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ABSTRACT 

Structural systems comprised by prefabricated flooring systems and/or cold-formed 

steel members are frequently employed in the construction industry due to their 

versatility, high strength-to-weight ratio, ease of prefabrication, transportation and 

assembly on site. The unification of these structural systems motivated the creation of 

composite ribbed slabs, which were defined in this research as ribbed floor systems in 

which cold-formed steel members are used as joists, and the space between them is 

filled with inert elements. During concrete casting, the cold-formed steel members are 

solely responsible for bearing the construction loads, and, after this phase, the steel 

elements work partially or completely as rebar reinforcement. As part of this structural 

system, the Trelifácil® solution is the object of study of this research, which is a 

prefabricated element comprising a trussed girder coupled to a cold-formed steel 

formwork by plastic spacers. Although these prefabricated joists have already been 

used to replace reinforced concrete lattice girders, it was only recently that researchers 

started looking into the design of these structural elements as well as into the feasibility 

of considering the composite action between components to achieve an economical 

design. Therefore, the focus of this research is to develop finite element models using 

ANSYS® 2020R1 capable of predicting the flexural behaviour of the Trelifácil® solution 

with and without the trussed girder attached to it. Additionally, the outcome of the finite 

element analyses aims to support the design of physical tests to validate the modelling 

techniques employed herein. To develop the finite element models, a variety of studies 

are conducted to assess the main parameters found in the literature review that may 

influence finite element predictions. The results indicated that the collapse analyses of 

the cold-formed steel member are sensitive to boundary conditions, loading position, 

element choice, mesh density, plasticity model and solution scheme. Based on the 

literature review, this research presented possible modelling techniques for each of 

these major issues. In addition, the gains in strength and stiffness found with the 

suggested finite element model for the entire configuration of the Trelifácil® solution 

reinforced the potential of this structural system that can be derived through the 

consideration of composite action between its components. 

Keywords: Numerical analysis. Cold-formed steel structures. Trelifácil® solution. 

Composite ribbed slab. 



 

RESUMO 

Sistemas estruturais formados por lajes pré-fabricadas e/ou perfis formados a frio são 

frequentemente empregados na Construção Civil devido à sua versatilidade, alta 

relação entre resistência versus peso, facilidade de fabricação, transporte e 

montagem. A unificação desses sistemas estruturais deu origem às lajes nervuradas 

mistas, as quais são definidas nesta pesquisa como sistema de lajes com elementos 

inertes de enchimento e nervuras com fôrma de aço em perfil formado a frio. Antes da 

cura do concreto, o perfil de aço resiste isoladamente às cargas de construção e, após 

a cura, atua como toda ou parte da armadura de tração. Como parte desse sistema 

estrutural, a solução Trelifácil® é destacada nesta pesquisa, a qual corresponde a uma 

armadura treliçada acoplada numa fôrma de aço por meio de espaçadores plásticos. 

Embora essas vigotas de aço pré-fabricadas pareçam uma opção promissora como 

substituição às vigotas treliçadas de concreto, apenas recentemente pesquisadores 

começaram a analisar seu desempenho estrutural bem como a viabilidade de incluir 

a ação mista entre seus componentes para alcançar seu dimensionamento 

econômico. Portanto, o foco desta pesquisa é desenvolver modelos de elementos 

finitos utilizando o ANSYS® 2020R1, os quais devem ser capazes de prever o 

comportamento à flexão da solução Trelifácil® com e sem a armadura treliçada 

acoplada à forma de aço. Além disso, o resultado da análise em elementos finitos visa 

apoiar a construção de ensaios laboratoriais para validar as técnicas de modelagem 

aqui empregadas. Para desenvolver os modelos em elementos finitos, vários estudos 

de sensibilidade são conduzidos avaliando os principais parâmetros encontrados na 

revisão de literatura que podem influenciar as previsões numéricas para perfis 

formados a frio. Em resumo, as análises numéricas do perfil formado a frio foram 

altamente sensíveis às condições de contorno, posição de carregamento, escolha do 

elemento finito, densidade de malha, modelo de plasticidade e esquema de solução. 

Com base na revisão da literatura, esta pesquisa apresentou possíveis técnicas de 

modelagem para cada uma dessas questões. Além disso, os ganhos de resistência e 

rigidez encontrados com o modelo de elementos finitos sugerido para toda a 

configuração da solução Trelifácil® reforçaram o potencial desse sistema estrutural 

que pode ser obtido por meio da consideração da ação mista entre seus componentes. 

Palavras-chave: Análise numérica. Perfis formado a frio. Solução Trelifácil®. Laje 

nervurada mista. 
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1 INTRODUCTION 

1.1 Background 

In the last decades, the construction industry has greatly progressed by 

seeking more efficient and economical solutions. In this context, prefabricated 

structural systems play a significant role since they are manufactured in a controlled 

environment and present fast installation. Among them, steel lattice girders and cold-

formed steel (CFS) structures are highlighted in this research. Lattice girders are 

usually used in prefabricated flooring systems of small and medium-sized 

constructions and have been, since their inception, an accessible option due to their 

simple construction techniques. Cold-formed steel members, in turn, may reduce the 

cost of structures as a result of its lower weight, relatively easy method of 

manufacturing, fast assembly, easy transportation and handling, high strength and 

stiffness, and others, when compared to materials such as timber and concrete. The 

numerous attempts to combine the accessibility of prefabricated slabs with the 

mechanical capacity of cold-formed structures, resulted in the development of 

composite ribbed slabs, defined herein as ribbed floor systems in which cold-formed 

steel profiles are used as girders, and the space between them is filled with inert 

elements. During concrete casting, the steel profiles are solely responsible for bearing 

the construction loads, and, after this phase, the steel elements work partially or 

completely as rebar reinforcement. The object of study in this research is a cold-formed 

steel profile coupled with a lattice girder employed in composite ribbed slabs. A brief 

description of this structural system and its component is given in subsequent sections. 

1.2 Prefabricated slabs featuring lattice girders 

According to Caixeta (1998), prefabricated slabs with lattice girders, or simply 

lattice slabs, are a result of the evolution of flat reinforced concrete slabs that, which 

quickly developed into cast-in-place ribbed slabs. These flooring systems progressed 

to prefabricated slabs, designated as such due to the employment of industrialized 

reinforced or prestressed concrete girders. Subsequentially, steel reinforcement 

lattices were added to said girders, and the resulting structural system was designated 

as lattice slab. A development timeline of lattice slabs is illustrated in Figure 1.1. 

Among the advantages of lattice slabs, one can highlight the accessibility of its 
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components as well as the design procedures already well established commercially. 

These slabs are formed by lattice girders spaced by means of inert elements and 

covered by a cast-in-place concrete layer. This configuration allows a straightforward 

and fast assembly when compared to other reinforced concrete floor systems. For 

structural design purposes, tables published in catalogues based on design standards 

are typically employed in the construction industry. Furthermore, various computational 

packages offer tools for their application in structural design models. For these 

reasons, prefabricated slabs with lattice girders became commonplace in structural 

systems. 

Figure 1.1 — Evolution of concrete flooring systems. 

 
Source: Caixeta (1998). 

1.3 Cold-formed steel members 

Cold-formed steel profiles are structural members formed at room temperature 

via two main manufacturing processes: (i) press brake operations (Figure 1.2a) and (ii) 

cold roll forming machines (Figure 1.2b). Press brake operations consist of forming 

predetermined products by pressing the workpiece between a movable punch tool and 

die, as illustrated in Figure 1.2a. Alternatively, a cold roll forming machine is a set of 

paired rolls that progressively shapes a flat metal sheet into a particular profile, as 

shown in Figure 1.2b. Press braking operations may be used when producing a small 

quantity of members that require simpler configuration (YU; LABOUBE; CHEN, 2019). 
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Figure 1.2 — Processes of (a) press-braking and (b) roll forming to manufacture cold-formed steel 
members. 

 
(a)Press-braking 

 
(b)Roll forming  

Source: (“Sheet Metal Forming”, [s.d.]) 

1.4 Composite ribbed slabs 

Composite ribbed slabs can be considered as a combination of prefabricated 

slabs and cold-formed steel structures. In these systems, cold-formed steel members 

are used as formwork for the ribs of the slab. In both commercial and academic 

contexts, composite ribbed slabs have been used and studied, respectively. Examples 

of scientific literature on composite ribbed slabs include the works conducted by Takey 



21 

(2001) (Figure 1.3a), Beltrão (2003) (Figure 1.3b), Vieira (2003) (Figure 1.3d) and 

Vianna (2005) (Figure 1.3c), who proposed different systems of composite ribbed 

slabs. In the commercial context, two flooring systems can be used as example of such 

a system: Tuper slab system (Figure 1.4) and slabs formed by the Trelifácil® solution 

(Figure 1.5 and Figure 1.6). Generally, the chief objective of these proposals is to 

optimise manufacturing and assembly aspects such as safety, cost, factory productivity 

and sustainability, while also minimising the cost and time of transportation. In this 

research, the Trelifácil® solution is the object of study, shortly described in subsequent 

sections, which also list the investigations performed herein. 

Figure 1.3 — Cross-sectional view of four different composite ribbed slabs. 

 
a) Takey (2001) b) Beltrão (2003) 

 

c) Vianna (2005) d) Vieira (2003) 

Source: Takey (2001), Beltrão (2003), Vieira (2003) and Vianna (2005). 

Figure 1.4 — Tuper composite ribbed slabs. 

 
Source: (TUPER, [s.d.]).  
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Figure 1.5 — Composite ribbed slabs featuring the Trelifácil® solution. 

 

Source: (ARCELORMITTAL, 2017b). 

Figure 1.6 — Assembly of Trelifácil® composite ribbed slabs. 

 
Source: (“Trelifácil® - Lajes Real”, [s.d.]). 

1.5 Trelifácil® solution 

 Initial considerations 

The Trelifácil® solution uses plastic spacers to couple a lattice girder to a cold-

formed steel formwork, forming a single element, as shown in Figure 1.7. Figure 1.8 

illustrates the manufacturing process of the steel formwork, which employs the cold-

forming technique. Figure 1.9 shows the cross-section dimensions of the CFS 

formwork, which is manufactured with a length of six meters. 
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Figure 1.7 — Configuration of the Trelifácil® solution. 

 
Source: (ARCELORMITTAL, 2017b). 

Figure 1.8 — Manufacturing process of the Trelifácil® solution using cold-forming process. 

 
Source: author’s own. 

Figure 1.9 — Cross-section dimensions of the formwork used in the Trelifácil® solution. 

 
Source: author’s own. 

Although the Trelifácil® solution is already commercialised and used in the 

construction industry, in-depth investigations of its mechanical responses began 

recently. Currently, this system is designed similarly in similar fashion to concrete 

lattice girders, consolidated in the Brazilian market for decades. Studies concerning 

the behaviour of these girders during construction and serviceability phases date from 

the late 90's and early 2000's [see Gaspar (1997), Droppa Jr. (1999) and Magalhães 
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(2001)]. For construction loads (before concrete curing), design follows the Brazilian 

standard of propping for concrete structures: ABNT NBR 15696:2009 (Formworks and 

shoring for concrete structures — Bill, dimensioning and procedures executives). After 

concrete curing, the design follows ABNT NBR 6118:2014 (Design of concrete 

structures — Procedure). Therefore, studies have been carried out to propose specific 

design procedures for this system, as well as to examine its structural response. These 

studies are briefly described in the following section. 

 Existing investigations on the use of the Trelifácil® solution 

The main investigations to date on the use of the Trelifácil® solution were 

conducted by Favarato (2018), who developed a computational tool to predict the 

resistance capacity of flooring systems featuring this element. A simplified design 

procedure was proposed based on Brazilian standards ABNT NBR 14762:2010, ABNT 

NBR 6118:2014, ABNT NBR 8800:2008 and ABNT NBR 14859-2:2016. Two main 

cases were considered in this study: flooring systems (i) without or (ii) with the use of 

temporary propping during construction phase, i.e., before concrete curing, in which 

the cold-formed steel formwork is subjected to dead loads and construction live load. 

For both cases, parametric studies were performed varying parameters related to 

geometry, service loads and materials, from which results were used to elaborate 

design tables with maximum spans and loads for pre-defined slab geometries. Then, 

the main conclusions were drawn regarding the maximum span that can be reached 

without or with shoring.  

 The findings for the first case, i.e., for simply supported slabs without shoring 

during construction, are also reported in Favarato et al. (2019b). For this case, two 

different scenarios of geometry and material properties were analysed:  

a) scenario 1: 5 cm concrete layer thickness and 27x8 cm light filling inert 

blocks; 

b) scenario 2: 6 cm concrete layer thickness and 37x8 cm light filling inert 

blocks. 

In addition, three different cross-section thicknesses for the steel formwork 

were evaluated. Results indicated that slab span lengths up to 1.2 m can be used 

without shoring for the steel formwork with nominal geometry properties (cross-section 

thickness of 0.65 mm) and yield stress of 340 MPa. In this case, the limit state related 
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to combined bending and shear of the steel formwork, i.e., before concrete curing, 

governed the design of the slab. Alternatively, the design of thicker cold-formed steel 

formworks is governed by excessive deflection. However, it is important to mention 

that the composite action between steel formwork and trussed girder was neglected, 

since this expected behaviour is still not grounded on measured data. Therefore, this 

flooring system may reach longer span lengths by considering the coupled behaviour 

between the components of the Trelifácil® solution. 

Due to the low flexural strength and stiffness of the steel formworks, 

Favarato (2018) conducted studies considering the use of temporary propping during 

construction in the design calculations, which is also reported in Favarato et al. (2020). 

Maximum live load versus span lengths found for the two aforementioned scenarios 

are shown in Figure 1.10, in which limit states related to service loads governed the 

slab designing. To achieve such results, Favarato et al. (2020) concludes that a mean 

propping distance of 0.80 m must be used. In this case, the steel formworks were 

designed as continuous beams, which led to different limit states. Local instability 

related to combined negative bending and shear of the steel formwork controlled the 

maximum propping distance design. Therefore, longer propping distances may be 

achieved due to the potential increase of flexural strength and stiffness promoted by 

the composite action between the Trelifácil® solution components. 

Furthermore, Gomes et al. (2019) conducted four-point bending tests of simply 

supported beams in order to assess the design procedures used by Favarato (2018) 

to predict the moment capacity of the cold-formed steel formwork used in the Trelifácil® 

solution. Also, these physical tests were also used as a pilot experiment to support the 

experimental layout proposed by Candido (2020, in progress). Overall, good 

agreement was found between theoretical and experimental results and the testing 

techniques of Candido (2020, in progress) worked satisfactorily. Since the findings of 

Gomes et al. (2019) are also part of this research, they are later detailed in this thesis. 

Although Favarato (2018) developed a robust computational tool for the design 

of flooring systems using the Trelifácil® solution, simplifications were taken which must 

be assessed by laboratorial measurements. Hence, Candido (2020, in progress) 

proposes the execution of a variety of physical tests to evaluate the main assumptions 

of Favarato (2018) and to quantify the potential benefits of the composite action 

between components of this floor system before and after concrete curing. Specifically, 
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the tests aim to: (i) determine the bending resistance of the cold-formed steel member 

used as formwork in the Trelifácil® solution, (ii) evaluate the gains in flexural strength 

and stiffness by considering the composite action between components before 

concrete curing, (iii) determine the mechanical capacity of the system after concrete 

curing and (iv) assess the benefits of the composite action between cold-formed steel 

member and concrete after concrete curing. Therefore, Candido (2020, in progress) 

aims to determine if an economical design of such a system can be achieved by 

considering the composite action between its elements. 

Furthermore, Gomes et al. (2019) conducted four-point bending tests of simply 

supported beams in order to assess the design procedures used by Favarato (2018) 

to predict the moment capacity of the cold-formed steel formwork used in the Trelifácil® 

solution. Plus, these physical tests were also used as a pilot experiment to support the 

experimental layout proposed by Candido (2020, in progress). Overall, good 

agreement was found between theoretical and experimental results and the testing 

techniques of Candido (2020, in progress) worked satisfactorily. 

Figure 1.10 — Overload for two different scenarios of geometry and material properties for the flooring 
system using the Trelifácil® solution. 

 
Source: (FAVARATO, 2018). 

In summary, Favarato (2018) proposed a design approach based on the scope 

of current structural design codes to estimate the complex mechanical capacity of 

flooring systems using the Trelifácil® solution through suitable simplifications and 

assumptions. A portion of the research work was already validated by laboratory 

measurements of Gomes et al. (2019) and the remaining procedure will be assessed 

by the research of Candido (2020, in progress). In addition, the tests conducted by 
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Candido (2020, in progress) will quantify the potential improvements in the mechanical 

behaviour of such a system due to the interaction between its elements. However, 

even though an extensive set of physical tests has been proposed by Candido (2020, 

in progress), complementary approaches must be used to extrapolate laboratory 

results. Thus. This demand shaped the main motivations and objectives of this 

research, which are described in the following section. 

1.6 Research motivation 

In the civil construction industry, composite ribbed slabs, category in which the 

Trelifácil® solution belongs, have great growth potential. This is justified mainly due to 

their industrialised characteristics, which are always looking forward to optimising cost 

and delivery time, as well as improving sustainable factors. An example of such 

advantages is the substitution of temporary formworks by permanents ones, which 

enhances the assembly productivity. The basic problem to achieve economic design 

for these composite ribbed slabs is associated with its maximum structural efficiency, 

which may be improved by enhancing the interaction between its elements. Although 

the benefits of steel and concrete composite structures are well-known, no research 

appears to have been conducted on the improvements achieved by exploiting the 

composite action between cold-formed steel and associated elements of the composite 

ribbed slabs formed by the Trelifácil® solution. Thus, optimal design of this flooring 

system can be achieved through studies focused on the composite action of the 

materials. 

