in 

Figure 14.  

 



61 

 

 

 

Figure 17. An urban area used for demonstrating the different types of grid maps. The self-driving car 

was driven though the path highlighted in teal and the data captured by the sensors were stored. The data 

was posteriorly processed and used for creating the grid maps presented in Figure 18. A detailed view of 

the area highlighted in red is presented in Figure 19, and different grid maps of the detailed area are 

presented in Figure 20.  

 

5.1.1. Reflectivity and Colour Grid Maps 

Reflectivity grid maps [23, 24, 29, 25, 8] and colour grid maps [60, 79] store, for 

each cell, the mean and variance of a Gaussian distribution representing, 

respectively, the reflectivity and colour of the objects inside the area delimited by the 

cell. In reflectivity grid maps, cells with high variance represent parts of the 

environment that change often, e.g., cells occupied by moving obstacles. In colour 

grid maps, this analysis is less obvious since a cell may present high variance 

because of other factors, such as, abrupt changes in the illumination of the scene.  

Region presented in 
details in Figure 19. 



62 

 

 

5.1.2. Occupancy Grid Maps 

Occupancy grid maps [78, 20] store the probability of the cells being occupied by 

obstacles. Whenever a measurement is received from the LiDAR, two updates are 

performed in the map. First, the occupancy probability of the cell at the given range is 

updated according to the evidence that the ray hit an obstacle or not. The technique 

for computing the evidence that a laser ray hit an obstacle is illustrated in Figure 21. 

Assuming that the height of the sensor is known and that the car is moving in a 

plane, we can use the i-th laser from Velodyne for estimating the position in the floor 

that the next laser (the i+1-th laser) will hit if the area is free from obstacles. 

However, if an obstacle exists, then the distance in the floor between the sensor and 

the object hit by the laser will be smaller than expected. The difference between the 

expected distance in the floor, and the distance measured by the sensor is used for 

computing the evidence that the ray hit an obstacle.  

Let 𝛿𝑒 be the expected distance between consecutive rays in the floor, and 𝛿𝑚 be 

the measured distance. Then, the evidence 𝑒 that the laser i+1 hit an obstacle is 

given by:  

𝑒 =
𝛿𝑒 − 𝛿𝑚

𝛿𝑒
 (12) 

If the evidence of obstacles is higher than a threshold, the point relative to laser 

i+1 is classified as being an obstacle, else it is classified as a plane area. The cell hit 

by the laser is updated according to the evidence of obstacle.  

The second update is a raycast technique which consists of decreasing the 

occupancy probabilities of all cells between the first ray that hit the floor and the first 

ray that hit an obstacle. This update is based on the idea that if obstacles were 

present in any of these cells, a smaller range would have been measured. The 

raycast technique also provides a way of “cleaning” cells that were momentarily 

occupied, e.g., by moving objects. The technique makes occupancy grid maps 

denser than the other types of maps since only the cells directly observed by sensors 

are updated in them. The instantaneous map presented in Figure 5 (a) employ the 

raycast technique. Note the “beams” connecting the points that hit the floor and the 

obstacles. 



63 

 

 

 

 

(a) Occupancy Grid Map 

 

(b) Reflectivity Grid Map 

 

(c) Semantic Grid Map 

 

(d) Colour Grid Map 

Figure 18: Visualization of the different types of maps from the area presented in Figure 17. (a) 

Occupancy grid map. (b) Reflectivity grid map. (c) Semantic grid map. (d) Colour grid map. 

 

 



64 

 

 

 

Figure 19. Detailed view of the region marked in red in Figure 17. 

 

 

(a) Occupancy Grid Map 

 

(b) Reflectivity Grid Map 

 

(c) Semantic Grid Map 

 

(d) Colour Grid map 

Figure 20: Visualization of different types of maps of the region presented in Figure 19. (a) Occupancy 

grid map. (b) Reflectivity grid map. (c) Semantic grid map. (d) Colour grid map. 



65 

 

 

5.1.3. Semantic Grid Maps 

In semantic grid maps [36, 37, 38, 39, 63, 40], cells are classified according to 

the types of objects they contain. Common cell classes in self-driving cars 

applications are road, building, tree, traffic sign, traffic light, and pedestrian. The 

semantic information is extracted from sensors data (for example using the technique 

presented in Section 4.4) and, then, projected into the grid map.  

A map cell may receive several samples from different classes. In order to 

preserve all of this information, each cell of a semantic grid map stores a categorical 

distribution over classes of objects. This distribution is represented as a vector in 

which the 𝑖𝑡ℎ dimension represents the probability that objects of class 𝑖 exist in the 

cell. Instead of storing the actual probabilities, in our implementation we store 

counters representing the number of times each class was observed in the cell. The 

probabilities can be derived from the counters by normalization. The process of 

updating the map when changes in the environment are observed is simplified if 

counters are used instead of the probabilities. The counters can be simply 

incremented according to the new classes of objects observed in the environment.  

To initialize the map, we assume a uniform prior distribution and the classes 

counters of all cells are set to one. Although the initialization of the counters with zero 

seems more intuitive since they were not observed by sensors, it would lead to a 

division by zero when computing the probabilities from the counters. Semantic grid 

maps can be seen as a generalization of occupancy grid maps to more than two 

classes.  

 



66 

 

 

 

Figure 21. Technique for computing the evidence that a laser ray hit an obstacle. Assuming that the height 

of the sensor is known and that the car is moving in a plane, we can use the i-th laser from Velodyne for 

estimating the position in the floor that the next laser (the i+1-th laser) will hit if the area is free from 

obstacles. However, if an obstacle exists, then the ray size in the floor will be smaller than expected. The 

difference between the expected distance in the floor, and the distance measured by the sensor is used for 

computing the evidence that the ray hit an obstacle.  

 

 

Figure 22. Illustration of semantic grid maps and the contents of their cells. In practice, instead of storing 

the probabilities of each class, the cells store counters representing the number of rays from each class 

that have hit the cell.   

 

LiDAR

measured

expected



67 

 

 

5.1.4. Comparison of Grid Maps 

Each of the grid maps mentioned above have specificities that make them more 

or less adequate for different applications. Table 1 lists the advantages and 

disadvantages of the grid maps for self-driving cars localization. The sensitivity of the 

grid maps to different conditions of illumination and weather depends on the sensor 

used for mapping and localization. LiDARs and Sonars, for instance, are nearly 

invariant to illumination conditions. On the other hand, heavy rain and snow can 

impact the performance of LiDARs. Cameras are more sensitive to changes in 

illumination and weather. Besides the sensor being used, the sensitivity of semantic 

grid maps to illumination and weather conditions also depends on the semantic 

segmentation method.  

Occupancy grid maps and semantic grid maps can be used for discriminating 

free areas from occupied areas, and they are suitable for both localization and 

motion planning. Extracting this information from reflectivity grid maps and colour grid 

maps requires additional processing and may be unreliable. On the other hand, 

because these maps store the “appearance” of the world as projected into the cells, 

they can lead to more accurate localization than occupancy grid maps in areas with 

ambiguous structure. Examples of such areas are corridor-like environments (e.g., 

tunnels, bridges), and roads with featureless surroundings. Since semantic grid maps 

are more informative than occupancy grid maps, they have the potential for 

producing better localization estimates in ambiguous environments.  

Grid maps used for self-driving cars’ localization should reflect the static structure 

of the environment. Potentially dynamic objects such as parked vehicles, moving 

vehicles, and pedestrians, should not be part of the map, since they not necessarily 

will be present in future sessions of autonomous operation. Semantic grid maps can 

provide natural ways of handling these potentially dynamic objects if the semantic 

segmentation method is capable of discriminating dynamic and static objects. This 

capacity is also important if the map is intended to be used for decision making. 

Identifying which parts of the environment are dynamic or static in occupancy, colour, 

and reflectivity grid maps require additional post-processing and can be challenging.  



68 

 

 

Table 1. Advantages and disadvantages of different grid maps for self-driving cars localization. 

Reflectivity Grid Maps Occupancy Grid Maps 

 

• Resilient to different illumination. 

• Sensitive to heavy rain and snow.  

• Represent the “visual” appearance of 
the environment.  

• Discriminating obstacles from free 
areas require post-processing. 

• Discriminating dynamic obstacles 
from static ones require post-
processing. 

• Requires the use of LiDARs. 

• Require pre-processing for calibrating 
the reflectivity values. 

 

 

• Resilience to different illumination and 
weather conditions depends on the 
sensor. 

• Represent the structure of the 
environment.  

• Discriminate obstacles from free 
areas. 

• Discriminating dynamic and movable 
obstacles from static ones require 
post-processing. 

• Can be used with different sensors. 

 

 

Colour Grid Maps Semantic Grid Maps 

 

• Sensitive to different illumination. 

• Represent the visual appearance of 
the environment.  

• Discriminating obstacles from free 
areas require post-processing. 

• Discriminating dynamic obstacles 
from static ones require post-
processing. 

• Requires the use of cameras. 

• Require pre-processing for obtaining 
depth information. 

 

 

 

• Resilience to different illumination and 
weather conditions depends on the 
sensor and the semantic 
segmentation method. 

• Depending on the classes produced 
by the semantic segmentation 
method, can represent both the 
appearance and the structure of the 
environment.  

• Discriminate obstacles from free 
areas. 

• Discriminating movable obstacles 
from static ones. 

• Different sensors can be used. 

• Depending on the sensor used, it may 
require pre-processing for obtaining 
depth information and extracting 
semantic data (which is potentially 
expensive). 

 

 

 



69 

 

 

The costs of self-driving cars can determine their widespread adoption. Semantic 

and occupancy information can be extracted from different sensors. In principle, 

precise and potentially costly sensors can be equipped in specialized mapping 

platforms for building high quality maps, while low cost sensors can be equipped in 

the end users’ self-driving cars for localization in occupancy and semantic grid maps.  

Reflectivity grid maps require the use of LiDARs which are currently expensive 

sensors. Colour grid maps rely on cameras whose costs can be lower. However, 

extracting depth information from cameras still challenging. Moreover, although there 

are promising works in this direction [80, 81, 82, 83, 84], depth measurements 

obtained from cameras are less precise than the measurements obtained using 

LiDARs. 

 

5.1.5. Tilling 

The grid maps are stored and used as a set of squared fixed-sized tiles as 

illustrated in Figure 23. Only the tile that currently contains the car along with the 

eight tiles around it are maintained in primary memory (see [8]). By doing so, the 

amount of primary memory used by the system is constant, even when operating in 

large-scale environments.  

 

5.2. Localization  

The proposed localization technique estimates the state of self-driving cars using 

offline maps (see Section 3.2.1). In our work, a state 𝑠 = (𝑣, 𝑏, 𝜑, 𝑝) is composed of a 

linear velocity 𝑣, a steering wheel angle bias 𝑏, a steering wheel angle 𝜑, and a 2D 

pose 𝑝 = (𝑥, 𝑦, 𝜃). A particle filter algorithm [19, 20, 21 22] is employed for 

localization. The particle filter maintains set of samples (the particles) representing 

possible values of the current car state. Each sample represents a potential value of 

the state. Weights are associated with the samples representing their probabilities.  

