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Abstract

In order to explain the Late-times accelerated expansion of the Universe we must ap-
peal to some form of Dark Energy. In the standard model of cosmology, the latter is
interpreted as a Cosmological Constant Λ. However, for a number of reasons, a Cos-
mological Constant is not completely satisfactory. In this thesis we study Dark Energy
models of geometrical nature, and thus a manifestation of the underlying gravitational
theory. In the first part of the thesis we will review the ΛCDM model and give a brief
classification of the landscape of alternative Dark Energy candidates based on the Love-
lock theorem. The second part of the thesis is instead devoted to the presentation of
our main results on the topic of Dark Energy. To begin with, we will report our studies
about nonlocal modifications of gravity involving the differential operator �−1R, with
emphasis on a specific model and on the common behavior shared by this and similar
theories in the late stages of the evolution of the Universe. Then we introduce a novel
class of modified gravity theories based on the anticurvature tensor Aµν (the inverse of
the Ricci tensor), and assess their capability as source of Dark Energy. Finally, we will
discuss a type of drift effects which we predicted in the contest of Strong Gravitational
Lensing, which could be employed both to study the effective equation of state of the
Universe and to constrain violations of the Equivalence Principle.
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Resumo

Para explicar a expansão acelerada do Universo tardio é necessário recorrer a alguma
forma de Energia Escura. No modelo padrão da cosmologia, ela é interpretada como
uma constante cosmológica Λ. Porém, devido a várias razões, a constante cosmológica
não é totalmente satisfatória. Nesta tese nós estudamos modelos alternativos onde a
Energia escura é de natureza geométrica, e então é uma manifestação da teoria de
gravitação subjacente. Na primeira parte da tese revisaremos o modelo Λ e vamos
dar uma breve classificação do panorama dos modelos alternativos de energia escura
baseada no teorema de Lovelock. A segunda parte da tese, por outro lado, é dedicada
a apresentação dos nossos resultados principais no tópico da Energia Escura. Para
começar, nós iremos relatar nossos estudos sobre modificações não locais da gravitação
que envolvem o operador diferencial �−1R, com ênfase no modelo VAAS e no compor-
tamento similar compartilhado por esta classe de teorias nos estágios finais da evolução
do Universo. Em seguida, nós apresentamos uma nova classe de teorias de gravitação
modificada que é baseada no tensor de anticurvatura Aµν , inverso do tensor de Ricci, e
avaliamos o potencial dessas teorias como fonte de Energia Escura. Para concluirmos,
discutiremos um tipo de efeitos de deriva que previmos no contexto de lentes gravita-
cionais fortes que poderiam ser empregados tanto para estudar a equação de estado
efetiva do Universo quanto para restringir violações do prinćıpio de equivalência.
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CHAPTER 1.

Introduction

The layman always means, when he says
”reality” that he is speaking of something
self-evidently known; whereas to me it
seems that the most important and
exceedingly difficult task of our time is to
work on the construction of a new idea of
reality.

Wolfgang Pauli

This thesis is presented in candidacy for the degree of doctor of philosophy, and its main goal
is to report and collect the scientific results we were able to achieve in the last four years towards
the understanding of the fundamental nature of Dark Energy. The latter, whatever it is, became
a fundamental ingredient in our description of the Universe after the discovery, in the late 90’s, of
its accelerating expansion [1, 2]. In particular, our research focuses on those proposals in which
Dark Energy is the manifestation of a different theory of gravitation, i.e. on those geometrical
theories in which no new degrees of freedom are introduced to drive the present accelerated
expansion.

However, it is a legitimate question to ask why we should consider such things when the current
standard model of cosmology, the ΛCDM, has proven to be in excellent agreement with a number
of different observations. From our point of view, there is indeed no completely satisfactory answer
to this question since the cosmological constant is the simplest and yet effective candidate of
Dark Energy we can think of. It does not introduce any new physics nor changes significantly the
behavior of gravity at small scales (where General Relativity has been tested with astonishing
precision). On the other hand, there are a number of less satisfactory answers which motivate
the quest for a different description of Dark Energy.

First, General Relativity is a century old and some physicists start to get bored, or at least
frustrated, of it. There is no commonly accepted framework in which its quantization can be
achieved, and it is extremely difficult to explore its properties in strong gravity regimes. For
these reasons Cosmology, in particular at early and late times, is a fertile ground both for testing
and speculating on the nature of gravitational interaction.

A slightly more satisfactory reason is that in the last decade we witnessed the appearance of a
growing tension between the result of measurements from the local Universe and at early times.
Part of the scientific community believe that these tensions are due to systematic, but a lot of
people think that they are actually indications of new physics. At the end of the day, whether
there are good reasons for studying Dark Energy or not, it seems to us that the following quote
by Weinberg remarkably describes the situation: ”It seems that scientists are often attracted to
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beautiful theories in the way that insects are attracted to flowers — not by logical deduction, but
by something like a sense of smell”.

Motivated by the above considerations, we decided to dedicate chapters 2 and 3 of this thesis
to a review of the ΛCDM model and of the landscape of Dark Energy candidates. The topics
presented there are fairly standard and already covered in many textbooks, and the expert reader
may freely decide to skip them. On the other hand, in our treatment (by no means complete) we
tried to privilege our personal perspectives on the topics, which ultimately provide the motivation
for the work done in the subsequent chapters. The third chapter is also introductory in nature,
and aims to review the main motivations which led to consider nonlocal modifications of gravity
as Dark Energy candidate, as well as some technicalities typical of this approach. The remaining
chapters of this thesis contain instead a summary of our results. In chapter 5 we show some
interesting cosmological features of the nonlocal model of gravity proposed in Ref. [3], which
we studied in Ref. [4]. Here we also try to explain, based on [5], the apparently coincidental
common behavior shared by different nonlocal models in the late stages of the evolution of the
Universe. In chapter 6 we introduce a novel class of modified gravity models we recently proposed
in Ref. [6]. In chapter 7 we will discuss how to extract cosmological information from a novel
type of observables proposed by us in Ref. [7] in the context of Strong Gravitational Lensing,
and how they can be used to test Dark Energy and the Equivalence Principle [8].





CHAPTER 2.

Overview Of the ΛCDM model

Indeed, it has been said that democracy is
the worst form of government except all
those other forms that have been tried
from time to time.

Winston Churchill

The discovery of the accelerated expansion of the Universe [1, 2] is undoubtedly one of the
cornerstone of modern cosmology. After roughly two decades, it is commonly accepted that
the best description of our universe on cosmological scales relies on the ΛCDM model. In this
chapter we will give a brief introduction of the model, highlighting its agreement with the main
observational evidences and describing the theoretical framework at his foundation. Finally, we
will conclude the chapter mentioning some open problems of the standard model. Most of the
material presented here is covered (surely better) in many standard textbooks, and was largely
influenced by Refs. [9, 10], which I recommend for a detailed treatment.

2.1. Theoretical grounds

2.1.1. The Equivalence principle

One of the cornerstone that led Einstein to the formulation of General relativity is the Equiv-
alence Principle. Historically, it is formulated with the statement that the gravitational and
inertial mass are equivalent, and it is also a pillar of Newtonian theory of gravity. Roughly 300
hundreds years after its verification by Galileo, Einstein realized that one of the consequences of
the principle is that no static homogeneous external gravitational field could be detected from
physics experiments performed by free-falling observers located in a sufficiently small spacetime
region.

In the context of General Relativity, a useful statement of the Equivalence Principle is the
following [11] : at every spacetime point in an arbitrary gravitational field it is possible to choose
a locally inertial coordinate system such that, within a sufficiently small region of the point in
question, the laws of nature take the same form as in unaccelerated Cartesian coordinate system
in the absence of gravitation. Usually one refers to the above statement as the strong Equivalence
Principle, to distinguish it from the aforementioned equivalence between inertial and gravitational
mass, which is instead labelled as weak Equivalence Principle.

Experimental tests of the Equivalence Principle, either in its weak of strong version, are of cru-
cial importance for our fundamental understanding of gravity. Indeed, many alternative theories
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of gravitation result in some kind of violation of the Equivalence Principle, so that the precision
within which we can trust its validity can be used to rule out a certain class of models.

2.1.2. Einstein Field Equations

The main goal of a cosmological model is to describe the dynamical evolution of the Universe
in agreement with data. In order to relate the dynamics of the Universe to its components, a
theory of gravitation is required. The ΛCDM model assumes that the appropriate description
of the gravitational interaction on cosmological scales is given by the Einstein Field Equations
(EFE). We prefer to speak of Einstein Field Equations instead of General Relativity because, as
showed in Ref. [12], it is possible to obtain the same equations from other geometrical theories
that differs from GR at fundamental level.

The Einstein Field Equations are:

Rµν −
1

2
gµνR+ Λgµν = 8πGNTµν , (2.1)

where Rµν is the Ricci tensor, R its trace, gµν the spacetime metric, GN the Newton’s constant,
Λ the Cosmological Constant (CC) and Tµν the energy momentum tensor. The Ricci tensor and
scalars are construed from the Riemann tensor Rµνλσ, also called curvature tensor, which satisfies
the Bianchi identities:

Rµνλη +Rµηνλ +Rµλην = 0 , (2.2)

Rµνλη;σ +Rµνσλ;η +Rµνησ;λ = 0 , (2.3)

where we use the notation Aµ;ν to represent the covariant derivative of Aµ with respect to xν .
It is possible to show [13, 11] using the Bianchi identities that the left hand side of Eqs. (2.1) is
divergenceless, enforcing the validity of the continuity equation Tµν;µ = 0 in curved spacetime.

2.1.3. The Cosmological Principle

In 1922 the Russian mathematician Alexander Friedmann obtained an analytical solution of
Eqs. (2.1) under the assumption that the spacetime is homogeneous and isotropic [14]. A similar
result was obtained independently by the Belgian astronomer George Lemâıtre in 1927 [15], and
later on by the American mathematician Howard Robertson [16] and the British mathematician
Arthur Walker [17]. The resulting spacetime is described in terms of a metric usually denoted
FLRW, named after them. The FLRW line element can be written:

ds2 = −dt2 + a(t)2

(
dr2

1−Kr2
+ r2dΩ2

)
, (2.4)

where Ω is the solid angle, the function a(t) is the scale factor and the constant K is related
to the curvature of the spatial slices. A negative, vanishing or positive value of K corresponds
respectively to Hyperbolic, Euclidean or Spherical spatial geometry.

The assumptions that at background level the Universe is homogeneous and isotropic are
usually referred to as the Cosmological Principle. They are also at the core of Newtonian gravity
and Galilean relativity, where they are stated as the existence of a universal time and the lack
of any preferred direction in space. These definitions on the other hand are not completely
satisfactory in the contest of General Relativity, where differential geometry concepts are required
to unambiguously define them. A very rigorous definition by Wald is the following, see Ref. [18]:
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Homogeneity: A space-time is said to be homogeneous if ∃ a family of 1-parameter of
spacelike hypersurfaces Σt foliation such that ∀t and p, q ∈ Σt ∃ an isometry I : I(p)→ q.

Isotropy: a space is spatially isotropic if ∃ at each point a congruence of timelike curves
with tangents uα such that ∀p ∈ the congruence, given two sα1 , s

α
2 spacelike vectors orthogonal

to uα ∃ I of gµν : sα1 → sα2 leaving p and uα fixed .

A slightly less technical definition of the Cosmological Principle could be instead found in Wein-
berg’s book [11]: A globally hyperbolic spacetime is homogeneous and isotropic if :

i) Hypersurfaces with cosmic standard time are maximally symmetric subspaces of the
whole space-time.

ii) gµν , Tµν and all the other cosmic tensor are form invariant with respect to the isometries
of these subspaces.

We recall that a manifold is globally hyperbolic if it possesses a Cauchy surface, i.e. there exists
a surface which every causal curve on the manifold crosses exactly once. Roughly speaking this
means that a surface exists from which, once specified the initial conditions, it is possible to track
past and future evolution of the causal curves through the field equations. A space of dimension
D is maximally symmetric if it admits D(D + 1)/2 independent Killing vector fields. A Killing
vector field is a vector field on a Riemannian or Pseudo-Riemannian manifold that preserves the
metric. Finally, an isometry is a bijective function in a metric space that preserve distances.

We hope the reader could forgive the latter brief technical digression on the cosmological princi-
ple, but once a proper definition was given we are now able to highlight some of its consequences.
First we notice that no concept from General Relativity was used to define the cosmological
principle. Indeed, it is an assumption (which is well motivated from the observational point of
view, as we will discuss later) independent of the specific metric theory of gravitation we are
considering. We also note that the existence of a preferred foliation of the spacetime in terms of
a time parameter implies the existence of a privileged class of observers, i.e. free falling observers,
whose clocks measure the cosmic time. This could be misleading from the perspective of General
Relativity, because of general covariance and of the Equivalence Principle. The main point is
that the goal of cosmology is to describe our Universe, which is just a particular realization, or
solution, of the Einstein Field Equations (or any alternative metric theory of gravitation), and
although the EFE are generally covariant, a particular solution of them does not have to be.

2.1.4. The Friedmann equations

Computing Eqs. (2.1) for the FLRW metric (2.4) we obtain the Friedmann equations:

H2 +
K

a2
− Λ

3
=

8πGN
3

T00 , (2.5)

gij

(
H2 + 2

ä

a
+
K

a2
− Λ

)
= −8πGNTij , (2.6)

where we have defined the Hubble function H(t) = ȧ/a. Note that the high symmetry of the
cosmological principle restricts the allowable choices of Tµν . Since the FLRW metric depends only
on time, the same must hold for the components of the energy momentum tensor. Furthermore,
due to spatial isotropy, the 0i components must vanish. Finally, since the left hand side of
Eq. (2.6) is proportional to gij the same must be true for Tij .
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Usually in cosmological applications we consider perfect fluids, which satisfy the above listed
properties and can be written in general as:

Tµν = (ρ(t) + P (t))uµuν + P (t)gµν , (2.7)

where we have defined the rest energy density of the fluid ρ and the pressure P . We have also
introduced the 4-velocity uµ, which is normalized by definition so that gµνu

µuν = −1. Thus,
in the comoving frame, where the fluid is at rest, we have ui = 0 and u0 = 1√

|g00|
. Note that

Eqs. (2.5),(2.6) are not completely independent; indeed, since in General Relativity the zero
component of the EFE is a constraint equation that contains only first derivatives, Eq. (2.5)
contains only the first time derivative of the scale factor. It is possible to obtain Eq. (2.6)
combining the derivative of Eq. (2.5) with the continuity equation of the fluid:

ρ̇(t) + 3H (ρ+ P ) = 0 . (2.8)

If we consider barotropic fluids it is possible to relate the pressure and the density through the
Equation of State (EoS):

P (t) = wρ(t) (2.9)

where w is the EoS parameter.

2.1.5. Analytical solutions of the Friedmann equations

It is possible to obtain analytical solutions of Eqs. (2.5),(2.6) for barotropic fluids by solving the
continuity equation Eq. (2.8). Indeed, we have:

ρ̇

ρ
= −3

ȧ

a
(1 + w) , (2.10)

from which:
ρ = a−3(1+w) . (2.11)

For most cosmological applications the parameter space for the equation of state parameter w
is very simple; one usually consider pressureless non-relativistic matter with w = 0, also dubbed
dust, and relativistic matter with w = 1/3, denoted radiation, which includes for example photons
and neutrinos. Let us consider a model of flat Universe K = 0 filled with a perfect fluid defined
by Eq. (2.11). In this case we can rewrite Eq. (2.5) in terms of the scale factor only:

3
ȧ2

a2
= 8πGNa

−3(1+w) , (2.12)

which solved with respect to the scale factor gives:

a(t) =
[√

6πGN (1 + w)t
] 2

3(1+w)
. (2.13)

2.1.5.1. Single fluid models

Let us now focus on the evolution of the Universe for particular solutions of Eq. (2.13) relevant
for cosmological purposes. If only a species is present, it is straightforward to integrate the latter
equation and obtain analytical solutions for the Hubble function. In Table 2.1 is reported the
behavior of the scale factor, the density and the equation of state parameter for a flat Universe
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Radiation Dust CC

a(t) t1/2 t2/3 eHt

ρ(a) a−4 a−3 Λ/3
w 1/3 0 −1

Table 2.1.: Analytical solutions for the scale factor a(t), the density ρ(a) and the EoS parameter
w for a flat FLRW Universe during radiation, matter and Cosmological Constant
(CC) domination.

dominated by matter, radiation and Cosmological Constant. It is important to realize that in an
expanding Universe, since a(t) is a growing function, the density function of matter and radiation
is decreasing. Thus, if the Universe contains only these species, they will eventually dilute and
the Hubble function approaches H(t) → 0. In these models, the Universe approaches a stable
Minkowski attractor in the future. On the other hand, if a Cosmological Constant is present, in
the future the Universe reaches a stable de Sitter attractor and the scale factor starts to grow
exponentially.

2.1.5.2. Einstein Static Universe

When Einstein was considering cosmological applications of its theory he had in mind a static
Universe with ȧ = ä = 0. From Eq. (2.5), since both Λ and ρ are positive, we must impose
K = 1, i.e. a closed Universe. Moreover, the acceleration equation implies:

ρ+ 3P = 0 , (2.14)

and since ρ is positive definite, the only possibility is that there must be something with negative
pressure that compensates. This was the main motivation that brought Einstein to introduce a
Cosmological Constant Λ into its equations. Indeed, since ρΛ = −PΛ we have:

2ρΛ = ρm , (2.15)

which is a critical point of the dynamical equations. On the other hand such a point is unstable,
and depending on the sign of a small perturbation the Universe evolves into a de Sitter or a
Minkowski critical point.

2.1.5.3. The standard model

The ΛCDM model describe a FLRW flat Universe filled with a mixture of dust, in the form of
Cold Dark Matter and baryons, radiation and a Cosmological Constant. As we will show later,
there are observational evidences that justify the hypothesis of spatial flatness. The Hubble
function is given by the first Friedmann equation:

H(z) =

√
Ω0
K (1 + z)2 + Ω0

m (1 + z)3 + Ω0
rad (1 + z)4 + Ω0

Λ , (2.16)

where the Ω0
i are the present day densities of the species i, and where Ωm = ΩCDM + Ωbaryons

is the total matter. In Fig. 2.1 the Hubble function for the ΛCDM model is plotted as a function
of the redshift z = 1/a − 1 for Ω0

m ≈ 0.3, Ω0
r ≈ 10−5 and ΩΛ ≈ 0.7. If we define the normalized

energy density of a species x as Ωx = 8πGNρxΩ0
x/3H

2, it is possible to rewrite the Friedmann
equation in the form:

1 = Ωm + Ωr + ΩΛ . (2.17)
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Figure 2.1.: The Hubble diagram as function of redshift for the ΛCDM model

In Fig. 2.2 are plotted the normalized energy densities in terms of the e-fold time parameter
N = log a. It is straightforward to realize that the Universe evolution could be divided into
different epochs, during which one species is dominant with respect to the others and determinate
the rate of expansion. Since radiation dilutes the fastest it will be dominant at earlier times,
followed then by matter and finally by the Cosmological Constant. In Fig. 2.3 the logarithmic
time derivative of the Hubble function is given in terms of N . For N ≤ −15, in the radiation
dominated epoch, H ∼ √ρrad, so that H ′/H ≈ −2. Then radiation dilutes, and around N ≈ −10
its density equals the matter one. When matter starts to dominate the Hubble factor behave as√
ρm, so that H ′/H ≈ −3/2. Finally, around today, matter dilutes and its density equals the one

of the Cosmological Constant, so that H ′/H tends asymptotically to → 0 in the future.

2.2. Observational facts in support of the ΛCDM model

Observational dataset

The most important cosmological probes that support the ΛCDM model are the Cosmic Mi-
crowawe Background (CMB), type Ia Supernovae observations, and Baryonic Acustic Oscillations
(BAO). Combined, they favor a model of flat Universe |Ω0

k| ≤ 0.003 where the total matter den-
sity today Ω0

m = Ω0
DM +Ω0

b is of order Ω0
m ≈ 0.3 and the Cosmological Constant value contributes

to roughly Ω0
Λ ≈ 0.7, with the radiation energy density of order Ω0

r ≈ 10−5 [19, 20, 21].

2.2.1. Age of the Universe

In a FLRW background it is possible to compute the age of the Universe t0 by integrating the
Hubble function:

t0 =

∫ ∞

0

dz

(1 + z)H(z)
. (2.18)

It is straightforward to realize that the main contribution to the above integral comes from recent
times, i.e. small redshift z. In this regime we can neglect the contribution of radiation, whose
density is of order 10−5. Using the first Friedmann equation to eliminate Ω0

m = 1 − Ω0
Λ we
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Figure 2.2.: The evolution of the energy densities of the species in the ΛCDM model

compute the value of the integral in Eq. (2.18) as function of the Cosmological Constant value
Ω0

Λ. In Fig. 2.4 the result of the integral assuming flatness is reported in units of H−1
0 , and one

can appreciate that for small values of the Cosmological Constant, i.e. without Dark Energy, the
Universe is younger, while in the opposite limit Ω0

m → 0 the integral in Eq. (2.18) diverges and
the Universe is eternal, as expected for a de Sitter Universe which is free of initial singularity.
Even if we do not know exactly the age of the Universe, we can constrain it from below with the
age of the oldest object we observe in the sky. Of the utmost importance in this respect are the
globular clusters, i.e. clusters of 105 − 107 stars with a high density of around 103 stars for ly−3

that share the same age and the same chemical composition, usually found in the galactic halo.
These stars are remnants of galaxy formation, and are among the oldest objects observed in the
sky, see Ref. [22]. It is possible to infer their age by using spectroscopic mesurements, i.e. by
studying their abundance of heavy elements. It is believed that in the early Universe there were
mostly Hydrogen and Helium produced during the Big Bang Nucleosynthesis, as a result the
stars that were produced at the time should lack heavy elements. The oldest globular clusters
found are dated around 11 Gyr, which correspond roughly to t0H0 ∼ 0.8 in Fig. 2.4. These
considerations already rule out a model of flat Universe which contains only matter, signaling
the necessity for some form of DE.

2.2.2. Structure formation and DM

Incorporating Λ in the total density T00 in Eq. (2.5) we can write:

H2 =
8πGρtot

3
− K2

a2
, (2.19)

and we can define the critical density:

ρcrit =
3H2

8πG
, (2.20)
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Figure 2.3.: The evolution of ξ = H ′/H in the ΛCDM model

which is the value of ρ such that K = 0. Observations indicate that the today total density ρ0
tot

is of order:

ρ0
tot =

3H2
0

8πG
∼ ρcrit ∼ 10−29g/cm3 . (2.21)

This means that the Universe is spatially flat and that its average density is of around 10 protons
per cubic meter. On the other hand the existence of baryonic compact objects, like us, indicates
that the Universe contains highly nonlinear regions which are uniformly distributed according
to the cosmological principle. Baryon’s perturbations at recombination, around z = 1100, were
proportional to the CMB fluctuations which are of order 10−4. By solving the perturbations equa-
tions for ρb at linear order during the matter dominated epoch we know that matter overdensities
grow linearly with the scale factor. This in turn imply that today, z ∼ 0, these fluctuations should
be of order 10−1 and thus still linear. We can conclude that if only baryonic matter is present,
its perturbations from the recombination would not have been in time for growing non-linearly
and form compact objects. On the other hand, if another matter species decoupled from photons
prior to recombination soon enough, it would be able to catalyze baryonic structure formation.
Thus Dark Matter is a crucial ingredient for structure formation.

