
Rodolfo Vieira Valentim

An Architecture for End-to-End Network Slicing
in Multiple Data Centers using Tableless

Source Routing

Brazil

2020

Rodolfo Vieira Valentim

An Architecture for End-to-End Network Slicing in
Multiple Data Centers using Tableless Source Routing

Dissertação de Mestrado apresentado ao De-
partamento de Informática do Centro Tec-
nológico da Universidade Federal do Espírito
Santo, como requisito parcial para obtenção
do grau de Mestre em Informática.

Universidade Federal do Espírito Santo (Ufes)

Centro Tecnológico (CT)

Programa de Pós-Graduação em Informática (PPGI)

Supervisor: Prof. Dr. Rodolfo da Silva Villaça
Co-supervisor: Profª. Drª. Cristina Klippel Dominicini

Brazil
2020

Ficha catalográfica disponibilizada pelo Sistema Integrado de
Bibliotecas - SIBI/UFES e elaborada pelo autor

V155a
Valentim, Rodolfo Vieira, 1992-
ValAn Architecture for End-to-End Network Slicing in Multiple
Data Centers using Tableless Source Routing / Rodolfo Vieira
Valentim. - 2020.
Val81 f. : il.

ValOrientador: Rodolfo da Silva Villaça.
ValCoorientadora: Cristina Klippel Dominicini.
ValTese (Mestrado em Informática) - Universidade Federal do
Espírito Santo, Centro Tecnológico.

Val1. Computação em nuvem. 2. Centros de processamento de
dados. I. Villaça, Rodolfo da Silva. II. Dominicini, Cristina
Klippel. III. Universidade Federal do Espírito Santo. Centro
Tecnológico. IV. Título.

CDU: 004

�������������	���
���������

	��������������������	������
�������������	��������������

��	������	����

���������������������

� !!"#$%&'()!*+,"$ -%)%().#(/#%,%)-").0!12#%-*%&'()",)345(#,6$ 7%)-%)84 9"#! -%-"):"-"#%;)
-()<!=># $()?%4$()7(,()#"@* ! $()=%#7 %;)=%#%)%)(+$"4&'()-()/#%*)-")A"!$#")",)345(#,6$ 7%B)

C=#(9%-%)",)DE)-")F*;G()-")HEHEI

.#(5B)�#B)J(-(;5()-%)? ;9%)K ;;%7%
L# "4$%-(#)M)�N3OPNO8:<?

.#(5QB)�#QB)P# !$ 4%)R; ==";)�(, 4 7 4
P((# "4$%-(#%)M)3:<?)P%,=*!)?"##%

.#(5B)�#B)A%/4(!)A%#$ 4";;()
A",+#()34$"#4()M)�3OPNO8:<?

.#(5B)�#B)J%5%";).%!@* 4)
A",+#()<S$"#4()M):CPLAO8:8

8T3K<J?3�C�<):<�<JCU)�L)<?.VJ3NL)?CTNL
K $0# %1<?W)DE)-")F*;G()-")HEHEB

Este documento foi assinado digitalmente por RODOLFO DA SILVA VILLACA
Para verificar o original visite: https://api.lepisma.ufes.br/arquivos-assinados/43428?tipoArquivo=O
Este documento foi assinado digitalmente por MAGNOS MARTINELLO
Para verificar o original visite: https://api.lepisma.ufes.br/arquivos-assinados/43722?tipoArquivo=O

PROTOCOLO DE ASSINATURA

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

O documento acima foi assinado digitalmente com senha eletrônica através do Protocolo
Web, conforme Portaria UFES nº 1.269 de 30/08/2018, por
RODOLFO DA SILVA VILLACA - SIAPE 2650719
Departamento de Tecnologia Industrial - DTI/CT
Em 30/07/2020 às 11:35

Para verificar as assinaturas e visualizar o documento original acesse o link:
https://api.lepisma.ufes.br/arquivos-assinados/43428?tipoArquivo=O

Este documento foi assinado digitalmente por RODOLFO DA SILVA VILLACA
Para verificar o original visite: https://api.lepisma.ufes.br/arquivos-assinados/43428?tipoArquivo=O
Este documento foi assinado digitalmente por MAGNOS MARTINELLO
Para verificar o original visite: https://api.lepisma.ufes.br/arquivos-assinados/43722?tipoArquivo=O

PROTOCOLO DE ASSINATURA

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

O documento acima foi assinado digitalmente com senha eletrônica através do Protocolo
Web, conforme Portaria UFES nº 1.269 de 30/08/2018, por
MAGNOS MARTINELLO - SIAPE 1669875
Departamento de Informática - DI/CT
Em 31/07/2020 às 09:52

Para verificar as assinaturas e visualizar o documento original acesse o link:
https://api.lepisma.ufes.br/arquivos-assinados/43722?tipoArquivo=O

Este documento foi assinado digitalmente por MAGNOS MARTINELLO
Para verificar o original visite: https://api.lepisma.ufes.br/arquivos-assinados/43722?tipoArquivo=O

Acknowledgements

Agradeço a Deus por me dar sabedoria e força para passar por essa etapa da minha
vida.

Agradeço aos meus pais por todo amor, carinho e dedicação durante todos esses
anos.

Agradeço a minha irmã por ser amiga, carinhosa e por sempre acreditar em mim.

Agradeço a Natasha por ser uma companheira que não mede esforços para me
ajudar e por garantir minha sanidade mental nesse período conturbado.

Agradeço a todos meus amigos do NERDS pelas conversas, pelas partidas acaloradas
de Bomberman e pela pronta ajuda sempre que necessária.

Agradeço aos meus orientadores pela imensa paciência que tiveram comigo e pela
essencial ajuda que recebi durante esses anos de estudo.

Finalmente, agradeço a todos meus amigos que de um jeito ou de outro estiveram
ao meu lado durante essa caminhada.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

Abstract
Telecommunication Service Providers (TSP) need to offer a wide range of services to their
customers. The network functions virtualization (NFV), software-defined networks (SDN),
and network slicing paradigms facilitate the deployment of these services by managing
virtualized resources in a software-driven way. These paradigms have gained traction with
the growth of new services that have different business demands, because their composition
enhance programmability and innovation on top of COTS equipment and open-source
tools. However, there are cases when these services are composed by functions hosted in
geographically distant data centers (or clouds) in different domains. Telecommunication
networks are almost ubiquitous, but multiple TSPs provide access to these networks, and
each TSP has a footprint focused on a specific region. This market fragmentation makes
it challenging to deploy cost-effective network services spanning multiple clouds and few
works in the literature focus on the mechanisms for implementing the stitching of network
slices from multiples service providers or infrastructures.

In this context, this work presents a solution for implementing an end-to-end network
slicing solution using tableless source routing. We propose the use of tableless source
routing to specify a set of physical links, sub-networks, and network functions using a single
piece of information without stacking protocol headers. At the same time, it improves
scalability in the network core by reducing the number of forwarding states. Our proposal
of the architecture has two main concerns. First, it needs to enable tableless source routing
in data centers in a flexible, easy, and programmatic way, keeping compatibility with legacy
applications hosted in these data centers. The second task and our major contribution is
to perform the stitching of slicing segments in each data center in a way that abstracts
from operators the huge amount of work required to perform these tasks.

As a proof-of-concept, we implemented prototypes of the proposed solution with cutting
edge cloud technologies, such as OpenFlow, OpenStack, and Open vSwitch. The results of
functional and performance tests showed that the proposed solution enables end-to-end
network slicing in a low-cost, efficient and flexible manner. Moreover, our proposal provides
mechanisms to the NFV orchestrator that allow fine-grained traffic engineering decisions
to optimize the selection of network paths and connections between domains.

Keywords: NFV, VNF, SFC, OpenStack, Network Slicing, Cloud Computing.

Resumo
Os Provedores de Serviços de Telecomunicações (TSP) precisam oferecer uma ampla gama
de serviços aos seus clientes. A Virtualização de Funções de Rede (do inglês Network
Function Virtualization - NFV), Redes Definidas por Software (do inglês Software Defined
Networks - SDN) e paradigmas de fatiamento de redes (do inglês Network Slicing) facilitam
a implantação desses serviços com o gerenciamento de recursos virtualizados orientada
por software. Esses paradigmas ganharam tração com o crescimento de novos serviços
que possuem requisitos de negócios diferentes, uma vez que sua composição aprimora a
programabilidade e a inovação em cima de equipamentos de prateleira e ferramentas de
código aberto. No entanto, há casos em que esses serviços são compostos por funções
hospedadas em data centers (ou nuvens) distantes geograficamente em domínios diferentes.
As redes de telecomunicação são quase onipresentes, mas vários TSPs fornecem acesso a
essas redes, e cada TSP tem uma pegada focada em uma região específica. Essa fragmen-
tação do mercado torna um desafio implantar serviços de rede econômicos abrangendo
várias nuvens e poucos trabalhos na literatura enfocam os mecanismos para implementar
a costura de fatias de rede de vários provedores de serviços ou infraestruturas.

Nesse contexto, este trabalho apresenta uma solução para a implementação de uma
solução de fatiamento de rede fim a fim usando roteamento fonte sem tabelas. Propomos
o uso de roteamento na origem sem tabelas de encaminhamento para especificar um
conjunto de enlaces físicos, sub-redes e funções de rede usando uma única informação sem
empilhar cabeçalhos de protocolo. Ao mesmo tempo em que melhora a escalabilidade no
núcleo da rede, reduzindo o número de estados de encaminhamento. Nossa proposta de
arquitetura tem duas preocupações principais. Primeiro, ele precisa habilitar o roteamento
de fontes sem tabelas em data centers de maneira flexível, fácil e programática, mantendo
a compatibilidade com aplicações legadas hospedadas nesses data centers. A segunda
tarefa e nossa maior contribuição é realizar a costura de segmentos de fatiamento de rede
em cada data center de uma forma que abstraia dos operadores a enorme quantidade de
trabalho necessária para realizar essas tarefas.

Como prova de conceito, implementamos protótipos da solução proposta com tecnologias
de nuvem modernas, como OpenFlow, OpenStack e Open vSwitch. Os resultados dos
testes funcionais e de desempenho mostraram que a solução proposta permite o fatiamento
da rede fim-a-fim de forma econômica, eficiente e flexível. Além disso, nossa proposta
fornece mecanismos para o orquestrador NFV que permitem decisões de engenharia de
tráfego refinadas para otimizar a seleção de caminhos de rede e conexões entre domínios.

Keywords: NFV, VNF, SFC, OpenStack, Fatiamento de Rede, Computação em Nuvem.

List of Figures

Figure 1 – Modern applications deployed in large and complex geo-distributed
networks. 16

Figure 2 – NSH header. 18
Figure 3 – SSR as a multiple layer solution. 20
Figure 4 – Abstraction of inter-data center connections. 21
Figure 5 – OpenStack logical architecture. (FOUNDATION, 2017) 25
Figure 6 – Architecture used by OpenStack when configured with OpenvSwitch

for L2 mechanism. 26
Figure 7 – Proposed NFV architecture by ETSI. (YI et al., 2018) 27
Figure 8 – (a) Service Function Chain architecture; (b) SFC architecture compo-

nents after initial classification . 30
Figure 9 – Transition from traditional network technology to SDN paradigm.

(CHAYAPATHI SYED F. HASSAN, 2016) 31
Figure 10 – Main components of a OpenFlow switch. (FOUNDATION, 2020a) . . 32
Figure 11 – Application architecture using Ryu network controller. 33
Figure 12 – Open vSwitch components. The first packet of a stream goes up to the

userspace due to the occurrence of a miss. The decision is then saved
for possible packets in the same flow.(FOUNDATION, 2017) 35

Figure 13 – The NGMN network slicing concept.(AFOLABI et al., 2018) 35
Figure 14 – NSH Header. 39
Figure 15 – Proposed architecture for Control and Data planes. 42
Figure 16 – (a) Logical architecture proposed by RFC7665. (b) Functional architec-

ture proposed by KeySFC Architecture. 43
Figure 17 – (a) Addition of a SFC Gateway element to the logical architecture pro-

posed by RFC7665. (b) Addition of a Gateway Switch to the functional
architecture proposed by KeySFC Architecture. 45

Figure 18 – Prototype view at server level with networks connecting each other. . . 49
Figure 19 – Representation of the multi-domain SFC solution prototype. 51
Figure 20 – Routing example using RNS. 52
Figure 21 – Routing example using a list of output ports. 53
Figure 22 – MPLS header which is attached to every packet of flow in a SFC. . . . 54
Figure 23 – Mechanism used by core switches to handle incoming packets. 56
Figure 24 – Steps towards positioning a VNF. 60
Figure 25 – Steps towards deploying SFC. 61
Figure 26 – Processing of a VNF FG by NFV MANO. In white, Edge Switches, in

Dark Gray, Core Switches and in yellow, Gateway Switches. 62

Figure 27 – Figures show scenarios for SFC. In white, Edge Switches, in Dark Gray,
Core Switches and in yellow, Gateway Switches. (a) VNFs in the same
Edge Switch. (b) VNFs in the different Edge Switches and in the same
NFVI-PoP. (c) VNFs in the different Edge Switches and in different
NFVI-PoPs. 63

Figure 28 – Illustration of flows in Scenario 2. 64
Figure 29 – SFC diagram with highlight for each hop. 65
Figure 30 – Comparison between methods of latency measured between source and

destination. 67
Figure 31 – Comparison between methods of jitter measured between the source

and destination of the flow. 67
Figure 32 – Comparison between methods of maximum throughput SFC scenarios. 68
Figure 33 – Migration of a flow and the analysis of the impact on the perceived

latency in V MD2 during the experiment. (a) Routes before migration
(b) Routes after migration (c) Perceived latency in V MD2 during the
experiment. 71

Figure 34 – Migration of a TCP flow and the analysis of the impact on the bandwidth.
(a) Routes before migration (b) Routes after migration (c) Measure
throughput in V MD1 (TCP traffic) during the experiment. 71

Figure 35 – Failure of a physical interface and the analysis of the impact on the
bandwidth in a scenario of reliability. (a) Routes before the failure (b)
Routes after the failure (c) Throughput perceived in V MD1 during the
experiment. 72

Figure 36 – Scenarios where multiple WAN connections are interesting. (a) Re-
dundant connection between domains to improve link availability; (b)
Redundant VNFs in different clouds. 73

Figure 37 – Prototype with redundant connection between NFVI-PoPs. 74
Figure 38 – Latency measured before and after WAN migration. 74

List of Tables

Table 1 – SFC Encapsulations used in the prototype. 54
Table 2 – Supported protocols and its fields. 55

List of abbreviations and acronyms

IoT Internet das coisas, do inglês Internet of Things

CAPEX Gastos de capital, do inglês Capital Expenditure

OPEX Gastos operacionais, do inglês Operational Expenditure

NFV Virtualização de Funções de Rede, do inglês Network Functions Virtu-
alization

NAT Tradução de Endereço de Rede, do inglês Network Address Translation

SDN Rede Definidas por Software, do inglês Software Defined Networks

TSP Provedor de Serviços de Rede, do inglês Telecommunication Service
Provider

VIM Gerenciador de Infraestrutura Virtualizada prevista no ETSI Framework,
do inglês Virtualized Infrastructure Manager

SFC Encadeamento de Funções de Serviço, do inglês Service Function Chain-
ing

NFV MANO Gerenciamento e Orquestração de Funções de Rede Virtualizadas, do
inglês NFV Management and Orquestration

VNFI Instância de Função de Rede Virtual, do inglês Virtual Network Function
Instance

Contents

1 INTRODUCTION . 15
1.1 Research Problem . 17
1.1.1 Challenges in intra-data center scenarios 18
1.1.2 Challenges in inter-data center scenarios 19
1.2 Objectives . 22
1.3 Proposal and contributions . 22

2 BACKGROUND AND RELATED WORK 24
2.1 Cloud Computing . 24
2.1.1 OpenStack . 24
2.1.2 OpenStack Networking . 25
2.2 Network Function Virtualization . 27
2.3 Service Function Chaining . 29
2.3.1 Architecture . 29
2.3.2 SFC encapsulation . 29
2.3.3 Service Function (SF) . 29
2.3.4 Service Function Forwarder (SFF) . 30
2.3.5 SFC Proxy . 31
2.4 Software Defined Networks . 31
2.4.1 OpenFlow . 32
2.4.2 Ryu Framework . 33
2.4.3 Open vSwitch . 34
2.5 Network Slicing . 35
2.6 Related Works . 37
2.6.1 Source Routing . 37
2.6.2 SFC mechanisms for single data center . 39
2.6.3 SFC mechanisms for multiple data centers 40
2.6.4 Contributions Highlights . 40

3 PROPOSAL OF ARCHITECTURE 41
3.1 Data Plane Architectural Elements 42
3.1.1 Architectural components . 42
3.1.2 SFC Gateway . 44
3.2 Control Plane Functional Blocks . 46
3.2.1 NFV Orchestrator (NFVO) . 46
3.2.2 VNF Manager (VNFM) . 46

3.2.3 Virtualized Infrastructure Manager (VIM) 47
3.2.4 SDN Controller . 47
3.2.5 Wide Area Network Infrastructure Manager (WAN IM) 48

4 IMPLEMENTATION AND EVALUATION 49
4.1 Testbed Description . 49
4.2 The Data Plane implementation . 51
4.2.1 SFC Encapsulation . 51
4.2.2 Edge Switches . 54
4.2.3 Core Switches . 55
4.3 The Control Plane implementation 57
4.3.1 VIM . 57
4.3.2 SDN Controllers . 58
4.3.2.1 Core SDN Controller . 58
4.3.2.2 Edge SDN Controller . 58
4.3.2.3 Gateway SDN Controller . 59
4.3.2.4 Topology Controller . 59
4.3.2.5 OpenFlow Proxy Controller . 59
4.3.3 NFV MANO . 59

5 EVALUATION . 65
5.1 Description . 65
5.2 Discussion . 68
5.2.1 Intra NFVI-PoP load balance . 68
5.2.1.1 Elephant flow competing with mice flow . 70
5.2.1.2 Elephant flow competing with another elephant flow 70
5.2.1.3 Flow with delivery reliability requirements . 72
5.2.2 Inter NFVI-PoP load balance . 72

6 CONCLUSIONS AND FUTURE WORK 75
6.1 Conclusion . 75
6.2 Publications . 76
6.3 Future Works . 76

BIBLIOGRAPHY . 78

15

1 Introduction

The advent of the Network Functions Virtualization (NFV) paradigm has enabled
telecommunications service providers to migrate part of the network functions from
specialized equipment to Virtualized Network Functions (VNF), instantiated on commercial-
of-the-shelf (COTS) servers located in public or private clouds (MIJUMBI et al., 2016).
Concomitantly, the popularization of Software-defined Networks (SDN) (KREUTZ et
al., 2015) allowed greater programmability of network elements compared to traditional
approaches. SDN implies a separation between the control plane and the data plane. In
addition, network slicing (NGMN, 2016) emerges as a general concept for partitioning
network resources for specific users and a way to guarantee performance for end-to-end
services. These technologies have gained traction with the increasing growth of new
applications that have different business demands, because their composition enhance
programmability and innovation on top of COTS equipment and open-source tools.

