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Abstract
New Mobile Autonomous Robot for Interaction with Autistics (N-MARIA) is a robot built at
UFES to help therapy with children with Autistic Spectrum Disorder (ASD). It has audiovisual
communication equipment, a system allowing the therapist to send commands to the robot, and
also an algorithm allowing to follow the child at a safe distance. Aiming to improve theN-MARIA’s
Child-Robot-Interaction (CRI), this work proposes an online remote photoplethysmography
(rPPG) to extract the pulse rate signal using a webcam. The obtained cardiac information is then
used to train a classifier and infer the child’s emotion during CRI. The results are presented to
the therapist using a Graphic-User-Interface (GUI). The algorithm is projected to work online
using a low-cost webcam. Different rPPG techniques presented in the literature are evaluated by
precision and processing time and compared with ground truth, Electrocardiography (ECG) and
Photoplethysmography (PPG). The results show that the error for heart rate measurement, while
the subject is still in front of the camera, is relatively low (with a median error of 3 bpm), but fails
in situations of fast movements (with a median error of 15 bpm). For emotion recognition, the
prediction accuracy for three outputs were evaluated: arousal; valence; and six discrete emotional
states. The classification accuracy results were better when using ECG to separate arousal, and
rPPG for valence and the six discrete emotions. They also indicate that some emotional states may
be separable using cardiac signals, however, the results presented an low overall result, which
indicates that, using only cardiac signals results in a poor classification results, at least, in the
way that they were tested in this work.

Key-words: Remote-photoplethysmography. Autism. Emotion Classification. Heart Rate. Heart
Rate Variability.
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1

1 Introduction

1.1 Motivation

Autism is one of the best known pervasive developmental disorder (PDD) which is a group
of neural development clinical conditions characterized by early onset of delays and deviations
of various skills, mainly social and communicative (KLIN, 2006).

The first known article to describe autism as a particular condition is the work of Kanner,
(1943). This work presents the study of case of eleven children with similar patterns, also
describing some characteristic behaviors for autistics, as monotonous repetitions, particular
interests and difficulty to social communication and interaction (COHMER, 2014). A benchmark
in the autism identification was set in 1978, when Michael Rutter defined it based on the following
criteria: delay and deviation on social skills; difficulty to communicate; unusual behaviors, as
repetitive movements and mannerism; whose symptoms appear before the age of three (RUTTER,
1978; KLIN, 2006).

According to the United Nations (UN), there are about 70 million autistics in the world
(2018), mostly boys (STOCK, 2018). Also, according to data from 2014 collected by the Centers
for Disease Control and Prevention, in the United States of America, the prevalence of Autism
Spectrum Disorder (ASD) was 16.8 per 1000 children under 9 years old (REDFIELD et al.,
2014). Brazil does not have official statistics, but it is speculated that the number is close to 2
million autistics (STOCK, 2018).

In order to stimulate autistic children’s attention, social skills and ability to interact with
the environment, the New Mobile Autonomous Robot for Interaction with Autistics (N-MARIA) is
being developed at UFES. The robot is made up of a PIONNER 3-DX as a mobile platform, a
playful design to attracts child’s attention, a tablet for audiovisual interaction as dynamic face,
infrared and color cameras to infer emotions by face-expressions and face-temperatures, touch
sensors and laser sensor to detect contact, locate the child and maintain a safe distance from he/she
(GOULART et al., 2019b). The robot is 141 cm tall, close to a 9 years old child height, to make
easier a face to face interaction. In (GOULART et al., 2019b) is reported the interaction of 36
children with N-MARIA. Before the child saw the robot for the first time, the child stayed relaxed
for approximately 10 min. Then the robot was uncovered and the child could see and interact with
it. The experiment was recorded by RGB cameras and a test was performed to evaluate social
skills of the child, as tactile interaction, shared engagement, eye gaze and proximity, using data
from cameras and touch sensors.

The test was divided into two parts. In the first, the robot presented itself through artificial
voice and interacted with the child, asking about their name and hobbies. The second part was
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the tactile interaction and shared engagement. During the experiments, the child was asked about
the robot structure, how they liked the design and what they wanted to change in it. They were
also asked to identify facial expressions played by the robot, which simulated emotional states
(happiness, sadness, surprise, disgust, fear and anger). They achieved a success rate over 92%
(GOULART et al., 2019a).

A previous version of the robot was also used to interact with autistic children. The
experiment was conducted with four children, two autistics and two non-autistics, they interacted
and played with the robot under the supervision of the mediator. The robot was programmed to
follow the child at a safe distance, to play videos, or perform tricks, according to the mediator’s
command (GOULART et al., 2015).

The way of interacting with the robot changed from child to child. Some remained seated
on the floor, others touched the robot and moved around it, and there were also those that showed
some excitement. The results of the research conducted in (GOULART et al., 2015) show that
the Child-Robot Interaction (CRI) was better than expectations. They touched and looked more
closely at the robot and interacted with the mediator also more than expected. Only one autistic
child was afraid to interact with the robot. The original (MARIA) and new (N-MARIA) versions
of the robot are presented in Figure 1.1.

Figure 1.1 – Original and new version of the MARIA robot.

(a) Previous version of MARIA. (b) New MARIA.

Source – GOULART et al., 2015 and 2019a

From these previous studies, a feature that can be used to improve the CRI is the emotion
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recognition, as the robot can identify a specific emotion in the child it may adapt its behavior to
make the interaction more comfortable and enjoyable. In (GOULART et al., 2019a) was used a
system for emotion recognition using thermal images. The system used two image sources: an
RGB (Red, Green and Blue) camera to locate specific regions in the child’s face, and an infrared
thermal camera to capture the thermal values of these regions. In total, 28 children participated
in the experiment, which consisted of children watching five different videos to excite different
emotions (disgust, fear, happiness, sadness, surprise) and also a neutral video. The results were
very promising, reaching an accuracy of 85.75% in recognizing these emotional states.

An advantage of the previous system for emotion recognizing during CRI is that it does
not need any contact sensors to infer physiological information related to emotion, which makes
the interaction much more comfortable. Another possible way to infer the child’s emotional state
while interacting with a robot is through heart rate analysis (APPELHANS; LUECKEN, 2006),
which is the proposal of this dissertation.

1.2 Justification

According to Appelhans and Luecken (2006), emotions experienced by humans are
related to changes in physiological arousal, with the autonomic nervous system (ANS) as an
important actor at this regulation. The ANS is divided into the sympathetic nervous system (SNS)
and the parasympathetic nervous system (PNS). The SNS is activated in stress situations, the
heart rate frequency is set to increase, which prepares the individual for a challenge. The PNS
has an opposite effect, it becomes dominant on relaxing and safe situations, and it sends signals
to decrease and to stabilize the heart rate. Thus, the heart rate variation (HRV), according to the
situation makes the cardiac beats an indicator of the person’s emotional arousal level.

The traditional methods to detect heartbeats are electrocardiography (ECG), as the gold
standard, and photoplethysmography (PPG). Both methods often use skin-contact sensors to
perform the measurement (electrodes, in case of EEG, and optical devices to detect the blood
volume variation under the skin, for PPG) (PASTORE et al., 2009; TASKFORCE, 1996; LU et al.,
2008). However, getting cardiac information with traditional heart rate sensors is unsuitable to a
CRI, as they are usually wired, which restrict the child’s movement, and even the wireless options
may get the children uncomfortable to use the device. However, in the last decade a number of
methodologies to detect the heartbeats remotely using a common RGB camera were developed,
this procedure is called remote photoplethysmography (rPPG) (KRANJEC et al., 2014).

The concept that most rPPG techniques use is very similar to the classical PPG: they
measure the variation of blood volume under the skin. Among other factors, the optical properties
of the skin are related to the blood volume under it. As the heartbeats lead to periodical blood
volume variations, the optical properties of the skin also changes in the same frequency, which
leads to small skin-color changes in the same frequency of the heartbeats. This color variation
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can be recorded by an RGB camera and, then, the image frames can be processed to generate the
pulse rate signal. Thus, this work proposes the implementation of an online rPPG sensing to be
incorporated into the robot and used to get children’s heart rate and, possibly, infer their emotions,
without the need to attach any contact sensors to the child’s skin. The system is conceived to
work online, as the child interacts with the robot.

Some situations in a future CRI may decrease the accuracy of the system. The movement
of the child difficulties the estimation of the rPPG, which decreases the quality of the signal,
affecting the heart rate estimation and also the emotion estimation. Also, the movement increases
the heart rate, which may confuse the emotion prediction system.

1.3 Objective

The main goal of this work is to build a system to estimate the heart rate using the rPPG
and use the remote cardiac signal to estimate online the emotional state of the subject. To build
the system, the quality and processing speed of the different steps of the rPPG methodologies are
compared to select the most suitable ones. Also, it is tested if the rPPG signal is precise enough to
identify the different emotions using the same protocol presented in (GOULART et al., 2019a).

1.4 Organization

This text is organized in six chapters:

• Chapter one - Introduction: this chapter introduces themotivation, justification and objective
of the study.

• Chapter two - Theoretical Background: the second chapter provides the theoretical back-
ground of ASD, methodologies to extract the rPPG and emotion recognition based on
cardiac parameters.

• Chapter three - Technique Evaluation: the third chapter presents different techniques for
each step of the rPPG measurement and compares each of them to select the fastest and
most accurate ones.

• Chapter four - Results: this chapter presents the errors of the heart rate estimation achieved
using rPPG, also presents the accuracy of the emotion classifier using cardiac parameters
extracted from both ECG and rPPG, comparing the accuracy of each one. At the end, it is
shown the suitability of using the system online.

• Chapter five - Conclusion: The final chapter contains the final statements about the whole
work and the author’s personal considerations and suggestions for future researches.
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2 Theoretical Background

2.1 Autism Spectrum Disorder

As autism may be manifested in a wide range of skills and abilities and also in different
intensities, it is usually called Autism Spectrum Disorder (ASD). ASD is recognized by a loss
in a range of social skills, as interpersonal relationship, communication difficulties, behavior
and interests patterned and stereotyped. These conditions should manifest by the age of three.
About 60% to 70% of the people with autism are considered with a mental disability, but this
number is decreasing in recent studies, probably by earlier diagnostics and treatment, and better
understanding this disorder (KLIN, 2006).

2.1.1 Historical Review

(KANNER, 1943) is the first work to describe autism as a particular condition, based on
the case of eleven children (aged 2-8 years) with similar behaviors. This study described some
features that are common for autistics, such as monotonous repetitions, particular interests, and
communication and social interaction difficulties. It is also described conditions about the child’s
growing and living environment, It shows that the disorder appears in different economical and
environment situations.

Rutter (1978) defined the identification protocol of autism as a disorder appearing before
the age of 30 months, not necessarily associated with an intellectual disability or neurological
dysfunction, marked by a particular social and language development, appearing with peculiar
and repetitive activities, as stereotyped patterns, and resistance to change. The increasing number
of works related to autism as a particular condition, together with Rutter’s works, had an important
role to add the disorder as a new class of conditions in the third edition of the Diagnostic and
Statistical Manual of Mental Disorders (DSM-III): the Pervasive Developmental Disorder (KLIN,
2006).

2.1.2 Diagnosis

According to Klin (2006), the multiple behavior features characterizing the autism dis-
order are subdivided into three clusters: impaired social interaction; qualitative impairments in
communication skills; and presence of restricted and repetitive patterns of behavior, interests, and
activities. For an autistic diagnosis, the person must have at least six autistic behavior features, at
least of one from each cluster (KLIN, 2006). The features from each cluster are presented below:

• The features inside the impaired social interaction cluster are: lack in the use of non-verbal
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communication, as body and facial expressions or eye contact; not maintaining relationships
with people and not sharing the own interests and experiences; lack of social and emotional
reciprocity.

• The qualitative impairments in communication skills are composed of: difficulties at the
verbal language development; difficulties to initiate and maintain a conversation with others,
repetitive use of certain words or even peculiar sounds; lack of imaginative and imitative
ability.

• The criteria of the last cluster, the presence of restricted and repetitive patterns of behavior,
interests, and activities, are: intense and rigid preoccupations with restrict and stereotyped
patterns of interests, inflexible personal routines, and rituals; gesture stereotypes (like
jumping, or shake a body part); and particular interest on a specific part of objects.

2.1.3 Therapy

According to Lai et al. (2014), about 1% of the population is inside the autistic spectrum,
mostly boys. Therapy, intervention, and support to autistics should be individualized, multidisci-
plinary and multidimensional. Therefore, behavioral and educational approaches maximize their
quality of life, improving their communication, social skills, learning and independence. The
therapy procedures include targeted skill-based intervention, structured teaching, parent-mediated
intervention, and targeted behavioral intervention for anxiety and aggression (LAI et al., 2014).
Drugs are rarely an approach, only considered when a patient presents associated conditions. For
example, antipsychotics seem to reduce the repetitive behaviors in children with autism. However,
they have potential side effects such as sedation, weight gain and involuntarily movements (LAI
et al., 2014). Therefore, psychosocial and behavioral interventions are the main approaches used
in autism, with the joint action of psychologists, neurologists, psychiatrists, pediatricians, and
speech therapists.

2.1.4 Social Robots for ASD Therapy

The technology progress brought new tools at the autism intervention: the robots. Social
robots may be a powerful support for ASD children, mainly for the ones with a special affection
for technological systems. Robots has been already tested to assist ASD children in improving
eye-contact, self-initiated interactions, imitations and emotion recognition (PENNISI et al., 2016).

The robots presented at the review work of Pennisi et al. (2016) covered a wide range
of functions: they were used as a measurement tool to compare ASD and non-ASD children;
some played a role as a playmate of the child; others were programmed to perform actions that
were once played by the therapist, and also a tool that therapists could use to optimise their work.
After analyzing the cases, Pennisi et al. (2016) claim that the use of robotics in therapy brought
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positive results in most of the cases, showing that social robotics may increase the effectiveness
of ASD therapy. Examples of robots for ASD therapy are presented bellow.

N-MARIA is a robot developed in UFES to be used as a therapist’s toll in the ASD therapy.
It is bigger than most robots used in this field, with 141 cm, the robot is as high as an 9 years old
child, and it is assembled with a set of tools to interact with the child, as a tablet on the head to
express emotions and also talk. A set of video, thermal and distance sensor are attached to the
robot and used to analyze the child’s behavior and control the robot behavior to follow he/she at
a safe distance. The studies conducted with N-MARIA and its previous version showed that the
children respond better to the mediator when the robot participates of the process (GOULART et
al., 2015; GOULART et al., 2019b; GOULART et al., 2019a). N-MARIA is presented in Figure
1.1b.

According to Pennisi et al. (2016), the most used robot in the ASD therapy until 2016 was
NAO. Tapus et al. (2012) investigated the engagement of 4 autistic children while they interacted
with NAO, comparing it to a human partner. In the tests, the child starts an arm movement and
the partner (human or robot) repeats it. Thus, the initiative of the child to initiate an interaction
with the partner is analyzed. For two children there was no difference between the engagement to
the human or robot partner. One child presented more focused eye gaze and smiled more while
interacting with the robot. Only one child presented more movement initiations while interacting
with the robot than with a human partner. NAO is presented in Figure 2.1a.

The robot Kaspar was used in (ZORCEC et al., 2018) as an intervention toll in the ASD
therapy. A study of case with 2 severe autistic children evaluated interaction aspects, including
the learning of basic emotions and social skills for a year in a hospital environment. Both children
had a very fast and spontaneous interaction with Kaspar, which facilitated the improvement of
their emotional and social skills. Kaspar is presented in Figure 2.1b.

CHARLIE is a low-cost robot proposed by Boccanfuso et al. (2017). In the study, 12
children participated, 8 children without communication problems, 3 autistic and 1 with speech
deficiency. The improvement of spontaneous speech, communication and social skills were mea-
sured. The results showed that adding the robot as a tool in therapy improved the communication
and speech skills of the children. CHARLIE is presented in Figure 2.1c.

2.2 Emotion Recognition Based on Heart Rate

Emotion recognition plays a fundamental role in person-to-person interaction. Inferring
the partner’s mental state provides a way to personalize actions and behavior according to the
actual situation. To better interact with people, social robots should also personalize their actions
according to the user’s emotional and mental states, making the interaction more natural.
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Figure 2.1 – Examples of robots used to ASD therapy in the literature.

(a) NAO robot. (b) Kaspar robot. (c) CHARLIE robot.

Source – TAPUS et al., 2012; ZORCEC et al., 2018; BOCCANFUSO et al., 2017

2.2.1 Emotion Models

The first challenge at emotion recognition is to quantify something subjective as emotions.
In the literature, there are two ways to model the human emotions: the discrete emotion models
and the multi-dimensional emotion space models.