Due to the presence of different structural components interacting with each 

other, composed of materials with different properties and an unusual geometry, the 

analysis of composite ribbed slabs denotes a wide complexity. The usual alternative 

for this type of problem is the structural characterisation performed experimentally, 

which examines the behaviour of the system with destructive tests. On the other hand, 

laboratory tests do not allow the evaluation of all parameters related to the composite 

interaction between materials and may require expensive techniques for their set-up. 

An alternative to time and cost consuming experimental studies for problems of this 

difficulty is the use of sophisticated shell finite element analyses (SFEA), accounting 

for initial geometrical and physical imperfections and employing nonlinear constitutive 

laws. Thus, through numerical simulations validated by laboratory measurements, 

similarly to the concept of digital twins, it is possible to expand the empirical results 
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and evaluate other possible parameters that allows the characterisation of the 

structural behaviour of composite ribbed slabs. 

1.7 Objectives 

The primary objective of the research described in this thesis is to develop a 

sound basis for finite element modelling of the cold-formed steel profile used in the 

Trelifácil® solution, through nonlinear numerical analysis performed using the software 

ANSYS® 2020R1. Additionally, the outcome of this research aims to support the design 

of physical tests of the ongoing research of Candido (2020, in progress), which can be 

used in the future to validate the accuracy of the developed modelling techniques 

presented in this thesis.  

As such, the specific objectives of this research are summarised as follows: 

a) propose finite element models to predict the flexural strength of the 

Trelifácil® solution; 

b) assess the sensitivity of the models to a variety of parameters and 

compare its results with laboratory measurements; 

c) evaluate the influence of the main parameters that may affect the 

flexural resistance of the Trelifácil® solution. 

1.8 Outline of the dissertation 

Chapter 1 gives a brief introduction to the main components employed in 

composite ribbed slabs, i.e., prefabricated slab systems and cold-formed steel 

members, as well as a summary of the existing investigations on the use of the 

Trelifácil® solution. The chapter also presents the motivation and objectives to initiate 

this research work and the outline of this dissertation. 

Chapter 2 provides a review of the literature on topics relevant to the modelling 

of the structural response of cold-formed steel members. It includes a review of the 

theoretical background behind the design of cold-formed steel beams and existing 

research on the modelling of geometrical imperfections, material models, residual 

stresses, element section, solution schemes and cases in which beams subjected to 

flexure about minor axis were analysed. In this chapter, a review of existing researches 

on lattice reinforcement is also presented. 

Chapter 3 presents the finite element approaches used to model the flexural 



29 

behaviour of the Trelifácil® solution. In this chapter, comparisons between numerical 

results and available laboratory measurements of physical tests conducted on the steel 

formwork of the Trelifácil® solution are given to demonstrate the validity and accuracy 

of the modelling techniques proposed. 

Chapter 4 presents the results of parametric studies of the main geometrical 

characteristics of the Trelifácil® solution and its components. This section also presents 

results from a comparative study between predictions from theoretical analyses and 

the finite element-based method presented in Chapter 3. 

In Chapter 5, important findings and conclusions from this research are 

summarised. Suggestions for further work are also given.
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2 LITERATURE REVIEW 

The investigation of the structural behaviour of cold-formed steel members and 

lattice girders under a variety of load and boundary conditions is fundamental to the 

improvement of design criterions of these prefabricated systems and, consequently, 

the whole construction industry. 

Therefore, in order to contribute to the knowledge development of such 

structural systems, it is necessary to comprehend their current state-of-the-art. As 

such, this literature review is divided in three main sections that include: (i) theoretical 

formulations to calculate the bending resistance of cold-formed steel beams, (ii) finite 

element (FE) techniques used to model cold-formed steel members and (iii) current 

researches that investigate the structural behaviour of lattice reinforcements. These 

sections cover the main theoretical background employed in this research. 

2.1 Theoretical prediction of the flexural resistance of cold-formed steel 

beams 

As previously mentioned, Favarato (2018) proposed design procedures to 

estimate the resistance capacity of floor systems featuring the Trelifácil® solution. The 

determination of the flexural capacity of the cold-formed steel formwork used in the 

Trelifácil® solution was based on the Direct Strength Method (DSM) for beams 

presented in the Brazilian standard ABNT NBR 14762:2010. An in-depth review of this 

method is outside the scope of this research since its main goals are related to the 

finite element modelling of cold-formed steel beams. Hence, only a succinct description 

of the method and the formulations used in this research are presented. 

The DSM was proposed by Schafer (2008), firstly mentioned in Schafer and 

Peköz (1998a), and rooted in the research work of Hancock, Kwon and Bernard (1994). 

Hancock, Kwon and Bernard (1994) suggested strength design curves to predict the 

capacity of cold-formed steel sections undergoing distortional buckling, unlike the 

concept of effective width in which local buckling is analysed. The DSM, in turn, 

considers in its strength curves the interaction between local and global instabilities, 

as well as post-buckling reserve. Then, the basic premise of the DSM is to extend the 

results of elastic buckling analyses to ultimate strength through semi-empirical strength 

curves, shown in Figure 2.1 for beams (SCHAFER, 2008). Therefore, the accuracy of 

this method is intrinsically related to the estimate of the critical elastic moments of a 
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member. Further details of this method can be found on many papers and books, such 

as Schafer (2008) and Yu, LaBoube and Chen (2019). Discussions on the theory of 

stability and coupled instabilities in steel structures can be found on Rondal (1998). 

Figure 2.1 — Comparison between theoretical and test data for flexural strength (𝑀𝑡𝑒𝑠𝑡) using the 
Direct Strength Method. 

 
Source: (SCHAFER, 2008). 

Note: The referred Equations 1.2.2-6 and 1.2.2-9 are respectively given by Equation (2.5) and Equation 
(2.7) normalised against the moment at first yield, 𝑀𝑦 . 𝑀𝑐𝑟 refers to the critical elastic moment of local 

or distortional buckling. 

According to the DSM, the design value of the bending moment resistance 𝑀𝑅𝑑 

of a gross cross-section is determined by Equation (2.1): 

𝑀𝑅𝑑 =
𝑀𝑅𝑘

𝛾
 (2.1) 

where 𝛾 is equal to 1,1 and 𝑀𝑅𝑘 corresponds to the characteristic resistance to bending 

moment, which is the smallest value among nominal flexural strengths: 𝑀𝑅,𝑒 (where 

the ‘e’ stands for Euler buckling) for lateral-torsional buckling, 𝑀𝑅,𝓵 for local buckling 

and 𝑀𝑅,𝑑𝑖𝑠𝑡 for distortional buckling. 

The nominal flexural strength for global instability 𝑀𝑅,𝑒 is given by: 

𝑀𝑅,𝑒 = {

𝑊𝑓𝑦 for 𝜆0 ≤ 0,6 

1,11(1 − 0,278𝜆0
2)𝑊𝑓𝑦  for 0,6 < 𝜆0 < 1,336 

𝑊𝑓𝑦 𝜆0
2⁄  for 𝜆0 ≥ 1,336

   (2.2) 

where 𝑊 is the elastic section modulus referenced to the extreme fibre in first yield and 

𝑓𝑦 corresponds to the yield stress. The slenderness factor 𝜆0, associated to lateral 

torsional buckling, is given as follows: 
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𝜆0 = √
𝑊𝑓𝑦

𝑀𝑒
 (2.3) 

where 𝑀𝑒  is the elastic critical moment for flexural-torsional buckling. Although 𝑀𝑒 may 

be obtained from computational stability analysis, for singly symmetric sections 

bending about the centroidal axis perpendicular to the symmetry axis, this variable can 

be computed by using Equation (2.4): 

𝑀𝑒 =
𝐶𝑠𝑁𝑒𝑥

𝐶𝑚
[𝑗 + 𝐶𝑠√𝑗2 + 𝑟0

2 (
𝑁𝑒𝑧

𝑁𝑒𝑥
)] (2.4) 

The detailed definition and calculation procedure for each of the variables 

involved in determining 𝑀𝑒 are obtained from subsection 9.8.2.2 of the Brazilian 

standard ABNT NBR 14762:2010. 

The nominal flexural strength for local instability 𝑀𝑅,ℓ is given by: 

𝑀𝑅,ℓ = {

𝑀𝑅,𝑒 for 𝜆𝓵 ≤ 0,776 

(1 −
0,15

𝜆𝓵
0,8)

𝑀𝑅,𝑒

𝜆𝓵
0,8  for 𝜆𝓵 > 0,776 

   (2.5) 

where the slenderness factor associated with local instability 𝜆ℓ is given by: 

𝜆𝓵 = √
𝑀𝑅,𝑒

𝑀𝓵
 (2.6) 

where 𝑀ℓ refers to the elastic critical moment of local buckling, obtained from elastic 

stability analysis. 

The nominal flexural strength for local instability 𝑀𝑅,𝑑𝑖𝑠𝑡 is given by: 

𝑀𝑅,𝑑𝑖𝑠𝑡 = {

𝑊𝑓𝑦 for 𝜆𝑑𝑖𝑠𝑡 ≤ 0,673 

(1 −
0,22

𝜆𝑑𝑖𝑠𝑡
)

𝑊𝑓𝑦

𝜆𝑑𝑖𝑠𝑡
 for 𝜆𝑑𝑖𝑠𝑡 > 0,673

   (2.7) 

where the slenderness factor associated to distortional instability 𝜆𝑑𝑖𝑠𝑡 is given by: 

𝜆𝑑𝑖𝑠𝑡 = √
𝑊𝑓𝑦

𝑀𝑑𝑖𝑠𝑡
 (2.8) 

where 𝑀𝑑𝑖𝑠𝑡 refers to the elastic critical moment of distortional buckling, obtained from 

elastic stability analysis. 

Concerning the determination of critical buckling moments, an elastic stability 
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analysis must be sought. There exists a variety of methods implemented in 

computational tools to perform those analyses. In the DSM design guide published by 

the American Iron and Steel Institute (AISI, 2006), four alternatives are described: finite 

strip method, finite element method, generalised beam theory or closed-form solutions 

(i.e., manual elastic buckling solutions). Procedures for the application of these 

methods are given in the DSM design guide (AISI, 2006), as well as examples of a 

variety of computational tools and codes to perform those analyses. In this research, 

such analysis is conducted using the finite strip software CUFSM (LI; SCHAFER, 2010; 

SCHAFER; ÁDÁNY, 2006), which provides the stability solution by means of a 

signature curve for thin-walled members based on the material properties and cross-

sectional shape. Then, mode shapes, elastic critical loads and half-wavelengths can 

be derived from this open-source software. 

Finally, by using the DSM, the determination of elastic deflection of cold-

formed steel beams must consider an effective second moment of area (𝐼𝑒𝑓) linearly 

proportional to the strength of the section at the serviceability stress of interest, as 

follows: 

𝐼𝑒𝑓 = 𝐼𝑔 (
𝑀𝑅𝑠𝑒𝑟

𝑀𝑛
) ≤ Ig (2.9) 

where 𝐼𝑔 is the moment of inertia of the gross cross-section, 𝑀𝑅𝑠𝑒𝑟 is the minimum of 

the member strengths determined according to Equations (2.2), (2.5) and (2.7) but with 

𝑊𝑓𝑦 replaced with 𝑀𝑛, which is the bending moment at the service loads to be 

considered. 

2.2 Finite element modelling of cold-formed steel members 

 Initial considerations 

Currently, a powerful technique to study the strength behaviour of structural 

members is the use of a geometric and material nonlinear analysis with imperfections 

included (GMNIA). For thin-walled structures, shell finite element model (SFEM) is 

commonly developed to conduct a GMNIA. According to Schafer and Peköz (1998b), 

the computational prediction of the ultimate strength and collapse behaviour of CFS 

members using SFEM are sensitive to: solution schemes, element type and 

discretisation, boundary conditions, plasticity models, initial geometrical imperfections 

and initial residual stresses and strains. Therefore, in the following sections some of 
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these factors are briefly discussed. Also, each section shortly reviews the employment 

of these parameters in the researches of Torabian, Zheng and Schafer (2014), Martins, 

Camotim and Dinis (2017), Kyvelou, Gardner and Nethercot (2018), Matsubara, 

Batista and Salles (2019) and Santos, Landesmann and Camotim (2019), enable us 

to review a diversity of finite element modelling techniques. 

 Geometric imperfections 

According to Ziemian (2010), initial imperfection of steel structures is “an 

unavoidable deviation from perfect geometry which is within the accepted practical 

tolerance of the particular applicable fabrication technology”. In general, authors 

classify geometric imperfections in two groups: global imperfections (flexure and 

flexure-torsional) and cross-sectional imperfections (local and distortional). Although 

in the last decades many researchers focused on the investigation of this subject, no 

consensus is found on the correct application of geometric imperfections in FE 

modelling of CFS structural members (FARZANIAN et al., 2019, preprint). 

Schafer, Li and Moen (2010) stated that imperfections can be included in FE 

models as a modelling convenience or a physical reality. The first approach is usually 

used for either design purposes or to trigger expected deformed shapes. Generally, for 

modelling convenience, authors employ buckling modes as imperfection distribution 

factored by section thickness or plate slenderness. In the case of adding imperfections 

as a physical reality, one of the main objectives, according to Farzanian et al. (2019, 

preprint), is to generate statistical data for the construction of geometric imperfection 

models of different CFS sections. Then, an attempt is made to reliably reconstruct a 

given structural geometry by accurately measuring the imperfections, as the 

characterization method proposed by McAnallen et al. (2014). In this research, 

geometric imperfections are applied as a modelling convenience; for this reason, 

greater emphasis is placed on this approach. 

One can find a plethora of procedures for modelling initial geometrical 

imperfections in the literature. As stated before, the most common approach uses a 

superposition of eigenmode shapes. Farzanian et al. (2019, preprint) conducted a 

comparative review of the current geometric imperfection models for CFS structural 

members. The authors stated that imperfection distributions [𝐺𝑚(𝑥, 𝑦, 𝑧)] are commonly 

assumed by the following form: 
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𝐺𝑚(𝑥, 𝑦, 𝑧) = ∑ 𝑐𝑖𝛼𝑖𝜙𝑑𝑖(𝑥, 𝑦, 𝑧)

𝑛

𝑖=1

 

where 𝜙𝑑𝑖(𝑥, 𝑦, 𝑧) corresponds to imperfection shapes, 𝛼𝑖 to their magnitudes and 𝑐𝑖 to 

combination coefficients. The imperfection shapes 𝜙𝑑𝑖(𝑥, 𝑦, 𝑧) are usually associated 

with buckling modes, such as bow, camber, twist, local and distortional shapes, as 

shown in Figure 2.3. Magnitudes 𝛼𝑖 are based on measured data, empirical relations 

or standardised tolerances. The combination coefficients are useful to approximate 

numerical and experimental results by combining the factored buckling modes. In their 

literature review, the authors describe the models proposed by Dawson and Walker 

(1972), Schafer and Peköz (1998b), Sivakumaran and Abdel-Rahman (1998), Sun and 

Butterworth (1998), Chou, Chai and Ling (2000), Gardner (2002), Dinis and Camotim 

(2008, 2009, 2010), Zeinoddini (2011), Torabian et al. (2016a, 2016b), Australian 

Standard AS 4084:2012 (Steel storage rackling) and the European code EN 1993-1-

6:2007 (Design of Steel Structures – Part 1.6: strength and stability of shell structures). 

 
Figure 2.2 — Representation of geometric imperfection shapes: (a) combined modes, (b) bow, (c) 

camber, (d) twist, (e) local and (f) distortional. 

 
Source: (FARZANIAN et al., 2019, preprint). 

Schafer and Peköz (1998b), for example, proposed magnitude values for local 

and distortional imperfection modes using empirical expressions and probabilistic 

analyses. Data collected from 11 different experimental studies were used to classify 

geometrical imperfection distributions into two categories: type 1 (local mode), which 

is the maximum web amplitude (𝑑1); and type 2 (distortional mode) characterised by 

the maximum stiffened flange amplitude (𝑑2), as illustrated in Figure 2.3. The proposed 

rules of thumb and statistical values are respectively displayed in Table 2.1 and Table 

2.2. In these tables, 𝑡 represents the section thickness, 𝑤 the plate width and 𝑃(𝛥 < 𝑑) 

the cumulative distribution function of the random variable 𝑑 (imperfection amplitude). 
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To exemplify the use of the table, a value 𝑃(𝛥 < 𝑑) taken as 0.95 corresponds to the 

𝑑/𝑡 equal to 1.35 for type 1 and 3.44 for type 2. In other words, in a typical CFS section 

the maximum amplitude is expected to be greater than or equal to these values five 

per cent of the cases. 

Figure 2.3 — Representation of the imperfection shapes type 1 and type 2. 

 
Source: (SCHAFER; PEKÖZ, 1998b). 

Table 2.1 — Approximate expressions for local and distortional imperfection magnitudes. 

Imperfection type Approximate expression 

type 1 𝑑1 ≈ 0.006𝑤 for 
𝑤

𝑡
< 200 

type 1 (alternative rule) 𝑑1 ≈ 6𝑡𝑒−2𝑡  (𝑑1and 𝑡 in mm) for 
𝑤

𝑡
< 200 

type 2 𝑑2 ≈ 𝑡 for 
𝑤

𝑡
< 100 

Source: (SCHAFER; PEKÖZ, 1998b). 

Table 2.2 — Cumulative Distribution Function (CDF) values of geometric imperfections types 1 and 2. 

 Type 1 Type 2 

𝑃(Δ < 𝑑) 𝑑1/𝑡 𝑑2/𝑡 

0.25 0.14 0.64 

0.50 0.34 0.94 

0.75 0.66 1.55 

0.95 1.35 3.44 

0.99 3.87 4.47 
   

Mean 
Standard deviation 

0.50 1.29 

0.66 1.07 

Source: (SCHAFER; PEKÖZ, 1998b). 

