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Abstract

This dissertation proposes the use of the fiber Bragg grating (FBG) temperature sensors
array to estimate the fluid level. A optical fiber sensor (OFS) level is ideal for evaluating oil
tank level because it is a sensor that does not conduct electricity, is small size and resists
corrosive areas. However, these sensors are complex to assemble, requiring several steps
after fiber fabrication. Due to the temperature variation inside the tank, there is a need
for a temperature sensor with no connection to these sensors, to measure the temperature.
FBGs are intrinsically sensitive to temperature and strain. Therefore, level sensors also
need a temperature sensor to reduce the temperature cross-sensitivity issues.

To demonstrate the possibility of using the FBG temperature sensor for liquid level
estimation, the temperature distribution of an oil storage tank, 200 cm height and 40 cm in
diameter, receiving solar radiation at the top, is simulated. Then, the presence of a 200 cm
long and 125 µm diameter fiber inside the tank with different amounts and distribution
of FBGs along the fiber is simulated. In the simulation, due to the low variability of the
classes, the Random Forest (RF) algorithm was chosen for classification. Starting with
200 FBG equidistant, decreasing to 6, with different distributions along the fiber. It was
possible to classify the oil with an accuracy of 94.89% using 8 FBGs, using Tests for Two
Proportions with a significance of 5%, the accuracy is equal to use 50 FBGs.

Using the results obtained in the simulation, we utlized a 22.5 cm beaker, with 3 FBGs
inside. In the beaker, 3 different fluids are identified: water, mineral oil, and kyro oil.
Afterwards their levels are estimated from the temperature distribution along the beaker
(using the 3 FBGs). Furthermore, we keep the fluid inside the beaker heated by a peltier at
the bottom of the beaker to 318.15 K during the entire experiment. We followed the same
principle for the beaker experiment, using RF for both level identification, obtaining 100%
accuracy in fluid identification, and fluid level measurement the mid RMSE was 0.2603.

After the simulation commented above, and the bench tests, using the beaker at constant
temperature, we decided to expand the experiment. In this way we propose a full-scale
experiment, using 9 FBGs distributed in this tank to estimate the liquid level. The tank
is 100 cm in height and 30 cm in width, with 9 FBG sensors distributed along with the
tank height. For the detection, we use the following Machine Learning (ML) algorithms:
Logistic Regression (LogR), Decision Tree (DT) and Support Vector Machine (SVM).
Initially the algorithm chosen was RF, but when using it we obtained RMSE of 16.32 cm.
The algorithms chosen are Weighted Linear Regression (WLR), Support Vector Regression
(SVR), SVR with kernel selection minimize cost (SVRmin). We propose the Mixed Model
(MM), which selects the lowest Root Mean Square Error (RMSE) among the tested
regression algorithms at each level, and associates it to it. The MM has RMSE of 3.56 cm,



which is approximately four times smaller than when using WLR. The SVM and SVMmin
have RMSE of 6.28 cm and 6.14 cm, respectively.

Keywords: FBG, Temperature sensors, Machine Learning, Random Forest, Weighted
linear regression, Support Vector Machine, Support Vector Regression, Decision Tree,
Logistic Regression.



Resumo
Esta dissertação propõe a utilização de grades de Bragg em fibra (FBG) para estimar o
nível do fluido. O sensor de fibra óptica (OFS) de nível é ideal para avaliar o nível do tanque
de óleo porque é um sensor que não conduz eletricidade, é de pequena dimensão e resiste
a áreas corrosivas. No entanto, estes sensores são complexos de montar, exigindo várias
etapas após a fabricação da fibra. Devido à variação de temperatura dentro do tanque,
há a necessidade de um sensor de temperatura sem ligação a estes sensores, para medir a
temperatura. As FBGs são intrinsecamente sensíveis à temperatura e a tensão. Portanto, os
sensores de nível também precisam de um sensor de temperatura para reduzir os problemas
de sensibilidade cruzada de temperatura. Assim, a estimativa do nível utilizando apenas a
resposta de temperatura resulta em benefícios operacionais e econômicos, uma vez que
há menos sensores e fácil montagem do conjunto de sensores. Este trabalho propõe a
utilização de sensores de temperatura FBG para identificar os fluidos. A estimativa do
nível utilizando apenas a temperatura resulta em benefícios operacionais e econômicos.

Para demonstrar a possibilidade de utilizar o sensor de temperatura FBG para a esti-
mativa do nível de líquidos, é simulada a distribuição da temperatura de um tanque de
armazenamento de petróleo, 200 cm de altura e 40 cm de diâmetro, recebendo a radiação
solar no topo. Depois, é simulada a presença de uma fibra de 200 cm de comprimento e
125 µm de diâmetro dentro do tanque com diferentes quantidades e distribuição de FBG
ao longo da fibra. Na simulação, devido à baixa variabilidade das classes, foi escolhido
o algoritmo Random Forest (RF) para a classificação. Começando com 200 FBG equi-
distantes, diminuindo para 6, com diferentes distribuições ao longo da fibra. Foi possível
classificar o óleo com uma precisão de 94,89% usando 8 FBGs, usando Testes para Duas
Proporções com um significado de 5%, a precisão é igual a usar 50 FBGs.

Utilizando os resultados obtidos na simulação, foi utilizado um béquer de 22,5 cm, com 3
FBGs no interior. No béquer, são inseridos 3 fluidos diferentes: água, óleo mineral, e óleo
kyro. Posteriormente, os níveis são estimados a partir da distribuição da temperatura ao
longo do béquer (utilizando os 3 FBGs). Além disso, mantemos o fluido no interior do copo
aquecido por um peltier no fundo do copo a 318,15 K durante toda a experiência. Seguimos
o mesmo princípio para a experiência do béquer, utilizando RF para a identificação do
nível, obtendo uma precisão de 100% na identificação do fluido, e a medição do nível de
fluido a RMSE média foi de 0,2603.

Após a simulação comentada acima, e os testes de bancada, utilizando o béquer a tempera-
tura constante, decidimos expandir a experiência. Desta forma, propomos uma experiência
à escala real, utilizando 9 FBGs distribuídos num tanque para estimar o nível de líquido.
O tanque possui 100 cm de altura e 30 cm de largura, com 9 sensores FBG distribuídos
juntamente com a altura do tanque.



Para a detecção, utilizamos os seguintes algoritmos de Aprendizado de máquina (ML):
Regressão logística (LogR), Árvore de decisão (DT) e Máquina de vetor suporte (SVM).
Escolhemos os algoritmos com base na sua usabilidade na literatura e consolidação teórica.
O algoritmo com os melhores resultados entre os testados é o DT, resultando numa precisão
média de 89,54%.

Inicialmente o algoritmo escolhido foi o RF, mas ao utilizá-lo obtivemos RMSE de 16,32 cm.
Os algoritmos escolhidos são: Regressão linear ponderada (WLR), Máquinas de vetor
suporte para regressão (SVR) e SVR com seleção de kernel que minimize o custo (SVRmin).
Propomos o Modelo Misto (MM), que seleciona a menor Raiz do Erro Quadrático Médio
(RMSE) entre os algoritmos de regressão testados em cada nível. O MM tem um RMSE
de 3,56 cm, que é aproximadamente quatro vezes menor do que quando se utiliza o WLR.
O SVM e o SVMmin têm RMSE de 6,28 cm e 6,14 cm, respectivamente.

Palavras-chave: FBG, Sensores de temperatura, Aprendizado de máquinas, Florestas
aleatórias, Regressão linear ponderada, Máquinas de vetor suporte, Máquinas de vetor
suporte para regressão, Árvore de decisão, Regressão logística.
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1 Introduction

1.1 Motivation and Justification

Liquid level measurement aids on cost reduction, increases productivity and con-
tributes to quality and safety in many industrial processes (JIA et al., 2015). The use
of sensors has become useful for monitoring these processes as they provide real-time
monitoring of the production and feedback for control and management systems. There
are several sensors for level measurement based on different technologies, for example:
multi-electrode capacitance (SHI et al., 1991), ultrasound (BUKHARI; YANG, 2006),
radiation (HJERTAKER; JOHANSEN; JACKSON, 2001), vibration (MERIBOUT et
al., 2011), fluctuation (CHEN et al., 2018), radio (MAGNO et al., 2014) and light re-
flection (GU et al., 2020). However, due to their electromagnetic fields sensitivity, use of
electrical signals and the risk corrosion, the use of such sensor are not suitable for classified
areas (WRIGHT et al., 2019).

The FBG sensors are versatile, detect sensing physical quantities such as deforma-
tion, temperature, pressure, ultrasound, magnetic field and force (LV et al., 2019). FBGs
consist of periodic modulation of the refractive index inscribed in the fiber optic core. Due
to their multiplexing capabilities, these sensors have been increasingly used (WRIGHT et
al., 2019). Multiplexing of FBG sensors is an effective technology to provide multi-point
measurement over a single fiber cable (CHEN et al., 2018). FBG temperature sensors are
present in healthcare (CHEN et al., 2018), construction and general industry (RAO et al.,
1997; LEAL-JUNIOR et al., 2018a).

Hydrostatic pressure sensors measure fluid levels based on their densities (ZHANG;
KAHRIZI, 2007; AMEEN et al., 2016). However, these sensors need incorporation in dif-
ferent structures or suffer fiber modifications for the pressure sensing (ZHANG; KAHRIZI,
2007). Thus, FBG level sensors need additional steps after the inscription of the FBG,
different than an FBG temperature sensor. Ameen et al. (2016) uses diaphragms, fixing
the FBG grating region in the center of the diaphragm and inserts a second diaphragm
covering the grating. The sensors based on the Archimedes’ law of buoyancy consist of
suspending a mass at one end of an FBG liquid level sensor while holding the other fixed
on a rigid support (CONSALES et al., 2018). Similarly, there is also the integration of an
FBG in a cantilever rod connected to a float (SOHN; SHIM, 2009). In literature, several
other level sensors in FBG are proposed (BUKHARI; YANG, 2006; LEAL-JUNIOR et al.,
2018c; DIAZ et al., 2019a).

