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Resumo

Controlar uma formagao de um veiculo terrestre nao tripulado (VINT) e um veiculo aéreo
nao tripulado (VANT) com base no paradigma de estruturas virtuais envolve relacionar as
variaveis que descrevem a formacao, chamadas varidveis da formagcao, com as posi¢oes dos
robos, chamadas varidveis dos robos. Essa relacao gera o que se chama transformagoes do
espago da formagao para o espago dos robos, e vice-versa. Uma questao importante que surge
ao adotar tal formulacio é que pode haver posicoes relativas dos veiculos que caracterizam
singularidades de formacao. A caracterizacao de tal formacao com base em coordenadas
esféricas (distancia e orientagdes relativas) apresenta um ponto de singularidade quando o
VANT esta diretamente acima do VI'NT, preparando-se para pousar nele, por exemplo. Esta
Dissertagao de Mestrado tem seu foco exatamente nessa situacao, tratando do pouso do VANT
sobre o VINT, que emula uma estagao base estatica ou mével para o VI'NT. Nesse caso, a
singularidade é o fato de o VANT nao ter a garantia de estar alinhado lateralmente com o
VTNT, nao permitindo, assim, obter com precisao o estado atual da formacao ao iniciar a
manobra de pouso. Para lidar com esta questdo, esta tese propde uma representacao diferente
da formacao, livre de singularidades, com base em quatérnios unitarios, e um controlador
de formacao, com base nesta formulacao, para guiar a formacao em tarefas de seguimento
de trajetoria. Além do desenvolvimento tedrico, o texto também apresenta resultados de
experimentos executados, utilizando uma formacao composta por um VINT Pioneer 3-DX e

um VANT Bebop 2, que validam a formulacao e o controlador propostos.

Palavras-Chave: Quatérnios; Singularidade de Formacao; Seguimento de Trajetéria; Paradigma

de Estrutura Virtual; Formacao Heterogénea de Robds Moveis.



Abstract

To control a formation composed by a ground unmanned vehicle (UGV) and an unmanned
aerial vehicle (UAV) based on the virtual structure paradigm, the focus of this thesis, involves to
relate the variables describing the formation, referred to as formation variables, to the positions
of the robots, referred to as robots variables. Such relationship generates transformations
from the formation space to the robots space, and vice-versa. An important issue that arises
when adopting such a formulation is that there may be relative positions of the vehicles
which characterize formation singularities. The characterization of such a formation based on
spherical coordinates (distance and relative orientations) presents a singularity point when
the UAV is just above the UGV, preparing to land on it, for instance. This thesis focuses
exactly in such situation, dealing with the landing of UAV on the UGV, which emulates a
static or moving base station for the UAV. In such case, the singularity is the fact that the
UAYV is not guaranteed to be laterally aligned with the UGV, thus not allowing to precisely
get the current state of the formation when starting the landing maneuver. To deal with this
issue this thesis proposes a singularity-free representation of the formation, based on unit
quaternions, and a formation controller, based on this formulation, to guide the formation in
trajectory-tracking tasks. Besides the theoretical development, the text also provides results
of experiments run using a formation composed by a Pioneer 3-DX UGV and a Bebop 2

UAV, which validate the proposed formulation and controller.

Key-words: Quaternions; Formation Singularity; Trajectory-Tracking Task; Virtual Structure

Paradigm; Mobile Robots Heterogeneous Formation.
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1 Introduction

There are many definitions of Robots, which vary according to the passage of time, social
context, application in daily life and technological improvements. The Oxford Dictionary defi-
nes a robot as “.. a machine capable of carrying out a complex series of actions automatically,
especially one programmable by a computer” (OXFORD, 2009). Letting aside the modern
concept of computers, there can be found examples of “machines” which could be included in
this definition throughout History. One could trace the beginnings of Robotics to the great
Greek engineer Ctesibius, who applied his knowledge of pneumatic systems and hydraulics
to produce the first (known) organ and water clock with moving figures (ROSHEIM, 1994).
Many other attempts to build self-operating machines can be found in ancient and medieval
civilizations around the world (DUBS, 1960; GANCHY, 2009; HILL, 1991).

During the Renaissance, Leonardo da Vinci became notorious, among many other reasons,
for his revolutionary ideas for flying machines, which demonstrated to be in general unfeasible,
but still held important concepts that were further improved through time and helped in
the development of this technology centuries ahead (ISAACSON, 2017). During the First
Industrial Revolution, Richard Arkwright invented the first fully automated spinning mill
driven by water power. This invention was then used by Oliver Evans in order to build an
automatic wheat flour mill, much likely the first completely automated mill ever made (LIU,
2019).

Despite the enormous changes promoted by the two first industrial revolutions, industrial
process still relied on human work for more complex functions before the 20-th century.
Steam and internal combustion engines could replace (and actually increase) human physical
strength, but decisions on whether or not lift a load, turn the machinery on, precisely position
a screw-nut, and other complex functions still could not be totally accomplished without
human intervention. Only with the understanding and domain of electricity together with the
development of control theory, a more sophisticate usage of automation could thrive.

During, and greatly due to, the First and Second World Wars, major advances in automation
were achieved. Electro-mechanical relay logic allowed considerable improvement for industry.
Still, it was the technology based on solid-state digital logic that transformed completely the
world and allowed the advances that can be observed today, not only in the industry, but
also in the daily life of people. Automation is no longer a feature present only on plants and
industries, but accessible for most of human population at certain level. Improvement on
software, data and signal processing and machine learning in the second half of the 20-th

century and throughout the 21-st century, intensified and promoted the access to systems
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with some level of decision-making capability, ranging from majorly human dependent to
completely autonomous.

There are many different ways to classify autonomous systems (of which robots represent
a sub-category), depending on their construction or application. One possible classification,
when referring directly to robots, includes manipulator, mobile and manipulator-mobile robots.
Surely, this is not a perfect definition, which is natural, once each definition is an attempt to
make useful classification for a certain application or field of study. Nonetheless, it grasps
many important aspects. Manipulators arms used in the automotive industry or in orbit of
the earth for manipulation and repairs in the International Space Station (ISS) are examples
of manipulator robots, while military and civil drones, as well as anthropomorphized (or even
with an animal shape) robots are examples of mobile robots. Mobile robots with the capability
to manipulate objects, by their turn, are included in the manipulator-mobile definition.

Mobile robots are of special interest for their potential to affect peoples’ daily life. Self-
driving cars represent a tremendously substantial innovation, being target of many research
about their control system and other technologies that should be associated with them, such
as pedestrian detection (CARDOSO et al., 2020; XU et al., 2018; ARIA, 2019; SARCINELLI
ct al., 2019). For goods transportation, sclf-driving vchicles could be included in the more
generic definition of Unmanned Ground Vehicles (UGV), as long as no human is required for
the vehicle to accomplish its task. Now drones, or more precisely Unmanned Aerial Vehicles
(UAV), despite of being commonly associated to military applications, possess very interesting
usages for civilians, ranging from merely toys to devices used for image capture in surveillance,
environmental and agriculture inspections, search-and-rescue missions, gas leak detection
and power-line inspections, for instance (FLOREANO; WOOD, 2015; HASSANALIAN;
ABDELKEFI, 2017; DAPONTE et al., 2015).

[t is not surprising that applications involving UGV and UAV formations arose in recently
years, including agricultural inspections (ZHANG; KOVACS, 2012; MURUGAN; GARG;
SINGH, 2017) and load transportation (PALUNKO; CRUZ; FIERRO, 2012; Pizetta; Brandao;
Sarcinelli-Filho, 2020; PIZETTA; BRANDaO; SARCINELLI-FILHO, 2019), to quote some
examples .

Several researches place UGV-UAV formations as feasible solutions for logistic and de-
livery companies, attacking different problems related to this application, such as path
following (BACHETI; BRANDAO; SARCINELLI-FILHO, 2020), route planning (GAO et
al., 2020; MATHEW; SMITH; WASLANDER, 2015), land and take-off procedures (RA-
BELO; BRANDaO; SARCINELLI-FILHO, 2021), task prioritization (MOREIRA; BRAN-
DAO; SARCINELLI-FILHO, 2019) and payload deliveries (YAKIMENKO et al., 2011), for
instance. Others works deal with problems related to forest monitoring and fire detection
strategies using teams of UGV-UAV (GHAMRY; KAMEL; ZHANG, 2016)
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Among these many issues related to UGV-UAV formations, one important aspect that
cannot be ignored is the landing procedure. Many of the applications previously described
relies on the fact that the UGV usually possess a greater autonomy, being able to cover most
of the distances, while the UAV’s energy can be saved for a designated specific situation,
thus increasing the set energy-autonomy. However, the landing procedure must be carefully
executed, once that a failure landing could derail the whole operation.

As an example, in April 19" 2021, the first flight in another planet was performed by
the “Mars Helicopter” Ingenuity (a UAV), which was sent to the “Red Planet” together with
the rover Perseverance'. For this mission, the goal was to demonstrate that it was possible
to fly on Mars, what could be unfeasible, once its atmospheric volume is less than 1% of
Earth’s total. Once it has been proved possible, for future missions, it could be considered a
formation where the rover (UGV) wander most of the distances and preserve the helicopter
(UAV) to explore specific regions, such as canyons, mountains and craters (see Figure 1). This
example illustrates how important is the precision for certain operations associated to robot
formations, once it must be done autonomously for no human could manually replace the
UAV over the UGV if it lands incorrectly. Besides, the distances between the Earth and Mars
vary from 54.6 millions Km to 401 millions Km, mcaning that any control signal sent from
Earth would take between 182 seconds and 1,342 seconds, which are prohibitive signal delays

for this control system.

Figura 1 — “Selfie” of Perseverance and Ingenuity in Mars

Source: <https://apod.nasa.gov/apod/image/2107/PI1A24542_ fig2.jpg>

Therefore, it is reasonable to assume that certain operations associated to robot formations
must be carried out as carefully as possible, avoiding sources for mistakes. The landing
procedure is an example where some issues may arise. One recurrent problem is the formation

singularities. In order to understand this situation, first it is necessary to explain the control

L See <https://mars.nasa.gov/technology /helicopter/#People-Profiles>
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paradigm of virtual structures for controlling robot formations. These structures are made
in such a way that the robots considered form a geometric figure, such as lines or triangles
(RABELO; BRANDaO; SARCINELLI-FILHO, 2021; Kitts; Mas, 2009), and the variables
considered represent an aspect of the figure and not of the robots, such as its geometric
center or one of its edges, its length or area, and so on. The controller guides the robots
to move accordingly in order to keep the desired shape. All variables considered in order
to describe the virtual formation can be agglutinated in a single entity, denominated as
cluster. In order to precisely characterize this entity, all variables must be well defined, with
no misrepresentation. Formation singularities are then situations where one or more of such
variables become undefined.

Singularities may arise due to physical restrictions, such as a line describing a formation
between two robots with length zero, meaning that both robots should occupy the same
position at the same time, what is obviously impossible, because in this case one robot
would be mounted on the other, thus not characterizing a formation. Other possibility are
singularities caused by the mathematical representation chosen for the formation. For those
cases, what causes the Cluster Space (CS) to become undefined are the kinematic equations
that map the Robot Space (RS) into the CS. Euclidcan descriptions (mcaning mathematical
descriptions based on Euclidean space and geometry) of the kinematic equations usually
present points or regions where singularities arise. It is important to emphasize that those
singularities appear due to the mathematical description chosen and does not represent
a physical limitation of the formation, as previously exemplified. It is unsettling that the
mere choice of a mathematical representation may bring problems to the control system.
Fortunately, there are options regarding to formation singularities. One of those options is
the representation of the cluster based on quaternions.

The quaternions number system is an extension of the complex numbers. They provide an
unique and powerful tool for characterizing the relationships among 3D orientation frames
that the orthonormal axes themselves and traditional representations of them (Euclidean
representations) are unable to supply. One important aspect is that quaternions provide a dou-
ble covering (2:1 mapping) of the ordinary 3D rotation, this way avoiding misrepresentations
that occur for most Euclidean representations (HANSON, 2006).