 



70 

 

 

 

Figure 23. Visualization of the tilling scheme used for limiting the memory consumption of the system.  

 

After initialization, the samples and their weights are iteratively updated as new 

data packages are observed. Each update consists of a prediction step, followed by 

a correction step. In the prediction step, the particles values are updated to account 

for changes in the state since the last data package (e.g., due to the movement of 

the car). In the correction step, the likelihoods of the particles are evaluated and a 

new set of particles is produced by resampling [20]. After the prediction and 

correction steps, a point estimate of the state is computed using the set of particles. 

The expected value of the particles (the mean) is commonly used for producing the 

estimate.  

The remaining of the chapter is organized as follows. Sections 5.2.1 and 5.2.2 

describe the prediction and correction steps, respectively, and Section 5.2.3 presents 

the technique for initializing the particle filter. The following notation will be employed 

in the chapter: lower case letters represent concepts such as, states, states’ values 

and sensor measurements. Subscripted letters represent indices of synchronized 



71 

 

 

data packages. Superscripted letters represent the index of a particle. For 

conciseness, the estimates obtained after the prediction and correction steps will, 

respectively, be called predicted and corrected values. A bar in the top of a letter 

represents the predicted value for that concept. For instance, �̅�𝑡
𝑖 represents the 

predicted state value of the i-th particle given the t-th synchronized data package. 

 

5.2.1. Prediction 

In the prediction step, data from the odometer are used for updating the particles’ 

values. Let 𝑠𝑡−1
𝑖 = (𝑣𝑡−1

𝑖 , 𝑏𝑡−1
𝑖 , 𝜑𝑡−1

𝑖 , 𝑝𝑡−1
𝑖 ) be the corrected state value of the i-th 

particle given the data package (t - 1) and the offline map, and 𝑠�̅�
𝑖 be the predicted 

state value for the same particle given the t-th data package. Then, �̅�𝑡
𝑖 is given by: 

�̅�𝑡
𝑖 =

[
 
 
 
 
�̅�𝑡

𝑖  

�̅�𝑡
𝑖

�̅�𝑡
𝑖

�̅�𝑡
𝑖 ]
 
 
 
 

=

[
 
 
 

𝑣𝑡  

𝑏𝑡−1
𝑖

𝜑𝑡 + �̅�𝑡
𝑖

𝑝𝑡−1
𝑖 ]

 
 
 

+

[
 
 
 

𝜖𝑣

𝜖𝑏

𝜖𝜑

𝑀𝑡
𝑖 + 𝜖𝑝]

 
 
 
 (13) 

where 𝑣𝑡 and 𝜑𝑡 are the linear velocity and the steering wheel angle from the t-th 

data package; 𝜖𝑣~𝒩(0, 𝜎𝑣 + 𝜎𝑣
𝜑
), 𝜖𝜑~𝒩(0, 𝜎𝜑 + 𝜎𝜑

𝑣), 𝜖𝑏~𝒩(0, 𝜎𝑏) represent the errors 

in 𝑣𝑡, 𝜑𝑡, and 𝑏𝑡−1
𝑖  and they are sampled from normal distributions with zero mean 

and predefined standard deviations. The values 𝜎𝑣 and 𝜎𝑣
𝜑

 are, respectively, the 

standard deviation of 𝑣𝑡 and the squared root of the covariance of 𝜑𝑡 in relation to 𝑣𝑡; 

𝜎𝜑 and 𝜎𝜑
𝑣 are, respectively, the standard deviation of 𝜑𝑡 and the squared root of the 

covariance between 𝑣𝑡 and 𝜑𝑡; 𝜎𝑏 is the standard deviation of the bias in the steering 

wheel angle. 𝑀𝑡
𝑖 is an estimate of the car’s movement since the last localization step 

which is estimated using the motion model (Section 3.3), �̅�𝑡
𝑖 �̅�𝑡

𝑖 , and the amount of 

time since the last localization step. The value 𝜖𝑝~ 𝒩(0, Σ𝑝) is a random noise 

sampled from a normal distribution with zero mean, and covariance matrix Σ𝑝.  

The term 𝜖𝑝 is added to account for physical phenomena not considered in the 

motion model (e.g., drift) and imprecisions in the map representation (e.g., due to 

discretization of the world in cells). The previous update to the bias of the steering 



72 

 

 

wheel angle is only applied when �̅�𝑡
𝑖 is higher than a threshold. In this is not the case, 

the bias is maintained it is. The value �̅�𝑡
𝑖 is clamped to prevent it from growing to 

unrealistic values.  

The update rule for the components other than the pose can be intuitively 

understood as follows. It was empirically observed that the bias in the steering wheel 

angle is systematic, but changes slowly. Because of that, we modelled it as a latent 

variable that evolves according to a random walk with Normal “steps”. The velocity 

and steering wheel angle measurements are also subject to unobservable normal 

error. To try and correct these values, besides adding the bias to the steering wheel 

angle, the measurements are also corrupted by noise. The corrupted measurements 

are then used as input for the motion model for estimating the car movement. After 

the correction step and assuming that the filter did not diverged, the most likely 

particles will be the ones in which the estimated movement is close to the real 

movement of the car. In these particles, the predicted bias, linear velocity and 

steering wheel angle are likely to be close to the truth since they are used for 

estimating the car movement.  

 

5.2.2. Correction 

The correction step is itself subdivided into likelihood computation, and 

resampling. Likelihood computation consists of evaluating the probability of the 

particles being the true state of the car. Resampling, on the other hand, is the 

process of sampling a new set of particles considering the particles’ likelihoods.  

Data from the most recent point cloud, and the offline map are used for 

computing the likelihoods. An instantaneous grid map is built using the point cloud. 

the likelihoods of the particles are computed assuming independence between the 

cells in the instantaneous map. With this assumption, the particles’ likelihoods are 

computed as the product of the likelihoods of each cell in the instantaneous map 

given the offline map and the particle value. Only the observed cells of the 

instantaneous map are considered for localization.  



73 

 

 

Rays that hit moving obstacles or structures that were not present during 

mapping can lead to inconsistencies in the particles’ likelihoods.  Due to these noisy 

measurements (outliers), incorrect particles may receive high weights, while low 

weights may be assigned to correct particles. To try and minimize this issue, an 

outlier rejection approach is employed. If the likelihood of a sensor measurement is 

lower than a threshold for most of the particles, then the measurement is discarded 

and not considered for computing the particles’ likelihoods.  

The instantaneous map is built once assuming that the car is in the centre of the 

map and then, for each particle, the positions of the cells in the offline map are 

computed using the particle pose. In urban scenarios, the number of cells in the 

instantaneous map is significantly smaller than the number of points in the point 

cloud. This is because laser rays that hit the same obstacles are mostly projected 

into the same cells. Hence, in these scenarios, generating the instantaneous maps 

and then projecting its cells into the offline maps is more computationally efficient 

than projecting all points from the original point cloud (remember that the projection is 

performed for each particle).  

Let 𝑧1, … , 𝑧𝑘 be 𝑘 sensors measurements, i.e., the set of observed cells in an 

instantaneous grid map, 𝑚 be the offline map, and 𝑤𝑖 and 𝑠𝑖 be, respectively, the 

weight and state of the i-th particle. The weight 𝑤𝑖 is defined to be the likelihood of 

𝑧1, … , 𝑧𝑘 given 𝑠𝑖 and 𝑚. Assuming that 𝑧1, … , 𝑧𝑘 are conditionally independent given 

𝑠𝑖 and 𝑚, 𝑤𝑖 is given by: 

𝑤𝑖 = ∏𝑝(𝑧𝑗|𝑠
𝑖 , 𝑚)

𝑘

𝑗=1

 (14) 

Since 𝑝(𝑧𝑗|𝑠
𝑖, 𝑚) ≤ 1 for all 𝑖 and 𝑗, and because the floating-point representation 

in computers is limited, in most cases the particle weights are truncated to zero. To 

account for this issue, the log function is used to turn the product in equation (14) into 

a sum of log likelihoods: 

𝑙𝑖 = ∑log 𝑝(𝑧𝑗|𝑠
𝑖, 𝑚)

𝑘

𝑗=1

 (15) 



74 

 

 

Let 𝑙𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑗  𝑙𝑗 be the smallest log likelihood among all particles. The value 

𝑙𝑚𝑖𝑛 is subtracted from the 𝑙𝑖 terms to make them positive. Then, the particles’ 

weights are obtained by normalizing the resulting values:  

𝑤𝑖 = 
𝑙𝑖 − 𝑙𝑚𝑖𝑛

∑ 𝑙𝑗 − 𝑙𝑚𝑖𝑛
𝑛
𝑗=1

 (16) 

In order to compute log 𝑝(𝑧𝑗|𝑠
𝑖, 𝑚), first the particle state is used to calculate 

which cell of 𝑚 contains the measurement 𝑧𝑗. Let 𝑐𝑗
𝑖 be the value of this cell. Then, 

log 𝑝(𝑧𝑗|𝑠
𝑖, 𝑚) is obtained by comparing the contents 𝑧𝑗 and 𝑐𝑗

𝑖. Depending on the 

type of map used by the system, different measures are used for comparison.  

In semantic grid maps and occupancy grid maps, the log 𝑝(𝑧𝑗|𝑠
𝑖, 𝑚) is obtained 

by evaluating the probability of 𝑧𝑗 ’s class in 𝑐𝑗
𝑖 and, then, applying the log function. 

For reflectivity grid maps, the Mahalanobis distance is employed:  

log 𝑝(𝑧𝑗|𝑠
𝑖, 𝑚) =  (𝑧𝑗 − 𝑐𝑗

𝑖)
𝑇
 Σ𝑧

−1 (𝑧𝑗 − 𝑐𝑗
𝑖) (17) 

where Σ𝑧 is the covariance matrix for the measurement 𝑧𝑗.In reflectivity grid maps, the 

cells contain a single component, and the covariance matrix reduces to the variance 

of 𝑧𝑗. The Mahalanobis distance is obtained by computing the log probability of a 

Normal distribution and discarding terms that are constant for all particles  

Different from the previous methods, for colour grid maps, the particles weights 

are given by the entropy correlation coefficient (ECC) [85] between the cells of the 

instantaneous map and their respective cells in the offline map: 

𝐸𝐶𝐶(𝑧1:𝑘, 𝑐1:𝑘) = 2 − 
2 𝐻(𝑧1:𝑘, 𝑐1:𝑘)

𝐻(𝑧1:𝑘) + 𝐻(𝑐1:𝑘)
 (18) 

where the 𝐻(𝑋) represents the marginal entropy of the random variable 𝑋: 

𝐻(𝑋) = −∑𝑝(𝑥) log 𝑝(𝑥)

𝑥

 (19) 

and 𝐻(𝑋, 𝑌) represents the joint entropy between the random variables 𝑋 and 𝑌: 



75 

 

 

𝐻(𝑋, 𝑌) = −∑∑𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)

𝑦𝑥

 (20) 

The ECC is scaled to (0, 1), such that 0 indicates full independence and 1 

represents complete dependence between the input values. The ECC is quite similar 

to the normalized mutual information metric and both of them were vastly employed 

for registration of images from different sources (e.g., medical images from different 

sensors) [86, 87, 88, 89]. The ECC is chosen instead of the Mahalanobis distance to 

compare colour data to try and minimize the negative effects of different illumination 

conditions.  

