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Resumo
Nos dias atuais, streams de dados são importantes fontes de informação e, com a popular-
ização de dispositivos móveis e sistemas de sensores que coletam todos os tipos de dados,
grandes quantidades de informações são geradas a uma velocidade cada vez maior. Esse
crescimento no fornecimento de dados apresenta alguns problemas para os algoritmos tradi-
cionais de aprendizado de máquina. Tarefas como classificação, regressão ou clusterização
de dados têm algumas limitações em relação a conjuntos de dados muito grandes, variações
ou fluxos contínuos de dados. Em geral, algoritmos que funcionam em uma dessas situações
podem não funcionar em outras. Além disso, os fluxos de dados apresentam novos desafios
aos algoritmos de aprendizado de máquina. O alto custo de se rotular manualmente instân-
cias para o treinamento de algoritmos de classificação dificulta o uso de métodos totalmente
supervisionados. Conjuntos de dados desbalanceados tendem a fazer com que os algoritmos
ignorem uma ou mais classes. Além disso, concept drifts nos fluxos de dados exigem que
os modelos sejam atualizados periodicamente. Para minimizar os problemas mencionados,
nesta tese foram propostos algoritmos semi-supervisionados e on-line baseados em Extreme
Learning Machine (ELM). O primeiro algoritmo proposto denominado Semi-Supervised
Online Elastic ELM (SSOE-ELM), superou outros da literatura em acurácia e tempo de
treinamento, mostrando bons resultados em casos de bases desbalanceadas. O SSOE-ELM
usa amostras rotuladas e não rotuladas para treinamento e recebe dados sequencialmente
em blocos de uma ou mais instâncias, atualizando continuamente o modelo. Em geral,
como um algoritmo baseado em Extreme Learning Machine, seu treinamento é muito
rápido em comparação com algoritmos baseados em gradiente descendente. O segundo
algoritmo proposto, denominado Semi-Supervised Online Elastic ELM with Forgetting
Parameter (SSOE-FP-ELM), é uma extensão do SSOE-ELM para lidar com fluxos de
dados com concept drift. O SSOE-FP-ELM usa um parâmetro de esquecimento híbrido que
considera instâncias rotuladas e não rotuladas para detectar casos de concept drift gradual
e abrupto. Resultados experimentais mostram que os dois algoritmos propostos superam
outros na literatura em acurácia e poder de generalização, indicando serem alternativas
viáveis para a classificação de fluxos de dados.

Palavras-chave: Aprendizado de máquina; Aprendizado semi-supervisionado; Extreme
Learning Machine (ELM); Streams de dados; Concept drift; Bases desbalanceadas.



Abstract
Data streams are important sources of information nowadays, and with the popularization
of mobile devices and sensor systems that collect all kinds of data, more and more
information is generated at an ever increasing speed. This growth in data supply poses
some problems for traditional machine learning algorithms. Tasks such as data classification,
regression, or data clustering presents some limitations regarding very large datasets, data
streams, or variations in data. In general, algorithms that works in one of these situations
may not work in others. In addition, data streams pose further challenges to machine
learning algorithms. The high cost of labeling instances for training classification algorithms
makes it difficult to use fully supervised algorithms. Unbalanced datasets tend to cause
algorithms to ignore one or more classes. Moreover, concept drifts in data streams require
algorithms to be retrained from time to time. To minimize the problems mentioned, in
this thesis semi-supervised and online algorithms based on Extreme Learning Machine
(ELM) were proposed. The first proposed algorithm named Semi-Supervised Online Elastic
ELM, for short, SSOE-ELM, overperform others in the literature in accuracy and training
time, showing good results in cases of unbalanced datasets. SSOE-ELM uses labeled
and unlabeled samples for training, and receives data sequentially in chunks of one or
more instances, continuously updating the network. In general, as an Extreme Learning
Machine based algorithm, its training is very fast compared to gradient descent based
algorithms. The second proposed algorithm named Semi-Supervised Online Elastic ELM
with Forgetting Parameter, for short, SSOE-FP-ELM, is an extension of SSOE-ELM to deal
with data streams with concept drift. SSOE-FP-ELM uses a hybrid forgetting parameter
that considers labeled and unlabeled instances to detect gradual and abrupt concept drift
cases. Experimental results show that the two proposed algorithms outperform others in
the literature in accuracy and generalization ability, showing suitable alternatives for data
streams classification.

Keywords: Machine learning; Semi-supervised learning; Extreme learning machine (ELM);
Data streams; Concept drift; Unbalanced datasets.
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1 Introduction

Data streams are important sources of information nowadays. With the increase of
mobile devices such as smartphones, sensors and health monitoring devices, technological
gadgets in vehicles or shops, more and more information is generated at an ever increasing
speed.

This growth in data supply poses some challenges for traditional machine learning
algorithms. Tasks such as data classification, regression, or data clustering have some
limitations regarding very large datasets, data streams, or variations in data. In general,
algorithms that works in one of these situations may not work in the others.

In the early 2000s, the term big data gained popularity, bringing a large set of
(sometimes ambiguous) definitions. Laney (2001) described big data in three dimensions,
Volume, Variety, and Velocity, giving rise to the "Three V’s of big data". The exact
definitions of these dimensions vary with respect to what is considered big data and what
is not. Gandomi & Haider (2015) presents the following definitions about the Three V’s.

• Volume refers to the order of magnitude of data, including characteristics such as
number of features, number of samples, and storage space.

• Variety refers to differences in data structure. Data can be structured as tabular
data or unstructured as images, videos, audios, and social network posts.

• Velocity refers to the rate at which data is generated or received, or the rate at
which data must be processed.

Later, other dimensions were being created. The "Six V’s of big data" adds Veracity,
Variability and Value to the original three dimensions.

In Qiu et al. (2016) some problems concerning machine learning techniques for big
data processing are presented. Figure 1 shows these critical issues of machine learning for
big data.

In the Figure 1, the first three boxes of the bottom row correspond to the original
3 V’s of big data, while the last two boxes refer to the Veracity and Value dimensions. In
order to develop machine learning algorithms adapted to big data characteristics, some of
these problems must be solved.

The third dimension (Velocity) can be addressed by fast training algorithms, capable
of receiving and processing training instances or even entire data partitions quickly and
continuously. In big data problems, the Velocity dimension is associated with the continuous
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Figure 1 – The critical issues of machine learning for big data (QIU et al., 2016)

arrival of data, at high speed. In order to be able to treat this information without
accumulating or discarding data, an algorithm capable of receiving, storing and processing
the data in a fast way is necessary. The neural network training algorithm Extreme
Learning Machine (ELM) was proposed by Huang, Zhu & Siew (2004) and Huang, Zhu &
Siew (2006) as a competitive alternative to the widely used algorithm backpropagation
(RUMELHART et al., 1988). Different from gradient descent-based learning methods,
ELM does not perform an iterative adjustment of weights. The input weights of the
network are randomly generated, and output weights are calculated analytically. Thus,
the training time of the ELM algorithm is a few hundred (or thousands) times less than
the backpropagation algorithm (HUANG; ZHU; SIEW, 2006). Furthermore, ELM is not
susceptible to getting stuck in local minima or slow convergence, common backpropagation
problems. These features make ELM a suitable choice for machine learning algorithms to
solve big data issues.

The first dimension (Volume) can be addressed by sample selection and online
sequential learning techniques. In order to allow online learning, algorithms like Online
Sequential ELM (OS-ELM) (LIANG et al., 2006), Regularized Online Sequential ELM
(ReOS-ELM) (HUYNH; WON, 2011), Dynamic ELM (DELM) (XU; WANG, 2017), Elastic
ELM (E2LM) (XIN et al., 2015) and Forgetting Parameter ELM (FP-ELM) (LIU; WU;
JIANG, 2016) were proposed, which enable sequential training with partitions or even
with a single sample of the training set when the full dataset is not available. To allow
sample selection, algorithms like Extreme Active Learning Machine (EALM) (HORTA;
CASTRO; BRAGA, 2015) and Sample Selected ELM (SS-ELM) (AN et al., 2018) were
proposed, allowing the model to be trained with fewer samples, faster and without loss of
accuracy.

The fourth dimension (Veracity) concerns the reliability of the data. Uncertainties,
missing data, unlabeled data, noise, unbalanced classes and concept drifts are the key
challenges in obtaining reliable data. Each of these factors is handled by different techniques.

For unlabeled data, semi-supervised algorithms are indicated. In order to solve the
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problem of the absence or the reduced amount of labeled training samples, algorithms like
Semi-Supervised ELM (SS-ELM) (HUANG et al., 2014), Unsupervised ELM (US-ELM)
(HUANG et al., 2014), Self-Organized Maps ELM (SOM-ELM) (MICHE et al., 2015) and
Hessian Semi-Supervised ELM (HSS-ELM) (KRISHNASAMY; PARAMESRAN, 2016)
were proposed, which consider that the training dataset has few or no labeled samples.

For concept drift cases, two approaches are commonly used: supervised algorithms
that take advantage of the labels to detect a drift; and unsupervised algorithms that
uses only input data to detect changes. Supervised approaches often present good results,
but have the disadvantage of needing many labeled samples to work properly. With the
increasing size of datasets, it becomes difficult to obtain labeled samples to properly train
the machine learning algorithms. Zhao, Wang & Park (2012) and Liu, Wu & Jiang (2016)
proposed supervised approaches to concept drift detection using forgetting parameters.
Unsupervised approaches do not require labels, working directly on input data. However,
they are more susceptible to false alarms, since a change in input data does not necessarily
indicate a change in the labels. Sethi & Kantardzic (2017) works in an unsupervised
approach based on class boundaries. Costa, Rios & Mello (2016) presents an unsupervised
algorithm that uses phase spaces to detect concept drifts.

For unbalanced datasets, two common approaches are oversampling and undersam-
pling methods. There are also hybrid methods, which alternate between the previous two
according to predefined criteria. Both are based on the principle of dataset balancing: in
undersampling, the majority class is reduced by taking out samples; In oversampling, the
minority class is expanded by the addition of synthetic samples. Lin et al. (2017) proposes
using clustering techniques as a preprocessing step before undersampling, and Kang et
al. (2017) uses a noise filter in the minority class while undersampling the majority class.
Some oversampling algorithms are Synthetic Minority Over-Sampling Technique (SMOTE)
(CHAWLA et al., 2002) and Sigma Nearest Oversampling based on Convex Combination
(SNOCC) (ZHENG; CAI; LI, 2016). Both undersampling and oversampling bring problems
to the dataset. In undersampling, reducing the majority class may cause important data to
be discarded. According to Pozzolo, Caelen & Bontempi (2015), undersampling increases
the variance of the classifier, perturb the a priori probability of the training set and induces
a warping in the posterior distribution. In oversampling, creating synthetic samples can
lead to undesirable behaviors, like overfitting. According to Sáez, Krawczyk & Woźniak
(2016), oversampling may cause a class distribution shift, since new artificial samples are
being created on the basis of previously introduced ones, and may increase noise levels.
In addition, both methods make it difficult or even impossible to detect concept drift by
interfering with data distribution and changing the number of labels.
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1.1 Problem definition
It is desirable for a machine learning algorithm to solve big data problems that it

reaches as many dimensions as possible. In addition, it is important that this algorithm
minimizes the problems of the previously presented algorithms.

In view of the challenges presented by the big data dimensions, and the importance
of initially treating the two initial V’s (Volume and Velocity) before taking into account the
other dimensions, it is necessary to first find algorithms that address these two problems.
The next step is to check if it is possible to adapt the selected algorithm to face some of
the characteristic challenges of the Veracity dimension, such as: partially labeled datasets,
unbalanced datasets and concept drift affected datasets

Due to its characteristics (fast training, online updating, incremental learning), the
ELM neural network training algorithm and its extensions appear to be a viable option for
dealing with large datasets and data streams, which would make it a good alternative for
the initial two V’s of big data problems. Some of the problems of the Veracity dimension,
such as partially labeled datasets, unbalanced datasets and the occurrence of concept drifts,
can be addressed through semi-supervised learning methods, dataset balancing techniques,
concept drift detectors and forgetting parameters to adjust the model. All of these features
have already been addressed separately by ELM-based algorithms (KROHLING, ).

This thesis is intended to answer the following question: Is an ELM-based algorithm
suitable for solving big data problems in the Volume, Velocity and Veracity dimensions at
the same time and without a high computational cost?

1.2 Objectives
This thesis aims to propose algorithms for data classification that allow to handle

three dimensions of big data: Volume, Velocity and Veracity. For this, the following steps
were necessary:

• Identify the desirable characteristics for an algorithm to deal with the big data
dimensions of Volume, Velocity and Veracity.

• Identify algorithms that address one or more dimensions of big data problems, their
advantages and performance limitations.

• Propose computational solutions in the form of algorithms for the three dimensions
mentioned, comparing them with others in the literature.
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1.3 Scientific contributions

• A novel semi-supervised and online ELM-based algorithm for unbalanced datasets
named SSOE-ELM, with small training time and competitive accuracy for data
classification.

• An extension of the previous algorithm named SSOE-FP-ELM, with a forgetting
mechanism for data streams with two types of concept drift (features and labels).

• A hybrid forgetting parameter computation for semi-supervised algorithms that
takes into account labeled and unlabeled samples.

To allow the reproducibility of the experiments in this thesis, all algorithms are
fully described in pseudo-code and all the parameters used are reported. Python source
codes are available at https://bitbucket.org/carlosalexandress/ssoe-elm-ssoe-fp-elm. The
datasets used in experiments are in the public domain, and the datasets used in case
studies are available for research purposes.

1.4 Publications

• Classificação de grandes bases de dados utilizando algoritmo de Máquina
de Aprendizado Extremo published in the proceedings of the SBPO 2016 -
Brazilian Symposium on Operational Research (SILVA; KROHLING, 2016).

• Semi-Supervised Online Elastic Extreme Learning Machine for Data Clas-
sification published in the proceedings of the IEEE IJCNN 2018 - International
Joint Conference on Neural Networks (SILVA; KROHLING, 2018).

• Restricted boltzmann machine to determine the input weights for ex-
treme learning machines published in the Expert Systems With Applications
journal (PACHECO; KROHLING; SILVA, 2018).

• Semi-Supervised Online Elastic Extreme Learning Machine with Forget-
ting Parameter to deal with concept drift in data streams published in the
proceedings of the IEEE IJCNN 2019 - International Joint Conference on Neural
Networks (SILVA; KROHLING, 2019).

• Semi-supervised classification of non-stationary data streams with Ex-
treme Learning Machine-based algorithms submitted to the Expert Systems
With Applications journal (Under review) (SILVA; KROHLING, 2020).
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1.5 Organization of this thesis
This thesis is organized as follows: Chapter 2 presents a short background on

learning algorithms. Chapter 3 presents two proposed solutions to address the target
problems: a semi-supervised algorithm for unbalanced datasets and a new version of
previous algorithm to deal with concept drift cases. Chapter 4 presents experimental
results and discussions. In Chapter 5 the proposed algorithms are applied to a case study,
and Chapter 6 presents some conclusions, limitations and directions for future works.
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2 Background on Learning Algorithms

This chapter addresses the fundamentals of learning algorithms that underlie all
the approaches taken during the thesis.

2.1 Unsupervised, supervised and semi-supervised learning
According to Chapelle, Schölkopf & Zien (2006), in machine learning, there are

originally three types of tasks: supervised, unsupervised and semi-supervised learning. As
presented by Roh, Heo & Whang (2019) and Jing & Tian (2020), a fourth type, which has
gained attention recently, is self-supervised learning.

In unsupervised learning, there is a set of unlabeled samples (X) = {(xi)|xi ∈
Rd, i = 1, . . . , N}, where N is the number of samples and d is the number of features. These
samples are drawn from a common distribution on X. The main objective of unsupervised
learning is to find (hidden) patterns in the data X.

Nowadays, it is easy to get a large amount of unlabeled data from web sites, security
cameras, weather stations or even smartphones and tablets. Applications where data arrives
continuously, such as video streammings or social network posts are inexhaustible sources
of unlabeled data. This data allow for tasks such as clustering, dimensionality reduction,
density estimation or autoencoding.

• Clustering - to group similar samples, according to any similarity measure;

• Dimensionality Reduction - to transform each high-dimensional sample in a lower
dimensional feature vector without a considerable loss of information;

• Density Estimation - to estimate the parameters of the underlying distribution that
generated X.

• Autoencoding - to learn a mapping function f(x) = x′, where x ≈ x′, creating an
intermediate representation of x that can be sparse or compressed compared to the
original inputs.

The main problem of unsupervised learning is that this unlabeled data does not
allow straightforward mappings from inputs to outputs, as in classification tasks.

On the other hand, in supervised learning there is a set of pairs (X, Y ), consisting
of examples and labels, so that (X, Y ) = {(xi, yi)|xi ∈ Rd, yi ∈ Rm, i = 1, . . . , N}, where
N is the number of pairs, d is the number of features and m is the number of classes. The
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main objective of supervised learning is to learn a mapping function f : X → Y where
f(xi) = yi. Once the model is trained, it is possible to predict the label y′ of an unknown
sample x′ by f(x′) = y′.

Based on the nature of Y , supervised learning can be categorized into classification,
when the output Y is discrete; or regression, when the output Y is continuous.

The main problem of supervised learning is to get enough labeled data to accurately
train the classification model, as the process of manually labeling data is time-consuming
and costly.

In self-supervised learning, there is a set of pairs (X,Z), consisting of examples
and pseudo labels, so that (X,Z) = {(xi, zi)|xi ∈ Rd, i = 1, . . . , N}, where N is the number
of pairs and d is the number of features. According to Jing & Tian (2020), unlike supervised
learning, in self-supervised learning the pseudo label is automatically generated for a
pre-defined pretext task without involving any human annotation. The main objective of
self-supervised learning is to use an unlabeled dataset to learn intermediate representations
of the data that will contribute to subsequent classification tasks.

Finally, semi-supervised learning (SSL) is a mixture of the supervised and
unsupervised paradigms. SSL is a hybrid technique that uses both labeled and unlabeled
data to perform supervised tasks (as classification or regression) or unsupervised tasks (as
unsupervised learning guided by constraints). SSL has attracted the attention of many
researchers over the past years ((CHAPELLE; SCHÖLKOPF; ZIEN, 2006), (PRAKASH;
NITHYA, 2014), (ZHU, 2017), (SAWANT; PRABUKUMAR, 2018)).

In semi-supervised classification, like in the supervised case, the main goal of SSL
is to find a function f : X → Y to predict the label y of an unknown sample x. To train
a model, SSL use a small labeled set (X, Y ) = {(xi, yi)|xi ∈ Rd, ti ∈ Rm, i = 1, . . . , NL}
and a large unlabeled set (X ′) = {(x′i)|x′i ∈ Rd, i = 1, . . . , NU}, where d is the number of
features, m is the number of classes, NL is the number of labeled samples and NU is the
number of unlabeled samples.

Most of the problems encountered in real world are essentially semi-supervised.
Monitoring systems (city traffic, personal health, natural disasters and many others),
intelligent personal assistants and social network analyse systems work with a large
amount of data, but only a small portion of them are labeled. Therefore, SSL is the focus
of this work. SSL can be divided into several models, as described in the following.

2.1.1 Generative models

Generative models describes general learning representations. A model can estimate
the joint distribution P (X, Y ), and compute the conditional probability P (X|Y = y)
directly from training data. Generative models are especially useful for creating labeled
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synthetic instances for training classifiers.

Kingma et al. (2014) proposed a stacked architecture with two layers: a generative
feature extractor and a generative semi-supervised model. Maaløe et al. (2015) improved this
architecture adding to the formulation a set of stochastic variables. Adiwardana, Matsukawa
& Whang (2016) proposed a semi-supervised Deep Convolutional Generative Adversarial
Networks (DCGAN) where the discriminator loss consists of three components: supervised
loss, based on the cross-entropy loss from the predicted distribution; unsupervised loss,
based on the loss from classifying unlabeled data points as real; and GAN sample loss,
based on the loss from classifying generated images as fake. Narayanaswamy et al. (2017)
proposed to use a generalized variational autoencoders architecture for semi-supervised
learning.

2.1.2 Self-training

Self-Training or Self-Learning is an SSL method whose training is divided into two
phases: labeled training and unlabeled set classification. In the first phase, the labeled
samples are used to train the model, as in supervised case. In the second phase, the
unlabeled samples are classified by the trained model, and the most confident samples
and the predicted labels are appended to the labeled training set. These two steps are
repeated until all unlabeled training samples are labeled, or until the model meets a
stopping condition.

One problem of the self-training method is that if the initial training set is insufficient
to train the model, many classification errors can occur in the unlabeled samples in the
second phase. By incorporating these incorrectly labeled samples into the training set, these
errors will be propagated to the next phases, making the classification model ineffective.

Triguero, García & Herrera (2015) presents a survey on self-training methods.
Tanha, Someren & Afsarmanesh (2017) applied self-training in ensembles of decision
trees. To increase training dataset volume using self-training methods, Dupre et al. (2019)
proposed a technique based on iterative learning cycle with thresholding, while Wu et al.
(2018) proposed a method using density peaks.

2.1.3 Co-training

Co-Training is an SSL method that uses two different views of the same data to
train two classification models. Each sample is described by two feature sets with different
information, and each feature set is used to train one classifier. Similar to self- training,
co-training consists of two phases: labeled training of classifiers and crossed unlabeled
set classification. In the first phase, the two classifiers are trained using labeled training
samples, as in supervised case. In the second phase, the most confident samples of each
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classifier and the predicted labels are appended to the labeled training set. These two
steps are repeated until all unlabeled training samples are labeled, or until the model
meets a stopping condition.

One problem with co-training is that the two classifiers need to be independent
and complementary. If one classifier can correctly classify samples that the other can not,
the final result will be improved. On the other hand, if the two classifiers attribute the
same labels to the samples, then there is no advantage in co-training, and using only one
of the classifiers would be more computationally efficient.