Due to its potential. this thesis proposes a quaternion based description for a UAV-UGV
formation where no points of singularity occur for any attainable form of the CS. This is done
through experiments which follow the control paradigm of virtual structures for multi robot
systems, previously explained. A UAV together with a UGV form the limits of a virtual line
linking both robots. The point of interest for control of such a virtual line will not be, in
this work, its centroid, as in other virtual structures, such as in (Kitts; Mas, 2009), but one

of its limits (the UGV current position). The task proposed for the formation is to follow a
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given trajectory, keeping a certain shape for the formation, which is the UAV exactly over
the UGV. This specific situation corresponds to the virtual structure exactly in the vertical
position, and is necessary for the landing of the UAV over the UGV. The problem is that
this situation represents a singularity for the most usual Euclidean description. Moreover, a
quaternion based description also allows the formation to reach configurations that would
be impossible when considering an alternative Euclidean description, which does not present
singularities for the landing procedure, but looses attainability of the CS.

For the validation experiments reported ahead, it is considered an unicycle-like nonholono-
mic platform Pioneer 3-DX, from Adept Mobile Robots, the UGV, and a quadrotor Bebop 22,
from Parrot Drones SAS, the UAV, which are shown in Figure 2.

(a) UGV used for experiments (b) UAV used for experiments

Figura 2 — UAV-UGV robots used for the experiments reported in this work.

The experiments were run in a structured environment, where the positions and velocities
of the robots, as well as their orientations, were acquired by the high precision motion capture
system OptiTrack®, configured with ecight cameras. Figure 3 shows the robots used to run the
experiments, and three of the eight cameras as well. Therefore, the data acquisition necessary
for this work depends on measurements made by an equipment inherent to indoor applications,
which may appear as a weakness. Although it is clear that the OptiTrack system is unfeasible
for outdoor applications, the main goal of this work is to demonstrate how a quaternion
description for a UAV-UGYV formation can be superior to most Fuclidean descriptions when
formation singularities are an issue. Feasible sensing system for outdoor application involving
UAV and UGV formations is, by itself, a subject for another work.

2
3

See <https://www.parrot.com/us/drones/parrot-bebop-2-power- pack-fpv>
See <https://optitrack.com/motion-capture-robotics/>
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Figura 3 — Pioneer 3-DX and Bebop 2 with their OptiTrack markers and three of eight cameras

1.1 State of the Art

As mentioned before, quaternions are helpful tools to describe three-dimensional rota-
tions and orientations for many applications. Radavelli and his co-authors (RADAVELLI
et al., 2012) compare a dual-quaternion description (which includes translation in the des-
cription) with the Denavit-Hartenberg convention (see (SPONG; VIDYASAGAR, 1989)) for
the kinematic description of robot manipulators. They conclude that dual-quaternions are
computationally more costly, because their multiplications is more complex. On the other
hand, dual-quaternions take advantages from homogeneous matrices in the storage point of
view, since homogeneous matrices require 12 numbers to represent six degrees of freedom,
whereas dual-quaternions require just eight. Besides, quaternions and dual-quaternions provide
robot kinematics representations without singularities, which is a major problem regarding
homogeneous matrices derived from Euclidean descriptions.

In (FIGUEREDO et al., 2013) it is presented a control analysis strategy for robot
manipulators which uses dual-quaternion space to avoid decoupling the end-effector rotational
and translational dynamics and representation singularities. In (XIAN et al., 2004) it is
presented a class of task-space tracking controller for robot manipulators which describes
the end-effector orientation in terms of the unit quaternions without singularities. Others
situations where quaternions are used for robot manipulators mainly as an alternative way to
avoid representation singularities are presented in (PHAM et al., 2010), (BRAGANZA et al.,
2005) and (AYDIN; KUCUK, 2006).
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Quaternions are also useful for sensing devices, such as in (YURTMAN; BARSHAN;
FIDAN, 2018), where a wearable sensor orientation is computed through rotations between
consecutive time samples represented by unit quaternions in the Earth frame. In this work, it
has been observed that representing rotational transformations by rotation matrices, instead
of quaternions, degrades the accuracy, what reinforce some advantages of quaternions over
the most conventional representations.

In (YUN; BACHMANN;, 2006) it is presented a quaternion-based Kalman Filter for human
body motion tracking, designed for real-time estimation of the orientation of human limb
segments. This work also highlights that using quaternions improves computational efficiency
and provides singularity avoidance. By its turn, in (VARGHESE; CHANDRA; KUMAR,
2015) it is proposed a dual-quaternion based Inertial Measurement Unit (IMU) and vision
sensor fusion framework for accurate tracking in Mobile Augmented Reality (MAR), as an
extension of the quaternion based Extended Kalman Filter (EKF) developed in (KUMAR
et al., 2014), resulting in a dual-quaternion based EKF. Others examples of quaternions
use for sensing devices may be observed in (CHOU; KAMEL, 1991), (TADANO; TAKEDA;
MIYAGAWA, 2013) and in (RENAUDIN; COMBETTES, 2014), as a solution for problems
rclated to singularitics, among others issucs.

Therefore, it can be observed that many systems which depend on some kind of oriented
framework are susceptible to problems related to singularities. This is not different for
formations of unmanned mobile vehicles. In (YANG; GU; HU, 2005) it is proposed a leader-
follower formation composed by two nonholonomic robots where a structural formation
singularity exists. This issuc is circled by applying a linearization at the castor wheel position,
rather than the center of the driving wheels. Simulations presented an acceptable result,
as long as the restrictions derived from the linearization at the castor wheels position are
respected, which is rather limited. In (DAI et al., 2019) it is also used nonholonomic robots for
a leader-follower formation, where the singularity issue is solved by considering a bearing angle
constraint, therefore limiting the attainability of the formation as a whole. Even though those
works manage to solve the control issue proposed bypassing somehow the singularities, these
solutions are obtained compromising precision, generality or attainability of the formation,
which is unsettling.

In (RABELO; BRANDaO; SARCINELLI-FILHO, 2021) it is proposed a controller for
the landing of an UAV on static or moving platforms (an UGV). For such endeavor, it is
used an Euclidean description and a virtual structure control paradigm. More specifically,
the virtual line segment connecting both UAV and UGV is controlled, regarding its length
and orientation. For this set up, the singularities arise exactly when the UAV hovers over

the UGV, which represents precisely the required formation configuration for the landing
procedure. In (ERNANDES-NETO; SARCINELLI-FILHO; BRANDAO, 2019) it is proposed
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a different Fuclidean description for a similar problem, where no singularity arises when the
UAYV hovers over the UGV. Nevertheless, there is still a region of singularity which has been
moved elsewhere. That way, even though the singularity for the moment of landing is solved,
it is done by compromising the CS attainability of the formation.

In (MAS; KITTS, 2017) it is proposed a quaternion based description for a formation
between two UAVs, as well as a quaternion-based controller for a leader-follower trajectory
tracking task. Through some adjustments, it is possible to adapt this description for a
UAV-UGYV formation, now using the virtual structure control paradigm, also performing a
trajectory tracking task. This allows the formation to execute the trajectory tracking task,
as it has been done in (RABELO; BRAND&aO; SARCINELLI-FILHO, 2021), without the
singularity issue during the landing procedure and with no loss in the CS attainability as
it happens in (ERNANDES-NETO; SARCINELLI-FILHO; BRANDAO, 2019). Besides, in
this work real experiments have been run in order to validate the proposal, whereas in
(MAS; KITTS, 2017) the validation was made only through simulations. Therefore, this work
strengthens and complements the findings of (MAS; KITTS, 2017) and provides a feasible
solution for existing problems in (RABELO; BRANDaO; SARCINELLI-FILHO, 2021) and in
(ERNANDES-NETO; SARCINELLI-FILHO; BRANDAO, 2019).

1.2 Motivation

As automation improves, it shows up as a powerful tool for many application fields, from
the more prosaic (such as grocery shopping) to the more knowledge expending (such as spacial
exploration). The first flight in another planet made by the Ingenuity drone is a remarkable
achievement for planetary exploration, once it widens the range of possibilities for future
missions, allowing mankind to improve observations and data acquisition in other worlds. All
Galilean moons (lo, Europa, Ganymede and Callisto) and even the dwarf planet Pluto are
known to have thin atmosphere (thinner than Mars’ atmosphere), meanwhile Titan (Saturn’s
moon), the second largest moon in the solar system, has an atmosphere estimated to be 45%
denser than Earth’s. Being able to fly these objects is a challenge in itself. Therefore, the
recent flight of a drone on Mars served as an important rehearsal for similar missions, keeping
in mind that Europa and Titan are long-time desired targets for exploratory missions by
NASA and other space agencies.

Wherever the next spacial mission aims to go to, now it is possible to consider a UAV-UGV
formation, in which the UGV carries the UAV by most paths, saving UAV energy to explore
specific regions and take overview footages from landscapes with a better definition than
those acquired by probes in orbit of planets, moons or dwarf planets. As such, the landing of

the UAV over the UGV is one of the many issues related to such missions. Moreover, it must
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be carried as carefully as possible, once that the distances involved make any remote control
impossible, being necessary for the robots formation to perform all procedures autonomously.
Therefore, a quaternion based description for this robot formation presents itself as a suitable
starting point, once it does not present formation singularities throughout its CS.

As it has happened many times in History, technologies developed for fields of study
apparently disconnected to more earthly applications and needs demonstrated themselves
remarkably transforming in society. The internet and smartphones are very well known
examples. Similarly, the advances in robot formation controllers applied to interplanetary
exploration can be converted to exploration of dangerous areas on Earth, such as mines or
nearby forest fires. Delivery companies may adapt this technology for vehicles formation,
where the ground vehicle moves through the main roads and avenues, letting for the aerial
vehicles the last mile deliveries, thus minimizing delivering time and energy consumption.
Thinking on indoor applications, automated warehouses may use UAV-UGV formations in
such way that the UAV finds, carries and lands the goods over the UGV, which, by its turns,
takes the load to a next section of the distribution line. For all these examples, it is essential
for the UAV to land or hover over the UGV, demonstrating how harmful it might be for the
wholc system if singularitics arisc exactly at this moment.

Therefore, in order to deal with singularities that may arise for Euclidean descriptions of
robot formations, the present work proposes a quaternion-based description for a UAV-UGV
formation performing a trajectory tracking task, exploring formations where singularities
would arise for most Euclidean descriptions. Besides, it is explored the fact that the quaternion-
based description for such formations has no loss in the attainability of the CS, as it happens
for some Euclidean descriptions, which attempt to avoid singularities when the UAV hovers
over the UGV.

1.3 Objectives

The more general goal of this thesis is to develop a controller for a UAV-UGV formation
based on quaternions, capable of performing trajectory tracking tasks keeping configurations
that would represent singularities for Euclidean descriptions, to demonstrate that quaternion
descriptions for mobile robots are as functional as Euclidean descriptions without issues related
to singularities. The cluster condition in which the UAV hovers over the UGV simulates usual
configurations in applications that range from spacial exploration to automated warehouses,
and represents situations where singularities usually arise for most Euclidean descriptions.
Besides, as a secondary goal, it is going to be analyzed how the CS attainability is affected by
quaternion-based and Euclidean descriptions. Furthermore the quaternion-based description

here proposed is validated through the experiments described in Chapter 5.
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1.4 Text Structure

This thesis is organized according to the following structure:

Chapter 1: Introduction
Chapter introducing the main concepts related to this thesis, as well as the state of the
art and the motivation for this work, also highlighting the goals intended to be achieved

here.

Chapter 2: Quaternions Background
Chapter aiming to provide the most important notions of quaternions, the history
of its development, its role in group theory and the main concepts required for the

development of this work.

Chapter 3: Experimental Setup
In this chapter, it is explained the infra-structure available for the experiments here

developed, as well as some major limitations and how they affected the final results.

Chapter 4: Formation Description and Controller Design
Chapter explaining the quaternion description for the robot formation considered, which
is compared to two different Euclidean descriptions for the same formation, in order to
demonstrate the strengths of the quaternion description in comparison to the Euclidean
ones. Furthermore, the quaternion based controller that is used for the trajectory

tracking task is developed.