Figure 1 illustrates this composition with an example of the deployment of two
services for a company that has two branch unities. There are three layers used to abstract
the provisioning of resources (NGMN, 2016). The Service Provider (SP) sells the Service
Layer, which is implemented using VNFs from the Network Slice Instance Layer. These
VNFs are positioned considering the availability of resources and other metrics, such as
latency and available bandwidth. Depending on the positioning, the providers need to
create a slicing of network resources in the Resource Layer to implement the service. SDN
enables network slicing by providing a programmable layer for the service-oriented control
of network resources. Besides, it centralizes the control via a SDN Controller which, in
fact, manages the slices and the network flows.

Scenarios intra-data center need to consider the cloud infrastructure. Cloud infras-
tructures are pools of computational, storage and network resources and an important
asset for Service Providers that can use it to deploy modern services by concatenating
virtualized network functions (VNFs) using NFV paradigm. Moreover, cloud computing is
used to host several network applications simultaneously which implies in multi-tenancy
and in the sharing of physical resources. These characteristics present as a challenge for
Service Providers to provision applications with conflicting requirements that share the
same infrastructure. Network slicing is fundamental to assure quality of service and the
correct performance of the network services.

The deliver of cutting edge applications might require some network flows to
transit from edge data centers to other edge or to core data centers. Service Providers
are able to use proprietary or third-party computational resources distributed in different

Chapter 1. Introduction 16

Figure 1 – Modern applications deployed in large and complex geo-distributed networks.

infrastructure and/or geographical domains to perform a dynamic composition of network
functions. For example, composing low latency applications using edge data centers at
different locations, closer to the users. In these inter-data centers scenarios, the delivery of
end-to-end services to users requires additional complexity.

Although several works have tackled this task from the point-of-view of an op-
timization problem by choosing best routes to steer the flows, less attention has being
paid to the methods of how to transfer flows between data centers. Also, the proposal
of methods to stitch several network slicing segments deployed in different data centers
need to consider the complexity of metro, core, and intercontinental networks that connect
different cloud infrastructures.

Many technologies are capable of performing the slicing of network resources in
intra-data center scenarios. However, most of these solutions use traditional table-based
routing mechanisms, which present problems related to poor scalability and high degree of
complexity in the management of network element states (table entries) due to the high
transience of flows (JIN et al., 2016). A consequence is the long convergence time required
to reconfigure network states. Also, traffic engineering may be restricted to a subset of
all available paths in the network, preventing the network orchestrator from selecting

Chapter 1. Introduction 17

optimized paths to avoid congestion or failures (TSO; JOUET; PEZAROS, 2016).

An alternative to mitigate table-based routing problems is the mechanism of
Source Routing (SR), which has gained prominence for mitigating scalability problems
related to the management of forwarding tables on networking devices (JYOTHI et
al., 2015) and the control plane overhead when compared to traditional forwarding
mechanisms (MARTINELLO et al., 2014). Strict Source Routing (SSR) is a variant of
Source Routing where the complete path between source and destination of a flow is
specified and no deviation of this path is allowed.

SSR facilitates network slicing, because it can specify the slicing of resources at
Service Layer, Network Slice Instance Layer and Resource Layer with the same encapsula-
tion. In other words, SSR is capable of specifying a set of physical links, sub-networks and
network functions using a single piece of information without stacking header protocols.
Inside a data center, the Service Function Chaining (SFC) and the provisioning of physical
resources problems can be represented as a network slicing problem and solved using SSR
approach.

In inter-data center scenarios, a way to deal with the complexity of their intercon-
nection technologies is to create an overlay network that connects different infrastructures.
The point of connection between two infrastructures are gateways that manage these
interconnections, abstracting its complexity and speeding up the process of service delivery.
These gateways use SSR allied to a L3VPN to build an overlay network that conveniently
speed up the setup of inter-data center connections.

Given the presented context, we propose an architecture for end-to-end network
slicing in multiples data centers using tableless strict source routing. The proposal of the
architecture has two main concerns, first it needs to enable tableless source routing in
data centers in a flexible, easy and programmatic way, keeping compatibility with legacy
applications hosted in these data centers. The second task and our major contribution is
to perform the stitching of slicing segments in each data centers in a way that abstracts
from operators huge amount of work required to perform this task.

The next section will further discuss the challenges that evolve around build the
proposed solution for an end-to-end architecture for networking slicing using tableless
strict source routing.

1.1 Research Problem
This section describes the challenges to build an end-to-end architecture to network

slicing in multiple data centers using tableless strict source routing.

Chapter 1. Introduction 18

1.1.1 Challenges in intra-data center scenarios

A network slice consists of interconnected Virtualized Network Functions (VNFs),
which host one or more applications (DIMOLITSAS et al., 2020). This simple definition
of network slicing allows to use the concepts of Service Function Chaining to model a
solution for network slicing inside data centers. We propose the use of strict source routing
arguing that this method is capable of fulfill the requirements of resource slicing.

However, we need to understand that the context of solutions for SFC in cloud
infrastructures is dominated by a single solution. The main open-source tools that im-
plement SFC, such as OpenDayLight (FOUNDATION, 2020c), ONOS (FOUNDATION,
2020a), OPNFV (FOUNDATION, 2020b), and OpenStack Networking-SFC (FOUNDA-
TION, 2020), use the architecture proposed by RFC 7665 (PIGNATARO; CARLOS, 2015)
and NSH (Network Service Headers) protocol (QUINN; GUICHARD, 2014) for SFC
encapsulation.

The NSH protocol, shown in Figure 14, specifies a header that includes two chain
identifiers: the first indicates the selected chain and the second indicates the current
position in the chain. NSH relies on the underlying transport methods to deliver the packet
between elements. Most data center administrators uses tunneling solutions to provide
connectivity to the SFC elements and use the NSH as encapsulation to select the next
hop in the chain.

Figure 2 – NSH header.

NSH is the standard approach to implement SFC in data centers and it uses table-
based forwarding mechanisms. Forwarding tables can be managed by human interaction
or by a control plane. Human-based management is more suitable for small data center
networks with little dynamism which lacks robustness. Control plane management requires
overhead in the configuration and, in most cases, involve distributed protocols that present
relevant convergence time. The use of a control plane is indicated for big data centers

Chapter 1. Introduction 19

when human management is not feasible.

Data center networks increased in size with the popularization of cloud computing
over the years. Capable of hosting thousands of virtual machines and hundreds of tenants,
each tenant requires traffic isolation from other clients. In order to implement network
resources slicing the cloud administrator, often, uses a tunneling method such as VxLAN.
However, these techniques do not scale very well without the adoption of a well-designed
control plane. The control plane is complex to set up and incur high management overhead.
Also, there is an overhead required to manage flow entries in a data center with hundreds of
nodes and thousands of SFCs. Furthermore, when we consider the dynamic characteristics
of the NFV traffic, the sequence of Service Functions (SF) in a chain may change during its
life cycle requiring live migrations of SFCs. Also, the traffic engineering of the data center
may need to migrate paths and SFs to guarantee optimal resource usage (DOMINICINI et
al., 2020).

In fact, cloud administrators need to use more than one protocol and control plane
towards building a complete network slicing solution. It requires SFC for virtual network
functions, IP/VxLAN protocols for network isolation and ICMP or other link protocols
to guarantee the link usage. The complexity to manage all these different technologies
simultaneously postpone the adoption of NFV as an industry standard.

The advantages of adopting Source Routing are not limited to the reduction of
management overhead. We claim that SSR changes the SFC paradigm and creates the
possibility to enable a network slicing solution that unifies the traffic steering, traffic
engineering and network slicing. In other words, we propose a solution that covers all three
layers of abstraction as shown in Figure 3.

However, the adoption of tableless Strict Source Routing as transport mechanism
requires some changes in the control plane of DCNs. Currently, there are not any commercial
solutions available. For research purposes the options are to customize software switches
and use them in the data plane to add support for Source Routing, or to implement
hardware switches using prototyping boards like NetFPGAs. Both solutions are time-
consuming and hard to maintain. There is a clear need of solutions for DCNs to enable
Source Routing mechanisms that are easy to deploy and maintain compatibility with
legacy technologies.

1.1.2 Challenges in inter-data center scenarios

Telecommunications networks are almost ubiquitous, however, market fragmenta-
tion leads to each Telecommunications Service Provider (TSP) has a footprint focused on a
specific region. This fragmentation makes it difficult to deploy cost-effective infrastructure
services, such as virtual connectivity or compute resources, spanning multiple countries as

Chapter 1. Introduction 20

Figure 3 – SSR as a multiple layer solution.

no single operator has a big enough footprint (Hermiyanty, Wandira Ayu Bertin, 2017).
Also, combined with geo-distributed data centers, service providers could place virtual
network functions closer to customers, reducing latency and improving reliability (PEI et
al., 2019).

As it was already discussed, we can model these sequences of virtual network
functions both as a network slicing and as a SFC. Moreover, the most important aspect
to analyse when we have VNFs distributed in data centers located in different places is
the mechanisms that perform the stitching of every segment of SFC (or slices) towards
building an end-to-end service.

The NFV architecture provides the means to deploy network services spawning
over multiple geographically distributed domains, which can be advantageous to provide
services with better quality in a broader area. For instance, a company with multiple
branch offices covering entire countries can hire only one service provider instead of having
to make several contracts depending on the availability of services in the region. On
the other hand, inter-operator collaboration tools are very limited, which makes service
deployments and provisioning very time-consuming. Even internally, a single-operator
can also experience some troubles when dealing with technology fragmentation between
data centers. Different data centers in the same administrative domain can use different
equipment from different vendors with different technologies.

In general, to implement an NFV service two stages are required: (i) placement,

Chapter 1. Introduction 21

i.e. where to place a virtual function in order to optimize resource usage and to attend
requirements; (ii) SFC, i.e. to decide how to steer the traffic flows across an ordered set
of VNFs that compose the service. In inter-data center scenarios, both stages require
additional considerations, since there are more variables such as: closeness to the customer,
optimization of a path between source and destination, WAN access optimization, and
others (DOMINICINI et al., 2020).

Some researches have already addressed the problem as an optimization problem.
While most researches focus on how to optimize the placement and routing, the studies
about the design and implementation of a mechanism to reduce the time and effort needed
to implement such scenarios are scarce. As the mechanisms of placement do not change
considerably in inter-data center scenarios, our focus will be onto the SFC stage.

The ETSI (European Telecommunications Standards Institute) proposed an ar-
chitecture for the NFV control plane managing multiple data centers (MAHMOODI et
al., 2017). Although this architecture contemplates several aspects of this problem, our
approach considers the use of SSR combined with L3VPNs and we assign to the transport
network the responsibility to deliver flows to gateway that forward these flows to other
cloud infrastructures. Our architectures differs from ETSI, since we rely on a single solution
for SFC inside and between data centers.

Figure 4 illustrates the view of the Service Providers regarding the data center
interconnections (on the left) and how we intend to abstract these connections by the use
of a virtual private network (on the right). Traditionally, the service providers need to
manage the state of forwarders in the path between infrastructures in order to maintain
the connectivity. Since this task is complex and time consuming, we propose the use of
gateways. The gateways handle the interconnections between data centers and translate
the encapsulation methods.

Figure 4 – Abstraction of inter-data center connections.

Chapter 1. Introduction 22

1.2 Objectives
In order to tackle these research problems, this work has the following general

objectives:

• To develop an architecture that enables end-to-end network slicing between service
functions located in different data centers in an efficient and flexible way;

• To develop an architecture that enables data centers to support tableless Strict Source
Routing mechanisms as transport encapsulation and as network slicing method;

• To implement both control and data planes in order to enable network slicing
deployment into data center network infrastructures.

The scope of this work is composed of services over single and multiple data centers,
that can be in one or multiple Infrastructure Domains. The only restriction is that between
two Infrastructure Domains must exist connectivity provided by the Internet, data center
network itself or any third-party WAN solution.

These objectives, when achieved, should result in a fully functional prototype
using industry-standard technology that will be used as a proof-of-concept for the testing
scenarios.

1.3 Proposal and contributions
This work investigates the possibility to use tableless strict source routing architec-

ture in data center networks in order to facilitate end-to-end network slicing in a context
of multiple data centers.

Given this scenario, we propose an architecture for end-to-end network slicing
that covers both control plane and data plane, adding new functionalities to industry
standard infrastructures and enabling strict source routing as a transport method. The
hypothesis is that we can use a single mechanism to perform full stack network slicing by
changing the forwarding mechanism. This will not just make a data center network more
manageable, but also allow fine-grained (flow level) traffic engineering, improve scalability
in the network core and optimize WAN access. The major contributions of this work are:

• We developed an architecture of services to enable data centers to host end-to-end
NFV services;

• We implemented a prototype using OpenStack Cloud Framework to prove the
applicability in cutting edge cloud technologies;

Chapter 1. Introduction 23

• We developed SDN controllers to enable multiple source routing protocols in the
data center network;

• We developed an control plane to collect topological information, deploy flow entries,
and manage services’ life cycle;

• We developed a set of Ansible scripts that automate the task to deploy SDN
Controllers, modify software switch configurations and establish inter-data center
connections;

• We tested our solution using RNS-based, list-based and MPLS-based source routing;

• We developed a gateway mechanism that virtualizes the WAN and integrates it to
the source routing mechanism. As a result, we abstract the complexity to orchestrate
the stitching of slice segments allowing traffic engineering can be used and on-demand
data center connections can be activated using a simple Internet access;

In summary, this work is a first step to enable researchers and service providers to
build network slicing solutions using Strict Source Routing networks.

This work is structured as follows: in Chapter 2, we present some background
subjects and related works. Chapter 3 describes the architecture proposed. Chapter 4
proposes and implements network slicing and stitching using SSR-based forwarding. Then,
Chapter 5 evaluates and discusses the proposal and the benefits of using it. Finally, we
outline the conclusions and future works in Chapter 6.

24

2 Background and Related Work

This chapter will present the main concepts related to the research problem and
discuss the related works.

2.1 Cloud Computing
According to (ZHANG; CHENG; BOUTABA, 2010), cloud computing is a model

in which the general-purpose resources (compute, storage and others) can be allocated or
freed on-demand via WAN access. in (MELL; GRANCE et al., 2011) a list of the desired
characteristics of a cloud infrastructure can be found:

• On demand services: a user should be capable of allocating and release resources
or services without the need for human interaction;

• Broad network access: the services should be available over the Internet or an
intranet;

• Resource repository: The resources are allocated dynamically for multiple tenants
using several physical and virtual resources;

• Fast elasticity: should be allowed to applications to increment the number of
resources allocated, sometimes automatically and on-demand;

• Measured services: Cloud systems automatically control and optimize resource
usage by leveraging a metering capability at some level of abstraction, appropriate
to the type of service.

In the following sections some relevant aspects of this framework are detailed.