Ekman (1992) defends that there are a discrete number of emotions, where each one of
these emotions displays different features. He summarized six primordial emotions: happiness,
sadness, anger, fear, surprise, and disgust. According to him, every other emotion is a combination
of these ones (EKMAN, 1992). Other authors stand for a different number of basic emotions. For
instance, Izard (2007) defines ten basic emotions: interest, joy, surprise, sadness, fear, shyness,
guilt, anger, disgust, and contempt.

The multi-dimensional emotion space is an effort to quantify the emotions and their
intensities (SHU et al., 2018). Lang (1995) uses a bi-dimensional space to separate emotions in
valence (positive or negative emotion) and arousal (passive to active). As some emotions overlap
each other at the 2D model, Mehrabian (1997) added another dimension: the dominance. This
new axis represents how much a person can control a specific emotion. Figure 2.2a and Figure
2.2b present the positioning of different discrete emotion in the 2D and 3D models.

2.2.2 Sources for Emotion Recognition

According to Thomaz et al. (2016), three main sources of data are used for emotion
measurement and recognition: facial expressions and features; body posture and motion; and
physiological signals. Facial expression based recognition gets images from the user’s face,
extracts spatial and temporal features, and then, uses it to train a classifier to identify the most
probable emotion expressed by the face (KO, 2018). Relating to body postures, Sanghvi et al.
(2011) use the body posture gestures to detect the engagement of children playing chess with a
robot, and Venture et al. (2014) had success at recognizing human emotion based on the person’s
gait, using an RGB-D camera. Different physiological signals have been used to detect emotions.
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Figure 2.2 – Multi-dimensional emotion space axes.

(a) 2D emotional model.

(b) 3D emotional model.

Source – SHU et al.,2018

Goulart et al. (2019a) proposed a system for emotion recognition in a child-robot interaction using
thermal images. Also, electrodermal, respiratory, electroencephalographic and cardiovascular
signals have already been used to gather emotional information (SHU et al., 2018).

2.2.3 Cardiac Parameters as Emotional Indicators

Themain key linking cardiac signals to different emotional states is the autonomic nervous
system (ANS). It controls the different degrees of physiological arousal experienced by the person.
The ANS is subdivided into an excitatory sympathetic nervous system (SNS), that is responsible
for the heart rate frequency increasing, and an inhibitory parasympathetic nervous system (PNS),
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that has an opposite effect. As a person experiences physical or psychological stress the SNS
overcomes the PNS, accelerating the heart pulses and increasing physiological arousal. When
experiencing a comfortable or relaxing state, the PNS becomes dominant, decreasing heart rate
and arousal levels (APPELHANS; LUECKEN, 2006).

As the heart rate variation (HRV) reflects, together with other numerous physiological
and environmental factors, SNS and PNS activities at ANS, HRV contains important information
about physiological arousal, which has an important role on the individual emotion regulation
(APPELHANS; LUECKEN, 2006). The traditional way to measure HRV is the electrocardio-
graphy (ECG), which should have a minimum sample rate of 250 Hz (KWON et al., 2018) to
locate the R peaks with precision in the signal. The mostly used method to extract the interbeat
differences signal (also knows as Normal-to-Normal (NN) intervals) from the ECG is by cal-
culating the temporal distance between the consecutive R-peaks (APPELHANS; LUECKEN,
2006). Figure 2.3a presents the R peaks at the PQRS complex in an ECG model, and Figure 2.3b
presents a real ECG sample captured at 400 Hz using BrainNet1. The features for HRV analysis
may be calculated in time, frequency and geometrical domains.

2.2.3.1 Heart Rate Variation Features

Time-domain features are normally based on statistical computation of variation between
NN intervals. The most common time-domain features used to describe the HRV are (SCHAAFF;
ADAM, 2013; APPELHANS; LUECKEN, 2006; BRENNAN et al., 2001; TASKFORCE, 1996):

• meanNN : mean value of NN intervals2.

• SDNN : standard deviation3 of NN intervals.

• SDSD: standard deviation of successive differences of the NN intervals.

• RMSSD: square root of the mean of the sum of the squared differences between adjacent
NN intervals. RMSSD is presented in Equation 2.1.

RMSSD =

√√√√ 1

N − 1

N−1∑
i=1

(NNi+1 −NNi)2 (2.1)

• pNNx: number of adjacent NN intervals whose difference is superior than xms divided by
the total number of NN intervals. The most used value for x is 50 ms. pNNx is described
in Equation 2.2.

pNNx =
1

N − 1

N−1∑
i=1

(NNi+1 −NNi) > xms (2.2)

1 BrainNet (from EMSA/Brazil) is a signal acquirement equipment used to capture multiple electric-based
physiological signals.

2 The mean formula is defined in Appendix A.1.
3 The standard deviation operations is defined in Appendix A.1.



Chapter 2. Theoretical Background 11

Figure 2.3 – Exemplification of ECG’s PQRS complex.

(a) Location of the PQRS waves at the ECG model.

(b) PQRS complex at a real ECG sample.

Source – APPELHANS; LUECKEN, 2006 and Author’s database, 2020

There is also a tool called Poincaré plot that represents the correlation between consecutive
intervals in a 2D plot. The two numerical features extracted from the plot are the standard deviation
of the axesX1 andX2 presented in Figure 2.4. The standard deviation ofX1 axis is called SD1,
and the second is called SD2 (BRENNAN et al., 2001). The equations for SD1 and SD2 are
presented in Equation 2.3 and Equation 2.4:

SD1 =

√
1

2
(SDSD)2 (2.3)



Chapter 2. Theoretical Background 12

SD2 =

√
2(SDNN)2 − 1

2
(SDSD)2 (2.4)

where:

- SDSD is the standard deviation of successive differences of NN intervals;
- SDNN is the standard deviation of NN intervals;

Figure 2.4 – Correlation of each method.

Source – Adapted from (SCHAAFF; ADAM, 2013)

The geometrical analysis bases itself on geometric properties of the probability distribu-
tion of NN intervals and differences between consecutive NN intervals. They are less affected by
outliers but require a greater number of samples and are less precise (APPELHANS; LUECKEN,
2006).

To calculate the frequency domain features, the interbeat series is transformed to the
frequency domain, and its Power Spectrum Density (PSD) is calculated. Then the PSD is divided
into the sum of Low Frequencies (LF) power region and High Frequencies (HF) power region.
The LF range is from 0.04 Hz to 0.15 Hz, and the HF range starts at 0.15 Hz and goes to 0.4 Hz.
The features used to analyze HRV are the sum of each region’s power and the ratio between them
(LF/HF). According to (APPELHANS; LUECKEN, 2006), as the SNS ans PNS have opposite
functions, the first accelerating the heartbeats and the seconds decelerating them, relative shifts
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or biases toward sympathetic or parasympathetic dominance over cardiac function reflect directly
at the LF/HF ratio value. The LF and HF regions are presented in Figure 2.5.

Figure 2.5 – LF and HF regions at the NN interbeats PSD.

Source – (APPELHANS; LUECKEN, 2006)

2.3 Remote Heart Rate Estimation

The first work to demonstrate that the blood volume variation caused by heartbeats
produces enough skin-color variation that can be captured by a camera using ambient light was
(VERKRUYSSE et al., 2008). The authors recorded an RGB video of a volunteer’s face after
exercising. The regions of frames containing the skin were manually selected and the raw Pulse
Volume (PV) signal was extracted by getting the RGB values of all skin-pixels at each frame
and averaging them for each color-channel. Then a digital 4th order Butterworth filter was used
to remove noise outside the range 0.8 Hz to 6 Hz. Analyzing each color-channel separately,
they concluded that the green channel has the strongest cardiac signal (which agrees with the
fact that hemoglobin absorbs better the green light), however, red and blue channels contain
complementary pulse information.

Since then, the number of works related to rPPG has increased significantly, and different
parts of the original rPPG methodology have been improved (ROUAST et al., 2018). This section
explains in detail the state of art of each part of the rPPG methodology.
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2.3.1 General Methodology for Remote Photoplethysmography Based on
Color Cameras

According to Rouast et al. (2018), the general methodology to estimate the heart rate
using an rPPG signal may be divided into three steps: signal extraction, signal estimation and
heart rate estimation. The signal extraction part is where the image processing techniques are
applied to identify the skin-region at the video, track it along the frames and extract the RGB
temporal signal4. The rPPG signal estimation is where signal processing techniques are used
to estimate the pulse volume signal from an RGB temporal signal. The last part is the heart
rate estimation, which may follow two branches, a power spectrum analysis to find the most
predominant frequency to represent the pulse rate or identify the rPPG peaks and get the interbeat
intervals.

2.3.1.1 Remote PPG Signal Extraction

In general, the first step to estimate the rPPG signal is to define an ROI to extract the RGB
signal. It can be set manually, or automatically. The most used region to extract the raw signal is
the head, more precisely the cheeks and forehead regions. To find a face, the most commonly
used algorithm is the Viola-Jones (VJ) technique (VIOLA; JONES, 2001), which is a machine
learning algorithm that locates faces using simple features. There are also techniques that directly
extract the skin-region, without the face detecting part. However, these techniques are highly
influenced by objects in the background whose color is similar to the human skin (ROUAST et
al., 2018).

With the ROI selected, a raw rPPG signal is generated using two approaches. The first and
most common is based on skin-color variation: at each beat, the heart pumps blood to the whole
body. This pumping process variates the skin-tissue blood volume and also the optical properties
of the skin, which are connected to the blood volume under it. These small color changes may be
captured by an RGB camera and processed to infer the rPPG (ROUAST et al., 2018).

The second approach is by analyzing head movements. The same way that pumped blood
changes optical skin properties, it has a mechanical impact on the head, neck and trunk. The
Newtonian reaction of the body to blood pressure changes generates a head displacement of
approximately 5 mm that also may be recorded in video (BALAKRISHNAN et al., 2013).

The color-based methodologies have higher robustness to the subject movement and
allow measurements at greater distances. The head movement-based works even when the skin
is occluded, and is less affected by the subject skin’s tone or the environment’s light variations,
but is more affected by movement and has a lesser range (AL-NAJI et al., 2017). As one of the
objectives is to embed the system in a robot with free movement, and, most of the time, at least
4 There are also methodologies where the head movement caused by the blood pressure is used (ROUAST et al.,

2018).
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some skin region of the child will be visible, the color-based methods will be used in this work.

2.3.1.2 Remote PPG Signal Estimation

There are several ways in the literature to separate the pulse signal from the noise at the
RGB time series extracted from the ROIs. They normally follow one of these two strategies:
the first is to directly weigh the RGB channels combining them to enhance the pulse signal, the
second is to use a Blind Source Separation (BSS) algorithm, as the Principal Component Analysis
(PCA), to separate pulse signal from noise (UNAKAFOV, 2018; WANG et al., 2017a).

Wang et al. (2017a) directly compare the Signal to Noise Ratio (SNR) of eight different
methodologies over four different rPPG challenges: different skin-tones, changes in luminance,
subject recovering after exercise and during the exercise. The eight methodologies are: the
green channel, green-red channels difference, PCA, independent component analysis (ICA),
standardized skin-color chrominance-based rPPG (CHROM), pulse blood volume (PBV) vector,
spatial subspace rotation (2SR) (that exploits the skin pixel’s distribution), and plane-orthogonal-
to-skin (POS) method. The achieved result shows that, for most situations, the POS method got
the highest SNR, and for fitness videos, POS and CHROM scored higher.

Unakafov (2018) compared six methods, green channel, green-red difference, an adaptive
green-red difference (the channels are weighted according to first frame values), ICA, CHROM
and POS technique. The results also pointed out POS as the best methodology, followed by
CHROM.

2.3.1.3 Heart Rate Estimation

There are two ways to infer the heart rate using the rPPG signal, analyzing its PSD or
detecting the number of peaks inside a time interval. The PSD approach consists of using a
time-frequency transform to get the most powerful frequency inside the human heart rate band.
The most common transform is the Fourier method, calculated using the fast Fourier transform
(FFT) algorithm, however, there are also alternatives as Welch Periodogram (WP) (ROUAST
et al., 2018). The peak detection approach consists of splitting the signal and finding the local
maximums representing each beat at each segment. The estimated heart rate is calculated by
counting the number of peaks at the interval and dividing by its time length.

2.3.1.4 State of Art of the rPPG sensing

As Rouast et al. (2018) present, the different rPPG methodologies are difficult to compare.
Most of the authors use particular datasets with different recording hardware, under different
light conditions and subject with different skin tones. However, the state of art results gives an
idea of how good rPPG can get cardiac information. The methodologies presented in (ROUAST
et al., 2018) achieved a heart rate Root Squared Mean Error (RMSE) that ranges from 0.11 bpm
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to 7.73 bpm; this can be set as a reference line to the error that the implemented method may
have.

Wang et al. (2017a) compared the Signal to Noise Ratio (SNR) from their technique
(the Plane Orthogonal to Skin (POS)) against other 7 rPPG techniques. They used a particular
dataset containing face-video recordings in multiple situations like different luminance intensities,
subject still or in movement, and different skin tones. According to them, their method presented a
better signal in most of the cases. It is also shown that the best situation to do the rPPG sensing is
with a static well-illuminated subject. Movements, poor illumination and dark skin-tones decrease
the quality of the signal, and the movement situations are the most difficult.

An interesting comparison of the method is also done in (UNAKAFOV, 2018), which
uses the DEAP dataset (a public database with multiple physiological signals, including the PPG,
and face videos provided by (KOELSTRA et al., 2012)) and compares methodologies from other
works without proposing a new one. Therefore, their result may be less biased, in which six
techniques are compared. The simplest method is using only the green color channel to estimate
the heart rate, getting a median RMSE of 6.78 bpm. The second method is using the difference
between the green and red channels, which reached a median RMSE of 4.96 bpm. The third is an
adaptive green-red difference, which got a median RMSE of 5.55 bpm. The fourth is applying
the Independent Component Analysis (ICA) on the color signal, getting a median RMSE of 4.77
bpm. The fifth is a method that transforms the RGB signal to a chrominance plane and then
estimates the rPPG, which got a median RMSE of 3.46 bpm. The last is the POS that reached a
median RMSE of 3.25 bpm. This result presents a reference of the error that this work should
reach at the end.
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3 Technique Evaluation

The rPPG methodologies generally are divided into three steps: the face tracking and
skin segmentation part; the rPPG signal estimation; and the heart rate and heart rate variation
estimation. In each of these parts the techniques presented at the literature will be tested for speed
(to be able to work online the algorithm should be fast) and quality (the more similar the rPPG
estimation is from the true PPG signal, better the algorithm). Then, all the sections in this chapter
will have a part of development, explaining the algorithms, and a part of the results, comparing
the processing time and the quality of the techniques.

The overall methodology proposed to extract the cardiac information from the videos and
classify it by their emotional information is divided into six sections, as presented in Figure 3.1:

1. Face-videos and reference cardiac signals recording: two databases were created during
the research, one focused on the user’s movement, where the subjects are asked to perform
specific actions to test the robustness of the rPPG even when the user is not still, and other
focused on record the subject’s cardiac activity while they watch a set of small videos
chosen to trigger a specific emotional state.

2. Face tracking and skin segmentation: this part is focused on evaluating the algorithms
presented in the literature to find a face and keep following it through the video. It also
presents the methodologies to extract pixels containing the skin-region at the face.

3. Remote PPG signal estimation and filtering: at this part are evaluated different methodolo-
gies to estimate the pulse signal from the RGB time series.

4. Heart rate estimation: the main methodologies based on PSD analysis to infer the heart
rate from rPPG are tested.

5. To infer HRV parameters from the rPPG, the interbeat peaks should be identified at the
signal first. In this part, the peaks generated by each algorithm are compared with peaks
from the ECG.

6. After getting the cardiac signal from the input images, the last step is to evaluate the
possibility of differentiating emotions based on cardiac information from rPPG. The
parameters used in the literature to quantify emotions using ECG and PPG are also used
for rPPG and, in the end, a classifier is proposed for testing the three signals.

The main problem may be simplified as an online emotion classifier based on rPPG.
An online system has limited computational time, which sets a boundary on the algorithm’s
complexity, so, for each part, the processing time of each technique is measured together with its
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Figure 3.1 – Methodology to extract the cardiac information.

Source – Author’s database, 2020

accuracy. The techniques that most approximate the cardiac signal obtained by the RGB camera
to the one got with ECG and PPG are chosen. And finally, features are extracted from the rPPG,
ECG and PPG, and a classifier is used to identify the emotions on each signal.