Chapter 5: Experimental Results and Discussions
In this chapter the experiments run are explained, in order to clarify each one’s goals
and the results obtained are presented. The results found are further discussed, in order

to highlight the most important conclusions.

Chapter 6: Conclusion
This chapter ranks the main conclusions and achievements of this work, as well as

proposes further research lines related to it.

Concluding this chapter, it is worth mentioning that this research allowed the publication

of the followings papers:

1. Harrison Neves Marciano, Alexandre Santos Brandao e Mario Sarcinelli Filho, "Singularity-
Free Quaternion Representation to Control a UGV-UAV Formation Performing Trajectory-
Tracking Tasks", 2021 International Conference on Unmanned Aircraft Systems (ICUAS),
Athens, Greece, 2021, pp. 656-665.
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2. Harrison Neves Marciano, Alexandre Santos Brandao e Mario Sarcinelli Filho, "Uso
de Quatérnios para Solucao do Problema de Singularidade de uma Formagao VANT-
VTNT", 14th IEEE/TAS International Conference on Industry Applications, Sao Paulo,
Brazil, 2021 (accepted paper).

3. Harrison Neves Marciano, Anthony Oliveira Pinto, Vinicius Pacheco Bacheti, Mauro
Sergio Mafra Moreira, Alexandre Santos Brandao e Mario Sarcinelli-Filho, "Modelagem
de Alto Nivel e Controle do Quadrimotor Bebop 2", XXIII Congresso Brasileiro de
Automética (CBA2020), Porto Alegre, RS, 2020, doi: 10.48011/asba.v2i1.1114

4. Anthony Oliveira Pinto, Harrison Neves Marciano, Vinicius Pacheco Bacheti, Mauro
Sergio Mafra Moreira, Alexandre Santos Brandao e Mario Sarcinelli-Filho, "High-Level
Modeling and Control of the Bebop 2 Micro Aerial Vehicle", 2020 International Confe-
rence on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 2020, pp. 939-947, doi:
10.1109/ICUAS48674.2020.9213941
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2 Quaternions Background

This section gives some basic properties of quaternions, besides some historical aspects of

its creation and use.

2.1 Quaternions Development

In (NEVES, 2008) is described the most famous story about the “discovery” of quaternions
and the man behind it. Thereit is told that on the 16-th day of October, 1843, William Rowan
Hamilton walked to the Council of the Royal Irish Academy, beside his wife, where he would
attend and preside. Although his wife talked to him eventually, his mind was taken by a
train of thoughts which led him to a so persecuted and desired result. The excitement for
his conclusion rushed him toward his notebook in order to write his findings down. Not yet
satisfied, Hamilton went to the Brougham Bridge, where he cut with a knife the fundamental
formula which contains the solution for the problem that he had been trying to solve for more
than one decade, namely

i =32 =k* =ijk=—1 (2.1)

The original carving faded away long ago. However, a plaque has been placed at the Brougham
Bridge as a remembrance of Hamilton achievement, as it can be seen in Figure 4. For the
rest of his life, Hamilton attempted to popularize quaternions having some success locally, in
Dublin. As the time progressed, nearby the end of the XIX century, quaternions began to be
replaced, by the scientific community, in favor of the vector analysis, which could represent
the same phenomena as quaternions, being more straightforward and clearer in notation,
relegating quaternions to restrict fields of mathematics and physics. Not only being relegated,
quaternions were considered as harmful for some notorious mathematicians of the period.

Oliver Heaviside once said':

“I came later to see that as far
as the vector analysis I required
was concerned, the quaternion
was not only nol required, but
was a positive evil of no

inconsiderable magnitude.”

Oliver Heaviside

1 See <https://www.youtube.com/watch?v=d4EghgTm0Bg>
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Figura 4 — Plaque containing the fundamental formula of quaternions

Furthermore, Lord Kelvin said:

“Quaternions came from
Hamilton after his really good
work had been done; and, though
beautifully ingenious, have been
an unmized evil to those who
have touched them in any way,

including Clerk Maxwell.

Lord Kelvin

It is even believed that the Mad Hatter’s Tea Party scene in Alice in Wonderland, where

it is quoted “.. Why, you might just as well say that I see what I eat is the same thing as
” mocks with the non-commutative nature of quaternions.

Quaternions were truly relegated to minor fields of study for approximately a century, until,
in the late 20-th century, professionals and researchers on graphic design, robotics and any
field where three-dimensional rotation in space were necessary, revived it due to its pragmatic
and elegant way to describe and to compute three-dimensional rotations. Besides, quaternions
demonstrated to be computationally more efficient than other methods and less susceptible
to numerical errors that arise when using such other methods. Quaternions also show to be
quite useful for quantum mechanics, since the actions they describe in four dimensions are

considerably suitable to mathematically describe two-state systems in quantum mechanics.
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Hamilton had none of this in his mind when he began to study what would become the
quaternions, obviously. To him, all started due to his interest on defining a multiplication
for triplets which possessed the same properties of the complex numbers and that could be
interpreted as rotations in space, analogously to rotations in planes, as it also happens with

Wi

complex numbers. His first attempts involved the addition of another complex number “j”,

wan W
1 1

orthogonal to the real numbers and to “i”, holding the same property of “i”, whose square is

equal to -1. He struggled for many years with the fact that for this definition the distributive

“i” and “j” did not represent anything inside

property did not hold. The product between
the set he had defined. This situation was overcome just that October 16-th, when Hamilton
conceived a fourth spatial dimension, orthogonal to the other three, allowing the creation of a
consistent number system set with an effective geometric meaning.

Indeed, the German mathematician Ferdinand Georg Frobenius, in 1878, proved that
the finite dimension associative division algebras over the real numbers are isomorphic only
for three number systems, namely the real one, the complex one and the quaternions. This
explains why Hamilton could not solve his problem by simply adding another imaginary
element, being necessary a fourth one. Loosing a little the restrictions and removing the
associative condition, but keeping a notion of norm, Adolf Hurwitz (also German) proved, in
1898, that it is possible to add another algebra represented by the Octonions to the other
three (PEREIRA; ABREU, ), which will not be discussed in this thesis, but also possesses
interesting applications in mathematics.

A more explicit way to express Hurwitz’s finding is the proof that
(a3 + a3+ +al)=(bi+ 3+ +82) (F+BE+..+c) (2.2)

is true only for n =1, 2, 4, 8.

At first, Hamilton did not know what was the nature of ‘k’, but eventually he concluded
that it had a nature similar to that of ‘i’ and ‘j’, an orthogonal line in relation to the others,
with modulus 1. Besides, quaternions multiplication preserves the distributive and associative
properties, but not the commutative for the imaginary elements, which makes quaternions a
four-dimensional non-commutative associative normed division algebra over the real numbers.

Section 2.2 will explore somewhat further such aspects.

2.2 Properties of Quaternions

2.2.1 Quaternions Algebra

The quaternion set H is a vector space over R*, which can be defined as:

H={w+azityj+zk | waryzeR, and i*=j>=k® =ijk=—1} (2.3)
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From (2.3) it can be derived that:
ij = —ji = k;
jk = —kj =1; (2.4)
ki = —ik = j.
Proofs: using
ijk = —1 - ijk*=—k . —ij®=—kj ;. i*=—kji ;. —1=—kji . kji=1, (2.5)
and also using (2.3), it can be concluded that
ijk=—-1 - ijk*=—k . —ij=—k . ij=k;
kji=1 - Kyi=k - —ji=k .. ji=—k
J J J J (2.6)
ijk=—1 . i*jk=—i . —jk=—i . jk=i;
kji=1 .. kji*=i . —kj=i .. kj=—i.
Now, using (2.6), it can be obtained
ji=—k . jit=—ki . —j=—ki . ki=];
(2.7)
ij=k . ilj=ik . —j=ik . ik=—j.

Figure 5 shows a diagram with the quaternion multiplicative relationships, as well as the

multiplicative table for quaternions.

110 = j 4 k -k
R R

Lie [ (=] 3T ]=] 7 [=1]

k|| K |~ |G |0 [<[1]=1
(a) Cayley Q8 Graph (b) Quaternions Multiplicative
Table

Figura 5 — Multiplicative relationships between quaternions.
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2.2.2  Quaternion Group of Symmetry

A symmetry of an object is a geometric transformation which leaves the object unchanged
(HART; SEGERMAN, 2016). There are 8 possible transformations over a square that would
keep it undistinguished from how it started. A circle may have infinite transformations and
still it would be impossible to differentiate it from its initial form. Each action over an object
that keeps its form unchanged is a symmetry of this object and the sct of these symmetrics
form a group of symmetry. Moreover, not only the actions that describe a group are relevant,
but the interactions between those actions also are. Similarly to a sequence of rotations which
could be described as a single one having the same final result, a sequence of actions of a
group must be equivalent to a single action which also belongs to that group. Rotating a
square 90° counter-clockwise and then flipping it around the vertical axis is equivalent to
simply flip it over the diagonal axis which passes through the upper right corner and the
bottom left corner?.

More strictly, a group is a set, together with an operation on its members, which satisfies
certain axioms. Those axioms are not chosen randomly, obviously, but they are the minimum
rules restrictions over a geometric object under which all transformations keep it invariant. In
this subsection it is considered an operator (x), which could be an addition, a multiplication
or even a made up operator. It does not matter as long as the axioms are respected. Let G be

a set of elements. Then, G will form a group if:

1. a, b € G are any two members, then a * b is defined, and also a member of G*;
2. the associative law holds: (a * b) x ¢ = a * (b x ¢) for every three a, b, ¢ € G;

3. there is an “identity element”, called e, so that e xa = a x e for all a € G.

There is another rule that does not prevent a set to form a group, although being

important in order to define it. Such a rule is

4. for every element a € G there is another element b € G with the property that

a*b=0bxa=e. The element b is usually written as a='.

When these four properties hold for all pairs of elements in GG, G is called a commutative
group or, more commonly, an abelian group. When the three first of such properties hold, but
the fourth one does not hold for even one pair of elements, G is called as a non-commutative

or a non-abelian group.

See <https://www.youtube.com/watch?v=mvmuCPvRoWQ&t=254>

Interestingly, this was one of the aspects that made Hamilton to struggle the most. Remember that he
could not give a meaning to ¢ o j that would still belong to the set he had defined. Conceiving a fourth
dimension back then was somewhat shocking, even though it seems complete acceptable for abstraction
purposes today.

3
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Quaternions form a finite group, called (quite originally) as the quaternion group Qg, which

is a non-abelian group of order eight. It is given by,
Qs=1{(e, i, j, k| & =ei*=4=k =ijk=2¢), (2.8)
which is isomorphic to the eight-element closed to multiplication subset,
S=A{1,1, j, k, —1, —i, —j, —k}. (2.9)

Group Theory is a remarkably relevant field of study in mathematics, being the basis
for several theories and applications. Besides, it represents some fundamental structures in
nature. Therefore, it cannot be ignored how interesting is the fact that quaternions form a
group of symmetry of their own, which emphasizes how important quaternions can be for

fields of study going beyond the application here described.

2.2.3 Quaternions Representation

A usual notation for a given quaternion is

g€l | ¢g=qo+ @i+ qj + g3k, where qo,q1,q2,q3 € R, (2.10)

or, in a more compact writing,
geH | ¢=q+aq, (2.11)

where q = q17 + 27 + g3k represents the imaginary or vector part of a quaternion (to avoid
confusion with the imaginary elements of a quaternion, hereinafter in this thesis the q part of
a quaternion will be referred to as its vector part). By its turn, gy represents the real part of
the quaternion.

