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Abstract

Electrical Impedance Tomography (EIT) is a soft-field tomography technique for imaging in

industrial and medical applications. The method consists of injecting a bidirectional known

current through electrodes inside a domain and measuring the subsequent voltages at the bound-

aries formed due to these injections, considering only non-ionizing radiation, unlike hard-field

tomography. These measurements are acquired by a data acquisition system and are used to

solve an inverse problem. The result is a distribution of the conductivities inside the domain.

Thus, the image is formed by differences in electrical conductivity that may be present in this

distribution. The present work aims to develop a data acquisition system and reconstruction soft-

ware focused on multiphase flow measurement. A low-cost EIT system is developed, capable of

30.61 images/s with a signal-to-noise ratio of 57.47 dB. Further, the performance of the system

is evaluated and it is drawn new guidelines from a validated model to develop the next version

of the hardware. To extend the frequency response of the system, the parasitic capacitances,

which are unavoidable and usually unwanted capacitance that exists between the parts of an

electronic component or circuit, must be compensated or eliminated from the circuits. Methods

to directly measure these quantities are scarce and limited. Therefore, a technique to statistically

estimated with Maximum a Posterior and Markov Chain Monte Carlo method is presented in

this work as an alternative. Since there is a concern in estimating sharp images by determining

the position of the boundary, a new statistical and recursive application based on the particle

filter is presented to estimate the conductivities inside the domain. The results demonstrated the

capability of reconstructing fast-moving inclusions properly.

Keywords: Electrical Impedance Tomography, Data Acquisition Design, Instrumentation, Mul-

tiphase Flow, Measurement, Error Analysis, Parasitic Capacitance Estimation, Maximum a Pos-

teriori Estimate, Markov Chain Monte Carlo, Particle Filter, Shape Estimation, Elliptic Contours,

Image Processing.
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Chapter 1

Introduction

In the 1990s, the introduction of methods of tomography begins to rise in popularity. From

the success in the medical field [1, 2, 3], the tomography methods begin to being applied to

industrial processes. The standard methods available involve ionizing radiation [4, 5], such as

x-ray and gamma-ray, which is undesirable regarding the hazard and risk of the process. From

the perspective of eliminating the methods involving this type of radiation than other types of

tomography are still being developed nowadays.

Three types merit attention: the Electrical Resistance Tomography (ERT) or, generally, the Elec-

trical Impedance Tomography (EIT); the Electrical Capacitance Tomography (ECT); and the

Electromagnetic Tomography (EMT) [6]. These methods are used to estimate the field of elec-

trical conductivities (the real and imaginary components), the permittivity when there is no real

component, and the permeability respectively.

Other common classifications are the soft-field and the hard-field. The first refers to the diffusion

of the signal strength depends not only on the spatial disposition but also of the distance between

the source and detector. Differently, the path of transmitting the signal for hard-field methods is

straight, depending only on the material along the path, regardless of the position [7]. Therefore,

the ERT or EIT, ECT, and EMT are soft-field, whilst the x-ray and gamma-ray tomography are

hard-field.

The process of developing an operational system is a continuous and iterative process with

several steps that involve an absorptive capacity of the technology that leads to innovation [8].

Cohen and Levinthal [9] introduce the term absorptive capacity, which is the ability to absorb and
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Table 1.1: Different EIT system in the literature.

Organization Type Purpose

Aberdeen [12] ERT Industrial

Cape Town [13] ERT Industrial

Dartmouth [14] ERT Medical

ITS [15] ERT, ECT Industrial

Kyung Hee [16, 17] EIT Medical

Kuopio [18] EIT Industrial

Leeds, UMIST [19, 20] EIT Industrial

Oxford Brooks [21] EIT Medical

Sheffield [22, 23] ERT, EIT Medical

Tianjin [24] EIT Medical

Timpel [25] EIT Medical

Xi’an’s Military University [26, 27] EIT Medical

utilize external knowledge and it is a critical process to the innovative capabilities. The success of

the extension of the appropriation is close related to the reconfiguration of the internal knowledge

to such process, the combination of the knowledge of different autonomous groups and its prior

related knowledge [10]. Therefore, it is important to establish a multidisciplinary team with

different skills when developing any complex system. The final result is the appropriation of

technology to some extent. Some of the instruments of appropriation are legal, such as patents,

trademarks, and copyrights; other instruments are strategic, such as product complexity and

secrecy [11].

Several groups of researchers have developed the system and appropriated the technology for

research and commercial reasons. Some of the systems developed for medical and industrial

objectives are included in Table 1.1.

1.1 Objectives

Considering the above arguments, the main objective of this thesis is the appropriation of EIT

technology, to perform multiphase flow measurements, such as pattern identification. From the

appropriation perspective, this thesis is mainly concerned with:

• The development of a low-cost EIT system to be tested in a flow loop.
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• The evaluation of the errors in the system for further adjustment.

• The establishment of guidelines for the development of the next version of the system, to

achieve superior accuracy and temporal resolution.

• The development of a method to estimate the parasitic capacitances present in the system.

• The development of a recursive algorithm to estimate the boundaries of the air phase b.

1.2 Thesis Outline and Contributions

The major points concerning each chapter, which are like article format, are described below:

• Chapter 2

The complete literature survey is presented in this chapter. It is shown the developments

concerning the applications of EIT, the forward modeling and accuracy, the inverse prob-

lem, and the errors in reconstruction, the acquisition system design, and considerations of

the errors.

• Chapter 3

The chapter named "Design of a Low-Cost Acquisition System to Reconstruct Images

through Electrical Resistance Tomography" presents the article submitted to the journal

"IEEE Latin America Transactions" and accepted on February 14th, 2020. It consists of

the development of a low-cost EIT system for measurements in multiphase flow. The

prototype was soldered in a universal board and the first version that was capable of

1 image after 20 s. After adjustments in the demodulation subsystem, the system was

capable of performing 30 images/s, which was a significant improvement for the design.

The main contribution of the paper is the appropriation of a low-cost technology, which

can be used to perform investigations in multiphase flow and other applications.

• Chapter 4

The chapter named "Modeling and Errors Assessment of an Electrical Impedance Tomog-

raphy Data Acquisition System" presents the article submitted to the journal "Measure-

ment" on March 13th, 2020. From this point, it was important to analyzes the system

performance more deeply, enumerate the modifications that would improve the next ver-

sion, and establish a methodology for these improvements. Therefore, the chapter consists

of the evaluation of measurements in the data acquisition system and the modeling of
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the errors to use as a guideline to develop a newer version. After investigating the liter-

ature, it was noticed that this methodology to develop an EIT system is not presented

comprehensively. Therefore, the chapter provides this information.

• Chapter 5

The chapter named "Estimating the Parasitic Capacitances of an Electrical Impedance

Tomography Data Acquisition by MAP and MCMC" presents the article submitted to the

journal "International Journal of Electronics and Communications" on March 31th, 2020.

It was concluded that the parasitic capacitances presented a major role in the systematic

errors in the DAQ system. Methods to estimate the parasitic capacitances are scarce in the

literature and compensation methods utilize a trial-and-error to calibrate these quantities.

Therefore, a technique to estimate the parasitic capacitances is presented as an alternative

to other methods. The chapter consists of applying statistical Bayesian inference, by Max-

imum a Posteriori and Markov Chain Monte Carlo method to the determination of the

parasitic capacitances present in the data acquisition design.

• Chapter 6

The chapter named "A Novel Algorithm Combining Gauss-Newton Optimization with

Image Processing and Particle Filter for Recursive Shape Determination in Electrical

Impedance Tomography" presents the article submitted to the journal "Inverse Problem

in Science and Engineering" on November 18th, 2019. For multiphase flow, it is impor-

tant to define the contour of the inclusions to calculate the void-fraction correctly since

deterministic methods often utilize a smooth prior. The chapter consists of proposing a

new application of the particle filter combining the Gauss-Newton optimization and image

processing for estimating the shape of the boundaries of an inclusion recursively. The filter

can estimate fast-moving objects in the domain by improving the election of the proposal

distribution.
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Chapter 2

Literature Survey

Electrical Impedance Tomography (EIT) is a technique that is getting attention from researchers

nowadays. Through the injection of electrical current into a specific domain and the measure-

ment of the subsequent voltages formed, it is possible to obtain a reconstructed image of the

information of the resistive and reactive part of the conductivity distribution, as shown in Figure

2.1. Its attractiveness comes from the characteristic of being non-intrusive, as the electrodes are

attached to the boundaries of the domain in question [1], relatively low-cost, due to the character-

istics of the application [2], ionizing radiation-free, since the injection of the acquisition system

considers only electrical current, and high temporal resolution, as it is possible to acquire over

1000 images per second [3, 4].

Figure 2.1: The EIT method, from the acquisition of measuments to the reconstruction.
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2.1 Review of the Literature

2.1.1 EIT Applications

The method has been applied in some areas of knowledge. In the medical field, EIT becomes

available for clinical application, especially for monitoring the ventilation process [5]. This tech-

nique is well suited to studying pulmonary activity because of the movement of air results in

significant conductivity changes within the thorax [6, 7]. The ventilation cycle and perfusion of

cardiac function are observed with EIT in Figure 2.2. The implementation of EIT for imaging

the brain activity is also under investigation. Despite the difficulties in measuring with accuracy

the voltages due to the contact impedances of the electrodes [8], the first images of this activity

in rat specimens have been recorded by researchers, shown in Fig. 2.3 [9, 10]. In industrial envi-

Figure 2.2: EIT image of the cardiac and perfusion and its impedance changes in time [5].

ronment, one of main applications is concentrated in multiphase flow applications [11]. There is

interest in characterization of the flow pattern, since it is essential to determine this pattern when

in need of optimization, design and operation industrial processes. Parvareh et al.[12] combine

the use of EIT and computational fluid dynamics simulation for flow pattern identification. Ram-

skill and Wang [13] evaluate the frequency of conductivity change to characterize the horizontal

flow regime of water and air. Through this information, it is possible to determine if it is a bubble

or plug flow regime. Work has been also concentrated in measuring void-fraction or volume

fraction since the image of the section plane in question can be used to evaluate the area of

each phase [14, 15]. The void fraction or volume fraction can be determined by the Maxwell

relationship, Eq. 2.1 [14, 15].

αvf =
2σcp + σdp − σmc − σmcσdp

σcp

σmc − σdp
σcp
σmc + 2(σcp − σdp)

(2.1)
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Figure 2.3: EIT recording of the brain activity of an anesthetized rat [10].

where σcp is the conductivity of the aqueous continuous phase (water), σdp is the conductivity

of the dispersed phase (air or oil), σmc is the mixture conductivity obtained from EIT and αvf is

the local void fraction of the dispersed phase.

The information regarding the volume-fraction or void-fraction can be used in combination with

other types of measurement. Meng et al. [16] use the information of the EIT, identifying the flow

pattern and calculating void fraction, with a Venturi meter to calculate the mass flow rate. Wang

et al. [17] utilize EIT in combination with an electromagnetic flow meter, a gradiomanometer

flow-mixture density meter, and extra sensors to obtain measurements regarding the flow-rate of

multiphase flow, with oil, gas, and water. The information about the patterns is obtained as well,

Fig. 2.4. Dong et al. [18] utilize two planes of EIT to measure the flow rate of multiphase flow.

2.1.2 Injection Pattern

The EIT method relies on injecting currents and measuring voltages to solve an inverse problem.

The current is injected through electrodes by a data acquisition system, and this system also

measures the boundary voltages at the electrodes. To estimate the electrical conductivities, it

is important to determine the strategy of injection of this current inside the domain. Each of

these patterns has its strong points and weakness, such as the region of sensibility, number of

independent measurements, hardware complexity.
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Figure 2.4: Example of a flow pattern visualization by EIT technique. A set of images are stacked

to build an axial image [17].

2.1.2.1 Reciprocity Theorem

The principle of measuring electrical impedance is based on Ohm’s law. This impedance is

obtained by applying a known voltage or current and measuring the response of current or

voltage resultant in the electrodes. This procedure is done to different electrodes. The resultant

impedance is known as mutual impedance Z [19]. For a four-electrode system, Fig. 2.5, the

reciprocity theorem, derived from the divergence theorem, is given [19]:

∆Z =
V12

I43

=
V43

I12

(2.2)

Thus, considering that the current is the same for all cases, it can be stated that:

Figure 2.5: Four electrode system. Measurements occurs first for the injection in the left elec-

trodes, then in the right.

I12 = I43 → V43 = V12 (2.3)

Therefore, not all measurements are independent of each other. It is important to provide the

maximum number of independent measurements to assure a good resolution of the image.
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2.1.2.2 Adjacent Protocol

The first pattern utilized to such a method is the adjacent protocol or the neighboring pattern.

Initially utilized by Brown and Seagar [20] in the Sheffield system presented on the work,

the adjacent protocol applies a current through two neighboring electrodes, and the voltage is

measured by subsequent electrodes, which are not injecting current [19, 21]. This procedure

repeats until all electrode pairs have passed through the process of injecting current, Figure 2.6.

It is common to avoid measurements in the injecting electrode to prevent the contact impedance

Figure 2.6: Adjacent protocol.

problems due to the polarization effect [21]. Due to reciprocity, Eq. 2.3, the protocol present a

total number of independent measurements of:

Nmeas =
L(L− 3)

2
(2.4)

The adjacent protocol is commonly chosen due to the hardware simplicity required to implement,

a high number of independent measurements (a total of 104 measurements considering a 16

electrode system). Further, the adjacent protocol is sensitive to changes in the conductivity near

the boundaries of the vessel [19, 21, 22].

2.1.2.3 Opposite Protocol

The opposite protocol, proposed by Hua et al. [23], utilizes differential voltage measurement,

considering neighbors electrodes, although, differently from the adjacent pattern, the injection

occurs with geometrical opposite electrodes in the clockwise direction. It is shown in Fig. 2.7 the

strategy. Due to reciprocity, Eq. 2.3, the number of independent measurements of the opposite

protocol is:

Nmeas =
L(L− 4)

2
(2.5)

The opposite protocol is known to be less sensitive to noise, although there is a decreased

resolution due to a decreased number of independent measurements compared to the adjacent
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Figure 2.7: Opposite protocol.

protocol (a total of 96 considering a 16 electrode system). Further, the opposite protocol presents

greater sensitivity in the middle of the vessel since the current injects passes through the central

region [21, 22, 23].

2.1.2.4 Diagonal Protocol

The diagonal protocol, also known as the cross method, the injections occurs from electrodes

separated by large distances [21]. It is shown in Fig. 2.8. Considering a 16 electrode system, the

protocol proceeds as follows: The reference for the current and voltage are the electrode 1 and

2 respectively. The injection proceeds to electrodes 3, 5, ..., 15. The voltages are measured in

each electrode, excluding the ones that are injecting currents. In the next moment, the current

and voltage reference is changed to electrode 4 and 3 respectively. The injection proceeds now

on electrodes 6, 8, ..., 16, and 2. The voltages are measured in each electrode as before. The

protocol displays a total of 7 injections, 13 measurements, and 2 cycles, totalizing 91× 2 = 182

measurements, from which 104 are independent [21].

Figure 2.8: Diagonal protocol.

2.1.2.5 Metal Wall Protocol

The reconstruction of images on a metallic vessel introduces several new variables into the

method. Aw et al. [24] presents a comprehensive review of these questions. In that frame-
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work, the metal wall protocol is developed for use in processes that present metallic walls in its

pipelines and vessels. The strategy utilizes the large conductive boundary to be the reference

electrode, the ground node [19, 21]. Therefore, the protocol utilizes a two-electrode measure-

ment strategy, as opposed to the four-electrode method. The large area used to sink the current

reduces the common-mode compared to the adjacent strategy and acts also as a shield, reducing

the interference problems [21]. The metal wall protocol is shown in Fig. 2.9.

Figure 2.9: Metal wall protocol.

2.1.2.6 Adaptive Protocol and Optimal Drive Protocols

Gisser et al. [25] and Isaacson [26] utilizes the definition of distinguishability, which is the ability

of a pattern of currents to distinguish between two conductivities, to search the optimal drive

protocols. The optimal current is obtained by maximizing by the distinguishability to obtain the

optimal drive protocol, Eq. 2.6.

Iopt = argmaxI
‖(Vexp − V (σ))I‖

‖I‖
(2.6)

The resulting pattern is defined the adaptive method, which depends on currents related to

cos(klθ) and sin(klθ). Cheney et al. [27] utilize this method, which consists in considering the

currents to be:

Ikll =

cos(kadpθl), kadp = 1, 2, ..., L/2

sin(kadp − L/2)θl, kadp = (L/2) + 1, ..., L− 1
(2.7)

θl =
2πl

L
l = 1, 2, ..., L. (2.8)

This adaptive pattern injects currents and measures voltages from all the electrodes except one,

which is the reference grounded electrode, varying from I to −I . This pattern obtains better

estimations, although it is necessary to use multiple adjustable current sources, increasing the
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system complexity [1, 19]. Further, Demidenko et al [28] demonstrate by defining the total

variance statistical criterion for optimal patterns that the trigonometric or adaptive protocol is a

special case and there are different optimal patterns, to estimate conductivity and resistivity.

2.1.3 Model

2.1.3.1 Maxwell’s Equation

The forward problem is modeled through the analysis of the Maxwell’s equations, which de-

scribes the electromagnetic field in a body, Eq. 2.9-2.12 [29, 30, 31].

∇ ·D = ρc (2.9)

∇ ·B = 0 (2.10)

∇× E = −∂B
∂t

(2.11)

∇×H = Jt +
∂D

∂t
(2.12)

Where E is the electric field, H is the magnetic field, B is the magnetic induction, D is the

electric displacement, Jt is the total current density described by the sum of the source current

and ohmic current Jt = Jsour + Johm, and the ρc is the charge density. Considering a linear

isotropic medium, Eq. 2.13-2.15 are valid.

D = εE (2.13)

B = µH (2.14)

Jt = σE (2.15)

Where ε is the permittivity, µ is the permeability, and σ is the conductivity of the medium.
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Assuming the hypothesis of a quasi-static approximation it is possible to simplify further the

set of equations. It considers that the currents time-dependency is neglected. This approach is

adequate considering that the frequencies of the alternate currents are sufficiently small [31].

Therefore, the time-dependent derivatives from Eq. 2.11 and 2.12 becomes zero. The current

source Jsour is considered zero inside the domain. Since∇×E = 0, there is an electric potential

u in a form that Eq. 2.16 is true.

E = −∇u (2.16)

Taking the divergence of Eq. 2.12 in Eq. 2.17,

∇ · Jt = ∇ · (∇×H) = 0. (2.17)

Substituting Eq. 2.15 in Eq. 2.17,

∇ · σE = 0. (2.18)

Thus, using Eq. 2.16 in 2.18

∇ · σ∇u = 0. (2.19)

Therefore, the problem reduces into solving the Laplace equation for the electric potential inside

the body.

2.1.3.2 Boundaries Condition and Complete Electrode Model

Through the years, the boundary conditions were a matter of discussion, as the first assumed

to describe the phenomenon was not fully accurate. The first attempt to describe the injection

through the electrodes was to model the current density j as a continuous current around the

body, represented by sin(kadpθ) or cos(kadpθ). This model is called the Continuous Model [29],

which is described in Eq. 2.20.

σ
∂u

∂n
= jbound (2.20)

where n is the normal component. Its characteristic is of being an easy model to be implemented

numerically. However, its drawback is the overestimation of the results, around 25 percent for

the resistivity [29].

Since it was a consensus that it was necessary an accurate model describe fully and with superior

precision those injections to reconstruct images with the highest resolution as possible, modi-

fications were necessary to improve the currently existing modeling in the literature. The first
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modification was to treat the problem as discrete because the electrodes are not manufactured

continually. In its main conception, there are spaces between each electrode that is responsible

for injecting and measuring the currents. Its name is due to these gaps that exist between the

discontinuities of the electrodes. This model is called the Gap Model, shown in 2.21.

jbound =


Il
|el|
, l = 1, 2, ..., L.

0, in ∂Ω \ ∂Ω ∪Ll=1 el.
(2.21)

where |el| is the area of the electrode, I is the current, ∂Ω is the boundary, L is the number of

electrodes, el is the l-esimal electrode in the boundary ∂Ω. Despite the slight improvement, the

boundary condition still presents flaws in the correct modeling of the phenomenon, overestimat-

ing the value [29].

The model still does not account for the shunt effect that happens in the electrode. This effect

happens because of the low resistance path of the current that the metal exhibit within its area

when injecting a current through an electrode. Thus, the Shunt Model combines the improve-

ments of the Gap Model and adds the shunt effect to the electrodes, which is described in Eq.

2.22-2.23.∫
el

σ
∂u

∂n
dS = Il l = 1, 2, ..., L. (2.22)

σ
∂u

∂n
= 0 in ∂Ω \ ∂Ω ∪Ll=1 el. (2.23)

Additionally, the condition that the potential is constant on each electrode is given in Eq. 2.24.

u = Ul on el (2.24)

Since the model is no longer a standard Neumann problem, two conditions for existence and

uniqueness of the solution are necessary. Thus, the conservation of charges confers existence,

Eq. 2.25

L∑
l=1

Il = 0 (2.25)

and setting a reference voltage by Eq. 2.26 confers uniqueness.

L∑
l=1

Ul = 0 (2.26)
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Still, the model does not precisely matches the experimental data [29]. Cheng et al. [32] propose

the Complete Electrode Model to represent the electrode injection inside the domain, replacing

Eq. 2.24. Its feature is to combine all the conditions previously presented and also considering

the effect caused by electrochemical conditions. In the surface of the electrode forms a layer

that confers an electrochemical resistance, also called contact resistance. This contact resistance

imposes a potential drop that must be considered in the electrode. The Complete Electrode

Model is widely accepted in the process tomography community to be used as the forward

model in EIT [33, 34, 35], and it is given by Eq. 2.27.

u+ z̄lσ
∂u

∂n
= Ul in el, l = 1, 2, ..., L (2.27)

where z̄ is the contact impedance of the electrodes.

2.1.3.3 Discretization

To solve the Complete Electrode Model, it is necessary to discretize the domain to evaluate

the partial differential equations, as the solution of the problem analytically is not easily ac-

complished for complex domains. Some types of discretization are available in the literature

to solve the set of equations. The most commonly used to solve these equations is the Finite

Element Method (FEM) [33, 34, 35]. It presents an advantage when applied to arbitrarily shaped

domains, being superior to the Finite Difference Method, although no restriction is imposed on

the adoption of this method [36], and the Finite Volume Method [37].