Qiao et al. (2018) presents a deep approach of co-training framework. Zhan & Zhang
(2017) presents an inductive approach for multi-label classification. Romaszewski, Głomb
& Cholewa (2016) proposed an algorithm using co-training strategies to hyperspectral
data classification.

2.1.4 Active learning

Active learning is a special case of SSL where an algorithm interactively asks
an oracle (usually a human expert) to label some unlabeled samples to train a model.
Since manually labeling samples is time-consuming, the active learning method selects the
unlabeled samples that will bring greater advantage to the model training. One problem
with active learning is the need for human intervention (oracle) to label unlabeled samples.
As the unlabeled training set grows, more human effort is needed to train the model. Chen
& Wang (2017) and Su et al. (2016) proposes applications of active and semi-supervised
learning. Samiappan & Moorhead (2015) presents a framework for semi-supervised image
classification exploiting both active learning and co-training.

2.1.5 Graph-based models

Graph-based models are SSL methods that assume that data points (both labeled
and unlabeled) are embedded in a low-dimensional manifold. This low-dimensional manifold
can be expressed by a weighted graph where the nodes are data points, and edges are a
similarity measure between these points (SUBRAMANYA; TALUKDAR, 2014). Yang,
Cohen & Salakhutdinov (2016) and Ma et al. (2016) present graph-based frameworks for
semi-supervised learning. Sawant & Prabukumar (2018) presents a review of graph-based
semi-supervised learning methods.

2.2 Reinforcement learning
Along with supervised and unsupervised learning, reinforcement learning is one of

the basic paradigms of machine learning. According to Sutton & Barto (2018), reinforcement
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learning is a computational approach to understanding and automating goal-directed
learning and decision-making. It emphasizes learning by an agent from direct interaction
with its environment, without relying on exemplary supervision or complete models of the
environment. Reinforcement learning is a growing research field, mainly with the advent
of deep architectures (LI, 2018).

Figure 2 shows the relationship between supervised, unsupervised and reinforce-
ment learning, also placing semi-supervised learning within the broad area of machine
learning. The study of reinforcement learning algorithms is outside the scope of this thesis,
which focuses on semi-supervised algorithms and their advantages over unsupervised and
supervised algorithms.

Figure 2 – Relationship among learning paradigms, adapted from Li (2018).

2.3 Batch and online learning
According to how data is received and processed, learning algorithms can be divided

into two main cases: batch learning and online learning.

In batch learning, all data is previously available to the algorithm, and this data is
processed in a one-step way. Batch algorithms do not take into account the arrival time
information of data, and need to retrain their models every time a new sample arrive.

On the other hand, online learning allows the updating of the model with each new
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sample. It is not necessary to have the complete dataset at the beginning of the training
phase, and even though the full dataset is available, it is not necessary to process all data
in one single step. In addition, online algorithms can use the arrival time of samples to
update the model through aging mechanisms that prioritize more recent data or forgetting
mechanisms that discard outdated data.

In online learning, a complete set of samples X divided in k partitions, Xk, is
given. Xk can have a single sample or a set of Nk samples, and in datasets coming from
continuous streaming, the number k of partitions is unknown.

Online learning can be applied in unsupervised or supervised tasks. In unsupervised
tasks such as online or incremental clustering ((PHAM; DIMOV; NGUYEN, 2004), (LIN et
al., 2004), (BARBAKH; FYFE, 2008), (HYDE; ANGELOV; MACKENZIE, 2017)), online
PCA ((ARTAC; JOGAN; LEONARDIS, 2002), (DAGHER, 2010)) or online dimensionality
reduction ((LAW; JAIN, 2006), (YAN et al., 2006)), each partition k is represented by
a set of unlabeled samples (X ′k) = {(x′i)|x′i ∈ Rd, i = 1, . . . , NU}, where d is the number
of features and NU is the number of unlabeled samples. These samples are drawn from a
common distribution on X ′.

In supervised tasks such as classification or regression ((YING; ZHOU, 2006),
(LIANG et al., 2006), (YING; PONTIL, 2008), (YAO, 2010), (WANG; ZHAO; HOI,
2014), (LIU; WU; JIANG, 2016)), each partition k is represented by a pair (Xk, Yk) =
{(xi, yi)|xi ∈ Rd, yi ∈ Rm, i = 1, . . . , NL}, where d is the number of features, m is the
number of classes and NL is the number of labeled samples.

This work will focus on the online learning paradigm, since most of the problems
addressed can not be easily handled by batch algorithms. Online learning is an area
that has been attracted much research interest (BLUM, 1998), (SMALE; YAO, 2006),
(SHALEV-SHWARTZ, 2012), especially in the last few years ((GUO et al., 2018), (DING
et al., 2018), (CAO et al., 2018)) due to the increasing volume of information generated
and made available daily by mobile devices such as smartphones, sensors and health
monitoring devices, technological devices in vehicles or shops and many others. As the
volume of data increases, it becomes necessary to develop algorithms that can work with
small partitions of data at a time and are able to update over time.

2.4 Concept drift
Concept Drift is the name given to modifications in the behavior of data streams

along time. This topic has attracted the attention of many researchers over time ((COSTA;
RIOS; MELLO, 2016), (SETHI; KANTARDZIC, 2017), (LIU; WU; JIANG, 2016), (WANG;
ABRAHAM, 2015), (BUDIMAN; FANANY; BASARUDDIN, 2016)). Formally, it is a
change in the joint probability distribution P (X, Y ) of the input data samples X and their
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corresponding class labels Y :

P (X, Y ) = P (Y |X).P (X) (2.1)

According to Tsymbal (2004), concept drift can be abrupt, characterized by a large
and easily noticeable change in all data, or gradual, when data change is more subtly
during processing. Concept drift can also affect input data, class labels, or both. A study
on concept drifts is provided by Gama et al. (2014), defining two types of drifts: real and
virtual. Real concept drift refers to changes in outputs (labels). Such changes can happen
either with or without change in input data. Virtual drift happens if the distribution of
the incoming data changes without affecting the outputs. In this thesis, real and virtual
drifts are referred to as label and feature drifts, respectively.

For label changes (Label Concept Drift, or LCD), supervised approaches are
used, and for feature changes (Feature Concept Drift, or FCD), unsupervised methods
are recommended. Sethi & Kantardzic (2017) investigated supervised and unsupervised
methods for concept drift tracking.

Supervised methods continuously evaluate some model metrics (class boundaries,
accuracy) to detect the concept drift. Although these methods present good results, they
require a large amount of labeled samples to evaluate the model at each training step.
Barros & Santos (2018) presents an extensive empirical study of concept drift detectors,
verifying their performance in several datasets with abrupt and gradual concept drifts
for fully supervised datasets. Wang & Abraham (2015) presented a framework for drift
detection in unbalanced datasets and data streams. Budiman, Fanany & Basaruddin (2016)
and Xu & Wang (2017) proposed online algorithms based on ELM to address concept
drifts in supervised data streams. Another approach that deals with concept drift only
in fully supervised cases is proposed by Anderson et al. (2019). This framework takes
copies of the classifiers and reuses them if the concept drift is recurrent (a concept that is
no longer valid becomes valid again). However, this approach has the additional cost of
training and keeping multiple classifiers in memory.

Unsupervised methods evaluate the distribution of input data to detect concept
drift. These methods are good alternatives to datasets with few labeled samples, but
many classification errors may occur because a change in feature distribution does not
necessarily imply changing the labels. An unsupervised approach using dynamic systems
tools is proposed by Costa, Rios & Mello (2016) for concept drift detection.

For real-world streaming problems, where few labeled samples are available for
training, a semi-supervised method for concept drift tracking is necessary.



Chapter 2. Background on Learning Algorithms 29

2.5 Extreme Learning Machine based algorithms
In this section, the standard Extreme Learning Machine (ELM) algorithm and

some ELM-based variations are presented.

2.5.1 Standard ELM

The neural network training algorithm Extreme Learning Machine, proposed by
Huang, Zhu & Siew (2004) and Huang, Zhu & Siew (2006), is a competitive option to
the widely used algorithm backpropagation (RUMELHART et al., 1988) in Single-Layer
Feedforward Neural Networks (SLFN).

Different from gradient descent-based learning methods, ELM does not perform an
iterative adjustment of weights. The input weights of the network are randomly generated
and maintained during the training phase. The network output weights are calculated
analytically using the least squares method (HUANG; ZHU; SIEW, 2006). Thus, the
training time of the ELM algorithm is a few hundred (or thousands) times less than
the backpropagation algorithm, according to Huang, Zhu & Siew (2006). Furthermore,
ELM is not susceptible to getting stuck in local minima or slow convergence, common in
backpropagation.

Figure 3 – Illustration of SLFN trained with ELM

Figure 3 shows a SLFN trained with ELM algorithm. Consider a training set
(xi, ti), xi ∈ Rd, ti ∈ Rm, i = 1, . . . , N , where N is the number of training samples, d is the
number of features and m is the number of classes; an activation function g(x), a sigmoidal
function for example; and a number of neurons n in the hidden layer. The relationship
between the input data xi and the network output values ti is given by:

ti =
n∑
j=1

βig(wjxi + bj), i = 1, ..., N (2.2)
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where βi is the output weights, wj and bj are the input weights and bias. In ELM, wj and
bj are set randomly before the training phase, and are not adjusted.

Equation (2.2) can be written in the matrix form Hβ = T , where H is the hidden
layer matrix (feature matrix) given by:

H =


g(w1x1 + b1) ... g(wnx1 + bn)

... . . . ...
g(w1xN + b1) ... g(wnxN + bn)


N×n

(2.3)

The linear system Hβ = T is solved by employing the Moore-Penrose generalized
inverse (pseudo-inverse) of the H matrix, represented by H†. There are different ways to
calculate the pseudo-inverse of a matrix, including the orthogonal projection, iterative
methods, and decomposition into singular values (SVD) (BEN-ISRAEL; GREVILLE,
2003). The solution of ELM and H† matrix computation are given by:

H† = (HTH)−1HT (2.4)

β = H†T −→ β = (HTH)−1HTT (2.5)

The addition of a small value on the diagonal of a matrix guarantees this matrix is
non-singular, enabling the orthogonal projection method to be used in the computation of
the pseudo-inverse. As demonstrated by Huang et al. (2012), this regularization factor
makes the solution obtained more stable and with greater generalization ability, and
its value can be obtained through a parameter optimization technique or calculated as
suggested by Araújo et al. (2019). Thus, for a given regularization factor α, H† matrix
and β matrix can be obtained as follows:

H† = (HTH + αI)−1HT (2.6)

β = (HTH + αI)−1HTT (2.7)

The ELM training pseudocode, as proposed by Huang, Zhu & Siew (2006), is
described in Algorithm 1.

2.5.2 Semi-Supervised ELM (SS-ELM)

The SS-ELM algorithm is a graph-based semi-supervised version of ELM proposed
by Huang et al. (2014). The SS-ELM takes advantage of the structural relationship
between the input data when there are no labels, considering that the changes in data
occur smoothly. This relationship is given by the Smoothness Assumption, formalized in
the smoothness function described as:

S(f) = 1
2

∑
i∼j

Aij(fi − fj)2 = fTLf (2.8)
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Algorithm 1 ELM training
Input: Training set (X,T ) = {(xi, ti)|xi ∈ Rd, ti ∈ Rm, i = 1, . . . , N};

Activation function g(x);
Number of hidden neurons n;
Regularization parameter α;

Output: input weights W , bias b and output weights β
1: Initialize input weights W and bias b randomly drawn from an uniform distribution in

[-1, 1];
2: Compute feature matrix H according to (2.3);
3: Compute output weights β according to (2.7);
4: Return

where L is the graph Laplacian of labeled and unlabeled input data, computed as follows:

L = D − A (2.9)

Dii =
N∑
j=1

Aij (2.10)

Aij = e−||xi−xj ||2/2σ2 (2.11)

where N is the number of labeled and unlabeled samples, D is a diagonal matrix, and A
is the adjacency matrix of input data.

The ELM cost function can be updated to take into account the classification error,
the system complexity and the smoothness of data transition. The cost function, with a
tradeoff parameter λ, is described by:

min
f

1
2{||β||

2 + ||f − T ||2 + λfTLf} (2.12)

To increase the generalization of the model for unbalanced datasets, a diagonal
matrix of penalty coefficients J is defined. Given a penalty coefficient C, a training sample
xi belonging to class ti and the number Nti of labeled samples of class ti, the matrix J is
defined as:

J = diag(C1, . . . , CN), Ci = C/Nti , i = 1, ..., N (2.13)

For unlabeled data samples, the Ci value in J matrix is zero. Adding J to (2.12),
and replacing f = Hβ, we have the cost function and the solution for SS-ELM as follows:

min
β

1
2{||β||

2 + ||JHβ − T ||2 + λ(Hβ)TLHβ} (2.14)

β = (I +HTJH + λHTLH)−1
HTJT (2.15)

The SS-ELM training pseudocode, as proposed by Huang et al. (2014), is described
in Algorithm 2.
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Algorithm 2 SS-ELM training
Input: Labeled training set (X,T ) = {(xi, ti)|xi ∈ Rd, ti ∈ Rm, i = 1, . . . , NL};

Unlabeled training set (X ′) = {(x′i)|x′i ∈ Rd, i = 1, . . . , NU};
Activation function g(x);
Number of hidden neurons n;
Tradeoff parameter λ;
Penalty coefficient C;

Output: input weights W , bias b and output weights β
1: Initialize input weights W and bias b randomly drawn from an uniform distribution in

[-1, 1];
2: With labeled training set (X,T ) and unlabeled training set (X ′), compute feature

matrix H similarly to ELM;
3: Compute Laplacian matrix L according to (2.9)-(2.11);
4: Compute penalty coefficients matrix J according to (2.13);
5: Compute β according to (2.15);
6: Return

2.5.3 Online Sequential ELM (OS-ELM)

The OS-ELM algorithm is an online sequential version of ELM proposed by Liang
et al. (2006). Its formulation starts with the β calculation formula presented in (2.5),
and it is divided into two phases: initialization and sequential. Consider a training set
arriving sequentially in partitions. Each partition k is represented by (xi, ti), xi ∈ Rd, ti
∈ Rm, i = 1, . . . , Nk, where Nk is the number of samples in partition k, d is the number
of features and m is the number of labels. In the initialization phase, we have k = 0.
Replacing K = HTH in (2.7), the solution of the initialization phase of OS-ELM is given
by:

K0 = HT
0 H0 (2.16)

β0 = K−1
0 HT

0 T0 (2.17)

In sequential phase, we have k ≥ 1. The recursive solution of OS-ELM in the
sequential phase is given by:

Kk = Kk−1 +HT
k Hk (2.18)

βk = βk−1 +K−1
k HT

k (Tk −Hkβk−1) (2.19)

Replacing Pk = K−1
k and applying the Woodbury Formula (GOLUB; LOAN,

1989)(PRESS et al., 2007) in (2.19), we obtain the recursive solution of OS-ELM as
follows:

Pk = Pk−1 − Pk−1H
T
k (I +HkPk−1H

T
k )−1HkPk−1 (2.20)

βk = βk−1 + PkH
T
k (Tk −Hkβk−1) (2.21)
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The OS-ELM training pseudocode, as proposed by Liang et al. (2006), is described
in Algorithm 3.

Algorithm 3 OS-ELM training
Input: Initial training set (X0, T0) = {(xi, ti)|xi ∈ Rd, ti ∈ Rm, i = 1, . . . , N0};

Activation function g(x);
Number of hidden neurons n;

Output: input weights W , bias b, intermediate matrix Pk and output weights β
Initialization phase:

1: Initialize input weights W and bias b randomly drawn from an uniform distribution in
[-1, 1];

2: With initial training set (X0, T0), compute the feature matrix H0 similarly to ELM;
3: Compute K0 according to (2.16);
4: Compute β0 according to (2.17);

Sequential phase:
5: for each new training set (Xk, Tk) = {(xi, ti)|xi ∈ Rd, ti ∈ Rm, i = 1, . . . , Nk, k ≥ 1}

do
6: Compute feature matrix Hk similarly to ELM;
7: Compute Pk according to (2.20);
8: Compute βk according to (2.21);
9: end for

10: Return

2.5.4 Semi-supervised Online Sequential ELM (SOS-ELM)

The SOS-ELM algorithm is a graph-based semi-supervised and online sequential
version of the ELM. It was proposed by Jia et al. (2016) joining the SS-ELM (HUANG et
al., 2014) and OS-ELM (LIANG et al., 2006).

Like SS-ELM, SOS-ELM takes advantage of the structural relationship between
the input data when there are no labels, considering that changes in data occur smoothly.
Similar to OS-ELM, the SOS-ELM is divided into initialization and sequential phases,
recursively updating β according to each new training partition. The formulation of
SOS-ELM algorithm starts with the SS-ELM solution, described in (2.15).

Consider a training set arriving sequentially in partitions. Each partition k is
represented by labeled samples (xi, ti), xi ∈ Rd, ti ∈ Rm, i = 1, . . . , NkL

and unlabeled
samples (x′i), x′i ∈ Rd, i = 1, . . . , NkU

, where NkL
and NkU

are the number of labeled and
unlabeled samples in partition k, respectively, d is the number of features and m is the
number of labels. In the initialization phase, we have k = 0, and SOS-ELM solution is
given by:

K0 = I +HT
0 (J0 + λL0)H0 (2.22)

β0 = K−1
0 HT

0 J0T0 (2.23)
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In sequential phase we have k ≥ 1, and SOS-ELM recursively updates K and β according
to following equations:

Kk = Kk−1 +HT
k (Jk + λLk)Hk (2.24)

βk = βk−1 +K−1
k HT

k [JkTk − (Jk + λLk)Hkβk−1] (2.25)

Replacing Pk = K−1
k and applying the Woodbury Formula (GOLUB; LOAN,

1989)(PRESS et al., 2007) in (2.25), we obtain the recursive solution of SOS-ELM given
by:

Pk = Pk−1 − Pk−1H
T
k (I + (Jk + λLk)HkPk−1H

T
k )−1(Jk + λLk)HkPk−1 (2.26)

βk = βk−1 + PkH
T
k [JkTk − (Jk + λLk)Hkβk−1] (2.27)

The SOS-ELM training pseudocode, as proposed by Jia et al. (2016), is described
in Algorithm 4.

Algorithm 4 SOS-ELM training
Input: Initial training partition with labeled training set (X0, T0) = {(xi, ti)|xi ∈ Rd, ti ∈

Rm, i = 1, . . . , NL} and unlabeled training set (X ′0) = {(x′i)|x′i ∈ Rd, i = 1, . . . , NU};
Activation function g(x);
Number of hidden neurons n;
Tradeoff parameter λ;
Penalty coefficient C;

Output: input weights W , bias b, intermediate matrix Pk and output weights β
Initialization phase:

1: Initialize input weights W and bias b randomly drawn from an uniform distribution in
[-1, 1];

2: With initial labeled training set (X0, T0) and initial unlabeled training set (X ′0),
compute feature matrix H0 similarly to ELM;

3: Compute Laplacian matrix L0 and penalty matrix J0 similarly to SS-ELM;
4: Compute K0 according to (2.22);
5: Compute β0 according to (2.23);

Sequential phase:
6: for each new training partition k, where k ≥ 1, with labeled training set (Xk, Tk) and

unlabeled training set (X ′k) do
7: Compute feature matrix Hk similarly to ELM;
8: Compute Laplacian matrix Lk and penalty matrix Jk similarly to SS-ELM;
9: Compute Pk according to (2.26);

10: Compute βk according to (2.27);
11: end for
12: Return

2.5.5 Elastic ELM (E2LM)

Elastic ELM (E2LM) is a variation of ELM proposed by Xin et al. (2015) as an
online sequential alternative to be used in the MapReduce framework. The three main
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characteristics of this algorithm are: adaptation of ELM to the MapReduce framework;
decomposition of β computation into two matrices U and V ; and incremental, decremental,
and correctional online sequential training. This work is not intended to focus on the
MapReduce framework. However, the remaining two characteristics of E2LM is detailed in
this section.

According to Huang et al. (2012), the ELM output weights β can be computed
by (2.7), where α is a regularization factor. Consider a training set arriving sequentially
in partitions. Each partition k is represented by (xi, ti), xi ∈ Rd, ti ∈ Rm, i = 1, . . . , Nk,
where Nk is the number of samples in partition k, d is the number of features and m is the
number of labels. Replacing U = HTH and V = HTT in (2.7), the initialization phase of
E2LM where k = 0 is given by:

U0 = HT
0 H0 (2.28)

V0 = HT
0 T0 (2.29)

β0 = (αI + U0)−1V0 (2.30)

In the sequential phase of E2LM, for each training partition k, where k ≥ 1, we
calculate ∆U and ∆V of the current partition as follows:

∆U = HT
k Hk (2.31)

∆V = HT
k Tk (2.32)

obtaining Uk e Vk through recursive formulas. The incremental (I), decremental (D) and
correctional (C) learning equations are given by:

Uk =


Uk−1 + ∆U (I)
Uk−1 −∆U (D)

Uk−1 + ∆UI −∆UD (C)
(2.33)

Vk =


Vk−1 + ∆V (I)
Vk−1 −∆V (D)

Vk−1 + ∆VI −∆VD (C)
(2.34)

The calculation of βk in sequential phase is:

βk = (αI + Uk)−1Vk (2.35)

The E2LM training pseudocode, as proposed by Xin et al. (2015), is described in
Algorithm 5.