2.2.3. Disc galaxies rotation curves

Spiral galaxies, like the one in which we locate ourselves, are common objects in the Universe.
The distribution of luminous matter is peaked in the center and, using Newtonian arguments
and assuming spherical symmetry, one expects that the centrifugal force is compensated by the
gravitational attraction:

v2

r
=
GM(r)

r2
. (2.22)

Since the mass contained within a radius r is proportional to the volume r3, the velocity of the
stars in the galaxy drops down as we move to higher r as v ∝ r. On the other hand observations
are not compatible with the above simple profile, see for example [23], and show instead that the
velocity of stars in the outer arms of spiral galaxies approaches a constant value. This problem
is known as the flatness of velocity curve of stars, and can be explained by assuming a different
distribution of matter from the visible one, thus invoking the presence of a “dark” matter species.
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Figure 2.4.: The age of the Universe in unit of H−1
0 for a flat FLRW Universe filled with matter

and Cosmological Constant depending on the value of Ω0
Λ

2.2.4. Type Ia supernovae observations

During the 1998 Riess et al. [1] and Perlmutter et al. [2] realized through type Ia Supernovae
observations that the rate of expansion of the Universe is accelerating. Supernovae are extremely
bright stellar explosions which occur in the last stages of a massive star evolution or during the
nuclear fusion of a white dwarf. The brightness of these astronomical transient events is compa-
rable with the one of an entire galaxy, and last for several weeks or months. The classification of
Supernovae is made via spectroscopic measurements and depends on which absorption lines are
present. If there is no Hydrogen line in the spectrum they are classified as type I supernovae, and
type II otherwise. If they contain an absorption line of singly ionized silicon they are classified
as Ia, whereas they are classified Ib if they contain Helium. Finally if they lack both Helium
and Silicon they are classified Ic. Type Ia supernovae are of the utmost importance in cosmology
because their absolute luminosity is roughly constant at the peak of brightness. They are formed
in stellar binary systems containing a white dwarf that increases its mass by absorbing gases
from the companion, eventually causing it to exceed the Chandrasekhar limit and triggering the
explosion. For their properties the type Ia Supernovae are called standard candles, and observing
them at various redshifts it is possible to reconstruct the cosmological evolution. Indeed, it is
well-known that the apparent magnitudes of two sources mi are related with their apparent fluxes
Fi:

m1 −m2 = −5

2
log10

(F1

F2

)
. (2.23)

From the apparent flux of a source and its absolute luminosity Ls it is possible to define the
luminosity distance dL:

d2
L =

Ls
4πF , (2.24)
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finally, the apparent and the absolute magnitude of a source m and M are related as:

m−M = 5 log10

(
dL

10pc

)
, (2.25)

i.e. the absolute magnitude of a source is defined as the magnitude that it would have if observed
at a distance of 10 pc. For type Ia supernovae M is roughly constant and equal to ∼ −19, so
that the apparent magnitudes m1 and m2 of two of them can be related to their distances:

m1 −m2 = 5 log10

(
dL1

dL2

)
. (2.26)

The theoretical prediction for the luminosity distance in a FLRW Universe is:

dL(z) =
c (1 + z)

H0

√
Ω0
K

sinh

(√
Ω0
K

∫ ∞

0
dz̄
H(0)

H(z̄)

)
, (2.27)

which for a flat Universe K = 0 and small values of z can be expanded at second order as:

dL(z) ∼ c

H0

[
z +

(
1− H ′(0)

2H0

)
z2 + ....

]
, (2.28)

and if radiation is negligible Ωr ∼ 0 takes the simple form:

dL(z) =
c

H0

[
z +

1

4

(
1− 3ωDEΩ0

DE

)
z2

]
. (2.29)

From Eq. (2.29) it is straightforward to realize that the presence of DE, remembering that
wDE < 0, pushes dL to higher values with respect to the case without it.

2.2.5. Cosmic microwave background observations

In the Big Bang paradigm the early Universe was filled with a dense plasma of baryons electrons
and photons. Baryons and electrons, which have opposite charge, interact via Coulomb forces.
Photons instead bounce between electrons via Thompson scattering. As the Universe expands
its temperature drops, and electrons and baryons merge to produce hydrogen atoms in the so-
called epoch of recombination, around z ∼ 1100. As a consequence, the density of free electrons
falls and the Thompson scattering of the photons becomes inefficient. When this happens, the
photons are able to escape the baryon plasma and to propagate freely until today, cooling down
to a temperature of around ∼ 2.7 Kelvin. This radiation is called Cosmic Microwave Background
(CMB), and is one of the most precious sources of cosmological information. The CMB was
predicted by Alpher and Gamow, see Ref. [24, 25], already in the late ’40 and it has been
detected for the first time by Penzias and Wilson in 1965 [26]. While at the time they were
able to detect only the background temperature, we are nowadays able to observe with great
precision anisotropies in the CMB of order ∼ 10−5K through satellite experiments like Planck
[19]. The temperature-temperature (TT) power spectrum of the CMB is usually studied in
spherical harmonics and its modes are labeled with the harmonic number `. In Fig. 2.5 is reported
the CMB angular power spectrum for TT anisotropies, together with the theoretical prediction
for the ΛCDM model. The position and the amplitude of the peaks of Fig. 2.5 strongly constrain
the energy densities of the species in the ΛCDM model today. For example, the amount of total
matter and the ratio of the densities can be extrapolated measuring position and amplitudes of
the first three peaks. For a detailed description of the impact on the TT CMB power spectrum
of the cosmological parameters see for example Refs. [28, 29].
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Figure 2.5.: The TT angular Power spectrum of the CMB as a function of the angular scale `
measured by Planck 2015 [27] with the residual errors. The solid line represent the
theoretical prediction for the ΛCDM model and the dots the observed data. Picture
taken from https://www.cosmos.esa.int/web/planck/picture-gallery.

2.3. Open problems of the ΛCDM model

Even being the most accepted paradigm to describe the cosmological evolution of the Universe,
the ΛCDM suffers because of some theoretical and observational issues which lack a satisfactory
explanation. Moreover, even if not properly an issue, the fact that most of the energy density
content of the Universe today is composed by dark species, which are undetected directly with
laboratory experiments, is a strong motivation for research and studies beyond the ΛCDM model.

2.3.1. Troubles with the Cosmological Constant

The Cosmological Constant Λ is the simplest natural candidate for Dark Energy. On the other
hand, the phenomenological value required by the observations to produce the accelerated ex-
pansion is quite challenging to predict from the theoretical point of view. From a quantum field
theory (QFT) perspective the behavior of the Cosmological Constant is at a phenomenological
level equivalent to the expected behavior of vacuum quantum fluctuations. Unfortunately, the
vacuum fluctuations of the fields described in the standard model of particle physics would result
in a value for the Cosmological Constant which span from 123 to 55 orders of magnitude higher
depending on the scenario considered. The above incompatibility is usually referred to as the
Cosmological Constant Problem, see for example Refs. [30, 31, 32] for a detailed account of the
problem. Another problem associated with the Cosmological Constant is the so called Coinci-
dence Problem, see for example Refs. [9, 33]. The coincidence relies on the fact that the present
day energy density of DE and DM are roughly of the same order. Such an occurrence, if not
explained dynamically, would require an extremely severe fine-tuning in the initial condition of
the Universe. Indeed, since the Cosmological Constant density is, of course, constant and the
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DM density dilutes as ρm ∼ a−3, in the early stage of the evolution of the Universe, say the
Planck scale for which a ∼ 10−32, the ratio ρΛ/ρm would be of order ∼ 10−96. This means that
the initial condition for the Universe should be set with the astonishing precision of 96 digits; a
one digit difference would result today in a factor 10 difference on the respective energy densities,
well outside the parameter space allowed by observations.

2.3.2. Troubles with CDM

It turns out from numerical simulations of structure formation that on small scales, around
∼ 1kpc, and for mass scales smaller than M ≤ 1011M�, CDM is not completely satisfactory. For
a review on the topic, see for example Ref. [34]. One of the problems that arise in this framework
is known as the cusp/core problem. Numerical simulations of the ΛCDM shows that DM halos
should present a steep growth of the density profile at small radius, of order ρHalo(r) ∼ rγ ,
with 0.8 ≤ γ ≤ 1.4. On the other hand several observations of small galaxies with well measured
rotation curves prefer 0 ≤ γ ≤ 0.5, showing that pure ΛCDM simulations are too cuspy compared
to the observations.

Another issue with CDM which appeared in the late 90’ is the Missing satellites problem.
Simulations show that DM clumps should exist in a broad range of masses and should results
in thousands of satellite objects with mass M ≤ 300M� trapped in those clumps. On the other
hand, at the time, only a bunch of these satellites were observed. The problem persisted for
roughly two decades, but it seems that nowadays, with the improvement of the observations and
of the numerical simulations, the missing satellites problem had been turned inside out. Indeed,
in the last years astronomers found thousands of low mass objects, which could be too many
compared to those predicted by the simulations, see for example Ref. [35].

Finally, a third known issue of the CDM paradigm is the Too big to fail problem. From
observations, it seems that galaxies fail to form in the most massive subhalos, while at the same
time satellites of lower mass form in less dense subhalos. This appears to be a contradiction,
since most massive satellites should be too big to fail to form in most dense halos while smaller
satellites do so in the lighter ones.

2.3.3. The flat Universe conspiracy

By looking at the angular spectrum of CMB alone it seems that a model of Universe with a
slightly negative curvature is preferred with respect to a flat one. The situation changes if we
also include priors from CMB lensing and BAO, which carry information about H0 and Ωm. The
constraints on the curvature density from Planck 2018 [19] are reported in Fig. 2.6

If we assume that BAO, CMB lensing and CMB polarization data should not be combined,
there is indeed space left for curvature being non-vanishing from Planck 2018 data, see also
Ref. [36]. The impact of such a point of view on the cosmological standard model was considered
by the authors of Ref. [37], which claims that our current understanding of the Universe could
be biased and that would imply a possible crisis for cosmology. As discussed by the authors, the
tendency towards a closed Universe could just be a signal of systematic, but is stronger in Planck
2018 than in Planck 2015 [27], and could indicate a strong disagreement between CMB power
spectrum and BAO measurements. However, it must be noted that there is a strong degeneracy
in the CMB power spectrum between the curvature ΩK and the lensing amplitude Alens. If the
Universe is closed, data favor a higher amount of Dark Matter, which in turn enhance the lensing
effect allowing for a better fit to the data at lower multipole. Whether there is a conspiracy for
a flat Universe or not, the results of [37] show the kind of dangers hidden behind the corner in
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Figure 2.6.: Constraints on a non-flat Universe from CMB angular power spectrum (dashed line),
CMB + lensing (solid green), and CMB + lensing + BAO (purple region). Picture
taken from [19]

the era of high precision cosmology.

2.3.4. Cosmological tensions on H0 and σ8

The history of cosmology is strongly entangled with the history of one of its parameters, the
value of the Hubble factor today. Indeed, while the first measurement of H0 by Hubble buried
the philosophical preconceptions about a static Universe, its measure today possibly uncovers
and targets the Achilles heel of the ΛCDM model.

We can classify brutally most of the sources of cosmological information in two groups, i.e.
measurements of early and Late-times Universe. With Late-times Universe sources we refer to
those measurements performed at low redshift, like for example type Ia supernovae or strong
lensing time delays. With early time Universe measurements we refer mostly to CMB and BAO
observations. State of the art experiments seem to indicate that measurements of H0 from late
and early Universe are in disagreement and this tension is estimated to be significantly above
4σ [38, 39, 40]. In Fig. 2.7, taken from [39], measurements of H0 from different experiments and
their combined results are reported, and the tensions quantified.

Another cosmological parameter suffers from the same kind of issue, the σ8 parameter. It refers
to fluctuations of the matter density on scales of 8h−1Mpc:

σ2
8 =

∫ ∞

0

dk

k

[
3j1(8k)

8k

]2

∆2(k) , (2.30)

where j1 = sin(x)/x− cos(x) is proportional the first order spherical Bessel function and ∆2(k)
is the dimensionless matter power spectrum ∆2 = k3Pm(k)/2π2. It seems to be difficult to solve
both the σ8 and the H0 tensions within the same framework. One of the reasons is that a higher
value of H0 could be obtained with new physics that reduces the size of the sound horizon rs
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Figure 2.7.: The tension on the value of H0 arising from late and early time measurements. Figure
taken from [39].

with early time modifications, whilst in order to tackle the σ8 tension one needs to suppress
the linear power spectrum of matter at Late-times or decrease Ωm. These modifications usually
point towards opposite directions, making it difficult to relieve both tensions within the same
framework. Several modifications of gravity were proposed in order to alleviate the tensions, see
for example Refs. [41] and [42] where interactions between DM and neutrinos and dynamical
DE were considered, or Ref. [43] where a scalar quintessence field couples to DM, reducing its
amount and clustering at Late-times thus alleviating the σ8 tension. A promising new approach
to the problem emerged in recent years, which tackles the tensions by employing the machinery
of DE models proposed to explain the accelerated expansion of the Universe together with a
Cosmological Constant Λ. This was done for example in [44] and [45] for the Brans-Dicke model,
fitting the data better than ΛCDM.

2.3.5. Conclusion

An Occam’s razor logic makes the ΛCDM model the most successful description of the Universe
as we know it. At the cost of six parameters we are able to explain a plethorae of observations
coming from a very broad landscape of physic ranging from astrophysical to cosmological scales.
However, out of these 6 parameters, two are so obscure that we need to label them as dark,
and the situation is even worse when we realize that the darkness fills roughly the 95% of the
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Universe. Moreover, beyond the challenging nature of DM and DE, in the past few years state
of the art observations disclose a Pandora’s box of inconsistencies of the ΛCDM model which
cosmologists are now forced to deal with, above all the cosmological tensions on H0 and σ8.
With our current understanding of the Universe under siege, it is of the utmost importance to
look with fresh eyes and open mind to alternatives of the ΛCDM model. An army of scientists
grouped in surveys is currently working on new experiments and exploring the consequences of
different models. Maybe in 20 years from now they will still rely on a Cosmological Constant and
Cold Dark Matter to describe the evolution of the Universe, or maybe they will have the luck
of witnessing the appearance of new physics. Whether this is the case or not, these are exciting
times to live for cosmologists.





CHAPTER 3.

Dark Energy Bestiarium

The miracle of physics that I’m talking
about here is something that was actually
known since the time of Einstein’s general
relativity; that gravity is not always
attractive

Alan Guth

The goal of this chapter is to give an overview of the possible Dark Energy models beyond
the standard cosmological model, i.e. we would like to present a DE Bestiarium.1 Keeping the
analogy with biology, in the first part of the chapter we will attempt to classify the models based
on their taxonomy,2 i.e. on how they look from the mathematical point of view. In the second
part we will try instead to address their ethology,3 i.e. the way in which different DE models
affect observable quantities.

3.1. Taxonomy of Dark Energy

3.1.1. The Lovelock Theorem

General relativity has been proven to be, at least at some scales, our best description of the
gravitational interaction. The Einstein Field Equations have the nice properties of being local
and covariant differential equations of the metric and its first and second derivatives, and linear
in the latter. One could ask whether there are alternatives to the EFE in order to describe the
interplay between matter and geometry of the space-time. Of the utmost importance in this
direction is Lovelock’s theorem, see Refs. [47, 48], which can be enunciated as follows [49]:

Theorem 1 The only possible second-order Euler-Lagrange expression obtainable in a four di-
mensional space from a scalar density of the form L = L(gµν) is:

Eµν = α
√−g

[
Rµν − 1

2
Rgµν

]
+
√−ggµνΛ , (3.1)

1This choice of terminology is inspired by chapter 9 of Profumo’s book [46]: Bestiarium: A Short, Biased
Compendium of Notable Dark Matter Particle Candidates and Models

2In biology, taxonomy, from Ancient Greek taxis, meaning ’arrangement’, and -nomia, meaning ’method’, is the
science of naming, defining (circumscribing) and classifying groups of biological organisms on the basis of shared
characteristics

3The term ethology derives from the Greek words ethos, meaning ”character” and -logia, meaning ”the study
of”. In Biology refers to the scientific and objective study of animal behaviour
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where α and Λ are constant.

Note that the above theorem is a statement about the form of the field equations resulting from
a scalar Lagrangian, not a statement about the form of the Lagrangian itself, which then could
be different from the standard Einstein Hilbert action.

To rephrase it in other words, Lovelock’s theorem states that if we want a geometrical theory of
gravity in 4 dimensions arising from a scalar Lagrangian of the metric, the only possibility are the
Einstein field equations plus a cosmological constant. The importance of the above result is that
it clearly indicates which kind assumptions we have to relax in order to obtain a gravitational
theory different from general relativity plus a cosmological constant. Indeed the only options left
are:

• Increasing the number of degrees of freedom, i.e. considering other fields together with the
metric tensor gµν .

• Include higher order derivatives in the field equations

• Consider spaces with dimension N 6= 4.

• Giving up Lagrangian formulations

• Abandoning locality and Lorentz invariance of the field equations.

3.1.2. Increasing the number of degrees of freedom

3.1.2.1. Scalar-tensor theories

The most general Lagrangian containing a tensor field and a scalar field which gives second
order equation of motion was discovered by Horndenski in 1974 in Ref. [50]. Later on, it was
rediscovered in the context of the so called generalized Galileon theories, see for example Ref. [51],
and the equivalence between the two theories was shown in Ref. [52]. The general form of the
Horndeski Lagrangian can be written :

L (gµν , φ) =G2 (φ,X) +G3 (φ,X)�φ+G4 (φ,X)R+G4,X (φ,X) (�φ− φµνφµν) +

G5 (φ,X)φµνRµν −
G5,X

6

[
(�φ)3 − 3�φφµνφµν + 2φµνφ

νλφµλ

]
,

(3.2)

where X = ∇µφ∇µφ/2 , Gi,X = ∂XGi and φµν = ∇µ∇νφ. By taking appropriately the free
functions Gi of the above Lagrangian one is able to reproduce any second order scalar tensor

theory as a specific case. Choosing G4 =
M2
Pl
2 and Gi = 0 for i 6= 4 reproduces the Einstein Hilbert

action. The function G2 can account for any free Lagrangian of the scalar field, for example
quintessence. Note that in Eq. (3.2) the functions G3 and G5 must have an X dependence,
otherwise they can be absorbed into G2 and G4 up to a total derivative. Note also that general
Lagrangians of the Ricci scalar, i.e. f(R) theories, belong to the Horndeski family since they can
be cast in a scalar tensor form by defining φ = df/dR and performing a Legendre transformation
of the action functional. The same apply for other geometrical theories which result in second
order equation of motion; for example also a non minimally coupled Gauss-Bonnet is contained
in the Hordenski Lagrangian [52].
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3.1.2.2. Generalized Proca Theories

Another option is to increase the number of degrees of freedom by means of a vector field.
The main advantage of this approach over a multi-scalar field theory is that it generally results
in a richer dynamics. This family of theories is called generalized Proca theories, and were
recently proposed in Ref. [53]. Previous attempts of introducing vector fields in a gravitational
context were made already in the 2000’s, with the goal of modelling anisotropic Dark Energy, see
Refs. [54, 55]. The Lagrangian of the generalized Proca theories is:

LGP = −1

4
FµνFµν +G2(X) +G3(X)∇µAµ+

G4(X)R+G4,X

[
(∇µAµ)2 + c2∇ρAσ∇ρAσ + (1− c2)∇ρAσ∇σAρ

]
+

G5(X)Gµν∇µAν −
1

6
G5,X

[
(∇µAµ)3 − 3d2∇µAµ∇ρAσ∇ρAσ − 3(1− d2)∇µAµ∇ρAσ∇σAρ +

(2− 3d2)∇ρAσ∇γAρ∇σAγ + 3d2∇ρAσ∇γAρ∇γAσ] ,

(3.3)

where Fµν = ∇µAν −∇νAµ is the Maxwell tensor and X = AµA
µ/2. The Gi’s are free functions

of the Proca field and Gµν is the Einstein tensor. Note that in the above Lagrangian the usual
U(1) symmetry of the vector field is broken, i.e. Aµ is not Abelian. The above property becomes
useful and interesting for cosmological implications, indeed it allows for an isotropic background
evolution, see for example Ref. [56]. It is interesting to note that in this class of theories, on FLRW
background, the vector field equation allow for constant solutions which are of de Sitter type,
thus being potentially capable of describe the Late-times accelerated expansion of the Universe
as well as an inflationary epoch.

3.1.2.3. Scalar Vector Tensor (SVT) theories

It is possible to construct a consistent covariant theory which combines together scalar, vector
and tensor interations, known as SVT theories, see Ref. [57]. The resulting theory is richer than
a theory built just from the Horndeski and generalized Proca theories. Indeed, it allows for the
vector and the scalar fields to interact in non-trivial way. Thus, beyond the standard scalars of
Horndeski and Proca theories, the free functions appearing in the SVT Lagrangian depend also
on the scalars:

X2 = −1

2
Aµ∇µφ , Y1 = ∇µφ∇νφFµαF να , Y2 = ∇µφAνFµαF να . (3.4)

In the full SVT Lagrangian we also have terms containing the double dual Riemann tensor:

Lµναβ = εµνρσεαβγδRρσγδ , (3.5)

where the ε’s are the Levi Civita symbols in 4 dimensions.
The general form of the Lagrangian is given in Ref. [57] and the background and perturbed

equations are developed in Ref. [58]. They depend in general on whether the U(1) invariance of
the Proca field is broken or not. It turns out that the resulting theories are useful in Dark Energy
applications and bouncing scenarios, allowing for an accelerated epoch of expansion while being
capable of producing transient contracting phases, which can avoid the appearance of cosmological
singularities.
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3.1.2.4. Bimetric gravity

It is also possible to increase the number of degrees of freedom by introducing a new metric
tensor field fµν . This class of theory is usually known as bimetric gravity and it was formulated
as an attempt to generalize massive gravity models, see Refs. [59, 60, 61]. The action functional
in the original formulation takes the form:

S = M2
g

∫ √−gd4xRg +M2
f

∫ √
−fd4xRf +Meffm

2

∫ √−gd4xLint , (3.6)

where Mi and Ri are the Planck masses and Ricci scalars relative to the metric f and g. Meff =(
M−1
g +M−1

f

)−1
is the effective Planck mass and m2 a mass term associated to the massive

graviton of the metric f . The interaction Lagrangian is given by:

Lint =
1

2

(
X2 −XµνXµν

)
+
c3

3!
εµνρσε

αβγσXµ
αX

ν
βX

ρ
γ +

c4

4!
εµνρσε

αβγδXµ
αX

ν
βX

ρ
γX

σ
δ , (3.7)

where Xµ
ν = δµν +γµν , with γµν defined by the relation γµσγσν = gµσfσν . The above form of the inter-

action Lagrangian has been proposed by the authors to avoid the appearance of Boulware-Deser
ghost in both the g and f metrics. Bimetric models offer a rich and interesting phenomenology
for cosmological implications and have been studied extensively in the literature, see for example
Refs. [62, 63]

3.1.3. Including higher order derivatives

It is well known that General Relativity is not renormalizable from the point of view of QFT due
to the fact that the Newton constant has dimensions of an inverse squared mass GN ∝ m−2. One
of the main historical reasons to consider higher order derivative theories is that they modify
the propagator improving its UV behavior. Let us consider for example the introduction of a
RµνR

µν term; in this case the propagator can be symbolically written as:

1

k2
+

1

k2
GNk

4 1

k2
+

1

k2
GNk

4 1

k2
GNk

4 1

k2
+ ... =

1

k2 −GNk4
. (3.8)

The propagator of Eq. (3.8) is dominated at high Energy by the k−4 term and its UV behavior
is improved. On the other hand we can rewrite it as:

1

k2 −GNk4
=

1

k2
− 1

k2 − 1/GN
, (3.9)

from which we can see that it decomposes in the standard graviton mode k−2 together with the
−1/

(
k2 −G−1

N

)
mode, which has negative sign and thus corresponds to a ghost.