The FEM discretizes the interior of the body after turning into a weak formulation of its boundary

value problem. This method splits the domain Ω into a finite number of elements K and nodes

N [1, 35, 38, 39]. The elements have the form of triangles or other higher-order elements. The

electric potential is approximated by functions that are linear inside the element. The chosen

basis is the set of functions φi that is given the value one on vertex i and zeroes otherwise. This

approximation is represented by:

u =
N∑
i=1

uiφi (2.28)

in a form that φi = (φ1, ..., φn)T ∈ RN The Eq. 2.28 is not differentiable, so it is not possible to

apply directy into Eq. 2.19. To overcome this requirement, the weak form is derived. Multipling

Eq. 2.19 by a function v and integrating over Ω,∫
Ω

v∇ · (σ∇u)d–V = 0 (2.29)
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Using Green’s second identity and the vector identity

∇ · (vσ∇u) = σ∇u · ∇v + v∇ · (σ∇u) (2.30)

Eq. 2.29 becomes∫
Ω

∇ · (vσ∇u)d–V −
∫

Ω

σ∇u · ∇vd–V = 0 (2.31)

From the divergence theorem, Eq. 2.32∫
Ω

∇ · (vσ∇u)d–V =

∫
∂Ω

vσ
∂u

∂n
dS = 0 (2.32)

Thus, Eq. 2.31 becomes∫
Ω

σ∇u · ∇vd–V =

∫
∂Ω

σ
∂u

∂n
vdS (2.33)

For the Laplace Equation 2.19, Eq. 2.33 is the weak form [1, 38, 39, 35]. Rearranging the

boundary conditions of Eq. 2.27 as

σ
∂u

∂n
=

1

z̄l
(Vl − u) (2.34)

on El, considering z̄l 6= 0 and incorporating it into Eq. 2.33 gives∫
Ω

σ∇u · ∇vd–V =
L∑
l=1

∫
el

1

z̄l
(Vl − u)vdS. (2.35)

Utilizing v =
∑N

i=0 viφi and Eq. 2.28 gives

N∑
j=1

[∫
Ω

σ∇φi · ∇φjd–V
]
uj +

L∑
l=1

[∫
el

1

z̄l
φiφjdS

]
uj −

L∑
l=1

[∫
el

1

z̄l
φidS

]
Vl = 0 (2.36)

Considering the known total current from boundaries condition, substituting Eq. 2.34 into Eq.

2.22, it becomes

Il =

∫
el

1

z̄l
(Vl − u)dS (2.37)

Utilizing v =
∑N

i=0 viφi and Eq. 2.28 gives

Il =

∫
el

1

z̄l
Vl −

N∑
i

[∫
el

1

z̄l
φidS

]
ui (2.38)

Assuming a constant z̄l on el reduces Eq. 2.38 to

Il =

[
1

z̄l
|el|
]
Vl −

N∑
i

[∫
el

1

z̄l
φidS

]
ui (2.39)
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where |el| is the length of the electrode in 2D and the area of the electrode in 3D. The conductivity

is approximated by choosing the values on each element to be constant. The characteristic

function χj is one on the jth element and zero elsewhere, thus:

σ =
k∑
j=1

σjχj (2.40)

Therefore, a system of equation is formed and must be solved by Eq. 2.36 and 2.39 [1, 38, 39, 35]:

AMusol = IM or

BM CM

CT
M DM

u
U

 =

 0

Ipatt

 (2.41)

where 0 ∈ R1,N , Ipatt = (I1, I2, ..., IL)T ∈ R1,L is the vector containing the injected currents, U

is the electric potential and V is the voltage at the electrodes. The matrices BM , CM , and DM

are calculated by Eq. 2.42-2.44

BM(i, j) =
K∑
k̃=1

σk

∫
Ωk̃

∇φi · ∇φjd–V +
L∑
l=1

1

z̄l

∫
el

φiφjdS i, j = 1, 2, ..., N (2.42)

CM(i, j) = − 1

z̄l

∫
ej

φidS i = 1, 2, ..., N ; j = 1, 2, ..., L (2.43)

DM(i, j) =

0, i 6= j

|ej |
z̄j

i = j
i, j = 1, 2, ..., L (2.44)

The Eq. 6.6 can be satisfied by designating in a arbitrary node i ui = 0 [1].

Another approach that is also considered is the Boundary Element Method (BEM). It discretizes

the boundary of the domain, utilizing fundamentals solutions in the interior. Because only the

boundary is integrated, the complexity of the method reduces and consequently, the computation

time reduces. The drawback of such a method is that the interior of the domain must be homoge-

neous, which limits its application [40]. To overcome this drawback, a solution to this problem

could utilize different interfaces corresponding to the conductivities distributions of the different

phantoms in the interior of the domain, which reduces the problem into finding the shape of the

interfaces [41, 42]. Combining FEM with BEM to calculate the potential voltage in the domain

is an option, which could improve the accuracy of the results [43]. Recently, a meshless method

is applied to further minimize the computational time, the Method of Fundamental Solutions
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[44, 45, 46]. The method uses the fundamental solution to solve the electric potential inside the

domain. It is still in development since the solution is obtained for a reduced number of cases

and the stability is not guaranteed [44, 45, 46].

2.1.4 Inverse Problem

The problem of the evaluation of the electrical conductivities can be described as a non-linear and

ill-posed problem. This condition arises from the propagation of the electrical current through

diffusivity in the medium is responsible for the effect called soft-field, caused by the non-linearity

of the problem. The inverse problems are distributed in absolute reconstruction, considering non-

linear steps; difference reconstruction, considering linear steps; and dynamic reconstruction,

based on recursive algorithms. The first two normally involve deterministic problems, while the

dynamic reconstructions are statistical. The problem becomes to solve the least-squares problem,

Eq. 6.14 [33, 40, 47].

σcalc = argminσ(‖Vexp − V (σ)‖2) (2.45)

Consider the forward problem, Eq. 2.46, [33, 40]:

V = F (σ) (2.46)

where F is the forward problem represented by Eq. 2.19, with boundary conditions of Eq.

2.22,2.23,2.25-2.27. By applying the Taylor expansion and neglecting the high order terms,

the Eq. 2.47 is given:

δV =
∂F

∂σ
δσ (2.47)

where J = ∂F
∂σ

is the Jacobian and δV = Vexp − V (σ).

The inverse problem aims to solve the linearized solution, Eq. 2.48 [33, 40, 47].

δσ = J−1δV (2.48)

However, the inversion of the matrix is not possible, since the matrix possesses a low rank, which

makes it nearly singular matrix. Different inversion methods, such as optimization, and statistical

inversion must be utilized to solve the problem.

2.1.4.1 Linear Back-Projection

The first versions of the algorithms to solve such problems uses the linear back-projection (LBP).

The implementation by Barber and Brown [48], in their first model of the data acquisition system,
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the Sheffield Mark I [20]. The idea behind the algorithm is to approximate the Jacobian through

a proposition based on the algorithms utilized in x-ray tomography. By calculating the so-called

LBP operator, which is simply a replacement for the Jacobian matrix, combining with a filter

and inverting the matrix, shown in Eq. 2.49 [49].

δσ = BLBP δV (2.49)

where BLBP is the LBP operator. Kotre [50] presents an alternative, which is frequently utilized

to reconstruct images, consisting of approximate the inverse of the Jacobian by the transpose

matrix, shown in Eq. 2.50.

δσ = JT δV (2.50)

Sun et al. [51] reviewed the concepts of the LBP and was able to estimate with superior quality.

The developed technique accounted for the effects of the soft-field through an index calculated

by the decomposition of the contributions of the positive and negative parts of the effect.

2.1.4.2 Gauss-Newton and Tikhonov Regularization

The use of the LBP, although simple to implement, as it requires only a matrix-vector multi-

plication, still presents a low quality for the image reconstructed, presenting only qualitative

information and others methods were presented in the literature. Since the solution is heavily

ill-posed, the minimization on the least-squares sense, Eq. 6.14, is not possible. An approach

to solve the minimization contrary to the LBP is to employ a penalizing term which could also

be viewed as a form of prior information introduced into the least-squares problem to avoid

instabilities in the solution. This term is known as the Tikhonov regularization, Eq. 6.15.

σcalc = argminσ(‖Vexp − V (σ)‖2 + α2
∥∥∥L̃(σ − σref )

∥∥∥2

) (2.51)

where L̃ is the regularization matrix and the α is the regularization parameter.

In that way, the Gauss-Newton minimization is employed to reconstruct images by the linear

approach, which is one of the most used methods. One of the first researchers to implement

along with Yorkey [52], Cheney et al. [27] utilized in his algorithm nominated Newton’s One

Step Error Reconstructor (NOSER), which the linear reconstruction (one-step) is given by Eq.

6.17.

δσ =
(
JTJ + α2L̃T L̃

)−1 (
JT δV + α2L̃T L̃ (σref − σ0)

)
(2.52)

where J is the jacobian, δσ is the estimated conductivity, σref is a reference conductivity, σ0 is

an initial conductivity. The linear reconstruction is chosen when the true conductivity is close
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to the initial estimate [40]. A way to assure this condition is using a reference set of voltages,

with known conductivity. The easy to measure the conductivities of fluids makes the method

extensively used in tomography for industrial processes. When this condition is not assured, it is

common to solve the non-linear iterative method of Gauss-Newton. It consists of updating the

Jacobian each iteration. The iteration is given by Eq. 2.53 [40].

σk+1 = σk +
(
JTk Jk + α2L̃T L̃

)−1 (
JTk δV + α2L̃T L̃ (σref − σk)

)
(2.53)

2.1.4.3 Landweber

Yang et al. [53] propose an alternative to the Gauss-Newton, the Landweber iteration procedure

for Electrical Capacitance Tomography that is also extended to EIT [54]. The method is iterative

and based on the steepest gradient descent method. It uses the prior information from the LBP

firstly, and, in each iteration, the procedure adds a term to its first estimate, the direction of

minimization multiplied by a gain term or a relaxation factor, Eq. 2.54.

δσk+1 = δσk + αlwJ
T (δV − Jδσk) (2.54)

δσ = JT δV (2.55)

where αlw is the gain related to the maximum eigenvalue of JTJ , λmax , by Eq. 2.56.

αlw =
2

λmax
(2.56)

The iteration process is known to converge to the minimum-norm least-squares solution [55].

One major drawback of the Landweber iteration procedure is that the convergence is poor, as

the methods based on the steepest descent tend to converge fast initially and, when close to

the minimum, the velocity of convergence gradually decreases. Li and Yang [56] introduced

an algorithm with non-linear steps in the Landweber iteration minimization in an attempt to

obtain a superior quality image, by updating the jacobian each iteration. It is shown that this step

improves the reconstruction of complex forms.

2.1.4.4 Conjugate Gradient

In the same class of the gradient-based algorithms, the conjugate gradient is an iterative option

as the main solver of the inverse problem [57]. Since the conjugate gradient is only applicable in

symmetric positive-definite matrices, some manipulation is necessary to ensure this condition,
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assuring the correct application of the method. The method provides a way to solve N x N linear

system. Consider a system of Eq. 2.57

Axsol = b. (2.57)

The method aims to minimize the function from Eq. 2.58

f(xsol) =
1

2
xsolAxsol − bxsol (2.58)

by considering the gradient or residual, Eq. 2.60, zero to achieve the Eq. 2.57

∇f = Axsol − b or r̃ = Axsol − b (2.59)

The minimization proceeds generating successive vectors pk in the orthogonal direction that

satisfy the condition

pTi Apj = 0 for i 6= j (2.60)

The method is given by the algorithm in Eqs 2.61:

k = 0

p0 = r̃0 = b− Axsol(0)

while
∥∥r̃(k)

∥∥
2
< tol

u(k) = Ap(k)

αk = r̃T(k)r̃(k)/p
T
(k)u(k)

xsol(k+1) = xsol(k) + α(k)p(k)

r̃(k+1) = r̃(k) − α(k)u(k)

β(k) = r̃T(k+1)r̃(k+1)/r̃
T
(k)r̃(k)

p(k+1) = r̃(k+1) − β(k)p(k)

k = k + 1

end

(2.61)

To improve further the algorithm from the classical implementation, Wang et al. [58] presented

a gradient conjugate method based on Krylov subspaces that showed better results in a minimal

number of iterations, proving to be a good candidate for real-time reconstruction.
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2.1.4.5 Kalman Filters

The inverse problem can also be seen in the framework of the statistical inversion for dynamic

systems. The Kalman Filter (KF) was the first type of filter used to estimate statistically the

conductivities field [47, 59, 60]. These pixels represented by the reconstructed conductivities

are treated as a state variable and modeled in a Markov chain. The essence of the filter begins by

predicting the state based on the previous state aided by a forward problem. The measurement

is used then in the sequence to update the state recursively. In the EIT area of research, this type

of recursion in a filter is named as dynamic reconstruction [40]. It is important to indicate that

the impedance imaging is a non-linear application and the KF is designed to be used to linear

systems.

To enable the use of the KF in EIT estimations, the modified version of the filter is the choice

for the researchers, the Extended Kalman Filter (EKF), which allows the implementation of

linearized models. The EKF utilizes the jacobian originated by the linearization of the model

due to a Taylor expansion truncated at the first term. Kaipio et al. [59, 60] were the first group

of researchers to successfully implement the EKF in EIT, and in his work, it was argued that it

was necessary to apply a spatial regularization to overcome the difficulties of the high dimension

problem. In some applications, the resistivity changes may be so fast that the target changes

between the injection of the current patterns and thus the data do not correspond to the same

target distribution. Since Kalman filter is a causal filter providing estimates for the resistivity

distribution at each time based only on the relative past, the estimates exhibit a delay. Vauhkonen

et al. [35] accounted for this characteristic and conclude that a fixed-lag smoother provides a

better estimation. Trigo et al. [61] utilize the EKF to estimate the conductivities and the unknown

impedance contact resistance. Adler et al. [62] propose a temporal reconstruction based on a

Kalman filter formulation that considers a group of measurements as a set to reconstruct the

image. It is argued that the algorithm is suited to noisy measurements and for rapid changes in

the conductivity.

In certain types of applications, prior information is known and a more physical and realistic

type of evolution model could present better results. By knowing that in medical applications

the conductivity changes in only certain areas, Kim et al. [63] proposes to utilize a kinematic

model as an evolutionary model to estimate the conductivity changes dynamically inside two

pre-grouped regions. Seppanen et al. [64] model the state evolution with information of the fluid

dynamics of the process using the fixed-lag Kalman filter, which is tested experimentally in

[34]. Since a homogeneous solution flowing in a pipe would be impossible to reconstruct, as no
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conductivities discontinuities caused by different phases were in the domain, it is considered a

solution with the two-phase flow, in a manner that the conductivity is related to the concentration

of species in the domain. In a later work, this same model is utilized to estimate the velocities

inside the pipe [65]. Moura et al. [66] estimates the conductivities of the tissues of the human

thorax with the EKF modeled with the Ibrahim time-domain evolution model.

The unscented Kalman filter (UKF) is also considered in the EIT technique. Proposed by Julier

and Uhlman [67, 68] to deal with non-linear systems, the UKF also treats the random variable as

a Gaussian distribution, but unlikely the EKF, it is specified using a specific number of variables,

the sigma points. These points capture the true mean and covariance accurately to the 3rd order

of the Taylor expansion series for any nonlinearity. It is argued that the UKF has the same order

of computational complexity as the EKF [69]. Ijaz et al [70, 71] compared the EKF with UKF

in the EIT technique dealing with state boundaries estimation. The boundaries were modeled

as Fourier descriptors and with the aid of the filters, it was possible to estimate recursively the

formation of bubbles in a domain. Also, the method was extended to stratified flows. It was

shown that the UKF produced images with an error lower than the EKF.

2.1.4.6 Maximum a Posteriori and Markov Chain Monte Carlo Method

On the statistical methods, there are several possibilities to estimate quantities, the maximum

a posteriori is a technique that finds the unknown variable that maximizes the posterior dis-

tribution. The problem becomes an optimization procedure based on the likelihood and the

prior distribution. Adler and Guardo [72] presented a method to reconstruct dynamically the

image by MAP. Nissinen et al. [73] evaluate the Bayesian approximation error, based on MAP

estimate, and presents improved results by compensating for the errors in the reconstruction.

Liu et al. [74] incorporate Bayesian learning to the reconstruction problem, providing images

with high spatial accuracy, and avoiding parameter tunning. MCMC is a more computational

intensive method that provides the posterior density of the quantity in question. Utilizing the EIT

technique, Aykroyd and Cattle estimate the contours of an inclusion by this method [42]. The

algorithm utilized is the Metropolis-Hastings, which employs a gaussian transformation kernel

to sample to the next step of the chain.

2.1.4.7 Particle Filter

Considering Bayesian methods are the particle filters (PF), which do not rely on Jacobian com-

putation. Those algorithms are a type of sequential Monte Carlo method to solve the Bayes

theorem, that for a given state, its noise and observation it is possible to estimate the posterior
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density of a state variable sequentially. It was largely underused when presented, which could be

explained by the lower computation power available in the past [75]. The proposal distribution is

given employing particles and through the calculation of the likelihood function for each particle,

and the posterior density is calculated then by the weights provided by the likelihood function.

Its first version, the Sequential Importance Sampling (SIS) filter presented a remarkable flaw,

which after some steps of the state update the weights of the particles become zero for all except

one particle [75, 76, 77, 78]. This problem is called the degeneracy of the particles. It was the

work presented by Gordon et al. [79] that the particle filter has reached its first operational form.

By adding a resampling step, in which the particles with the greater weight are chosen and

multiplied in detriment of the particles of low weights. The algorithm was then able to estimate

without the degeneracy problem and it is called in the literature Sequential Importance Resam-

pling (SIR) filter or bootstrap filter. Although the SIR filter additionally introduces another type

of problem, the impoverishment, ways to treat it. Gordon et al. [79] propose the roughening

and prior editing. The process which adds noise to the resampled particles is called the rough-

ening. In that form, the diversity from the particles increases, reducing the problem. It is tuned

according to the problem in question. The prior editing is a step that calculates the residual to

evaluate the quality of the particles, regarding the impoverishment. In the case that the residual is

‖hk(σ)− z‖ > 6 · STD(z), the iteration is repeated. This threshold works well for univariable

measurements and is yet to be tested for multivariate measurements. Xiaolong et al [80] utilize

the methods to moves the target away from a "danger zone" when necessary, calling it the sample

editing. Both methods, the prior editing and roughening, are extensively used and sometimes

critical for the correct application of the filter [81, 82, 83].

Other types of filters have been proposed, such as the Auxiliary Sequential Importance Resam-

pling (ASIR) filter [84]. It is a remarkable alternative to the SIR filter when the particles have

all the same weight after the resampling. The filter improves the variability of the particles by

drawing a new set of particles exactly after the resampling step, which increases the number of

particles in the region of high likelihood. This step considerably increases the processing time

also.

The main features that the PF present is its ability to represent the state variable as a density

distribution, with mean and standard deviation and its recursive ability, which allows it for being

used for tracking purposes [75, 76, 77, 78]. The KF is also used as a tracking algorithm, however,

the PF is a method for solving non-linear and non-gaussian problems, while the KF is restricted

only to linear and Gaussian problems. Although, the dynamic behavior of the filter is its main
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feature, in process tomography applications this recursion is not addressed properly. The choice

of the proposal is an extremely important step in the final performance of the filter [77]. The

most intuitively, common, and easy to implement proposal is the prior distribution. On the other

hand, this type of proposal leads to high variance [77]. It is pointed out that the proposal is

problem dependent, therefore a deep knowledge of the problem in question is required for the

election of a good proposal. Several comprehensive manners to improve this proposal is given in

the literature, based on the EKF [85], the UKF [86], the H∞ filter [87] and optimization methods

for state and parameter estimation [88].

Regarding the contour estimation, Watzenig et al. [89] utilized the PF in electrical capacitance

tomography for estimating the contours of a phantom in a domain. Although the author was able

to estimate the boundaries of the phantom with good agreement, it was estimated using a station-

ary reconstruction. The algorithm searched through the entire domain in the first iteration for a

particle that provides a sufficient weight. In the next iteration, the search range was decreased

and taken from the previous point until it reaches a good convergence. One of the main problems

of the PF is the so-called curse of dimensionality [81, 90]. If the number of state variables is

sufficiently large, the performance of the filter is known to degrade. To overcome this deficiency

it is necessary to perform a dimension reduction by any means. Additionally, Watzenig et al.

[89] modeled the phantoms by two different approaches to represent a boundary: by splines and

by Fourier descriptors. Therefore, the dimension is reduced, thereby enabling the use of the PF.

Wang et al. [91] combined a deterministic method, the Landweber, with PF to estimate the image

in electromagnetic tomography. The algorithm uses the minimization procedure of the LBP to

provide the initial guess, and the particle generation was directed by the Landweber iteration at

each iteration. The procedure does not estimate dynamically as the image is not treated as a state

variable.

2.1.4.8 Smooth Priors and Edge-Preserving Priors

To deal with the ill-posedness of the solution, the Tikhonov regularization term is added as

prior information, aiding the stabilization of the solution [40, 47, 1]. The commonly choices for

the regularization matrix includes the identity matrix (Tikhonov prior) [52], a positive diagonal

matrix (the diagonal from JTJ , the NOSER prior) [27], approximation of the first and second-

order differential operators (Laplace prior) [92], and the inverse of a Gaussian matrix (Gaussian

prior) [72].

This regularization matrices consider a smooth and slowly changing prior, therefore the con-
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ductivity images estimated do not present sharp boundaries [47]. There are in the literature

alternatives to prevent the blur of the images by estimating discontinuities of conductivity prop-

erly, such as the Total Variation regularization [93, 94]. Another approach is to include prior

knowledge of the physical boundaries into the computational domain [95, 47].

In the statistical framework, Kaipio et al. [96] provides a comprehensive study on considering

the priors statistically, and argues that there is an advantage of representation of these priors and

the capability of estimate the full statistical information. A way to introduce these priors is the

knowledge of the conductivities beforehand in industrial processes. Thus, the problem becomes

to estimate the shapes of the inclusion’s boundaries. Ijaz et al. [70, 71] use this information to

estimate recursively the shapes of open and closed contours in multiphase flow. In the same

manner, Watzenig et al. [89] present a method to estimate the boundaries of inclusion inside a

vessel, utilizing a high order dimension representation of a closed contour, such as splines and

Fourier descriptors.

The regularization parameter or the hyperparameter is a value that is chosen based on a

compromise between noise embedded solution and an over smoothed solution. Normally, its

election is arbitrary, although a more comprehensive approach could be employed to give a

more satisfactory result. Although the regularization parameter is commonly chosen arbitrarily

[33, 52, 97, 98], Graham and Adler [38, 99] evaluate several different methods to select the

hyperparameter properly, such as the L-curve. The method considers to plot the semi-norm

of the regularized solution log10|L̂δσ| versus the norm of the corresponding residual vector,

log10|Jδσ − δV , [100]. The curve has an L-shape and the selection lies in the corner of the

curve. Another method tested is the Generalized Cross-Validation (GCV), which chooses the

hyperparameter that minimizes the GCV curve [100], Eq. 2.62.

GCV (λ) =
‖Jδσ − δV ‖2

tr(Ĩ − J(JTJ + λ2L̃T L̃)−1JT )
(2.62)

2.1.5 Jacobian

The Jacobian, also known as the sensibility matrix, informs the variation of voltage through

the variation of conductivity, indicating the sensibility that the change of conductivity in the

medium influence in an electrode measurement. Each row of the Jacobian is called the sensitivity

maps, giving information regarding the sensitivity for each measurement and injection. The

deterministic optimizations and the EKF filter relies on the computation of Jacobian.
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2.1.5.1 Definition

By the definition, the Jacobian maps the perturbations of the solution to perturbations on the

boundary data [30, 31].

∆σ |Ω → ∆V |∂Ω (2.63)

The Jacobian matrix J ∈ RM,K , where M is the number of measurements in the pattern.

J =


∂V1
∂σ1

∂V1
∂σ2

. . . ∂V1
∂σK

∂V2
∂σ1

∂V2
∂σ2

...
... . . .

∂VM
∂σ1

. . . ∂VM
∂σK

 (2.64)

The computation from the definition procceeds by perturbing each element by a small amount of

δσ and, from solving the forward problem, the perturbation ∂V on the boundary was calculated.

