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Resumo

A inflação é uma expansão acelerada que pode ter ocorrido a uma energia muito alta no

Universo primordial. Além de trazer soluções para os problemas do modelo de big bang quente,

ela também fornece um mecanismo efetivo para a produção das flutuações cosmológicas, as

quais geram as estruturas em larga escala como vemos atualmente. Entretanto é importante

evidenciar que a inflação não é o único mecanismo capaz de resolver esses problemas de con-

dições iniciais do nosso universo. Cenários colapsantes podem ser uma opção alternativa para

originar o big bang quente e as perturbações primordiais. Na primeira parte desta tese, nós

apresentamos o cenário inflacionário, com ênfase no modelo de Starobinsky, discutindo sua

configuração geral, predições e uma possível modificação à inflação de R2 motivados pelos

atratores-�. A segunda parte é dedicada à análise de cenários colapsantes, baseados em um

campo escalar e um potencial exponencial, com a inclusão do formalismo estocástico, o qual

nos permite calcular o barulho estocástico gerado por flutuações quânticas cruzando uma es-

cala de corte para o campo escalar no limite super-Hubble.

Palavras-chave

Inflação, modelo de Starobinsky, campo escalar, potenciais exponenciais, universo

colapsante.
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Abstract

Inflation is an accelerated expansion that may occurred at very high energy in the early

Universe. In addition to bringing a solution for the hot big bang model problems, it also provides

an effective mechanism for the production of cosmological fluctuations, which give rise to the

large scale structures as we see today. However, it is important to highlight that inflation is not

the only mechanism capable of solving the initial issues of our Universe. Collapsing scenarios

can be an alternative option to originate the hot Big Bang and the primordial perturbations.

In the first part of this thesis, we present the inflationary scenario, with emphasis on the

Starobinsky model, discussing its general set-ups, predictions and a possible modification to

the R2 inflation motivated by the �-Attractors. The second part is dedicated to the analysis

of collapsing scenarios, based on a scalar field with exponential potential with inclusion of

the stochastic formalism, which allows us to compute the stochastic noise generated by the

quantum fluctuations crossing into a coarse grained, super-Hubble scalar field.

Keywords

Inflation, Starobinsky model, scalar field, exponential potentials, collapsing universe.
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1Introduction

Cosmic Inflation [6, 7, 8, 9, 10, 11, 12], which is a phase of accelerated expansion

that occurred in the early Universe, has an important place in Modern Cosmology. It was first

invoked due to its ability to solve some of the puzzles plaguing the hot Big Bang model (e.g.

the flatness and the horizon problems). Moreover, it did not take much time to realise that

inflation could be a possible explanation for the seeds which generate the large scale structures

in our Universe. Indeed, an initial power spectrum due to quantum vacuum fluctuations can

be originated during inflation by using a simple model: a self interacting and slowly rolling

scalar field. So, given its ability to make predictions on the primordial power spectrum, which

can be tested through observation of the cosmic background radiation (CMB) [13, 1], inflation

has become a very active field of research nowadays.

Since the first inflationary solution, proposed by Starobinsky in [6], many other propos-

als have been put forward. These have been classified and statistically analysed in many works,

see e.g. [14, 15, 16, 17, 18, 19], and the result is that data favour the simplest category of

inflationary models: single-field slow-roll inflation, with a plateau potential. The typical rep-

resentative of this class of models is the Starobinsky model, which can be expressed within the

framework of f(R) theories [20] as the following quadratic correction to the Einstein-Hilbert

action

f(R) = R+
R2

6M2
; (1.1)

where M is an arbitrary energy scale, typically M � 1013 GeV [21].

The predictions of the Starobinsky model on the fundamental inflationary parameters,

i.e. the scalar spectral index ns and the tensor-to-scalar ratio r are in very good agreement with

the latest Planck results [1]. However, there is a looseness in r due to our current inability to

detect the B-modes of CMB polarisation, which carry crucial information about the primordial

gravitational wave background. This looseness might be threatening to the primacy of the

Starobinsky model if, for example, a sufficiently large r was eventually detected. In this

case the Starobinsky model would be ruled out. In this sense it is interesting to explore new
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theoretical scenarios which could allow more freedom to tune the gravitational wave production

maintaining the behavior of ns, as it happens for the Starobinsky model.

As an example of these scenarios, recently a new class of inflationary models dubbed

�-Attractors has been proposed in [22, 23, 24]. Remarkably, the predictions for this class of

models are very similar to those of the Starobinsky model, so that the excellent agreement

with observations for the parameter ns is maintained, while there is freedom to tune the

gravitational wave production through the parameter �.

It is the first purpose of this thesis to answer the following question: how should we

modify the Starobinsky model in the f(R) framework in order to have a larger production

of gravitational waves? Therefore, we reconstruct a f(R) theory which could mimic the

�-Attractors scalar potential and do an extensive study of it, as shown in Chapter 4.

On the other hand, we also are interested on investigating another possibility that could

explain the origin of primordial perturbations of our Universe: the case in which they originate

before the Big Bang. Since there is no single agreed model for which a fundamental field

is responsible for driving inflation and generating structure, we also can construct theories in

which the large scale structure of our Universe could be inherited from vacuum fluctuations

during an earlier phase, before the Big Bang. In this context, another possibility to generate

the primordial perturbations would be a preceding collapse. The first proposal in which the

collapse phase could set the initial conditions for a subsequent post-big bang phase was made

by Gasperini and Veneziano [25]. Since then, several models have been presented, see e.g.

[26, 5, 27].

It has been investigated before that a scalar field and an exponential potential can drive

an accelerated expansion and thus provide possible models for inflation in the early universe

[28, 29, 30] or dark energy at the present epoch [31, 32]. It has been also shown that the same

mechanism can drive a collapsing universe too, and this configuration is particularly interesting

since due to their scale-invariant form, exponential potentials are simple to study analytically.

In order to explore this simplicity, we will focus our attention on models with a scalar field '

2



and scalar potential

V = V0 exp (���') ; (1.2)

where � =
p
8�G and � is the slope of the potential. Although the classical stability of

collapsing models has already been studied in previous works [5], it becomes of paramount

importance to consider how the classical solutions behave in the presence of quantum fluc-

tuations. To do this we will extend the stochastic formalism, previously introduced to study

inflation, to collapse scenarios. This approach models the effect of quantum vacuum fluctu-

ations by introducing a cut-off scale (the so-called coarse-graining scale) splitting the fluctu-

ations into two parts: quantum vacuum modes (below the coarse-graining scale) and the long

wavelength field which includes a stochastic noise. It was introduced in cosmology by Starob-

insky [33] to describe the effects of random vacuum fluctuations on inflationary dynamics, see

e.g. [34, 35, 36, 37, 38, 39]. More recently, this formalism was used in [40] to show that

slow-roll inflation is a stochastic attractor.

The presence of a stochastic noise can affect the stability of a dynamical system in

a non-trivial way. The second purpose of this thesis is to investigate how these stochastic

perturbations can modify the equation of state of the inflationary or collapse cosmology, as

shown in Chapter 5.

Although our work aims to analyse physics of the very early universe, it is more conveni-

ent to start our study by describing the universe today, since the late universe can provide a

wide range of information about its beginning. So, we shall begin this thesis by presenting the

Standard Model of Cosmology, and discussing problems that arise with the initial conditions of

evolution of the universe - the horizon and flatness problems in Chapter 2. Having presented

the problems, we will begin Chapter 3 which proposes inflation as solution of these problems.

We will describe the dynamics of the scalar field that would drive the inflationary phase and

present its predictions. Sections 4 and 5 are dedicated to the papers published during this

thesis, [41, 42, 43]. Finally, in a last section, we present some concluding remarks and possible

prospects for the present work.
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Throughout this thesis we will use the convention of natural units: ~ = 1, kB = 1 and

c = 1.
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2�CDM: An Introduction to

The Cosmological Standard

Model

In the precision era, the high accuracy observational data such as CMB measurements,

galaxy and supernova surveys, 21 cm astrophysics data, gravitational waves detectors and

others have put Cosmology as a genuine science, since we are able to make and test theoretical

predictions. We start this chapter revisiting the basis of the Cosmological Standard Model,

which is discussed in references such as [44, 45, 46, 47, 48]. We will give a brief overview of

this model, and arise questions left by it, which can be solved by introducing an accelerated

expansion right after the Big Bang.

We have accurate observational evidence that the current Cosmological Standard

Model, known as �CDM (Lambda Cold Dark Matter), describes the evolution of our Universe

since an initial singularity 13:8 billion years ago. This model is based on the Cosmological

Principle and has two exotic components: dark matter and dark energy (in the form of a

cosmological constant). It is based on three observational pillars [49]

• The Hubble diagram, showing the expansion of the universe [50];

• Light elements abundance, according to the nucleosynthesis theory suggested initially

by Gamow [51];

• The detection of cosmic microwave background radiation (CMB) as a spectrum of black

body, which gives us information about a very early time in the universe and proves its

homogeneity [52];

5



Geometry

The cosmological principle symmetries, which state that the Universe is isotropic and

homogeneous at large scales [� O(100) Mpc], fix the form of the metric that encodes the

geometry of the spacetime as the Friedmann-Lemaître-Robertson-Walker (FLRW) metric

ds2 = �dt2 + a2(t)

"
dr2

1�Kr2 + r2d
2

#
; (2.1)

where a(t) is the scalar factor, K = �1; 0; 1 is the curvature parameter and d
2 = d�2 +

sin2 �d�2 is the standard metric on the 2-sphere. In this metric, t is the cosmic time, r is the

comoving radial coordinate, � and � are the comoving angular coordinates.

As physical results depend on the physical coordinate, rphys = a(t)r, we calculate the

physical velocity of an object as

vphys =
drphys
dt

= a
dr

dt
+ r

da

dt
(2.2)

� vpec +Hrphys ; (2.3)

where vpec is the peculiar velocity of the object, which is the velocity measured by an observer

who follows the Hubble flow, and H = _a=a is the Hubble parameter. If we neglect the peculiar

velocity, this becomes the Hubble-Lemaître law and its first observation was in 1929 [50]. The

current value of H is denoted by H0, and it contains important information on our Universe

since it is related to the age of the Universe and to the scale of the size of the observable

Universe. An issue for cosmologists now is that current observations do not agree on the value

of the parameter H0: In 2019, Reid et al. [53] showed the local measurement of the Hubble

constant is H0 = 75�1:4km s�1 Mpc�1; which is higher than H0 = 67:4�0:5km s�1 Mpc�1

given by the Planck Collaboration [54].

In a FRLW spacetime, light travels along geodesics with ds = 0 towards the observer at

rest1. As we observe today electromagnetic waves emitted in different periods of the universe,

1The universe is homogeneous and isotropic, so the observer should not measure any spacial velocity, d� =
d� = 0.
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light gets redshifted because of the time dependence of the scale factor. So it is convenient

to define the redshift parameter

1 + z =
�1
�0

=
a(t0)

a(t1)
; (2.4)

where z is the redshift parameter, and we are considering that light was emitted from its

source at time t1 with frequency �1, and received by the observer at t0 with frequency �0.

If we think in terms of wavelengths, it is clear that the wavelength of light contracts and

stretches according to the scale factor � / a.

By introducing the conformal time

d� =
dt

a(t)
; (2.5)

equation (2.1) can be written in the comoving frame as

ds2 = a2(�)

"
�d�2 + dr2

1�Kr2 + r2d
2

#
; (2.6)

which means that, in this form, we have a static metric multiplied by the conformal factor

a2(� ).

Dynamics

The dynamics of the gravitational field, which relates the geometry of spacetime with

its material content, is described by the action

S =
1

2�

Z
d4x
p�g (R� 2�) +

Z
d4x
p�gLm ; (2.7)

where � = 8�G = 1=M2
Pl is the coupling constant, g is the determinant of the metric g�� ,

R is the Ricci scalar, � is the cosmological constant and Lm is the lagrangian density which

describes the matter content.
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By varying the above action with respect to g�� , we obtain the Einstein equations

R�� � 1

2
g��R+ g��� = �T�� ; (2.8)

Since we are considering scales above 100 Mpc, the matter content of the universe,

represented by T�� , can be seen as a perfect fluid

T�� = (�+ P )u�u� + Pg�� ; (2.9)

where � is the energy density, P is pressure and u� is the four-velocity of the fluid.

When we apply the geometry given by (2.1) into the components of (2.8), we obtain

the two following dynamical equations2

H2 =
��

3
� k

a2
+

�

3
; (2.10)

�a

a
= ��

6
(�+ 3P ) +

�

3
; (2.11)

which are known as the Friedmann and the Raychaudhuri equations, respectively. The former

shows a relation between the change of the scale factor and energy density, spatial curvature

and cosmological constant of the universe. Since in this thesis we are focused in the study of

the very early universe, k and � can be neglected, and the new Friedmann equation states

that the expansion (or contraction) of the universe is governed by the energy density, only.

From the latter, we can see that in absence of a cosmological constant, there is an accelerated

expansion only if we violate the strong energy condition, i.e., �+ 3P < 0. This is the root of

the inflationary scenario and will be studied in more details in Chapter 3.

2From the four equations found, only two are independents. The three equations with spatial components
are equivalent, as they reflect the isotropy of the metric.
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Composition

Equations (2.10) and (2.11) when combined give rise to the conservation equation

_�+ 3H(�+ P ) = 0 ; (2.12)

which may also be derived from the conservation of energy-momentum r�T
�� = 0.

We will solve the conservation equation by using the ansatz P = w�, with w constant.