2.1.1 OpenStack

One of the major cloud computing framework is OpenStack, that deserves special
interest since it is an open-source project with a very active community, which, usually,
represents a very high level of bug reports and solutions. OpenStack software controls
large pools of computing, storage, and networking resources throughout a data center
managed through a dashboard or via the OpenStack API. OpenStack works with popular
enterprise and open source technologies making it ideal for heterogeneous infrastructure
(FOUNDATION, 2017).

Chapter 2. Background and Related Work 25

OpenStack supports Linux environments (Ubuntu, OpenSUSE e CentOS) and
adopts a modular architecture where each module has its specific roles. Figure 5 shows
how the components interact. The complexity involved in the process of communication is
clear. There is an evident security concern and therefore all services authenticate through
an identity service (Identity) and the individual services interact with each other through
public APIs, except when privileged administrator commands are required.

Figure 5 – OpenStack logical architecture. (FOUNDATION, 2017)

2.1.2 OpenStack Networking

OpenStack can enable access to a physical networks through Open vSwitch and
Linux Bridges. Figure 6 shows how virtual switches scheme on a computing node looks
like.

Virtual machines have virtual Network Interface Cards (vNICs) that act in the
same way as physical interfaces. As they are simulations of physical interfaces, virtual
interfaces are only capable of receiving Ethernet frames. A tap is a piece of software that
tells Linux Bridge to forward Ethernet frames to them as they were received. A tap is a
way that a hypervisor, like KVM and Xen, implement a vNIC. An Ethernet frame intended
for a vNIC is received by the host’s operating system.

Chapter 2. Background and Related Work 26

Figure 6 – Architecture used by OpenStack when configured with OpenvSwitch for L2
mechanism.

The qvb-qvo veth pair is a directly connected pair where everything that one
receives the other also receives. A veth pair is the virtualization of a network cable. The
Linux Bridge acts with a Layer 2 switch. It is possible to connect several interfaces to
Linux Bridge and the bridge will use a table of MACs to switch the packets, as well as a
physical switch.

Open vSwitch bridges can behave like a software switch too. However, there is a
crucial difference with Linux Bridge and that justifies its use: the ability to redirect traffic
based on rules that can either be installed locally or remotely using a network controller.
In a compute node, two Open vSwitch bridges are installed and each one has its specific
role in routing, which are explained as follows:

• br-int: integration bridge, where all virtual machines allocated on a node are
connected. Responsible for isolating the virtual machines’ vNICs and the host’s
physical interfaces;

• br-eth: responsible for giving access to the physical network.

• br-tun: responsible for giving access to the tunneled network. Used when the cloud
administrator needs to create virtual networks for tenants.

Chapter 2. Background and Related Work 27

2.2 Network Function Virtualization
NFV (Network Function Virtualization) is a new concept, used to represent the

virtualization of network functions that used to be executed by an expensive single
purpose device to COTS (Commercial off-the-shelf) equipment. The hypotheses are
that the virtualization will incur lower CAPital EXpenditures (CAPEX) and OPerating
EXpenditures (OPEX).

NFV initiative was born in the industry and, subsequently, a standardization group
called Network Functions Virtualisation Industry Specification Group (NFV ISG) was
created by ETSI. Later, this group released an architecture of services to guide developers
and researches as shown in Figure 7. The architecture is composed of three major layers:
(i) VNF Layer, (ii) NFVI Layer and (iii) MANO Layer

Figure 7 – Proposed NFV architecture by ETSI. (YI et al., 2018)

• Virtualized Network Function Layer: Represents the scope where the Virtual-
ized Network Functions (VNF) are deployed. A VNF is composed of several VNF
Components that are managed by an Element Manager. All Element Managers of a
specify domain composes the Element Manager System (EMS);

• Network Function Virtualization Layer: Built on top of several general-purpose
hardware. It provides a virtualization environment to deploy and execute VNF
instances. The hypervisor acts as an interface between virtual and physical resources;

Chapter 2. Background and Related Work 28

• Management and Orchestration Layer: Responsible for the management of
the entire virtualized context within the framework of NFV. The context includes
virtualization mechanism, hardware resource orchestration, life cycle management of
VNF instances, interface management between modules, etc. All the responsibilities
are categorized into three parts according to ETSI, namely, Virtualized Infrastructure
Manager (VIM), NFV Orchestrator (NFVO) and VNF Manager (VNFM).

Particularly, the VIM (Virtualized Infrastructure Manager) deserves some attention.
The VIM act as an interface between physical resources and Virtual Machines. Also, it
provides an Application Programming Interface that allow uses to retrieve information
regarding the virtualized infrastructure and the allocated resources. Lastly, some authors
and developers have suggested using Cloud Frameworks as VIMs since it has the same
functionalities. Although is a relatively new concept, it has several use cases described by
(YI et al., 2018):

• NFVI as a Service (NFVIaaS): NFVIaaS indicates that NFVI can be offered
and sold from one service provider to the other.

• Content Delivery Network Virtualization: cache node virtualization to gain
preferable performance on some aspects such as network latency and throughput by
instantiating CDN nodes closed to the public;

• VNF Forwarding Graph (VNF FG): VNF FG can be regarded as an analog of
physical network forwarding graph that connects physical appliances via bidirectional
cables, which connects VNFs via virtual links to describe the traffic among these
VNFs. In particular, connecting multiple VNFs in sequence can constitute a service
that is referred to as SFC in the context of NFV.

The management and orchestration of virtualized resources should be able to handle
NFVI resources in NFVI Points of Presence (NFVI-PoPs). Management of non-virtualized
resources is restricted to provisioning connectivity to PNFs, necessary when an NS instance
includes a PNF (Physical Network Function) that needs to connect to a VNF, or when
the NS instance is distributed across multiple NFVI-PoPs or N-PoPs.

In the case of virtualized resources distributed across multiple NFVI-PoPs, those
services could either be exposed directly by the management and orchestration functions
for each individual NFVI-PoP, or via a higher-level service abstraction presenting the
virtualized resources across multiple NFVI-PoPs (MAHMOODI et al., 2017).

The NFV management and orchestration functions that coordinate virtualized
resources in a single NFVI-PoP and/or across multiple NFVI-PoPs need to ensure exposure
of services that support accessing these resources in an open, well known abstracted manner.

Chapter 2. Background and Related Work 29

These services can be consumed by other authenticated and properly authorized NFV
management and orchestration functions (e.g. functions that manage and orchestrate
virtualized network functions) (MAHMOODI et al., 2017).

2.3 Service Function Chaining
The implementations of network services require, often, several network functions,

such as Deep Packet Inspection (DPI), Firewall, Network Address Translator (NAT) and
others. The definition of an ordered list of functions where network traffic must be steered
through them in a Service Function Chaining (SFC).

2.3.1 Architecture

The RFC 7665 (PIGNATARO; CARLOS, 2015) standardized the concepts and the
architecture of an SFC, listing the core components and considerations regarding security,
resiliency, polices, loop detection and others. The architecture of an SFC is shown in
Figure 8a. It is built on top of its core components which are classifiers, service function
forwarders, service functions, and SFC proxies.

The SFs are inter-connected using SFC encapsulation that is transport-independent.
As a result, there is a SFC-enable domain. In order to understand the process of steering
network packets, it is important to detail each component present in the Figure 8a and
Figure 8b.

2.3.2 SFC encapsulation

The encapsulation designed by the IETF team proposes to be transport-independent,
which means that to transit between network equipment (switches and routers) it relies
on the outer encapsulation, such as VLAN, VxLAN and any other slicing technique.
This characteristic of being transport-independent enables SFC encapsulation to work
with legacy equipment and to work with any transport protocol. Therefore, the SFC
encapsulation enables the selection of a Service Function Path (SFP) and the sharing of
metadata and context when needed.

2.3.3 Service Function (SF)

A SF is a resource that can be used inside a domain and it is available to multiples
SFCs. SFC aware service functions receive traffic with the SFC encapsulation, while SFC
unaware SFs receive traffic without encapsulation (Legacy SFs).

Chapter 2. Background and Related Work 30

(a)

(b)

Figure 8 – (a) Service Function Chain architecture; (b) SFC architecture components after
initial classification

2.3.4 Service Function Forwarder (SFF)

SFFs are responsible for forwarding packets (or frames) received from the network
after classification to the SFs associated with this SFF. SFF uses the service function path
to identify to each SF it should forward the packet. The responsibilities of a SFF are:

• SFP forwarding: when the packet arrives from the network to the SFF, the packet
is delivered to the appropriated SF. Eventually, the packet returns from the SF to
the same SFF. If the next hop in the SFC is a SF connected to the current SFF
then the packet is forwarded to this SF. If the next hop is external to the SFF, the
forwarder encapsulates with the appropriated transport layer header and pushes the
packet back to the network;

• Maintaining flow state: the SFF handles the flow state which it is related to the
position in the SFC. The SFF need to update the flow state according to the SFP.

• Terminating SFP: the traffic must return to the network when the SFC is finished,
i.e. when the packet has traversed through the last SF in the SFC. This information

Chapter 2. Background and Related Work 31

is available in the encapsulation which contains the next hop information.

2.3.5 SFC Proxy

To support SFC’s unaware SFs, a SFC proxy must be provided. It is placed between
SFs and SFF. The SFF redirects the traffic to the proxy instead of the SF. The proxy
receives the packets, removes the encapsulation and delivers the packet to the SF attached
to it. When the packet leaves the SF, the proxy reclassifies the outgoing packets and
re-encapsulates before sending it to the SFF.

2.4 Software Defined Networks
Traditional IP networks, although widely used, can be extremely complex to

configure, as they use distributed control and require the configuration using proprietary
software, usually, in a low-level interface. The reconfiguration and automatic response
mechanisms are practically nonexistent in today’s IP networks. Applying the necessary
policies in such a dynamic environment, as the current data center networks, is highly
challenging.

Software Defined Networks (SDN) appears in an attempt to overcome the limitations
of current networks. To achieve this goal, as can be seen in Figure 9, there is a separation
between the network control logic (the control plane) of the underlying routers and switches
that forward the traffic (the data plane) (KREUTZ et al., 2015).

Figure 9 – Transition from traditional network technology to SDN paradigm. (CHAYAP-
ATHI SYED F. HASSAN, 2016)

Chapter 2. Background and Related Work 32

Separation is possible through a well-defined programmable interface between
the switches and the SDN controller. The controller performs direct control over the
switches in the data plane using an API. The most notable example of such an API is
OpenFlow (MCKEOWN et al., 2008).

2.4.1 OpenFlow

OpenFlow was the first open source protocol for communication between SDN
controllers and data plane equipment. OpenFlow provides a protocol for modify flow tables,
which defines the forwarding of the message.

Figure 10 shows a high level view of a OpenFlow switch components. According to
(MCKEOWN et al., 2008), an OpenFlow Switch consists of at least three parts:

Figure 10 – Main components of a OpenFlow switch. (FOUNDATION, 2020a)

1. A flow table with an action associated with each entry in the table. Thus, the switch
is told how to process each flow;

2. A secure channel between the switch and the controller allowing packet and command
traffic and;

3. The OpenFlow protocol itself that contains the enabling tool for communication
between the controller and switch.

Chapter 2. Background and Related Work 33

When a packet arrives at the switch, it searches the chain of flow tables for any
rules that the packet fits into and performs the corresponding action. If the packet does
not fit any rule, it is forwarded to a queue and an event is sent to the SDN Controller.
The controller responds with a rule for this particular packet. Each entry in the table has
a match, an action in case of agreement with the match and a counter that registers the
number of received packets that are in accordance with that rule.

2.4.2 Ryu Framework

Ryu is a component-based network controller and has a number of predefined
components. Components can be modified, extended and customized to create SDN
applications (KHONDOKER et al., 2014). SDN applications are created and communicate
through the Rest API available with the framework. The framework forwards requests to
OpenFlow switches using the OpenFlow protocol. This scheme is shown in Figure 11.

Figure 11 – Application architecture using Ryu network controller.

The main components of the Ryu controller are:

• app_manager: is the main component. It is responsible for starting the application,
providing context to applications and route messages between applications;

• controller: the main component of the OpenFlow controller. Responsible for man-
aging application connections with switches and for managing and forwarding events
generated by Ryu’s applications.

Chapter 2. Background and Related Work 34

• dpset: manages the virtual switches assigned to the controller. In newer versions it
has been replaced by the topology component.

• ofp_event: contains definition of events.

• ofp_handler: deals with OpenFlow negotiation.

The framework also contains several components that encode and decode OpenFlow
messages in their different versions.

2.4.3 Open vSwitch

Open vSwitch is an open source virtual switch, widely used for enabling networks
for virtualized environments. Virtual machines connect via bridged ports allowing them to
communicate with each other, as well as with the physical network.

The software is basically written in the C programming language. It supports mul-
tiple virtualization platforms such as: Xen/XenServer (XENSERVER, 2017), KVM (KVM,
2016), and VirtualBox (ORACLE, 2011).

The main components of the Open vSwitch are:

• ovs-vswitchd, a daemon that implements flow-based switching of the switch, along
with a Linux kernel module.

• ovsdb server, a lightweight database server that ovs-vswitchd queries for configura-
tion information.

• ovs-dpct, a tool for configuring the switch’s kernel module.

• ovs-vsctl, a utility to query and update the configuration of ovs-vswitchd.

• ovs-appctl, a utility that sends commands to run the Open vSwitch daemons.
(FOUNDATION, 2017)

Figure 12 shows the components that make the packet switching of the virtual
switch. When receiving a new flow and there is no specific action, the package goes up
to the user level (userspace) where the most specific rule possible is consulted. After this
step, the rule is cached at the kernel level.

As Open vSwitch is generally used in SDN environments, you can insert a controller
that communicates using the Openflow protocol (Section 2.4.1). The controller can add,
delete, monitor and obtain statistics about the flow in the Open vSwitch instances.

Chapter 2. Background and Related Work 35

Figure 12 – Open vSwitch components. The first packet of a stream goes up to the
userspace due to the occurrence of a miss. The decision is then saved for
possible packets in the same flow.(FOUNDATION, 2017)

2.5 Network Slicing
The Next Generation Mobile Networks (NGMN) Alliance published a white-paper

in 2015 that introduced the network service deployment concept of Network Slicing. The
network slicing concept consists of 3 layers: 1) Service Instance Layer, 2) Network Slice
Instance Layer, and 3) Resource layer, as shown in Figure 13.

Figure 13 – The NGMN network slicing concept.(AFOLABI et al., 2018)

Chapter 2. Background and Related Work 36

The Service Instance Layer represents the network services that clients hire
from Service Providers. Each service needs to be specified by some pattern or blueprint
that contains the network requirements and resources that a service needs. This blueprint
defines the implementation of service over the Network Slice Instance Layer. Therefore,
a Network Slice Instance provides the network characteristics, which are required
by a Service Instance. Figure 13 shows that different Service Instances share network
Slices Instancesm and may be connected to none or many Sub-network Slice Instances.
The Resource Layer specifies the physical and logical resources available in network
infrastructures.

Regarding a service provided by multiple service providers, from the point-of-view
of wireless services, there are two main scenarios: (i) roaming scenario: individual users
move from one provider (i.e., Home network provider) to a network managed by another
provider (i.e., Visited network provider); (ii) business verticals: when the capabilities
of a single provider cannot meet a business vertical service request, the provider may
harness the necessary capabilities from another provider, based on an SLA (Service Level
Agreement) between the two providers. (NGMN, 2016)

According to (AFOLABI et al., 2018), network slicing implementations need to
follow seven main principles that shape the concept and related operations:

• Automation: enables an on-demand configuration of network slicing without the
need for fixed contractual agreements and manual intervention.

• Isolation: is a fundamental property of network slicing that assures performance
guarantees and security (to defend network openness to third parties) for each
tenant even when different tenants use network slices for services with conflicting
performance requirements.

• Customization: assures that the resources allocated to a particular tenant are effi-
ciently utilized to meet the respective service requirements.

• Elasticity: is an essential operation related to the resource allocated to a particular
network slice to assure the desired SLA.

• Programmability: allows third parties to control the allocated slice resources.

• End-to-end: is an inherent property of network slicing for facilitating a service
delivery all the way from the service providers to the end-user/customer(s).

• Hierarchical abstraction: is a property of network slicing that has its roots on recursive
virtualization. The resource abstraction procedure is repeated on a hierarchical
pattern with each successively higher level offering a greater abstraction with a
broader scope.

Chapter 2. Background and Related Work 37

2.6 Related Works
This section aims to position this proposal concerning related works in literature.

Related Works were classified and subdivided into three categories in this section:

• Source Routing;

• SFC mechanisms for a single data center;

• SFC mechanisms for multiple data centers.

2.6.1 Source Routing

Source Routing is not a new concept, it was proposed for the first time by (SUN-
SHINE, 1977) in 1977 and discussed later in 1978 (SUNSHINE, 1978). In Source Routing,
the entire path at switch level is presented in each packet, which is different from traditional
methods that use a hop-by-hop approach.