After computing the likelihoods of the particles, the resample step takes place. It 

consists of sampling a new set of particles from the previous ones considering their 

likelihoods. We used the low variance resampling method presented by Thrun, 

Burgard, and Fox [20] to do so.  

 

5.2.3. Initialization 

When starting operation, the self-driving car can be in any place of the 

environment. Estimating the vehicle pose without some kind of prior knowledge 

requires solving the challenging global localization problem. Although the global 

localization problem is addressed in the literature [90], as far as we know the current 

solutions are not accurate enough for practical use in self-driving cars.  

To avoid the global localization problem, we assume that a guess for the initial 

pose of the car is given by GPS, or set manually. After initializing the particle filter, 

global information is no longer necessary. The particles’ poses are sampled from a 

Gaussian distribution with the mean being the initial guess, and the covariance 

representing the error of this guess (e.g., the error of the GPS measurements as 

informed by the manufacturer). The remaining components of state, i.e., the velocity, 

the steering wheel angle, and the bias in the steering wheel angle, are sampled from 

Gaussian distributions with zero mean, and predefined variances. The sampled 

particles are assumed to be equally likely. During the first ten localization steps 

(including prediction and correction), Gaussian noise is added to the particles’ values 



76 

 

 

using the same covariances used for initialization. By adding noise, we increase the 

chance of producing a particle that represents the true state of the vehicle.  

An elitism strategy is employed in the particle filter. One of the particles is always 

chosen to be equals to the mean of the particles. This elite particle is initialized as 

follows. The pose is set to be exactly equal to the initial guess (without adding noise 

to it), the bias of the steering wheel angle is set to zero, and the velocity and steering 

wheel angle components are set to be equals to the values provided by the 

odometer. This elitism scheme is an attempt of maintaining a particle with reasonable 

value even when the particles spread.  

If a particle with high likelihood is present in the set, most of the other particles 

will be discarded during resample. However, if most of the particles have similar low 

probabilities, they are likely to be maintained. Since the next prediction steps will 

introduce noise, the particles will spread. Therefore, the confidence of the particle 

filter in the state estimate can be evaluated online by analysing the particles 

likelihoods and how spread they are. 

 

5.3. Building Grid-Maps  

The technique for building grid maps receives as input a log and it outputs 

reflectivity, occupancy, colour, and semantic grid maps. The log is created by driving 

the self-driving car through an environment and storing the sensors’ data. After that, 

the sensors’ data are pre-processed as described in Chapter 4. Finally, the states of 

the self-driving car along the log are estimated and they are used for projecting the 

sensors’ data into the grid maps. As mentioned in Section 1.3, the technique we 

propose extends and improves our previous work [8]. The GraphSLAM algorithm [23, 

24, 8, 25] is used for estimating the states of the self-driving car. In GraphSLAM, the 

variables to be estimated (in our case the set of vehicle states) are represented as 

nodes, and sensors measurements and their covariances are represented by edges.  

Our technique comprises a sequence of steps. First, the GraphSLAM algorithm 

is used to fuse data from GPS and odometry producing an initial guess for the states’ 

values. The result of this step is referred as the fused odometry path. We search for 



77 

 

 

loop closure regions using the fused odometry path. If such regions are found, the 

relative poses of the car in the visits to the regions are estimated. The data from the 

first visit is used for creating grid maps of the region. In the next visits, the path of the 

vehicle is estimated using the localization algorithm presented in Section 5.2. These 

path estimates are used for adding loop closure constraints in the graph. The relative 

poses along with data from GPS, and odometry are used in a second step of 

optimization using the GraphSLAM algorithm. A formal description of the method 

used to estimate the vehicle poses is presented next. For conciseness, the notation 

𝑥𝑎:𝑏 is used to refer to the set {𝑥𝑎 , … , 𝑥𝑏}, 𝑎 ≤ 𝑏. 

 

5.3.1. Fused Odometry 

Consider a log L that, after synchronization, contains 𝑛 data packages, i.e., L = 

𝑝1:n, where pi = {gi, oi, ii, ci, vi} is the i-th data package, and gi, oi, ii, ci, vi correspond 

to the data from GPS, odometry, IMU, camera, and Velodyne, respectively. Let 

𝑥1, … , 𝑥𝑛 be the car’s poses when each of these packages were acquired. In the first 

step, we compute estimates of the poses, x̂1:n using data from GPS, and odometer. 

These estimates are obtained by solving the following optimization problem: 

x̂1:n = argmin x1:n
 F(x1:n, g1:n, o1:n) (21) 

where the objective function, F, is given by: 

 F = G(x1, g1) + ∑O(xt−1, xt, ot) + G(xt, gt)

n

t=2

, (22) 

where the term G(xt, gt) penalizes values of xt that deviates from gt, and, so, it 

enforces global consistency; the term O(xt−1, xt, ot) penalizes values of xt and xt−1 

that are not consistent with the motion model. This term tries and enforces 

consecutive poses to be locally smooth.  

The penalty term G(xt, gt) is given by the Mahalanobis distance between xt 

and gt:  



78 

 

 

G(xt, gt) = (xt − gt)
𝑇𝑅𝑡

−1(xt − gt), (23) 

where 𝑅𝑡 is the covariance matrix representing the error in the measurement gt.  

Let 𝛿𝑡(ot) be the transformation matrix obtained by applying the odometry data ot 

into the motion model. The penalty term O(xt−1, xt, ot) is given by the Mahalanobis 

distance between xt and the pose obtained by adding (in the sense of pose 

composition) 𝛿𝑡 to xt−1: 

𝑂(𝑥𝑡−1, 𝑥𝑡, ot) = (𝑥𝑡 − 𝑥𝑡−1 + 𝛿𝑡(ot))
𝑇
𝑄𝑡

−1(𝑥𝑡 − 𝑥𝑡−1+𝛿𝑡(ot)) (24) 

where 𝑄𝑡 is the covariance matrix associated with the motion estimate 𝛿𝑡.  

The graph representing the optimization problem presented in Equation 21 and 

Equation 22 is illustrated in Figure 24. Nodes represent the fused odometry poses, 

while the edges represent the sensor measurements and their covariances (omitted 

in the figure). The blue edges represent constraints induced by GPS measurements, 

while red edges represent constraints between poses induced by odometry 

measurements and the motion model. The illustration employs the graph notation 

used by the g2o framework [91] which is different from the traditional graphical model 

representation.  

 

 

Figure 24. Graph representing the optimization problem described by Equation 18 and Equation 19. 

Nodes represent the estimated fused odometry poses, while the edges represent sensor measurements and 

their covariances (omitted in the figure). The blue edges represent GPS data, while the red edges 

represent the motion constraints induced by the odometry data and the motion model. 

 

 



79 

 

 

5.3.2. Loop Closures Detection and Displacement Estimation 

Due to imprecisions in GPS and odometry measurements, the poses’ values 

obtained in the first step of optimization are imperfect. Consider a situation in which 

the self-driving car moves over the same region more than once. Because of error in 

the poses, the projections of sensor data from consecutive visits to the same region 

into the grid map do not necessary match. This inconsistency results in a “ghosting 

effect” observed as a drift, duplication, or blurring of objects in the map. In the 

literature, this issue is known as the loop closure problem [23, 24, 25]. Figure 25 

presents reflectivity grid maps before and after considering loop closures for 

estimating the poses. It can be observed that the “ghosting effects” are no longer 

observable after considering loop closures. 

 
(a) 

 
(b) 

Figure 25: (a) Example of ghosting effect observed when revisiting a region and using fused odometry 

poses for projecting sensor data into the grid map. (b) The same region after considering loop closures in 

the optimization process.  

 

To account for the loop closure problem, we run a second step of optimization 

adding constraints to penalize poses’ values whose sensor projections do not match. 

The process of adding the loop closure constraints into GraphSLAM’s graph consists 

itself of two steps: the detection of loop closures, and the estimation of their 

displacements. The loop closure detection technique is simple yet effective. Each 



80 

 

 

pose x̂t is classified as being part of a loop closure or not. To do so, we evaluate if 

there are poses in x̂1:t−1 (the set of previous poses) such that their Euclidean 

distance (considering only the 𝑥 and 𝑦 coordinates) to x̂t is smaller than a threshold 

𝜏d and their distance in time (difference of timestamps) to x̂t is bigger than a second 

threshold 𝜏t. If there are poses that satisfy both conditions, x̂t is classified as being 

part of a loop closure. The second condition is important to prevent the classification 

of consecutive poses as loop closures. If there are not such poses, we assume that 

the self-driving car is visiting the region for the first time. For every pose classified as 

belonging to a loop closure, we also store the nearest pose from it in x̂1:t−1. 

The technique for estimating the displacements in loop closures operates as 

follows. Reflectivity and occupancy grid maps are created the first time the self-

driving car visits a region. For every pose that is not a loop closure, the respective 

data package is used to update the maps. On the other hand, when a loop closure is 

detected, the maps are no longer updated and, instead, the localization technique is 

used for estimating the car pose in the map. Define as: 

• �̃�𝑡 the pose estimated by the localization technique for some fused odometry 

pose x̂t classified as a loop closure; 

• x̂s the nearest pose to x̂t from x̂1:t−1;  

• �̃�𝑡
𝑠 the value of �̃�𝑡 in x̂s’s coordinate system. This value represents the relative 

pose between x̂s and �̃�𝑡. 

Then, the final estimates for the poses’ values, 𝑥1:𝑛
∗ , are obtained by solving the 

following optimization problem:  

𝑥1:𝑛
∗ = argmin x1:n

 J(x1:n, p1:n) (25) 

The objective function, J, is given by: 

J = F(x1:n, g1:n, o1:n) + ∑ L(xt, xs, �̃�𝑡
𝑠)

n

t=1

 (26) 



81 

 

 

where F is the objective function of the first step of optimization and, for each t, the 

term L(xt, xs, �̃�𝑡
𝑠) is a penalty for values of xt and xs whose relative pose deviates from 

�̃�𝑡
𝑠 or zero if xt has not been classified as a loop closure. The penalty is similar to the 

odometry penalties: 

L(xt, xs, �̃�𝑡
𝑠) = (xt − xs + �̃�𝑡

𝑠)𝑇𝑆𝑡
−1(xt − xs + �̃�𝑡

𝑠), (27) 

where 𝑆𝑡 is the predefined covariance matrix associated with the estimate computed 

by the localization technique. The graph representing the optimization problem 

described by Equation 22 and Equation 23 is illustrated in Figure 26.  The overall 

structure of the graph is similar to the one presented in Figure 24. Green edges 

represent constraints induced by loop closures.  