The use of only temperature response results in operational and economic benefits,
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since there are fewer sensors and easy assembly of the sensor array due to FBG inherent
sensitivity to temperature variations. Thus the use of an FBG temperature sensor that
measures level and temperature simultaneously reduces the number of sensors used in
an oil tank or oil storage facility. In addition, because it is a quasi-distributed sensor,
depending on the number of FBGs inscribed in the optical fiber, there is an increase in
accuracy.

The application of FBG temperature sensors can be found in the area of health (MA-
JEED; MURDAS, 2019), construction (LV et al., 2019), and industry in general (RAO et
al., 1997). More specifically, this sensor was previously used in the oil industry, due to
the temperature variations observed on crude oil tanks (LEAL-JUNIOR et al., 2018c).
Refractive index (ZHANG; KAHRIZI, 2007) and hydrostatic pressure sensors in which the
fluid density (LEAL-JUNIOR et al., 2018c) can also be used for the fluid classification.
However, these sensors need incorporation in different structures (LEAL-JUNIOR et al.,
2018c) or modifications in the fiber for the refractive index sensing (ZHANG; KAHRIZI,
2007). FBGs are naturally sensitive to temperature and strain (LEAL-JUNIOR et al.,
2018a). Thus, oil classification using only temperature response results in operational and
economic benefits, since there are fewer sensors and easy assembly of the sensor array due
to FBG inherent sensitivity to temperature variations (SILVA et al., 2007).

The proposed sensor for level estimation and fluid identification consists of using
a single mode fiber (SMF) with Bragg gratings, in short an FBG temperature sensor.
Thus for its creation, the addition of any other materials and components is not necessary.
Thus, the challenge lies in understanding how the level affects the temperature gradient
along the fiber is related to the thermal to the thermal dynamics of the system. Due
to non-linear or second order effects, the need arises for a survey of techniques for the
estimation and classification of the fluid level, seeking a solution to this problem we use
ML. The possibility of level estimation using FBG temperature sensors is shown in the
throughout this dissertation. This dissertation numerically and experimentally demonstrate
the proposed approach. Thus, numerically it presents a water-oil interface classification for
level detection. In the experiment, we used level estimation based on the predicted location
of the FBGs. And then, detection is performed for different fluids: water, mineral oil and
Kryo 51 oil (silicone oil cover a wide temperature range), where subsequently occurs the
estimation of the level for each fluid.

The level effect on fiber temperature variation is related to the thermal dynamics
of the system. It may have nonlinear or second-order effects (KHOSRAVI; AZIZIAN;
BOUKHERROUB, 2019). Therefore, to estimate the level from the temperature it may be
necessary to use different data processing techniques. As one of these processing techniques,
ML algorithms are divided into three learning groups: supervised, semi-supervised, and
unsupervised (SOLOMON et al., 2020). Supervised ML algorithms are those that the
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possible responses of the problem are known, for example: linear regression (LR) (AL-
YASEEN; OTHMAN; NAZRI, 2017), support vector machines (SVM) (ZHU et al., 2019)
and random forests (RF) (SU; CHEN; ZHANG, 2019). In contrast, unsupervised ML
algorithms, the response of the problem is unknown, the so-called clustering techniques,
for example: hierarchical clustering (MANIE et al., 2020), principal components analysis
(PCA) (DJURHUUS et al., 2019). Finally, semi-supervised ML algorithms are those where
learning is done with supervised and unsupervised inputs, seeking to find grouping and
response criteria, for example: extreme learning machine (ELM) (MANIE et al., 2018),
deep Boltzmann machine (DBM) (YAO et al., 2020).

1.2 Objectives
This dissertation proposes the estimation of the level through FBG temperature

sensors. In order to detect/estimate the level via FBG temperature sensors, we selected
the supervised ML, as the data has known response obtained from the tests conditions.
The proposed estimation consists of two steps. This work is divided into two steps: a
simulation study and the application to the problem. The application, is done first using a
beaker and the second using a storage tank, 100cm.

The specific objectives of this work are listed as follow:

1. To demonstrate the possibility of level estimation using FBG temperature sensors
via simulation;

2. To study Machine Learning techniques and measuring their capability for level
estimation and fluid detection.

3. To demonstrate the possibility of identifying different fluids using FBG temperature
sensors.

4. To demonstrate the possibility of level estimation using temperature FBG in benchtop
and storage tanks prototypes;

1.3 Dissertation Structure
This dissertation is organized as follows: the theoretical background of the history

of optical fiber and FBG sensors is presented. In addition we list the ML methods used in
the course of the dissertation. Then the problem is presented in its simulated process as
well as in the experimental setup. After presenting the simulation and the two studied
setups, we present the results for each of them, including the simulation. At the end, we
present the conclusions gained from the work, as well as future work for improvements
and continuation of the study.
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2 Theoretical background

2.1 Optical fiber sensors
At the end of the 18th century, John Tyndall sought the transmission of light

through curvilinear paths (LUO et al., 1999). Only in the following century, in the year
1950, the term "optical fiber" (GRATTAN; SUN, 2000) appeared. However, for Kapany,
Eyer e Keim (1957) the optical fiber was possible to be used only in medicine. In the
following decade, the use of optical fibers in communication was already foreseen due
to the reduction of the optical attenuation in the waveguides (GRATTAN; SUN, 2000).
It was in the 1970’s, with the improvement of the emitters, optical fiber transmission
systems (GRATTAN; SUN, 2000) appeared. In the 1980s, optical fibers revolutionized
communication systems worldwide, providing large amounts of information transmission
with high speeds between thousands of kilometers (GRATTAN; SUN, 2000). According
to Diaz et al. (2019a), this progress was made possible by technological advances in
the production of optical fibers together with technological developments to manufacture
compact optical sources, new optical amplification schemes and new modulation techniques.

Besides the use of optical fiber in communications, it has also been widely used
in the area of sensing (DIAZ et al., 2019a). Due to its immunity to electromagnetic
interference, electrical insulation, small size, large bandwidth, light detection heads, high
precision and resolution, easy multiplexing and remote monitoring capability the optical
sensors have been widely used in the field of sensing (XU et al., 1993). In addition, these
advantages make optical fibers suitable for long-term and reliable level measurements
under special conditions (GRATTAN; SUN, 2000). Optical fiber sensing has stimulated
research in different areas such as industrial, medical and civil (SILVA et al., 2019). In these
areas there is a need for monitoring several parameters, such as liquid level, temperature,
tension, pressure, deformation, acceleration, refractive index.

Optical Fiber Sensors (OFS) are immune to electromagnetic interference, are
corrosion resistant and no electrical power is needed at the measuring point (WRIGHT
et al., 2019). The OFS can be classified as based on intensity, phase modulated and
wavelength modulated. The first class refers to sensors based on signal intensity variation
as a function of a measurand, such as the microbend sensor (LUO et al., 1999). Then, the
type phase-modulated OFS, that use of light phase change, the Michelson sensor is an
example (SWART, 2004). The last class is the wavelength-modulated OFS. Sensors in this
class use changes in the wavelength of light for detection. A widely used sensor in this
class is the Fiber Bragg Grating (FBG) sensor (HILL; MELTZ, 1997). FBG sensors are a
potential alternative to conventional electrical sensors for level utilization (VORATHIN et
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al., 2019). Its main advantage is the multiplexing capabilities, allowing numerous sensors
in a singular optical fiber cable (VORATHIN et al., 2019; DIAZ et al., 2019b). The FBGs
consist of periodic or nonperiodic refractive index modulation inscribed in the optical
fiber’s core using continuous wave or pulsed lasers (ZHANG; KAHRIZI, 2007).

2.1.1 Fiber Bragg grating

In 1978, Kawasaki et al. (1978) reported the observation of photosensitivity in
the central region of Ge-doped silica optical fibers, and this effect was used to produce
narrow-band-waveguide reflection filters for the construction of a distributed-feedback gas
laser. Thus, with the Bragg reflectors, the filters are permanently induced in the fibers,
without any decay or degradation of the optical fibers (KAWASAKI et al., 1978).

FBGs were discovered in 1978, by Hill et al. (1978), and have become a good option
among optical sensors (VORATHIN et al., 2019; LEAL-JUNIOR et al., 2018b). These
gratings are formed as periodic modulation in the refractive index along the longitudinal
direction. The existence of this modulation causes a selective reflection in part of the
spectrum of a broadband optical signal transmitted through that fiber. The light is guided
along the core of the optical fiber being reflected from each plane of the network, and
centered at a specific wavelength (HILL; MELTZ, 1997). FBG sensor technology acts as a
wavelength selective mirror, such as a filter tuned to a narrow band (HILL et al., 1978). In
this way, a broadband light source when injected into the optical fiber where the FBG is
located, only light that is in that narrow spectral region centered on the Bragg wavelength
reflected (HILL et al., 1978). And so the remaining light continue its path through the
fiber with no representative losses.

FBGs sensors have significant advantages such as small size, low cost, long term
stability and robustness (LEAL-JUNIOR et al., 2018a). They have been widely applied
to perform for temperature and strain detection in classified areas, composite defect
inspection, and structural health monitoring (OU et al., 2017). Used also, places of dense
sensing point demand, for example, structural health monitoring, such as bridges and
buildings. According to Wang et al. (2011) a large number of sensing FBGs are distributed
to the sensing region, and the FBGs are multiplexed with various methods to reduce the
unit cost of the sensor.