The appearance of ghost modes is a recurring theme in higher order derivative theories and is
strongly related to Ostrogradsky instability, see Refs. [64, 65]. To briefly illustrate how Ostro-
gradsky instability works let us consider a non degenerate Lagrangian containing second order
derivatives L(x, ẋ, ẍ). The associated Euler Lagrange equations are:

∂L
∂x
− d

dt

∂L
∂ẋ

+
d2

dt2
∂L
∂ẍ

= 0 , (3.10)

and the non degeneracy conditions implies ∂2L
∂ẍ2 6= 0. Ostrogradsky showed that if we choose the

following 4 canonical coordinates:

Q1 = x ,Q2 = ẋ , P1 =
∂L
∂ẋ
− d

dt

∂L
∂ẍ

, P2 =
∂L
∂ẍ

, (3.11)
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it is possible to perform a Legendre transformation and obtain the Hamiltonian:

H = P1Q1 + P2A (Q1, Q2, P2)− L (Q1, Q2, P2) , (3.12)

where the function A (Q1, Q2, P2) is obtained inverting Eqs. (3.11) for ẍ. The Hamiltonian (3.12)
is linear in the canonical momentum P1 and thus is unbounded from below, i.e. the system is
unstable. Note that the only assumption made here is invertibility of the Lagrangian with respect
to ẍ, so in order to have well-behaved higher order derivative theories we should consider only
degenerate Lagrangians. An interesting example of a degenerate theory is given by the beyond
Horndeski Lagrangian, also known as Degenerate Higher Order Scalar Tensor (DHOST) theories,
see Refs. [66, 67] for a detailed discussion. A similar construction can be done also for vector
tensor theories, and we end up with the beyond generalized Proca theories, see Ref. [68].

3.1.4. Increasing the number of dimensions

A way out from Lovelock’s theorem that was explored by Lovelock himself is to consider a
geometrical description of the gravitational interaction in more than four dimensions. On the
other hand, we have no observational evidence of the presence of such extra dimensions, thus
higher dimensional theories need a mechanism that hides or compactifies these dimensions at
scales which do not emerge in standard experiments. Higher dimensional theories have attracted
a lot of interest in the past decades, with the most popular being probably string theory. To give
a flavour of the potential of higher dimensional theories, we will discuss briefly here the Kaluza-
Klein model, which inspired and motivated subsequent works on compactifications of higher
dimensions and unifications of the fundamental interactions. We will also introduce the Lanczos-
Lovelock gravity, which is essentially a generalization of General Relativity to an arbitrary number
of dimensions.

3.1.4.1. Kaluza-Klein model

The first higher dimensional extension of General Relativity was suggested by Kaluza in Ref. [69],
in a similar framework as in a previous attempt by Nordstrom [70]. In this model it is possible
to obtain both Maxwell and Einstein equations in four dimensions from a geometrical vacuum
theory with a fifth dimension. The five dimensional metric, g̃ab, becomes here a function of the
standard four dimensional metric gµν plus a vector field Aµ and a scalar field φ, and could be
written as:

g̃ab =

(
gµν + φ2AµAν φ2Aµ

φ2Aν φ2

)
. (3.13)

Kaluza imposed on the metric g̃ab the so-called cylinder condition, i.e. that it does not depend on
the fifth coordinate ∂g̃ab/∂x

5 = 0. The five dimensional vacuum Einstein field equations reduce
to:

Rµν −
1

2
gµνR =

k2φ2

2
TEMµν −

1

φ
[∇µ(∂νφ)− gµν�φ] , (3.14)

while the Maxwell field equations are:

∇µFµν = −3
∂µφ

φ
Fµν . (3.15)

The so called Kaluza’s miracle is that the standard four dimensional Einstein and Maxwell field
equations, with the electromagnetic term appearing in the former as a source term, are recovered
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in the limit φ = 1. However, the latter condition is not consistent with the Klein Gordon equation
for the scalar field:

�φ =
k2φ3

4
FµνF

µν . (3.16)

A lot of criticism was made to Kaluza’s proposal due to the cylindrical condition, i.e. the
introduction of a fifth dimension that plays no role in the dynamics. To overcome this issue,
Klein suggested in Ref. [71] a mechanism of compactification of the fifth dimension, demanding
that it has the topology of a circle S1 of very small radius r. Thus, the whole spacetime has
topology R4 × S1 and physical fields must depend on the fifth dimension only periodically.

3.1.4.2. Lovelock gravity

The topological space’s shape of an object is identified by a constant number ξ, called Euler
number, or Euler characteristic, regardless of the way in which the space is bent. The Euler
characteristic in 2n dimensions can be written as the integral of the Euler density Rn which
reads:

Rn =
(2n!)

2n
δµ1

[α1
δν1
β1
δµ2
α2
δν2
β2
...δµnαnδ

νn
βn]

n∏

r=1

Rαrβrµrνr , (3.17)

where the square bracket indicate antisymmetrization. The Lovelock Lagrangian is the sum of
the Euler densities:

L =
√−g

n∑

t=0

αtRt , (3.18)

and yields to conserved second order Euler Lagrange equations of motion, see for example
Refs. [47, 72] for a detailed derivation. Expanding the above Lagrangian up to second order
we obtain:

L =
√−g

[
α0 + α1R+ α2

(
R2 +RµνρσR

µνρσ − 4RµνR
µν
)

+O(R3)
]
, (3.19)

which shows that at zero and first order the Lovelock Lagrangian reproduces the standard Einstein
Hilbert action plus a cosmological constant, while from the second order term inside the bracket
we appreciate that it contains the Gauss-Bonnet gravity term. Note that in four dimensions the
second and higher order terms become trivial and we are left with standard GR.

3.1.5. Abandoning Lagrangian formulations

Several proposals of modified gravity are based on ad hoc modifications of the EFE which are
not derivable from an action functional, often with interesting cosmological applications. To
illustrate the potential of this kind of modifications we will briefly present two theories belonging
to this class, the Rastall gravity and the RT nonlocal model.

3.1.5.1. Rastall gravity

Following the idea that the stress energy tensor Tµν could be not conserved in curved spacetime,
Rastall proposed in Ref. [73] the following modification of the Einstein field equations:

Rµν −
1

2
gµνR = 8πG

(
Tµν −

γ − 1

2
gµνT

)
, (3.20)
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with a non conserved continuity equation for Tµν :

Tµν;µ =
γ − 1

2
T ν . (3.21)

It has been shown that Rastall gravity is very interesting from the cosmological point of view,
being able to reproduce ΛCDM at the background level, see for example Ref. [74], while being
different at perturbative level and resulting in a type of Dark Energy capable of clustering.

It is a matter of debate if it is possible or not to derive the Rastall equations from a Lagrangian
density. In the 80’, in Ref. [75], the Rastall field equation where obtained by a variational principle
of a Lagrangian density, but the latter was not a scalar Lagrangian and thus the derivation is
not completely satisfactory. Some more recent attempts were made in Refs. [76, 77], where the
field equations were obtained as a particular case of an f(R, T ) theory of the type f(R, T ) =
f1(R) + f2(T ), or from a matter Lagrangian non minimally coupled to gravity. However, some
criticism emerged since for f(R, T ) theories of this type has been claimed that the f2(T ) type
term should be included in the matter Lagrangian and not in the gravitational part, see for
example Ref. [78]. It was also suggested in Ref. [79] that Rastall gravity is equivalent to general
relativity and Rastall’s stress–energy tensor corresponds to an artificially isolated part of the
physical conserved one. This point of view, however, was criticized in Ref. [80] and the debate is
still open.

3.1.5.2. The RT model

The RT model was proposed in Ref. [81] and consist of a nonlocal modification of the EFE
involving the inverse d’Alembertian of the Ricci scalar �−1R:

Rµν −
1

2
gµνR−

m2

3

(
gµν�

−1R
)T

= 8πGNTµν , (3.22)

where the superscript T denotes the extraction of the transverse part, which is in itself already
a nonlocal operation.

We will discuss in detail nonlocal modifications of gravity in chapter 4, for the moment we
will just mention that the within the RT model one is able to reproduce a viable cosmological
history both at background and perturbative level. Contrary to other nonlocal models with
similar features, the RT model is also compatible with experiments at Solar System scales, in
particular Lunar Laser Ranging constraints [82], making it very appealing despite the lack of a
Lagrangian formulation.

3.1.6. Giving up locality and Lorentz invariance

Another class of theories that escapes Lovelock’s theorem is based on modifications of gravity
which include nonlocal terms or which broke explicitly Lorentz invariance. We will discuss in
detail the former in Sec. 4, while we present here as prototypical examples of the latter class of
theories the Unimodular and the Hořava-Lifshitz gravities.

3.1.6.1. Unimodular gravity

The ideas behind Unimodular Gravity (UG) are almost as old as GR itself, and were considered
by Einstein already in Refs. [83, 84]. From the mathematical point of view, UG is equivalent to
standard GR with the following gauge choice, called Unimodular condition:

√−g = ε0 , (3.23)
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where ε0 is a fixed scalar density which provides a fixed volume elements. Thus, UG is essentially
GR with less symmetry, being invariant only with respect to the restricted group of diffeomor-
phisms respecting the Unimodular condition. The interesting property of UG is that, at classical
level, its field equations coincide with the traceless EFE. Then, taking into account them to-
gether with the Bianchi identities, one obtain the standard EFE with a cosmological constant
appearing as an integration constant. Quantum corrections to the energy-momentum tensor of
matter which are of the form Cgµν , where C is a constant over spacetime, do not contribute to
the traceless EFE. In particular, vacuum fluctuations in the trace of the energy-momentum ten-
sor of matter do not affect the metric. With the latter interpretation the cosmological constant
does not couple to gravity, and consequently UG solves the cosmological constant problem, see
Ref. [30]. Several generalizations of UG have been proposed, see for example Ref. [85], where
the right hand side of Eq. (3.23) is equal to the divergence of a vector density field, or Ref. [86]
where an ADM decomposition of the spacetime is assumed with the requirement that the lapse
is a function of the determinant of the spatial metric N = N(γ) only. Of course UG and its
generalizations differ from GR at a quantum level, and their quantization is an active field of
research, see for example Refs. [87, 88, 89, 90, 91].

3.1.6.2. Hǒrava-Lifshitz gravity

The model was suggested in Ref. [92] as a viable candidate of quantum gravity, and is inspired
by physics of condensed matter systems. Its characteristic feature is that space and time are
treated at fundamental level on a different ground, in such a way that they scale anisotropically
in the UV limit. The degree of anisotropy between space and time is measured by the anisotropic
parameter z, and the resulting theory is power counting renormalizable for certain values of z.
The starting point of the construction is that the line element has the following ADM shape:

ds2 = −N2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
, (3.24)

in which N is the shift, N i the lapse and gij is the spatial metric. In GR we have the gauge
freedom of representing the line element in this way foliating the space-time in terms of spacelike
surfaces Σt, whilst in Hořava gravity the above decomposition is not just a choice of coordinates
but rather the fundamental structure of the spacetime. The kinetic term of the action is given
by:

Skin =
1

gK

∫
d3xdtN

√
g
[
KijK

ij − λK2
]
, (3.25)

where the main difference with respect to standard GR is in the constant parameter λ, which
must be unity if we demand Lorentz invariance. The potential part of the action, due to the
anisotropic scaling, allow for the presence of higher order derivative terms of the spatial Ricci
tensor Pab, defined in terms of the spatial metric gab. To achieve power counting renormalizability
in 3+1 dimension we need z = 3, which implies that we can have term up to cubic order in the
3D Ricci tensor and its spatial derivatives. The specific form of the potential depends on the
formulation of Hořava gravity we are considering. In the original formulation of Ref. [92] it is
given by:

VHL =
−g2

K

2ω4
CijCij +

g2
kµ

2ω2
εijkPil∇jP lk −

g2
Kµ

2

8
P ijPij

+
g2
Kµ

2

8(1− 3λ)

(
1− 4λ

4
P 2 + ΛP − 2Λ2

)
,

(3.26)
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where Cij is the Cotton tensor and gk and ω are coupling parameters. At long distances this
potential is dominated by the last two terms, the cosmological constant and the spatial curva-
ture, and the theory flows in the infrared to z = 1 so that Lorentz invariance is accidentally
restored. There is a very interesting phenomenology arising from Hořava gravity in cosmological
applications. It has been shown that certain choices of the potential are able to mimic DM, see
Ref. [93]. It is also possible to seed cosmological perturbation without inflation, see Ref. [94],
realizing bouncing scenarios, see Ref. [95], and model Dark Energy, see Refs. [96, 97, 98].

3.2. Ethology of Dark Energy

As we saw in the previous section, there is a theoretically broad landscape of Dark Energy
candidates. Thus, it is of the utmost importance to have a framework in which to study the
impact of each particular theory on cosmological or astronomical observables. The standard
approach consist of studying the specific form that a bunch of observed parameters takes in a
modified gravity model and compare it with experimental data.

3.2.1. The η and Y parameters

A given theory of DE which allows for a background compatible with the accelerated expansion
of the Universe will have, at perturbative level, some impact on smaller scales. For cosmological
implications one is usually interested only in scalar perturbations, and it is convenient to work
in the Newtonian gauge:

ds2 = − (1 + 2Ψ) dt2 + a2(t) (1 + 2Φ) δijdx
idxj , (3.27)

where Ψ and Φ are two scalar functions, i.e. the two gravitational potentials. One should study
the perturbed modified EFE for this metric and compare with the ones of standard GR. For
many purposes it is useful to work in the quasi static approximation (QSA), i.e. within the
assumptions that spatial derivatives dominate over time ones. This approximation is valid only
on scales well inside the Hubble Horizon, k/aH � 1, see Ref. [99] for a detailed discussion about
the scope of validity of the QSA. From the modified EFE we obtain the two generalized Poisson
equations in Fourier space for the potentials Ψ and Φ in the case of pressureless matter:

k2Φ = 1
2Y (k, t)η(k, t)ρm(t)δm(k, t) , (3.28)

k2Ψ = 1
2Y (k, t)ρm(t)δm(k, t) , (3.29)

where we have defined the anisotropic stress parameter η = −Φ/Ψ and the Y parameter, which
describes an effective gravitational coupling Geff and measures deviations from the Newton
constant GN for matter. Both these parameters can be constrained by observations; for example
η has been constrained to be η ≤ 10−5 on solar system scales by the Cassini spacecraft, see
Refs. [100, 101, 102]. It is also possible to constrain Y and its time derivative at various scales,
see for example Refs. [103, 104, 105, 8].

3.2.2. Linear theory of structure formation

As we saw before, several Dark Energy models can be expressed in the form of a scalar-tensor
theory, i.e. they belong to the general class of Horndeski theories. Through an effective field
theory approach (EFT) for the Horndeski theories, it was shown in [106] that the cosmological
information about linear perturbation theory can be encoded in four parameters:
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• αK is a parameter related to the kinetic energy of the scalar field and to it contribute all
the Gi functions of the Hordenski Lagrangian (3.2). It is also called Kinecity

• αB is a parameter related to the clustering properties of DE. It is also called Braiding and
comes from the mixing of the kinetic terms of both the metric and the scalar field. To it
contribute the functions G3, G4 and G5.

• αM encodes the effects of a varying effective Planck mass M and generates anisotropic
stress. To it contribute G4 and G5

• αT is related to the velocity of propagation of tensor modes. It leads to the emergence
of anisotropic stress by modifying the Newtonian potential Ψ even in absence of scalar
perturbations. To it contribute both G4 and G5.

A similar EFT approach could be applied also to Generalized Proca Theories, see Eq. (3.3),
and SVT theories.

As an example of the capability of the method, let us consider the measurements of αT made
possible from the event GW170817 and its electromagnetic counterpart. Since no significant de-
viation on the velocity of the gravitational waves was detected with respect to the value predicted
by GR, the observation suggests αT = 0. This in turns implies G4 = const and G5 = 0, thus
ruling out roughly half of the Hordenski theories, see Refs. [107, 108, 109, 110, 111]. The same
applies for the G4 and G5 function of generalized Proca and SVT theories. There is however still
a caveat in the above argument, which relies on the fact that the event GW170817 comes from
a fairly close distance, and thus we only got information about the value of αT from Late-times
observations. It was showed in Ref. [112] that it is possible to have a class of theories, which
exhibits scaling behavior, capable of reaching dynamically an attractor solution compatible with
αT = 0.

3.2.3. Equation of state of Dark Energy

We do know that the equation of state parameter wDE of Dark Energy in the case of a cosmological
constant behave as the one of vacuum energy, and has the value wΛ = −1. Current observations
are compatible with this value, but do not exclude a wider parameter space with enough accuracy.
It must be stressed however that a measure of wDE alone cannot tell us too much about the
fundamental nature of Dark Energy, see for example Refs. [113, 114]. On the other hand, a
precise measurement of wDE could be used to rule out particular Dark Energy candidates. For
example, a measurement of w 6= −1 with enough statistical accuracy would rule out a pure
ΛCDM scenario. Most of DE models predict a value for wDE > −1, thus a measurement in this
direction would not be particularly enlightening about the nature of DE. On the other hand, a
statistically significant measure of wDE < −1 at any time of the cosmological evolution would
carry a lot of information about gravitational physics. Such a regime, called phantom, it is indeed
associated to the fact that either gravity is not minimally coupled to matter, or that DE is not a
perfect fluid which can interact with other species. Indeed, it is a well known fact that a perfect
fluid or a minimally coupled scalar field in a phantom regime would carry ghost or gradient
instabilities, see Ref. [115].

3.2.4. Variation of the electromagnetic coupling αEM

As we mentioned before for the case of the Newton constant GN , some models of Dark Energy
result in a violation of the equivalence principle. The specific case of a possible variation of the
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fine structure constant was discussed by Bekenstein in the pioneering work [116]. Bekenstein,
at the time, concluded that tests of the equivalence principle rule out spacetime variability of
αEM at any level. In the last decades, however, huge improvements have been made from the
experimental point of view, leading to tight constraint on the variation of αEM , see for example
Refs. [101, 117, 118, 119, 120], and claims of statistical evidences of αEM variations, see for
example Refs. [121, 122]. For the above reasons, the subject is nowadays very popular and
a violation of the equivalence principle could potentially confirm or rule out several alternative
theories of gravity [123]. One could in general distinguish between variations on the value of αEM
on large or local scales. On local scales the variation of αEM is related to the local gravitational
field, see for example Refs. [124, 125, 126]. On cosmological scales these could be motivated by a
modification of the gravitational theory due to the dynamical behavior of the DE field and were
extensively studied in the literature, see for example Refs. [127, 128, 129, 130, 131, 132, 133, 134,
135]. It is important to note that the connection between DE and the variation of αEM is of great
importance from the observational point of view, since it is indeed possible to relate constraints
on ∆α to constraints on DE parameters, see for example Refs. [136, 137, 138].





CHAPTER 4.

Nonlocal gravity

I am a Quantum Engineer, but on
Sundays I Have Principles.

John Stewart Bell

Most of our research in the last years focused on nonlocal modifications of gravity as DE
candidates. We mention this class of theories in the previous chapter, since giving up from locality
is a possible escape route from Lovelock’s Theorem. Amongst the possible choices of nonlocal
modifications, particularly interesting for DE applications are those which introduce the inverse
d’Alembert operator acting on the Ricci scalar �−1R. In this chapter we will briefly review this
particular branch of modified gravity models, with emphasis on their fundamental motivations
and their general features. In particular, we will introduce the Deser Woodard (DW), the RR1

and the VAAS2 nonlocal models. The first two are amongst the most popular and analyzed
models belonging to this class, while the latter has been proposed recently in Ref. [3].

4.1. Motivation

Nonlocalities emerged from quantum mechanics already in the early stage of its formulation,
see for example Ref. [139], and Ref. [140] for a nice historical review. Phenomena observed
experimentally like the quantum entanglement and the Ahronov-Bohm effect show indeed that
an effective description of quantum mechanics, or rather of reality, must be nonlocal. As it
is widely known, it is difficult to construct a consistent theory of quantum gravity starting
from GR, which in order to be renormalizable requires the introduction of infinite counterterms.
Thus, just like the Fermi description of the weak interaction, one could think that GR is just an
effective geometrical description of a most deep underlying theory, and it makes sense to look
for phenomenological modifications of the EFE that arise from quantum effects. The idea that
the latter could be used to explain the nature of DE or other open problems of the ΛCDM is
particularly intriguing, and the Leitmotiv of many nonlocal theories of gravity. The standard
recipe is to postulate an ansatz for the functional form of the nonlocal modification motivated
by fundamental physics. Then one studies the phenomenology of the modification at background
and perturbative level and test it against observations.

1The RR model takes its name from the structure of its Lagrangian term R 1
�R.

2This model takes its name from the initials of authors Vardanyan, Akrami, Amendola and Silvestri.
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4.1.1. The quantum effective action

Nonlocal effects could naturally arise when we move from the classical action functional of a given
field theory to its quantum effective action. We will briefly review here the construction of the
quantum effective action and its generalization to curved background following Ref. [141].