In preliminary experiments, we also tried and considered semantic and colour 

grid maps in the process of handling loop closures. However, they were not accurate 

enough and adding constraints obtained using them into the graph caused 

divergence. It is worth noting, however, that the proposed method is not limited to 

occupancy and reflectivity grid maps. Any kind of map can be used for handling loop 

closures depending only of the capacity of localizing in it with sufficient accuracy.  

 

 
Figure 26. Graph representing the optimization problem described by Equation 22 and Equation 23. Loop 

closure constraints are represented in green.  



82 

 

 

The poses’ values obtained in both steps of optimization are maximum likelihood 

estimates. Minimizing the F objective function is equivalent to maximizing the log 

likelihood of g1:n, and 𝛿1:n given the poses, assuming that these measurements are 

independent and follow Gaussian distributions. Likewise, minimizing the J objective 

function is equivalent to maximizing the log likelihood of g1:n, and 𝛿1:n, and �̃�1:n under 

the same assumptions.  

In determined situations such as in slow traffic, busy cross walks, and due to 

traffic lights, the self-driving car stays in the same place for long periods. In these 

situations, the poses in which the car is stopped will have more “importance” in the 

optimization process than the others since several sensors’ measurements are 

captured in that single location. An effect of this fact is that the optimizer may accept 

to produce imprecise values for the remaining poses for sake of maintaining the 

poses in which the car is stopped correct. We found that poses estimates are 

obtained (and so better maps) if we do not consider the poses in which the car speed 

is smaller than a threshold in the optimization process. Moreover, if the distance 

between consecutive GPS measurements is bigger than a threshold, we assume that 

a jump happened and we discard the GPS measurement. In this case, only odometry 

and loop closure edges are added to the node.  

The method for estimating the loop closures displacements is based on the 

localization technique which is susceptible to momentary failures. These failures can 

lead to divergence in the pose estimation process. To try and minimize this issue, the 

poses estimated using the localization technique are compared with the respective 

fused odometry poses. If the distances between them or the difference between their 

orientations are higher than predefined thresholds, the loop closure constraint is 

discarded.  

 

 



83 

 

 

6. Experiments 

This chapter describes the experimental methodology for evaluating the 

proposed techniques and the obtained results. Qualitative analyses of the mapping 

technique and quantitative analyses of the localization technique are presented. 

Experiments were performed in several large-scale environments, in diverse 

conditions of operation. We compared the accuracy achieved by the localization 

technique when using occupancy grid maps, reflectivity grid maps, semantic grid 

maps, and colour grid maps.  

 

6.1. Implementation 

The mapping and localization techniques were implemented as independent 

modules of the carmen_lcad framework2, a branch of the Carnegie Mellon Navigation 

framework [92] that is maintained and continually extended by the Laboratório de 

Computação de Alto Desempenho (LCAD) from the Universidade Federal do Espírito 

Santo (UFES). The IARA self-driving car described in Chapter 3 was used for 

collecting the datasets.  

The source code was developed in C/C++ to try and maximize the computational 

efficiency of the techniques. The g2o framework [91] was employed for implementing 

the GraphSLAM algorithm described in Section 5.3. This framework provides high 

level tools for modeling probabilistic methods that can be represented as graphs. It 

also provides efficient optimization methods for inference.  

 

 

 

 

2 https://github.com/LCAD-UFES/carmen_lcad 

https://github.com/LCAD-UFES/carmen_lcad


84 

 

 

6.2. Datasets 

Experiments are performed in several environments in diverse and real 

conditions of operation. A dataset is created for each environment. In this context, a 

dataset comprises a set of logs in which one is used for mapping, and the remaining 

ones for testing. The environments and the logs that compose their associated 

datasets are presented below. The mapping logs, their dates, and characteristics are 

listed in Table 2. Likewise, the test logs, their dates, and characteristics are listed in 

Table 3. The mapping logs were recorded when the traffic of vehicles and 

pedestrians was low (e.g. holidays and Sundays).  

Logs are named using a tag representing the environment and a suffix that 

represents their main features. Logs with suffix “M” are used for mapping. Logs with 

suffix “D” have a high number (from tens to hundreds) of distractors (e.g. vehicles, 

pedestrians, and environmental changes).  Logs with suffix “N” were recorded at 

night (after 7 p.m.). Logs with suffix “T” are test logs with conditions similar to those 

present in the logs used for mapping. The datasets created and their associated logs 

are the following:  

Table 2. Logs used for mapping and their characteristics. 

Dataset Date Characteristics 

UFES_M 2018/09/07 Recorded in a holiday. 

PLOT_M +2018/12/08 Recorded in a Sunday with an empty parking lot. 

Strong GPS noise (probably due to trees). 

URBAN_M 2018/12/08 Recorded in a holiday. 

Small number of dynamic objects in the streets. 

Presence of a small tunnel without GPS signal. 

AIRPRT_M 2017/07/26 Recorded at sunrise. 

Featureless surroundings. 

Presence of lane marks. 

AV_M 2018/11/16 Several dynamic objects.  

 



85 

 

 

Table 3. Logs used for testing the localization system and their characteristics. 

Dataset Date Characteristics 

UFES_D 2018/12/06 Several parked cars. 

Several dynamic objects (cars and pedestrians). 

Illumination different from the mapping log. 

Smooth curves. 

UFES_N 2018/11/30 Small number of parked cars and dynamic objects. 

Recorded at night. 

Smooth curves. 

Different initial position.  

PLOT_D 2018/12/07 Several parked cars. 

Several dynamic objects (cars and pedestrians). 

Challenging U-turns.  

Illumination different from the mapping log. 

PLOT_N 2019/07/03 Small number of parked cars and dynamic objects. 

Recorded at night. 

URBAN_D 2018/12/07 Several parked cars. 

Several dynamic object (hush hour). 

Challenging curves. 

Transitions between diverse scenarios 

Illumination different from the mapping log. 

Presence of a small tunnel. 

URBAN_N 2019/07/03 Significant number of dynamic objects. 

Transitions between diverse scenarios 

Challenging curves. 

Recorded at night. 

Presence of a small tunnel. 

AIRPRT_T 2017/07/26 Recorded at sunrise. 

Different initial position.  

Featureless surroundings. 

Presence of lane marks. 

AV_T 2018/11/16 Several dynamic objects.  

Different lane than the mapping log. 



86 

 

 

UFES. Dataset created in the ring road of the Universidade Federal do Espírito 

Santo (UFES). The dataset consists of three logs, one for mapping (UFES_M) and 

two for testing (UFES_D and UFES_N). The path performed by the vehicle in the 

environment can be visualized in Figure 27. Figure 28 illustrates the difference 

between the images captured by the camera in the each of the logs along with their 

semantic segmentations. Note the higher number of parked cars in the test logs and 

the presence of light blobs and motion blur in the log recorded at night.  

PARKING LOT. Dataset recorded in a parking lot at UFES. The parking lot is not 

part of the ring road. As before, the dataset consists of three logs, one for mapping 

(PLOT_M) and two for testing (PLOT_D and PLOT_N). The mapping log was created 

when the parking lot was empty. Both of the test logs were recorded in moments in 

which tens of cars were parked. This dataset allows evaluating the robustness of the 

localization technique in face of tight U-turns and of several objects that were not 

present during mapping. The path of the vehicle in the mapping log is illustrated in 

Figure 29. 

 

 

Figure 27. Satellite view of the environment in the UFES dataset with the path of the self-driving car 

highlighted in blue. 

 



87 

 

 

URBAN. Dataset created in the neighbourhood of Jardim da Penha, in the City 

of Vitória, Brazil. Similarly to the previous two logs, the dataset is composed of a 

mapping log (URBAN_M), a daytime test log (URBAN_D) and a night time test log 

(URBAN_N). The environment contains diverse urban scenarios such as tree-lined 

streets, tunnels, suburbs, loops around plazas, and an avenue with intense traffic. 

The path of the vehicle can be visualized in Figure 32. 

AVENUE. Dataset created in part of the Dante Michelini Avenue, one of the main 

avenues of the City of Vitória, ES, Brazil. This environment was chosen to evaluate 

the localization system in traffic scenarios. Two logs were created, one for mapping 

(AV_M), and one for testing the localization technique (AV_T). The test log was 

recorded in a different lane than the one used for mapping. The avenue is a long 

corridor-like environment. The path of the vehicle can be visualized in Figure 30. 

Unfortunately, we did not managed to produce a log of this environment during 

nighttime. 

AIRPORT. Dataset created in the runway of an airport located at Aeroclube3 do 

Espírito Santo. Because the access to the airport is restricted, the mapping and test 

logs (AIRPRT_M and AIRPRT_T, respectively) were created in the same day at 

sunrise (about 5 a.m.), one after another. This dataset allows evaluating the capacity 

of the localization technique of operating in adverse conditions of illumination (not as 

harsh as the logs recorded at night though) and in flat terrains without apparent 

features in the surroundings. The path of the vehicle can be visualized in Figure 31.  

 

 

3 https://www.aeroclube-es.com.br/ 

https://www.aeroclube-es.com.br/


88 

 

 

 

 

 

Figure 28. Variation in the illumination conditions and presence of distractors in the UFES dataset. The 

three images correspond to the same place. The top image is part of the UFES_M log, and middle image is 

part of the UFES_D log, and the bottom image is part of the UFES_N log. Note the higher number of 

parked cars in the test logs and the presence of light blobs and motion blur in the log recorded at night.  

 



89 

 

 

 

Figure 29. Satellite view of the environment in the PARKING LOT dataset with the path of the self-

driving car highlighted in blue.  

 

 

Figure 30. Satellite view of the environment in the AVENUE dataset with the path of the self-driving car 

highlighted in blue. 

 



90 

 

 

 

Figure 31. Satellite view of the environment in the AIPORT dataset with the path of the self-driving car in 

the log used for mapping highlighted in blue. 

 

Figure 32. Satellite view of the environment in the URBAN dataset with the path of the self-driving car in 

the log used for mapping highlighted in blue.  

 



91 

 

 

6.3. Experiments 

The experiments performed to evaluate the proposed techniques are the 

following: 

Map Building. This experiment evaluates the capacity of the mapping technique of 

producing grid maps with consistent loop closures. For each environment, the 

mapping technique is employed for building occupancy, reflectivity, colour, and 

semantic grid maps. A qualitative analysis of the maps is presented. 

Localization Accuracy at Daytime. This experiment evaluates the accuracy of the 

localization technique using different types of grid maps during daytime. The 

experiment aims at evaluating the sensitivity of the method to different conditions of 

illumination (e.g., shadows and different intensities of light) and its robustness in face 

of objects that were not present during mapping. We do not compare our method 

with previous methods from the literature. Performing a fair comparison of localization 

techniques is challenging because the localization accuracy depends of several 

aspects such as the sensor set used by the vehicle, the environment, and the 

conditions (weather, illumination, etc.) in which experiments are performed.  