2.5.6 Forgetting Parameter ELM (FP-ELM)

The Forgetting Parameter ELM (FP-ELM) is a variation of OS-ELM proposed
by Liu, Wu & Jiang (2016) to deal with concept drift in non-stationary environments.
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Algorithm 5 E2LM training
Input: Initial training set (X0, T0) = {(xi, ti)|xi ∈ Rd, ti ∈ Rm, i = 1, . . . , N0};

Activation function g(x);
Number of hidden neurons n;
Regularization parameter α;

Output: input weights W , bias b, intermediate matrices Uk and Vk and output weights β
Initialization phase:

1: Initialize input weights W and bias b randomly drawn from an uniform distribution in
[-1, 1];

2: With initial training set (X0, T0), compute feature matrix H0 similarly to ELM;
3: Compute matrix U0 according to (2.28);
4: Compute matrix V0 according to (2.29);

Sequential phase:
5: for each new training set (Xk, Tk) = {(xi, ti)|xi ∈ Rd, ti ∈ Rm, i = 1, . . . , Nk, k ≥ 1}

do
6: Compute feature matrix Hk similarly to ELM;
7: Compute matrix Uk according to (2.33);
8: Compute matrix Vk according to (2.34);
9: end for

10: Compute βk according to (2.35);
11: Return

The main idea of FP-ELM is to apply a forgetting mechanism in the model, reducing the
influence of previous training samples in the classification results.

Like OS-ELM, in FP-ELM the training samples arrive sequentially in partitions.
Each partition k is represented by (xi, ti), xi ∈ Rd, ti ∈ Rm, i = 1, . . . , Nk, where Nk is
the number of samples in partition k, d is the number of features and m is the number of
labels. For k = 0, we have the solution of the initialization phase of FP-ELM as follows:

K0 = HT
0 H0 (2.36)

β0 = (αI +K0)−1HT
0 T0 (2.37)

where α is a regularization factor as proposed in Huang et al. (2012), to get a more stable
solution and avoid a singular matrix inversion.

In sequential phase, where k ≥ 1, FP-ELM needs to compute the forgetting
parameter γ. For each new data chunk Xk, the value of γk is given by:

γk = reg(θ − η ∗ Errork) (2.38)

reg(x) =


0, x < 0
x, 0 ≤ x ≤ 1
1, x > 1

(2.39)

where Errork is the current learner’s error, θ and η are control parameters and reg(x) is
a function to regulate γk in the range [0,1].
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With the new value of γk, the recursive solution of FP-ELM in the sequential phase
is given by:

Kk = γ2
kKk−1 +HT

k Hk (2.40)

βk = βk−1 + (αI +Kk)−1(HT
k (Tk −Hkβk−1)− α(1− γ2

k)βk−1) (2.41)

The FP-ELM training pseudocode, as proposed by Liu, Wu & Jiang (2016), is
described in Algorithm 6.

Algorithm 6 FP-ELM training
Input: Initial training set (X0, T0) = {(xi, ti)|xi ∈ Rd, ti ∈ Rm, i = 1, . . . , N0};

Activation function g(x);
Number of hidden neurons n;
Control parameters θ, η;
Regularization parameter α;

Output: input weights W , bias b, intermediate matrix Pk and output weights β
Initialization phase:

1: Initialize input weights W and bias b randomly drawn from an uniform distribution in
[-1, 1];

2: With initial training set (X0, T0), compute feature matrix H0 similarly to ELM;
3: Compute K0 according to (2.36);
4: Compute β0 according to (2.37);

Sequential phase:
5: for each new training set (Xk, Tk) = {(xi, ti)|xi ∈ Rd, ti ∈ Rm, i = 1, . . . , Nk, k ≥ 1}

do
6: Compute feature matrix Hk similarly to ELM;
7: Compute current learner’s error Errork;
8: Compute the forgetting parameter γk according to (2.38);
9: Compute Pk according to (2.40);

10: Compute βk according to (2.41);
11: end for
12: Return

2.5.7 Remarks

In this chapter, some variants of the Extreme Learning Machine were discussed.
The algorithms proposed in the next chapter are based on some ideas presented by
these ELM variants, adapting them to new problems and scenarios. The semi-supervised
learning process and the ability to learn incrementally are the guiding concepts behind
the development of the new algorithms.
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3 Development of new semi-supervised algo-
rithms based on Extreme Learning Machine

This chapter describes the steps of developing the algorithms proposed in this
thesis.

3.1 The algorithm SSOE-ELM
The first proposed algorithm of this thesis is the Semi-Supervised Online Elastic

Extreme Learning Machine (SSOE-ELM) (SILVA; KROHLING, 2018), a semi-supervised
version of Elastic ELM (XIN et al., 2015).

SSOE-ELM is a semi-supervised algorithm trained in an online way, receiving
labeled and unlabeled samples continuosly. Similarly to SS-ELM (HUANG et al., 2014)
and SOS-ELM (JIA et al., 2016), SSOE-ELM is a graph-based algorithm that uses similarity
information between labeled and unlabeled training samples, through the Laplacian matrix,
to infer information about labels when there are not enough labeled samples to train the
model.

SSOE-ELM is divided into two main process: semi-supervised learning and online
update. The idea behind the SSOE-ELM operation is to use the SS-ELM semi-supervised
mechanism in each training partition separately. The intermediate matrices generated by
the SS-ELM (Laplacian matrix L and penalty matrix J) are inserted in the decomposition
formulas of the β calculation proposed by the Elastic ELM, generating the U and V

matrices. Thus, at each training partition arrived, the U and V matrices are online
updated, without the need to calculate β matrix until the end of training process. Figure 4
shows the schematic diagram illustrating SSOE-ELM with one training partition k.

Consider a training set arriving sequentially in partitions. Each partition k is
represented by labeled samples (xi, ti), xi ∈ Rd, ti ∈ Rm, i = 1, . . . , NkL

and unlabeled
samples (x′i), x′i ∈ Rd, i = 1, . . . , NkU

, where NkL
and NkU

are the number of labeled and
unlabeled samples in partition k respectively, d is the number of features and m is the
number of labels. SSOE-ELM needs to adapt the SS-ELM formulation to work as an
online algorithm. In SS-ELM, the training process is made in batch mode as follows:

H = g(XW + b) (3.1)

β = (I +HTJH + λHTLH)−1
HTJT (3.2)

where X is the input matrix, T is the output matrix (labels), W and b are the input
weights and bias, g() is an activation function, H is the feature matrix of input data, L is
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Figure 4 – Schematic diagram of SSOE-ELM with semi-supervised learning and online
update steps for one training partition k

the graph Laplacian matrix of labeled and unlabeled training samples, J is the penalty
coefficient matrix for unbalanced datasets, β is the network output weigths matrix and λ
is a tradeoff parameter.

In the proposed algorithm SSOE-ELM, the graph Laplacian L of labeled and
unlabeled input data is computed for each training partition k, as follows:

Lk = Dk − Ak (3.3)

Dk[i, i] =
Nk∑
j=1

Ak[i, j] (3.4)

Ak[i, j] =

adj(xi, xj), if xi and xj are neighbors
0, otherwise

(3.5)

where Nk is the number of labeled and unlabeled samples in partition k, Dk is a diag-
onal matrix with the degree of the vertices and Ak is the adjacency matrix of training
partition Xk. The adjacency value adj(xi, xj) can be computed by the Gaussian function
e−||xi−xj ||2/2σ2 , or simply fixed to 1. Likewise, penalty diagonal matrix J for unbalanced
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datasets is also calculated for each training partition k, as follows:

Jk[i, i] =

C/Nti , if xi is a labeled sample
0, if xi is an unlabeled sample

(3.6)

where i = 1, ..., Nk, C is a penalty coefficient, Nk is the number of labeled and unlabeled
samples in partition k and Nti is the number of labeled samples from partition k that have
the same label as sample xi.

Based on SS-ELM formulation presented in (3.2), and considering only one training
partition k, the β matrix of SSOE-ELM is calculated as follows:

βk = (αI +HT
k JkHk + λkH

T
k LkHk)

−1
HT
k JkTk (3.7)

where α is a regularization factor to avoid singular matrices and increase the stability of
the solution and λk is the tradeoff factor between labeled and unlabeled data computed in
training partition k.

As an online algorithm, SSOE-ELM is divided in two phases: initialization and
sequential. Decomposing (3.7) into two intermediate matrices U and V as in Elastic ELM,
we have the initialization phase of SSOE-ELM algorithm, where k = 0, as follows:

U0 = HT
0 (J0 + λ0L0)H0 (3.8)

V0 = HT
0 J0T0 (3.9)

β0 = (αI + U0)−1V0 (3.10)

Unlike SS-ELM, which use a fixed value for the parameter λ (usually obtained
empirically), SSOE-ELM calculates the value of λ for each training partition, according
to the number of samples received. The parameter assumes values between zero and one,
where λ = 0 means to disregard the unlabeled data, and λ = 1 means giving same weight
to the labeled and unlabeled data. Considering NkL

and NkU
respectively the number of

labeled and unlabeled samples of a partition k, λk is calculated by:

λk = NkU

NkU
+NkL

(3.11)

As in SOS-ELM, it is assumed that the graph Laplacian Lk of a given training
partition k has no relation to the graph Laplacian of the previous or later partitions. This
limitation was imposed on the model because otherwise it would be necessary to store all
graph Laplacian already computed, which contradicts the online and incremental nature
of the proposed algorithm.

In the sequential phase of the SSOE-ELM algorithm, where k ≥ 1, matrices ∆U e
∆V are calculated based on the matrix Hk of the hidden layer of the new training partition
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as follows:

∆U = HT
k (Jk + λkLk)Hk (3.12)

∆V = HT
k JkTk (3.13)

For each new training partition received, the matrices Uk and Vk are updated as
in Elastic ELM, in an incremental (I), decremental (D) or correctional (C) manner, as
follows:

Uk =


Uk−1 + ∆U (I)
Uk−1 −∆U (D)

Uk−1 + ∆UI −∆UD (C)
(3.14)

Vk =


Vk−1 + ∆V (I)
Vk−1 −∆V (D)

Vk−1 + ∆VI −∆VD (C)
(3.15)

The updating formula of βk is:

βk = (αI + Uk)−1Vk (3.16)

It is worth mentioning that the β calculation described in (3.10) and (3.16) can
only be performed at the end of the training process, thus avoiding the computational cost
of the inversion of the matrix U in each training partition. This makes SSOE-ELM faster
than SOS-ELM, which calculates β recursively by inverting a reduced matrix at each
training step. When used in large databases, or with data streams, this feature becomes a
major advantage of SSOE-ELM. The SSOE-ELM pseudocode is described in Algorithm 7.
Appendix A provides information on the computational time complexity of the SSOE-ELM
algorithm.

3.1.1 Impacts of the size of training partition (Nk) in SSOE-ELM

Like Elastic ELM, the SSOE-ELM algorithm can receive training partitions of
any size. The calculation of the U and V matrices does not require a specific number of
training samples, nor does a training partition have the same number of samples as the
previous one.

However, matrices L and J are calculated for each training partition, considering
the number of samples Nk. In addition, the numbers of labeled and unlabeled samples from
each training partition (NkL

and NkU
, respectively) are used to calculate the λ parameter.

Therefore, it is necessary to establish minimum intervals for Nk values.

The µ parameter of the SSOE-ELM specifies how many neighbors will be considered
when calculating the Laplacian matrix L. If the number of samples from the training
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Algorithm 7 SSOE-ELM training
Input: Initial training partition with labeled training set (X0, T0) = {(xi, ti)|xi ∈ Rd, ti ∈

Rm, i = 1, . . . , NL} and unlabeled training set (X ′0) = {(x′i)|x′i ∈ Rd, i = 1, . . . , NU};
Activation function g(x);
Number of hidden neurons n;
Regularization parameter α;
Penalty coefficient C;
Number os neighbors µ;

Output: input weights W , bias b, intermediate matrices Uk and Vk and output weights β
Initialization phase:

1: Initialize input weights W and bias b randomly drawn from an uniform distribution in
[-1, 1];

2: With initial labeled training set (X0, T0) and initial unlabeled training set (X ′0),
compute feature matrix H0 similarly to ELM;

3: Compute tradeoff parameter λ0 according to (3.11);
4: Compute Laplacian matrix L0 according to (3.3);
5: Compute penalty matrix J0 according to (3.6);
6: Compute matrix U0 according to (3.8);
7: Compute matrix V0 according to (3.9);

Sequential phase:
8: for each new training partition k, where k ≥ 1, with labeled training set (Xk, Tk) and

unlabeled training set (X ′k) do
9: Compute feature matrix Hk similarly to ELM;

10: Compute tradeoff parameter λk according to (3.11);
11: Compute Laplacian matrix Lk according to (3.3);
12: Compute penalty matrix Jk according to (3.6);
13: Compute matrix Uk according to (3.14);
14: Compute matrix Vk according to (3.15);
15: end for
16: Compute βk according to (3.16);
17: Return

partition Nk is less than or equal to µ, all training samples will be neighbors, and will be
considered close to each other. Thus, the Laplacian matrix will lose its ability to distinguish
between near and distant samples, disregarding the smoothness assumption.

On the other hand, if Nk is greater than the number of neurons n, the calculation
of the intermediate matrices becomes the operation with the highest computational cost,
with complexity O(nN2

k ). This operation is performed for each training partition, different
from the β calculation, which is performed only at the end of the training process. This
makes the SSOE-ELM training process slower, even if the number of neurons is not very
large.

A good option for Nk is a value between µ and n. And although it is possible to
train SSOE-ELM with partitions of different sizes, in the experiments performed in this
thesis a fixed value for the size of the partition Nk was used. The partitions arriving from
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the data stream can be adjusted to the Nk value, dividing a larger partition into several
smaller ones, or accumulating the data that arrives until reaching the Nk value.

3.1.2 Limits of labeled partition of SSOE-ELM

As a semi-supervised algorithm that receives labeled and unlabeled partitions
sequentially to train a classification model, SSOE-ELM is among supervised and unsu-
pervised learning. To evaluate the limits of the SSOE-ELM labeled training partition, it
is necessary to analyze three distinct cases where the algorithm could be applied: fully
supervised learning; fully unsupervised learning; and semi-supervised learning.

3.1.2.1 Fully supervised case

In a fully supervised case, λk of SSOE-ELM becomes zero according to (3.11). V
computation described by (3.9) and (3.13) remains the same, and U computation described
by (3.8) and (3.12) becomes (3.17) and (3.18), respectively.

U0 = HT
0 J0H0 (3.17)

∆U = HT
k+1Jk+1Hk+1 (3.18)

As the training dataset is fully labeled, there are training samples of all classes
and T in (3.9) and (3.13) is a matrix without zero-columns. In this situation, SSOE-ELM
turns into a particular case of Elastic ELM with a penalty coefficient matrix J , suitable to
classification tasks.

3.1.2.2 Fully unsupervised case

In a fully unsupervised case, T in (3.9) and (3.13) is a matrix with only zeros,
turning V and ∆V into zero-matrices. Therefore, according to (3.10) and (3.16), β become
a zero-matrix and SSOE-ELM is unable to classify any sample.

3.1.2.3 Semi-supervised case

SSOE-ELM is suitable for semi-supervised learning cases. The most important
issue is to establish the limits of the labeled training partition in batch and online cases.

Batch case

A batch case is a special case of SSOE-ELM where all training samples are grouped
in one partition. In this situation, only the initialization phase is required. This phase is
described by (3.8)-(3.10).

Consider T0 = {t1, . . . , tN}T the output matrix of a training partition X0 with N
samples, where ti is a row-vector with 1 in the column equivalent of sample label and zeros
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otherwise. If there are no labeled samples of a class ci in X0, the i-th columns of T0 will
get only zeros. According to (3.9) and (3.10), the i-th column of V0 and β0 will also be
zero vectors, and the model will be unable to correctly classify samples of label ci.

On the other hand, if there are at least one labeled sample of a class ci in X0, the
i-th column of β0 will have non-zero values, making the model capable to classify samples
of label ci.

Condition 1: In batch cases (with only one training partition), the minimal
condition to SSOE-ELM work properly is the presence of at least one labeled sample for
each class (label) in training partition.

Online case

Online case of SSOE-ELM occurs when training samples arrive one-by-one or in
small partitions. In this situation, initialization and sequential phases of SSOE-ELM are
required.

Consider Tk = {t1, . . . , tN}T the output matrix of a training partition Xk with Nk

samples, where ti is a row-vector with 1 in the column equivalent of sample label and
zeros otherwise. Like in batch case, if there are no labeled samples of a class ci in Xk, the
i-th columns of Tk will get only zeros, and the i-th column of Vk and βk will also be zero
vectors. In this case, the model will be unable to correctly classify samples of label ci.

As V matrix is incrementally updated, if a training partition Xk+1 with at least
one labeled sample of class ci arrive, the model will be update according to (3.13) and
(3.15). So, the i-th column of Vk+1 and also βk+1 will have non-zero values, making the
model capable to classify samples of label ci.

Therefore, in online case it is not necessary that all training partitions includes
samples of each class, as Vk is incrementally updated. If one training partition includes
labeled samples for all classes, all other partitions can be fully unlabeled, and SSOE-ELM
still works.

Condition 2: In online cases (with more than one training partition), the minimal
condition to SSOE-ELM to work properly is the presence of at least one labeled sample
of each class in the complete training dataset, regardless of the number or size of training
partitions.

3.2 The algorithm SSOE-FP-ELM
In many real-world data stream problems, the situation known as concept drift is

common. There are many reasons for concept drift to occur: changes or malfunction in data
collection devices (sensors, cameras and others), changes in data pre-processing (filters,
audio or video compression and others), transmission problems (truncated or incomplete
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data, for example) or even changes in the data itself (changes in the problem domain;
changes in the objects being monitored; inclusion, alteration or exclusion of features or
classes, and many others). In problems like these, an algorithm that can detect and treat
the concept drift is necessary.

The second proposed algorithm of this thesis is the Semi-Supervised Online Elastic
ELM with hybrid Forgetting Parameter (SSOE-FP-ELM) (SILVA; KROHLING, 2019),
an extension of SSOE-ELM with a semi-supervised forgetting parameter mechanism for
data streams with concept drift.

SSOE-FP-ELM is divided into three main process: semi-supervised learning, for-
getting parameter calculation and online update process. The first and third processes are
similar to SSOE-ELM. The idea behind the SSOE-FP-ELM operation is to use the same
semi-supervised mechanism of SSOE-ELM in each training partition separately, while
monitoring changes in data. For each training partition, supervised and unsupervised
forgetting factors are calculated to detect concept drift and adapt the model. These
factors are combined in a semi-supervised forgetting parameter, which when applied to
the intermediate matrices U and V , changes the way the model learns from the training
samples. Figure 5 shows the schematic diagram illustrating SSOE-FP-ELM with one
training partition k.

Like SSOE-ELM, SSOE-FP-ELM has two phases: initialization and sequential.
Consider a training set arriving sequentially in partitions. Each partition k is represented
by labeled samples (xi, ti), xi ∈ Rd, ti ∈ Rm, i = 1, . . . , NkL

and unlabeled samples (x′i),
x′i ∈ Rd, i = 1, . . . , NkU

, where NkL
and NkU

are the number of labeled and unlabeled
samples in partition k respectively, d is the number of features and m is the number of
labels. The initialization phase of SSOE-FP-ELM, where k = 0, is similar to SSOE-ELM,
as follows:

U0 = HT
0 (J0 + λ0L0)H0 (3.19)

V0 = HT
0 J0T0 (3.20)

β0 = (αI + U0)−1V0 (3.21)

where T is the output matrix (labels), H is the feature matrix of input data, L is the graph
Laplacian of the labeled and unlabeled training data, J is the penalty coefficient matrix
for unbalanced datasets, β is the network output weigths matrix, α is the regularization
factor to avoid singular matrices and increase the stability of the solution and λ is the
tradeoff factor between labeled and unlabeled data.

The SSOE-ELM algorithm, in sequential phase, allows incremental, decremental,
and correctional learning. A correctional learning occurs in situations when a model adds
a set of training samples and removes another set at the same time. The sequential phase
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Figure 5 – Schematic diagram of SSOE-FP-ELM with semi-supervised learning, forgetting
parameter calculation and online update steps for one training partition k

of SSOE-ELM with correctional learning is described as:

Uk = Uk−1 + ∆UI −∆UD (3.22)

Vk = Vk−1 + ∆VI −∆VD (3.23)

where ∆UI and ∆VI are the new training partition matrices, and ∆UD and ∆VD are the
portion of Uk−1 and Vk−1 matrices that needs to be removed.

When ∆UD and Uk−1 are the same matrix, a "forgetting effect" occurs and the data
in Uk−1 is removed from the new matrix Uk. Applying a factor γ in ∆UD, it is possible to
control the rate of this forgetting effect. Thus, by rewriting (3.22) and (3.23), we obtain
the forgetting mechanism formulation as follows:

Uk = (1− γ)Uk−1 + ∆UI (3.24)

Vk = (1− γ)Vk−1 + ∆VI (3.25)

Considering (3.24) and (3.25), the sequential phase of SSOE-FP-ELM for a training
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partition k, where k ≥ 1, can be described as:

∆U = HT
k (Jk + λkLk)Hk (3.26)

∆V = HT
k JkTk (3.27)

Uk = (1− γ)Uk−1 + ∆U (3.28)

Vk = (1− γ)Vk−1 + ∆V (3.29)

βk = (αI + Uk)−1Vk (3.30)

where γ is the forgetting parameter in the range [0, 1].

It is interesting to note that the forgetting mechanisms of SSOE-FP-ELM can be
seen as a special case of correctional learning with a forgetting parameter γ. When γ =
0, no forgetting mechanism is applied, and SSOE-FP-ELM work similar to SSOE-ELM.
When γ = 1, all prior knowledge of the model is discarded, and a new model is trained
from the beginning with the new training partition k.

It is important to properly determine the γ parameter. Values close to zero may
not deal with the concept drift, while values close to one may force the model to retrain
unnecessarily. Zhao, Wang & Park (2012) and Liu, Wu & Jiang (2016) propose supervised
approaches to calculate the forgetting parameter, evaluating the accuracy of each training
partition and using the obtained error to adapt the forgetting parameter. Although
this approach demonstrates good results, it requires a large amount of labeled samples
for evaluation and does not take into account unlabeled samples. In SSOE-FP-ELM, a
semi-supervised forgetting parameter γ is proposed as follows:

γ = max(γs, γus) (3.31)

where γs is a supervised factor calculated from the labeled samples of partition k, and γus
is an unsupervised factor, calculated from all samples of partition k.