Similarly to the complex numbers, quaternions have an exponential representation, which
is

0 9 0
g = llale# = llgl|(cos 5 + sen_ ), (212)

where ||¢|| is the modulus of the quaternion, 6 is the rotation applied by it and f is an unit
vector representing the axis around which the rotation is performed, such that,

' ' k
a4 _ + @) g3 (2.13)

lall g +az+ a3

Similarly to a multiplication between complex numbers, which causes a rotation in the

plane and a stretching or squeezing, depending on the modulus of the complex number,

the multiplication of two quaternions also does that, now in the three-dimensional space.
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Therefore, in order to apply spatial rotation without distorting the original length of the

vector, the quaternion used should be normalized, so that,

q _ qo + qit + q2J + g3k
lall @+ + a3+ a3

6
51’1

= (cosg + sengﬁ). (2.14)

q\: = e

Normalized quaternions are also known as unity length quaternions, or simply unit
quaternions. Furthermore, they can be expressed as a conjugated form, in which the vector

part has its signal inverted, or
q" = (qo, —q)- (2.15)

Applying the results in (2.6) and (2.7), it can be derived the general non-commutative

multiplication rule for two quaternions. Let it be,
q=qo+ qi+ q2j + g3k and p=po+ pii + paj + p3k. (2.16)

Then,

qop = qopo + qp1 + @p2 + @3ps + i (qop1 + Gpo — Qps + @3p2) +
7 (qop2 + q1ps + @2po — gsp1) + k (qops — qip2 + @op1 + qspo) ,  (2.17)

where o represents the multiplication between two quaternions.
Now, considering ¢ and p as 4x1 vectors, the multiplication rule can be written more
compactly as,
gop=(qpo—a-P, GP+pa+axp) . (2.18)
As a result,
goq =q +a +a+a; = |lal]*. (2.19)
To conclude, once all the quaternions considered in this work are unit quaternions, they

are such that,
goq =gl =1. (2.20)

2.2.4 Three-Dimensional Rotation and Orientation

In order to represent three-dimensional rotations by quaternions, the first step is to write

the point or vector which the rotation will be applied to in such a way that,
p=0+zi+yj+ zk. (2.21)

Then, following (2.14) it is defined a normalized three-dimensional axis fi, around which the

rotation will be performed, and the angle 6, the rotation angle to be applied to p. Finally, the
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new position is found multiplying p by the unit quaternion ¢, derived from n and 6, to the
left, and by ¢* to the right. Notice that successive rotations can be applied, what means to

repeat this processes continuously. This can be better summarized as

p= o0 ©..0 ofopod o o ..o o, (2.22)
where,
Cjn = qno + qn1t + GnaJ + Qn?)k = qno + Qn (223)
=
g n
@,

O
f

X ~ Y

Figura 6 — Three-dimensional rotation around axis n by angle 6

Not only rotations can be characterized by quaternions. They can also be used to express
the spatial attitude or orientation, through n and #. A UGV, moving in a plane surface,
would always have a i = k, while a UAV, which can move freely in the 3-D space, could have
any combination of qi7, ¢2j and g3k in order to form n, whenever /¢? +¢3 +¢2 = 1. As a
consequence of (2.12), 6 obeys 0 < 6 < 4, rather than 0 < 6 < 27 in order to represent all
possible quaternions. It implies that the quaternions ¢ and —§ represent the same orientation
and generate the same three-dimensional rotation. Therefore, quaternions accomplish a double
covering (2:1 mapping) of ordinary 3D rotations (HANSON, 2006).

This fact allows a continuous transition between orientation angles. For instance, consider
a UGV on a plane surface, starting navigating with an orientation of § = 1 4 07 + 05 + Ok.
If a counter-clockwise rotation is applied to it, when it finishes a complete revolution its
orientation will have varied continuously up to § = —1 + 07 4+ 0j 4+ 0k, which also represents
the initial orientation. If another revolution is applied at the same direction, it will vary, also
continuously, until ¢ = 1+ 0z + 07 + Ok. Therefore, the abrupt transition between 27 and 0

does not occur for this orientation description.
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Tabela 1 — Examples of spherical geometry definitions

Description Equation Embedding Dimension
Circle (S*1) 1 (=@ +¢=1 R
Sphere (57) 4= a+@=1 R
Hypersphere (5%) | ¢-¢=q5 +qi +¢5 +q3 =1 RA

2.2.5 Unit Quaternions Visualization

An unit quaternion is no more than a point on an unit four-dimensional hypersphere.
Therefore, in order to visualize it, the first thing to do is to compare how it is possible to
visualize a three-dimensional sphere as circles in a plane, and, then, to apply the analogous
process with the four-dimensional hypersphere using three-dimensional spheres.

Usually, spheres are three-dimensional objects. However, mathematically speaking they
could be generalized to any dimension, as long as all set of points that constitute it are equally
apart from its origin and form a closed curve or surface. An unit sphere, then, holds these
properties and the fact that the distance between any point and the origin is equal to 1. The
table 1 summarizes this definition.

Starting with a sphere (S?), once its radius is specified, in this case 1, the equation

describing it has two degrees of freedom, such that,

G =+y1— (q1)? — (@) (2.24)

where the positive values of qq represent the northern hemisphere and the negative values the

southern hemisphere. If all points that form the sphere surface are projected to the intersection
between a plane passing through the equator and the sphere, then both the northern and the
southern hemispheres are going to create a filled disk each one. Meanwhile, gy = 0 represents
the equator, being the only projection which represents precisely the original region on the
sphere. This way, the whole sphere (5?) can be mapped using one dimension less, in this case
using three circles (S!).

Now, repeating this reasoning to an unit hypersphere (S3), the equation which describes
it is such that

a0 =21 (@) — (@) - (a)* (2.25)
where, similarly to the previous case, the positive values of ¢y represent the northern “he-
misphere” and the negative values the southern “hemisphere”. It is impossible to human
minds to picture a four-dimensional hypersphere. Nevertheless, analogously to the (S?) case,
projecting all points that form the hypersphere surface to the intersection between a “space”
passing through the equator and the hypersphere, then the northern and the southern “he-
mispheres” are going to create a filled ball each. As before, gy = 0 represents the “equator”,

being the only projection which represents precisely the original region on the hypersphere.
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\ Filled disk Empty circle Filled disk
B, N

Gy > 0 q,= 0 q, < 0
Nerthern Ngli=1 Southern
hemisphere Equator hemisphere
(a) Sphere (52) (b) (5?) represented by three (S!)

Figura 7 — Representing a sphere (S?) with one dimension lower.

Source: (HANSON, 2006)

Solid ball Empty shell Solid ball
X X
2\ N

T el
q,>0 q,=0 q,<0

Northern ligli=1 Southern

hemisphere Equator hemisphere

Figura 8 — Representing a hypersphere (S%) with one dimension lower.

Source: (HANSON, 2006)

This way, even though it is humanly impossible to picture a four-dimensional sphere, this

method allows the visualization of it, lessening its obscurity.

2.2.6 Quaternions Logarithm and Exponential

Dealing with logarithms and exponential for quaternions can be useful for numeric
differentiation, interpolation or even to normalize unit quaternions, as it is going to be
explained in the next section. Besides, once quaternions have an exponential representation,
logarithms and cxponential functions applied to them arise naturally.

Consider a quaternion as characterized in (2.12). Using its exponential representation, a

logarithm applied to it is such that,

>

In (¢) = In([lgl) + 5. (2.26)
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Therefore, for an unit quaternion one gets,

In(4) =0+ -h. (2.27)

N D

Now, also using a quaternion as characterized in (2.12), an exponential function applied

to it results in
exp (Q) — ol40) p(a1i+a25+qsk)
exp (q) = e ¢/l e (2.28)

exp (q) = et pllalln

Using the trigonometric form of (2.12) it is also possible to infer that
exp (q) = elllalleos §) cllall seng (2.29)
It is important to highlight that the identity property

@) =1 (@) =, (2.30)

does not hold for all interval. Nevertheless, for this work, in the situations where it is needed,

it is applied,
exp (In(9)) = ¢, (2.31)

which holds for the intervals considered.

2.2.7 Quaternions Differentiation

In order to transform the control references between the CS to the World Frame (WF), it
is essential to define the mapping functions that perform the transformations between them
and compute the Jacobian that describes such transformations in terms of time derivatives,
as well as partial differentiation between quaternions. Thus, this section will present the most
relevant expressions used in this thesis without proving. More detailed explanations can be
obtained in (JIA, 2019).

Consider the case of a quaternion function ¢(t) describing how the orientation of a moving
object, represented by its body frame, varies with respect to a fixed WF. Let w be the angular
velocity of the body frame with respect to the WF. Therefore,

1
qg= Jwi- (2.32)

If ¢ is known, then w can be computed as

w=2q4q". (2.33)
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Then, using (2.33), the second derivative is

1
G =5 (@wg+wqg)
i = Lig 4 - (2.34)
g = qu 4wwq .

1 1

There can be also find the angular acceleration if the first and second time derivatives of

q are both known. It can be shown that,

b =2(dg" ~ (4a")°) (2.35)
Finally, a possible numerical approach to compute the next quaternion using the existing

information relies on Euler’s method, in which,

1
Qr+1 = Qi + §kaqk, (236)

where T represents the time step considered, ¢; and wy are the quaternion and the angular
velocity at the time kT, respectively, and g1 is the value of the quaternion at the next time
step.

Due to computational iterations, the norm of g1, considering that it has been used an

unit quaternion, decreases until it becomes zero. A possible solution is to make

st Lt (2.37)
\ ’%ﬂ ’ \

after each iteration, in order to keep the norm equal to 1. That is a simple solution, though it
also propagates errors, being harmful in long runs. An alternative is to plug gxy1 into (2.31),

but pushing that

0 6
Mla =04 —tlh, (2.38)
2 2

once that this would be the expected result without numerical errors. The argument is

I (gr41) = In (llges[) +

proportionally less affected by the numeric errors. Therefore, after the exponential, the value
found represents better what should be expected from gi1;. In (ZHAO; WACHEM, 2013),
those and some other methods for quaternion integration are presented and compared.
Now, for partial differentiation between quaternions, (JIA, 2019) presents straightforward
solutions with no need for numerical approximations. Let us consider two quaternions g and
p, such that
g and peH | g=qo+q and p=pg+ Pp. (2.39)
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T T
Considering ¢ and p as the column vectors {qo g ¢ q3} and {po D1 P2 p3} , Tes-

pectively, the derivative of ¢ o p with respect to ¢ is,

0(gop) _ |po -p' (2.40)
dq P Polsxs — pXx And
Now, the partial derivative of g o p* with respect to ¢ is
d(gop’) _ | Po p' (2.41)
9q —P polsxs +Px], |
Similarly, the partial derivative of ¢ o p with respect to p is,
Op a4 qolsxs +ax|,
Besides,
9(gop”) _ | a’ (2.43)
Ip d —qolsxs —gX el 7

where I3y3 is an unit matrix and qx and px are 3 X 3 anti-symmetric matrices given by

0 —a ¢
gqx = g3 0 —q and
|2 0 L P
i 0 —-ps p2
px = | ps 0 —p ) (2.44)
7Pz Pt L P

At last, for the derivatives of the product govo¢* involving a quaternion ¢ and the vector

part v of another quaternion v, with respect to v, the result is,

O0(govog*
(qaq) = (5 = llall?) Tsxs + 2aq" + 2q0ax, (2.45)
\% 323
whereas,
O(qg*ovo . .
VO (2 ) Tyws + 200" 2000 x (2.46
A\ 323

By its turn, for the derivatives of the product ¢ o v o ¢* with respect to ¢ the result is,

d(govoqh)

g =2([gv+axvi—va + (v @) Iss+av —gvx |) (2.47)
3x4 '
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3 Experimental Setup

This chapter deals with the infrastructure used to run the experiments designed to validate
the proposal here described, involving not only the formation description based on quaternions
but also the controller designed to deal with such a description, both discussed in Chapter 4.
It is detailed both the UGV and UAV used to accomplish the robot formation, as well as their
kinematic and dynamic (when relevant) equations, in order to describe their behavior when
flying. It is also detailed the motion capture system used to acquire the data correspondent to
the positions of the robots in the formation, thus getting the current state of the formation,
as well as the software needed in order to make it operational. Moreover, it is discussed some
restrictions imposed by the space limitation of the flying arena, as well as the equipment used
for processing the algorithms and communication between the robots and the ground station

where the control system runs.

3.1 Unmanned Mobile Robots

The main characteristics of the two platforms used to run the validating experiments for
the system here proposed are considerably relevant for the understanding of the context in
which this solution has been elaborated. Without this contextualization, it becomes more
difficult for future designs or researches to apply this proposal (or aspects of it) in their
solutions, if desired. Thus, the main characteristics and considerations made about the two

platforms are here presented.