Its solution is

� = �0

�
a

a0

��3(1+w)
! a = a0

�
t

t0

� 2
3(1+w)

: (2.13)

By using w constant, we were able to solve analytically (2.12) keeping a realistic

approach, since there are three particular values of w which play an important role in the

evolution of our Universe. They are

• Radiation: wr = 1=3! �r / a�4 and a / t1=2;

• Cold matter: wb = 0! �b / a�3 and a / t2=3;

• Dark energy: w� = �1! �� / a0 and a / eHt;

In an universe in which the total energy density contains: radiation (photons and

neutrinos) �r; baryonic matter (also known as cold matter or dust, since it is non relativistic)

�b; dark matter �c; and dark energy ��; Equation (2.10) becomes3

H2 = H2
0

 

r

a4
+


b

a3
+


c

a3
+


nrel
�

a3
+
� +


k

a2

!
; (2.14)

3Note also that the spatial curvature can be identified as a fluid with w = 1=3.
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where the dimensionless density parameter 
 for each one of the four first components, and

the density parameter 
 for curvature are defined by, respectively


i =
8�G

3H2
�i with i = r; b; c;� ; and 
k = � k

a2H2
: (2.15)

The definition of critical density for a flat universe (k = 0) is

�crit =
3H2

0

8�G
; (2.16)

and we could relate the critical density to the density parameter by


i =
�i
�crit

: (2.17)

Equation (2.14) is the Friedmann equation for the most successful model in Cosmology,

the �CDM, which is made of dark energy �, cold dark matter4, ordinary matter and radiation.

From Planck 2018 [54], the up-to-date values for the current density parameters of each

component are: 
�;0 � 70% ; 
c;0 � 25% ; 
b;0 � 5% ; 
r;0 +
�;0 � 0:01% ;

Current data still indicates that the universe is spatially flat, since we have a small

density parameter


k;o = 0:0007+0:0037�0:0037 ; (2.18)

at the 95% confidence level.

We treated radiation, baryonic matter and dark energy as a perfect conservative fluid,

so the temporal evolution of each of them (with respect to the scale factor) is obtained by the

solution of (2.13), and this allows us to see in which phase of the universe each one of them

dominated. By considering the standard cosmological model, after inflation, the universe had

4Although it has a distinct nature from ordinary matter, dark matter also is treated as cold, which means it
has no pressure, so its parameter of state is given by w = 0. This makes impossible to distinguish both of
them at background level.
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a phase of domination of radiation, followed by a phase of domination of matter until reaching

a current phase of predominance of dark energy.

Also, it is important to highlight that the Universe has inhomogeneities. From CMB

observations [55, 56], we know that there are temperature fluctuations �T=T � O(10�5).

These tiny fluctuations confirm the Universe is homogeneous and isotropic to at least one

part in 100; 000. However, these deviations are a fundamental prediction of the inflationary

cosmology, as we will see in Chapter 3.

The problems of the hot Big Bang model

In principle, we would like to describe a physical system given its initial conditions, but

it is somewhat philosophical to question whether the initial conditions necessary for evolution

of the system are contained in the theory or they are separate from it. For example, in Classical

Mechanics, we know that given the initial position and velocity, we can use the laws of Newton

to describe the trajectory of a body. But we still do not know if Cosmology has as a role in

predicting or even explaining the primary conditions required. Obviously, we want to avoid

imposing very restrictive initial conditions to observe the universe as it is today. So in this

section, based on [57], we will describe two problems the usual Big Bang theory faces for the

universe to evolve to its current state, and we will show that these problems can be solved if

we consider the universe had a phase of quasi de Sitter5, right after leaving its quantum stage,

which is the main idea of inflation.

5It is important to note that this is only a phase because if the Hubble parameter does not evolve over time,
inflation continues indefinitely, making the universe a huge emptiness with very low temperatures - a pure
de Sitter universe, but of course this is in contradiction with current observations. Then, inflation has to
end and the vacuum energy must turn into thermal energy for the universe. This mechanism is known as
reheating [58, 59], and it consists of the decay of vacuum energy in particles, resulting in the increase of
entropy of the universe and the beginning of the era dominated by radiation.
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The horizon problem

This is a causality problem and could be reformulated as the following question: Why

CMB is so uniform?

The photons we see today are those emitted from the surface of last scattering (380.000

years ago). The angular diameter distance dA on the last scattering surface is given by

dA(t) = a(t)
Z t

ti

dt0

a(t0)
(2.19)

dA(t0) � H�1
0 (1 + zL)

�1 : (2.20)

Knowing that the horizon size in an universe dominated by matter and radiation at decoupling

time is

dH(tdec) � H�1
0 (1 + zL)

�3=2 ; (2.21)

since a(t) grows as t2=3 in the epoch of the last scattering, the ratio between the particle

horizon at the decoupling time and the particle horizon today is dH(tdec)=dA(t0) � 1:6�, for

zL � 1100. This means that in an universe dominated by matter or radiation, no physical

influence could have smoothed out initial inhomogeneities and brought about the almost same

temperature points that were separated by more than 2� initially.

If we suppose the universe had an inflationary phase before the radiation era, with H �
constant, the scalar factor behaves as

a(t) = aie
HI(t�ti) ! a(t) = aIe

�HI(tI�t) ; (2.22)

where the subscripts “i” and “I” represent the beginning and end of the inflationary era,

respectively. Now, (2.19) becomes

dH(tL) = a(t)
Z tL

ti
dt0

1

aI
eHI(tI�t0) =

a(tL)

aIHI
[eN � 1] ; (2.23)
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were N = HI(tL� ti) is the number of e-folds of expansion during inflation. In order to solve

the horizon problem, eN � 1, so we can drop the term �1 in square brackets.

To satisfy the high degree of isotropy presented by CMB at large scales, we need

dH(tL) > dA(tL) ; (2.24)

being dA � a=H0 for small scale factors.

The condition (2.24) for the isotropy of CMB is then

eN >
aIHI

a0H0
: (2.25)

The flatness problem

The non relativistic and relativistic contributions to the total energy density of the

universe � grow as a�3 and a�4, respectively, so in the beginning of the expansion, we can

neglect k, and the Friedmann equation becomes

H ! �

3
� ; (2.26)

i.e., in the primordial universe the density of the material content is equivalent to the critical

density 3H2=�.

On the other hand, data from the redshift-distance relation of observed supernovae

Type Ia, age measurements of old stars and CMB temperature fluctuations data favor a

curvature density 
k � 0. So, using the constraint from the Friedmann equation


T +
k = 1 ; (2.27)

where 
T = 
r + 
c + 
b + 
�, we would expect j
kj < 1, but 
k = �k=a2H2 = k= _a2,

which increases with time.
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At the time when there is domination of non-relativistic matter (from the stage when

the universe temperature dropped from 104K until close to the present time), a / t2=3, so

jkj= _a2 also grows with t2=3 / T�1. So if we consider j
kj < 1, when the universe had

a temperature of 104K, the curvature parameter had to be of the order of 10�4. If we go

back more in the history of the universe and consider the era of radiation, jkj= _a2 grows with

t / T�2. Again, for jkj= _a2 not to be less than 10�4 when T = 104K, it would be necessary

that jkj= _a2 was of the order of 10�16 in the primordial nucleosynthesis phase and even lower

in older times. This means that a flat universe today was much more flat in the past. This

would require a huge fine tuning of the spatial curvature of the primordial universe.

In order to solve this problem, we will consider the inflationary phase, as we did in the

horizon problem.

If jkj=a2iH2
i � O(1) in the beginning of inflation, in the end it would be of order

jkj
a2IH

2
I

= e�2N
jkj
a2iH

2
i

� e�2N : (2.28)

Today (a0 = 1) we would have

j
k;0j = jkj
H2

0

=
jkj
a2IH

2
I

 
a2IH

2
I

H2
0

!
= e�2N

a2IH
2
I

H2
0

< 1 : (2.29)

So the flatness problem would be avoided if the expansion during inflation had a limit

given by

eN >
aIHI

H0
; (2.30)

which matches the condition to solve the horizon problem.
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3Review of Cosmological

Inflation

In this chapter, we will review some of the fundamental aspects of inflation by showing

a simple, but powerful configuration which generates inflation, and its predictions, based in

references such as [44, 45, 46, 47, 48, 49, 60, 57]. Our main goal is to discuss the context

which motivate our results presented in Sec.4.

Single field inflation

It is clear to see that the condition �a > 0 solves the Hot Big Bang problems presented

before. Now the question is: what kind of matter component could drive such an accelerated

phase?

The inflaton

A simple and successful way to achieve inflation is by considering a quantum scalar field

(named inflaton) rolling slowly down its potential. The action of such a system in a general

cosmological background is given by

S =
Z p�g

"
M2

Pl

2
R� 1

2
g��@�'@�'� V (')

#
: (3.1)

The energy-momentum tensor of ' is

T'
�� = @�'@�'� g��

�
1

2
g��@�'@�'+ V (')

�
: (3.2)
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By considering the spatial curvature k = 0 in a FLRW spacetime, the energy density

�' and the pressure P' of the scalar field are given by1

�' = �T 0(')
0 =

1

2
_'2 + V (') ; (3.3)

P' = T
i(')
i =

1

2
_'2 � V (') : (3.4)

Thus, the parameter w of the equation of state for ' is given by

w =
P'
�'

=
_'2 � 2V (')

_'2 + 2V (')
: (3.5)

We already know that inflation requires an accelerated expansion of the universe, and

this condition can be fulfilled in the case of a scalar field if

V (')� _'2: (3.6)

To obtain w w �1, the function V (�) can be left unspecified. In fact, the origin of

the inflaton is still unknown, and there are several possibilities for the shape of V (')2. Going

further, condition (3.6) shows that when the potential energy dominates over its kinetic energy,

the inflaton slowly rolls down its potential and inflation is achieved. For this to happen, the

inflaton potential also must be sufficiently flat, which could be a challenge in the context of

string theory or supergravity [61, 62].

The inflationary dynamics can be obtained by varying action (3.1) in terms of '. Its

equation of motion is

d2'

dt2
+ 3H

d'

dt
+
@V (')

@'
= 0 ; (3.7)

1We are considering a homogeneous field and setting r'=a ! 0, since inflation rapidly smooths out the
spatial variation.

2One of the most important issues in inflationary cosmology is how to distinguish different models which
provide almost the same predictions on the inflationary parameters.
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which is the Klein-Gordon equation, and it is subject to the Friedmann constraint

3H2 =
�'
M2

Pl

: (3.8)

Here, it is important to show that by inserting the Klein-Gordon equation into the

time derivative of the Friedmann constraint, we obtain a new way to write the acceleration

equation

_H = � 1

2M2
Pl

_'2 ; (3.9)

which can be very useful in this context.

From (3.7), it is clear that the potential acts like a force (@V=@'), and in the second

term, the expansion of the universe adds friction, increasing the time that the scalar field takes

to reach the minimum of its potential.

The condition (3.6) assures that H is nearly constant

V (')� _'2 ! H2 w
V (')

3M2
Pl

; (3.10)

leading to quasi-exponential expansion a � eHt. Also, to assure inflation is prolonged enough

time, we need the second condition

�'� 3H _' ! 3H _' w �@V
@'

; (3.11)

which allowed us to drop the double derivative in (3.7).

These conditions are equivalent to requiring the slow roll parameters [63, 60]

�H = �
_H

H2
; �H = � �'

H _'
; �H =

_�H � _�H
H

; (3.12)

to be small �, �, � � 1. The slow roll parameters are fundamental quantities, since they

enable us to compute straightforwardly the scalar index, ns, the tensor-to-scalar ratio, r, and
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the running of the spectral index, �s.

The amount of inflation is quantified by the number of e-folds

�N =
Z tf

ti
Hdt = � 1

M2
Pl

Z 'f

'i

@�

@V
V (�)d� ; (3.13)

where �N = Nf �Ni, and 'f is the value of the field at the end of inflation, which is found

by the condition �('f) � 1 (or, �('f) � 1).

We know that the total number of inflationary e-folds should exceed about 60 in order

to solve the horizon and flatness problems. The precise value depends on the energy scale

of inflation and on the details of reheating after inflation. The fluctuations observed in the

CMB are created during approximately NCMB w 50�60 e-foldings before the end of inflation.

Therefore, we use these numbers to have a precise prediction on the values of the slow-roll

parameters and then on the spectral index.

An interesting way to know if a given potential V (') is suitable to generate inflation

(in the slow roll regime) is to compute the potential slow roll parameters, which are related

to the Hubble parameters by

�V � �H ; where �V � M2
Pl

2

�
V'

V

�2
; (3.14)

�V � �H + �H ; where �V = M2
Pl

V''

V
; (3.15)

�V � �H + 2�H(3�H � �H) ; where �V � M4
Pl

V'V'''

V2
; (3.16)

here, V' = @V=@'.

Cosmological perturbations

In addition to solving the horizon and flatness problems, cosmic inflation is also re-

cognised for being the mechanism from which the primordial perturbations present on large
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scales in our Universe are generated. This happens because during inflation, both the scalar

and metric fields undergo quantum-mechanical fluctuations, and observational consequences

of the inflationary scenario can be derived [64, 65, 66, 67, 68, 69]. In this section, we obtain

the observables P� , ns, r, and �s from the dynamics of the inflationary field. Since scalar and

tensor perturbations are generated in a similar way, we shall begin with a qualitative description

of the effects of the former and then, extend it to the latter.

Equation of Motion for the Perturbations

We will derive the inflationary spectrum of a simple model with a scalar field in an

intuitive way. To start, let us break the homogeneity assumption of ' by considering

' = '(t) + �'(xi; t) ; (3.17)

where �'(xi; t) are small inhomogeneities.