3.2.1 Calculation of the semi-supervised forgetting parameter

To calculate the forgetting parameter γ, SSOE-FP-ELM needs to keep in memory
the previous and current training partition, as well as a measure of accuracy of the previous
partition.

3.2.1.1 Supervised factor of forgetting parameter

The supervised factor γs is calculated by comparing the accuracy of the supervised
classification of the model in two consecutive training partitions. A significant reduction
in accuracy may indicate that concept drift occurred.

When a partition k arrives, where k ≥ 1, all labeled samples of k are first used to
evaluate the accuracy δk of the model, where δk is in the range [0, 1]. This accuracy is
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compared with the previous accuracy δk−1, and the factor γs is given by:

γs =

δk−1 − δk, δk < δk−1

0, δk ≥ δk−1
(3.32)

where γs = 0 means no supervised forgetting mechanism is needed, and γs = 1 means all
prior knowledge of the supervised portion of the model is discarded.

3.2.1.2 Unsupervised factor of forgetting parameter

The unsupervised factor γus is calculated by comparing the probability distribu-
tions of each feature in two consecutive training partitions. A change in the probability
distributions of a significant number of features may indicate a concept drift.

To measure this changes, a nonparametric statistical test is needed. For this task,
the Wilcoxon test was choosen, but there are other methods (SIMPSON, 2015). According
to Barros, Hidalgo & Cabral (2018), the Wilcoxon test can be used to determine whether
two independent samples come from populations with the same distribution. In SSOE-FP-
ELM, the Wilcoxon test is used for each feature of the dataset to discriminate those whose
distribution has changed (PREL et al., 2010). If the values of a feature in a k training
partition show significant changes in its probabilistic distribution in relation to the values
in the k-1 partition, that feature is marked as "changed".

It is important to note that the features of a dataset do not have equal importance.
Some features have a greater impact on the classification result than others. Therefore,
in addition to identifying which features have changed, it is necessary to quantify the
importance of these features selected by the Wilcoxon test. For this task, the Laplacian
Scores were used as a feature selection technique, as proposed by He, Cai & Niyogi
(2006). The Laplacian Scores are based on Laplacian Eigenmaps and Locality Preserving
Projection, and measures the power of locality preserving of each feature, considering that
data from the same class are often close to each other. For a training partition k of a
dataset X ∈ Rd, where d is the number of features, there are Laplacian scores S = (Si),
where i = 1, . . . , d, indicating the relevance of each feature. A score near zero indicates a
good feature. For each feature i of the training dataset, Si is computed as follows:

f ′i = [fi,1, . . . , fi,Nk
]T , 1 = [1, . . . , 1]T ,

f̃i = f ′i −
f ′Ti Dk1
1TDk1

1 (3.33)

Si = f̃Ti Lkf̃i

f̃Ti Dkf̃i
(3.34)

where fi,j is the j-th sample of the i-th feature, j = 1, . . . , Nk; 1 is a column vector of ones;
L is the graph Laplacian of training dataset and D is the diagonal matrix of dimension
NkxNk with the degree of the vertices used to compute L.
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In this work, the Laplacian scores computed as in (3.34) are then normalized in
the range [0, 1] and reversed, so that the most important features have the highest values.
We denote as S ′ = (S ′i), where i = 1, . . . , d, the normalized and reversed Laplacian scores
of a training partition k, computed as follows:

S ′i = | Si
max(S) − 1| (3.35)

The unsupervised factor γus is calculated as follows:

Ŝi

S
′
i, if feature i has changed according to Wilcoxon test

0, otherwise
(3.36)

γus =
∑d
i=1 Ŝi∑d
i=1 S

′
i

(3.37)

where Ŝ = (Ŝi), where i = 1, . . . , d, is the normalized and reversed Laplacian scores only
of the features that were changed according to the Wilcoxon test and d is the number of
features.

Algorithm 8 Calculating Forgetting Parameter γ
Input: Training partition k with labeled training set (Xk, Tk) = {(xi, ti)|xi ∈ Rd, ti ∈

Rm, i = 1, . . . , NL} and unlabeled training set (X ′k) = {(x′i)|x′i ∈ Rd, i = 1, . . . , NU};
Previous training partition k-1 with labeled training set (Xk−1, Tk−1) and unlabeled
training set (X ′k−1);
Accuracy δk−1 of previous partition;

Output: Forgetting Parameter γ
Supervised factor γs:

1: Compute accuracy δk of training partition k using labeled training set (Xk, Tk);
2: Compute supervised factor γs according to (3.32);

Unsupervised factor γus:
3: Compute graph Laplacian Lk and diagonal matrix Dk of training partition k using

labeled training set (Xk) and unlabeled training set (X ′k);
4: for each feature i of training partition k do
5: Compute Laplacian Scores Si according to (3.34);
6: end for
7: for each feature i of training partition k do
8: Compute normalized and reversed Laplacian Scores S ′i according to (3.35);
9: Perform Wilcoxon test using training partition k and training partition k-1;

10: Compute Ŝi according to (3.36);
11: end for
12: Compute unsupervised factor γus according to (3.37);

Forgetting Parameter γ:
13: Compute γ according to (3.31);
14: Return

The γus factor is given by the sum of the Laplacian scores of the features that were
changed divided by the sum of the Laplacian scores of all features, where γus = 0 means
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no unsupervised forgetting mechanism is needed (no features have been changed), and γus
= 1 means all prior knowledge of the unsupervised portion of the model is discarded (all
features have been changed). After computing γs and γus, the forgetting parameter γ is
given by (3.31). Algorithm 8 details the calculation of γ. The SSOE-FP-ELM pseudocode
is described in Algorithm 9. Appendix B provides information on the computational time
complexity of the SSOE-FP-ELM algorithm.

Algorithm 9 SSOE-FP-ELM training
Input: Initial training partition with labeled training set (X0, T0) = {(xi, ti)|xi ∈ Rd, ti ∈

Rm, i = 1, . . . , NL} and unlabeled training set (X ′0) = {(x′i)|x′i ∈ Rd, i = 1, . . . , NU};
Activation function g(x);
Number of hidden neurons n;
Regularization parameter α;
Penalty coefficient C;

Output: input weights W , bias b, intermediate matrices Uk and Vk and output weights β
Initialization phase:

1: Initialize input weights W and bias b randomly drawn from an uniform distribution in
[-1, 1];

2: With initial labeled training set (X0, T0) and initial unlabeled training set (X ′0),
compute feature matrix H0 similarly to ELM;

3: Compute tradeoff parameter λ, graph Laplacian L0 and penalty matrix J0 similarly to
SSOE-ELM;

4: Compute matrix U0 according to (3.19);
5: Compute matrix V0 according to (3.20);
6: Compute matrix β0 according to (3.21);
7: Compute and store δ0 as the accuracy of labeled training set (X0, T0), and store initial

training partition;
Sequential phase:

8: for each new training partition k, where k ≥ 1, with labeled training set (Xk, Tk) and
unlabeled training set (X ′k) do

9: Compute feature matrix Hk similarly to ELM;
10: Compute tradeoff parameter λ, graph Laplacian Lk and penalty matrix Jk similarly

to SSOE-ELM;
11: Compute forgetting parameter γ according to Algorithm 8;
12: Compute matrix Uk according to (3.28);
13: Compute matrix Vk according to (3.29);
14: Compute matrix βk according to (3.30);
15: Compute and store δk as the accuracy of labeled training set (Xk, Tk), and store

training partition k;
16: end for
17: Return

3.2.2 Impacts of the training partitions in SSOE-FP-ELM

The SSOE-FP-ELM algorithm has the same advantages and restrictions as the
SSOE-ELM with respect to the size of the training partitions (Nk).



Chapter 3. Development of new semi-supervised algorithms based on Extreme Learning Machine 51

Due to the calculation of the forgetting parameter, the SSOE-FP-ELM needs to
check the accuracy of the model with each new training partition. If the measured accuracy
is far below the accuracy observed in the previous partition, a forgetting parameter close
to 1 will be generated, forcing the model to forget the previous knowledge obtained.
In situations where the training partition has few labeled instances, the algorithm may
incorrectly detect a concept drift due to this drop in accuracy, leading the model to forget
its prior knowledge. To prevent this undesired behavior, it is important that each training
partition has labeled samples, ensuring the calculation of γ.

It is important to note that the operations for calculating the unsupervised factor
of γ, in particular the calculation of Laplacian scores, are performed on the X matrix of
the input data, being performed at each training partition processed. For datasets with
a large number of columns (for example the Gisette dataset, used in the experiments
that will be presented), the calculation of Laplacian scores becomes a computationally
expensive operation, increasing the training time.

3.3 Remarks
In this chapter, two new algorithms have been proposed, based on ELM variants.

The first one, called Semi-Supervised Online Elastic Extreme Learning Machine (SSOE-
ELM) is a semi-supervised algorithm, with online update and low training time, developed
to handle large and unbalanced datasets and data streams. The SSOE-ELM is trained
sequentially with labeled and unlabeled samples, and the complete training dataset is not
required at the beginning of the training process.

The second algorithm proposed in this chapter is called Semi-Supervised Online
Elastic Extreme Learning Machine with hybrid Forgetting Parameter (SSOE-FP-ELM).
It extends the SSOE-ELM, incorporating a concept drift treatment mechanism. In data
streams, the data received may change over time. These variations can be due to many
factors: problems with data collection, transmission or pre-processing; changes in the
monitored environment; among others. To address these drifts, a semi-supervised forgetting
parameter was added to the SSOE-ELM to detect changes and adapt the model to the
new dataset. This parameter is composed of a supervised factor, which periodically checks
the model for accuracy drops as an indicator of concept drifts, and an unsupervised factor,
which verifies changes in the input data distribution as an indicator of concept drifts.
These two factors are combined, generating a forgetting parameter that is responsible for
adapting the model to the detected changes, either updating with the new information, or
discarding all the acquired knowledge and retraining from the beginning.
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4 Experimental Results

In order to assess the performance of the two proposed algorithms, four sets of
experiments were performed. They are described in the following.

In the first experiment, the proposed algorithms were tested in public benchmarks
in a fully supervised way, comparing the obtained results with another semi-supervised and
online algorithm named SOS-ELM and a well-known supervised algorithm, the Support
Vector Machine (SVM). In the second experiment, the proposed algorithms were tested
in the same benchmarks, in a semi-supervised way, comparing the results with the SOS-
ELM algorithm. In the third experiment, the proposed algorithms were tested in a fully
supervised way in concept drift situations, comparing the obtained results with SOS-
ELM and FP-ELM. In the fourth experiment, the proposed algorithms were tested in a
semi-supervised way in concept drift situations, comparing the results with the SOS-ELM
algorithm.

It is important to note that the proposed algorithms are aimed at data streams, but
the experiments carried out were performed with static datasets. This was done because
simulating the experiments using real data streams poses an additional difficulty: the
long-term availability of the same data used in the experiments presented. To allow the
reproducibility of the experiments, static datasets were used, divided into small partitions
(chunks), and each partition is presented to the algorithm separately, sequentially, as
if the data had arrived through a data stream. If other researchers wish to repeat the
experiments, they only need to use the same datasets, which are in the public domain,
and follow the same process of creating the partitions.

All code was implemented in Python and Tensorflow, and was tested on an Intel
computer with a 2.60GHz Core i7-6 processor and 16GB RAM memory, with an NVidia
GeForce GTX 960M graphics card. For SVM, the standard implementation of Scikit-Learn
library (PEDREGOSA et al., 2011) was used. The source codes are available online at
https://bitbucket.org/carlosalexandress/ssoe-elm-ssoe-fp-elm.

4.1 Benchmarks
For these experiments, 12 public domain classification benchmarks were used. For

better organization, these benchmarks have been separated into image datasets and textual
datasets, and are described in the following sections. In all datasets, inputs were normalized
between 0 and 1. Table 1 presents the number of features, number of labels, number of
training and test samples of each dataset and an indication of whether or not the dataset
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has a test partition. To show the degree of unbalance of the datasets, the number of
samples from the majority and minority classes are reported. For datasets that have a test
partition, the number of samples from the majority and minority class were collected from
the training partition. For datasets that do not have a test partition, these values were
collected from the complete dataset.

Table 1 – Benchmarks

Train Test Test Minority Majority
Dataset Features Labels Samples Samples Partition Class Class
COIL20 1024 20 1008 432 No 72 72
COIL100 1024 100 5040 2160 No 72 72
CrowdMap 28 6 10545 300 Yes 53 7431

DNA 180 3 2000 1186 Yes 464 1051
Gisette 5000 2 6000 1000 Yes 3000 3000
Isolet 617 26 6238 1559 Yes 238 240

KDEF_Front 900 7 686 294 No 140 140
Musk 166 2 4618 1980 No 1017 5581
Spam 57 2 3220 1381 No 1813 2788

StatImgSeg 19 7 1617 693 No 330 330
StatLandSat 36 6 3104 1331 Yes 415 1072
Waveform 21 3 3500 1500 No 1647 1696

4.1.1 Image datasets

In these datasets, inputs are image pixels, organized in a one-dimensional vector.

The Columbia Object Image Library datasets (COIL-20 and COIL-100) are available
from the Columbia University Computer Vision Laboratory. COIL-20 (NENE; NAYAR;
MURASE, 1996b) is a database of 1400 grayscale images of 20 objects, placed on a
motorized turntable against a black background. The objects have a wide variety of
complex geometric and reflectance characteristics. The turntable was rotated through 360
degrees to vary object pose with respect to a fixed camera. Each object has 72 images
of size 640x480, with pose intervals of 5 degrees. COIL-100 dataset (NENE; NAYAR;
MURASE, 1996a) contains 7200 color images of 100 objects (72 images per object) of
size 640x480, acquired in a similar way to the COIL-20 dataset. In this thesis, COIL-100
dataset was converted to grayscale, and both COIL-20 and COIL-100 were rescaled to
32x32 pixels.

The Karolinska Directed Emotional Faces (KDEF) dataset (LUNDQVIST; FLYKT;
ÖHMAN, 1998) is available at the Emotion Lab at Karolinska Institutet. KDEF is a
set of 4900 562x762 images of human facial expressions. The set of pictures contains 70
individuals displaying 7 different emotional expressions (neutral, happy, angry, afraid,
disgusted, sad and surprised) in 2 different photo sessions. Each expression is viewed from
5 different angles (full left profile, half left profile, straight, half right profile, full right
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profile). In this thesis, a subset of KDEF dataset containing only the front-face images
(980 samples) rescaled to 30x30 pixels was used to classify facial expression. This subset
was named "KDEF_FRONT". The classification task is to recognize the facial expression
of each sample.

4.1.2 Textual datasets

In these datasets, the inputs are handcrafted or calculated features, organized in a
one-dimensional vector. Even on the datasets where the samples are images, the pixels of
the image are not used as inputs.

The CrowdSourcedMapping dataset is available at the University of California
Irvine (UCI) Machine Learning Repository (DUA; GRAFF, 2019). This dataset was
derived from geospatial data from two sources: 1) Landsat time-series satellite imagery
from the years 2014-2015; 2) crowdsourced georeferenced polygons with land cover labels
obtained from OpenStreetMap. The CrowdSourcedMapping dataset brings two major
difficulties to the classification task: the test set is very small in relation to the training
set, and there is a large presence of noise and class labeling errors in the training set.

The DNA dataset is available at the OpenML Machine Learning Datasets (VAN-
SCHOREN et al., 2013) and LIBSVM Datasets Repository (FAN; LIN, 2019). This dataset
consists of 3186 splice junctions of primate gene sequences (DNA). Splice junctions are
points on a DNA sequence at which ’superfluous’ DNA is removed during the process of
protein creation in higher organisms. The classification task in this dataset is to recognize,
given a sequence of DNA, the boundaries between exons (the parts of the DNA sequence
retained after splicing) and introns (the parts of the DNA sequence that are spliced out).
The 3 classes are: exon/intron boundaries (EI); intron/exon boundaries (IE); or Neither.

The Gisette dataset (DUA; GRAFF, 2019) and LIBSVM Datasets Repository
(FAN; LIN, 2019). This dataset was used in the NIPS 2003 feature selection challenge. It is
based on the MNIST dataset and aims to classify the digits "4" and "9". 2500 real features
were generated from the data, and another 2500 random features without predictive power
were added to increase the complexity of the problem.

The Isolet dataset (DUA; GRAFF, 2019) was generated from the sounds of the
letters of the alphabet. 150 subjects spoke the name of each letter of the alphabet twice.
Of these 150 subjects, 120 were separated in the training set and the remaining 30 in the
test set.

The Musk dataset (DUA; GRAFF, 2019) describes a set of 102 molecules (and
all possible rotations of these molecules) of which 39 are judged by human experts to be
musks and the remaining 63 molecules are judged to be non-musks.

The Spambase dataset (DUA; GRAFF, 2019) contains statistical values calculated
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from the textual content of emails marked by human agents as "spam" or "non-spam",
indicating whether or not an email is spam.

The Statlog Image Segmentation (DUA; GRAFF, 2019) instances are samples of
a 3x3 region randomly drawn from a database of 7 outdoor images. The images were
handsegmented to create a classification for every pixel.

The Statlog Landsat Satellite dataset (DUA; GRAFF, 2019) consists of the multi-
spectral values of pixels in 3x3 neighbourhoods in a satellite image, and the classification
associated with the central pixel in each neighbourhood. The aim is to predict this
classification, given the multi-spectral values.

The Waveform dataset (DUA; GRAFF, 2019) contains 3 classes of waves, each one
generated from a combination of 2 or 3 "base" waves. All features include noise (mean 0,
variance 1).

4.2 Hyperparameter optimization
For a fair comparison, each of the algorithms was executed using a set of hyperpa-

rameters close to the optimum. For this, it was necessary to use a hyperparameter tuning
technique. There are several techniques for this, and three of the most known and simple
are Manual Search, Grid Search and Random Search.

Manual Search is the adjustment of hyperparameters through manual configuration,
based on the researcher’s prior knowledge of the problem domain. The researcher must
define restricted search spaces for each hyperparameter, making small adjustments. The
main disadvantage of this method is the need to know each problem in depth to adjust
the hyperparameters.

Grid search, according to Ensor & Glynn (1997), is an exhaustive search using a
manually specified subset of the hyperparameter decision space of an objective function
that you want to maximize (accuracy) or minimize (error rate). Grid Search has the
disadvantage of having a high computational cost, as it evaluates each combination of
hyperparameter values, even those in less promising search spaces.

Random Search is a technique based on Grid Search in which only a few random
combinations of hyperparameters are evaluated. According to Bergstra & Bengio (2012),
Random Search has all the practical advantages of Grid Search (conceptual simplicity,
ease of implementation, trivial parallelism) and trades a small reduction in efficiency in
low-dimensional spaces for a large improvement in efficiency in high-dimensional search
spaces.

For these reasons, a Random Search technique was used in this thesis in hyperpa-
rameter optimization in all experiments performed.
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4.3 Experimental setup
For the datasets that had a test partition, this partition was used. For the datasets

without a test partition, data was shuffled and divided into 70% for training and 30%
for test. In semi-supervised experiments, the training partition was divided into labeled
and unlabeled samples according to the ratios described in the specific section of the
experiment.

The parameters of the algorithms for each dataset were determined by Random
Search method, using the training partition as validation. For SSOE-ELM, SSOE-FP-ELM
and SOS-ELM, values in the range [10−5, 10−4, . . . , 104, 105] were tested for the parameter
C. The size of the chunks Nk for online training of the algorithms was initially tested
with values in the interval [50, 52, . . ., 200], and was later set to 200 for all algorithms to
facilitate the reproduction of the experiments. For the SOS-ELM algorithm, the tradeoff
parameter λ was tested with values between 0 and 1. Note that for parameters C, Nk and
λ, the same ranges presented by Jia et al. (2016) were adopted. The values tested for the
number of neighbors µ, required to compute graph Laplacian, were [5, 10, 15, 20]. Huang
et al. (2012) chooses the regularization parameter α of ELM in the range [2−24, 2−23, . . . ,
224, 225], so the same interval was used in this thesis for SSOE-ELM and SSOE-FP-ELM.
For FP-ELM, the parameters θ and η were tested with values in the range [0.0, 0.1, . . . ,
19.9, 20.0], as proposed by Liu, Wu & Jiang (2016). For the regularization parameter α,
Liu, Wu & Jiang (2016) set a fixed value of 0.02, and in this thesis this value was also
used. The number of neurons n for all algorithms was tested with values in the interval [50,
100, . . ., 3000]. For SVM, Hsu, Chang & Lin (2003) suggests the choice of regularization
parameter α in the range [2−5, 2−3, . . . , 215] and parameter γ in the range [2−15, 2−13, . . . ,
23]. In this thesis, the suggested intervals have been extended to [2−5, 2−4, . . . , 215] for
α and [2−15, 2−14, . . . , 23] for γ. In all experiments, the RBF kernel was used. For each
experiment, an hyperparameter tuning was performed for all algorithms using the intervals
described above.

It is worth mentioning that the size of chunks Nk does not need to be fixed, being
able to change with each training partition. In this thesis, the same value of Nk was used
for all training partitions of a given experiment just to facilitate the reproducibility of the
experiment.

4.4 First experiment - supervised comparison
In this first experiment, SSOE-ELM and SSOE-FP-ELM were evaluated in 12

public benchmarks, in a fully supervised way (all training samples are labeled), comparing
the obtained results with SOS-ELM, FP-ELM and SVM. An hyperparameter tuning
with Random Search method was performed in all algorithms. Table 2 presents these
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parameters.