Source Routing has gained traction as data center networks move towards fabric-
based architectures and the demand for optimizations increases, especially for the task of
forwarding in the core of DC networks. According to (JYOTHI et al., 2015; SUNSHINE,
1978; VALENTIM et al., 2019), there are several advantages when using source routing
for forwarding packets in a data center, such as:

• Higher throughput: by allowing more path diversity than hop-by-hop-based
methods, source routing increases the network utilization;

• Smaller forwarding tables: source routing requires relatively fewer flow entries
in DCN;

• Nearly static forwarding tables: the addition of new nodes does not require
updates in the forwarding tables because the flow entries depend only on the packet
information;

• Fast response to failures: with a centralized controller source routing can react
to link failures without the need to wait for distributed algorithms to converge;

• Architectural solution for constant update: the constant update of switch
forwarding can result in security failures or inconsistent states. On the order hand,
source routing does not require updates in the core, reducing the number of updates
on forwarding tables and reducing the possibility of errors;

• Path provenance: source routing makes it easier to track the source of packets
since each link in the path can be retrieved from the packet header;

Chapter 2. Background and Related Work 38

• Ease of verification: it is hard to verify the state of a hop-by-hop-based network
(IP for example) since the routing algorithm is distributed and any verification
requires to build models and simulations. Source routing forwarding tables are easier
to verify since that are fewer entries compared to IP-based ones;

• Easy to attend to flow requirements: with source path selection it is possible
to choose a path that supplies flow requirements, such as: response time, latency,
bandwidth, jitter, and others.

Loose Source Routing (LSR) (Bhagwat; Perkins; Tripathi, 1996) is an option
supported in IP, which can also be used to perform address translation operation. The
destination of the packet is replaced with the next router the packet must visit.

Source Routing (SSR) allows a flow source to list the specific routers that a packet
must visit on the way to its destination. No deviation from this list is permitted. The
traditional way of performing SSR is to insert a stack (or an ordered list) of ports or
addresses in the packet header that details the entire path to be taken by the packet in
the data center infrastructure. Thus, each forwarding element performs a pop operation on
this stack to discover the exit port, without the need to query forwarding tables. Examples
of this approach include: SecondNet (GUO et al., 2010), Segment Routing (CLAD et al.,
2018) and Sourcey (JIN et al., 2016).

Another alternative SSR approach explores the mathematical concept of the
Residual Number System (RNS). In this approach, the exit port on each node is defined
by the remainder of division over the route identifier (MARTINELLO et al., 2014). An
RNS-based SSR scheme can exploit properties to provide network functions that cannot
be covered by the traditional list method, such as forwarding without packet rewriting
and resilience (DOMINICINI et al., 2020).

Related works have already explored this type of SSR approach to provide rapid
reaction to failures (GOMES et al., 2016) and network programmability (MARTINELLO
et al., 2014). Some works have also investigated techniques to improve the scalability of the
number of bits of the route identifier and demonstrated its efficiency in fulfilling latency
restrictions for multicast in data centers (JIA, 2014). Finally, the KeySFC (DOMINICINI
et al., 2020) scheme applied SSR to the SFC problem in a single datacenter.

The majority of SSR implementations assume a centralized controller with a global
view of the network topology. Some implementations can add routing information in any
field of the packet. Most solutions use OpenFlow to make flow classification and add
routing information.

Chapter 2. Background and Related Work 39

Figure 14 – NSH Header.

2.6.2 SFC mechanisms for single data center

NSH (QUINN; GUICHARD, 2014) is the standard SFC encapsulation header. The
NSH protocol specifies a header (Figure 14) that includes two chain identifiers: the first
indicates the selected chain and the second indicates the current position in the chain. The
forwarding elements in the path use the information from these identifiers to search a table
and decide which VNF to run at any time. Then, the address of the next network element
is encapsulated in a more external header, relying on the underlying routing methods to
deliver the packet between those elements. Although very flexible, this scheme requires
table queries for each hop both to discover the next VNF and to route between functions
in the physical network, which leads to scalability and agility problems related to the
number of states in the network. Besides, pushing headers expands the packet size, the
increase of traffic and possible problems with fragmentation

Another popular method is Segment Routing (CLAD et al., 2018), where an ordered
list of segments is encoded as a stack of MPLS labels. The next segment to be processed
is extracted from the top of the stack and a forward table search operation is performed
at each hop. Although the source node may need to send a long list of segments to obtain
optimal paths, most MPLS devices support a limited stack size (about 3 to 5 labels), which
can lead to inefficient distribution traffic (Abdullah et al., 2019). Therefore, although
the Segment Routing scheme can be used to enable SFC with SSR, it generally uses a
hybrid scheme that specifies a list of a few network elements that the packet must pass
through and delegates the routing between those elements to the underlying network,
which employs shorter paths using ECMP (Equal-Cost Multi-Path routing), for example.

KeySFC (DOMINICINI et al., 2020) enables SFC using RNS-based SSR. In contrast
to the Segment Routing and NSH schemes, KeySFC does not restrict the selection of paths,
it reduces the number of states on the network, especially in scenarios with multiple clouds,
and eliminates the tables present on the devices in the core of the networks.

Chapter 2. Background and Related Work 40

2.6.3 SFC mechanisms for multiple data centers

Several important works have already addressed the problem of linking network
functions in multi-cloud environments from the point of view of an optimization problem.
One can quote (BHAMARE et al., 2017), whose focus is to decrease the flow between
data centers through the efficient positioning of VNF chains. (SUN et al., 2019) also
addresses the positioning problem using Integer Linear Programming (ILP, or Integer
Linear Programming) and optimizes energy consumption with a focus on meeting chain
requirements.

v (DIETRICH et al., 2017) solves the routing problem, through optimization by
ILP, proposing the partitioning of chains in multiple domains connected by virtual gateways
with the strategic positioning of the VNFs in these domains. (GUPTA et al., 2017) also
optimizes the positioning of VNFs in multi-cloud environments using a predictive algorithm
to minimize the latency of function chains. However, although some optimization solutions
for the multi-cloud SFC problem have been proposed in the literature, few studies focus
on the development of SFC mechanisms to allow the implementation of these resource
allocation solutions in network infrastructures data center.

As most implementations of SFC mechanisms in single data centers use NSH as an
encapsulation protocol, one approach to pass context between different clouds is to use
the stacking of NSH headers. (VU; KIM, 2016) implements a Hierarchical SFC (hSFC),
a sub-problem of multiple domains chaining. However, this approach carries the same
problems as the NSH protocol concerning low scalability and high complexity in the
management of network states, with the addition of extra headers for passing context
between domains and, consequently, greater overhead in packet forwarding and increase in
the number of states on the network.

2.6.4 Contributions Highlights

In summary, considering the state of the art and the relevance of the related works
presented in this section, it is possible to affirm the relevance and timeliness of the problem
addressed in this work. There exists a gap in the literature regarding the proposal of
referral mechanisms that implement SFC in multi-datacenter environments in a flexible and
efficient way. Also, the novel use of SSR to perform network slicing and the introduction
of a gateway to abstract the interconnection between infrastructure, which are the most
important highlights of our proposal.

41

3 Proposal of Architecture

We presented the motivation and the research problem in Chapter 1. This Chapter
explains the solution towards building an architecture to end-to-end network slicing using
tableless strict source routing.

The network slicing problem has three layers of abstraction. When we consider only
the Network Slice Instance Layer, the orchestration of a network slice instance requires a
set of run-time network functions, and resources to run these network functions, forming
a complete instantiated logical network to meet certain network characteristics required
by the Service Instance (NGMN, 2016). These are the same requirements to implement a
Service Function Chaining which is a ordered set of abstract service functions and ordering
constraints that must be applied to packets and/or frames and/or flows selected as a result
of classification (PIGNATARO; CARLOS, 2015).

The similarity between the two tasks is useful, because it allows the use of the
same tools developed to solve SFC problems to be applied in network slicing problems.
However, our goal is to create a complete solution that goes beyond SFC and is able to
provide the virtualized network service covering the management of physical resources and
service instances. Therefore, we need to adapt the solutions to consider the provisioning of
physical resources in the Resource Layer and the management of network services in the
Service Layer.

Following SDN principles we proposed an architecture with a logical separation
between data and control planes shown in Figure 15. The Data Plane contains both
physical and virtual elements that are responsible for hosting and connecting the network
functions that compose the network services. These elements are distributed in different
infrastructures and managed via control interface by the elements in the control plane.

The architecture represents the control plane at a functional level and it does not
imply any specific implementation. Multiple functional blocks may be merged internalizing
the reference point between them. The communication between the control plane and the
data plane follow specific protocols and must be assured in order to guarantee the proper
functioning of the infrastructure.

In the following, we detail each architectural element dividing the approach by
control and data plane elements.

Chapter 3. Proposal of Architecture 42

Figure 15 – Proposed architecture for Control and Data planes.

3.1 Data Plane Architectural Elements
The Data Plane designed has a dual approach. It uses the separation between

core and edge proposed by KeySFC (DOMINICINI et al., 2020) and uses the RFC 7665
specifications for the SFC functional components with the effort to adapt to a tableless
strict source routing context. The RFC 7665 specify functional blocks which can be merged
and implemented together. The KeySFC major specification is the separation between
core and edge elements and each element has very defined tasks. This Section makes the
correspondence between the RFC7665 functional blocks and the KeySFC architectural
elements. The correspondence is summarized in Figure 16.

3.1.1 Architectural components

Encapsulation. The SFC encapsulation allows the orchestrator to indicate the
next VNF in the SFC. In this proposal, it was chosen to use Strict Source Routing
which allows the SFC encapsulation not just to specify the next VNF, but also the
complete network underlay path. Therefore, this proposed data plane architecture uses
transport-dependent encapsulation which differs from the RFC7665. The understanding
of the RFC is that by opting for a transport-independent encapsulation, it is possible
to achieve maximum retro compatibility with existing data center deploys. On the other
hand, KeySFC states that by using a new approach for data center networks, it is possible
to achieve high performance.

Therefore, in this work we are going to use a transport-aware encapsulation. The

Chapter 3. Proposal of Architecture 43

(a) (b)

Figure 16 – (a) Logical architecture proposed by RFC7665. (b) Functional architecture
proposed by KeySFC Architecture.

SSR implementation may vary and the only constraint is that at any underlay hop the
outgoing port is defined. Examples are Sourcey (JIN et al., 2016), KeySFC (DOMINICINI
et al., 2020) or even MPLS (ROSEN; VISWANATHAN; CALLON, 2001). The use of
SSR increases path diversity and can optimize network usability. In KeySFC proposal, the
responsibility to add and remove encapsulation is to the edge elements. Core elements
forward packets based on labels in the encapsulation.

Service Function Forwarder (SFF). The SFF is responsible for forwarding
packets received from the network to one or more SFs associated with a given SFF. It uses
information conveyed in the SFC encapsulation. Traffic from SFs eventually returns to the
same SFF, which is responsible for injecting traffic back onto the network. In KeySFC the
SFF is an edge switch and it is transport-aware. In this architecture, all SFs are assumed
to be SFC-unaware. Therefore, every time an SFF wants to deliver a packet to a SF, it
first forward to an SFC Proxy that will modify the packet removing any SFC-related
modification.

Service Function (SF). A Service Function in this architecture is assumed to be
SFC-unaware. A Service Function can be a PNF (Physical Network Function) or a VNF
(Virtual Network Function). In both cases, it is required that an SFC packet goes through
a SFC Proxy before the SF.

Classification and Reclassification: In Figure 16 (a), there is an interface
delimiting a SFC-enable domain. A packet necessarily enters in this domain through a

Chapter 3. Proposal of Architecture 44

Flow Classifier. In Figure 16 (b), the element that performs as a Flow Classifier is the
Edge Switch. The Edge Switch is also the entry point to the SR-enabled domain. Every
time a packet enters an SF, it is required to leave the SR-enabled domain, which is why
the SF is SFC-unaware. For that reason, it is required a reclassification every time a packet
leaves an SF. As stated in the RFC 7665, this task is executed by an SFC Proxy, that
reclassifies the packet and forwards it to the SFF and the element responsible for the
classification is the Edge Switch.

Transport Network and Network Components: Underneath the SFF there
are elements responsible for performing transport forwarding. In the original RFC 7665,
they do not consult the SFC encapsulation or inner payload for performing this forwarding.
However, in this proposal, they do consult encapsulation to perform transport hops.
RFC7665 treat the underneath elements as a black-box, in this design, they will act as
white-boxes with its behavior defined by the control plane. The lack of specificity can lead
to loss of performance in experimental environments, but this is avoided by the use of
programmable hardware (e.g SmartNICs, P4 programmable switches and NetFPGA) even
dedicated hardware for production deployments.

SFC Proxy: The SFC Proxy is a functional block defined by the RFC7665, in the
KeySFC architecture it is implemented in the Edge Switches of the data center network.
The SFC Proxy responsibilities are: (i) remove SFC-encapsulation; (ii) restore transport
information to an SFC packet and deliver to the SF attached to it and; (iii) reclassify
packets which egress from SFs and forward to the SFF.

3.1.2 SFC Gateway

Some Network Services requires the provision of network functions to be in different
data centers, or to forward some flow from one infrastructure to another. In these cases,
administrators need an efficient way to stitch the network slices and build the hired services.
This problem also exists for SFC, however, the literature focus on the optimization of path
and positioning of VNFs, while few works have addressed to the mechanisms to connect
the SFC segments.

Still on SFC, the RFC7665 (PIGNATARO; CARLOS, 2015) do not specify any
protocol to be used in the transport of packets in a hop between two Service Functions.
The RFC proposes the use of NSH encapsulation and relies on traditional transport
network to deliver a packet to the next SF. This method is not easily done in hops
that require inter-datacenter communication. The configuration of a transport network
between geo-distributed data centers should be tedious and it involves hiring several TSP
(Telecommunication Service Provider) to connect each data center.

Another solution explores the use of VPNs endpoints virtualized as Service Func-

Chapter 3. Proposal of Architecture 45

tions that implement a Layer 3 connectivity between two segments of SFC located in
different Infrastructure Domains. In this option, the user is responsible for the configuration
of the connections and the operator loses the control over this stage of the process.

In this context, we propose an SFC Gateway, which is an architectural element in
the data plane. The SFC Gateway manages VPNs on-demand and abstracted from the
administrator the creation of such networks. Those connections are Layer 3 VPNs, though,
from the point-of-view of the SFC are only Layer 2 hops. The delivery of packets to theses
SFC Gateways are integrated to the protocol not differing from other host interfaces.

Figure 17 shows the new element in the reference architecture. We developed the
SFC Gateway to receive packets from other infrastructures and to forward flows to other
infrastructures. The forwarding respects the encoded information in the SFC tunneling.
Therefore, the orchestrator process the required route for an flow, anticipates the need to
deliver a flow to another infrastructure, and incorporate the forwarding information in the
encapsulation.

(a) (b)

Figure 17 – (a) Addition of a SFC Gateway element to the logical architecture proposed
by RFC7665. (b) Addition of a Gateway Switch to the functional architecture
proposed by KeySFC Architecture.

The SFC Gateway is a specific contribution of this work and it is capable of simplify
the management of distributed network slices. The SFC Gateway can be distributed in
the infrastructure and the Orchestrator might considers to forward the flows to a specific
SFC Gateway instance considering aspects such as latency, traffic congestion and path
usage. The responsibilities of an SFC Gateway are to: (i) (re)classify incoming packets to
the proper SFF; (ii) forward packets to the destination data center according to the VNF
FG; (iii) add and remove VPN encapsulation.

Chapter 3. Proposal of Architecture 46

3.2 Control Plane Functional Blocks
Currently, implementations for management and orchestration of network functions

are focused on centralized approaches, especially in scenarios where services spawn over
several administrative domains (MIJUMBI et al., 2016). ETSI proposed a control plane
architecture for the composition of virtualized services. In ETSI documentation, there is
an extensive list of tasks each block should perform. The following sections refer to some
of ETSI definitions and include the responsibilities and capabilities required to adapt the
standard architecture to handle with source routing enabled Infrastructure Domains.

3.2.1 NFV Orchestrator (NFVO)

The NFVO’s main responsibilities are to: (i) orchestration of NFVI resources
across multiples VIMs and; (ii) life-cycle management of Network Services. To fulfill its
responsibilities, the NFVO needs to perform several tasks. The following is a non-exhaustive
list of capabilities provided by the NFVO in a multi-domain context:

• Network Service instantiation and its life-cycle management;

• Management of the Network Service instances topology (e.g. create, update, query,
delete VNF Forwarding Graphs);

• Collect topological information from every Infrastructure Domain on the orchestrator
responsibility;

• Underlay path management according to polices (e.g shortest path, the bandwidth
available, etc).

3.2.2 VNF Manager (VNFM)

The VNF Manager is responsible for managing the life cycle of VNF instances.
Every VNF should be on the responsibility of a VNF manager. Usually, the VNF Manager
is agnostic about the VNF type, however, in this implementation, the VNF type is
important for the VNF FG use-cases when the VNF may change the nature of flow and
compromise the reclassification in the traffic steering. The following is a non-exhaustive
list of capabilities provided by the VNFM in a multi-domain context:

• VNF instantiation, including VNF configuration if required by the VNF deployment
template;

• VNF instance modification;

• VNF instance scaling out/in and up/down;

Chapter 3. Proposal of Architecture 47

• Retrieve VNF instance information on events.