2.1.5.2 Adjoint Differentiation Method

From the Adjoint problem formulation, the Jacobian is efficiently computed from the dot product

of the current and measurement fields with the integrals of the gradient of the shape function

over each element [1, 40, 30, 101]. Considering the weak form, Eq. 2.33:∫
Ω

σ∇u · ∇vd–V =

∫
∂Ω

σ
∂u

∂n
vdS (2.65)

Considering v = u, the Eq. 2.65 becomes:∫
Ω

σ |∇u|2 d–V =

∫
∂Ω

σ
∂u

∂n
udS (2.66)

The Eq. 2.27 can be written as:

u = Ul − z̄lσ
∂u

∂n
(2.67)

Substituting Eq. 2.67 in Eq. 2.66∫
Ω

σ |∇u|2 d–V =
L∑
l=1

∫
el

(
Vl − z̄lσ

∂u

∂n

)
σ
∂u

∂n
dS (2.68)

and Eq. 2.69∫
el

σ
∂u

∂n
dS = Il (2.69)

in Eq. 2.68 gives∫
Ω

σ |∇u|2 d–V +
L∑
l=1

∫
el

z̄l

(
σ
∂u

∂n

)2

dS =
L∑
l=1

VlIl (2.70)
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The Eq. 2.70 states that the power is dissipated either in the domain or the contact impedance

from the electrode. Taking perturbations σ → σ+δσ, u→ u+δu and Vl → Vl+δVl considering

the current in each electrode to be constant Il:∫
Ω

(σ + δσ) |∇ (u+ δu)|2 d–V +
L∑
l=1

∫
el

z̄l

(
(σ + δσ)

∂ (u+ δu)

∂n

)2

dS =
L∑
l=1

(Vl + δVl) Il

(2.71)

Manipulating Eq. 2.71 and ignoring higher order terms gives∫
Ω

δσ |∇u|2 d–V +2

∫
Ω

σ∇u·∇δu d–V +2
L∑
l=1

∫
el

z̄l

(
σ
∂u

∂n

)
δ

(
σ
∂u

∂n

)
dS =

L∑
l=1

IlδVl (2.72)

Introducing the boundary condition on the lth electrode El, Eq. 2.73

δ

(
σ
∂u

∂n

)
=

1

z̄l
(δVl − δu) (2.73)

Substituting Eq. 2.73 in Eq. 2.72 gives

∫
Ω

δσ |∇u|2 d–V +2

∫
Ω

σ∇u·∇δu d–V +2
L∑
l=1

∫
el

σ
∂u

∂n
δVl dS−2

L∑
l=1

∫
el

σ
∂u

∂n
δu dS =

L∑
l=1

IlδVl

(2.74)

Considering the weak formulation, Eq. 2.65, considering v = δu, Eq. 2.75 is given

−2

∫
Ω

σ∇u · ∇δu d–V + 2
L∑
l=1

∫
el

σ
∂u

∂n
δu dS = 0 (2.75)

Summing Eq. 2.75 with Eq. 2.74, the term 2 and 4 from Eq. 2.74 becomes zero.∫
Ω

δσ |∇u|2 d–V + 2
L∑
l=1

∫
el

σ
∂u

∂n
δVl dS =

L∑
l=1

IlδVl (2.76)

From Eq. 2.69, the term 2 from Eq. 2.76

2
L∑
l=1

∫
el

σ
∂u

∂n
δVl dS = 2

L∑
l=1

IlδVl (2.77)

Therefore, the total change in power, Eq. 2.79, is given

L∑
l=1

IlδVl = −
∫

Ω

δσ |∇u|2 d–V (2.78)

To give the change in voltage, not in power, we simply solve for the special measurement current

pattern [101]. The dependence of the potential on a vector of electrode currents I = (I1, ..., IL)T
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is written u(I). The hypothetical measurement potential, considering the solution of the forward

problem for each measurement pattern, is u(Im). On the other hand, the potential for the drive

pattern is u(Id), the actual forward solution given the driving patterns. Applying u(Id) + u(Im)

and u(Id)− u(Im) to Eq. 2.79 and then subtracting gives

δVl = −
∫

Ω

δσ∇u(Id) · ∇u(Im) d–V (2.79)

Considering the values to be constant in each element, the discretization from Eq. 2.40, the

Jacobian is described in Eq. 2.80

∂Vl
∂σk

= −
∫

Ωk

∇u(Id) · ∇u(Im) d–V (2.80)

2.1.6 Modeling Accuracy and Error

2.1.6.1 Accuracy of the Forward Problem

The accuracy of the model was tested by several researchers. Ider et al. [102] solved by FEM a

2D simulation of a vessel with 1 cm in height filled with NaCl solution. The results presented

a good agreement with the model. Further, it was presented as a method to solve 3D forward

problems since it was noticed the need to treat appropriately the domain simplification. Ma et al.

[103] observed that there are errors regarding the modeling of the 3D domain into a simplified 2D

analysis. At some points, over 80% error was observed by this method. Further, results obtained

by Fransolet et al. [104] corroborate the need to treat the 3D modeling properly. Additionally, it

is observed an error caused by the temperature into the calculated voltages, since the conductivity

is highly dependent on the temperature on the electrolyte [105].

2.1.6.2 Errors in the Reconstruction

Considering the reconstruction of the image, Kolehmainen et al. [97] provided a brief review

regarding the effect of modeling errors in the static reconstruction, and as well his investigation

provided new information.

Contact Impedance The contact impedance (when working with in-vivo measurements) con-

sists of two terms. The first is the electrochemical impedance that exists at the interface between

electrode and skin. The second is the skin impedance. Considering the static imaging, the contact

impedance must be modeled accurately to obtain good reconstructions, although it is dependent

on the injection protocol. The adjacent protocol is insensitive to contact impedance changes,

while the adaptive pattern presented high deviations. This occurs since the measurements are
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only performed in non-injecting electrodes. Concerning the adaptive protocol, the four-electrode

method is superior to the conventional approach. When performing difference imaging recon-

struction, assuring that the contact impedance does not change from images, the method is

insensitive to these impedances. In the case of changes, spatial or linear variations, there is

significant image loss of quality.

Electrode Size It is important to verify errors concerning the electrode size, since complex

geometries may present difficulties in modeling large electrodes. When changing the size of

the electrodes, initiating from pointlike and increasing the size, it was found that the error is

only a little greater than the ones caused by the electronics of the measurement system when

the modeling error is small. The errors also increased greatly with the electrode size error.

The adjacent method is insensitive to variations in electrode size since the measurements are

performed in non-injecting electrodes. The adaptive method estimates poorly the results when

this error is present.

Electrode Localization The positioning of the electrode in the model is investigated as well.

The absolute reconstruction is very sensitive to this positioning, although it is insensitive when

reconstructing with the difference imaging. The localization of the electrode is more important

when measuring the signal since it becomes a source of error. A workaround to diminish this

error is by considering a stronger regularization, although the effect of blurring occurs strongly.

2.1.7 Acquisition System

The acquisition system development is of the major concern of the researchers since the sensors

must acquire a signal with the lowest as possible noise embedded into it to avoid high errors in

the reconstruction image. Additionally, each module must achieve sufficient accuracy to avoid

errors in the measurements.

2.1.7.1 Architecture

Brown and Seagar [20] developed one of the pioneers’ systems, the Sheffield system. The archi-

tecture from the system presented the base to the following acquisition system in the literature. It

consists of a system composed of the following modules: the sensors, a master clock, a voltage-

controlled current source (VCCS), multiplexers, an instrumentation amplifier, a phase-sensitive

detector, a sample-and-hold and an analog-to-digital converter (ADC). The block diagram of

the system is shown in Fig. 2.10. The master clock is used to control the VCCS, which inputs a
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Figure 2.10: The block diagram of one of the first systems [20].

current of 51 kHz in the medium. This clock is also used as a reference to the phase-sensitive

detector and controls other modules. The multiplexers have the function of distributing the signal

to the working electrode and from the measuring electrodes. It provides a simplification of the

hardware necessary since it reduces the number of current sources and voltmeters. The differ-

ential voltage is obtained by the instrumentation amplifier (in-amp), which also must reject the

common-mode signal. Thus, the common-mode rejection ratio (CMRR) must be large enough

in the frequency range of the signal. The phase-sensitive detector must demodulate the signal, to

obtain the in-phase value of the signal. The Sheffield system only measured the in-phase signal.

The sample-and-hold and ADC are the required modules to transform the signal into a digital

value.

The digital demodulation is presented by Dickin and Wang [21] and in a newer version of

the Sheffield system, the Sheffield Mk3.5 [106]. The latter presented one of the first versions

which could inject current in a range of frequencies (9.6 kHz and 1.2 MHz), the so-called multi-

frequencies systems. This Sheffield system is programmable and presents a Howland circuit for

the VCCS. There is an absence of multiplexers being fully parallel, contrary to the Mk1 system.

Utilizing 8 electrodes, it is capable of measuring 33 frames/s.

Considering that industrial processes require high speeds of acquisition, Wilkinson et al. [4]

present its architecture capable of over 1000 frames/s. It consists of injecting pulsed currents

through the sensors. The voltage is fed into a differential amplifier, the voltmeter is fully parallel,

and a sample-and-hold demodulates the system. A dual-plane system developed by Wang et al.

[3] could also obtain, for each plane, numbers in the same order of frames/s. Fast demodulation

of the measurement, which is acquired in parallel for the channels, combined with a scheme

that decreased the settling time provided the fast acquisition of the system [107]. The system

developed by Jia et al. [108] implemented in the acquisition system developed a voltage source
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with a current meter. This construction enables high-intensity currents for applications in highly

conductive media.

Concerning the modern multi-frequencies systems for medical purposes, after the Sheffield

system, it was developed the one from Darthmouth for breast image (Halter et al [109, 110]). This

system has a bandwidth of 12.5MHz and over 94dB of signal-to-noise ratio (SNR) until 1 MHz,

decaying to 65dB in 10MHz. The main factor that limits the bandwidth is the stray capacitance

present in the system. The main reasons to reach this performance are the following guidelines

to limit the stray capacitance: maintaining the electronics close to the electrodes to limit the

lead length, designing properly the circuit layout, and developing a calibration procedure. The

system is fully parallel, thus current can be injected and the voltage can be measured through all

electrodes. Considering other designs for a multi-frequency system, Oh et al. [111] present for

the second version of their developed system, the KHU Mark2, a system fully parallel, with a

CMRR reaching 100dB and an SNR of 80dB. It utilizes a General Impedance Converter (GIC) to

cancel the stray capacitance in the VCCS. Shi et al. [112] propose a configuration of 3 in-amps

to increases the CMRR of the voltmeter. It is shown by modeling the configuration that the

CMRR increases from 60dB to 120dB in 200kHz considering a 0.1% mismatch of the 3 in-amps.

The system, aimed for brain image, presented an SNR of 83dB and a CMRR over 75dB. Li et al.

[113] develop a system to evaluate changes caused by blood perfusion with a calibration scheme

to control the inconsistency between channels. Tan et al. [114] develop a system to obtain

complex impedances by injecting currents with a multisinusoidal signal, combining different

single-frequency components.

2.1.7.2 Errors in the Instrumentation

The inverse problem requires that the signal is matching as accurately as possible, with low

inflicted noise to reconstruct properly the conductivities. Therefore, it is extremely important to

provide measurements from the acquisition system assuring certain requirements of accuracy.

Jennings and Schneider [115], Boone and Holder [116] provide an extensive review considering

the errors when designing an EIT instrumentation. Additionally, McEwan et al. [117] presented

a review over multi-frequency systems. Requirements suggested by researchers include a maxi-

mum error of 0.02%-0.05% for static imaging and 0.1% for the transconductance measurements

of practical dynamic imaging. Jennings and Schneider [115] considers a value of 0.1%.

The ideal problem consists of measuring the voltages from an electrical field developed by

current injection. Normally, this procedure is performed by a 4-electrode system, with a medium-
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frequency current source (although multi-frequency systems can reach higher frequencies). The

ideal 4-electrode injecting and measuring system is described in Fig. 2.11.

Figure 2.11: The representation of the ideal 4-electrode system [116].

For the real case, it must be accounted that the current source, differential amplifier, and multi-

plexers are non-ideal. The equivalent circuit presented by Boone and Holder [116] represents

the real system in Fig. 2.12.

Figure 2.12: The real representation of the measurement system. Adapted from [116].

Current Source The Is represents the current source, which can be a single or dual, with fi-

nite output resistance Ro and capacitance Co. These impedances cause the current to be shunted

(divider effect) before reaching the load. The output resistance affects greater the lower fre-

quencies, while the output capacitance affects more the higher frequencies. The Vcm is the

undesirable common-mode voltage that arises from the interaction between the current source

and the impedances from the system. This value is dependent on the topology of the current

source since single-ended topology is more afflicted by common-mode than the floating source.
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Additionally, when considering this floating source, the balance between the currents in the

dual-source must be good.

Electrodes The electrodes are used to inject current and measure voltage. The skin-electrode

interface is represented by the equivalent resistance and capacitance Red and Ced in parallel

respectively. Jennings and Schneider [115] argues that the representation of the impedances in

series is more realistic. To model the interface between electrode-electrolyte, Wang [107] utilizes

a parallel combination of resistance (charge transfer resistance) and a capacitance (double layer

capacitance) and a resistance in series (bulk resistance).

Voltmeter The in-amp have a finite CMRR and input resistance Ri and capacitance Ci. These

input resistances and capacitances attenuate the signal (voltage divider effect). Additionally to

this effect, the common-mode voltage that needs to be rejected can be as large as 1.3-2.0 times

the differential signal. Therefore, if all other circuits elements were ideal, the in-amp would need

a total of 60 dB CMRR to achieve 0.1% accuracy [116].

Multiplexers and Cables Additionally, the system can have multiplexers with capacitance

and on-resistance, and cables also present resistances and capacitance that must be accounted

for, inducing the current and voltage divider effect. The equivalent circuit from Jennings and

Schneider [115] considers additional elements, improving the complexity of the analysis.

2.1.7.3 Howland Current Source

The Howland current source is an extensively used circuit to inject current in EIT systems. It

was first considered by the work in the Sheffield research group (Bertemes-Filho et al. [118]). Its

simplicity and good performance are the main features of this circuit [119]. The design includes

inverting and non-inverting configuration, using single or double amplifiers, as shown in Fig.

2.13.

Single Configuration The basic Howland circuit uses a single amplifier with both positive

and negative feedback and consists of four resistors, such as Fig. 2.14(a). The drawback of

this configuration is the waste of power consumption. A way to reduce this consumption is by

splitting resistor R4 in R4a + R4b 2.14(b) [119, 120, 121]. This version is the improved Howland

current source. Considering that the balance condition of the resistors is satisfied, Eq. 2.81,

R3

R4

=
R1

R2A +R2B

(2.81)
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Figure 2.13: Howland circuit topologies [119].

Figure 2.14: (a) Basic Howland circuit and (b) improved Howland circuit. Adapted from [120].

the transcondutance Gm converts the input voltage, Vin, into a bidirecional constant current, Iout,

independent of the load ZL. The positive and negative transconductances,G+
m and G−m, are given

in Eq. 2.83 and Eq. 2.83.

G+
m =

Iout
Vin+

=
R2A +R2B

R1R2B

(2.82)

G−m =
Iout
Vin−

= − R4

R3R2B

(2.83)

This circuit is stable at low frequencies. At higher frequencies, a pole must be add in order to

stabilize the circuit. Thus, small capacitor are connected in parallel with the feedback resistors.

Additionally, this VCCS allows the transconductance to be set by a single resistor, considering

the conditions are met, Eq. 2.84.

if R3 = R4 → G−m = − 1

R2B

(2.84)
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Tucker et al. [120] perform a comprehensive study of the output accuracy of the improved

Howland current source. The model consists of evaluating the non-idealities of the circuit that

shunts the current from the load. The linear model is shown in Fig. 2.15. The output impedance is

Figure 2.15: Linear model of the improved Howland current source [120].

the parallel combination ofRo1,Ro2,Co to ground, forming a current divider with the load. There

are inaccuracy caused by these three sources: Ro1, the imbalance in the positive and negative

feedback paths; Ro2, the amplifier finite open-loop gain; Co, the amplifier finite bandwidth.

Mahnam et al. [122] extends the analysis and provides a comprehensive study to design other

topologies of Howland current source, such as the Howland current source with a buffered

feedback path. The topology of this VCCS is shown in Fig. 2.16. It presents an improved output

impedance compared to the basic and improved Howland current source.

Figure 2.16: Feedback buffered Howland current source. Adapted from [120].

Dual Configuration A topology that is frequently utilized by researchers is studied by

Bertemes-Filho et al. [123]. The mirrored modified Howland current source, shown in Fig.

2.17(a), consists of two single-ended modified Howland current source, which uses two signals
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with a phase shift of 180 degrees from each other. It shares a unique reference and this configu-

ration significantly reduces the common-mode voltage on the output. The output impedance, as

it is shown in the equivalent Norton circuit in Fig. 2.17(b), is increased since the total is the sum

of the two single-ended versions.

Figure 2.17: (a) Mirrored modified Howland current source and (b) Norton equivalent circuit.

Adapted from [123] and [120].

Negative Impedance Converter It is important, especially when developing multi-

frequencies systems, to limit the stray capacitance in the circuit. To this matter, a Negative

Impedance Converter (NIC) can be designed to synthesize a negative capacitance as the input

impedance [124]. The circuit is shown in Fig. 2.18. The theory of such a device is described in

[125]. For op-amps, the input impedance of the circuit is given by Eq. 2.85 [126].

Vi
Ii

= −Zf
Z2

Z1

= −Cf
R2

R1

(2.85)

However, the system suffers from stability and, according to Brownlie [127], if the input

impedance is approximated to the element that is necessary to compensate. Hoskins [128]

demonstrates using a special case that if the negative input impedance is greater than the element

that needs to be compensated, the system becomes unstable as poles on the right part of the

complex plane become present. Jimenez-Martin et al. [129] conclude that the method suitable

to predict the NIC stability is the use of the Nyquist theorem applied to the Normalized Deter-

minant Function. Segovia-Vargas et al. [130] prove that the design of the NIC can be done by

the Normalized Determinant Function, although the accurate linear model of the active devices

is required.
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Figure 2.18: Negative impedance converter. Adapted from [124].

Generalized Impedance Converter A VCCS contains both output resistance and output ca-

pacitance that limits the accuracy of the output current. A way to deal with these characteristics

is considering to include a generalized impedance converter (GIC) into the VCCS circuit. Ross

et al. [131] designed a Howland current source with a GIC in parallel.

The GIC is a circuit that synthesizes inductances to cancel the parasitic capacitances in the

VCCS. It consists of two amplifiers and a chain of five passive elements, whose types determine

the impedance of the element to be synthesized. To produce an inductance, the topology is given

in Fig. 2.19(a). The inductance is calculated by the Eq. 2.86.

LG =
R1R3R5C4

R2

(2.86)

Considering a ideal case, the capacitance is completely cancelled. This case only occurs when

the imaginary part of the parallel impedance is zero. This value is given by Eq. 2.88.

Im(Zeq) =
ωRLG(R− ω2RLGC)

(R− ω2RLGC)2 + (ωLG)2
(2.87)

where ω is the angular frequency. Choosing the Im(Zeq) = 0, the resonance condition is, Eq.

2.89

ω =
1√
LGC

(2.88)

The equivalent circuit of the current source is given in Fig. 2.19(b). To obtain the maximum

output resistance, the equivalent resistance of the circuit must be adjusted to induce the negative
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Figure 2.19: (a) Topology of the generalized impedance converter to synthesize the inductance,

(b) Model of the current source with GIC and stray capacitance. Adapted from [131].

resistance from the GIC to cancel the output resistance and reaches infinity, Eq. 2.89.

Req =
RS(−RG)

RS + (−RG)
(2.89)

The inductance to be adjusted, cancelling the stray capacitance and the output capacitance of the

current, is given by Eq. 2.90

LG =
1

ω2(Cs + Cx)
(2.90)

Calibration Scheme of the Impedance Converters A method to measure the input

impedance of the current source is given by Cook et al. [124] which is still in use [132, 133, 111].

It is shown in Fig. 2.20 the circuit for such device.

Figure 2.20: Measurement of the input impedance of the current source. [124].
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It is defined by the way the current differs by two different known loads, RH
cal and RL

cal. For

simplicity, RL
cal = 0. The voltages measured are defined in Eq. 2.91-2.94.

V H
cal = V H

r + jV H
q = Vcal|Rload=RH

cal
(2.91)

V L
cal = V L

r + jV L
q = Vcal|Rload=RL

cal
(2.92)

Therefore,

Cout =
V L
q V

H
r + V L

r V
H
q

[(V H
q )2 + (V H

r )2]ωRH
cal

(2.93)

Rout =
(V H

q )2 + (V H
r )2

V L
q V

H
q + V L

r V
H
r − (V H

r )2 − (V H
q )2

RH
cal (2.94)

It is noticed that Cout −→ 0 and Rout −→ ∞ when V H
r = V L

r and V H
q = V L

q . By arranging

digipots in the converter circuits, it is possible to calibrate the output impedance of the current

source utilizing an automatic scheme. However the only source of capacitance that is measured

is from the current source and a complete mapping of these sources is not possible.

2.1.7.4 Demodulation

To estimate the conductivities from the domain in question, it is necessary information about

the voltages on the boundaries. From the output of the instrumentation amplifier, the signal

is a sinewave and the information about the amplitude and phase must be demodulated and

transferred to the computer. There are several techniques to extract such information. Ruppert et

al. [134] provides an extensive review of demodulation techniques that can be extended to the

EIT data acquisition system.

RMS-to-DC Converter A practical method to obtain the root mean square (RMS) value of a

sinusoidal wave, thus the amplitude, is the RMS-to-DC Conversion method. The operation of the

circuit is to compute the RMS, Eq. 2.95, which is a fundamental measurement of the magnitude

of an AC signal.

VRMS =

√
1

T

∫ T

0

V 2 (t) dt (2.95)

It is easy to show that the RMS voltage value of a sinusoidal wave is Eq. 2.96:

VRMS =
VP√

2
(2.96)
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Two ways to obtain this analog value is by the Direct or Explicit Computation and the Indirect or

Implicit Computation. Explicit computation uses the most straight-forward way of calculating

the RMS value [135]. By performing the operations of squaring, averaging, and square-rooting

the signal, it is possible to acquire the signal. The circuit basic idea is shown in Fig. 2.21. Due to

Figure 2.21: The circuit for an explicit computation RMS to DC converter [135].

the increased dynamic range that the process of squaring may inflict (a signal of 10 mV to 1 V,

with a dynamic range of 100 to 1, would have a signal of 1mV to 10 V, the dynamic range would

be 10000), the method is not frequently employed to perform the measurement. Therefore, the

application limited to ranges of 10:1 dynamic range.

The implicit computation is an improved method that uses feedback to perform the square root

implicitly, solving Eq. 2.97, as shown in Fig. 2.22.

VRMS =
Avg(V (t))2

VRMS

(2.97)

Figure 2.22: The circuit for an implicit computation RMS to DC converter [135].

The simple act of dividing the output of the square by the average of the output turns the

application linear, which greatly increases the dynamic range of the device.

Phase-Sensitive Detector Also known as lock-in amplification, the phase-sensitive detector

is a technique for measuring the amplitude and phase of a signal when it is affected by Gaussian
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noise. Although it can be implemented with an analog circuit, the output is dependent on a

low-pass filter that reduces the overall precision of the system [1].