3.1 Databases

Two databases were created to test the techniques. The first one was made aiming to
compare the robustness of rPPG estimation methodologies to the user’s movement, so the cardiac
information was recorded together with face-videos while the subject was performing a set of
movements in front of the camera. The second dataset was created aiming to analyze the cardiac
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changes while the user was experiencing different emotions. To record the emotional state of
the volunteers, they were asked to watch six short videos to excite emotions while the RGB and
thermal images were recorded. For both databases, the PPG and ECG were also recorded as a
reference signal.

The schematic for capturing data at both databases is presented in Figure 3.2. The webcam
used to record the video was a Logitech C9201. The images were recorded at 30 fps, and the
distance between the camera and the subject was about 70 cm. The PPG data were acquired
using the pulse oximeter sensorMAX30101 attached with an Arduino Mega board using a sample
rate of 50 Hz. The ECG signal was recorded using a sampling rate of 400 Hz with the BrainNet
equipment 2. The D1 derivation was used to get the ECG (electrodes at the left and right wrists,
and the ground at the right ankle, as presented in Figure 3.3), according to Pastore et al. (2009).
The Arduino board was also used for recording synchronization: at the beginning of each video,
a command was given the Arduino board to start to take data from the PPG sensor and also to set
a port to a high state. When the video was finished, a command was given to Arduino to stop
taking data from the PPG and set the port to a low state. This port was connected to the BainNet
so it was possible to split the video and take only the part that the Arduino’s port was with a high
level.

Figure 3.2 – Schematic to capture face-videos, PPG and ECG signals.

Source – Author’s database, 2020

This research was approved by the ethics committee from UFES, under the number
CAAE: 44899015.0.0000.5060.
1 <https://www.logitech.com/pt-br/product/hd-pro-webcam-c920>.
2 <http://www.emsamed.com.br/pt-br/brainnet-bnt-36>.
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Figure 3.3 – Electrodes position.

(a) Left hand electrode. (b) Right hand electrode. (c) Right foot electrode.

Source – Author’s database, 2020

3.1.1 Movement Database

At this database, the subjects were asked to perform six movements, each for one minute.
The whole movements were done with the volunteers sat on a chair at a distance of approximately
70 cm from the camera. Together with the face-videos, the PPG and the ECG from the users were
also recorded. In total, 15 people participated in the tests, aged from 20 to 37 years. They were 3
women and 12 men, with a wide range of skin tones. The frames were recorded at a resolution of
320x240 pixels. The movements performed are specified below:

• Movement 1 - Stay still: in the first video, the subjects are asked to not perform movements
at all. They are asked to stay still in front of the camera. See Figure 3.4a.

• Movement 2 - Horizontal: the second movement is to move the body to the sides. See
Figure 3.4b.

• Movement 3 - Vertical: the third movement is to move the head up and down. See Figure
3.4c.

• Movement 4 - Back and forward: the fourth movement is to approximate the body to the
camera and then back to the original position. See Figure 3.4d.

• Movement 5 - Head rotation: in the fifth movement, subjects are asked to rotate the head to
both directions. See Figure 3.4e.

• Movement 6 -Mixedmovements: in the last part, the subjects couldmix all other movements
and perform another one if they wanted. See Figure 3.4f.

3.1.2 Emotion Database

At this database the subjects were asked to watch the same videos used by Goulart et
al. (2019a): the first one is a neutral video, a video clip of an infant movie; the second one is
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Figure 3.4 – Movements performed by the subject at database one.

(a) Mov. 1: stay still. (b) Mov. 2: horizontal. (c) Mov. 3: vertical.

(d) Mov. 4: back and forward. (e) Mov. 5: head rotation. (f) Mov. 6: mixed.

Source – Author’s database, 2020

supposed to trigger disgust, a part of a survival program where a person is eating worms; the
third is a part of a scary movie, with a ghost; the fourth is used to excite happiness with videos of
babies laughing and playing with dogs; the fifth is to trigger sadness with a montage of abandoned
dogs; and the last one is a surprising video, a commercial with a mouse falling in a rat-trap but
escaping in a funny way. Before each video, a four seconds countdown was shown on the screen,
and the record started at the beginning of the countdown. A frame of each video is presented in
Figure 3.5.

The videos used in (GOULART et al., 2019a) were selected by a physiologist. The
acquisition protocol had the following steps: first, it was explained to the volunteer the experiment’s
objective, that is to identify emotions through rPPG, and also, a general idea of the whole steps of
the research. The volunteer was then informed that he/she could stop the test at any time he/she
wanted. After the explanation, the subject was asked to sign the consent form3 and sit in a chair
comfortably. The ECG electrodes were attached to the subjects’ wrists and ankle, and the PPG
sensor was attached to the right hand’s middle finger.

The videos were played and the data were automatically recorded: color RGB frames
(640 x 480 pixels)4 at 30 fps, thermal images (384 x 288 pixels) at 8.7 fps5, ECG at 400 Hz and
PPG at 50 Hz. At the end of each video, the volunteer was asked about the arousal and valence
3 A copy of the consent form is presented at Annex A.
4 The videos were recorded at a higher resolution than the movement database to make easier to use it for different

emotion detection methodologies in future works.
5 The thermal images were recorded for further emotion analysis with other methodologies.
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Figure 3.5 – Frames of the videos used to excite emotion.

(a) Neutral video. (b) Disgusting video.

(c) Scary video. (d) Happy video.

(e) Sad video. (f) Surprise video.

Source – Author’s database, 2020

that the videos had triggered using the Self-Assessment Manikin (SAM) (MORRIS, 1995). SAM
quantifies the arousal and valence on a scale of 1 (very low for arousal and very bad for valence)
to 9 (very high for arousal and very good for valence). The volunteer was also asked if he/she
had already seen the videos before. The scales are presented in Figure 3.6.

Figure 3.6 – SAMs questionnaire for arousal and valence.

Source – Adapted from MORRIS, 1995
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In total, 30 subjects participated in the tests (12 women and 18 men), aged between 19 to
30 years, with multiple skin tones. The only restriction criterion was to exclude subjects that had
psychological traumas or phobias (as in the protocol of Goulart et al. (2019a)).

3.2 Face Detection and Tracking

In this part of the text the evaluation methodology and results of the face-detecting
and object-tracking algorithms using two image processing libraries OpenCV and dlib are
presented.The processing time of the codes and their success rate were calculated and evaluated.
For the face-detectors, as the videos were recorded with only one person each time, in a white
background6, it was supposed that, whenever only one face was found by them on a frame, it
was a success. For the object trackers, the evaluation process was based on the number of frames
that it took to lose the target, and the precision was calculated comparing the face region located
by the object tracker, with the region from the face detector as a reference. As one of the main
targets of the final algorithm is to work online, besides accuracy, the processing time is crucial.

It was chosen to use both, the face detector and the object tracker instead of only the
face-detector for two reasons: the speed and to deal with different face positions. Object trackers
are usually faster than face-detectors, which is a crucial point for an online system. The second
reason is that face-detectors have difficulties to identify faces turned to the sides, and the object
trackers handle better with these situations, since it follow the changes at the face region frame
by frame as it is moving. The detectors look for specific features that defines a face, and do not
use information in the previous frames to optimize the search. So, when a face is turned to the
sides, some features used by the face detectors may be hidden, decreasing the success chances.

3.2.1 Face Detection

Most of the works use Viola-Jones (VJ) to identify faces in input images (ROUAST et al.,
2018), as it is a fast algorithm and has really good precision. Also, it is already implemented in
open source libraries as OpenCV (OPENCV, 2018), which makes the code easy to use. In this
work, VJ was compared to another face detection algorithm, also available in an open-source
library, the face locator provided by dlib (KING, 2009). It is based on the histogram of oriented
gradients (HOG) algorithm (SURASAK et al., 2018) together with a linear Support Vector
Machine (SVM) classifier, an image pyramid of upsampled versions of the image and a sliding
window to detect features. For both detectors, the recommended configuration given by their
respective documentation was used.

Both face-detectors were compared by the capability to find faces in different frame
resolutions, 640x480 (original), 320x240, 160x120, 80x60 pixels and processing time. So, both
6 It was chosen to a white background to decrease the noise sources of the video, however it may be be considered

adapt the algorithm in the future to deal with the background where the child will interact with the robot
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detectors were set to find a face at the same videos for multiple subjects at the Emotion Database.
The Emotion Database was used because this dataset was recorded at a higher resolution. The
processing time and the number of frames where a face was found were recorded. The face-videos
have about 1315 frames, recorded at 30 fps (totaling about 44 seconds). The reason that the frame
resolution was tested is because one of the most time-consuming parts of the code is the face
location and tracking. So, a smaller frame means a smaller processing time, and, as only the
mean RGB value of the whole skin region is used for the rPPG estimation, by reducing the frame
resolution, it should not have a big impact on the mean value.

To use the VJ algorithm, first the cascade file with the face features was loaded, then,
for each frame-size (640x480 (original), 320x240, 160x120, 80x60), the original image was
passed from RGB to gray scale. Then, the image was equalized, as recommended in the OpenCV
web-page. Finally, the image was given to the VJ to find the face on it. The HOG was much
simpler: the image was just loaded and given as input to the algorithm. The execution time and
the number of frames where a face was found was recorded. The result of the tests are presented
in Figure 3.7.

Figure 3.7 – Success rate and execution time of VJ and HOG.

Source – Author’s database, 2020

Analyzing the results, the HOG algorithm, for higher resolutions, had a higher success
rate than VJ, but both algorithms scored higher than 90% for 320x240 and 640x 480 resolutions.
When the frame size is lower, the algorithms run faster, but the success rates are lower. For
example, for 160x120 the VJ found the face in 81% of the videos and the HOG in 94%. At the
80x60 resolution, VJ was capable to identify a face in almost half of the frames and HOG did not
find anything. Looking at the spent time, VJ was much faster than HOG for bigger resolutions.
An oddly result is that VJ did not show any great decreasing of time for smaller resolutions. For
HOG, the processing time decreased considerably, from 206 s in the 640x480 resolution to 43 s
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at the 80x60 images. The VJ got 63.53 s at the 640x480 resolution and 41 s for the 80x60.

Considering the success rate and the processing time, the VJ algorithm was selected
for our system. The success rate was just a little lower than for HOG at the 320x240 resolution,
but the mean execution time was almost half of HOG. The 320x240 resolution was also chosen
because, as will be shown at the next section, to extract the skin, another algorithm was used to
detect specific points of the face. So, a higher resolution may increase its accuracy. Thus, for the
proposed system, the VJ face-detector was chosen, and the images were set to a frame resolution
of 320x240 pixels.

3.2.2 Object tracking

Instead of using only the face-detector to locate the user’s face, it’s interesting to use a
faster tracking algorithm to follow the face through the videos after it is firstly located by the
face-detector. Tracker algorithms follow a specific region of an image at the posterior frames.
OpenCV (versions 3.4.2+) provides a set of eight trackers7. A small explanation and the references
about each of them are given as follows:

• Boosting - A real-time object-tracking technique based on the AdaBoost algorithm8;

• MIL - This algorithm separates the tracked object from the background by training a
classifier online9;

• CSRT - Algorithm based on the work “Discriminative Correlation Filter with Channel
and Spatial Reliability, an Algorithm Implemented”10 (LUKEŽIČ et al., 2018);

• MedianFlow - Implementation of the paper “Forward-Backward Error: Automatic De-
tection of Tracking Failures” (KALAL et al., 2010). This tracker is very fast, suitable for
videos with simple movements, where the object is not occluded, and, according to the
authors, it’s quite accurate for those situations11;

• TLD - This algorithm improves the accuracy of other trackers by splitting the tracking
task into three parts: tracking, learning and detecting. During the tracking process, the
detection part analyzes every frame and performs full scanning of the image to localize the
object and, if necessary, the algorithm corrects itself. When an error is detected (basically,
when there is a difference between detection and tracking outputs), the code tries to learn
how to avoid it in the following frames. The algorithm is based on the paper “Tracking-
Learning-Detection” (KALAL et al., 2012). This methodology works as error detection
and correction for other tracking methodologies. To use it, first, another tracker must be

7 <https://docs.opencv.org/3.4/d0/d0a/classcv_1_1Tracker.html>.
8 <https://docs.opencv.org/3.4/d1/d1a/classcv_1_1TrackerBoosting.html>.
9 <https://docs.opencv.org/3.4/d0/d26/classcv_1_1TrackerMIL.html>.
10 <https://docs.opencv.org/3.4/d2/da2/classcv_1_1TrackerCSRT.html>.
11 <https://docs.opencv.org/3.4/d7/d86/classcv_1_1TrackerMedianFlow.html>.
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chosen. The MedianFlow algorithm is chosen as the tracker in theOpenCV implementation.
It is supposed to be able to handle harder situations as occlusions and rapid movements12;

• MOSSE - Minimum Output Sum of Squared Error is a tracker implemented based on the
work “Visual Object Tracking using Adaptive Correlation Filters”13 (BOLME et al., 2010);

• GOTURN - Generic Object Tracking Using Regression Networks (HELD et al., 2016) is
the only tracker implemented in OpenCV that uses Convolutional Neural Networks (CNN)
(until version 3.4.2). The weights of the network must be downloaded separately from a
GitHub repository before use. This algorithm does not handle occlusions, but it works well
with changes of viewpoint, deformations and lighting changes14.

An ideal tracker must be fast, robust to occlusion, illumination and viewpoint changes.
However, real algorithms hardly reach all these features, so it must be chosen the optimummethod
to fulfill the main requirements of this research, that are: 1- the system is an online application,
so it must run fast; 2- as the robot is supposed to follow the child in the room, and keep a small
distance from him/her, it is not common to have objects occluding the child from the robot’s
camera; 3- the child will be most of the time with the face turned to the robot, so there is not
a problem if the tracker loses the target some times, because VJ can be used again to reset the
face’s location.

For the tests, the videos from the movement database were used, as they provide more
challenging situations for the algorithms. The tests were performed as follows: first, the VJ
algorithm was run for each video to find the face location in all frames as the ground truth. Next,
the trackers were initialized with the face’s position of the first frame, and then, they tracked it
in the following frames. To evaluate the algorithms, the time spent to process the videos was
recorded, as well as the number of times that each tracker lost the face. Also, the overlapped area
between the face-rectangles returned by the trackers and VJ in the last frame was calculated. So,
it was possible to compare if the tracker was still covering the whole face region in the end of the
video. the procedure to calculate the overlap ratio is presented in Figure 3.8.

The trackers were set to run the horizontal movement videos of each volunteer (movement
2 from the Movement Database15, see Figure 3.4b). Each video was recorded at, approximately,
30 fps, totaling about 1800 frames per video. There is no occlusion or camera-movement in the
dataset, and, in the whole videos, the distance of the subjects from the camera did not change too
much, so it is a relatively easy task for the trackers. The time spent by each algorithm is presented
in Figure 3.9.

Looking at Figure 3.9, it’s possible to see that some of the trackers are much faster than
VJ. To process a 44 s, 320x240 video, VJ spent 47 s, which is about 28 fps; MOSSE tracker spent
12 <https://docs.opencv.org/3.4/dc/d1c/classcv_1_1TrackerTLD.html>.
13 <https://docs.opencv.org/3.4/d0/d02/classcv_1_1TrackerMOSSE.html>.
14 <https://docs.opencv.org/3.4/d7/d4c/classcv_1_1TrackerGOTURN.html>.
15 It was used the movement 2 videos because it has the greatest head displacement



Chapter 3. Technique Evaluation 27

Figure 3.8 – Procedure to calculate the face’s overlap between the trackers and VJ.

Source – Author’s database, 2020

Figure 3.9 – Execution time of each object-tracker.

Source – Author’s database, 2020

0.67 seconds to process a 60 s 320x240 video, which is about 2687 fps; MedianFlow got 972
fps; and the KCF got 135 fps. These are the fastest ones, but all trackers that processed the video
under 60 s may be suitable. So, to help to choose the tracker16, the overlapped VJ area ratio at the
last frame of the videos is presented in Figure 3.10.

To improve the robustness of the evaluation, the overlap test was repeated for the whole
videos of the movement database17. This test has a more challenging scenario, where the faces are
not just in one position but there is also head rotation. Which changes the aspect of the tracked
face. The result is presented in Figure 3.11
16 The number of times that each tracker lost the target was also counted, however, as it was an easy task, none of

them have lost the target at the test
17 This test was performed after the defense of this work. By this time, an actualization on the OpenCV software

made the GOTURN tracker unavailable, so, it was removed from the test. And, as this tracker had already a poor
result in the before tests, remove it should not affect the choose of the optimum tracker
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Figure 3.10 – Ratio of the VJ’s area overlapped by the trackers at the last frame (horizontal
movement).

Source – Author’s database, 2020

Figure 3.11 – Ratio of the VJ’s area overlapped by the trackers at the last frame (All movements).