Localization Accuracy at Night and Shadows. This experiment evaluates the 

accuracy of the localization technique at night and in conditions of illumination that 

are significantly different from the ones present in the mapping logs.  

This previous pair of experiments evaluates the hypotheses that: (i) localization 

with occupancy and reflectivity grid maps are nearly invariant to different conditions 

of illumination and perform as well at night as in daylight; (ii) given a robust method 

for extracting semantic information from sensor data, semantic grid maps can be 

successfully used for localization in daylight and at night; and (iii) using the entropy 

correlation coefficient for computing the particle weights, colour grid maps can be 

used for localization in different conditions of illumination.  

Localization Accuracy in Flat Terrains with Featureless Surroundings. This 

experiment evaluates the capacity of the localization technique of operating in the 

challenging environment of an airport runway. Some highways are similar to an 



92 

 

 

airport runway in the sense that they consist of a flat road with eventual lane marks 

and with a surrounding area that has not perceptible features for localization.    

 

6.4. Metrics 

We use the same criteria used in previous works [23, 24, 25] for evaluating the 

localization technique. In particular, the root mean squared error (RMSE) is 

employed for measuring the accuracy of the technique. Assuming that 𝑥1:𝑡 are the 

localization estimates associated with 𝑡 data packages, and 𝑔1:𝑡 are the ground-truth 

poses, the RMSE is given by: 

RMSE = √∑ (𝑥𝑖
𝑥 − 𝑔𝑖

𝑥)2 + (𝑥𝑖
𝑦

− 𝑔𝑖
𝑦
)
2𝑡

𝑖=1

𝑡
 (28) 

where the superscripted 𝑥 and 𝑦  represent the respective coordinates of the poses.  

Bresson et al. argue that for operating safely, the error in the localization 

estimates should never be bigger than 20cm [17]. Inspired by this observation, we 

also present for each test log the percentage of data packages in which the 

localization error is smaller than a given threshold. The chosen threshold values are 

0.5m, 1.0m, and 2.0m.   

 

6.5. Parameters 

The parameters used in the mapping technique were empirically adjusted to 

maximize the quality of the maps. The resolution of the maps is set to 20cm, and the 

tile size is set to 70m.  The parameters of the localization technique are presented in 

Table 4. Two sets of parameters are evaluated, one favours stability in the estimates 

produced by the particle filter (STABLE), and the second that favours recoverability / 

diversity in the particles values (DIVERSE). The different behaviours of the particle 

filter are chosen by using different amounts of noise to update the particles values 

during the prediction step. The amount of noise used in the filter is controlled by the 

standard deviations (std) of the Normal distributions used to sample noise. By adding 



93 

 

 

more noise into the particles values, the diversity of the particles is increased which 

can increase the capacity of the filter of recovering from incorrect estimates. On the 

other hand, high levels of noise can cause large variations in the pose estimates. 

These variations can cause oscillations and abrupt movements during autonomous 

operation as a result of the decision making system trying to adjust the vehicle 

trajectory given the new pose estimate.  

 

6.6. Ground truth Generation 

Producing a ground truth for evaluating the localization technique is quite 

challenging. The comparison of localization estimates with GPS, for example, leads 

to a poor evaluation. Although globally consistent, GPS data can be subject to 

significant amounts of noise, and the GPS measurements are not necessarily 

consistent with the map. Maps are built using poses that result from an optimization 

algorithm which may drift locally from the GPS path. These local drifts can make the 

maps inconsistent with the real world. Since the localization is computed in relation to 

the map, the localization estimate may be inconsistent with the GPS, while being 

consistent with the map.  

The approach used in our work for producing the ground truth is similar to the 

ones employed in [23] [24][25]. First, the mapping technique presented in Section 5.3 

is employed for optimizing the poses of the mapping log and building the maps. From 

this point onwards, the poses of the mapping log are fixed and do not change.  

In order to compute the true poses of the test log, we pretend that the test log is 

a loop closure of the mapping log, and the tools used for handling loop closures are 

used to optimize the poses of the test log. The localization method presented in 

Section 5.2 is used for estimating the localization of the vehicle in the map (built 

using the mapping log). As before, reflectivity and occupancy grid maps are used for 

localization. The poses estimates obtained using these maps along with data from 

GPS, odometry, and loop closures constraints are used as input for the GraphSLAM 

algorithm and the resultant poses are assumed as the ground truth. By using the 

sensors’ data together with the localization estimates, we can compensate local 



94 

 

 

errors in the localization. The localization estimates are introduced in the graph as 

global edges similarly to GPS measurements.  

 

Table 4. Parameters used for evaluating the localization technique.  

Parameter STABLE DIVERSE 

Std of the position in the initial 

guess of the localization 
2.5m 2.5 m 

Std of the orientation in the initial 

guess of the localization 
20 deg 20 deg 

Std of reflectivity measurements 3 3 

Std of colour measurements 3 3 

Number of particles 200 200 

Std in velocity measurements 0.2 m/s 0.2 m/s 

Std in steering wheel angle 

measurements 
0.5 deg 0.5 deg 

Std in XY direction in 𝜖𝑝 0.01 m 0.1 m 

Std in the orientation in 𝜖𝑝 0.1 deg 0.5 deg 

Outlier rejection rate 0.7 0.7 

 

Using the same notation used in Chapter 5.3, the ground truth poses can be 

obtained by solving the following optimization problem:  

𝑥1:𝑛
∗ = argmin x1:n

 Q(x1:n, p1:n, l1:n) (29) 

where 𝑥1:𝑛
∗  are the ground truth poses, p1:n are the data packages from the test log, 

and l1:n are the localization estimates in relation to the map. The objective function Q 

is given by: 

Q = J(x1:n, p1:n) + ∑ G(xt, 𝑙t)

n

t=1

 (30) 



95 

 

 

where J is the objective function of the second step of optimization from Chapter 5.3 

and G is the function for global comparison (the same used for GPS measurements), 

but using the covariance matrix for the localization estimates instead of the 

covariance matrix associated with GPS measurements. Since the ground-truth 

results from an optimization process, it is not perfect. However, a qualitative analysis 

shows that it is significantly more accurate than the GPS measurements.  

 

6.7. Results 

The grid maps created using the logs UFES_M, PLOT_M, URBAN_M, AV_M, 

and AIRPRT_M are presented, respectively, in Figure 33, Figure 34, Figure 35, 

Figure 36, and Figure 37. The proposed mapping technique was successfully 

employed for creating grid maps of all logs. As the reader can observe, the loop 

closures are consistent and ghosting effects are not observable.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 33. Grid maps created using the UFES_M log. (a) Occupancy grid map. (b) Reflectivity grid map. 

(c) Semantic grid map. (d) Visual grid map.  



96 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 34. Grid maps created using the PLOT_M log. (a) Occupancy grid map. (b) Reflectivity grid map. 

(c) Semantic grid map. (d) Visual grid map.  

 



97 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 35. Grid maps created using the URBAN_M log. (a) Occupancy grid map. (b) Reflectivity grid 

map. (c) Semantic grid map. (d) Visual grid map.  

 

 



98 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 36. Grid maps created using the AV_M log. (a) Occupancy grid map. (b) Reflectivity grid map. (c) 

Semantic grid map. (d) Visual grid map.  

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 37. Grid maps created using the AIRPRT_M log. (a) Occupancy grid map. (b) Reflectivity grid 

map. (c) Semantic grid map. (d) Visual grid map.  



99 

 

 

Table 5 presents the metrics achieved by the localization technique in the logs 

UFES_D, PLOT_D, URBAN_D, and AV_T with the DIVERSE configuration. These 

logs were recorded during daylight. The methods based solely on LiDARs achieved 

the highest performance in all tests. For two out of four logs, the localization with 

occupancy grid maps achieved the smaller error. In the other two, the most accurate 

results were achieved using the reflectivity grid maps. The localization with semantic 

grid maps resulted in an RMSE that is bigger than the other two, but it managed to 

maintain the position tracking in all logs without divergence. In the UFES_D and 

AV_T logs, the localization with colour grid maps did not diverge as well, but it 

maintained a nearly constant offset from the correct pose. In the other logs it 

diverged from the correct path.  

The results observed in the logs UFES_D and PLOT_D show that the 

localization with occupancy, reflectivity, and semantic grid maps is robust to 

distractors (e.g., parked cars and pedestrians), to changes in the environment due to 

time passing (note the difference of months between the mapping and test logs), to 

different conditions of illumination, and to the complex U-turns present in the 

PLOT_D log.  

In the URBAN_D logs, the localization with occupancy grid maps diverged from 

the true path. By analysing the method, we observed that the divergence happened 

in a situation of intense traffic in which the self-driving car was surrounded by other 

vehicles. Examples of such situations are presented in Figure 38. 

 Even using a sophisticated measure for computing the particles weights when 

using colour grid maps, the method did not managed to achieve a performance as 

good as with the other maps, particularly in face of shadows that are not uniformly 

distributed over the environment (see top image in Figure 28).  

 

 

 



100 

 

 

Table 5. Results of the localization technique for the DIVERSE configuration. 

UFES_D 

Mode RMSE (m) STD (m) % < 2m % < 1m % < 0.5m 

Occupancy 0.18 0.02 100.00 100.00 94.58 

Reflectivity 0.19 0.02 100.00 100.00 93.83 

Semantic 0.30 0.02 100.00 99.49 92.95 

Colour 1.85 2.64 89.03 83.39 68.27 

PLOT_D 

Occupancy 0.19 0.02 100.00 100.00 95.93 

Reflectivity 0.17 0.01 100.00 100.00 98.99 

Semantic 0.28 0.03 100.00 100.00 88.12 

Colour 20.94 216.08 22.62 18.54 12.60 

URBAN_D 

Occupancy 83.49 5849.75 68.31 67.84 61.07 

Reflectivity 0.52 0.18 98.34 93.72 82.32 

Semantic 0.60 0.19 97.61 93.28 78.00 

Colour 17.46 246.27 60.80 59.71 55.08 

AV_T 

Occupancy 0.21 0.03 100.00 99.11 96.75 

Reflectivity 0.23 0.03 99.98 99.06 95.66 

Semantic 1.92 1.22 70.51 43.83 10.49 

Colour 3.32 6.01 61.54 51.08 14.51 

 



101 

 

 

  

Figure 38. Examples of intense traffic situations in the URBAN dataset. 

 

Table 6 presents the localization results for the same logs, but using the 

STABLE configuration. The errors were on average bigger than when using the 

DIVERSE configuration. This result supports the hypothesis that adding more noise 

during the prediction step increases the capacity of the method of correcting 

momentary failures. It is worth noting, however, that the localization with occupancy 

grid maps did not diverged in the URBAN_D logs with this configuration. Recall that 

the divergence happened when the self-driving car was surrounded by other cars. By 

adding less noise into the particles, they spread more slowly which allowed the 

surrounding cars to move before the localization drifted to an unrecoverable pose.  