To begin with, consider a scalar field ϕ with classical action S [ϕ] in a flat space of dimension
D. Once we introduce an auxiliary, classical source J(x) we can define the generating functional
of the connected Green’s function W [J ]:

eiW [J ] =

∫
DϕeiS[ϕ]+i

∫
Jϕ , (4.1)

where the path integral measure Dϕ denotes integration over all the possible configurations of
the field ϕ and

∫
Jϕ is a shortcut for the integral

∫
dDxJ(x)ϕ(x), so that the spatial dependence

of the source has been integrated out. Functional variation of W [J ] with respect to the source
gives the vacuum expectation value of the field ϕ in presence of a source, i.e.:

δW [J ]

δJ(x)
= 〈0|ϕ(x)|0〉J ≡ φ[J ] , (4.2)

where we have defined the scalar field φ to indicate the vacuum expectation value of ϕ as function
of the source J . The quantum effective action Γ[φ] is a function of the vacuum expectation value
and is defined as the Legendre transform:

Γ[φ] ≡W [J ]−
∫
φJ [φ] , (4.3)

where J [φ] is obtained by inverting Eq. (4.2). By varying the quantum effective action Γ we
obtain:

δΓ[φ]

δφ(x)
= −J(x) , (4.4)

where the implicit spatial dependence of φ[J(x)] has been exploited. As we can see, since on the
right hand side of Eq. (4.4) we have the source J(x), the variation of the quantum effective action
gives directly the equation of motion for the vacuum expectation value of the field. A useful path
integral representation of the quantum effective action is:

eiΓ[φ] = eiW [J ]−i
∫
φJ

=

∫
Dϕe

iS[ϕ+φ]−i
∫ δΓ[φ]

δφ
ϕ
,

(4.5)

which explicitly shows that the quantum fluctuations of the field ϕ have been integrated out
in the quantum effective action Γ[φ], which is instead a functional of the vacuum expectation
value and the source only. It is straightforward to generalize the above construction on curved
background described by a metric gµν using a semi-classical approach, i.e. treating the metric
at a classical level while the other fields as quantum objects. The representation of quantum
effective action then becomes:

eiΓ[gµν ,φ] = eiSEH
∫
Dϕe

iSm[gµν,φϕ]−i
∫ δΓ[gµν,φ]

δφ
ϕ
, (4.6)

from whose variation we obtain the semi-classical EFE Gµν = 〈0|Tµν |0〉.
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4.1.2. The QED example

To understand which kind of nonlocal modifications could appear in the quantum effective action
let us consider the case of Quantum Electrodynamics (QED). The quantum effective action takes
the form, see for example Ref. [142]:3

ΓQED = −1

4

∫
d4x

[
Fµν

1

e2 (�)
Fµν +O

(
F 4
)]

. (4.7)

where e2 (�) is called form factor. When the electron mass is small with respect to the relevant
energy scale we have:

1

e2 (�)
' 1

e2 (µ)
− 1

(12π)2 log

(−�
µ2

)
, (4.8)

where the µ is the renormalization scale and e2 (µ) the renormalized charge. Nonlocality emerges
because of the logarithm of the d’Alembert operator �. It is defined by its integral representation:

log

(−�
µ2

)
=

∫ ∞

0
dm2

[
1

m2 + µ2
− 1

m2 −�

]
, (4.9)

where nonlocality emerges due to the appearance of the �−1 operator. In the above example
we have explicitly shown how from the classical Lagrangian of QED we could obtain nonlocal
contributions due to the running of the coupling constant.

4.2. Technical stuff

4.2.1. Localization

The main character of the nonlocal class of theories we are considering here is the inverse of the
d’Alembert operator acting on the Ricci scalar �−1R. In order to perform calculations involving
this quantity an extremely useful trick was developed in Ref. [143], which makes it is possible
to cast these models in the form of a scalar tensor theory. The starting point is to define an
auxiliary scalar field U = −�−1R whose Klein Gordon equation immediately follows:

�U = −R . (4.10)

Thus a general Lagrangian density containing an arbitrary function f(�−1R) could be rewritten
as:

LNL = f(U) + λ (�U +R) , (4.11)

where we introduced the Lagrange multiplier λ. If negative powers of the d’Alembert operators
appear in the original action, the above procedure can be iterated and the theory is mapped in
a multi-scalar tensor theory. For example, if the Lagrangian contains a term �−2R, as in the
model proposed in Ref. [144], it can be localized by introducing 4 coupled auxiliary fields with
their respective Lagrange multipliers:

�U = −R , �S = −U , �Q = −1 , �L = −Q . (4.12)

It is important to properly carry on the procedure of localization without introducing modifi-
cations of the original theory. The equivalence between the two formulations was debated after

3When we integrate out the quantum fluctuations of the electron and restrict ourselves to terms involving the
photon field only for simplicity
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the papers [145, 146] and [147], which were analyzing structure formation in the DW model and
obtained initially different results. It turns out that the analysis of Ref. [145] was not correct,
but the arising discussion about the localization procedure helped to outline its possible stability
issues and the appearance of ghosts [148, 149]

4.2.2. Degrees of freedom and stability in the localized formulation

The introduction of auxiliary fields naturally rises the question of whether there are or not new
degrees of freedom generated by the nonlocal operator �−1R. The question is subtle and some
care must be taken in the procedure of localization. Moreover, by looking at Eq. (4.10), it is
straightforward to realize that the kinetic energy of the auxiliary field would be of negative sign,
i.e a ghost.

To properly understand this point, let us consider the Lagrangian of a massive Proca field:

LProca = −1

4
FµνFµν −

1

2
m2AµAµ , (4.13)

which describe a massive boson, with the U(1) gauge invariance broken by the mass term. It has
been shown in Ref. [150] that the above Lagrangian is equivalent to the following nonlocal but
gauge invariant one:4

L = −1

4
Fµν

(
1− m2

�

)
Fµν . (4.14)

If we now proceed with the localization procedure and define an auxiliary field Uµν = �−1Fµν ,
the latter would introduce new degrees of freedom, which are surely not present in the La-
grangian (4.13). In order to avoid the appearance of such spurious degrees of freedom, in the
localization procedure we have to select only a particular family of solutions of Eq. (4.10). The
general solution for the field U would be the sum of the homogeneous and the particular one:
U = Uhom + Upar. In order to avoid any further propagating degrees of freedom, during the lo-
calization procedure we should specify that U is not the most general solution defined by �−1R,
but only a particular solution selected by fixing its boundary conditions. Following this recipe we
avoid the appearance of ghosts associated to U after quantization. Of course the above procedure
does not prevent the theory from developing instabilities at classical level, which however do not
necessarily imply a pathological behavior of the theory. In particular, if such instabilities emerge
on cosmological scales and at Late-times, they could be able to drive the present accelerated
expansion of the Universe.

4.3. Nonlocal models

In this section we will briefly review a bunch of different nonlocal models proposed in the last
years which are able to provide a viable cosmological history at background level, and are thus
potentially very interesting Dark Energy candidates.

4.3.1. The Deser Woodard model

One of the most popular nonlocal gravitational theory was proposed in Ref. [151] and it is known
as Deser Woodard (DW) model. The fundamental idea is to incorporate nonlocal effects without

4As long as we impose that the inverse d’Alembertian is defined in terms of the retarded Green’s function only
to obtain casual solutions.
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postulating a priori any specific form of the nonlocal modification. This is achieved by introducing
a free function of the inverse d’Alembertian of the Ricci scalar, called distortion function, and
reconstruct it in such a way that it produce a background cosmological history identical to the
one of the ΛCDM without cosmological constant. Then one can study the perturbative regime
and test its compatibility with observations. For a review on the main features of the model we
address the reader to Ref. [152]; the issue of ghosts is studied in Ref. [149]. A detailed study of its
dynamics is performed in Ref. [153], while its Newtonian limit is studied in Ref. [154]. The effects
of such kind of modification for structure formation are studied in Refs. [146, 145, 147], while
constraints from observational datasets are found in Ref. [155]. Finally, an improved version of
the model has been recently proposed in Ref. [156].

The Lagrangian of the model is:

L = LEH +Rf

(
1

�
R

)
, (4.15)

and it could be mapped in a localized scalar tensor theory by introducing the auxiliary fields, see
Ref. [143]:5

�U = −R , (4.16)

�V = f̄(U)R , (4.17)

where f̄ indicates the derivative of the distortion function f with respect to U . The EFE on
FLRW flat background using the e-fold number N as time parameter are:

(1 + f − V ) = −U
′V ′

6
− f ′ + V ′ +

ΩR + ΩM

h2
, (4.18)

(2ξ + 3) (1 + f − V ) = V ′′ − f ′′ +
(
V ′ − f ′

)
(2 + ξ) +

U ′V ′

2
− ΩR

h2
, (4.19)

and the KG equations for the auxiliary fields are:

U ′′ + (3 + ξ)U ′ = 6 (2 + ξ) , (4.20)

V ′′ + (3 + ξ)V ′ = −6 (2 + ξ) f̄ . (4.21)

To solve the above system of equations without introducing ghost we need to fix the initial
conditions for the auxiliary fields. If we impose the latter in such a way that they are compatible
with a radiation-dominated epoch, h2

i ∼ ΩRi and ξi ∼ −2, Eqs. (4.18) and (4.19) provide the two
following constraints:

fi − Vi = −1

6
U ′iV

′
i − f ′i + V ′i , (4.22)

−fi + Vi = −V ′i − f ′′i +
U ′iV

′
i

2
, (4.23)

where in Eq. (4.23) we used Eq. (4.21) evaluated at ξi = −2.
As expected, the value of Ui is unconstrained since it appears on the field equations only

through the function f(Ui); to compute the time derivative of the latter we use the chain rule
f ′ = f̄U ′, so that:

f ′′ = ¯̄fU ′2 − f̄U ′′ . (4.24)

5We are using a different definition for the field U with respect to the one of Ref. [143]. The original ones are
obtained by making the substitutions U → −U , f̄ → −f̄ .
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Evaluating Eq. (4.24) at N = Ni we get:

f ′′i = ¯̄fiU
′
i
2 − f̄U ′i , (4.25)

where we have used Eq.(4.20) with ξi = −2.
In Ref. [157] it was developed a technique to reconstruct the distortion function starting from

any cosmological history. For the ΛCDM, the best analytical approximation for the distortion
function was computed in Ref. [148] and is given by:

f(U) = 0.243
[
tanh

(
0.348Z + 0.033Z2 + 0.005Z3

)
− 1
]
, (4.26)

where Z = −U + 16.7. Note that the above distortion function satisfies the condition f(Ui) ' 0
by choosing Ui = 0.

4.3.2. The RR model

Another very popular nonlocal theory is the RR model, proposed by Maggiore and Mancarella in
Ref. [158]. The model attempts to ascribe the accelerated expansion of the Universe to nonlocal
modifications of the quantum effective action caused by the appearance of a new mass scale
m2 dynamically generated in the infrared. For a complete review on the model we address the
reader to Ref. [141]; the cosmological perturbation theory and the impact on structure formation
are studied in Ref. [159]. A dynamical system analysis of the model was performed numerically
in Ref. [160], while in Ref. [161] the model is tested against observation and compared using a
bayesian approach with the ΛCDM.

In this theory one adds to the usual Einstein-Hilbert Lagrangian a nonlocal modification of
the form:

L = LEH −
1

6
m2R

1

�2
R , (4.27)

and it is possible to localize the theory by introducing the auxiliary fields:

�U = −R , (4.28)

�S = −U . (4.29)

Defining the dimensionless quantity V = H2
0S and varying the action we obtain the following

background EFE, written in terms of the e-fold number N , see Ref. [160]:

h2 =
Ω0
Me
−3N + Ω0

Re
−4N + γ

4U
2

1 + γ
(
−3V − 3V ′ + 1

2U
′V ′
) , (4.30)

ξ =
−3ΩM−4ΩR

h2 + 3γ
(
U
h2 + U ′V ′ − 4V ′

)

2 (1− 3γV )
, (4.31)

where we have defined γ ≡ m2/9H2
0 . The KG equations of the auxiliary fields are instead:

V ′′ + V ′ (3 + ξ) =
U

h2
, (4.32)

U ′′ + U ′ (3 + ξ) = 6 (2 + ξ) . (4.33)

In order to avoid the introduction of new degrees of freedom we have to fix properly the initial
conditions. Compatibility with radiation domination h2

i ∼ ΩRi and ξi ∼ −2 imply that Eqs. (4.30)





Nonlocal gravity Section 4.3

and (4.31) at some initial time N = Ni become:

U2
i

4h2
i

= −3Vi − 3V ′i +
1

2
U ′iV

′
i , (4.34)

Vi =
Ui
4h2

i

+
1

4
U ′iV

′
i − V ′i , (4.35)

providing two constraints for the four initial conditions required on Vi, V
′
i , Ui, U

′
i .

4.3.3. The VAAS model

This model was proposed in Ref. [3], where the possibility of a nonlocal interaction term in a
bimetric theory of gravity was investigated for the first time. The action is the following:

S =
M2
Pl

2

∫
d4x
√−gR+

M2
f

2

∫
d4x
√
−fRf

−M
2
Pl

2

∫
d4x
√−gα

(
Rf

1

�
R+R

1

�
Rf

)
+ Sm[g,Ψ] , (4.36)

where Ψ is a shortcut notation for all the matter fields, including CDM, and fµν is the auxiliary
metric which does not couple to matter. It turns out, from computing the Bianchi constraints,
that Rf must be constant and thus the action become:

S =
M2
Pl

2

∫
d4x
√−g

(
1 +m2 1

�

)
R+ Sm[g,Ψ] , (4.37)

and the arising field equations can be cast as follows:

(1− 2αV )Gµν +m2(1− U/2)gµν + 2α∇µ∇νV + α∇ρV∇ρUgµν
−2α∇µU∇νV = 1

M2
Pl
Tµν , (4.38)

where the auxiliary metric f enters only through m2 ≡ −2αRf and all the other geometrical
quantities are computed from the metric gµν . The two auxiliary fields U and V were introduced
in order to localize the theory and satisfy the following KG equations:

�U = R , �V = − 1

2α
m2 . (4.39)

Later on, in Ref. [144], an equivalent formulation of the theory was obtained motivated by
nonperturbative lattice quantum gravity. The background cosmology was numerically studied in
Ref. [3], where the compatibility with the standard cosmological history of the ΛCDM is showed.
The EFE and the Klein gordon equations in a flat FLRW background, written in terms of the
e-fold number N , are:

3Ṽ + m2U
2H2 + 3Ṽ ′ + U ′Ṽ ′

2 = ρ
M2
PlH

2 , (4.40)

−Ṽ (3 + 2ξ) + m2

H2 (1− U/2) + Ṽ ′ + U ′Ṽ ′

2 = 1
M2
PlH

2P , (4.41)

U ′′ + (3 + ξ)U ′ + 6 (2 + ξ) = 0 , (4.42)

Ṽ ′′ + (3 + ξ) Ṽ ′ = −m2

H2 , (4.43)
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where we have defined Ṽ ≡ 1 − 2αV . Imposing initial conditions compatible with a radiation-
dominated era, i.e. h2

i ∼ ΩRi and ξi ∼ −2, the EFE for a flat FLRW at some initial time N = Ni

read:

Ṽi +
γUi
6h2

+ Ṽ ′i +
1

6
U ′i Ṽ

′
i = 1 , (4.44)

Ṽi −
γ

h2
i

(
1− Ui

2

)
+ Ṽ ′i +

1

2
U ′i Ṽ

′
i = 1 . (4.45)

The latter equations provide two constrains among the four initial conditions on the auxiliary
fields Ui, U

′
i , Ṽi, Ṽ

′
i .





CHAPTER 5.

Personal Contribution:
Nonlocal gravity

The worthwhile problems are the ones you
can really solve or help solve, the ones
you can really contribute something to.
No problem is too small or too trivial if
we can really do something about it.

Richard Feynman

In this chapter I will present the results of my research about nonlocal models of gravity. In
particular, the first part of the chapter is devoted to the results of Ref. [4] on VAAS gravity.
The second part of the chapter addresses instead the study of the general features of the Late-
times asymptotic equation of state for a general class of nonlocal models, following the results of
Ref. [5].

5.1. Dynamical system analysis and Newtonian limit of VAAS gravity

In Ref. [3] the cosmological behavior of VAAS gravity was analyzed numerically and found to
be compatible with the one of ΛCDM, but an analytical understanding of its dynamics was
not addressed. In Ref. [4] we tried to fill this gap using a dynamical system analysis approach,
revealing a number of interesting features. In particular, we addressed the existence of critical
points and their stability, and studied in a qualitative but analytical way the Late-times dynamics
of the model. We also studied the impact on small scales of the nonlocal modification, i.e. we
have studied its Newtonian limit on solar system scales and within the quasi static approximation
(QSA), showing explicitly the existence of static solutions and the changes in the perturbations
equation for the density contrast.
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5.1.1. Critical points

Defining X ≡ U̇ and Y ≡ V̇ it is possible to write down Eqs. (4.38) and (4.39) for a flat FLRW
background in the form of a closed dynamical system:

Ḣ =
1

1− 2αV

[
ρ− P
2M2

Pl

+
m2

2
(1− U) + 2αHY

]
− 3H2 , (5.1a)

ρ̇ = −3H(ρ+ P ) , (5.1b)

Ẋ = −3HX − 6H2 − 6

1− 2αV

[
ρ− P
2M2

Pl

+
m2

2
(1− U) + 2αHY

]
, (5.1c)

Ẏ =
m2

2α
− 3HY , (5.1d)

U̇ = X , (5.1e)

V̇ = Y . (5.1f)

We also have to keep into account the following constraint coming from the first Friedmann
equation:

(1− 2αV )3H2 +
m2U

2
− 6HαY − αXY =

ρ

M2
Pl

. (5.2)

We define as critical point of the dynamical system a point in the phase space for which the right
hand side of equations (5.1) vanish. The details of the analysis of the above system are reported
in Appendix A, from which we can draw the following conclusions:

• For m2 = 0 and U = const, the only critical point at finite distance represents Minkowski
space.

• For m2 = 0, U = −4Ht and H constant, the only critical point at finite distance represents
a de Sitter space.

• For m2 6= 0 there are no critical points at finite distance;

• At infinite distance we found an unstable hyperplane of critical points of Minkowski type.

The above results are particularly interesting because m2 is the free parameter of the theory
that set the strenght of the nonlocal modification. The fact that for m2 6= 0 we do not have
stable critical points reflects and confirms the classical instability typical of these models we were
talking about at the end of subsection 4.2.2.

5.1.2. Qualitative dynamics

By looking at Eqs. (4.40) and (4.41) we see that there is a complicated interplay between the
auxiliary fields U, V and the Hubble function H, which makes not trivial the qualitative under-
standing of the dynamical behavior of the system. To get some insight, let us begin with the
Klein Gordon Eqs. (4.39) written in terms of X ≡ U̇ and Y ≡ V̇ :

X ′ + (3 + ξ)X + 6 (2 + ξ) = 0 , (5.3)

Y ′ + (3 + ξ)Y = −m
2

H2
. (5.4)
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The latter have the formal solutions:

X(N) = C1e
−F (N) − 6e−F (N)

∫ N

Ni

dN̄eF (N̄)[2 + ξ(N̄)] , (5.5)

Y (N) = C2e
−F (N) − e−F (N)

∫ N

Ni

dN̄eF (N̄) m2

H2(N̄)
, (5.6)

with C1 and C2 integration constants and:

F (N) ≡
∫ N

Ni

dN̄ [3 + ξ(N̄)] . (5.7)

As we discussed in 4.2.2, it is important to fix the initial conditions in order to avoid the appear-
ance of spurious propagating degrees of freedom. From the formal solutions of X and Y we see
that:

C1 = X(Ni) , C2 = Y (Ni) , (5.8)

and choosing vanishing initial conditions for the fields, which are compatible with the constraints
of Eqs. (4.44) and (4.45), we obtain:

X(N) = −6e−F (N)

∫ N

Ni

dN̄eF (N̄)[2 + ξ(N̄)] , (5.9)

Y (N) = −e−F (N)

∫ N

Ni

dN̄eF (N̄) m2

H2(N̄)
. (5.10)

It is straightforward to realize from the above equations that if ξ > −2, which is compatible with
the standard cosmological evolution, then both X and Y are always negative. It is also easy to
prove the following inequality:1

X + 6 > 0 . (5.11)

It is interesting to study the behavior of U and V during the different phases of the cosmological
evolution. The explicit calculations are reported in Appendix B, the results of which are:

• During the radiation domination (RD), ξ = −2, we obtain:

URD = 0 , (5.12)

ṼRD = − m2

20H2
0Ω0

r
e4N − m2

5H2
0Ω0

r
e5Ni−N + m2

4H2
0Ω0

r
e4Ni + 1 . (5.13)

• During the matter dominated epoch (MD), ξ = −3/2, we have:

UMD = C1 − 2N , (5.14)

ṼMD ∼ 1− m2

12H2
0Ω0

m
e3N . (5.15)

Let us now try to understand how these solutions evolve at Late-times when matter and radiation
are diluted enough. Following the reasoning of Appendix B, we can conclude that at Late-times
(LT) the field V evolve as:

ṼLT ∼ −
m2ULT

6H2
. (5.16)

1The details of the calculation are reported in Appendix B
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From the latter equation we can estimate then the behavior of ξ:

ξ ∼ −3− 1

ṼLT

m2ULT
2H2

→ 0 , (5.17)

so that at Late-times ξ vanishes approaching the value it would have in the ΛCDM scenario,
independently of the value of m2. The latter occurrence is not a coincidence, and we will discuss
it in detail in section 5.2. Using the above asymptotic expressions for ξ we found:

ULT = C1 − 4N , (5.18)

from which we finally obtain the evolution of the Hubble factor at Late-times:

ξ = − 3
C1−4N = − 3

ULT
, (5.19)

H = C2|C1 − 4N |3/4 = 3|ULT |3/4 . (5.20)

Fig. 5.1 shows the agreement between our analytical approximation for the evolution of the
Hubble factor at Late-times and the numerical solution, as well as the agreement between the
latter and the ΛCDM model in the past.

0 2 4 6 8 10
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Figure 5.1.: Behavior of the VAAS model and the analytical approximation of Eq.(5.20) compared
to ΛCDM for m2 = 0.232H2

0 .

Summarizing, our qualitative analysis shows that if choosing vanishing initial condition deep
into the radiation dominated epoch results in the following cosmological evolution:

• During the RD epoch the field U is constant and vanishing, while V ∼ e4N .

• During the MD epoch the field U becomes linear in N and starts to grow, while V ∼ e3N .

• At Late-times we found that V ∝ U/H2, which in turns implies that ξ → 0. As a result,
U goes linearly as U ∼ −4N and H = 3|U |3/4, so that ξ = H ′/H ∝ U−1 approaches 0 as
∼ N−1.
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5.1.3. Newtonian Limit

5.1.3.1. First order perturbations

In order to understand the effects of the VAAS nonlocal term at small scales we will consider
first order perturbations of the FLRW metric in the Newtonian gauge, i.e.:

ds2 = −dt2 (1 + 2Ψ(x,t)) + a(t)2 (1 + 2Φ(x,t)) δijdx
idxj , (5.21)

where Ψ and Φ are the gravitational potentials. We also need to consider perturbations of the
auxiliary fields:

U(x, t) = U0(t) + δU(x, t) , V (x, t) = V0(t) + δV (x, t) , (5.22)

where U0 and V0 are the background solutions of the Klein Gordon equations (4.42)(4.43). The
first order perturbed Friedmann equation in Fourier space is then:

(1− 2αV )

(
6Hφ,0 − 6H2ψ + 2

k2φ

a2

)
− 6αδV H2 − 2m2

(
1− U

2

)
ψ +m2 δU

2

+ 2α

(
δV,00 − ψ,0V,0 − i

kiψ

a2
V,i

)
− α

(
V 0
, δU,0 + V k

, δU,k + δV 0
, U,0 + δV k

, U,k

)

− 2αψ
(
V 0
, U,0 + V k

, U,k

)
− 2α (δU,0V,0 + U,0δV,0) =

δρ

M2
Pl

,

(5.23)

while the acceleration equation is:

(1− 2αV )
2

3a2
k2 (φ+ ψ) +

(
kikj

k2
− 1

3
δij
)[
−2αδV Gij +m2

(
1− U

2

)
2aδijφ−

m2δU

2
δija

+ 2α
{
δV,ij − δija,0aδV,0 − δija2 [H + 2H (φ− ψ) + φ,0]V,0 − iφ (δkikj + δkjki − δijkk)V,k

}

+ αaδij

(
V 0
, δU,0 + V k

, δU,k + δV 0
, U,0 + δV k

, U,k

)
+ 2φaδijα

(
V 0
, U,0 + V k

, U,k

)
− 2α (δU,iV,j + U,iδV,j)

]

=

(
kikj

k2
− 1

3
δij
)
δTij
M2
Pl

.