The VNFM should have a Virtualized Network Function Descriptor (VNFD) catalog.
The VNFD is a VNF deployment and operation abstraction. The catalog stores all the
supported VNFs in the Infrastructure Domain. This is an important aspect for any NFV
solution implementation, however, this proposal will not extend the subject since is a
proof-of-concept. Moreover, a VNF, when used in a VNF FG, can be aware or unaware
concerning the traffic steering. The VNFM should attend to this characteristic since it
affects not just the VNFM but also the NFVO.

3.2.3 Virtualized Infrastructure Manager (VIM)

The Virtualized Infrastructure Manager (VIM) is responsible for controlling and
managing the NFVI compute, storage, and network resources, usually within one operator’s
Infrastructure Domain (e.g. all resources within an NFVI-PoP, resources across multiple
NFVI-PoPs, or a subset of resources within an NFVI-PoP). The following is a non-
exhaustive list of capabilities provided by the VIM in a multi-domain context:

• Maintain hardware repository (storage, computing, and network);

• Keep a record of the allocation of virtualized resources;

• Interact and manage with the hypervisor;

• Keep a record of hardware usage and status;

• Management of virtual networks.

Some literature has been referring to the VIM as Cloud Frameworks which possess
the same responsibilities to act as a layer between virtualized resources correspondents.
However, to enable cloud frameworks to support NFV usually it is necessary to use plugins
or extensions.

3.2.4 SDN Controller

The SDN Controllers are responsible for providing a programmatic way to interact
with the network elements in the Infrastructure Domain. Basic connection, or Network
as a Service is provided by the VIM. Hence, the Controllers are complementary to the
Infrastructure Domain NFV capabilities. Figure 15 shows several instances of controllers
connected to different elements in the Domain.

The following is a non-exhaustive list of capabilities provided by the Network
Controllers in a multi-domain context:

Chapter 3. Proposal of Architecture 48

• Perform topological discovery covering all the Infrastructure Domain;

• Manage the flows that performs the network slicing and the partitioning of network
resources.

• Perform flow propagation which is responsible for steering, receiving the information
from a centralized and globally agent such as NFVO;

• Resource management and tracking of network resources and attributes such as
bandwidth, jitter, delay, and etc;

• Implement southbound interfaces to the compute and network resources providing
the connectivity services to create overlay tunnels (e.g. VXLAN, NVGRE, MPLS
over GRE) or network partitions (for example using OpenFlow);

• Abstract the information exposed by the underlying NFVI network via various
southbound interfaces.

3.2.5 Wide Area Network Infrastructure Manager (WAN IM)

The WAN IM is responsible for the management of virtual connections between
NFVI-PoPs. NFVO may require virtual connections to the WAN IM that establishes the
connection and manages its life-cycle.

The design of this proposal leverages from a Software-Defined WAN (SD-WAN)
approach. SD-WAN is proposed to apply software-defined techniques in networking con-
nections covering a wide geographical area, and it achieves the purpose of software control
using the philosophy that is different from Software Defined Network (YANG et al., 2019).
Therefore, the connections between NFVI-PoPs are virtual and based on software switches.
Also, the connections between Infrastructure Domains are based on Layer 3 protocols,
which allow the implementations to use the Internet or any routed third-party connections.

The WAN IM manages the SFC Gateways of its infrastructures. These elements
perform the stitching of segments of slices from different infrastructures. The following is
a non-exhaustive list of capabilities provided by the WAN IM in a multi-domain context:

• Resource management and tracking of network resources and attributes such as
bandwidth, jitter, delay;

• Implement southbound interfaces to the compute and network resources providing
the connectivity services to create overlay tunnels (e.g. VXLAN, GRE, MPLS over
GRE) or network partitions (for example using OpenFlow);

• Abstract the information exposed by the underlying NFVI network via various
southbound interfaces.

49

4 Implementation and Evaluation

This chapter presents the testbed used to evaluate the proposed architecture. It
also details the Data Plane and Control Plane implementation presenting scenarios to
illustrate how the orchestrator enables network slicing and the stitching of slices using
tableless source routing.

4.1 Testbed Description
The prototype consists of 5 servers with 2.4 GHz Intel Xeon E5-2620 processor,

16 GB of memory and 6 Gbps Ethernet NICs and CentOS version 7 operating system.
Figure 18 shows a representation of the implemented prototype.

Figure 18 – Prototype view at server level with networks connecting each other.

As we want to demonstrate the stitching of slices, we need to use a scenario with
multiple NFVI-PoP. The implementation has two different infrastructure domains: NFVI-
PoP 1 and NFVI-PoP 2. NFVI-PoP 1 has two host nodes, and NFVI-PoP 2 has only
one node. The two remaining nodes in Figure 18 host instances of software switches that
complement the infrastructure and connect the NFVI-PoPs to the data center network.
The WAN connection between the two NFVI-PoP is a 100 Mbps connection which is a
realistic bandwidth value.

Chapter 4. Implementation and Evaluation 50

The networks follow the requirements for the view topology, and cross-cables are
used to connect the Compute Nodes (OpenStack nodes that host VMs) to the named
Connection Nodes. Connection Nodes are servers equipped with virtual switches used to
connect with the data center network and interconnect the nodes in the same cloud.

Each OpenStack cloud requires at least three networks: Access, Overlay, and
Provider. The access network is the network that is important to perform cloud management.
In our prototype, we merged the Access network with the Overlay network. The Overlay
network provides the means to OpenStack to create virtual networks using overlay protocols
such as VLAN, VxLAN, GRE, and others. These virtual networks interconnect VMs and
provide traffic isolation between tenants in the cloud. There is only one Access + Overlay
for both clouds since we are using just for SSH access, and we do not create virtual
networks.

The Provider is a network that OpenStack does not have control over it, and the
data center operator is responsible for the management. Usually, every node in the cloud
would have direct access to this network. However, in our implementation, access to the
Provider network is through the Connection Node. Since the cloud now uses tableless
source routing as the transport protocol, it cannot communicate with the Provider network
without some translation. Therefore, the Connection Node manages the compatibility
between this network traffics. The Provider network is essential for the VMs to have access
to the internet.

The External network is the network with access to the WAN. As both our clouds
are in the same data center, we created a router between the External network from
NFVI-PoP 1 and the External network from NFVI-PoP 2.

Figure 19 shows a representation of our prototype showing both the Control Plane
and Data Plane and simplifying the network representation.

Considering the premise of using solutions available on the market, the implemen-
tation chooses OpenStack as Virtualized Infrastructure Manager (VIM). The choice is
justified because it is a modular cloud framework that manages storage, network, and
computing resources. Through the programming interface available in the OpenStack
SDK it is possible to access the resources of the data center infrastructure available in
OpenStack.

The option for OpenStack as VIM is convenient since the structure of virtual
switches used to deliver connectivity to virtual machines is compatible with both the
ETSI architecture and KeySFC. As can be seen in Figure 19, the hosts have Open vSwitch
bridge (br-int, br-int) instances compatible with the forwarding mechanism proposed in
KeySFC. OpenStack uses these bridges to deliver Layer 2 connectivity to virtual machines,
and the SFC data plane leverage this structure to build the proposed architecture.

Chapter 4. Implementation and Evaluation 51

Figure 19 – Representation of the multi-domain SFC solution prototype.

4.2 The Data Plane implementation
The Data Plane is composed of two active elements following the KeySFC architec-

ture: Core Switches and Edge Switches. This proposal adds another element (Gateway)
to enable inter-NFVI-PoP SFC, which is a contribution of this work. These three ele-
ments together implement all the functionalities required by the architecture in multiples
data centers. The next sections explore each element in the proposed network slicing
architecture.

4.2.1 SFC Encapsulation

The SFC encapsulation is required not just to steer a packet through several SFs,
but also it is required to isolate flows from different tenants and virtual services.

The RNS-based method follows KeySFC specifications (DOMINICINI et al.,
2020). Routing in the KeySFC architecture uses the mathematical concept of the Residual
Number System (RNS). In summary, consider S = {s1, s2, . . . , sN} a set of N identifiers
for core switches. Also, consider that these N switches belong to the path that the packet
must follow from source to destination, and the values must be co-prime with each other.
In addition, the set P = {p1, p2, . . . , pN} represents the output ports to which packets will
be redirected on each core switch, where pi is the output port for the packet in si. Then,
there is a number R, called the route identifier, which is a function of a set of core switches
and their respective output ports for a specific path. The Chinese Remainder Theorem
states that it is possible to reconstruct R from its residues. The forwarding process in each

Chapter 4. Implementation and Evaluation 52

core depends on a module operation (remainder of division) of the route identifier by the
core node identifier.

Figure 20 – Routing example using RNS.

Figure 20 shows an example of routing at the core network. It is assumed that the
packet enters in the network via an edge switch where it receives the route identification,
computed after collecting topological information. The switches that compose the route
(S = {37, 47, 43}) and the output ports on each switch (P = {0, 2, 2}) are required. For
this scenario the Route ID (R) is calculated as follows:

M = (37 ∗ 47 ∗ 43) = 74777

M1 = M/s1 = 2021 M2 = M/s2 = 1591 M3 = M/s3 = 1739

L1 =< M−1
1 >37= 23 L2 =< M−1

2 >47= 20 L3 =< M−1
3 >43= 34

R =< M1 ∗ L1 ∗ p1 + M2 ∗ L2 ∗ p2 + M3 ∗ L3 ∗ p3 >M

R =< 2021 ∗ 23 ∗ 0 + 1591 ∗ 20 ∗ 2 + 1739 ∗ 34 ∗ 2 >74777

R = 32338

Upon reaching Switch 37 the module operation < 32338 >37= 0 determines the
output port. Then, the packet is forwarded to port 0, which is connected to Switch 47.
Upon reaching Switch 47, the operation < 32338 >47= 2 is performed. When exiting
through port 2 of Switch 47 the packet arrives at Switch 43. Again, the current switch
performs a module operation to find the next hop, the result of < 32338 >43= 2 results in
forwarding to port 2 that is connected to the destination, which can be an edge switch. In
this edge switch, the packet needs to be restored to its initial state. When the packet exits
the the core network and comeback to the edge network, the source MAC is restored to
its original value. After restored, the packet goes to the SF destination.

We chose the field of the MAC address of the source to store the Routing Identifier.
In other words, when the edge network forwards a packet to the core network, it contains

Chapter 4. Implementation and Evaluation 53

the route address on the field of the MAC address of the destination. This was an
implementation choice since it does not require the creation of a new header. This field is
6 Bytes long. The first octet indicates the packet as an SFC RNS-based packet, and it is
used by the network controller and during packet selection. The second and third octets
store the Segment Identifier, which is the unique identifier that correlates the path with
the service that the packet belongs. The remaining octets store the Routing Identifier.

The prototype was designed to primarily use RNS-based SFC encapsulation. In an
effort to compare with other solutions we evaluate 2 other encapsulations: (i) list output
ports and (ii) a push new MPLS header. Current solutions proposed in the literature and
used in commercial implementations inspired the choice for these methods.

The second encapsulation method used is a output port list. The method imple-
ments a transport mechanism similar to Sourcey (JIN et al., 2016). In this method, labels
are inserted into each packet to encode an explicit path to the destination. Switches in the
path pop the output port from the encoding and use the label value as the output port.
Figure 21 shows an example. Every switch pops the first label in the stack and forwards
the packet to the corresponding switch port.

Figure 21 – Routing example using a list of output ports.

In the list-based method, the field MAC address of the source on the Ethernet
header stores the routing information. From 6 Bytes of a MAC, the first octet indicates the
packet as an SFC list-based packet, and the controller and the packet classification uses
this information. The second and third octet store the Segment Identifier, which specifies
the SFC that owns this packet, and the remaining 3 octets store the Routing Identifier.
For this implementation, we set that the maximum number of ports for a Core Switch is
16, which is more than enough to connect all available physical interfaces and between
switches. Consequently, it is only needed 4 bits to specify an output port. With 3 octets
available to specify output ports, the maximum number of underlay hops available is 6,
which is enough to represent the possibilities of path in the prototype.

The third method pushes a MPLS header to the packet. The MPLS header
(Figure 22) contains, in the 20 bits label field, an identifier which specifies the SFC
and path that the packet belongs. Using this unique identifier, flow table entries in specific

Chapter 4. Implementation and Evaluation 54

Edge and Gateway Switches select the packets of interest. The Edge and Gateway switches
select the packet if the SFC hop’s destination is attached to the switch. Then, the switch
will forward the packet to the correct VNF or VM removing the encapsulation.

This procedure implements a transport mechanism similar to the Networking-SFC
project (FOUNDATION, 2020), which is a tool that enables SFC in OpenStack clouds.
MPLS SFC can’t completely specify the underlay path in the same way as SSR methods.
For this approach to work, the core network needs to acts as a Layer 2 hub. A Layer 2
hub forwards to all ports every arriving packet in core elements. Every hop in the SFC
has an unique identifier, which is enough to deliver a packet from source to destination.

Figure 22 – MPLS header which is attached to every packet of flow in a SFC.

Table 1 summarizes the three methods, the encapsulation and the codification used
to identify each packet.

Table 1 – SFC Encapsulations used in the prototype.

Method Encapsulation Codification
RNS Source MAC First octet 0x90
Output port list Source MAC First octet 0x91
MPLS MPLS Header Not applied

4.2.2 Edge Switches

An Edge Switch is responsible for dealing with the complexity of the SFC mechanism.
It implements the flow classification and reclassification, SFC Proxy, SFF and encapsulation.
OpenFlow flow entries are responsible for implementing these tasks. The Orchestrator
manages the flow entries in the edge (see Section 4.3).

Every OpenFlow entry is composed of match and action fields. The match fields
allow OpenFlow-enabled switches to select packets, and the actions act over the selected
packets. The flow classification depends on the protocol. In this prototype, the Edge is
capable of classifying the protocols: IP, TCP, UDP, ARP, and ICMP. Table 2 specifies the
required fields and shows examples of OpenFlow entries for each of these protocols.

Chapter 4. Implementation and Evaluation 55

Table 2 – Supported protocols and its fields.

Protocol Match Fields Description
arp arp_op ARP opcode

arp_spa ARP source IPv4 address
arp_tpa ARP target IPv4 address

ip ip IP protocol value
ipv4_src IPv4 source address
ipv4_dst IPv4 destination address

udp udp IP protocol value
ipv4_src IPv4 source address
ipv4_dst IPv4 destination address
udp_src UDP source port
udp_dst UDP destination port

tcp tcp IP protocol value
ipv4_src IPv4 source address
ipv4_dst IPv4 destination address
tcp_src TCP source port
tcp_dst TCP destination port

icmp icmpv4_type ICMP type
ipv4_src IPv4 source address
ipv4_dst IPv4 destination address

After the classification, the next step is to deliver the packet to the SFF. The SFF is
implemented using OpenFlow entries. The SFF has two options for arriving packets: if the
destination SF is connected to the SFF, then the packet is forwarded to the correspondent
SFC Proxy, otherwise, it encapsulates the packet with the chosen SFC Encapsulation and
delivers to the network core which handles the packet transport. The packet will reach the
SFF connected to the next SF in the SFC.

In this prototype, we always require the use of SFC Proxy. In this way, the NFV
Orchestrator has full control over the whole process. Since we implemented the Edge
Switch’s functions using OpenFlow entries, we need to attach every switch to a set
of controllers that implement these task. The set of Controllers is composed of: Open-
Flow Proxy (Section 4.3.2.5), Topology Discovery (Section 4.3.2.4) and Edge Controller
(Section 4.3.2.2).

4.2.3 Core Switches

Core switches are implemented using Open vSwitch bridges, in the same way of
Edge Switches. However, Open vSwitch and OpenFlow tables do not support tableless
Source Routing methods to forward packets. The control plane is responsible to, on
demand, discovers the output port of packets and to install OpenFlow flow entries to
forward the packets. The use of flow entries is necessary to avoid Open vSwitch software

Chapter 4. Implementation and Evaluation 56

customization. In production, the option could be to patch the Open vSwitch source code
or to implement using FPGA, SmartNICs or programmable P4 switches.

Figure 23 describes the process when an SFC packet enters a Core Switch. First,
it verifies if there is an entry that matches this flow. If more than one entry is valid for
this flow, it chooses the entry that is more specific or with higher priority. If none entry
matches, then the bridge drops the packet. Usually, flow tables have a default entry with
priority 0 (lowest) that matches every packet. This default entry can forward packets in a
broadcast mode or forward it to a controller.

Every packet has a unique identifier, for RNS-based and List-based we use the
Source MAC to store it. For MPLS, we store the identifier at the MPLS Identifier located
at the MPLS header.

In the MPLS-based method, the Core Network is configured in broadcast mode.
The first action is to verify if there is a flow for this unique identifier. If not, it verifies the
packet type using the source MAC first octet. This type verification is not required for
MPLS packets, since for MPLS the core switches works in broadcast mode.

If the packet belongs to a SFC and there is no flow entry, the switch sends the
packet to the Core Controller. The controller uses the encapsulation to build a flow entry
and installs the flow entry in the Core Switch. After this process, there is a entry specific
for this flow and the next packets will match this flow entry.

