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ABSTRACT 

 

 

Thermal processes related to most of practical problems involve the need to be investigated as 

inverse problems. In this aspect, the implementation of numerical or analytical-numerical 

solutions is essential because of complexity in obtaining purely analytical solutions, and this 

requires fast and accurate responses. This present work addresses, in the context of parabolic 

heat conduction problems, the Method of Fundamental Solutions (MFS) numerical 

approximations combined with Bayesian procedures for state and parameter estimating. In the 

MFS we consider the fundamental solution of the parabolic heat equation in order to solve the 

time-dependent term together with the resulting system of equations, without needing to 

perform que transformation of the Parabolic equation into Elliptic, therefore it does not require 

treating the time component separately. The cases presented consist of homogeneous problems 

whose solution is previously known, in order to assess the proposed method behavior for 

different situations. The investigated problems were based on Robin boundary to one and two-

spatial dimensions and one dimension for the time. The method is easily extensible to higher 

dimension problems. Problems were also investigated whose contour is nonlinear, where the 

nonlinearity is due to the presence of radiation in the system. The Bayesian method used in the 

inverse problems is based on the particle filter Sampling Importance Re-sampling (SIR), which 

is combined with the MFS to enable the estimation of the temperature field, while a random 

walk performs the estimation of the heat transfer coefficient (HTC) simultaneously. The results 

of the inverse problems were satisfactory for the linear boundary problems, while the nonlinear 

contour problems were most computational costly, despite their high accuracy. 

 

 

 

 

 

 

 

 

Keywords: Method of Fundamental Solutions, Parabolic Problems, Bayesian Methods, 
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1 INTRODUCTION 

 

The heat transfer coefficient (HTC) characterizes the contribution that an interface 

makes to the overall thermal resistance to the system and is defined in terms of the heat flux 

across the surface for a unit temperature gradient ( [1], [2]). As an important parameter of the 

thermal system, the estimation of the HTC is a common task. Some non-intrusive experimental 

techniques as one based on characteristic colour changes of liquid crystal films at a given 

temperature or on laser-induced fluorescence rely on the one-dimensional analytical 

temperature solution for a semi-infinite medium to determine the HTC at a point once the 

temperature history is obtained from the experiment, thus this method is difficult to use in a 

truly time-dependent process where the HTC varies as a function of time [2].  

In respect to time-dependent HTC, a work in [3] addresses the estimation of the time 

and space dependent HTC during the “Jominy end Quench”. The numerical study uses the 

Iterative Regularization Method (IRM) and the Function Specification Method (FSM). The 

estimation of the HTC during the “Jominy end-Quench” is highly nonlinear principally in the 

thermal conductivity during the phase transformations (austenite–martensite). Some strategies 

for the inverse problem of reconstruction of the HTC are given in [4], [5], and [6]. Traditionally, 

partial boundary temperature and heat flux measurements are used as input to heat conduction 

models to extract the HTC values by solving a Cauchy ill-posed inverse heat conduction 

problem, but in cases that the obtainment of Cauchy data is difficult or impossible, non-standard 

measurements can be used [2]. 

In general, when an inverse transient heat problem is solved iteratively, it’s necessary 

to use a direct problem solver that is fast and accurate, what has turned attention to meshless 

methods. Meshless methods recently gained attention in science and engineering problems as a 

competitive alternative to mesh-dependent numerical schemes, as finite difference method 

(FDM) and finite volume method (FVM), that require a mesh on the domain to support the 

solution process. A mesh generation can be extremely time-consuming to well-behaved mesh 

for complicated geometry in higher dimensions. As alternative, boundary-based methods as the 

most famous one boundary-elements method (BEM) reduces the dimensionality of the problem 

by one, but requires an evaluation of singular integrals for using singular fundamental solutions 

[7]. Some notable meshless methods are the Kansa’s method, [8], the boundary knot method 

(BKM), [9], and the method of fundamental solutions (MFS). 

The MFS is a meshless, integration free, easy to implement, and powerful method that 
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have gained more attention in the context of meshless methods. Unlike the BEM, the MFS does 

not require the evaluation of singular integrals. This MFS simplicity and accuracy make it an 

interesting method to be applied in schemes to solve inverse problems.  

For inverse problems in the Bayesian framework, state estimation problems are often 

solved with the so-called Bayesian filter, which requires relatively low computational demands 

compared to the Markov Chain Monte Carlo (MCMC) algorithm [10]. The most widely known 

Bayesian filter is the Kalman Filter (KF) [11] which is, however, limited to linear models with 

additive Gaussian noise. Some extension of KF are less restricted and being applied to non-

linear problems, but it suffers from lack of theoretical rigor.  

Sequential Monte Carlo methods, the so-called particle filters, have been developed in 

order to represent the posteriori density in terms of random samples and associated weights, 

and can be applied to non-linear systems with non-Gaussian errors ( [12], [13], [14], and [15]). 

In 1964, Hammersley & Hanscomb [16] presented a technique that uses recursive 

Bayesian filters along with Monte Carlo simulations, a so-called sequential importance 

sampling (SIS). The key idea is to represent the posteriori probability function as a set of 

random samples with associated weights to estimate the state. An extra step, named resampling, 

was implemented in the SIS algorithm for Gordon et al. [17] in order to attenuate the particle 

degeneration process resulting of the importance sampling., in a filter known as sequential 

importance re-sampling (SIR).  

A comparison of particle filter SIR and Kalman filter to estimate the transient 

temperature field in two different heat conduction problems is made in [18], one linear, and 

other non-linear. On the linear case, the methods provide results of similar accuracy. The 

Kalman filter approach is not valid for non-linear and/or non-Gaussian models. The particle 

filter SIR shows more robustness, being applied to a wider range of problems, and present a 

high computational cost related to the Kalman filter. 

This present work aims to investigate the MFS coupled with the particle filter SIR 

(MFS-PF) in order to estimate the time-dependent heat transfer coefficient (HTC) in the 

parabolic heat conduction PDE for one and two-dimensional problems with convective and 

radiative boundary conditions. All numerical procedure was using the MATLAB program. The 

CPU specifications are defined in numerical results (session 6). 

The estimation of the HTC using the MFS-PF uses different kinds of measurements (see 

in 3.1 and 3.2), including the measurement on non-standard boundary transient quantity of the 

heat conducting system, allowing the prescription of convectional boundary conditions over the 
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whole boundary, like described in [1], where the BEM is used to estimate the time-dependent 

HTC. This approach make it possible to propose more realistic models for the estimation of the 

transient HTC, since the real problems deals with variations in many factors [19] such as 

velocity of the fluid, fluid properties (viscosity, density, and thermal conductivity), and 

orientation of the flow. 

In session 2, a general mathematical formulation of the MFS is described for a generic 

operator and for parabolic problems. A brief review of MFS and its main characteristics are 

presented. 

In session 3, the MFS is investigated to solve direct parabolic problems with third kind 

boundary conditions. The source points and collocation points are defined. 

In session 4, the formulation of the inverse problem from this present work is described 

for one and two spatial dimensions. 

In session 5, the Bayesian methods are presented, with special attention to the particle 

filter SIR, that is used in the HTC estimation problem. A pseudo-code for the SIR is shown. 

In session 6, all numerical results are shown. Two problems involving linear boundary 

and other two problems with nonlinear boundary conditions are solved. 

In session 7, a general discussion about the MFS-PF is made, and some future works are 

suggested. 

The references from this present work are shown in session 8. 
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2 THE METHOD OF FUNDAMENTAL SOLUTIONS 

 

The method of fundamental solutions (MFS) is a relatively old, and recently have gained 

attention to solve parabolic problems. In this session, a brief introduction to the MFS is 

presented in order to contextualize the evolution of the method in parabolic and inverse 

problems, and its main advantages and disadvantages. Furthermore, a general mathematical 

formulation of the method, and its approach to solve the one-dimensional and two-dimensional 

transient HTC problem is shown. 

 

 

2.1 A BRIEF INTRODUCTION TO THE MFS 

 

The method of fundamental solutions (MFS) was initially proposed by Kupradze & 

Aleksidze in 1964 [20], having a numerical implementation discussed by Mathon & Jhonston 

in 1977 [21], where two-dimensional elliptic Dirichlet problems were solved by using 

fundamental solutions with singularities placed outside the region of interest. The method 

presented accurate and relatively uniform approximations. The singularities coordinates were 

chosen by a nonlinear least square algorithm to make the method more flexible. In 1985, 

Bogomolny [22] presented denseness results from MFS applied to elliptic problems with 

sources, or singularities, located outside the solution domain. 

Since the denseness results are mainly valid for elliptic partial differential equations 

(PDEs), other works involving the Laplace, modified Helmholtz or biharmonic PDEs was 

widely developed. In respect to non-homogeneous problems, the MFS cannot be used in 

standard form. Some methods uses solutions of the Helmholtz equation to approximate the 

source terms, like in [23] and [24], where a Poisson problem is solved using the so-called MFS-

D. A dual-potential formulation in [25] uses the MFS for Laplace and biharmonic equations to 

solve multidimensional Stokes equation resulting in a simple implementation method with good 

accuracy. The main concept of this methods is based on the evaluation of a particular solution 

using the  dual reciprocity method (DRM) [26] and  radial basis functions (RBF) [27]. In this 

present work all the cases are homogeneous. 

The method simplicity and accurate results with simple codes and small computational 

effort promoted the development of hybrid methods in order to extend the MFS to parabolic 

and hyperbolic PDEs using a time-marching process to advance the solution in the time domain. 
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A time-marching scheme using the method of fundamental solutions (TMMFS) is 

proposed in [28] to solve transient heat conduction problems for materials with non-constant 

properties. In this approach, the transient equation is transformed into a sequence of 

inhomogeneous Helmholtz-type equations, where the time derivative of the solution is 

approximating through a FDM scheme, and the elliptic boundary value problem is solved by 

MFS using the Helmholtz fundamental solution, where resulting system is solved from each 

time step by a singular value decomposition (SVD) solver. This hybrid method presented stable 

and accurate results.  

This approach is extended for wave equations in [29], where the hyperbolic equation 

can be viewed as a Poisson-type equation with time-dependent source term, that is solved with 

a Houbolt FDM scheme. The particular solution is approximated by radial basis function (RBF) 

in a method of particular solution (MPS) scheme. Similar approach is used in in [30] to more 

general problems, solving multi-dimensional Telegraph Equations and presenting good 

efficiency and accuracy. 

The TMMFS scheme have a time-discretization necessity what avoid the main 

characteristic of meshless methods. Furthermore, the procedure of transform parabolic or 

hyperbolic equations in elliptic expressions, like Laplace or Poisson, can be not so trivial.  

In order to propose a method free from Laplace transform or time-marching scheme 

using FDM, Young et al. [31] use the time-dependent fundamental solution of the diffusion 

equation directly to approximate the solution as a linear combination of the fundamental 

solution of diffusion operator in homogeneous problems. The source points are placed outside 

the time-domain. This approach is compared to TMMFS in [32], resulting in worst results than 

using Laplace transformation. 

Other approach of MFS applied to transient heat conduction problems is investigated by 

Johansson & Lesnic [33], where the source-points are placed outside the space domain, as is 

done in stationary case, to guarantee the denseness results already proved in [22] and as 

suggested by Kupradze [20]. This approach is compared to the case of the source points 

placement outside the time-domain, reaching more accurate results for Dirichlet problems. 

Furthermore, this paper shows that when the source-points are placed too close to domain 

boundary the approximation is less accurate. Same occurs when these source points are placed 

at a too large distance. 

An extension of the method from [33] is investigated in [34] to layered materials with a 

technique in which the source points were located outside the boundary of the space solution 
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domain for each layer. The results shown a good agreement with the analytical solutions for 

some two- and three-layered materials. 

A study in [35] shows a comparison about the three different approaches to solve a 

transient heat conduction problem in a 2D unit square domain using Dirichlet and Neumann 

boundary data. The three different versions of MFS consist in the MFS with Laplace 

transformation of the governing differential equations and boundary conditions, the second is 

the MFS with time-dependent fundamental solution, and third, the TMMFS scheme using 

backward difference scheme. For all these methods, the temperature can be computed in a 

whole domain, and all versions give acceptable results with respect to the root mean squared 

relative error. In general way, the TMMFS scheme can obtain the best results, being the simplest 

for studied cases. Related to computational cost, the TMMFS represents the most computational 

costly, and the MFS with Laplace transformation, the lowest cost. 