The digital application is described by Smith et al. [136] and it is summarized in Fig. 2.23. Con-

Figure 2.23: Digital phase-sensitive detector [1].

sider that the analogue input signal Vin(t) is a sinewave of frequency fc, amplitude A, truncated

at t = 0 and at t = Tm, the measurement time, and phase relative to a reference Φsig:

Vin =

Ãsigsin(2πfct+ Φsig) if 0 ≤ t < Tm

0 otherwise
(2.98)

where Tm is an multiple of 1/fc, consisting in an exact number of cycles of the sinewave. The

input signal is digitized by the ADC to form a sampled data sequence vin(ns) from Vin, sampling

at frequency fs multiple of fc:

vin(ns) = Ãsigsin

(
2πfcns
fs

+ Φsig

)
ns = 1, 2, ..., Ns (2.99)

where Ns = Tmfs is the total number of samples.

The reference signal, h(ns), is a sine waveform of the same frequency of the input signal vin:

h(ns) = Ãrefcos

(
2πfcns
fs

+ Φref

)
ns = 1, 2, ..., Ns (2.100)

The sum of the products at the end of the measurement, the in-phase output I , is given by

[136, 137, 138]:

IP =
Ns∑
ns=1

vin(ns)h(ns) (2.101)
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Assuring that Tm is a multiple of 1/fc and fs > 2fc, Eq. 2.101 is written as Eq. 2.102 [136, 137,

138]:

IP =
1

2
ÃsigÃrefNscos(Φsig − Φref ) (2.102)

Consider also g(ns), which is phase shifted by 90o:

g(ns) = Ãrefsin

(
2πfcns
fs

+ Φref

)
ns = 1, 2, ..., Ns (2.103)

By taking the second sum of products, with vin and g(ns), the quadrature output QD:

QD =
Ns∑
ns=1

vin(ns)g(ns) (2.104)

In the same form, Eq. 2.104 it can be written:

QD =
1

2
ÃsigÃrefNssin(Φsig − Φref ) (2.105)

Therefore, from Eqs. 2.101,2.102, 2.104, and 2.105, the amplitude is given by Eq. 2.106.

ÃsigÃref =
2

Ns

√
IP 2 +QD2 (2.106)

and the phase is written by Eq. 2.107.

Φsig − Φref = tan−1

(
−QD
IP

)
(2.107)

The reference signals can be obtained by a lookup table and it is common to choose Ãref = 1

and Φref = 0.

2.1.8 Summary

From the literature survey, some conclusions can be drawn that lead to the development of this

work.

1. Several works have been done to design the EIT DAQ system, from complex to simple

designs, but there is no comprehensive methodology to guide the choices in the process.

2. The measurement of the output impedance necessitates a specific circuit and the measure-

ment of the parasitic capacitances can only be performed to the current source.

3. The recursive algorithms to reconstruct contours fails to reconstruct in the initial states

and when there is a fast-moving inclusion.
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Chapter 3

Design of a Low-Cost Acquisition System

to Reconstruct Images through Electrical

Resistance Tomography

The present chapter has been submitted to the journal "IEEE Latin America Transactions" on

September 5th, 2019, and accepted on February 14th, 2020.

3.1 Abstract

Electrical Resistance Tomography (ERT) is a technique employed in the industrial environment

that reconstructs images formed by the impedance distributions inside a vessel. The method

relies on measures from a data acquisition system, responsible to inject a current inside the

vessel and measures the voltage on the boundaries, and sequentially an inverse problem solution.

This paper introduces a low-cost design of an acquisition system that can obtain 30 images/s

with a signal-to-noise ratio of 57.47 dB and a maximum error of 3.79%, utilizing a simple RMS-

to-DC converter demodulation scheme to provide good accessibility to researchers aimed at

investigating flow patterns of multiphase flow applications.

Keyword: Electrical Impedance Tomography (EIT), Data Acquisition Design, Instrumentation,

Multiphase Flow.
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3.2 Introduction

Electrical Resistance Tomography (ERT) is an imaging technique that is widely investigated

nowadays. By injecting an electric current into a domain and consequently measuring the result-

ing voltage, it is possible to reconstruct the electrical conductivity and permittivity of the body.

Such readings are used as experimental measures to solve the inverse problem corresponding to

this conductivity field [1, 2]. The use of this imaging technique has the advantage of being non-

intrusive, relatively low cost, ionizing radiation-free, and high temporal resolution. Nevertheless,

the processed images are of poor quality due to the solution of the inverse problem. Even so, the

technique has been applied in several areas of knowledge, such as biomedical areas [3, 4] and

geological [5, 6]. It is also being widely used in industrial applications [7, 8, 9].

Continuous efforts are being made to improve the design of ERT data acquisition systems. Brown

and Seagar [10] have developed one of the pioneering medical applications equipment that has

the basic structure of the actual systems: the Sheffield system. Dickin and Wang [11] presented a

similar model for industrial applications, but with digital demodulation and adjustable parameters

such as current magnitude and frequency. In the third version of Sheffield’s system, Wilson et

al. [12] improved the design by adding multifrequency injections to the system to the system.

Thus one can characterize the human tissue appropriately due to the variation of the electrical

properties with the frequency. Wilkinson et al. [13] have developed a system for industrial

applications that injects pulse currents and has completely parallel data acquisition, enabling

high acquisition rates. Wang et al. [14] proposed a system with two high-speed acquisition

planes that allow flow measurement. Further, Jia et al. [15] implemented in the acquisition

system a voltage source with a current meter. This construction enables high-intensity currents

for applications in highly conductive media.

The development of low-cost ERT systems is desirable to provide easy access to technology

by industry and academy. In these systems, one of the components of most interest is the mi-

crocontroller and the analog to digital converter (ADC), which can be considered as one of the

most important components of the equipment. A low-cost natural choice is the Arduino R© micro-

controller prototyping platforms [16]. It has the advantage of using simple interfaces between

software and hardware. For this reason, Arduino has been used to facilitate the use of microcon-

trollers in projects in different areas [17, 18, 19]. Some low-cost ERT acquisition systems, such

as Tomo [20], use Arduino in their design.

Considering the above assumptions, this paper aims to develop an Arduino-based ERT system
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capable of performing multiphase flow pattern identification experiments with a signal-to-noise

ratio (SNR) suitable to allow reconstruction of images presenting a satisfactory resolution.

3.3 Hardware Architecture

The developed acquisition system has the following modules: sinewave generator, voltage-

controlled Howland current source, multiplexers, sensors, instrumentation amplifier (in-amp),

RMS demodulator, low-pass filter, microcontroller from Arduino Due with ADC converter and

virtual serial port (via USB), Figure 4.1. The acquisition can be done through 8 or 16 electrodes.

The frequency operates in the range of 20-50 kHz. The injection pattern chosen for acquisition is

the adjacent pattern. This pattern consists of the injection of the current through neighboring or

adjacent electrodes and then to the differential measurement of voltage through the subsequent

neighboring electrodes. It should be emphasized that the electrode that injects current in the cycle

does not participate in the measuring process. More details are described in [11]. The cycle re-

peats until all electrodes go through the current injection process. The method presents L(L− 3)

measurements, with L being the number of electrodes, where half of these measurements are

independent [11].

3.3.1 Sinewave Generator and Modified Howland Current Source

The integrated circuit (IC) used as the function generator of the system is the AD9850 module,

which uses the Digital Direct Synthesis (DDS) technology to digitally synthesize the sine wave

that generates the injection current. Frequencies are digitally controlled by Arduino Due and

can reach values greater than 10 MHz, which is sufficient to obtain the medium frequencies

required in the method. At the output of the sinewave generator, the signal is conditioned by an

amplifier and a coupling capacitor, Figure 3.2. The voltage-controlled current source (VCCS)

provides a bidirectional current independent of the load and controlled by the input voltage. The

standard Howland current source uses an op-amp with positive and negative feedback [21, 22].

In the design of the current source module implemented in the equipment, a modification with

one op-amp and a buffer in the positive feedback is used. This configuration produces a higher

output impedance [21], Figure 3.2 for IC2A and IC2B. Since all resistors are equal, from R4 to

R7, for the circuit shown in Figure 3.2, the input voltage is related to the output current, Eq. 3.1:

Iout =
Vin
R8

(3.1)
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Figure 3.1: Block diagram of the developed tomogram.

where Iout is the output current, Vin is the input voltage and R8 is the adjusting gain resistor of

the current.

To increase the output impedance, the resistors must be perfectly matched [21, 22, 23]. Conse-

quently, resistances of 1% or lower tolerance are desirable for positive and negative feedback.

The resistors and the input voltage were chosen to form a 1mA RMS current.

3.3.2 Instrumentation Amplifier and Low-Pass Filter

The instrumentation amplifier aims to perform differential measurements on the equipment. The

practical effect of this application is to decrease the dynamic range of the signal to be sent to

ADC. This is because the signal is significantly smaller and no longer referenced to the ground

[24]. With that decrease, the in-amp also amplifies the signal to the condition it according to

the need and, at the same time, rejects the common-mode signal appearing naturally in the

application. The in-amp is utilized is the INA128, IC4, having a common-mode rejection ratio

(CMRR) suitable for the purpose, with a good cost/functionality relationship. The IC4 uses a
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Figure 3.2: Circuit of the sinewave generator and Howland current source signal conditioning.

3 op-amp topology, with buffers in the differential inputs. These buffers have the function of

matching and increasing the input impedance, minimally influencing the CMRR [25]. Before

the input of the in-amp, the signal passes through coupling capacitors, C2 and C3 (Figure 3.3);

then it is applied to the inverter and non-inverter inputs of the in-amp, Figure 3.3. The result at

the output is the difference between the signals, Eq. 3.2, which can still be amplified by a factor

Ag set by an external resistor, R11, according to the datasheet [26], Eq. 3.3.

Vout = Ag(V+ − V−) (3.2)

Ag = 1 +
50 [kΩ]

R11
(3.3)
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The set gain to the electrical conductivity of 74µS/cm is 5.10.

Figure 3.3: Circuit of the instrumentation amplifier and the Butterworth active low-pass filter.

This is the conventional form to apply the instrumentation amplifier, which utilizes 1 stage

to operate the voltages differentially. Recently, Shi et al. [27] utilized a topology to increase

CMRR with three in-amps in two stages of gain, which is intended to incorporate in the posterior

versions of the equipment. In the design of the equipment is used the third-order active low-pass

filter to reject the noise that degrades the signal, Figure 3.3. It is a Butterworth filter with a 90

kHz cutoff and 200 kHz band-stop frequency. The choice of this cutoff frequency is related to

the operation of the equipment, which suffers increased errors for high frequencies due to the

parasitic capacities [28]. Thus, the maximum possible frequency for the equipment presented in

this work is 90 kHz.

3.3.3 Demodulator

To obtain the signal amplitude information, the sinewave must be demodulated efficiently. To

this end, the IC AD536 is used because of its simplicity of application, as the signal does not

require digital processing, Figure 3.4. This integrated circuit works with an implicit computation

of the RMS signal value, outputting a DC signal proportional to the value RMS of the input
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signal. On the other hand, this simplicity necessarily comes with the cost of a relatively low

image acquisition rate, when compared to other methods. This is due to the internal low-pass

filter in IC6 (Figure 3.4) introducing a settling time dependent on the selected C7 capacitor,

Figure 3.4. Capacitor C10 was selected at the output of the demodulator after the follower with

low value, of an order of pF . This has been done to prevent it from significantly influence the

system settling time. Thus, the capacitor that dominates the process remains the demodulator

capacitor C7. It is important to analyze the frequency and settling time in this IC to provide a

signal with a low error [29, 30]. Notice that at lower frequencies the error increases and produces

a poor quality signal. Therefore, the minimum frequency for the displayed system is 20 kHz.

This type of demodulation only retrieves the real part of the impedance because it is insensitive

to changes of the sinewave phase.

Figure 3.4: Circuit of the demodulator RMS-to-DC converter.
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3.3.4 Microcontroller and Multiplexers

The multiplexers used as switches to inject current and measure voltages are the ADG506

ICs. The choice is due to its dynamic range greater than 30V differential and its relatively low

parasitic capacities [31]. The use of multiplexers gives the design simplicity, although with the

addition of non-idealities such as the on-resistance of the switches and parasitic capacitance.

The 16 ports of all multiplexers are connected directly to the sensors. The inputs of the first two

multiplexers are connected to the ground and the current source output. The output of the other

two is connected to the in-amp inputs.

In the project, it is used the Arduino Due, which is a microcontroller prototyping platform. This

platform uses the Atmel SAM3X8E ARM Cortex-M3 microcontroller [16, 32], which operates

at a clock speed of 84 MHz. The ADC has 12 bits of resolution and a conversion frequency of up

to 1 MHz [32], which is sufficient for the desired application. The microcontroller is responsible

for controlling the injection current frequencies, current injection position, voltage distribution

in the sensors through the multiplexers, and communication between computer and equipment.

The measured analog signals are converted to digital in the ADC. These signals are used for

image reconstruction on the computer.

3.4 Software Structure

The software written in Octave performs the communication between Arduino Due and the

computer, which transfers all data relating to a complete image to the program memory. After

performing data acquisition within a defined interval of time or number of images, the software

performs the reconstruction using the routines from the software Electrical Impedance Tomogra-

phy and Diffuse Optical Reconstruction Software (EIDORS), written in Matlab easily converted

to Octave. It offers several possibilities of reconstruction algorithms, with many features [33].

The image to be reconstructed depends on the resolution of the forward problem and the inverse

problem.

3.4.1 Forward Problem

The forward problem consist in a bidimensional domain Ω with an electrical conductivity σ, with

a scalar potential distribution u in the domain, potential Ul in the boundary electrodes ∂Ω, where

a current Il is injected. The equations that represents the phenomenon, known as the Complete
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Electrode Model, are described by Eq. 6.1-6.4 [24]:

∇ · (σ∇u) = 0 em Ω (3.4)

u+ z̄lσ
∂u

∂n
= Ul em el, l = 1, 2, ..., L (3.5)

∫
el

∂u

∂n
dS = Il em el, l = 1, 2, ..., L (3.6)

σ
∂u

∂n
= 0 em ∂Ω \ ∪Ll=1el (3.7)

where n is the normal direction from the boundary ∂Ω, z̄l is the contact impedance, el is the

l-esimal electrode in the boundary ∂Ω. To confer the existence and uniqueness of the solution,

two additional conditions are necessary. Thus, the conservation of charges is given by Eq. 6.5

L∑
l=1

Il = 0 (3.8)

and the determination of a reference node is given by Eq. 6.6

L∑
l=1

Ul = 0 (3.9)

The model is implemented directly on the software EIDORS, which is discretized by the Finite

Element Method. The mesh with triangular elements is obtained by the free software Gmsh,

which is then solved to provide the results.

3.4.2 Inverse Problem

The inverse problem consists in solving the regularization functions to obtain the estimations

of the electrical conductivity in the domain. To perform this task, the one-step Gauss-Newton

minization can be utilized, Eq. 3.10-3.11, [24, 34]:

δV = Vmeas − Vcalc (3.10)

δσ =
(
JTJ + α2L̃T L̃

)−1 (
JT δV + α2L̃T L̃ (σref − σ0)

)
(3.11)
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where Vmeas is the set of voltage measurements, Vcalc is the set of voltages calculated by the

forward problem, J is the Jacobian, δσ is the estimated conductivity, σref is the reference con-

ductivity, σ0 is the initial conductivity, L̃ is the regularization matrix and α is the regularization

parameter. The method is implemented in EIDORS. The regularization matrix utilized in image

reconstruction is known as Newton’s One-Step Error Reconstructor (NOSER). This matrix con-

siders that the diagonal of the approximate Hessian matrix (JTJ) is utilized as regularization.

[35]. The regularization parameter is 0.001.

3.5 Assembling and Sensors

The equipment was developed and soldered on a universal printed circuit board for testing. A

vessel is assembled with electrodes, in a way that minimizes the differences between the real

and computational domain. The vessel is made of acrylic with a total diameter of 14.4 cm and

16 equally spaced circumferential holes. In these holes, the sensors are positioned for injecting

electrical current and measuring of electrical voltages. The sensors are made of stainless steel

and are hemispherically shaped with a diameter of 18 mm. The test medium is water with an

electrical conductivity of 74 µS/cm, although the equipment has been tested and works with

values as high as 1129 µS/cm. Figure 3.5 shows the details of the mounted printed circuit boards

and the vessel.

3.6 Results and Discussion

To evaluate the equipment performance, we considered: i) the maximum error produced by the

measurements when compared to the forward problem, ii) the signal-to-noise ratio (SNR) of the

equipment, and iii) the acquisition capability quantified by the number of images per second.

These parameters are shown in Table 3.1, considering a conductivity value of 74 uS/cm mea-

sured for the tap-water. It is important to notice that the error increase for 16 electrodes is related

to factors such as the correct electrode position and injection magnitude of current injection.

The higher the number of electrodes, the more sensitive the positioning of the electrodes is and

the low magnitude of the current negatively impacts the SNR, increasing the density of random

errors.

Tests were performed to evaluate the correct functioning of the developed equipment. It is

evaluated reconstructions with the object moving radially within the reservoir. The sensitivity of

the resulting voltage related to the conductivity of inclusion varies from the highest point near
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a)a)

b)
c)

d) e)

Figure 3.5: Assembling of the equipment prototype for tests, (a) the test vessel, (b) the multi-

plexers, (c) the voltage source, (d) the sinewave generator and conditioning circuit, (e) current

source, low-pass filter e demodulator RMS-to-DC converter.

the wall to the lowest in the center of the reservoir, employing the adjacent pattern [11]. Thus,

the reconstructed images are investigated in the direction of the variation of sensitivity. The first

reconstructions were tested in the region of least sensitivity, in the central point, to the region

of greater sensitivity near the wall. The first test was made with a 51 mm diameter phantom

made of a non-conductive material, which corresponds to 12.54% of the vessel area. The results,

Figure 3.6, shows that the method presented correctly positioned images, Figure 3.6a, for both

8-electrode reconstruction, Figure 3.6b, and for 16 electrodes, Figure 3.6c.

Table 3.1: Performance values measured in the equipment.

Performance 8 Eletrodes 16 Eletrodes

Max Error (%) 3.79 9.11

S/N (dB) 57.47 47.20

Images/s 30.61 6.41
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Figure 3.6: Reconstruction of a non-conductive phantom, in blue, in the test vessel. (a) Position-

ing of the phantom inside the vessel, (b) Image reconstruction utilizing 8 electrodes, (c) Image

reconstruction utilizing 16 electrodes.

The second test is a phantom made of conductive material with a 49 mm diameter, which

corresponds to 11.57% of the vessel area. Similarly, the image reconstructed with the algorithm

showed a good contrast and positioned according to the real position, Figure 3.7a, for 8 electrode

acquisitions, Figure 3.7b, and 16 electrodes, Figure 3.7c. It is noticed that there is a larger

diameter image for the conductive and non-conductive test bodies using 8 electrodes compared

to reconstruction with 16 electrodes. This is expected since the accuracy of the inverse problem

solution increases with the use of an increased number of independent measurements[11].

In the third test, it is evaluated the reconstruction capacity with smaller diameters. A test was

performed with a non-conductive material with a diameter of 21 mm, which corresponds to

2.12% of the vessel area, Figure 3.8a. Both reconstructions presented images with satisfactory

positioning, but the diameter of the reconstructed image with 8 electrodes is overestimated,

Figure 3.8b. The 16-electrode image showed low contrast, Figure 3.8c. However, these points

do not prevent the correct interpretation of the image.
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Figure 3.7: Reconstruction of a conductive phantom, in red, in the test vessel. (a) Positioning

of the phantom inside the vessel, (b) Image reconstruction utilizing 8 electrodes, (c) Image

reconstruction utilizing 16 electrodes.

3.7 Conclusion

A circuit of an experimental acquisition module, responsible for providing measurements that

enable the reconstruction of images related to the electrical conductivity in the medium, through

the technique of electrical impedance tomography is proposed in the present work. The instru-

mentation consists of seven modules responsible for injecting the electric currents and measuring

the voltages, transforming the analog signal into digital in the process. These modules are the

signal generator, the current source, the multiplexers, the instrumentation amplifier, the low-pass

filter, the demodulator RMS-to-DC converter, and Arduino with an ADC. A test vessel was as-

sembled and images in accordance are obtained in three different configurations. The equipment

can reconstruct 30.61 images/s with 8 electrodes and 6.41 images/s with 16 electrodes presenting

an SNR of 57.47 dB and 47.20 dB respectively. For future versions of the equipment, intended

changes focus primarily to the current source, which with matched resistances at 0.1% tolerance

or less) and changes in topography (balanced pair single-ended to inject equal positive and neg-

ative current), can reduce the error associated with the output impedance and common-mode

signal; in the instrumentation amplifier, which using two stages can significantly increase the
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Figure 3.8: Reconstruction of a non-conductive phantom, in blue, with a decreased section area

in the test vessel. (a) Positioning of the phantom inside the vessel, (b) Image reconstruction

utilizing 8 electrodes, (c) Image reconstruction utilizing 16 electrodes.

module CMRR; in the implementation of digital demodulation that significantly decreases the

acquisition time and enables the acquisition of sinewave phase information, the imaginary part

of the impedance (synchronous demodulation); and implementing injection through the opposite

pattern.
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Chapter 4

Errors Assessment and Modeling to

Develop a Data Acquisition System for

Electrical Impedance Tomography

The present chapter has been submitted to the journal "Measurement" on March 13th, 2020.

4.1 Abstract

Electrical Impedance Tomography (EIT) is a technique that enables the reconstruction of the

impedance distributions inside a vessel in a multiphase flow of industrial processes. Such a

technique combines a data acquisition (DAQ) system to inject a current and to measure the

voltages on the sensors and an inverse problem technique to reconstruct the image properly.

This problem is highly ill-conditioned, causing errors that produce instabilities in the solution.

Therefore, when performing the acquisition, the DAQ system must have sufficient accuracy to

allow the reconstruction of images with good quality. To avoid these measurement inaccuracies,

this paper introduces a methodology that aids in the process of new system development. It

consists of investigating the errors in the current version of the system by measuring the voltages

using a ring of resistors and a water vessel to identify their causes and, further, predicts the

systematic errors caused by the non-idealities of each subsystem by modeling its frequency

response by SPICE. From this information, it is possible to perform a critical analysis that aids

the design decisions towards developing new hardware. The methodology is demonstrated in

the system designed by the authors.
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4.2 Introduction

Electrical Impedance Tomography (EIT) is a technique that is currently attracting the interest

of researchers, especially when dealing with multiphase flow measurements [1]. Through the

use of observations, it is possible to solve an inverse problem that reconstructs an image of the

domain. These observations are obtained by a system that injects a bidirectional current through

a specific pattern and measures the potential voltage from an electrical field formed inside a

vessel. From this potential, it is possible to reconstruct the field of electrical conductivity. In

the reconstructed image, due to the difference of conductivity, it becomes possible to visualize

different zones, which can be associated with different phases of fluid or different bodies in the

domain in question [2]. The attention being given to this technique arises from the advantage that

is a non-intrusive process since the electrodes that receive the stimulus are attached to the inner

surface of the vessel, of relatively low-cost, is free of ionizing radiation and has high temporal

resolution when compared to other image applications.

Several research groups have presented designs for a data acquisition (DAQ) system to recon-

struct images, such as one of the pioneer systems, the Mk1 [3], designed by the Sheffield group.