Taking into consideration that a small perturbation �'(xi; t) induces metric perturba-

tions

ds2 = �(1 + 2A)dt2 + 2a(t)B;idx
idt+ a2(t) [(1� 2 )�ij + 2E;ij + hij] dx

idxj ; (3.18)

we find that, at linear order in the scalar metric perturbations and �', the Klein-Gordon

equation (3.7) becomes

��'+ 3H _�'+
k2

a2
�'+ V''�' = �2AV' + _'

"
_A+ 3 _ +

k2

a2

�
a2 _E � aB

�#
; (3.19)

where k is the comoving wavenumber.
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In order to simplify (3.19), we can use the relations between the Einstein equations

and the scalar metric perturbations, which are obtained by the 00 and 0i components

3H( _ +HA) +
k2

a2

h
 +H(a2E � aB)

i
= �4�G�� (3.20)

_ +HA = �4�G�q : (3.21)

These equations are also known as the energy and momentum constraints [66, 27]. The energy

and pressure perturbations and momentum are computed as

�� = _'( _�'+ A _') + V'�' (3.22)

�P = _'( _�'+ A _')� V'�' (3.23)

�q = � _'�' : (3.24)

By using (3.20) and (3.21), it is possible to eliminate the metric perturbations from

(3.19), and write a Klein-Gordon equation only in terms of the field perturbations as3

��'+ 3H _�'+

"
k2

a2
+ V'' � 8�G

a3

 
a3 _'2

H

!#
�' = 0: (3.25)

It can be compactly written in terms of conformal time and v = a�' and z = a _'=H

as

v00k +

 
k2 � z00

z

!
vk = 0 ; (3.26)

which is known as the Mukhanov-Sasaki equation. This equation describes the dynamics of

the whole scalar sector on both super (k < aH) and sub-horizon (k > aH) scales.

Note that when _'=H = constant (or equally �1 constant), (3.26) becomes

v00k + !2(�; k)vk = 0 ; (3.27)

3It is important to highlight that (3.25) is written in the spatially flat gauge ( = 0), which is a common
gauge used to describe scalar perturbations during inflation. For more information on the variety of gauge-
invariant combinations of the scalar metric perturbations, see [70, 71].
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where !2 = k2 � a00=a. In eq.(3.27), each mode behaves as a parametric oscillator, and its

solution for a given k can be expressed as

vk =
q
kj�j

h
V+H

(1)
� (kj�j) + V�H(2)

� (kj�j)
i
; (3.28)

where H(1)
� (kj�j), H(2)

� (kj�j) are Hankel functions of the first and second kind, and V+, V�

are constants to be set by initial conditions.

In the remote past, all modes were inside the horizon, which means that all cosmological

modes had time-independent frequencies, and under this approximation, the solution for the

Mukhanov-Sasaki becomes

vk = Ake
�ik� +Bke

ik� : (3.29)

By using the Wronskian normalisation W = vkv
0?
k � v0kv?k = i, we obtain

W = 2ik
�
jAkj2 � jBkj2

�
= i : (3.30)

The positive frequency mode vk / e�ik� corresponds to the minimal excitation state.

Then, we will choose this mode to define the inflationary vacuum state, which amounts to

setting A = 1=
p
2k and B = 0.

Then, we can set the initial condition as

lim
�!�1 vk(�) =

1p
2k
e�ik� ; (3.31)

which is known as the Bunch-Davies vacuum.

Now, we normalise the solution (3.28) with the Bunch-Davies vacuum on small scales

(early times), so we set V+ = 0 and V� =
q
�=4k. Then, eq.(3.27) provides us with the
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corresponding solution on large scales (late times)

vk =

q
�j�j
2

H(2)
� (kj�j) : (3.32)

We can approximate the amplitude-squared (3.32) in the super-horizon limit as

vk(�)v
?
k(�)!

1

4�k3
�2(�)22�

j�j2��1

w
1

2k3j�j2 =
(aH)2

2k3
; (3.33)

where we considered the slow roll regime (� w 3=2).

This enable us to define the power-spectrum of the field fluctuations as4

1

a2
Pv(k; �) =

H2

(2�)2
; (3.34)

which indicates a scale-invariant spectrum on super-horizon scales.

The power spectrum of the Mukhanov-Sasaki variable Pv can be directly related to the

power spectrum of the comoving curvature perturbation P� , and this change is convenient since

� is a conserved quantity on large scales. It means that its spectrum can be propagated to the

time of recombination without taking into consideration sensitive details of the cosmological

evolution. The curvature perturbation is expressed in terms of the Mukhanov-Sasaki variable

as

� =
v

z
=

v

a
p
2�HMPl

; (3.35)

then, using (3.34), we obtain

P�(k) =
Pv(k)

2a2�HM
2
Pl

=
V 3

12�2M6
PlV

2
'

; (3.36)

which is usually evaluated at some pivot scale k� = 0:05Mpc�1.

4Taking into consideration that a factor k3=2�2 should appear in (3.33) in order to compute the variance of
v.
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We vary (3.36) with respect to k in order to quantify deviations from scale-invariance.

This provides us the spectral index ns and the running of the spectral index �s

ns � 1 =
d lnP�

d ln k

�����
k�

; (3.37)

�s =
d2 lnP�

d(ln k)2

�����
k�

: (3.38)

In the slow roll regime, the inflaton field and comoving wavenumber are related by the

scalar field equations of motion, which provide us

d

d ln k
= � V'

3H2

d

d'
; (3.39)

where we used the fact that we are considering k = aH, and H is essentially constant, so

d ln k = d ln a = (H= _')d'.

Then, the spectral index and its running can be expressed in terms of the potential and

its derivatives

ns � 1 = 2�V � 6�V ; (3.40)

�s = �2�V � 24�2V + 16�V �V : (3.41)

Going further, we can apply the same procedure in order to calculate the power spec-

trum of tensor perturbations Ph. Now, we will solve a equation in form of

h00 +

 
k2 � a00

a

!
h = 0 ; (3.42)

instead of (3.27), and find

Ph(k�) =
8

M2
Pl

�
H

2�

�2
=

2V

3�2M4
Pl

: (3.43)

By comparing (3.36) and (3.43), it is clear to see that while the scalar amplitude
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depends on both H and �, the tensor amplitude is a direct measure of the expansion rate

H.

The tensor-to-scalar ratio r is calculated by

r =
Ph(k�)
P�(k�)

w 16�V : (3.44)

Until now, tensor modes have not been observed, then we only have an upper limit on

their amplitude r < 0:064.

There is a huge amount of inflationary models, but since the data seem to favour the

single field inflation [15], by our analysis in this section, it is quite straightforward to compute

the observables for them. Some inflationary models are shown in Fig.3.1. They are constrained

in the parameter space ns vs. r. It is clear that the R2 inflation has a special spot in this plot,

and this is why we dedicate the next section to the Starobinsky model [72].
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Fig. 3.1.: This figure shows the marginalized joint 68% and 95% CL regions for ns and r at k =

0:002Mpc�1 from Planck alone and in combination with BK14 or BK14 plus BAO data,
compared to the theoretical predictions of selected inflationary models. Image credit:
Ref.[1].
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4f(R) Theory, The Starobinsky

Model and Inflation

The high accuracy of observations have put inflation in the precision era due to the

fact that Planck experiments can now constrain rigorously inflationary models. The objective

of this chapter is to present the Starobinsky model, its predictions and a possible modification

to it inspired by the �-Attractors, since f(R) models have been considered good candidates to

compute the spectrum of primordial scalar perturbations generated in this inflationary stage.

Also, we propose a mapping between the slow roll parameters and non-Gaussianities using

a generic form of f(R) in order to find an easy way to add these results as a pipeline over

the constraining of the observational parameters. By generic form of f(R) we mean that in

principle we could obtain the slow roll parameters for any f(R), since to apply our definitions

we just need a f(R) model and its derivatives in terms of R. On the other hand, we need to

stress that slow roll inflation may only occur for the range of R in which f(R)=R2 is a slowly

changing function of R, namely, where its first and second derivatives with respect to lnR are

small by modulus, as shown in [73].

The following sections are based on the results obtained in [41, 42].

Reconstructing the �-Attractors from an f(R)

theory

In this section, we describe briefly the f(R) theory, with emphasis on the Starobinsky

model. We also point out that there is an analogy at high curvature between the f(R)

theory and the �-Attractors. We will show that the power law correction Rn�1 allows for

a production of gravitational waves enhanced with respect to the one in the Starobinsky

model, while maintaining a viable prediction on ns. We numerically reconstruct the full �-
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Attractors class of models testing the goodness of our high-energy approximation. Moreover,

we also investigate the case of a single power law f(R) = 
R2�� theory, with 
 and � free

parameters, to confirm once again the excellent agreement between the Starobinsky model

and observation.

f(R) theory

We start this section by briefly reviewing how an f(R) theory is able to provide a viable

inflationary model. Let’s start with the following action

S =
M2

Pl

2

Z
d4x
p�gf(R) ; (4.1)

where MPl is the Planck mass. Following [74, 75], the above f(R) action (4.1) is equivalent

to the Einstein-Hilbert one with a minimally coupled (to the conformally transformed metric)

canonical scalar field �, defined as follows

� =

s
3

2
MPl ln

 
df

dR

!
; (4.2)

and subject to the following potential

U =
M2

Pl

2(df=dR)2

 
R
df

dR
� f

!
: (4.3)

At this point one can already see why the Starobinsky model f(R) = R + R2

6M2 is special.

Assume for example a R+
Rn theory, with n > 0 and where 
 is some energy scale at which

the correction becomes relevant. At high energy scales 
Rn � R, where we expect Inflation

to take place, the potential U becomes

U =
M2

Pl(n� 1)

2
n2
R2�n : (4.4)

The Starobinsky case n = 2 then provides a plateau, which is the ideal situation for a slow

roll inflationary phase to take place. If n > 2 the potential initially increases and then goes

to zero asymptotically, which might be bad from the point of view of Inflation because the
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slow rolling scalar field would need to overcome a potential barrier. For n < 2 the potential

grows unbound, but still there is the possibility for it to satisfy the slow roll conditions. See

[76, 77, 78].

Dynamical system perspective

Let us analyse the above-described asymptotic behaviours from a dynamical system

perspective. Assume a spatially flat FLRW metric

ds2 = �dt2 + a(t)2�ijdx
idxj : (4.5)

It is not difficult to cast the evolution equations of f(R) gravity in absence of matter as the

following dynamical system

8>><
>>:
6Hf 00 _R = Rf 0 � f � 6f 0H2

6 _H = R� 12H2

; (4.6)

where H � _a=a, the dot denotes derivation with respect to the cosmic time and the prime

denotes derivation with respect to R. Note that the second equation of system (4.6) is the

very definition of R for metric (4.5) and we have assumed f 00 and H different from zero.

In order to have an inflationary phase for large R (larger than a certain scale M2), we

need _H � 0. From the second equation of system (4.6) this implies R � 12H2 and thus

_R � 0. This happens if, from the first equation of system (4.6), we obtain

f 0

f
� 2

R
; or

Rf 0=2� f
6Hf 00

� 0 : (4.7)

The first condition leads us to

f(R) � R2 ; (4.8)

which is the Starobinsky R2 correction to the Einstein-Hilbert action. The second condition

tells us that 6Hf 00 must grow more rapidly than Rf 0=2� f for large R. This can be achieved

via a Rn correction with n > 2, but then the problem that we have mentioned earlier appears:
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the scalar field has to climb a potential barrier in order for Inflation to end. Recently, an

investigation of the inflationary dynamics generated by an inflaton field climbing up a potential

has been investigated in [79, 80], where the authors present viable scenarios. Another recent

interesting proposal is [81] where a logarithmic correction to the Einstein-Hilbert action is

investigated. In this case, the divergence is linear since the R term dominates but the presence

of the logarithmic correction produces a plateau at intermediate energies where Inflation might

take place.

The potential (4.3) for the Starobinsky model can be computed exactly and has the

following form

U(�) =
3

4
M2M2

Pl

�
1� e�

p
2=3�=MPl

�2
: (4.9)

This potential presents a plateau for high values of the inflation field, as shown in Fig. 4.1.

Considering the excellent fit to the latest Planck data, in the next subsections we are

going to focus on two equally interesting subclasses of the �-attractors: one in which the

potential depends explicitly on e�
p

2=(3�)�=MPl , known as E-model, and another in which the

potential depends explicitly on tanh2
�

�p
6�MPl

�
, known as T-model.

The �-Attractors: E-models

The subclass of �-Attractors called E-Models [24] is described by the following scalar

field potential

UE(�) =
3

4
M2M2

Pl�
�
1� e�

p
2=(3�)�=MPl

�2
: (4.10)

Clearly, the Starobinsky potential (4.9) is recovered for � = 1. In Fig. 4.1 we display the

behavior of the above potential for different choices of �.

Applying the definitions given in (4.2) and (4.3) to the E-Models potential of (4.10),

it is not difficult to obtain the following differential equation for f(R)

Rf 0 � f =
3M2

2(1� �)2
�
f 0 � f 0�

�2
; (4.11)
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where we have defined

� � 1� 1p
�
: (4.12)

Note that, since � > 0, then � < 1. When � = 1, i.e. � = 0, one can easily check that the

Starobinsky model is solution of (4.11). When �!1, i.e. � ! 1, it is easy to see that from

(4.10) we get a �2 potential and the corresponding f(R) theory can be found by solving the

equation

Rf 0 � f =
3

2
M2f 02 ln2(f 0) : (4.13)

Finally, note that f = R turns (4.11) into a identity. Therefore, (4.11) can be seen as an

equation which determines the correction to the usual Einstein-Hilbert action which is able to

reproduce the inflationary dynamics of the �-Attractors E-models.

Unfortunately, (4.11) cannot be solved analytically for a generic � and we analyse it

numerically in the AppendixA. On the other hand, if there exists a f(R) theory reconstructing

the same inflationary dynamics as the �-Attractors, then at high energies the former must

behave as the Starobinsky model, i.e. f(R) / R2, because the �-Attractors potential displays

a plateau at high energies and, in the framework of f(R) theories, this is realized only by a

f(R) / R2 correction.