3.1.1 Unmanned Ground Vehicle: Pioneer 3-DX

As mentioned in Chapter 1, the UGV considered for this work is the Pioneer 3-DX,
an unicycle-like nonholonomic platform. As explained in (MOREIRA, 2020), it has two
independently driven wheels, positioned at its sides, together with a caster wheel to support
its equilibrium, located at its backside. This configuration allows it to move forward and
backward, as well as around its own vertical axis keeping the center of the line section between
both wheels unchanged. It is also capable of performing combinations of linear and angular
velocities, resulting in motions described by circumference arcs, by applying different velocity
values to each wheel, as exemplified in Figure 9. Due to such characteristics, it is activated by

linear velocity commands in its P! axis and by angular velocity commands in its 2P axis.

L Superscript p indicates Pioneer’s frame
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ICR

Figura 9 — Pioneer 3-DX Mobility (ICR means Instantancous Center of Rotation)

Therefore, the velocity commands sent to the UGV can be expressed as
T
u=[v w| . (3.1)

where v and w represent the instantaneous linear and angular velocity commands, respectively.
As for the kinematic model that represents the Pioneer 3-DX UGV, it depends on the
point of interest for control chosen, which is located in a certain distance a from the center of

the virtual axis connecting the two driven wheels, as represented in Figure 10.

YW

XW
(a) UGV used for experiments (b) Pioneer 2D Model

Figura 10 — Kinematic Model Representation for the UGV.

For such a configuration, in order to convert velocities commands between the World Frame
(WF) and the Pioneer Frame (PF), it is used the direct kinematic model of an unicycle-like
robot, given by

_ |costy —aseny
Ay = Lemﬁ acosw] 7 (3.2)

whereas to convert from the WF to the PF it is used its inverse, given by
1 |cosy seny
A= l ] . (3.3)

__ seny cos Y
a a
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In matrix notation, the transformation from the PF to the WF is written as

-l

and the transformation from the WFE to the PF is written as

-l

Y
-
where [m y’] are the velocities in the WF.

3.1.2 Unmanned Aerial Vehicle: Bebop 2

As also mentioned in Chapter 1, the UAV used in this work is the quadrotor Bebop 2, from
Parrot Drones SAS. It is equipped with a full HD eye-fish 14 mega-pixels frontal camera and
an optical stabilizer, besides a second camera, which faces down (the images acquired by such
cameras can be accessed through the software provided by the manufacturer). It also has a
dualcore CPU processor and an embedded quadcore GPU. It also has embedded instruments,
such as altitude sensors, GPS module, accelerometers, battery charge level sensor, such that
it is able to deliver information about the current state of the vehicle, updated each 200 ms
interval.

In order to establish communication with the Bebop 2, it was used the Bebop Autonomy
driver, alongside with the Robot Operating System (ROS). The Bebop _Autonomy driver was
developed at the Autonomy Lab from the Simon Fraser University, in C++. It offers a range
of topics and resources which allow the user to access internal data from the Bebop 2, as well
as send commands to it. Subsection 3.3 will provide more details about ROS.

From the operational point of view, the UAV has 6 Degrees of Freedom (6 DoF). It can
activate linear velocity commands in all three axes 2?2, y* and 2°, as well as angular velocity
commands around the same axes. These angular velocity commands correspond to the Roll,
Pitch and Yaw movements, represented by the angles ¢, § and 1, respectively. Combinations
of such movements are performed by controlling the forces generated by each one of the rotors,
as indicated in Figure 11.

Roll and Pitch movements are not of interest in this work, however, for not being necessary
for the applications considered, and due to the risk involved in performing such movements in
an indoor environment. For similar reasons, the quadrotor Bebop 2 was configured to have

small bound limits for linear and angular velocities along and around its z° axis. Furthermore,

2 Superscript b indicates Bebop’s frame
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Figura 11 — Bebop 2 Mobility

the Roll and Pitch movements were limited to £5°, so that it was possible to model the UAV

as a fully actuated system (see (Pinto et al., 2020)), whose velocity commands are
T
u = [’uvx Uy, Uz Uw] s (36)

without considerable loss in the precision of the model.

Likewise for the Pioneer 3-DX, the kinematic model of the Bebop 2 also considers it as a
mass-less virtual point which can respond to the velocity commands instantaneously. Previous
experiments, however, demonstrated that only a kinematic model (and controller) was not
enough to ensure an acceptable performance for the UAV considered. Hence, a dynamic model
was also used for the Bebop 2, but not considered for the Pioneer 3-DX, once it has shown
acceptable performance when applying just a kinematic controller. Thus, its dynamics, for
the objectives of this thesis, is not considered.

Taking into account only the four DoF specified in (3.6), and considering that the Pitch

and Roll movements are small enough so that they may be ignored when the UAV moves

alongside the 2 and y° axes (see (Pinto et al., 2020)), its matrix of direct kinematics is
cosyy —senyy 0 0
A, = senyy costyp 0 O ’ (3.7)
0 0 10
0 0 0 1
and its matrix of inverse kinematics is
cosy senyy 0 O
A7l = —seny cosy O 0 7 (3.8)
0 0 10
0 0 01
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so that the transformation of the velocities from the Bebop Frame (BF) to the WF is written

as

. "
Y=, "], (3.9)
z Uz
(0 Uy,
and the transformation from the WF to the PF is written as
Uz X
Uy, 9
=AY (3.10)
Uy z
Uy, P

AT
where {g: y z w} are the linear velocities and the yaw velocity, in the WF.

Now, taking into account the dynamics of the UAV, a new model is considered, described
as (SANTANA; BRANDaO; SARCINELLI-FILHO, 2016)

X = flu,i - ng, (311)
where,
[ cos Y —senyy 0 o] [K 1 0 0 0 ]
0 0|0 Ksy 0 0
[ | SnY oSy 3 — ALK, (3.12)
0 0 1 0[]0 O Ks O
0 0 0110 0 0 K
[ cos v —seny 0 0] [k 2 0 0 0 ]
0 0|0 Ky O O
[, | SnY o8 ! — ALK, (3.13)
0 0 10 0 K¢ O
0 0 01/ /0 0 0 Ks

) AT - T
X=|&t gy 2 w} , X = {93 gz ﬂ and uy is a vector with the control signals sent to
the UAV. As for the parameters Ky, --- | Kg, they are estimated using experimental values
gathered according to the procedure described in (Pinto et al., 2020). The values thus obtained

for such parameters, which are the values used in this thesis, are presented in Table 2.

3.2 Motion Capture System Optitrack

As mentioned in (MOREIRA, 2020), the Motion Capture System Optitrack consists in

a proprietary source three-dimensional localization system, commercially sold by Natural
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Tabela 2 — Parameters Values from the Identified Dynamic Model

K, K, K K, K, K; K, Ky
0.8417 0.1823 0.8354 0.1710 3.966 4.001 9.8524 4.7295

Point, Inc. This system assembles a virtual rigid body through the detection of retro-reflective
capture markers in the body of interest. The three-dimensional location is then figured out
by forming a high luminosity blob around the markers using images captured by cameras
installed around the laboratory. Those cameras, as well as the retro-reflective capture markers

are shown in Figure 12.

Cptifrosk

(c) Retro-reflective Capture Markers

Figura 12 — Optitrack System Cameras and Markers.

In this work the Optitrack configuration corresponds to eight cameras, four of them of
model Prime 13 and the other four of model Prime 41. The difference between them is that the
Prime 41 model has a greater angular opening, in comparison with the Prime 13 model. The
retro-reflective capture markers are designed to reflect incoming light back to its source. IR
light emitted from the cameras is reflected by passive markers and detected by the camera’s

sensor®.

3 See <https://v22.wiki.optitrack.com/index.php?title=Markers>
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For each rigid body whose movement should be tracked, at least four markers were used,
placed asymmetrically over the object, in order to ensure that the software could distinguish
one from another, in this case the UGV and the UAV. Both robots with their markers are

shown in Figure 13.

r—

Figura 13 — Pioneer 3-DX and Bebop 2 with their Optitrack markers

Finally, the software used to capture the images and to allow the object tracking is the
Motive, also a property of NaturalPoint, Inc. This software provides an interface where the
user can define the rigid body formed by the markers detected and save or transmit this data
through the network available. The Motive software computes the 3D positions of the bodies
using the 2D images provided by multiple cameras positioned throughout the room, in such
a way that it is possible to triangulate the bodies 3D position with the minimum of blind
spots possible. It is also capable to track 6 DoF from the rigid body measured, being three
positioning coordinates and three orientation coordinates. It is also possible to acquire the

orientation already as a quaternion, which was the choice made in this work.

3.3 Robot Operating System (ROS)

ROS is an operational system specified for robots usage, being a flexible open source
framework, which can accomplish the low level communication among a wide variety of robots.
It is composed by a set of libraries and tools which enable the development of more complex

behaviors for the robots, individually or as a group.
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Broadly speaking, the ROS operates through a central server named Master Node, which
is responsible to coordinate all communication among the other nodes in the network. This
Master Node has the information about the elements that compose the network, as well
as all published and received messages. Any new node informs the Master Node about its
topics and which messages it publishes or listens. If a node needs some information from the
network, it requires from the Master Node a signature requisition or a topic subscription.
If that information is available in the network, the Master Node informs to the requesting
node the address where that information is published, and the link between both nodes is
established.

In this work, it was used a Linux server to run the ROS Master Node, alongside with the
Bebop 2 communication driver, the Bebop Autonomy library aforementioned. The codes are
written in C++ and Python, and are responsible for the low level communication between
the computer running the Master Node and the quadrotor.

As for the communication between the Master Node and the Pioneer 3-DX UGV, it is
performed using a Raspberry PI 3 model B mini-computer, installed over the Pioneer 3-DX,
in which the Ubuntu Operating System is installed. Such a resource is used to run the ROS
and the communication nodes connecting the UGV and the Windows 10 Opcrating System
computer.

Furthermore, there is a Listener/Publisher node, which is responsible to control both
robots, the UGV and the UAV. It runs the control loop, as well as the interruption procedures
required to ensure the safety of the assets and personnel during the experiments. This node
runs in another computer, over the Windows 10 Operating System with the Matlab R2018a
software installed. Inside the Matlab script it is created the node which establishes the
communication with the Linux server. This way, the necessary communication between the
two robots and the computer running the control system is established.

It was used the ROS-Kinect Kame version for this work, installed in the 16.04 version of
the Ubuntu Operating System. There are more recent versions for ROS and for the Ubuntu
Operating System. However, until the moment in which this thesis has been written, the used
versions were required in order to guarantee the compatibility with the Bebop Autonomy

communication driver, embedded in the Bebop 2 quadrotor.

3.4 Space Limitations

The testing environment is a well illuminated, clean, predominant white room, with
blocking-light curtains in all windows, so that the external luminosity does not disturb the
Optitrack measurements. The room is 6 meters long, 5 meters wide and has 3 meters of

height. Taking 1 meter from the width for the chairs and tables, it can be considered that
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the flight arena corresponds to an area of 6 x 4 = 24m?, correspondent to a useful volume of
24 x 3 = T2m3.

This space is rather limiting, regarding the navigation of the UGV-UAV formation. Hence
the experiments were run considering trajectories with moderated speeds ¢4, and 1,. Moreover,
for some cases the maximum velocity allowed for the UAV was limited, as it is going to be

explained in Chapter 5.

3.5 Infra-Structure Overview

The whole infra-structure can be then listed as follows, considering all aspects aforementi-

oned.

e Pioneer 3-DX UGV,
e Bebop 2 UAV;

o Optitrack motion capture system, with 8 cameras connected to a DELL XPS Windows
10 desktop computer, with an INTEL Core I7 processor, 24GB of RAM memory, 500GB
of SSD disc and shared GPU, running the softwares Motive* and Matlab;

o Samsung Notebook with an INTEL Core I7 processor, 8GB of RAM DDR4 memory
and a rigid disc of 1TB, operating with Linux;

« Tplink Gigabit Model router with wi-fi transmission of 2.4GHz and 5GHz;
» Gigabit Switch with a PoE feeding capability;

o XBOX360 Joystick, computer model.