Table 2 – Algorithm parameters for supervised experiment

SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM SVM
Dataset n α C µ n α C µ n λ C µ n θ η γ α
COIL20 2000 2−5 103 20 2550 23 103 15 2700 0.24 103 20 2700 2.5 5.5 2−5 25

COIL100 2300 24 103 5 2500 2−5 10−1 15 2000 0.26 103 10 2100 8.3 6.3 2−7 210

CrowdMap 1300 2−5 10−3 15 2250 2−8 10−4 5 300 0.15 102 10 300 13.7 1.3 20 28

DNA 3000 2−15 10−5 5 1450 2−16 10−5 20 600 0.45 105 15 350 14.9 3.7 2−5 22

Gisette 2200 29 102 5 2950 214 103 20 1250 0.89 100 5 1800 10.3 15.6 2−9 24

Isolet 2950 27 101 5 2450 2−15 10−5 20 2700 0.14 104 20 2300 17.2 13.6 2−6 26

KDE_Front 3000 215 105 5 3000 213 104 15 2700 0.15 10−4 5 3000 15.4 2.1 2−8 210

Musk 2950 2−15 10−2 20 2750 23 103 5 2150 0.27 104 10 2800 9.8 10.8 2−3 210

Spam 600 2−22 10−3 20 2800 2−10 102 20 2250 0.27 104 15 1950 12.0 17.0 2−2 28

StatImgSeg 2450 23 105 5 1000 2−22 10−1 15 2100 0.34 105 20 2650 9.2 7.0 22 211

StatLandSat 650 2−10 104 10 2100 2−10 10−1 10 2250 0.66 104 10 2300 7.6 19.0 22 28

Waveform 2150 2−9 10−1 20 2650 2−2 100 5 1800 0.08 103 10 650 6.7 18.0 2−15 214

For each dataset, the experiment was repeated 30 times, using the mean and
standard deviation of the classification accuracy as performance metrics. In Table 3, the
mean accuracy of each algorithm is presented.

Table 3 – Algorithms accuracy (%) in supervised experiment

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM SVM
COIL20 99.8 ± 0.2 99.9 ± 0.2 99.8 ± 0.3 99.8 ± 0.2 99.8 ± 0.2
COIL100 96.2 ± 0.4 96.6 ± 0.5 95.9 ± 0.5 96.2 ± 0.5 99.7 ± 0.1
CrowdMap 51.6 ± 1.4 51.6 ± 1.5 34.4 ± 3.5 27.8 ± 2.9 26.0 ± 0.0

DNA 93.6 ± 0.3 92.9 ± 0.4 88.2 ± 1.0 90.2 ± 0.6 95.7 ± 0.0
Gisette 95.9 ± 0.4 96.3 ± 0.3 93.5 ± 0.7 94.0 ± 0.7 98.1 ± 0.0
Isolet 95.2 ± 0.3 95.0 ± 0.3 94.4 ± 0.4 94.5 ± 0.5 96.9 ± 0.0

KDEF_Front 80.8 ± 2.0 80.7 ± 2.3 77.0 ± 2.8 72.0 ± 2.6 82.7 ± 2.2
Musk 99.1 ± 0.3 98.7 ± 0.3 98.7 ± 0.2 99.2 ± 0.3 99.6 ± 0.2
Spam 92.4 ± 0.7 92.5 ± 0.6 92.8 ± 0.6 92.8 ± 0.6 93.8 ± 0.5

StatlogImgSeg 95.9 ± 0.9 95.6 ± 0.7 96.2 ± 0.7 94.6 ± 1.0 96.9 ± 0.7
StatlogLandSat 87.5 ± 0.4 87.8 ± 0.2 87.4 ± 0.2 85.2 ± 0.1 90.4 ± 0.0

Waveform 86.8 ± 0.7 87.2 ± 0.7 86.3 ± 0.7 86.1 ± 0.7 87.0 ± 0.6

The Wilcoxon test was performed to a pairwise comparison of the performance
of the algorithms for each dataset. In Table 4 the p-values between SSOE-ELM and the
other algorithms for each dataset are presented. In values marked with ’*’, p-value ≤ 0.01
and, according to Derrac et al. (2011), there is a significant difference between the two
algorithms.

For COIL20 dataset, there is no significant differences between the algorithms.
There are 7 significant differences between SSOE-ELM and SOS-ELM, and in all of them
the proposed algorithm has the highest accuracy. One of the causes of this behavior is
the presence of a regularization parameter α in the SSOE-ELM. According to Huang et
al. (2012), the use of a regularization factor in the ELM formulation makes the obtained
solution more stable and with greater generalization ability.



Chapter 4. Experimental Results 58

Table 4 – p-value of the Wilcoxon test in comparison between SSOE-ELM and other
algorithms in supervised experiment

SSOE-ELM SSOE-ELM SSOE-ELM SSOE-ELM
Datasets SOS-ELM FP-ELM SVM SSOE-FP-ELM
COIL20 0.4035 0.2612 0.2254 0.3147
COIL100 0.0176 0.9528 0.0000* 0.0011*
CrowdMap 0.0000* 0.0000* 0.0000* 0.6952

DNA 0.0000* 0.0000* 0.0000* 0.0000*
Gisette 0.0000* 0.0000* 0.0000* 0.0009*
Isolet 0.0000* 0.0000* 0.0000* 0.0555

KDEF_Front 0.0000* 0.0000* 0.0030* 0.8016
Musk 0.0000* 0.2550 0.0000* 0.0001*
Spam 0.0399 0.0428 0.0000* 0.4553

StatlogImgSeg 0.2550 0.0000* 0.0000* 0.0679
StatlogLandSat 0.6681 0.0000* 0.0000* 0.0003*

Waveform 0.0061* 0.0007* 0.6520 0.0963

Between SSOE-ELM and SVM, there are 10 significant differences, and only in
the CrowdSourcedMapping dataset the proposed algorithm have greater accuracy than
SVM. This result was already expected, since the differential of the proposed algorithm is
in semi-supervised cases. But even with performance below SVM in these 9 datasets, the
difference between the two algorithms was small, ranging from 1% to 3% in the average
accuracy.

Between SSOE-ELM and FP-ELM, there are 8 significant differences, and in all of
them the proposed algorithm has the highest accuracy.

In Table 5 the p-values between SSOE-FP-ELM and the other algorithms for each
dataset are presented. Values marked with ’*’ represent a p-value ≤ 0.01, indicating that
there is a significant difference between the two algorithms.

There are 9 significant differences between SSOE-FP-ELM and SOS-ELM, and
only in the StatlogImageSegmentation dataset the proposed algorithm has lower accuracy.
The reason for this advantage is the same as for SSOE-ELM, since the two algorithms
have a very similar structure. The same occurs when comparing SSOE-FP-ELM and SVM,
in which the algorithms have significant differences in the same 10 datasets, but only in
the CrowdSourcedMapping dataset does SSOE-FP-ELM perform better.

Between SSOE-FP-ELM and FP-ELM, there are 10 significant differences, and
only in the Musk dataset the proposed algorithm has lower accuracy.

Table 6 presents the training time of the algorithms for each dataset. It is important
to note that the SSOE-ELM, SSOE-FP-ELM and SOS-ELM algorithms have partially
parallel implementations, using GPU processing, while the FP-ELM and SVM have
implementations entirely in CPU. In addition, for the comparison of training time, the
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Table 5 – p-value of the Wilcoxon test in comparison between SSOE-FP-ELM and other
algorithms in supervised experiment

SSOE-FP-ELM SSOE-FP-ELM SSOE-FP-ELM SSOE-FP-ELM
Datasets SOS-ELM FP-ELM SVM SSOE-ELM
COIL20 0.9058 0.9058 0.8476 0.3147
COIL100 0.0000* 0.0054* 0.0000* 0.0011*
CrowdMap 0.0000* 0.0000* 0.0000* 0.6952

DNA 0.0000* 0.0000* 0.0000* 0.0000*
Gisette 0.0000* 0.0000* 0.0000* 0.0009*
Isolet 0.0000* 0.0002* 0.0000* 0.0555

KDEF_Front 0.0000* 0.0000* 0.0028* 0.8016
Musk 0.2772 0.0000* 0.0000* 0.0001*
Spam 0.1474 0.1646 0.0000* 0.4553

StatlogImgSeg 0.0004* 0.0005* 0.0000* 0.0679
StatlogLandSat 0.0000* 0.0000* 0.0000* 0.0003*

Waveform 0.0000* 0.0000* 0.1646 0.0963

same number of neurons was used in the ELM-based algorithms (1500 neurons), since this
parameter has a great influence on the operations performed. Therefore, the comparison
of training times is only a reference for the experiments carried out.

Table 6 – Algorithms training time (in seconds) in supervised experiment

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM SVM
COIL20 1.23 2.67 1.10 1.85 2.48
COIL100 1.39 13.10 4.33 10.12 23.99
CrowdMap 2.19 5.51 7.75 19.26 3.07

DNA 0.48 1.75 1.78 3.56 1.16
Gisette 2.50 52.97 5.86 13.26 90.52
Isolet 1.55 12.10 5.11 11.75 23.85

KDEF_Front 0.19 1.53 0.81 1.12 0.59
Musk 1.08 3.91 3.73 7.97 1.07
Spam 0.64 1.82 2.60 5.35 0.52

StatlogImgSeg 0.39 0.82 1.50 2.74 0.08
StatlogLandSat 0.97 2.40 3.55 7.57 0.66

Waveform 0.75 1.68 2.82 5.88 0.33

4.5 Second experiment - semi-supervised comparison
In this second experiment, SSOE-ELM and SSOE-FP-ELM were evaluated in the

same 12 public benchmarks, in a semi-supervised way, comparing the obtained results
with SOS-ELM. For each dataset, the training partition was divided into labeled and
unlabeled instances, starting with 10% of labeled samples and 90% unlabeled, and gradually
increasing to 90% of labeled samples and 10% unlabeled. The training was then performed
in an online manner using a chunk of the training partition each time. For each division,
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the experiment was repeated 30 times, using the mean and standard deviation of the
classification accuracy as performance metrics. An hyperparameter optimization with
Random Search method was performed in all algorithms, using only 10% of labeled samples
(worst case in this experiment). Table 7 presents these parameters.

Table 7 – Algorithm parameters for semi-supervised experiment

SSOE-ELM SSOE-FP-ELM SOS-ELM
Dataset n α C µ n α C µ n λ C µ
COIL20 2950 213 102 10 2100 215 103 5 200 0.81 105 15
COIL100 2250 212 105 5 2850 218 104 5 800 0.45 102 20
CrowdMap 1000 215 103 20 1000 215 103 20 3000 0.01 101 20

DNA 1350 217 104 5 2550 216 105 20 300 0.02 10−1 5
Gisette 2300 220 103 5 2850 218 104 15 200 0.90 104 15
Isolet 2750 217 104 5 2250 220 104 15 350 0.73 102 5

KDEF_Front 1450 220 105 10 1250 216 104 15 350 0.10 10−4 5
Spam 2100 211 105 5 1300 21 103 10 400 0.09 103 15
Musk 1150 210 105 15 1650 214 105 20 200 0.60 104 5

StatImgSeg 1450 21 104 5 2550 23 105 5 700 0.94 104 10
StatLandSat 2000 2−5 103 10 1050 2−5 102 5 1650 0.65 103 10
Waveform 1200 27 101 5 2800 212 105 10 2100 0.02 101 20

In Table 8, the mean accuracy of each algorithm is presented for three configura-
tions of labeled training samples. Figure 6 shows the accuracy of the algorithms for all
configurations of labeled samples in training partition.

SSOE-ELM and SSOE-FP-ELM presented greater mean accuracy than the SOS-
ELM in 10 out of 12 datasets. According to plots in Figure 6, SSOE-ELM presents
an inferior performance than SOS-ELM in Spam and Waveform datasets, while SSOE-
FP-ELM presents an inferior performance than SOS-ELM in Spam and StatlogLandSat
datasets. This behavior is similar to that presented in the fully supervised comparison.

Norm of output weights

Acording to Huang, Zhu & Siew (2006), ELM tends to reach both the smallest
training error and the smallest norm of weights. Bartlett (1998) states that the smaller
the norm of the weights, the better generalization ability the neural network tend to have.
Han, Yao & Ling (2013) uses the norm of output weights (β matrix of ELM) as a measure
of the generalization ability of the network to compare ELM models.
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Table 8 – Algorithms accuracy (%) in semi-supervised experiment

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM
10 % labeled

COIL20 78.3 ± 2.6 79.4 ± 3.7 60.6 ± 2.6
COIL100 66.1 ± 1.3 63.8 ± 2.3 59.6 ± 1.6
CrowdMap 34.0 ± 3.0 38.7 ± 4.5 30.1 ± 4.6

DNA 85.7 ± 1.1 82.4 ± 1.8 58.2 ± 1.7
Gisette 90.4 ± 0.6 93.2 ± 0.6 80.9 ± 1.6
Isolet 89.8 ± 0.7 87.1 ± 1.4 76.1 ± 1.3

KDEF_Front 49.7 ± 4.0 49.5 ± 4.5 32.6 ± 3.5
Musk 91.9 ± 0.9 92.4 ± 1.1 86.0 ± 1.4
Spam 89.8 ± 1.0 89.0 ± 1.4 89.4 ± 0.9

StatlogImgSeg 91.0 ± 2.1 90.0 ± 1.9 91.0 ± 1.5
StatlogLandSat 83.6 ± 0.7 84.0 ± 0.5 84.2 ± 0.7

Waveform 83.3 ± 1.3 84.6 ± 1.1 84.3 ± 0.6
50 % labeled

COIL20 95.5 ± 1.2 96.0 ± 1.1 91.5 ± 1.7
COIL100 88.5 ± 0.8 88.4 ± 0.8 86.6 ± 0.7
CrowdMap 48.5 ± 1.7 46.5 ± 3.0 38.3 ± 3.5

DNA 91.3 ± 0.6 91.5 ± 0.6 77.5 ± 0.9
Gisette 90.4 ± 0.5 95.4 ± 0.5 86.2 ± 1.1
Isolet 94.4 ± 0.4 93.4 ± 0.4 88.2 ± 0.6

KDEF_Front 64.5 ± 2.8 64.8 ± 2.9 57.7 ± 3.1
Musk 96.6 ± 0.5 95.2 ± 0.6 90.8 ± 1.0
Spam 91.5 ± 0.6 91.5 ± 0.7 91.6 ± 0.8

StatlogImgSeg 94.7 ± 0.9 94.9 ± 0.9 94.4 ± 0.7
StatlogLandSat 87.0 ± 0.4 86.2 ± 0.4 86.5 ± 0.3

Waveform 84.8 ± 0.9 86.5 ± 0.7 86.5 ± 0.8
90 % labeled

COIL20 96.4 ± 0.9 97.1 ± 0.9 95.3 ± 1.0
COIL100 95.6 ± 0.5 93.1 ± 0.6 91.2 ± 0.7
CrowdMap 49.0 ± 1.4 50.0 ± 1.6 39.7 ± 2.3

DNA 92.0 ± 0.4 92.6 ± 0.6 81.8 ± 0.9
Gisette 90.3 ± 0.5 95.8 ± 0.4 86.6 ± 1.2
Isolet 95.2 ± 0.2 94.1 ± 0.3 89.5 ± 0.6

KDEF_Front 67.7 ± 2.3 69.3 ± 2.7 66.2 ± 2.1
Musk 97.3 ± 0.3 95.6 ± 0.5 91.0 ± 0.8
Spam 91.7 ± 0.7 92.2 ± 0.7 91.8 ± 0.7

StatlogImgSeg 95.0 ± 0.7 95.8 ± 0.6 94.8 ± 1.0
StatlogLandSat 87.4 ± 0.2 86.9 ± 0.2 86.9 ± 0.2

Waveform 85.6 ± 0.9 87.0 ± 0.8 86.6 ± 0.8
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Figure 6 – Algorithms accuracy (%) in semi-supervised experiment

To compare the generalization ability of SSOE-ELM and SOS-ELM, we compute
the norm of the output weights at the end of training phase in 30 executions of each
algorithm for each dataset. Figure 7 shows the plots of the average norm of the output
weights of each algorithm for all configurations of labeled/unlabeled samples.

The proposed algorithms presented the norm of output weights equal to or less
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Figure 7 – Algorithms norm of output weights in supervised experiment

than the SOS-ELM in at least 8 of the 12 datasets. SSOE-ELM had a higher norm
than SOS-ELM in the DNA, KDEF_Front and StatlogLandSat datasets. SSOE-FP-ELM
presented a higher norm than SOS-ELM in the DNA, KDEF_Front, StatlogLandSat and
Waveform datasets. This confirms the approach presented by Huang et al. (2012) that the
regularization parameter in the ELM formalization leads to better generalization ability.
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4.6 Third experiment - supervised comparison with concept drift
In this third experiment, SSOE-ELM and SSOE-FP-ELM were evaluated in public

benchmarks with generated concept drift, in a fully supervised way (all training samples
are labeled), comparing the obtained results with SOS-ELM and FP-ELM. It is worth
mentioning that the SSOE-FP-ELM and FP-ELM algorithms are adapted to deal with
concept drifts, while the SSOE-ELM and SOS-ELM algorithms are not.

Two different concept drifts were tested. In the first experiment, a Label Concept
Drift (LCD) was generated in the middle of training dataset, changing the labels. In the
second experiment, a Feature Concept Drift (FCD) was generated in the middle of training
dataset, changing the inputs. For each type of concept drift, two tests were performed:
generation of an abrupt concept drift (100% of the features or labels were changed), and
generation of a gradual concept drift (30% of the features or labels were changed).

To measure the drift and update the forgetting parameter in SSOE-FP-ELM
algorithm, the labeled set of each training partition was first used as a test partition to
get the model accuracy, and then used as a training partition.

The same parameters of the first experiment (fully supervised classification without
concept drift) were used for all algorithms. For each dataset, the experiment was repeated 30
times, using the mean and standard deviation of the classification accuracy as performance
metrics.

In the learning evolution plots, COIL20 and KDEF_Front datasets were removed
because they had few training partitions, which made the plot uninformative.

Abrupt Concept Drift

To check the behavior of the proposed algorithms in the face of an abrupt concept
drift, FCD and LCD with 100% changes were generated. In the FCD, all the features were
shuffled, and in the LCD, all the labels were switched.

Table 9 presents the mean accuracy of the algorithms for each dataset with abrupt
FCD. In this experiment, SSOE-ELM presents greater accuracy than SOS-ELM in 7 out
of 12 datasets, and outperformed FP-ELM in 8 out of 12 datasets. The SSOE-FP-ELM
algorithm had better results than SOS-ELM in 10 out of 12 datasets, and was better than
FP-ELM in 11 out of 12 datasets.

Figure 8 shows the learning evolution of the algorithms during the training process,
in situations where an abrupt FCD occurs. For each training partition that arrives, the
models were trained and the accuracy was measured using the test partition of the dataset.
The drop in accuracy of all models is noticeable when the concept drift occurs, but with
the exception of the CrowSourcedMapping and DNA datasets, all algorithms showed a
good recovery after the concept drift. This occurs because in FCD, there is a change in the
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Table 9 – Algorithms accuracy (%) in supervised experiment with Abrupt FCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM
COIL20 96.0 ± 1.4 96.9 ± 1.2 96.7 ± 1.0 97.4 ± 1.3
COIL100 88.3 ± 1.0 90.6 ± 0.7 87.6 ± 0.8 88.5 ± 0.9
CrowdMap 45.7 ± 3.2 49.7 ± 1.9 32.6 ± 3.4 28.5 ± 2.9

DNA 85.0 ± 1.4 85.7 ± 1.0 76.4 ± 1.8 78.6 ± 1.6
Gisette 93.8 ± 0.6 94.7 ± 0.6 90.6 ± 0.8 90.9 ± 0.6
Isolet 93.7 ± 0.4 94.1 ± 0.5 92.1 ± 0.5 92.4 ± 0.5

KDEF_Front 68.5 ± 2.4 69.9 ± 2.6 61.3 ± 3.2 60.1 ± 2.9
Musk 97.1 ± 0.4 97.3 ± 0.4 95.3 ± 0.6 96.3 ± 0.4
Spam 89.5 ± 1.1 90.8 ± 0.8 90.5 ± 1.2 89.8 ± 0.9

StatlogImgSeg 94.3 ± 0.8 94.9 ± 1.0 95.1 ± 0.8 93.9 ± 0.8
StatlogLandSat 86.6 ± 0.4 87.1 ± 0.6 86.9 ± 0.3 84.7 ± 0.3

Waveform 82.9 ± 1.3 83.6 ± 1.1 84.1 ± 0.9 85.6 ± 0.8

values of the inputs of the dataset, which are multiplied by the input weights of the neural
network and later changed by an activation function. This process softens the effects of
the concept drift.

Table 10 – Algorithms accuracy (%) in supervised experiment with Abrupt LCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM
COIL20 24.4 ± 3.5 49.1 ± 4.1 32.7 ± 4.4 97.3 ± 1.0
COIL100 30.6 ± 1.7 79.0 ± 3.4 29.6 ± 1.8 45.5 ± 1.3
CrowdMap 30.1 ± 14.8 49.7 ± 14.5 23.9 ± 11.1 27.0 ± 8.3

DNA 68.0 ± 19.7 84.4 ± 8.0 62.7 ± 16.0 75.6 ± 12.2
Gisette 71.3 ± 16.7 94.0 ± 3.9 61.6 ± 18.2 83.1 ± 9.7
Isolet 19.4 ± 6.1 89.1 ± 4.4 26.3 ± 3.3 45.1 ± 3.0

KDEF_Front 34.1 ± 9.7 42.8 ± 11.0 30.4 ± 12.1 41.2 ± 7.5
Musk 85.0 ± 19.0 94.1 ± 5.5 79.3 ± 21.0 89.6 ± 16.2
Spam 80.6 ± 10.6 86.8 ± 6.5 78.9 ± 11.8 89.9 ± 5.2

StatlogImgSeg 39.9 ± 10.9 80.7 ± 10.9 38.8 ± 14.7 63.6 ± 10.6
StatlogLandSat 41.1 ± 17.4 78.4 ± 8.3 31.0 ± 15.4 88.3 ± 4.1

Waveform 52.6 ± 24.2 77.8 ± 5.3 54.1 ± 19.2 91.8 ± 4.8

Table 10 presents the mean accuracy of the algorithms for each dataset with abrupt
LCD. In this experiment, the effect of the concept drift on the classification model is more
visible. In LCD, the concept drift is applied to the labels of the training partition, so
there is not the same smoothing effect that occurs on the FCD. After the concept drift,
the algorithms that do not have a forgetting mechanism (SSOE-ELM and SOS-ELM) are
unable to completelly recover their accuracy. In contrast, the algorithms that have the
forgetting factor (SSOE-FP-ELM and FP-ELM) are able to recover quickly from the drop
in accuracy.