A work about the MFS to solve two-dimensional heat conduction problems is given in 

[36], where the 2D heat conduction problems denseness results are proved. Direct problems are 

discussed, varying the configuration of the source points in a square shape and a circle. The 

examples shown lower dependency of the source points placement in relation to 1D cases. 

Furthermore, an inverse problem with overspecified boundary is solved. Linear Dirichlet 

problems are solved with accurate approximation at small computational cost. An analysis 

varying the diffusivity is made and presents good results. Same authors proposed an application 

of the MFS to the radially symmetric inverse heat conduction problem (IHCP) in [37], having 

a stable and accurate numerical approximation with small computational cost. In this approach, 

the fundamental solution of the radially symmetric heat equation is used, and a Cauchy problem 

is solved. 

A major drawback from MFS is the source points placement dependence in relation of 

approximated solutions accuracy [38], in this context, an investigation about the source points 

placement in parabolic problems was recently proposed in [39] and [40]. In this papers, various 

source points placement strategies are compared in relation with the accuracy of the 

approximated solution. A discussion is held about the use of term “pseudo-boundary” in initial-

boundary value problems, instead of this term is strictly related to the original idea of solving 

boundary value problems. 

Related to inverse problems, the MFS was found to be an efficient and accurate method. 

The resulting system of linear algebraic equations from MFS are naturally ill-conditioned, what 

is a disadvantage to any well-known numerical methods such as FDM or other boundary based 
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methods, while the MFS’s advantages are preserved, such as its simple implementation and its 

ease of application in irregular domains [41]. 

Some main advantages and disadvantages are highlight by [42]: 

 

Advantages: 

• The method is relatively easy to program and computationally inexpensive; 

• The MFS is a collocation method, therefore no complicated meshes need to be 

generated; 

• It has produced accurate and stable results for different types of problems 

(elliptic, parabolic, free boundary, etc.). 

 

Disadvantages: 

• The MFS can only be applied when the fundamental solution of the governing 

linear PDE is known. 

• The position and number of source and collocation points can affect the accuracy 

greatly, it is possible to solve a nonlinear minimization problem to determine the 

position of the source points, however, this can significantly increase the 

computational time. 

 

In this present work, the MFS is applied in the context of time-dependent fundamental 

solutions, using one e two-dimensional formulation that the denseness results are well known. 

The mathematical formulation is described for the direct problem in session 3, and for the 

inverse problem in session 4. 

 

 

2.2 GENERAL MATHEMATICAL FORMULATION 

 

Consider a bounded domain Ω 

 

ℒ(𝑢) = 0, (2.1) 

 

where ℒ is a linear differential operator with constant coefficients and 𝑢:ℝ𝑛 → ℝ. The data 

given on the boundary 𝜕Ω can be rewriten as 
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ℬ𝑢(𝒙) = 𝑓(𝒙), (2.2) 

 

where 𝑓(𝑥) ∶ ℝ𝑛 → ℝ. The fundamental solution 𝐹(𝑥, 𝑦) of equation eq.(2.1) satisfies 

 

ℒ(𝐹) = 𝛿(𝒙, 𝒚), (2.3) 

 

where 𝛿 is the Dirac delta function, and 𝒚 is the coordinate of a source point, placed outside the 

study domain Ω. The generalized Dirac delta distribution function is given by  

 

𝛿(𝒙, 𝒚) = δ(𝒙 − 𝒚) = {
  ∞,   𝒙 = 𝒚
  0,   𝒙 ≠ 𝒚  , (2.4) 

 

with 

 

∫ 𝛿(𝒙 − 𝒚) 𝑑𝒙
 

ℝ𝑛

= 1. (2.5) 

 

Considering a function 𝑓( ), the fundamental Dirac delta distribution are given by 

 

∫𝑓(𝒚)𝛿(𝒙, 𝒚) 𝑑𝒚
 

Ω

= 𝑓(𝒙),   𝒙 ∈ Ω. (2.6) 

 

The functions are essentially nonzero only in a neighborhood of their boundary points [21], and 

the optimal distance between this points need to be investigated or determinated by a nonlinear 

optimization process. Once 𝒚 is placed outside the region where the solution is sought, the 

fundamental solution 𝐹(𝒙, 𝒚) and any linear combination of fundamental solutions satisfies the 

eq.(2.1). This way, with known 𝒙 and 𝒚 position, we can define an approximation to eq.(2.2) in 

the form 

 

𝑢𝑁(𝒙) ≅ ∑ 𝑐𝑗𝐹(𝒙, 𝒚𝑗)

𝑁𝑆

𝑗=1

, (2.7) 

 

where 𝑦𝑗 represent 𝑁𝑆 source points placed outside the domain Ω, and 𝑢𝑁(𝒙) represents well 
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known points placed on the boundary, here in this work given by collocation. The 𝑐𝑗 component 

refers to unknown coefficients. The Figure 1 shows a possible configuration of a generic 

domain Ω and 𝐶𝑃 = 9 collocation points on boundary and 𝑁𝑆 = 9 source points outside Ω. 

 

 

Figure 1 – Possible source points and collocation points placement in a generic circular 

domain. 

 

Some fundamental solutions for linear differential operators are given in Table 1. 

 

Table 1 – Some fundamentals solutions for elliptic operators. 

OPERATOR 𝒏 𝑭(𝒙, 𝒚) 

Laplace ∆𝑢(𝒙) = 0 
ℝ2 

1

2𝜋
log‖𝒙 − 𝒚‖ 

ℝ3 −
1

4𝜋

1

 ‖𝒙 − 𝒚‖
 

Helmholtz 

 

(∆ + 𝜉2)𝑢(𝒙) = 0 

 

ℝ2 −
1

4
𝐻0

(2)
(𝜉‖𝒙 − 𝒚‖) 

ℝ3 −
1

4
𝐻0

(2)
(𝜉‖𝒙 − 𝒚‖) 

Modified Helmholtz (∆ − 𝜉2)𝑢(𝒙) = 0 
ℝ2 

1

2𝜋
𝐾0(𝜉‖𝒙 − 𝒚‖) 

ℝ3 
1

4𝜋‖𝒙 − 𝒚‖
𝑒𝑥𝑝(−𝜉‖𝒙 − 𝒚‖) 

*𝜉 reffers to the eigenvalue (or wave number in the study of waves) 
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In this present work, the governing equation is the parabolic heat equation. To better 

understand the MFS in this context, consider the parabolic heat equation: 

 

𝜕𝑢

∂t
(𝒙, 𝑡) = α2

𝜕𝑢2

𝜕𝒙2
(𝒙, 𝑡) , 𝒙 ∈ Ω, 𝑡 ∈ (0, 𝑡𝑓𝑖𝑛𝑎𝑙], (2.8) 

 

where Γ1 ∪ Γ2 = 𝜕Ω, Γ1 represents Dirichlet data, Γ2 represents Neumann data. The 𝛼 term 

corresponds to the diffusivity of medium, 𝑢(𝒙, 𝑡) = 𝑇(𝒙, 𝑡) is the temperature. In these 

problems we need to know domain data in a given time in 𝑁𝐷 different points. For simplicity, 

we assume that information about domain is known when 𝑡 = 0. We can describe the initial 

condition as 

 

𝑢(𝒙, 0) = 𝑢0(𝒙), 𝒙 ∈ Ω = (0,1), (2.9) 

 

and boundary conditions 

 

𝑢(𝒙, 𝑡) = 𝑃(𝒙, 𝑡), 𝒙 ∈ Γ1, 𝑡 ∈ (0, 𝑡𝑓𝑖𝑛𝑎𝑙], (2.10) 

 

𝜕𝑢

𝜕𝜈
(𝒙, 𝑡) = 𝑄(𝒙, 𝑡), 𝒙 ∈ Γ2, 𝑡 ∈ (0, 𝑡𝑓𝑖𝑛𝑎𝑙], (2.11) 

 

where 𝜈 is the outer unit normal with respect to the respective boundary. As in eq.(2.7), we can 

approximate the boundary data as a sum of fundamental solutions. The fundamental solution of 

eq.(2.8) is defined in terms of the diffusivity, the colocation points coordinates (𝒙, 𝑡) and the 

source points coordinates (𝒚, 𝜏), as,  

 

𝐹(𝒙, 𝑡; 𝒚, 𝜏) =
𝐻(𝑡 − 𝜏)

(4𝜋𝛼2(𝑡 − 𝜏))
𝑛
2  

 𝑒
−

(𝒙−𝒚)2

4α2(𝑡−𝜏), (2.12) 

 

where 𝑛 represents the spatial dimension number, and 𝐻 represents the Heaviside function, 

which is introduced to emphasize that the fundamental solution is zero for 𝑡 < 𝜏 [31]. The 

domain in eq.(2.9) and boundaries eq.(2.10) and eq.(2.11) can be approximated using MFS as, 

respectively, [39]: 



25 
 

∑𝑐𝑗
 𝐹(𝒙𝒊, 𝑡𝑖; 𝒚𝑗, τj)

𝑁𝑆

𝑗=1

= u0(𝒙𝑖), 𝒙𝑖 ∈ Ω, 𝑖 = 1,2, … ,𝑁𝐷, (2.13) 

 

∑𝑐𝑗
 𝐹(𝒙𝒊, 𝑡𝑖; 𝒚𝑗 , τj)

𝑁𝑆

𝑗=1

= 𝑃(𝒙𝑖, 𝑡𝑖), 𝒙𝑖 ∈ Γ1, 𝑖 = 1,2, … ,𝑁𝐶(Γ1), (2.14) 

 

∑𝑐𝑗
 
𝜕𝐹

𝜕𝜈
(𝒙𝒊, 𝑡𝑖; 𝒚𝑗, τj)

𝑁𝑆

𝑗=1

= 𝑄(𝒙𝑖, 𝑡𝑖), 𝒙𝑖 ∈ Γ2, 𝑖 = 1,2, … ,𝑁𝐶(Γ2), (2.15) 

 

where 𝑡 ∈ (0, 𝑡𝑓𝑖𝑛𝑎𝑙]. Once 𝐷(𝒙𝑖, 𝑡𝑖) and 𝑄(𝒙𝑖, 𝑡𝑖) are known for all 𝑁𝐶 collocation points, we 

can determine the unknown coefficients 𝒄 solving 

 

[
 
 
 
 
 
 
 
 
 

𝐹(𝑥1, 0, 𝑦1, 𝜏1) … 𝐹(𝑥1, 0, 𝑦𝑁𝑆, 𝜏𝑁𝑆)
⋮ … ⋮

𝐹(𝑥𝑁𝐷 , 0, 𝑦1 , 𝜏1) … 𝐹(𝑥𝑁𝐷 , 0, 𝑦𝑁𝑆 , 𝜏𝑁𝑆)

𝐹(𝑥1(Γ1), 𝑡1(Γ1), 𝑦1, 𝜏1) … 𝐹(𝑥1(Γ1), 𝑡1(Γ1), 𝑦𝑁𝑆 , 𝜏𝑁𝑆)

⋮ … ⋮
𝐹(𝑥𝑁𝐶(Γ1), 𝑡𝑁𝐶(Γ1), 𝑦1 , 𝜏1) … 𝐹(𝑥𝑁𝐶(Γ1), 𝑡𝑁𝐶(Γ1), 𝑦𝑁𝑆, 𝜏𝑁𝑆)

𝐹(𝑥1(Γ2), 𝑡1(Γ2), 𝑦1, 𝜏1) … 𝐹(𝑥1(Γ2), 𝑡1(Γ2), 𝑦𝑁𝑆 , 𝜏𝑁𝑆)

⋮ … ⋮
𝐹(𝑥𝑁𝐶(Γ2), 𝑡𝑁𝐶(Γ2), 𝑦1 , 𝜏1) … 𝐹(𝑥𝑁𝐶(Γ2), 𝑡𝑁𝐶(Γ2), 𝑦𝑁𝑆 , 𝜏𝑁𝑆)]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
𝑐1

 

⋮
⋮
⋮
⋮
⋮
⋮
⋮

𝑐𝑁𝑆
 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

𝑢0(𝑥1)
⋮

𝑢0(𝑥𝑁𝐷)

𝑃(𝑥1(Γ1), 𝑡1(Γ1))

⋮
𝑃(𝑥𝑁𝐶(Γ1), 𝑡𝑁𝐶(Γ1))

𝑄(𝑥1(Γ2), 𝑡1(Γ2))

⋮
𝑄(𝑥𝑁𝐶(Γ2), 𝑡𝑁𝐶(Γ2))]

 
 
 
 
 
 
 
 
 

 (2.16) 

 

The expression from eq.(2.16) can be written in a generic form as 

 

𝐴𝒄 = 𝑩, (2.17) 

 

where 𝐴 is the fundamental solution matrix with 𝑁𝐷 + 𝑁𝐶(Γ1) + 𝑁𝐶(Γ2) rows and 𝑁𝑆 

columns, 𝑐 is a column of 𝑁𝑆 elements, that contains all unknown coefficients and 𝑩 is the 

column with 𝑁𝐷 + 𝑁𝐶(Γ1) + 𝑁𝐶(Γ2) elements, given by the initial-boundary information. 