(5.24)

Finally, the Klein Gordon equations for the auxiliary fields are:

δUµ,µ +HδU0
, + ψ,0U

0
, + ikiψU

i
, + φ,0U

0
, + iφkjU

j
,

= −12ψ
(
H2 +

a,00

a

)
− 2

a2
∇2ψ + 6φ,00 − 6H (ψ,0 − 4φ,0)− 4

a2
∇2φ ;

(5.25)

δV µ
,µ +HδV 0

, + ψ,0V
0
, + ikiψV

i
, + φ,0V

0
, + iφkjV

j
, = 0. (5.26)

5.1.3.2. Solar system scales

For analyzing physics at solar system scales we will adopt an approach similar to the one of
Ref. [154] and make the following approximations:

• We will ignore the cosmological expansion, so we set the scale factor a ≈ 1 and the Hubble
factor H ≈ 0.

• We look for static spherically symmetric solutions of the gravitational potential.
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• We set matter perturbations to 0.

Note that since in VAAS gravity there is no Minkowski solution at background level for m2 6= 0,
we have to consider m2 as a perturbative quantity in the following calculations. The perturbations
equations under these approximations become:

∇2Φ = 0 , (5.27)

∇2 (Φ + Ψ) + α∇2δV = 0 , (5.28)(
∂i∂j −

δij
3 ∇2

)
(Φ + Ψ− 2αδV ) = 0 , (5.29)

2α∇2δV = −m2 , (5.30)

∇2δU = −2∇2 (2Φ + Ψ) . (5.31)

Solving the above equations for the gravitational potentials we can draw the following conclusions:

• The Φ potential is a solution of the standard Poisson equation and thus has the same form
as in GR: Φ = GM/r.

• The Ψ potential is instead sourced by the m2 term and its solution is Ψ = −GM/r +
m2r2/12. The term ∝ m2r2 is particularly interesting because it closely resembles the one
that would appear in GR for the Schwarzschild-deSitter solution, i.e. the nonlocal term
behave similarly to a cosmological constant.

• We can write down the post Newtonian parameter γ = −Φ/Ψ = m2r3/12GM , which can
be used to constraint the value of m2. It turns out that the current constraint on γ ≤ 10−5

are satisfied for the value m2 ∼ H2
0 required for a well-behaved cosmological evolution.

5.1.3.3. Structure formation in the Quasi Static Approximation (QSA)

In order to address the impact of the nonlocal modifications on the process of structure formation
at small scales we will work within the QSA. So we consider scales for which k2 � H2, in such a
way that for a given perturbation we can neglect in the first order perturbation equations those
terms containing time derivatives, or those proportional to H, with respect to terms proportional
to k2. Combining the Euler and the continuity equation for dust we obtain the equation for the
density contrast δM :

δ̈M + 2Hδ̇M +
k2

a2
Ψ = 0 . (5.32)

The equations for δU and δV are instead:

δU = −2 (Ψ + 2Φ) ,
k2

a2
δV =

m2

α
Ψ . (5.33)

Finally, the EFE are:

2 (1− 2αV0) k
2Φ
a2 +m2 δU

2 − 2m2Ψ = δρM
M2
Pl
, (5.34)

−2 (1− 2αV0) k
2

a2 (Ψ + Φ)− 3m2 δU
2 − 2αk

2

a2 δV = 0 . (5.35)

Combining the latter equations and using Eq. (5.33) to eliminate δU and δV we obtain:

−
[
2 (1− 2αV0)

k2

a2
− 6m2

]
Φ =

[
2 (1− 2αV0)

k2

a2
−m2

]
Ψ , (5.36)
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from which we can read off the slip parameter η as:

η ≡ −Φ

Ψ
=

2 (1− 2αV0) k2 −m2a2

2 (1− 2αV0) k2 − 6m2a2
, (5.37)

note that, as expected, the GR result Φ = −Ψ is recovered for m2 → 0. Using the above
expression for η in the modified Poisson equation we can define the effective gravitational coupling
Y as follows:

1 + Y ≡ − 2k2Ψ

3H2a2ΩMδM
=

(1− 2αV0) k4 − 3m2k2a2

(1− 2αV0)2 k4 −m4a4
. (5.38)

Using the latter it is possible to rewrite Eq. (5.32) as:

δ̈M + 2Hδ̇M −
3

2
(1 + Y ) ΩMδM = 0 . (5.39)

Thus, within the QSA, using the value of m2 required for a compatible background history
m2 ≈ H2 we have that the slip parameter is essentially the same as in GR, η ≈ 1, while the
effective gravitational coupling is modified by the background value of the field V0 and gets larger
as soon as nonlocality starts to drive the accelerated expansion. For example, using the reference
value m2/H2

0 ≈ 0.2 we have that 1 − 2αV0 ≈ 0.98, and hence Y ≈ 0.02, so that the effective
gravitational coupling strength is enhanced by 2% .

5.1.3.4. Lunar Laser Ranging constraints

Lunar Laser Ranging measurements provide a constraint on the time variation of the Newton
constant, see for example Ref. [103]. Currently, this constraint is of order:

Ġ

G
= 7.71± 7.76× 10−14 , yr−1 = 0.99± 1.06× 10−3 0.7

h0
H0 , (5.40)

where h0 is the Hubble constant expressed in units of 100 km s−1 Mpc−1. As argued in Ref. [82],
nonlocal modifications of gravity result in field equations which can be written as:

Gµν + ∆Gµν =
1

M2
Pl

Tµν , (5.41)

where ∆Gµν accounts for deviations from standard GR. The terms which in the latter are pro-
portional to Gµν will generally result in a modification of the gravitational coupling, which for
Eq. (4.40) reduce to:

Geff =
GN
−2αV

=QSA
GN
−2αV0

. (5.42)

where in the last equality we are considering k2 � H, thus we applied the result of the previous
section whitin the QSA, which is surely a well justified assumption for scales related to the
Earth-Moon distance. Taking the time derivative of the above expression we can write:

Ġeff
Geff

=
2αV̇0

1− 2αV0
, (5.43)

or, using the e-fold number parameter:

Ġeff
Geff

= H
Ṽ ′0
Ṽ0

, (5.44)
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and we conclude that Lunar Laser Ranging constraints are satisfied in VAAS only for m2/H2
0 ≤

10−3. The latter upper bound is two order of magnitude smaller than the value required for
reproducing a viable cosmological expansion, thus the LLR experiments rule out VAAS gravity.
Indeed, LLR have already ruled out several nonlocal proposal, including the RR and the DW
model, with the exception of the RT model which we mention in section 3.1.5.2. There are
however a couple of caveats; if a static solution of the above field equations exist it would be
clearly compatible with LLR test, thus one should study whether these static solutions are stable
against time perturbations. Moreover, the calculation presented here is based on the assumptions
that we can extrapolate the solution we found for linear cosmological perturbations all the way
down to Earth-Moon scales, which is not guaranteed a priori and very difficult to prove due to
the lack of a satisfactory geometrical description that joins cosmological and local scales. Indeed,
the results of Ref. [82] rely on the use of the McVittie metric to connect the cosmological solution
with the solar system one, but such an assumption could be too strong.

5.2. Late-times asymptotic equation of state in nonlocal gravity

As we already mention, in the VAAS model the asymptotic equation of state of the Universe
approaches the value weff → −1 as in the ΛCDM model. This was shown numerically by the
author of Ref. [3], and explicitly shown analytically by us in Ref. [4]. It is interesting to note
that similar numerical investigations of the RR model and of the one proposed in Ref. [144]
showed a similar behavior. Motivated by the latter apparent coincidence, we studied in Ref. [5]
the behavior of the Late-times asymptotic effective equation of state for different Lagrangians
containing functions of �−1R. Applying the same technique we developed in Ref. [4] for the VAAS
model we show analytically that, under a certain choice of initial conditions, all the models in
which a term �−1R appears explicitly in the Lagrangian result in an asymptotic equation of
state weff → −1. This happens because such a term will inevitably diverge in the future,
reflecting the classical instability we discussed in Sec. 4.2.2. As a result, H2 will diverge but
Ḣ/H2 → 0. On the other hand, we found that if the function f(�−1R) is chosen in such a way
that |f(∞)| ≤ const, like for the standard DW model, the asymptotic equation of state will not
approach asymptotically the ΛCDM value.

5.2.1. General scheme

The general scheme presented here was developed in Ref. [4] to study the late-times behavior
of the model [3]. A sketch of the general strategy is the following: we use the fact that the
sign of the first derivative of the auxiliary fields is determined by the formal solutions of the KG
equations. Then, imposing initial conditions compatible with radiation and matter domination,
we are able to understand qualitatively the evolution of the nonlocal fields when matter sources
are totally diluted by imposing consistency with the first Friedmann equation. Finally, we insert
the asymptotic solution obtained for the fields and their derivatives into the acceleration equation
to compute the asymptotic value of ξ. Note that the scheme presented here is only valid if we
make the crucial assumptions ξ + 2 ≥ 0, which is reasonable since we fix the initial conditions
during the radiation-dominated era, when ξ = −2, to which follow a matter-dominated epoch
ξ = −3/2.
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5.2.2. Qualitative behavior of the fields

First, let us notice that we can extract information about the qualitative behavior of U already
from the structure of its Klein Gordon equation. Indeed, it is straightforward to realize that with
the above choice of initial conditions, see Appendix B for the explicit computation, the following
inequality for U ′ holds:

0 ≤ U ′ ≤ 6 , (5.45)

so that choosing non-negative initial conditions would always imply U ≥ 0. Since we know that
U has a definite sign, and we have constrained its first derivative, we grossly know its qualitative
evolution. Moreover, since the other auxiliary fields are generally defined in terms of U , we can
conclude that it is possible to obtain a similar amount of information from their Klein Gordon
equations.

Another crucial information on the behavior of the system comes from the first Friedmann
equation, which could be written:

(1 + g(N)NL)h2 = ΩR + ΩM + ΩNL , (5.46)

where the functions g(N) and ΩNL are the modifications due to nonlocal terms.
The initial conditions set the value g(Ni), and since we can estimate the signs of the first

derivative of the auxiliary fields entering in gNL, using their KG equations we are able to estimate
the qualitative behavior of g(N) through the cosmological history, and in particular its asymptotic
value at Late-times when matter and radiation are diluted enough.

5.2.3. The Late-times asymptotic equation of state for the RR model

To begin with let us consider the RR field equations (4.30),(4.31) and (4.32) when matter and
radiation density are negligible and define Ṽ ≡ 1− 3γV :

Ṽ =
γU2

4h2
+ Ṽ ′

(
U ′

6
− 1

)
, (5.47)

ξ =
1

2Ṽ

[
3γU

h2
− U ′Ṽ ′ + 4Ṽ ′

]
, (5.48)

Ṽ ′′ + Ṽ ′ (3 + ξ) = −3γU

h2
. (5.49)

The formal solution of Eq. (5.49) for Ṽ ′ compatible with the initial condition Ṽ ′(Ni) = 0 is:

Ṽ ′ = −3γe−F (N)

∫ N

Ni

dN̄eF (N̄) U

h2
, (5.50)

where F (N) was defined in Eq. (5.7). From Eq. (5.50) it is straightforward to realize that Ṽ ′

is always negative since U is always positive, while imposing vanishing initial conditions for the
nonlocal fields at early times determines the initial value Ṽ = 1. On the other hand from the right
hand side of Eq. (5.47) we see that Ṽ must be positive and so we can conclude that 0 ≤ Ṽ ≤ 1.2

2Note that the parameter γ can be considered as positive definite since changing its sign corresponds to switch
the sign of the nonlocal interaction term in the Lagrangian. In this case it is more convenient to change the
sign of the source term in the equation of the auxiliary field U , in such a way that the product γU is positive
definite. Here we are neglecting the radiation and matter contributions which are anyway also positive definite.
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This last argument tells us then that Ṽ ′ must also vanish at late-times, or it would push Ṽ to
negative values. On the basis of these considerations we can conclude that at late-times we have

Ṽ ∼ γU2

4h2
, Ṽ ′ ∼ 0 , (5.51)

and using the above results in Eq. (5.48) we get:

ξ ∼ 3γU

4h2

4h2

γU2
∼ 1

U
→ 0 , (5.52)

where the last limit holds true since U diverges.3

5.2.4. The Late-times asymptotic equation of state for the DW model

In order to study qualitatively the dynamic of the DW model at late-times we have first of all
to understand qualitatively the behavior of the free function f(U) defined in Eq.(4.26), since it
enters directly in the Friedmann equations and also rules the dynamics of the localized field V .
It is straightforward to realize from Eq. (4.26) that (−2)(0.245) < f < 0 and f̄ < 0 , and that
f̄ → 0 when U →∞.

The formal solution of (4.21) for V ′ is:

V ′ = −6e−F (N)

∫ N

Ni

dN̄eF (N̄) (2 + ξ) f̄ . (5.53)

Since f̄ < 0 and ξ > −2 from Eq. (5.53) it is straightforward to realize that we have at all times
V ′ > 0. Since we impose initial conditions in such a way that during the radiation-dominated
epoch V is vanishing, we also can conclude that V > 0. At late-times, when matter is completely
diluted Friedmann equations (4.18) and (4.19) become:

V = −V ′
(

1− U ′

6

)
+ f̄U ′ + f + 1 , (5.54)

(2ξ + 3) (1 + f − V ) = V ′′ − f ′′ +
(
V ′ − f ′

)
(2 + ξ) +

U ′V ′

2
. (5.55)

Note that the first two terms in the right hand side of Eq. (5.54) are strictly negative since, V ′ > 0
and f̄ < 0, while f + 1 > 0. On the other hand V ′ > 0 implies that V is a monotonic function,
and we are left with two cases; either U diverges, in which case f̄ → 0 and f → (−2)(0.243),
or U → const, in which case U ′ → 0, f ′ → 0 and f + 1 → const. In both cases consistency
requires that V ′ → 0, or V will be a decreasing function and so V ′ < 0. Thus we can conclude
that asymptotically:

V ∼ f̄U ′ + f + 1 . (5.56)

Using the above in (5.55) we obtain finally:

ξ ∼
U ′ − 12− f ′′

f̄

6− U ′ , (5.57)

3Note that U cannot reach a constant value since U ′ = 0 is possible only for ξ = −2, and we easily see from
Eq. (5.52) that at late-times ξ > 0.
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which is in general non-vanishing. Note also that:

f ′′

f̄
=

(f̄U ′)′

f̄
= U ′′ +

¯̄f

f̄
U ′2 ; (5.58)

and we can conclude that if U → ∞ the term ¯̄f/f̄ → −∞, while U ′′ cannot diverge since
0 < U ′ < 6, so in this case the asymptotic effective equation of state weff → ∞. On the other
hand, if U → const, we have U ′ = U ′′ → 0 and we are left with ξ → −2, in such a way that the
effective equation of state approaches one of radiation type.

We have then shown that in the DW model with the distortion function given by (4.26) at
late-times weff 6= −1.

5.2.5. Summary and discussion

By studying the Late-times asymptotic equation of state for a number of nonlocal models we
realized that the auxiliary localized field related to �−1R will diverge asymptotically if we impose
vanishing or positive initial conditions. The divergence of the latter in turn will push H → ∞
while the ratio H ′/H → 0.

To summarize, the structure of the source terms of the KG equations implies that only the
auxiliary field related to the nonlocal term 1/�R is still dynamical asymptotically, and diverges,
while the auxiliary fields related to the Lagrange multipliers used to localize the theories freeze
and approach a constant value. We show how the mechanism works using as an example the
RR model and the DW model, since in the latter the divergence of U is hidden in the distortion
function f(U), which is regular for U →∞. The full computation for the VAAS model and the
model proposed in Ref. [144] are reported in Appendix B.

It is important to remark that our conclusions strongly depend on the choice of initial condi-
tions. Indeed, our method relies on the observation that by using Friedmann equations we can
constrain the sign of the auxiliary fields, while their KG equations provide constraint on the sign
of the first derivatives for our choice of initial conditions. As an example, let us consider the RR
model. If we choose a negative initial condition in Eq. (4.32) for the field U then V ′ > 0 and
Eq. (5.51) does not hold anymore. This situation corresponds to the evolution Path B described
in Ref. [160], for which at late-times weff → 1/3. However, our analysis still holds for any choice
of initial conditions with non-vanishing but positive values of U . As discussed in Ref. [141], there
are fundamental motivations that justify processes during the inflationary epoch that result in
a huge non-vanishing positive values for the field U in the RD epoch. It is interesting to note
that a behavior of the type wEff → −1 is remarkably for a model that wants to be competitive
with the ΛCDM. Indeed, in such models, and in the ΛCDM, the so called Coincidence Problem
[33] is less severe (if not a problem at all, depending on the personal perspective), since at some
point of its history, independently of the initial conditions, the Universe always passes through
a phase in which the matter and DE densities are of the same order and then DE starts to
dominate, which in the standard model in terms of cosmic time accounts for at least the last 3.5
billion years. On the other hand, in the nonlocal models considered here we have to deal with a
different sort of coincidence. Indeed, the Hubble function reaches a minimum when the nonlocal
fields cosmological density starts to dominate, and the occurrence of this is roughly today. This
occurrence looks to us coincidental at least as the one present in ΛCDM.
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I don’t think there is a final theory of
anything. It’s theories (turtles) all the
way down.

Jim Peebles

In Ref. [6] we proposed a novel class of modified gravity theories based on the inverse of the
Ricci tensor Rµν , which we call the anticurvature tensor Aµν . Taking the trace of the latter we
obtain the anticurvature scalar A, which can then be used to construct a new type of Lagrangian
densities. It is interesting to note that with the anticurvature scalar is very simple to write down
Lagrangian densities terms with the same dimension as R, like for example A−1 or R2A, and
thus without introducing new dimensional constants.

6.1. Field equations

The anticurvature tensor Aµν is defined as the inverse of the Ricci tensor:

AµρRρν = δµν , (6.1)

from which, taking the trace, we obtain the anticurvature scalar A = Aµνgµν . Note that it is
possible to write the inverse of any matrix in terms of its adjugate, i.e. in terms of the matrix
itself and the Levi Civita symbols. In particular, for the anticurvature tensor we have:

Aµν = 4
RκπRλρRξσε

µκλξενπρσ

RαζRβηRγθRδιεαβγδεζηθι
. (6.2)

From the latter equation we can appreciate that a theory based on the anticurvature scalar is
actually a strongly nonlinear, higher order theory of gravity.

The field equations for a general Lagrangian f(R,A) are:

fRR
µν − fAAµν −

1

2
fgµν + gρµ∇α∇ρfAAασAνσ −

1

2
∇2(fAA

µ
σA

νσ)

− 1

2
gµν∇α∇β(fAA

α
σA

βσ)−∇µ∇νfR + gµν∇2fR = Tµν , (6.3)

where fA,R indicate derivation with respect to the Ricci or anticurvature scalars, see Appendix
C for a detailed derivation of the above field equations.1

1A code that evaluates the equations of motion for any f(R,A) in a given metric is made publicly available here



https://github.com/itpamendola/inverse-ricci
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It is well known that one can recast an f(R) theory in the form of a scalar-tensor theory in the
Einstein frame introducing a scalar field non minimally coupled to gravity. Usually this is done
by defining a scalar field φ = df/dR and performing a Legendre transformation of the function f .
Such an approach, however, fails here, because A is not a one-to-one function of R and therefore
df(A)/dR is in general not invertible.

6.2. Cosmology

We are interested in understand which kind of behavior could arise from Eq. (6.3) for cosmological
implications. Since we are mainly interested in Dark Energy phenomenology, let us begin with
a de Sitter ansatz for the metric gµν . Under this assumption Rµν = Rgµν/4, and it is straight-
forward to compute Aµν from the inverse metric. In this case all the terms with derivatives in
Eq. (6.3) vanish, and taking the trace one has in vacuum:

fRR− fAA− 2f = 0 . (6.4)

Since on de Sitter background R = 12H2 and A = 4/(3H2), the latter equation can be easily
solved for any f(R,A) model to check whether one gets non-trivial (i.e. H 6= 0) solutions that
could replace a cosmological constant. For instance, if f = R − αA (where α is a constant with
dimensions H4

0 ) then we see that H = (α/3)1/4 = const.
Having seen that it is in principle possible to have de Sitter solutions in this model, let us

investigate the behavior in a flat FLRW background. In this case we have that the Ricci and
anticurvature scalars can be written:

R = 6
(
Ḣ + 2H2

)
, (6.5)

A =
2(6 + 5ξ)

3H2(1 + ξ)(3 + ξ)
, (6.6)

where ξ = Ḣ/H2. It is straightforward to realize from Eq. (6.6) that the anticurvature scalar
become singular in the following cases: H → 0, ξ → −1, or ξ → −3. The fact that for H → 0 the
Lagrangian is ill-defined implies, as expected, the lack of a Minkowski solution for Lagrangians
containing positive powers of the anticurvature scalar An. On the other hand, this does not
apply for Lagrangian containing negative powers A−n, which are instead singular for ξ → −6/5.
Thus, just by looking at the shape of the anticurvature scalar in FLRW background we are able
to formulate the following no-go theorem for cosmology:

Theorem 2 (FLRW no-go) If the cosmic evolution passes through any one of these values of
ξ: ξ = −1, ξ = −3 or ξ = −6/5, either A or A−1, or any of their powers, develops a singularity.
If during the evolution A passes through both 0 and ±∞, then any term in the Lagrangian that
contains An, for n positive or negative, will blow up. This behavior will reflect into equations of
motion that also contain a singularity at the same cosmic epochs.

Observations [20, 21, 27, 19] tell us that the Universe evolved from a decelerated phase with
weff ≈ 0 (so ξ ≈ −1.5) into an accelerated phase weff ≈ −0.7 (so ξ ≈ −0.45). Therefore, the
cosmic expansion had to pass, at redshifts around unity, through both ξ = −1 and ξ = −6/5.
This demonstrates that A and A−1 will both be singular at some epoch between deceleration
and acceleration. Consequently, any Lagrangian that contains additive terms proportional to An

(e.g. the two simplest scale-free models, f(R,A) = R+ αA−1 and f(R,A) = R+ αR2A, with α
a dimensionless constant) are ruled out as Dark Energy models. Notice also that R = 6H2(ξ+2)
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so no power of R can cure the singularity. In order to see some concrete realizations of the no-go
theorem in the following we will briefly illustrate the cosmological behavior for the Lagrangians
f = R+ αA−1 and f = R+ αR2A.