Figure 23 – Mechanism used by core switches to handle incoming packets.

Chapter 4. Implementation and Evaluation 57

4.3 The Control Plane implementation
The Control Plane proposed by ETSI is composed of Network Controllers, the

NFV Management and Orchestration, and the Virtualized Infrastructure Manager (VIM).
The next sections will detail implementation aspects for every component.

4.3.1 VIM

It was chosen OpenStack Cloud Framework to operate as VIM. OpenStack is a
massive project the involves many companies that contribute to its source code. OpenStack
is a framework that manage the virtualized infrastructure. It handles the virtualization of
compute, network and storage resources.

The compute resources are provided by the interface that OpenStack does with
each host hypervisor. OpenStack supports several hypervisors. In this implementation
we chose KVM (KVM, 2016) since it is a open source project with notorious reliability.
Therefore, the Service Functions are implemented using Virtual Machines.

Openstack also creates virtual networks that provide VM’s connectivity. To create
these networks, OpenStack uses Virtual Routers with Linux namespaces and for the L2
connection it uses Open vSwitch bridges that connect Virtual Routers to Host’s physical
interfaces and VM’s virtual interfaces (also called taps).

While the Virtual Machines connect to the integration bridges (br-int), the
physical interfaces connect to external bridges (br-ex). It is possible to leverage these
characteristics and use the br-int bridges as Edge Switches and br-ex bridges as Core
Switches. We connected the respective controllers to each bridge in every node, this
connection bridge-controller defines the bridges’ role in the topology.

OpenStack provides an extensive API that allows creating scripts to instantiate
virtual machines, create networks, and other functionalities required by the Orchestrator.
Therefore, OpenStack makes accessible an interface between physical resources and virtual
resources dealing with the complexity, which are the responsibilities of a VIM in the ETSI
architecture. In Figure 15, we can see two instances of OpenStack running. One has two
nodes (one compute node and one compute and controller node), and the other has only
one, which we call an All-in-one node (one node as compute and controller node).

The OpenStack deployment restores its original network settings, which is chal-
lenging, since our implementation modify some setting not native to OpenStack. We
developed some scripts to automate the cloud configuration and also built containers to
host the controllers. Consequently, we maintained a homogeneous deployment using the
same configuration.

Chapter 4. Implementation and Evaluation 58

4.3.2 SDN Controllers

We used the Ryu framework to implement the network controllers of this prototype.
Ryu is a framework written in Python and contains robust boilerplate code and allows
quick deploy of controllers.

The prototype contains 5 types of Network Controllers with different responsibilities.
We chose to create several instances because it facilitates development. Also, it makes it
easier to classify the switches based on the controllers to which its associated, for instance,
a bridge connected to a Core SDN Controller is a Core Switch.

Every controller is associated to an IP and two TCP ports, one for HTTP access
of its API and other for controller communication. The virtual switches are Open vSwitch
2.12 bridges, which have support for OpenFlow from versions 1.0 to 1.5.

4.3.2.1 Core SDN Controller

As explained at Section 4.2.3, the legacy network based on OpenvSwitch bridges
does not implement tableless strict source routing. Therefore, we use the Control Plane to
perform module operations and to act on the core switches adding OpenFlow entries that
apply the calculated output port for an specific flow.

In this context, the Core SDN controller has three responsibilities: (i) it provides
an API that the NFV MANO queries to retrieve a list of Core Switches in the NFVI-
PoP network; (ii) it adds a flow entry for RNS and List-based methods; (iii) for the
RNS-based method, it stores the hash map which maps the Core Switch instance to the
Switch Identifier. This map is used to compute the output port for each flow. The Core
SDN Controller retrieves the routing identifier and together with the flow encapsulation
computes the output port.

4.3.2.2 Edge SDN Controller

The Edge SDN Controller has 3 responsibilities: (i) it provides an API that the
NFV MANO consults to query a list of Edge Switches in the NFVI-PoP network and; (ii)
it implements a host discovery for the PNFs (Physical Network Functions).

The Host Discovery is applied when dealing with PNFs. These PNFs may not be
capable of connecting to the Core Network using Source Routing protocols. One way to
allow this compatibility is to connect an Edge Switch to a LAN in the DCN. The PNFs
are also part of this LAN. However, under the same NFVI-PoP may exist several LANs
and several different instances of Edge Switches interfacing both domains. When deploying
an SFC, it is required to use this Edge Switch as SFF to steer packets through PNFs.

The Host Discovery can make ARP requests to the LANs attached to the Edge
switches in the topology and find not just which switch but also which port of this switch

Chapter 4. Implementation and Evaluation 59

has a connection with the LAN where the PNF is located. The Orchestrator triggers the
search for hosts via an API.

4.3.2.3 Gateway SDN Controller

The Gateway SDN Controller has two responsibilities: (i) it provides an API that
the NFV MANO consults to retrieve a list of Gateway Switches in the NFVI-PoP network;
(ii) it manages the life-cycle of flows entries responsible for the forwarding of packets to
the WAN interface.

The Gateway Switches are under Gateway SDN Controller’s responsibilities.

4.3.2.4 Topology Controller

Topology Discovery is a feature that concerns all switches(Edge, Core, and Gateway)
and is a necessary task to implement SFC. Topology discovery is possible due to the LLDP
protocol (Link Layer Discovery Protocol). Each switch discloses its identification to all
its neighbors. The controller centralizes this information received from the network and
builds the topology.

4.3.2.5 OpenFlow Proxy Controller

Finally, OpenFlow Proxy is a feature that allows the insertion of flow entries on
topology switches via HTTP REST calls. The Proxy converts the rules received via REST
calls to OpenFlow and sends them to the target bridges.

The OpenFlow Proxy Controller connects with Edge and Gateway switches be-
cause these are the switches that require population of flow entries which execute the
functionalities presented in the SFC architecture. These entries perform flow classification,
encapsulation or decapsulation, and forwarding.

4.3.3 NFV MANO

We merged the NFV Orchestrator with the VNF Manager creating the NFV
MANO block. This block is responsible for the coordination of the interaction of all other
functional blocks.

The NFV MANO implementation performs the management of life-cycle of Virtual
Network Functions. VNF management requires the execution of the following tasks: (i)
manage different domains; (ii) manage the life-cycle of VNFs; (iii) manage the life-cycle of
Service Function Chaining. These three tasks require sub-tasks that make requests to the
other functional blocks in the Control Plane architecture.

Chapter 4. Implementation and Evaluation 60

The Item (i) relates to the use of the API that the other blocks make available.
Each domain expose APIs that allow the NFV MANO to perform some modifications in
its infrastructure. The NFV MANO needs to know the endpoints (IP and port) for each
Network Controller and the OpenStack Cloud credentials used to connect with the VIM.

The Item (ii) relates to the management of VNF’s life-cycle. For this prototype,
only creation and deletion are enabled. It was provided a Python API that allows an
administrator to deploy VNFs. VNFs are virtual machines that host network applications.
Figure 24 shows the steps towards positioning a VNF.

The NFV MANO receives from the administrator a requisition to create a VNF
and then uses OpenStack’s API to create the virtual machine. The application running in
the virtual machine is defined by the image used to create the VM. The image is a file
managed by the OpenStack module Glance. A VNF type is defined by an image and the
number of virtual resources that this VM uses, which is called Flavor. The Flavor specify,
among other information, CPU, RAM, and disk available to a VM.

The last information required to instantiate a VNF is the virtual network. In this
prototype, we use a flat network without any tunneling. Adding tunneling would only
complicate the task of maintaining retro-compatibility. The deletion of a VNF is the same
as to delete a VM, which requires only the object obtained in the creation.

Figure 24 – Steps towards positioning a VNF.

The Item (iii) is the management of SFC’s life-cycle. It is a more complex task that
requires several steps to build a SFC that we show in Figure 25. First, the administrator
specifies a Flow Classifier that selects a type of traffic to steer and the VNF FG, which is
an ordered list of VNFs to which it desires to steer some flow to it.

Chapter 4. Implementation and Evaluation 61

Figure 25 – Steps towards deploying SFC.

The NFV-MANO searches for the Edge Switch target for the Flow Classifier, the
Orchestrator needs to know the entry points of the target flow. The procedure to find
the target switch is to search if the source is a VM. In this case, the Orchestrator uses
OpenStack API to find the node that hosts the required VM. Then retrieve the list of all
Edge Switches in the NFVI-PoP target and obtain the switch related to this node.

If the source is a PNF, then it is required to make a Host Discovery. To make a
Host Discovery, the NFV-MANO sends a Discovery requisition with the source IP to the
Edge Controller. The Controller sends ARP requests to each port attached to itself with
the solicited IP in the packet content. If it receives a response, then this Edge Switch is
one target. We use the same procedure for the destination of the flow.

After the Orchestrator found the Edge Switches connected to the source and
destination of the flow, the next task is to handle the sequence of SFs. In this prototype,
we assume the SFs are only VNFs and, hence, only VMs allocated by the VIM. The
NFV-MANO asks the appropriated NFVI-PoP VIM for the host of each VNF. The next
step is to process the VNF FG received from the administrator.

Figure 26 shows a high-level understanding of how the Orchestrator processes an
VNF FG. The administrator does not specify the entire path between two VNFs. Instead,
it passes a high-level sequence of VNF objects obtained by the API. The VNF specified
could be virtual machine already created in any NFVI-PoP, otherwise, it will be created.

The orchestrator iterates over the list of VNFs, splits the VNF FG in NFVI-
PoPs. When the split process finishes, then the NFV-MANO attaches to each VNF the

Chapter 4. Implementation and Evaluation 62

Figure 26 – Processing of a VNF FG by NFV MANO. In white, Edge Switches, in Dark
Gray, Core Switches and in yellow, Gateway Switches.

correspondent Edge Switch found in the previous step.

Next, the NFV MANO selects the Gateway Switches that owns the interconnection
between the NFVI-PoPs. The last step in the VNF FG processing is to build the path in the
Core Network. For this prototype, the path selection uses the shortest path. Topology SDN
Controller provides the topology, and, once acquired, the Orchestrator builds a connectivity
matrix using Dijkstra’s algorithm and generates a path in the core network. RNS-based
and the list-based use the path to create the routing information in the encapsulation.

Then, the next step is to build the flow entries. The flow entries are almost the same
for each protocol. But it is useful to show the generic configuration which is independent
of the method. The flow entries can be categorized according to different scenarios:

1. Scenario 1: Source and destination are connected to the same Edge Switch;

2. Scenario 2: Source and destination are connected to different Edge Switches and
are located in the same NFVI-PoP;

3. Scenario 3: Source and destination are connected to different Edge Switches and
are located in different NFVI-PoPs;

Figure 27(a) shows the Scenario 1 which does not require to encapsulate the flow
because the Edge Switch is capable of steering the traffic directly to the next VNF. In
this scenario, the Orchestrator adds a unique entry that classifies the flow and deliver the

Chapter 4. Implementation and Evaluation 63

(a) (b)

(c)

Figure 27 – Figures show scenarios for SFC. In white, Edge Switches, in Dark Gray, Core
Switches and in yellow, Gateway Switches. (a) VNFs in the same Edge Switch.
(b) VNFs in the different Edge Switches and in the same NFVI-PoP. (c) VNFs
in the different Edge Switches and in different NFVI-PoPs.

packets to the SFC Proxy that rewrites the destination MAC with the VM’s interface
MAC. After changing the MAC, it delivers the packet to the VNF. By changing the
destination MAC, the VNF is not aware of the steering.

For Scenarios 2 showed in Figure 27(b), the NFV MANO creates two flow entries.
Figure 28 shows a high-level representation of flow entries in the scenario and the red
line represents the process to which every packet is submitted. The first is installed at
the source Edge Switch of the current hop and is composed of a classifier that selects
the flow egress from a VNF or the flow’s source. If the flow is classified when leaving the
flow’s source, then it is a classification. If it’s leaving a VNF, then the correct term is a
reclassification. The remaining of the first flow entry is the encapsulation, which changes
the MAC Source for RNS and List-based or pushes an MPLS header for MPLS-based
after the Edge switch sends the packet to the Core Switch attached to it.

The NFV MANO installs the second flow entry at the hop’s destination. This
flow entry match packets according to the unique identifier. For RNS and List-based, the
unique identifier is the Source MAC, and in the case of MPLS is the ID field present in
the protocol header. The Core SDN Controller, responsible for the core network, handles
the flow entries at the transport network that allows the packet to reach its destination.

Chapter 4. Implementation and Evaluation 64

After Edge Switch matches the packets according to the unique identifier, it performs the
SFF function and removes the SFC encapsulation and rewrites the Ethernet header with
the correct information, which is the field of the destination MAC.

Figure 28 – Illustration of flows in Scenario 2.

Finally, for Scenario 3, showed in Figure 27(c), the Orchestrator needs to create
four flow entries. Two at the NFVI-PoP 1 and two at the NFVI-PoP 2. At the source
NFVI-PoP, the Orchestrator installs the flow entries at the Edge Switch connected to the
flow’s source and the other at the Gateway Switch that owns the virtual connection to the
NFVI-PoP 2.

At the NFVI-PoP 2, a flow is installed at the Gateway and the Edge Switches.
The flows installed at the Edge Switches in this scenario are the same as in Scenario 2.
The flows installed at the Gateways are new and it is required to select the flow using
the ID present at the header. With this ID, the Gateway redirects the flow without SFC
encapsulation to the correct Virtual Link connected to the NFVI-PoP 2.

The Virtual Link between NFVI-PoPs is one contribution of the SFC Gateways to
the architecture. The configuration allows the operator to ignore these connections and to
trust the NFVO Orchestrator to use the connection in the SFC.

At the destination, the Gateway reclassifies the packets and applies the SFC
encapsulation that transports the flow to the Edge Switch of destination in this hop.
Technically, in this scenario, there are two hops, one from source Edge to Gateway switches
and other from Gateway to Edge switches.

At the end of this process, the NFV MANO sends the flow entries via API to the
OpenFlow Controller. The Proxy OpenFlow receives flow entries via HTTP requests in
JSON format and converts to objects and send to the target switches.

65

5 Evaluation

This chapter presents the functional evaluation of the prototype and a discussion
of the results. At the end, we discuss the possibilities that our proposal presents for load
balancing strategies in different scenarios. This chapter aims:

• to present an experimental scenario used to evaluate the solution;

• to characterize the proposal using network metrics collected in the evaluation;

• to show that the solution is capable to attend to performance requirements;

• to explore the proposal in different load balancing scenarios inside a NFVI-PoP and
between NFVI-PoPs.

5.1 Description
We instantiate the following chain of VM instances to demonstrate the operation

of the proposed solution: SRC → DPI → NAT → Edge Firewall → DST, illustrated in
Figure 29. The VNF type used is a simple forwarder, which means that all packets enter
and leave a VM using the same network interface with no processing or modification. It
is important to highlight here that it is not the objective of this work to evaluate the
performance of different and specialized VNFs, since the focus of this work is on the
evaluation of the SFC mechanism.

Figure 29 – SFC diagram with highlight for each hop.

This configuration was chosen to assess routing in different scenarios that explore
all aspects of the solution, which are:

Chapter 5. Evaluation 66

• 1st VNF Hop: between elements on the same server (SRC → NAT);

• 2nd VNF Hop: between VNFs on different servers (NAT → DPI);

• 3rd VNF Hop: between VNFs in different NFVI-PoPs (DPI → EDGE-FW) and;

• 4th VNF Hop: between a VNF and the flow destination (EDGE-FW → DST).

The three transport mechanisms for SFC presented earlier in Chapter 4 were
implemented and evaluated. The NFV MANO and the script used to create the SFC are
available on GitHub. Also, we made available an Ansible Script to deploy the network
controllers and configure the physical interfaces and bridges according to an automatic
inventory.

We collected latency, jitter and maximum throughput performance metrics in this
scenario for each transport mechanism evaluated. These metrics are capable of character-
izing the data center network and its capacity to provide an adequate infrastructure for
SFC. It is a requirement for any architecture to do not degrade network metrics in order
to proper host NFV applications. We also measured the same metrics without the SFC
steering to understand its impact on the evaluated metrics.

Latency is a metric closely related, but different from Round Trip Time (RTT).
Latency is not explicitly half of RTT, because the delay can be asymmetric between
any two endpoints. However, since our objective is to understand the behavior and not
in the value of the metric itself which it varies with the size of a chain or the distance
between endpoints, therefore, we will refer RTT as latency in this text. We also performed
30 measurements of the RTT of an ICMP packet from VM SRC to VM DST. For the
measurement of jitter, the iperf tool with UDP traffic was also executed 30 times. The
results for latency are in Figure 30 and jitter in Figure 31.

The SFC adds latency which is expected since the packet has a longer path between
source and destination. Another observation is that the greater the distance between the
NFVI-PoPs, the greater the latency felt by the tunnel. For this prototype, both NFVI-
PoP are in the same data center, which contributes to a smaller latency compared with
geo-distributed data centers. In addition, as presented in Section 2.6, several publications
study the problem of positioning to reduce the distance between VNFs when the service is
sensitive to latency, and the network orchestrator can use these results.