With 𝒄, we can approximate every point of study domain Ω and 𝑡 as in eq.(2.7). 

A well-known issue with the MFS is that the resulting system of equations is ill-

conditioned and a straightforward inversion will produce unstable results. When 𝑔(𝑇) = 𝑇, as 

in the Newton’s law of cooling, the resulting system is linear. In order to stabilize the solution, 

it is usual to apply the Tikhonov regularization method and solve 
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min𝑐{‖𝐴(𝒄) − 𝑩‖2 + 𝜆‖𝒄‖2}, (2.18) 

 

where 𝜆 ≥ 0 is a regularization parameter to be prescribed. The minimization problem can be 

solved exactly to yield the regularized solution: 

 

𝒄𝜆 = (𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇𝑩, (2.19) 

 

where  𝑇 denotes the transpose of a matrix and 𝐼 is the identity matrix. A common method to 

choose 𝜆 is the L-curve ( [41], [43]), where is varying 𝜆 and the vertical axis is given by 𝑙𝑜𝑔‖𝒄‖ 

and the horizontal axis is given by the residual given by 𝑙𝑜𝑔‖𝐴𝒄 − 𝑩‖. The resulting L-shape 

indicates that the 𝜆 near to the corner is a reasonable choice (see session 6.1.1 and 6.2.1). 
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3 DIRECT PROBLEM FORMULATION 

 

For the direct problem, consider the parabolic heat conduction governing equation 

(eq.(2.8)) with third kind boundary conditions, initial conditions, and known HTC. The 

approach for the one-dimensional and multidimensional problems are given in the next 

sessions. Considering the thermal diffusivity 𝛼 = 1, whilst the heat source is assumed to be 

absent, and 𝑢(𝑥, 𝑡) = 𝑇(𝑥, 𝑡). 

 

 

3.1 ONE-DIMENSIONAL MFS 

 

Considering a one-dimensional finite slab Ω ⊂ [0,1] governed by the parabolic heat 

equation from eq.(2.8), that satisfy: 

 

𝜕𝑇

∂t
(𝑥, 𝑡) =

𝜕2𝑇

𝜕𝑥2
(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω × (0, 𝑡𝑓), (3.1) 

 

𝑇(𝑥, 0) = 𝑇0(𝑥), 𝑥 ∈ (0,1), (3.2) 

 

−
𝜕𝑇

𝜕𝑥
(0, 𝑡) + 𝜌(𝑡)𝑔(𝑇(0, 𝑡)) = ℎ0, 𝑡 ∈ [0, 𝑡𝑓), (3.3) 

 

𝜕𝑇

𝜕𝑥
(1, 𝑡) + 𝜌(𝑡)𝑔(𝑇(1, 𝑡)) = ℎ1, 𝑡 ∈ [0, 𝑡𝑓), (3.4) 

 

where 𝑔, 𝑇0, ℎ0 and ℎ1 are given functions. Assuming the one-dimensional fundamental 

solution, the expression in eq.(2.12) is given by 

 

F(𝑥, 𝑡; 𝑦, 𝜏) =
𝐻(𝑡 − 𝜏)

√4𝜋(𝑡 − 𝜏)
  
 
 𝑒

−
(𝑥−𝑦)2

4(𝑡−𝜏) , (3.5) 

 

where eq.(3.5) needs to be derived in the space in order to solve Neuman or mixed boundaries: 
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∂F

∂x
(𝑥, 𝑡; 𝑦, 𝜏) =

(𝑦 − 𝑥)𝐻(𝑡 − 𝜏)

4√𝜋(𝑡 − 𝜏)3
  
 

 𝑒
−

(𝑥−𝑦)2

4(𝑡−𝜏) . (3.6) 

 

Then, the approximate solution for one-dimensional cases can be sought as in [33] and [39], 

 

𝑇𝑀(𝑥, 𝑡) = ∑ 𝑐𝑚
(0)

𝐹(𝑥, 𝑡; 𝑦0, 𝜏𝑚)

𝑀

𝑚=−𝑀+1

+ ∑ 𝑐𝑚
(1)

𝐹(𝑥, 𝑡; 𝑦1, 𝜏𝑚)

𝑀

𝑚=−𝑀+1

,

(𝑥, 𝑡) ∈ Ω × [0, 𝑡𝑓] ,  

(3.7) 

 

where the timed-source points are given by 

 

𝜏𝑚 =
2𝑚 − 1

2𝑀
𝑡𝑓 , 𝑚 = −𝑀 + 1, . . . , 𝑀, (3.8) 

 

and the spatial-source points are 

 

𝑦0 = −𝑑; 𝑦1 = 1 + 𝑑, 𝑑 > 0 , (3.9) 

 

where 𝑑 is the distance from the source points to the boundary, and 𝑀 represents the truncation 

level of an infinite series expansion whose span is dense in the set of functions satisfying the 

heat equation eq.(2.8). In the direct problem eq.(3.1)-(3.4), the HTC 𝜌(𝑡) is known and only 

the coefficients 𝑐𝑚
(0)

 and 𝑐𝑚
(1)

 for 𝑚 = −𝑀 + 1,… ,𝑀 are unknown and have to be determined 

by imposing the initial and boundary conditions eq.(3.2)-(3.4). 

Selecting the time points from study domain 𝑡𝑘 =
𝑘𝑡𝑓

𝑀
, with 𝑘 = 0,… ,𝑀 and the spatial 

domain points 𝑥𝑙 =
𝑙

𝑁+1
 for 𝑙 = 1,… ,𝑁, we obtain a system of (𝑁 + 2𝑀 + 2) equations with 

4𝑀 unknowns. Given the approximation of initial and boundary conditions, respectively: 

 

∑ ∑ 𝑐𝑚
(𝑖)𝐹(𝑥𝑙, 0; 𝑦𝑖, 𝜏𝑚)

M

m=−M+1

1

i=0

= 𝑇0(𝑥𝑙), 𝑙 = 1, … , 𝑁, (3.10) 
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−∑ ∑ 𝑐𝑚
(𝑖) 𝜕𝐹

𝜕𝑥
(0, 𝑡; 𝑦𝑖, 𝜏𝑚)

M

m=−M+1

1

i=0

+ 𝜌𝑘𝑔 (−∑ ∑ 𝑐𝑚
(𝑖)𝐹(0, 𝑡; 𝑦𝑖 , 𝜏𝑚)

M

m=−M+1

1

i=0

) = ℎ0(𝑡𝑘),

𝑘 = 0,… ,𝑀, 

(3.11) 

 

∑ ∑ 𝑐𝑚
(𝑖) 𝜕𝐹

𝜕𝑥
(1, 𝑡; 𝑦𝑖, 𝜏𝑚)

M

m=−M+1

1

i=0

+ 𝜌𝑘𝑔 (−∑ ∑ 𝑐𝑚
(𝑖)𝐹(1, 𝑡; 𝑦𝑖, 𝜏𝑚)

M

m=−M+1

1

i=0

) = ℎ1(𝑡𝑘),

𝑘 = 0,… ,𝑀, 

(3.12) 

 

where 𝜌𝑘 = 𝜌(𝑡𝑘). The above system can be written in a generic form 𝐴𝒄 = 𝑩, where 𝒄 is the 

vector of unknowns, 𝑩 is the initial and boundary values given and 𝐴 is the matrix of 

fundamental solutions. 

 Once the boundary data is convective, therefore 𝑔(𝑇) = 𝑇, the resultant system can be 

solved by a linear solver, like the SVD. The radiation boundary condition implying a 

nonlinearity in the resultant system, with 𝑔(𝑇) = 𝑇3|𝑇|, and a nonlinear solver needs to be 

used. 

 

 

3.2 MULTIDIMENSIONAL MFS  

 

The formulation of the multidimensional problem is in two-dimensions, but essentially 

the same statements hold also in three-dimensions. Considering a two-dimensional bounded 

domain Ω ⊂ ℝ2 with sufficiently smooth boundary 𝜕Ω 

 

𝜕𝑇

∂t
(𝑥1, 𝑥2, 𝑡) =

𝜕2𝑇

𝜕𝑥1
2
(𝑥1, 𝑥2, 𝑡) +

𝜕2𝑇

𝜕𝑥2
2
(𝑥1, 𝑥2, 𝑡) , (𝑥1, 𝑥2, 𝑡) ∈ Ω × (0, 𝑡𝑓), (3.13) 

 

𝑇(𝑥1, 𝑥2, 0) = 𝑇0(𝑥1, 𝑥2), 𝑥 ∈ Ω, (3.14) 

 

𝜕𝑇

𝜕𝝂
(𝑥1, 𝑥2, 𝑡) + 𝜌(𝑡)𝑔(𝑇(𝑥1, 𝑥2, 𝑡)) = ℎ(𝑥1, 𝑥2, 𝑡), 𝑡 ∈ 𝜕Ω × [0, 𝑡𝑓), (3.15) 
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where 𝝂 is the outward unit normal to the boundary 𝜕Ω, 𝑔, 𝑇0 and ℎ are given functions.  

Assuming the two-dimensional fundamental solution, the expression from eq.(2.12) is 

given by 

 

F(𝒙, 𝑡; 𝒚, 𝜏) =
𝐻(𝑡 − 𝜏)

4𝜋(𝑡 − 𝜏) 
 𝑒

−
(𝒙−𝒚)2

4(𝑡−𝜏) . (3.16) 

 

Then, the approximate solution for two-dimensional cases can be sought as in [36] and [39], 

 

𝑇𝑀,𝑁(𝒙, 𝑡) = ∑ ∑𝑐𝑚
(𝑗)

𝐹(𝒙, 𝑡; 𝒚𝑗, 𝜏𝑚)

𝑁

𝑗=1

2𝑀

𝑚=1

, (𝑥, 𝑡) ∈ Ω × [0, 𝑡𝑓] ,  (3.17) 

 

where the timed-source points are given by 

 

𝜏𝑚 =
2(𝑚 − 𝑀) − 1

2𝑀
𝑡𝑓 , 𝑚 = 1,… ,2𝑀,  (3.18) 

 

and, for simplicity, using polar coordinates to the spatial-source points: 

 

𝑦𝑗 = (𝑟0 + 𝑑, 𝜃𝑗), 𝜃𝑗 =
2𝜋𝑗

𝑁
, 𝑗 = 1,… ,𝑁, 𝑑 > 0, (3.19) 

 

then, the eq.(3.17) can be rewritten, in polar coordinates, as 

 

𝑇𝑀,𝑁(𝑟, 𝜃, 𝑡) = ∑ ∑𝑐𝑚
(𝑗)

𝐹(𝑟, 𝜃, 𝑡; 𝑟0 + 𝑑, 𝜃𝑗 , 𝜏𝑚)

𝑁

𝑗=1

2𝑀

𝑚=1

, (3.20) 

 

where 𝑑 is the distance from the source points to the boundary In the direct problem, eq.(3.13)-

(3.15), the HTC 𝜌(𝑡) is known and only the coefficients 𝑐𝑚
(𝑗)

 for 𝑚 = 1,… ,𝑁 are unknown and 

have to be determined by imposing the initial and boundary condition from eq.(3.14) and 

eq.(3.15). 