In datasets with abrupt LCD, SSOE-ELM presents greater accuracy than SOS-
ELM in 9 out of 12 datasets, but it presents a better result than FP-ELM only in the
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Figure 8 – Learning evolution of algorithms in supervised experiment with Abrupt FCD

CrowdSourcedMapping dataset. The SSOE-FP-ELM algorithm had better results than
SOS-ELM in all datasets, and was better than FP-ELM in 8 out of 12 datasets.

Figure 9 shows the learning evolution of the algorithms during the training process,
in situations where an abrupt LCD occurs.
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Figure 9 – Learning evolution of algorithms in supervised experiment with Abrupt LCD
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Gradual Concept Drift

To check the behavior of the proposed algorithms in the face of a gradual concept
drift, FCD and LCD with 30% changes were generated.

Table 11 presents the mean accuracy of the algorithms for each dataset with gradual
FCD. Figure 10 shows the learning evolution of the algorithms during the training process,
in situations where an gradual FCD occurs. For each training partition that arrives, the
models were trained and the accuracy was measured using the test partition of the dataset.

Table 11 – Algorithms accuracy (%) in supervised experiment with Gradual FCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM
COIL20 98.2 ± 0.6 98.7 ± 0.7 98.8 ± 0.5 99.2 ± 0.4
COIL100 91.9 ± 0.5 92.4 ± 0.5 91.2 ± 0.8 91.9 ± 0.8
CrowdMap 51.1 ± 1.7 51.9 ± 2.7 32.9 ± 2.9 30.1 ± 2.9

DNA 91.6 ± 0.5 91.0 ± 1.0 85.2 ± 1.3 86.8 ± 1.5
Gisette 95.3 ± 0.5 95.9 ± 0.5 92.9 ± 0.7 92.7 ± 0.7
Isolet 94.3 ± 0.5 94.1 ± 0.3 92.7 ± 0.4 93.3 ± 0.5

KDEF_Front 75.3 ± 2.7 75.5 ± 2.6 67.9 ± 2.8 64.7 ± 2.9
Musk 97.9 ± 0.3 97.8 ± 0.3 96.4 ± 0.5 97.3 ± 0.3
Spam 91.6 ± 0.8 92.0 ± 0.6 92.2 ± 0.7 92.0 ± 0.8

StatlogImgSeg 95.0 ± 1.0 95.6 ± 0.7 95.1 ± 2.4 94.9 ± 0.9
StatlogLandSat 86.8 ± 0.3 87.5 ± 0.5 87.1 ± 0.2 84.8 ± 0.3

Waveform 85.7 ± 1.1 86.1 ± 1.1 85.5 ± 1.2 85.2 ± 1.1

Table 12 – Algorithms accuracy (%) in supervised experiment with Gradual LCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM
COIL20 68.6 ± 13.3 82.4 ± 5.0 82.1 ± 8.2 82.0 ± 8.2
COIL100 77.3 ± 1.6 79.7 ± 1.3 76.4 ± 1.8 81.5 ± 0.9
CrowdMap 52.0 ± 1.5 51.0 ± 1.7 35.4 ± 3.6 29.6 ± 2.9

DNA 93.6 ± 0.4 93.0 ± 0.3 88.2 ± 0.6 90.2 ± 0.7
Gisette 96.1 ± 0.5 96.3 ± 0.5 93.7 ± 0.7 94.0 ± 0.7
Isolet 79.1 ± 3.8 81.5 ± 3.1 78.5 ± 2.5 83.7 ± 2.9

KDEF_Front 74.5 ± 4.9 74.9 ± 4.0 73.1 ± 4.7 67.8 ± 4.2
Musk 99.1 ± 0.2 98.8 ± 0.2 98.7 ± 0.3 99.1 ± 0.3
Spam 92.4 ± 0.5 92.6 ± 0.5 92.9 ± 0.4 92.6 ± 0.6

StatlogImgSeg 90.1 ± 5.9 90.3 ± 5.7 87.5 ± 4.9 92.1 ± 4.0
StatlogLandSat 81.3 ± 6.3 83.7 ± 5.8 83.7 ± 6.0 84.1 ± 2.5

Waveform 86.6 ± 0.8 87.2 ± 0.6 86.2 ± 0.6 86.1 ± 0.8

In the plots of learning evolution in situations of gradual FCD, it is possible to
observe an effect similar to that observed in the graphs of abrupt FCD. The algorithms
suffer a loss in accuracy, but in most cases they manage to recover. This is due to the
concept drift smoothing effect caused by the nonlinear activation function of neural
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networks. The difference observed between abrupt and gradual FCD is mainly in the
percentage of lost accuracy, which, as expected, is smaller in the gradual concept drift.

Table 12 presents the mean accuracy of the algorithms for each dataset with gradual
LCD. Figure 11 shows the learning evolution of the algorithms during the training process,
in situations where a gradual LCD occurs.

Figure 10 – Learning evolution of algorithms in supervised experiment with Gradual FCD
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In this experiment, a curious effect can be seen on the gradual LCD. In the learning
evolution plots, it is possible to perceive for some datasets that there was no impact on
the accuracy of the model when the gradual concept drift occurred. This is due to the fact
that the dataset has few classes (for example, DNA dataset with 3 classes and Gisette
dataset with 2 classes), so that the change caused by the gradual LCD becomes barely
noticeable to the classification models.

Figure 11 – Learning evolution of algorithms in supervised experiment with Gradual LCD
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4.7 Forth experiment - semi-supervised comparison with concept
drift
In this forth experiment, SSOE-ELM and SSOE-FP-ELM were evaluated in the

same 12 public benchmarks, in a semi-supervised way, in the presence of concept drift,
comparing the obtained results with SOS-ELM. For each dataset, the training partition
was divided into labeled and unlabeled instances, starting with 10% of labeled samples and
90% unlabeled, and gradually increasing to 90% of labeled samples and 10% unlabeled. The
training was then performed in an online manner using a chunk of the training partition
each time. For each division, the experiment was repeated 30 times, using the mean and
standard deviation of the classification accuracy as performance metrics.

As in the previous experiment, two different concept drifts were tested: Label
Concept Drift (LCD) and Feature Concept Drift (FCD). For each type of concept drift,
two tests were performed: generation of an abrupt concept drift (100% of the features or
labels was changed), and generation of a gradual concept drift (30% of the features or
labels was changed).

To measure the drift and update the forgetting parameter in SSOE-FP-ELM
algorithm, the labeled set of each training partition was first used as a test partition to
get the model accuracy, and then used as a training partition.

The same parameters of second experiment (semi-supervised classification without
concept drift) were used for all algorithms. For each dataset, the experiment was repeated 30
times, using the mean and standard deviation of the classification accuracy as performance
metrics.

Abrupt Concept Drift

Table 13 presents the mean accuracy of each algorithm for three configurations of
labeled training samples in datasets with occurrence of FCD. Figure 12 shows the accuracy
of the algorithms for all configurations of labeled samples in training partition.

Table 14 presents the mean accuracy of each algorithm for three configurations of
labeled training samples in datasets with occurrence of LCD. Figure 13 shows the accuracy
of the algorithms for all configurations of labeled samples in training partition.

From the plots presented, it is possible to observe that the SSOE-FP-ELM algorithm
presents results equal to or superior to SOS-ELM in all data sets with LCD occurrence,
and in all except the StatlogLandSat dataset when FCD occurs. SSOE-ELM shows equal
or better results than SOS-ELM in 9 out of 12 datasets with FCD. In addition, it is
possible to observe that the SSOE-FP-ELM algorithm has much higher accuracy than
SOS-ELM in all datasets with LCD occurrence. On the other hand, SSOE-ELM presents
results very close to SOS-ELM in LCD cases, emphasizing that neither algorithm offers
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concept drift treatment mechanisms.

Table 13 – Algorithms accuracy (%) in semi-supervised experiment with Abrupt FCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM
10 % labeled

COIL20 61.8 ± 4.8 61.5 ± 4.6 44.6 ± 4.9
COIL100 51.7 ± 1.6 51.3 ± 2.1 47.2 ± 1.8
CrowdMap 31.1 ± 3.6 36.5 ± 5.3 30.6 ± 4.4

DNA 71.7 ± 2.6 69.2 ± 3.2 51.3 ± 2.2
Gisette 88.2 ± 1.0 91.3 ± 0.7 75.2 ± 1.8
Isolet 82.6 ± 1.2 80.9 ± 1.7 64.0 ± 1.8

KDEF_Front 36.0 ± 4.5 37.2 ± 3.9 25.7 ± 3.5
Musk 87.2 ± 2.1 89.4 ± 1.6 81.4 ± 1.8
Spam 83.9 ± 1.8 85.9 ± 1.5 84.6 ± 2.1

StatlogImgSeg 87.0 ± 1.9 84.4 ± 2.9 87.6 ± 1.8
StatlogLandSat 82.2 ± 0.9 82.9 ± 0.9 83.2 ± 0.9

Waveform 76.4 ± 2.8 82.1 ± 1.4 79.5 ± 1.7
50 % labeled

COIL20 88.7 ± 2.4 88.8 ± 2.2 77.5 ± 2.6
COIL100 74.1 ± 1.1 79.7 ± 1.3 75.0 ± 0.8
CrowdMap 41.9 ± 4.8 43.9 ± 2.5 37.2 ± 4.0

DNA 81.5 ± 1.4 81.5 ± 1.3 67.6 ± 1.8
Gisette 89.2 ± 0.9 93.9 ± 0.5 80.7 ± 1.8
Isolet 92.0 ± 0.5 91.9 ± 0.5 82.6 ± 0.8

KDEF_Front 53.1 ± 3.1 57.0 ± 2.9 44.0 ± 3.5
Musk 93.4 ± 0.9 93.6 ± 0.7 86.0 ± 1.5
Spam 87.0 ± 1.3 89.0 ± 1.1 87.6 ± 0.9

StatlogImgSeg 93.6 ± 0.9 93.6 ± 1.1 93.1 ± 0.9
StatlogLandSat 86.1 ± 0.4 85.8 ± 0.4 86.1 ± 0.5

Waveform 77.1 ± 2.8 84.3 ± 1.1 81.8 ± 1.8
90 % labeled

COIL20 92.2 ± 1.6 92.7 ± 1.7 85.4 ± 2.2
COIL100 87.0 ± 0.8 86.4 ± 0.9 81.0 ± 0.7
CrowdMap 41.0 ± 3.8 48.4 ± 2.8 38.8 ± 4.1

DNA 83.0 ± 1.5 84.5 ± 1.5 72.4 ± 1.8
Gisette 88.8 ± 0.7 94.5 ± 0.5 81.0 ± 1.5
Isolet 93.4 ± 0.5 92.9 ± 0.5 84.9 ± 0.8

KDEF_Front 57.5 ± 2.6 59.5 ± 3.0 50.2 ± 4.4
Musk 94.7 ± 0.5 93.9 ± 0.7 86.3 ± 1.2
Spam 87.4 ± 1.4 89.7 ± 1.0 88.1 ± 1.2

StatlogImgSeg 94.3 ± 0.8 94.4 ± 1.0 93.9 ± 0.9
StatlogLandSat 87.0 ± 0.3 86.5 ± 0.3 86.4 ± 0.4

Waveform 77.6 ± 2.6 85.1 ± 0.7 82.3 ± 1.3
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Figure 12 – Algorithms accuracy (%) in semi-supervised experiment with Abrupt FCD
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Table 14 – Algorithms accuracy (%) in semi-supervised experiment with Abrupt LCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM
10 % labeled

COIL20 28.1 ± 5.7 38.8 ± 7.1 15.2 ± 2.5
COIL100 27.5 ± 1.5 46.7 ± 2.8 27.0 ± 1.3
CrowdMap 22.0 ± 13.8 49.0 ± 11.7 27.3 ± 10.8

DNA 73.3 ± 13.4 69.3 ± 12.6 48.6 ± 8.3
Gisette 70.1 ± 30.3 92.4 ± 4.6 71.9 ± 10.2
Isolet 40.0 ± 2.9 75.2 ± 2.9 27.3 ± 2.8

KDEF_Front 30.5 ± 10.7 30.5 ± 7.8 20.5 ± 4.5
Musk 81.0 ± 15.9 92.7 ± 2.6 80.7 ± 11.6
Spam 81.2 ± 8.1 90.6 ± 3.6 83.8 ± 6.6

StatlogImgSeg 48.7 ± 13.2 60.0 ± 7.3 46.3 ± 12.4
StatlogLandSat 43.8 ± 12.7 82.1 ± 7.4 40.7 ± 17.1

Waveform 66.4 ± 19.4 79.5 ± 6.3 58.5 ± 19.4
50 % labeled

COIL20 16.0 ± 7.0 67.5 ± 9.8 23.1 ± 4.0
COIL100 35.2 ± 1.8 72.7 ± 2.2 26.0 ± 2.3
CrowdMap 28.3 ± 13.1 52.7 ± 12.3 22.9 ± 14.0

DNA 70.4 ± 18.8 78.9 ± 7.0 64.0 ± 11.8
Gisette 70.0 ± 31.9 94.9 ± 2.7 65.0 ± 20.8
Isolet 24.5 ± 3.9 83.1 ± 3.0 17.8 ± 4.5

KDEF_Front 24.2 ± 8.9 35.1 ± 10.7 25.2 ± 7.1
Musk 81.6 ± 18.9 94.3 ± 4.6 85.9 ± 9.9
Spam 83.5 ± 8.9 91.3 ± 4.2 83.1 ± 8.8

StatlogImgSeg 36.0 ± 14.6 78.8 ± 11.6 35.8 ± 13.1
StatlogLandSat 35.6 ± 14.4 82.6 ± 8.8 33.3 ± 16.2

Waveform 65.8 ± 18.1 79.7 ± 8.5 64.8 ± 19.0
90 % labeled

COIL20 12.5 ± 6.3 82.9 ± 5.2 28.9 ± 4.5
COIL100 31.9 ± 1.8 80.3 ± 2.1 19.0 ± 1.8
CrowdMap 27.4 ± 9.6 47.7 ± 9.2 22.7 ± 12.2

DNA 66.5 ± 17.0 82.3 ± 5.0 61.0 ± 17.2
Gisette 65.0 ± 35.6 94.5 ± 2.3 67.0 ± 20.3
Isolet 17.0 ± 6.0 84.5 ± 2.5 15.1 ± 3.8

KDEF_Front 26.8 ± 12.7 36.0 ± 8.7 25.1 ± 9.1
Musk 79.4 ± 19.5 94.4 ± 4.5 82.6 ± 12.3
Spam 81.1 ± 8.7 89.0 ± 5.0 81.4 ± 7.8

StatlogImgSeg 31.6 ± 15.0 81.2 ± 11.8 34.7 ± 18.6
StatlogLandSat 33.3 ± 19.4 81.2 ± 9.9 39.5 ± 18.7

Waveform 65.0 ± 20.8 76.2 ± 6.7 55.1 ± 19.9
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Figure 13 – Algorithms accuracy (%) in semi-supervised experiment with Abrupt LCD
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Gradual Concept Drift

Table 15 presents the mean accuracy of each algorithm for three configurations of
labeled training samples in datasets with occurrence of FCD. Figure 14 shows the accuracy
of the algorithms for all configurations of labeled samples in training partition.

Table 16 presents the mean accuracy of each algorithm for three configurations of
labeled training samples in datasets with occurrence of LCD. Figure 15 shows the accuracy
of the algorithms for all configurations of labeled samples in training partition.

In the plots presented, it is possible to identify a similar behavior of the algorithms
between abrupt and gradual FCD. The results are very close, with a reduction in the
difference in accuracy between the algorithms in the gradual concept drift.

With the occurrence of gradual LCD, the results change in relation to the abrupt
LCD. SSOE-FP-ELM presents better results than SOS-ELM in 11 out of 12 datasets,
losing in the Spam dataset. The SSOE-ELM, on the other hand, has improved results
compared to the abrupt LCD, having better accuracy than the SOS-ELM in 8 out of 12
datasets.



Chapter 4. Experimental Results 77

Table 15 – Algorithms accuracy (%) in semi-supervised experiment with Gradual FCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM
10 % labeled

COIL20 70.5 ± 3.9 69.2 ± 5.6 52.2 ± 3.8
COIL100 56.9 ± 1.4 55.5 ± 2.5 52.0 ± 1.5
CrowdMap 33.2 ± 2.1 39.0 ± 3.8 32.0 ± 4.7

DNA 83.0 ± 1.8 79.2 ± 2.6 56.7 ± 2.6
Gisette 89.5 ± 0.7 92.8 ± 0.6 78.6 ± 1.0
Isolet 86.6 ± 0.7 83.4 ± 1.5 69.3 ± 1.3

KDEF_Front 45.1 ± 3.3 46.4 ± 2.8 28.2 ± 2.4
Musk 88.9 ± 1.5 90.6 ± 2.2 83.5 ± 1.0
Spam 87.9 ± 1.0 87.7 ± 1.2 88.7 ± 1.6

StatlogImgSeg 88.3 ± 2.5 87.2 ± 2.6 90.5 ± 1.7
StatlogLandSat 83.3 ± 1.2 83.4 ± 1.0 84.1 ± 0.9

Waveform 82.2 ± 1.2 83.9 ± 1.0 83.4 ± 1.0
50 % labeled

COIL20 93.1 ± 1.4 93.8 ± 2.1 83.7 ± 1.7
COIL100 79.4 ± 1.3 82.6 ± 0.8 80.4 ± 0.7
CrowdMap 47.1 ± 2.2 44.9 ± 2.1 36.1 ± 4.7

DNA 89.0 ± 1.8 88.5 ± 1.1 75.4 ± 2.0
Gisette 89.8 ± 0.5 95.2 ± 0.5 84.9 ± 1.5
Isolet 93.2 ± 0.3 92.5 ± 0.4 85.4 ± 0.5

KDEF_Front 63.5 ± 2.6 61.7 ± 4.0 49.8 ± 3.0
Musk 94.7 ± 0.3 94.3 ± 0.8 88.1 ± 0.9
Spam 90.4 ± 0.9 90.4 ± 1.5 90.8 ± 1.2

StatlogImgSeg 93.7 ± 0.9 94.5 ± 0.8 94.1 ± 0.8
StatlogLandSat 86.4 ± 0.4 86.1 ± 0.6 86.3 ± 0.3

Waveform 83.5 ± 1.5 85.9 ± 0.9 85.1 ± 0.9
90 % labeled

COIL20 95.1 ± 1.0 95.2 ± 1.3 90.6 ± 1.7
COIL100 90.7 ± 0.4 88.9 ± 0.9 85.9 ± 0.8
CrowdMap 47.4 ± 1.3 48.5 ± 1.9 38.7 ± 5.7

DNA 90.0 ± 0.8 90.6 ± 1.4 80.2 ± 1.0
Gisette 90.1 ± 0.3 95.3 ± 0.5 84.7 ± 1.2
Isolet 94.1 ± 0.3 92.9 ± 0.4 87.7 ± 0.5

KDEF_Front 65.7 ± 3.8 65.5 ± 2.9 57.8 ± 3.3
Musk 95.8 ± 0.8 94.7 ± 0.6 89.4 ± 0.9
Spam 90.2 ± 0.8 91.2 ± 0.6 90.9 ± 0.8

StatlogImgSeg 95.1 ± 0.9 95.1 ± 1.0 94.1 ± 0.8
StatlogLandSat 87.2 ± 0.4 86.8 ± 0.2 86.6 ± 0.3

Waveform 83.9 ± 1.3 86.0 ± 1.1 85.4 ± 0.8
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Figure 14 – Algorithms accuracy (%) in semi-supervised experiment with Gradual FCD
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Table 16 – Algorithms accuracy (%) in semi-supervised experiment with Gradual LCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM
10 % labeled

COIL20 68.5 ± 3.2 65.8 ± 4.5 21.8 ± 2.7
COIL100 52.7 ± 2.4 58.1 ± 1.8 50.0 ± 2.4
CrowdMap 33.9 ± 4.2 38.4 ± 4.8 32.1 ± 3.1

DNA 86.1 ± 1.2 82.3 ± 1.8 58.1 ± 2.8
Gisette 89.8 ± 0.7 93.6 ± 0.7 80.8 ± 1.2
Isolet 80.4 ± 3.9 82.1 ± 2.8 64.0 ± 2.6

KDEF_Front 45.6 ± 5.8 49.1 ± 3.1 29.8 ± 3.9
Musk 91.7 ± 0.7 93.0 ± 1.0 86.1 ± 1.0
Spam 89.1 ± 1.0 89.3 ± 1.3 89.3 ± 1.1

StatlogImgSeg 88.9 ± 3.8 85.3 ± 4.2 87.2 ± 5.1
StatlogLandSat 81.1 ± 4.5 82.3 ± 2.8 80.1 ± 6.4

Waveform 82.9 ± 1.0 84.2 ± 0.8 84.5 ± 0.7
50 % labeled

COIL20 77.3 ± 7.1 77.6 ± 4.5 45.7 ± 3.7
COIL100 72.3 ± 2.0 74.9 ± 1.5 69.3 ± 1.3
CrowdMap 47.7 ± 2.5 46.3 ± 2.7 36.6 ± 3.4

DNA 91.5 ± 0.5 91.4 ± 0.6 77.6 ± 1.4
Gisette 90.0 ± 0.6 95.6 ± 0.4 86.3 ± 1.0
Isolet 81.3 ± 3.9 81.1 ± 3.7 74.4 ± 4.9

KDEF_Front 61.4 ± 4.1 65.2 ± 4.2 54.3 ± 5.8
Musk 96.6 ± 0.4 95.2 ± 0.4 90.8 ± 0.8
Spam 91.3 ± 0.9 91.4 ± 0.7 91.8 ± 0.7

StatlogImgSeg 89.0 ± 5.8 89.1 ± 4.4 88.2 ± 6.2
StatlogLandSat 81.2 ± 7.0 84.5 ± 4.5 82.3 ± 7.0

Waveform 84.4 ± 0.7 86.6 ± 0.6 86.3 ± 0.8
90 % labeled

COIL20 73.8 ± 4.2 78.4 ± 5.3 69.2 ± 6.0
COIL100 77.6 ± 1.3 76.1 ± 1.6 70.5 ± 1.7
CrowdMap 49.3 ± 1.0 50.9 ± 1.4 40.8 ± 2.4

DNA 91.9 ± 0.4 92.9 ± 0.8 82.0 ± 0.4
Gisette 90.1 ± 0.3 95.8 ± 0.3 86.2 ± 0.9
Isolet 81.8 ± 3.5 80.7 ± 4.4 75.1 ± 5.8

KDEF_Front 66.1 ± 5.1 64.6 ± 5.3 63.0 ± 5.0
Musk 97.4 ± 0.3 95.3 ± 0.5 90.9 ± 1.0
Spam 91.6 ± 0.8 92.2 ± 0.6 91.5 ± 0.6

StatlogImgSeg 91.5 ± 5.1 93.7 ± 4.4 89.8 ± 6.5
StatlogLandSat 83.9 ± 5.6 82.5 ± 3.8 76.9 ± 8.9

Waveform 85.8 ± 1.0 87.3 ± 0.6 86.5 ± 1.0
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Figure 15 – Algorithms accuracy (%) in semi-supervised experiment with Gradual LCD
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4.8 Remarks
In the tests performed, the SSOE-ELM showed accuracy slightly lower than the

SVM algorithm in fully supervised situations, but still competitive. In semi-supervised
situations, the SSOE-ELM was compared to the SOS-ELM, an algorithm with the same
characteristics as the proposed one (semi-supervised, online and ELM-based). Regarding
accuracy, SSOE-ELM has shown to be superior to SOS-ELM in most tests, in datasets
with and without concept drift. And with regard to training time, the online update
mechanism of SSOE-ELM, based on Elastic ELM, has shown to be more efficient than
SOS-ELM, which was based on OS-ELM. In SSOE-ELM, two intermediate matrices are
updated for each training partition processed, but the network output weights do not need
to be calculated and can be updated at the end of the training. So, the calculation of the
β output weights matrix, which involves a matrix inversion and is the most expensive
operation of the training, can be performed only once. In contrast, the SOS-ELM performs
an update on the β matrix at each training partition, by inverting a smaller matrix.