For SFC scenarios, jitter tends to increase the longer the chain because the variance
is proportional to the number of elements a packet needs to pass between source and
destination. The results of jitter shows they are similar for every method. These jitter
measured are small and don’t compromise applications using network services. For instance,
maximum jitter desired for VoIP calls is 30ms (CISCO, 2005) which is, approximately,
1000 times higher than the measured values.

https://github.com/rodolfovalentim/mestrado-rodolfo

Chapter 5. Evaluation 67

List-based List-based no SFC MPLS-based MPLS-based no SFC RNS-based RNS-based no SFC
Scenario

0.8

1.0

1.2

1.4

1.6

1.8

2.0
La

te
nc

y
(m

s)

Figure 30 – Comparison between methods of latency measured between source and desti-
nation.

List-based List-based no SFC MPLS-based MPLS-based no SFC RNS-based RNS-based no SFC
Scenario

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Jit
te
r
(m

s)

Figure 31 – Comparison between methods of jitter measured between the source and
destination of the flow.

The results for the maximum throughput measured in the experiment are close to
the nominal capacity of the tunnel which was set to 100 Mbps, as limited by the switch
interface. This result shows that the encapsulation overhead in the proposal does not
compromise the maximum throughput of the network.

The results presented in this section allow us to conclude that there is no latency
and jitter degradation. Therefore, it is also possible to affirm that the proposal to perform
chaining inter NFVI-PoP presented in this work is feasible to be implemented in real
situations, using free and off-the-shelf software, widely used in the market.

Once the functional analysis was completed, we could explore the implications and
possibilities from the adoption of the proposed architecture. The next section explores the
implications and possibilities for inter and intra-NFVI-PoP traffic.

Chapter 5. Evaluation 68

List-based List-based no SFC MPLS-based MPLS-based no SFC RNS-based RNS-based no SFC
Scenario

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0
M
ax
 T
hr
ou
gh

pu
t (
M
bi
ts
/s
eg
)

Figure 32 – Comparison between methods of maximum throughput SFC scenarios.

5.2 Discussion
In this section, we discuss load balancing inter and intra-NFVI-PoP and how these

tasks can leverage from the proposed architecture. We enable some exciting load balancing
possibilities, such as efficient intra- and inter- NFVI-PoP load balancing.

5.2.1 Intra NFVI-PoP load balance

A common characteristic between modern data center networks is the heavy traffic
between the infrastructure servers. Regarding the flows coming from the servers. According
to (KANDULA et al., 2009; BENSON et al., 2010): (i) at every 100ms new flows arrive
at a data center; (ii) flows of up to 25 s are responsible for more than half of the traffic
volume; (iii) and only 0.1 % of the total flows last more than 100 s, being responsible for
almost 20 % of the data volume. Another important observation is that a small fraction of
the links experiences losses much higher than the rest of the network. These characteristics
in the nature of flows in a data center requires a flow balancing mechanism that is scalable,
capable of handling the massive amount of incoming flows, and, also, able to improve
the use of the resources by segregating elephant flows from other flows with different
requirements. Segregation must occur dynamically, valid only during the life cycle of the
flow. The migration of routes in the data center must occur transparently, causing the
least possible interference to the quality of the experience of the users of the applications
hosted in the data center.

In (VALENTIM et al., 2019), we proposed RDNA Balance as a load balancing
solution that works on the data center networks architectures that use Source Routing as
transport mechanism. By using Source Routing, it is possible to separate elephant flows
from other flows dynamically. The network architecture divides the network in core and
edge and use source routed transport. This separation between core and edge in both

Chapter 5. Evaluation 69

architectures aims to improve the usage of the available bandwidth between the different
paths of the data center and, at the same time, to guarantee the lowest possible latency for
the different competing flows through a Load Balancing and Traffic Engineering solution.

The main features provided by the separation between core and edge together with
source routing is the flexibility in the management of routes to implement load balance
decisions in the network. We assume the network infrastructure is the same as the ones
used in the architecture proposed in this work. The assumptions are: programmable edge
and centralized control. Distributed load balancing approaches often make decisions based
on local information about the use of network links (CAI et al., 2012) and are, therefore,
not optimized (ALIZADEH et al., 2014). Centralized load balancing approaches have
already been demonstrated in (ALIZADEH et al., 2014; RASLEY et al., 2014) as being
the best options to optimize global use of the network.

The RDNA Balance mechanism handles flows inside a single data center. The idea
is to optimize communication between VMs, however, this strategy fits for balancing each
hop in an SFC. The discussion in this section shows that our load balancing strategy
improves the availability of paths in the underlay network. An important aspect is that
SFC flows are hired for the long term, and its nature (IP address and ports, protocols,
bandwidth and latency required) can be previously and easily known in and SDN network.
Therefore, it is easier to detect the nature of a flow and migrate in order to guarantee
performance.

Moreover, routing at flow level using tables at the core of the network do not
scale. Data centers receive a large number of new flows every moment, which implies an
enormous amount of rules to be installed and states to be managed in each switch and
router between the source and destination of a flow. This is one of the problems addressed
in the RDNA Balance approach, as there is only a need to manage the states of the edge
switches, with fewer elements to be managed. RDNA Balance is capable of installing the
rules at the edge of the network with propagation time in the order of 1ms per rule,
without significant losses in the migrated flow and gives high degree of programmability
and versatility to the RDNA Balance solution.

In the following sections we tackle some evaluation scenarios where we can apply
RDNA Balance to improve the virtualized services’ performance. We have selected three
scenarios where it is possible to improve network performance by flow migrations. These
scenarios are: (i) elephant flow competing with mice flow; (ii) elephant flow competing
with another elephant flow and; (iii) flow with strict reliability requirements, that is, low
tolerance for packet loss. For each scenario we show that it is possible to improve one
metric without affect the migrated flow.

We built a 2-tier fabric topology with two spine and three leaf nodes. This topology
is more interesting than the topology used for functional evaluating since it presents

Chapter 5. Evaluation 70

alternative paths between two servers. This network topology used for the evaluation
differs from the prototype. In the evaluation prototype a single NFVI-PoP was deployed
in a Source Routing Enabled Domain.

5.2.1.1 Elephant flow competing with mice flow

Consider the scenario proposed in Figure 33a. Two different flows share the same
link: 1 UDP flow of 930Mbps, characterized as an elephant flow and 1 ICMP message of
type ping, sent every second, characterized as a mice flow. The UDP flow is generated by
the pktgen tool, which is capable of generating packets of specific sizes at a constant rate.
The pktgen generating the requested rate in the 81274pps experiment (packets per second)
of 1518Bytes saturated the physical limit of the 930Mbps link. The rate and size of the
package are in accordance with (BOLLA; BRUSCHI, 2006; POPOVICIU et al., 2008).
Before migration, the UDP flow route is V MS1→ S11 → S19 → S17 → V MD1 and the
ICMP flow is V MS2→ S11 → S19 → S17 → V MD2.

In the instant of time equal to 30s, the action of the RDNA Balance solution is forced
with the migration of the UDP flow route to the V MS1→ S11 → S13 → S17 → V MD1.
After the migration, the flows are separated, and there is no sharing of physical links
between the two flows, as can be seen in Figure 33b. In this scenario, the bottleneck for
latency is the physical link, as the virtual bus connecting the core switch with the edge
has a much higher flow capacity. The tool ping obtains the measure of latency. The result
is shown in Figure 33c with sample interval of 1s. There is a relevant reduction of latency
from 13 ms to 0.7 ms in the latency of ICMP traffic perceived in V MD2 at the time 30 s,
due to the migration of the elephant flow to another route.

5.2.1.2 Elephant flow competing with another elephant flow

The test scenario in Figure 34a illustrates two elephant flows with different behaviors
sharing the same link S19 → S17. In this scenario, the adaptive TCP flow (V MS1 →
S11 → S19 → S17 → V MD1) is hampered by sharing the same link with the UDP flow
(V MS2 → S23 → S19 → S17 → V MD2). The UDP flow occupies 300Mbps of the link
bandwidth and the TCP flow occupies approximately 630Mbps. The rate reached by the
TCP flow is due to the limit of the physical interface of 1Gbps of the server and the rate
of the UDP flow simulates an elephant flow. At 30s, the RDNA Balance solution is forced
into action and the TCP flow is migrated, isolating it from its competitor.

Figure 34c shows the perceived flow gain in V MD1 at the time 30s resulting from
the migration. The absence of packet loss and re-transmission makes the flow rate stable
during the migration would incur in a peak of latency during the migrations. The non
occurrence of a peak proves the speed of the exchange mechanism that demonstrates a
simple and efficient load balancing.

Chapter 5. Evaluation 71

(a) (b)

0 20 40 60Time (s)02
46
810

1214

Latency
 (ms)

Migration

(c)

Figure 33 – Migration of a flow and the analysis of the impact on the perceived latency in
V MD2 during the experiment. (a) Routes before migration (b) Routes after
migration (c) Perceived latency in V MD2 during the experiment.

(a) (b)

0 20 40 60Time (s)0
200
400
600
800

1000

Through
put (Mb

ps)

Migration
(c)

Figure 34 – Migration of a TCP flow and the analysis of the impact on the bandwidth. (a)
Routes before migration (b) Routes after migration (c) Measure throughput
in V MD1 (TCP traffic) during the experiment.

Chapter 5. Evaluation 72

(a) (b)

0 20 40 60Time (s)0
200
400
600
800

1000

Through
put (Mb

ps)

Migration
(c)

Figure 35 – Failure of a physical interface and the analysis of the impact on the bandwidth
in a scenario of reliability. (a) Routes before the failure (b) Routes after the
failure (c) Throughput perceived in V MD1 during the experiment.

5.2.1.3 Flow with delivery reliability requirements

In the experiment shown in Figure 35a, we decided to duplicate the flow by two
distinct routes: V MS1 → S11 → S13 → S17 → V MD1 and V MS1 → S11 → S19 →
S23 → S13 → S17 → V MD1. At the time of 30 s, we simulated the failure of the physical
interface, marked with an X in Figure 35b, making it impossible for one of the flows to
arrive at the destination. As path redundancy was adopted, the flow in V MD1, which
was previously 600 Mbps, started to receive 300 Mbps. The iperf tool generated this flow.

These functionalities of redundant paths are already supported by the architecture
in the conception and are hard to implement in legacy networks and cannot offer such
flexibility in the path selection.

5.2.2 Inter NFVI-PoP load balance

In the Section 5.2.1, we have discussed intra data center strategies for architectures
that use source routing. However, since the connection between domains uses a virtual
device with virtual connections, we can apply the concepts of SD-WAN to NFV, creating
an inter-NFVI-PoP load balance strategy. A new trend in the industry is Software-Defined
WAN (SD-WAN). SD-WAN leverages SDN to enable new features at WAN connections
reducing costs. SD-WAN simplifies the application of bandwidth control and create private
overlay networks over broadband shared connections.

The architecture for SFC in multiple data centers presented in this work introduces
the concept of Gateway Switches. Gateway Switches are software-based components
that allow fine-grained control over interconnections between different infrastructures.

Chapter 5. Evaluation 73

(a)

(b)

Figure 36 – Scenarios where multiple WAN connections are interesting. (a) Redundant
connection between domains to improve link availability; (b) Redundant VNFs
in different clouds.

Figure 36a shows a use-case of load balancing for WAN connections. The traffic between
the two domains is critical when building distributed and virtualized services.

In this context, a good practice would be to have redundant WAN connections.
However, managing which WAN connection to use adds complexity to the already hard
task to manage a data center. Other remark is that, in traditional networks the control
over the use of WAN connections is not capable of acting at flow level and involves the
management of route entries in the routers. We propose the use of OpenFlow entries and
the SFC Gateway to enable the control over the WAN connection for SFC flows.

An example would be some police that establishes a threshold latency for some
SFC that contains VNF allocated in different data centers located in different geographic
locations. The orchestrator chooses a WAN Gateway for this traffic and for some reason
the latency in this WAN connection starts to increase. Upon reaching the established
threshold, the load balance mechanism chooses another WAN connection available in the
WAN-IM. The architecture proposes a centralized control to collect metrics and make
decisions and the Gateway Switch is responsible for the flow selection and traffic steering
to the correct WAN.

The same mechanism can be used to create redundant SFC segments instantiated
in several data centers as shown in the Figure 36b. The redundancy might be necessary in
the case of maintenance stops at the data center, for instance. In this case we expect that,
during the migration, the SFC has minimum downtime, and our proposal can help in this
task because there is no convergence time in the network when using source routing.

To prove the feasibility, we created two redundant connections between NFVI-PoP 1
and NFVI-PoP 2 using VLANs. From the point-of-view of the application, these connections
are totally different. Figure 37 shows the prototype with the redundant connections and
the flow using one of these links provisioned by the Orchestrator.

We want to show in practice a scenario where this approach benefits the application.

Chapter 5. Evaluation 74

Figure 37 – Prototype with redundant connection between NFVI-PoPs.

0 10 20 30 40

Samples

0

10

20

30

40

50

60

70

L
a

te
n

c
y

 (
m

s
)

Figure 38 – Latency measured before and after WAN migration.

It is the case if a link failure or some problem with the provider causes some instability
in the WAN link that incurs in an increase of latency measured by a monitoring service.
Then, the NFV-MANO triggers a segment migration using the same mechanism discussed
in the Section 5.2.1. Figure 38 shows the latency increasing that triggers the NFV-MANO,
and the migration. After the migration, with minimum downtime possible, the latency is
back to the same level before the link instability.

This result shows a shift of paradigm in load balancing for SFC between NFVI-PoPs,
which enables sophisticated Traffic Engineering solutions. The proposal might enable other
mechanisms like: duplicate a flow in different WANs to increase the chance of reaching the
destination, or link fusion to increase the bandwidth available between two NFVI-PoPs.

75

6 Conclusions and Future Work

This chapter presents the conclusions of the current work and its contributions.
Finally, its limitations and perspectives for future work are presented.

6.1 Conclusion
This work proposed, implemented, and evaluated an architecture for end-to-end

network slicing using tableless strict source routing. Although the architecture proposes a
solution for control and data planes considering the established standards from ETSI, it
modifies and adapts some elements to build the solution. Our solution is able to deliver a
single full-stack network slicing technology, and simplify the stitching of network slices from
different cloud infrastructures. Also, the solution inherits from source routing methods the
reduction of complexity in the core of the network, reducing the management of the states
and the long convergence time, and speeding up the creation of new chains.

The main results of this work are: (i) development of an architecture that enables
the stitching of network slices from multiple data centers in a efficient and flexible manner;
(ii) development of an architecture that enables data centers to support tableless Strict
Source Routing mechanisms as transport method and; (iii) implementation of both control
and data planes in order to enable network slicing deployment into data center network
infrastructures. Therefore, fulfilling all the established objectives.

As a limitation of our proof-of-concept implementation, we can point the use of
table entries to perform the source routing. Although we avoided the use of custom software
or hardware with this approach, we noticed some delay caused by the communication
between the software switch and the SDN controller required to compute the output port.
This process is required every time some new flow arrives in a core switch, but it can be
completely avoided by the use of a (hardware or software) switch that natively supports
source routing in the data plane.

Finally, this work is highly relevant mainly because it focuses on the mechanisms
towards building virtualized network services in multiple data centers. In contrast, related
works focus on optimization and positioning of network functions in multiple clouds,
without proposing the actual SFC mechanisms for enabling end-to-end network slicing.

Chapter 6. Conclusions and Future Work 76

6.2 Publications
The research process performed in the context of the laboratory LabNERDS-

UFES led to the publication of the following papers. The publications are listed below in
chronological order:

1. VALENTIM, R.; DOMINICINI, C. K.; VILLACA, R.; RIBEIRO, M. R. N. ;
MARTINELLO, MAGNOS ; MAFIOLETTI, D. . RDNA Balance: Balanceamento
de Carga por Isolamento de Fluxos Elefante em Data Centers com Roteamento na
Origem. In: SBRC, 2019, Gramado. Simpósio Brasileiro de Redes de Computadores
e Sistemas Distribuídos, 2019

2. VALENTIM, R.; DOMINICINI, C. K.; VILLACA, R.; RIBEIRO, M. R. N. ; MAR-
TINELLO, MAGNOS ; MAFIOLETTI, D. . Roteamento na Origem como Facilitador
do Encadeamento Multi-nuvem de Funções de Rede: Proposta e Implementação. In:
SBRC, 2020, Gramado. Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuídos, 2020 [Accepted for publication]

3. DOMINICINI, C. K. ; MARTINELLO, MAGNOS ; RIBEIRO, M. R. N. ; VAS-
SOLER, G. L. ; VILLACA, R. S. ; VALENTIM, R. ; ZAMBON, E. . KeySFC:
Agile Traffic Steering using Strict Source Routing. In: Symposium on SDN Research
(SOSR), 2019, São Diego. Symposium on SDN Research (SOSR), 2019.

4. DOMINICINI, C. K. ; MARTINELLO, MAGNOS ; RIBEIRO, M. R. N. ; VAS-
SOLER, G. L. ; VILLACA, R. S. ; VALENTIM, R. ; ZAMBON, E. . KeySFC:
Agile Traffic Steering using Strict Source Routing for Enabling Efficient Traffic
Engineering.