Table 7 and Table 8 present the metrics achieved by the localization technique in 

the logs UFES_N, PLOT_N, and URBAN_N with the DIVERSE and STABLE 

configurations, respectively. These logs were recorded at night. The results are 

consistent with the ones observed in the daylight experiments. The localization using 

occupancy and reflectivity grid maps resulted in the smaller error, with the method 

based on occupancy grid maps being the more precise in five out of six logs.  

 

 

 



102 

 

 

Table 6. Results of the localization technique for the STABLE configuration. 

UFES_D 

Mode RMSE (m) STD (m) % < 2m % < 1m % < 0.5m 

Occupancy 0.59 0.23 97.16 92.35 80.10 

Reflectivity 0.55 0.19 97.85 93.05 86.18 

Semantic 0.61 0.18 98.86 89.10 71.67 

Colour 11.28 44.17 18.77 16.14 14.17 

PLOT_D 

Occupancy 0.22 0.02 100.00 100.00 93.81 

Reflectivity 0.17 0.01 100.00 100.00 99.33 

Semantic 0.35 0.05 100.00 98.50 84.52 

Colour 9.61 9.11 0.54 0.30 0.24 

URBAN_D 

Occupancy 0.50 0.18 97.86 95.03 88.04 

Reflectivity 0.83 0.52 95.55 90.77 81.96 

Semantic 0.55 0.17 97.78 94.76 81.89 

Colour 0.60 0.20 97.88 92.16 78.48 

AV_T 

Occupancy 0.64 0.30 94.56 91.56 83.83 

Reflectivity 0.61 0.25 96.05 92.24 81.69 

Semantic 2.14 1.89 66.42 41.70 24.33 

Colour 26.76 112.47 1.57 0.03 0.02 

 

Even the localization with sematic grid maps relying on images captured by a 

camera, the method also kept the position tracking. This capacity is mostly to the 

high-quality semantic segmentations produced by the Deeplabv3+ deep neural 

network even in challenging conditions of illumination (see Figure 39 and Figure 40). 

This result also demonstrates the potential of using semantic information for 

localization. Given a robust method for extracting semantic information from sensors 

data, the semantic information is invariant to different illumination and weather 

conditions.  



103 

 

 

Table 7. Results of the localization technique in night conditions for the DIVERSE configuration. 

UFES_N 

Mode RMSE (m) STD (m) % < 2m % < 1m % < 0.5m 

Occupancy 0.19 0.02 100.00 99.98 96.17 

Reflectivity 0.20 0.02 99.98 99.93 96.85 

Semantic 0.51 0.10 99.44 95.20 76.73 

Colour 6.05 16.75 40.30 23.27 11.40 

PLOT_N 

Occupancy 0.22 0.02 100.00 100.00 95.68 

Reflectivity 0.20 0.02 100.00 100.00 95.15 

Semantic 0.63 0.17 98.32 93.34 63.48 

Colour 22.85 221.43 11.48 3.96 1.02 

URBAN_N 

Occupancy 0.19 0.02 100.00 99.82 96.59 

Reflectivity 0.22 0.03 100.00 98.12 96.51 

Semantic 0.60 0.14 98.54 93.00 69.22 

Colour 11.79 57.33 14.14 8.46 4.61 

 

Table 9 and Table 10 present the metrics achieved by the localization technique 

in the logs AIRPRT_T with the DIVERSE and STABLE configurations, respectively. 

These logs were recorded in the airport runway which consists of a flat area with few 

features. Similarly to the previous experiments, the localization based on occupancy 

and reflectivity grid maps achieved the higher performance, with the top performance 

being achieved with the STABLE configuration.  

 

 



104 

 

 

 

 

 

Figure 39. Good semantic segmentations produced by the deep neural network Deeplabv3+ under 

challenging conditions of illumination. The three images correspond to the same place, with the top image 

being from the UFES_M log, the second one being from the UFES_D log, and the last one being from the 

UFES_N log.   

 



105 

 

 

 

 

 

Figure 40. Another example of good semantic segmentations produced by the deep neural network 

Deeplabv3+ under challenging conditions of illumination. The three images correspond to the same place, 

with the top image being from the UFES_M log, the second one being from the UFES_D log, and the last 

one being from the UFES_N log. 

 

 



106 

 

 

Table 8. Results of the localization technique in night conditions for the STABLE configuration. 

UFES_N 

Mode RMSE (m) STD (m) % < 2m % < 1m % < 0.5m 

Occupancy 0.28 0.05 100.00 97.74 93.90 

Reflectivity 0.34 0.08 99.96 95.99 90.48 

Semantic 1.86 2.54 85.13 80.48 70.87 

Colour 6.71 19.69 28.24 17.10 8.45 

PLOT_N 

Occupancy 0.20 0.02 100.00 100.00 96.15 

Reflectivity 0.22 0.02 100.00 100.00 95.99 

Semantic 0.34 0.03 100.00 100.00 88.44 

Colour 10.85 21.84 2.94 0.67 0.04 

URBAN_N 

Occupancy 1.18 1.16 93.21 89.77 83.51 

Reflectivity 2.10 2.75 69.66 63.87 59.99 

Semantic 2.28 3.92 84.68 82.66 68.07 

Colour 29.44 297.68 0.78 0.08 0.05 

 

With all the grid maps, the localization technique managed to maintain the 

position tracking without divergence. However, both, the localization based on visual 

and semantic grid maps drifted from the correct poses in the beginning of the test 

log, and the offset was maintained during the rest of the log.  

The high accuracy of the localization in this dataset is surprising given the 

apparent lack of features in the environment. Observing the maps in Figure 37, 

however, the reader can find features that are identified in a superficial analysis. The 

limits of the runway and the surrounding vegetation are detected as obstacles which 

support the localization with occupancy grid mas. The lane marks on the road are 

also visible in the reflectivity grid maps which can aid the localization with them.  

 



107 

 

 

Table 9. Localization accuracy in the AIRPORT dataset with the DIVERSE configuration. 

AIRPRT_T 

Mode RMSE (m) STD (m) % < 2m % < 1m % < 0.5m 

Occupancy 0.10 0.01 100.00 99.95 99.65 

Reflectivity 0.25 0.05 100.00 97.89 97.19 

Semantic 3.14 4.49 56.78 38.44 20.09 

Colour 7.37 3.99 0.82 0.35 0.12 

 

Table 10. Localization accuracy in the AIRPORT dataset with the STABLE configuration. 

AIRPRT_T 

Mode RMSE (m) STD (m) % < 2m % < 1m % < 0.5m 

Occupancy 0.10 0.00 100.00 100.00 99.65 

Reflectivity 0.10 0.00 100.00 99.85 99.75 

Semantic 4.66 3.95 20.44 14.84 10.40 

Colour 7.16 4.00 0.94 0.23 0.12 

 

In all cases, the localization with colour grid maps led to accuracies smaller than 

the ones achieved with the other types of maps. Even with a robust metric being 

used for computing the particles weights, the non-uniformity of the illumination and 

the color variation in face of it may have caused a negative impact in the method. 

The deep neural network Deeplabv3+, on the other hand, was less sensitive to 

variations in the illumination. It managed to produce semantic segmentations that 

were sufficient for localizing in semantic grid maps without divergence. The semantic 

data demonstrated to be a good intermediary representation of the features of the 

environment. Semantic information is invariant to illumination and weather conditions, 

and also invariant to the sensor modality (in principle, it can be extracted from any 

sensors). The method for extracting semantic information from sensors can be 

sensitive to these factors, however. Given a robust method for extracting semantic 

information, this work demonstrates that localization with semantic grid maps is 

possible.   



108 

 

 

The hypothesis that it is possible to use the proposed techniques to build grid 

maps of large-scale environments was validated in all experiments. On the other 

hand, the hypothesis that it is possible to estimate the car localization with an 

average accuracy of 0.2m was invalidated. It is worth noting, however, that this 

accuracy was achieved in some of the tested datasets using occupancy and 

reflectivity grid maps. We conjecture that similar results would be achieved using 

semantic grid maps if LiDAR point clouds were directly segmented instead of fusing 

data from LiDAR and camera for obtaining semantic information.   

Table 11 summarizes the experimental results as a qualitative analysis of the 

localization accuracy for different types of grid maps and conditions of operation. 

Reflectivity grid maps achieved good localization accuracy in all conditions. Similar 

results were achieved by occupancy grid maps, except in intense traffic conditions. In 

this scenario, a divergence from the true path was observed. Since the localization 

based on colour and semantic grid maps rely on camera data, they are sensitive to 

illumination conditions and presence of shadows. This effect is even more 

perceptible when using colour data. The localization based on colour grid maps 

achieved a poor performance in all conditions. We hypothesize that the main cause 

of the low accuracy is the variation in the illumination.  

Table 11. Qualitative analysis of the localization accuracy for different grid maps and conditions. 

Conditions \ Type of maps Occupancy Reflectivity Semantic Colour 

Varying illumination  Good Good Medium Poor 

Night Good Good Medium Poor 

Outliers (movable and dynamic 
vehicles and pedestrians) 

Good Good Good Poor 

Tree-lined streets Good Good Good Poor 

Tunnels Good Good Good Poor 

Time-passing Good Good Good Poor 

Airport conditions (flat terrain, 
lane marks) 

Good Good Medium Poor 

Intense traffic Poor Good Good Poor 

Challenging U-turns Good Good Good Poor 

Different types of pavements Good Good Good Poor 



109 

 

 

7. Conclusion 

This work presented novel techniques for creating grid maps of complex large-

scale environments, and for estimating the localization of self-driving cars in relation 

to them. The proposed mapping technique allowed the creation of occupancy, 

reflectivity, colour, and sematic grid maps. For creating semantic grid maps, we fused 

data from the Velodyne with visual semantic segmentations computed by a deep 

neural network, the DeepLabv3+, pre-trained in the Cityscapes dataset.  

The localization technique was based on a particle filter. We introduced novel 

methods for computing the particles' likelihoods using semantic and colour data. A 

new version of the GraphSLAM algorithm was developed and successfully used for 

estimating the states of the self-driving in a set of logs. In the method, the data from 

GPS and odometry are fused to produce an initial guess for the values of the states. 

Then, loop closure regions are detected using these values. In the first visit to the 

loop closure regions, reflectivity grid maps are created. In the next visits, the 

localization of the vehicle in relation to the map of the first visit is computed. The final 

estimates of the vehicle states are obtained by using data from GPS, odometry, and 

the restrictions due to loop closures as input for the GraphSLAM algorithm.  

The proposed techniques were evaluated in different environments. The method 

used for handling loop closures during the mapping was successfully used for 

producing the ground truth for evaluating the localization technique. The 

experimental results showed that the localization with occupancy grid maps led to the 

most accurate results, followed by reflectivity grid maps, and semantic grid maps. 

Even using the ECC measure for computing the particles weights, the localization 

with colour data was significantly less precise than with the other types of maps.  

Errors in the process of fusing data from Velodyne and camera can explain the 

inferior performance achieved with semantic and colour grid maps. Among others, 

the lack of synchrony between the sensors, latency in the camera, and incorrect 

calibration of the sensors’ relative poses are potential causes of such errors. 