FBGs are naturally sensitive to temperature and strain. Equation 2.1, shows the
wavelength variation (∆λB) caused by temperature and strain effects on the FBG.

∆λB
λB

= (1− Pe)ε(p) + (α + ζ)∆T (2.1)

where Pe is the effective photoelastic constant, ε(p) is the strain on the fiber, α is the thermal
expansion coefficient, ζ is the fiber thermo-optic coefficient, and ∆T the temperature
variation. According to Diaz et al. (2019a), FBGs are widely used due to their intrinsic



2.2. Machine Learning Process 25

detection response to stress and temperature, inherent capacity for self-referencing, making
them independent of fluctuating levels of light and other light noises. The information
collected can be encoded in wavelength. These sensors measure the liquid level based on
the length of the immersed sensor, which leads to a specific and effective refractive index
according to (MARTINS et al., 2019).

2.2 Machine Learning Process

In the literature, there are several ML supervised algorithms, ranging from the most
traditional such as linear regression (HSIEH; BLOCH; LARSEN, 1998) to the most modern
such as convolutional neural networks (YAO et al., 2020). In classification, Ye (2019) and
Gola et al. (2019) suggested the use of SVM due to high precision and low false-positive rate.
Ing et al. (2019) recommended the use of LogR, a statistical technique already consolidated.
According to Sarkar et al. (2019), DT are that it can build smaller trees, better memory
capability. In regression, a statistical technique as popular as Logistic Regression (LogR)
is LR. The Weighted Linear Regression (WLR) has lower assumptions than the LR and
presents similar characteristics (JOHANSEN, 1980). When used for regression problems,
the SVM is named SVR (SMOLA; SCHOLKOPF, 2004). To understand the differences
between regression and classification, basically in classification we have a qualitative
analysis of the data. In regression, the analysis is quantitative.

2.2.1 Classification Process

The level detection or the fluid classification is done to decrease the errors related to
the liquid level estimation. Johansen (1980) recommended use Logistic Regression (LogR),
as it is appropriate for a binary or categorical response. Moreover, it allows estimating
the probability of occurrence of the event of interest. While the SVM due to its convex
solution is not local minimum affected (ZHU, 2014; PŁAWIAK; ABDAR; ACHARYA,
2019; JIA et al., 2018). Rodriguez-Galiano et al. (2012) recommended Decision Tree (DT)
due to its easy implementation and outliers resistance.

LogR is a statistical technique useful in binary data. It is a resource that allows
us to estimate the probability associated with the occurrence or not of an event based
on the variables studied (SOCIETY, 2017; ING et al., 2019), which enable calculate the
probabilities of an event belonging, and not belonging, to the class of interest.

SVM is used to solve both classification and regression problems (JIA et al., 2019).
In this work, we use the response of each FBG temperature sensor. This algorithm consists
of dividing the input data into two categories and finding a hyperplane that best separates
the data (NIU; HA; CHI, 2018).
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DT is an ML algorithm discovered by Quinlan (SARKAR et al., 2019). DT consists
of mapping the possible results of a series of related choices. The idea of the algorithm is
to divide the dataset into "pure" subsets as to class. The algorithm establishes the criteria
that best separate the classes. The tree starts with a single node with branches. Each
of these results leads to additional nodes, which branch out into other possibilities. This
branching is done until you find groups that contain only one class or a minimum number
of class mixes.

RF instead of using a single DT, makes use of several trees, which explains its
association with forests. RF is an ensemble-learning algorithm (ALI et al., 2012). Algorithms
with this learning methodology are more robust and precise than those in which unique
learning is considered (LEE; ULLAH; WANG, 2020). This method is similar to decision
trees. Its hierarchical form allows considering nonlinear relations in the data, to generate
classification regions (PRONIEWSKA; PREGOWSKA; MALINOWSKI, 2020).

2.2.1.1 Logistic Regression

In LR, the probability of occurrence of an event can be estimated directly. In the
case of the dependent variable Y is a binary variable, in this case the problem can be
summarized to: is the fluid above or below the observed FBG. For an LR model there is a
need for the data to be mutually exclusive, so we assume that Y has a Bernoulli distribution,
with probability of success P (Y i = 1) = π and probability of failure P (Y i = 0) = 1− π,
thus:

Yi ∼ B(1, πi). (2.2)

However, when n independent samples are observed and let p ≥ 1 independent
variables X1 , X2 , . . . , Xp, which would be the ∆λ, we have that Y has binomial
distribution of parameters p and π:

Yi ∼ Bin(p, πi). (2.3)

This form, the logistic regression model can be expressing the probability of Y .

πi = exp{−g(Xi)}
1 + exp{−g(Xi)}

= 1
1 + exp{−g(Xi)}

, (2.4)

where g(Xi) = β0 + β1X1 + · · ·+ βpXp. Thus, we can rewrite Equation 2.4 as follows:

ln
(

πi
1 + πi

)
= β0 + β1X1 + β2X2 + · · ·+ βpXp

= β0 +
p∑
i=1

βiXi. (2.5)
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According to Jr, Lemeshow e Sturdivant (2013), the coefficients βi, for i = 1, 2, . . . , p are
estimated from the data set using the maximum likelihood method (JR; LEMESHOW;
STURDIVANT, 2013), then a combination of coefficients is made that maximizes the
probability that the sample was observed. Based on the observed probability (πi), using
cross-validation to associated Yi in 1 or 0.

2.2.1.2 Support Vector Machine

SVM consists of finding the minimum structural risk (JIA et al., 2019). Thus, SVM
is an algorithm whose goal is to classify a given set of data points that are mapped to
a multidimensional feature space using a kernel function, an approach used to classify
problems (CORTES; VAPNIK, 1995). In it, the decision boundary in the input space is
represented by a hyperplane in higher dimension in space.

A classification problem of order k, for SVM can be viewed as an optimization
problem as shown in the Equation 2.6.

Φ(w, ξ) = 1
2

k∑
m=1

(wm × wm). (2.6)

Using to theory of Lagrange multiplications (CORTES; VAPNIK, 1995) the optimization
problem represent in Equation 2.7.

J(w, b, α) = 1
2(wm × wm)−

N∑
i=1

αi [yi((wm × xi) + b)− 1] , (2.7)

subject to:
(wyi
× wi) + byi

≥ (wm × xi) + bm + 2− ξmi ,

ξ ≥ 0, i = 1, 2, . . . , l, and, m. Getting the decision function:

g(x) = argmaxn[(wm × x) + bn], n = 1, 2, . . . , k. (2.8)

In resume, the SVM creates a new n-dimensional space, to find the hyperplane that best
differentiates the classes, which in our problem would be the dichotomous variable: fluid
level is above or below the observed FBG (CORTES; VAPNIK, 1995).

2.2.1.3 Decision tree

DTs are maps of possible outcomes of a series of choices concerning observed
data. A decision tree usually begins with a single node, which is divided into possible
outcomes. Each of these outcomes leads to additional nodes, which branch into other
possibilities(SARKAR et al., 2019).

The procedure of a DT is described as follows: based on information from the data
set, the process is started through the initial node of the tree (SARKAR et al., 2019).
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Depending on the result of the logic test used by the node, the tree branches to one of the
child nodes and this procedure is repeated until an end node is reached. The repetition of
this procedure characterizes the recursion of the decision tree. Thus, DT is a recursive
algorithm that is easy to implement (ALI et al., 2012).

2.2.1.4 Random Forest

In RF, different bootstrap samples are considered for each classification tree
randomly selected (PRONIEWSKA; PREGOWSKA; MALINOWSKI, 2020). All bootstrap
samples are identically distributed, and the average of all samples is equal to the average of
each sample (PRONIEWSKA; PREGOWSKA; MALINOWSKI, 2020). The model bias of
the aggregation trees is equivalent to that observed for each tree (RODRIGUEZ-GALIANO
et al., 2012). The RF algorithm tries to keep the low bias of each classify, since it reduces
the total variance. Thus, the RF construction for each tree is given by:

h(x, θk), (2.9)

where x is the input vector and θk are the independent and identically distributed random
vectors (RODRIGUEZ-GALIANO et al., 2012). When RF increases the nodes of the
classification tree, a better division of a random subset of input observations or predictive
variables are chosen for the divisions of its nodes (PRONIEWSKA; PREGOWSKA;
MALINOWSKI, 2020). It should be noted that, as the tree growth is done without
pruning, computationally an RF classify requires lower processing costs compared to other
methods (REIS; BARON; SHAHAF, 2018).

The RF classify uses the Gini index as the attribute selection measure. This index
measures the degree of randomness of an attribute for within a partition (RODRIGUEZ-
GALIANO et al., 2012). For an arbitrary set of T formation, randomly selected and
belonging to class Ci, the Gini index can be written as:

∑∑
j 6=i

=
(
f(Ci, T )
|T |

)(
f(Cj, T )
|T |

)
, (2.10)

where f(Ci, T )/|T | is the probability that the selected case belongs to class Ci. To classify
a new data set, each new observation passes through each of the previously created N
trees. The forest chooses a class with the highest number of votes and classifies it according
to the vote.