Let us show this explicitly, assuming a f(R) = 
Rn theory, where 
 > 0 is an arbitrary

energy scale and n > 1, and substituting it into (4.11)

2(n� 1)(1� �)2
3M2
n2

R2�n =
h
1� (
n)��1R(��1)(n�1)i2 : (4.14)

Since � < 1 and n > 1, the exponent (� � 1)(n � 1) is negative. Therefore, in the

limit 
Rn�1 !1, we get from (4.14)

2(n� 1)(1� �)2
3M2
n2

R2�n ! 1 : (4.15)

In order to satisfy this limit, n must be equal to 2. This result confirms that the asymptotic

behavior of a f(R) theory which aims to reproduce the �-Attractors dynamics must go as R2
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for large R. We then propose this ansatz

f(R) = R+ aRn + bR2 ; (4.16)

where a > 0 and b > 0 are arbitrary energy scales and n > 1. Let’s substitute (4.16) into

(4.11)

a(n� 1)Rn + bR2

(1 + anRn�1 + 2bR)2
=

3M2

2(1� �)2
h
1� (1 + anRn�1 + 2bR)��1

i2
; (4.17)

and consider the high energy limits

aRn�1 � 1 ; and bR� 1 : (4.18)

If n < 2, the dominant contributions in (4.17) are those proportional to R2 and we get from

them

b =
(1� �)2
6M2

: (4.19)

For � = 0 we then recover the correct form of the coefficient for the Starobinsky model. One

can check that in (4.17) the next-to-leading power in n, being n < 2, is n itself, whereas the

next-to-leading power in �, being � < 1, is � + 1. Therefore, we can approximate (4.17) as

follows

a(n� 1)Rn + bR2 � 3M2

2(1� �)2
h
4b2R2 + a2n2R2(n�1) + 4banRn � 2(2bR)�+1

i
: (4.20)

We equate the sub-dominant powers and their respective coefficients, obtaining

n = � + 1 a = (2b)� : (4.21)

When � = 0, the aRn contribution of (4.16) is thus reincorporated into the usual Einstein-

Hilbert term of the action and we are left with the Starobinsky model. The comparison

between powers that we have just done in (4.17) allows us to reconstruct the �-Attractors at

high energies as a polynomial correction to the Starobinsky model (4.16)

f(R) = R+

"
(1� �)2
3M2

#�
R�+1 +

(1� �)2
6M2

R2 : (4.22)
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This is just an approximation because the other sub-leading powers do not compensate, being

indeed (4.16) not a solution of (4.11).

If n � 2 in (4.17), one can easily check that the equation can be balanced only if

n = 2. This is expected because, as we have already commented earlier, in order to provide

a scalar potential with a plateau at high energies, a f(R) theory must go asymptotically as

R2.

The �-Attractors: T-models

There exists another subclass of the �-Attractors named T-Models. The potential

characterising these models is the following

UT (�) = 3M2M2
Pl� tanh

2

 
�p

6�MPl

!
; (4.23)

i.e. based on the plateau-like behavior of the hyperbolic tangent for large values of the field.

Indeed, the above potential recovers the E-models potential, and therefore the Starobinsky

one when � = 1, only for large values of the field. In Fig. 4.1 we display the evolution of the

E-models and T-models for some values of � including � = 1, i.e. the Starobinsky model.

In the large � limit, by performing a Taylor-series expansion, it is easy to see that

the T-models potential (4.23) coincides with the one of the chaotic inflation model with a

quadratic potential [22], as for the E-models.

In the large � limit, by performing a Taylor-series expansion, it is easy to see that

the T-models potential (4.23) coincides with the one of the chaotic inflation model with a

quadratic potential [22], as for the E-models.

As we did in the previous subsection, using the definitions given in (4.2) and (4.3)

for the T-Model potential of (4.23), we can obtain a differential equation which allows to
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Fig. 4.1.: Left Panel. Evolution of the E-Models potentials (4.10) (red lines) and of the T-models
potentials (4.23) (blue lines) for some values of �. The choices � = 1 and � = 1=9 are
interesting because they reproduce the Starobinsky model and the chaotic inflation model
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Right Panel. Evolution of the normalised potential derived from Eq. (4.30). The solid
line is drawn for the value � = 1, i.e. the Starobinsky model. The dashed and the dotted
line are for � = 0:1 and � = �0:1, respectively.

reconstruct a corresponding f(R)

f 02

h
1� f 0(��1)

i2
[1 + f 0(��1)]2

=
(1� �)2
6M2

(Rf 0 � f) : (4.24)

In the limit of large fields, i.e. f 0��1 ! 0,1 the above equation becomes similar to (4.11).

Therefore, the same asymptotic analysis which led us to justify the ansatz given in (4.22)

applies.

A power law extension of the Starobinsky model

Motivated by the result of the previous subsection, here we address in detail the model

given by (4.22), i.e. a power law extension of the Starobinsky model. In this case it is not

possible to find a closed, analytic form for the potential of (4.3) as function of the field �

of (4.2). In Refs. [82, 83] the authors show that the following potential (written here in our

notation)

U(�) =M2
Pl

�
�1 � 
1e�n

p
2=3�=MPl

�
; (4.25)

1This limit holds true only if f 0 is a growing function of R, i.e. f 00 > 0, which is a condition that we are
assuming.
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where �1 and 
1 are parameter with dimension of a square mass, is able to reproduce asymp-

totically the following f(R) model

f(R) � R2

4
1(2� n) +
1

2� n

"
1

2
1(2� n)

#1�n
R2�n ; (4.26)

via an analysis similar to the one performed in the previous section. From the above potential,

it is possible to derive the following predictions on the scalar index and the tensor-to-scalar

ratio

ns ' 1� 2

N
; r ' 12

n2N2
; (4.27)

that is, a behaviour similar to the one predicted by the �-Attractors.

Our analysis of the model (4.22) shall be purely numerical. The derivative of (4.22),

is the following

f 0(R) = 1 + (1� �)2�(1 + �)
�
R

3M2

��
+ (1� �)2 R

3M2
: (4.28)

This expression suggests the use of the dimensionless variable R=3M2. Indeed, one can easily

show that also the potential (4.3) is a function of R=3M2, since

U =
3M2M2

Pl

2(f 0)2

 
R

3M2
f 0 � f

3M2

!
; (4.29)

and we have just shown that f 0 is function of R=3M2 and

f

3M2
=

R

3M2
+ (1� �)2�

�
R

3M2

��+1
+

(1� �)2
2

�
R

3M2

�2
; (4.30)

is evidently function of R=3M2. In Fig. 4.1 we display the evolution of the potential corres-

ponding to (4.22).

The slow roll parameters can be defined as follows, given the functional form of the

potential U(�)

�U � M2
Pl

2

�
U�

U

�2
; �U �M2

Pl

U��

U
; �U �M4

Pl

U 0U 000

U2
; �U �M6

Pl

U 02U (4)

U3
; (4.31)
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where U (4) represents the fourth derivative of the potential with respect to the field. From

these quantities it is straightforward to compute the scalar index and the tensor-to-scalar ratio

ns � 1� 6�U + 2�U ; r � 16�U ; (4.32)

and the running and the running of the running of the scalar spectral index

�s � dns
d log k

= �2�2U + 16�U�U � 24�2U ; (4.33)

�s � d�s
d log k

= 2�3U + 2�2U(�U � 12�U)� 32�U(�
2
U � 6�U�U + 6�2U) : (4.34)

For single field inflationary models, the above runnings are of the order of �s � 10�3

and �s � 10�5 [84, 85]. Discriminating among �s and �s of different models is still an

experimental challenge, however it might be possible to use �s to this purpose in forthcoming

Stage-4 CMB experiments, see e.g. [86]. In Fig. 4.2 we display the evolution of ns and r

as functions of �, showing a good agreement with the observational constraints for a range

0 < � . 0:8. The latter value corresponds to a R1:8 correction to the Starobinsky model.

In Fig. 4.2 we also plot the runnings as functions of � and, finally, in Fig. 4.3 we display

the prediction of the model investigated in this section on the r vs ns plane by varying �

in the interval �0:02 < � < 0:8 (corresponding to 0:96 < � < 25) and comparing this

evolution with the contour regions allowed from the Planck data [4]. As one can appreciate,

the polynomial correction toR2 allows larger values of r. In particular, it seems that diminishing

the number of e-folds could allow to even larger values of r.

Study of the single power law f(R) inflationary model

In this subsection we address, for completeness, the case of a single power-law f(R)

f(R) = R+
R2��

(6M2)1��
; (4.35)

and compute its predictions on the inflationary parameters. This kind of model has already

been investigated in [87], in order to test the robustness of the Starobinsky model and assess

4.1 Reconstructing the �-Attractors from an f(R) theory 34



Fig. 4.2.: Left Panel. Evolution of the inflationary parameters ns and r as functions of � derived
from (4.30). The solid line is drawn for N = 55 whereas the dashed line represents the
case N = 60. The dotted lines represent the observational constraints at 95% CL.
Right Panel. Evolution of the runnings as functions of � derived from (4.30). The solid
line is drawn for N = 55 whereas the dashed line represents the case N = 60.

Fig. 4.3.: Evolution of r vs ns, varying � in the interval �0:02 < � < 0:8 (corresponding to
0:96 < � < 25) and for N = 55 (solid line) and N = 60 (dashed line) with the
marginalized 68% and 95% confidence level contours from Planck 2015 data [4].
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how much precise data have to be in order to detect deviations from the case � = 0. We present

a similar analysis in next section, providing analytic results for the inflationary parameters ns

and r as functions of the number of e-folds N and the new parameter �.

Starting from (4.35), we can determine the following potential for the scalar field �

U(�) =
3M2

PlM
2(1� �)

(2� �) 2��1��

e
�2
p

2
3

�
MPl

�
e
p

2
3

�
MPl � 1

� 2��
1��

: (4.36)

It is straightforward to see that for � = 0 we recover the Starobinsky model given in (4.9).

For large fields, the above potential behaves as

U(�) � 3M2
PlM

2(1� �)
(2� �) 2��1��

e
p

2
3

�
1��

�
MPl ; (��MPl) ; (4.37)

where again, for � = 0, we recover the plateau typical of the Starobinsky model. In Fig. 4.4

we show the behaviour of U(�) of the model (4.36) for different values of � and of (4.10) for

different values of �, compared with the Starobinsky model.
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Fig. 4.4.: Upper panel. Evolution of the potential (4.10) for � = 1:1 (dashed line) and � = 1:2
(dotted line) compared with the Starobinsky case (solid line). Lower panel. Evolution of
the potential (4.36) for � = 0:05 (upper dashed line) and � = �0:05 (lower dotted line)
compared with the Starobinsky case (solid line).
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As expected, from Fig. 4.4 one can see that the �-Attractors potential seems to preserve

the plateau at high energies, whereas the �-model displays an important change in the steepness

of the potential. This statement can be made more quantitative by calculating the slow roll

parameters from (4.36). We have for �U

�U � M2
Pl

2

�
U�

U

�2
=

1

3

�
1

1� �
�2 264� + 2(1� �)e�

p
2
3

�
MPl

1� e�
p

2
3

�
MPl

3
75
2

; (4.38)

and �U :

�U �M2
Pl

U��

U
=

2

3(1� �)2
�2 � (1� �)(2� 5�)e

�
p

2
3

�
MPl + 4(1� �)2e�2

p
2
3

�
MPl�

1� e�
p

2
3

�
MPl

�2 (4.39)

For large fields (��MPl) the slow roll parameters can be approximated as follows

�U � 1

3

�
1

1� �
�2 �

� + (2� �)e�
p

2
3

�
MPl

�2
; (4.40)

and

�U � 2

3(1� �)2
�
�2 � (2� 7� + 3�2)e

�
p

2
3

�
MPl

�
: (4.41)

Note that

�U ! 1

3

 
�

1� �

!2

; �!1 ; (4.42)

i.e. there is no plateau if � > 0, as we expected from observing Fig. 4.4 and from the analysis

performed earlier in Sec. 4.1.1. Moreover, since �U � 1 in order to have an inflationary phase,

then � � 1.

The value of the field at which inflation ends is given by �U(�f) � 1, which in our case

translates to

�U(�f) � 1 ) e
�
p

2
3

�f
MPl �

p
3� �(1 +p3)

(2 +
p
3)(1� �) '

p
3� �

2 +
p
3
: (4.43)
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With this we can calculate the number of e-folds as follows

N =
1p
2MPl

Z �i

�f

d�p
�U

: (4.44)

Let’s stay at the lowest possible order in both � and e�
p

2
3

�
MPl and their combinations. In this

case, we can approximate the slow roll parameters and the number of e-folds as follows

�U � 1

3

�
� + 2e

�
p

2
3

�
MPl

�2
; �U � �4

3
e
�
p

2
3

�
MPl ;

1

N
� 4

3
e
�
p

2
3

�
MPl +

�

3
: (4.45)

The scalar index and the tensor-to-scalar ratio are therefore written as

ns � 1� 6�U + 2�U � 1� 2

N

 
1� N�

3

!
; (4.46)

r � 16�U � 12

N2

 
1 +

N�

3

!2

: (4.47)

As we can see, differently from the �-Attractors case, the � correction interferes also

with the scalar spectral index, through the combination N�. In Fig. 4.5 we display the

numerical results for the evolution of ns and r as functions of �, by fixing the number of

e-folds N = 55 and N = 60. For completeness, in the same figure we also calculate the

nonvanishing runnings �s = dns=d log k and �s = d�s=d log k.

Fig. 4.5.: Evolution of r, ns, �s and �s as functions of � for N = 55 (solid line) and N = 60

(dashed line). The horizontal dotted line is the upper limit on r, at 95% confidence level,
obtained by the Planck collaboration [4]. The horizontal dotted lines enclose the 68%
confidence level of the values of ns measured by the Planck collaboration [4] .
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In Fig. 4.6 we display the � model in the r vs ns plane, again choosing N = 55 and

N = 60. When N = 55, the variation of the � parameter is �0:004 < � < 0:011 for

1�, and �0:011 < � < 0:022 for 2�. When N = 60, it is �0:008 < � < 0:006 for 1�,

and �0:015 < � < 0:016 for 2�. This figure is very similar to the first panel of Fig. 4 of

Ref. [87].