6.3. Lagrangian R + αA−1

In this case equations (6.3) for a FLRW background reduce to:

ρt = 3αH2 (ξ + 3)2(5ξ + 6)− 18ξ′

4(5ξ + 6)3
+ 3H2 , (6.7)

which is the modified Friedmann equations, and to:

wtρt =−
αH2

[
(5ξ + 6)

(
(ξ + 3)2(2ξ + 3)(5ξ + 6)− 18ξ′′

)
+ 270 (ξ′)2 − 54(ξ + 2)(5ξ + 6)ξ′

]

4(5ξ + 6)4

− 2H2ξ − 3H2 , (6.8)

which is the (i, i) equation. Note that, as follows from the No-go theorem, the singularity at
ξ = −6/5 appears in both the equations. We have used the subscript t in ρt to indicate the total
matter, which of course satisfy the continuity equation ρ′t = −3(1 +wt)ρt. From Eq. (6.7) we can
easily define the energy density associated to the anticurvature scalar:

ΩA ≡ −α
(ξ + 3)2(5ξ + 6)− 18ξ′

4(5ξ + 6)3
. (6.9)

We will now consider two different cases, considering pressureless matter only and then adding a
cosmological constant

6.3.1. Evolution with Dust

Assuming wt = 0 we find for Eqs. (6.7) and (6.3) the following critical points:

Ωm = 1 +
α

4
, ξ = −3

2
, (6.10)

Ωm = 0 , ξ± =
3(−40− α± 6

√−α)

100 + α
. (6.11)

The first critical point corresponds to a matter dominated Universe in which ΩA behaves as
matter. In particular, if α = −4, it corresponds to an empty Universe wich behave as it was filled
with dust. The critical points of Eq. (6.11) instead admit solutions only for certain values of α,
see Fig. 6.1 for a graphical representation of ξ+. We see that for every α < 0 there are two real
solutions, one above, the other below ξ = −6/5, or equivalently weff = −0.2. The properties
of these solutions seem very interesting for cosmological implications. For instance, for α ≈ −8,
the two solutions correspond to the observed present accelerated value weff ≈ −0.67 and to an
expansion quite close to a matter dominated era, weff ≈ 0.06. Analogously, if α = −4, one has
weff = 0, i.e. an exact matter era evolution without matter, in which the A energy density acts as
a form of Dark Matter. The other solution, ξ+, corresponds to weff = −0.5, i.e. an accelerated
solution still marginally compatible with observations. In Fig. 6.2 we see the behavior of the
Hubble parameter for the particular case α − 4. A cosmic evolution that moves from one such
solution to the other would be indeed an intriguing possibility, replacing both Dark Matter and
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Figure 6.1.: The two real branches of the function weff (α) = −2ξ/3− 1 from Eq. (6.11)

Dark Energy with the anticurvature tensor without any new scale nor fine-tuned parameters.
However, as a consequence of the no-go theorem, this cannot occur.

Through a stability analysis of the linearized dynamical system we find that the critical point
ξ− is a stable attractor only for −4 ≤ α ≤ 0. The critical point ξ+ is a stable attractor for α ≤ 0,
while the linear analysis alone cannot assess the stability of the point ξ = −3/2. These findings
are supported by the numerical investigation shown in Fig. 6.2, so that the cosmic evolution
will end up either at ξ+ or ξ−, depending on whether the initial weff is above or below the
singularity at weff = −0.2. The crucial point is that no trajectory can cross the weff = −0.2
ridge; consequently, as anticipated on general grounds, the cosmic expansion cannot move from
a decelerated phase around weff = 0 to an accelerated one around weff ≈ −0.7.

6.3.2. Evolution with Dust and a cosmological constant

If a cosmological constant is present we can combine Eqs. (6.7) and (6.3) and obtain:

ξ′′ =
6(5ξ + 6)4Ωm + ξ(5ξ + 6)2

(
9(α+ 16) + (α+ 100)ξ2 + 6(α+ 40)ξ

)
+ 135α (ξ′)2 − 27α

(
5ξ2 + 11ξ + 6

)
ξ′

9α(5ξ + 6)
,

(6.12)
which must be solved together with the continuity equation:

Ω′m = −(3 + 2ξ)Ωm . (6.13)

In this case the phase space is more complicated, ξ− is now always unstable and ξ+ is a stable
attractor for α < −16. The critical point ξ = −3/2 is always unstable, while we found a new
critical point ξ = 0, which is a stable de Sitter attractor when −16 ≤ α ≤ 0. However, the
bottom line is the same, as can be immediately gleaned from Fig. 6.3, so the model is ruled out
as a candidate for Dark Energy even when a cosmological constant is added, regardless of the
value of α.
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Figure 6.2.: Numerical solutions ξ(a) of Eq. (6.11) in case of Ωm 6= 0, ΩΛ = 0 with w = 0 and
α = −4. The solutions ξ = −3/2 and ξ = −3/4 are confirmed to be attractors. The
divide at ξ = −6/5 is also evident. The red dashed line is the ΛCDM behaviour.

6.4. Circumventing the no-go theorem

Motivated by the interesting phenomenology which could be described within the anticurvature
scalar, we will try now to address some possible escape routes from the no-go theorem.

6.4.1. Modifying the geometry

To begin with, we should consider possible modifications of the background geometry that allow
for a different evolution. If we relax the assumption of a spatially flat Universe the anticurvature
scalar become:

A =
2(6 + 5ξ + 3Ωk)

3H2(1 + ξ)(3 + ξ + 6Ωk)
, (6.14)

where we can see that the appearance of the energy density associated with the curvature shifts
the singularity ξ = −3 for positive powers of A, while shifts the singularity ξ = −6/5 of A−1.
Thus, in principle the presence of curvature is able to shift the singularity of the Lagrangians
outside the range required by the observations. However, since observations suggest that Ωk ∼ 0,
this possibility is very unlikely.

Another option is to take into account the contribution from spatial anisotropies. For illustra-
tive purposes, let us consider as an example a Bianchi I geometry:

ds2 = −dt2 + a(t)2
(
e2βx(t)dx2 + e2βy(t)dy2 + e2βz(t)dz2

)
, (6.15)

where we have defined the averaged scale factor

a(t) = 3

√
ax(t)ay(t)az(t) , (6.16)

so that ai(t) = a(t)eβi , and the βi satisfies
∑

i βi = 0. For the sake of simplicity, let us specialize
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Figure 6.3.: Numerical solutions ξ(a) of Eq. (6.12) with matter and cosmological constant, for
α = −4. The upper curves converge toward the de Sitter attractor at ξ = 0. The
lower curves converge towards the divide line at ξ = −6/5, which is now also an
attractor. The red dashed line is the ΛCDM behavior.

to the case βx = −βz ≡ β and βy = 0. In this case the anticurvature scalar A reads:

A =
1

H2


 4ξ + 6 + (β′)2

2

3 (3 + ξ)
(

1 + ξ + (β′)2

6

) +
2(3 + ξ)

(3 + ξ)2 − 1
4 (β′′ + β′(3 + ξ))2


 , (6.17)

which for β′ = 0 reduces to the FLRW case. As we can see, the singularity ξ = −1 is shifted by
the anisotropic term (β′)2/6. Note that also the singularity appearing in A−1, ξ = −6/5, is in
general shifted. For example, if β′′ is negligible, we have that A−1 is singular for

ξ =
24− β′4

4

2β′2 − 20
≈ −6

5
(1− (β′)2

10
) , (6.18)

(the last approximate equality being valid for β′ � 1) which recovers the FLRW case for β′ = 0,
while being regular in ξ = −6/5 unless β′2 = 48/5, i.e. the two roots of Eq. (6.18) for ξ = −6/5.
This shows that relaxing the assumption of spatial isotropy the singularities occurring in the
anticurvature scalar and its inverse can be arbitrarily shifted, but not removed. It is clear
however that one needs β′ of order unity to move the singularity outside the observational range,
which on the other hand is not likely to be compatible with experimental data.

To illustrate that, let us naively estimate β from the evidence of anisotropic expansion claimed
recently in [162], emerged from X-ray observations of galaxy clusters. Here the authors find
that the highest and the lowest values observed for the universe expansion rate are Hmax ∼ 75
km/s/Mpc and Hmin ∼ 66 km/s/Mpc. Assuming that the averaged Hubble factor is H ∼ 70
km/s/Mpc, we obtain

β′ ∼ 0.06 , (6.19)

which shows that generally β′ is constrained from the observations to be too small to shift the
singularities of A outside the observational range.
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6.4.2. Non Polynomial Lagrangians

Another possibility is to consider Lagrangian densities which are not singular when A or A−1

diverge. Still considering scale-free Lagrangians for simplicity, we can choose for example the
scalar densities R + αR exp[−β(RA)2] or R/(1 + αRA). In the former case, for example, the
Friedmann equation around the critical points, i.e. assuming ξ′ = ξ′′ = 0, becomes:

3H2

(
1− αP5(ξ, β)

(ξ + 1)3(ξ + 3)2
e
− 16β(ξ+2)2(5ξ+6,)2

(ξ+1)2(ξ+3)2

)
= ρm , (6.20)

where P5(ξ, β) is a polynomial of order five in ξ and linear in β. It is straightforward to realise
that the above equation is regular on the poles of the denominator due to the presence of the
exponential factor.

Another option is to include, as in Gauss Bonnet gravity for the Ricci tensor, scalar combina-
tions of higher order in the anticurvature tensor, like AµνAµν . In FLRW background the latter
looks as follows:

AµνAµν =
4

9H4

7ξ2 + 15ξ + 9

(ξ + 1)2(ξ + 3)2
. (6.21)

We see that it still contains the singularities at ξ = −3 and ξ = −1, but remarkably it never
vanishes, and thus (AµνAµν)−1 can be used to build Lagrangians which are free of this kind of
singularities.

6.5. Summary and Outlooks

We have shown that it is difficult to describe Dark Energy using polynomial Lagrangians of
the anticurvature scalar because of the no-go theorem. On the other hand, we found that an
interesting phenomenology arise already for the simplest choices of f(R,A), and thus Lagrangians
that escape the no-go theorem are particularly promising for cosmological model building.

It is important to realize that in this framework we are introducing higher order derivative
terms in the Lagrangian, see Eq. (6.2), and then we expect that instabilities will generally occur
unless we consider degenerate Lagrangians. The above stability issues and the no-go theorem
should be taken into account when a particular form of f(R,A) is specified, which is the task we
address for future works.





CHAPTER 7.

Personal Contribution:
Strong Lensing for testing Gravity and

Cosmology

Simplicity is the touchstone in finding
new physical laws. . . If it’s elegant, then
it’s a rough rule of thumb: you’re on the
right track

Kip Thorne

Lensing effects provide fertile ground for testing gravitational theories from more than a cen-
tury. In particular, it is well known that weak gravitational lensing by Large Scale Structures can
provide useful insights on the nature of Dark Energy. In this chapter we will discuss instead the
potential of strong gravitational lensing in achieving a similar task. After a brief review of the
main equations governing this phenomenon, we will introduce two novel drift effects proposed by
us in Ref. [7], and discuss the possibility of using them for testing violations of the Equivalence
Principle and Dark Energy models [8].

7.1. Overview of Gravitational Lensing

It is a well known results of geometrical optics that light rays passing through a medium will
generally be refracted, as encoded in the Snell’s law. Considering the gravitational field in the
empty space around its source as a sort of ”medium”, it is a reasonable expectation that light
rays traveling through it will be deflected. It is slightly uncomfortable to give a meaningful
explanation of this effect within Newtonian gravity because photons have no rest mass, and thus
should be blind to the gravitational interaction. On the other hand, it is a standard approach to
study the motion of bodies in a gravitational potential by mean of test particles, i.e. particles
whose mass is small enough to ignore their backreaction on the gravitational potential. Thus,
considering photons as test particles we expect already in Newtonian gravity the deflection of
light rays close to a massive body. This result was indeed obtained by Soldner1 more than one
century before Einstein’s theory of general relativity. In GR, instead, the interpretation of the
gravitational potential in the empty space as a sort of medium is straightforward, and is logical to
conclude that trajectories of massless particles will in general be bent because of the curvature’s
gradient of the spacetime.

1A translation from german of the original article is available here



https://en.wikisource.org/wiki/Translation:On_the_Deflection_of_a_Light_Ray_from_its_Rectilinear_Motion
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An effective treatment of the above phenomenon resembles the standard approach of geometri-
cal optics. The source of the gravitational field that deflects light rays is then called lens, and the
overall effect gravitational lensing. We distinguish between the deflection caused by an extended,
approximately continuous distribution of sources and the one caused by a single, massive object.
The former is which is generally dubbed weak lensing, and causes distortions on the shape of the
background objects, see Ref. [163] for a review of weak lensing and its cosmological applications.
When the lens is instead composed by a single massive object along the line of sight between the
observer and the source we are instead in a regime of Strong Lensing, which will be our main
subject during the rest of this chapter.

7.1.1. Strong Lensing by a point mass

To begin with, let us consider gravitational lensing by point masses. A fairly standard configu-
ration is given in Fig. 7.1, where θ0 is the apparent angular position of the source as seen by the
observer, and θS indicate the actual position of the source that would be observed in case of no
lensing. The above quantities are related by the lens equation in the thin lens approximation [164]:

θ2
E ≡ θ0 (θ0 − θS) =

4GNM

DL
DLS
DS

= 4GNM (1 + zL)

(
1

χL
− 1

χS

)
, (7.1)

where the D’s are the angular diameter distances:

Di ≡ aiχi =
1

1 + zi

∫ zi

0

dz′

H(z′)
, (7.2)

in which the subscript i = L, S refers to the lens or to the source, while DLS is given by:

DLS ≡ aS(χS − χL) =
1

1 + zS

∫ zS

zL

dz′

H(z′)
. (7.3)

In the above equations zL,S indicates the redshifts and χL,S the comoving distances of the lens
and the source respectively. Using the above definitions it is possible to rewrite the lensing
equation as:

θE2 = 4GNM (1 + zL)

(
1

χL
− 1

χS

)
. (7.4)

Being quadratic in θ0, the lens equation (7.1) has the following two roots:

θ0 =
θS
2
±
√
θ2
S

4
+ θ2

E , (7.5)

which implies that, because of the lens, the original image of the source is split into two. Notice
that θS is time-independent because of the cosmological principle. In other words, observer, lens
and source form a triangle whose sides increase due to the Hubble flow, but whose angles remain
unchanged, and therefore dθS/dt0 = 0.

7.1.2. Strong Lensing for an extended Lens

In the thin lens approximation the lens equation (7.1) for a general mass distribution is :

(β −α) = ∇θψ (β) , (7.6)

where β = (β1, β2) and α = (α1, α2) are the position in the sky of the image and the source
respectively, and ∇θ is the two-dimensional angular gradient.2 The quantity ψ(β) appearing in

2From now on we will restrict the use of the θi notation for point mass lenses, while the α and β notation for a
general lens profile
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2

and therefore, the redshift drift formula (4) becomes:

dz

dt0
=

1

ae

da0

dt0
� 1

ae

dae

dte
= (1 + z)H0 � H(z) , (6)

where the Hubble constant H0 and the Hubble parameter
H(z) have appeared. Measuring dz/dt0 would allow to
determine H(z), thereby providing precious informations
on the energy content of the universe.

In the next sections we shall obtain formulae similar
to the one in Eq. (6), but in the context of strong gravi-
tational lensing.

III. ANGULAR DRIFT

Let’s consider the lens equation in the thin-lens ap-
proximation [31]:

✓0(✓0 � ✓S) =
4GM

dL

dLS

dS
, (7)

where ✓0 is the angular position of the image, ✓S is the
angular position of the source, M is the lens mass and
with d we denote angular-diameter distances. In Fig. 1
we display the lensing scheme.

O

L

S�

✓S ✓0

b

FIG. 1. Scheme for gravitational lensing. The deflection angle
is � = 4GM/b, where b is the impact parameter.

In particular, the angular-diameter distance to the
source is written as:

dS ⌘ aS�S =
1

1 + zS

Z zS

0

dz0

H(z0)
, (8)

with �S the comoving distance to the source, aS is the
scale factor at the emission time and zS = 1/aS � 1 is
the redshift of the source.

Similarly, the angular-diameter distance between the
lens and the source is the following:

dLS ⌘ aS(�S � �L) =
1

1 + zS

Z zS

zL

dz0

H(z0)
, (9)

and the angular-diameter distance to the lens is the fol-
lowing:

dL ⌘ aL�L =
1

1 + zL

Z zL

0

dz0

H(z0)
, (10)

with �L being the comoving distance to the lens and
zL the redshift of the lens. With these definitions, let’s

rewrite the lens equation as follows:

✓0(✓0 � ✓S) ⌘ ✓2E = 4GM(1 + zL)

✓
1

�L
� 1

�S

◆
, (11)

where ✓E is the Einstein ring radius, if ✓S = 0. From the
first part of the the above equation we have the following
two solutions for ✓0:

✓± =
✓S

2
±
r
✓2S
4

+ ✓2E , (12)

i.e. two solutions ✓± for the images, given the high sym-
metry of a point-like lens. Combining the two solutions,
we get:

✓S = ✓+ + ✓� , ✓2E = �✓+✓� , (13)

where notice that ✓� is negative. Notice also that ✓S

is time-independent because the Hubble flow moves lens
and source radially with respect to the observer (us),
thereby leaving ✓S unchanged, i.e. d✓S/dt0 = 0 and thus
d✓+/dt0 = �d✓�/dt0. The time derivatives of the ob-
served angles are thus directly related to the time deriva-
tive of ✓E as follows, using Eq. (13):

2d✓E

dt0
= �✓�

d✓+
dt0

� ✓+
d✓�
dt0

= (✓+ � ✓�)
d✓+
dt0

. (14)

We can eliminate ✓� or ✓+ from the above equation, by
using again Eq. (13), and obtain:

1

✓0

d✓0
dt0

=
2✓2E

✓20 + ✓2E

1

✓E

d✓E

dt0
. (15)

Having established this correspondence between the two
derivatives, we now proceed with the calculations of the
time drift of ✓E . Since the comoving distance is time-
independent, the derivative with respect to the observer
time of the Einstein radius is the following, from Eq. (11):

2✓E
d✓E

dt0
= 4GM

dzL

dt0

✓
1

�L
� 1

�S

◆
. (16)

Using Eq. (6), one can write the relative variation of the
angle ✓E in the following form:

2

✓E

d✓E

dt0
= H0 �

HL

1 + zL
. (17)

Not unexpectedly, this formula is very similar to the one
in Eq. (6). If HL > H0(1 + zL), we expect the Einstein
radius to shrink. This is the case for a matter-dominated
universe, for example.

IV. TIME DELAY DRIFT

The time-delay is usually divided into a geometric con-
tribution and a potential one [31]. The former is due to
the bending of the trajectory of the photon, whereas the

Figure 7.1.: Scheme for strong gravitational lensing induced by a point mass lens L. θ0 is the
apparent angle at which the source is located, θS the true one. The deflection angle
is δ = 4GM/b, where b is the impact parameter, i.e. the distance on the lens plane
between the incoming light ray and the lens itself. Image taken from Ref. [7]

Eq. (7.6) is the lensing potential and is defined as:

ψ(β) ≡ 2

c2

DLS
DLDS

∫

β
dλ Φ , (7.7)

where Φ is the standard Newtonian gravitational potential and the integral is taken along the
path of the light ray, which depends on β and is parametrized by λ. Taking the divergence of
Eq. (7.6), as long as the extent of the lens is small compared to cosmological distances, we can
use the Poisson equation to relate the Laplacian of the lensing potential to the mass distribution
of the lens:

∇2
θψ (β) =

8πGN
c2

DLDLS
DS

Σ(β) , (7.8)

where we have defined the surface mass density:

Σ(β) ≡
∫

β
dλ ρ , (7.9)

in which appears the mass distribution of the lens ρ. For a detailed derivation and an explanation
on the assumptions behind Eqs. (7.6), (7.7), (7.8) see for example Ref. [163].

7.2. Strong Lensing observables and Cosmology

As we saw in the previous section, in a strongly lensed system are present several images of the
same source. Thus, of course, a first important observable is the angular separation between
the various images. The entity of this variation is typically of the order of few arcseconds. For
example, using data from Ref. [165], the quasar QSO0957 + 561 at redshift zS = 1.41 lensed by
a cluster at zL = 0.31 displays two images separated by 6.1”.
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On the other hand, even if coming from the same source, these several images at a given
moment of time are not necessarily identical. Indeed, the optical path of the photons of each
image is in general different, and thus some of the photons will require more time to reach the
observer. This effect is called Time Delay, which we indicate with ∆, and could be divided into
two different contributions [164]:

∆ = ∆geo + ∆pot , (7.10)

where ∆geo is the geometrical Time Delay and ∆pot is the potential Time Delay. The former is
due to the bending of the trajectory of the photon, whereas the latter is due to the motion into
the lens gravitational field. For a single image the geometric ∆tgeo induced by a point mass lens
is given by:

∆tgeo =
(1 + zL)2(4GM)2

2θ2
0

(
1

χL
− 1

χS

)
, (7.11)

from which we obtain ∆geo = ∆tgeo(θ+)−∆tgeo(θ−), where θ± are the two roots of Eq. (7.1). The
potential Time Delay between the two images due to a point mass in the thin lens approximation
is given by:

∆pot = ∆tpot(θ+)−∆tpot(θ−) = 2GM(1 + zL) ln
θ−
θ+

. (7.12)

For an extended lens profile the Time Delay between two images ∆ij is given by, see Ref. [166]
:

∆ij =
D∆t

c

(
(βi −α)2

2
− (βj −α)2

2
+ ψ (βj)− ψ (βi)

)
, (7.13)

where it was defined the Time Delay distance:

D∆t ≡ (1 + zL)
DLDS
DLS

. (7.14)

It is straighforward to separate in the right hand side of Eq. (7.13) the contributions from the
geometrical and the potential Time Delay. Indeed, the first two terms inside the brackets are
given by the differences between the apparent and the true position of the source, and are thus
of geometrical nature. The potential Time Delay is instead given by the difference between the
lensing potential at the two apparent positions.

From Eq. (7.13) we can already understand the importance of precise Time Delay measure-
ments for cosmological implications. Indeed, if one is able to know the position of the source α,
measures with enough precision the position of the images βi, and is able to infer the position
of the lens and its lensing potential, all the cosmological information is contained in the Time
Delay distance (7.14) through the angular diameter distances (7.2). Thus, from Time Delay
measurements (if a reliable description of the lensing profile is given), one is able to reconstruct
the Hubble factor without assuming any particular cosmological model. This is precisely the goal
of the H0LiCOW collaboration 3, which within the COSMOGRAIL 4 program employed Time
Delays measurements collected over the last decade to constrain the value of the cosmological pa-
rameter H0 to a few percents level [167, 168, 169], with competitive precision with respect to other
cosmological probes. Moreover, Time Delay measurements can also be used to put constraints
on the Post-Newtonian parameter γPPN , as discussed in Refs. [170, 171, 172, 173]. Furthermore,
with optimistic assumptions on the surveys, in the next years the precision of observations will
be enough to provide a smoking gun for Dark Energy [174].