2.2.2 Regression Process

Regression consists of modeling to obtain real values of the level. In this technique,
we use the results obtained in the classification and . The algorithms selected were Weighted
Linear Regression (WLR), Support Vector Regression (SVR) and SVR select the that
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results in minimum cost (SVRmin) and RF for Regression (RFR). LR is a traditional
statistical model for the use of regression. There is an adaptation of the LR for problems
that do not meet the assumption of normality, the WLR (JOHANSEN, 1980). Due to
its consolidated theory and the non-requirement of normality, this algorithm was chosen
for this paper. Another algorithm used in this paper due to its statistical theory is the
SVM (SMOLA; SCHOLKOPF, 2004). It is called SVR for regression problems. The
SVRmin is an adaptation of the SVR.

LR studies the relationship between a variable called response (level) and others,
called independent variables (from the FBGs studied and the level detection). It consists
of a mathematical model that associates the response variable with the independent
variables (JOHANSEN, 1980). However, LR has assumptions that must be fulfilled to
reduce errors, among them, the normality in the data, linearity, among others [25]. When
this assumption is not satisfied, the WLR is used (JOHANSEN, 1980). Similar to LR,
WLR establishes a linear relationship between the data but using parameter functions
obtained in LR to weight its parameters. This weighting results in a decrease of the
estimation errors.

For regression problems, there is an adaptation, of the SVM method, the SVR.
In the SVR, it does not matter from which side of the surface the points are located.
The interest of the method is that the distance to the surface is the minimum possible.
The errors are allowed as long as they do not exceed the specified threshold (SMOLA;
SCHOLKOPF, 2004). The SVR depends on the gamma (γ) and cost (C) parameters.
Forming an ordered pair space (γi, Ci), using exhaustive search for the pair that results
in higher accuracy. The SVRmin, like the previous algorithm, works with the SVR, but
instead of exhaustively searching for the pair, we select the that results in minimum C.

2.2.2.1 Weighted Linear Regression

LR is a mathematical equation that provides a linear relationship, between U ,
referring to the estimated fluid level, with the other variables Xi are ∆λ of the observed
FBGs. This linear function is expressed as follows:

Yi = β0 +
p∑
i=1

βiXi + εi, (2.11)

where εi is error. Similar to 2.2.1.1, βi are the coefficients of the model, however in LR,
they are estimated by the least squares method. For the application of an LR algorithm,
some assumptions are required:

1. Error has zero expected value and unknown variance.

E(ε) = 0 and V ar(ε) = σ2
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2. Furthermore, the errors are not correlated with with one another.

ρ(εi, εj) = 0, i 6= j

3. The error must have a normal distribution.

ε ∼ N(0, σ2)

4. The variable Xi, for i = 1, . . . , p, assumes fixed value.

A test frequently used to identify heteroscedasticity is the Breusch-Pagan (BP)
test (HALUNGA; ORME; YAMAGATA, 2017). Testing the following hypotheses:

• H0: σ2
1 = σ2

2 = σ2
3 = · · · = σ2

n.

• H1: At least one σ2
i is different, for i = 1, 2, 3, . . . , n

Each standardized error can be defined as:

ui = e2
i

(∑n
i=1 e

2
i )/n

(2.12)

where e is the difference between the predicted and expected value. Using u, and the
predicted values in the linear regression ŷ, to create a new model, where u is the response
variable and ŷ is the explanatory variable. By calculating the Regression Sum of Squares
(RSS), we obtain the statistic χ2

BP (see Equation 2.13) with chi-square distribution and
n− 1 degrees of freedom.

χ2
BP (studentized) = χ2

BP

λ
(2.13)

where λ = V ar(e)2/(V ar(e))2.

The χ2
BP (studentized) has a chi-square distribution of 1 degree of freedom under the

null hypothesis. Thus, if there is no heteroscedasticity, it is expected that the squared
residuals not change with increasing predicted value, ŷ, obtaining test statistic with
insignificant value. Thus, a significant p-value is obtained. However, when the p-value is
not significant, we can guarantee the non-normality of the data, and thus the non-possibility
of using LR.

To solve this problem we propose the WLR. The WLR loosens the assumptions,
and to reduce the estimated error generated by this loosening, it weights the estimated βi
for each Xi. In this way we find the heteroscedasticity of the data (JOHANSEN, 1980).

Thus, the variance of the least squares estimate depends on the variance of the
experimental errors. The variance of the experimental error is not constant, but can be
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represented as V ar(ε) = σ2V , where V is a known diagonal matrix. Let V be a non-singular,
positive definite matrix. Then, there exists a matrix K that:

KTK = V. (2.14)

So, we can say Z = K−1Y , φ = K−1β and ξ = K−1ε. In this way the WLR can be
expressed as:

Zi = φ0 +
p∑
i=1

φiXi + ξi. (2.15)

2.2.2.2 Support Vector Regression and Support Vector Regression minimum

The formulation of the SVR uses principles similar to the classification algo-
rithm (SMOLA; SCHOLKOPF, 2004). However, unlike the SVM, the SVR proposes to
determine an optimal hyperplane in which the training samples are as close as possible. In
this case, the method is called support vector regression. First, needing to find a predictor
that has the lower error among a set of predictors. To do this we need to define what
the error of a predictor is, and a measure to evaluate its performance. A natural way to
measure the error is with a function C, which measures the error of the predictor on the
sample set.

Y = ωX + τ, (2.16)

where ω ∈ X is normal vector of a hyperplane τ/||ω|| through in origin relation, where
τ ∈ R. Based in 2.16, SVR minimize ω, thus:

min
ω,τ

1
2 ||ω||

2, (2.17)

subject to: yi − ωxi − τ ≤ ηi

ωxi + τ − yi ≤ ηi.
(2.18)

As this is a regression model, it is assumed that for the estimation, there are outliers
and even noise in the data, creating a range to ensure the acceptance of the predicted
value (ŷ) with the observed (y), thus:

|ŷi − yi| < ζ. (2.19)

Therefore, we have:

min
ω,τ,ζ

1
2 ||ω||

2 + C

(
n∑
i=1

ζi

)
. (2.20)

The parameter C ≤ 0 determines the penalty for cases in which the regression function
accepts objects with deviations larger than the value ζ. Thus, the robustness of the
regression model depends on the choice of C value.
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According to SMOLA e SCHOLKOPF (2004), using the Lagrange multiplier (α
and α∗) method a dual problem can be obtained. Obtaining the objective function as
follows:

ŷ =
n∑
i=1

(αi − α∗i )K(xi, xj) + τ. (2.21)

K is the function, a function that takes two points (xi and xj) in the original input
space and computes the scalar product of these objects in the high dimensional feature
space. There are innumerable K functions (SMOLA; SCHOLKOPF, 2004), however due
to its popularity, easy fit to diverse data and having only one parameter to be estimated
(RAMEDANI et al., 2014), the Radial Basis Function (RBF) was chosen:

K(xi, xj) = exp(−γ||xi − xj||2), (2.22)

where γ controls the flexibility of the function K. The choice of the ordered pair (γ, C) is
done exhaustively via cross validation. We propose via evaluation of the quadratic function
|xi − xj||2, to find a γ that generates smaller C, called SVRmin. This way there is lower
computational effort if we compare SVRmin to SVR.

2.2.2.3 Random Forest for Regression

For regression, RF has the same algorithm as in 2.2.1.4. However, when it comes
to classification, the final prediction is decided selecting the class that most of the trees
identified as correct. In regression, the decision is based on the arithmetic mean of the
forest tree results (LIAW; WIENER et al., 2002).
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3 Material and methods

3.1 Simulation process

A simulation study is carried out to demonstrate the possibility of using an FBG
temperature sensor for liquid level identifier. A tank with dimensions of 200 cm height
and 40 cm diameter is simulated, assuming the presence of solar radiation. Inside the
tank, the oil, emulsion and water layers were simulated. The thermal conductivity for
water is 6.13×10−3 W/mK and for oil 1.2×10−3 W/mK. For emulsion, we assumed similar
quantities of water and oil, thus choose the arithmetic mean of the thermal conductivities
of water and oil under the same temperature, 3.665×10−3 W/mK. The solar angulation
adopted is 0, to represent midday, period usually with higher radiation, known as sun
at zenith (INCROPERA et al., 2007). The boundary conditions of the storage tank
are shown in Figure 1. The center of the tank and the bottom are adiabatic, the top
receives constant solar radiation, and the tank’s external walls suffer convection with the
external environment. The fluid inside the tank is considered to be in a stationary state.
Axisymmetric distribution is adopted for the temperature profile.

A

B

C

D

Figure 1 – Oil storage tank layout. A = Tank top (constant heat flow), B = Outside wall
(convection with the external environment), C = Bottom (adiabatic wall), D =
Axisymmetric (adiabatic).
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Outside the tank, we assumed white paint on metallic substrate, which the emissivity
of the tank surface (ε) shown in Table 1. FollowingKirkchhoff’s law of thermal radiation,
the atmosphere absorptivity (αatm) is also defined as ε (INCROPERA et al., 2007). The
net heat flow of the radiation (q,,rad) in the tank is calculated as follows:

q,,rad = αsGs + αatmGatm − E (3.1)

where, αs and αatm are presented in Table 1, Gs is solar irradiation, Gs is defined in (3.2),
f is a correction factor to take into account the eccentricity of Earth’s orbit around the Sun
(0.97 ≤ f ≤ 1.03) (INCROPERA et al., 2007), assuming f = 1 without loss of generality.
Gatm is the atmospheric irradiation, defined in (3.3), and E in (3.4), is the emissive power
of the tank surface (INCROPERA et al., 2007).

Gs = Scf cos(θ) (3.2)
Gatm = σSBT

4
atm (3.3)

E = εσSBT
4
Sf (3.4)

Table 1 – Parameters employed to simulate the temperature distribution of the oil storage
tank.