Fig. 4.6.: Evolution of r vs ns, varying � and for N = 55 (solid line) and N = 60 (dashed line)
with the marginalized 68% and 95% confidence level contours from Planck 2015 data.

Differently from the �-Attractors case, the � model move in the “wrong" direction in

the r vs ns, i.e. they move mostly horizontally.

Generic slow roll and non-gaussianity

parameters in f(R) theories

In this section we establish formulae for the inflationary slow roll parameters �, � and

� as functions of the Ricci scalar R for f(R) theories of gravity. As examples, we present

the analytic and numerical solutions of �, � and � as functions of the number of e-folds N in

two important instances: for the Starobinsky model and for the f(R) reconstruction of the

�-Attractors (4.16). The highlight of our proposal is to rewrite the slow roll parameters in

terms of f(R), which allows to find directly inflationary parameters as functions of R itself.
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Generic slow roll parameters for a f(R) model

As shown in Sec.4.1.1, a generic f(R) theory can be mapped via a conformal trans-

formation into General Relativity with a matter content constituted by a scalar field �. In this

context, we can use the slow roll definitions given by (4.31), where

U� � dU

d�
=
dU=dR

d�=dR
; (4.48)

in order to find:

� =
1

3

 
2f �Rf 0
Rf 0 � f

!2

: (4.49)

� =
2(f 0)2

3f 00(Rf 0 � f) �
2Rf 0

Rf 0 � f +
8

3
; (4.50)

� =
4

9

(2f �Rf 0)
(Rf 0 � f)2

"
�f

000(f 0)3

(f 00)3
� 3(f 0)2

f 00
+ 8f �Rf 0

#
: (4.51)

Applying these generic formulae to the Starobinsky model f = R+�R2, we can easily

compute

� =
1

3�2R2
; (4.52)

� =
1� 2�R

3�2R2
; (4.53)

� =
2(2�R� 3)

9�3R3
: (4.54)

It is straightforward to notice that the above slow-roll parameters tend to zero for �R!1,

as we expect from the fact that the potential presents a plateau for the Starobinsky model for

�R!1.

It is remarkable that we are able to express the slow roll parameters as functions of R

for any f(R) theory. However, in order to make contact with observation, we need to relate

R to the number of e-folds N from the end of inflation. A simple way to compute N for a
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generic f(R) theory in the slow roll approximation is rewriting (4.44) as

N � 1

MPl

Z �2

�1
d�

1p
2�

=
3

2

Z Ri

Rf

dR

 
f 00

f 0

!
Rf 0 � f
2f �Rf 0 ; (4.55)

where the subscripts i and f over the integral denote an initial arbitrary moment during the

inflationary phase and the final period of inflation, given by the condition �f � 1.

In order to perform the integration in (4.55), we need an explicit form for our f(R)

theory. Again, for the Starobinsky model we get

N � 3
Z Ri

Rf

dR
�2R

1 + 2�R
� 3

2
�(Ri �Rf) ; (4.56)

where we are assuming �R � 1, which is a necessary condition to have an inflation stage.

Considering Ri � Rf and dropping the subscript i, we can write

�R � 2N

3
: (4.57)

Now we are able to write the slow roll parameters as

� =
3

4N2
; � = � 1

N
; � =

1

N2
; (4.58)

and the tensor-to-scalar ratio and scalar spectral index as

r � 16� =
12

N2
; ns � 2� + 1 = 1� 2

N
; (4.59)

which for N = 50� 60 give predictions in very good agreement with observations.

The running of the spectral index can be written as

�s � dns
d ln k

= �2� + 16��� 24�2 = � 2

N2
; (4.60)

which it is of the same order of the tensor-to-scalar ratio.
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As a second case, we consider (4.22), which is a f(R) approximated reconstruction of

the �-Attractors, rewritten as

f(R) = R+ ��R�+1 +
�

2
R2; (4.61)

where � = (1 � �)2=3M2. We notice that when � = 0 we recover the Starobinsky model

modified by a constant in the linear term and when � = 1 we recover GR.

Using (4.49)-(4.50)-(4.51) we can compute the following slow roll parameters and the

number of e-folds for this model

� =
4

3

"
1 + (1� �)(�R)�
2�(�R)� + �R

#2
; (4.62)

� =
8

3
� 4

"
1 + (� + 1)(�R)� + �R

2�(�R)� + �R

#
(4.63)

+
4

3

(
1 + 2(� + 1)(�R)�[1 + �R] + (� + 1)2(�R)2� + 2�R+ (�R)2

�R [�(� + 3)(�R)� + �R+ 2�2(� + 1)(�R)2��1]

)
;

� =
16

9

h
1 + (1� �)(�R)�

i
[2�(�R)� + �R]2

8<
:�

�(� + 1)(� � 1)
h
1 + (� + 1)(�R)� + �R

i3
(�R)�

(�R)3 [1 + �(� + 1)(�R)��1]3

� 3

h
1 + (� + 1)(�R)� + �R

i2
�R [1 + �(� + 1)(�R)��1]

+ 7 + (7� �)(�R)� + 3�R

9=
; ; (4.64)

N =
3

4

Z
d(�R)

"
2�2(� + 1)(�R)2��1 + �(� + 3)(�R)� + �R

1 + 2(�R)� + (� + 1)(1� �)(�R)2� + (1� �)(�R)�+1 + �R

#
: (4.65)

As it was shown in Sec.4.1.5, the viable range for �, determined from the Planck 2015

constraints on ns and r, is 0 < � < 0:8.

As in the Starobinsky case, expressed by (4.56), we assume that �R � 1. Therefore,

(4.65) can be approximated to

N � 3

4

Z �Ri

�Rf

d(�R)
�R

(1� �)(�R)�+1 � 3

4

(�R)1��

(1� �)2 : (4.66)
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The latter allows us to express �, � and � in terms of N as

� =
3

4(1� �)2N2
; (4.67)

� = � 1

N
; (4.68)

� =
1

(1� �)2N2
: (4.69)

We choose � = 1=2 and N = 60 as an explicit example in order to compare its predictions

for the slow roll parameters, and consequently the non-Gaussianity function, with those of the

Starobinsky model. For this case the slow roll parameters of the �-model are estimated as

�(�=1=2) = 8:3� 10�4 ; (4.70)

�(�=1=2) = �1:6� 10�2 ; (4.71)

�(�=1=2) = 1:1� 10�3 ; (4.72)

from which we can compute the tensor-to-scalar ratio, scalar spectral index and running of

the scalar index as

r = 0:013 ; ns = 0:966 ; �s = �0:002 : (4.73)

We show the evolution of the slow roll parameters � and � for the Starobinsky model

and the �-model, with � = 1=2, as functions of N in Figure 4.7. The evolution of the tensor-

to-scalar ratio versus the scalar spectral index for the Starobinsky model and for the �-model,

with � = 1=2, are shown in Figure 4.8. For completeness, we express �s for the Starobinsky

model and the �-model, with � = 1=2 versus N and the evolution of �s vs � are presented

in Figure 4.9.
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Fig. 4.7.: Left Panel. Evolution of � as function of N for the Starobinsky model (solid line) and the
�-model with � = 1=2 (dashed line). Right Panel. Evolution of � as function of N for
the Starobinsky model (solid line) and the �-model with � = 1=2 (dashed line).
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Fig. 4.8.: Left Panel. Prediction of the Starobinsky model for N = 50 (dashed line) and N = 60

(dotted line) on the space (ns; r). Right Panel. Prediction of the �-model for N = 50

(dashed line) and N = 60 (dotted line) on the space (ns; r).
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Fig. 4.9.: Left Panel. Evolution of �s as function of N for the Starobinsky model (solid line) and
the �-model with � = 1=2 (dashed line). Right Panel. Running of the spectral index
for the �-model showing the cases : N = 50 (dashed line), N = 60 (dotted line) and
N = 100 (solid line).
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Generic non-gaussianities for a f(R) model

The slow roll parameters defined in (4.31) from the potential U are related to the ones

defined from the Hubble parameter as follows

� � �H ; (4.74)

� � �H + �H ; (4.75)

� � �H + 2�H(3�H � �H); (4.76)

Notice that for a successful inflation, we need �� 1, � � 1 for a standard Starobinksy

model and additionally � � 1 for an �-attractor model. Indirectly, large values of � are likely

to make � and � grow as well.

Another important tool to understand the primordial Universe is the non-gaussianity.

Constraints on its observation can provide information about the nature of the inflaton, whether

it is a canonical field or multiple fields, or if inflation happens in a higher order scalar tensor

theories, and other possibilities, since every model produces a distinct signal for fNL (depending

on the configuration of triangles) of 3-momenta.

The standard, single-field slow-roll models of inflation predict adiabatic and gaussian

primordial perturbations with a nearly scale-invariant spectrum, and their non-gaussianity para-

meter is given by [88]

fNL � (ns � 1) � 10�2 ; (4.77)

which is consistent to the current Planck constraints jfNLj . O(10).

More explicitly, in standard inflation driven by a potential U�, we have the equilateral

non-linear parameter as [89]

f equil
NL =

55

36
�H +

5

12
�H ; (4.78)
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therefore, using our definitions for the slow roll parameters (4.74), we can have a generic

non-Gaussianity parameter for f(R)

f equil
NL =

30

27
�+

5

12
� : (4.79)

From this generic result, we can express the non-Gaussianity parameter in terms of N for the

Starobinsky model as

f equil
NL =

15

18N2
� 5

12N
: (4.80)

and for the �-model

f equil
NL =

15

18(1� �)2N2
� 5

12N
: (4.81)

When we choose � = 1=2, the non-Gaussianity parameter becomes

f equil
NL =

30

9N2
� 5

12N
: (4.82)

In Figure 4.10 we present the behaviour of f equil
NL , given by (4.81). Also, we show the

non-Gaussianity parameter for the Starobinsky model, given by (4.80), and for the �-model

with � = 1=2, given by (4.82), as functions of the number of e-folds.
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Fig. 4.10.: Left Panel. Non-gaussianity parameter for the �-model showing the cases : N = 50

(dashed line), N = 60 (dotted line) and N = 100 (solid line). Right Panel. Non-
gaussianity parameter evolution for the Starobinsky model (dashed line) and the �-model
(solid line), with � = 1=2, as functions of N .

It is important to highlight that our results are given for a single field model, which has a
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standard kinetic term, in the Einstein gravity and respects the slow roll conditions. So in order

to obtain observably large non-gaussianities, it is necessary to violate one of these assumptions.

There are several developments in this subject, since primordial non-gaussianities are one of the

most promising probe of the physics of the early universe [90]. A recent interesting proposal

is [91], where a generalisation of Maldacena’s single-field result [88] to multifield models is

obtained.
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5Alternative to Inflation

As discussed in the previous chapters, we know there is strong evidence for the exist-

ence of primordial density perturbations on large scales from cosmological observations. The

standard explanation for the origin of the primordial perturbations is inflation, in which the

universe underwent an accelerated expansion in the early universe. Although it is a well tested

paradigm since its predictions on the primordial power spectrum can be successfully com-

pared with observations of the CMB, inflation has some conceptual problems which motivate

the exploration of alternative scenarios for the early universe. Among these challenges, we

highlight

• The singularity problem, since even if inflation can be achieved by a scalar field coupled

to Einstein gravity, this inflationary universe is past incomplete [92, 93]. This means

that inflation cannot provide the whole history of the very early universe;

• The difficulty of constructing sufficiently flat potentials for inflation (or quasi de Sitter)

solutions in string theory or supergravity [61, 62]. Even knowing that these swampland

criteria have been severely criticised [94], it is worth to investigate whether or not inflation

is the only consistent model for the origin of large-scale structure in our universe;

• The trans-Planckian problem for fluctuations, since if inflation lasts longer than the

minimal amount of time necessary to solve the initial condition problems of Cosmology,

then the wavelengths of cosmological scales originate at sub-Planckian values [95]. By

knowing that in the trans-Planckian regime, General Relativity and Quantum Field The-

ory are not valid anymore, it is at least awkward considering the origin of cosmological

perturbations in this regime;

Going further, we do not have a unique prescription for the initial conditions of our

Universe, so there is no reason to avoid considering other mechanisms beyond inflation. Con-

tracting Cosmologies, for example, can be a possible explanation in which the large scale
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structure of our Universe is generated from vacuum fluctuations before the Big Bang. Simil-

arly to inflation, it is also possible to calculate a spectrum of perturbations on super-Hubble

scales in the Hot Big Bang model assuming vacuum fluctuations on sub-Hubble scales in a

preceding contracting phase. To make sure the spectrum calculated in the collapse phase

is indeed related to perturbations in the standard Hot Big Bang, we need an intermediate

bounce. The idea of a cosmological bounce is quite old (the first solutions were obtained in

the late 70’s [96, 97]), and it generically consists in considering the increasing of the Hubble

rate, which emerges from the contracting phase with a negative value, until it becomes positive

since it characterises the expanding phase. Hence, it is possible to have a causal generation

mechanism for vacuum fluctuations. Obviously, the nature of a bounce depends on the specific

model considered, for more information on general features and current status of Bouncing

Cosmologies, see [98, 99, 100, 101, 102].

Unfortunately, it is beyond the scope of this thesis to describe a bounce mechanism.

Our goal here is to provide some statements about the primordial perturbations inherited from

a preceding collapse phase by including stochastic effects. So, in this chapter, which is based

in [43], we first review the classical dynamics of a scalar field cosmology with an exponential

potential, and we discuss the phase-space portrait for this theory as well as the stability of the

fixed points which represent power law expansion or collapse. We study linear perturbations

about the background solutions and in particular the solutions of the perturbed field in a

collapsing scenario. Then, we describe the stochastic formalism, which modifies the classical

dynamics of the scalar field above a coarse-graining scale, in order to apply it to study of

the quantum fluctuations in the form of a stochastic noise on large scale. Finally, we study

the deviations about the classical solution in phase-space, as well as the maximum lifetime of

collapsing scenarios in the presence of stochastic fluctuations.