Additionally, the SSOE-ELM has shown a greater generalization ability than the
SOS-ELM, observing the norm of its output weights. This fact is due to the α regularization
factor, which also makes the solution found more stable. Despite not being directly related
to greater accuracy, greater generalization capacity makes the model adaptable in relation
to test samples not found during training.

In the tests performed, the SSOE-FP-ELM showed accuracy close to the SSOE-
ELM in fully supervised situations, overcoming it in performance in some cases. This
means that the use of a forgetting parameter did not negatively impact the performance of
the algorithm in the base case (supervised). In semi-supervised situations, SSOE-FP-ELM
was also close to SSOE-ELM, presenting inferior performance in a few cases. The difference
between the two algorithms is more visible in concept drift situations, in which the SSOE-
FP-ELM is more accurate than the SSOE-ELM in practically all cases, especially in cases
of LCD. In comparison with the FP-ELM, an algorithm also adapted to deal with concept
drifts, the SSOE-FP-ELM is superior in accuracy in fully supervised situations without
concept drifts, and competitive in the presence of concept drift. The main difference
between SSOE-FP-ELM and FP-ELM is the ability of the proposed algorithm to work
also in semi-supervised situations. Regarding the training time, the SSOE-FP-ELM is
slower than the SSOE-ELM, due to the calculation of the γ forgetting parameter. The
supervised factor γs requires the matrix of β output weights to be calculated for each
training partition, and the unsupervised factor γus requires the calculation of Laplacian
scores for each training partition as well. Both operations are computationally expensive,
greatly increasing the training time of the algorithm.

In some semi-supervised plots, it is possible to observe a decrease in the accuracy
of the algorithms as the percentage of labeled samples increases. This is due to the fact
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that the process of parameter optimization of the algorithms was performed with 10% of
the training set labeled, and 90% unlabeled (worst case in the experiments). Therefore,
the best parameters found refer to this dataset configuration, and are not necessarily the
same when the number of labeled samples increases.

Regarding the type of dataset most suitable for each algorithm, it is important to
note that SSOE-ELM and SSOE-FP-ELM are ELM-based algorithms, and for this reason
they have no usage restrictions for any type of dataset and present satisfactory results in
different situations. In addition, the experiments performed showed that in datasets with
a large number of features, the proposed algorithms indicate better results. Despite this,
some factors can reduce the accuracy of the proposed algorithms, such as:

• The proposed algorithms do not have any mechanism for acquiring features in image
datasets that take into account the position of the pixels, such as the convolutions of
a CNN. Therefore, the proposed algorithms tend to obtain lower results than CNNs
in fully supervised situations in datasets where the inputs are image pixels.

• SSOE-ELM and SSOE-FP-ELM do not use any technique to deal with noisy datasets,
such as Waveform and CrowdsourcedMapping (DUA; GRAFF, 2019), and suffer a
decrease in accuracy in these situations. SSOE-FP-ELM is even more susceptible to
high noise levels, which affect the concept drift detection mechanism.
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5 Case Study

To confirm the feasibility of the previously proposed algorithms, a case study was
investigated. In this case study we use as benchmark the PAMAP2 (Physical Activity
Monitoring for Aging People) dataset, available at the University of California Irvine (UCI)
Machine Learning Repository (DUA; GRAFF, 2019).

In these experiments, the same source code and the same test environment as the
previous experiments was used.

5.1 Data processing
The PAMAP2 dataset contains data of 18 different physical activities (such as

running, ascending stairs, house cleaning, etc.), performed by 9 subjects wearing a heart
rate monitor and 3 inertial measurement units (IMU). The IMUs are positioned on the
dominant arm wrist, dominant leg ankle, and chest. All sensor data were collected at
100Hz, and some values are missing. For more information about the PAMAP2 dataset,
please refer to Reiss & Stricker (2012).

For this work, the dataset was processed following the activity recognition chain
presented in Roggen et al. (2011). The steps of data processing are described in the
following sections.

5.1.1 Preprocessing

In the preprocessing step, some information present in the dataset was discarded.
According to Reiss & Stricker (2012), for different tasks in physical activity monitoring,
accelerometers outperform gyroscopes. Therefore, data from gyroscopes and magnetometers
were discarded, and only accelerometers were used.

For missing data, simple methods of value imputation were used, following Saar-
Tsechansky & Provost (2007).

5.1.2 Segmentation

Segmentation of the data stream is required to obtain a section of data that
probably contains a gesture or movement. A common type of segmentation technique is
the sliding window with a predefined size.

In Reiss & Stricker (2012), a sliding window of 5.12 seconds, corresponding to
512 samples, was used. In this work, the same window size is used, with a 1 second shift
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between two windows.

For classification purposes, only windows containing samples labeled with the same
class have been retained.

5.1.3 Feature extraction

In Reiss & Stricker (2012), 137 features were extracted from each data window of
512 samples: 133 features from IMU acceleration data and 4 features from the heart rate
data.

In this work, a smaller set of 62 features were extracted from the heart rate, IMU
acceleration and temperature data. Feature extraction followed the techniques presented
in Figo et al. (2010) and Preece et al. (2008). Sensor data were normalized before feature
extraction.

For heart rate and body temperatures, mean and standard deviation were computed.
For 3D-acceleration data, mean and standard deviation were calculated for each axis, and
the correlation between each pair of axes is computed.

The techniques used, although simple, showed good results in the experiment.
The choice for such techniques, rather than more complex ones, was motivated by the
computational effort required to process the samples. Since ELM-based algorithms have
as their main feature their short training time, feature extraction techniques that can be
processed faster become more appropriate.

5.2 Experimental setup
In this work, three experiments with PAMAP2 dataset were performed. In the first

experiment, the proposed algorithms were tested in the same classification problems defined
in Reiss & Stricker (2012), in a fully supervised way, comparing the obtained results with
those of the reference paper. In the second experiment, the proposed algorithms were tested
in these four classification problems in a semi-supervised way, comparing the obtained
results with SOS-ELM algorithm. In the third experiment, the proposed algorithms were
tested in concept drift situations, showing the learning evolution and classification recovery
capability, comparing the obtained results with SOS-ELM and FP-ELM algorithms.

The training of all algorithms was performed in an online manner using a chunk of
the training partition each time. Each experiment was repeated 30 times, using the mean
and standard deviation of the classification accuracy as performance metrics.

The parameters of the algorithms for each PAMAP2 problem were determined by
the Random Search method, using the training partition as validation. For SSOE-ELM,
SSOE-FP-ELM and SOS-ELM, values in the range [10−5, 10−4, . . . , 104, 105] were tested
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for the parameter C. The size of the chunks for online training of the algorithms was set
in the interval [50, 52, . . ., 200], and was later set to 200 for all algorithms to facilitate the
reproduction of the experiments. For the SOS-ELM algorithm, the tradeoff parameter λ
was tested with values between 0 and 1. Note that for parameters C, size of chunks and λ,
the same ranges presented by Jia et al. (2016) were adopted. The values tested for the
number of neighbors µ, required to compute graph Laplacian, were [5, 10, 15, 20]. Huang
et al. (2012) chooses the regularization parameter α of ELM in the range [2−24, 2−23, . . . ,
224, 225], so the same interval was used in this thesis for SSOE-ELM and SSOE-FP-ELM.
For the parameters θ and η of FP-ELM, the values tested were in the range [0.0, 0.1, . . . ,
19.9, 20.0], as proposed by Liu, Wu & Jiang (2016). For the regularization parameter α,
Liu, Wu & Jiang (2016) set a fixed value of 0.02, and in this thesis this value was also
used. The number of neurons n for all algorithms was tested with values in the interval [50,
3000]. For SVM, Hsu, Chang & Lin (2003) suggests the choice of regularization parameter
α in the range [2−5, 2−3, . . . , 215] and parameter γ in the range [2−15, 2−13, . . . , 23]. In this
thesis, the suggested intervals have been extended to [2−5, 2−4, . . . , 215] for α and [2−15,
2−14, . . . , 23] for γ. In all experiments, the RBF kernel was used. For each experiment,
an hyperparameter optimization was performed for all algorithms using the intervals
previously described.

5.3 Classification problems of PAMAP2 dataset
In Reiss & Stricker (2012) there are four classification problems, with the 12

activities presented in Table 17 performed by 9 subjects. The classification problemas are
presented in Table 18 with number of features, number of labels, training and testing
samples, and are briefly described in the following sections.

Table 17 – 12 activities used by Reiss & Stricker (2012)

1 Lying 2 Sitting 3 Standing
4 Walking 5 Running 6 Cycling
7 Nordic walking 12 Ascending stairs 13 Descending stairs
16 Vacuum cleaning 17 Ironing 24 Rope jumping

Table 18 – PAMAP2 Classification Problems

Train Test Minority Majority
Dataset Features Labels Samples Samples Class Class

Intensity Estimation 62 3 13257 5682 2522 8502
Basic Activity Recognition 62 5 7340 3146 955 3678

Background Activity Recognition 62 6 13257 5682 955 8453
All Activities Recognition 62 12 13257 5682 468 2353
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5.3.1 Intensity estimation task

In this problem, 3 classes are defined: activities of light, moderate and vigorous
effort based on the metabolic equivalent (MET) of the different activities according to
Ainsworth et al. (2000). The 3 classes are defined as following:

• Activities of light effort (< 3.0 METs): lying, sitting, standing and ironing;

• Activities of moderate effort (3.0-6.0 METs): vacuum cleaning, descending stairs,
normal walking, Nordic walking and cycling;

• Activities of vigorous effort (> 6.0 METs): ascending stairs, running and rope
jumping.

5.3.2 Basic activity recognition task

In this problem, 5 activities are selected as basic classes: lying, sitting/standing,
walking, running and cycling. All other activities are discarded for this task.

It is important to note that the activities sitting and standing are forming one
class in this problem, since an extra IMU on the thigh would be needed for a reliable
differentiation of these postures (REISS; STRICKER, 2012).

5.3.3 Background activity recognition task

In this problem, the same 5 classes of basic activity recognition task are used, and
a new class called "Others" is included, with the samples of remaining activities. The goal
of this test is to correctly classify the 5 basic activities from previous test, ignoring any
other activity performed in the meantime. Since the user can perform countless activities
and just a few of them are important to monitoring algorithms, the use of "Others" class
is justified.

5.3.4 All activity recognition task

In this problem, all 12 defined activities presented in Table 17 are used.

5.4 First experiment - supervised comparison
In this first experiment, SSOE-ELM and SSOE-FP-ELM were evaluated in the

same four classification problems defined by Reiss & Stricker (2012), in a fully supervised
way (all training samples are labeled), comparing the results with the reference paper. An
hyperparameter optimization with Random Search method was performed in all algorithms.
Table 19 presents these parameters.
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Table 19 – Algorithm parameters for supervised experiment

SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM SVM
Dataset n α C µ n α C µ n λ C µ n θ η γ α

Intensity 2950 2−1 103 10 2950 2−3 103 20 2450 0.84 104 10 2550 1.4 2.0 -6 14
Estimation

Basic
Activity 2350 2−7 102 15 2700 2−3 102 5 2500 0.62 103 20 2900 10.9 8.4 -6 14

Recognition
Background
Activity 2950 2−16 10−1 20 2800 24 105 5 2850 0.08 103 5 3000 14.3 16.3 -5 13

Recognition
All

Activities 2950 26 105 5 2700 220 103 15 2200 0.35 104 10 2550 10.2 15.5 -7 15
Recognition

Table 20 presents the accuracy results of the proposed algorithms, comparing
with the results presented by Reiss & Stricker (2012). In addition, the results obtained
with FP-ELM, SOS-ELM and SVM for the same problems were also compared with the
proposed algorithms. Reiss & Stricker (2012) does not provide any information about the
execution time. Therefore in this experiment no comparison of training time and algorithm
execution was performed.

Table 20 – Algorithms accuracy (%) in supervised experiment

Intensity Basic Activity Background Activity All Activity
Classifier Estimation Recognition Recognition Recognition

Decision tree (C4.5) 97.89% 99.70% 97.09% 95.46%
Boosted C4.5 99.86% 99.95% 99.80% 99.69%
Bagging C4.5 98.31% 99.71% 97.87% 96.66%
Naive Bayes 88.45% 99.23% 85.08% 94.38%

kNN 99.86% 100.00% 99.57% 99.25%
SVM 99.3% ± 0.1% 99.3% ± 0.2% 98.9% ± 0.1% 98.6% ± 0.1%

FP-ELM 92.3% ± 0.8% 97.6% ± 0.3% 86.1% ± 1.5% 78.6% ± 1.8%
SOS-ELM 99.1% ± 0.1% 99.3% ± 0.2% 98.5% ± 0.2% 97.9% ± 0.2%
SSOE-ELM 99.2% ± 0.1% 99.2% ± 0.2% 98.6% ± 0.1% 98.1% ± 0.2%

SSOE-FP-ELM 99.1% ± 0.1% 99.3% ± 0.2% 98.6% ± 0.1% 97.8% ± 0.2%

In all four problems, SSOE-ELM and SSOE-FP-ELM obtained accuracy below
the best result presented by Reiss & Stricker (2012). Considering that the proposed
algorithms were developed to deal with semi-supervised situations, and that the difference
in accuracy for the best result was below 2% in all four datasets, the results presented are
still competitive in the fully supervised case. In addition, SSOE-ELM and SSOE-FP-ELM
had higher accuracy than FP-ELM in all datasets, and better results than SOS-ELM in 3
out of 4 datasets.
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5.5 Second experiment - semi-supervised comparison
In the second experiment, the proposed algorithms were tested in the same four

classification problems of PAMAP2 dataset in a semi-supervised way, comparing the
obtained results with SOS-ELM algorithm. In this experiment, the training dataset was
divided in labeled and unlabeled partitions, starting with 10% of labeled samples and 90%
of unlabeled samples, and gradually increasing to 90% labeled and 10% unlabeled samples.
The training was then performed in an online manner using a chunk of the training partition
each time. An hyperparameter optimization with Random Search method was performed in
all algorithms, using only 10% of labeled samples (worst case in this experiment). Table 21
presents these parameters.

Table 21 – Algorithms parameters for semi-supervised experiment

SSOE-ELM SSOE-FP-ELM SOS-ELM
Dataset n α C µ n α C µ n λ C µ

IntensityEstimation 2950 213 102 10 2100 215 103 5 200 0.81 105 15
BasicActivityRecognition 2250 212 105 5 2850 218 104 5 800 0.45 102 20

BackgroundActivityRecognition 2500 214 10−5 15 1000 215 103 20 3000 0.01 101 20
AllActivitiesRecognition 1350 217 104 5 2550 216 105 20 300 0.02 10−1 5

Table 22 presents the mean accuracy of the algorithms for three configurations of
labeled training samples. Figure 16 shows the mean accuracy of the algorithms for all
configurations of labeled training samples.

Table 22 – Algorithms accuracy (%) in semi-supervised experiment

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM
10% labeled

IntensityEstimation 96.4 ± 0.3 96.5 ± 0.4 95.4 ± 0.5
BasicActivityRecognition 97.2 ± 0.4 98.0 ± 0.3 96.5 ± 0.5

BackgroundActivityRecognition 95.7 ± 0.4 95.3 ± 0.4 94.2 ± 0.4
AllActivitiesRecognition 93.3 ± 0.5 92.9 ± 0.4 92.7 ± 0.4

50% labeled
IntensityEstimation 97.8 ± 0.2 98.6 ± 0.2 96.8 ± 0.3

BasicActivityRecognition 98.9 ± 0.2 98.6 ± 0.2 98.7 ± 0.2
BackgroundActivityRecognition 97.5 ± 0.2 97.8 ± 0.2 96.6 ± 0.3

AllActivitiesRecognition 95.6 ± 0.2 96.6 ± 0.2 96.7 ± 0.2
90% labeled

IntensityEstimation 98.0 ± 0.1 98.9 ± 0.1 97.0 ± 0.3
BasicActivityRecognition 99.2 ± 0.1 98.7 ± 0.2 99.1 ± 0.1

BackgroundActivityRecognition 97.7 ± 0.2 98.3 ± 0.2 96.9 ± 0.3
AllActivitiesRecognition 95.9 ± 0.2 97.2 ± 0.3 97.1 ± 0.2

In this semi-supervised experiment, the SSOE-ELM algorithm performed better
than SOS-ELM in 3 out of 4 datasets, losing in the "All Activity Recognition" task.
SSOE-FP-ELM presents better results than SOS-ELM in two datasets, and a very close
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Figure 16 – Algorithms accuracy (%) in semi-supervised experiment

performance in the task "All Activity Recognition". In the "Basic Activy Recognition"
task, the performance of SSOE-FP-ELM is better than that of SOS-ELM with few labeled
samples, but the situation is reversed as more labeled samples are used.

5.6 Third experiment - supervised comparison with concept drift
In this third experiment, SSOE-ELM and SSOE-FP-ELM were evaluated in the

four classification problems of PAMAP2 dataset with generated concept drift, in a fully
supervised way (all training samples are labeled), comparing the obtained results with
SOS-ELM and FP-ELM.

Two different concept drifts were tested. In the first experiment, a Label Concept
Drift (LCD) was generated in the middle of training dataset, changing the labels. In the
second experiment, a Feature Concept Drift (FCD) was generated in the middle of training
dataset, changing the inputs.

To measure the drift and update the forgetting parameter in SSOE-FP-ELM
algorithm, the labeled set of each training partition was first used as a test partition to
get the model accuracy, and then used as a training partition.

The same parameterss of first experiment (fully supervised classification without
concept drift) was used for all algorithms. For each dataset, the experiment was repeated 30
times, using the mean and standard deviation of the classification accuracy as performance



Chapter 5. Case Study 90

metrics.

Abrupt Concept Drift

Table 23 presents the accuracy of the proposed algorithms in supervised situations
with abrupt FCD and LCD, comparing with SOS-ELM and FP-ELM.

Table 23 – Algorithms accuracy (%) in supervised experiment with Abrupt FCD and
Abrupt LCD

Dataset (Abrupt FCD) SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM
Intensity Estimation 98.4 ± 0.1 98.6 ± 0.2 98.2 ± 0.2 92.1 ± 0.7

Basic Activity Recognition 98.5 ± 0.2 98.9 ± 0.2 98.8 ± 0.2 97.5 ± 0.4
Background Activity Recognition 97.4 ± 0.2 97.8 ± 0.2 97.3 ± 0.2 87.1 ± 2.1

All Activities Recognition 96.4 ± 0.3 96.7 ± 0.3 96.1 ± 0.2 78.6 ± 1.6
Dataset (Abrupt LCD) SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM
Intensity Estimation 54.0 ± 22.6 96.2 ± 3.6 57.8 ± 20.5 93.2 ± 2.5

Basic Activity Recognition 47.4 ± 17.2 91.2 ± 7.9 46.0 ± 17.9 97.8 ± 0.6
Background Activity Recognition 46.9 ± 14.7 94.3 ± 5.1 46.5 ± 15.3 88.2 ± 2.8

All Activities Recognition 36.3 ± 8.0 93.7 ± 2.0 33.6 ± 7.5 78.4 ± 2.3

In abrupt FCD, the SSOE-FP-ELM algorithm performs better than all other
algorithms in the four classification problems. On the abrupt LCD, SSOE-FP-ELM does
better than SOS-ELM and the other proposed algorithm, SSOE-ELM, on all datasets, and
has better performance than FP-ELM on 3 out of 4 datasets, losing in the "Basic Activity
Recognition" task.