3https://shsuyu.github.io/H0LiCOW/site/index.html
4http://www.cosmograil.org



https://shsuyu.github.io/H0LiCOW/site/index.html
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In the next sections we will discuss two new observables proposed by us in Ref. [7]: the Time
Delay drift and the angular drift, which could be used to reconstruct H(z) and also to constrain
violations of the Equivalence Principle [8].

7.3. Redshift drift of Gravitational Lensing

The redshift drift is the time variation of the redshift of a source due to the Hubble flow, see
Ref. [164]. In an expanding universe described by the FLRW metric, one straightforwardly obtains
the result that a photon is redshifted, and the redshift is given in terms of the scale factor as
follows:

1 + z =
a0

ae
, (7.15)

where a0 is the scale factor evaluated at present time (which is the time of observation) and ae
is the scale factor evaluated at the emission time.

The derivative of the redshift with respect to the observation time t0 is the following:

dz

dt0
=

1

ae

da0

dt0
− a0

a2
e

dae
dt0

=
1

ae

da0

dt0
− a0

a2
e

dae
dte

dte
dt0

. (7.16)

It is not difficult to show that:
dte
dt0

=
ae
a0

, (7.17)

and therefore, the redshift drift formula (7.16) becomes:

dz

dt0
=

1

ae

da0

dt0
− 1

ae

dae
dte

= (1 + z)H0 −H(z) , (7.18)

where the Hubble constant H0 and the Hubble parameter H(z) have appeared, so that measuring
dz/dt0 would allow to study the evolution of the Hubble factor.

Since the lens equation contains the angular diameter distances, we realize in Ref. [7] that the
apparent positions of the source will acquire a time dependence due to the Hubble flow. Thus,
applying Eq. (7.18) to the lens equation we predict the following angular drift and the Time
Delay drift for a point mass:

2
θ̇E
θ

= H0 −
H(zL)

1 + zL
,

∆̇

∆
= K

(
H0 −

H(zL)

1 + zL

)
, (7.19)

where a dot indicates derivation with respect to the observer time ˙ = d/dt0, and K is a factor of
order unity given by:

K =
ln −θ−θ+ + θ−+θ+

θ−−θ+

ln −θ−θ+ +
θ2
+−θ2

−
θ+θ−

. (7.20)

The above equations tell us that the entity of these drifts is of order H0. Since H0 ∼ 10−18

s−1, we conclude that the angular drift is of order of 10−10 arc seconds per year, which with the
current precision of observation, ∼ 0.1 arcseconds, would require ∼ 109 yr to be detected. The
Time Delay drift is instad of order ∼ 10−3 arc seconds per year, which would require 108 years
to accumulate a drift detectable by current experiments, with sensitivity of order of days.
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7.4. Test of the Equivalence Principle using Strong Lensing Time
Delay

As we saw in the previous section, drift effects from Strong Lensing in GR are too small to
be detected with current experiments, being of order ∼ H0. On the other hand, the situation
could change if we move to different theories of gravity, where the presence of a modified Poisson
equation will change the time dependence of the lensing potential. From the phenomenological
point of view, many alternative theories of gravity modify the strength of the gravitational
interaction by inducing an effective gravitational coupling Geff , replacing the Newton constant.
For example, we already saw that in VAAS gravity the time dependence of Geff is given by
Eq. (5.43). In f(R) theories of gravity instead we have Geff ∼ 4GN/3fR, so that Geff acquires a
time dependence from the term (df/dt)Ṙ−1. However, in the expression for the deflection angle,
we have a degeneracy between the mass of the lens and the gravitational coupling G.5 Thus, it
would not be possible in principle to distinguish between a stronger coupling or a heavier mass.

On the other hand, the situation is different if we consider drift effects. In Ref. [8] we studied
the changes induced on the Time Delay drift by a time dependent G, and analyzed for illustrative
purposes the entity of the constraints on Ġ/G which can be extrapolated with the precision of
current experiments.

For the case of a point mass, Eqs. (7.19) become:

2
θ̇E
θE

= H0 −
H(zL)

1 + zL
+
Ġ

G
, (7.21)

∆̇

∆
= K

(
H0 −

H(zL)

1 + zL
+
Ġ

G

)
, (7.22)

where it is understood that G is the gravitational coupling at the redshift of the lens. The
above equations show explicitly that drift effects in the context of Strong Lensing, contrary to
what happens with spectroscopic measurements, are sensitive to variations of the gravitational
coupling. Since a signal of order H0−HL/(1+zL), assuming a realistic cosmological evolution, is
beyond the sensitivity of current observations, we can convert the bounds on the drifts in upper
bounds on the variation of G.

Since Time Delay measurements are generally more precise than angular ones we need to obtain
an expression for the time derivative of Eq. (7.13) for an extended lens profile.

Time Delay drift for extended lenses

To begin with let us compute the time derivative of the lensing potential:

ψ̇(β) =
2

c2

DLS
DLDS

(
1

(1 + zL)

dzL
dt

∫

β
dλ Φ +

d

dt

(∫

β
dλ Φ

))
. (7.23)

The time dependence of the second term in the right hand side of the latter equation comes
from the change in time of the light ray path due to a variation of β and from the Newtonian
potential. The former is difficult to compute exactly because it is in general difficult to describe
precisely the curve identified by the light ray path. On the other hand, it is reasonable to assume
that the induced variation of the curve is small and does not contribute to the support of the
integral in Eq. (7.7). In particular, this is true if we evaluate the above integral within the

5From now on we will drop the subscript on Geff to unburden the notation.
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Born approximation, i.e. along the unperturbed light path, as it is customary in Strong Lensing
applications where Φ/c2 � 1 [163]. Within this assumption we can interchange the operation of
integration and time differentiation obtaining:

ψ̇(β) = ψ(β)

(
H0 −

H(zL)

1 + zL

)
+ ψ(β)

∫
β dλ Φ̇
∫
β dλ Φ

. (7.24)

The above equation can be further simplified if we consider a static distribution of matter.
Indeed, in this case the only time dependence of the Newtonian potential is through the effective
gravitational coupling G, so that we have:

ψ̇(β) = ψ(β)

(
Ġ

G
+H0 −

H(zL)

1 + zL

)
. (7.25)

In concrete Time Delay measurements we have to take into account corrections due to the
presence of mass distributed along the line of sight. This is done by introducing a parameter
called external convergence, κext, and defining the real Time Delay distance as:

Dreal
∆t ≡

D∆t

1− κext
, (7.26)

see for example Ref. [166]. If we assume that the external convergence has a time dependence
this would be inherited by the Time Delay distance (7.14).

Combining the latter and Eq. (7.25) we can finally write down the Time Delay drift for an
extended lens with a static distribution of mass:

∆̇ij

∆ij
=

(
Ġ

G
+H0 −

H(zL)

1 + zL

)[
1 +

D∆t (βi −α)2

2c∆ij
− D∆t (βj −α)2

2c∆ij

]
− κ̇ext

1− κext
. (7.27)

Estimating the variation of the Time Delay from current data

We now illustrate how the data can put constraints on the variation of the Time Delay. To this
end, we use the package PyCS3 from the COSMOGRAIL program 6, see Refs. [175, 176]. The
data used are the simulated light curves used in [176], produced in the context of the blind Time
Delay measurement competition named Time Delay Challenge 1 (TDC1) [177], and from the
quasar DES J0408-5354 [178]. We split the total time of observations in two equal time periods.
Each period consists of 658 days for the trial curves, and of 93 days for DES J0408-5354. The
Time Delay between each image is then calculated for each period. The Time Delay estimates
are shown in App. D and summarized in Table 7.1. From it we can readily estimate the relative
variation (7.27) as:

∆̇ij

∆ij
=

∆ij (t+ δt)−∆ij(t)

δt∆ij(t)
=

∆I+II
ij −∆I

ij

∆I
ijδt

, (7.28)

We display the results in Table 7.2.

6Available here.



http://cosmograil.org/
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∆AB ∆AC ∆AD ∆BC ∆BD ∆CD

Trial I −4.9+4.3
−5.5 −18.0+6.0

−8.0 −0.7+9.6
−10.3 −13.5+7.6

−7.6 +4.3+9.8
−11.5 +17.5+10.7

−12.1

Trial I+II −4.5+2.4
−2.0 −21.3+1.4

−1.7 −29.9+9.2
−7.0 −16.6+1.8

−3.4 −25.2+7.5
−6.4 −8.2+8.3

−6.7

DES 0408 WFI I −106.5+15.9
−14.1 −110.6+50.4

−21.7 −142.2+34.3
−18.3 −2.4+38.8

−19.9 −37.1+25.7
−16.2 −31.7+19.8

−30.3

DES 0408 WFI I+II −112.6+6.6
−2.2 −117.2+5.9

−7.6 −153.2+11.9
−9.5 −7.1+8.6

−8.6 −40.5+11.3
−9.3 −35.6+14.1

−10.7

Table 7.1.: Time Delay ∆ between four images from a simulated quasar and the DES J0408-5354
quasar [178]. Each image is labeled from A to D. The numbers I and I+II indicate
that ∆ was measured over the first half of the period of observations, or over the
whole period, respectively. All values are given in days.

|∆̇/∆|AB |∆̇/∆|AC |∆̇/∆|AD |∆̇/∆|BC |∆̇/∆|BD |∆̇/∆|CD
Trial (×10−5) X 27.9± 12.6 X 34.9± 20.9 X X

DES 0408 WFI (×10−5) 61.6± 9.9 64.2± 29.6 83.2± 21.1 X 98.5± 73.6 X

Table 7.2.: Estimated absolute Time Delay variation for the simulated quasar and DES J0408-
5354. All values are given in day−1. The X’s represent values with uncertainty bigger
than the central value, and are thus omitted.

Estimated constraint on Ġ/G

Through Eq. (7.27) it is possible to relate constraints on the relative time variation of ∆ij to
upper bounds on the variation of Ġ/G. The external convergence time dependence is difficult to
evaluate. We expect it to depend explicitly on Ġ/G, similarly to the potential generated by the
lens, with the two contributions having the same sign, but we will assume that it is negligible with
respect to the precision of current observations. We want to stress however, as we discussed in the
previous sections, that it is in principle possible to disentangle such contribution by considering
differences of Time Delays drifts of multiple images. As we already saw the drift due to the
Hubble flow is of order of H0 ∼ 10−18 s−1, so we will neglect it as well. Another effect that
could be of relevance is the time variation of the Time Delay due to the peculiar velocity of the
lens galaxy and its transverse motion. On the other hand, according to Refs. [179, 180], this
contribution is estimated to be of the order of a few seconds per year, so that the effect, even
though it is bigger than the cosmological one due to the Hubble flow, is still not appreciable with
current precision. Under these assumptions, and roughly estimating the term inside the square
bracket of Eq. (7.27) to be of order 1, the values of Table 7.2 can be directly converted into upper
bounds on the time variation of the effective gravitational coupling. The results are reported in
Table 7.3.

|Ġ/G|AB |Ġ/G|AC |Ġ/G|AD |Ġ/G|BC |Ġ/G|BD |Ġ/G|CD
Trial (×10−1) X 1.0± 0.5 X 1.3± 0.8 X X

DES 0408 WFI (×10−1) 2.2± 0.4 2.3± 1 3.0± 0.8 X 3.6± 3 X

Table 7.3.: Upper bounds on the absolute value of Ġ/G in yr−1 from the simulated quasar and
DES J0408-5354. The X’s represent values with uncertainty bigger than the central
value, and are thus omitted.
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7.5. Summary and discussion

We have introduced two novel observables in the contest of Strong Lensing, i.e. the Time Delay
drift and the angular drift. We have shown that measuring these effects one is able to estimate
H(z), and thus reconstruct the cosmological evolution and the effective equation of state parame-
ter of the Universe weff . We have shown that in a modified gravity framework where the effective
gravitational coupling become time dependent, those drifts earn a contribution Ġ/G, and thus
their measurements could be used to constraint both violations the Equivalence Principle and
DE models. Unfortunately, the current precision of the observation is not enough to detect these
drifts so that the constraints we obtain are currently not very competitive. On the other hand,
they could improve already in the near future with upcoming data, see for example Ref. [181],
or simply increasing the observational time. Moreover, as discussed in Refs. [179, 180, 182], if in
the future strongly lensed repeating FRB will be detected, they will provide Time Delay mea-
surements of such extremely high precision, nominally of the order of seconds, that even redshift
drift effects due to the Hubble expansion will be appreciable. In this scenario, the impact for
cosmological implications of the drifts we proposed in this chapter is very promising, and we keep
high expectations for the future.





CHAPTER 8.

Final Considerations

I managed to get a quick PhD — though
when I got it I knew almost nothing about
physics. But I did learn one big thing:
that no one knows everything, and you
don’t have to.

Steven Weinberg

Summary

Research on DE is a tricky business. In principle, one should just try to answer to the question
of what is causing the accelerated expansion of the Universe, but in practice this is just the first
domino tile of a long chain. The Cosmological Constant Λ seems to be the most reasonable and
simplest candidate of Dark Energy, in particular because together with the CDM paradigm is
able to safely match a number of different observations. However, with the outstanding precision
reached in the last years in observational cosmology, the concordance model seems to be not
so concordant, with the most uncomfortable question being what is the value of the Hubble
parameter now. Curiously, this seems to be an evergreen question in cosmology since from its
birth, and it is inspiring the tenacity shown by the scientific community through the last hundred
years in looking for a satisfactory answer. We tried to give an overview of the ΛCDM model in
chapter 2 of this work; our main goal was to highlight the pillars on which it is built on and the
kind of questions that it is able to answer. Of course our presentation is by no means exhaustive
or complete by itself, but we hope it is able at least to address a satisfactory number of references
for the curious reader.

DE is so interesting because it could be a window towards new physics or, depending on one’s
personal perspective, it is already a manifestation of it. The community working on this topic
has undoubtedly shown a fair amount of creativity in the last two decades, both in boosting or
trying to contain the proliferation of possible candidates of DE. In chapter 3 we tried to give a
reasonable classification of the kind of models that were proposed in the last years based on the
Lovelock theorem. Keeping into account that a proper treatment of the topic would have required
more than a textbook, for each class of models we presented some examples in an attempt of
transmitting the flavor and the potential of these proposals.

The ultimate goal of this thesis is to present the results of our research from the last four
years. Most of it was oriented on models of DE which does not introduce in the playground new
degrees of freedom, but instead attempt to ascribe the accelerated expansion of the Universe to
geometrical modifications of the gravitational interaction.
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An interesting phenomenology arises if in such geometrical description we relax the assumption
of locality for the field equations. Ultimately, the main motivation for considering these kinds
of models is that quantum mechanics seems to be nonlocal at fundamental level, and such could
also be a quantum description of gravity. In chapter 4 we review the theoretical grounds and the
mathematical formalism of nonlocal models of gravity based on the inverse d’Alembertian of the
Ricci scalar �−1R.

In chapter 5 we present the results of our research on nonlocal gravity models, in particular [4,
5]:

• We found that the Late-times asymptotic equation of state has a common behavior in
those models which contain explicitly a term �−1R in the Lagrangian. In particular, even
if the Hubble factor does not approach a constant value, we found that Ḣ/H2 → 0 because
H → ∞ due to the divergence of �−1R. We also show that this does not happen for the
DW model if the distortion function f(�−1)R is chosen in such a way that f(∞) 6=∞.

• We studied VAAS gravity within a dynamical system approach and found no stable critical
points. On the other hand, a qualitative study of its field equations show that it is indeed
possible to produce at background level an evolution history compatible with ΛCDM from
the radiation dominated epoch until today.

• Still in VAAS gravity, we have shown that on local scales the effects of the nonlocal modi-
fications is encoded in a slip parameter and in a modification of the effective gravitational
coupling η, Y 6= 1.

• We checked consistency of the model with LLR constraints, which are not passed. How-
ever, we found that the field equations admit spherically symmetric static solutions which,
if realized and stable, would satisfy trivially LLR constraints and for which one of the grav-
itational potential closely resemble the solution one would obtain in standard GR for the
Schwarzschild-deSitter solution.

In chapter 6 we discuss a geometrical theory of gravity containing higher order derivative terms
which we proposed in Ref. [6]. The theory is based on the introduction of the anticurvature scalar
A, which is the trace of the inverse of the Ricci tensor Aµν = R−1

µν . We derive the general field
equations for an f(R,A) theory and assess their potential for cosmological implications. We
found that an interesting phenomenology arise already for the simplest choices of f , but also
a no-go theorem which claims that polynomial Lagrangians are not able to reproduce a viable
cosmological history. Finally, we present some choices of f that evades the no-go theorem and
thus are worth further investigation.

Finally, in chapter 7 we present the results of our works [7, 8] about the potential of Strong
Lensing observables to study cosmology and DE. In particular, we introduce two new quantities,
the angular drift and the Time Delay drift, which are a manifestation of the Hubble flow in
a lensed system. These drifts, if measured, would allow for a reconstruction of H(z) at the
redshift of the lens, and thus potentially very helpful for estimating the effective equation of
state parameter of the Universe weff . We also show that in a modified theory of gravity with
a time dependent gravitational coupling, a similar effect arise, and we can use Strong Lensing
Time Delay observations to constrain violations of the Equivalence Principle. The entity of these
drifts is unfortunately beyond the sensitivity of current experiment, and results in very weak
constraints on Ġ/G. However, we also discuss some possible future perspectives that would make
them appealing.
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Outlooks

Most of the nonlocal models of gravity presented in the literature seems to be ruled out by LLR
constraints. On the other hand they are motivated by fundamental physics, and as we saw in
Ref.[5] in most cases they provide a useful mechanism to trigger an accelerated expansion of the
Universe only at Late-times. For these reasons we are currently trying to understand if they can
be used, together with a Cosmological Constant Λ, to alleviate or solve theH0 tension by changing
the rate of expansion of the universe today without affecting CMB measurements or violating
LLR constraints. Regarding VAAS, a perturbative analysis beyond the small scales regime is
still lacking, and is crucial for properly assess the appealing of the model with respect to ΛCDM.
We address this analysis for future works. Inverse Ricci gravity offers a completely new class of
modified gravity theories, and as we saw it can introduce a very interesting phenomenology. On
the other hand, containing higher order derivatives, one expect that it is in general unstable unless
the Lagrangian is degenerate. We address to future works a research of which kind of f(A,R) will
result in a degenerate Lagrangian capable of escaping the no-go theorem. Finally, the increasing
precision of Strong Lensing measurements motivate a deeper investigation of the cosmological
information we can extract from them. Moreover, being equivalent to an interferometer with arms
of astrophysical size, a strongly lensed system could be sensitive to the passage of a gravitational
wave. This could be very interesting for multi-messenger astronomy, and we address to future
works a quantitative estimation of the GW impact on Time Delay measurements to assess the
potential of this idea.





APPENDIX A.

Critical points in VAAS gravity

We want to study the critical points of the system (5.1) satisfying the constraint (5.2).

Critical points at finite distance

Consider first the case where 2αV = 1, which is special because it eliminates Ḣ from the field
equations. From the Klein Gordon equations we see that V = 1/(2α) = constant only if m2 = 0.
The latter is a parameter of the theory so it is not necessarily vanishing and thus, unless m2 = 0,
V cannot be constant. With V = 1/(2α) = constant, then V̇ = Y = 0 and thus from Eq. (5.2)
we get ρ = 0. We are just left with the Klein Gordon equation for U while H is completely
arbitrary, since we have lost the equations ruling its dynamics. Since providing a suitable H is
one of the objectives of the model, we do not consider this possibility anymore.

Now we consider 2αV 6= 1. The right hand sides of the last three equations of the dynamical
system (5.1) vanish when X = Y = 0 and m2 = 0. Again, the latter is a parameter of the theory
so it is not necessarily vanishing. Thus if m2 6= 0 we can already conclude that there are no
critical points at finite distance.

Let us consider now the subclass of theories for which m2 = 0, i.e. with Rf = 0. Demanding
the vanishing of the right hand sides of the first three equations of system (5.1) and from Eq. (5.2)
we have, taking into account X = Y = m2 = 0:

3H2(1− 2αV ) =
ρ− P
2M2

Pl

, (A.1)

−3H(ρ+ P ) = 0 , (A.2)

H2(1− 2αV ) =
P − ρ
2M2

Pl

, (A.3)

3H2(1− 2αV ) =
ρ

M2
Pl

. (A.4)

Now, from the second equation above we either have that H = 0 or P = −ρ, i.e. a vacuum
energy equation of state is required. If our fluid model has not such equation of state, then the
only possibility is H = 0 and thus ρ = P = 0. This critical point represents Minkowski space.
Note that U and V may assume whatever constant value, except V = 1/(2α).

On the other hand, let us assume that indeed the fluid content satisfies a vacuum energy
equation of state, i.e. P = −ρ. In this case, the above system becomes:

3H2(1− 2αV ) =
ρ

M2
Pl

, (A.5)

H2(1− 2αV ) = − ρ

M2
Pl

. (A.6)
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Summing the two equations we arrive at:

4H2(1− 2αV ) = 0 . (A.7)

Since 2αV 6= 1, we have again H = 0 and thus the same Minkowski critical point as before.
There is a caveat here. When m2 = 0 the evolution of U is disentangled from the one of H.
Therefore, we can reduce our dynamical system (5.1) to:

Ḣ =
1

1− 2αV

[
ρ− P
2M2

Pl

+ 2αHY

]
− 3H2 , (A.8a)

ρ̇ = −3H(ρ+ P ) , (A.8b)

Ẏ = −3HY , (A.8c)

V̇ = Y . (A.8d)

From this system is not difficult to see that there is a critical point

P = −ρ = −M2
Pl (1− 2αV ) 3H2 = constant , (A.9)

which represents a de Sitter phase. With H > 0 constant, the equation for U becomes:

Ü + 3HU̇ = −12H2 , (A.10)

which has the special, non-constant solution U = −4Ht.