Collapsing universe

In order to set the initial conditions for inhomogeneous perturbations at early times, we

will consider a canonical scalar field with energy density and pressure, given by (3.3), where
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V (') is the potential energy given by V (') / e���', and � is the slope of the potential. This

provides the scaling solution1

P = w� where 3(1 + w) = �2 : (5.1)

It is possible to identify three scalar field collapse scenarios based on the form of the

potential [103, 5, 27]

• Non-stiff collapse with P < �, V > 0 (including scale-invariant collapse);

• Pre-Big Bang collapse with P = �, V = 0 (blue tilted collapse);

• Ekpyrotic collapse with P � �, V < 0 (ultra-stiff fast roll collapse);

Background phase-space

In order to perform a qualitative analysis of the system described by (3.7) and (3.8),

new variables can be introduced as [5]

x =
� _'p
6H

; y =
�
p�Vp
3H

; (5.2)

where H = _a=a is the Hubble rate and we use � for positive and negative scalar potentials,

�V > 0. With these variables, we can write the Friedmann constraint (3.8) as

x2 � y2 = 1 ; (5.3)

Note that the equation of state (3.5) becomes

w =
x2 � y2
x2 � y2 : (5.4)

1Scaling solutions are solutions in which the energy density of the scalar field mimics the background energy
density. This means the energy density of the scalar field decreases proportionally to that of a barotropic
perfect fluid.
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Then, we are able to rewrite (3.7) in terms of the autonomous system

x0 = �3x(1� x2)� �
q
3=2y2 ; (5.5)

y0 = xy(3x� �
q
3=2) ; (5.6)

where a prime is a derivative with respect to the logarithm of the scalar factor, N = ln a. We

identify critical points of the system with fixed points where x0 = 0 and y0 = 0.

There are two kinetic-dominated solutions

xa = �1 or + 1 ; ya = 0 ; (5.7)

with equation of state Eq.(5.4) wa = 1. These fixed points therefore correspond to solutions

where a / t1=3 in an expanding universe for t > 0, or a / (�t)1=3 for t < 0 in a contracting

universe.

There is also a potential-kinetic-scaling solution for �(6� �2) > 0 (i.e., a sufficiently

flat positive potential, �2 < 6 for V > 0, or a sufficiently steep negative potential, �2 > 6 for

V < 0) which is given by

xb =
�p
6
; yb =

s
�(6� �2)

6
: (5.8)

This scaling solution, corresponds to a solution with constant equation of state (5.4)

wb =
�2

3
� 1 ; (5.9)

and thus a power-law solution for the scale factor:

a(t) / jtjp ; '(t) =

s
4

3�2(1 + wb)
ln jtj+ C ; (5.10)
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where C is an arbitrary constant of integration and:

p =
2

�2
: (5.11)

First-order perturbations around this critical point yield the linearised equation [5]

x0 =
(�2 � 6)

2
(x� xb) ; (5.12)

and its phase-space is described in Fig.5.1.

y

B+

A+
x

B-

A-

Fig. 5.1.: Phase-space for flat positive potentials, �2 < 6. Arrows indicate evolution in cosmic time,
t. Image Credit: Ref.[5].

We see that in an expanding universe, H > 0, the scaling solution (5.8) is stable for

�2 < 6, corresponding to p > 1=3 from (5.11). Thus the scaling solution is stable whenever

it exists for a positive potential in an expanding universe, but it is never stable for a negative

potential in an expanding universe. Conversely, in a collapsing universe, since N decreases

with cosmic time, H < 0, the scaling solution is stable for �2 > 6, corresponding to p < 1=3.

Thus the scaling solution is stable whenever it exists for a negative potential in a collapsing

universe, but it is never stable for a positive potential for H < 0.

In summary:
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• Expanding universe (N ! +1):

� The scaling solution exists and is stable for a positive, flat potential p > 1=3

(including inflation, p > 1).

� The scaling solution exists but is unstable for a negative, steep potential p < 1=3.

• Contracting universe (N ! �1):

� The scaling solution exists and is stable for a negative steep potential p < 1=3

(including ekpyrosis, p� 1).

� The scaling solution exists but is unstable for a positive flat potential p > 1=3

(including matter collapse, p ' 2=3).

Scalar field and metric perturbations

The configuration we chose, i.e., a scalar field with exponential potential, allows us to

explore the similarities between expanding and contracting scenarios. Then, we can apply the

same method we used in Sec.3 to obtain the perturbed spectrum in collapsing universes, as

show in [27].

Hence the solutions for small (sub-Hubble) and large (super-Hubble) scales are respect-

ively

�' ' e�ikt=a

a
p
2k

for k2=a2 � H2 ; (5.13)

�' ' C _'

H
+
D _'

H

Z H2

a3 _'2
dt for k2=a2 � H2 : (5.14)

where we have chosen the quantum vacuum normalisation for the under-damped oscillations

on sub-Hubble scales (5.13).
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A characteristic feature of an inflating spacetime is that the comoving Hubble length

decreases in an accelerating expansion with _a > 0 and �a > 0. The same is true for the

comoving Hubble length, jHj�1=a = 1=j _aj in a decelerating, collapsing universe with _a < 0

and �a < 0.

As a result quantum vacuum fluctuations on sub-Hubble scales at early times (5.13),

lead to well-defined predictions for the power spectrum of perturbations on super-Hubble scales

for potential-kinetic-scaling solutions with �2 < 2 and hence p > 1 in an expanding cosmology,

or with �2 > 2 and hence p < 1 in a collapsing cosmology.

The characteristics of the inflation and collapse models for different values of p are

summarised in table 5.1.

Power-law inflation Decelerated collapse
H > 0 H < 0

_a > 0, �a > 0 _a < 0, �a < 0

p > 1 0 < p < 1
Tab. 5.1.: Comparing the quantities H, _a, �a and p for power-law inflation and collapse. Although

_a is negative in the collapse case, its magnitude j _aj is increasing. p < 0 is not allowed
since this would requires �' + P' < 0.

Scalar field perturbations in a power-law collapse

Considering a collapsing universe with the scale factor being a power-law scaling solution

with a / (�t)p and t < 0, we can reexpress the scale factor in terms of conformal time as

a(�) / (��)p=(1�p) ; (5.15)
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Using the relation for the Hubble rate in conformal time, H = a0=a2, we find that a

can also be expressed as

a =

 
p

1� p

!
1

H�
; (5.16)

where � < 0.

Since _'=H is constant in this case we have z / a, which allows us to rewrite (3.26)

as a Bessel equation

d2v

d�2
+

 
k2 � �2 � 1=4

�2

!
v = 0 ; (5.17)

where

� =
3

2
+

1

p� 1
= �3

2

"
1 + (3p� 2)

1� (3p� 2)

#
: (5.18)

Note that for power-law collapse with p < 1 we have � < 3=22.

Similarly as the procedure to derivate (3.32), we already know that the general solution

for a given k can be expressed as a linear combination of Hankel functions, then we can

normalise the solution with the Bunch-Davies vacuum on small scales, and find corresponding

solution on large scales (late times) for k� ! 0

�'k =
i

a

s
1

4�k

�(j�j)2j�j
jk�jj�j�1=2 : (5.19)

As discussed in [27], this solution generates a scale invariant spectrum, j�'2kj / k�3, not only

for slow-roll inflation (P=�! �1 and � = 3=2) but also for a pressureless collapse (P=�! 0

and � = �3=2).

2In Appendix B we explicitly show the mapping between the quantities p, �, �2 and w.
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Combining Eq.(5.19) and Eq.(5.15), we see that in this large-scale limit the field per-

turbations are constant for � > 0, since:

�'k / 1

a
(��) 12�j�j / (��)��j�j : (5.20)

Conversely, for � < 0 we see that the scalar field perturbations can grow rapidly on super-

Hubble scales and diverge as � ! 0.

Stochastic formalism

As we discussed in Chapter 3, we considered the homogeneous part of the scalar

field to evolve classically, and its perturbations are treated as quantum mechanical quantities.

An issue that could be raised in this scenario is: Can quantum corrections to the classical

trajectory modify the background evolution? A possible answer for it can be found by using

the stochastic approach. It models the effect of quantum vacuum fluctuations by introducing

a cut-off scale (the so-called coarse-graining scale) splitting the fluctuations into two parts:

quantum vacuum modes (below the coarse-graining scale) and the long wavelength field which

includes a stochastic noise.

Since we would like to investigate how the equation of state of a inflationary or collapse

cosmology can be modified by stochastic effects, we first dedicate this section to describe the

stochastic formalism, and after apply it for the case of a scalar field with an exponential

potential.

Stochastic noise from quantum fluctuations

We will keep working with a single scalar field ' with potential V ('), described by

(3.1), for simplicity, but this analysis could be extended to a multiple-field configuration. Also,

our analysis is made to scalar fluctuations only, so we are using the metric given by (3.18).
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The Hamilton equations from the action (3.1) are given by

@'

@N
= � ;

@�

@N
= (�H � 3)� � V'(')

H2
; (5.21)

where the homogeneous background field ' and its conjugate momentum � are two independ-

ent dynamical variables needed to formulate the stochastic inflation (or collapse) in the full

phase-space.

The crucial point of the stochastic formalism is to split the scalar field and its mo-

mentum into a long wavelength part and small-wavelength part as

' = '+ 'Q ; � = � + �Q ; (5.22)

where ' and � are the coarse-grained quantities, and the subscript “Q” describes the small-

wavelength quantities

'Q =
Z d3k

(2�)3=2
W

 
k

k�

! h
a~k'~k(N)e�i

~k�~x + ay~k'
?
~k
(N)ei

~k�~xi ; (5.23)

�Q =
Z d3k

(2�)3=2
W

 
k

k�

! h
a~k�~k(N)e�i

~k�~x + ay~k�
?
~k
(N)ei

~k�~xi ; (5.24)

here ay~k and a~k are creation and annihilation operators3, and W is a window function. This

means that when its argument is small (k=k� � 1), W w 0, and when its argument is

large (k=k� � 1), W w 1. The inclusion of this time-dependent comoving cut-off scale (the

so-called coarse-graining scale)4

k� = �aH ; (5.25)

allow us to derive an effective equation of motion for ', integrating out the degrees of freedom

contained in 'Q.

Applying the decompositions given by (5.22) into the classical equations for motion

(5.21), the equations for the long-wavelength parts become stochastic Langevin equations for

3a
y

~k
and a~k satisfy the usual commutation relations [a~k; a

y

~k
] = �3(~k � ~k0) and [a

y

~k
; a

y

~k
] = [a~k; a~k] = 0.

4� � 1 is a fixed parameter that sets the coarse-graining scale [40].
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the random field variables ' and �

@'

@N
= � + �' ; (5.26)

@�

@N
= (�H � 3)� � V'(')

H2
+ �� ; (5.27)

where the quantum noises �' and �� are given by

�' = �
Z d3k

(2�)3=2
dW

dN

 
k

k�

! h
a~k'~k(N)e�i

~k�~x + ay~k'
?
~k
(N)ei

~k�~xi ; (5.28)

�� = �
Z d3k

(2�)3=2
dW

dN

 
k

k�

! h
a~k�~k(N)e�i

~k�~x + ay~k�
?
~k
(N)ei

~k�~xi : (5.29)

This leads to stochastic noise associated with the small wavelength modes crossing the

coarse-graining scale into the long-wavelength field at each time step, dN , described by the

two-point correlation matrix �(~x1; N1; ~x2; N2)

�f;g(~x1; N1; ~x2; N2) = h0j�f(~x1; N1)�g(~x2; N2)j0i ; (5.30)

with f , g and �f , �g being shorthand notation for the field or its momentum and their respective

noises. Then, we can rewrite these entries in terms of the power spectrum for white noise 5

as [40]

�f;g(N) =
1

6�2
dk3�(N)

dN
fk (N) g�k (N) : (5.31)

The stochastic approach provides a powerful way of calculation for quantum field effects

on inflationary/collapsing spacetimes. Knowing that the presence of a stochastic noise can

affect the stability of a dynamical system in a non-trivial way, our target now is to investigate

how these stochastic perturbations can modify the equation of state of scalar field with an

exponential potential in inflationary or collapsing scenario.

5such that h�(N)i = 0 and h�(N1)�(N2)i = �(N1 �N2).
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Perturbations in phase-space variables

Introducing first order perturbations of the dimensionless phase-space variables (5.2),

we obtain

�x =
�p
6

1

H

 
_�'� A _'� _'

H
�H

!
; (5.32)

�y =
�p
3

p
V

H

 
V;'
2V

�'� �H

H

!
; (5.33)

where we are also including the metric perturbations t ! (1 + A)t and H ! H + �H as

described in [37]. By perturbing the Friedmann equation, we easily obtain

�H =
�2

6H
(V;'�'+ _' _�'� _'2A) ; (5.34)

and since we are working in the spatially-flat gauge we can use the momentum constraint to

write the perturbed lapse function in terms of the scalar field perturbation as

A =
�2 _'�'

2H
: (5.35)

At the critical point x = xb given by (5.8), the large-scale solution for the scalar field

perturbations (5.19) then gives6

�x =
i�p
24�

 
1� �2

6

!�
2

2� � 1

�2 �(j�j)2j�j
kj�j

(j�j � �) H (��)�j�j+3=2 ; (5.36)

To find the stochastic version of the first-order perturbations equation given by (5.12),

given in terms of number of e-folds. Let us then re-express �x by setting a pivot scale

H = H? exp

" 
� � 3=2

� � 1=2

!
(N? �N)

#
: (5.37)

6The kinetic dominated solution analysis is briefly discussed in Appendix C, since it provides �x = 0 without
regard to the solution �'.