Selecting the time-points 𝑡𝑘 =
𝑘𝑡𝑓

𝑀
, with 𝑘 = 0,… ,𝑀 from study domain, and the 

spatial- points 𝑟𝑙 = 𝑟0√(𝑙/𝑀)   for 𝑙 = 1,… ,𝑀 − 1, from domain, where the squareroot has 
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been introduced to spread the points out within the domain, and not to cluster them at the center. 

Furthermore, we obtain a system of (𝑁(𝑀 − 1) + 𝑁(𝑀 + 1)) = 2𝑁𝑀 equations with 2𝑁𝑀 

unknowns. Given the approximation of the initial and boundary conditions, respectively: 

 

∑ ∑𝑐𝑚
(𝑗)

𝐹(𝑟𝑙, 𝜃𝑖 , 0; 𝑟0 + 𝑑, 𝜃𝑗 , 𝜏𝑚)

𝑁

𝑗=1

2𝑀

𝑚=1

= 𝑇0(𝑟𝑙, 𝜃𝑗 , 0), 𝑙 = 1… ,𝑀 − 1,   𝑖 = 1,… ,𝑁, 

(3.21) 

 

∑ ∑𝑐𝑚
(𝑗) 𝜕𝐹

𝜕𝑟
 (𝑟0, 𝜃𝑖 , 𝑡; 𝑟0 + 𝑑, 𝜃𝑗 , 𝜏𝑚)

𝑁

𝑗=1

2𝑀

𝑚=1

+ 𝜌𝑘𝑔 (∑ ∑𝑐𝑚
(𝑗)

𝐹 (𝑟0, 𝜃𝑖 , 𝑡; 𝑟0 + 𝑑, 𝜃𝑗 , 𝜏𝑚)

𝑁

𝑗=1

2𝑀

𝑚=1

)

= ℎ(𝑟0, 𝜃𝑖 , 𝑡𝑘), 𝑖 = 1,… ,𝑁, 𝑘 = 0,… ,𝑀, 

(3.22) 

 

where 𝜌𝑘 = 𝜌(𝑡𝑘). The above system can be written in a generic form 𝐴𝒄 = 𝑩, where 𝒄 is the 

vector of unknowns, 𝑩 is the initial and boundary values given and 𝐴 is the matrix of 

fundamental solutions. 
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4 INVERSE PROBLEM FORMULATION 

 

Considering the direct problem from session 3, where all boundary data information is 

well known, the aim the direct problem is determining the temperature distribution 𝑇(𝒙, 𝑡). In 

this present work, the time-dependent HTC is consider missing, furthermore the aim of the 

inverse approach is to find the pair (𝑇(𝒙, 𝑡), 𝜌(𝑡)) given a final time of interest 𝑡𝑓 > 0. 

Additional information for the missing HTC estimation is needed. The inverse problems in this 

present work are solved iteratively using bayesian approach in a MFS-PF scheme (see session 

5). 

 

 

4.1 ONE-DIMENSIONAL CASE 

 

In order to compensate the missing HTC, consider some additional information as 

suggested in [1], [2], and [44], the boundary temperature measurement 

 

𝑌(𝑡) = 𝑇(1, 𝑡), 𝑡 ∈ [0, 𝑡𝑓), (4.1) 

 

or the nonlocal measurement 

 

𝐸(𝑡) = ∫ 𝛷(𝑇(𝑥, 𝑡)𝑑𝑠(𝑥)
𝜕𝛺

= 𝛷(𝑇(0, 𝑡)) + 𝛷(𝑇(1, 𝑡)), 𝑡 ∈ 𝜕Ω × [0, 𝑡𝑓), (4.2) 

 

where the Φ(𝑇) = ∫ 𝑔(𝑇)𝑑𝑇 is a primitive of the function 𝑔 governing the linear (e.g. 

convective 𝑔(𝑇) = 𝑇) or nonlinear (e.g. radiative 𝑔(𝑇) = 𝑇3|𝑇|) boundary heat transfer law 

[2]. 

As in the inverse problem the vector 𝝆 = (𝜌(𝑡𝑘))𝑘=1,…,𝑘𝑓𝑖𝑛𝑎𝑙
 is unknown, where 𝑘𝑓𝑖𝑛𝑎𝑙 

refers to number of time-points of interest to estimate the HTC, the resultant system of equations 

need to be supplemented with additional measurements, that can be as in eq.(4.1) or eq.(4.2). 

With this, the system of equations from eq.(2.17) is extended to 

 

�̃�(𝒄, 𝝆) = �̃�, (4.3) 
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where �̃� is given by initial and boundary conditions given B along with (𝐸(𝑡𝑘))𝑘=1,…,𝑘𝑓𝑖𝑛𝑎𝑙
 or 

((𝑌(𝑡𝑘))𝑘=1,…,𝑘𝑓𝑖𝑛𝑎𝑙
, and �̃� is the extended matrix that contains the left-handed information of 

eq.(3.10), eq.(3.11) and eq.(3.12), along with eq.(4.1) or eq.(4.2). The Tikhonov regularization 

expression from eq.(2.18) with missing 𝝆 is given by 

 

min𝒄,𝝆 {‖�̃�(𝒄, 𝜌) − �̃�‖
2
+ 𝜆(‖𝒄‖2 + ‖𝝆‖2}. (4.4) 

 

 

4.2 MULTIDIMENSIONAL CASE 

 

As in the inverse problem the vector 𝝆 = (𝜌(𝑡𝑘))𝑘=1,…,𝑘𝑓𝑖𝑛𝑎𝑙
 is unknown, where 𝑘𝑓𝑖𝑛𝑎𝑙 

refers to number of time-points of interest. In order to compensate the missing time-dependent 

HTC, consider additional information given by non-local measurement, as in session 4.1: 

 

𝐸(𝑡) = ∫ 𝛷(𝑇(𝑥1, 𝑥2, 𝑡)𝑑𝑠(𝑥1, 𝑥2)
𝜕𝛺

, 𝑡 ∈ 𝜕Ω × [0, 𝑡𝑓), (4.5) 

 

where the Φ(𝑇) = ∫ 𝑔(𝑇)𝑑𝑇 is a primitive of the function 𝑔 governing the linear (𝑔(𝑇) = 𝑇) 

or nonlinear (e.g. radiative 𝑔(𝑇) = 𝑇3|𝑇|) boundary heat transfer law [2]. As in direct problem, 

once the problem is axisymmetric, can be simplified using other coordinate systems. In polar 

coordinates, this non-standard measure is given as 

 

𝐸(𝑡𝑘) = ∫ 𝛷(𝑇(1, 𝜃, 𝑡))𝑑𝜃
2𝜋

0

≅
2𝜋

𝑁
∑𝛷 (𝑇(1, �̃�𝑗 , 𝑡𝑘))

𝑁

𝑗=1

, 𝑘 = 1,… ,𝑀, (4.6) 

 

where �̃�𝑗 =
𝜋(2𝑗−1)

𝑁
. Note that at the initial time 𝑡 = 0, the initial condition from eq.(4.5) 

requires 𝐸(0) = ∫ 𝛷(𝑇(1, 𝜃, 𝑡))𝑑𝜃
2𝜋

0
= 0, so there is no need to impose the expression from 

eq.(4.6) for 𝑘 = 0. With the data given by eq.(4.6), the system from eq.(2.17) is extended to 
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�̃�(𝒄, 𝝆) = �̃�, (4.7) 

 

where �̃� is given by initial and boundary conditions given B along with (𝐸(𝑡𝑘))𝑘=1,…,𝑘𝑓𝑖𝑛𝑎𝑙
, 

and �̃� is the extended matrix that contains the left-handed information of eq.(3.21) and 

eq.(3.22), along with eq.(4.6). The Tikhonov regularization expression from eq.(2.18) with 

missing 𝝆 is given by 

 

min𝒄,𝝆 {‖�̃�(𝒄, 𝝆) − �̃�‖
2
+ 𝜆(‖𝒄‖2 + ‖𝝆‖2}. (4.8) 
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5  BAYESIAN METHODS 

 

All procedure to solve inverse problems in this present work is based in the Bayesian 

framework. The term “Bayesian” is often used to describe the statistical inversion approach, 

which is based on the following principles [12]: 

 

• All variables included in the model are modelled as random variables; 

• The randomness describes the degree of information concerning their 

realizations; 

• The degree of information concerning these values is coded in probability 

distributions; 

• The solution of the inverse problem is the posteriori probability distribution, 

from which distribution point estimates and other statistics are computed. 

 

In the Bayesian framework, the inverse problem can be expressed as in [12]: Given the data 𝒃, 

find the conditional probability distribution 𝜋(𝒂|𝒃) of the variable 𝒂. where 𝜋(𝒂|𝒃) denotes 

the conditional probability of 𝒂 when 𝒃 is given. 

As the solution of the inverse problem within the Bayesian framework is tackled in the 

form of statistical inference of the posteriori probability density, based on the Bayes’ theorem, 

described as  

 

𝜋(𝒂|𝒃) =
𝜋(𝒃|𝒂)𝜋𝑝𝑟𝑖𝑜𝑟(𝒂)

𝜋(𝒃)
, (5.1) 

 

where 𝜋(𝒂|𝒃) is the posteriori probability density, which is the conditional probability 

distribution of the unknown parameter given the measurements, 𝜋𝑝𝑟𝑖𝑜𝑟(𝒂) is the priori 

probability density, which is the model for the unknowns that reflects all the uncertainty of the 

parameters without the information conveyed by the measurements, 𝜋(𝒂|𝒃) is the likelihood 

function, which is the measurement model incorporating the related uncertainties, that is, the 

conditional probability of the measurements given the unknown parameters, and 𝜋(𝒃) is the 

marginal probability density of the measurements, which plays the role of a normalizing 

constant.  

If the measurement errors are Gaussian random variables, with zero mean and known 
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covariance matrix 𝑊, and the errors are additive and independent of the variables 𝒂, the 

likelihood function can be expressed as 

 

𝜋(𝒃|𝒂) = (2𝜋)−𝐷/2 exp {−
1

2
[𝒃 − 𝑇(𝒂)]𝑻𝑊−1[𝒃 − 𝑇(𝒂)]},  (5.2) 

 

where 𝐷 is the dimension of the observation vector. 𝑇(𝒂) represents the solution of the direct 

problem. 

 

 

5.1 STATE ESTIMATION PROBLEM 

 

The state estimation problem is a non-stationary inverse problem that is defined in the 

form of evolution and observation models, comprising stochastic processes. In nonlinear 

problems framework the particle filters offers in many cases better results than extensions of 

Kalman Filter, and its theoretical properties are becoming increasingly well-understood ( [45], 

[46]). 

In state estimation problems, the available measured data are used together with priori 

knowledge about the physical phenomena and the measuring devices, in order to sequentially 

produce estimates of the desired dynamic variables [47]. 

Consider a model for the evolution of the state variable  

 

𝑷𝑘 = 𝑓𝑘−1(𝑷𝑘−1, 𝒗𝑘−1), (5.3) 

 

where 𝑓𝑘−1 is, in general case, a nonlinear function of 𝑷 and of the state noise/unverainty vector 

given by 𝒗𝑘−1 ∈ ℝ𝑛. The vector 𝑷𝑘 ∈ ℝ𝑛 is called state vector and contains the variables to be 

dynamically estimated. The eq.(5.3) is the state evolution model, and the subscript 𝑘 =

1, … , 𝑘𝑓𝑖𝑛𝑎𝑙 denotes a time instant 𝑡𝑘 in a dynamic problem. 

The observation model describes the dependence between the state variable 𝑷𝑘 to be 

estimated and the measurements 𝒛𝒌 through the general function 𝒉𝒌, that can be non-linear: 

 

𝒛𝑘 = 𝒉𝑘(𝑷𝑘, 𝒏𝑘), (5.4) 
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where 𝒏𝑘 represents the vector of measurement noise or uncertainty. This expression provides 

the solution of direct problem accounting for the state vector and the measurement uncertainty. 