This system injects a single current at a specific frequency and measures the voltage serially. A

latter design, the Mk3.5 [4], utilizes a multi-frequency design that is able to reconstruct images

at several frequencies since the conductivity of in-vivo tissues varies with this parameter. The

KHU Mark 2 [5] is updated from the first version [6], which is a multi-frequency fully parallel

EIT system capable of 100 images/s. It presented additional features with an improved layout

and components, impacting the CMRR when compared with the previous version. The above

mentioned systems were designed for biomedical purposes. For industrial process applications,

other design parameters become important. A higher time resolution with adequate accuracy

is the primary goal for this type of system, allowing the method to evaluate dynamic changes

and higher velocities in fluid flow and mixing processes. Thus, one of the systems developed is

the design proposed by Wilkinson et al. [7], capable of acquiring 1000 images/s, and based on

a current pulse injection method, with a fully parallel acquisition. Wang et al. [8] developed a

dual-plane system of over 1000 images/s/plane for flow measurements. Jia et al. [9] developed

an EIT system capable of reconstructing images in a highly conductive medium, by using a

voltage source design. For these systems, the process of development to achieve the required
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accuracy is not explicitly demonstrated. The best components might be chosen by trial and error

and/or a posteriori by optimization, such as the method demonstrated by [10].

The process of inversion to obtain an image from the conductivities is highly ill-posed. There-

fore, errors from computational modeling and measurement error, including noise, can cause

significant anomalies in these images [11]. Kolehmainen et al. [12] investigated the impact of

several computational modeling errors on the reconstruction, such as the contact impedance mis-

match, electrode size, electrode localization, and the boundary shape of the domain. Dehghani

and Soleimani [13] demonstrated the importance of the correct meshing. Methods to compensate

for these computational errors are given in [14].

Regarding the measurements, it is important to minimize the systematic and random errors

present in the system. The performance is intrinsically related to each electronic subsystem that

comprises the DAQ system. A comprehensive method to model a channel of the system, which

considers each of the systematic errors associated with the subsystems and their non-idealities

is given by the following researchers: Boone and Holder [15], Jennings and Schneider [16].

According to these authors, the primary characteristics that must be accountable to avoid major

error are the stray capacitance present in the circuit and multiplexers, the common-mode signal

that affects the instrumentation amplifier, and the output impedance of the current source. For

instance, Jennings et al. [16] consider a threshold value of 0.1% error for a system to achieve a

good image, considering a static imaging reconstruction.

There is no established methodology in the literature that presents a deeper and detailed process

to design a new prototype given these errors of measurement. Thus, it is important to outline

the influence of each electronic subsystem and its operational parameters in the accuracy of

the measurement of the designed EIT DAQ system. These data are extremely relevant when

designing a new prototype, as they leads to an optimal selection of the components and the

best configurations of the subsystems based on the design guidelines. From that perspective, the

objective of the present work is to propose a new methodology that guides the process of system

development. This is achieved by evaluating the occurrence of random and systematic errors,

due to the non-idealities of each electronic subsystem and the incorrect selection of operational

parameters. This methodology is given in four steps: i) evaluating the errors caused by design

decisions of the current system version by inspecting measurements in a ring of resistors and a

water solution vessel; ii) modeling by SPICE the DAQ system measurement channel and further

validating the results; iii) investigating different configurations of the subsystems and sensors in

the model to assist the decision making process; iv) modeling the new design, and evaluating
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the quality of the static reconstruction of this system.

4.3 Hardware Architecture

The electrical impedance tomography system developed has the following subsystems: sine wave

generator, voltage-controlled current source, multiplexers, sensors, instrumentation amplifier,

low-pass filter, demodulator, and a microcontroller with an analog-to-digital converter (ADC),

as shown in Fig. 4.1. The injection pattern adopted by the current design is known as the adjacent

protocol. It consists of performing injections between two adjacent electrodes and the remaining

ones that are not on duty, measuring the boundary voltages in each measurement cycle. Due to

reciprocity, the number of measurements, Nmeas, is related to the number of electrodes, L, by

the relationship Nmeas = L(L− 3), of which half of these are independent [11].

Figure 4.1: Block diagram of the developed tomography.

The acquisition can be performed using 8 or 16 electrodes. The decisions towards the design of

this system prioritized the simplicity of the hardware, knowing that it would have a performance

cost in terms of the speed of acquisition and the accuracy of the measurements.
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The sine wave generator comprised the integrated circuit (IC) AD9850, which utilizes a Direct

Digital Synthesis (DDS) technology to synthesize the waves with a digitally programmed fre-

quency [17]. This subsystem can output signals with frequency over 1 MHz, which is sufficient

bandwidth for the current design.

The voltage-controlled current source (VCCS) provides a bidirectional constant current con-

trolled by the input voltage. The standard Howland current source comprised of an operational

amplifier (op-amp) with both positive and negative feedback [18, 19]. For the presented design,

a modification is implemented containing an extra op-amp buffer in the positive feedback, thus

producing a higher output impedance [20]. The single-ended topology is chosen for the VCCS.

Resistors with 1% tolerance are utilized for both positive and negative feedback. The gain setting

resistor is set with 1% tolerance resistors, with a value chosen to achieve a 1 mA RMS.

The multiplexers are the IC ADG506, due to the relative low parasitic capacitance [21]. Even

with the non-ideal behavior introducing errors in the measurement, with the on-resistance and

parasitic capacitance, its use is desirable when it is necessary to simplify the hardware design.

It is important to implement an instrumentation amplifier (in-amp) to reduce the dynamic range

of the signal by measuring it differentially. Also, it is important to emphasize that, in EIT appli-

cations, there is a high common-mode voltage (CMV). This signal is caused by the impedance

distribution inside the vessel, and it needs to be rejected to decrease the error of the measurements.

For this purpose, the INA128 is selected, an in-amp that presents a common-mode rejection ratio

(CMRR) that is adequate for medium frequencies [22].

The third-order active low-pass filter is used to reject the noise which degrades the equipment

signal. It is a Butterworth filter with a cutoff frequency of 90 kHz and a bandstop of 200 kHz.

The choice of the cutoff frequency is related to the increase in error attributed to the parasitic

capacitances present in the equipment, which becomes considerable at higher frequencies [15]

and the frequency response from the demodulator [23].

The sine wave must be demodulated to efficiently measure the signal amplitude in the ADC. The

IC AD536 is selected to perform the task, an RMS-to-DC converter, which is used due to the

simplicity of the application. On the other hand, this simplicity limits the speed of acquisition.

This occurs due to the settling time of the low-pass filter that is present in the implicit compu-

tation of the RMS-to-DC converter [23]. Therefore, the system is built considering the settling

time of this filter from the IC.
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Figure 4.2: The ideal 4-electrode measuring procedure.

The Arduino Due is an open-hardware prototyping platform based on the microcontroller Atmel

SAM3X8E ARM Cortex-M3, which has a clock operating with a speed of 84 MHz. The ADC

has 12 bits of resolution and the conversion rate can reach 1 MHz [24]. In this design, this

microcontroller is responsible for controlling the injected and measured signals from the sensor,

which are transferred through the switches of the multiplexers. Additionally, it is responsible for

converting the analog signal to digital.

4.4 Sources of Error

The EIT DAQ system utilizes the four-electrode method to inject current and measure voltages.

This type of measurement is chosen to avoid the polarization effect [25]. The ideal method to

inject and measure the signal is shown in Fig. 4.2.

However, the real circuit deviates from the ideal due to the non-idealities present in the circuit

[15, 16]. These elements introduce errors that affect the accuracy of the DAQ system. The

sources of these errors include the current source, the multiplexers, the cables, the electrodes,

and the voltmeter.

4.4.1 Howland Current Source

Three effects contribute to the output impedance in the current source which must be accounted

to quantify the error: the imbalance in the positive and negative feedback, RO1; the finite open-

loop gain of the op-amp, RO2; and the op-amp finite bandwidth, CO [19, 20]. These elements

effectively shunt part of the current from the load, ZL, causing errors in the output current. The

buffered feedback Howland current source, the output impedance model, and the dual version

of the VCCS output impedance model [18] are shown in Fig. 4.3(a), Fig. 4.3(b), and Fig. 4.3(c)

respectively.
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Figure 4.3: (a) Positive feedback buffered Howland current source, (b) Output impedance model

of the current source, (c) Output impedance of the dual current source.

The resistors from the inverting and non-inverting feedback must match to prevent the loss of

accuracy, satisfying, for this topology, (4.1).

R4

R3

=
R2

R1

(4.1)

Therefore, the resistance must possess a tight tolerance or a good match between the nominal

values. In addition, a trimming scheme is desirable to perform a fine adjustment. The effect of

the tolerance T in the current source output resistance, RO1, for the chosen topology is given by

(4.2), [20].

RO1 =
1

4T

R5

1− βfb
(4.2)

R5 is the gain setting resistor connected to the output of the OPAMP1 and the non-inverting

input of the OPAMP2 in the current source, and βfb is the feedback ratio.

By applying the feedback circuit analysis, considering the positive feedback buffered topology

of the current source, the relationship for the finite open-loop gain output resistance, RO2, is

given by (4.3) [20].

RO2 =
R5(1 + Aol1βfb)

(Aol1Aol2
1+Aol2

βfb − Aol1βfb − 1)
(4.3)

whereAol1 is the open-loop gain of the OPAMP1 andAol2 is the open-loop gain of the OPAMP2.
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Figure 4.4: Model of the AC performance of an on-state analog CMOS switch.

The open-loop gain depends on the bandwidth of the op-amp. Considering that the system

operates at medium to high frequencies, the roll-off of this parameter cannot be neglected. Thus,

the capacitor CO1 is added to model this behavior. Considering R1 = R2 = R3 = R4 = R and

the finite gain bandwidth of the op-amp, fgbw, this output capacitance, CO1, can be calculated by

(4.4) [19].

CO1 =
2R

2πfgbwR(2R||R5)
(4.4)

4.4.2 Multiplexer

Multiplexers are common types of switches based on Complementary MOSFET (CMOS) tech-

nology. The ideal characteristics of multiplexers include a zero on-resistance and an infinite

off impedance, zero switching time, zero leakage switching, and zero power dissipation [26].

The MOSFET presents a non-linear behavior of the voltage-controlled resistance that increases

with the signal voltage. To minimize this effect, an N-type MOSFET is combined with a P-type

MOSFET [26].

There are some characteristics present on the multiplexers that affect the DC signal, whereas

others affect the AC signal. Additionally, some non-idealities affect both the AC and DC signals.

Since a sinusoidal signal is expected in the channels of the multiplexer, the AC performance of

the multiplexer is considered in the error analysis. Therefore, the model of these error sources

that affect the on-state of the multiplexers is shown in Fig. 4.4.

These characteristics are the on-resistance, RON , which changes non-linearly with the power
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Figure 4.5: Model of the signal delay caused by the distributed RC circuit in cables.

Figure 4.6: Model of the electrode-electrolyte interface.

supply, the parasitic capacitances from source and drain, CS , CD, which shunt current or forms a

voltage divider with the signal, and the non-ideal isolation, CDS , when the multiplexer switches

are off.

4.4.3 Cable

Ideally, a cable must possess a zero impedance path to transmit the signal from point to point.

However, a signal delay is present in the cable due to parasitic capacitances present in the system

[27]. A method to model this effect is by considering a network of RC circuits from node 1 to

K, as shown in Fig. 4.5.

4.4.4 Electrodes

When a potential is applied to the electrolyte by an electrode, there is an ionic movement towards

the direction of the electrodes. This phenomenon leads to the formation of an ionic double layer

[25]. Therefore, three effects are observable in this system: the charge transfer resistance, the

double-layer capacitance, and the bulk resistance [28]. The equivalent circuit of an electrode-

electrolyte interface is given in Fig. 4.6.

The charge transfer is the effect of transferring ions from the electrode to the electrolyte, which

presents resistance to this process. Considering the current density, j, and the overpotential η,



119

and by analogy with Ohm’s Law, the charge transfer resistance, RE , is given by (4.5) [28].

RE =
∂η

∂j
=
GT

j0F
=
ET
j0

(4.5)

where G is the gas constant, F is the Faraday constant, T is temperature, j0 is the exchange

current density, ET is the temperature voltage. The value for the ET at 298K is 0.026V .

The double-layer formed in the interface between the electrode and the electrolyte stores electri-

cal charges. Experiments and theory support that these charges vary according to the potential

between this layer. A way to represent and model these charges is by considering the capacitance

of two parallel plates, the first being the electrode surface and the opposite plate being electrolyte.

The Helmholtz double-layer capacitance, CE , is given by (4.6).

CE =
dqm
dV

=
εT ε0

δH
(4.6)

where qm is the excess charge on the metal, ε0 is the permittivity of a vacuum, εT is the relative

permittivity of the material between plates, and δH is the distance between the plates formed by

the electrolyte and electrode. However, the double layer is not constant with potential and prac-

tical values, considering the small applied potential from outside the system, can be estimated

as 10 µF/cm2 [28].

The bulk resistance models the effect of transferring the electrodes from the bulk solution to the

interface of the system. The value of this resistance can be modeled considering a hemispher-

ically shaped electrode immersed in an electrolyte with a vessel far larger than the electrode.

Considering that the current density from this electrolyte must be the same as the current from

the electrode, and using Ohm’s Law, the relationship for the bulk resistance, RV , is given by

(4.7) [28].

RV =
1

2πσrelecp
(4.7)

where σ is the electrolyte conductivity, relec is the radius of the electrode, p is the shape factor.

The shape factor for electrodes hemispherically shaped is p = 1, for metal spheres p = 2 and

for a flat-cut disk shape p = 0.66.

4.4.5 Voltmeter

The in-amp is a circuit comprising op-amps to perform the differential measurement. It is com-

mon to use the 3 op-amp topology. This consists of two op-amp buffers in the input and an
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op-amp receiving the signals at the inverting and non-inverting input. The reason for the op-

amps in the buffer configuration is to improve the input impedance of the circuit [29]. The ideal

behavior of the in-amp is to measure differentially the voltage, according to (4.8) and (4.9).

VD = (V+ − V−) (4.8)

VIAideal = ADVD (4.9)

where VIAideal is the ideal output voltage, VD is the differential voltage, V+ is the non-inverting

input and V− is the inverting input. However, an additional term is added to the output in a real

system, the CMV, defined in (4.10).

VCM =
(V+ + V−)

2
(4.10)

This CMV is present in the measurement and the real voltage output, VDReal, is given according

to (4.11).

VIAreal = ADVD + ACMVCM (4.11)

where ACM is the common-mode gain. The parameter that indicates the ability to reject the

common-mode voltage is the CMRR, of which the definition is given by (4.12).

CMRR = 20 · log10

∣∣∣∣ ADACM

∣∣∣∣ (4.12)

An ideal voltmeter has an infinite CMRR. To improve further the CMRR of the in-amp, Shi et

al. [30] proposed a design with 2-stages of amplification, with 3 in-amps, which is shown in Fig.

4.7.

The voltage output of the circuit is given by (4.13) [30]

VIA =

[
(AD1 + AD2)AD3 +

AD1 − AD2

2
ACM3

]
VD (4.13)

+

[
(ACM1 − ACM2)AD3 +

ACM1 + ACM2

2
ACM3

]
VCM
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Figure 4.7: Circuit of the 2-stages voltmeter.

Considering that the INAMP1 matches the INAMP2 (CMRR1 = CMRR2 = CMRR), the

CMRR of the 2-stage in-amp is given by (4.14).

CMRRtotal = 2 · CMRR · CMRR3 (4.14)

Equation (4.14) shows the CMRR for the ideal case. Mismatches between the in-amps may

be present and it is reported that, even with a 10% mismatch between in-amps, the CMRR is

improved by 26 dB [30].

4.5 Image Reconstruction

The focus of the EIT acquisition system developed by the authors is to reconstruct an image

to analyze the flow in multiphase flow applications. The image reconstruction proceeds by

solving an inverse problem. The forward problem consists in a bidimensional domain Ω with an

electrical conductivity σ and a scalar potential distribution u in the domain, and potential Ul at

the electrodes in the contour ∂Ω where a current Il is injected. The equations that represent the

phenomenon, known as the Complete Electrode Model, are described by (6.1)-(6.4) [11, 31].

∇ · (σ∇u) = 0 in Ω (4.15)

u+ zlσ
∂u

∂n
= Ul in el, l = 1, 2, ..., L (4.16)

∫
el

∂u

∂n
dS = Il in el, l = 1, 2, ..., L (4.17)



122

σ
∂u

∂n
= 0 in ∂Ω \ ∪Ll=1el (4.18)

where n is the normal of the contour ∂Ω, zl is the contact impedance, el is the l-esimal electrode

in the contour ∂Ω. To confer existence and uniqueness to the solution, two additional conditions

are necessary. Thus, the charge conservation is given by (6.5).

L∑
l=1

Il = 0 (4.19)

and the determination of a reference point is given by (6.6).

L∑
l=1

Ul = 0 (4.20)

The forward problem is implemented and discretized by the Finite Element Method.

The inverse problem is solved by Gauss-Newton optimization. This procedure is responsible

for reconstructing the static images by minimizing the norm of the difference between the

measurements and the forward problem output. It is described by (6.16)-(6.17) [11, 31].

δV = Vmeas − Vfwd (4.21)

σk = σk−1+ (4.22)(
JTJ + α2L̃T L̃

)−1 (
JT δV + α2L̃T L̃ (σref − σ0)

)
where J is the Jacobian, Vmeas is the voltage measurements from the DAQ, Vfwd is the voltages

simulated by the forward problem, σ is the estimated conductivity, σref is a reference conduc-

tivity, σ0 is an initial conductivity, L̃ is the regularization matrix, and the α is the regularization

parameter, for which the value chosen in this work is 0.0005. An open-source software is utilized

for the reconstructions, the Electrical Impedance Tomography and Diffuse Optical Tomography

Reconstruction Software (EIDORS) [32]. The regularization matrix chosen is the main diagonal

of the approximated Hessian (JTJ), the NOSER prior.
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4.6 Results and Discussion

4.6.1 Errors in the Ring of Resistors

To evaluate the errors in the system, measurements are performed in a ring of 16 resistors

connected in series. Between each node of the ring, the current is injected and the voltages are

measured according to the adjacent pattern. The voltage is measured at 18 different frequencies,

from 5 kHz to 100 kHz. 500 sets of measurements, corresponding to an image for each set when

reconstructing the conductivities, are used to evaluate the repeatability of the equipment. To

reproduce signals of different magnitude, three different load resistors, of 100 Ω, 511 Ω, and

1000 Ω, with 1% of tolerance, are used with an in-amp gain of 7.25. Since the resistors set in the

ring present the same nominal specification, the voltage drops are the same between each resistor.

This value is calculated with SPICE simulations and it is used as a reference. The voltage value

on the input of the demodulation is expected to be 44.2 mV for the ring with 100 Ω resistors,

whereas the signal for the 511 Ω and 1000 Ω is expected to be a voltage of 226.0 mV and 442.4

mV respectively.

The frequency response is shown in Fig. 4.8. Compared with the reference, there is an error

dependence on the signal magnitude, since the measurements with 511Ω resistors presented mea-

surements closer to the reference than the 100 Ω resistor, although both presented an observable

error. However, measurements with 1000 Ω presented a good match between 20 kHz and 50

kHz. This behavior is as expected and reported in the datasheet [23]. Utilizing a correct gain to

input a voltage compatible with the dynamic range of the ADC should decrease this error. Also,

there is an observably increasing error caused by the limited bandwidth. At lower frequencies,

the AD536 produces a frequency-dependent average error caused by the settling time of the

demodulation that becomes prominent as the frequency decreases. On the other hand, at higher

frequencies, the error is dependent not on the demodulator, but instead on the stray capacitances

in the acquisition system and the active low-pass filter before the input of the demodulation.

To calculate the error in each set of measurements, an RMS measurement is utilized, which is

defined in (4.23), [8]:

RMS = 100%×

√√√√ 1

L (L− 3)

L(L−3)∑
i=1

(
Vmeasi − Vrefi

Vrefi

)2

(4.23)

where RMS is the RMS error, L is the number of electrodes, Vmeas is the measured voltage,

Vref is the reference voltage calculated from SPICE. This measurement indicates the level of
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Figure 4.8: The measured and reference frequency response in the output of the demodulator for

100 Ω, 511 Ω and 1000 Ω load resistor.

Figure 4.9: Random errors observed when measuring with a ring of resistor with 100 Ω, 511 Ω

and 1000 Ω load resistor.

repeatability shown in the equipment.

The RMS error is evaluated in Fig. 4.9. The signal magnitude influences the random errors

present at the demodulator. Considering the higher voltages, for 511 Ω and 1000 Ω, the error is

constant regardless of the number of images, and it increases with frequency due to the ripple

present in the output of the demodulation, shown in Fig. 4.10. This ripple is more pronounced at

higher frequencies, which is also represented by the standard deviation of Fig. 4.8. Even though

the RMS-to-DC converter demodulates the wave properly in a simple manner, a considerable

amount of error is introduced in this subsystem.
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Figure 4.10: The voltage for each measurement in a ring of resistors with a nominal load resis-

tance of 100 Ω, 511 Ω, 1000 Ω, from left to right, varying between 20 kHz, 35 kHz and 50 kHz

from top to bottom.

4.6.2 Errors in the Water Vessel

The measurements and the error calculation in a saline solution are performed according to

Wilkinson et al. [7] and Wang et al. [8]. The measurements from the DAQ system are compared

with the homogeneous solution of the forward problem. With this data, the performance of the

developed DAQ is evaluated by the calculation of the error and the signal-to-noise ratio (SNR).

To evaluate the influence of the electrical conductivity on the measurements, a 1 L aqueous solu-

tion of tap water is prepared with 5 different conductivities by increasing the salinity of the water.

Measurements were taken of 500 sets of data from 5 kHz to 100 kHz. The conductivity range is

restricted to 74-1129 µS/cm. The gain of the DAQ is changed to take advantage of the dynamic
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range from the ADC. A 14.4 cm diameter acrylic container is used as the phantom vessel. The

16 sensors are hemispherically shaped with a radius of 18 mm stainless steel, positioned at 40

mm from the bottom.

The error present at each frequency, when measuring in the vessel, is shown in Fig. 4.11(a).

There is a major discrepancy between the forward model and the measured data. This error is

attributed to the fact that the actual vessel is treated as a 2D phenomenon, a simplification that

impacts directly on the magnitude of the simulated signals [33]. Ma et al. [34] reported over

80% error when comparing 3D simulations with 2D analytic results.

Figure 4.11: (a) Measurement error obtained in a vessel of water, with a water conductivity of

74µS/cm, (b) Correlation between the measurements obtained in the ring of resistors and the

water vessel.

The errors obtained in the water vessel (Fig. 4.11(a)) and the ring of resistors (Fig. 4.11(b))

are compared in Fig. 4.11(c). There is a linear correlation between the two measurements, in-

dicating that a linear adjustment could eliminate the error caused by the domain simplification.

The offset and gain to adjust the forward model considering the electrical conductivity range

tested are shown in Fig. 4.12. The variability of the measurements corresponds to the standard

deviation concerning the working frequency, from 20-50 kHz. As it is shown, there is a minor

influence caused by the frequency, although there is a non-linear variation concerning the electri-

cal conductivity. This is expected since the model is a non-linear problem, represented by (6.1).

Measurements for 16 electrodes are shown in Fig. 4.13, after the adjustment.

The SNR is the parameter that indicates the level of noise that is corrupting the signal, as given

in (4.24).

SNRi = 20 · log
(
|E (Vmeasi)|
STD (Vmeasi)

)
(4.24)
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Figure 4.12: Gain and offsets error observed in the forward problem with 8 electrodes, left, and

16 electrodes, right.

where E (.) is the expected measurement value, and STD (.) is the standard deviation of the

measurement value.