Source – Author’s database, 2020

In an ideal situation, the best tracker is the one whose ratio equals one, which means
that the whole area selected by VJ as a face region was still covered by the tracker in the last
frame. The best median values were reached by MedianFlow, KCF and Boosting, but the one
with less variation was KCF. The worst median results were reached by GOTURN, MIL and
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TLD. As MedianFlow was the second faster tracker and got the best median overlapping ratio, it
was chosen as the system’s face-detector.

3.3 Skin Segmentation

To generate the rPPG signal, a part of the subject’s skin must be extracted from the image.
Two possibilities to get the skin-pixels were tested, the first is to find Regions of Interest (ROIs)
at specific parts of the face (specific ROIs), and the second is to select the skin pixels in the frame
according to their color.

3.3.1 Specific ROI Approach

The advantage of this method is that it can select the regions of the skin with the best
view of blood flow, as the cheeks and forehead (GOULART et al., 2019a). The disadvantage of
this approach is that it may not be robust to partial face occlusions and an auxiliary algorithm
is necessary to locate the ROIs. There is an Artificial Intelligence (AI) algorithm trained to
find specific points of the face, called facial landmarks (FLM) (KAZEMI; SULLIVAN, 2014),
available at the dlib library 18. The AI’s result with the ROIs selected are presented in Figure 3.12.
The red dots at the image are the 64 points returned by the FLM algorithm and the blue region is
the extracted skin-pixels. To make the selection of the ROIs, first, lines linking specific points
are drawn, then the intersection of these lines are taken to form a polygon. The pixels inside this
polygon are then selected to represent the skin. This process is illustrated in Figure 3.13.

One of the biggest problems of this approach is the right positioning of the FLM mask.
The face rotation or the use of glasses set difficulties for the AI to identify the right point location,
as presented in Figure 3.14.

3.3.2 Color Approach

The extraction by color has the advantage of being robust to partial occlusions. As long
as a piece of skin is visible in the video, it can be extracted and the signal may be generated. The
disadvantages are that some noisy regions are also included in the signal.

Color thresholds must be defined to identify skin-pixels. The rPPG method proposed
by Bousefsaf et al. (2013) uses the values presented in (MAHMOUD, 2008). At the work, the
face is located using VJ, then the face-images are converted to the YCbCr19 color plane, due to
its efficiency in skin detection (PHUNG et al., 2002). To convert an RGB image to YCbCr, one
can use Equation 3.1. Then, the limits presented in Equation 3.2 are used to select the pixels
18 <http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2>.
19 Y describes brightness, and the other two components describe the blue-Y difference and the red-Y difference.
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Figure 3.12 – Cheecks and forehead skin extracted from images using the FLM.

Source – Author’s database, 2020

containing skin. Figure 3.15 shows the skin selection technique applied to the subjects from the
movement database.


Y = 0.299R + 0.587G+ 0.114B

Cr = R− Y
Cb = R− Y

(3.1)


Y > 80

85 < Cb < 135

135 < Cr < 180

; where Y,Cb, Cr = [0, 255] (3.2)

The faces in Figure 3.15 show that the limits from Equation 3.2 worked well for most of
the subjects, extracting better the well-illuminated part of the skin. For subjects with darker skin
tones as Subject 4 (that has the darkest skin-tone), the limits failed to extract the skin.

To specify the skin color selection to the user’s skin-tone and decrease the possibility of
including non-skin pixels in the selection, a new approach was developed. This approach is a
mixture of specific ROIs and color-based techniques. In the first frame of the video, after the face
is located, the FLM algorithm is applied to find the cheeks of the user, as presented in Figure
3.13. The forehead ROI is excluded because the user may have a hair fringe. A Gaussian Blur
filter with a mask-size of 5x5 is then applied at the image to eliminate high-frequency noise, and
the face-image is converted to the YCbCr color space. The pixel’s color-intensities of the cheeks
are then used to define new skin thresholds. To avoid including colors from facial hair or some
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Figure 3.13 – Facial-landmarks ROI selection.

Source – Author’s database, 2020

Figure 3.14 – Facial-landmarks errors.

Source – Author’s database, 2020

objects as glasses, part of the pixels are pruned by excluding the pixels whose values are too
different from the median color values of the selected pixels at each channel. The lower limit is
defined as the median value minus n times the standard deviation of the channel, and the higher
is the median plus n times the standard deviation20. This procedure is defined in Equation 3.3.
After calculated at the first frame, the same limits are used for the following frames at the same
20 The median and the standard deviation (Equation A.2.) are defined at Appendix A.1
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Figure 3.15 – Skin extracted using the limits of Equation 3.2.

Source – Author’s database, 2020

video, they do not need to be calculated again21.


Yminor < Y < Ymajor

Cbminor < Cb < Cbmajor

Crminor < Cr < Crmajor

(3.3)

where: 

Yminor = Median(Py)− n ∗ Std(Py)

Ymajor = Median(Py) + n ∗ Std(Py)

Cbminor = Median(PCb
)− n ∗ Std(PCb

)

Cbmajor = Median(PCb
) + n ∗ Std(PCb

)

Crminor = Median(PCr)− n ∗ Std(PCr)

Crmajor = Median(PCr) + n ∗ Std(PCr)

(3.4)

where:
21 As in a real application the illumination conditions can change, it is reasonable to repeat this procedure after

some frames to also adapt the algorithm to the environment change conditions.
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-minor represents the lower limit for a pixel to be selected;
-major represents the upper limit for a pixel to be selected;
- Y,Cb, Cr = [0,255];
-Median() is the median operation;
- Std() is the standard deviation operation;
- PY is the value of the pixels at the Y channel;
- PCb

is the value of the pixels at the Cb channel;
- PCr is the value of the pixels at the Cr channel;
- n is an input parameter to increase or decrease the limits.

Figure 3.16 presents the result of the adaptive skin segmentation with n = 1. For most
of the subjects, the cheeks region are well selected as well as regions of the face at the same
illumination as the cheeks.

Figure 3.16 – Adaptive skin segmentation with excluding using n = 1 on Equation 3.3.

Source – Author’s database, 2019

Figures 3.17 and 3.18 illustrate the effect of changing the value of n. In Figure 3.17, n is
increased to 2, allowing a wider skin-region to be selected, and also ignoring most of the glasses
and facial hair. Increasing even more the value of n, setting it to 3, almost the full skin-face is
extracted, and most of the non-skin region is still being excluded, as presented in Figure 3.18.

To choose a valuer for n, it should be checked if it is better to take a small or a big sample
of skin. A bigger region will probably include more non-skin pixels, and also have regions with
different illuminations, however, bigger the amount of skin samples, more diffuse is the impact
of non-skin pixels. For a small sample, the situation is the opposite: as the samples are the most
similar to the cheeks in color, they will be probably well-vascularized regions of the face, allowing
to get a better signal. However, smaller the number of samples, bigger is the noise-impact if a
non-skin pixel is selected.
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Figure 3.17 – Adaptive skin segmentation with excluding using n = 2 on Equation 3.3.

Figure 3.18 – Adaptive skin segmentation with excluding using n = 3 on Equation 3.3.

3.3.3 Evaluation of the skin extraction techniques

To evaluate the specific ROIs and the adaptive color skin-color techniques, two metrics
were used: the time spent for each one, and the cross-correlation of their respective rPPG and
PPG signals (with PPG as ground truth).

To estimate the rPPG signal, the POS methodology was used as it got the best results
in (WANG et al., 2017a) and (UNAKAFOV, 2018). The data used were from the movement
database, because it has the challenging environments for rPPG. The pseudo-algorithm to get the
RGB temporal signal that was used for each skin extraction method is presented in Algorithm 1.

The test was done based on the Pseudo-Algorithm 1. The adaptive skin color approach
from Equation 3.3 was tested for four different values of n: 0.5, 1.5, 2.5, 3.5. That way, it was
possible to analyze the impact of the amount of skin extracted from the result. The method of



Chapter 3. Technique Evaluation 35

Algorithm 1: Pseudo-algorithm for temporal skin-RGB series extraction.
Result: Temporal RGB series
load the videos in the database;
select the skin-extraction method;
for video in Database do

start counting time;
for frame in video do

find the face at the video;
if face found then

find the skin-region with the selected method;
calculate the mean RGB values of the skin-pixels;
add the frame index and the RGB mean values to the result pile;

else
pass to the next frame;

end
end
stop counting time;
save the result for the video;
save the spent time;

end

specific ROIs was also tested.

The face-detector used was a combination of VJ and MedianFlow (selected based on
the results of Section 3.2.1). The time spent was calculated as a sum of face-detector and skin-
extraction processing times (as the first one was the same for every skin-extraction methodology,
it did not affect the results).

The rPPG signals were compared to the reference PPG signal, as the rPPG is a PPG in
its essence. To compare the similarity between both signals, the cross-correlation method was
used22 23, and the method that got the highest absolute correlation value was chosen. The result
is shown in Figure 3.19.

Figure 3.19 presents the correlations between the rPPG signals and the PPG, for each
video of the movement database. The blue color represents the correlations using the specific
ROIs skin extraction method, the orange is the correlation using n = 0.5 in Equation 3.3; n = 1.5

for the green boxes; n = 2.5 for the red ones; and n = 3.5 for the purple ones. The correlations
show that for most cases, bigger the skin region extracted, more correlated was the rPPG to the
PPG. So, the skin-extraction methodology chosen was the adaptive with n = 3, because the best
values for n were 2.5 and 3.5. Thus, the mean value between them was taken.

The execution time of each setup was also evaluated. The time took by each setup to
22 The Cross-correlation is explained at Appendix A.2.
23 The correlation functions is already implemented at the library numpy(OLIPHANT, 2006). Documentation:

<https://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html>.
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Figure 3.19 – Correlation between rPPG and PPG signals for each extraction setup.

Source – Author’s database, 2020

process the videos was saved, which it is showed in Figure 3.20. It can be seen in the results that
the slowest setup is the one with specific ROIs.

Figure 3.20 – Median time spent by each setup.

Source – Author’s database, 2020

As expected, the specific ROIs had the slowest result because they need an AI algorithm to
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run at each frame, and selecting the desired region. Looking at the spent time of the adaptive-color
methods, the processing time tends to increase a bit for bigger n values (more samples to calculate
the mean RGB values), however this time increasing is very small.

3.4 Remote PPG Signal Estimation

This section compares the result of the most well-rated rPPG estimation using Blind
Source Separation (BSS) and linear combination based techniques found in the literature (WANG
et al., 2017a; UNAKAFOV, 2018). The features measured from each technique are the computa-
tional cost and the correlation with the PPG signal. The two BSS techniques evaluated are PCA
and ICA, and the two based on linear color combination are POS and CHROM.

3.4.1 Principal Component Analysis

Principal Component Analysis (PCA)24 is a BSS method widely used for pattern recog-
nition and dimension reduction. The main idea of the algorithm is to decompose the signal in
N components that explain the maximum variance possible of the N dimensions of the signal
(LEWANDOWSKA et al., 2011). The components are ordered from the highest variance to the
lowest and they are orthogonal to each other (TIPPING; BISHOP, 1999).

The objective of using PCA in rPPG is to separate the pulse signal from the noise at
the RGB temporal series. The method proposed by Lewandowska et al. (2011) applies the PCA
algorithm to the RGB temporal samples, transforms the principal components to the frequency
domain, and gets the component with the highest peak in the power spectral density (PSD)
function. It supposes that for a short time the pulse information has periodic variations. Figure
3.21 exemplifies the process.

In Figure 3.21(a) are presented the temporal signals with the skin-pixels RGB intensities
at each frame summed. Figure 3.21(b) shows the three components after applying PCA to the
RGB series. Figure 3.21(c) presents the spectra of the three principal components. All of them
have a peak in 1 Hz; the first and third components are the ones with the highest peaks, but the
third one is slightly higher. So, this component should be taken to represent the pulse signal. The
PCA algorithm is already implemented in the library provided by Pedregosa et al. (2011)25.

3.4.2 Independent Component Analysis

The main idea of the Independent Component Analysis (ICA)26 is to suppose that a
complex signal can be split into the weighted components of its sources. ICA is a convergence
24 For details see Appendix A.4.
25 Documentation about Sklearn’s PCA: <https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.

PCA.html>.
26 Appendix A.5 presents more information about the ICA technique.
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Figure 3.21 – rPPG signal generating using PCA. Adapted from (LEWANDOWSKA et al., 2011).

(a) RGB temporal signal.

(b) PCA components of the RGB signal. (c) Spectra of the PCA components.

Source – LEWANDOWSKA et al., 2011

algorithm. It tries to find the optimum weights for the unknown sources. This makes ICA slower
than PCA, but normally it can separate the signals better.

The methodology to separate the pulse signal from noise is the same using ICA or PCA:
the PSD of the components is calculated through FFT, and the one with the highest peak is kept
chosen to represent the rPPG27.

3.4.3 Chrominance-Based rPPG

The Chrominance-Based rPPG (CHROM) was proposed by Haan and Jeanne (2013). Its
main objective is to increase the robustness of the rPPG to the user motion. CHROM assumes
27 See Appendix A.3 for more information about the Fourier transform.
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that the light reflected by the standardized-skin over time is represented in Equation 3.5.

Ci = ICi
(ρCdc

+ ρCi
+ si), (3.5)

where Ci is one of the RGB channels, C ∈ {R,G,B}, ICi
is the intensity of the light source,

ρCdc
is the stationary part of the reflection coefficient of the skin at the respective channel, ρCi

is
the zero-mean time-varying signal representing the pulse signal and si is the additive specular
reflection contribution, which is identical for all the channels when a white color is illuminating
the skin.

Assuming that ICi
affects proportionally the three channels, the series can be normalized

to generate a signal independent of the intensity of the light source. The temporal signal Ci is
then normalized, dividing every channel by its mean value and subtracting a unity (the mean
operation is represented by the character µ). Cni is the normalized signal, presented in Equation
3.6.

Cni =
Ci

µ(Ci)
− 1 (3.6)

To suppress the motion artifacts of the signal, and keep the variations due to blood pulse, Haan
and Jeanne (2013) define two chrominance signals, standardized for different skin-tones28, Xs

and Ys, as presented in Equation 3.7.

Xs = 3Rn − 2Gn; Ys = 1.5Rn +Gn − 1.5Bn (3.7)

The signals are then filtered with a pass-band filter using the common human heart rate
range as limits (0.67 - 4 Hz). The result is represented by Xf and Yf . To obtain the pulse signal,
P , and deal with the in-band disturbances, the authors propose Equation 3.8.

P = Xf − αYf where: α =
ρ(Xf )

ρ(Yf )
; ρ(.) is the standard deviation operation. (3.8)

The rPPG signal is the result from Equation 3.8.

3.4.4 Plane Orthogonal to Skin

In (WANG et al., 2017a), a detailed study about the reflectance of the skin related to the
rPPG is done to evaluate different parameters that impact the changes in the skin-color besides the
blood volume, as light intensity variation, motion and skin reflection29. Based on this skin-model,
the authors suggest a Plane Orthogonal to Skin (POS), an alternative to CHROM, where the
plane direction enhances the strength of the blood-pulse signal. The equation to get the rPPG
signal is very similar to CHROM, presented before. The difference is in the calculus of signals
Xs and Ys. The new weights of them are shown in Equation 3.9.

Xs = Gn −Bn; Ys = −2Rn +Gn +Bn (3.9)
28 Details about the procedure can be found in (HAAN; JEANNE, 2013).
29 Details of the study can be seen in (WANG et al., 2017a).
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The procedure to get rPPG is almost the same as in CHROM: first, the signal is normalized with
Equation 3.6. Next, the orthogonal signals are calculated with Equation 3.9, and then the pulse
signal is generated using Equation 3.830.

3.4.5 Remote PPG methods Evaluation

As in the skin extraction part, the pulse signal was estimated using four different rPPG
methodologies, and the one that generated the most correlated signal to PPG was chosen. There
was also the condition of the processing time, in which the algorithm should not take too long to
process the signal to be able to work online.

The movement database was used in this test. VJ and MedianFlow were combined to find
and track the face. Equation 3.3 with n = 3 was applied to find the skin-pixels and then the mean
RGB values were extracted to get the raw signal. The initial idea was to generate rPPG using the
whole RGB series. However, because the ICA and the PCA work better for periodic signals, and
in a long RGB series the heart rate frequency may have considerable changes, the whole signal
was split. Then, to generate the rPPG signal, the 1-min raw RGB signals was split into six 10 s
segments. The rPPG is calculated with the segments and compared to its respective PPG signal.
The correlation of the signals are presented in Figure 3.22.

Figure 3.22 – Correlation of each method.