These models in eq.(5.3) and eq.(5.4) are based on the following assumptions ( [12], 

[47]): 

• The sequence 𝑷𝑘 for 𝑘 = 1,… , 𝑘𝑓𝑖𝑛𝑎𝑙 is a Markovian process, that is 

𝜋(𝑷𝑘|𝑷1, 𝑷2, … , 𝑷𝑘−1) = 𝜋(𝑷𝑘|𝑷𝑘−1), (5.5) 

 

• The same sequence 𝒛𝑘 for 𝑘 = 1, … , 𝑘𝑓𝑖𝑛𝑎𝑙 is a Markovian process with respect 

to the history of 𝑷𝑘, that is, 

𝜋(𝒛𝑘|𝑷1, 𝑷2, … , 𝑷𝑘) = 𝜋(𝐳𝑘|𝑷𝑘−1), (5.6) 

 

• The sequence 𝑷𝑘 depends on the past observations only through its own history, 

that is, 

𝜋(𝑷𝑘|𝑷𝑘−1, 𝐳1, 𝑷2, … , 𝐳𝑘−1) = 𝜋(𝑷𝑘|𝑷𝑘−1), (5.7) 

 

Some strategies of Bayesian approach extends the state variable with the unknown 

parameters in order to estimate state and parameter at the same time ( [48] and [49]). Other 

possibility is to use the particle filters, that rely on deterministic values of the model parameters. 

An option is applying the particle filter SIR by mimicking the parameters as state variables with 

an evolution model, for example, in the form of a random walk process. The parameters are 

then estimated sequentially along with the state variables. This approach can result in accurate 

estimation of parameters, even for physically complicated nonlinear problems such as in fire 

propagation [50]. 

The present work applies the SIR filter to the estimation of the temperature 𝑇(𝒙, 𝑡) and 

the time-dependent HTC 𝜌(𝑡) from Robin boundary. Thus, the augmented state vector for one-

dimensional problems (session 4.1) is given by 

 

𝑷𝑘 = ((𝑇(𝒙𝑙, 𝑡𝑘), 𝜌(𝑡𝑘))) , 𝑙 = 1,… ,𝑁, (5.8) 

 

and, for multidimensional problem (session 4.2), the augmented state vector is defined as 

 

𝑷𝑘 = ((𝑇(𝑟𝑙, 𝜃𝑗 , 𝑡𝑘), 𝜌(𝑡𝑘))) , 𝑙 = 1, … ,𝑀 − 1, 𝑗 = 1, … ,𝑁, (5.9) 
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The evolution model for the temperature is given by the MFS numerical approximation 

of direct problem while the evolution model for the HTC is a random walk.  

 

𝜌𝑘 = 𝜌𝑘−1 + 𝜎𝜌𝜁𝑘 , 𝑙 = 1,… ,𝑁, (5.10) 

 

where 𝜁𝑘 is a random value drawn from a normal distribution with zero mean and known 

standard deviation, and 𝜎𝜌 = 𝜎𝜌(𝑘) is a positive constant to be prescribed at each timestep 

(𝑡𝑘)𝑘=1,…,𝑘𝑓𝑖𝑛𝑎𝑙
. The models of evolution and observation used in this present work are shown 

in Table 2. 

 

Table 2 – Models for the Bayesian procedure. 

 One-dimensional Multidimensional 

Evolution Model –  

Temperature  
𝑀𝐹𝑆(𝑻(𝒙𝑙, 𝒕𝑘−1), 𝜌𝑘) + 𝒗𝑘 𝑀𝐹𝑆(𝑇(𝒓𝑙, 𝜽𝑗 , 𝒕𝑘−1), 𝜌𝑘) + 𝒗𝑘 

Evolution Model -  

HTC 
𝜌𝑘 = 𝜌𝑘−1 + 𝜎𝜌𝜁𝑘 𝜌𝑘 = 𝜌𝑘−1 + 𝜎𝜌𝜁𝑘 

Observation Model 
𝐳𝑘 = 𝒏𝑘 + 𝑇(1, 𝑡𝑘) or 

𝐳𝑘 = 𝒏𝑘 + 𝐸(𝑡𝑘) 
𝒛𝑘 = 𝒏𝑘 + 𝐸(𝑡𝑘) 

 

 

5.1.1 The Particle Filters  

 

The particle filter is a Monte Carlo technique for the solution of state estimation 

problems, in which the posteriori density is represented by a set of particles with associated 

weights ( [12], [47]).  In the context of particle filters, the sequential importance sampling (SIS) 

is a method that estimates the posteriori distribution from a set of representative particles of the 

system variables [13], being a reference to many other last decade filters, and is an important 

reference to SIR, that is used in this present work. 

The SIS consists in, for each step of time denoted as 𝑘, random samples are generated, 

the so-called particles, where each particle have a corresponding weight. The priori distribution 

provides the necessary information for the initial step, being the basis for the first particle draw. 

The likelihood function is then used to compare the initial information with the experimental 
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measurements, and incorporates more information via particle weights in order to determine 

the posteriori distribution.  

The SIS for the estimation problem follows the procedure described in [51]: For each 

𝑘 = 1,… , 𝑘𝑓𝑖𝑛𝑎𝑙: using the measured data 𝒛𝑘 = 𝒛(𝑡𝑘)𝑘=1,…,𝑘𝑓𝑖𝑛𝑎𝑙
, 𝑁𝑝𝑎𝑟𝑡 particles for the states 

{𝑷𝑘
𝑖 }

𝑖=1

𝑁𝑝𝑎𝑟𝑡
 are drawn from a priori probability density function (PDF). Such particles are 

propagated using the state evolution model and updated with the observation model in order to 

give the measurements estimates 𝑇 ({𝑷𝑘
𝑖 }

𝑖=1

𝑁𝑝𝑎𝑟𝑡
) of the measured data. Then, from the SIS 

procedure, a likelihood function assigns an importance weight 𝑤𝑘
𝑖 = 𝑤𝑘

𝑖 (𝑇(𝑷𝑘
𝑖 )) for 𝑖 =

1, … , 𝑁𝑝𝑎𝑟𝑡. The set of the updated states and the weights {𝑷𝑘
𝑖 , 𝑤𝑘

𝑖 }
𝑖=1

𝑁𝑝𝑎𝑟𝑡
 represents the posteriori 

density. 

However, the sequential application of this particle filter may result in a degeneracy 

phenomenon: after a few time iterations, all but a few particles have negligible weight. The 

degeneracy implies that a large computational effort is devoted to update particles whose 

contribution to the approximation of the posteriori density is practically zero ( [13] and [52]) 

and can be attenuated with the application of more particles, what makes the computational 

costly considerably increase. 

A more applicable strategy to overcome this problem is with a resampling step, that 

involves a mapping of the random pair {𝑷𝑘
𝑖 , 𝑤𝑘

𝑖 } into {𝑷𝑘
𝑖∗, 𝑁𝑝𝑎𝑟𝑡

−1 } with uniform weights [50]. 

This leads to the elimination of particles with low weights and the replication of particles with 

high weights (𝑷𝑘
𝑖∗), what can be performed if the number of effective particles (particles with 

large weights) falls below a certain threshould, or be applied indiscriminately at each instant 

𝑡𝑘, representing the so-called sequential importance resampling (SIR) algorithm. 

 

 

5.1.2 The SIR Algorithm 

 

The steps of the particle filter SIR in the context of this presented work are described in 

Figure 2. Note that the evolution model, represented by the MFS in this present work, is called 

in every particle generation procedure, where the direct problem is solved 𝑁𝑝𝑎𝑟𝑡 = 𝑁 times. 

This remark highlights the importance of uses fast and accurate methods on sequential 

estimation approaches. 
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Figure 2 – MFS-PF scheme. 

 

The resampling procedure aims to eliminate the lowest weight particles in order to keep 

the most important generated particles. A measure from the degeneration of the particles is the 

effective sample size (𝑁𝑒𝑓𝑓), presented in [53], given by  

 

𝑁𝑒𝑓𝑓𝑘
=

1

∑ (𝑤𝑘
𝑖 )

𝑁𝑝𝑎𝑟𝑡𝑖

𝑖

2
 
, 𝑘 = 1,… , 𝑘𝑓𝑖𝑛𝑎𝑙 . (5.11) 

 

When 𝑁𝑒𝑓𝑓𝑘
 is a low value, it indicates severe degeneration of the particle filter. To 

evaluate the filter performance, the maximum width of credibility interval (𝑀𝑊𝐶𝐼) [54] is 

determined for each estimated variable, considering the entire period of time. 
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6 NUMERICAL RESULTS 

 

In this work, first the direct problem is solved in order to obtain information about the 

MFS implementation and then the inverse problem is solved. In the direct problem, the HTC 

𝜌(𝑡) is known and only the coefficients are unknow and have to be determined by imposing the 

initial and boundary conditions. 

For the direct problem, the root-mean-square error (𝑅𝑀𝑆𝐸𝑇) and the maximum error 

(𝑒max(𝑇)) of the temperature field is evaluated to the approximation of the sequential MFS to 

each timestep 𝑘, in order to indicate if some instability occurs with the MFS to the respective 

studied case: 

 

 𝑅𝑀𝑆ET
 = √

1

𝑘𝑓𝑖𝑛𝑎𝑙
∑ (𝑻𝑘 − �̂�𝑘)

2

𝑘𝑓𝑖𝑛𝑎𝑙

𝑘=1

, (6.1) 

 

𝑒𝑚𝑎𝑥(𝑇) = 𝑚𝑎𝑥|𝑻𝑘 − �̂�𝑘|𝑘=1,…,𝑘𝑓𝑖𝑛𝑎𝑙
. (6.2) 

 

For the inverse problem, the time-dependent HTC (𝜌(𝑡)) is estimated at same time that 

the measurements are filtering. The performance related to the efficiency and accuracy of the 

proposed MFS-PF method is given in terms of root-mean-square error (𝑅𝑀𝑆𝐸𝜌) and relative 

error (𝑅𝑒𝑙(𝜌)) defined by 

 

𝑅𝑀𝑆𝐸𝜌 = √
1

𝑘𝑓𝑖𝑛𝑎𝑙
∑ (𝜌 − �̂�𝑘)2

𝑘𝑓𝑖𝑛𝑎𝑙

𝑘=1

, (6.3) 

 

𝑅𝑒𝑙(𝜌) =
√∑ (𝜌𝑘−�̂�𝑘)2

𝑘𝑓𝑖𝑛𝑎𝑙
𝑘=1

√∑ 𝜌𝑘
2

𝑘𝑓𝑖𝑛𝑎𝑙
𝑘=1

× 100% 

(6.4) 

 

Thus the 𝑁𝑒𝑓𝑓 is determined (see 5.1.2) along with the maximum width of credibility 

interval (𝑀𝑊𝐶𝐼), to ensure the best performing particle filter: 
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𝑁𝑒𝑓𝑓𝑘
=

1

∑ (𝑤𝑘
𝑖 )

2𝑁𝑝𝑎𝑟𝑡𝑖

𝑖
 
, 𝑘 = 1,… , 𝑘𝑓𝑖𝑛𝑎𝑙 . (6.5) 

 

In order to simplify the 𝑁𝑒𝑓𝑓 influence visualization in the results, it will be evaluated 

in terms of 𝑁𝑒𝑓𝑓[%], denoting the average percentage relative error between the effective 

sample size and the total number of particles used.  

As an additional diagnostic of the performance of the particle filter, the 95% credibility 

interval (CI) is presented on the results, and is defined as 

 

𝐼95% = �̂�𝑘 ± 1.96σ̂k  𝑘 = 1,… , 𝑘𝑓𝑖𝑛𝑎𝑙 , (6.6) 

 

where ρ̂k represents the estimated variable and σ̂k represents the uncertainty of the particles. 

The CI is represented by the shaded region on the estimation/filtering graphical results in this 

session. For all cases, the number of timesteps for the MFS-PF estimation is 𝑘𝑓𝑖𝑛𝑎𝑙 = 11. 