It is evident, analyzing Fig. 4.14, that the noise has a direct impact on the error when measuring

with 16 electrodes, by observing that there is a linear relationship between them. The signal

strength is decreased due to the smaller distance between the electrodes, representing a smaller

resistance, and is thus more susceptible to noise. To overcome this situation, a current source

with an adjustable current magnitude could be implemented to provide a signal with sufficient

strength when the medium presents higher conductivities. Considering the measurements with

8 electrodes, the error remains constant, without significant noise variation. This behavior is

observed since the electrodes are well spaced for the current magnitude.
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Figure 4.13: The reference voltages using 16 electrodes from the forward problem considering

a homogeneous solution (top) and the voltages for each measurement in the acquisition system

in the vessel after the adjustment (bottom).

4.6.3 Modeling the Errors

Combining the models of the real processes, the DAQ channel is modeled in SPICE according

to Fig. 4.15(a). The circuit is modeled considering the ring of resistors and the water vessel

with the electrodes. The influence of noise, including from the demodulator, the ADC and other

sources, is neglected. The signal is compared with the ideal 4-electrodes model in Fig. 4.15(b),

considering an ideal current source and voltmeter. An AC sweep analysis is performed to evaluate

the frequency response of the system regarding the error and the voltage from 1kHz to 100kHz.

The error is evaluated by (4.25).

ε =
|Vout − Videal|

Videal
(4.25)

where ε is the error, Vout is the output from the DAQ model, and Videal is the output from the

ideal 4-electrode model.

The equivalent component values are given in Table 4.1. The output resistances from the VCCS

are calculated by (4.2) and (4.3), considering a tolerance of 1% and the open-loop gain of 75

dB from the op-amp AD827. The output capacitance is calculated by (4.4), considering a gain

bandwidth of 50 MHz. The parasitic capacitances and on-resistance from the multiplexers, CS ,

CD, RON , are given by the datasheet of the ADG506 [21]. The non-ideal isolation capacitor is

neglected since medium frequencies are being considered. The values for the cable capacitance

are considered for less than 1-meter length [11] and 1 node only. The electrodes components are
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Figure 4.14: Error and SNR observed in voltage measurements acquisition with 8 electrodes,

(left) and 16 electrodes (right).

given by (4.5) and 10 µF/cm2 for the charge transfer resistance and double-layer capacitance

respectively. The load resistance for the ring of resistors model is 1 kΩ, and the bulk resistance

for the electrode modeling is given by (4.7). A value of 1 MΩ is assumed for the voltmeter,

which is the resistor from the coupling circuit that limits the input resistance of the voltmeter.

The input capacitance is given by the datasheet of the voltmeter [22].

The voltmeter is modeled with an in-amp SPICE model, presenting a CMRR corresponding to

the behavior shown in Fig. 6.4(a). It is compared to the experimental values from the datasheet

and the results presents good agreement between the real circuit and the model.

The error and the voltage between the experiment and the model are compared to further validate

the model. The results are considered from the ring of resistors with 1000 Ω load resistor and

the 8 electrodes with 74 µS/cm since these experiments are less influenced by noise and errors
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Figure 4.15: (a) The equivalent circuit that includes the sources of error modeled in SPICE, (b)

The equivalent circuit modeled in SPICE representing the ideal 4-electrodes model.

Table 4.1: Values considered in the error evaluation equivalent circuit.

Subsystem Component Resistor Vessel

Current Source Ro1 (Ω) 50k 50k

Ro2 (Ω) 1.875 M 1.875 M

Co (pF) 9 9

Multiplexers Cs (pF) 44 44

Ron (Ω) 600 600

Cd (pF) 5 5

Cables Rcb (Ω) 0.053 0.053

Ccb (pF) 33

Electrode Re (Ω) - 10.2k

Ce (nF) - 254

Resistor/Vessel Rv1 (Ω) 1k 2.4k

Rv2 (Ω) 7k 2.4k

Voltmeter Rcm (Ω) 1M 1M

Ccm (pF) 9 9
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Figure 4.16: Validation of the model. (a) CMRR modeled by the in-amp SPICE model compared

to the experimental values provided in the datasheet [22]. (b) Output voltage of the SPICE model

and the voltage measured in the ring of resistors with 1000 Ω. (c) Experimental error for the ring

of resistors with 1000 Ω and the error for 8 electrodes compared with the response modeled in

SPICE.

from the demodulation. The voltage is shown in Fig. 6.4(b). The results for the ring of resistors

showed good accordance between the model and the experimental values. On the other hand,

the results for the water vessel are not shown since the voltage is greatly overestimated, in the

order of 0.7 V. Despite these discrepancies, the modeled error for both the ring of resistors and

the vessel showed good agreement, in Fig. 6.4(c). There are discrepancies at lower frequencies

due to the unaccounted errors in the demodulation subsystem.

4.6.4 Investigation of Different Configurations for the Subsystem and Sen-

sors

Analyzing the resistance SPICE model, some aspects are relevant to improve the design. The

output resistance of the current source exhibits a relevant influence in the error. The goal is

to obtain a current source output impedance that is nearly infinite, so that the current remains

unchanged. Fig. 4.17(a) shows the error dependence on the output resistance of this system

relative to the matching between resistors. The tolerance must be well-matched to improve the

accuracy of the system. If a tolerance of 0.1% by is assured matching and trimming the feedback

resistors to satisfy (4.1), a substantial reduction further of the error is observed, from 4.69%

to 1.05% at 20 kHz. Increasing the tolerances to 0.01% would decrease the error to 0.67%.

The open-loop gain of the op-amp has an impact, although it is much less sensitive than the

matching of the current source resistances. The dominant part of the output resistance is the

one representing the matching of the resistors. The actual effect of the open-loop gain of the
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op-amp in the current source is to reduce the output resistance of the subsystem by a certain

amount related to Ro1||Ro2. With a higher tolerance design, 1% for instance, this resistance has

less effects the equivalent resistance, reducing the total output resistance from 2.5% to about

0.004% considering an open-loop gain of 75 dB and 120 dB. However, as the tolerances are

tighter, the effect becomes more evident. There is a reduction of 21% to 0.048% considering 75

dB and 120 dB in a VCCS design with a 0.1% tolerance match. Despite these changes, the error

decreases from 4.69% to 4.58% in 20 kHz when tolerances match 1% and considering 0.1%

tolerance, there is a reduction from 6.98% to 6.89% for 75 dB and 120 dB respectively. But it

is important to prioritize the op-amp with high open-loop gain as a guideline for high accuracy

devices to achieve a higher output impedance in the current source.

Figure 4.17: Comparison of different aspects and configurations for the VCCS. (a) The matching

between resistances, (b) Op-amp bandwidth of the current source, (c) Phase delay before the filter

considering different op-amp bandwidths, (d) Common-mode voltage considering imbalance

between the current sources of a dual configuration.
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At higher frequencies, the error is dominated by the reactive parts, the stray capacitances. The

bandwidth of the op-amp is directly related to the output capacitance of the VCCS. The error and

the phase delay after the in-amp caused by this bandwidth limitation are given in Fig. 4.17(b)

and (c). A low bandwidth would be detrimental to the design, introducing considerable error, as

is seen for 1 MHz. The current design utilizes the op-amp AD827, which presents a bandwidth

of 50 MHz, a good threshold to avoid further errors in lower bandwidth designs.

Another topology frequently utilized is the mirrored Howland current source. This is a combi-

nation of two single-ended currents sources to form a dual source. The primary consequences

are the addition of the two output impedances from the two single-ended current sources [18]

and the reduction of the CMV, from 1.43 V to 86 mV at 20 kHz, shown in Fig. 4.17(d). With a

single-ended topology the error is 6.82% whereas in the differential topology it is 2.41%, which

is a significant decrease. The imbalance between the two currents injected causes a frequency-

dependent increase in the CMV for this topology, shown in Fig. 4.17(d), although the design

presents lower CMV even with 2% imbalance. There is no observable decrease in error, although,

at higher frequencies, the CMRR from the in-amp reduces substantially and may cause errors.

The multiplexers are important to provide simplicity to the hardware but this is at the expense of

accuracy since the non-idealities are responsible for introducing errors in the acquisition system

[15, 16]. The on-resistance varies with the supply voltage, which could add non-linearities

and potentially cause additional errors. Also, the source and drain capacitance present in the

multiplexer affect the measurement greatly at medium-to-high frequencies. It is important to

select a multiplexer with lower values of these two parameters. A comparison of the error

between the currently adopted multiplexer and two commercially available multiplexers is shown

in Fig. 4.18(a). The ADG1206, which reduces on-resistance, source and drain capacitance,

presents an error of 3.28% at 20 kHz, whereas the current design presents 4.69% at 20 kHz. The

other multiplexer, the ADG1406, has a lower on-resistance with higher stray capacitances. This

combination provides a decrease in error at lower frequencies, from 4.69% to 2.62%, although

it increases to 5.79% at 50 kHz. As expected, the CMV is directly related to the on-resistance

whereas the phase is directly related to the stray capacitances, shown in Fig. 4.18(b) and (c).

The implementation of a 2-stage voltmeter is investigated for the design. It is possible to visualize

a reduction of the error at higher frequencies, shown in Fig. 4.18(d), considering single-ended

and dual VCCS. This error is reduced from 3.94% to 2.74% at 50 kHz for a dual configuration.

The CMV presents a frequency-dependent behavior with this voltmeter. At 50 kHz, the CMV

increases from 43 mV to 47 mV.
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Figure 4.18: Comparison between different multiplexers and voltmeter configurations. (a) Er-

ror with different selected multiplexers, (b) Common-mode voltage considering these different

multiplexers, (c) Phase delay caused by the multiplexers, (d) Error considering single-stage and

dual-stage voltmeter.

The influence of the electrode area and the mismatch between its impedances are investigated

by using the electrode model. It is shown in Fig. 4.19(a) that the electrode area must be as

large as possible. By increasing by 20% the area of contact, the error decreases from 6.51% to

6.16% and decreasing it in by present significant changes, as shown in Fig. 4.19(b). In the same

manner, mismatches in the impedances of the electrodes (Fig. 4.19(c) and Fig. 4.19(d)) do not

influence the errors in the DAQ measurements, although it is well known that these mismatches

may influence the image reconstruction [12].
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Figure 4.19: Comparison between different aspects of electrode selection. (a) The matching

between resistances, (b) Increase and reduction of the area of the electrode, (c) The CMV con-

sidering the area variation, (d) The matching between contact capacitance.

4.6.5 Model of the New Design

For the proposed new design of a low-cost system, the following improvements are chosen after

evaluating each contribution to the error of the subsystems:

1. The Howland current source is a dual VCCS that matches the resistors with 0.1% tolerance,

utilizing op-amps with a bandwidth of 140 MHz and open-loop gain of 126 dB with 0.1%

of imbalance between the current sources.

2. Designing a Generalized Impedance Converter (GIC) to cancel output and parasitic capac-

itances from the VCCS [35].

3. The multiplexers utilized are the IC ADG1206.
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4. The cables’ parasitic capacitances are neglected due to the driven shields considered in

the design [36].

5. The 2-stage voltmeter with the IC AD8421 is adopted to improve the CMRR and the

frequency bandwidth [30].

6. The bandwidth of the design considered is 1 kHz to 1 MHz.

7. A digital phase-sensitive detector is adopted, which can retrieve the signals with higher

SNR without significant bandwidth limitation as to the RMS-to-DC converter [37]. The

measurement bandwidth is limited only by the sampling frequency from the ADC.

Figure 4.20: The performance of the new design. (a) The error, (b) The CMV, (c) Phase delay.

It is shown in Fig. 4.20(a) that the new design simulation presents an error lower than 0.3%.

A fine calibration by trimming the resistors from the VCCS should help achieve the target of

0.1% error. There is a reduction of the error at higher bandwidths, which is caused by the non-

ideal behavior of the in-amp. This is because the CMV is not rejected properly, adding to the

total attenuated signal by the non-idealities, and momentarily raising the output voltage near the

reference signal. For frequencies over the system bandwidth, the error should increase greatly.

The common-mode and the phase before the in-amp are shown in Fig. 4.20(b) and (c).

The image from the current design and the new design are evaluated to investigate the influence

of these errors in the reconstruction. The position of the phantoms is shown in Fig. 4.21(a) and

the experimental reconstruction in Fig. 4.21(b). The homogeneous voltage Vhom is calculated

considering the forward problem and the conductivity of the saline solution of 74 µS/cm and a

ratio of 1/100 for the inclusion conductivity. The error influence is obtained from the normal dis-

tribution Vsyst ∼ N (0, Vhom·ε). The white noise influence is obtained from Vrand ∼ N (0, σnoise),

where σnoise is the standard deviation from (4.24). The noise is considered to be the same for

both reconstruction images, the value of 47.20 dB. Therefore, from these components, the image
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reconstruction signal Vrec is given by (4.26).

Vrec = Vhom + Vrand + Vsyst (4.26)

Reconstructions from fabricated measurements for the current design, in Fig. 4.21(c), presented

more influence from error and noise than the experimental measurements, shown in Fig. 4.21(d).

Despite these influences, it is clear that the reduced error in the new design improves the image

reconstruction, presenting a better image, with more contrast, when compared to the current

design.

Figure 4.21: Static image reconstruction of a non-conductive inclusion with 16 electrodes. (a)

The real position of the non-conductive phantoms, (b) The reconstruction from experimental

measurements with the current design, (c) The reconstruction from measurements fabricated

computationally for the current design, (d) The reconstruction from measurements fabricated

computationally for the new design.
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4.7 Conclusion

A methodology to aid in the process of developing a new design of an EIT DAQ system is

developed in this work and tested for a low-cost system. This approach consists in outlining

the sources of random error by measurement, and the systematic errors by modeling the DAQ

channel as their equivalent impedance. From the results, it is possible to understand the impact

of each subsystem and design parameter in the error of the system. By inspecting the influence

of the SNR in the error of the developed system, it is observed that the magnitude of the current

injected is directly related to the noise that corrupts the signal. The influence of each subsystem’s

non-idealities in the design is evaluated, such as the effect of the output impedance and tolerance

mismatching of the current source, cables’ stray capacitance, and multiplexer non-idealities. The

SPICE model agrees with the experimental data and, by selecting the components appropriately

for a new design through this method, the error is expected to reduce from 4.69% to less than

0.3% at 20 kHz. To assess the impact on a static reconstruction, the signal is modeled as a

contribution of both random and systematic error. It is demonstrated that the quality of the image

reconstruction would greatly improve by this new design.
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Chapter 5

Estimating the Parasitic Capacitances of

an Electrical Impedance Tomography

Data Acquisition by MAP and MCMC

The present chapter has been submitted to the journal "International Journal of Electronics and

Communications" on March 31th, 2020.

5.1 Abstract

The Electrical Impedance Tomography (EIT) technique is proving to be desirable when multi-

phase flow measurements are required. The injection of current followed by the measurements of

the resulted voltages is combined with an inverse problem to estimate the conductivity distribu-

tion inside the vessel. Since the problem is severely ill-posed, due to the number of measurements

being inferior to the dimension of the problem, errors and noise can lead to instabilities in the

solution, leading to anomalies in the image. Therefore, the system must be well designed to

avoid such errors. One of the main sources of these errors is the parasitic capacitances, that

shunts the current and signal to ground in high frequencies. These non-idealities are present in

integrated circuits, in cables, printed circuit vias, and others. Thus, it is important to determine

the quantity of these parasitic capacitances present in the circuit.

Given these reasons, the objective of this work is to estimate statistically the parasitic capaci-

tances from the data acquisition system developed combined with the output impedance. This
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is proceeded utilizing the Maximum a Posteriori (MAP) Estimate and the Monte Carlo Markov

Chain (MCMC). Results are compared with the calculated from the literature.

Keywords: Electrical Impedance Tomography; Parasitic Capacitance Estimation; Data Acquisi-

tion Modeling; EIT System Development

5.2 Introduction

Through Electrical Impedance Tomography (EIT), it is possible to reconstruct the image by

capturing electrical signals from electrodes to reconstruct the conductivity distribution inside a

given region. The influence of the electrical circuit of the EIT equipment must be considered in

the system because the real behavior of the hardware itself is responsible for a portion of the

errors when computing the impedances from the medium [1, 2]. McEwan et al. [3] pointed out

that, at higher frequencies, the responsible for introducing errors into the measurement system

is the parasitic capacitances present in components, cables [4, 5], and connections. It is also a

problem in printed circuit vias [6, 7] and interconnections in integrated circuits [8, 9, 10]. The

presence of such a problem causes coupling between the lines and ground, effectively shunting

the signal and electric currents.

Halter et al. [11] proposed a system to perform multi-frequency measurements. One of the

challenges of developing such a system is performing measurements in higher frequencies.

According to the authors, the methods to decrease effectively the parasitic capacitances is to

optimize the circuit layout and minimize the lengths from the cables by keeping the electronics

close. To evaluate the quantity of these parasitic capacitances, it is possible to measure it in

the literature for several applications. Cook et al. [12] introduced a technique to measure the

output resistance of a current source for an EIT system together with the stray capacitance from

this subsystem. Although the measurement is made for this subsystem, no information is given

regarding the other sources of stray capacitance. Ferri et al. [13] present a circuit that is capable

of estimating the parasitic capacitances in resistive gas sensors.

Frequently, we are faced with the problem of retrieving quantities that are difficult or impossible

to obtain by direct measuring [14]. To this matter, it is important to utilize the inverse problem

technique, which enables the possibility of measuring the quantity indirectly, by an easily quan-

tified measurement. It consists of solving the least-squares problem, minimizing the residual

between measurements and a model. By using this approach, Scharfetter et al. [15] utilizes the

Levenberg-Marquadt method to estimate using mathematical modeling for the bioimpedance
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spectroscopy measurements based on an inverse problem and faced the challenge of an ill-posed

system, not effectively estimating the parasitic capacitance. Another method of indirect estima-

tion of parasitic capacitances is proposed by Lee and Kim [16], which utilizes the address power

consumption to retrieve the values.

As it is mentioned, it is required a model to describe the phenomenon, named as the forward

problem. To model the data acquisition (DAQ) system, Jennings et al. [2] and Boone and Holder

[17] utilize impedances to represent the non-idealities of the system, that it is easily solved by

SPICE, although the results are not easily implemented as a forward problem since it requires

post-processing. Hartinger et al. [18] proposed a method for modeling electronic circuits in an

EIT system utilizing a combination of SPICE and symbolic approach, based on the Kirchhoff’s

current law.

The inverse problem can be seen as a problem of statistical inversion [19], treating the parameters

as stochastic as opposed to the deterministic problems, which are dependent on the initial value

and have limited possibility regarding the election of the prior information [20]. From the

statistical framework, more specifically the Bayesian framework, it is possible to obtain a point

estimate by Maximum a Posteriori (MAP) or estimate the posterior density by a more robust

approach, the Markov Chain Monte Carlo method [21]. By evaluating the posterior density, it is

possible to estimate the uncertainty regarding the estimation, which is desirable to known when

developing methods to compensate for these quantities.

From that perspective, the objective of this paper is to model the system by a modified Kirch-

hoff’s current law to use as a forward problem to perform statistical inference of the parasitic

capacitances of the system. Two different methods are used to obtain the quantities, the MAP

estimate, and the MCMC method. From these algorithms, it is possible to investigate whether the

MAP estimate, a less computationally complex solution, is sufficient. Additionally, the output

impedance of the current source of the system is estimated to investigate whether the method

can be used as an alternative to its measurement.

5.3 Electrical Impedance Tomography

5.3.1 Design

The data acquisition system consists of the following modules: sinewave generator, voltage-

controlled current source, multiplexers, sensors, voltmeter, low-pass filter, demodulator, micro-
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controller, and analog-to-digital converter. The sinewave generator is built based on the integrated

circuit (IC) AD9850, capable of delivering a wave over 1 MHz. The voltage-controlled current

source is a Howland type, with the non-inverting input buffered, details in [22]. The multiplexers

are the IC ADG506 since the parasitic capacitances are relatively low. The voltmeter is an instru-

mentation amplifier to reduce the dynamic range of the application and reject the common-mode

signal, comprised of the IC INA128. The active low-pass filter is a Butterworth with 90 kHz

cut-off. The demodulation is performed with an RMS-to-DC converter, the IC AD536, retrieving

the information about the amplitude of the wave. The system is digitized by the ADC, a periph-

eral from the microcontroller Atmel SAM3XE. Additionally, the microcontroller is utilized to

control the sinewave generator and the multiplexers.

5.3.2 Modeling

The Electrical Impedance Tomography is responsible for injecting currents and measuring volt-

ages inside the domain, utilizing the four-electrode method to avoid the polarization effect [23].

The differential channel of the ideal circuit is an injection of the current source and measure-

ment by the voltmeter. However, the real circuit deviates from the ideal due to the non-idealities

present in the circuit. Boone et al. and Jennings et al. present the modeling using this approach

[17, 2]. These elements introduce errors that affect the accuracy of the Data Acquisition (DAQ)

system. The sources of these errors include the current source, the multiplexers, the cables, the

electrodes, and the voltmeter. Considering all these subsystems in the DAQ, the model that de-

scribes the behavior of the differential channel of the system is modeled in Chapter 4 according

to Fig. 5.1.

Figure 5.1: The modeling of the developed DAQ system.

To solve the circuit and obtain the voltages in each node comprised, the method proposed by

Hartinger et al. [18] is employed, based on the Kirchhoff’s current law. It consists of assembling
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a matrix of the admittances, by considering all the currents that flow through the node, Eq. 5.1

N∑
x=1

Ix = 0 (5.1)

Each node has a corresponding equation. From these equations, the circuit is given by:

Y V = IN (5.2)

where Y is the admittance matrix, V and I are the voltage and current vectors for the circuit in

every node N. The amplifiers and instrumentation amplifiers are considered to be ideal. Consid-

ering that the circuit known parameter is only the current from the voltage source, the solution

is given by inverting the admittance matrix from Eq. 5.2.

The nodes containing an ideal operational amplifier is given by Eq. 5.3,

Ag(V+ − V−) = Vout (5.3)

and containing an ideal instrumentation amplifier is given by Eq. 5.4

(V+ − V−) = Vout (5.4)

The details of the algorithm to assemble the admittance matrix considering the node’s location

is given by [18]. The admittances and nodes are shown in Fig. 5.1. The admittances that must

be estimated are the output impedance, given by Y 1, Y 2 and Y 3; and the parasitic capacitances,

given by Y10, Y11, Y18, Y19. Therefore, the parameters to be estimated are respectively given

by Eq. 5.5.

Ysys = (R1, R2, C1, C2, C3, C4, C5) (5.5)

The observation model is, shown in Eq. 5.6, dependent by the parameters, given in Eq. 5.5, and

also afflicted by a noise v.

Vsys = h(Ysys, v) (5.6)

5.4 Bayesian Inference

From the Bayes Theorem, it is possible to observe how the a posteriori probability (p(Vsys|Ysys))

can be changed by new evidence [25, 19, 26, 21]. Therefore, Bayesian inference allows the



148

assessment of hypotheses from a likelihood function (p(Ysys|Vsys)), or the conditional probability

of the parameters given the voltages, as in the Eq. 5.7. The a priori (p(Vsys)) gives the information

known prior the estimation and the marginal probability density (p(Ysys)), which plays the role

of a normalizing constant [25, 21]. Therefore, the relationship between each is given from the

Bayes Theorem in Eq. 5.7.

p(Ysys|Vsys) =
p(Vsys|Ysys)p(Ysys)

p(Vsys)
(5.7)

For each of the parameters, the prior is considered to be a multivariate lognormal distribution

and can be calculated by Eq. 5.8.

p(Ysys) ∝ exp(−0.5(ln(Ysys)− µYsys)TΣ−1
prior(ln(Ysys)− µYsys)) (5.8)

where Σprior is the covariance of the prior distribution and µYsys is the expected value for the

prior distribution of the parameters.