Motive is a proprietary software of Natural Point Inc., the provider of the OptiTrack
system, responsible for getting the instantaneous positions of the UGV and the UAV and
their relative orientation, this last one as a quaternion, as aforementioned. As for the Matlab,
it is necessary to run the script correspondent to the control system. Finally, the notebook is
necessary to run the ROS system to create the communication structure linking the computer
running the control system and the two robots.

It is worth mentioning that the joystick was used to overwrite the commands sent by the
controller if necessary, characterizing a safety controller for emergencies. An overview of the

whole setup is shown in Figure 14.

4 See <https://optitrack.com /software/>
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OptiTrack CAMERAS (8)

OptiTrack SWITCH
8 x RJ 45
RJ 45
5 PIONEER 3-DX
| J (Wi-Fi VIA RASPBERRY PI)
WINDOWS (MATLAB)
OptiTrack SOFTWARE LINUX (ROS)

JOYSTICK
(SECURITY)

—

Figura 14 — Experimental Setup Adopted
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4 Formation Description and Controller Design

In this chapter, two Euclidean descriptions of the UGV-UAV formation are introduced,
for the sake of comparison with the quaternion-based description here proposed. All these
formations consider the virtual structure control paradigm, where the three-dimensional line
segment connecting both robots is the virtual structure to be controlled. They also consider a
trajectory tracking task, with the possibility that the UAV lands on the UGV. Therefore, the
UAV hovers over the UGV for a while, at certain point of the experiments, just before starting
falling down on the UGV (this moment characterizes the specific formation configuration

being explored in this work).

4.1 Euclidean Descriptions of the UGV-UAV Formation

Euclidean descriptions for an UGV-UAV formation are usually formulated considering
the three-dimensional position of the robots in space, the distance between them and the
angles defined taking in account the virtual structure and predefined axes or planes. This
is a straightforward approach, for being easily visualized and having a simpler geometry
than most descriptions. Nonetheless, Euclidean descriptions are susceptible to formation
singularities, depending on how they are described. In Subsection 4.1.1 it is presented an
Euclidean description in which the singularity appears in the formation configuration exactly
when the UAV hovers over the UGV. On the other hand, in Subsection 4.1.2 it is presented a
possible solution, still considering an Euclidean description, for the problem of singularity,

with the downside that restrictions are imposed to the CS.

4.1.1 Singularity arising when the UAV hovers over the UGV

In (RABELO; BRANDaO; SARCINELLI-FILHO, 2021) it is used an Euclidean description
for an application in which the UAV should land on a static or moving platform, considering
as virtual structure the line segment connecting both robots, in a trajectory tracking task.
The infrastructure adopted to run the validation was similar to the one used here (positions
were gathered using the Optitrack system, but using the AR.Drone 2.0 quadrotor as the
UAV).

As for the cluster characterization, such work considers six variables: the three-dimensional

o
position of the point of interest for control of the cluster x, = {xc Ye ZC} , the distance
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between both robots p., the angle between the z%! axis and the projection of the virtual line

over the zy" plane a. and the angle between the virtual line and the xy" plane S.. Therefore,
T

the cluster space is represented by the variables ¢ = |z, y. z. p. ac 56} . Figure 15

summarizes this formulation, considering the Bebop 2 quadrotor as the UAV.

<W>
X

Figura 15 — Euclidean Description for Virtual Structure Paradigm, as in (RABELO; BRAN-
DaO; SARCINELLI-FILHO, 2021)

In such a figure x, = [mp Yp zpf and x, = {%’b Up zb]T are the Pioneer 3-DX and
Bebop 2 three-dimensional positions, respectively. Note that the point of interest for control x.
is the same as the Pioneer 3-DX position, such that x, = x,. The transformation mapping the
robots space into the cluster space, for this description, called direct or forward transformation,

is characterized as

Te = Tp, (4.1)
Ye = Yp, (4.2)
Ze = Zp, (4.3)
pe =V =) + (= ) + (20— )" (449)
a, = arctan (yb_yp), (4.5)
Tp — Tp

1 Superscript w refers to the World frame
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B. = arctan ( S ) , (4.6)

V@ —2,)7 + (g — 9)°

whereas the inverse transformation, mapping the cluster space into the RS, is given by

Ty = T, (4.7)

Yp = Ye, (4.8)

Zp = 2, (4.9)

2 = 2o+ p cos (o) cos () (110)
Up = Ye + pesen(a.) cos (B.) (4.11)
2p = ze + pesen(e) (4.12)

In (4.10) and (4.11) one can observe that when 8. = 90° there is no projection of the
virtual straight line of length p. over the zy" plane, which characterizes a formation singularity.
Nonetheless, this configuration represents exactly the formation required to start the procedure
for the landing of the UAV on the UGV. Actually, this configuration might be desired even
when the UAV is not supposed to land on the UGV (it might be desired for a task of placing
a package over the UGV, for instance). A consequence of this singularity is that o, becomes
undefined and may cause an unpredictable oscillation. This makes the UAV to oscillate as
well, what is harmful to applications where stability is a requirement, such as to land or to

deliver a package.

4.1.2 Limited cluster space due to the Euclidean representation chosen

In (ERNANDES-NETO; SARCINELLI-FILHO; BRANDAO, 2019), by its turn, it is
proposed an Euclidean description formulated in such a way that singularities do not arise
when the UAV hovers over the UGV. Nevertheless, this is accomplished by restricting the CS
attainability. This effect can be better perceived by observing the transformations between
robots space to cluster space and cluster space to robots space associated to this description.

Figure 15 summarizes this formulation.
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Figura 16 — Euclidean Description for Virtual Structure Paradigm with no Singularity when
the UAV Hovers over the UGV (ERNANDES-NETO; SARCINELLI-FILHO;
BRANDAO, 2019)

Using the same notation adopted in (ERNANDES-NETO; SARCINELLI-FILHO; BRAN-

DAO, 2019), the direct transformation is characterized as

vy =1y, (4.13)

Yr =, (4.14)

25 =21, (4.15)

pr= (@ — o) + (12— 9)* + (22 — )", (4.16)

op = sen”! (\/(@ — Zg__z)? - Zl)g), (4.17)
B = sen! (\/(b — (y;_—y;lf - z1)2) 7 (4.18)

whereas the inverse transformation is given by

r1 =y, (4.19)
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2 = zf, (4.21)
Ty = x5+ prsen(ay), (4.22)
Y2 = yy + pysen(By), (4.23)
29 =25+ pf\/l — sen?(ay) — sen?(fy), (4.24)
T T
where x5 = [xf Yy zf} represents the point of interest for control, x; = {:cl 1 zl}
T
represents the Pioneer 3-DX position, xy = {mg Yo 22] represents the AR.Drone 2.0

position (this was the quadrotor used in that work), ps represents the distance between both
robots and o and /3; are the angles used to describe this formation.

Notice that (4.22), (4.23) and (4.24) imply that when oy = 3y = 0° the UAV position is
Xg = {ml Y1 21+ p f}—r. Therefore, the UAV will be hovering the UGV without singularities,
solving any issue related to it for this configuration. In the other hand, one can observe by
(4.24) that oy and [ are limited by each other. The maximum value that ay may assume
is the complement of 8y and vice-versa. Taking an extreme case, if oy = 90° precisely, then
B¢ will have to be precisely 0°, otherwise z» will become a complex number, what is not
compatible with its own nature, since it is a Cartesian coordinate (this also characterizes a
singularity).

In order to avoid this sort of problem, for this Euclidean description, it has been considered
a restricted range of variation for ay and Sy, such that 0° < ay < 45° and 0° < 3y < 45°.
The landing platform over the UGV is considered to be the level 0 of altitude, such that with
the oy and [ restricted range it is not possible for the UAV to navigate at the same level
of the landing platform, if desired. Therefore, this description solves the singularity issue of
the first description (during the landing procedure) by moving it elsewhere. Even though it
might be enough for several applications, it is not ideal, once the Formation Space (FS) or

CS attainability is compromised.

4.2 Unit Quaternion-Based Description of the UGV-UAV Formation

The quaternion based description for this formation is capable to solve the singularity

issue, without losses in the attainability of the CS. It was adapted from the description given
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in (MAS; KITTS, 2017), where a formation involving two UAVs is considered, rather than the
heterogeneous formation here proposed. The formulations established for the UAVs can be
easily adapted to the UGV used in this work, once it behaves similarly to an UAV, although
subject to some restrictions (the UGV does not move along the 2P and the y? axes).
Furthermore, in (MAS; KITTS, 2017) it is also considered the virtual structure paradigm,
with the virtual structure being the line segment connecting both robots, the same as here,
but the point of interest for control is located in the center of such line. For the description
here proposed, the point of interest for control is changed to coincide with the Pioneer 3-DX
current position, to make easier to land the UAV on the UGV. Figure 17 summarizes this

formulation.

¥

<\W> II = (X, Ve 2e) = IE = (xpr}'p-zp)

Figura 17 — Quaternion Based Description for Virtual Structure Paradigm

Taking in account all these considerations, the direct transformation (from the robots

space to the cluster space) for the quaternion-based description is characterized as

X, = X, (4.25)
4. = [cosg ; sengﬁ}, and (4.26)
4. = Iixe = xpll (127)
where A_
n = atan? (H’A_X (b = Xp)”) , and (4.28)
- (Xp — Xp)



Capitulo 4. Formation Description and Controller Design 55

7% (xp — Xp)

[l % (x6 = )|

ipp , (4.29)
with 3 = [1, 0, 0] .
As for the inverse transformation (from the cluster space to the robots space), it is
characterized as
X, = X, and (4.30)

Xy =X, + G.od. o g, (4.31)

where x., X,, x;, and d. are pure vector quaternions, such that x. = (0, x.i, y.j, 2.k), X, =
(0, @pi, ypj, 2k), xp = (0, mpi, wj, 2k) and d. = (0, d.i, 0, 0). As for ¢, it is the
conjugated form of §., defined as ¢ = (g., —qc). Besides, x. is the cluster point of interest
for control, x, is the Pioneer 3-DX position, X, is the Bebop 2 position and d. is the scalar
distance between both robots. Moreover, i, is a normalized vector orthogonal to the z* axis
and the line section connecting the UAV and the UGV, coming from the UGV to the UAV.
Finally, n is the angle between the x* axis and the line section connecting both robots, while
d. is an unit quaternion used to orientate such a line.
Interestingly, if (xp — xp) = i = (1, 0, 0), meaning that the line section is aligned with
the 2 axis and both robots are at the same level, it would imply that fi,, = (0, 0, 0)* and
= 0°, therefore §. = 1 4+ 0i + 05 + Ok. This value represents the identity quaternion and
is orthogonal to all 3D space. If a purely three-dimensional description had been used, it
would be impossible to define a single vector orthogonal to (xp — xp) and 2= (1, 0, 0), once
they are the same in this case. In fact, all vectors coming from the origin inside the y*z%
plane would be orthogonal to them, implying in an undefined value. Quaternions, with their
four-dimensional characteristic, allow an unique® definition for an orthogonal element to both

vectors.

4.3 The Unit Quaternion-Based Controller

Once the direct and inverse transformations between the CS and the WF have been

defined, it is possible to design a controller based on the quaternion description here adopted.

2 By (4.29), there would be a division by 0. This is fixed by imposing ||7 X (xp — x =1, when it should
y Y g P

be 0.