Furthermore, the employment of such geometrical imperfection distributions 

relies on the extraction of elastic buckling modes of CFS members. Generally, authors 

perform an eigenvalue finite element analysis in order to generate meshes with 

imperfections associated to buckling mode shapes. However, the finite element 

stability analysis captures a high number of modes with buckling interaction, which 

makes selecting the appropriate imperfection shapes difficult. For this reason, other 

researchers employ different methods to perform elastic buckling analysis, such as the 

finite strip (FSM) and the generalized beam theory (GBT). Chodraui et al., (2006), 

Schafer, Li and Moen (2010), Haidarali (2011) and Kyvelou, Gardner and Nethercot, 
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(2018), for example, used the finite strip software CUFSM (SCHAFER; ÁDÁNY, 2006) 

to extract the buckling mode shapes. Then, the eigenvalues can be used to manually 

create the perturbed meshes or to verify the accuracy of finite element buckling 

analyses. 

In what follows, the modelling techniques used to apply geometrical 

imperfections in the finite element models of different authors are shortly presented. 

2.2.2.1 Torabian, Zheng and Schafer (2014) 

Torabian, Zheng and Schafer (2014) modelled geometric imperfections of 

lipped channel sections by using buckling mode shapes as imperfection distributions. 

They state that for short members (like the specimens tested in the research), only 

local buckling modes and/or distortional buckling modes should be applied in the 

model, since global modes of failure are not predominant. Therefore, a sensitivity 

analysis was conducted to find the appropriate magnitude factor and sign of each 

imperfection shape to accurately predict ultimate load and failure mode of experimental 

tests. Magnitude factors for each imperfection shape were taken from a statistical 

summary provided by Zeinoddini and Schafer (2012), which is displayed in Table 2.3. 

The selected imperfection shapes correspond to local and distortional buckling with 

magnitudes of 50% of the CDF. In addition, eigen buckling analysis was conducted in 

the finite strip software CUFSM (SCHAFER; ÁDÁNY, 2006)  to generate the 

imperfection modes used in the shell finite element model developed. 

Table 2.3 — Magnitudes factors for local, distortional, bow, camber and twist imperfection shapes.  
 Local Distortional Bow Camber Twist 

CDF (𝛿0/𝑡) (𝛿0/𝑡) (𝐿/𝑑0 ) (𝐿/𝑑0 ) (deg/m) 

Mean 0,47 1,03 2242 3477 0,36 

St.dev. 0,62 0,97 3054 5643 0,23 

25%ilea 0,17 0,43 4755 6295 0,2 

50%ile 0,31 0,75 2909 4010 0,3 

75%ile 0,54 1,14 1659 2887 0,49 

95%ile 1,02 3,06 845 1472 0,85 

99%ile 3,87 4,46 753 1215 0,95 

Source: (ZEINODDINI; SCHAFER, 2012). 
Note “a”: %ile values are the probabilities that imperfection will be less than the table values. 

Another important aspect of initial geometrical imperfection modelling is the 

measurement of actual dimensions of the member cross-section. For this reason, 

Torabian, Zheng and Schafer (2014) carried out nonlinear analyses using two types of 

geometric dimensions: nominal and actual measured dimensions. They found that 
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nominal dimensions can provide results close to actual dimensions and, therefore, they 

were used to build the numerical model. 

2.2.2.2 Martins, Camotim and Dinis (2017) 

Martins, Camotim and Dinis (2017) followed recommendations given by Dinis 

and Camotim (2010) to identify the appropriate perturbed mesh for their finite element 

model. The approach recommended by Dinis and Camotim (2010) is illustrated in 

Figure 2.4, in which “pure” local and distortional modes, factored by 0.1𝑡, are linearly 

combined by 𝐶𝐿,0 (local combination factor) and 𝐶𝐷,0 (distortional combination factor), 

so that (𝐶𝐿,0)² + (𝐶𝐷,0)² = 1. The GBT buckling analysis code GBTUL [see current 

version in Bebiano, Camotim and Gonçalves (2018)] was employed to extract the 

“pure” buckling modes. 

Figure 2.4 — Illustration of the geometrical imperfection modelling technique recommended by Dinis 
and Camotim (2010).  

 

Source: adapted from Dinis and Camotim (2010) 

2.2.2.3 Kyvelou, Gardner and Nethercot (2018) 

Kyvelou, Gardner and Nethercot (2018) also combined local and distortional 

buckling modes to create the geometrical imperfection distribution in their finite 

element models. In their case, in turn, amplitudes for each “pure” mode were 

measured, obtaining approximately 0.1𝑡 and 0.3𝑡 for local and distortional geometrical 

imperfection shapes, respectively, as shown in Figure 2.5. The technique employed to 

determine these imperfection factors followed the procedure suggested by Schafer and 
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Peköz (1998b). Additionally, they used the finite strip software CUFSM 3.12 

(SCHAFER; ÁDÁNY, 2006) to extract the “pure” local and distortional buckling mode 

shapes. Afterwards, these mode shapes were manually distributed along the member 

length and superposed in the finite element model. Sinusoidal functions with periods 

equal to the corresponding critical half-wavelengths obtained in the finite strip software 

were used to distribute the geometrical imperfection through the CFS member length. 

Figure 2.5 — Cross-sectional view of (a) local and (b) distortional mode shapes employed in the study 
of Kyvelou, Gardner and Nethercot (2018). 

 
Source: (KYVELOU; GARDNER; NETHERCOT, 2018). 

2.2.2.4 Matsubara, Batista and Salles (2019) 

Matsubara, Batista and Salles (2019) used the classical approach to create 

the imperfection distribution in their finite element model, i.e., using the lowest buckling 

mode extracted by finite element buckling analysis. A magnitude factor of 0,1𝑡 was 

used to scale the normalised critical buckling mode shape. 

2.2.2.5 Santos, Landesmann and Camotim (2019) 

Santos, Landesmann and Camotim (2019) used different geometrical 

imperfection modelling techniques to validate their shell finite element models  and to 

perform parametric studies.  

Measures of the actual imperfection distribution along the member length was 

used to validate the finite element model.  A detailed description of the numerical and 

experimental techniques used to model the imperfection distribution along the CFS 

member is found in Santos (2017). To put it briefly, seven displacement transducers 

(DT) were placed on the CFS cross-section to measure the imperfections along the 

specimen length (Figure 2.6a). Six parameters (Figure 2.6b) are then used to model 

the cross-sectional initial torsional rotation and displacements of the CFS member: 

torsional rotation (𝛽), flange displacements (𝛿12
𝐷  and 𝛿76

𝐷 ), local web undulations (𝛿𝑊
𝐿 ) 
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and global minor and major initial displacements (𝛿𝑚
𝐺  and 𝛿𝑀

𝐺 , respectively). 

Experimental and modelled geometrical imperfections were compared and showed 

reasonable agreement. 

Figure 2.6 — Illustration of the (a) experimental instrumentation and (b) numerical 
parameters used to model geometrical imperfections in the study of Santos (2017). 

 
                                 (a)                                 (b) 

Source: (SANTOS, 2017). 

The following relations were employed to calculate the initial torsional and 

displacements based on the DTs readings of CFS members with web width 𝑏𝑤 and 

flange width 𝑏𝑓: 

a) 𝛽 = tan−1 [
𝐷𝑇5−𝐷𝑇3

𝑦5−𝑦3 
] 

b) 𝐷𝑇3 = 𝛿𝑚
𝐺 + (𝑦3 − 𝛿𝑀

𝐺 )𝑡𝑎𝑛𝛽 

c) 𝐷𝑇6 = 𝛿𝑀
𝐺 + [(𝑐𝑜𝑠𝛽 − 1)𝑏𝑤]/2 + [𝑥6 + 𝛿𝑚

𝐺 + (𝑏𝑤/2)]𝑡𝑎𝑛𝛽 

d) 𝛿𝑀
𝐺 = {𝐷𝑇6 + 𝑦3tan2𝛽 − [𝑥3 + 𝐷𝑇3 + (𝑏𝑤/2)𝑠𝑒𝑛𝛽]tan𝛽 + (𝑏𝑤/2)(1 −

𝑐𝑜𝑠𝛽)}/(1 + tan2𝛽) 

e) 𝛿𝑚
𝐺 = 𝐷𝑇3 + (𝛿𝑀

𝐺 − 𝑦3)𝑡𝑎𝑛𝛽 

f) 𝛿𝑊
𝐿 = [(𝐷𝑇3 − 𝐷𝑇3)𝛿𝑀

𝐺 + (𝛿𝑚
𝐺 − 𝐷𝑇4)𝑦3 ]/[(𝐷𝑇3 − 𝐷𝑇4)𝑠𝑒𝑛𝛽 −

𝑦3 𝑐𝑜𝑠𝛽]  

g) 𝛿12
𝐷 = {

𝑏𝑓√2(1 − 𝑐𝑜𝑠𝛼12) 𝑖𝑓 𝐷𝑇1 ≥ 𝐷𝑇2

−𝑏𝑓√2(1 − 𝑐𝑜𝑠𝛼12) 𝑖𝑓 𝐷𝑇1 < 𝐷𝑇2
 

h) 𝛿76
𝐷 = {

𝑏𝑓√2(1 − 𝑐𝑜𝑠𝛼76) 𝑖𝑓 𝐷𝑇7 ≥ 𝐷𝑇6

−𝑏𝑓√2(1 − 𝑐𝑜𝑠𝛼76) 𝑖𝑓 𝐷𝑇7 < 𝐷𝑇6
 

i) 𝛼12 = 𝑡𝑎𝑛−1 |
𝑦1

′+
𝑏𝑤

2

𝑥1
′  

| and 𝛼76 = 𝑡𝑎𝑛−1 |
𝑦7

′−
𝑏𝑤

2

𝑥7
′  

| 

j) (𝑥1
′ , 𝑦1

′ ) ≡ (
𝑐𝑜𝑠𝛽(𝑥1−𝛿𝑚

𝐺 )+𝑠𝑒𝑛𝛽(−𝑏𝑤 2⁄ −𝐷𝑇1−𝛿𝑀
𝐺 ),

−𝑠𝑒𝑛𝛽(𝑥1−𝛿𝑚
𝐺 )+𝑐𝑜𝑠𝛽(−𝑏𝑤 2⁄ −𝐷𝑇1−𝛿𝑀

𝐺 )
) 
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k) (𝑥7
′ , 𝑦7

′ ) ≡ (
𝑐𝑜𝑠𝛽(𝑥7−𝛿𝑚

𝐺 )+𝑠𝑒𝑛𝛽(𝑏𝑤 2⁄ +𝐷𝑇7−𝛿𝑀
𝐺 ),

−𝑠𝑒𝑛𝛽(𝑥7−𝛿𝑚
𝐺 )+𝑐𝑜𝑠𝛽(

𝑏𝑤
2

+𝐷𝑇7−𝛿𝑀
𝐺 )

) 

In their parametric study, Santos, Landesmann and Camotim (2019)  used the 

critical buckling mode extracted from shell finite element buckling analysis to model 

the initial imperfections. A sensitivity study was carried out to determine the amplitude 

factor for the imperfection shape. Magnitudes values were tested from 

recommendations reported by Landesmann and Camotim (2013), 0.1𝑡, Schafer and 

Peköz (1998b), 1,0𝑡, and a mean value taken from the measured readings, which was 

equal to 0,23𝑡. Failure load variation was below 5 per cent and, therefore, the average 

reading 0,23𝑡 was chosen as the amplitude factor in all parametric analyses. 

2.2.2.6 Concluding remarks on geometrical imperfection 

Table 2.4 shows a summary of geometrical imperfection models used in 

parametric studies of current researches on computational modelling of CFS. In all 

cases, imperfection shapes were assumed as buckling modes. Magnitude factors for 

local and distortional buckling modes were approximately between 0.1𝑡 and 0.75𝑡. For 

the study cases reviewed here, global buckling modes were not frequently included in 

the imperfection models. Additionally, three different numerical methods were used to 

perform the elastic stability analyses, FSM, GBT and FEM. Therefore, it can be 

observed that no consensus exists on geometric imperfection finite element modelling 

techniques for cold-formed steel members. 

Table 2.4 — Summary of geometrical imperfection models used in parametric studies of current 
researches on computational modelling of CFS. 

Source 
Local Distortional Global Elastic buckling 

analysis method 
Buckling mode amplitude 

Torabian, Zheng and 
Schafer (2014) 

0.31𝑡 0.75𝑡 -- FSM 

Martins, Camotim and 
Dinis (2017) 

0.1𝑡 -- -- GBT 

Kyvelou, Gardner and 
Nethercot (2018) 

0.1𝑡 0.3𝑡 -- FSM 

Matsubara, Batista and 
Salles (2019) 

0.1𝑡 for the critical buckling mode FEM 

Santos, Landesmann and 
Camotim (2019) 

0.23𝑡 for the critical buckling mode FEM 
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 Material properties 

2.2.3.1 Stress-strain relationships 

According to Chen and Han (1988), the development of stress-strain 

relationships to describe the plastic deformation of structures under a complex stress 

state is the first step of plasticity theory. The graph in Figure 2.7 shows stress-strain 

curves obtained from tensile coupon tests of different metals. The graph shows that 

hot-rolled steel presents a stress-strain response linearly up to an upper yield point 

and back to a lower yield point, which extends infinitely. In contrast, cold-formed steel 

and stainless-steel exhibit a rounded stress-strain curve followed by strain hardening, 

or work hardening. For this reason, differently from hot-rolled steel, the yield stress for 

cold-formed steel is generally defined by an offset yield stress (𝜎𝑦𝑠) that corresponds 

to a defined strain where initial yield stress occurs. It is common to adopt 0.2% proof 

stress (𝜎0,2), as suggested by Schafer, Li and Moen (2010) and exemplified in Figure 

2.7. 

Moreover, for hot-rolled steel, an elastic perfectly-plastic material model (see 

Figure 2.8a) may satisfactorily represent its uniaxial tensile stress-strain behaviour. For 

cold-formed steel or stainless steel, instead, neglecting work hardening may lead to 

highly inaccurate results, as found by Rasmussen et al. (2003) and Lecce and 

Rasmussen (2006). In Chen and Han (1988), three alternative of simplified uniaxial 

tensile stress-strain curves with work hardening are presented: elastic-linear work-

hardening model (Figure 2.8b), elastic-exponential hardening model (Figure 2.8c) and 

Ramberg-Osgood model (Figure 2.8d). The latter allows the rounding of the stress-

strain portion of the material curve. For this reason, several researchers applied a 

distinct modification of the Ramberg-Osgood stress-strain relationship to represent 

tensile and compressive behaviour of CFS structural components.  
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Figure 2.7 — Stress-strain curves of typical metals used for steel structures. 

 
Source: (KYVELOU, 2017). 

This formulation was initially proposed by Ramberg and Osgood (1943) for 

aluminium alloys and, afterwards, it was adapted for other nonlinear metallic materials 

by several authors [e.g., by Rasmussen (2003), Mirambell and Real (2000), Gardner 

and Ashraf (2006), Arrayago, Real and Gardner (2015), Gardner et al., (2016)]. The 

modification proposed by Gardner and Ashraf (2006) for stainless steel, which is 

described in Table 2.5, was also satisfactorily employed in the studies of Haidarali 

(2011), Haidarali and Nethercot (2011), Kyvelou, Gardner and Nethercot (2018) and 

Ye et al., (2016), that proposed finite element models for cold-formed steel structures. 

Haidarali and Nethercot (2011) and Ye et al., (2016), however, employed a straight 

line with a constant slope for stresses higher than 0.2% proof stress instead of using 

the Ramberg-Osgood curve again. 

Table 2.5 — Modification of the Ramberg-Osgood stress-strain relationship proposed by (GARDNER; 
ASHRAF, 2006).  

Stress interval Stress-strain curve expression 

For 𝜎 ≤ 𝜎0,2: 𝜖𝑒 =
𝜎𝑒

𝐸
+ 0,002 (

𝜎𝑒

𝜎0,2

)

𝑛

 

for 𝜎0,2 < 𝜎 ≤ 𝜎𝑢 𝜖𝑒 = (𝜎𝑒 − 𝜎0,2) 𝐸0,2⁄ + [𝜖1,0 − 𝜖0,2 − (𝜎1,0 − 𝜎0,2) 𝐸0,2⁄ ] [
𝜎𝑒−𝜎0,2

𝜎1,0−𝜎0,2
]

𝑛0,2,1,0
′

+ 𝜖0,2  

Source: (GARDNER; ASHRAF, 2006). 

In Table 2.5 𝜎𝑒 and 𝜖𝑒 indicate the engineering stress and strain respectively, 

𝐸 the Young’s modulus of the material, 𝜎0.2 and 𝜎1.0 the 0.2% and 1.0% proof stresses 
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respectively, 𝐸0,2 the tangent modulus of the stress-strain curve at 𝜎0.2, 𝜖0.2 and 𝜖1.0 the 

total strain corresponding to the 0.2% and 1.0% proof stresses while 𝑛 and 𝑛0.2,1.0
′  the 

strain hardening exponents to determine the degree of roundedness of the stress-

strain curve. 

Furthermore, it is common in researches dealing with CFS structures to model 

the material stress-strain curves with selected points from tensile coupon tests. For 

example, the researches of Yu and Schafer (2007), Torabian, Zheng and Schafer 

(2015), Maia et al. (2016) and (Santos, Landesmann and Camotim (2019). 

Figure 2.8 — Examples of simplified uniaxial tensile stress-strain curves: (a) elastic perfectly-plastic 
model, (b) elastic-linear work-hardening model, (c) elastic-exponential hardening model and (d) 

Ramberg-Osgood model. 

 
Source: (CHEN; HAN, 1988). 