 

 

6.1 ONE-DIMENSIONAL PROBLEMS 

 

In this section, the simulated measurements are defined by eq.(4.1) or eq.(4.2), where 

additive or multiplicative types of noisy errors were used: 

 

𝑌𝑎(𝑡𝑘) = 𝑌(𝑡𝑘) + 𝑝𝜀𝑘 , 𝑘 = 1, … , 𝑘𝑓𝑖𝑛𝑎𝑙, (6.7) 

 

𝐸𝑎(𝑡𝑘) = 𝐸(𝑡𝑘) + 𝑝𝜀𝑘 , 𝑘 = 1, … , 𝑘𝑓𝑖𝑛𝑎𝑙, (6.8) 

 

𝑌𝑚(𝑡𝑘) = 𝑌(𝑡𝑘)(1 + 𝑝𝛾𝑘), 𝑘 = 1,… , 𝑘𝑓𝑖𝑛𝑎𝑙 , (6.9) 

 

𝐸𝑚(𝑡𝑘) = 𝐸(𝑡𝑘)(1 + 𝑝𝛾𝑘), 𝑘 = 1,… , 𝑘𝑓𝑖𝑛𝑎𝑙 , (6.10) 

 

where (𝜀𝑘)𝑘=1,…,𝑘𝑓𝑖𝑛𝑎𝑙
represents random variables draw from a Gaussian distribution with mean 

zero and standard deviation 
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𝜎 = 𝑝 × {
𝑚𝑎𝑥𝑘=1,…,𝑀|𝑌(𝑡𝑘)|,    in eq. (4.1), (𝑎)

𝑚𝑎𝑥𝑘=1,…,𝑀|𝐸(𝑡𝑘)|,   in eq. (4.2), (𝑏)
, (6.11) 

 

𝑝 represent the percentage of noise and 𝛾𝑘=1,…,𝑘𝑓𝑖𝑛𝑎𝑙
 are random variables drawn from a uniform 

distribution on [−1,1]. That way, from the Table 2, 𝑣𝑘 and 𝑛𝑘 are given by a normal distribution 

of a percentual 𝑝 of the highest field temperature, considering all time domain. 

The representation of one-dimensional problems in the MFS approach is given, for the 

number of points 𝑀 = 12 and 𝑁 = 22, the final time 𝑡𝑓 = 1,  and the distance from the study 

domain to the source points given by 𝑑 = 0.2 in Figure 3. 

 

 

Figure 3 – MFS Scheme with M = 12, N = 22, 𝑡𝑓 = 1, and 𝑑 = 0.2.  

 

The inverse and direct problems of cases above were performed on a computer with 

Intel® Core i5 3230M processor. 

 

 

6.1.1 Linear Boundary Problem 

 

This case is a typical benchmark problem considered in [1], [44], and [55]. Considering 

the study domain Ω ⊂ [0,1], 0 ≤ 𝑡 ≤ 1, and the linear law 𝑔(𝑇) = 𝑇, the initial and boundary 

conditions are given by 

 

T0(r, θ) = 𝑥2 + 1, (6.12) 
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−
𝜕𝑇

𝜕𝑥
(0, 𝑡) + 𝜌(𝑡)𝑔(𝑇(0, 𝑡)) = 𝑡(2𝑡 + 1) = ℎ0(𝑡), (6.13) 

 

𝜕𝑇

𝜕𝑥
(1, 𝑡) + 𝜌(𝑡)𝑔(𝑇(1, 𝑡)) = 2 + 2𝑡(𝑡 + 1) = ℎ1(𝑡), (6.14) 

 

and the boundary temperature measurements eq.(4.1) and eq.(4.2): 

 

𝑌(𝑡) = 𝑇(1, 𝑡) = 2 + 2𝑡, 𝑡 ∈ [0, 𝑡𝑓 = 1), (6.15) 

 

𝐸(𝑡) =
𝑇2(0, 𝑡) + 𝑇2(1, 𝑡)

2
=

8𝑡2 + 12𝑡 + 5

2
, 𝑡 ∈ [0, 𝑡𝑓 = 1), (6.16) 

 

with the analytical solution given by: 

 

𝑇(𝑥, 𝑡) = 𝑥2 + 2𝑡 + 1, 𝜌(𝑡) = 𝑡. (6.17) 

 

The MFS is applied with 𝑀 = 11, 𝑁 = 2𝑀 − 2 = 20 with 𝑑 varying from 0.2 to 1.4 in 

order to reach better results for the approximation. The errors from eq.(6.1) and eq.(6.2) are 

shown in Table 3. Note that 𝑒𝑚𝑎𝑥 < 1𝑒 − 2 and 𝑅𝑀𝑆𝐸 < 1𝑒 − 3 for ℎ ≥ 1, therefore 

assuming 𝑑 = 1, the source points are uniformly located on 𝑦0 = −1 and 𝑦1 = 2. 

 

Table 3 – 𝑑 analysis for direct problem 6.1.1 with 𝑀 = 11 and 𝑁 = 20. 

𝒅 0.2 0.4 0.6 0.8 1 1.2 1.4 

𝑹𝑴𝑺𝑬 0.022658 0.011539 0.002727 0.001428 0.000310 0.000013 0.000004 

𝒆𝒎𝒂𝒙 0.642529 0.335123 0.057974 0.028982 0.009327 0.003021 0.001013 

 

In this problem, the resultant system is solved using SVD with Tikhonov regularization. 

The 𝜆 parameter is selected by the L-curve analysis (Figure 4). The parameter chosen is  𝜆 =

1𝑒 − 12. The approximation of MFS to direct problem can be verified in Figure 5 to various 

coordinates of time and spatial domain.  
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Figure 4 – L-curve for 𝑑 = 1 in 6.1.1. 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 5 – MFS solution and analytical solution for (a) 𝑇(0, 𝑡), (b) 𝑇(1, 𝑡), and (c) 𝐸(𝑡), for 

problem 6.1.1. 

 

Next, we investigate the inverse problem for the standard measurements eq.(6.15). First, 
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an analysis to choose the random walk parameter 𝜎𝜌 to the evolution model for 𝜌(𝑡). We 

consider the additive noise error measurement eq.(6.7) with 𝑝 = 1% noise. We have tested 

three different standard deviations 𝜎𝜌 ∈ {0.02, 0.2, 0.4} for the random walk in order to avoid 

sample impoverishment. When sample impoverishment takes place, most of the particles are 

eliminated during the resampling step, and a main goal is keep the 𝑁𝑒𝑓𝑓 over 50% of 𝑁𝑝𝑎𝑟𝑡 

[13]. 

The Table 4 shows the result of evaluation criteria. Note that 𝜎𝜌 = 0.02 gives inaccurate 

results, indicating that the random walk does not could be estimated for low values of 𝜎𝜌, 

because the evolution model for the HTC depends strongly on the priori information. This can 

be verified in the 𝑁𝑒𝑓𝑓, that is lower than 50% for this case, therefore the search field of the 

HTC was not fully explored. 

 

Table 4 – SIR results for 6.1.1 with standard measurements: 𝜎 ∈ {0.02, 0.2, 0.4} for 𝑝 = 1%. 

𝑵𝒑𝒂𝒓𝒕 𝝈 𝑹𝑴𝑺𝑬𝝆 𝑹𝒆𝒍(𝝆)% 𝑴𝑾𝑪𝑰 𝑵𝒆𝒇𝒇[%] 

50 0.02 0.498 70.4 0.14 17.81 

100 0.02 0.501 70.9 0.15 17.33 

200 0.02 0.490 69.4 0.16 16.26 

50 0.2 0.055 7.80 0.30 73.03 

100 0.2 0.053 7.40 0.27 74.80 

200 0.2 0.052 7.30 0.26 75.20 

50 0.4 0.062 8.70 0.47 60.55 

100 0.4 0.062 8.78 0.50 60.56 

200 0.4 0.053 7.60 0.41 62.27 

 

For illustration, the results obtained by SIR filter with 𝑁𝑝𝑎𝑟𝑡 = 200 and 𝜎 = 0.2 are 

shown in Figure 6, and 𝜎 = 0.4 in Figure 7. Once the dynamic behavior of the random walk 

model improves, the filter is able to draw particles close to the actual HTC with suitable 

performance. We take 𝜎𝜌 = 0.2. 
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(a)

 

(b)

 

Figure 6 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements with 𝑝 = 1%, 𝜎𝜌 = 0.2, and 

𝑁𝑝𝑎𝑟𝑡 = 200, for problem 6.1.1. 

 

(a)

 

(b)

 

Figure 7 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝑇(1, 𝑡) with 𝑝 = 1%,  𝜎𝜌 =

0.4, and 𝑁𝑝𝑎𝑟𝑡 = 200, for problem 6.1.1. 

 

The SIR results are shown in Table 5 for 𝑝 = 5% and additive noise (eq.(6.7)) and 𝜎𝜌 =

0.2. Note that there was no sample impoverishment, because 𝑁𝑒𝑓𝑓 is always greater than 50%. 

 

Table 5 – SIR results for 6.1.1 with standard measurements 𝜎 = 0.2, for 𝑝 = 5% 

𝑵𝒑𝒂𝒓𝒕 𝒑 𝑹𝑴𝑺𝑬𝝆 𝑹𝒆𝒍(𝝆)% 𝑴𝑾𝑪𝑰 𝑵𝒆𝒇𝒇[%] 

50 5% 0.130 18.40 0.62 74.24 

100 5% 0.140 19.80 0.60 72.82 

200 5% 0.122 17.30 0.56 75.70 
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Then, we investigate the non-standard boundary measurements from eq.(6.16). For 𝜎𝜌 =

0.2 contaminated with additive noise from eq.(6.8). The results for 𝑝 = {1, 5}% are shown in 

Table 6. The SIR results are illustrated for 𝑁𝑝𝑎𝑟𝑡 = 200 and 𝑝 = 1% in Figure 8. 

 

Table 6 – SIR results for 6.1.1 with non-standard measurements: 𝜎 = 0.2, 𝑝 = {1, 5}% 

𝑵𝒑𝒂𝒓𝒕 𝒑 𝑹𝑴𝑺𝑬𝝆 𝑹𝒆𝒍(𝝆)% 𝑴𝑾𝑪𝑰 𝑵𝒆𝒇𝒇[%] 

50 1% 0.067 9.50 0.28 85.67 

100 1% 0.055 7.80 0.27 85.56 

200 1% 0.052 7.40 0.24 84.69 

50 5% 0.108 15.30 0.54 58.43 

100 5% 0.107 15.10 0.51 63.85 

200 5% 0.103 14.60 0.51 61.17 

 

 

(a)

 

(b)

 

Figure 8 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝐸(𝑡) with 𝑝 = 1%, 𝜎𝜌 =

0.4, and 𝑁𝑝𝑎𝑟𝑡 = 200, for problem 6.1.1. 

 

The results obtained from the multiplicative noise from eq.(6.11) – (a) for the standard 

measurements and (b) for non-standard – contaminating with 𝑝 = 5% are shown in Table 7. 
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Table 7 – SIR results for 6.1.1 with multiplicative errors: 𝜎 = 0.2, 𝑝 = 5%. 

𝑵𝒑𝒂𝒓𝒕 Equation 𝑹𝑴𝑺𝑬𝝆 𝑹𝒆𝒍(𝝆)% 𝑴𝑾𝑪𝑰 𝑵𝒆𝒇𝒇[%] 

50 (a) 0.103 14.60 0.54 74.98 

100 (a) 0.096 13.60 0.54 76.34 

200 (a) 0.079 11.10 0.54 75.39 

50 (b) 0.044 6.20 0.41 53.26 

100 (b) 0.038 5.30 0.38 54.93 

200 (b) 0.037 5.30 0.34 52.96 

 

The graphics for 𝑁𝑝𝑎𝑟𝑡 = 200 in the case (a) and case (b) are shown in Figure 9 and 

Figure 10, respectively. Note that the non-standard measurements represents a highest accuracy 

related to the standard measurements, and the CI is lower and closest to the aimed value, what 

can be viewed in the lower 𝑀𝑊𝐶𝐼 from case (b). 

The 𝑁𝑒𝑓𝑓 value from case (b) is lower than in case (a), but higher than 50%, indicating 

that the degeneracy phenomenon do not spoil the results from the estimation. 

 

(a)

 

(b)

 

Figure 9 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝑇(1, 𝑡) with multiplicative noise 

𝑝 = 5%, 𝜎𝜌 = 0.2, and 𝑁𝑝𝑎𝑟𝑡 = 200, for problem 6.1.1. 
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(a)

 

(b)

 

Figure 10 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝐸(𝑡) with multiplicative noise 

𝑝 = 5%, 𝜎𝜌 = 0.2, and 𝑁𝑝𝑎𝑟𝑡 = 200, for problem 6.1.1. 