Parameter Symbol Value Unit
Emissivity of the tank surface ε 0.96
Tank surface temperature Tsf 323.00 K
Atmospheric temperature Tatm 273.15 K
Atmospheric absorptivity αatm 0.96

Solar absorptivity αs 0.21
Solar constant Sc 1368.00 W/m2

Convection at the top of the tank h 5.06 W/m2K
Stefan-Boltzmann constant σSB 5.67×10−8 W/m2K4

To identify the fluid level with FBG temperature sensors, we simulate different
layers heights inside the storage tank, where the total level is always 200 cm. The upper
and lower bounds of level variations are specified as follows:

• Water varies from 40 cm to 160 cm;

• Emulsion varies from 0 cm to 20 cm;

• Oil varies from 40 cm to 160 cm.

To understand the temperature behavior in the different fluids, measured at the
temperature distribution along the tank is presented in Figure 2(a), 2(b) and 2(c). At 140
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cm in Figure 2(a) we observe water, in Figure 2(b) emulsion and Figure 2(c) oil, these
temperatures are presented in Table 2. It is possible to observe in Table 2 that water at
the same height as other fluids has a higher temperature, this is due to its higher thermal
conductivity.
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Figure 2 – Oil tank temperature distribution with different fluid levels.

Based on the simulation the temperature distribution inside the tank, we simulate
the presence of FBGs temperature sensors inside it. This sensor is 200 cm long and 125 µm
in diameter, with different FBGs distributions along the fiber. The objective is to correctly
identify the oil according to the collected temperature variations. For this, we analyze ∆λ
and FWHM variations. These two parameters vary with the temperature changes in which
the fiber is exposed. ∆λ changes due to the effect of thermo-optic and thermal expansion,
while FWHM changes due to the effect of chirp in FBG when it is not submitted to a
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Table 2 – Position and temperature in relation to the top of the tank for the fluids studied.

Fluid Position (cm) Temperature (K)
Water 140 301.1314

Emulsion 140 301.2189
Oil 140 301.3564

uniform temperature along the grating region (SILVA et al., 2007). In this analysis, we
consider that there is temperature distribution in intervals of the physical length of the
FBG (1 cm), and that there is no temperature distribution in the fiber diameter.

For numerical analysis of the FBG temperature sensor into the tank, coupled mode
equations with a modified transfer matrix formulation (T-matrix) were used to solve
coupled mode equations for a large number of grid segments (PRABHUGOUD; PETERS,
2004). We also consider that the temperature is distributed on the z-axis. The temperature
distribution on the y and x-axes were ignored, as the fiber diameter (125 µm) is smaller
than the tank diameter (40 cm) and fiber length (200 cm). The FBG is defined as a
periodical disturbance to the refractive index of the optical fiber core (PRABHUGOUD;
PETERS, 2004):

δeff = δ̄teff
[
1 + ν cos

(2π
Λ0
z + Φ(z)

)]
(3.5)

where δ̄neff is the average index variation over a grating period, ν is the fringe visibility
of the index change, Λ0 is the grating period, z is the cartesian coordinate in the direction
of the light propagation in the fiber and Φ(z) is the grating chirp, which is constant for
uniform gratings (LEAL-JUNIOR et al., 2019). Using the coupled mode theory for FBG
spectra, the following first order differential equations are obtained (LEAL-JUNIOR et al.,
2019):

∂R(z)
∂z = i

= iσR(z) + ikS(z) (3.6)

∂S(z)
∂z = i

= iσS(z)− ikR(z) (3.7)

where (3.6) and (3.7) describe the propagation of the mode with amplitude R(z) into a
counter-propagating mode S(z) (LEAL-JUNIOR et al., 2019). For both equations, σ is
a ‘dc’ self-coupling coefficient defined, as presented in (3.8), whereas k is ‘ac’ coupling
coefficient, as shown in (3.9) (LEAL-JUNIOR et al., 2019):

σ = 2πneff (
1
λ
− 1

(2neffΛ0
)) +

+ 2π
λ
δ̄nefff −

1
2

Φ(z)
z

(3.8)

k = π

λ
νδ̄neff (3.9)
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The reflectivity of FBG (r(λ)) can be estimated as:

r(λ) =
∣∣∣∣∣S(−L/2)
R(−L/2)

∣∣∣∣∣
2

(3.10)

where, L is the physical length of the grating. The limit conditions for calculating reflectivity
are:

R(−L/2) = 1 and S(L/2) = 0 (3.11)

To solve these equations the T-matrix approximation is employed. In this case, a grid
with length L is divided into sectionsM in the z-axis, the field amplitudes in the i-th section,
Ri and Si, obtaining the following relationship with the T-matrix (Fi) (PRABHUGOUD;
PETERS, 2004): Ri

Si

 = Fi

Ri−1

Si−1

 (3.12)

Fi =
ϕ1 − i(σ/γ)ϕ2 −i(k/γ)ϕ2

i(k/γ)ϕ2 ϕ1 + i(σ/γ)ϕ2

 (3.13)

ϕ1 = cosh(γ∆z) (3.14)
ϕ2 = sinh(γ∆z) (3.15)

where, ∆z as the ratio between L andM , and . The main advantage of the T-matrix method
is its computational efficiency when compared with direct numerical integration (LEAL-
JUNIOR et al., 2019). In Equation 15, the shift Bragg is presented. This FBG sensor is
not shifted due to strain, only to temperature.

λB = 2neffΛ
= λ0[1 + (α + ζ)∆T ]) (3.16)

where, λ0 is the initial value of the Bragg wavelength, alpha is the fiber thermal
expansion coefficient ζ is the thermo-optical coefficient, ∆T is the temperature variation.
The parameters used to simulate the spectra are listed in Table 3.

The simulated spectra presented in 3 show that the different temperatures cause
differences in the FBG spectrum profile. The observed variations in FWHM are less
significant than the ∆λ shifts. However, as we observe variations in both, we choose to
use both parameters. The FBG exposed to a temperature of 300.05K is represented in
Figure 3 by the green curve. If compared to the initial spectrum, in the FWHM there
was a decrease in the fourth decimal place. The pink curve, the FBG was exposed to
302.50K, and besides the detachment of the wavelength, there was an increase in the
FWHM. In the case of the red curve (309.17K), besides the displacement, we observed
an increase in FWHM compared to the initial spectrum, but lower than the FWHM
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Table 3 – Parameters employed in the simulation of the FBG spectrum for temperature
and fluid variations inside the tank.

Parameter Symbol Value Unit
Nominal period Λ0 556 nm
Fringe visibility ν 1

Initial Bragg wavelength λ0 1540 nm
Effective refractive index neff 1.39

Number of grating M 200
Grating length L 1 cm

Average index variation δ̄neff 1×10−4

Thermal expansion coefficient α 277.25×10−7 K−1

Thermal-optic coefficient ζ 280.95×10−4 K−1

observed at 302.50K. In all curves no reduction of reflectivity is observed. The interest
is the correct classification in oil, so the other fluids are classified as non-oil. We started
the selection process at 200 equidistant points, then 6, 8, 10, 12, 25, 50 and 100, with
different distributions along the fiber and without the requirement of equidistant. The
oil and non-oil classification were done by RF, using cross validation, dividing the data
in training (65% data, randomly selected) and test (35% remaining). Using the training,
we taught the classification criteria to the machine. The forecast or classification were
performed at each condition of oil/water mixture of the test samples (35% of the samples).
The RF forecast is simple, the test data is evaluated in each of the decision trees created
by the RF in the training, and associated with more classes with similar characteristics.
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Figure 3 – FBG spectra for three simulated temperature conditions. The initial spectrum
is also presented for comparison purposes.

3.2 Experimental setup

3.2.1 Experimental setup for fluid detection and level estimation

In the experimental analysis, the following fluids were added in 22.5 cm height
beaker: water, mineral oil (Oil), or Kryo 51. Then, the fluids were heated using a peltier at
the bottom of the beaker, until it reaches a temperature of 313.15 K. Inside the container
there are 3 FBGS, located at 3 cm with respect to the bottom of the beaker, 10.5 cm, and
21.5 cm, is near the top, as shown in Figure 4. The cycle is defined as level reduction of
5.5 cm at every 3 minutes until it reaches 3 cm, and then the increasing level in the same
way, respecting the descent time and heigth. A total of three cycles per fluid were made.
In this way, it is possible to identify the fluid that is in contact with the FBGs, and also
to estimate its level.
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Figure 4 – Experimental setup employed of the three FBGs for level measurement and
fluid identify.

3.2.2 Experimental setup for liquid storage tank

For the experimental setup, we used a tank of 100 cm height and 30 cm width. We
positioned 9 FBG sensors inscribed in photosensitive single-mode fiber (SMF) in the tank,
as shown in Figure 5. Although the distances between the FBGs are close to 10 cm, they
are not uniform, especially between FBGs 3 and 4 as well as FBGs 1 and 2. It is worth
noting that this non-uniform distribution does not interfere on the liquid level estimation,
as the distances between the FBGs are already known. Furthermore, these differences in
the FBGs distances are related to the FBG arrangements in the fiber, since there is a splice
between 3 SMFs (with FBGs inscribed), which resulted in this higher distances between
some FBGs. The sensor array was installed by gluing one end of the optical fiber in the
top of the tank, whereas the optical fiber is attached to small grooves in the tank wall to
avoid lateral movements of the sensor array. The FBG sensors responses are acquired by
the optical interrogator sm125 (Micron Optics, USA) with a sampling rate of 0.5 Hz. The
tank was filled with water at room temperature. Then, we insert an electric boiler in the
water for 10 minutes, which was positioned close to FBG 7. Thereafter, we started data
acquisition and, after each 5 minutes interval, the liquid level is reduced by opening the
tank drain valve at its bottom. Each cycle is defined as a level reduction of 10 cm every
5 minutes until it reaches 20 cm and 3 cycles were performed. The mean temperatures
observed after removal of the electric boiler, as well as their standard deviations, can
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be seen in Table 4. From Table 4, we can state that the high temperature of FBG 7 is
explained because the electric boiler was close to it.
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Figure 5 – Experimental setup employed of the nine FBGs for level measurement.