Source – Author’s database, 2020

At the graph, the blue boxes represent the PCA correlation values; the orange ones
represent the ICA; the green ones the POS; and the red ones the CHROM. For all movements
30 The full algorithm cam be seen in (WANG et al., 2017a) page 1485, as Algorithm 1.
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the best median correlations were achieved using POS or CHROM, agreeing with (WANG et
al., 2017a) and (UNAKAFOV, 2018). Both got very similar results. The median correlation of
CHROM was slightly higher than POS, but the maximum and minimum values of POS were
a bit higher when the overall result is analyzed31. For movement 1, with the static volunteers,
the four methods presented very similar correlations, but the BSS methods were worst when the
subjects were moving.

Figure 3.23 shows the time that each method spent to process the whole RGB signals.
POS, CHROM and PCA had a similar processing time, spending about 0.01 s to process each
video. ICA took the longest processing time, about 0.05 s.

Figure 3.23 – Total time spent by each setup.

Source – Author’s database, 2020

POS and CHROM got the best correlation results (agreeing with the results from Wang
et al. (2017a) and Unakafov (2018)) and also short processing time. Both had practically the
same correlations, so both are suitable. As the overall maximum and minimal values and also
the limits of the standard deviation of POS were a bit higher than CHROM’s, and it was better
evaluated at the above papers, POS was the chosen method to be used at the final system.

3.4.6 Filtering

The literature presents some techniques to improve the rPPG signal. In this section, some
of them will be explained and evaluated in relation to processing time and correlation of the
31 As the selection of the face tracking and skin-pixels were done using the POS technique, there is a probability of

it has a better result because of it. However, due to the high complexity of testing all the combinations (and also
the better results achieved by POS in the literature), this possibility was not considered.
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generated signal with PPG.

3.4.6.1 Overlap-Adding (OA)

At the methodology from Haan and Jeanne (2013), the rPPG signal is calculated using
a sliding window, the overlapped regions of consecutive windows are added after rPPG signal
is calculated using the RGB signal inside the window, and them, normalized by subtracting its
mean value divided by its standard deviation. According to the authors, a short window size is
preferable because it can suppress instantaneous distortions and avoid the influence of unwanted
low-frequency noise, as the respiration signal. The minimum window size suggested by the
authors is the length of one cardiac cycle, and the window should slide one frame each time. The
common human HR range is from 40 bpm to 240 bpm. So the longest period for a cycle is 60/40,
which is about 1.5 s. The sample rate (SR) of the camera is 30 fps, which means that in 1.5 s
about 45 frames are recorded, so the chosen length for the overlap-adding window is 45 samples.
The process is illustrated in Figure 3.24.

Figure 3.24 – Illustration of the overlap-adding technique.

Source – Author’s database, 2020

The RGB temporal series is represented by red, green and blue lines on the upper graph.
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The colored rectangles represent the RGB raw signal inside the window and the rPPG estimated
using it. On the other hand, the bottom black graph represents the rPPG signal after finished the
window procedure for the whole signal.

3.4.6.2 Sub-band processing (SB)

Presented in (WANG et al., 2017b), this procedure aims to improve the robustness of
the rPPG signal to powerful noises inside the human heart rate frequency-band, e.g. the noise
from the user movement. The authors claim that with three color channels, only two independent
distortion sources can be eliminated. However, in real situations, there are more than two sources
of noise to affect the signal, as multiple light conditions or different movements, where each
disturbance source may add noise in different frequencies at the signal.

The proposedmethod exploits the fact that the pulse andmotion components have the same
frequency in different color channels. So the principle is to separate the frequency components
inside the color channels, calculate the rPPG separately at each frequency bin (or frequency
sub-band) and then combine them into a final signal. The methodology to calculate the rPPG
should be a linear combination of the channels. Using this processing, the features of the pulse
and noise signal may be exploited here to enhance the pulse influence and suppress the noise.

As the pulse signal has a small amplitude, the color variation caused by light condition
changes or user motion should be much greater, which will increase the total amplitude of the
signal. So, weighting each segment of rPPG calculated using each window before combining
them in the overlap-adding process may reduce the impact of the noise. The weight is calculated
according to Equation 3.10.

w =

∑
(abs (fft (P )))∑

(abs (fft (RGB)))
(3.10)

where:

- w is the weight calculated;
- abs(.) represents the absolute operation;
- fft represents the FFT algorithm;
- RGB is the RGB series segment;
- P is the pulse signal estimated for the RGB segment;

The process is exemplified in Figure 3.25, and the algorithm adapted from (WANG et
al., 2017b) is presented in Algorithm 2.The procedure is done in the frequency domain to save
processing time, since matrix multiplication can be used to apply Equation 3.9, Equation 3.8
and Equation 3.10 in the frequency domain, instead of using a for loop to calculate it at each
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frequency bin, and the signal is normalized according to Equation 3.11 in the overlap-adding
process.

Xnorm =
X− µ(X)

σ(X)
(3.11)

where:

- µ(.) represents the mean operation;
- ρ(.) represents the standard deviation operation

Figure 3.25 – Sub-band exemplification.

Source – (WANG et al., 2017b)

3.4.6.3 Narrow Band filtering (NB)

Based on the method from (GUDI et al., 2019), the idea of this technique is to compute
the rPPG only in the frequency band with the most periodic signal. Similar to the Sub-band
method, the RGB signal is converted to frequency domain using FFT. It is supposed that, after
calculating the rPPG on each bin, the bin containing the signal with the highest power is the
one representing the pulse rate. So, the rPPG is calculated separately for each frequency bin and
the amplitude of all frequencies, except to the one with the greatest power, are set to zero. This
will return a sinusoidal signal, making the peak detection an easier task, ideal for HRV signal
extraction. It works as a narrow ideal pass-band filter in the signal (GUDI et al., 2019). The
authors suggest a bin bandwidth of 0.47 Hz.
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Algorithm 2: Algorithm for the Sub-band Filtering.
Input: RGB signal 3×N (N is the number of samples);
Input parameters: l (length of the segment), B = [bmin, bmax] (bmin is the minimum
frequency bin representing the heart rate, bmax is the maximum);
Initialize output: P = zeros(N) (output pulse signal);
b = l/2 −→ frequency bins of the FFT;
for n = 1,2, ....N - 1 + l do

C = RGB(:n:n+l-1) −→ Segment a part of the signal;
C = C/mean(C) - 1 −→ Normalize the raw RGB segment;
F = fft(C) −→ Calculate the FFT of the three color channels;
S = [0,1,-1;-2,1,1]*F −→ Apply Equation 3.9 in the Freq. domain;
Z = S(1,:)+abs(S(1,:)./S(2,:))*.S(2,:) −→ Apply Equation 3.8 in the Freq. domain;
Z = Z.*abs(Z)./abs(sum(F)) −→ Apply the weights;
Z(:,1:B(1)-1)=0;Z(:,B(2)+1:end)=0 −→ Remove the frequencies outside the human
heart rate range;
P = real(ifft(Z)) −→ return to the time domain;
P(1,n:n+l-1) = P(1,n:n+l-1) + (P - mean(P))/std(P) −→ Normalize the signal and
apply the overlap-adding procedure;

end

To avoid the influence of the noise from movement that may appear in specific points of
the spectra, the signal is overlap-added, so the influence of high power frequencies that appear
for a small time are mitigated.

The trade-off of this technique is that for a small length window at the sliding process it
will be very influenced by noise, and with a big window it loses the sensibility to small heart
beat frequency variations.

3.4.6.4 Filtering Methods Evaluation

To evaluate the suitability of the filtering techniques, like in the other tests, an rPPG signal
was generated using each filtering approach and also using a 6th order Butterworth pass-band
filter with cuttoff frequencies at 0.66 and 4 Hz. The cross-correlation of each signal and the
corresponding PPG is presented in Figure 3.26.

In Figure 3.26 the blue box represents the signal filtered only with the Butterworth filter;
the orange box are the results from the signal processed with the overlap-adding technique and
the Butterworth filter; the green bar is the Sub-band method; and the red the Narrow-band. The
correlations between the filtering techniques are very similar. The median correlation of the
Sub-band and the Narrow-band methods presented higher median values, but the variation of the
Narrow-band method is higher.

Looking at Figure 3.27, that presents the time that the techniques spent to process each
video. There is a big difference between the methods. The Butterworth filtering is the fastest, as it
took 0.02 s to process a 60 s signal; the Overlap-adding got almost 1 s; the Sub-band is faster, with
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Figure 3.26 – Correlations between the rPPG of each filtering method and PPG.

Source – Author’s database, 2020

about 0.2 s; and the Narrow-band spent 0.3 s. Besides the time difference, each of them seems to
be suitable for an online technique, as all of them took less than 1 s to process a 60 s signal. To
choose the best technique, more tests are needed since looking only at the correlation between
rPPG and PPG with all methods the results were very similar. They will be again evaluated in the
next chapter by precision of the peak location.
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Figure 3.27 – Time spent by the raw and the enhancing techniques.

Source – Author’s database, 2020
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4 Results

4.1 Heart Rate and Interbeat Signal Estimation

The two cardiac parameters measured with the rPPG are the heart rate and the interbeat
difference. In the studied literature, the main methodology used to estimate the heart rate from
rPPG signal is a Power Spectrum Density (PSD) analysis. A frequency-time transformation is
used in an rPPG segment of 10 to 20 s, and the frequency with the greatest peak in the human
pulse rate frequencies band is selected to be the estimated HR for the window.

The inter-beat signal is based on peak detection. On the ECG signal, it is represented by
the difference between consecutive R-R peaks. These peaks are normally easy to locate if there
is not too much noise. For PPG, the peaks are not as prominent as ECG but may also be well
defined, with a bit more processing. With rPPG this task is harder. Normally, there is too much
noise at the signal, and the peaks are more diffuse. To exemplify, a sample of the ECG, PPG and
rPPG signals are presented in Figure 4.1. It’s possible to visualize that the peaks at ECG and
PPG signals are easier to define than the rPPG’s. For visualisation sake, it was chosen a sample
of a static subject, when the subject is moving the rPPG signal is worse.

Figure 4.1 – Sample of the ECG, PPG and rPPG signals.

Source – Author’s database, 2020
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4.1.1 Frequency Analysis for Heart Rate Estimation

To estimate the heart rate using the rPPG signal, a common approach is to take the most
powerful frequency on the rPPG spectra inside the band of 0.67 to 4 Hz (that represents the human
common heart rate frequency). In this work, three algorithms were tested to get the frequency
spectrum of the rPPG signal: the Fast Fourier Transform (FFT), the Welch Periodogram (WP)
and the Lomb-Scargle Periodogram (LSP). One of the most used time-frequency transforms is
the FFT because of its low computational cost, ideal for online applications. Welch’s method
divides the whole signal into overlapping sections, computes a modified periodogram for each
part and average the overlapping regions. This method is more robust to noise but also reduces
the resolution of the signal (WELCH, 1967). As both, FFT and WP, require that the signal has a
constant sampling time, it should be interpolated as the sample rate from the camera may change
a bit. Also it is possible that some samples are lost because VJ may not find the face or the
tracker loses the target in some frames, or even the skin region may not be extracted, introducing
gaps at the signal. With interpolation, a disturbance may be added to the rPPG signal. To avoid
interpolate the signal, an approach capable to estimate the PSD of unevenly sampled signals may
be used: the Lomb-Scargle Periodogram (LSP), created by Lomb (1976) and modified by Scargle
(1982). This technique focuses on analyzing astronomic data, to detect a weak periodic signal
hidden into noise. This approach has been used to analyze the rPPG in (CHEN et al., 2018).

To test the three methods, the heart rate was calculated using each of them. The rPPG
was extracted from the videos using the POS methodology and then, to estimate the heart rate,
the FFT, the WP and the LSP were used.To apply the techniques, a 10 s sliding window was used
to estimate the heart rate over time. The window is applied for each new sample, defining the
overlap size as 299 samples (10 s × 30 fps − 1 sample). Applying the setup the result to the 60
s rPPG signal, the result is a heart rate curve with length of 50 s (the first estimation is done
after taking a sample of 10 s). To evaluate the result the heart rate curve is also calculated with
the ECG. To perform it, the R-peaks on the ECG are identified using the library provided by
Carreiras et al. (2015), them, taking the inverse of the time difference between consecutive peaks
multiplied by 60 to take the bpm values of the curve.

To compare the results the ECG heart rate curve is interpolated to the same frequency
sampling of the rPPG’s heart rate curve (30 Hz), them, the cross-correlation between the heart rate
found with the rPPGs and the ECG and their root mean squared error (RMSE)1 were calculated,
together with the processing time. The ECG is the gold standard method to extract the heart rate,
so, because of it, the result was compared with the ECG instead of the PPG. Figure 4.2 presents
the box-plots of cross-correlation found by getting the HR signal from the rPPG and the ECG
using a 10 s window, and Figure 4.3 presents the RMSE by calculating the heart rate using the
rPPG comparing the difference with the ECG.

In Figure 4.2, the blue boxes are the cross-correlation values of the rPPG’s and ECG’s
1 See Appendix A.6.1 for details about the RMSE measurement
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Figure 4.2 – Correlation of the heart rate curves from rPPG and ECG.

Source – Author’s database, 2020

Figure 4.3 – RMSE of the heart rate curves from rPPG and ECG.

Source – Author’s database, 2020

heart rate curves using the FFT; the orange boxes are the correlation achieved with the WP; and
the green ones are the result obtained with LSP. The best correlations are achieved using the FFT
algorithm, the correlations achieved with the Welch periodogram are close, however, a bit worse
then the FFT. And the Worst results are achieved using the LSP method.

Looking at the RMSE values in Figure 4.3, the three algorithms got very close results,
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being the LSP the one with the smallest error, besides getting a correlation a bit worse than the
other two methods. But also, for most of the videos, the maximum error difference between the
algorithms was of 2 bpm, except for Movement 4 that the LSP got a significantly smaller error (4
bpm less comparing to the FFT’s result, and 5 bpm comparing to the Welch’s). It is also notable
in Figure 4.3 how much the movement affects the rPPG. At Movement 1, almost all error values
were under 5 bpm, while in the other movements the median values of the error were over 10
bpm. The final feature that must be taken into account is the processing time. The median time
that each method took for each video is presented in Figure 4.4.

Figure 4.4 – Total time spent by each setup.

Source – Author’s database, 2020

As expected, the fastest was the FFT, then the WP and at last the LSP with almost double
of the time spent by the FFT. Besides that, all three were fast enough for an online system. All
three processed 60 s of signal in less than 0.15 s, however, the FFT took almost half of the LSP
time.

Looking at the results, as the FFT got the best correlation (even all three being very close)
and the smallest processing time, it will be used at the final system to calculate the heart rate.

4.1.2 Interbeats Difference Signal

The heart rate variation is defined by the time-differences between consecutive heart-beat
cycles. This signal parameter is relatively easy to extract at the ECG, as the R peaks are normally
the most prominent peak at the signal, as presented in Figure 4.1.

The ECG Python library BioSPPy, provided by Carreiras et al. (2015) was used to
locate the R peaks at ECG. To locate the peaks in PPG, a 7th order band-pass Butterworth filter,
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with cutoff frequencies at 0.3 Hz and 8 Hz was used to eliminate noise and enhance the peaks.
Then a peak finder function provided by the Scipy library (VIRTANEN et al., 2020) was used.
This function accepts parameters to prune unwanted peaks, as the minimum distance between
consecutive peaks, their prominence or their minimum height2. For the PPG peaks, only two
parameters were used: the distance between the peaks, as a minimum of 0.25 s (time period at
240 bpm), and the minimum prominence, that was set as 30% of the whole signal’s amplitude.

The peak location using rPPG signal is a harder task. The raw signal is normally very
noisy, thus a hard filtering technique must be used to clean the signal. The four filtering techniques
from Section 3.4.6 were tested together with the POS rPPG methodology to estimate the signal.
Its peaks were located and the peak-to-peak difference was calculated and compared to ECG. To
locate the peaks using rPPG, the same peak detection function of PPG was used, however with
other parameters. First, the rPPG signal was split into segments of 128 samples (about 4.27 s).
As the amplitude of the rPPG variates too much, a fixed value of amplitude at the peak finding
function ignored a lot of peaks. For each segment, the minimum amplitude pruning parameter
was set as 30% of the amplitude of the segment. The minimum distance was defined as the period
of the maximum frequency in the window (the probable heart rate) plus 0.14 Hz (8.4 bpm). This
procedure limits the minimum distance between adjacent peaks based on the average heart rate,
it avoids possible noise that may appear between peaks. These values were defined empirically
during the tests.