110 

 

 

In future works, we intend to evaluate the localization accuracy with different 

types of grid maps present in the literature (e.g., height grid maps) and in different 

environments (e.g., highways and hills) and conditions of operation (e.g., variable 

weather conditions). The direct semantic segmentation of point clouds instead of the 

fusion with segmented images is also a promising direction of study. If errors in the 

sensor fusion process caused the imprecisions observed in this work, the 

segmentation of the point clouds can boost the localization accuracy when using 

semantic grid maps. The study of different measures for comparing colour data can 

similarly increase the localization accuracy when using colour grid maps. The fact 

that humans can drive relying in vision, and the richness of colour data motivate this 

direction of research. Finally, the accuracies achieved when using occupancy grid 

maps and reflectivity grid maps suggest that even higher localization accuracies can 

be achieved by using both maps together. This hypothesis will be evaluated in future 

works. The ground-truth used for evaluating the localization accuracy is imperfect. 

The error in the ground-truth can impact the localization evaluation. These factors, 

the ground-truth accuracy and its impacts in the localization evaluation will be 

measured in subsequent works. Moreover, techniques for assessing the localization 

accuracy considering the uncertainty in the ground-truth will be studied. 

  



111 

 

 

REFERENCES 

[1] National Highway Traffic Safety Administration, U.S. Department of Transportation, 

“Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash 

Causation Survey”. 2015. URL: 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115. Access in 

17/05/2019. 

[2] Securing America’s Future Energy, “America’s Workforce and the Self-Driving 

Future: Realizing Productivity Gains and Spurring Economic Growth”. 2018. URL: 

https://avworkforce.secureenergy.org/wp-
content/uploads/2018/06/SAFE_AV_Policy_Brief.pdf. Access in 17/05/2019. 

[3] Bureau of Labor Statistics, “Occupational Outlook Handbook”. United States 

Department of Labor. 2016. URL: https://www.bls.gov/ooh/. Access in: 17/05/2019. 

[4] M. Buehler, K. Iagnemma, and S. Singh, “The 2005 DARPA grand challenge: the 

great robot race”. Springer-Verlag Berlin Heidelberg. 2007. 

[5] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. 

Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. 

Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. 

Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. 

Ettinger, A. Kaehler, A. Nefian, and P. Mahoney, “Stanley: the robot that won the 

darpa grand challenge”, in Journal of Field Robotics, vol. 23, no. June, 2007, pp. 1–

43. 

[6] M. Buehler, K. Iagnemma, and S. Singh, “The DARPA urban challenge: autonomous 

vehicles in city traffic”. SpringerVerlag Berlin Heidelberg. 2009. 

[7] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan, D. 

Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M. 

Howard, S. Kolski, A. Kelly, M. Likhachev, M. McNaughton, N. Miller, K. Peterson, 

B. Pilnick, R. Rajkumar, P. Rybski, B. Salesky, Y.- W. Seo, S. Singh, J. Snider, A. 

Stentz, W. “Red” Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. 

Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, 

M. Darms, and D. Ferguson, “Autonomous driving in urban environments: Boss and 

the urban challenge”, Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008. 

[8] F. Mutz, L. P.Veronese, T. Oliveira-Santos, E. de Aguiar, F. A. A. Cheein,, and A. F. 

De Souza. “Large-scale mapping in complex field scenarios using an autonomous 

car”. Expert Systems with Applications, 46, 439-462. 2016. 

[9] V. Cardoso, J. Oliveira, T. Teixeira, C. Badue, F. Mutz, T. Oliveira-Santos, L. 

Veronese, and A. F. De Souza, “A model-predictive motion planner for the iara 

autonomous car”, in 2017 IEEE International Conference on Robotics and 

Automation (ICRA), 2017, pp. 225–230. 

[10] R. Guidolini, C. Badue, M. Berger and A. F. De Souza, “A Simple Yet Effective 

Obstacle Avoider for the IARA Autonomous Car”, 2016 IEEE 19th International 

Conference on Intelligent Transportation Systems (ITSC 2016), Rio de Janeiro, 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://avworkforce.secureenergy.org/wp-content/uploads/2018/06/SAFE_AV_Policy_Brief.pdf
https://avworkforce.secureenergy.org/wp-content/uploads/2018/06/SAFE_AV_Policy_Brief.pdf


112 

 

 

Brazil, 2016. 

[11] R. Guidolini, A. F. De Souza, F. Mutz, and C. Badue, “Neural-based model 

predictive control for tackling steering delays of autonomous cars”, International 

Joint Conference on Neural Networks (IJCNN), 2017, pp. 4324–4331. 

[12] “Taxonomy and Definitions for Terms Related to Driving Automation Systems for 

On-Road Motor Vehicles”, SAE International, 2016.  

[13] R. P. D. Vivacqua, M. Bertozzi, P. Cerri, F. N. Martins, and R. F. Vassallo. “Self-

localization based on visual lane marking maps: An accurate low-cost approach for 

autonomous driving”. IEEE Transactions on Intelligent Transportation Systems, 

19(2), 582-597.  2018. 

[14] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for 

direct perception in autonomous driving”. In Proceedings of the IEEE International 

Conference on Computer Vision. 2015. pp. 2722-2730. 

[15] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,  and X. 

Zhang, “End to end learning for self-driving cars”. arXiv preprint arXiv:1604.07316. 

2016. 

[16] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi, L. F. 

R. Jesus, R. F. Berriel, T. M. Paixão, F. Mutz, T. Oliveira-Santos, A. F. De Souza, 

“Self-Driving Cars: A Survey” arXiv: 1901.04407, 2019. 

[17] G. Bresson, Z. Alsayed, L. Yu, S. Glaser, “Simultaneous Localization And Mapping: 

A Survey of Current Trends in Autonomous Driving”. IEEE Transactions on 

Intelligent Transportation Systems. Vol. 2, nº 3, pp. 194-220. 2017.   

[18] J. J. Leonard and H. F. Durrant-Whyte. “Simultaneous map building and localization 

for an autonomous mobile robot”. In Proceedings IROS'91: IEEE/RSJ International 

Workshop on Intelligent Robots and Systems' 91. pp. 1442-1447. 1991. 

[19] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. “Monte carlo localization for mobile 

robots.” In proceedings of IEEE International Conference of Robotics and 

Automation (ICRA). Vol. 2. pp. 1322-1328. 1999. 

[20] S. Thrun, W. Burgard, and D. Fox, “Probabilistic robotics”. MIT press. 2005.  

[21] H. Durrant-Whyte, and T. Bailey., “Simultaneous localization and mapping: part I”. 

IEEE robotics & automation magazine, 13(2), 99-110. 2006. 

[22] T. Bailey, and H. Durrant-Whyte, “Simultaneous localization and mapping: part II”. 

IEEE Robotics & Automation Magazine, 13(3), 108-117. 2006. 

[23] J. Levinson, M. Montemerlo, and S. Thrun, “Map-based precision vehicle 

localization in urban environments”. In Robotics: Science and Systems Vol. 4, pp. 1. 

2007.  

[24] J. Levinson, and S. Thrun, “Robust vehicle localization in urban environments using 

probabilistic maps”. In 2010 IEEE International Conference on Robotics and 

Automation (ICRA). 2010. pp. 4372-4378.  

[25] R. W. Wolcott, and R. M. Eustice, “Robust LIDAR localization using multiresolution 

Gaussian mixture maps for autonomous driving”. The International Journal of 



113 

 

 

Robotics Research, Vol. 36, Num. 3, pp. 292-319. 2017. 

[26] M. Dymczyk, M. Fehr, T. Schneider, and R. Siegwart. “Long-term Large-scale 

Mapping and Localization Using maplab”. arXiv preprint arXiv:1805.10994. 2018. 

[27] R. Spangenberg, D. Goehring, and R. Rojas, “Pole-based localization for autonomous 

vehicles in urban scenarios”. In IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS). pp. 2161-2166. IEEE. 2016. 

[28] M. Sefati, M. Daum, B. Sondermann, K. D. Kreisköther, and A. Kampker. 

“Improving vehicle localization using semantic and pole-like landmarks”. In 

proceedings IEEE Intelligent Vehicles Symposium (IV). pp. 13-19. IEEE. 2017. 

[29] L. P. Veronese, J. Guivant, F. A. A. Cheein, T. Oliveira-Santos, F. Mutz, E. de 

Aguiar, and A. F. De Souza. “A light-weight yet accurate localization system for 

autonomous cars in large-scale and complex environments”. In IEEE 19th 

International Conference on Intelligent Transportation Systems (ITSC). pp. 520-525. 

IEEE. 2016. 

[30] L. Li, M. Yang, C. Wang, and B. Wang. “Road DNA based localization for 

autonomous vehicles”. In 2016 IEEE Intelligent Vehicles Symposium (IV). pp. 883-

888. IEEE. 2016. 

[31] L. P. Veronese, E. de Aguiar, R. C. Nascimento, J. Guivant, F. A. A. Cheein, A. F. 

De Souza, and T. Oliveira-Santos. “Re-emission and satellite aerial maps applied to 

vehicle localization on urban environments”. In IEEE/RSJ International Conference 

on Intelligent Robots and Systems (IROS). pp. 4285-4290. IEEE. 2015. 

[32] W. Maddern, G. Pascoe, and P. Newman, “Leveraging experience for large-scale 

LIDAR localisation in changing cities”. In IEEE International Conference on 

Robotics and Automation (ICRA). pp. 1684-1691. IEEE. 2015. 

[33] J. Guivant, and R. Katz, “Global urban localization based on road maps”. In 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 

1079-1084. IEEE. 2007. 

[34] L. P. Veronese, J. E. Guivant, A. F. De Souza. “Improved Global Urban Localization 

Based on Road Maps and 3D Detection of Road Intersections”. In proceedings of the 

Australasian Conference on Robotics and Automation. 2015. 

[35] S. Bauer, Y. Alkhorshid, and G. Wanielik, “Using high-definition maps for precise 

urban vehicle localization”. In IEEE 19th International Conference on Intelligent 

Transportation Systems (ITSC). pp. 492-497. IEEE. 2016. 

[36] I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile robotics tasks: A 

survey,” Robotics and Autonomous Systems, vol. 66, pp. 86–103, 2015. 

[37] Z. Zhao and X. Chen, “Building 3d semantic maps for mobile robots using rgb-d 

camera,” Intelligent Service Robotics, vol. 9, no. 4, pp. 297–309, 2016. 

[38] V. Vineet, O. Miksik, M. Lidegaard, M. Nießner, S. Golodetz, V. A. Prisacariu, O. 

Kahler, D. W. Murray, S. Izadi, P. P  ̈ erez,  ́ et al., “Incremental dense semantic 

stereo fusion for large-scale semantic scene reconstruction,” in Robotics and 

Automation (ICRA), 2015 IEEE International Conference on, pp. 75–82, IEEE, 2015. 



114 

 

 

[39] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Semanticfusion: Dense 

3d semantic mapping with convolutional neural networks,” in 2017 IEEE 

International Conference on Robotics and automation (ICRA), pp. 4628–4635, IEEE, 

2017. 