Finally, when modelling the material stress-strain curve for numerical 

analyses, true (Cauchy) stress-strain values must be specified, mainly when ultimate 

capacity and post-buckling behaviour are investigated. Thus, tensile coupon tests 

results (engineering stress-strain) need to be converted to true (Cauchy) stress-strain 

curves, as follows: 

𝜎𝑡 = 𝜎𝑒(1 + 𝜖𝑒) 

𝜖𝑡 = ln(1 + 𝜖𝑒) 
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where 𝜎𝑡 and 𝜖𝑡 correspond to true stress and strain and 𝜎𝑒 and 𝜖𝑒 to engineering 

stress-strain values. 

2.2.3.2 Yield and failure criteria 

In the literature, the three main components commonly used to generalise the 

uniaxial behaviour of a material into a combined stress state are: (1) yield condition, 

that describes the combination of stresses that leads the material to yielding; (2) flow 

rule (associative or non-associative plasticity), that gives a mathematical description 

for plastic deformation; and, (3) hardening rule, that gives the description of evolution 

of yield surface with plastic strain. Hence, this section briefly presents how these three 

aspects are frequently adopted in the finite element models of the studies reviewed 

here. 

Recently, the most widely used yield criterion and plastic flow rule for cold-

formed steel are respectively the von Mises yield criterion with associated flow rule. As 

example, the researches of Martins, Camotim and Dinis (2017) and Santos, 

Landesmann and Camotim (2019). Chen and Han (1988), in contrast, affirm that the 

yield criterion of Tresca and von Mises model, both with associated flow rule, can 

achieve accurate agreement with experimental tests for metals. 

Furthermore, according to Chen and Han (1988). isotropic and kinematic 

hardening are the most appropriate rules for describing the material during the process 

of plastic flow. In the last decades, the isotropic hardening has been the most employed 

hardening rule in researches of CFS members, such as in Yu and Schafer (2007), 

Torabian, Zheng and Schafer (2014), Maia et al. (2016), and others. However, it cannot 

account for the Bauschinger effect exhibited by most structural materials, which refers 

to a reduction in the material resistance when subjected to reversed loading. The 

plastic deformations during the manufacturing process may induce the Bauschinger 

effect, for example. The kinematic hardening rule, however, has a more complex 

implementation, but can account for this effect. Thus, the material hardening rule must 

be carefully selected. Moen, Igusa and Schafer (2008) suggest the use of kinematic 

rule when residual stresses are considered, otherwise, the isotropic hardening rule 

should be employed since its application is simpler. 
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2.2.3.3 Corner strength enhancements 

During the manufacturing process, the plastic deformation induced in cold-

formed steel members, mainly in the corners of a section, leads to different mechanical 

properties along the cross-section. In various experiments, considerable strength 

enhancement is observed in the corner regions when compared to flat ones [e.g. in 

Kyvelou (2017) and Ye et al. (2018)]. Figure 2.9 shows a comparative study between 

corner and flat tensile coupon tests conducted by Kyvelou (2017), in which an average 

strength enhancement of 17% was found in the corner region. 

However, some researches, such as Narayanan and Mahendran (2003) and 

Young (2004), ignored corners strength enhancements due to the small proportion of 

area between corner regions and the whole cross-sectional area. Nonetheless, good 

agreement with experimental data was observed. Additionally, other researchers also 

found satisfactory numerical results in the collapse analysis of CFS members 

neglecting the corner strength effects, such as Haidarali (2011), Landesmann and 

Camotim (2013) and Santos, Landesmann and Camotim (2019). Generally, corner 

strength is ignored assuming that its effect is offset by the effects of residual stresses, 

as explained in the subsequent section (see Section 2.2.4). 

2.2.3.4 Concluding remarks on material properties 

Table 2.6 summarises the material models adopted in recent researches that 

developed a shell finite element model to verify the strength of CFS members. At first 

glance, it seems that von Mises yield criterion with associative flow rule and isotropic 

hardening are the most used plasticity parameters. However, considering the total 

amount of studies conducted on the subject, the number of researches reviewed herein 

should not be taken as a representative sample for this generalization. Moen, Igusa 

and Schafer (2008), for instance, present situations in which kinematic hardening rule 

provides conservative strength results and must be used. To this end, they provided 

guidelines for the implementation of the kinematic hardening rule. Concerning the 

stress-strain curve, no consensus was found amongst the researches reviewed here 

to determine which technique is the most suitable to represent the cold-formed steel 

material. Therefore, in this research two different stress-strain modelling techniques 

will be used to assess the sensitivity of the finite element model to this parameter: (i) 

elastic perfectly-plastic model and (ii) two-stage Ramberg-Osgood model . 
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Figure 2.9 — Comparison between corner and flat tensile coupon tests. 

 
(a) Position of extracted coupon specimens 

 

          (b) Results for specimens of 1,5 mm 
thickness  

   (c) Results for specimens of 3,0 mm 
thickness 

Source: (KYVELOU, 2017). 

Table 2.6 — Summary of material models used in the parametric study of recent researches on 
computational modelling of CFS. 

Source 

Material properties 

Yield criterion Flow rule Hardening rule 
Stress-strain 

curve 

Torabian, Zheng and 
Schafer (2014) 

von Mises 
criterion 

Associative 
plasticity 

Isotropic 
hardening 

Multilinear 
model from 

coupon tests. 

Martins, Camotim 
and Dinis (2017) 

von Mises 
criterion 

Associative 
plasticity 

Isotropic 
hardening 

Elastic 
perfectly-

plastic model 

Kyvelou, Gardner 
and Nethercot 

(2018) 
 Not specified  

The two-stage 
Ramberg-
Osgood 

Matsubara, Batista 
and Salles (2019) 

von Mises 
criterion 

Not specified 
Bilinear 

elastoplastic 
material model 

Santos, 
Landesmann and 
Camotim (2019) 

von Mises 
criterion 

Associative 
plasticity 

Isotropic 
hardening 

Elastic 
perfectly-

plastic model  
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 Residual stresses 

According to Amouzegar, Schafer and Tootkaboni (2016), the distribution of 

residual stresses and strains (denominated only as residual stresses in this research) 

along the cross-section of CFS members are usually derived from manufacturing 

processes — such as coiling, uncoiling, flattening and cold-forming of the cross section 

(Figure 2.10). Hence, including residual stresses in finite element models is an evolving 

procedure since it is necessary to follow the manufacturing process step by step to 

predict such stresses, as shown in Amouzegar, Schafer and Tootkaboni (2016). 

This laborious procedure may be a potential challenge for numerical analyses 

that focus exclusively on predicting the collapse behaviour of steel members. In 

contrast, several recent researches reached satisfactory results in finite element 

analysis of CFS members without considering residual stresses, such as Anbarasu 

(2016), Kyvelou, Gardner and Nethercot (2018) and Santos, Landesmann and 

Camotim (2019). Additionally, a parametric study conducted by Amouzegar, Schafer 

and Tootkaboni (2016) indicates that the maximum residual stresses are almost zero 

for sheets with thicknesses smaller than one millimetre (as the CFS members studied 

herein). For this reason, in this research the representation of the effects of residual 

stresses are neglected in future finite element analyses. However, in what follows, a 

brief overview on residual stresses for cold-formed steel is given. 

Figure 2.10 — Manufacturing processes of cold-formed steel members. 

 

Source: (AMOUZEGAR; SCHAFER; TOOTKABONI, 2016). 

An extensive literature review of available analytical expressions for predicting 

residual stresses in steel members is conducted by Abambres and Quach (2016). 

General methods are given in Moen, Igusa and Schafer (2008) and Amouzegar, 

Schafer and Tootkaboni (2016). 

Briefly, according to Schafer and Peköz (1998b), residual stresses in CFS 
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sections consist of two fundamental components, the flexural component and the 

membrane component, as shown in Figure 2.11.  

Figure 2.11 — Definition of flexural and membrane residual stresses. 

 

Source: (SCHAFER; PEKÖZ, 1998b). 

In the last decades, several authors measured these different components of 

residual stresses in CFS members, such as Ingvarsson (1975), Dat and Peköz (1980) 

and Batista and Rodrigues (1992). Schafer and Peköz (1998b) and Moen, Igusa and 

Schafer (2008) analysed several available measured data on residual stresses and 

concluded that membrane stress magnitudes are small when compared to the bending 

counterpart. Experimental data on membrane stress magnitudes indicates that they 

are more prevalent in roll-formed members than press-braked members, and are 

higher in section corners (SCHAFER; PEKÖZ, 1998b).  

In numerical models, the membrane stresses are commonly ignored due to 

either low magnitudes [e.g. Young (2004) and Young and Rasmussen (1998)] or an 

offset by the corner strength effect (see section 2.2.3.3). Schafer, Li and Moen (2010) 

affirm that increases in the yield stress due to the cold-work of forming in corner regions 

derive from the same process of residual stresses. Therefore, it is common to implicitly 

consider that these effects counterbalance one another so that their magnitudes can 

be taken as null in numerical models.  

Schafer and Peköz (1998b) observed high magnitudes of the flexural residual 

stress component in the available experimental data on CFS members. However, 

Jandera, Gardner and Machacek (2008) indicated that bending residual stresses 

should not be inserted in numerical simulations when stress-strain curves obtained 

from tensile coupon tests extracted from CFS members are included. They found that 

these residual stresses have influence on the material stress–strain curve, since their 

research results indicate that the secant modulus is reduced in the presence of residual 
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stresses while the tangent modulus increases in some regions of the stress–strain 

curve. Further, Schafer, Li and Moen (2010) state that a complete characterization of 

residual stresses must include other effects from the manufacturing process [see 

Amouzegar, Schafer and Tootkaboni (2016) for a detailed description of said effects], 

otherwise the initial conditions of the model would not reflect the real member. 

Table 2.7 summarises the considerations upon the residual stress’ models 

used in current researches on computational modelling of CFS. Among the researches 

reviewed here, residual stress effects are commonly ignored. 

Table 2.7 — Summary of residual stresses models used in current researches on computational 
modelling of CFS. 

Source Residual stress model 

Torabian, Zheng and Schafer (2014) 
Residual stress and effective plastic strain 

distribution modelled according to Moen et al. (2008) 
only in the corner regions. 

Martins, Camotim and Dinis (2017) Not mentioned 

Kyvelou, Gardner and Nethercot (2018) 
Ignored due to recommendations of Jandera, 

Gardner and Machacek (2008) 

Matsubara, Batista and Salles (2019) Not mentioned 

Santos, Landesmann and Camotim (2019) 
Ignored due to recommendations of Young and 
Budynas (2002) and Ellobody and Young (2005) 

 Element selection 

In the modelling of thin-walled structures, in which thickness is much smaller 

than other dimensions, shell elements are generally employed. On the other hand, 

solid elements or solid-shell elements, as available in some finite element packages, 

are also capable of accurately modelling these structures. In this research, however, 

only shell elements are used to discretize finite element models of CFS structures, and, 

for this reason, this section focuses only on this element type.  

Employment of shell elements must account for several parameters, such as: 

the element order (linear or quadratic shape functions), the shell theory implemented 

(e.g. Kirchhoff for thin plates and Reissner–Mindlin for thick plates), the integration 

scheme (full or reduced integration, for example) and the number of integration points 

through the thickness. Firstly, in the literature reviewed here, linear shell elements are 

the most widely used to model CFS structures ((Yu and Schafer (2007), Anbarasu 

(2016), Kumar and Sahoo (2016), Maia et al. (2016), Martins, Camotim and Dinis  

(2017), Kyvelou, Gardner and Nethercot (2018), Matsubara, Batista and Salles (2019) 
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and Santos, Landesmann and Camotim (2019). Further, most of these studies employ 

the reduced integration scheme, which prevents shell finite element models from 

“shear locking”, as discussed in Zienkiewicz and Taylor (2005) and Liu and Quek 

(2013). According to these authors, this phenomenon occurs for shell models under 

bending and using Reissner–Mindlin theory with high length-to-thickness ratio, which 

increases the element stiffness, consequently leading to erroneous results. Lastly, 

Schafer, Li and Moen (2010) state that a high number of integration points through 

thickness must be used when residual stresses are included and/or to decrease the 

sensitivity of the model to the beginning of yield. Table 2.8 displays a summary of the 

element type used in the researches reviewed here.  

Table 2.8 — Summary of element type used by current researches on computational modelling of 
CFS. 

Source Element type 

Torabian, Zheng and Schafer (2014) 
9-node shell with reduced integration (S9R5 Abaqus 

element) 

Martins, Camotim and Dinis (2017) 4-node shell (S4 Abaqus element) 

Kyvelou, Gardner and Nethercot (2018) 
4-node shell with reduced integration (S4R Abaqus 

integration) 

Matsubara, Batista and Salles (2019) 4-node shell (SHELL181 Ansys element) 

Santos, Landesmann and Camotim 
(2019) 

4-node shell (SHELL181 Ansys element) 

 Solution schemes 

The collapse and strength behaviour of structures is commonly described by 

a nonlinear load versus displacement relationship, which requires a nonlinear 

structural analysis. In finite element analysis, structural nonlinearities are generally 

classified as geometric nonlinearity, material nonlinearity and contact or boundary 

nonlinearity. The solution of such nonlinearities is usually achieved through an 

incremental approach. Several computational algorithms coupled with incremental 

load or displacement control are available in the literature to deal with nonlinear 

problems iteratively, such as full Newton-Raphson method, modified Newton-Raphson 

method and quasi-Newton method (CRISFIELD, 1991). 

However, nonlinear collapse analyses of cold-formed steel profiles may pose 

issues of convergence, requiring the application of special nonlinear techniques 

(SCHAFER; LI; MOEN, 2010). ANSYS® (software employed in this research) theory 

manual (ANSYS® 2020R1) recommends its users to apply the arc-length method 
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(modified Riks) or a nonlinear stabilisation (artificial damping) when the structure 

becomes unstable. The arc-length method can reproduce non-monotonic equilibrium 

paths by circumventing global instabilities. For local instabilities, in turn, global solution 

methods may fail. This class of problems is usually solved either by dynamic analysis 

or artificial damping, as stated by Quach (2005). The nonlinear stabilisation algorithm 

uses an artificial damping to reduce the displacements at each degree-of-freedom of 

the elements that presents an instability problem.  

Table 2.9 shows the solution schemes adopted in the researches reviewed 

here. Modified Riks method (arc-length method) is employed in most cases. However, 

the employment of the stabilisation method is also observed, such as in Haidarali 

(2011), Hui (2014), Kyvelou, Gardner and Nethercot (2018).  

Table 2.9 — Summary of solution schemes employed by current researches on computational 
modelling of CFS. 

Source Solution scheme 

Torabian, Zheng and Schafer (2014) Modified Riks method 

Martins, Camotim and Dinis (2017) Not mentioned 

Kyvelou, Gardner and Nethercot (2018) Adaptive automatic stabilisation scheme 

Matsubara, Batista and Salles (2019) Modified Riks method 

Santos, Landesmann and Camotim (2019) 
Newton-Raphson's method with an arc-length 

control strategy 

 Existing investigations on the behaviour of cold-formed steel structures 

under minor-axis bending 

The increasing use of cold-formed steel profiles as structural elements is 

mainly due to their versatility of application, a consequence of good weight/resistance 

ratio and high ductility, which in turn allows the fabrication of numerous profile shapes 

(JAVARONI, 2015). Amongst the commonly used shapes, “U” and stiffened “U” 

sections, e.g. lipped channel sections, are commonly employed as elements under 

flexure, especially about the major axis of inertia. A considerable number of academic 

studies focused on the mechanical behaviour of “U” and stiffened “U” CFS profiles 

subjected to major axis bending is found in the literature. For instance, the works 

conducted by (Anbarasu, 2016), Martins, Camotim and Dinis (2017), (Martins et al. 

(2018), Laím, Rodrigues and Silva (2013), Kankanamge and Mahendran (2012), Obst, 

Kurpisz and Paczos (2016), Matsubara, Batista and Salles (2019), Santos, 

Landesmann and Camotim (2019), and others. In contrast, studies concerning the 
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behaviour of the aforementioned types of CFS profiles under minor axis bending are 

scarce (YUAN, 2013), but nevertheless observed in academic literature. 

Yuan (2013) proposed an analytical formulation, based on the geometric 

nonlinear Brazier approach, for nonlinear stability analysis of CFS “U” profiles 

subjected to minor axis pure bending (web compression). The author states that when 

a channel section beam is subjected to a load parallel to its principal axis, Brazier type 

of flattening deformation may occur, which can lead to nonlinear snap-through 

instability. This nonlinear bending response was first investigated by Brazier (1927), 

thus it is called Brazier effect or Brazier flattening. Figure 2.12 shows the effect of 

Brazier in a thin angle-section bent under its weak axis. 

Figure 2.12 — Brazier effect of thin angle-section beam under minor axis bending. 

 

Source: (ZHOU et al., 2018). 

In order to validate the proposed formulation, Yuan (2013) performed a finite 

element analysis with the software ANSYS (Figure 2.13a). However, the finite element 

method provided slightly stiffer solutions than the presented analytical method. This 

deviation was then explained by the effect of beam length employed in the finite 

element analysis, which was not considered in the analytical model. For this reason, 

in a subsequent work, Yuan and Chen (2015) proposed a new formulation with the 

inclusion of the beam length, besides the beam cross-sectional dimensions. The 

authors then observed better agreement with the modified approach, as shown in 

Figure 2.13b. 

Torabian, Zheng and Schafer (2014) conducted a numerical and experimental 

study of stiffened “U” section profiles under combined influence of bending and 

compression (This research is expanded by Torabian, Zheng and Schafer (2015) by 

the inclusion of experimental tests of two additional member lengths, 61 cm and 122 

Brazier effect 



54 

cm. Both studies indicate that, in comparison with test results, standardized equations 

are overly simplistic and conservative. 