5.2 Stochastic formalism 59



where N = ln a is the logarithmic expansion (or “e-folds”) and the conformal time can be

expressed using (5.15) as

(��) = (��?) exp
"

1

� � 1=2
(N? �N)

#
: (5.38)

which gives:

�x =
i�p
24�

 
1� �2

6

!�
2

2� � 1

�2+j�j �(j�j)2j�j
�j�j

(j�j � �)H?(��)3=2? exp

"
�

� � 1=2
(N? �N)

#
:

(5.39)

Perturbing the Friedmann constraint (5.3) leads to the expression for �y on large

scales

�y = �x
y
�x : (5.40)

As a consequence, we can write the perturbation of the equation of state (5.4) as:

�w = 4x�x : (5.41)

For adiabatic perturbations on large scales, which leave the equation of state unperturbed

�w = 0, we have �x = �y = 0, i.e., adiabatic perturbations leave the critical points in

the phase-space unperturbed. Adiabatic perturbations on large scales correspond to local

perturbations forwards or backwards in time along the background trajectory [104].

Quantum diffusion in phase-space

Near the critical point x = xb given by (5.8), the stochastic version of (5.12) is7

d(�x� xb)
dN

= m(�x� xb) + �̂x; (5.42)

7For more informations on stochastic differential equations, see e.g. [105].
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where the eigenvalue m = (�2�6)=2, whose solution is given by considering an Itô process

�x(N)� xc = em(N�N?) (�x(N?)� xc) +
Z N

N?

em(N�S)�̂xdS: (5.43)

We define the variance associated with the coarse-grained field �x as

�2x :=
D
(�x(N)� xc)2

E
; (5.44)

whose evolution equation is given by

d�2x
dN

= 2m�2x + 2
D
�̂x (�x� xc)

E
: (5.45)

The solution can be split into a classical part and a quantum part, given by8

�2x(N) = �2x;cl(N) + �2x;qu(N)

= �2x(N?)e
2m(N�N?) +

Z N

N?

dS e2m(N�S)�x;x(S) ; (5.46)

where the two-point correlation matrix �x;x(S) is defined in Eq. (5.31), using the notation

of [40]. The classical part, �2x;cl(N), is given by the variance at some initial time times an

exponential function of the number of e-folds. The quantum part, �2x;qu(N), is the accumulated

noise between the initial time and a later time.

We find the two-point correlation function for the perturbations in the dimensionless

phase-space variable, x, by applying (5.31) to �x given in (5.39) as

�x;x(N) =
1

2�2
�3
�
� � 1

2

�2 1

(��?)3 exp
" �3
� � 1=2

(N? �N)

#
j�xj2

= g(�; �)�2H2(N) ; (5.47)

with

g(�; �) :=
�2(j�j)�222j�j+4
(12�)3�2j�j�3

�
2

2� � 1

�2j�j+4
(j�j � �)2 : (5.48)

8We show the explicit calculation in Appendix F.
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As previously noted, for � > 0 the classical trajectory for x remains preserved by the

leading order perturbations in the scalar field since �x = 0 on large scales (k� ! 0) 9, but

the same is not true for � negative since in this case �x 6= 0. We derive in Appendix E an

alternative way to find this result using perturbations of the field and momentum.

Inserting our result for the correlation function (5.47) in the quantum part of (5.46),

we find

�2x;qu(N) = g(�; �)�2H2
? exp

"
3� 2�

� � 1=2
(�N?)

#
e2mN

Z N

N?

dS e�2mS exp

"
3� 2�

� � 1=2
S

#
:

(5.49)

Re-expressing the eigenvalue m in terms of the index, m = �2�=(� � 1=2), the solution of

(5.49) is then

�2x;qu(N) = ~g(�; �)�2H2(N)

(
1� exp

"
3 + 2�

� � 1=2
(N? �N)

#)
; (5.50)

where

~g(�; �) =

 
� � 1=2

3 + 2�

!
g(�; �)

=
�2(j�j)22j�j+4
(12�)3�2j�j�3

 
�2

3 + 2�

!�
2

2� � 1

�2j�j+3
(j�j � �)2 : (5.51)

Equation (5.49) is given in terms of the Hubble scale at a fixed time, H?, while we have used

(5.37) to give the variance (5.50) in terms of the time-dependent Hubble scale, H(N).

We can compare the growth rate of the classical and quantum perturbations by compar-

ing the time dependence from the two parts in (5.46). We note first that the time dependence

of the classical term goes as

�x;cl / exp

"
4�

� � 1=2
(N? �N)

#
: (5.52)

9In Appendix D, we take into account the next-to-leading order field contribution to compute �x;x(N) and
show that even in this configuration quantum diffusion should not take the system away from the fixed
point. We show in particular that this is the case for quasi-de Sitter inflation.
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From (5.50), we see the time dependence of the quantum term behaves as

�x;qu / exp

"
4�

� � 1=2
(N? �N)

#(
exp

"
� 3 + 2�

� � 1=2
(N? �N)

#
� 1

)
: (5.53)

Remember N? � N grows with time (N decreases) in an expanding universe. Thus, the

quantum variance decays with time if we have

3 + 2�

� � 1=2
> 0 : (5.54)

This is the case if either � > 1=2 or � < �3=2. However, a positive � will cancel the leading

order quantum diffusion, so we will consider only the second case, � < �3=2, in the following

analysis. Thus, the classical perturbations grow faster than the quantum noise if � < �3=2,
and the quantum noise grows faster if � > �3=2.

Also, the condition (5.54) provides a shift in the spectrum, when compared to the case

� = �3=2, since the scalar spectral index can be written in terms as [106, 107, 108, 109, 99,

110]

ns = 1 +
12w

1 + 3w
= 1 +

4(2� + 3)

3
; (5.55)

and it is clear to see that when � = �3=2� �, where � is a small positive parameter, w < 0

and the spectrum becomes red, i.e., ns < 1. In Fig.(5.2), we show what values for � are in

agreement with Planck data.

To understand the behaviour around � � �3=2 we will consider � = �3=2� � which
for j�(N? �N)j � 1 leads to

�2x;qu(N) =
3

128�

1

�2�
H2(N)

M2
pl

(N? �N) ; (5.56)

where we have used �2 = 8�=M2
pl with Mpl the Planck mass, and we recall that � is the

coarse-graining scale. The diffusion thus has the form of a random walk with N? � N steps

of equal, but growing, length / jH(N)j.

We see that (5.56) depends weakly on the coarse-graining scale for � � �3=2, and
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Fig. 5.2.: Evolution for ns as function of �. The horizontal dotted lines enclose the 68% confidence
level of the values of ns measured by Planck collaboration 2018.

becomes independent of � in the limit � = �3=2, where � ! 0. This is not surprising since

we know that quantum fluctuations in a pressureless collapse give rise to a scale-invariant

spectrum of perturbations [107, 108, 111].

Maximum lifetime of the collapsing phase

We can now examine when the variance becomes large, i.e., when �x;qu � 1, so that

the quantum diffusion due to the stochastic noise results in a significant deviation from the

critical point.

• Radiation-dominated collapse: Consider first the case of a potential-kinetic-scaling

collapse with � = 2, giving rise to an equation of state w = 1=3, analogous to a

radiation-dominated cosmology, and index � = �1=2. The variance (5.50) in this case

becomes

�2x;qu(N) =
�2

54�

H2
?

M2
pl

fexp [4 (N? �N)]� exp [2 (N? �N)]g

� �2

54�

H2(N)

M2
pl

; (5.57)
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where to get the second line, we have neglected the second exponential term since the

first one will grow much quicker. For �2x;qu(Nend) = 1, we get the straightforward result

jHendj � 13

�
Mpl : (5.58)

We conclude that a radiation-dominated collapsing phase cannot escape the fixed point

due to quantum diffusion until it approaches the Planck scale. Indeed, since we require

� < 1, we see that a deviation from the classical fixed point x = xb due to quantum

diffusion would require the Hubble scale to become greater than the Planck scale. In

practice as soon as the Hubble scale approaches the Planck scale our semi-classical

analysis breaks down;

• Pressureless collapse: For the case of a pressureless collapse, � = �3=2, we find

�x;qu(Nend) = 1 when

jHendj =
s

128�

3(N? �Nend)
Mpl (5.59)

Thus, for pressureless collapse case, quantum diffusion gives a time, tend, at which

stochastic trajectories leave the classical fixed point before we reach the Planck scale,

jHendj < Mpl, if the number of e-folds during the collapse is greater than 134. We show

a simple example in Fig.(5.3). In terms of the initial Hubble rate, using (5.37) for the

Hubble rate H(N) for � = �3=2, we have

(N? �Nend) exp [3(N? �Nend)] =
128�

3

M2
pl

H2
?

; (5.60)

from which we get an approximate number of e-folds during the collapse phase

N? �Nend � 2

3
ln

0
@
s
128�

3

Mpl

jH?j

1
A : (5.61)

Conversely we can obtain an expression for the Hubble rate at the end of the pressureless

collapse starting from an initial Hubble rate H? given by

jHendj �
vuut 64�

ln
�q

128�
3

Mpl

jH?j
�Mpl : (5.62)
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Fig. 5.3.: Evolution of the Hubble rate, jHj, in a pressureless collapse. For quantum diffusion to
lead to a deviation from the classical fixed point before the Hubble rate reaches the Planck
scale, jHendj < MPl, requires a very low initial energy scale, jH�j � jHendj.

Knowing how the comoving Hubble length behaves in terms of time during pressure-

less collapse, we can estimate a lower limit on the number of e-folds required during

pressureless collapse to solve the horizon and smoothness problems of the hot big bang:

kend
k?

=
aendHend

a?H?
=
�
t?
tend

�1=3
= e(N?�Nend)=2 > e70 ; (5.63)

where we are considering 70 as a ratio between the Hubble length over Planck scale

compared to horizon size today. This is a similar number for inflation to solve the

flatness and horizon problems of Big Bang cosmology. Then, we would need

N? �Nend > 140 ; (5.64)

which is remarkably close to the estimate N? �Nend > 134 that follows from requiring

jHendj < Mpl (5.59);
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6Final Considerations

The first objective of this thesis was to derive observational constraints on inflationary

models that arise from f(R) theories. Motivated by the good agreement between the cos-

mological parameters ns and r provided by the �-Attractors theory and recent observations,

in Section 4.1, we derive a differential equation for a f(R) theory from the scalar potentials

of �-Attractors, (4.11), in order to find a f(R) theory compatible with this class of models.

Since this differential equation cannot be solved analytically for any choice �, we make an

asymptotic analysis at high energies, where inflation is expected to take place, and show that

the ansatz (4.22) represents a viable solution to the differential equation (4.11) at the leading

and sub-leading order in the limit R!1. Then, we investigate the predictions on the infla-

tionary parameters provided by the power law extension of the Starobinsky model and show

that they are in very good agreement with observation, allowing for a greater production of

gravitational waves, i.e. a larger r, than in the Starobinsky model. We also made a detailed

analysis of the model f(R) = 
R2�� and found a mostly horizontal movement of the predic-

tions of the model in the r–ns plane, indicating that the missing of the R2 term in the action

alters drastically the behaviour of the inflationary evolution.

The reconstruction here performed of the �-Attractors models is confined to a f(R)

model. Another investigation in this sense could start from a more general extension of GR,

such as the Horndeski theory [112].

In Section 4.2, we also present formulae for the inflationary slow roll parameters (�,

� and �) and the non-Gaussianity function f equil
NL to be used in any kind of f(R) propos-

als which satisfies the condition for slow roll existence, i.e., any f(R) that behaves like

f(R)=R2 � constant. As an example, we develop these quantities using the Starobinsky

model and the �-model, which is a f(R) approximate reconstruction of the �-Attractors

class of inflationary models. As shown in Figure 4.10, these two models provide small non-

Gaussianity parameters, which is in good agreement with recent constraints [89], that despite
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the agreement of the Planck data sets with the Gaussian scenario, they do not rule out the

presence of non-Gaussianities of small intensity.

Since the origin of the vacuum fluctuations leading to the large-scale structures we

observe in the Universe is still unknown, the second goal of thesis was the study of such

fluctuations in a collapse phase. In Chapter 5, we considered three possible cosmological

scenarios: a power-law inflation, a runaway collapse and the ekpyrotic collapse. It is well

known that inflation and the ekpyrotic models are classically stable under perturbations, while

the matter collapse is unstable. We showed that the quantum perturbations do not drive

inflationary and ekpyrotic models away from their fixed point in phase-space, what in turn

means one does not modify the classical behaviour of such models by adding quantum noises.

In fact, all models with a positive index � (index of the Bessel function governing the evolution

of the Mukhanov-Sasaki variable) have an identically vanishing quantum contribution. As a

consequence, only models with a negative index, including the pressureless collapse, see their

classical equation of state being pushed away from the critical point. The perturbation of the

equation of state, or equivalently of the kinetic variable x we used throughout this paper, is

summarised in Table (6.1).

Finally, we studied the maximum lifetime of the quantum noise for a negative � in

a collapse phase. The general case seems to show that collapse models are stable against

quantum diffusion. However, for the interesting value � = �3=2 corresponding to a pres-

sureless collapse, known to be scale-invariant, we found the quantum diffusion takes us away

from the critical point if we start the collapse from very low energy scales and if it lasts more

than 134 e-folds, with no dependence on the coarse-graining scale. Even though for a value

of � arbitrarily close to �3=2 we recover some dependence on the coarse-graining scale, this

dependence is found to be weak.

Inflation / Ekpyrotic collapse Pressureless collapse
� > 0! adiabatic noise � < 0! non-adiabatic noise

�w = 0 �w 6= 0
Tab. 6.1.: Table comparing the behaviour of �w for three cases in the limit � ! 0: de Sitter

inflation (� = 3=2), ekpyrotic collapse (� = 1=2) and pressureless collapse (� = �3=2).