 

The graphics for 𝑁𝑝𝑎𝑟𝑡 = 200 in the case (a) and case (b) with 𝑝 = 5% with 𝜎𝜌 = 0.4 

are plotted to compare with the 𝜎𝜌 = 0.2 results. They are shown in Figure 11 and Figure 12, 

respectively. This present results shown same behavior of previously see in Table 4, where 

𝜎𝜌 = 0.2 presented better results than 𝜎𝜌 = 0.4, with lower 𝑀𝑊𝐶𝐼 values. 

 

(a)

 

(b)

 

Figure 11 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝑇(1, 𝑡) with 𝑝 = 5%, 𝜎𝜌 =

0.4, and 𝑁𝑝𝑎𝑟𝑡 = 200, for problem 6.1.1. 
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(a)

 

(b)

 

Figure 12 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝐸(𝑡) with 𝑝 = 5%, 𝜎𝜌 = 0.4, 

and 𝑁𝑝𝑎𝑟𝑡 = 200, for problem 6.1.1. 

 

In general way, the HTC could be estimated in all cases, including using multiplicative 

noise. The use of the non-standard measurements makes the 𝑀𝑊𝐶𝐼 decreases in relation to the 

standard measurements, indicating that the non-standard measurement contains more 

information in the inverse problem than the standard measurement. 

The computational cost for 200 particles were on average 547 seconds, indicating that 

the time to propagate each particle through MFS to the problem was inferior than 0.28 seconds. 

It’s possible to compare the obtained results with the same problem studied by Yan et 

al. [55], that uses Bayesian MCMC inference approach in a similar case. In the previous work, 

the relative error 𝑅𝑒𝑙(𝜌) ∈ {3.84, 8.07}% for 𝑝 ∈ {1, 5}%, lower than the better results 

obtained by MFS-PF, that are 𝑅𝑒𝑙(𝜌) ∈ {7.81, 17.30}% for 𝑝 ∈ {1, 5}%. Although the worst 

results, the MFS-PF represents a lower computational cost compared to MCMC, that uses all 

the time history measurements globally, being a reliable method for offline problems, and it has 

also resulted in some negative values for the estimated HTC, which are physically unrealistic. 

In Onyango et al. [1], where the HTC is estimated in a BEM framework, same negative 

HTC problem happened when no positivity constant or regularization is imposed. In the MFS-

PF algorithm neither negativity nor instability happened. 

 

 

6.1.2 Nonlinear Boundary Problem 

 

In the nonlinear case, we aim to solve a problem previously presented in [2]. 
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Considering the study domain Ω ⊂ [0,1], 0 ≤ 𝑡 ≤ 1, and the nonlinear radiation 𝑔(𝑇) = 𝑇3|𝑇|, 

the initial and boundary conditions are given by 

 

𝑇0(𝑥) = 𝑥2, 𝑥 ∈ [0,1], (6.18) 

 

−
𝜕𝑇

𝜕𝑥
(0, 𝑡) + 𝜌(𝑡)𝑔(𝑇(0, 𝑡)) = 16𝑡4(𝑡 + 1) = ℎ0(𝑡), (6.19) 

 

𝜕𝑇

𝜕𝑥
(1, 𝑡) + 𝜌(𝑡)𝑔(𝑇(1, 𝑡)) = (1 + 𝑡)(1 + 2𝑡)4 + 2 = ℎ1(𝑡) (6.20) 

 

and the boundary temperature measurements from eq.(4.2) 

 

𝐸(𝑡) = 12.8𝑡5 + 16𝑡4 + 8𝑡2 + 2𝑡 + 0.2 (6.21) 

 

with the analytical solution given by 

 

𝑇(𝑥, 𝑡) = 𝑥2 + 2𝑡, 𝜌(𝑡) = 1 + 𝑡, (6.22) 

 

For this nonlinear MFS direct problem, we impose 𝑀 = 12, 𝑁 = 𝑀 − 2 = 10 with 𝑑 

varying from 0.2 to 1.4 in order to reach better results for the approximation. The errors from 

eq.(6.1) and eq.(6.2) are shown in Table 8. Note that 𝑒𝑚𝑎𝑥 < 1𝑒 − 2 and 𝑅𝑀𝑆𝐸 < 1𝑒 − 4 for 

ℎ ≥ 1, therefore assuming 𝑑 = 1, the source points are uniformly located on 𝑦0 = −1 and 𝑦1 =

2. In this problem, the resultant system is solved using 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 toolbox from MATLAB using 

the Levenberg-Marquardt method. The accuracy of the direct problem using MFS can be 

verified in Figure 13 to the temperature in 𝑥 = 0, 𝑥 = 1 and the non-standard measurement 

calculation. 

 

Table 8 – 𝑑 analysis for direct problem 6.1.2 with 𝑀 = 12 and 𝑁 = 10. 

𝑑 0.2 0.4 0.6 0.8 1 1.2 1.4 

𝑹𝑴𝑺𝑬 0.00332 0.00260 0.00114 0.00070 0.00009 0.00005 0.00001 

𝒆𝒎𝒂𝒙 0.13277 0.06906 0.02738 0.03114 0.00707 0.00316 0.00315 
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 (a)

 

(b)

 

(c) 

 

Figure 13 – MFS solution and analytical solution for (a) 𝑇(0, 𝑡), (b) 𝑇(1, 𝑡), (c) 𝐸(𝑡), for 

problem 6.1.2. 

 

The inverse problem is solved using 𝑝 ∈ {5, 10}%, and the results are shown in Table 

9 using the better resulting 𝜎𝜌 = 0.2 from session 6.1.1, where the HTC have the same behavior. 

 

Table 9 – SIR results 6.1.2 for multiplicative error from eq.(6.10): 𝜎 = 0.2, 𝜌 ∈ {5,10}%. 

𝑵𝒑𝒂𝒓𝒕 𝒑 𝑹𝑴𝑺𝑬𝝆 𝑹𝒆𝒍(𝝆)% 𝑴𝑾𝑪𝑰 𝑵𝒆𝒇𝒇[%] 

50 5% 0.041 16.40 0.94 74.28 

100 5% 0.030 13.90 0.82 72.83 

200 5% 0.027 13.40 0.77 75.70 

50 10% 0.061 20.00 0.87 53.06 

100 10% 0.055 18.90 0.84 54.80 

200 10% 0.054 18.80 0.81 55.20 
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The graphics for 𝑁𝑝𝑎𝑟𝑡 = 200 with 𝑝 = 5% and 𝑝 = 10% are represented in Figure 14 

and Figure 15, respectively. This 𝑝 values represent the same values from the reference [2]. 

 

(a)

 

(b)

 

Figure 14 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝐸(𝑡) with multiplicative noise 

𝑝 = 5%, 𝜎𝜌 = 0.2, and 𝑁𝑝𝑎𝑟𝑡 = 200, for problem 6.1.2. 

 

(a)

 

(b)

 

Figure 15 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝐸(𝑡) with multiplicative noise 

𝑝 = 10%, 𝜎𝜌 = 0.2, and 𝑁𝑝𝑎𝑟𝑡 = 200, for problem 6.1.2. 

 

The computational cost for 200 particles were on average 844 seconds, indicating that 

the time to propagate each particle through MFS to the problem was inferior than 0.43 seconds, 

representing an increase of 54% in comparison of linear case in 6.1.1. 

The results shown good stability and are comparable in terms of accuracy with the 

results obtaining by a nonlinear BEM with a posterior Tikhonov regularization from [2], shown 

in Figure 16. In this figure, the 𝜎(𝑡) axis correspond to the HTC (𝜌(𝑡) in this present work), 
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and the multiplicative noise is correspondent to 𝜌. 

 

 

Figure 16 – Estimation by Slodicka et al. [2]. 

 

 

6.2 MULTIDIMENSIONAL PROBLEMS 

 

In multidimensional problems, the simulated measurements are defined only by the non-

standard measurement eq.(4.6), and additive noisy errors were used: 

 

𝐸𝑎(𝑡𝑘) = 𝐸(𝑡𝑘) + 𝜀𝑘, 𝑘 = 1,… , 𝑘𝑓𝑖𝑛𝑎𝑙 , (6.23) 

 

where (𝜀𝑘)𝑘=1,…,𝑀represents random variables drawn from a Gaussian distribution with mean 

zero and standard deviation is given by 

 

𝜎 = 𝑝 × 𝑚𝑎𝑥𝑘=1,…,𝑘𝑓𝑖𝑛𝑎𝑙
|𝐸(𝑡𝑘)|. (6.24) 

 

where 𝑝 represent the percentage of noise. That way, from the Table 2, 𝑣𝑘 and 𝑛𝑘 are given by 

a normal distribution of a percentual 𝑝 of the highest field temperature, considering all time 

domain. 

In this session, the standard deviation 𝜎𝜌 is not given as a constant, but is drawn from a 

uniform distribution between 0.05 and 0.2. This hypothesis was adopted assuming that we know 

a priori that the maximum value of the HTC is equal to unity. Such that the lower limit 
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corresponds to 5% of this. On the other hand, if the HTC suddenly changes over time, the 

parameter search field should be broadened, so that 20% of the maximum allowable value is 

used as an upper limit. 

The representation of one-dimensional problems in the MFS approach is given, for the 

number of points 𝑀 = 12, 𝑁 = 22 and the distance from the study domain to the source points 

given by 𝑑 = 0.2 in Figure 17. 

The inverse and direct problems of cases above were performed on a computer with 

Intel® Core i5 8265U processor. 

 

(a) 

 

(b) 

 
 

Figure 17 – Multidimensional scheme with M = 10, N = 10, 𝑡𝑓 = 1, 𝑟0 = 1, and ℎ = 1, 

centered in (0,0, 𝑡). (a) (𝑥, 𝑦, 𝑡) view, and (b) (𝑥, 𝑦) view.  

 

 

6.2.1 Linear Boundary Problem 

 

Considering a circular domain, where 0 ≤ 𝑟 ≤ 1, and 0 ≤ 𝑡 ≤ 1. The system 

corresponds to the linear law 𝑔(𝑇) = 𝑇, and the initial and boundary condition are given by 

 

𝑇0(𝑟, 𝜃) = 𝑟2 + 1, (6.25) 

 

ℎ(𝑟, 𝜃, 𝑡) = 2 + 𝑡(2 + 4𝑡). (6.26) 
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The non-standard measurement is given by 

 

𝐸(𝑡) = 𝜋(2 + 4𝑡)2,   𝑡 ∈ [0, 𝑡𝑓 = 1), (6.27) 

 

and the analytical solution of the inverse problem is given by 

 

𝑇(𝑟, 𝜃, 𝑡) = 𝑟2 + 4𝑡 + 1, 𝜌(𝑡) = 𝑡. (6.28) 

 

The direct problem considers that the information in eq.(6.28) for the HTCError! 

Reference source not found. is well known. The MFS is applied with 𝑀 = 10, 𝑁 = 20 with 

𝑑 varying from 5 to 11 in order to reach better results for the approximation. The resulting 

system of MFS is solved using SVD with Tikhonov regularization. The errors from eq.(6.1) 

and eq.(6.2) are shown in Table 10. Note that as from 𝑑 = 10, the 𝑒𝑚𝑎𝑥 and 𝑅𝑀𝑆𝐸 starts to 

increase. Assuming 𝑑 = 10, we can set the regularization parameter 𝜆 from L-curve analysis 

(Figure 18). The parameter chosen is  𝜆 = 1𝑒 − 12.  

 

Table 10 – 𝑑 analysis for direct problem 6.2.1 with 𝑀 = 10 and 𝑁 = 20. 

𝑑 5 6 7 8 9 10 11 

𝑹𝑴𝑺𝑬 0.0182 0.0041 0.0030 0.0023 0.0016 0.0021 0.0036 

𝒆𝒎𝒂𝒙 0.0974 0.0282 0.0173 0.0127 0.0098 0.0095 0.0632 

 

 

Figure 18 – L-curve for 𝑑 = 10 in 6.2.1. 