Kumar and Sahoo (2016) calculated the moment capacity of multiple “U” and 

stiffened “U” CFS profile sections by means of standardized design equations and 

compared the results with a Finite Element Analysis performed with ABAQUS. For 

validation, the numerical results are compared with the behaviour of selected profile 

sections, subjected to four-point flexure experiments about the minor axis of inertia 

(Figure 2.15). The last step of the research consisted of an applicability analysis of the 

standardized equations as function of width-to-thickness ratio, lip lengths and depth-

to-width ratio of CFS profiles under minor axis bending, using the numerical results as 

a reference point. 

Figure 2.14). Experiments were conducted on seventeen 30,5 cm CFS profile 

specimens subjected to compression and multiple bending moment orientations, 

including minor axis bending. The research also presents a parametric numerical 

analysis using the software ABAQUS. In general, the numerical results are validated 

by the experiments and compared with limit state design (LSD) equations prescribed 

in the pertinent North American standard. 

Figure 2.13 — Numerical study conducted by Yuan (2013) and Yuan and Chen (2015).  

 
(a) Finite element model 

 
(b) Comparison of critical moment versus slenderness ratio between finite element 

analyses and analytical formulations proposed by Yuan (2013) and Yuan and Chen (2015). 

Source: (YUAN, 2013) and (YUAN; CHEN, 2015). 
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This research is expanded by Torabian, Zheng and Schafer (2015) by the 

inclusion of experimental tests of two additional member lengths, 61 cm and 122 cm. 

Both studies indicate that, in comparison with test results, standardized equations are 

overly simplistic and conservative. 

Kumar and Sahoo (2016) calculated the moment capacity of multiple “U” and 

stiffened “U” CFS profile sections by means of standardized design equations and 

compared the results with a Finite Element Analysis performed with ABAQUS. For 

validation, the numerical results are compared with the behaviour of selected profile 

sections, subjected to four-point flexure experiments about the minor axis of inertia 

(Figure 2.15). The last step of the research consisted of an applicability analysis of the 

standardized equations as function of width-to-thickness ratio, lip lengths and depth-

to-width ratio of CFS profiles under minor axis bending, using the numerical results as 

a reference point. 

Figure 2.14 — Numerical and experimental conducted by Torabian, Zheng and Schafer (2014): 
geometric and boundary condition assumptions. 

 
Source: (TORABIAN; ZHENG; SCHAFER, 2014). 
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Figure 2.15 — Numerical and experimental study conducted by Kumar and Sahoo (2016): comparison 
of modes of failure for lipped channel sections (a) Test, (b) Prediction. 

 
Source: (KUMAR; SAHOO, 2016). 

In Favarato et al. (2019a), an investigation was conducted regarding the 

determination of critical elastic moment for lateral-torsional buckling by the analytical 

formulae prescribed in the Brazilian design code ABNT NBR 14762:2010, given by 

Equation (2.4). Several linear shell finite element analyses are performed for different 

length and number of spans for continuous beams under minor axis bending, as shown 

in Figure 2.16. Divergence was found between the Brazilian design code and the finite 

element results when the stiffeners are tensioned. 

Figure 2.16 — Representation of the parametric study conducted by Favarato et al. (2019a). 

 

(a) Two-span continnuous beam under 

bending.  

(b) Three-span continnuous beam under 

bending. 

Source: (FAVARATO et al., 2019a). 
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2.3 Researches on lattice reinforcements 

 Introduction 

Lattice reinforcement (Figure 2.17a), or truss reinforcement, is a common 

solution for floor systems in the construction industry. They are typically applied in the 

manufacture of lattice girders (Figure 2.17b), Trelifácil® solution (Figure 2.17c) or lattice 

girder planks (Figure 2.17d). This type of steel reinforcement consists of two bottom 

main chords, two diagonal main chords and one top main chord welded together (a). 

According to Gaspar (1997), the top bar is responsible for the maximum propping 

distance during the construction phase and the diagonal bars to provide shear 

resistance and to ensure that the system is monolithic after concrete curing. Droppa 

Jr. (1999) states that the diagonal bars offer good conditions of shipping and handling 

to the set and the bottom chords provide tensile resistance when the system is under 

bending. Therefore, all members of this steel reinforcement system play a role in the 

entire configuration. 

Commercially, different types of lattice reinforcements are found around the 

world. In this research, the lattice reinforcements are fabricated according to ABNT 

NBR 14859-3:2017, using CA 60 steel, which has characteristic yielding stress of 

600 MPa (ABNT NBR 7480:2007). Figure 2.18 illustrates the configuration of lattice 

reinforcements and Table 2.10 presents their geometrical dimensions available for 

commercial purposes. The lattice reinforcements are indicated by a code TR, followed 

by four parameters: the first one represents the height of the truss reinforcement, in 

centimetres, and the last three represent the diameters, in millimetres, of the top chord, 

the diagonals and the bottom chords respectively, without consideration of decimal 

places. 
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Figure 2.17 — Employment of lattice reinforcement in the construction industry. 

 
Source: (ArcelorMittal, 2017a). 

Figure 2.18 — Lattice girder configurations. 

 
Source: adapted from ABNT NBR 14859-3:2017. 

Table 2.10 — Lattice girder dimensions. 

Lattice Girder 
Specification 

Height  
(mm) 

Upper chord 
(mm) 

Diagonal  
(mm) 

Lower chord 
(mm) 

TR 8644 80 6 4.2 4.2 
TR 8645 80 6 4.2 5 
TR 12645 120 6 4.2 5 
TR 12646 120 6 4.2 6 
TR 16745 160 7 4.2 5 
TR 16746 160 7 4.2 6 
TR 20745 200 7 4.2 5 
TR 20756 200 7 5 6 
TR 25856 250 8 5 6 
TR 25858 250 8 5 8 
TR 30856 300 8 5 6 
TR 30858 300 8 5 8 

Source: (ARCELORMITTAL, 2017a). 
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 Existing investigations on the behaviour of lattice reinforcements 

In the last years, most researches on the behaviour of lattice reinforcements 

were conducted when they are applied to precast concrete slabs with lattice girders. 

An extensive literature review about the background of these slabs is carried out by 

Carvalho et al. (2005). In this study, they aimed to present the theoretical and 

experimental studies on precast slabs with lattice girders from that time. According to 

their findings, researches, such as Caixeta (1998), appointed that excessive 

deformation governs the design of these slabs. Additionally, they stated the importance 

of analysing the propping support distance during construction phase. 

Due to the importance of the propping supporting distance for lattice girders, 

several authors dedicated their studies to investigate this subject. As stated by 

Carvalho et al. (2005), Gaspar (1997) is the pioneer to provide a design procedure to 

verify the propping distance. After that, other studies were conducted and even a 

computational program to determine the propping supporting distance (the program 

“PUMA ARMAÇÃO TRELIÇADA” [s.d.] developed by the Eng. Alonso Droppa in 2003) 

was developed, according to Carvalho et al. (2005). In 2013, Sartorti, Fontes and 

Pinheiro (2013) conducted an experimental study in order to determine the spacing 

between propping lines of lattice joist slabs. During their tests, the following ultimate 

limit states (ULS) were observed: buckling of the upper chord under the effect of 

positive bending moment (so-called sagging bending moment) (Figure 2.19a); failure 

of the weld in a node due to shear (Figure 2.19b); and buckling of the diagonals also 

due to shear (Figure 2.19c). Then, they developed formulations to calculate the 

propping support distances based on these ULS and the serviceability limit state of 

deflection. 

Figure 2.19 — Failure modes of lattice girders under sagging bending moment tests. 

   
(a) Upper chord buckling (b) Weld rupture (c) Diagonals buckling 

Source: (SARTORTI; FONTES; PINHEIRO, 2013). 
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More recently, studies on the behaviour of lattice girders slabs attempted to 

optimize the propping support distance and its design methods. Storch et al. (2017), 

for example, conducted a theoretical and experimental study on the behaviour of lattice 

girders slabs under negative bending (also referred as hogging bending moment). 

Figure 2.20 shows the failure modes found in their tests. In general, their results 

appointed that lattice girders shall be recommended when less propping is needed. 

Ferreira, de Lima and Delalibera (2017) performed a structural optimization of slabs 

formed by lattice girders with and without prestressing. Their results showed that the 

maximum span for the design of slabs without prestressing is 9 m and with the use of 

prestressed joist this limit increases to around 15 m. 

Figure 2.20 — Failure modes of lattice girders under hogging bending moment tests. 

  
(a) Diagonal chords buckling (b) Lower chords buckling 

Source: (STORCH et al., 2017). 
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3 DEVELOPMENT OF THE FINITE ELEMENT MODELS 

3.1 Introduction 

This chapter describes the basic features used to develop finite element 

numerical models using the computer program ANSYS® Academic Research Release 

2020R1 (ANSYS® 2020R1) to study the flexural behaviour of the Trelifácil® solution.  

First of all, the finite element method is a powerful and well-known numerical 

technique for solving partial differential equations in a variety of practical problems. 

Based on this method, John Swanson developed the commercial general-purpose 

software called ANSYS®, which was first released in 1970 (THOMPSON; 

THOMPSON, 2017). Therefore, the choice of this software to develop the numerical 

models of this research is justified by its satisfactorily employment in other several 

studies dealing with nonlinear structural analysis, such as: Dubina and Ungureanu 

(2002), Vieira Junior (2007), Bonada et al., (2012), Matsubara, Batista and Salles 

(2019), Santos, Landesmann and Camotim (2019) and Degtyarev (2020).  

This research aims to develop finite element models to predict the flexural 

behaviour of the Trelifácil® solution with and without the trussed girder. Therefore, the 

first step was to choose an appropriate setup to subject the beams to bending. Figure 

3.1 shows three possible ways for providing constant moment distribution in a beam 

without the presence of shear stresses (i.e., pure bending). Due to practical reasons 

for the experimental tests, four-point bending was applied in the finite element models 

to predict their flexural behaviour. 

The basic features of two finite element models developed to the Trelifácil® 

solution without and with the trussed girder, namely specimen type 1 and specimen 

type 2, respectively, are presented in the subsequent sections. The first one, which 

models only the CFS member, is evaluated through a series of sensitivity analyses. 

The results obtained are compared with measured data obtained from the pilot 

experiment performed by Gomes et al. (2019), used as basis for the design of the 

physical tests conducted by Candido (2020, in progress). For the complete 

configuration of the Trelifácil® solution, a proposal of finite element model is presented 

with the objective of supporting the design of an experimental program by investigating 

the most relevant parameters that may affect its structural behaviour. 
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Figure 3.1 — Illustration of three different ways for providing constant moment distribution in 
a structural member. 

 
(a) Imposed bending moment 

 
(b) Beam with hanging 

 
(c) Four-point bending 

Source: author’s own. 

3.2 Finite element model of specimen type 1 

According to Schafer, Li and Moen (2010) a finite element model for 

computational prediction of the ultimate strength and collapse behaviour of cold-

formed steel is sensitive to: “solvers, element choice and discretization, boundary 

conditions, material models, initial imperfections, initial residual stresses and strains”. 

Hence, a sensitivity study has been conducted for each of these input parameters, with 

the exception of initial residual stresses. As stated by Schafer, Li and Moen (2010), 

considering residual stresses without including the cold-work effects may lead to 

erroneous results, since both arise from the manufacturing process. As such, it is 

common practice to assume that these effects cancel each other and, for this reason, 

both parameters are ignored in the numerical analyses developed herein. The details 

of the finite element models are discussed in the following sections. Also, theoretical 

predictions using the Direct Strength Method are presented. 

 Finite element modelling of a pilot experiment conducted by Gomes et al. 

(2019) 

3.2.1.1 Testing program 

A total of six four-point bending tests about the minor axis of inertia (lips under 



63 

compression) were conducted on cold-formed steel members used in the Trelifácil® 

solution. Nominal dimensions of the specimens’ cross-section are shown in Figure 1.9. 

The overall experimental layout and the employed instrumentation for all beam tests 

are illustrated in Figure 3.2 and Figure 3.3, respectively. Three specimens were simply 

supported on rollers across a 0.5 m span and the remainder with a free span of 0.90 

m, both with a 50 mm overhanging length from each support. A spreader plate was 

used to apply load from an EMIC hydraulic press at a constant rate of 0.04 mm/s until 

failure. At the supports and loading points, where the beams were subjected to high 

concentrated forces, the cross-sections were locally reinforced with wooden blocks 

(dimensions are shown in Figure 3.4). These wooden blocks were also used to ensure 

that load contact occurred at the web of the specimen. Two linear variable 

displacement transducers (LVDTs) registered vertical deflection values at mid-span. 

Load and displacement measurements were recorded using ADS2000 data acquisition 

system at 0.2 s intervals. 

Figure 3.2 — Experimental layout of four-point bending tests. 

 

Source: author’s own. 
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Figure 3.3 — Representation of (a) elevation and (b) cross-sectional view of the instrumentation 
employed in the bending tests of Gomes et al. (2019). 

 
(a) Elevation view 

 
(b) Cross-sectional view 

Source: author’s own. 
Figure 3.4 — Dimensions (in millimetres) of the wooden blocks used at supports and load points.  

 
Source: author’s own. 

3.2.1.2 Theoretical predictions 

The Direct Strength Method, briefly described in section 2.1, was used to 

obtain the theoretical predictions of nominal flexural strength (𝑀𝑅𝑘,𝐷𝑆𝑀) of the pilot 

experiment specimens. The finite strip software CUFSM (LI; SCHAFER, 2010; 

SCHAFER; ÁDÁNY, 2006) is used to determine the local and distortional critical 
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buckling moments for the examined cross-section, as shown in Figure 3.5. The elastic 

critical moment for flexural-torsional buckling is calculated according to Eq. (2.4), 

described in section 2.1, which is presented in the Brazilian standard ABNT NBR 

14762:2010. 

Table 3.2 presents the values of critical buckling moments, slenderness and 

moment capacity for specimens P0.5 and P0.9. Mean values of thickness (0.52 mm) 

and yield stress (290 MPa) provided by the manufacturer were used to perform the 

stability analysis. In both cases, distortional buckling controlled the moment capacity 

predictions. 

Table 3.1 — Summary of the pilot experimental tests results. 

 

Specimen P0.5a 

 

Specimen P0.5b 

Span length (m) 0.50 Span length (m) 0.50 

𝑃𝑢 (kN) 4.16 𝑃𝑢 (kN) 4.06 

𝑀𝑢 (kN.m) 0.26 𝑀𝑢 (kN.m) 0.25 

  

 

Specimen P0.5c 

 

Specimen P0.9a 

Span length (m) 0.50 Span length (m) 0.90 

𝑃𝑢 (kN) 4.30 𝑃𝑢 (kN) 2.55 

𝑀𝑢 (kN.m) 0.27 𝑀𝑢 (kN.m) 0.29 

 

 

 

Specimen P0.9b 

 

Specimen P0.9c 

Span length (m) 0.90 Span length (m) 0.90 

𝑃𝑢 (kN) 2.38 𝑃𝑢 (kN) 2.29 

𝑀𝑢 (kN.m) 0.27 𝑀𝑢 (kN.m) 0.26 
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Figure 3.5 — Signature curve from CUFSM (LI; SCHAFER, 2010; SCHAFER; ÁDÁNY, 2006) for 
typical examined cross-section. 

  
(a) Local mode (b) Distortional mode 

Source: author’s own. 

Table 3.2 — Theoretical predictions of nominal flexural strength (in kNm) per Direct Strength Method 
for the specimens of the pilot experimental program. 

 
 Lateral-torsional 

buckling 
Local buckling Distortional buckling 

𝑴𝑹𝒌,𝑫𝑺𝑴  
 𝑊𝑓𝑦 Me l0 MR,e Mℓ lℓ MR,ℓ Mdist ldist MR,dist 

P0.5 0.27 10.22 0.16 0.27 2.86 0.31 0.27 0.39 0.83 0.24 0.24 

P0.9 0.27 3.17 0.29 0.27 2.86 0.31 0.27 0.39 0.83 0.24 0.24 

3.2.1.3 Finite element model sensitivity analyses 

3.2.1.3.1 Boundary conditions and loading 

A general view of the boundary condition and loading position of the as-built 

physical tests is shown in Figure 3.6. Boundary conditions and loading positions were 

carefully examined by comparing the experimental and numerical failure mode and 

load-displacement response through a variety of attempts. Best results were found with 

the load applied by displacement control. Figure 3.7 illustrates the typical arrangement 

of the physical tests. Incremental displacements are imposed in the bottom corners of 

the transversal section of the CFS specimen, at a quarter of the span from its ends 

(see Figure 3.8a). Vertical displacements were constrained along the beam web at 

50 mm from both ends, as shown in Figure 3.8b. To prevent rigid body motion, 

longitudinal displacements were constrained at midspan and transversal 

displacements at both ends. Additionally, lateral restraints were imposed on nodes 

along the flange at the supports and loading points to reproduce the effect of the 

wooden blocks used in physical tests. 
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Figure 3.6 — Overall scheme of the loading and boundary condition used in the physical tests. 

 
Source: author’s own. 

Figure 3.7 — Boundary conditions of a typical arrangement of the physical tests. 

 
Source: author’s own. 

Figure 3.8 — Cross-section view of the (a) corners loading points and (b) vertical supports along the 
beam web. 

 
(a)  

 

(b)  

Source: author’s own. 

3.2.1.3.2 Element and mesh sensitivity 

To assess the model’s sensitivity to element choice and mesh density, different 
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element types and sizes, and number of integration points through the thickness were 

investigated. Only shell elements were tested in this study; even though other element 

types could be used to simulate thin-walled structures using ANSYS® 2020R1, such 

as solid elements (e.g. SOLID185 or SOLID186) or solid shell elements (e.g. 