Table 4 – Temperature after removing the electric boiler, and standard deviation.

Sensor Mean Standard deviation
FBG 1 30.12 0.0057
FBG 2 30.49 0.0174
FBG 3 30.62 0.0126
FBG 4 31.82 0.0148
FBG 5 32.05 0.0133
FBG 6 32.87 0.0129
FBG 7 34.4 0.0031
FBG 8 33.8 0.0118
FBG 9 34.08 0.0547

The goal of the analysis is level identification through a SMF with 9 FBG temper-
ature sensors. The technique that best fits the classification is the most accurate, sensitive
and specific among the tests. Models created have a single input variable, ∆λ. The FBGs
1 and 9 are taken from the model. The FBG 1, located 3 cm from the bottom of the tank,
is always covered. The FBG 9, on the other hand, is always uncovered. Its removal is
done to avoid the insertion of noise in the analysis. These data are unbalanced by nature
and to correct this problem we use oversampling. Oversampling consists of sampling with
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replacement of the least representative class to balance both classes (LI et al., 2016). This
technique is useful for the elaboration of models based on ML, because they bring more
equity of selection probability between classes. In this way, we ensure that both classes
have the similar number of observations, providing similar sampling. We use cycles 1 and
2 as training set and cycle 3 as test set of the algorithm.

The need for both experiments was to demonstrate an experiment similar to a real
problem, shown in Figure 5, and one with controlled temperature, see Figure 4. As the
objective is to estimate the fluid level, we use ML techniques to estimate the level through
the wavelength shift of each sensor. In order to emulate an operation condition in many
industrial processes, the initial temperature is not constant, as in industrial processes the
fluid generally reaches the tanks with a higher temperature than the liquid inside it.
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4 Results and discussion

4.1 Simulation Results

Figure 3 presents the wavelength shifts and FWHM changes that occur with
temperature variation. In Table 2 and Figures 2, it is shown that under the same conditions
and height we identify differences in water, emulsion and oil temperature. Based on this
temperature difference between the fluids, we want to find the ideal number and location
of FBGs. For ensuring the identification of oil with accuracy higher than 95%, sensor
construction economy and higher spectral efficiency.

The RF input variables were ∆λ, FWHM, and the location of the FBG relative
to the tank. The expected output in the algorithm, based on these inputs, was the fluid
classification: oil or non-oil. In terms of the location of each FBG (a RF input, as mentioned
above), it is also possible.

The variables for RF initialization were: ∆λ , FWHM and the height of the FBG
on the fiber in relation to the tank bottom. The RF have as output the oil and non-oil
classification. Indirectly, it is possible to estimate the oil level based on the classification.
Figure 6(a) shows the association of ∆λ with the classes. Note that only some values
above the third quartile of the non-oil class intersect with the oil class. Thus, ∆λ separates
almost correctly the two classes. For Figure 6(b) the FWHM cannot correctly divide two
classes, thus the high intersection between classes compared to 6(a). Thus, we can assume
that the FWHM is less significant than ∆λ for separation. For 6(a) and 6(b), due to the
lack of symmetry between the median and the first and third quartiles, representing the
non-normality of the data. To guarantee that we are not inserting multicollinearity in
the model, we calculate the correlation (ρ) between FWHM and ∆λ , obtaining ρ=0.29.
Based on the observed ρ we verify that there is no increase of variability due to repeated
information in RF.

To find the ideal number of FBGs and their locations, different points were tested
based on RF accuracy. As there are a large number of localization possibilities for each
case, Table 5 presents the location that resulted in the highest accuracy. In general, the
FBGs very close to the top of the tank had high temperatures due to radiation. We assume
that the FBGs along the fiber are distributed below 10 cm, except for 200 FBGs. For fibers
with 6, 8, 10, 12, 25, 50 and 100 simulated FBG sensors, because there are a large number
of localization possibilities for each case, we randomly selected 10 sensor distributions.
Then, the location that returned the highest accuracy in each fiber was selected. Fibers
with 6, 8, 10 and 12 FBGs were selected based on the points that classified correctly for
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Figure 6 – Tank fluids as function of ∆λ and FWHM, to find characteristics that facilitate
the classification of fluids.

more times in the previous cases. The location of FBGs for fibers with lower FBGs was:

• 6 FBGs: 8 cm, 44 cm, 80 cm, 116 cm, 152 cm, 188 cm;

• 8 FBGs: 15 cm, 40 cm, 65 cm, 90 cm, 115 cm, 140 cm, 165 cm, 190 cm;

• 10 FBGs: 11 cm, 29 cm, 49 cm, 69 cm, 89 cm, 100 cm, 130 cm, 151 cm, 171 cm, 190
cm;

• 12 FBGs: 10 cm, 20 cm, 39 cm, 50 cm, 70 cm, 89 cm, 110 cm, 130 cm, 149 cm, 170
cm, 190 cm.

Table 5 shows the number of trees chosen and the accuracy. The second column
shows the number of trees used in the algorithm. And, we guarantee that each class would
have contact with at least 1 FBG.
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Table 5 – Oil classification using RF algorithm.

Number Oil tank prediction using RF algorithm
of FBG Number tree Average accuracy (%)
200 200 95.95
100 250 95.71
050 200 95.21
025 600 94.83
012 800 94.88
010 600 94.63
008 400 94.83
006 200 81.89

Figure 7(a) shows the accuracy by the number of RF trees with different quantities
and distributions of FBGs. The highest accuracy was found with the highest number of
FBGs. However, inscribing many FBGs into the fiber is expensive and time consuming,
and interrogators have limited wavelength ranges. Thus a high number of sensors implies
fewer tanks to be monitored simultaneously. A low number of sensors ensures higher
spectral efficiency. Thus, a high number of sensors, such as: 200, 100 or 50 FBGs, are not
among the most efficient options. Reducing the FBGs to 12, we find the average accuracy
of 94.88%, with 10 we observe 94.63% and 8 FBGs 94.83%. The difference between 8, 10
and 12 FBGs is lower than 0.2%. In reducing to 6 FBGs there was a 10% lower accuracy,
so we chose 8 FBGs as the optimal number for this simulation.

Based on the accuracy, the classification in oil and non-oil, is mutual exclusive,
thus, has Bernoulli distribution. Hence, the accuracy can be tested with 8 and 200, 25,
50 and 100, using the Tests for Two Proportions. The p-values with a significance of
5% are presented to compare the 8 FBGs array with the other ones. Comparing the
accuracy of a 8-FBGs array with the one of 200 FBGs, we obtain a p-value= 0.0003742,
at a 5% significance level, which indicates a higher accuracy of the 200 FBGs array. The
same occurs with 100 FBGs, with a p-value of 0.007578. However, when comparing the 8
FBG sensor with a 50 FBG sensors and a 25 FBG sensors, we can state that both are
significantly equal, with p-values of 0.292 and 0.9888 respectively. Thus, a temperature
sensor with 8 FBGs has the same accuracy as sensors with 25 or 50 FBGs. The choice of
the distributions in Figure 7(b), was made by analyzing the scenarios with 25, 50, 100 and
200 FBGs, in the places with FBGs that classified correctly more often. The distributions
with less accuracy in Figure 7(b), have irregular spacing between the FBGs, unlike the
distributions with greater accuracy. The location of the FBG influences the observed
accuracy.

In the Table 6, we have the measures of mean accuracy, and number of trees, by
using 8 FBGs with different distributions presented in Figure 7(b).
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Figure 7 – (a) Number of trees per accuracy in the best prediction based on the RF
algorithm. (b) Number of trees per accuracy when using 8 FBGs in different
distributions.
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Table 6 – Location in relation to the bottom of the tank, accuracy and number of trees, for
sensors tested with 8 FBGs in different distributions via RF for oil classification

Number FBGs Location (cm) of the FBGs
Distribution Location (m) Accuracy Tree

1 15, 40, 65, 90, 115, 140, 165, 190 94.83 600
2 10, 50, 85, 100, 130, 135, 140, 190 94.05 700
3 10, 40, 60, 100, 135, 160, 170, 190 93.85 50
4 10, 40, 60, 80, 100, 120, 160, 190 93.32 25
5 10, 40, 65, 100, 120, 150, 175, 190 93.86 300
6 10, 40, 60, 80, 100, 130, 165, 188 91.88 350
7 12, 40, 60, 80, 110, 155, 165, 185 91.09 400
8 10, 35, 65, 85, 110, 135, 160, 185 94.79 700

4.2 Temperature Characterization

As we estimate the liquid level from FBG temperature sensors, only temperature
variations are considered, disregarding any stress effect. In a FBG the Bragg wavelength
λB is given by:

λB = λ0[1 + (α + ζ)∆T ] (4.1)

where, λ0 is the initial value of the Bragg wavelength, is the thermo-optical coefficient,
∆T is the temperature variation.