The likelihood function relates the simulated measurements from the forward problem and the

experimental measurements and can be calculated by Eq. 6.22.

p(Vsys|Ysys) ∝ exp(−0.5(V (Ysys)− z)TΣ−1
likelihood(V (Ysys)− z)) (5.9)

where Σprior is the covariance of the likelihood distribution and z is the observations.

5.4.1 Maximum a Posteriori Estimate

A commonly used estimate process based on the Bayesian framework is to consider the Max-

imum a Posteriori (MAP) estimate [25, 19, 26, 21, 27]. The method consists in solving, for a

point estimate, the optimization process described in Eq. 5.10.

YMAP = argmaxYMAP
p(Ysys|Vsys) (5.10)

Writing the posterior as a non-normalized form, in Eq. 5.11,

p(Ysys|Vsys) ∝ p(Vsys|Ysys)p(Ysys) (5.11)

and substituting Eq. 5.8 and 5.9 into 5.11 and 5.10, it is given the objective function in Eq. 5.12

[25, 27].

YMAP = argminYMAP
{[(V (Ysys)− z)TΣ−1

likelihood(V (Ysys)− z)] (5.12)

+(ln(Ysys)− µYsys)TΣ−1
prior(ln(Ysys)− µYsys)}
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5.4.2 Markov Chain Monte Carlo

In Monte Carlo methods, integration is necessary to calculate the probability density. The

Markov Chain Monte Carlo (MCMC) method proposes to generate samples from the probability

density, which represents accurately the distribution. From these points then, an approximate

integration is calculated. One of the most commonly used algorithms is the Metropolis-Hastings,

which is based on a transition kernel to sample the chain (Ysys,1, Ysys,2, ..., Ysys,P ), where P are

the number of samples [19, 27].

The Metropolis-Hastings algorithm is performed in the following steps.

• Step 1: Select the initial value Ysys,0 and set k = 1.

• Step 2: Disturb the sample to change to p(Y ∗sys|Vsys), using the random-walk process.

Calculate the acceptance rate α̂.

α̂
(
Ysys,k, Y

∗
sys

)
= min

(
1,

p(Y ∗sys|Vsys)
p(Ysys,k|Vsys)

)
. (5.13)

• Step 3: Define t ∈ [0, 1] from the uniform probability density.

• Step 4: If
(
Ysys,k, Y

∗
sys

)
≥ t, accept Ysys,k+1 = Y ∗sys, else Ysys,k+1 = Ysys,k.

• Step 5: If k = P , the desired sample size has been reached and the algorithm is stopped.

Else, k = k + 1 and return to step 2.

5.5 Results and Discussion

5.5.1 Methodology

The algorithms to solve the MAP Estimate and MCMC was implemented in Matlab to estimate

the output resistance and the parasitic capacitance of the DAQ system. The optimization proce-

dure utilized is the Nelder-Mead Simplex Method, described in detail in [28]. The random walk

process is drawn from Y ∗sys ∼ N (Ysys, 0.3 · Ysys), a value to maintain a accept ratio adequate.

The measurements are considered for a 1 mA current in a ring of resistors with 1000 Ω load.

For the MCMC method, it is important to burnout results until convergence when computing the

expected value. It was tested 10000, 25000, and 50000 samples. The forward problem modeling

is achieved by calculating R1, R2 by the relationship provided by Mahnam et al. [22] consider-

ing the tolerance of the resistors 1% and the open-loop gain of the op-amp AD827 and C1 is



150

obtained considering the gain-bandwidth of the op-amp AD827 by the relationship provided by

Tucker et al. [29], shown in Table 5.1. The capacitances C2, C3, C4, C5 is considered in Table

5.1. The results are shown and validated in Chapter 4.

Table 5.1: Forward modeling of the DAQ system.

Forward Modeling

R1 (Ω) 5.00× 103 [22]

R2 (Ω) 2.00× 106 [22]

C1 (F ) 9.00× 10−11 [29]

C2 (F ) 3.30× 10−11

C3 (F ) 3.30× 10−11

C4 (F ) 3.30× 10−11

C5 (F ) 3.30× 10−11

5.5.2 Prior Distribution

The prior distribution considered for both methods is described in Table 5.2.

Table 5.2: Prior distribution of the inference.
Prior - Lognormal Distribution

Expected Value Standard Deviation

R1 (Ω) 5.00× 103 2.50× 103

R2 (Ω) 2.00× 106 1.20× 107

C1 (F ) 9.00× 10−11 4.50× 10−11

C2 (F ) 3.30× 10−10 2.64× 10−10

C3 (F ) 3.30× 10−10 2.64× 10−10

C4 (F ) 3.30× 10−10 2.64× 10−10

C5 (F ) 3.30× 10−10 2.64× 10−10

The probability density function (pdf) and the histogram related to the prior distribution is given

by Fig. 5.2. It is important to emphasize thatR1 is considered distributed between the worst-case

considering a 1% tolerance resistor for the current source, which would be 5× 104 and the case

with tolerance 0.66%, which would be 1.32 × 105 considering 1 < P < 0.95. Since C1 is

calculated, we considered the prior near this value, while C2-C5 is considered to be almost an

order higher.
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Figure 5.2: The histogram and fitting of the prior information.

5.5.3 Voltage Estimation and Posterior Distribution

The voltage estimation is given in Fig 5.4. As it is shown, for both estimations the voltage agrees

well with the experimental measurements. The forward problem deviates more in the lower

frequencies for the resistive part, as it is possible to observe that the roll-off of the signal is

adequate. Nevertheless, the result is considered inside the confidence interval from the MCMC

estimation. For the MAP estimate, the deviation is 1.60%, while the deviation of the MCMC is

3.12% from the true value.

Figure 5.3: The output voltage for the parameters considering the MAP estimation, forward

problem, MCMC estimation and its confidence interval, and the experimental measurements.

Results for each parameter is given in Table 5.3. Considering the results regarding the samples,

it was observed some differences between 10000 and 25000, although no observable difference
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between 25000 and 50000. The acceptance rate is 35.85%. The MAP estimation compensates

greatly regarding the parasitic capacitances, also noticed in Fig. 5.4. It is well known that the

resistive part is more sensitive at lower frequencies and the capacitances at higher frequencies.

The MAP estimate is more sensitive to those parameters presenting more sensitivity in this

region. The capacitances do not deviate greatly from the prior distribution. Another trend worth

mentioning is the prior and posterior that do not change for R1. This confirms the correct prior

utilized to model R1.

Table 5.3: MAP estimate and posterior distribution by MCMC of the inference.

Posterior - Lognormal Distribution

MAP Expected Value (MCMC) Standard Deviation

R1 (Ω) 1.48× 105 1.44× 105 5.91× 104

R2 (Ω) 5.13× 105 1.58× 106 7.22× 105

C1 (F ) 1.79× 10−11 1.42× 10−11 7.08× 10−12

C2 (F ) 7.72× 10−11 4.51× 10−11 3.47× 10−11

C3 (F ) 7.83× 10−11 4.24× 10−11 3.16× 10−11

C4 (F ) 6.34× 10−11 2.96× 10−11 1.93× 10−11

C5 (F ) 1.32× 10−10 7.93× 10−11 3.61× 10−11

Figure 5.4: The pdf for the posterior density and the point estimate considering each of the

estimated parameters.

The histogram for the parameters is given in Fig. 5.5. The posterior information of each param-

eter follows a lognormal distribution, except for the C5, which deviates from this distribution.

The traces and convergence are shown in Fig. 5.6. Since the prior information is calculated from
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Chapter 3 4, the results seem to be in the region of high probability, chain 1, in the first step of

the algorithm. Dislocating the initial sample from this higher probability region demonstrated

to converge to the same region after 1500 samples of the chain for 4 different initial positions.

Therefore, there is no necessary need for burnout of the samples for chain 1.

Figure 5.5: The histogram obtained by MCMC method for each parameter.

Figure 5.6: The trace obtained by MCMC method for each parameter for different initial position.

The output impedance of the current source, combined with the parasitic capacitance of the line,

is shown in Fig. 5.7. The calculated for the forward model presents a lower influence of the

resistive part and less influence in the reactive part. MAP and MCMC presented the same trends

on the resistive part, whilst the reactive part is more pronounced in MAP estimate. Notice that
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all results remain inside the confidence interval of the MCMC method.

Figure 5.7: Output impedance of the current source with addition to the parasitic capacitance of

the line.

5.6 Conclusion

A method to statistically estimate the parasitic capacitance of an EIT DAQ system is developed

in this work. Additionally, the output impedance of the current source can be estimated in

combination and used to check whether the results are in agreement. It was presented two

methods, the MAP estimate, and the MCMC Metropolis-Hastings algorithm. Whilst the MAP

estimate is a point estimate technique, the MCMC procedure is capable of obtaining the full

probability distribution, using more computational resources. The methods were compared to

evaluate if the MAP estimate obtains estimates according to the MCMC. Both methods could

estimate properly the results, matching closely the measured voltages. The estimation showed

that the MAP estimate prioritized the resistive part, even so, the result is within the probability

distribution of the MCMC results.
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Chapter 6

A Novel Algorithm Combining

Gauss-Newton Optimization with Image

Processing and Particle Filter for

Recursive Shape Determination in

Electrical Impedance Tomography

The present chapter has been submitted to the journal "Inverse Problem in Science and Engineer-

ing" on November 18th, 2019.

6.1 Abstract

Electrical Impedance Tomography (EIT) is a technique that is utilized to perform flow measure-

ments and investigating flow patterns in multiphase flow. Through an injection of an electric

current inside a vessel, an electric field is formed and enables a set of boundary voltage mea-

surements to be performed. These measurements are used as an input in an inverse problem

technique to reconstruct the electric conductivity distribution of that domain. Recently, attention

to statistical inversion has increased by researchers, due to its ability to easily assimilate priors

in combination with the possibility to fully describe the statistical information. The particle

filters are an option for recursively estimating the state variables, in this case, the shapes of the

boundaries. In the literature, the estimation of these shapes by particle filters are scarce and
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considers only a static reconstruction. To address this issue and allow a recursive estimation, the

Gauss-Newton Optimization Sequential Importance Resampling (GNOSIR) filter is proposed. It

combines the Gauss-Newton Optimization with an Image Processing algorithm to improve the

prior information when the posterior density is far from the region of high probability. Results

shown demonstrate that the GNOSIR filter improves the estimation when initially tracking and

when there is a large displacement of the inclusion between states.

Keywords: Electrical Impedance Tomography; Particle Filter; Shape Estimation; Elliptic Con-

tours; Image Processing

6.2 Introduction

The Electrical Impedance Tomography (EIT) method is attracting the attention of researchers

nowadays. The method consists in attaching invasive but not intrusive electrodes in the inner

walls of a vessel to inject a current and measure the corresponding voltage formed by this injec-

tion. These voltages measurements are used to compute an electrical conductivity distribution

inside the domain of the vessel by an inverse problem technique.

A natural application for this technique is the industrial environment, more specifically when

dealing with a multiphase flow. Many researchers utilize EIT to the identification of the flow

patterns since it is critical to optimize, design and operate these industrial processes [1, 2, 3]. An

important aspect is the calculation of the void-fraction of a flow, which is specifically required

to measure flow-rate. Through the information of the conductivity field in the fluid flow, it is

possible to calculate such parameters [3, 4, 5]. Nevertheless, to allows a good estimative of this

parameter, good information of the contour shape of the interface between two fluids, considering

a two-phase flow, is necessary to provide correct information regarding the void-fraction.

Several different approaches to deterministically compute this conductivity field have been pro-

posed in the literature. At the beginning of EIT technique development, Barber and Brown [6]

proposed the utilization of the Linear Back Projection (LBP). The idea behind the algorithm

is to approximate the Jacobian through a proposition based on algorithms utilized in x-ray to-

mography. By calculating the so-called LBP operator and inverting this matrix, it was possible

to compute the conductivities values. An extensively used alternative to the LBP operator is

to adopt the transpose of the Jacobian matrix instead of [7]. Another way to solve the least-

square problem is the Gauss-Newton method. To deal with the ill-posedness of the solution,

the Tikhonov regularization term is added to the solution. This penalty term is considered as
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prior information, aiding the stabilization of the solution [8, 9, 10]. Other deterministic iterative

methods have been proposed such as the Landweber [11], Conjugate Gradient [12]. The com-

monly chosen regularization matrices to these methods consider a smooth and slowly changing

prior, therefore the conductivity images estimated do not present sharp boundaries [9]. There

are in the literature alternatives to prevent the blur of the images by estimating discontinuities

of conductivity properly, such as the Total Variation regularization [13]. Another approach is to

include prior knowledge of the physical boundaries into the computational domain [14, 9].

The previously presented algorithms are focused on the cases where there is no significant

variation (static reconstruction) of the conductivity field in time. There is a crescent interest on

dynamic reconstructions since the acquisition systems nowadays can acquire a set of voltage

measurements with high speed of acquisition [15, 16]. A way to perform this estimation is

by using recursive methods, such as the extended Kalman filter [17, 18, 19]. The conductivity

is treated as a state estimation problem and the process noise is taken into consideration. In

industrial applications, there are processes that the conductivities are known beforehand. Ijaz

et al. [20, 21] use this information as a prior to estimating recursively the shapes of open and

closed contours utilizing the Unscented Kalman filter.

A desirable alternative for process tomography is to use Bayesian statistical inference, to allow

the incorporation of the prior information more precisely [22]. Therefore, regarding the image,

the full statistical information is obtained, such as the reliability of the inference. Aykroyd and

Cattle [23] combined the Boundary Element Method (BEM) with the Markov chain Monte Carlo

(MCMC) to estimate a set of radii related to the parametrization of an inclusion. The drawback of

the MCMC method, considering the applications described before, is its non-recursively feature

and the high computational cost. To dynamically reconstruct the images, a recursive filter option

is available, the particle filters. This filter is being applied to several areas of knowledge, such

as industrial [24, 25] and medical [26] By this technique, the posterior distribution is described

by a set of random particles and propagated recursively [27, 28, 29]. Using the particle filters,

Watzenig et al. [30] present a method to estimate the boundaries of inclusion inside a vessel,

utilizing a high order dimension representation of a closed contour, such as splines and Fourier

descriptors.

The dynamic reconstruction algorithms estimate the contours considering only a small displace-

ment, without the presence of large distances between each state, or stationary phantom [20, 30].

Another point that must be emphasized is the fact that the reconstruction presents a transient

response from the initial state, where no good prior is known, to the convergence point. There-
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Figure 6.1: The adjacent protocol. From left to right, the measurement cycle in each adjacent

pair is read from the first to the last non-injecting pair. From top to bottom, at the end of the

measurement cycle, the adjacent injection is changed to the next pair until the last is used as the

working pair.

fore, it should fail to estimate recursively the processes that suddenly or fastly move inside the

domain (creating a discontinuity into the displacement path). Thus, the present work proposes a

filter to address the gap of such methods in recursive shape determination of the EIT technique.

It combines the use of the Gauss-Newton minimization with an image processing algorithm to

provide better information about the prior distribution. This deterministic procedure only starts

if the posterior density is far from the true position, determined by a calibration procedure.

6.3 Electrical Impedance Tomography

Electrical Impedance Tomography is responsible for injecting currents and measuring voltages

inside the domain. The injection pattern chosen to the acquisition and reconstructions is the

adjacent pattern. It consists of the injection of current through neighboring electrodes, i.e. ad-

jacent, and its subsequent voltage measurement through neighboring electrodes that are not in

operation in a differential form. This cycle repeats until all the electrodes are treated as the

working electrode as it is shown in Fig. 6.1. The method presents L(L − 3), which L is the

number of electrodes, where half of these measurements are independent [31, 10].
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6.4 Algorithm of the Gauss-Newton Optimization Sequential

Importance Sampling Resampling

It is known that the estimation of the contours can take several iterations to converge from the

initial state using the Kalman filter or the particle filter [20, 30]. There is no good prior infor-

mation in the initialization, so it is necessary to search throughout the entire domain to find a

good match. To overcome that problem, a comprehensive optimization search step by the GNO,

similarly on the algorithm proposed by da Silva et al. [32], is implemented in the Sequential

Importance Resampling (SIR) filter in a way that these several evolutions in the time necessary

to converge are avoided. This procedure allows the filter to generate particles from a proposal

distribution to search in the region near the prior distribution after the evolution. The optimiza-

tion step is activated if the proposal distribution is in regions of low or zero probability, more

specifically in the initialization to provide good prior information and after a large displacement

from a previous state to the next. Therefore, the Gauss-Newton Optimization Sequential Impor-

tance Resampling (GNOSIR) filter algorithm for the EIT technique is presented in Fig. 6.2. The

following sections depict each stage of the filter.

6.4.1 Forward Problem

The forward problem consists in a bidimensional domain Ω with an electrical conductivity σ

and a scalar potential distribution u in the domain, potential Ul at the electrodes in the contour

∂Ω where a current Il is injected. The equations that represents the phenomenon, known as the

Complete Electrode Model, are described by Eq. 6.1-6.4 [10, 9, 17]:

∇ · (σ∇u) = 0 in Ω (6.1)

u+ z̄lσ
∂u

∂n
= Ul in el, l = 1, 2, ..., L (6.2)

∫
el

∂u

∂n
dS = Il in el, l = 1, 2, ..., L (6.3)

σ
∂u

∂n
= 0 in ∂Ω \ ∪Ll=1el (6.4)

where n is the normal of the contour ∂Ω, z̄l is the contact impedance, el is the l-esimal electrode

in the contour ∂Ω. To confer existence and uniqueness to the solution, two additional conditions
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Figure 6.2: Fluxogram of the GNOSIR filter for EIT contour reconstruction application.
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are necessary. Thus, the charge conservation is given by Eq. 6.5

L∑
l=1

Il = 0 (6.5)

and the determination of a reference point is given by Eq. 6.6

L∑
l=1

Ul = 0 (6.6)

The model is implemented and discretized by the Finite Element Method. The domain Ω is

fractionated into simplices, turning the domain into a finite number of elements Ωk. The mesh

is formed by the sum of those elements, which will have K elements and N vertices, i.e. nodes.

To approximate the potential on the mesh, it is used specific functions, the basis function [33].

It is considered that the electrical conductivity inside each element is considered constant. After

applying the weak form to Eq. 6.1, a system of equation must be solved, Eq. 6.7 [10, 33]:

AMusol = IM (6.7)

where IM=(0, Ipatt)T , 0 ∈ R1,N , Ipatt = (I1, I2, ..., IL)T ∈ R1,L is the vector containing the

injected currents. The matrix AM ∈ RN+L,N+L is formed by Eq. 6.8

AM =

BM CM

CT
M DM

 (6.8)

where the matrices BM , CM , DM are calculated by Eq. 6.9-6.11

BM(i, j) =

∫
Ω

σ∇φi · ∇φjdxdy +
L∑
l=1

1

z̄l

∫
el

φiφjdS i, j = 1, 2, ..., N (6.9)

CM(i, j) = − 1

z̄l

∫
ej

φidS i = 1, 2, ..., N ; j = 1, 2, ..., L (6.10)

DM(i, j) =

0, i 6= j

|ej |
z̄j

i = j
i, j = 1, 2, ..., L (6.11)

The Eq. 6.6 can be satisfied by designating in a arbitrary node i ui = 0 [10].
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6.4.1.1 Ellipse Representation of the Closed Contour

Considers that an inclusion is a closed contour, such as a bubble that flows inside a pipe that

presents an interface between air and water. Further, the conductivities of the medium and the

inclusion are both known. The problem becomes to estimate the boundaries of the inclusion. A

way to treat these boundaries is to consider an ellipse form to represent the image in terms of its

variables [34, 35, 36]. The Eq. 6.12, which represents an ellipse, is given

((x− xc)cos(ρ) + (y − yc)sin(ρ))2

r2
a

+
((x− xc)sin(ρ) + (y − yc)cos(ρ))2

r2
b

= 1 (6.12)

where xc is the x-coordinate of the center of the ellipse, yc is the y-coordinate of the center of the

ellipse, ra is the radius related to the x-axis, rb is the radius related to the y-axis, ρ is the angular

orientation of the axis.

In that form, the elements of the mesh inside this ellipse are given a value of conductivity,

while the elements outside of that contour are set to be the conductivity of the medium. The

representation of such images as boundaries is a way to reduce the dimension of the problem

to avoid the curse of dimensionality when dealing with particle filters [37]. Therefore, the

estimation vector is given by Eq. 6.13

x̂ = (xc, yc, ra, rb, ρ) (6.13)

6.4.2 Inverse Problem

6.4.2.1 Gauss-Newton Optimization

To estimate the conductivity in each pixel of the mesh, i.e. elements, one can solve the Eq. 6.14

[9, 8, 10]:

argminσ(‖z − h‖2) (6.14)

where z is the set of voltage measurements, h is the set of calculated voltages from the forward

problem.

It occurs that this minimization of voltages is an ill-posed problem. To provide a unique solution,

one must provide some sort of prior information. The Tikhonov regularization is an additional
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term that allows the minimization to proceed without instabilities in the solution. Thus, the

problem seeks to minimize the following Eq. 6.15 [9, 8, 10]:

argminσ(‖z − h‖2 + α2 ‖L(σ − σref )‖2) (6.15)

The one-step Gauss-Newton Optimization (GNO) proceeds with the linearized minimization

necessary and is described by Eq. 6.16-6.17 [10, 9, 8]:

δV = z − h (6.16)

δσ =
(
JTJ + α2L̃T L̃

)−1 (
JT δV + α2L̃T L̃ (σref − σ0)

)
(6.17)

where J is the jacobian, δσ is the estimated conductivity, σref is a reference conductivity, σ0 is

an initial conductivity, L̃ is the regularization matrix, and the α is the regularization parameter,

which the value chosen to this work is 0.001. Note that the details regarding the forward problem

can be seen in [10, 9, 17]. A free software is responsible for the solution of the Eq. 6.17, the

Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software

(EIDORS) [38]. The regularization matrix chosen is the one called Newton’s One-Step Error

Reconstructor (NOSER) prior. It consists of considering the main diagonal of the approximated

Hessian (JTJ) as the regularization matrix [39].

6.4.2.2 Sequential Importance Resampling Filter

The estimation of the boundaries of the inclusions with different electrical conductivity in the

domain is considered as a state estimation problem [27, 28, 29]. Consider that the set of variables

necessary to describe fully the image is defined by Eq. 6.18-6.19

x̂k+1 = fk(x̂k, ŵk) (6.18)

ẑk = hk(x̂k, v̂k) (6.19)

where fk(.) is the system transition function that is dependent on the state variable x̂k, ŵk is a

zero mean, white-noise that afflict the system, hk(.) is the observation model dependent on the

state variables x̂k, also afflicted by a noise v̂k. The state variable x̂k is modelled as a Markovian

process, where the initial distribution p(x̂0), the transition state is p(x̂k|x̂k−1). The observations

ẑk is modelled as independent of the process and of marginal distribution p(ẑk|x̂k). The state
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evolution problem becomes to predict p(x̂k|zk−1) from the transition state p(x̂k|x̂k−1), thus, Eq.