To evaluate the results, the peak-to-peak difference of each signal was calculated and
correlated with the R-R difference from ECG. Before the cross-correlation calculus, the signals
were interpolated to a sample rate of 7 Hz, as advised by Taskforce (1996). Some important
features used to define emotions were calculated using the power spectrum density (PSD) for
analysis of the interbeat difference signal. So, the PSDs from the rPPG and ECG R-R signals
were correlated. Figure 4.5 presents the correlation of the rPPG interbeat signals and the ECG’s,
and Figure 4.6 shows the correlation of their PSD.

The signal with the highest correlation was the result of Narrow-band filtering, however,
it was only slightly better than the others. However, looking at the result of the PSD correlation
in Figure 4.6, the Narrow-band filtering scored significantly better than the other methods. So,
this method will be used to generate the rPPG HRV features.
2 for more details see: <https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html>.
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Figure 4.5 – Correlation of the interbeat signals.

Source – Author’s database, 2020

Figure 4.6 – Correlation of the interbeat PSD.

Source – Author’s database, 2020

That evaluation finished the rPPG signal estimation procedure. Figure 4.7 summarizes
all the algorithms chosen to perform the rPPG signal estimation.
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Figure 4.7 – Algorithms chosen to perform the rPPG signal estimation.

Source – Author’s database, 2020

4.2 Emotion Classification

The database used here to evaluate the suitability of using rPPG as an indicator of emo-
tional states was the Emotion Database detailed at Section 3.1.2. At this database, 30 volunteers
were told to watch six short videos with emotional content (one neutral video, one disgusting,
one with fear, one with happiness, one with sadness and one with surprise), and then asked to
answer a questionnaire about the arousal and valence excited by each video using Self-Assessment
Manikins (SAM). The videos are that the used in (GOULART et al., 2019a), they were select by
a psychologist to trigger the emotions on children. This database contains face-videos, ECG and
also PPG for each subject.

To evaluate the emotion content experienced by the volunteer when he/she was watching
the videos, the volunteer rated each one for arousal and valence using the aforementioned SAMs
questionnaire, as done in (GOULART et al., 2019a). Morris (1995) proposed this questionnaire
to evaluate arousal and valence with discrete numbers from one to nine and also representing the
rates with images to better explain the scale to the volunteer. The SAM scales are presented in
Figure 3.6. For arousal, a value close to 1 represents a very weak emotion; close to 5 a medium
intensity emotion; and close to 9, a strong emotion. For valence, a number close to 1 represents a
very negative emotion; close to 5, a neutral; and close to 9, a very positive emotion.

The values that each volunteer rated the videos for arousal and valence are presented in
Figure 4.8, where each one of the six videos is represented by a different color, the rates that the
volunteers gave for arousal are represented in the horizontal axis and the rates for valence in the
vertical axis. It’s interesting to notice that the variation of the arousal rates was normally bigger
than the valence ones. To better visualize it, see Figure 4.9. The wide range of arousal rates and
the narrower range of the valence imply that the subjects normally agree if the video-valence
triggers a bad, neutral or good feeling. But each video triggers different arousal strengths for each
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volunteer. This is more visible in the neutral, disgusting and fear videos.

Figure 4.8 – Arousal and valence overall rates distribution.

Source – Author’s database, 2020

Figure 4.9 – Arousal and valence rates distribution.

Source – Author’s database, 2020

The features extracted from HRV to quantify emotion were based on the work from
(SCHAAFF; ADAM, 2013). The work evaluates the use of 12 different features, that are normally
used for a 5 min signal (which is impracticable for an online system), for smaller lengths. They
compared the use of ultra-short windows (15 s, 30 s, and 60 s) against the standard short window
presented at the traditional literature (5 min) (TASKFORCE, 1996). However, as all the videos
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have less than 3 min, it is impossible to use a 5 min array. The features used in that work are
the 12 presented in Section 2.2.3.1. They are:meanNN , SDNN , RMSSD, pNN12, pNN20,
pNN50, SD1, SD2, SD1/SD2, LF , HF and LF/HF 3.

For the rPPG classification, all of them were used as input for the Principal Component
Analysis (PCA)4 to select their combined values that have the highest variation. All 12 features
were calculated using a 30 s sliding window and used in an emotion classification system,
presented in the next section.

The rPPG feature values distribution for all volunteers is presented in Figure 4.10, and
the features of ECG are presented in Figure 4.11. To represent a multidimensional feature matrix
in a 2-D plot, the t-SNE algorithm implemented by was used (MAATEN; HINTON, 2008).

For both signals, the samples of each group are too mixed, it is not possible to identify
clusters for each discrete emotion. To analyze the arousal and valence rates, the color of the points
were changed to represent the arousal/valence value of each feature. The rPPG distributions for
arousal and valence are presented in Figures 4.12 and 4.13, and the ones from ECG are presented
in Figures 4.14 and 4.15.

It’s possible to see in Figure 4.12 that for the rPPG arousal the samples are completely
mixed, being very hard to define clusters for low or high rates. However, for the valence in
Figure 4.13, a better visual separation may be observed. The lower grades (blue points) are more
predominant at the left side; the neutral grades (black points) are spread through the graph; and
the high grades (green points) valence are more concentrated at the right side. So, at a first look,
the valence classification should have better results.

For the ECG data, it was expected a better separation between the classes in Figures
4.14 and 4.15. However, for arousal the samples are completely mixed up. For valence this also
happens, but there is a small concentration of low grades at the right side, and the high grades are
more predominant at the left side, indicating that the valence rates are more separable than the
arousal ones. These statements were all made by visual inspection on the data, the classification
results should provide a more reliable analysis.
3 Please see Section 2.2.3.1 for details about each of them.
4 See Appendix A.4 for details about the PCA algorithm.
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Figure 4.10 – HRV features distribution using rPPG.

Source – Author’s database, 2020

Figure 4.11 – HRV features distribution using ECG.

Source – Author’s database, 2020
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Figure 4.12 – Distribution of rPPG arousal features.

Source – Author’s database

Figure 4.13 – Distribution of rPPG valence features.

Source – Author’s database
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Figure 4.14 – Distribution of ECG arousal features.

Source – Author’s database

Figure 4.15 – Distribution of ECG valence features.

Source – Author’s database

4.2.1 Individual Emotion Recognition

The first classification setup was to create a personal classifier for each subject. There are
six videos at the Emotion Database. Including the 4s countdown clip, the first is a neutral video
100.4 s long, the second a disgusting with 60.8 s, the third is a 61.8 s long scary video, the fourth
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is a 43.8 s happy video, the fifth is a sad video with 134.2 s and the last is a surprising video with
85.5 s.

To calculate the HF and LF features, the minimal signal length is 30 s (SCHAAFF;
ADAM, 2013). In an ideal situation, the signal would be split into non-overlapping segments of
30 s, and each segment would generate one sample. Unfortunately, the shortest video has 43.8 s,
so, only one sample can be calculated that way.

To increase the number of samples from each video, the segments were overlapped. The
overlapping region of consecutive windows was 28.5 s, that guarantees that at least one new beat
in each segment (considering, the minimum HR as 40 bpm, with an interbeat length of 1.5 s).
Using this setup, the first video generated about 46 samples, the second about 20, the third 21,
the fourth 10, the fifth 69 and the sixth 37.

Classify each one of the six emotions at the Emotion Database is impossible, considering
that the videos are short and the samples created using the sliding window share over 90% of the
information with its neighbors since it is a 28.5 s of overlapping in a 30 s segment. So, to avoid
the bias caused by the overlapped region, the videos used to train the classifier must be different
from the ones to test it.

An individual classifier was tested for the system that tries to differentiate the arousal
and valence rated by the subjects at each video. So, the classifier tries to predict the rates for
arousal and valence given by each subject. As the values for arousal and valence using SAMs
questionnaire are integers from 1 to 9, they were divided into three groups: the Low group, that
goes from 1 to 3; the Neutral group, that goes from 4 to 6; and the High group, that goes from 7
to 9.

To create the training and test sets, the videos from each subject were tagged in Low,
Neutral and High classes, according to the respective rate. Then, for each group, the longest
videos in each class were chosen to train the classifier, and the others to test it. Since the videos
have different lengths, to balance the training set, the signals were reduced to the same size by
cutting off the beginning of each series until they all have the length of the shortest video duration.

It was chosen the end of the videos to balance the training dataset, because the end of an
long experience (watch the whole video) will have more weight to evaluate the whole experience
than the beginning of it (KAHNEMAN, 2011). So the rates that the volunteers gave for each
video, probably, had a higher influence from the end of it.

The k-Nearest Neighbors (k-NN) classification algorithm was used. It is a classifier that
tags a new sample in the same class as its nearest neighbor samples in the training set. The
features were calculated using the 12 HRV parameters from (SCHAAFF; ADAM, 2013). As
done in (GOULART et al., 2019a), PCA was calculated using the covariance matrix to reduce the
dimension of the data, keeping the highest variance components until the accumulated variance
of 90%.
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The classification was done using ECG, PPG and rPPG signals. To evaluate the classi-
fication, the following metrics were calculated: accuracy, precision and Kappa index 5 for the
classification with rPPG, ECG and PPG. The result of the arousal classification are presented in
Table 4.1 and the valence results in Table 4.2.

Table 4.1 – Evaluation metrics for individual arousal classification using the three signals.

Accuracy Precision Kappa
rPPG 0.26 0.34 -0.08
ECG 0.42 0.41 0.08
PPG 0.39 0.38 0.03

In Table 4.1 rPPG got the worst results, with 26% of accuracy, which does not even
beat the random classifier6, that would get 33% for three classes. The best accuracy results were
achieved by ECG, which gets an accuracy of 42%, followed by PPG, which scored 39%.

Table 4.2 – Evaluation metrics for the individual valence classification using the three signals.

Accuracy Precision Kappa
rPPG 0.45 0.45 0.18
ECG 0.37 0.37 0.05
PPG 0.34 0.34 0.01

The results for valence presented at Table 4.2 were much different than the arousal ones.
The accuracy of rPPG got the highest result, reaching 45%, where as ECG and PPG were closer
to the random classifier, getting only 37% and 34%, respectively. To better see the inter-class
distribution of arousal and valence, the normalized confusion matrices are presented at Table 4.3.

Table 4.3 – Arousal confusion matrices.

rPPG ECG PPG
Low Neutral High Low Neutral High Low Neutral High

Low 0.28 0.22 0.51 0.08 0.67 0.24 0.01 0.57 0.20
Neutral 0.43 0.29 0.28 0.11 0.47 0.42 0.11 0.56 0.33
High 0.52 0.28 0.20 0.29 0.16 0.55 0.38 0.25 0.37

In Table 4.3, the lines represent the true class of the test samples (normalized), and the
columns the class that were assigned by k-NN. For rPPG, the Low and High samples were tagged
oppositely: the Low samples were mostly tagged as High and the High as Low. For ECG and
PPG classification, the best results were with the Normal and High classes.
5 Details about the classification metrics are presented in Appendix A.7.
6 A random classifier (or dumb classifier) is a method that tags each sample to a random class without any criteria,

so the accuracy of this kind of classification normally is approximated to 1/N , whereN is the number of classes
that the classifier knows. A classifier that gets results near to the random one, probably, cannot separate the
classes at all.
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Looking at the confusion matrix, it is possible to see that for all signals the classification
results were low. Thus, it’s difficult to affirm if the better results on the ECG are a causality or if
there is a real tendency.

Table 4.4 – Valence confusion matrices.

rPPG ECG PPG
Low Neutral High Low Neutral High Low Neutral High

Low 032 0.40 0.28 0.36 0.27 0.36 0.40 0.31 0.29
Neutral 0.35 0.45 0.20 0.23 0.50 0.27 0.33 0.34 0.33
High 0.14 0.25 0.60 0.46 0.31 0.23 0.36 0.37 0.27

At the valence confusion matrices, the ECG and PPG scores were almost completely
similar to a random classifier. However, for rPPG, the results were better: the Low test samples
were tagged mostly at the Neutral class (40%) than the Low (32%), followed by the smallest part
of the High class (28%); for the Neutral class, 45% were classified as Neutral, 35% as Low and
20% as High; the High class got the best result, as 60% of the samples were rightly tagged in the
High class, 25% as Neutral and only 14% as Low. These results were achieved using about 20
out of the 30 volunteers (10 were excluded with errors on the recording in one of the signals).

The highest results for the rPPG in Table 4.4 may have two possibilities: the first is that
the best results achieved by rPPG are a coincidence. The second possibility is that the high
low-pass filtering applied to the rPPG signal may enhance features that facilitate the identification
of valence relating features on the cardiac signal. However, as the accuracy scores were low, more
tests are necessary to confirm this hypothesis.

4.2.2 Multi-person Emotion Recognition

This section presents the results of the multi-person emotion classification. The classifier
used was the same as the individual classification, the k-NN. However, to train and test the
classifier, the k-fold technique was used. This method makes the classification k times using
(k− 1)N/k subjects to train, andN/k to test the algorithm, whereN is the number of subjects. It
was defines a 5 as the k values. So, each fold had 80% of the volunteers for training (approximately
22), and 20% for testing (5 volunteers). The face detection failed to find the face of 3 out of 30
volunteers, so these ones are not used in the testes. The classification and testing process was
repeated 5 times (one for each fold), and the mean result is calculated.

After extracting the features from the signals, putting the samples from all subjects
together, there were at least 170 samples for video. So, as the number of samples is higher,
besides the arousal and valence classification, it was also tested the result of the classification
using each one of the six videos as an output. So, for rPPG, ECG and PPG, k-NN was trained in
5 folds using different volunteers for training and testing. To balance the train dataset, samples of
the most populated classes are excluded until all classes had the same number of samples. The
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classification metrics for each output (discrete emotions, arousal and valence) from rPPG signal
are presented in Table 4.5. The classification results of ECG are presented in Table 4.6, and the
results from PPG in Table 4.7.

Table 4.5 – Evaluation metrics for the multi-person classification using rPPG.

Accuracy Precision Kappa
Video 0.28 0.37 0.13
Valence 0.41 0.44 0.12
Arousal 0.31 0.43 -0.01

Table 4.6 – Evaluation metrics for the multi-person classification using ECG.

Accuracy Precision Kappa
Video 0.17 0.21 0.00
Valence 0.34 0.37 0.01
Arousal 0.35 0.43 0.02

Table 4.7 – Evaluation metrics for the multi-person classification using PPG.

Accuracy Precision Kappa
Video 0.18 0.25 0.02
Valence 0.34 0.37 0.00
Arousal 0.35 0.41 0.01

The classification results were quite unexpected, as the prediction with ECG and PPG
were completely compatible with a random classifier. For six classes (one per video), a random
classifier would get an accuracy of 17%, which is the same accuracy score reached by ECG. The
PPG was very close to it, with an accuracy rate of 18%. The arousal and valence parameters
have three classes each, so the random accuracy value was 33%. The PPG and ECG got 34% of
accuracy for the valence classification, and 35% for arousal, pretty close to a random classifier.

Surprisingly, the results of rPPG were better than the other two signals for the videos
and valence classification. For the videos, the accuracy score reached 28%, almost 65% higher
than the 17% of the random classifier. Even the Kappa got a score higher than 0.1. For valence,
the accuracy reached 41%, 24% higher than the 33% of the random classifier. For arousal, the
accuracy got a score of 31% a bit lower than the random classifier. For details, Tables 4.8, 4.9
and 4.10 present the confusion matrices of each classification. The values highlighted in green
are the classes where the majority of the samples were tagged, and in red are the ones where the
second biggest group is tagged.

The confusion matrix of video classification using rPPG enhances the hypothesis that
different emotional states may be reflected at the signal. The majority of the greatest scores were
in the right class, the only two that did not get the best score in the right class, getting the second
higher. These results were obtained separating the subjects into two groups, the training and the
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Table 4.8 – Normalized confusion matrix of the general rPPG video classification.

Neutral Disgust Fear Happiness Sadness Surprise
Neutral 0.24 0.20 0.08 0.26 0.07 0.15
Disgust 0.18 0.25 0.09 0.24 0.13 0.11
Fear 0.07 0.11 0.30 0.15 0.26 0.11
Happiness 0.22 0.22 0.10 0.27 0.10 0.10
Sadness 0.05 0.12 0.24 0.11 0.34 0.14
Surprise 0.10 0.11 0.17 0.17 0.24 0.21

Table 4.9 – Normalized confusion matrix of the general ECG video classification.

Neutral Disgust Fear Happiness Sadness Surprise
Neutral 0.15 0.13 0.14 0.22 0.23 0.12
Disgust 0.14 0.07 0.10 0.33 0.17 0.14
Fear 0.06 0.12 0.23 0.22 0.22 0.15
Happiness 0.13 0.19 0.19 0.23 0.10 0.15
Sadness 0.21 0.13 0.17 0.24 0.16 0.10
Surprise 0.16 0.12 0.14 0.23 0.17 0.17

Table 4.10 – Normalized confusion matrix of the general PPG video classification.