Prior to the liquid level estimation, the temperature characterization, shown in
Figure 8, is performed without transverse force acting on the fiber, for the temperatures
of 298.15 K, 303.15 K, 308.15 K, 313.15 K, 318.15 K and 323.15 K. The results presented
in Figure 3 show the offset caused by the temperature in the sensor response. The error
bars represent the standard deviation and the dots the mean value of wavelength shift.
This FBG has sensitivity of 10.93 pm/K in increasing and decreasing of 10.97 pm/K.
Measurements were taken independently in a total of 6 temperature cycles (from 298.15°C
to 323.15°C) to ensure the repeatability of the sensor. The repeatability of the increase
was 0.091 and the decrease 0.109. We observed a hysteresis of 0.95 %. The measured
uncertainty is 0.105% to increasing and 0.106% to decreasing. In addition, both coefficients
(R2) for the linear regression higher than 99%.
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Figure 8 – Increasing and decreasing temperature response of FBGs.

4.3 Experimental results for fluid detection and level estimation

The experimental setup consists of a 22.5 cm beaker, used for the detection of
three distinct fluids (water, mineral oil and Kryo 51) and the estimation of their levels.
Similar to the previously commented Section 3.1, we used RF. The RF was used both for
the identification/classification of the fluids and for the estimation of their levels.

In Figures 9(a) and 9(b), the 4 FBGs of the experiment are presented, we note the
stability of the FBG Air, as expected, since it does not suffer with the change of heat
of water, that has higher thermal conduction coefficient. Figures 9(c) and 9(d) show the
wavelength variation when measuring the levels for Kryo 51. Similar to Figure 9(a), the
FBG Air shows stability. In the other FBGs we notice the gradual increases, as the level
goes lower in 9(a) or higher, in 9(b). In contrast to Figures 9(c) and 9(d), which show the
ascent (9(e)) and descent (9(f)) levels of the mineral oil have unusual behavior. Even when
exposed to the same process as the previous fluids.

To understand the relationship between the FBGs studied for each fluid, we
understand the linear dependence relationship between them. Thus, for each fluid, a table
was created to understand how linearly related the variables are. This study is important
to avoid multicollinearity of the data. Multicollinearity causes the variance of the model
to increase, causing errors in prediction. In general, the literature recommends that the
variables be evaluated two on the basis of Pearson correlation coefficient (ρ). If ρ greater
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Figure 9 – (a) FBG temperature sensors array response on the cycle 1 in level decreasing
of water, with standard error (SE) of 0.14% in cycle 2 and 0.097% in cycle 3.
(b) FBG temperature sensors array response on the cycle 1 in level increasing
of water. With SE of 0.1% in cycle 2 and 0.12% in cycle 3, with SE FBG
temperature sensors array response on the cycle 1 in level decreasing of mineral
oil, with SE of 0.155% in cycle 2 and 0.147% in cycle 3. (d) FBG temperature
sensors array response on the cycle 1 in level increasing of mineral oil, with SE
of 0.074% in cycle 2 and 0.08% in cycle 3. (e) FBG temperature sensors array
response on the cycle 1 in level decreasing of Kryo 51 oil, with SE of 0.108% in
cycle 2 and 0.112% in cycle 3. (f) FBG temperature sensors array response on
the cycle 1 in level increasing of Kryo 51 oil, with SE of 0.099% in cycle 2 and
0.13% in cycle 3.
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than |0.85| one of the variables is removed, so as not to add duplicate information to
the model, the term multicollinearity (SCHROEDER; LANDER; LEVINE-SILVERMAN,
1990).

Table 7 presents Pearson correlation for water. In general, all correlations calculated
for the FBGs in the water experiment are low, except when comparing FBG 1 with FBG Air,
both associated with level decrease.

Table 7 – Pearson correlation between the observed FBGs for both water level increase
and decrease.

Water Level Decreasing
FBG 1 FBG 2 FBG 3 FBG Air

FBG 1 1.00 -0.53 -0.13 0.6
FBG 2 1.00 0.01 -0.13
FBG 3 1.00 -0.02
FBG Air 1.00

Level Increasing
FBG 1 FBG 2 FBG 3 FBG Air

FBG 1 1.00 -0.28 -0.17 0.60
FBG 2 1.00 0.04 -0.18
FBG 3 1.00 -0.13
FBG Air 1.00

Analyzing the correlations of Kryo 51, Table 8, we observed a high variability (in
modulus), of the FBG 1 with the other variables of the study. However, it is lower than
the pre-established limit. In Table 9, for the mineral oil, we note that, due to the variation
of the FBG Air, we observed a correlation percentage higher than 30% with the other
variables. FBG Air as it is a variable that has no contact with the fluids, we chose to
remove it so as not to add errors to the modeling and use it as a reference sensor for room
temperature.

Table 8 – Pearson correlation between the observed FBGs for both mineral oil level increase
and decrease.

Mineral Oil Level Decreasing
FBG 1 FBG 2 FBG 3 FBG Air

FBG 1 1.00 -0.36 0.60 0.48
FBG 2 1.00 0.03 -0.17
FBG 3 1.00 0.15
FBG Air 1.00

Level Increasing
FBG 1 FBG 2 FBG 3 FBG Air

FBG 1 1.00 -0.25 -0.61 0.53
FBG 2 1.00 -0.34 0.09
FBG 3 1.00 0.03
FBG Air 1.00
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Table 9 – Pearson correlation between the observed FBGs for both Kryo 51 oil level
increase and decrease.

Kryo 51 Oil Level Decreasing
FBG 1 FBG 2 FBG 3 FBG Air

FBG 1 1.00 -0.02 0.11 0.31
FBG 2 1.00 0.69 0.53
FBG 3 1.00 0.77
FBG Air 1.00

Level Increasing
FBG 1 FBG 2 FBG 3 FBG Air

FBG 1 1.00 0.08 0.42 0.77
FBG 2 1.00 0.82 0.62
FBG 3 1.00 0.86
FBG Air 1.00

In this analysis, we first identified which fluid the interface level is positioned.
Then, we calculate its level. For the classification, using RF we obtained 100% accuracy in
detecting the fluids. Table 10 shows a identity matrix resulting from the correct classification
of the studied fluids. Therefore, when using an FBG temperature sensor, there were no
errors in the identification of the fluids.

Table 10 – Confusion matrix for fluid identification.
Water Mineral Oil Kryo 51

Water 1 0 0
Mineral Oil 0 1 0

Kryo 51 0 0 1

The RFReg is used to estimate the level. Thus, once the fluids are classified, we
create a model for each of them, dividing them into rising and falling. We take into account
two situations, one in which the FBGs have no interaction with each other, called Model 1,
and another, Model 2, which does not take them into account. Using RF to construct the
trees, each model uses the following variables:

• Model 1: FBG 1, FBG 2, FBG 3, (FBG 1)×(FBG 2), (FBG 1)×(FBG 3), (FBG 2)×(FBG 3)
and (FBG 1)×(FBG 2)×(FBG 3).

• Model 2: FBG 1, FBG 2 and FBG 3.

Table 11 shows the RMSE for each fluid, separating them into Model 1 and 2, both
for increasing and decreasing. In order to reduce the computational effort in the choice of
the model, we prioritized Model 2, due to its parsimony. Thus, even though it has a lower
RMSE, Model 1 is only chosen when the difference in its RMSE with the compared model
is higher than 5%, otherwise Model 2 is selected.
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Table 11 – RMSE (in cm) for the proposed models, separated by fluid and level incresing
or decreasing.

Fluid RMSE level decreasing RMSE level increasing
Model 1 Model 2 Model 1 Model 2

Water 0.367 1.620 0.382 1.712
Oil 0.136 0.155 0.166 0.156

Kryo 0.247 0.446 0.255 0.444

Figure 10 shows the estimation of the water level as a function of the observed
level based on Model 1, for both level decrease and level increase. Model 1 was chosen,
due to its lower RMSE than Model 2.
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Figure 10 – Prediction of water level variation.

For mineral oil, Figure 11, Model 2 was selected, both for the decrease and the
increase of the level. The choice of Model 2 was made due to iat parsimony of the model
and avoiding overfitting, since, even with the RMSE of Model 1 lower for the decrease, the
difference was only 1.9%. Thus, the choice of a model without interaction,which requires
fewer estimated coefficients, compared to the model with interactions, becomes feasible.

Figure 12 presents the prediction of Model 1, both for level decrease and increase,
and the expected straight line values. We note that, for all observed fluids, the RF has
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Figure 11 – Prediction of mineral oil level variation.

high predictive power, generating a maximum RMSE of 0.4 cm for level decreasing and
2.4 cm for level increasing.

4.4 Experimental Results for liquid storage tank

To expand the experiment, we use a 100cm height tank. Once the possibility of
fluid detection has been proven, this experiment uses only one fluid, water. In this way,
we can measure the accuracy of the level estimation, in the setup similar to storage tanks
in real environment.

4.4.1 Classification

One of the three cycles is shown in Figure 13. It is possible to note that as the level
reduces, the FBGs exposed to the liquid, present an increase in the wavelength shift and,
then, decline. It is worth pointing out that FBG 1 and FBG 9, present irregular pattern
when compared to the other gratings. The FBG 1 is completely submerged during the
whole experiment. On the other hand, FBG 9 is only submerged in the last level step, the
sensor does not detect level changes, and it is used as the temperature reference for the air,
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Figure 12 – Prediction of Kryo 51 level variation.

whereas the FBG 1 is a temperature reference of the water. For the experiment, we did
three cycles. The goal of this analysis is the level estimation using only FBG temperature
sensors.