Critical points at infinite distance

In order to investigate the critical points at infinity, we build the Poincaré hyperspherein the
variable space plus one dimension. The equation of the sphere is the following:

h2 + r2 + p2 + x2 + y2 + u2 + v2 + z2 = 1 , (A.11)

where:

H ≡ h

z
, ρ ≡ r

z
, P ≡ p

z
, X ≡ x

z
, Y ≡ y

z
, U ≡ u

z
and V ≡ v

z
. (A.12)

System (5.1) thus becomes:

zḣ = A(1− h2)− h (rB + xC + yD + uE + vF ) , (A.13a)

zṙ = B(1− r2)− r (hA+ xC + yD + uE + vF ) , (A.13b)

zẋ = C(1− x2)− x (hA+ rB + yD + uE + vF ) , (A.13c)

zẏ = D(1− y2)− y (hA+ rB + xC + uE + vF ) , (A.13d)

zu̇ = E(1− u2)− u (hA+ rB + xC + yD + vF ) , (A.13e)

zv̇ = F (1− v2)− v (hA+ rB + xC + yD + uE) , (A.13f)

zż = − (hA+ rB + xC + yD + uE + vF ) , (A.13g)
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where the equation for ż is obtained from Eq. (A.11) and the terms A, B, C, D, E and F are
defined as follows:

A ≡ z

z − 2αv

[
z(r − p)

2M2
Pl

+
m2z

2
(z − u) + 2αhy

]
− 3h2 , (A.14a)

B ≡ −3h(r + p) , (A.14b)

C ≡ −3hx− 6h2 − 6z

z − 2αv

[
z(r − p)

2M2
Pl

+
m2z

2
(z − u) + 2αhy

]
, (A.14c)

D ≡ m2z2

2α
− 3hy , (A.14d)

E ≡ zx , (A.14e)

F ≡ zy . (A.14f)

The critical points of the above system corresponding to z = 0 are critical points at infinity. In
order to find them, let us first define a new time parameter such that z

3
d
dt ≡ d

dτ ≡ ′ and the
functions:

G ≡ h
(
h2 + γr2 + x2 + y2 + 2hx− 1

)
, (A.15)

G̃ ≡ h
(
h2 + γr2 + x2 + y2 + 2hx− γ

)
, (A.16)

where we have assumed a barotropic equation of state linking pressure to density:

P = (γ − 1)ρ . (A.17)

The dynamical system (A.13) for z = 0 can thus be written as:

h′ = hG , (A.18a)

r′ = rG̃ , (A.18b)

x′ = xG− 2h2 , (A.18c)

y′ = yG , (A.18d)

u′ = u (G+ h) , (A.18e)

v′ = v (G+ h) . (A.18f)

It is important to emphasise that the solutions of the above system must be compatible with the
Friedmann equation, which in terms of the variables on the Poincaré sphere provides:

(
1− 2α

v

z

) h2

z2
+
m2u

6z
− αy

3z2
(6h+ x)− r

3zM2
Pl

= 0 . (A.19)

Multiplying the above equation for z3 and then considering z = 0, we obtain:

αvh2 = 0. (A.20)

So that at infinity Friedmann equation imposes that at least one among α, v, h is vanishing. It is
easy to see that when h = 0 the function G vanishes identically, so we have a critical hyperplane
in the variables space corresponding to Minkowski spacetime.

We will discuss later the stability of this critical hypersurface, and focus now on the only other
interesting case,1 v = 0. In this case, Friedmann equation becomes:

h2 − αy
(

2h+
x

3

)
= 0 . (A.21)

1We do not consider α = 0 since it simply turns off the nonlocal interacting term.
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Since h 6= 0, then from Eqs. (A.18a) and (A.18d) we have that:

y = h+K , (A.22)

where K is an integration constant. From Eq. (A.21) we then have:

x =
3h2

αy
− 6h =

3h2

α(h+K)
− 6h . (A.23)

This result allows us to rewrite Eq. (A.18c) as follows:

x′ = G

[
3h2

α (h+K)
− 6h

]
− 2h2 , (A.24)

and we see that it is impossible to have both (A.18a) and (A.24) vanishing without G = h = 0,
and so there are no critical points, but h = 0, at infinite distance.

Linearisation and stability of the critical point

In order to calculate the stability of the critical points at h = 0, let us linearise system (A.18)
around the critical point h0 = 0, i.e, h = h0 + ε, r = r0 + η, x = x0 + χ, y = y0 + ϕ, u = u0 + λ
and v = v0 + σ. Consequently, the linearised dynamical system is given by:

ε′ = 0 , (A.25a)

η′ = r0

(
γr2

0 + x2
0 + y2

0 − γ
)
ε , (A.25b)

χ′ = x0

(
γr2

0 + x2
0 + y2

0 − 1
)
ε , (A.25c)

ϕ′ = y0

(
γr2

0 + x2
0 + y2

0 − 1
)
ε , (A.25d)

σ′ = u0

(
γr2

0 + x2
0 + y2

0

)
ε , (A.25e)

λ′ = v0

(
γr2

0 + x2
0 + y2

0

)
ε . (A.25f)

Usually the stability of the critical point is studied by means of the Jacobian matrix, but un-
fortunately it is degenerate in our case. However, we easily recognise that in the above system
of equations the perturbation ε is constrained to be a constant by (A.25a). Note also that the
combinations

(
γr2

0 + x2
0 + y2

0 − 1
)

and
(
γr2

0 + x2
0 + y2

0 − γ
)

are constant as long as we assume a
time-independent equation of state. Thus all the perturbations with the exception of ε, which is
constant, go linearly with time showing an unstable behavior.
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Qualitative dynamic of nonlocal models

Qualitative behavior of U

The Klein Gordon equation for U in FLRW backround, defining X ≡ U ′ and using N = log a as
time coordinate is:

X ′ + (3 + ξ)X + 6 (2 + ξ) = 0 . (B.1)

The formal solution for X ′ is:

X(N) = C1e
−F (N) − 6e−F (N)

∫ N

Ni

dN̄eF (N̄)[2 + ξ(N̄)] , (B.2)

which choosing vanishing initial conditions give:

X(N) = −6e−F (N)

∫ N

Ni

dN̄eF (N̄)[2 + ξ(N̄)] . (B.3)

It is straightforward to show that 0 ≤ X ≤ 6, indeed rewrite the solution for X as follows:

X(N) = −6e−F (N)

∫ N

Ni

dN̄eF (N̄)[3 + ξ(N̄)] + 6e−F (N)

∫ N

Ni

dN̄eF (N̄) . (B.4)

The first integral can be cast as:

X(N) = −6e−F (N)

∫ N

Ni

dN̄
d(eF (N̄))

dN̄
+ 6e−F (N)

∫ N

Ni

dN̄eF (N̄) , (B.5)

and thus:

X(N) = −6 + 6e−F (N) + 6e−F (N)

∫ N

Ni

dN̄eF (N̄) . (B.6)

Being the second and third terms on the right hand side strictly positive, we have then that
X(N) > −6.

Qualitative behavior of VAAS

During the radiation-dominated epoch one has ξ = −2 and thus:

X = 0 , (B.7)

This implies that U is a constant, and this constant must be zero, because of our initial condition.
On the other hand,

Y (N) = −e−(N−Ni)
∫ N

Ni

dN̄e(N̄−Ni) m2

H2
0 Ωr0e−4N̄

= − m2

5H2
0 Ωr0

e−N
(
e5N − e5Ni

)
, (B.8)
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from which:

Ṽ = − m2

20H2
0 Ωr0

e4N − m2

5H2
0 Ωr0

e5Ni−N + C3 . (B.9)

Since Ṽ (Ni) = 1, we then have:

Ṽ = − m2

20H2
0 Ωr0

e4N − m2

5H2
0 Ωr0

e5Ni−N +
m2

4H2
0 Ωr0

e4Ni + 1 . (B.10)

This is very small for N large and negative, so one can basically take Ṽ = 1.
During the matter-dominated epoch we have ξ = −3/2 and thus:

X = −3e−3N/2

∫ N

Ñi

dN̄e3N̄/2 = −2 + 2e3Ñi/2 , (B.11)

where Ñi is some new initial value, chosen in the matter-dominated epoch. Being this large and
negative, we neglect the exponential with respect to −2 and so a linear solution for U follows:

U = C1 − 2N , (B.12)

with C1 integration constant. For Y we have a solution similar to the one we found for the
radiation-dominated case. We simplify it a little bit, writing:

Ṽ = 1− m2

12H2
0 Ωm0

e3N . (B.13)

We have neglected all the exponentials contributions containing the initial e-folds number because,
even in the matter-dominated epoch, it is very small. It is only at late times that Ṽ starts to
grow different from one.

In vacuum, i.e. when matter and radiation dilute, the first Friedmann equation is:

3Ṽ = −m
2U

2H2
− Y

2
(6 +X) +

ρ

M2
PlH

2
. (B.14)

Since U < 0, Y < 0, X > −6 and of course ρ > 0, we can conclude that Ṽ > 0. On the other
hand, Y < 0 tells us that Ṽ always decreases. So, in order for Ṽ to decrease from one to zero,
without becoming negative, we need that m2/H2 ≥ 1 only for a limited interval of e-folds. This,
in particular, means that H cannot tend to zero in the far future, for large N , but it must increase
in order to guarantee that m2/H2 � 1. On the basis of this argument, we can conclude that at
late-times, when the matter is completely diluted:

3Ṽ ∼ −m
2U

2H2
, (B.15)

this however provided that X does not diverge, otherwise we cannot neglect the product XY in
general.

Combining the two Friedmann equations, we have that:

ξ = −3 +
1

Ṽ

[
−Y +

m2(1− U)

2H2
+

ρ− P
2M2

PlH
2

]
. (B.16)
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For non-exotic fluids one has ρ − P > 0 and therefore we see that definitely ξ > −3. At late
times, according to our previous discussion, we have that:

ξ ∼ −3− 1

Ṽ

m2U

2H2
∼ 0 . (B.17)

Hence, the effective equation of state always tends to −1. We can check now directly that X
does not diverge from its solution, computed with ξ = 0. One obtains:

X = −4 , (B.18)

i.e. a U growing indefinitely negative, say:

U = C1 − 4N . (B.19)

With this solution, we are left with two equations:

Y + 3Ṽ = − m2

2H2
U , (B.20)

Y ′ + 3Y = −m
2

H2
. (B.21)

The derivative of the left hand side of the first equation is equal to the left hand side of the
second equation. Hence, one finds that:

ξ = − 3

C1 − 4N
= − 3

U
, (B.22)

and we have the solution for H:

H = C2|C1 − 4N |3/4 = 3|U |3/4 . (B.23)

The solution for H ′ is instead:

H ′ = − 3C2

C1 − 4N
|C1 − 4N |3/4 . (B.24)

�−2R model

This model was proposed in Ref. [144] and is motivated from studies of nonperturbative lattice
quantum gravity. The Lagrangian is:

L = LEH −
M4

6

1

�2
R , (B.25)

and is localized introducing the auxiliary fields:

�U = −R , (B.26)

�S = −U , (B.27)

�Q = −1 , (B.28)

�L = −Q . (B.29)
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The field equations are:

h2 =
γ

4

[
V +WU + h2

(
6Z + 6Z ′ − U ′Z ′ − V ′W ′

)]
+ Ω0

Re
−4N + Ω0

Me
−3N , (B.30)

ξ =
1

2
(
1− 3

2γZ
)
[−4Ω0

Re
−4N − 3Ω0

Me
−3N

h2
+

3

2
γ

(
W

h2
− 4Z ′ + U ′Z ′ + V ′W ′

)]
, (B.31)

U ′′ + (3 + ξ)U = 6 (2 + ξ) , (B.32)

V ′′ + (3 + ξ)V ′ =
U

h2
, (B.33)

W ′′ + (3 + ξ)W ′ =
1

h2
, (B.34)

Z ′′ + (3 + ξ)Z ′ =
W

h2
. (B.35)

defining Z̃ = 1 − 3
2γZ we can rewrite the late-times Friedmann equations (B.30) (B.31), when

matter is completely diluted, as:

Z̃ =
γ

4h2
(UW + V )− Z̃ ′

(
1− U ′

6

)
− γW ′V ′

4
, (B.36)

ξ =
1

2Z̃

[
3γW

2h2
+ 4Z̃ ′ − Z̃ ′U ′ + 3γV ′W ′

2

]
, (B.37)

while the KG equation (B.35) for Z̃ is:

Z̃ ′′ + (3 + ξ) Z̃ ′ = −3γW

2h2
, (B.38)

whose formal solution for Z̃ ′ is given by:

Z̃ ′ = −3γe−F (N)

∫ N

Ni

dN̄eF (N̄) W

2h2
. (B.39)

We write for convenience also the formal solutions for V ′ and W ′:

V ′ = e−F (N)

∫ N

Ni

dN̄eF (N̄) U

h2
, (B.40)

W ′ = e−F (N)

∫ N

Ni

dN̄eF (N̄) 1

h2
. (B.41)

Since we chose initial conditions Wi = 0 and since W ′ > 0 we can conclude that W > 0. This
implies that Z̃ ′ < 0; on the other hand Eqs. (5.5) imply V ′ > 0, 0 < U ′ < 6 and U > 0. In order
to understand the behavior of Z̃ let us define the function T :

T ≡ UW + V

h2
−W ′V ′ , (B.42)

taking its time derivative and using Eqs. (B.34) and (B.33) we are able to set up a differential
equation for T :

T ′ + 2ξX =
U ′W

h2
+ 6V ′W ′ . (B.43)
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The formal solution of Eq. (B.43) is given by:

T (N) =
1

h2(N)

∫ N

Ni

dN̄
(
U ′W + 6h2V ′W ′

)
− CXh2(N) , (B.44)

where CX is an integration constant. Since X(Ni) = 0 we can conclude from Eq. (B.44) that
T (N) > 0. This in turns implies that the right hand side of Eq. (B.36) it’s always positive, and
we can conclude that, asymptotically, Z̃ > 0.

Since Z̃ is positive definite, we must have asymptotically Z̃ ′ → 0. It is straightforward to realize
from Eq. (B.39) that this is possible only if h2 is a monotonic growing function that grows faster
than W/2. On the other hand, W is also a monotonic growing function since W ′ > 0. In
particular, since h2 grows faster than W , it also grows faster then a constant, and so we conclude
from Eq. (B.41) that W ′ → 0. Using the latter in Eq. (B.36) we are left with:

Z̃ ∼ γ

4h2
(V +WU) . (B.45)

Using the above result in Eq. (B.37) we finally obtain:

ξ ∼ 3
V
W + U

∼ 0 , (B.46)

then once again we have weff → −1.
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Field equations in Inverse Ricci gravity

To begin with let us consider the following action:
Consider first the basic Action

S =

∫ √−gd4x(R+ αA) , (C.1)

where the anticurvature scalar A is the trace of Aµν

Aµν = R−1
µν . (C.2)

By differentiating Eq. (6.1), we see that

δAµτ = −Aµν(δRνσ)Aστ . (C.3)

We have then

δS =

∫
d4x(Aδ

√−g +
√−gAµνδgµν +

√−ggµνδAµν)

=

∫
d4x
√−g(

1

2
Agµνδgµν +Aµνδgµν + gµνδA

µν) , (C.4)

and since
δRαβ = ∇ρδΓρβα −∇βδΓρρα , (C.5)

we obtain

δAµν = −Aµα(∇ρδΓρβα −∇βδΓρρα)Aβν

= −1

2
Aµα(gρλ∇ρ(∇αδgβλ +∇βδgλα −∇λδgαβ)− gρλ∇β(∇αδgρλ +∇ρδgλα −∇λδgαρ))Aβν

= −1

2
Aµαgρλ(∇ρ∇αδgβλ −∇ρ∇λδgαβ −∇β∇αδgρλ +∇β∇λδgαρ + [∇β,∇ρ] δgλα)Aβν .

(C.6)

Using integration by parts, this becomes

gµνδA
µν = −1

2
gµνg

ρλ(δgβλ∇α∇ρ(AµαAβν)− δgαβ∇λ∇ρ(AµαAβν)− δgρλ∇α∇β(AµαAβν)+

+ δgαρ∇λ∇β(AµαAβν)) + δgαρ∇λ∇β(AµαAβν))

=
1

2
δgικ(−2gρι∇α∇ρAµαAκµ +∇2(AµιAκµ) + gικ∇α∇β(AµαAβµ)) . (C.7)
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So finally the variation is

δgµν(
1

2
Agµν +Aµν +

1

2
(−2gρµ∇α∇ρAσαAνσ +∇2(AσµAνσ) + gµν∇α∇β(AσαAβσ))) . (C.8)

Together with the variation of the standard Hilbert-Einstein Lagrangian

δgµν(−1

2
Rgµν +Rµν) = −δgµν(−1

2
Rgµν +Rµν) , (C.9)

we obtain finally the equations for the Action (C.1)

Rµν − 1

2
Rgµν − αAµν − 1

2
αAgµν +

α

2

(
2gρµ∇α∇ρAασAνσ −∇2AµσA

νσ − gµν∇α∇ρAασAρσ
)

= Tµν ,

(C.10)

where we used the fact that AασA
νσ = AατgτσA

σν = AατAντ = AασAνσ = AνσA
ασ and we employed

units in which 8πG = 1. It can be show that the left-hand side of Eq. (C.10) is divergenceless,
as it should be in order to satisfy the Bianchi identities.

The extension to any Lagrangian f(R,A) is quite straightforward:

δS =

∫
d4x
√−g(−1

2
f(R,A)gµνδg

µν + fAA
µνδgµν + fAgµνδA

µν + fRRµνδg
µν + fRg

µνδRµν) ,

(C.11)
where fR = ∂f/∂R and fA = ∂f/∂A. Then we have

fRR
µν − fAAµν −

1

2
fgµν + gρµ∇α∇ρfAAασAνσ −

1

2
∇2(fAA

µ
σA

νσ)

− 1

2
gµν∇α∇β(fAA

α
σA

βσ)−∇µ∇νfR + gµν∇2fR = Tµν . (C.12)





APPENDIX D.

Estimating Time delay Uncertainties with
PyCS3

In this appendix, we display the time delays and their uncertainties obtained with PyCS3.
Uncertainties are obtained by simulating light curves close to the data, and randomizing the
true time delay applied to each curve, see Sec. (3.2) of Ref. [181] for more details. The final
marginalization is done performing a hybrid approach between the “free-knot spline” and the
“regression difference” estimators as explained in Sec. (3.3) of Ref. [181]. The parameter τthresh =
0 indicates the marginalization is done over the two estimators. In each figure, the top panels
show the final time delay estimates marginalizing over the two estimators. The middle figure
shows the residuals for the spline fit to the data. The top row of the bottom panels show the
distribution of data residuals for mock curves (in gray) and data (in colors), whereas the bottom
panels show their normalization over the number of runs zr. The time delay estimates for the
simulated curves over the whole period of observations (≈ 1.316 days) is shown in Fig. D.1 while
Fig. D.2 is over half the total period. Similarly, Fig. D.3 (≈ 189 days) and Fig. D.4 show time
delays for the object DES J0408-5354.
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Figure D.1.: Time delay estimates for the simulated quasar over the full observation period.
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Figure D.2.: Time delay estimates for the simulated quasar over half of the observation period.
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Figure D.3.: Time delay estimates for the quasar DES J04078-5354 over the full observation
period.
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Figure D.4.: Time delay estimates for the quasar DES J04078-5354 over half of the observation
period.
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Gravity with a Cosmological Constant Smoothes Out ΛCDM Tensions. Astrophys. J. Lett.
886 L6 (2019). arXiv:1909.02554. Cited on page 16.

[45] J. Sola, A. Gomez-Valent, J. d. C. Perez, and C. Moreno-Pulido. Brans-Dicke cosmology
with a Λ- term: a possible solution to ΛCDM tensions. 2020). arXiv:2006.04273. Cited
on page 16.



https://doi.org/10.1016/j.crhy.2012.04.008
http://arxiv.org/abs/1205.3365
http://arxiv.org/abs/1205.3365
https://doi.org/
http://arxiv.org/abs/1502.05296
https://doi.org/10.1140/epjc/s10052-014-3160-4
http://arxiv.org/abs/1410.2509
https://doi.org/10.1146/annurev-astro-091916-055313
http://arxiv.org/abs/1707.04256
https://doi.org/10.1103/PhysRevLett.121.211302
http://arxiv.org/abs/1711.06267
https://doi.org/
http://arxiv.org/abs/1908.09139
https://doi.org/10.1038/s41550-019-0906-9
http://arxiv.org/abs/1911.02087
https://doi.org/10.1088/1475-7516/2016/10/019
http://arxiv.org/abs/1607.05617
http://arxiv.org/abs/1907.10625
https://doi.org/10.3390/sym11080986
http://arxiv.org/abs/1906.09189
https://doi.org/10.1103/PhysRevD.97.043513
http://arxiv.org/abs/1710.02559
http://arxiv.org/abs/1710.02559
https://doi.org/10.1016/j.dark.2019.100311
http://arxiv.org/abs/1811.03505
https://doi.org/10.1088/1475-7516/2019/01/007
http://arxiv.org/abs/1802.09216
https://doi.org/10.3847/2041-8213/ab53e9
http://arxiv.org/abs/1909.02554
https://doi.org/
http://arxiv.org/abs/2006.04273


Bibliography

[46] S. Profumo. An Introduction to Particle Dark Matter. World Scientific 2017. Cited on
page 18.

[47] D. Lovelock. The Einstein tensor and its generalizations. J. Math. Phys. 12 498 (1971).
Cited on pages 18 and 23.

[48] D. Lovelock. The four-dimensionality of space and the einstein tensor. J. Math. Phys. 13
874 (1972). Cited on page 18.

[49] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis. Modified Gravity and Cosmology.
Phys. Rept. 513 1 (2012). arXiv:1106.2476. Cited on page 18.

[50] G. W. Horndeski. Second-order scalar-tensor field equations in a four-dimensional space.
Int. J. Theor. Phys. 10 363 (1974). Cited on page 19.

[51] C. Deffayet, S. Deser, and G. Esposito-Farese. Generalized Galileons: All scalar mod-
els whose curved background extensions maintain second-order field equations and stress-
tensors. Phys. Rev. D 80 064015 (2009). arXiv:0906.1967. Cited on page 19.

[52] T. Kobayashi, M. Yamaguchi, and J. Yokoyama. Generalized G-inflation: Inflation with
the most general second-order field equations. Prog. Theor. Phys. 126 511 (2011). arXiv:
1105.5723. Cited on page 19.

[53] L. Heisenberg. Generalization of the Proca Action. JCAP 05 015 (2014). arXiv:1402.7026.
Cited on page 20.

[54] T. Koivisto and D. F. Mota. Accelerating Cosmologies with an Anisotropic Equation of
State. Astrophys. J. 679 1 (2008). arXiv:0707.0279. Cited on page 20.

[55] B. Himmetoglu, C. R. Contaldi, and M. Peloso. Instability of anisotropic cosmological
solutions supported by vector fields. Phys. Rev. Lett. 102 111301 (2009). arXiv:0809.2779.
Cited on page 20.

[56] A. De Felice, L. Heisenberg, R. Kase, S. Mukohyama, S. Tsujikawa, and Y.-l. Zhang.
Cosmology in generalized Proca theories. JCAP 06 048 (2016). arXiv:1603.05806. Cited
on page 20.

[57] L. Heisenberg. Scalar-Vector-Tensor Gravity Theories. JCAP 10 054 (2018). arXiv:

1801.01523. Cited on page 20.

[58] L. Heisenberg, R. Kase, and S. Tsujikawa. Cosmology in scalar-vector-tensor theories. Phys.
Rev. D 98 024038 (2018). arXiv:1805.01066. Cited on page 20.

[59] C. de Rham. Massive Gravity. Living Rev. Rel. 17 7 (2014). arXiv:1401.4173. Cited on
page 21.

[60] S. Hassan and R. A. Rosen. Bimetric Gravity from Ghost-free Massive Gravity. JHEP 02
126 (2012). arXiv:1109.3515. Cited on page 21.

[61] M. S. Volkov. Cosmological solutions with massive gravitons in the bigravity theory. JHEP
01 035 (2012). arXiv:1110.6153. Cited on page 21.
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