Neutral Disgust Fear Happiness Sadness Surprise
Neutral 0.13 0.15 0.16 0.28 0.17 0.11
Disgust 0.13 0.14 0.19 0.26 0.17 0.12
Fear 0.10 0.19 0.19 0.22 0.19 0.12
Happiness 0.11 0.13 0.20 0.29 0.17 0.11
Sadness 0.11 0.18 0.17 0.23 0.22 0.10
Surprise 0.12 0.13 0.19 0.23 0.17 0.15

test group. This separation avoid biasing the classifier since a person is used for train or for test
the classifier, never both. Using this method, a reasonable amount of samples is generated per
video, at least 170. In the classification results achieved using ECG and the PPG, the samples
were mostly tagged at the happiness video. The respective confusion matrix for arousal and
valence are presented at Tables 4.11 and 4.12.

Table 4.11 – Arousal confusion matrices of the three signals.

rPPG ECG PPG
Low Neutral High Low Neutral High Low Neutral High

Low 0.38 0.35 027 0.35 0.38 0.25 0.41 0.35 0.24
Neutral 0.35 0.29 0.37 0.33 0.40 0.28 0.29 0.36 0.34
High 0.35 0.34 0.31 0.35 0.36 0.29 0.30 0.39 0.31

The arousal confusion matrices show that the separation of the classes for all signals was
not successful. Almost all classes got between 30% to 40% of accuracy spread by all classes.
Thus, it is not possible to affirm that a pattern was caught by the classifier.
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Table 4.12 – Valence confusion matrices of the three signals.

rPPG ECG PPG
Low Neutral High Low Neutral High Low Neutral High

Low 0.54 0.17 0.29 0.34 0.34 0.32 0.41 0.28 0.31
Neutral 0.34 0.32 0.34 0.31 0.35 0.34 0.35 0.27 0.37
High 0.33 0.34 0.33 0.28 0.38 0.34 0.34 0.34 0.31

For valence, results were almost the same, as the arousal ones, except by the Low rPPG
class. About 54% of the rPPG Low valence samples were correctly classified, enforcing the result
of the individual classifications that the valence rate of the videos may be caught through rPPG.

After the defense of this dissertation, a new evaluation of the algorithms used in the
classification was done. The results are presented in Appendix B.

4.3 HeartRateVariation for EmotionClassification in theLit-
erature

According to Appelhans and Luecken (2006) HRV can reflect the individual emotional
states responses, however, the literature also presents a limitation for it. Choi et al. (2017) tested
the suitability of using the HRV extracted from ECG to separate the “happy”, “unhappy” and
“neutral” emotional states excited through visual stimulation by pictures. They concluded that is
only possible to use an HRV-based emotion classifier when a high emotional level is expressed.

Guo et al. (2016) Used ECG to separate 2 (negative and positive) and 5 (sad, angry, fear,
happy, relax) emotional states. They also used a set of videos to trigger these emotions on 25
subjects. And using segments of 90 s to extract the features they could recognise 71.4% of the
emotions correctly for the 2 emotional states, and for the 5 different emotional states they could
reach an accuracy of 56.9%.

Benezeth et al. (2018) was the only work found (until 31 May 2020) that used rPPG to
separate the emotional states. According to them, they could differentiate a high and neutral
arousal states using rPPG for 12 out of 16 volunteers (building a different system for each
volunteer). They used 2 min length signals to extract the features.

The present work got worse results comparing to the literature. It shows that the emotion
recognition step, may be improved, and in future works will be more productive to perform
the analysis firstly with ECG, to achieve the results on the literature, then, repeat it for rPPG.
Unfortunately due to the small time, it was not possible to neither refine the emotion classification
techniques and either build an proper database for HRV emotion recognition (with recordings
longer than 2 mins).
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4.4 Computational Time of the Whole System

The last part is to integrate all the best methods tested at this work in a system capable
to process a video, find the face of the user on it, extract the skin region through the frames,
compute the mean RGB values of the skin region, estimate the cardiac signal, find the peaks on
it, extract the cardiac parameters and then classify the signal to identify the user’s emotion (all of
this is required to work online).

Putting all these parts together, the procedure spent 0.125 s7 from the face-detection step
to the classification step, so the system worked at 8 frames per second (fps), which was pretty
slow. The Nyquist theorem sets: the minimum frequency sample of a signal should be the double
of the highest frequency inside it. So, to capture a 4 Hz signal (240 bpm), the minimum sample
rate is 8 Hz (or 8 fps). Which theoretically, it would be enough, however, to work at this sample
rate, too much information would be lost (and there is higher frequencies on the signal besides the
heart hate, increasing the aliasing effect). Also, not only the frequency of the signal is analyzed:
to locate the rPPG peaks, the higher the sample rate, the higher the precision of the location of
the peaks.

To improve the sampling rate, multiprocessing was used to split the whole processing. The
main thread was used just to capture images and avoid losing frames. Another thread processed the
face location and tracking, skin segmentation and extraction of mean RGB signal. The last thread
was used for the rPPG estimation and filtering, peak finding, features extraction and classification.
After using multiprocessing, the RGB signal generation needed 0.017 s to execute, equivalent to
59 fps, more than enough to process the frames of the webcam at 30 fps. However, the results of
the classification were slower, as they took took 0.11 s to be processed, but is still fast enough to
work online. Also, a friendly Graphic User Interface (GUI) showing the classification result and
the heart rate was designed. The GUI is presented in Figure 4.16.

At the interface, the current image, a 30 s sample of the estimated cardiac signal, the
estimated heart rate of the 30 s signal, and also the result of the classification are shown, with the
most probable class highlighted in blue.

7 The tests were computed with a i7 8th generationWindows computer, with 16 GB of RAM and no dedicated
graphics board.
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Figure 4.16 – Graphic User Interface presenting the results of the classification.

Source – Author’s database, 2020



68

5 Conclusion

This work proposed an online emotion recognition system based on remote photoplethys-
mography (rPPG), by extracting the cardiac signal through RGB face-videos. Thus, the system is
conceived to be used on a robot that helps a therapist in the interaction with autistic children. A
research was done about the autism spectrum disorder, emotion recognition based on heart rate
and the state of art on color image based rPPG.

To select the methods for the system, each step was evaluated for precision and processing
time. At the face selection step, the Viola-Jones face detection method presented a good success
rate and the smallest processing time. The chosen tracker, MedianFlow, spent less than 2 s to
process 1800 frames and was able to track the great majority of face-area after a 60 s test. To
extract the skin region, two methods were tested: the first based on specific regions of the face,
and the second segments the skin based on its color. It was found that the color-extraction based
method presented the best results, and also that the bigger the skin-area extracted, the better
the results. After finding the skin-region, its mean RGB value was calculated and concatenated
through frames to generate a temporal color signal. Four methods to estimate the cardiac signal
from the raw RGB series were tested, being the plane-orthogonal-to-skin (POS) the one that
got the rPPG signal most similar to the PPG. To get the heart rate using the frequency analysis,
three methods to get the power density spectrum were tested, all of them with similar results, but
being the Fast Fourier Transform (FFT) the fastest. Before identifying the peaks of the rPPG to
calculate the HRV parameter, the rPPG was filtered. Thus, four filtering techniques were used
and the one that best correlated the rPPG heart-beat differences to the ECG’s was the one called
Narrow-band, which works as a very narrow band-pass filter to overlapping parts of the signal,
and then, average them.

With the interbeat signal extracted from the rPPG, twelve features were extracted, and
used to classify videos with emotional content in two ways: a custom classifier for each subject and
a multi-person classifier, both using k-Nearest Neighbor (k-NN) for classification. For comparison
sake, the classification was also donewith ECG and PPG signals. The database usedwas composed
of 30 subjects, where each of them watched six short videos (about 40 s to 240 s each video)
to trigger six specific emotions (neutral, disgust, fear, happiness, sadness, surprise), while their
face-images, EGC and PPG signals were recorded. They also rated each video for arousal and
valence. As the videos were short, there was not much data to make an individual classifier
for each emotion. So at the individual classifier, only their rates for arousal and valence were
classified. The arousal and valence rates were separated into three groups (Low, Neutral and
High), and a set of a Low, Neutral and High arousal and valence videos were separated to train
the k-NN, and the remaining videos used to test. To the multi-person classifier, besides arousal
and valence classification, the six emotional states were also separated using k-NN.
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In general, the classification scores were pretty low but quite interesting. The expected
was that, using ECG, the classification results would get the best scores, then using PPG the
scores would get a bit worse, and then, using rPPG, the scores wold be the worst. However, for the
valence classification, the best score was obtained using rPPG, and the using the other two signals
the accuracy results were close to the random classifier. For the multi-person classification, all the
results got using ECG and PPG were close to the random classifier, but using rPPG, the classifier
was able to identify the emotions better for the six videos classes and the valence rates outputs.
The rPPG results were still pretty low, as the video classification got 28% of accuracy against
17% from the random classifier, and the valence got 41% against 33% from the random (the
best class was the Low valence class, with an accuracy of 54%; the other two scored near to the
random value of 33%).

This result brings some hypothesis, the first is that the high processing and filtering of
the rPPG signal enhanced some important emotional features that were hidden at the ECG and
PPG signals. So in future works, this procedure should be repeated, but applying a low-pass filter
in ECG and PPG signals and evaluating the results. The second hypothesis is that the skin-color
changes insert additional emotional information at the cardiac signal, which were extracted in the
process and used in the classification. And the third one is that, as ECG and PPG, rPPG signal
could not separate the emotions, and the better results for rPPG are a coincidence. It is worth
to consider that the 30 s window may be too short to calculate the features, and two of the six
videos got similar arousal and valence rates, even they representing different emotions, which
difficulties the classification using the cardiac signal.

5.1 Future Works

Due to the rPPG estimation, it was noticed that the results are better for lighter skin-tones,
probability because it is easier to catch the color variations on them. However, both linear rPPG
estimators (POS and CHROM) used a standardized skin model to select the color-channel weight
at the calculus, which may turn harder to get the color-variations on darker skin-tones. It is
possible that a model with adaptive weights based on the skin-tone may improve the quality of
the estimation.

To test the above hypotheses, another dataset should be recorded, with fewer emotions
(trying to separate low/high arousal and valence only), and longer videos to excite the same
emotion. The dataset should be planned and rated in partnership with psychologists, as the
volunteer rates may be subjective.

At all, the proposed system can work online, but, using only cardiac information, it
was not possible to get high accuracy on the emotion classification. A possible way to improve
accuracy is to add the skin color values as additional information. For example, Goulart et al.
(2019a) showed that different emotions change the temperature of the face in different ways. Thus,
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if these temperature changes are caused by the increasing/decreasing of the blood volume in a
particular area of the face, they may also change the color of this region, so it may be recorded
by an RGB camera. This would be an interesting test for future works.

Another research suggestion is to use the HSV (Hue, Saturation, Value) color space to
identify and track the skin region on the frames. A skin detection algorithm based on HSV could
cope with the face-detector, face trackers and skin extraction parts of the work, which could save
a considerable processing time.
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APPENDIX A – General Equations and
methods

A.1 Statistics

The statistical equations in this appendix are based on (MORETTIN; BUSSAB, 2010).

A.1.1 Mean

The mean value of the samples inside the X array is defined by Equation A.1:

µ =
1

n

n∑
i=1

(xi) (A.1)

where n is the number of samples of the X array.

A.1.2 Median

The median value of an array of samples is defined as the middle value of the sorted array
if it has an odd number of samples, or the mean value of the two values at the very middle if it
has an even number of samples.

A.1.3 Standard Deviation

The standard deviation of the X array is defined by Equation A.2:

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − µ)2 (A.2)

where n is the number of samples of the X array and µ is the mean value of the array.

A.2 Cross-Correlation

According to Sadiku et al. (2014) the cross-correlation measures the similarity between
two signals. It involves sliding one function over another and calculate the overlapping area.

The cross-correlation equation, at a specific time instant t may be defined for continuous
functions as:

Rxy(t) =

∫ ∞
−∞

x(τ)y(t+ τ)dτ (A.3)
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For discrete series, the cross-correlation, for a lag n may be calculated as follows:

Rxy[n] =
∞∑
−∞

x[k]y(k + n) (A.4)

A.3 Fourier Transform

A.3.1 Continuous Fourier Transform

According to Gonzalez and Woods (2010) the Fourier Transform represents a continuous
time function x(t) in the frequency domain as a sum of sines and cosines functions using the
following transform:

={x(t))} = X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (A.5)

Where j =
√
−1, f is the frequency value, t the instant of time and X(f) the represen-

tation of the function at the frequency domain. To get the signal back to the time domain the
inverse transform is defined as:

=−1{X(f)} = x(t) =

∫ ∞
−∞

X(f)ej2πftdf (A.6)

A.3.2 Discrete Fourier Transform (DFT)

When dealing with discrete samples a set of properties may be used to reduce the com-
putational cost of the Fourier transform. The Discrete Fourier transform may be defined as
(NUSSBAUMER, 1981):

={x[mT ]} = X[kf ] =
N−1∑
m=0

x[mT ]Wmk (A.7)

Where k ∈ 0, 1....., N − 1,W = e−j2π/N , and N is the number of consecutive samples
of x[mT ]. The inverse transform is presented bellow:

={X[kf ])} = ¯x[mT ] =
1

N

N−1∑
k=0

X[kf ]W−mk (A.8)

where ¯x[mT ] ≡ x[mT ]. The computational cost of the DFT is equal to N2. Some algorithms
exploits the properties of the DFT to reduce the number of operations to N

2
log2N complex

multiplications plus Nlog2N additions, this algorithms are called Fast Fourier Transform. For
the details of the algorithm see (NUSSBAUMER, 1981).
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A.4 Principal Component Analysis (PCA)

According to Tipping and Bishop (1999) The objective of the PCA algorithm is to find a
set of orthogonal axes in which the variation of the data projection on those axes is maximal. So,
for a set of a N − dimensional the q − dimensions with the higher variation may be selected.

For a set of N-dimensional data tn with n ∈ {1, 2, .....N}, the covariance matrix of tn
is defined as S =

∑
n(tn − t̄)(tn − t̄)T/N . Such that Swj = λjwj where λj is the eigenvalue

associated to the wj eigenvector and t̄ is the mean value of the samples. Defining the vector xn as
xn = WT (tn − t̄), where W is composed of the q eigenvectos, W = (w1,w1,w1, . . . ,wq) and
q < N . This makes xn a q-dimensional representation of tn. Choosing the q principal eigenvectors
associated to the highest eigenvalues of S, xn will be represented in the axes in which the samples
tn have the greatest variance.

A.5 Independent Component Analysis (ICA)

The ICA algorithms is programed to solve the following situation: let’s define x a set of
signals of n linear mixtures of n independent components: xj = aj1s1+aj2s2+aj3s3 · · ·+ajnsn,
or x = As. This represents the j input linear mixtures from x as a weighted mixture of n
independent sources, where each source, s, can not be directly observed.

ICA assumes that the components of s are non-Gaussian and statistically independents,
meaning that si does not offer information of any other components. To find the independent
components, first both A and s are estimated based on x. Then the inverse of A is computed:
s = Wx (HYVARINEN; OJA, 2000).

There are different methodologies to inferW, and s, the code used by Lewandowska et al.
(2011) is the fastICA, it was also used at the tests in this work. The code is already implemented
by the library scikit-learn (PEDREGOSA et al., 2011).1

A.6 Error Meassurements

A.6.1 Root Mean Squared Error (RMSE)

The RMSE is defined by Equation A.9 (VIRTANEN et al., 2020):

RMSE =

√√√√ 1

N

N∑
i=1

(xpredi − xtruei)2 (A.9)

Where N is the number of samples, xpredi the predicted value for xi and xtruei the true
value of xi.
1 For more details see <https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html>
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A.7 Classification Metrics

The classification metrics are implemented at the library scikit-learn provided by (PE-
DREGOSA et al., 2011).

A.7.1 Accuracy

The accuracy score is the rate between the samples that are assigned in the right class
divided by the total number of samples. The worse score is 0 and the best score is 1.

A.7.2 Precision

Precision measures the ability of the classifier to do not label samples outside a class as a
member of it. The calculus is done as presented in Equation A.10.

Prec. =
TP

TP + FP
(A.10)

where TP is the number of samples that are rightly assigned in the class and FP is the
number of samples that are wrongly assigned in the class. The best value is 1 and the worst value
is 0.