SOLSH190). The four-node and eight-node shell elements SHELL181 and SHELL281, 

respectively, both with six degrees-of-freedom (DOF) at each node, were analysed. 

Whereas SHELL181 employs linear shape functions, SHELL281 employs quadratic 

shape functions. 

A mesh study was performed with nominal element size varying from 100 mm 

to 3.5 mm with an aspect ratio, i.e., plate’s length-to-width ratio, equal to one for flat 

elements, so that it is close to five for corner elements. Also, different numbers of 

integration points through the thickness were inspected: 5 points and 21 points.  

The following modelling techniques were used in the studies: multilinear 

material model (see Section 3.2.1.3.4), loading with displacement control, Full Newton-

Raphson solver solution method controlled by artificial damping (see Section 3.2.1.3.3) 

and no initial geometric imperfections (see Section 3.2.1.3.5). In addition, a cross-

section thickness of 0.52 mm and beam free span length of 0.9 m were used in all 

analyses presented in this section. Also, default element options (KEYOPT) were used 

for both shell models and no issues related to shear locking were observed. Thereby, 

appropriate element type and mesh density could be selected for future finite element 

models. 

Mesh density results are reported in Table 3.3 for SHELL181 models and in 

Table 3.4 for SHELL281 models. Results are presented in terms of comparisons 

between ultimate bending moment of each case (𝑀𝑢,𝑐𝑎𝑠𝑒 #) normalized by the value 

predicted by the finer mesh model (𝑀𝑢,𝑓𝑖𝑛𝑒𝑟 𝑚𝑒𝑠ℎ). Figure 3.9 shows the ultimate 

bending moment versus number of elements for models with SHELL181 and 

SHELL281 elements. Figure 3.10 and Figure 3.11 show the load-displacement 

responses obtained from nonlinear analyses performed with each mesh size. 

The model with nominal mesh size of 4 mm and SHELL181 elements (37500 

elements), which is highlighted with red colour in Table 3.3 and Figure 3.10, was 

selected for subsequent analyses. Although both shell models present rapidly 

convergent solution (as shown in Table 3.3, Table 3.4 and Figure 3.9), the post-

collapse response presented a high sensitivity to mesh density (as shown in Figure 

3.10 and Figure 3.11). In both shell models the post-collapse response converges in 
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similar fashion when the nominal mesh size is smaller than 5 mm. Thus, all subsequent 

analyses are performed with 4 mm mesh size, since the ultimate bending moment 

deviated only 0.1% from results obtained with the finer mesh model. SHELL181 

element was selected for subsequent analyses, since neither computational cost nor 

response accuracy were improved with the use of SHELL281 elements. 

Table 3.3 — Comparison between ultimate bending moment of finite element models with different 
mesh densities of SHELL181 elements. 

Case # Element size [mm] 
Number of 
elements 

𝑴𝒖,𝒄𝒂𝒔𝒆 #

𝑴𝒖,𝒇𝒊𝒏𝒆𝒓 𝒎𝒆𝒔𝒉

 

1 100.0 790 1.035 

2 40.0 2295 1.012 

3 20.0 4650 1.003 

4 17.5 5394 1.006 

5 15.0 6499 1.005 

6 12.5 8400 1.004 

7 10.0 10900 1.003 

8 7.5 15946 1.007 

9 5.0 35400 1.006 

10 4.0 37500 1.001 

11 3.5 49192 1.000 

Table 3.4 — Comparison between ultimate bending moment of finite element models with different 
mesh densities of SHELL281 elements. 

Case # Element size [mm] 
Number of 
elements 

𝑴𝒖,𝒄𝒂𝒔𝒆 #

𝑴𝒖,𝒇𝒊𝒏𝒆𝒓 𝒎𝒆𝒔𝒉

 

1 100.0 940 1.038 

2 40.0 2350 1.019 

3 35.0 2726 1.019 

4 30.0 3196 1.016 

5 25.0 3920 1.017 

6 20.0 4900 1.019 

7 15.0 6566 1.018 

8 10.0 10400 1.015 

9 5.0 23600 1.006 

10 4.0 33000 1.001 

11 3.5 38896 1.000 
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Figure 3.9 — Ultimate bending moment versus number of SHELL181 and SHELL281 elements. 

 
Source: author’s own. 

Figure 3.10 — Load-displacement responses of SHELL181 models with different mesh sizes. 

 
Source: author’s own. 

Figure 3.11 — Load-displacement responses of SHELL281 models with different mesh sizes. 

 
Source: author’s own. 

Figure 3.12 illustrates the number of elements used to represent the main 
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portions of the beams cross-section. Overall, 116 nodes are used to discretize the 

member cross-section, corresponding to: three elements for stiffeners (𝑛𝑠𝑡𝑖𝑓𝑓), one 

element for corners (𝑛𝑐𝑜𝑟𝑛𝑒𝑟), two elements for flat flange portions (𝑛𝑓𝑙𝑎𝑛𝑔𝑒), seven 

elements for flat web portions(𝑛𝑤𝑒𝑏) and five elements for intermediate stiffeners (𝑛𝑖𝑛𝑡). 

Figure 3.12 — Illustration of the number of elements used to represent the main portions of the beams 
cross-section. 

 
Source: author’s own. 

Figure 3.13 displays the load-displacement responses of the SHELL181 

models with 5 and 21 integration points through the element thickness. A deviation 

smaller than 0.001% was found between the ultimate bending moment of the models. 

The main difference is that a higher number of iterations was successful converged 

with 21 integration points. Hence, 5 points of integration are employed in the FE models 

to obtain the numerical results of subsequent analyses and switched to 21 points when 

convergence issues arose during the prediction of post-collapse behaviour. 

Figure 3.13 — Load-displacement responses of models with different number of integration points 
through the thickness. 

 
Source: author’s own. 
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3.2.1.3.3 Solution solver sensitivity 

Two different solution schemes are examined in this section to solve the 

nonlinear collapse analyses of cold-formed steel beams, since Full Newton-Raphson 

method presented convergence issues to reach peak load and/or capture post-ultimate 

response. The nonlinear stabilisation technique and arc-length (Riks) method are 

assessed in this study, and are shortly described in section 2.2.6.  

Several researches discuss the accuracy of the nonlinear stabilisation 

technique when analysing cold-formed steel members (Kyvelou,  2017; Hui, 2014; 

Schafer, Li and Moen, 2010). Studies indicate that this technique can achieve results 

that are equivalent to those attained with arc-length (Riks) method if sufficient number 

of  iterations prior to the peak load is ensured. For example, Schafer, Li and Moen 

(2010) found that the arc-length (Riks) method converges with less steps (about 5 

steps) than artificial damping (about 15 steps). The first author of this paper suggests 

20 steps prior to the peak load as a rule of thumb for any type of collapse analysis. 

Also, they found that artificial damping usually provides a higher peak load than arc-

length (Riks) method. Therefore, the load increment size was carefully examined to 

determine the minimum number of successful iterations prior to peak load for any given 

analysis. 

The following modelling techniques were used in the studies: multilinear 

material model, four-node shell elements (SHELL181), loading with displacement 

control, no initial geometric imperfections, cross-section thickness of 0.52 mm and 

beam free span length of 0.9 m.  

Results of all cases analysed are reported in Table 3.5 and their load-

displacement responses are shown in Figure 3.14. Whereas 19 steps prior to the peak 

load was enough to converge the solution with arc-length (Riks) solver, more than 60 

steps were needed to reach a convergent solution using artificial damping. However, 

it should be observed that only a small deviation was found amongst the results. For 

example, normalizing the ultimate bending moments (𝑀𝑢) obtained for the smallest 

and largest number of steps, less than 0.69% and 0.30% are found for the arc-length 

(Riks) and artificial damping responses, respectively. Comparing results from both 

algorithms directly, the ultimate bending moment (𝑀𝑢) predicted with artificial damping 

tended to be slightly larger than those attained with arc-length (Riks) solver, as shown 

in Figure 3.14b.  
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In subsequent analyses, artificial damping will be used as the solution scheme. 

Even though the literature indicates that the arc-length (Riks) method is the preferred 

choice to ensure the solution convergence, artificial damping was able to predict the 

peak load and post-collapse response of the models developed for the Trelifácil® 

solution with the trussed girder coupled to the cold-formed steel beam (see section 

3.3).  

Moreover, Schafer, Li and Moen (2010) affirm that the artificial damping 

technique is a powerful algorithm and can provide a converged solution for several 

cases in which arc-length (Riks) solver fails to converge. On the other hand, the 

authors also state that the artificial damping solver is an approximation and should be 

used carefully. In general, this technique is controlled by an energy-dissipation ratio, 

which has a default value of 1𝑥10−4 in ANSYS 2020R1. Therefore, to assess the 

model’s sensitivity to this ratio and to find its most appropriate value, nonlinear 

analyses with different ratios of energy-dissipation were conducted. Load-

displacement responses are shown in Figure 3.16, which shows that a converged 

solution may be obtained with energy-dissipation ratios smaller than 1E-3. To ensure 

that the solver approach is not artificially removing excessive energy from the system, 

an energy-dissipation ratio of 1E-4 will be used in subsequent analyses. 

Table 3.5 —  Ultimate bending moment values for arc-length (Riks) and artificial damping models with 
different number of steps prior to peak load. 

Case # Description 𝑴𝒖 (𝒌𝑵𝒎) 

1 6 steps – arc-length (Riks) 0.266 

2 12 steps – arc-length (Riks) 0.267 

3 19 steps – arc-length (Riks) 0.268 

4 35 steps – arc-length (Riks) 0.268 

5 66 steps – arc-length (Riks) 0.268 

6 16 steps – Artificial damping 0.268 

7 24 steps – Artificial damping 0.267 

8 61 steps – Artificial damping 0.268 

9 123 steps – Artificial damping 0.268 

10 613 steps – Artificial damping 0.268 
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Figure 3.14 — Load-displacement responses for (a) arc-length (Riks) solver and (b) inset plot for arc-
length (Riks) solver with different number of steps prior to peak load. 

  
(a) (b) 

Source: author’s own. 

Figure 3.15 — Load-displacement responses for (a) artificial damping solver and (b) inset plot for 
artificial damping solver with different number of steps prior to peak load. 

  
(a) (b) 

Source: author’s own. 

Figure 3.16 — Artificial damping solver sensitivity to energy-dissipation ratio. 
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3.2.1.3.4 Plasticity model sensitivity 

In section 2.2.3.1 different stress-strain relationships that may be used to 

represent cold-formed steel are presented. Therefore, two of those material modelling 

techniques are used to identify the appropriate stress-strain behaviour of the cold-

formed steel used in the physical tests, as follows: 

a) Bilinear material model (BISO): an elastic perfectly-plastic material 

model with initial elastic modulus (𝐸) of 200 𝐺𝑃𝑎; 

b) Multilinear material model (MISO): the basic Ramberg-Osgood stress-

strain relationship up to 0.2% proof stress followed by a straight line 

with a constant slope expressed as a fraction of initial elastic modulus 

(𝐸 = 200 𝐺𝑃𝑎), as shown in Eq. (3.1). The value of 𝐸/50 was adopted 

for the slope of the straight line and the shape parameter 𝑛 equal to 

28, as in Haidarali and Nethercot (2011) and Ye et al. (2016). 

 
𝜖𝑒 =

𝜎𝑒

𝐸
+ 0,002 (

𝜎𝑒

𝜎0,2
)

𝑛

       𝑓𝑜𝑟 𝜎 ≤ 𝜎0,2 

𝜖𝑒 = 𝜖0.2 +
50(𝜎 − 𝜎0,2)

𝐸
       𝑓𝑜𝑟 𝜎 > 𝜎0,2  

(3.1) 

Figure 3.17 shows the two material models mentioned above. An elastic 

modulus of 200 GPa was adopted and yield stress (0.2% proof stress, 𝜎0.2) of 290 MPa 

provided by the steel manufacturer laboratory tests was used. Additionally, large-strain 

analyses (NLGEOM,ON) are performed in this study, then all the input engineering 

values for stresses and strains in the large-strain region (i.e., after 0.2% proof stress) 

are converted to true values, as explained in sub-section 2.2.3.1. 

Figure 3.17 — Material models assessed in this study. 

 
Source: author’s own. 
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context of comparisons between load-displacement responses of each case analysed 

for two beam span lengths (0.5 m and 0.9 m), as shown in Figure 3.18. In both cases, 

a bilinear material model presented higher flexural strength and stiffness. Deviations 

between the ultimate bending moment predicted with bilinear and multilinear material 

models of 1.09% and 3.45% were found for member lengths of 0.5 m and 0.9 m, 

respectively. Thus, to avoid overestimating the flexural strength and stiffness of the 

beams, the multilinear material model was chosen for subsequent analyses. 

Figure 3.18 — Load-displacement responses of finite element models with different material modelling 
techniques plotted against experimental results. 

 
Source: author’s own. 
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3.19 illustrates the boundary conditions adopted by Favarato (2018). 

Figure 3.19 — Illustration of the end moments (edge forces) and boundary conditions used in the finite 
element elastic buckling analysis conducted by Favarato (2018). 

 
Source: (FAVARATO, 2018). 

Scientific literature provides a variety of recommendations to determine 

magnitude factors. Most studies, as reported in section 2.2.2, prescribe values 

between 0.1𝑡 and 0.75𝑡 for both local and distortional imperfection shapes. According 

to statistical analyses performed by Schafer and Peköz (1998b), which are shown in 

Table 2.2, there are few cases in which magnitude values are above 0.75𝑡. Therefore, 

in this research, three values of magnitude factors are examined: 0.1𝑡, 1.0𝑡 and 4.0𝑡. 

The combination factor is equal to one, since only one imperfection shape is used to 

create the perturbed mesh. 

The buckling modes used as imperfection shape for beam span lengths of 

0.5 m and 0.9 m are shown in Figure 3.20. Close values between finite strip and finite 

element critical buckling moments (𝑀𝑐𝑟) were observed. While finite strip critical 

buckling moment is 0.39 kNm, finite element critical buckling moments are 0.40 kNm 

and 0.37 kNm for beams with a length of 0.5 m (P0.5) and 0.9 m (P0.9), respectively. 

Additionally, similar buckling mode shape and half-wavelength was observed by 

comparing responses from both methods. As such, the finite element solid model 

geometry was updated (UPGEOM) to these eigenvectors factored by the magnitude 

values.  

Figure 3.20 — Buckling modes used as imperfection shape of (a) P0.5 and (b) P0.9 FE models. 

  
(a) P0.5: 𝑀𝑐𝑟 = 0.40 𝑘𝑁𝑚 (b) P0.9: 𝑀𝑐𝑟 = 0.37 𝑘𝑁𝑚 

Source: author’s own. 
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The results of the initial geometrical imperfection study are examined in the 

context of losses in flexural strength. Moment capacity of models with different 

magnitude factors 𝑀𝑢,𝑐𝑎𝑠𝑒 # are normalized by those attained values of models without 

inclusion of geometrical imperfections 𝑀𝑢,𝑐𝑎𝑠𝑒 1.  Table 3.6 summarises the results of 

specimen P0.5 and Table 3.7 of specimen P0.9. Also, Figure 3.21 shows the load-

displacement responses of the nonlinear analyses conducted for each case studied. 

The results indicate low sensitivity to the inclusion of geometrical imperfections, as well 

as to the variation increase of magnitude factor. Ultimate bending moment, post-

collapse response and failure mode have not shown significant variations as function 

of the initial geometrical imperfection. As such, they will be neglected in subsequent 

analyses. 

Table 3.6 — Summary of gains or losses in flexural strength and stiffness of the specimen P0.5 by 
including initial geometrical imperfections with different magnitude factors. 

Case # Specimen Magnitude factor 
𝑴𝒖,𝒄𝒂𝒔𝒆 #

𝑴𝒖,𝒄𝒂𝒔𝒆 𝟏

 

1 P0.5 0.0 1.00000 

2 P0.5 0.1t 0.99961 

3 P0.5 1.0t 0.99601 

4 P0.5 4.0t 0.98401 

Table 3.7 — Summary of gains or losses in flexural strength and stiffness of the specimen P0.9 by 
including initial geometrical imperfections with different magnitude factors. 

Case # Specimen Magnitude factor 
𝑴𝒖,𝒄𝒂𝒔𝒆 #

𝑴𝒖,𝒄𝒂𝒔𝒆 𝟏

 

1 P0.9 0.0 1.00000 

2 P0.9 0.1t 0.99999 

3 P0.9 1.0t 0.99916 

4 P0.9 4.0t 0.98867 

Figure 3.21 — Load-displacement responses of the initial geometrical imperfection sensitivity study 
with different magnitude factors. 

 
Source: author’s own. 
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3.2.1.4 Confrontation of numerical and experimental results of Gomes et al. (2019) 

In this section all numerical results, i.e., the DSM and FEM results, are 

confronted to the measured data found with the pilot experiments conducted by Gomes 

et al. (2019). The DSM results and details are presented in section 3.2.1.2. The FEM 

results are obtained with the following modelling techniques: 

a) four-node shell elements (SHELL181) with nominal mesh size of 4 mm 

and 21 points of integration through the cross-section thickness; 

b) geometrical and material nonlinear analyses of simply supported beams 

under four-point bending solved with Full Newton-Raphson method 

controlled by artificial damping; 

c) loads applied with displacement control; 

d) no initial geometrical imperfections; 

e) plasticity model represented by a multilinear stress-strain curve with von 

Mises yield criterion, associative flow rule and isotropic hardening. 

Results are presented in the context of comparisons between finite element 

and experimental flexural strength responses. Table 3.8 presents finite element 

moment capacity 𝑀𝑢,𝐹𝐸 normalised by experimental values 𝑀𝑢,𝐸𝑥𝑝, while load-

displacement responses are shown in Figure 3.22. The typical observed failure modes 

found in physical tests are shown alongside with finite element collapse modes in 

Figure 3.23. 