6.20

p(x̂k|z1:k−1) =

∫
p(x̂k|x̂k−1)p(x̂k−1|z1:k−1)dx̂k−1 (6.20)

and update the p(x̂k|ẑk) by the marginal distribution p(ẑk|x̂k) recursively, applying the Bayes’

theorem in Eq. 6.21

p(x̂k|z1:k) =
p(ẑk|x̂k)p(x̂k|z1:k−1)∫
p(ẑk|x̂k)p(x̂k|z1:k−1)

dx̂k (6.21)

Since the aforementioned complex high-dimensional integrals are not commonly tractable ana-

lytically, a numerical method called Monte Carlo (MC) integration is used to obtain the needed

solution [27, 28, 29]. The method relies on generating stochastic samples distributed randomly

in the region chosen according to the state space. Since it is a difficult process to sample directly

from the posterior density p(x0:k|z1:k) at any time, the importance sampling technique is used as

a solution. It consists of basically assign weights for each sample based on how close the arbi-

trary importance sampling distribution represents the posterior density. To compute the weights,

assuming the process to be a multi-variate Gaussian distribution, the likelihood function is given

by Eq. 6.22

p(ẑk|x̂k) ∝ exp(−0.5(hk − zk)TΣ−1(hk − zk)) (6.22)

where Σ is the covariance matrix of the process. The process of weight assimilation assures

the estimation of the posterior density of a state variable recursively. The resulting algorithm is

named as Sequential Importance Sampling (SIS), which enables to estimate non-Gaussians state

variables recursively. At the end of a time step, it is given P random particles with its weights,

which allows the computation of the posterior density, Eq. 6.23,

p(x̂k|z1:k) ≈
P∑
i=1

wikδ(x̂k − x̂ik) (6.23)

where wik corresponds to the weight related to each sample and δ is the Dirac delta. Since a

probability distribution is available and represented by the weighted samples, it is possible to
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estimate the expected value and the confidence interval of the state variable. The expected value

is given by Eq. 6.24

E(x̂k|zk) ≈
P∑
i=1

(wikx̂
i
k) (6.24)

It was found that the SIS filter had a major issue. After some evolution in time, the weight

becomes increasingly skewed, and later only one particle would present a non-zero weight. This

phenomenon is called degeneracy [27, 28, 29]. To overcome this problem, Gordon et al. [40]

introduce a step into the SIS filter. The resampling step rejects samples with low importance

weight, and then selects and multiplies the samples with high importance weight. The assigned

normalized weights are uniform after the resampling step. The filter originated from this step is

called SIR filter or the Bootstrap Filter [40].

The SIR filter has a drawback that occurs when particles has the same and significant weight

and the particles with small weight are abandoned . This problem is called impoverishment and

can be treated by a process called roughening [41, 40]. It consists of adding an independent

Gaussian jitter noise in the update procedure after resampling, with zero mean and covariance,

J̃k. Considering p(x̂k|z1:k) is a Gaussian with mean x̃k and covariance P̃k, then from Eq. 6.25

[41, 40]:

p̃(x̂k|ẑ1:k) ≈ N(x̂k : x̂k, Ĵk + P̃k) (6.25)

According to Gordon et al. [40], the representation of the covariance Jk is given by Eq. 6.26

J̃k = σroughĨ (6.26)

where Ĩ is the identity matrix.

The standard deviation of the roughening process is given by Eq. 6.27 [40]

σrough = K̂L̂P−1/d (6.27)

where L̂ = max(0.001, l̂), l̂ is the length of the interval between the maximum and the minimum

samples (before roughening), d is the dimension of the state space, K̂ is a constant tuning
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Table 6.1: Image processing to obtain the state variables from the Gauss-Newton optimization.

Image Processing Algorithm

1: Find the centroid of the element with a minimum value of σk

to obtain the coordinates xc and yc.

2: Find the centroid of the elements that have a σk value within

an arbitrary contour range.

3: Calculate the distance from the ellipse center point to each

element centroid obtained previously within the range.

4: Find the max distance from the center to the centroid of the

element, which corresponds to ra.

5: Calculate the angle ρ between the line formed by the two

points.

6: Find the centroid of the element within the range that has

the min of |ρ− π
2
| to obtain rb.

parameter, and P is the number of particles. This procedure is responsible for augmenting the

diversity of the particles, allowing the SIR filter to estimate the confidence interval properly

when there is an impoverishment.

6.4.3 Image Processing

The Image Processing (IP) procedure is the step that obtains a better estimation of the state

vector prior information. An image is reconstructed from the GNO, Eq. 6.17, thus obtaining a

set of electrical conductivity values within the domain. Each element presents a constant value

of conductivity, which is normalized to aid in the next step. To obtain the estimation for the state

vector from the acquired image, a simple algorithm of Image Processing is presented in Tab. 6.1.

Since the solution from the GNO is a continuous surface and does not present a clear boundary,

the algorithm depends on tuning a range to be considered a closed contour of the image. Fig. 6.3

shows the contours of a typical image reconstruction solution and the process of choosing this

range. The normalized conductivity considered as the range of the contour is 0.35± 0.05.
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Figure 6.3: Contour plot of the image to aid the election of the range to be considered the contour.

Table 6.2: Image processing to obtain the state variables from the Gauss-Newton optimization.

Image Processing Algorithm

Optimization 1 Optimization 2 Optimization 3 Optimization 4

True Simulated True Simulated True Simulated True Simulated

xc (mm) 0 -2.5 0 -2.9 0 -2.9 -25 -32.3

yc (mm) 0 -4.3 0 3.7 0 3.7 -10 -11.9

ra (mm) 40 34.8 40 36.7 20 38.4 25 24

rb (mm) 20 17.9 20 19.9 40 19.3 25 17.4

ρ (rad) 0.7854 1.0518 1.5708 1.5579 0.7854 -0.8208 0 0.8684

6.5 Results and Discussion

6.5.1 Validation of the Image Processing Algorithm

To evaluate the accuracy of the estimation performed by the Image Processing algorithm, some

known inclusions are fabricated with a conductivity of the medium set as σhom = 0.01S/m and

the σinc = 0.0001S/m. The diameter of the domain is 14.4cm. A total of 15% of random noise

is added to the measurements. The meshes are obtained by the Gmsh software with 4 different

refinements, given in Tab. 6.3. The true geometric parameters and the estimated are displayed

in Tab. 6.2, considering Mesh 3. The algorithm can estimate the inclusions properly. There

are some discrepancies between the true and estimated data. However, the Image Processing

Algorithm aim is to get better prior distribution, not a final estimation. To perform this estimation,

a coarser mesh would present results faster, in detriment of the accuracy. The mesh influence in

the estimated parameters is shown in Fig. 6.5 and Tab. 6.3. The estimated parameters with Mesh

2 is satisfactory, although there is improvement between Mesh 2 and Mesh 3, 4.
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Figure 6.4: Validation of the Image Processing Algorithms. (a) Optimization 1. (b) Optimization

2. (c) Optimization 3. (d) Optimization 4.

Table 6.3: Image processing to obtain the state variables from the Gauss-Newton optimization.

Image Processing Algorithm

True Mesh 1 Mesh 2 Mesh 3 Mesh 4

Nodes - 269 454 720 1032

Elements - 488 858 1358 1966

xc (mm) -20 9.3 25.7 23.0 20.5

yc (mm) -10 -15.1 -8.3 -2.6 -10.4

ra (mm) 30 30 34.3 33.5 25.9

rb (mm) 15 20.8 14.4 19.3 15.7

ρ (rad) 0.4363 0.8320 0.4308 0.7028 0.2291
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Figure 6.5: Mesh validation. (a) Mesh 1. (b) Mesh 2. (c) Mesh 3. (d) Mesh 4.

6.5.2 Sensitivity Coefficient

To check the influence of each state variable in the model, the normalized sensitivity coefficient

is evaluated. The definition of the normalized coefficient is given as follows [42, 43]:

ϕi =
∂Yind
∂Xdep,i

(
Xdep,i

Yind

)
(6.28)

where ϕi is the sensitivity parameter, Yind is the independent variable, Xdep,i are the dependent

variables, and Xdep,i

Yind
is introduced to normalize the sensitivity.

The effect of each variable is given in Fig. 6.6. It is important to emphasize that only one

coordinate in the plane is considered due to symmetry and both radii are considered since its

shape in the domain changes. As it is expected, the variable presenting considerable amount

of sensitivity is xc and yc. As the adjacent pattern is chosen, the position near the boundaries

present high values of sensitivity in detriment of the center of the domain [31]. It is important to

highlight that the ra, rb and ρ of the inclusion has significantly lesser sensitivity, being harder to

estimate properly.
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Figure 6.6: Dimensionless sensitivity coefficient. (a) Sensitivity of the distance from the center

xc considering yc = 0, ra = 25mm, rb = 25mm and ρ = 0. (b) Sensitivity of the angle ρ

considering xc = 20mm, yc = 0, ra = 38mm and rb = 25mm (c) Sensitivity of the form

ra considering xc = 20mm, yc = 0, rb = 25mm and ρ = 0. (d) Sensitivity of the form rb

considering xc = 20mm, yc = 0, ra = 25mm and ρ = 0.
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Table 6.4: The standard deviation and tuning parameters of the roughening process choose for

the GNOSIR filter.
GNOSIR Filter Parameters

Std K

xc 15mm 0.8

yc 15mm 0.8

ra 5mm 0.3

rb 5mm 0.3

ρ 0.15rad 0.2

6.5.3 Computational Phantoms

The algorithm is tested with computational phantoms. The measurements are obtained utilizing

Mesh 4 and a 15% Gaussian noise is added to avoid inverse crime [8]. The solution of the

forward problem used as an observational model, from Eq. 6.7-6.11, are implemented in Octave.

The mesh utilized the image processing code and to reconstruct the image is Mesh 3. The

standard deviation and tuning parameters of the roughening process are displayed in Tab. 6.4.

The procedure to verify whether the result is in a high probability region is similar to the prior

editing presented in [40]. The parameter to observe is the minimization of the norm between

measurements and model ‖hk+1 − zk‖. The threshold for this case should be ‖hk+1 − zk‖ >
6σstd. However, the EIT signal is multivariate and it occurs that for the cases where the estimated

is far from a probability region only a few measurements from the set may satisfy this inequality.

Therefore, this relationship is not considered and a calibration procedure is developed to set this

threshold.

The condition for Test Computational 1 is a stationary phantom with the true position of radius

of ra = 25mm, rb = 25mm, and ρ = 0 is at xc = 40mm, yc = 0mm. Results are shown

in Fig. 6.7. The minimization parameter are given for each state. The algorithm takes 3 to 4

steps to converge, which is also observed from the minimization parameter. This procedure is

important to calibrate the threshold for the GNOSIR filter, calibrated to a value of 0.28 (dashed

line). Furthermore, the SIR filter presents good estimations after converging.

In Test Computational 2, different numbers of particles are tested to determine the necessary

effort to estimate the boundaries. To evaluate the quality of the image, the Mean Absolute Error
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Figure 6.7: Test Computational 1: The estimation of the contours by the SIR filter. From left to

the right, the convergence into the true position. The dashed line represents the threshold of the

GNOSIR filter.

(MAE) is calculated between the true measurement and the estimated measurement, Eq. 6.29.

MAE =
1

K

K∑
i=1

(∣∣∣∣ σi − σtrue,iσhom − σinc

∣∣∣∣) (6.29)

where σtrue is the element value of electrical conductivity in the true image. If MAE = 1,

it indicates that there is a total mismatch between the estimated and true position, while if

MAE = 0 indicates there is a total match.

The results for each number of particles are evaluated in Fig. 6.8. As it is shown in Fig. 6.8(a),

the evolution path of the inclusion inside the domain begins with equal radii ra = rb at the

top of the domain, expanding one of the radii and rotating nearly the middle of the domain.

After that, it contracts until the inclusion reaches the bottom of the domain and obtain equal

radii. By inspecting Fig. 6.8(b), it becomes evident that there are poorer results in the region of

less sensitivity, the middle of the mesh, for all estimated shapes despite the different number of

particles of each test. Further investigation shows that the increase in the number of particles

is not sufficient to increase the quality of the image, as the results with 150 particles between

19-22 provide a worse quality when compared with the results with 100 particles. To the other

positions, the algorithm estimated with good precision. A random variation of the quality is

observed and it is accounted for by the stochastic nature of the particle filters.

The GNOSIR filter does not utilize the optimization step in Test 2 since the evolution is steady
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Figure 6.8: Test Computational 2: Estimation of the contours considering a different number of

particles. (a) The path of evolution in time. (b) The MAE for each image considering a different

number of particles. (c) The images for the selected time.
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Figure 6.9: Estimation of the contours considering a discontinuity of the true position between

states. (a) The path of evolution in time. (b) The MAE for each state. (c) The images for each

state.

and slow-paced. This behavior is intended, as the generation of particles stands near the prior

distribution, Figure 6.9. To avoid the search throughout the entire domain, the GNOSIR filter

focus on generating particle in the regions closer to this region, thus increasing the particle

density in the desired area.

The mean time for the evolution of the state and its standard deviation is given in Tab. 6.5. As

it is shown, the procedure is fast since it is not required a high amount of particles to perform

good estimations. The particles are efficiently generated in the region of interest, thus a lower

computational time is required. The optimization time is given in Tab. 6.5. Considering it is

assured a maximum of one optimization each time, the total time of the complete reconstruction

is given by Eq. 6.30

ttot = (k + ñopt)tk + topt(1 + ñopt) (6.30)

where tk is the evolution time, topt is the optimization time, k is the number of state variables,

and ñopt is the number of optimizations. The fastest case is when the filter does not engage in

optimization, and the slowest is when all states optimize. The time for the best and worst-case

scenario is given in Tab. 6.5 considering the 40 states. This corresponds to a total of 2.30 increase

for 35 particles and a 2.069 increase for 150 particles. It is expected, since the iteration must
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Table 6.5: Time elapsed by the GNOSIR filter per evolution and total time considering 40 states.

Time Elapsed per Evolution

Particles Mean (s) Std (s) Total Best (s) Total Worst (s) Ratio

Opt. 2.82 0.06 - - -

35 9.17 0.31 369.62 849.22 2.30

50 13.49 0.30 542.42 1194.82 2.20

75 27.32 2.47 1095.62 2301.22 2.10

100 30.11 3.35 1207.22 2524.42 2.09

150 39.9 2.16 1598.82 3307.62 2.07

be restarted from the beginning, doubling the time. The effort necessary to the optimization is

diminished as the number of particles increases, becoming negligible with a high number of

particles.

Test Computational 3 evaluates the capability of the GNOSIR filter in estimating inclusions with

a discontinuity between the states. The initial guess for the SIR filter considering the following

tests is: position xc = −40mm, yc = 0mm, radius of ra = 10mm, rb = 10mm, and ρ = 0. The

number of particles utilized in the following tests is 50. It is shown in Fig. 6.10(a) the path of

evolution in time. The inclusion dislocates from top to bottom when a discontinuity happens in

Time 5. From that point, the inclusion steadily moves and expands. It is noticed in Fig 6.10(b)

and Fig. 6.10(c) that the SIR filter fails to track initially from a poor initial guess, resulting in

an increased MAE value. It begins to track properly in Time 4. Due to the conditions discussed

previously, the SIR filter tracks slowly in Time 5. On the other hand, the GNOSIR filter proceeds

to optimize, obtaining a good estimation and a lower MAE when comparing with the SIR filter.

Test Computational 4 further evaluates the performance of the GNOSIR filter in estimating

inclusions with a high-speed evolution. From Fig. 6.11(a), it is observed that the inclusion

evolves faster and rotating near the boundary while expanding and contracting until Time 5.

From that point, the inclusion rotates, expands, and moves faster, turning into a circle in the end.

Inspecting Fig. 6.11(b) and Fig. 6.11(c), it becomes evident that the SIR filter slowly converges,

and finally tracks the true position at Time 6. To reach that point, notice that at Time 5 the

SIR filter position is dislocated to the left, closer to the true position in Time 6. This position

facilitates the estimation since the generation of the particles can reach closer to the true easier.

The GNOSIR filter initiates converged already until it reaches Time 6, in which the estimation

is tracking but becomes far from the true position. To compensate for this issue, an optimization
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Figure 6.10: Test Computational 3: Estimation of the contours considering a discontinuity. (a)

The path of evolution in time. (b) The MAE for each state. (c) The images each state.

is performed in Time 7, estimating well at that point.

6.5.4 Experimental Phantoms

The algorithm is tested with experimental phantoms. A non-conductive cylinder of 51mm diame-

ter is inserted inside a vessel with a diameter of 44cm with a saline solution of 77.09±0.47uS/cm.

The SIR filter is used to calibrate the conductivity of the homogeneous medium. The estimated

value of the homogeneous conductivity is 76.69uS/cm and it is used in the algorithm as the con-

ductivity of the medium. The conductivity of the inclusion is 15uS/cm. The tuning parameters

are the same as the results of the computational phantom, in Tab. 6.4. A comprehensive analysis

of the error present in the measurements is previously done, thus generating the covariance

matrix of the filter.

In Test Experimental 1, the threshold is adjusted by a stationary phantom placed in xc = 40mm

and yc = 0, as shown in Fig. 6.12(b). It must be emphasized that the position contains measure-

ment uncertainties that must be accounted for. The measurements and model output minimizes

and converges further in Time 1-4, until it reaches a minimum, Fig. 6.12(a). From that point, the

convergence is assured, as it is shown in Fig. 6.12(c). The threshold calibrated for the GNOSIR

filter is shown in the dotted line, considered 0.13.
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Figure 6.11: Test Computational 4: Estimation of the contours considering a high-speed evo-

lution. (a) The path of evolution in time. (b) The MAE for each state. (c) The images each

state.

Figure 6.12: Test Experimental 1: The estimation of the contours by the SIR filter. From left to

the right, the convergence into the true position. The dashed line represents the threshold of the

GNOSIR filter.
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Figure 6.13: Test Experimental 2: Estimation of the contours considering a high-speed evolution.

(a) The path of evolution in time. (b) The MAE for each state. (c) The images each state.

The algorithm is evaluated in Test Experimental 2. The path consists of 7 states, initiating in

the left region of the domain, Fig. 6.13(a). From that point, it moves faster to the northwest

region and continues to move towards the central region slower through the radial direction.

Furthermore, it moves one last time north. The reconstruction is shown in Fig. 6.13(c) and

the image quality is shown in Fig. 6.13(b). From Time 1-2, it is possible to observe that the

estimation of the contour becomes elliptic, while the true object has a circular form. This occurs

due to the increased distance between true images 1 and 2. The density of particles in the region

becomes decreased, thus the estimation becomes harder. The GNOSIR filter was tested 20 times

for the evolution from Time 1 to 2 and in 35% of the tests, the optimization procedure initiates,

corroborating the elucidation described before. After this time, the filter adjusts further, until it

estimates properly.

6.6 Conclusion

An algorithm to estimate the contours of an elliptic inclusion by the Electrical Impedance To-

mography technique is presented in the present work. The GNOSIR filter is based on the SIR

filter with an optimization procedure performed by the Gauss-Newton Optimization. This extra

step improves the prior information when it is far from the region of high probability, thus ob-
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taining a prior dislocated from the actual search region. When the optimization is necessary, the

minimization parameter is greater than an adjusted threshold, the values of the state variables

are obtained by an image processing algorithm. This threshold is determined by a stationary test

both for computational and experimental phantoms. The GNOSIR filter proved to obtain good

results for recursive estimations and requiring low computational cost when there are discontinu-

ities in the image evolution and fast speed movement. Further development is necessary, such as

utilizing higher complexity models to describe the shapes of the inclusion, improved algorithms

of image processing, and the possibility of reconstructing multiple inclusions. Additionally, im-

plementation of a faster forward model discretization, such as the BEM, would decrease the

computational cost of the filter.
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Chapter 7

Conclusion

7.1 Summary

This work aims to develop the Electrical Resistance Tomography data acquisition and to present

an algorithm responsible for reconstructing the shape of the boundary of the inclusions recur-

sively.

First, it was designed by the research group a data acquisition system, consisting of a single-

ended Howland current source, multiplexers to distribute the injected current and the measured

voltage, an instrumentation amplifier to measure differentially the resulting voltages, a low-

pass filter to reject the noise in the signal, an RMS-to-DC demodulation scheme to acquire the

amplitude information and an Arduino board, with a microcontroller and an ADC. The system

obtains a maximum of 30.61 images/s with a maximum SNR of 57.47dB.

The accuracy of the system was tested and it presented errors due to the low current injected

when using 16 electrodes, due to the proximity between these sensors. The forward problem

presents an error that must be tractable. The system was modeled by SPICE and the results were

evaluated, such as the influence of the output impedance of the current source, multiplexers,

cables in the accuracy of the measurements. Some directives are summarized regarding the

development of a new version.

The estimation of the parasitic components is performed by a statistical method, the MAP

estimate, and MCMC. Both the results from the MAP and the forward problem showed to be

inside the confidence interval of MCMC. Although the MAP estimate presented more changes
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in the resistive part, there is good accordance between them. Further, measurements from the

output impedance can validate the results and is yet to be performed.

To conclude, it is developed a new algorithm to estimate the boundaries of the inclusion inside

a vessel. The algorithm is a particle filter that obtains better prior information if necessary to

estimate recursively the shapes of the inclusions. The procedure repeats the iteration when the

estimation is poor and the prior information is obtained by an Image Processing algorithm after

the estimation is performed by the Gauss-Newton optimization. It was tested in cases that the

recursive algorithms fail to estimate and it presented better estimations when there is sudden or

fast movement.

7.2 Recommendations for Future Work

For further consideration, the following points are described:

1. Development of the Data Acquisition System

• Include a floating topology to the current source. This modification would not only

increase the output impedance by adding the corresponding output impedances of

both the single-ended, but also the common-mode voltage which is reduced causing

less error in the measurements.

• Provide matching resistors and a trimming scheme to the current source. This modifi-

cation increases the output impedance as it depends greatly on assuring the matching

condition of the resistors.

• Design a current source with digital controlled gain to increase the magnitude of

the input current. It was concluded that this magnitude is of greater importance for

obtaining a higher accuracy signal.

• Select a multiplexer with lower parasitic capacitance or even a parallel measurement.

The multiplexers aids in the simplicity penalizing the accuracy, thus its use must be

considered for a new design.

• Include a 3-in-amp for the voltmeter section. The utilization of this topology was

demonstrated to increase considerably the CMRR of the system.

• Development of the digital demodulation scheme by the phase-sensitive detection
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method. The utilization of this digital approach can increase greatly the speed of

acquisition of the system since this speed is limited by the current demodulation

scheme. Additionally, it is possible to obtain information regarding the phase of the

signal.

• Design an Impedance Converter circuit to cancel the stray capacitances from the

system and the output capacitance of the current source.

2. Development of the Algorithm for Shape Determination

• Represent the shapes of the inclusion in the algorithm by high dimensional model,

such as the splines or Fourier descriptors. The representation by an ellipse is limited

considering the many forms an air phase can be in a multiphase flow.

• Utilize new methods of Image Processing. For the representation of the shapes using

a higher dimension, a new and optimized algorithm would present better results.

3. Tests in a Flow Loop

• Test different airflow rates to establish different flow patterns and perform the identi-

fication of these patterns through the images or the signals.

• Acquire images in a multiphase flow loop test to perform the calculation of the

void-fraction with the current developed system for these different flow rates.
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