Figure 14(a) shows the accuracy of the models studied in each FBG. The best
performances in terms of accuracy comes from DT and SVM, with an average accuracy of
89.54% and 85.04%, respectively. We also observed higher errors in the initial levels when
LogR was used. Sensibility and specificity are secondary measures of accuracy, and consist
of quality measures of the adjustment in binary classification problems (HU et al., 2010).
For this dissertation, sensibility is defined as the conditional probability that the FBG
is in the water, given the FBG actually is. Specificity is the conditional probability that
the FBG is not covered in water, given it was classified that it was not. Thus, among the
models studied, the one with the highest Sensibility and Specificity is the one with the
best suitability for the data. Figure 14(b) shows the average sensibility and specificity of
the models, where once again the LogR presented the worst performance (among the ones
tested). On the other hand, DT presented superior performance when compared to the
others, regarding its Sensibility and Specificity.
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Figure 13 – FBG temperature sensors array response on the cycle 1. With standard error
(SE) of 0.0021% in cycle 2 and 0.0025% in cycle 3.

4.4.2 Regression

In the experiment, the level varied from 90 cm to 20 cm at 10 cm steps. Thus,
FBG 1 is always covered, and FBG 9 almost always uncovered by the liquid. In addition,
we removed the transition period between level steps, analyzing only when the level
stabilizes. To analyze if the model fits the assumptions of linear regression, the BP test
is performed (HALUNGA; ORME; YAMAGATA, 2017). The BP test uses the Lagrange
multiplier, useful to test the null hypothesis (H0) that the variances of errors are equal
(homoscedasticity) against the alternative hypothesis (H1). Applying the test to the model,
we obtained p-value of approximately 0, so we assume that the errors are not equal,
heteroscedastic. Since LR is a model not recommended for non-constant variance cases,
we propose the WLR, SVM and SVMmin models. Similar to classification, we divide the
data into training (cycles 1 and 2) and test (cycle 3). It is also pointed out that as this is
an experiment where the temperature input occurs before the level decrease, its decrease
is not studied. Thus, it was not possible to detect temperature variations on level increase.

When using RF we observe an RMSE of 16.32 cm, with this we suspect that RF
for a problem where the temperature decays, is not the best option. Thus we suggest
WLR, SVR and SVRmin. When using just WLR we observed an RMSE of 13.06 cm, with
SVR the RMSE was 6.28 cm, and with SVRmin we got 6.18 cm. Figure 15 shows the test
group prediction for the proposed algorithms. We notice that the prediction via SVMmin
is closer to the line of values Observed at initial levels (20 cm and 30 cm) if compared to
the others. Between 40 cm and 60 cm, the proximity to the Observed line occurs when
using SVMmin. At 70 cm interval, both SVMmin and SVM present similar proximity to
the interest line. While the WLR approaches the Observed at the intervals 80 cm and
90 cm.
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Figure 14 – (a) Accuracy in the level of the models in each FBG based on the algorithms
used. (b) Sensibility and Specificity in the level of the models based on the
algorithms use.

We propose the so-called mixed model (MM), that consists of the selection through
cross-validation of the best regression model in each group of levels. In order to cross-
validate, we select the model with the minimum RMSE. The MM model is based on the
smallest RMSE observed among the proposed algorithms, selects, during training, the
algorithm that results in the smallest RMSE for each interval. Then, the MM assigns the
selected algorithm to the interval in question. The RMSE obtained for the proposed model
is observed in Figure 16.

Figure 16 shows that the smallest RMSE on levels 20 cm, 30 cm and 70 cm is
observed when using the SVR, on levels 40 cm, 50 cm and 60 cm, when using the SVRmin
and on levels 80 cm and 90 cm the smallest RMSE is observed when using the WLR
algorithm. For the MM level prediction, the RMSE information observed in Figure 16 is
introduced intuitively.
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Figure 15 – Level estimation via WLR, SVR and SVRmin.
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Figure 16 – RMSE for the studied levels of each regression model for the measured data.

Figure 17 shows the RMSE of the algorithms in the intervals selected in Figure
16. This Figure, relates the interval to be used as cutoff point with the RMSE of the
prediction. According to Figure 17, RMSE line represents are the minimum RMSE of the
algorithms, according to the intervals.
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Figure 17 – Cutoff points in level for the RMSE.

Thus, we have obtained the following cutoff points:

• Cutoff 1: G1< 39 cm assumes SVRmin;

• Cutoff 2: 39 cm, G2< 61.5 cm assumes SVR;

• Cutoff 3: 61.5 cm≤ G3< 76 cm assumes SVRmin;

• Cutoof 4: G4≥ 76 cm assumes WLR.

Table 12, presents the RMSE of each algorithm for the data collected. We calculate
the RMSE for the other algorithms, where for WLR a RMSE of 13.06 cm was achieved.
The RMSE for SVM is 6.28 cm, whereas the one for SVMmin is 6.14 cm. The use of MM
results a RMSE of 3.58 cm, in a reduction of RMSE of more than 2.5 cm compared to the
algorithms used.

Table 12 – RMSE for each algorithm for the observed data.

Level (cm) Algorithms
WLR SVR SVRmin RF MM

20 9.63 6.78 2.85 9.09 3.35
30 5.47 4.93 0.07 7.29 0.24
40 27.69 5.89 11.47 6.43 6.28
50 26.90 7.41 12.21 4.90 7.42
60 19.23 5.96 11.07 6.26 5.23
70 11.22 2.11 2.08 13.64 1.96
80 3.48 6.64 4.15 25.79 3.08
90 0.93 10.54 5.26 28.64 0.94

The Figure 18 compares MM and RF. We see that RF does not behave well for
problems with a larger temperature range. However, for a problem with low temperature
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variation, MM is a more appropriate fit, resulting in a lower RMSE. We also note that
both have similar behavior up to the 50 cm level. From the 60 cm level on, RF had no
detection sensitivity.
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Figure 18 – RMSE comparison between RF and MM.
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5 Conclusions and future works

The use of FBG sensors in conjunction with ML have been widely employed (YE,
2019; GOLA et al., 2019; ING et al., 2019). For the separation of overlapping spectra
generated at wavelength division multiplexing, Manie et al. (2018), applied an ELM.
Djurhuus et al. (2019) used FBG temperature sensors’ measurements, and in order to
improve the sampling frequency they implemented Gaussian process regression (GPR).
Jia et al. (2015) featured FBG strain sensor in conjunction with SVM, for prospective in
pipeline accident monitoring and safety evaluation.

This dissertation proposes the use of FBG temperature sensors for the identification
inside the oil tank. Indirectly, it is possible to estimate the oil level. The simulated tank is
200 cm height and 40 cm diameter, with influence on solar radiation at a zenith angle. For
the analysis, we dichotomize the fluids in oil and non-oil. The algorithm inputs are: ∆λ,
FWHM and the location of the FBG relative to the tank. ∆λ and FWHM were extracted
during the simulation. We observed that FWHM is less influential for classification than
∆λ. As these parameters are poorly correlated with each other, we chose to keep the
FWHM. The parameters were observed based on the temperature variations fluids inside
the tank. The RF algorithm was applied to the classification is indicated for data that
have low distinction between the classes due to its. To find the ideal number and location,
we simulated that inside the tank, in a fiber of 200 cm in length and 125 µm, there can
be from 200 to 6 FBGs with different distributions. The selection of the ideal number
was based on the accuracy observed, with respect to the number of FBGs in the fiber.
The ideal number of FBGs for the simulation was 8. For the choice we considered that
there is lower production cost and higher spectral efficiency if compared to 200 or 100
sensors in the fiber. Then through the Tests for Two Proportions, it was found that when
using 8 FBGs at a 5% significance level, its accuracy is equal to using 25 or 50 FBGs. In
future investigations, fluid classification is planned based on the FBG found, but without
dichotomization and with experimental applications in oil tanks. By using RF in Section,
as proposed in the simulation, we obtained accuracy of 100% for fluid identification, and
RMSE less than 0.4 cm.

When using the tank, we saw that the RF did not have the ability to detect, for this
the MM is proposed. In the experiment, we used a tank 100 cm height with heat insertion
via boiler at the top of the tank. We performed 3 cycles of measurement, each cycle is
defined as reducing the liquid level at 10 cm steps, every 5 min. We started the experiment
with 90 cm and finished with 20 cm. In the analysis, we dichotomize the fluid in if the
level is under the observed FBG (class 1), or over the observed FBG (class 0). In this step,
we used the algorithms LogR, DT and SVM. The DT gave us the best results. Then, we
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used the results obtained via DT and to estimate the level. For the estimation, we used
the algorithms: WLR, SVR and SVRmin, instead of selecting the best, we proposed the
MM, a model that is the junction of all 3 models previously suggested. With the MM we
obtained RMSE 3.58 cm, against 13.06 cm of WLR, while SVM and SVMmin obtained
RMSE of 6.28 cm and 6.14 cm respectively. Using MM algorithm reduces the RMSE by
57.93%, on average, if compared to the proposed other algorithms.

Thus, the use of FBG temperature sensors for level measurement in conjunction
with the MM algorithm results in operational and economic benefits, adequate for classified
areas, and an average RMSE of under 6 cm. Future work includes fluid classification and
estimation of its fluid level interface in an oil storage tank under multiphase flow. Future
works also include the sensor fusion of different sensor approaches for more accurate
assessment of the interface level and fluid densities.

Thus, this work contributes to the advancement of research in the production of
economical and easily constructed devices for measuring different fluids. For the setup
simulation, seen in Section 3.1, we published the paper "Simulation of FBG Temperature
Sensor Array for Oil Identification via Random Forest Classification", in ECSA 7. This
paper will also be submitted to Special Issue "Selected Papers from the 7th International
Electronic Conference on Sensors and Applications" in journal Sensors, as a complementary
result the bench setup seen in Section 3.2.1 will be added. In Section 3.2.2, a second
setup was presented, this in turn resulted in the article "Machine Learning techniques for
level estimation using with FBG temperature sensor array", for the journal Optical Fiber
Technology/Elsevier, and is in the correction phase. As a complementary result the bench
setup seen in section A will be added.
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