On one hand, good agreement was found between numerical and 

experimental strength predictions. A mean 𝑀𝑢,𝐹𝐸/𝑀𝑢,𝑒𝑥𝑝 ratio of 1.03 was obtained for 

the finite element results, while a mean 𝑀𝑅𝑘,𝐷𝑆𝑀/𝑀𝑢,𝑒𝑥𝑝 ratio of 0.91 for the DSM 

values. Further, in all cases the beam specimens failed predominantly by distortional 

buckling with half-wavelength equal to the load span length (see Figure 3.23), i.e., the 

distance between loading points, equally to those observed in the physical tests. 

Therefore, both peak load and collapse mode indicate the accuracy of the finite 

element strength predictions. 

On the other hand, it can be noted in Figure 3.22 that the finite element model 

failed to accurately predict the flexural stiffness observed in the physical tests. The 

unquantified stiffness promoted by the wooden blocks in the load and support points 

challenges the agreement between numerical and experimental flexural stiffness. 

Nevertheless, both FEM and DSM could satisfactorily predict the flexural strength 
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observed in the pilot experiments conducted by Gomes et al. (2019), which is the main 

focus of this pilot study. Additionally, the pilot experiment and numerical analyses 

conducted contribute to the design of future investigation on this subject, which is also 

amongst the goals of this research. 

Table 3.8 — Comparison of finite element strength and stiffness predictions with average experimental 
results. 

Specimen 𝑴𝒖,𝑭𝑬/𝑴𝒖,𝒆𝒙𝒑 𝑴𝑹𝒌,𝑫𝑺𝑴/𝑴𝒖,𝒆𝒙𝒑 

P0.5a 1.06 0.93 

P0.5b 1.09 0.95 

P0.5c 1.03 0.90 

P0.9a 0.94 0.85 

P0.9b 1.01 0.91 

P0.9c 1.05 0.95 

Average 1.03 0.91 

Coefficient of variation (COV) 0.04 0.04 

Figure 3.22 — Load-displacement responses of finite element models with different material modelling 
techniques plotted against experimental results. 

  
(a) 𝐿 = 0.50 𝑚 (b) 𝐿 = 0.90 𝑚 

Source: author’s own. 
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Figure 3.23 —  Comparison of the typical modes of failures found in the experimental and finite 
element analyses. 

 
(a) Mode of failure of the P0.5 specimen 

 
(b) Mode of failure of the P0.9 specimen 

Source: author’s own. 
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 Finite element modelling of physical tests conducted by Candido (2020, in 

progress) 

The key differences between the testing program conducted by Candido 

(2020, in  progress) and the pilot experiment of Gomes et al. (2019) are the removal 

of wooden blocks and the substitution of loading apparatus. Even though the research 

of Candido (2020, in progress) is underway, some tests were already conducted and 

the data reasonably agree with FEM and DSM results. The following sections present 

a brief review of testing setup, as well as basic features of the theoretical and finite 

element predictions. 

3.2.2.1 Testing setup of Candido (2020, in progress) 

Candido (2020, in progress) conducted collapse tests of six simply supported 

beams subjected to four-point bending. Figure 3.24 shows the experimental layout of 

these tests. Nominal dimensions of the cross-sections are shown in Figure 1.9.  In this 

study, three beam span lengths are tested: 1.0 m, 1.4 m and 1.8 m. Two linear variable 

displacement transducers (LVDT) are used to measure vertical deflections at midspan. 

A hydraulic press was used to apply a concentrated load on a spreader beam, which 

equally divided the load into two loading rollers distanced by 464.25 mm from each 

other. Figure 3.25 illustrates the employed instrumentation of the four-point bending 

tests and Table 3.9 shows the dimensions of the cold-formed steel beams tested. A 

detailed description of these physical tests will be given in Candido (2020, in progress), 

while the measured ultimate bending moments and load-displacement responses are 

presented with numerical results in Section 3.2.2.4. 
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Figure 3.24 — Experimental layout of four-point bending tests conducted by Candido (2020, in 
progress). 

  
Source: author’s own. 

Figure 3.25 — Instrumentation employed in the tests conducted by Candido (2020, in progress). 

 
(a) Elevation 

 
(b) Cross-section A-A 

Source: author’s own. 

Table 3.9 — Dimensions of cold-formed steel beams used in the tests of Candido (2020, in progress). 

Specimen Free span length (mm) L (mm) a (mm) 

P1.0 1000 1200 267.875 

P1.4 1400 1600 467.875 

P1.8 1800 2000 667.875 
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3.2.2.2 Theoretical predictions 

The Direct Strength Method was used to obtain the theoretical predictions of 

nominal flexural strength (𝑀𝑅𝑘,𝐷𝑆𝑀) of the physical tests conducted by Candido (2020, 

in progress). Table 3.10 presents the values of critical buckling moments obtained 

using CUFSM, as well as slenderness and moment capacity determined for specimens 

P1.0, P1.4 and P1.8. A measured thickness of 0.515 mm and yield stress (0.2% proof 

stress 𝜎0.2) of 327 MPa provided by the steel manufacturer were used, the latter of 

which obtained from coupon tests carried out for samples cut from the coil prior to 

section-forming. For all member lengths, distortional buckling controlled the moment 

capacity prediction. Comparisons with experimental results are shown in Section 

3.2.2.4. 

Table 3.10 — Theoretical predictions of nominal flexural strength (in kNm) per Direct Strength Method 
for the specimens tested by Candido (2020, in progress). 

 
 Lateral-torsional 

buckling 
Local buckling Distortional buckling 

𝑴𝑹𝒌,𝑫𝑺𝑴  
 𝑊𝑓𝑦 Me l0 MR,e Mℓ lℓ MR,ℓ Mdist ldist MR,dist 

P1.0 0.30 2.57 0.34 0.30 2.86 0.33 0.30 0.39 0.88 0.26 0.2580 

P1.4 0.30 1.32 0.48 0.30 2.86 0.33 0.30 0.39 0.88 0.26 0.2580 

P1.8 0.30 0.80 0.62 0.30 2.86 0.32 0.30 0.39 0.88 0.26 0.2580 

3.2.2.3 Finite element model 

The main modifications in the finite element models developed in the last 

section is related to boundary conditions. The boundary conditions were applied at 

bottom nodes on the corners to provide vertical support and at top corner nodes to 

impose loads in the finite element model (again with displacement control), as 

illustrated in Figure 3.26. Due to the removal of the wooden blocks during the physical 

tests, a portion of the beam web lost contact with the support rollers so that only bottom 

corners points remained in place, which justifies the modification of support conditions. 

The choice for applying loads at top corner nodes relies on the points of contact 

between the loading apparatus and the member specimen. Therefore, excepting the 

boundary conditions, all finite element modelling features used in this study were 

similar to those described in sub-section 3.2.1.4. 
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Figure 3.26 — Boundary conditions for the second set of finite element models. 

 
Source: author’s own. 

3.2.2.4 Confrontation of numerical and experimental results of Candido (2020, in 

progress) 

In this sub-section, both finite element and theoretical predictions are 

confronted with the experimental data of Candido (2020, in progress).  

Table 3.11 presents comparisons between finite element and DSM predictions 

with the measured data for ultimate moment capacities (𝑀𝑢,𝐹𝐸, 𝑀𝑅𝑘,𝐷𝑆𝑀 and 𝑀𝑢,𝑒𝑥𝑝, 

respectively). Good agreement was found between finite element and experimental 

strength predictions with a mean 𝑀𝑢,𝐹𝐸/𝑀𝑢,𝑒𝑥𝑝 ratio of 0.93. In addition, finite element 

and experimental failure modes presented similar behaviours, as shown in Figure 3.28 

to Figure 3.30. 

DSM predictions for flexural strength (𝑀𝑅𝑘,𝐷𝑆𝑀) were also close to those 

attained experimentally values (𝑀𝑢,𝑒𝑥𝑝) with an average ratio 𝑀𝑅𝑘,𝐷𝑆𝑀/𝑀𝑢,𝑒𝑥𝑝 of 0.99. 

In this case, however, with a high coefficient of variance (COV), of about 16.5 %, due 

to the high deviation found for the flexural strength of the 1.0 m beams. As shown in 

Figure 3.28, the failure mode observed for the P1.0 specimen tests was predominantly 

caused by load point crippling and distortion of the support cross-section. The 

theoretical predictions for this case, on the other hand, considered only the ultimate 

limits related to bending, differently to those observed in the tests. Therefore, the 

results of P1.0 specimens could not be compared to the DSM predictions, leading the 
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average flexural ratio and COV to 0.87 and 2.08%, respectively, indicating the actual 

accuracy of the DSM to predict the ultimate bending moment of the beams. 

Table 3.11 — Summary of comparisons between numerical and test results.  

Specimen 𝑴𝒖,𝑭𝑬/𝑴𝒖,𝒆𝒙𝒑 𝑴𝑹𝒌,𝑫𝑺𝑴/𝑴𝒖,𝒆𝒙𝒑 

P1.0a 0.99 1.26 
P1.0b 0.91 1.16 

   

P1.4a 0.89 0.90 
P1.4b 0.88 0.89 

   

P1.8a 1.01 0.87 
P1.8b 0.99 0.85 

   

Average 0.95 0.99 
COV 0.05 0.16 

Figure 3.27 — Confrontation of the load-displacement response obtained from finite element analysis 
and experimental tests of Candido (2020, in progress). 

 
Source: author’s own. 
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Figure 3.28 — Comparison of typical observed failure mode from test and numerical analysis for 
specimens P1.0. 

 
Source: author’s own. 

Figure 3.29 — Comparison of typical observed failure mode from test and numerical analysis for 
specimens P1.4. 

 
Source: author’s own. 

Figure 3.30 — Comparison of typical observed failure mode from test and numerical analysis for 
specimens with 1.8 m of free span length. 

 

Source: author’s own. 
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3.3 Finite element modelling of the Trelifácil® solution 

As mentioned earlier, the finite element model developed to simulate the entire 

configuration of the Trelifácil® solution, i.e., a trussed girder attached to a cold-formed 

steel member, could not be validated against measured data, since they are not yet 

available in the literature. Hence, this section aims to present a proposal for modelling 

the Trelifácil® solution. The following sections describe the basic features of the finite 

element model developed for the Trelifácil® solution, that is: boundary condition and 

loading position, mesh and element discretization, material models, initial geometrical 

imperfections and solution scheme. Then, a study of the interaction between the 

trussed reinforcement and the cold-formed steel member is presented. 

 Basic features of the Trelifácil® solution finite element model  

First of all, similar techniques used to model the cold-formed steel beams of 

Candido (2020, in progress) are employed in this study. In summary, a finite element 

mesh of 4 mm linear shell elements with reduced integration (SHELL181) is used to 

represent the CFS member. Also, the boundary condition and loading positions used 

in the analysis are similar to those shown in Figure 3.26. The multilinear isotropic 

hardening material model presented on the previous section is used to model the 

stress-strain behaviour of the steel formworks. Moreover, Full Newton-Raphson 

method solution scheme with nonlinear stabilisation (STABILIZE) was employed to 

solve the nonlinear analyses for the model of trussed girder coupled to the CFS 

member. In what follows, a brief description of the finite modelling techniques 

implemented to include the trussed girder in the finite element model developed for the 

cold-formed steel member is presented. 

Beam elements with six degree of freedom (BEAM188) at each node are used 

to discretise geometry of the trussed girder. The reason for this element choice is to 

allow the interaction study of translation (in X, Y and Z directions) and rotation (about 

X, Y and Z directions) degrees of freedom between both trussed girder and CFS 

member. According to ANSYS® theory manual, the beam element BEAM188 is based 

on Timoshenko beam theory, which includes shear-deformation effects, and can be 

modelled with linear, quadratic or cubic shape functions. This element also allows large 

rotation and/or large strain, nonlinear behaviour and is compatible with nonlinear 

material models.  
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In this research, BEAM188 elements with linear shape function are used. The 

finite element mesh is created with 11 elements for diagonal chords and 22 elements 

for top and bottom chords between connection points, as shown in Figure 3.31. An 

elastic perfectly-plastic material model is implemented to simulate the trussed girder 

steel stress-strain behaviour. Material properties are adopted in accordance with the 

Brazilian standard for steel used in reinforced concrete structures, ABNT NBR 

7850:2007. Therefore, a density of 7850 kg/m³ and a yield stress of 600 MPa are 

adopted, since this material features CA-60 steel rebar. The values for elastic modulus 

are not mentioned in this standard. Hence, a value of 210 GPa is assumed for this 

property, based on recommendations from ABNT NBR 6118:2016 (Brazilian design 

guide for concrete structures), and a Poisson’s ratio equal to 0.3, usually adopted for 

metallic materials. 

Figure 3.31 — Finite element model for the entire configuration of the Trelifácil® solution. 

 

Source: author’s own. 

 Sensitivity study of the interaction between trussed girder and cold-

formed steel member 

As shown in Figure 3.32 and mentioned before, the trussed girder and cold-

formed steel formwork are connected to each other via plastic spacers. As an 
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alternative for modelling plastic spacers, the strategy employed herein to simulate their 

influence on the structural system was to couple the degrees of freedom (DOF) of 

nodes positioned near the connected region. As shown in Figure 3.32, the bottom 

chords of the trussed girder are fixed on the plastic spacers, which in turn are fixed on 

the steel formwork. It is expected that vertical displacements (UY) can be transferred 

from the nodes on the web of the steel member to nodes along the bottom chord of the 

trussed girder. Similarly, horizontal displacements in the transversal direction (UX) can 

be linked between nodes of bottom chords and the steel member flange, where the 

plastic spacers are fixed. Therefore, the study described in this section aims to present 

the finite element model sensitivity to the amount of coupled DOF. To this end, three 

nonlinear analyses are conducted to investigate two different aspects: 

a) whether to (i) exclude or (ii) include compatibility of the rotational 

degrees of freedom (ROTZ and ROTX) between nodes of the trussed 

girder and formwork in regions connected by plastic spacers, as shown 

in Figure 3.32.  

b) consideration of (iii) full or (i and ii) no interaction of translations in the 

longitudinal direction (UZ) promoted by the plastic spacers. 

Figure 3.33 shows the boundary conditions, loading position and sets of 

coupled DOF applied to the sensitivity studies of the Trelifácil® solution finite element 

model. Nine sets of coupled DOF are applied at distances of 150 mm along the length 

of the CFS member. Although the manufacturer recommends a distance of 330 mm 

between plastic spacers, shorter spacing was applied to promote more interaction 

between the components of the Trelifácil® solution. In addition, Figure 3.33 presents 

the FE model with only transversal DOF couples (i.e., UX and UY) in the region of the 

plastic spacers, which corresponds to investigation (i). On the second case, labelled 

as (ii), rotations about X and Z axis (ROTX and ROTZ) are coupled and boundary 

conditions are identical to case (i), as shown in Figure 3.33. Alternatively, on case (iii) 

the boundary conditions are slightly changed. Since the longitudinal displacements are 

coupled between trussed girder and CFS member nodes, the imposed restraint in the 

Z-direction applied to the node on the top chord at midspan is removed. This restraint 

was originally applied to prevent the trussed girder from undergoing rigid body motion 

in the finite element models of the cases (i) and (ii). 
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Figure 3.32 — Illustration of three possible node coupling to assess the interaction between trussed 
girder and CFS formwork provided by plastic spacers. 

 
Source: author’s own. 

Figure 3.33 — Boundary conditions, loading position and sets of coupled degrees-of-freedom (DOF) 
applied to the sensitivity studies of the Trelifácil® solution finite element model.  

 
Source: author’s own. 

The load-displacement responses of the finite element models are shown in 

Figure 3.34. It was observed that the composite action between cold-formed steel 

beam and trussed girder was more sensitive to the connection of longitudinal 
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displacements (UZ) than rotational DOF (ROTX and ROTZ). A quantitative analysis 

can be carried out using Figure 3.35, where the ultimate moment capacity 𝑀𝑢,𝐹𝐸 and 

stiffness (𝐸𝐼)𝐹𝐸 of cases (ii) and (iii) are normalised by the ultimate moment capacity 

𝑀𝑢,𝐹𝐸,𝑖 and stiffness (𝐸𝐼)𝐹𝐸,𝑖 of case (i), i.e., an equivalent system without coupling the 

longitudinal displacements (UZ) and rotational degrees-of-freedom (ROTX and ROTZ). 

Whereas the flexural capacity and stiffness of the FE model (iii) increased more than 

50% relative to case (i), these gains were below 10% for case (ii). Therefore, it is 

conservative and reasonable to assume the coupled behaviour characterized by model 

(i), i.e., only the horizontal and vertical translational DOF (UX and UY)  are coupled 

between the Trelifácil® solution components. 

Figure 3.34 — Force versus displacement curves of the FE models (i), (ii) and (iii). 

 
Source: author’s own. 

Figure 3.35 — Enhancements in moment capacity and flexural stiffness of the FE model (ii) and model 
(ii) relative to the FE model (i). 

 
Source: author’s own. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0

L
o

ad
 (

k
N

)

Midspan vertical displacement (mm)

(i) UX and UY coupled

(ii) UX, UY, ROTX and ROTZ coupled

(iii) UX, UY, UZ, ROTX and ROTZ coupled

1.0

1.1

1.2

1.3

1.4

1.5

1.6

i ii

Finite element model number

(FE)ii (FE)iii

𝑀𝑢,𝐹𝐸/𝑀𝑢,𝐹𝐸,𝑖 

(𝐸𝐼)𝐹𝐸/(𝐸𝐼)𝐹𝐸,𝑖 



93 

4 PARAMETRIC STUDY 

4.1 Introduction 

In this section, a variety of parametric studies is presented in order to 

extrapolate measured data and to examine the influence of span length, cross-section 

thickness, different trussed girder dimensions and spacing between plastic connectors 

on the flexural capacity and stiffness of the Trelifácil® solution. The next two sub-

sections present the studies conducted for the Trelifácil® solution without and with the 

trussed girder attached to, namely specimen type 1 and specimen type 2, respectively. 