[40] S. Yang, Y. Huang, and S. Scherer, “Semantic 3d occupancy mapping through 

efficient high order crfs,” arXiv preprint arXiv:1707.07388, 2017. 

[41] S. Sengupta, P. Sturgess, P. H. Torr, et al., “Automatic dense visual semantic 

mapping from street-level imagery,” in Intelligent Robots and Systems (IROS), 2012 

IEEE/RSJ International Conference on, pp. 857–862, IEEE, 2012. 

[42] S. Sengupta, and P. Sturgess. “Semantic octree: Unifying recognition, reconstruction 

and representation via an octree constrained higher order MRF”. In IEEE 

International Conference on Robotics and Automation (ICRA). pp. 1874-1879. IEEE. 

2015. 

[43] D. Lang, S. Friedmann, and D. Paulus. “Semantic 3D Octree Maps based on 

Conditional Random Fields”. MVA. Vol. 13, pp. 185-188. 2013. 

[44] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with 

atrous separable convolution for semantic image segmentation”. In Proceedings of 

the European Conference on Computer Vision (ECCV). pp. 801-818. 2018. 

[45] A. Segal, D. Haehnel, and S. Thrun. “Generalized-icp”. In Robotics: science and 

systems. Vol. 2, No. 4, pp. 435. 2009. 

[46] J. Weingarten and R. Siegwart. “EKF-based 3D SLAM for structured environment 

reconstruction”. In 2005 IEEE/RSJ International Conference on Intelligent Robots 

and Systems. pp. 3834-3839. IEEE. 2005. 

[47] E. A. Wan, and R. Van Der Merwe. “The unscented Kalman filter for nonlinear 

estimation”. In Proceedings of the IEEE 2000 Adaptive Systems for Signal 

Processing, Communications, and Control Symposium. Cat. No. 00EX373. pp. 153-

158). IEEE. 2000. 

[48] G. Sibley, G. S. Sukhatme, and L. H. Matthies, “The Iterated Sigma Point Kalman 

Filter with Applications to Long Range Stereo”. In Robotics: Science and Systems 

Vol. 8, No. 1, pp. 235-244. 2006. 

[49] S. Huang, and G. Dissanayake, “Convergence and consistency analysis for extended 

Kalman filter based SLAM”. IEEE Transactions on robotics, 23(5), 1036-1049. 2007. 

[50] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al. “Fastslam: A factored 

solution to the simultaneous localization and mapping problem”. In Proceedings of 

the AAAI/IAAI. pp. 593–598. 2002. 

[51] M. Montemerlo, S. Thrun. “Fastslam 2.0. FastSLAM: A scalable method for 

thesimultan eous localization and mapping problem in robotics, pp. 63–90. 2007. 

[52] S. Thrun, and, M. Montemerlo, “The graph SLAM algorithm with applications to 

large-scale mapping of urban structures”. The International Journal of Robotics 

Research, Vol. 25, pp. 403-429. 2006. 

[53] F. Lu, and E. Milios, “Globally consistent range scan alignment for environment 



115 

 

 

mapping”. Autonomous robots, Vol. 4, nº 4, 333-349. 1997. 

[54] T. Duckett, S. Marsland, and J. Shapiro, “Learning globally consistent maps by 

relaxation”. In Proceedings 2000 ICRA. Millennium Conference. IEEE International 

Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 

00CH37065). Vol. 4, pp. 3841-3846. IEEE. 2000. 

[55] U. Frese, and G. Hirzinger, “Simultaneous localization and mapping-a discussion”. In 

Proceedings of the IJCAI Workshop on Reasoning with Uncertainty in Robotics (pp. 

17-26). 2001. 

[56] K. Konolige, “Large-scale map-making”. In AAAI pp. 457-463. 2004. 

[57] M. Golfarelli, D. Maio, and S. Rizzi “Elastic correction of dead-reckoning errors in 

map building”. In Proceedings. 1998 IEEE/RSJ International Conference on 

Intelligent Robots and Systems. Innovations in Theory, Practice and Applications 

(Cat. No. 98CH36190). Vol. 2, pp. 905-911. IEEE. 1998. 

[58] L. D. L. Perera, W. S. Wijesoma, S. Challa, and M. D. Adams. “Sensor bias 

correction in simultaneous localization and mapping”. In 6th Int. Conf. on 

Information Fusion. pp. 151-158. 2003. 

[59] R. Kümmerle, “State estimation and optimization for mobile robot navigation”. 

(Doctoral dissertation, Verlag nicht ermittelbar). 2013. 

[60] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. “OctoMap: 

An efficient probabilistic 3D mapping framework based on octrees”. Autonomous 

robots, Vol. 34, nº 3, 189-206. 2013. 

[61] J. Chen and S. Shen, “Improving octree-based occupancy maps using environment 

sparsity with application to aerial robot navigation”, 2017 IEEE International 

Conference on Robotics and Automation (ICRA), 2017, pp. 3656–3663. 

[62]

  

D. Droeschel, M. Schwarz, and S. Behnke, “Continuous mapping and localization for 

autonomous navigation in rough terrain using a 3d laser scanner”, Robotics and 

Autonomous Systems, vol. 88, pp. 104–115, 2017. 

[63] S. Sengupta, P. Sturgess, and P. H. Torr. “Automatic dense visual semantic mapping 

from street-level imagery”. In 2012 IEEE/RSJ International Conference on Intelligent 

Robots and Systems. pp. 857-862. IEEE. 2012. 

[64] N. Atanasov, M. Zhu, K. Daniilidis, and G. J. Pappas. “Semantic Localization Via the 

Matrix Permanent”. In Robotics: Science and Systems, Vol. 2. 2014. 

[65] N. Atanasov, M. Zhu, K. Daniilidis, and G. J. Pappas. “Localization from semantic 

observations via the matrix permanent”. The International Journal of Robotics 

Research, Vol. 35, pp. 73-99. 2016. 

[67] N. Otsu, “A threshold selection method from gray-level histograms”. IEEE 

transactions on systems, man, and cybernetics, Vol. 9, nº 1, pp. 62-66. 1979. 

[68] L. C. Fernandes, J. R. Souza, G. Pessin, P. Y. Shinzato, D. Sales, C. Mendes, et al. 

“CaRINA intelligent robotic car: architectural design and applications”. Journal of 

Systems Architecture, Vol. 60, nº 4, pp. 372-392. 2014. 



116 

 

 

[70] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. “Introduction to autonomous 

mobile robots”. MIT press. 2011. 

[71] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E. Kavraki, 

and S. Thrun. “Principles of robot motion: theory, algorithms, and implementation”. 

MIT press. 2005. 

[72] P. Corke. “Robotics, vision and control: fundamental algorithms In MATLAB® 

second, completely revised”. Vol. 118. Springer. 2017. 

[73] R. Eberhart, and J. Kennedy. “A new optimizer using particle swarm theory”. In 

MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and 

Human Science. pp. 39-43. IEEE. 1995. 

[74] M. Clerc, and J. Kennedy “The particle swarm-explosion, stability, and convergence 

in a multidimensional complex space”. IEEE transactions on Evolutionary 

Computation, Vol. 6, nº 1, pp. 58-73. 2002. 

[75] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, et al. “The 

cityscapes dataset for semantic urban scene understanding”. In Proceedings of the 

IEEE conference on computer vision and pattern recognition. pp. 3213-3223. 2016. 

[76] R. Hartley, and A. Zisserman. “Multiple view geometry in computer vision”. 

Cambridge university press. 2003. 

[77] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. “Vision meets robotics: The KITTI 

dataset”. The International Journal of Robotics Research, Vol. 32, nº 11, pp. 1231-

1237. 2013. 

[78] S. Thrun. “Robotic mapping: A survey”. Exploring artificial intelligence in the new 

millennium. 2002. 

[79] I. A. Bârsan, P. Liu, M. Pollefeys, and A. Geiger. “Robust dense mapping for large-

scale dynamic environments”. In IEEE International Conference on Robotics and 

Automation (ICRA). pp. 7510-7517. IEEE. 2018. 

[80] A. Geiger, M. Roser, and R. Urtasun. “Efficient large-scale stereo matching”. 

In Asian conference on computer vision. pp. 25-38. Springer, Berlin, Heidelberg. 

2010. 

[81] J. R. Chang, and Y. S. Chen. “Pyramid stereo matching network”. In Proceedings of 

the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5410-5418. 

2018. 

[82] Y. Chen, C. Schmid, and C. Sminchisescu. “Self-supervised Learning with 

Geometric Constraints in Monocular Video: Connecting Flow, Depth, and 

Camera”. arXiv preprint arXiv:1907.05820. 2019. 

[83] Y. Mou, M. Gong, H. Fu, K. Batmanghelich, K. Zhang, and D. Tao. “Learning Depth 

from Monocular Videos Using Synthetic Data: A Temporally-Consistent Domain 

Adaptation Approach”. arXiv preprint arXiv:1907.06882. 2019. 

[84] C. H. Yeh, Y. P. Huang, and M. J. Chen. “Scale Invariant Multi-view Depth 

Estimation Network with cGAN Refinement”. In International Computer 

Symposium. pp. 681-687. Springer, Singapore. 2018. 



117 

 

 

[85] J. Astola, and I. Virtanen. “A measure of overall statistical dependence based on the 

entropy concept.”. University of Vaasa. 1983. 

[86] C. Studholme, D. L. Hill, and D. J. Hawkes. “An overlap invariant entropy measure 

of 3D medical image alignment”. Pattern recognition, Vol. 32, nº 1, pp. 71-86. 1999. 

[87] H. T. Amaral-Silva,L. O. Murta-Jr, P. M. de Azevedo-Marques, L. V. B. Wichert-

Ana, and C. Studholme, “Validation of Tsallis Entropy”. In Inter-Modality 

Neuroimage Registration. arXiv preprint arXiv:1611.01730. 2016. 

[88] A. Bardera, M. Feixas, I. Boada, and M. Sbert. “High-dimensional normalized 

mutual information for image registration using random lines”. In International 

Workshop on Biomedical Image Registration. pp. 264-271. Springer, Berlin, 

Heidelberg. 2006. 

[89] N. D. Cahill. “Normalized measures of mutual information with general definitions 

of entropy for multimodal image registration”. In International Workshop on 

Biomedical Image Registration. pp. 258-268. Springer, Berlin, Heidelberg. 2010. 

[90] M. A. Brubaker, A. Geiger, and R. Urtasun. “Lost! leveraging the crowd for 

probabilistic visual self-localization”. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition. pp. 3057-3064. 2013. 

[91] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. “g2o: A general 

framework for graph optimization”. In 2011 IEEE International Conference on 

Robotics and Automation. pp. 3607-3613. IEEE. 2011. 

[92] M. Montemerlo, N. Roy, and S. Thrun. “Perspectives on standardization in mobile 

robot programming: The Carnegie Mellon navigation (CARMEN) toolkit”. In 

Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS) (Cat. No. 03CH37453). Vol. 3, pp. 2436-2441. IEEE. 2003. 

 