Actually, there are two: §. = —1 + 0¢ + 05 4 Ok is also orthogonal to the ™ axis, but it would imply in
1 = 360°, which is the same orientation. As mentioned in Subsection 2.2.3, quaternions make a double
covering of the 3D space. In this work, §. is never converted from the quaternion domain to the 3D
Euclidean domain, therefore no error due misrepresentation occurs.
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The current position of each robot is measured in the WF and the current state of the Cluster
is then computed through (4.25), (4.26) and (4.27), such that

c=|x @ dc];xl. (4.32)

The velocity references are computed in the CS and then converted to the WF by the

inverse Jacobian matrix, defined as

I c) = <8X> , or (4.33)

e
Oxp 0xp O0%p
“1(a) _ | 0xc  9¢c  Dd.
I (e) = {3 % 5,} , (4.34)
e dgc  9de] 610
where g% = g% = I3xs, % = 03x4 and g%i’ = O3x3. As for %% and g%‘c’,
0 0xe  0(qedeq;
aQC 3x4d 8qc aQC
where 5
Xc
aq — 03x4 (436)
C 3x4
and 8(%@*{;42‘) can be obtained through (2.47), while
Oxp  Oxe | 0(gedeq) (4.37)
ad-c 323 N adC adc , .
where 5
Xc
FE = O3xs, (4.38)
with %}%‘:’931:3 obtained through (2.45).
This way, the inverse Jacobian matrix can be written as
_ IBxB 03x4 0313
J 1((:) = I O(gedeq?) 3(qedeq?) R (439)
33 9t 34 9de 32316210
where
0 (gedeq; ‘
(8(]) = {2 <|: QCOdC + Qe X dc 1 _dcq;r + (dc : qc) I3x3 + ch;r - chdc>< })} s and
c 3x4
(4.40)
3 (gedeg;)
—od . L@ = el Tax + 2a.a] + 20e0a0x] (4.41)

As mentioned in (MAS; KITTS, 2017), despite not being a square matrix, the inverse
Jacobian matrix is full rank (its rank is equal to the total DoF of the physical system), thus

not having singularity problems.
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4.3.1 Kinematic Controller

In (MARCIANO; BRANDAO; SARCINELLI-FILHO, 2021), it is presented the proportio-
nal controller adapted from (MAS; KITTS, 2017). Once the inverse Jacobian matrix has been

computed, the transformation from the CS to the WF of the control references is such that
x, = J !(c)e,, (4.42)

where %, and ¢, are the control references in the WF and in the CS, respectively. As for ¢,, it

is obtained through proportional controllers derived as
X = Xoq — K, tanh x, (4.43)

and
der = doq — Kgtanh d,, (4.44)

where x., and dCT are the velocity references, x.; and dcd are the desired velocities, all of them
in the CS, Ky is a three-by-three diagonal matrix of positive constant gains, K, is a positive
constant and X, = X, — Xoq and d. = d. — d,q are the cluster position errors, and, finally, x.4
and d.; are the desired cluster position and distance between the robots, respectively.

For the cluster orientation reference, the control law is

. 1 _ _
Qer = ch S (07 —Ssgn (QCO) quc) ) (445)

considering that ¢. = ¢.0q¢cq = (Geo, qc) , where .4 is the desired cluster orientation represented
as a quaternion and K, is a three-by-three diagonal matrix of positive constant gains. Note
that the vector part of . should be dealt as a three-by-one vector.

Besides,
T T

Xy = {Xpra Xbr}(}acl = [xpru ypra Zpr; ZTory Ybory Zor 621’ (446)

and

T

= {xcra Yery Zery Qeors Qeirs Ge2ry de3r) dclr; dc2r, dc3r

CT = [XCTJ qCT7 dC?‘:| :|10$1 Y

1021
. . T
where d, = [d,, 0, 0]
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4.3.2 Dynamic Compensation

As it has already been mentioned, the kinematic controller designed considers both robots
as mass-less virtual points which can reach desired velocities instantaneously. This is, obviously,
untrue for a physical robot, though previous experiments demonstrate that, with this assump-

tion, the UGV achieves an acceptable performance for the trajectory tracking task proposed
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in this thesis. The UAV, however, demonstrated a non acceptable performance, showing that
only a kinematic controller is not enough to it. That is why a dynamic compensation module,
as proposed in (SANTOS et al., 2019), was added, to consider the dynamic effects associated
to the UAV in flight.
The dynamic compensation law, based on the model of (SANTOS et al., 2019), is defined
as
vy =K (v, + La(v,, — va) + K, vy), (4.47)

where v is the output of the dynamic compensator. Besides,
K, = diag (|[K, Ky K5 Kq) (4.48)

and
K, =diag ([K; Ki K; Ks|) (4.49)

are diagonal matrices using the coefficients of Table 2, L, is a diagonal positive definite gain
matrix, and v, is the time derivative of v, , the velocity command generated by the kinematic
controller.

This controller uses the feedback linearization control technique described in (KHALIL,
2002) to change the dynamics of the velocity error to an asymptotically stable linear one, thus

guaranteeing the asymptotic convergence of the real UAV velocity v, to the desired value v, .

4.3.3 UAV Orientation Controller

In (MAS; KITTS, 2017) the orientation of both UAVs are dealt with using quaternions,
and are included in the Jacobian matrix. For simplicity, in this thesis it was adopted an usual
Euclidean proportional controller, just for the UAV orientation, since the UGV orientation
is given by its motion direction, defined by the trajectory being tracked. Regarding the
Bebop 2, the UAV used in this thesis, its low level controller receives commands of angular

b in rad/s. Therefore, it seemed to be more practical to compute

velocity around the axis z
the angular velocity command already in rad/s, instead of computing it in quaternions and
then convert to rad/s, thus justifying the decision of implementing a controller based on
an euclidean characterization. Furthermore, the UAV orientation has nothing to do with
the formation singularity, once it does not affect any characteristic of the formation, which
depends only on the robots positions, not on their orientation. Nonetheless, a fully description
based on quaternions requires not only the orientation controller to be expressed completely
by quaternions, but also the kinematic and dynamic models of the robots. Due to time
restrictions and deadlines, this work could not reach that stage, but there is the intention of

describing all aspects related to orientation in this system in quaternions.
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The UAV orientation can be chosen as better as it suits the application. Considering the
case where it is desired that the UAV observes the trajectory taken by the UGV, it was chosen
a controller which makes the UAV orientation be the same as the UGV orientation. That
could not be the case, however, as it might be of interest other configurations where the UAV
watches the UGV surrounds, for instance.

Let v, and 1y, be the orientations of the Pioneer 3-DX (UGV) and the Bebop 2 (UAV)
in euclidean angles, respectively. Considering that the UAV should be oriented to the same
direction of the UGV, the current orientation of the UGV represents the desired orientation
for the UAV, or, 944 = 1,,. The orientation error is then

Dy, = a — . (4.50)
such that a proportional controller for the UAV orientation can be designed as
U = K tanh Dy (4.51)

Because 1, is defined as the UGV current orientation, in order to compute z/}bd it would be
necessary to take the numerical differentiation. However, this may introduce a considerable
amount of noise in the system, so that to avoid this just a proportional control law is adopted.
Besides the fact that the UAV orientation is not relevant to the main goal of this work, the

orientation error can be considerably decreased with a well tuned gain K.

4.4 Control System Overview

Summarizing the whole control system explained in this chapter, there are two main
regions in the control structure: the Cluster Space and the World Frame. The actions involved

in the control loop are

the desired positions, velocities and orientations are given in the CS;
o the three-dimensional positions of the robots are measured in the WF

e the current values of the formation variables are obtained using the Forward Transfor-

mation and the robot variables;

» the control references are computed in the CS using the cluster current state and the

desired references;
o the inverse Jacobian converts the control references from the CS to the WF;

e the matrix of inverse kinematics of each robot converts the control references from the
WF to the RS;
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o a dynamic compensation is applied to the UAV kinematic control reference;

 each robot receives its control references, which causes them to move accordingly to the

desired trajectory.

» new positions are measured and the process is repeated, till finishing the navigation.

Figure 18 shows a flowchart representing the sequence of actions just described.

World Frame

Cluster Space

Pioneer 3-
DX
Trajectory

References
(Cluster Space)

ClusterSpace
Controller

Dynamic
Compensation

Bebop 2

Figura 18 — Flowchart of the whole formation control system
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5 Experimental Results and Discussions

Three main experiments were run to validate the formation description and controller
proposed in this thesis. Two of them consisted on trajectory tracking tasks considering a
configuration for the UGV-UAV formation in which the UAV hovers over the UGV, for a
circular trajectory and for a lemniscate trajectory. The last trajectory was selected to better
excite the system dynamics. These two experiments aimed to demonstrate that the quaternion-
based description proposed in this work is not affected by singularities for configurations where
the UAV hovers over the UGV, as it happens in (RABELO; BRANDaO; SARCINELLI-FILHO,
2021).

The third experiment considers the same trajectory tracking task, though considering
a configuration where the UAV initially hovers in front of the UGV, at the same level of
the landing platform, and, then, after 60s, alternate to the same configuration of the two
previous experiments. In this case a circular trajectory was tracked, due to the fact that the
lemniscate curve demanded a greater radius, and, because the UAV would navigate in front
of the UGV in part of the experiment, hence the total area necessary for the experiment
was increased. Therefore, for safety issues, a circular trajectory was chosen. This experiment
aimed to demonstrate that the quaternion-based description proposed in this work has no
singularities for any attainable configuration of the CS.

For all the experiments the values adopted for the constants so far mentioned are
L,=diag([2 2 18 5|),
Ky =3,
a=0.15m,
Kw = 13x3a
Km - ISxS;

and
K;=1
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5.1 Tracking a Circular Trajectory with the UAV Hovering over the
UGV

In this experiment the UAV stays hovering over the UGV all the time, after taking-off.
The UAV begins in the ground and moves accordingly, to assemble the desired configuration.

The circular trajectory to be tracked is described as

Teq = Tz sen(wqt) + xo,
Yed = Ty COS (wdt) + Yo, (51)

Zed = %0,
for which

Ted = Wy COS (wyt),
Yed = —wqry sen(wqt), (5.2)

ch = O>

where r, = 1 m, ry, = 1m, wg = ¢ rad/s, and xo = yo = 20 = 0 m. As for the desired
distance between the robots, it was adopted d.q = 1.5 m.
Through (4.26) one can demonstrate that the desired orientation for the cluster, in this
case, is the unit quaternion given by
V2 V2

fod = =+ 0i — 2§ + Ok .
{ed 2+Oz 2j+0 (5.3)

Figures 19 shows a three-dimensional representation of the trajectory tracked by the cluster,
whereas Figures 20 and 21, by their turn, summarize the results of such an experiment.

Figure 20 shows, in the left side, the cluster variables (its position x. and the distance
d. between the two robots). As for its right side, it shows the errors in such variables with
respect to the desired values. Such results allow observing that the cluster was capable to
accomplish the trajectory tracking task with an absolute error below 0.1 m. Moreover, it
remained over the trajectory, after reaching it, configuring a steady-state situation. It is also
important to remark that the point of interest for control of the cluster coincides with the
Pioneer position x,. Hence, these graphics also represent the behavior of the Pioneer along
the time.

Now regarding Figure 21, its left side shows the cluster orientation in quaternions, whereas
its right side shows its error with respect to the desired orientation. It is important to
remember that the unit quaternion ¢. = 1 4 07 4+ 05 + Ok represents the identity element,
meaning that it represents the action of “doing nothing”, in terms of control. Therefore, the

expectancy is that the error converge to it when the controller guides correctly the cluster
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Figura 19 — Three Dimensional Circular Trajectory of Each Robot.
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Figura 20 — Cluster Variables Along Time for a Circular Trajectory: Position and Distance
Between Robots.

to track the desired orientation. Therefore, the conclusion is that the cluster orientation g,

also reached its desired value, with some oscillation in steady state, but within an acceptable

margin.
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Figura 21 — Cluster Variables Along Time for a Circular Trajectory: Orientation in Quaterni-
ons.

The fact that the cluster reached its designated trajectory implies that individually the
robots also did that. Figures 22 and 23 show the temporal variation of path traveled by the
Pioneer and its orientation, respectively.

As mentioned before, the UGV trajectory coincides with the cluster one. Furthermore,
due to the fact that the UGV considered depends on its orientation to perform the trajectory,
a low error in position implies in a low error for the orientation, as it can be observed in
Figure 23, where the error, aside the transient, remains close to the identity.

Now, for the Bebop, Figures 24 and 25 show the temporal variation of the path traveled
by it and its orientation, respectively.