As we focused on stochastic effects in a collapsing universe, the question of the per-
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turbations fate through the singularity naturally emerges in this context. However, it is not

possible to model a cosmological bounce in our approach as we have used the number of

e-folds as time variable, which is not well suited to tackle this issue. A way-out could be the

introduction of stochastic perturbations in the scale factor, while the field itself becomes the

time variable. Also, we have not taken into account the gauge corrections arising from working

out the field perturbations in conformal time and their subsequent use in the stochastic noise

in terms of number of e-folds, so it would be interesting to use the stochastic formalism beyond

the usual slow-roll approximation [37] to study this gauge issue in collapsing scenarios.
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ADetailed investigation of the

differential equation (4.11)

In this appendix we investigate in greater detail (4.11), which we report here

Rf 0 � f =
3M2

2(1� �)2
�
f 0 � f 0�

�2
: (A.1)

First of all, we define f(R) � R+F (R), i.e. we postulate the presence of the Einstein-Hilbert

term and focus our attention just on its correction. Equation (A.1) thus becomes

RF 0 � F =
3M2

2(1� �)2 (1 + F 0)2
h
1� (1 + F 0)��1

i2
: (A.2)

Next, we normalise R and F to 3M2=2 and define 
 � � � 1 = �1=p� < 0, thus obtaining

RF 0 � F =
(1 + F 0)2


2
[1� (1 + F 0)
]2 : (A.3)

Deriving this equation with respect to R, we obtain

2 (F 0 + 1) [(F 0 + 1)
 � 1] [(
 + 1) (F 0 + 1)
 � 1]


2
F 00 = RF 00 : (A.4)

Now, this equation is satisfied if F 00 = 0 but then it would give a linear solution for F (R)

in which we are not interested since we have already stipulated that f(R) � R + F (R).

Therefore, we assume that F 00 > 0, and the above equation gives us

R =
2 (F 0 + 1) [(F 0 + 1)
 � 1] [(
 + 1) (F 0 + 1)
 � 1]


2
: (A.5)

For 
 = �1, one can easily recover the Starobinsky case, since

R = 2F 0 ) F =
R2

4
; (A.6)

and restoring the normalisation by 3M2=2 one obtains R+R2=6M2.
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Equation (A.5) gives us a constraint on the expression of F 0(R) which we must take

into account when solving (A.3) in order to select the correct initial condition and exclude the

linear solution. Note that F 0 = 0 implies from (A.5) that R = 0 and then, from (A.3), that

F = 0. We have thus that F (0) = F 0(0) = 0, as desired.

The strategy in order to numerically obtain a solution F (R) is the following. We choose

an initial, small but non vanishing Ri � �; determine F 0(�) from (A.5); determine the initial

condition F (�) from (A.3); solve either (A.3) or (A.5). A simpler way is to use the fact that

F 0(R) ! 0 for R ! 0. Then, for a sufficiently small �, keeping the lowest order in F 0(�) in

(A.5) and (A.3), we get

� � 2F 0(�) ; F (�) =
�2

4
; (A.7)

which is indeed the Starobinsky case found in (A.6), revealing thereby that the Starobinsky

model is a low curvature approximation of the �-Attractors. This can be also seen by taking

the low � limit of (4.10). We can also prove that the Starobinsky model is a high curvature

approximation of the �-Attractors, since F 00 > 0 and 
 < 0. Then, for R !1 we get from

(A.5)

R � 2F 0


2
; for R!1 ; ) F � 
2

4
R2 ; for R!1 : (A.8)

Being 
 = � � 1, restoring the 3M2=2 normalisation, one easily recover our approx-

imation (4.22). Indeed, the plots in the upper panel of Fig. A.1 suggest that the Starobinsky

model is also a high curvature approximation of the �-Attractors (of course, with different

energy scales depending on the parameter �). This fact is somehow expected, since both the

theories are characterised by a plateau potential at high energies.

In Fig. A.2 we also display the goodness of our approximation (4.22) in the case

� = 4.
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Fig. A.1.: Upper Panel. Evolution of the numerically reconstructed F (R) normalised to R2 for the
cases 
 = �2 (� = 1=4, dashed line) and 
 = �1=2 (� = 4, dotted line). This plot
shows an asymptotic quadratic behaviour.
Lower Panel. Reconstructed F (R) for the cases 
 = �2 (� = 1=4, dashed line), the
Starobinsky model 
 = �1 (� = 1, solid line) and 
 = �1=2 (� = 4, dotted line).

0 20 40 60 80 100
R

200

400400

600

800

F
(R

)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

R
e
la

ti
v
e
 E

rr
o
r

Fig. A.2.: Upper Panel. Relative error, showing the goodness of our approximation Eq. (4.22).
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ponding to � = 1=2 and � = 4).
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BMapping between p, �2, w, �

and ns � 1

Throughout this work, we use the quantities p, �2, w and � because, even if they are

connected to the others, each one of them is more appropriate for a specific analysis. In order

to facilitate the understanding of the reader, we show the explicit mapping between them in

Table B.1.

p �2 w � ns � 1

p p 2
�2

2
3(1+w)

2��1
2��3

4�(ns�1)
6�(ns�1)

�2 2
p

�2 3(1 + w) 4��6
2��1

2(ns�1)�12
(ns�1)�4

w 2�3p
3p

�2�3
3

w �2��3
6��3

(ns�1)
12�3(ns�1)

� 3
2
+ 1

p�1
3
2
+ �2

2��2
3
2
� 3(1+w)

1+3w
� 3(ns�1)

8
� 3

2

ns � 1
6p�4
p�1

4(3��2)
2��2

12w
1+3w

4(2�+3)
3

ns � 1

Tab. B.1.: Table showing how to write p, �2, w, � and ns � 1 in terms of each of them.
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CKinetic-dominated solution

We show in this appendix the solutions for the other critical point, namely the kinetic-

dominated regime. This is interesting for two reasons. First, this regime corresponds to the

critical value � = 0, which is the interface between purely adiabatic perturbations (at first-

order) and non-adiabatic perturbations. Second, perturbations in this regime act as a stiff

fluid and go as a / (��)�6. Such behaviour is usually invoked in the classical resolution of

the initial singularity, see for instance the reviews [100, 113, 101, 114].

To begin, note we can rewrite (5.32) in terms of the variables x and y as

�x =
�

6

"�
1� x2

� _�'

H
+

 
3x4 � 3x2 +

�2

2
y2
!
�'

#
: (C.1)

In the case of the kinetic-dominated solution, the fixed points are xa = �1, ya = 0. In this

configuration, we have w = 1, or equivalently �2 = 6, resulting in the trivial expression

�x = 0 ; (C.2)

regardless of the value of the solution �'. Hence, any first-order linear field perturbation leads

to adiabatic perturbations in the kinetic-dominated regime.
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DNext-to-leading order field

contribution

We expand the field solution (5.19) and its derivative to third order to get all terms

contributing to second order. Then the field is now

�' =
i

a

� (j�j) 2j�jp
4�kj�j

"
1 +

(�k�)2
4 (j�j � 1)

+
(�k�)4

32 (j�j � 1) (j�j � 2)

#
1

(��)j�j�1=2

=
ip
4�

�
2

2� � 1

�
2j�j�(j�j)
kj�j

�
"

H

(��)j�j�3=2 +
k2H

4 (j�j � 1) (��)j�j�7=2 +
k4H

32 (j�j � 1) (j�j � 2) (��)j�j�11=2
#
;

(D.1)

_�' =
ip
4�

�
2

2� � 1

�2 2j�j�(j�j)
kj�j

H2

�
"
(j�j � �)
(��)j�j�3=2 +

k2 (j�j � � � 2)

4 (j�j � 1) (��)j�j�7=2 ++
k4 (j�j � � � 4)

32 (j�j � 1) (j�j � 2) (��)j�j�11=2
#
:

(D.2)

The contribution to the noise in x becomes

�x;x(N) = �g(�; �; �)�2H2
? exp

"
� 3� 2�

� � 1=2
(N? �N)

#
; (D.3)

with

�g(�; �; �) :=
�2(j�j)22j�j
(12�)3

(6� �2)2
�2j�j�3

�
2

2� � 1

�2j�j+2 "
(j�j � �)2 + �2

2

(j�j � �) (j�j � � � 2)

(j�j � 1)

�
� � 1

2

�2

+
�4

16

h
(j�j � �)2 � 4 (j�j � �)

i
[2j�j � 3] + 4 (j�j � 2)

(j�j � 1)2 (j�j � 2)

�
� � 1

2

�435 (D.4)

For positive �, the above equation is simplified to

�g(� > 0; �; �) :=
�2(j�j)22j�j
(12�)3

(6� �2)2
�2j�j�3

�
2

2� � 1

�2j�j+2 "�4
4

1

(j�j � 1)2

�
� � 1

2

�4#
(D.5)
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The variance in the case of quasi-de Sitter inflation (� = 3=2� �) is given by

�2x;qu =
1

24�2
H2

?�
2�4�� (1 + 4�) [1� exp (�6(N �N?))] : (D.6)

Since N is growing with time the exponential vanishes quickly and eventually the time at

which �2x;qu = 1 is

H(N) =
p
3� (1� 2�)

Mpl

�2��=2
; (D.7)

and since � < 1 we see quantum diffusion drives us away only if the Hubble rate is far above

the Planck scale. We note this result stays true for N � N? since in this case we have

H(N) =

s
�

2
(1� 2�)

Mpl

�2��=2
: (D.8)
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EA different approach to find

the noise

We know that _' can be related to its momentum � � @L=@ _' using the ADM form-

alism, as shown in [40], by

_' =
1

a(t)3
�' ; (E.1)

where the lapse function N was chosen as the cosmic time, which means that N = 1. Also,

the evolution for �' is given by

_�' = �a(t)3V;' ; (E.2)

where “,'" represents the derivative with respect to '.

We get the linearly perturbed momentum including scalar field perturbations

� + �� =
@ (L+ �L)
@
�

1
1+A

_'
� = (1 + A)

@ (L+ �L)
@ _'

(E.3)

where we have also perturbed the lapse function t! (1 +A)t. The perturbed momentum is

then

�� = A
@L
@ _'

+
@�L
@ _'

= a3
�
_�'� A _'

�
(E.4)

We may use the constraint A = �2 _'�'=2H to eliminate the perturbed lapse function since

we are working in the spatially-flat gauge [37].
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Using the definition of the coarse-graining scale (5.25) in the expressions for the field

and its conjugate momentum

�' =
ip
4�

�
2

2� � 1

�
2j�j�(j�j)
kj�j

H

(��)j�j�3=2 ; (E.5)

��' =
ip
4�

2j�j�(j�j)
kj�j

�
� � 1

2

�4 "� 2

2� � 1

�
(j�j � �)� �2 _'2

2H2

#
1

H(��)j�j+3=2 ; (E.6)

we get

j�'j2 = �2(j�j)22j�jH2

4��2j�j

�
2

2� � 1

�2j�j+2 1

(��)�3 ; (E.7)

j��j2 = �2(j�j)22j�j
4��2j�jH2

�
2

2� � 1

�2j�j�4 "� 2

2� � 1

�
(j�j � �)� 4�G

_'2

H2

#2
1

(��)3 ; (E.8)

�'��� =
�2(j�j)22j�j
4��2j�j

�
2

2� � 1

�2j�j�1 "� 2

2� � 1

�
(j�j � �)� 4�G

_'2

H2

#
: (E.9)

From this we can work out the two-points correlation matrix associated with the quantum

noise with respect to conformal time �' and �� [40] .

�(�)
';' =

1

(2�)3
�2(j�j)22j�j
�2j�j�3

�
2

2� � 1

�2j�j�1 H2(�)

(��) ; (E.10)

�(�)
�;� =

1

(2�)3
�2(j�j)22j�j
�2j�j�3

�
2

2� � 1

�2j�j�7

�
"�

2

2� � 1

�
(j�j � �)� 4�G

_'2

H2(�)

#2
1

H2(�)(��)7 ; (E.11)

�(�)
';� = �(�)

�;' =
1

(2�)3
�2(j�j)22j�j
�2j�j�3

�
2

2� � 1

�2j�j�4

�
"�

2

2� � 1

�
(j�j � �)� 4�G

_'2

H2(�)

#
1

(��)4 : (E.12)
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FFourier transform on a finite

domain

This Appendix is dedicated to show explicitly the solution given by (5.46), while pointing

out that the final result depends on a conventional factor. From (5.45), we easily get

�2x(N) = �2x(N?)e
2m(N�N?) + 2

Z N

N?

dS e2m(N�S) D�̂x(S) (�x(S)� xc)E : (F.1)

We can reexpress the expectation value in the second term using (5.43) to get

D
�̂x(S) (�x(S)� xc)

E
=

*Z S

S?
em(S�U)�̂x(S)�̂x(U)dU

+
: (F.2)

Using the Fubini theorem, we get

D
�̂x(S) (�x(S)� xc)

E
=
Z S

S?
em(S�U) D�̂x(S)�̂x(U)E dU : (F.3)

The variance (F.1) is then

�2x(N) = �2x(N?)e
2m(N�N?) + 2

Z N

N?

Z S

S?
dSdU em(2N�S�U) D�̂x(S)�̂x(U)E : (F.4)

The resolution of (F.1) leads us to consider the following integral:

Z S

S?
dUem(2N�S�U)� (S � U) : (F.5)

For a general function, we have

Z b

a
f(x)�(x� x0)dx =

Z 1

�1
dx f(x) [�(x� a)� �(x� b)] �(x� x0)

= f(x0) [�(x0 � a)� �(x0 � b)] ; (F.6)
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what gives in our case

Z S

S?
dUem(2N�S�U)� (S � U) = e2m(N�S) [�(S � S?)� �(S � S)]

= e2m(N�S) [�(S � S?)� �(0)] : (F.7)

Using the half-maximum convention for the unit step function, we obtain

Z S

S?
dUem(2N�S�U)� (S � U) = 1

2
e2m(N�S) : (F.8)

Now, we are able to write the full solution for the variance in x as

�2x(N) = �2x(N?)e
2m(N�N?) +

Z N

N?

dS e2m(N�S)�xx(S) : (F.9)
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