6.3 Future Works
For future works, it is essential to study methods for the real-time collection of

network metrics. These metrics are essential to build a feedback system that allows the
Orchestrator to migrate flows. Another interesting feature is to test other methods of
tunneling. In this prototype, we used GRE. However, some other possibilities (VxLAN,
Geneve, and GREoIPsec) can be explored.

There are several mechanisms and polices for the proposal of inter NFVI-PoP load
balance that we did not explore. There is significant research related to this topic that
involves the control and data planes and the algorithms to choose the best moment for a
migration and algorithms to split the load in order to reach maximum utilization.

Lastly, the switches used in the network core of our proof-of-concept implementation
were virtualized. There are several possibilities for offloading this solution to hardware.

Chapter 6. Conclusions and Future Work 77

Some examples are servers with SmartNICs and NetFPGAs. However, any offloading needs
to address the communication of the hardware with the control plane implemented by the
SDN controllers.

78

Bibliography

Abdullah, Z. N. et al. Segment routing in software defined networks: A survey. IEEE
Communications Surveys Tutorials, v. 21, n. 1, p. 464–486, Firstquarter 2019. ISSN
1553-877X. Citado na página 39.

AFOLABI, I. et al. Network slicing and softwarization: A survey on principles, enabling
technologies, and solutions. IEEE Communications Surveys and Tutorials, v. 20, n. 3, p.
2429–2453, 2018. ISSN 1553877X. Citado 3 vezes nas páginas 9, 35, and 36.

ALIZADEH, M. et al. CONGA: Distributed Congestion-Aware Load Balancing for
Datacenters. ACM SIGCOMM Computer Communication Review, v. 44, n. 4, p. 503–514,
aug 2014. ISSN 01464833. Disponível em: <http://dl.acm.org/citation.cfm?doid=2740070.
2626316>. Citado na página 69.

BENSON, T. et al. Understanding data center traffic characteristics. SIGCOMM Comput.
Commun. Rev., ACM, New York, NY, USA, v. 40, n. 1, p. 92–99, jan. 2010. ISSN
0146-4833. Disponível em: <http://doi.acm.org/10.1145/1672308.1672325>. Citado na
página 68.

Bhagwat, P.; Perkins, C.; Tripathi, S. Network layer mobility: an architecture and survey.
IEEE Personal Communications, v. 3, n. 3, p. 54–64, 1996. Citado na página 38.

BHAMARE, D. et al. Optimal virtual network function placement in multi-cloud service
function chaining architecture. Computer Communications, Elsevier B.V., v. 102, p. 1–16,
2017. ISSN 01403664. Disponível em: <http://dx.doi.org/10.1016/j.comcom.2017.02.011>.
Citado na página 40.

BOLLA, R.; BRUSCHI, R. Rfc 2544 performance evaluation and internal measurements
for a linux based open router. In: IEEE. High Performance Switching and Routing, 2006
Workshop on. [S.l.], 2006. p. 6–pp. Citado na página 70.

CAI, Y. et al. RFC 6754 - Protocol Independent Multicast Equal-Cost Multipath (ECMP)
Redirect. [S.l.], 2012. Citado na página 69.

CHAYAPATHI SYED F. HASSAN, P. S. R. Network Functions Virtualization (NFV)
with a Touch of SDN. [S.l.]: Person, 2016. Citado 2 vezes nas páginas 9 and 31.

CISCO. Troubleshooting and Debugging VoIP Call Basics. 2005. <https://www.cisco.com/
c/en/us/support/docs/voice/h323/14081-voip-debugcalls.html>. Citado na página 66.

CLAD, F. et al. Segment Routing for Service Chaining. [S.l.], 2018. Citado 2 vezes nas
páginas 38 and 39.

DIETRICH, D. et al. Multi-Provider Service Chain Embedding With Nestor. IEEE
Transactions on Network and Service Management, v. 14, n. 1, p. 91–105, 2017. ISSN
19324537. Citado na página 40.

DIMOLITSAS, I. et al. A Multi-Criteria Decision Making Method for Network Slice Edge
Infrastructure Selection. p. 1–7, 2020. Citado na página 18.

http://dl.acm.org/citation.cfm?doid=2740070.2626316
http://dl.acm.org/citation.cfm?doid=2740070.2626316
http://doi.acm.org/10.1145/1672308.1672325
http://dx.doi.org/10.1016/j.comcom.2017.02.011
https://www.cisco.com/c/en/us/support/docs/voice/h323/14081-voip-debugcalls.html
https://www.cisco.com/c/en/us/support/docs/voice/h323/14081-voip-debugcalls.html

Bibliography 79

DOMINICINI, C. K. et al. KeySFC: Traffic steering using strict source routing for
dynamic and efficient network orchestration. Computer Networks, v. 167, p. 106975, 2020.
ISSN 1389-1286. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S138912861930194X>. Citado 7 vezes nas páginas 19, 21, 38, 39, 42, 43, and 51.

FOUNDATION, L. What Is Open vSwitch? 2017. <http://docs.openvswitch.org/en/
latest/intro/what-is-ovs/>. Citado 3 vezes nas páginas 9, 34, and 35.

FOUNDATION, L. Open Network Operating System. 2020. <https://www.onosproject.
org>. Citado 3 vezes nas páginas 9, 18, and 32.

FOUNDATION, L. Open Platform NFV Project. 2020. <https://www.opnfv.org/>.
Citado na página 18.

FOUNDATION, L. OpenDaylight Project. 2020. <http://www.opendaylight.org/>.
Citado na página 18.

FOUNDATION, O. OpenStack Documentation. 2017. <https://docs.openstack.org/ocata/
>. Citado 3 vezes nas páginas 9, 24, and 25.

FOUNDATION, O. Service Function Chaining Extension for OpenStack Networking. 2020.
<https://docs.openstack.org/networking-sfc/>. Citado 2 vezes nas páginas 18 and 54.

GOMES, R. R. et al. Kar: Key-for-any-route, a resilient routing system. In: 2016 46th
Annual IEEE/IFIP DSN. [S.l.: s.n.], 2016. p. 120–127. Citado na página 38.

GUO, C. et al. Secondnet: A data center network virtualization architecture with
bandwidth guarantees. In: Co-NEXT ’10. New York, NY, USA: ACM, 2010. p. 15:1–15:12.
ISBN 978-1-4503-0448-1. Citado na página 38.

GUPTA, L. et al. COLAP: A predictive framework for service function chain placement
in a multi-cloud environment. CCWC 2017, 2017. Citado na página 40.

Hermiyanty, Wandira Ayu Bertin, D. S. Multi-domain Network Virtualization. Journal of
Chemical Information and Modeling, v. 8, n. 9, p. 1–58, 2017. ISSN 1098-6596. Citado na
página 20.

JIA, W. A scalable multicast source routing architecture for data center networks. IEEE
Journal on Selected Areas in Communications, v. 32, n. 1, p. 116–123, January 2014. ISSN
0733-8716. Citado na página 38.

JIN, X. et al. Your data center switch is trying too hard. In: Proceedings of the
Symposium on SDN Research. NY, USA: ACM, 2016. (SOSR ’16), p. 12:1–12:6. ISBN
978-1-4503-4211-7. Disponível em: <http://doi.acm.org/10.1145/2890955.2890967>.
Citado 4 vezes nas páginas 16, 38, 43, and 53.

JYOTHI, S. A. et al. Towards a flexible data center fabric with source routing. In: ACM.
1st ACM SIGCOMM. [S.l.], 2015. p. 10. Citado 2 vezes nas páginas 17 and 37.

KANDULA, S. et al. The nature of data center traffic. In: Proceedings of the 9th ACM
SIGCOMM conference on IMC ’09. New York, New York, USA: ACM, 2009. p. 202.
ISBN 9781605587714. Disponível em: <http://portal.acm.org/citation.cfm?doid=1644893.
1644918>. Citado na página 68.

http://www.sciencedirect.com/science/article/pii/S138912861930194X
http://www.sciencedirect.com/science/article/pii/S138912861930194X
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
https://www.onosproject.org
https://www.onosproject.org
https://www.opnfv.org/
http://www.opendaylight.org/
https://docs.openstack.org/ocata/
https://docs.openstack.org/ocata/
https://docs.openstack.org/networking-sfc/
http://doi.acm.org/10.1145/2890955.2890967
http://portal.acm.org/citation.cfm?doid=1644893.1644918
http://portal.acm.org/citation.cfm?doid=1644893.1644918

Bibliography 80

KHONDOKER, R. et al. Feature-based comparison and selection of software defined
networking (sdn) controllers. In: IEEE. Computer Applications and Information Systems
(WCCAIS), 2014 World Congress on. [S.l.], 2014. p. 1–7. Citado na página 33.

KREUTZ, D. et al. Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, IEEE, v. 103, n. 1, p. 14–76, 2015. Citado 2 vezes nas páginas 15 and 31.

KVM. Main Page — KVM,. 2016. [Online; accessed 5-June-2020]. Disponível em:
<https://www.linux-kvm.org/index.php?title=Main_Page&oldid=173792>. Citado 2
vezes nas páginas 34 and 57.

MAHMOODI, T. et al. Network Functions Virtualisation (NFV); Management and
Orchestration. IEEE Communications Standards Magazine, v. 1, n. 4, p. 60, 2017. ISSN
24712825. Citado 3 vezes nas páginas 21, 28, and 29.

MARTINELLO, M. et al. Keyflow: A prototype for evolving SDN toward core network
fabrics. Network, IEEE, v. 28, p. 12–19, 03 2014. Citado 2 vezes nas páginas 17 and 38.

MCKEOWN, N. et al. Openflow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, ACM, v. 38, n. 2, p. 69–74, 2008. Citado
na página 32.

MELL, P.; GRANCE, T. et al. The nist definition of cloud computing. Computer Security
Division, Information Technology Laboratory, National Institute of Standards and
Technology Gaithersburg, 2011. Citado na página 24.

MIJUMBI, R. et al. Management and orchestration challenges in network functions
virtualization. IEEE Communications Magazine, v. 54, n. 1, p. 98–105, 2016. ISSN
01636804. Citado 2 vezes nas páginas 15 and 46.

NGMN. Description of Network Slicing Concept by NGMN Alliance. Ngmn 5G P1, v. 1, n.
September, p. 19, 2016. Disponível em: <https://www.ngmn.org/uploads/media/160113_
Network_Slicing_v1_0.pdf>. Citado 3 vezes nas páginas 15, 36, and 41.

ORACLE, V. Virtualbox user manual. URL: http://www.virtualbox.org/manual/:
2016-05-01), 2011. Citado na página 34.

PEI, J. et al. Efficiently Embedding Service Function Chains with Dynamic Virtual
Network Function Placement in Geo-Distributed Cloud System. IEEE Transactions on
Parallel and Distributed Systems, IEEE, v. 30, n. 10, p. 2179–2192, 2019. ISSN 15582183.
Citado na página 20.

PIGNATARO, J. M. H.; CARLOS. Service Function Chaining (SFC) Architecture. [S.l.],
2015. v. 53, n. 9, 1689–1699 p. Disponível em: <https://www.rfc-editor.org/info/rfc7665>.
Citado 4 vezes nas páginas 18, 29, 41, and 44.

POPOVICIU, C. et al. RFC 5180 - IPv6 benchmarking methodology for network
interconnect devices. [S.l.], 2008. Citado na página 70.

QUINN, P.; GUICHARD, J. Service Function Chaining: Creating a Service Plane via
Network Service Headers. Computer, v. 47, n. 11, p. 38–44, nov 2014. ISSN 0018-9162.
Citado 2 vezes nas páginas 18 and 39.

https://www.linux-kvm.org/index.php?title=Main_Page&oldid=173792
https://www.ngmn.org/uploads/media/160113_Network_Slicing_v1_0.pdf
https://www.ngmn.org/uploads/media/160113_Network_Slicing_v1_0.pdf
https://www.rfc-editor.org/info/rfc7665

Bibliography 81

RASLEY, J. et al. Planck: Millisecond-scale Monitoring and Control for Commodity
Networks Jeff. In: Proceedings of the 2014 ACM conference on SIGCOMM - SIGCOMM
’14. New York, New York, USA: ACM Press, 2014. p. 407–418. ISBN 9781450328364.
Disponível em: <http://dl.acm.org/citation.cfm?doid=2619239.2626310>. Citado na
página 69.

ROSEN, E.; VISWANATHAN, A.; CALLON, R. Multiprotocol label switching
architecture,” rfc 3031. Citeseer, 2001. Citado na página 43.

SUN, G. et al. Energy-efficient and traffic-aware service function chaining orchestration in
multi-domain networks. Future Generation Computer Systems, Elsevier B.V., v. 91, p. 347–
360, 2019. ISSN 0167739X. Disponível em: <https://doi.org/10.1016/j.future.2018.09.037>.
Citado na página 40.

SUNSHINE, C. A. Interconnection of computer networks. Computer Networks (1976),
v. 1, n. 3, p. 175–195, 1977. ISSN 03765075. Citado na página 37.

SUNSHINE, C. A. Source routing in computer networks. ACM SIGCOMM Computer
Communication Review, v. 7, n. 1, p. 29–33, jan 1978. ISSN 01464833. Disponível em:
<http://portal.acm.org/citation.cfm?doid=1024853.1024855>. Citado na página 37.

TSO, F. P.; JOUET, S.; PEZAROS, D. P. Network and server resource management
strategies for data centre infrastructures: A survey. Computer Networks, v. 106, p. 209
– 225, 2016. ISSN 1389-1286. Disponível em: <http://www.sciencedirect.com/science/
article/pii/S1389128616302298>. Citado na página 17.

VALENTIM, R. et al. RDNA Balance: Balanceamento de Carga por Isolamento de Fluxos
Elefante em Data Centers com Roteamento na Origem. In: SBRC 2019. SBC, 2019.
Disponível em: <https://sol.sbc.org.br/index.php/sbrc/article/view/7418>. Citado 2
vezes nas páginas 37 and 68.

VU, A. V.; KIM, Y. An implementation of hierarchical service function chaining using
OpenDaylight platform. IEEE NETSOFT 2016, p. 411–416, 2016. Citado na página 40.

XENSERVER. 2017. Disponível em: <https://xenserver.org/>. Citado na página 34.

YANG, Z. et al. Software-defined wide area network (sd-wan): Architecture, advances and
opportunities. In: IEEE. 2019 28th International Conference on Computer Communication
and Networks (ICCCN). [S.l.], 2019. p. 1–9. Citado na página 48.

YI, B. et al. A comprehensive survey of Network Function Virtualization. Computer
Networks, v. 133, p. 212–262, 2018. ISSN 13891286. Citado 3 vezes nas páginas 9, 27,
and 28.

ZHANG, Q.; CHENG, L.; BOUTABA, R. Cloud computing: state-of-the-art and research
challenges. Journal of internet services and applications, Springer, v. 1, n. 1, p. 7–18, 2010.
Citado na página 24.

http://dl.acm.org/citation.cfm?doid=2619239.2626310
https://doi.org/10.1016/j.future.2018.09.037
http://portal.acm.org/citation.cfm?doid=1024853.1024855
http://www.sciencedirect.com/science/article/pii/S1389128616302298
http://www.sciencedirect.com/science/article/pii/S1389128616302298
https://sol.sbc.org.br/index.php/sbrc/article/view/7418
https://xenserver.org/

	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Research Problem
	Challenges in intra-data center scenarios
	Challenges in inter-data center scenarios

	Objectives
	Proposal and contributions

	Background and Related Work
	Cloud Computing
	OpenStack
	OpenStack Networking

	Network Function Virtualization
	Service Function Chaining
	Architecture
	SFC encapsulation
	Service Function (SF)
	Service Function Forwarder (SFF)
	SFC Proxy

	Software Defined Networks
	OpenFlow
	Ryu Framework
	Open vSwitch

	Network Slicing
	Related Works
	Source Routing
	SFC mechanisms for single data center
	SFC mechanisms for multiple data centers
	Contributions Highlights

	Proposal of Architecture
	Data Plane Architectural Elements
	Architectural components
	SFC Gateway

	Control Plane Functional Blocks
	NFV Orchestrator (NFVO)
	VNF Manager (VNFM)
	Virtualized Infrastructure Manager (VIM)
	SDN Controller
	Wide Area Network Infrastructure Manager (WAN IM)

	Implementation and Evaluation
	Testbed Description
	The Data Plane implementation
	SFC Encapsulation
	Edge Switches
	Core Switches

	The Control Plane implementation
	VIM
	SDN Controllers
	Core SDN Controller
	Edge SDN Controller
	Gateway SDN Controller
	Topology Controller
	OpenFlow Proxy Controller

	NFV MANO

	Evaluation
	Description
	Discussion
	Intra NFVI-PoP load balance
	Elephant flow competing with mice flow
	Elephant flow competing with another elephant flow
	Flow with delivery reliability requirements

	Inter NFVI-PoP load balance

	Conclusions and Future Work
	Conclusion
	Publications
	Future Works

	Bibliography