A.7.3 Kappa

The Kappa score represents the agreement level of two taggers about a series. A value
close to one, means that they agree at the classification, closer to minus one, means that the
disagree completely, and closer to zero means a random classification. the Kappa’s formula is
presented in Equation A.11

Kappa =
po − pe
1− Pe

(A.11)

where po is the empirical probability of agreement on the assigned label and pe is the
probability when both taggers assign the tags randomly.
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APPENDIX B – Algorithms Testing for
Emotion Classification

This Appendix presents the tests to measure the influence of the algorithms used in two
parts of the emotion classification process: the features dimension reduction and the classification
algorithm itself. Dimension reduction is an important step to filter redundancy of the charac-
teristics and, depending on the algorithm used, to better separate the clusters, which improves
the accuracy of the classifiers. However, this process need some precautions. By reducing the
dimensions of the samples, information is eliminated, if it is a redundant information or has no
correlation with the classes that one want to separate, cutting these characteristics may improve
the classification, however, if they are important information, the tendency is that the classification
results are worse.

The algorithm used to reduce the dimensions in the original test was the Principal
Component Analysis (PCA), which calculates a transformationmatrix that maximizes the variance
in the main components that have a higher probability to contain important information, and the
components of less variance may be ignored. An alternative to PCA to reduce dimensions is the
Linear Discriminant Analysis (LDA). LDA is a widely used technique for data classification and
dimensionality reduction. It calculates a transformation matrix where the data is projected to a
plane in which it the ratio of its between-class variance to the within-class variance is maximized
(BALAKRISHNAMA; GANAPATHIRAJU, 1998). The algorithm used to perform the LDA was
provided by (PEDREGOSA et al., 2011) 1.

As it is supervised, the LDA training is more expensive than PCA, however, after being
trained, for the same number of dimensions, it is as fast as to transform the samples. A point to
consider when using the LDA is that it generates a maximum of N − 1 dimensions, where N
is the number of classes of the input data. That is, if the number of classes is low, it is possible
that the algorithm eliminates important information for the classification, while in the PCA the
number of dimensions selected can be higher (in this study the dimensions of greater variation
which together accumulate 90 % the total variation of the data are maintained).

In this test it is also tested the use of all 12 characteristics extracted, without dimension
transformation, applying to them only normalization, as presented in Equation B.1 (which is also
applied before PCA and LDA).

Xnorm =
X− µ(X)

σ(X)
(B.1)

1 For more information see <https://scikit-learn.org/0.16/modules/generated/sklearn.lda.LDA.html>
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where X is array with the feature’s values, µ(.) is the mean operation and σ(.) is the standard
deviation operation.

Another tested point was the classifier algorithm. As the k-Nearest Neighbors (k-NN)
algorithm has a high computational cost in the classification, mainly when there is a large number
of samples and/or dimensions in the training database, since it calculates the distance between the
test sample and all the others training bench samples. The linear Suport Vector Machine (SVM)
is compared to the k-NN. The SVM creates a set o hyper-planes that better separates the classes
to their respective classes (PEDREGOSA et al., 2011) 2. Once trained, this algorithm is faster to
classify samples than k-NN.

So, to compare the accuracy and spent time, of the dimension reduction algorithms and
the classifiers, both individual and the multi-person classifications were repeated to compare
PCA to LDA and the use none of them, and also the k-NN to the SVM in the classification.

B.1 Individual Emotion Classification

In the individual classification, the procedure was the same as previously done, the outputs
of the classifications were the arousal and valence scores divided into three groups, neutral high
and low. Where high represents the signal from the videos that were rated between 7 and 9
for valence/arousal, the neutral were between 4 and 6 and the low from 1 to 3. To perform the
classification it was necessary that each volunteer had at least one video in each group, so if the
volunteer had only given high/low grades to arousal/valence, he/she was discarded. This resulted
in data from 14 volunteers for the individual classification of arousal, and 22 for valence, out 30
volunteers in the emotion dataset.

As in the tests from Section 4.2.1, the training bases were balanced, the signals recorded
from each video were cut to have the same number of samples as the smaller video of the training
base (the end of the signal in each one was maintained). Then, the training set of each volunteer
was normalized using the norm of Equation B.1. The classification was performed using three
preprocessing methods, just normalization, and normalization combined with PCA and LDA.
And, for each one, a k-NN algorithm (with 5 neighbors) and a linear SVM algorithm were trained.
The average results for the arousal classification of the volunteers are shown in Table B.1, and for
valence in Table B.2, the metrics used were average accuracy, precision and the Kappa index.

B.1.1 Arousal

Looking at the results of Table B.1, the it is possible to notice that that the classification
failed to separate the signs of rPPG and PPG. The results using these two signals in different
configurations were close to 33 % (result of a random classifier for 3 classes). The rPPG had
2 for more information see <https://scikit-learn.org/stable/modules/svm.html#svm-mathematical-formulation>.
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Table B.1 – Individual Classification: Arousal Results

k-NN SVM
Normilized Features

Accuracy Precision Kappa Accuracy Precision Kappa
rPPG 0.30 0.32 -0.02 0.41 0.42 0.13
ECG 0.41 0.42 0.14 0.36 0.35 0.04
PPG 0.31 0.30 0.01 0.28 0.30 -0.04

PCA
Accuracy Precision Kappa Accuracy Precision Kappa

rPPG 0.26 0.29 -0.07 0.29 0.30 -0.05
ECG 0.39 0.38 0.10 0.41 0.41 0.12
PPG 0.33 0.31 0.04 0.30 0.32 0.00

LDA
Accuracy Precision Kappa Accuracy Precision Kappa

rPPG 0.40 0.40 0.10 0.38 0.37 0.06
ECG 0.36 0.37 0.00 0.37 0.38 0.02
PPG 0.42 0.44 0.18 0.42 0.45 0.17

accuracy varies between 26 % to 41 %, and the PPG varying between 28 % to 42 %, these values
indicate that the separation was highly influenced by randomness. The ECG was the only one
that had all the values above (but close to) 33 %, the worst value was 36 % achieved by the
configurations LDA/k-NN and Normalized Features (NF)/SVM. The best combinations were
NF/k-NN and PCA/SVM, both reaching 42 % in accuracy. However, these results are not very
trusty, since the number of data is low, only one training video on each class for each volunteer.

The number of volunteers used in the classification was low, only 14, and still only one
video from each class used to train the classifier. Thus, these results represent more an indication
than a definitive result. It would be interesting in future works, to retake the test with a greater
amount of videos per volunteer. With these results, it is not possible to affirm a better successful
configuration.

B.1.2 Valence

A Valency results reaffirm the suitability of rPPG to separate this emotional characteristic.
While ECG and PPG showed accuracy close to 33 %, for all configurations, rPPG had accuracy
greater than 47 %, with the best results reaching 51 % of using the Normalized features (that is,
without the use of PCA / LDA in the preprocessing step) with both classifiers k-NN and SVM.
The accuracy of SVM was 1 % higher than that of k-NN.

B.2 Multi-person Emotion Classification

In the Multi-person Emotion Classification, another modification was done in relation to
that presented in Section 4.2.2. Instead of using the k-fold method with 5 folds, the leave-one-out
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Table B.2 – Individual Classification: Valence Results

k-NN SVM
Normalized Features

Accuracy Precision Kappa Accuracy Precision Kappa
rPPG 0.51 0.51 0.26 0.51 0.52 0.26
ECG 0.36 0.36 0.04 0.25 0.26 -0.11
PPG 0.38 0.38 0.08 0.36 0.36 0.04

PCA
Accuracy Precision Kappa Accuracy Precision Kappa

rPPG 0.47 0.46 0.19 0.49 0.48 0.23
ECG 0.37 0.36 0.05 0.30 0.30 -0.05
PPG 0.35 0.35 0.02 0.33 0.33 -0.01

LDA
Accuracy Precision Kappa Accuracy Precision Kappa

rPPG 0.49 0.49 0.23 0.49 0.50 0.23
ECG 0.29 0.29 -0.06 0.32 0.33 -0.02
PPG 0.33 0.33 0.00 0.38 0.38 0.08

methodology was used. In this method, one volunteer is used for testing and the others to train
the classifier, the process is repeated until all the volunteers are tested. The average of the results
of each volunteer tested were calculated, the results for the classification of arousal, valence (with
the three classes: low neutral and high) and the six individual emotions are presented in Tables
B.3, B.4 and B.5, respectively.

B.2.1 Arousal

Table B.3 – Multi-person Classification: Arousal Results

k-NN SVM
Normalized Features

Accuracy Precision Kappa Accuracy Precision Kappa
rPPG 0.32 0.32 -0.01 0.30 0.32 -0.02
ECG 0.35 0.34 0.01 0.33 0.35 0.03
PPG 0.34 0.33 -0.01 0.25 0.28 -0.08

PCA
Accuracy Precision Kappa Accuracy Precision Kappa

rPPG 0.31 0.32 -0.03 0.29 0.30 -0.04
ECG 0.34 0.34 0.01 0.37 0.38 0.07
PPG 0.36 0.34 0.01 0.28 0.28 -0.07

LDA
Accuracy Precision Kappa Accuracy Precision Kappa

rPPG 0.28 0.29 -0.06 0.29 0.31 -0.03
ECG 0.35 0.35 0.03 0.34 0.36 0.03
PPG 0.33 0.32 -0.02 0.22 0.24 -0.13
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For the multi-person classification of arousal, the results did not show any significant
improvement or worsening, all of them remained close to 33 % (result of a random classification).

B.2.2 Valence

Table B.4 – Multi-person Classification: Valence Results

k-NN SVM
Normalized Features

Accuracy Precision Kappa Accuracy Precision Kappa
rPPG 0.37 0.37 0.06 0.42 0.40 0.14
ECG 0.36 0.36 0.04 0.32 0.31 -0.01
PPG 0.30 0.31 -0.04 0.34 0.33 0.00

PCA
Accuracy Precision Kappa Accuracy Precision Kappa

rPPG 0.38 0.39 0.09 0.41 0.38 0.14
ECG 0.35 0.35 0.03 0.32 0.31 -0.01
PPG 0.33 0.33 -0.01 0.34 0.33 0.01

LDA
Accuracy Precision Kappa Accuracy Precision Kappa

rPPG 0.38 0.38 0.09 0.42 0.41 0.15
ECG 0.34 0.33 0.01 0.33 0.31 -0.01
PPG 0.35 0.35 0.02 0.35 0.34 0.03

The results of Valencia were similar to those of Section 4.2.2, where only the classification
with the rPPG generates results significantly above 33 %. Regarding the preprocessing algorithms,
there was no significant difference in the classification of the rPPG using Normalized features,
PCA or the LDA, however the use of SVM has improved considerably in relation to k-NN.
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B.2.3 Video

Table B.5 – Multi-person Classification: Video Results

k-NN SVM
Normalized Features

Accuracy Precision Kappa Accuracy Precision Kappa
rPPG 0.25 0.25 0.11 0.28 0.27 0.18
ECG 0.18 0.18 0.01 0.20 0.19 0.04
PPG 0.18 0.18 0.02 0.20 0.20 0.04

PCA
Accuracy Precision Kappa Accuracy Precision Kappa

rPPG 0.26 0.27 0.13 0.26 0.23 0.17
ECG 0.18 0.18 0.02 0.21 0.20 0.04
PPG 0.18 0.17 0.01 0.19 0.18 0.02

LDA
Accuracy Precision Kappa Accuracy Precision Kappa

rPPG 0.26 0.26 0.13 0.26 0.26 0.17
ECG 0.16 0.18 0.01 0.20 0.20 0.04
PPG 0.20 0.20 0.04 0.20 0.20 0.04

For the classification of the six emotions generated by the videos, again the classification
with the rPPG had the best accuracy, with results concentrated in 26 % (against 17% of a random
classifier) and there was no significant difference between the use of PCA, LDA and none of
them. The Kappa index, was better using SVM over k-NN.

B.3 Processing Time of the Tested Techniques

The processing time of the algorithms was also calculated. The classification of arousal
was repeated using all volunteers for training and testing (only for measuring time spent), so the
classification was made with 5156 samples.

Both the PCA and the LDA took 0.001 s to transform the data. Regarding the classifiers,
k-NN took 0.170 s to classify the data while SVM was much faster, with 0.002 s (both using all
12 Features).
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ANNEX A – Consent Form - Emotion
Database



TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

Nome do voluntário:
Data de nascimento:
Endereço:
Telefone:

Eu,_________________________________________________________________________ 
portador do registro de identidade número ____________________________, fui convidado a 
participar da pesquisa cujos termos são explicitados abaixo:

1. Título da Pesquisa: Identificação de Estados Emocionais por Meio de Imagens e Sinais 
Biométricos. 

2. Pesquisadores responsáveis: Dr. Teodiano Freire Bastos Filho, Dra. Eliete Maria de Oliveira 
Caldeira, Dr. Denis Delisle Rodriguez e Eng. Lucas Côgo Lampier. 

3. Justificativa: A medição remota de parâmetros fisiológicos é mais confortável aos usuários, e 
os dados fisiológicos medidos como variabilidade do batimento cardíaco possibilitam a 
inferência do estado emocional de uma pessoa. Em uma próxima fase um sistema 
desenvolvido para inferir emocoes será usado durante a interação de uma criança com autismo 
e um robô. 

4. Objetivos da pesquisa: Estudar a factibilidade do uso de câmeras de vídeos colorida e 
térmica de baixo custo, para inferir emoções a partir da medição remota parâmetros cardíacos.

5. Procedimentos: A pesquisa contará com voluntários adultos saudáveis cujos critérios de 
exclusão são: ocorrência de fobias ou vivência de episódios traumáticos. O voluntário será 
convidado a assistir seis vídeos para evocar emoções positivas e negativas enquanto é filmado 
por uma câmera térmica, uma colorida, e tem seus parâmetros cardíacos monitorados por meio 
de eletrocardiografia e fotopletismografia. As imagens serão analisadas por meio de métodos 
que permitam identificar e quantizar as emoções do voluntário durante o experimento, e o 
mesmo responderá um questionário informando seu estado emocional após cada vídeo.

6. Duração e Local de pesquisa: Os procedimentos serão realizados em laboratório dentro da 
Universidade Federal do Espírito Santo (UFES), e terá duração aproximada de 30 a 40 
minutos.

7. Riscos e desconforto: A pesquisa não envolve procedimentos invasivos. Podendo causar 
leve desconforto físico apenas pelo uso de sensores obtrusivos (eletrodos e o oxímetro), e pela 
evocação de emoções negativas, como susto, tristeza e nojo. O projeto foi aprovado pelo 
Comitê de Ética: DESENVOLVIMENTO DE DISPOSITIVOS DE TECNOLOGIAS ASSISTIVAS 



E REABILITAÇÃO BASEADO EM SINAIS BIOLÓGICOS E REALIDADE VIRTUAL, número 
CAAE: 64797816.7.0000.5542

8. Benefícios: Desenvolvimento de um método remoto de captura de parâmetros cardíacos e 
detecção de emoções utilizando sinais biomédicos.

9. Garantia e recusa de participar da pesquisa: Entendo que não sou obrigado(a) a participar 
da pesquisa, além disso terei direito a desistir de participar da pesquisa a qualquer momento, 
sem que isto traga prejuízos a mim. Entendo que tenho direito a todas as informações 
pertinentes à pesquisa, mesmo que isto possa interferir na minha decisão de participar. 

10. Garantia de manutenção de sigilo e privacidade: Autorizo a divulgação e publicação dos 
resultados a partir de fotografias ou vídeos dos procedimentos experimentais exclusivamente 
para fins acadêmicos e científicos.

11. Esclarecimento de dúvidas: em caso de dúvidas sobre a pesquisa devo contatar o 
pesquisador Lucas Côgo Lampier, nos telefones 4009-2661 ou no endereço Av. Fernando 
Ferrari, 514, UFES, Campus Goiabeiras, 29075-910 Vitória-ES. Também posso contatar o 
Comitê de Ética e Pesquisa do CSS/UFES para resolver dúvidas ou relatar algum problema 
através do telefone: (27) 3335-7211 ou correio: Universidade Federal do Espírito Santo, 
Comissão de Ética e Pesquisa com Seres Humanos, Av. Marechal Campos, 1468, Campus 
Maruípe, Prédio da Administração do CSS, 29040-090, Vitória-ES.

Declaro que li e entendi os termos acima expostos, como também os meus direitos. Concordo 
com as afirmações acima relacionadas e dou meu consentimento livre e esclarecido para 
participar da pesquisa. 

Na condição de pesquisador responsável por esta pesquisa, Prof. Dr. Teodiano Freire Bastos 
Filho declara ter cumprido as exigências do item IV.3 da resolução 466/12 a qual estabelece 
diretrizes e normas regulamentadoras envolvendo seres humanos.

Vitória, ___  de ______________________ de _______ . 

________________________ ______________________________
 Voluntário        Pesquisador responsável