4.2 Specimen type 1 

Specimen type 1 is comprised only of the cold-formed steel beam employed 

in the Trelifácil® solution. For this specimen type, a parametric study is conducted to 

assess the influence of different span lengths and section thicknesses on the ultimate 

bending moment 𝑀𝑢,𝐹𝐸. In addition, these results are used to examine the accuracy of 

the Direct Strength Method (DSM) to predict such value designated here as 𝑀𝐷𝑆𝑀. As 

mentioned in section 2.1, the nominal resistant bending moment calculated with the 

DSM (𝑀𝑢,𝐷𝑆𝑀) relies on the determination of critical elastic moments related to flexural-

torsional buckling (𝑀𝑒), local buckling (𝑀ℓ) and distortional buckling (𝑀𝑑𝑖𝑠𝑡). In this 

research, those values are taken from the findings of Favarato et al. (2019b), which 

were determined using finite element buckling analysis and are shown in Table 4.1. To 

assess the accuracy of those values, critical elastic moments related to local and 

distortional buckling were also obtained using CUFSM (LI; SCHAFER, 2010; 

SCHAFER; ÁDÁNY, 2006) and good agreement was found between finite element and 

finite strip buckling moments. As such, the values from Favarato et al. (2019b) were 

used in the parametric studies to maintain the consistency with these previous studies. 

Table 4.1 presents values of critical buckling moments for cold-formed steel 

members with eight different free span lengths (𝐿), varying from 0.6 m to 2 m, for three 

different cross-sectional thicknesses, 0.65 mm, 0.8 mm, and 1.08 mm. Even though 

Favarato et al. (2019b) found maximum values of unpropped distances from 1.0 m to 

1.2 m, depending on the materials and geometry adopted, longer spans will be 

assessed in order to evaluate the gains in flexural strength and stiffness when the 

trussed girder is coupled to the steel formwork. Thickness values greater than the 
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nominal thickness (i.e., 0.65 mm) are used to evaluate the sensitivity of the flexural 

behaviour to changes in cross-sectional dimensions. Therefore, a total of 24 beams 

are tested in this parametric study. The adopted modelling techniques are shown in 

section 4.2.1 and results are presented and discussed in section 4.2.2. 

Table 4.1 — Critical buckling moments (in Nm) for the Trelifácil® solution cold-formed steel beam with 
different free span lengths and cross-sectional thicknesses. 

L (m) 
𝒕 = 0.65 mm 𝒕 = 0.8 mm 𝒕 = 1.08 mm 

Me Mℓ Mdist Me Mℓ Mdist Me Mℓ Mdist 

0.6 1151.7 1147.4 575.7 1498.2 1779.3 909.9 2034.3 3339.7 1792.0 

0.8 1083.7 1147.7 645.9 1407.8 1755.0 967.3 1919.0 3295.8 1653.2 

1 911.2 1180.8 598.7 1204.6 1742.0 899.8 1632.6 3280.7 1664.8 

1.2 613.4 1154.9 588.4 870.6 1734.5 931.6 1287.5 3274.9 1661.5 

1.4 537.2 1145.2 618.2 721.4 1730.2 912.8 1007.3 3270.5 1645.4 

1.6 451.2 1147.0 591.8 588.1 1727.4 905.9 802.1 3266.3 1667.8 

1.8 375.4 1115.1 590.5 482.8 1725.8 926.1 652.9 3264.4 1647.3 

2 314.1 1113.9 604.5 401.9 1724.5 908.7 542.7 3263.3 1680.7 

CUFSM -- 1117.1 612.9 -- 1825.1 941.3 -- 3486.3 1755.3 

Source: adapted from (FAVARATO et al., 2019b). 

 Finite element modelling techniques adopted 

In this parametric study, the validated finite element model developed to 

simulate the physical tests of Candido (2020, in progress) was altered to predict 

moment capacity in accordance with the Direct Strength Method. 

The finite element models developed herein were validated against physical 

tests conducted by Candido (2020, in progress), which follows the recommendations 

of full cross-section bending tests prescribed by the European code for cold-formed 

steel structures, EN 1993-1-3:2004. This code establishes that “a pair of point loads 

should be applied to the specimen to produce a length under uniform bending moment 

at midspan of at least 0.2 x (span) but not more than 0.33 x (span)”. In the experimental 

program, however, the distance between loading points were set equal to 0.46425 m 

for all tests. Therefore, this distance was altered to 0.33 x (span) for all numerical 

models of the parametric studies. Furthermore, to prevent rigid body motion, 

transversal horizontal displacements (𝑈𝑥) are restrained at both ends and longitudinal 

displacements (𝑈𝑧) at one end. Figure 4.1 shows an overall view of the boundary 

conditions and loading position used in these parametric studies. The remaining 

features of the finite element model are equal to those adopted in the validated model 

presented in section 3.2.2. 
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Figure 4.1 — Boundary condition and loading position used in the parametric studies. 

 
Source: author’s own. 

 Results and discussion 

Results of parametric studies are examined in the context of comparisons 

between theoretical (DSM) and finite element predictions of moment capacity, which 

are summarised in Table 4.2 and displayed in Figure 4.2. Overall, the moment capacity 

was higher for members with thicker cross-sections and it rises more gradually for 

smaller cross-section thicknesses. Further, for all cross-section thicknesses assessed, 

this value tends to remain unaltered for longer span lengths. 

Table 4.2 — Results of parametric studies in terms of moment capacity. 

L 
 𝒕 = 𝟎. 𝟔𝟓 𝒎𝒎  𝒕 = 𝟎. 𝟖𝟎 𝒎𝒎  𝒕 = 𝟏. 𝟎𝟖 𝒎𝒎 
 𝑀𝑢,𝐹𝐸  𝑀𝐷𝑆𝑀 𝑀𝐷𝑆𝑀

𝑀𝑢,𝐹𝐸

 
 𝑀𝑢,𝐹𝐸  𝑀𝐷𝑆𝑀 𝑀𝐷𝑆𝑀

𝑀𝑢,𝐹𝐸

 
 𝑀𝑢,𝐹𝐸  𝑀𝐷𝑆𝑀 𝑀𝐷𝑆𝑀

𝑀𝑢,𝐹𝐸

 
(m)  (kNm) (kNm)  (kNm) (kNm)  (kNm) (kNm) 

0.6  0.19 0.34 1.83  0.26 0.45 1.72  0.44 0.63 1.45 

0.8  0.21 0.35 1.70  0.30 0.46 1.53  0.51 0.63 1.24 

1.0  0.23 0.35 1.48  0.34 0.45 1.22  0.52 0.63 1.19 

1.2  0.26 0.34 1.32  0.37 0.44 1.26  0.51 0.60 1.19 

1.4  0.28 0.34 1.19  0.35 0.43 1.25  0.50 0.58 1.15 

1.6  0.27 0.32 1.21  0.34 0.40 1.20  0.50 0.55 1.09 

1.8  0.26 0.30 1.17  0.34 0.38 1.13  0.50 0.51 1.02 

2.0  0.25 0.28 1.10  0.33 0.35 1.05  0.50 0.47 0.94 

Mean 1.37   1.30   1.16 

Standard deviation 0.22   0.17    0.11 

Figure 4.2 — Influence of free span length and cross-section thickness on moment capacity of the 
Trelifácil® CFS member. 

 
Source: author’s own. 
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Comparisons between theoretical (DSM) and finite element results in terms of 

moment capacity are shown in Figure 4.3. On one hand, it seems that the DSM 

overestimates the moment capacity of the CFS member used in the Trelifácil® solution 

for shorter beam lengths. On the other hand, it is important to note that for shorter 

beam lengths the specimens undergo ultimate limit states not included in the DSM 

predictions, such as load point crippling and limit states related to combined shear and 

bending. However, as span lengths are increased, results gradually converge to the 

finite element predictions. 

Figure 4.3 — Comparison of the flexural capacity and midspan vertical deflection obtained from DSM 
and FE analysis. 

 
Source: author’s own. 

4.3 Specimen type 2 

For the specimen with the trussed girder attached to it, named specimen type 

2 in this research, a series of parametric studies is conducted to investigate the 

influence of length and thickness of the cold-formed steel beam, different trussed 
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First, nine structural systems are evaluated, consisting of three distinct span 

lengths and three distinct trussed girders. The beam span lengths are equal to the 

physical test specimens of Candido (2020, in progress), i.e., 1.0 m, 1.4 m and 1.8 m. 

Trussed girder types with height of 120 mm (TR12645) and 160 mm (TR16745) were 

also selected in conformity with the research of Candido (2020, in progress). The 

300 mm high trussed girder (TR30856) was then included in the study to assess a 

wider height range. Table 4.3 presents the designation used for each finite element 

model developed in this first investigation. 

Table 4.3 — Summary of examined structural systems of the first set of parametric studies. 
 𝐿 = 1.0 m 𝐿 = 1.4 m 𝐿 = 1.8 m 

Trussed girder TR12645 P1.0TR12645 P1.4TR12645 P1.8TR12645 

Trussed girder TR16745 P1.0TR16745 P1.4TR16745 P1.8TR16745 

Trussed girder TR30856 P1.0TR30845 P1.4TR30845 P1.8TR30845 

The second parametric study conducted aims to assess the influence of the 

number of plastic spacers (i.e., the distance between plastic spacers) along the beam 

length on the flexural capacity and stiffness of the structural system. Once again, 

beams with span lengths of 1.0 m, 1.4 m and 1.8 m are evaluated. The previous 

parametric studies were conducted with nine plastic spacers along the length of the 

beam. Then, the number of plastic spacers is doubled to eighteen plastic spacers to 

perform this comparative study. Table 4.4 presents the designation used for each FE 

model developed in this second investigation. Note that only one type of trussed girder 

is used, which has an intermediate height amongst those available. 

Table 4.4 — Summary of examined structural systems of the second set of parametric studies. 
 𝐿 = 1.0 m 𝐿 = 1.4 m 𝐿 = 1.8 m 

9 plastic spacers P1.0TR16745_9S P1.4TR16745_9S P1.8TR16745_9S 

18 plastic spacers P1.0TR16745_18S P1.4TR16745_18S P1.8TR16745_18S 

 Results and discussion 

For the two sets of parametric studies conducted, results are examined in the 

context of load-displacement response and of gains in flexural capacity 𝑀𝑢,𝐹𝐸 and 

stiffness (𝐸𝐼)𝐹𝐸 relative to the correspondent structural system without trussed girder. 

To this end, these results are normalised by the moment capacity 𝑀𝑢,𝐹𝐸,𝐶𝐹𝑆 and flexural 

stiffness (𝐸𝐼)𝐹𝐸,𝐶𝐹𝑆 of the finite element models comprised only of the CFS member. In 

what follows, results are presented and discussed for each set of investigations 
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performed. 

 Figure 4.4 shows the load-displacement responses of the first set of 

parametric studies conducted. Comparing the curves, it is observed that the moment 

capacity and flexural stiffness increased with the introduction of the trussed girder into 

the CFS member. In contrast, the structural system loses its ductility when the trussed 

girder is included. Quantitatively, these conclusions are reinforced by the results shown 

in Figure 4.5. Maximum moment capacity was enhanced by almost 100 per cent for 

specimen P1.8TR12645 and a minimum increase of over 50 per cent is observed for 

specimen P1.4TR30856. Comparing the different trussed girders evaluated, the 

moment capacity of specimens with longer span lengths (1.4 m and 1.8 m) decreased 

when the tallest trussed girder (TR30856) was used. The flexural capacity of shorter 

members, in turn, presented a gradual rise with the increments of trussed girder height. 

In contrast, flexural stiffness either increased or remained the same as changes in 

trussed girder height were introduced. Further, longer beam lengths presented higher 

stiffness enhancements, reaching over 400 per cent for the specimen P1.8TR30856. 

Overall, these finite element model predictions suggest that the flexural capacity and 

stiffness of the Trelifácil® solution are substantially increased by coupling vertical (UY) 

and transversal (UX) displacements between its components. 

Figure 4.4 — Influence of the trussed girder on the finite element load versus displacement responses 
of the Trelifácil® solution. 

 
Source: author’s own. 

Figure 4.6 shows the load-displacement response of the finite element models 
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indicates that both flexural capacity and stiffness are sensitive to the number of plastic 

spacers in the cold-formed steel member. Numerically, as shown in Figure 4.7, the 

gains in moment capacity were in a range of 60 to 100 per cent, while the stiffness 

enhancements increased by more than 500 per cent for the longer specimen. 

Comparing the gains in flexural strength and stiffness obtained by increasing the 

number of plastic spacers with those resulting from changes in trussed girder height, 

the former brought greater benefits, except for the shorter specimen flexural capacity, 

which percentage points grew similarly in both cases. 

Figure 4.5 — Enhancements in flexural capacity and stiffness of the Trelifácil® solution relative to the 
corresponding CFS member without trussed girder included. 

  
Source: author’s own. 

Figure 4.6 — Influence of the number of plastic spacers on the finite element load versus 
displacement responses of the Trelifácil® solution. 

 
Source: author’s own. 
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Figure 4.7 — Enhancements in flexural capacity and stiffness of the Trelifácil® solution with the 
increase of the plastic spacer quantity along the beam length. 

  
Source: author’s own. 
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5 CONCLUSIONS AND FUTURE RESEARCH 

5.1 Conclusions 

Although the Trelifácil® solution has shown potential for replacing lattice 

reinforced concrete girders, it is only recently that researchers have started looking into 

the design of these structural elements, as well as into the feasibility of considering the 

composite action between their components within the flooring system during 

construction and in service. Therefore, in this research finite element models were 

developed using ANSYS® 2020R1 to predict the flexural behaviour of this structural 

element.  

A variety of sensitivity studies, described in detail in Chapter 3, have been 

conducted to evaluate the accuracy of the finite element modelling techniques used to 

simulate the mechanical behaviour of the cold-formed steel beam employed in the 

Trelifácil® solution under four-point bending. The examined parameters consist of 

boundary conditions, loading position, element and mesh choice, initial geometrical 

imperfections, solution solver scheme and material model. Numerical analyses with 

the finite element method and the Direct Strength Method could satisfactorily predict 

the results found with the flexural tests conducted by Gomes et al. (2019) and Candido 

(2020, in progress). From the investigations it follows that: 

a) four-node linear shell element (SHELL181) and eight-node quadratic 

shell element (SHELL281) presented similar behaviour when the 

nominal element size is smaller than 5 mm; 

b) ultimate bending moment responses presented little sensitivity to initial 

geometrical imperfections; 

c) arc-length (Riks) method and Full Newton-Raphson method with 

artificial damping, both with displacement control, can predict the 

geometrical and material nonlinear load-displacement response of the 

finite element models developed. However, only artificial damping could 

capture the peak load and post-collapse response when the trussed 

girder was coupled to the cold-formed steel member; 

d) satisfactory results were found with a material model comprised by the 

basic Ramberg-Osgood stress-strain relationship up to 0.2% proof 

stress followed by a straight line with a constant slope expressed as a 

fraction of the initial elastic modulus. 
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Thereafter, a proposal of finite element model to simulate the complete 

configuration of the Trelifácil® solution was presented in Chapter 3. These initial 

investigations aimed to address the sensitivity of the model to the degree of coupled 

action between trussed girder and cold-formed steel formwork. Overall, results showed 

that coupling the longitudinal translational DOF (UZ) between the Trelifácil® solution 

components may increase the strength and stiffness of the system by approximately 

50 per cent. 

Finally, parametric studies have been conducted in order to examine the 

structural performance of the two finite element models developed. In addition, the 

accuracy of the Direct Strength Method to predict the flexural strength of the cold-

formed steel member about the minor axis of inertia was assessed for different span 

lengths and cross-section thicknesses. The results of the parametric studies suggest 

that: 

a) moment capacity of the cold-formed steel beams tends to a plateau with 

the increase of span length; 

b) considering the composite action in the proposed finite element model 

of the Trelifácil® solution substantially increased its strength and 

stiffness, which would lead to longer unpropped span lengths for the 

flooring system during construction. Further, these gains are further 

increased when either the trussed girder height is increased or the 

spacing between plastic connectors is reduced. 

The main conclusions that can be drawn from this research are: 

a) the prediction of flexural behaviour by geometric and material  nonlinear 

finite element analysis for the cold-formed steel member of the 

Trelifácil® solution is highly sensitive to boundary conditions, loading 

position, element choice, mesh density, plasticity model and solution 

scheme. Based on literature review, this research presented possible 

modelling techniques for each of these major issues; 

b) the gains in strength and stiffness found with the suggested finite 

element model for the entire configuration of the Trelifácil® solution 

reinforced the potential of this structural system that can be derived 

through the consideration of coupled action between its components. 
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5.2 Suggestions for future research 

Potential areas of future research include investigation of the behaviour of 

these beams under loading and boundary conditions as used in service or even under 

extreme loads. Continuous beams under uniformly distributed loading would represent, 

for instance, a real condition of the system, which involves the use of propping to 

support the slab until it gains enough strength to support itself. This subject would also 

be useful to investigate the current analytical formulations for the design of continuous 

beams subjected to minor axis bending with stiffeners under tension. 

Additionally, since the consideration of coupled action between the Trelifácil® 

solution components were promising, it is suggested for future researchers to focus on 

innovative means to optimize the Trelifácil® solution geometry so that material usage 

can be reduced. Further, the exploitation of the composite action between cold-formed 

steel and concrete may also present enhancements to the capacity of the floor system 

capacity after concrete curing, which can be addressed by the development of 

sophisticated finite element models validated by physical tests. 
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