The UAV presented a greater error in comparison to the UGV, what was expected, once
that aerial vehicles tend to be more unstable than ground vehicles, mainly when flying close
to the ground, when the ground effect is meaningful. However, the maximum absolute error
in steady state did not overcame 0.2 m, which is acceptable for this application. The UAV
orientation was also capable to track the desired reference, which in this case was the UGV
orientation. There was a persistent delay in steady state, which can be observed in Figure 25.
It was expected due to the controller used (a proportional one), which is not capable to
eliminate completely the error, but can decrease it considerably with a well tuned gain. As

mentioned before, the UAV orientation does not affect the cluster proposed in this work,
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Figura 23 — Pioneer Orientation in Quaternions Along Time for a Circular Trajectory.

although it is intended to include the UAV orientation in the cluster, in order to unify the

whole system representation. As an auxiliary resource to understand the experiment, a video
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Figura 24 — Bebop Trajectory Along Time for a Circular Trajectory.
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Figura 25 — Bebop Orientation in Quaternions Along Time for a Circular Trajectory.

is available in the link <https://www.youtube.com/watch?v=jJy_ OTnBXuE&t=0s>.
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5.2  Tracking of a Lemniscate of Bernouli Trajectory with the UAV
Hovering over the UGV

In this experiment the UAV still stays hovering over the UGV all the time, after taking-off.
Nevertheless, a lemniscate curve is adopted as the trajectory to be tracked, in order to provide
a greater excitation of the system dynamics. The UAV begins in the ground and moves

accordingly, to assemble the desired configuration. The lemniscate trajectory is described as

Teq = T sen(wgt) + xo,
Yed = Ty s€n(2wqt) + Yo (5.4)

Zed = %0,

for which,

Teq = WaTs cos (wgt),
g)cd = dery COS (2wdt), (55)

2cd = 07

where r, =1 m, r, = 1.5 m, wqg = 35 rad/s, and 29 = yo = z = 0 m. Besides, the desired
distance between both robots is d., = 1.5 m.

In this case, the desired cluster orientation §.4 is the same as the one given in Section 5.1
(see (5.3)).

Figures 26 shows a three-dimensional representation of the trajectory tracked by the
cluster. As for Figures 27 and 28, they summarize the results of such an experiment.

Figure 27 shows, in the left side, the cluster variables, specifically its position x. and the
distance d. between both robots. As for its right side, it shows the errors of such variables in
comparison to the desired values. Observing these results, it can also be concluded that the
cluster was capable to accomplish the trajectory tracking task with an absolute error lower
than 0.1 m in X* and lower than 0.15 m in Y, which is slightly worse than the previous
experiment. This is not a surprise, once that the curve considered here is more demanding, in
terms of control actions. Furthermore, the cluster remains stable, once it enters its steady
state, with a persistent error oscillation, as it can be observed in Figure 27.

With regard to Figure 28, the left side shows the cluster orientation in quaternions, whereas
the right side shows its error in comparison to the desired orientation. It can be observed
that the cluster orientation was capable to reach the desired reference, although with some

persistent oscillation in steady state, which again is due to the fact that the Lemniscate curve
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Figura 26 — Three Dimensional Lemniscate Trajectory of Each Robot.

is more challenging than a circumference, in terms of control actions. Nonetheless, such an
error is within the bounds of tolerance for the applications here considered.

Once more, as the cluster reaches its designated trajectory, both robots also do that.
Figures 29 and 30 show the temporal variation of the path traveled by the Pioneer and its
orientation, respectively. Observing both figures, it can be seen that the trajectory has been
successfully tracked by the Pioneer, which implies in the orientation error converging to the
identity as can be seen in Figures 29.

Now, for the Bebop, Figures 31 and 32 show the temporal variation of the path traveled
by it and its orientation, respectively.

The UAV presented a greater error in comparison to the UGV, what again was expected,
for the same reasons given in Section 5.1. However, the maximum absolute error in steady state
did not overcame 0.2 m, which is acceptable for this application. The UAV orientation was
also capable to track the desired reference, which in this case was the UGV orientation, still
with more difficult than the registered for the circular trajectory. There was also a persistent
delay in steady state, which can be observed in Figure 32, again for the reason explained in
Section 5.1. As an auxiliary resource to understand the experiment, a video is available in the
link <https://www.youtube.com/watch?v=dc4mIU3fRGg>.
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Figura 27 — Cluster Variables Along Time for a Lemniscate Trajectory: Position and Distance
Between Robots.
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Despite some oscillations around the desired positions and orientations along time, the

quaternion based controller proposed in this thesis demonstrated itself as reliable for the
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Figura 32 — Bebop Orientation in Quaternions Along Time for a Circular Trajectory.

trajectory tracking task proposed with a configuration which would represent a singularity
for the Euclidean description given in (RABELO; BRANDaO; SARCINELLI-FILHO, 2021).
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Besides, no variable became undefined for any moment of the experiment, demonstrating that

formation singularities do not arise for this controller with such a configuration.

5.3 Tracking a Circular Trajectory with the UAV Initially in Front of
the UGV and After Hovering over It

Finally, in the third experiment, the UAV stays in front of the UGV for the first 60s
after taking-off. Then, the UAV hovers over the UGV, as it happened in the two previous
experiments, until the experiment time is over. The circular trajectory to be tracked now is

described as

Teq = Tz sen(wqt) + o,

Yed = Ty €08 (wal) + Yo, (5.6)
Zed = R0,

for which
j:cd = Wqry COS (wdt),
y.cd = —WqaTy Sen(wdt)a (57)
2cd = 07

where 1, = 0.5 m, 7, = 0.5 m, wg = rad/s, and xg = yg = 20 = 0 m. As for the desired

distance between the robots, it was adopted d.q4 = 0.75 m.

Notice that the radius of this circle, as well as the distance between the two robots, is
reduced in comparison to the first experiment. As mentioned in Section 3.4, the useful width
of the laboratory where the experiments were run was 4 meters. The origin of the WF is in
the middle of the room, so that just 2 meters were available for the formation maneuvering in
each half of the smallest side of the laboratory. Taking this in account, in the first 60s, the
UAV would hover at the same level of the landing platform and at a distance d. from the
UGV. Adding the radius r of the circumference, the bound

w

should be respected, where W is the room width.

Hence, as a safety measure, r and d.; were reduced to the values above. Furthermore, the
maximum velocity of the UAV was reduced to 40% of its total, which had a considerable effect
in the UAV capability to respond to the controller signals, as it is going to be shown ahead in
this section. Nevertheless, it does not invalidate the fact that the quaternion based controller

was able to make the formation navigate in a configuration which would not be possible
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considering the Euclidean description used in (ERNANDES-NETO; SARCINELLI-FILHO;
BRANDAO, 2019).

Another important aspect of the formation for this experiment is that the Cluster Orien-
tation is no longer constant all the time, as it had been the case for the first two experiments.
For the first 60s, ¢.; can be computed by using (4.10), (4.11) and (4.12), considering 3. = 0°,
e = atan2 (Yed, Ted)s Pe = dedy Te = Tedy Yo = Yea a0d 2. = 2.4 and, finally, applying (4.26).
After this period, the cluster orientation becomes again the constant given by (5.3).

Figures 33 shows a three-dimensional representation of the path traveled by the cluster,

whereas Figures 34 and 35, by their turn, summarize the results of such an experiment.

Figura 33 — Three Dimensional Circular Trajectory for Each Robot with Transition between
Desired Configurations.

Analyzing Figure 34, it can be observed that the controller was capable to accomplish
the trajectory tracking for the point of interest for control, as well as to keep the distance
between the robots. Regarding Figure 35, however, it can be observed a greater difficult to
track the desired cluster orientation, due to the facts previously mentioned. Nonetheless, the
error is acceptable for this application. Besides, the orientation clearly follows its desired
value, though with some delay.

Once the cluster trajectory has been successfully tracked, the same is expected for the
Pioneer, what effectively happens, as it can be seen in Figures 36 and 37. The position error
had an absolute value lower than 0.05m along the whole experiment. The reduction on the

trajectory speed in comparison to the first experiment (from wq = ¢ rad/s to wg = 35 rad/s)
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for safety issues is the obvious reason for this improvement. Consequently, the Pioneer

orientation also had a reduced error, with a slight delay, as it can be observed in Figure 37.
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Figura 36 — Pioneer Trajectory Along Time for a Circular Trajectory Varying the Cluster
Orientation.

For the Bebop, on the other hand, the performance has not been as efficient as it was
for the Pioneer in the first section of the experiment, as it can be seen in Figures 38 and 39.
This is due to the reduction of the Bebop maximum velocity, which limits its capability to
decrease the error, what is more visible when the UAV has to navigate in front of the UGV
(a greater velocity was necessary). The maximum absolute position error along time for the
UAV was around 0.4m which is not negligible, although it can be improved by allowing a
greater velocity to the UAV. Furthermore, it does not invalidate the fact that the navigation
was successfully accomplished considering a formation configuration where the UAV hovers at
the same level of the landing platform.

The second section of this experiment had a lower position error along time (lower than
0.2m) in comparison to the first section of the experiment. This is explained by the fact
that this formation configuration is less demanding for the controller, such that even with
its maximum velocity reduced, the Bebop was able to remain in the desired formation
configuration while the designated trajectory was tracked.

It is also important to remark that, in this experiment, there was two transients: one at

the beginning of the experiment and the second after 60s, as it can be seen in Figure 38,
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Figura 37 — Pioneer Orientation in Quaternions Along Time for a Circular Trajectory Varying
the Cluster Orientation.

due to the transition between the desired formation configurations. In both regions of the
experiment, no variable became undefined in any moment, meaning that no singularities had
arisen for the quaternion based formation here proposed.

As a conclusion, after analyzing the results obtained from these three experiments, it can
be observed that the quaternion based formation description, as well as the quaternion based
controller, both proposed in this thesis, were able to accomplish the trajectory tracking task
for a heterogeneous formation involving a UAV and a UGV. Moreover, it did not presented
formation singularities for any configuration which would have had this sort of issue if an
Euclidean description had been chosen. Therefore, it is possible to claim that a quaternion
based description for mobile robots formation is capable to accomplish the same tasks of
Euclidean based description without problems related to singularities, thus been more robust

in contexts where formation singularities are a concern.
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6 Conclusion

This thesis addresses the problem of controlling a formation composed by a UGV and a
UAV, considering a situation in which the UAV should land on the UGV, when accomplishing
trajectory-tracking tasks. Similarly to what is done in (RABELO; BRANDaO; SARCINELLI-
FILHO, 2021) and (ERNANDES-NETO; SARCINELLI-FILHO; BRANDAO, 2019), this
situation corresponds to the last step of a cargo delivery application, in which the UAV gets
back to its base and lands on it.

However, in such works undesirable problems arise. In the first case, the state of the
UGV-UAV formation just before the landing of the UAV on the UGV, what means the UAV
hovering above the UGV for a while, is a singularity for the Euclidean description of the
formation there adopted, which can cause undesired instability at the landing moment. As for
the second case, the position of the UAV with respect to the UGV is restricted, in consequence
of the Euclidean description there adopted to describe the formation.

To circumvent such problems this thesis proposes a new description of the formation,
based on quaternions, regarding the orientation of the straight line linking the two vehicles.
As a consequence of such a formation description, a new controller is also proposed, to deal
with the variables associated to the new description.

Finally, experiments are run, replicating the undesired conditions in (RABELO; BRANDAO;
SARCINELLI-FILHO, 2021) and in (ERNANDES-NETO; SARCINELLI-FILHO; BRANDAO,
2019), and the results show that the description here adopted for the formation, associated to
the new controller proposed, is able to guarantee that the mentioned problems no more occur,
thus validating the quaternion-based description and controller here proposed.

As future work it is planned to extend the quaternion-based description to consider not
only the orientation of the virtual structure correspondent to the straight line linking the
two robots, the UGV and the UAV, but also the UAV orientation as it is made through
simulations in (MAS; KITTS, 2017). The inclusion of a dual-quatenion based description
seems to be a natural way of improving the performance of the UAV-UGV formation, once it
allows including the translation into the same element. Besides, it is also intended to extend
the proposal here presented to path-following tasks, which is more suitable as motion control
strategy for cargo delivery applications, for allowing to select the magnitude of the desired

velocity.
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