 

The MFS accuracy for the direct problem can be verified on Figure 19, that compares 
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the analytical solution for the non-standard measurement eq.(6.27) with the respective MFS 

numerical solution obtained from 𝑑 = 10 and 𝜆 = 1𝑒 − 12. Same parameters are used to show 

the temperature field in the last timestep, that is compared with the analytic response in the 

Figure 20. 

 

 

Figure 19 – Direct problem 6.2.2, 𝐸(𝑡) analytical and numerical for ℎ = 10, 𝜆 = 1𝑒 − 12. 

 

 

Figure 20 –Sequential MFS for Direct problem (left) and the analytical response (right) of 

6.2.1, with 𝑡 = 𝑡𝑓𝑖𝑛𝑎𝑙. 

 

Next, we investigate the inverse problem. Imposing 𝑁𝑝𝑎𝑟𝑡 = {50, 100, 200, 400}, and 

using the random walk as uniform distribution function, the results from Table 11 are given for 

𝑝 = {1, 5}%. 
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Table 11 – SIR results for 6.2.1 with 𝑝 ∈ {1%, 5%}. 

𝑵𝒑𝒂𝒓𝒕 𝒑 𝑹𝑴𝑺𝑬𝝆 𝑹𝒆𝒍(𝝆)% 𝑴𝑾𝑪𝑰 𝑵𝒆𝒇𝒇[%] 

50 1% 0.021 3.56 0.33 54.30 

100 1% 0.015 2.66 0.32 50.00 

200 1% 0.012 2.03 0.32 63.86 

400 1% 0.009 1.56 0.34 58.87 

50 5% 0.020 4.72 0.28 51.87 

100 5% 0.027 3.54 0.30 50.16 

200 5% 0.010 2.53 0.31 50.37 

400 5% 0.015 1.70 0.32 51.41 

 

Note that all results had the 𝑁𝑒𝑓𝑓 > 50% what indicates that there was no sample 

impoverishment, and the errors decrease substantially when the number of particles increases 

for 𝒑 = 1%. For 𝒑 = 5% this behavior was not observed for the 𝑅𝑀𝑆𝐸, having the MFS-PF 

better results using 200 particles. This result highlights that, as a stochastic method, the particle 

filter not necessarily have better global results using more particles, but is expected that the 

results get closer to the real value, what can be observed in the relative error, that decreases 

when the number of particles increases. The graphic representation of the behavior of 𝜎𝜌 for 

𝑁𝑝𝑎𝑟𝑡 = 𝑁𝑃 = {50, 100, 200, 400}, and 𝑝 = 1% is shown in Figure 21. 

 

 

Figure 21 – Behavior of 𝜎𝜌(𝑡) over time, with 𝑝 = 1%. 

 

It’s possible to note that the 𝜎𝜌(𝑡) converges to 𝜎𝜌 ≅ 0.125. The estimation of the HTC 
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and filtering measurements using 𝑁𝑝𝑎𝑟𝑡 = 400 are shown in Figure 22 for 𝑝 = 1%.  

 

(a) 

 

(b)

 

Figure 22 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝐸(𝑡) with 𝑝 = 1% and 𝑁𝑝𝑎𝑟𝑡 =

400, for problem 6.2.1. 

 

The behavior of 𝜎𝜌 for 𝑝 = 5% and the graphical representation of this case with 

𝑁𝑝𝑎𝑟𝑡 = 400 are shown in Figure 23 and Figure 24, respectively. 

 

 

Figure 23 – Behavior of 𝜎𝜌(𝑡) over time, with 𝑝 = 5%. 
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(a)

 

(b)

 

Figure 24 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝐸(𝑡) with 𝑝 = 5% and 𝑁𝑝𝑎𝑟𝑡 =

400, for problem 6.2.1. 

 

Even though there was a greater spread of the 𝜎𝜌 using greater noise levels, it’s possible 

see that the standard deviation converges to 𝜎𝜌 ≅ 0.125. This observation, added to the good 

filtering and estimated results, clearly shows that the MFS-PF approach provides stable 

numerical solutions to the inverse Robin problems with convective boundary. 

The computational cost for 400 particles were on average 980 seconds, indicating that 

the time to propagate each particle through MFS to the problem was inferior than 0.25 seconds. 

 

 

6.2.2 Nonlinear Boundary Problem 

 

Considering a circular domain, where 0 ≤ 𝑟 ≤ 1, and 0 ≤ 𝑡 ≤ 1. The system 

corresponds to the nonlinear law 𝑔(𝑇) = 𝑇3|𝑇|, corresponding to radiation, and the initial and 

boundary condition are given by 

 

𝑇0(r, θ) = r2, (6.29) 

 

ℎ(𝑟, 𝜃, 𝑡) = 2 + 𝑡(1 + 4𝑡)4. (6.30) 

 

The non-standard measurement is given by: 
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𝐸(𝑡) =
2𝜋(1 + 4𝑡)5

5
, (6.31) 

 

and the analytical solution is given by 

 

𝑇(𝑟, 𝜃, 𝑡) = 𝑟2 + 4𝑡, 𝜌(𝑡) = 𝑡 + 1. (6.32) 

 

The number of points used is 𝑀 = 10 and 𝑁 = 10. In the direct problem, the resulting 

system was solved using the MATLAB toolbox lsqnonlin with the trust-region-reflective 

method to deal with the nonlinearity of boundary conditions. The errors from eq.(6.1) and 

eq.(6.2) varying 𝑑 from 0.2 to 1.2 are presented in Table 12. In this case, the errors presented 

similar results for all tested 𝑑. The distance 𝑑 = 1 is chosen because have the lower 𝑅𝑀𝑆𝐸. 

 

Table 12 – 𝑑 analysis for direct problem 6.2.2 with 𝑀 = 10 and 𝑁 = 10. 

𝑑 0.2 0.4 0.6 0.8 1 1.2 

𝑹𝑴𝑺𝑬 0.0331 0.0363 0.0310 0.0315 0.0314 0.0329 

𝒆𝒎𝒂𝒙 0.1539 0.1449 0.1292 0.1200 0.1140 0.1063 

  

The MFS accuracy for the direct problem can be visually verified on Figure 25, that 

compares the analytical solution for the non-standard measurement eq.(6.31) with the 

respective MFS numerical solution obtained from 𝑑 = 1, 𝑀 = 10 and 𝑁 = 10. Same 

parameters are used to show the temperature field in the last timestep, that is compared with the 

analytic response in the Figure 26. 

 

 

Figure 25 – Direct problem 6.2.2, 𝐸(𝑡) analytical and numerical for ℎ = 1 
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Figure 26 – Sequential MFS for Direct problem (left) and the analytical response (right) of 

6.2.2, with 𝑡 = 𝑡𝑓𝑖𝑛𝑎𝑙.  

 

Then, imposing 𝑁𝑝𝑎𝑟𝑡 = {50, 100, 200, 400}, and using the random walk as uniform 

distribution function, the results from Table 13 are given for 𝑝 = {1, 5}%. 

 

Table 13 – SIR results for 6.2.2 with 𝑝 ∈ {1%, 5%}. 

𝑵𝒑𝒂𝒓𝒕 𝒑 𝑹𝑴𝑺𝑬𝝆 𝑹𝒆𝒍(𝝆)% 𝑴𝑾𝑪𝑰 𝑵𝒆𝒇𝒇[%] 

50 1% 0.080 5.24 0.38 93.88 

100 1% 0.080 5.22 0.39 92.37 

200 1% 0.066 4.35 0.39 92.98 

400 1% 0.066 4.32 0.41 93.31 

50 5% 0.093 6.09 0.39 95.17 

100 5% 0.083 5.45 0.37 94.51 

200 5% 0.065 4.26 0.40 94.66 

400 5% 0.059 3.58 0.40 94.55 

 

Note that for both error values 𝑝, the 𝑅𝑀𝑆𝐸 and 𝑅𝑒𝑙 decreases when the number of 

particles increases. All cases produced 𝑁𝑒𝑓𝑓 > 50%, and similar 𝑀𝑊𝐶𝐼 values. The graphic 

representation of the behavior of 𝜎𝜌 for 𝑁𝑝𝑎𝑟𝑡 = 𝑁𝑃 = {50, 100, 200, 400} is shown in Figure 

27. 
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Figure 27 – Behavior of 𝜎𝜌(𝑡) over time, with 𝑝 = 1% for problem 6.2.2. 

 

It’s possible to note that the 𝜎𝜌(𝑡) converges to 𝜎𝜌 ≅ 0.135. The estimation of the HTC 

and filtering measurements using 𝑁𝑝𝑎𝑟𝑡 = 400 are shown in Figure 28 for 𝑝 = 1%. A detailed 

view of the filtered results are shown in Figure 29. 

 

(a)

 

(b)

 

Figure 28 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝐸(𝑡) with 𝑝 = 1% and 𝑁𝑝𝑎𝑟𝑡 =

400, for problem 6.2.2. 
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Figure 29 – Detail from the figure Figure 28 (b). 

  

It is possible to view that the estimation of the HTC have a detachment from the real 

values especially on the initial timesteps, what is attenuated at highest timesteps. The behavior 

of 𝜎𝜌 for 𝑝 = 5% and the graphical representation of this case with 𝑁𝑝𝑎𝑟𝑡 = 400 are shown in 

Figure 30 and Figure 31, respectively. 

 

 

Figure 30 – Behavior of 𝜎𝜌(𝑡) over time, with 𝑝 = 5% for problem 6.2.2. 
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(a)

 

(b)

 

Figure 31 – (a) Estimated 𝜌(𝑡) and (b) filtered measurements 𝐸(𝑡) with 𝑝 = 5% and 𝑁𝑝𝑎𝑟𝑡 =

400, for problem 6.2.2. 

 

Similar to 𝑝 = 1% results, it is possible to view that the estimation of the HTC have a 

detachment from the real values especially on the initial timesteps, what is attenuated at highest 

timesteps. As in linear case (session 6.2.1), even though there was a greater spread of the 𝜎𝜌 

using greater noise levels, it’s possible see that the standard deviation converges to 𝜎𝜌 ≅ 0.135. 

This observation, added to the good filtering and estimated results, clearly shows that the MFS-

PF approach provides stable numerical solutions to the inverse Robin problems with radiation 

boundary. 

The computational cost for 400 particles were on average 3357 seconds, indicating that 

the time to propagate each particle through MFS to the problem was inferior than 0.84 seconds, 

representing an increase of 195% in comparison of linear case in session 6.2.1. 
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7 GENERAL CONCLUSIONS AND FUTURE WORKS 

 

In this present work an investigation about the parabolic MFS to linear and nonlinear 

boundary conditions was made. A sequential MFS was developed and shown good performance 

in the linear cases, with and higher RMSE and computational cost in nonlinear cases. 

A combined MFS-PF was implemented. This approach has produced accurate and stable 

results in the estimation of time-dependent HTCs. When radiation is present, the computational 

cost increases due to the nonlinearity in the corresponding boundary condition. The influence 

of the number of particles, as well as of the measurement noise have been analyzed. As expect, 

as the noise decreases or as the number of particles increases, the results improve, with narrow 

credible intervals. Also, as the number of particles increases, the results become more 

concentrated around the true value of the HTC. 

Non-standard measurements were used the estimation procedures, and presented good 

results in comparation to the standard measurements. This remark is interesting principally for 

problems that uses Cauchy data to estimate state and parameters, since many times the 

obtainment of Cauchy data is impracticable. 

In the cases where previous results were disponible, the MFS-PF has yielded 

comparable results in terms of accuracy, stability, and width of the credibility intervals, with 

additional improved features such as being less time consuming and preserving the physical 

non-negativity of HTC. 

All in all, this is an initial study. The SIR is a well-known tool for state-estimation 

problems, but the MFS for parabolic problems lacks of studies to make it more predictable in 

relation to the source points placement and the number of collocation points. 

As suggestion, future works can extend this approach to non-homogenous parabolic 

problems using RBFs or the DRM to deal with the particular solution, and extend this method 

for highest dimensions, as in three-dimensional spatial domain 𝑇(𝑥, 𝑦, 𝑧, 𝑡). 

Other suggestion is applying the sequential MFS-PF into real problems. As this work 

uses dimensionless diffusivity, therefore all problems were developed in dimensionless way, 

the diffusivity influence in the approach was not investigated. 
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