Gradual Concept Drift

Table 24 presents the accuracy of the proposed algorithms in an experiment with
gradual FCD and LCD, comparing with SOS-ELM and FP-ELM.

Table 24 – Algorithms accuracy (%) in supervised experiment with Gradual FCD and
Gradual LCD

Dataset (Gradual FCD) SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM
Intensity Estimation 98.6 ± 0.2 98.7 ± 0.1 98.5 ± 0.3 92.1 ± 1.2

Basic Activity Recognition 98.8 ± 0.2 98.9 ± 0.1 99.0 ± 0.2 97.5 ± 0.4
Background Activity Recognition 97.8 ± 0.3 98.0 ± 0.1 97.7 ± 0.3 86.1 ± 1.3

All Activities Recognition 96.9 ± 0.2 96.8 ± 0.2 96.7 ± 0.4 78.5 ± 2.2
Dataset (Gradual LCD) SSOE-ELM SSOE-FP-ELM SOS-ELM FP-ELM
Intensity Estimation 99.2 ± 0.1 99.2 ± 0.1 99.0 ± 0.1 92.3 ± 0.8

Basic Activity Recognition 95.9 ± 6.5 97.5 ± 3.3 92.9 ± 8.7 97.4 ± 0.3
Background Activity Recognition 93.0 ± 5.2 97.5 ± 1.9 91.4 ± 9.6 86.6 ± 1.3

All Activities Recognition 84.0 ± 9.3 93.5 ± 3.0 82.3 ± 8.0 78.9 ± 2.1

In the gradual FCD, the algorithms are more balanced. The two proposed algorithms
perform better in 3 out of 4 datasets, and SOS-ELM obtains better results in one dataset,
all 3 algorithms with very close results. In the gradual LCD, the proposed algorithms
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obtain better results in all datasets, with SSOE-FP-ELM winning in 3 of them, and the
two proposed algorithms tied in the "Intensity Estimation" task.

5.7 Fourth experiment - semi-supervised comparison with concept
drift
In this forth experiment, SSOE-ELM and SSOE-FP-ELM were evaluated in the

four classification problems of PAMAP2, in a semi-supervised way, in the presence of
concept drift, comparing the obtained results with SOS-ELM. For each dataset, the training
partition was divided into labeled and unlabeled instances, starting with 10% of labeled
samples and 90% unlabeled, and gradually increasing to 90% of labeled samples and 10%
unlabeled. The training was then performed in an online manner using a chunk of the
training partition each time. For each division, the experiment was repeated 30 times, using
the mean and standard deviation of the classification accuracy as performance metrics.

As in the previous experiment, two different concept drifts were tested: Label
Concept Drift (LCD) and Feature Concept Drift (FCD).

To measure the drift and update the forgetting parameter in SSOE-FP-ELM
algorithm, the labeled set of each training partition was first used as a test partition to
get the model accuracy, and then used as a training partition. The same parameters of
second experiment (semi-supervised classification without concept drift) were used for
all algorithms. For each dataset, the experiment was repeated 30 times, using mean and
standard deviation of classification accuracy as performance metrics.

Abrupt Concept Drift

Table 25 presents the mean accuracy of the algorithms for three configurations of
labeled training samples with Abrupt FCD. Figure 17 shows the mean accuracy of the
algorithms for all configurations of labeled training samples in presence of Abrupt FCD.

The SSOE-FP-ELM algorithm has shown better accuracy in all four datasets in
the presence of abrupt FCD. The SSOE-ELM algorithm was better than the SOS-ELM in
3 out of 4 datasets, having the worst result in the task "All Activity Recognition".

Table 26 presents the mean accuracy of the algorithms for three configurations of
labeled training samples with Abrupt LCD. Figure 18 shows the mean accuracy of the
algorithms for all configurations of labeled training samples in presence of Abrupt LCD.

In abrupt LCD situations, the SSOE-FP-ELM algorithm had much higher accuracy
than the others, while the SSOE-ELM and SOS-ELM algorithms had very similar results.
This result highlights the fact that only the SSOE-FP-ELM algorithm has mechanisms to
deal with concept drift.
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Table 25 – Algorithms accuracy (%) in semi-supervised experiment with Abrupt FCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM
10 % labeled

Intensity Estimation 93.6 ± 0.4 94.4 ± 0.5 91.2 ± 0.9
Basic Activity Recognition 95.4 ± 0.6 97.3 ± 0.4 94.8 ± 0.8

Background Activity Recognition 92.8 ± 0.6 93.5 ± 0.4 89.9 ± 0.7
All Activities Recognition 90.0 ± 0.7 89.9 ± 0.7 88.9 ± 0.7

50 % labeled
Intensity Estimation 96.1 ± 0.3 98.0 ± 0.2 93.5 ± 0.6

Basic Activity Recognition 98.1 ± 0.3 98.2 ± 0.3 97.7 ± 0.3
Background Activity Recognition 95.9 ± 0.3 96.8 ± 0.2 93.5 ± 0.4

All Activities Recognition 93.8 ± 0.4 95.4 ± 0.3 94.8 ± 0.4
90 % labeled

Intensity Estimation 96.5 ± 0.3 98.4 ± 0.2 93.8 ± 0.5
Basic Activity Recognition 98.5 ± 0.2 98.2 ± 0.3 98.4 ± 0.3

Background Activity Recognition 96.3 ± 0.3 97.5 ± 0.2 94.0 ± 0.5
All Activities Recognition 94.3 ± 0.3 96.2 ± 0.3 95.5 ± 0.3

Figure 17 – Algorithms accuracy (%) in semi-supervised experiment with Abrupt FCD
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Table 26 – Algorithms accuracy (%) in semi-supervised experiment with Abrupt LCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM
10 % labeled

Intensity Estimation 61.7 ± 22.0 93.9 ± 1.9 58.1 ± 18.3
Basic Activity Recognition 53.1 ± 10.4 96.1 ± 3.1 53.3 ± 14.8

Background Activity Recognition 49.1 ± 11.3 90.4 ± 3.0 48.7 ± 14.1
All Activities Recognition 39.4 ± 6.1 88.3 ± 2.2 41.5 ± 5.3

50 % labeled
Intensity Estimation 53.0 ± 25.1 96.8 ± 3.1 50.0 ± 24.4

Basic Activity Recognition 49.3 ± 16.5 96.2 ± 3.4 47.2 ± 12.6
Background Activity Recognition 42.1 ± 16.2 95.3 ± 2.9 43.0 ± 16.0

All Activities Recognition 29.9 ± 8.4 95.2 ± 0.9 37.8 ± 9.3
90 % labeled

Intensity Estimation 51.4 ± 22.2 97.6 ± 2.1 53.6 ± 24.1
Basic Activity Recognition 44.9 ± 20.0 94.8 ± 7.8 49.0 ± 13.4

Background Activity Recognition 40.3 ± 17.0 94.6 ± 4.8 46.9 ± 18.3
All Activities Recognition 28.3 ± 9.7 95.8 ± 1.1 30.6 ± 8.3

Figure 18 – Algorithms accuracy (%) in semi-supervised experiment with Abrupt LCD

Gradual Concept Drift

Table 27 presents the mean accuracy of the algorithms for three configurations of
labeled training samples with Abrupt FCD. Figure 19 shows the mean accuracy of the
algorithms for all configurations of labeled training samples in presence os Abrupt FCD.

In the plots presented, a similar behavior of the algorithms between abrupt and
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gradual FCD is observed. The results are very close, with a reduction in the difference in
accuracy between the algorithms in the gradual FCD.

Table 28 presents the mean accuracy of the algorithms for three configurations of
labeled training samples with Abrupt LCD. Figure 20 shows the mean accuracy of the
algorithms for all configurations of labeled training samples in presence os Abrupt LCD.

In situations of gradual LCD, the SSOE-FP-ELM algorithm continues to have the
best performance in all datasets, but the difference in accuracy for the other algorithms is
smaller.

Table 27 – Algorithms accuracy (%) in semi-supervised experiment with Gradual FCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM
10 % labeled

Intensity Estimation 94.7 ± 0.6 94.9 ± 0.5 93.2 ± 0.8
Basic Activity Recognition 96.3 ± 0.4 97.6 ± 0.4 95.6 ± 0.5

Background Activity Recognition 94.0 ± 0.5 93.7 ± 0.5 91.9 ± 0.5
All Activities Recognition 91.9 ± 0.6 90.5 ± 0.5 90.4 ± 0.9

50 % labeled
Intensity Estimation 97.0 ± 0.4 98.3 ± 0.2 95.5 ± 0.6

Basic Activity Recognition 98.4 ± 0.3 98.3 ± 0.2 98.1 ± 0.4
Background Activity Recognition 96.5 ± 0.3 97.1 ± 0.2 94.7 ± 0.5

All Activities Recognition 94.8 ± 0.4 95.7 ± 0.3 95.4 ± 0.3
90 % labeled

Intensity Estimation 97.4 ± 0.3 98.5 ± 0.1 95.7 ± 0.5
Basic Activity Recognition 98.9 ± 0.2 98.3 ± 0.2 98.8 ± 0.2

Background Activity Recognition 96.8 ± 0.3 97.6 ± 0.2 95.4 ± 0.3
All Activities Recognition 95.0 ± 0.4 96.5 ± 0.3 96.2 ± 0.3

Table 28 – Algorithms accuracy (%) in semi-supervised experiment with Gradual LCD

Dataset SSOE-ELM SSOE-FP-ELM SOS-ELM
10 % labeled

Intensity Estimation 96.4 ± 0.3 96.6 ± 0.3 95.3 ± 0.4
Basic Activity Recognition 91.4 ± 7.2 95.2 ± 3.0 91.0 ± 6.0

Background Activity Recognition 93.8 ± 2.5 94.1 ± 1.7 92.6 ± 3.0
All Activities Recognition 80.4 ± 6.1 89.2 ± 1.5 80.2 ± 5.1

50 % labeled
Intensity Estimation 97.9 ± 0.2 98.6 ± 0.1 96.9 ± 0.2

Basic Activity Recognition 95.2 ± 5.5 96.2 ± 4.1 90.5 ± 8.9
Background Activity Recognition 93.7 ± 4.5 95.8 ± 2.5 93.5 ± 4.3

All Activities Recognition 81.9 ± 8.9 93.2 ± 3.1 83.0 ± 7.6
90 % labeled

Intensity Estimation 98.1 ± 0.2 98.8 ± 0.1 97.0 ± 0.3
Basic Activity Recognition 94.7 ± 7.7 96.8 ± 4.4 91.7 ± 8.7

Background Activity Recognition 94.0 ± 5.6 96.0 ± 3.4 95.6 ± 2.5
All Activities Recognition 79.1 ± 8.0 93.6 ± 2.7 82.4 ± 8.4
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Figure 19 – Algorithms accuracy (%) in semi-supervised experiment with Gradual FCD

Figure 20 – Algorithms accuracy (%) in semi-supervised experiment with Gradual LCD
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6 Conclusions

In this thesis, two elastic online semi-supervised algorithms were proposed for
data classification. The first algorithm, called Semi-Supervised Online Elastic Extreme
Learning Machine (SSOE-ELM), is a semi-supervised graph-based algorithm, with online
update and low training time, developed to handle large and unbalanced datasets and
data streams, able to solve problems in three big data dimensions: Velocity, Volume and
Veracity. With respect to the Velocity dimension, the SSOE-ELM algorithm is based on
ELM, being able to quickly process incoming training samples continuously. Regarding
the Volume dimension, SSOE-ELM decomposes the output weight matrix calculation into
two matrices U and V , being able to handle both large datasets and data streams. With
regard to the Veracity dimension, two major challenges are dealing with partially labeled
datasets and unbalanced datasets. The SSOE-ELM algorithm is capable of handling both
problems using semi-supervised learning methods and a penalty coefficient for unbalanced
datasets.

The second algorithm, called Semi-Supervised Online Elastic Extreme Learning
Machine with hybrid Forgetting Parameter (SSOE-FP-ELM), consists of an extension of
SSOE-ELM to address another major challenge of the big data, i.e., the Veracity dimension:
the concept drift. In data streams, received data may change over time. These variations
can be due to many factors: problems with data collection, transmission or pre-processing;
changes in the monitored environment; among others. To address these drifts, a hybrid
forgetting parameter was added to the SSOE-ELM to detect changes and adapt the model.
This parameter is composed of a supervised factor, which periodically checks the model for
accuracy drops as an indicator of concept drifts, and an unsupervised factor, which verifies
changes in the input data distribution as an indicator of concept drifts. These two factors
are combined, generating a forgetting parameter that is responsible for adapting the model
to the detected changes, either updating with the new information, or discarding all the
acquired knowledge and retraining from the beginning.

The algorithms were tested in supervised and semi-supervised situations, with
and without concept drifts, comparing with the SOS-ELM algorithm, which has the
same characteristics as the proposed algorithms (semi-supervised, online and ELM-based).
Additionally, the proposed algorithms were compared with SVM, a well-known supervised
classification algorithm, and FP-ELM, an ELM-based supervised algorithm that deals
with concept drifts, to verify if the proposed algorithms would perform well compared
to specialized algorithms in the situations of supervised classification and concept drifts,
respectively.



Chapter 6. Conclusions 97

At first, SSOE-ELM and SSOE-FP-ELM were tested in fully supervised situations to
ensure that they would work in the basic case. In this experiments, public domain datasets
with different amount of features and samples were used, partitioning the training dataset
into small chunks to simulate data streams. The proposed algorithms were compared with
SOS-ELM, SVM and FP-ELM. Supervised tests were conducted with and without the
presence of concept drifts. The following experiments were performed in semi-supervised
situations, comparing the results obtained with the SOS-ELM. The semi-supervised tests
were also conducted with and without the presence of concept drifts.

In the experiments performed, SSOE-ELM and SSOE-FP-ELM showed good overall
results. Compared with SVM, the proposed algorithms showed a slightly lower accuracy in
most of the datasets used. This difference is due to the fact that they were developed to
operate mainly in semi-supervised situations. The inferior but competitive performance of
the algorithms compared to SVM shows that they are working in the basic (supervised) case,
in addition to treating their main focus, the semi-supervised situation. When compared
with SOS-ELM, another online and semi-supervised algorithm, the proposed algorithms
outperform SOS-ELM in accuracy and generalization ability in most cases, and SSOE-ELM
still presents shorter training time. This indicates that the proposed algorithms achieve
their objective in solving semi-supervised and online problems. And when tested in concept
drift situations compared to FP-ELM, the proposed algorithms presents higher accuracy
in most supervised situations, and SSOE-FP-ELM presents better performance and better
recovery ability in the case of two different concept drifts - Feature Concept Drift (FCD)
and Label Concept Drift (LCD) - both gradual and abrupt.

The results obtained indicate that the proposed algorithms are viable alternatives
to treat partially labeled, unbalanced and very large datasets, including data streams.
Moreover, the SSOE-FP-ELM has shown to be able to handle different concept drifts well,
despite having a longer training time.

Comparing the two proposed algorithms, the experiments showed that in fully
supervised situations without the occurrence of concept drifts, both algorithms present
close accuracy in most datasets. In semi-supervised cases without concept drift, a similar
result is observed, with the two algorithms having a very close accuracy in most datasets.
In the supervised or semi-supervised case with the occurrence of a concept drift, the SSOE-
FP-ELM presents better results than the SSOE-ELM, especially on the LCD (gradual or
abrupt) and the abrupt FCD.

Therefore, the following usage guidelines can be established: for classification of
datasets that do not have a concept drift, it is better to use the SSOE-ELM, as it has an
accuracy close to the SSOE-FP-ELM in these cases, and its training is faster because it is
not necessary to calculate the forgetting parameter. In cases with abrupt FCD, or any
type of LCD, the SSOE-FP-ELM is the best option, as it tends to present better accuracy
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than the SSOE-ELM. In cases of gradual FCD, the SSOE-FP-ELM has slightly higher
accuracy than the SSOE-ELM, and it should be analyzed for each dataset whether the
accuracy gain is worth the increase in training time. In situations where it is not possible
to identify if there is a concept drift, the SSOE-FP-ELM should be used, as it is a more
general solution.

The main contributions presented in this thesis are:

• A new ELM-based semi-supervised online classification algorithm for unbalanced
datasets that presents accuracy comparable to other algorithms in the literature and
shorter training time.

• An extension of the previous ELM-based semi-supervised online classification algo-
rithm for data streams in the presence of virtual and real concept drifts.

• A new hybrid forgetting parameter computation for semi-supervised algorithms that
takes into account labeled and unlabeled samples.

Limitations and future directions

The proposed algorithms present some limitations, and there are many possibilities
for improvements that may be addressed in future works:

• The λ tradeoff parameter of SSOE-ELM is calculated using a simple proportion of
the number of unlabeled samples in the training base. This calculation considers that
the more unlabeled samples are present in the training, the greater is the weight of
these unlabeled samples in the final classification model. This premise is not always
true, because in more specialized datasets (medical images, for example), the labeled
samples have a much greater weight in the final result. An approach that weighs
labeled and unlabeled samples, based on prior knowledge of experts, analysis of data
distribution, clustering or entropy, could increase the performance of the algorithm.

• The γ forgetting parameter of the SSOE-FP-ELM is calculated as the maximum
factor of change found (supervised or unsupervised). This calculation is based on
the premise that once any type of concept drift is detected, the forgetting parameter
must act and adapt the model. However, as noticed in the experiments, generally a
FCD has less impact than a LCD on the model, due to the concept drift smoothing
promoted by the neural network activation function. Therefore, it would not be
necessary to apply the same forgetting parameter in both cases, even if the supervised
and the unsupervised factors are numerically equal. In order to avoid unnecessary
loss of knowledge by applying a higher forgetting parameter, a way of weighting
the factors is necessary. One way (not yet studied) to minimize this problem is to



Chapter 6. Conclusions 99

calculate Laplacian scores from the feature matrix H, and not from the input matrix
X, but further studies are needed.

• To calculate the supervised factor of the forgetting parameter, the SSOE-FP-ELM
needs to check the current accuracy of the model, which means calculating the β
output weights matrix. As this operation is carried out with each training partition,
the SSOE-FP-ELM loses one of the advantages presented by the SSOE-ELM: the
speed of the training due to the lack of the output weights matrix calculation until
the end of the training process. To avoid this, a mechanism that would inform the
algorithm the best time to calculate the output weights matrix would be interesting.
This mechanism could be based on the accuracy of the current model, only performing
the recalculation when the difference in accuracy is greater than a threshold; or the
number of samples processed, updating the output weights matrix after a certain
number of training partitions. However, the first approach would not detect a gradual
concept drift, as the accuracy could drop slowly, while the second approach would not
detect abrupt concept drifts immediately, requiring a certain number of partitions
until the forgetting parameter was triggered. Perhaps a hybrid mechanism would be
the best option.

• The proposed algorithms use similarity information between labeled and unlabeled
training samples, through the Laplacian matrix, to infer information about labels
when there are not enough labeled samples to train the model. Works using Gabriel
Graph, such as Takahashi, Torres & Braga (2019) and Torres et al. (2020), provide
good results in obtaining information about the structure of the dataset. To obtain
better results, the structural information from the training dataset could be used,
generating the Gabriel Graph from labeled and unlabeled training samples.

Open Research Topics

• Treatment of noisy data streams, detecting changes in the presence of
different noise levels. Since input data is changing over time, it is a challenging
task to separate noise from data in concept drift situations.

• Unsupervised learning. This thesis presents two algorithms that demonstrate
good results in supervised and semi-supervised learning situations. A research topic
not yet covered is the adaptation of these algorithms to work in unsupervised learning
cases. This can occur in two situations: when an abrupt concept drift is followed
by training partitions that are completely unlabeled; or when the initial training
partitions do not have labeled samples. A hybrid approach of classification and online
clustering can be useful in cases where labels are not yet available.
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• Self-supervised learning. In addition to the hybrid approach of classification and
online clustering, an interesting development of the topic addressed would be to
employ self-supervised learning to reduce the number of labels required for training
the algorithms. A self-supervised approach would be particularly useful if adapted to
assist in measuring the accuracy of the model for calculating the supervised factor of
the forgetting parameter, removing an important limitation of the SSOE-FP-ELM,
which is the need for all training partitions to have labeled samples.

• Deep architectures. This thesis presents improvements in ELM-based algorithms.
Essentially, ELM is a "shallow" algorithm, as it is used to train neural networks with
only one hidden layer. There are "deep" variations of the ELM, which stacks several
ELM networks, such as the Multi-Layer ELM (ML-ELM) (KASUN et al., 2013),
Stacked ELM (S-ELM) (Zhou et al., 2015), Semi-supervised Deep ELM (SDELM)
(GU et al., 2015) and Stacked Sparse Denoising Autoencoder - Ridge Regression
(SSDAE-RR) (CAO; HUANG; SUN, 2016). A possible evolution of SSOE-ELM
and SSOE-FP-ELM is an adaptation to a deep architecture, which would allow the
algorithms to map more complex features.
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APPENDIX A – Time Complexity of
SSOE-ELM

For many classification problems, the total number of training samples N and the
number of neurons n are the highest values, generally greater than the number of features
d or the number of classes c. Therefore, to compute the ELM time complexity, the order
of importance of the parameters from the most relevant to the least relevant is: number of
training samples and number of neurons; number of features; number of classes.

Considering the dimensions of the input matrices X[N×d], W[d×n] and T[N×c], and
the greater impact of parameters N and n on computational time, Table 29 presents the
computational complexity of each operation in Standard ELM, and the final complexity,
according to Cormen et al. (2009). It is important to note that in classification problems
with a large number of training samples, the term n2N gains greater importance in the
calculation of the final time complexity. In problems where the number of neurons n is
greater than the number of training samples N , the term n3 stands out. Both operations
are performed only once, during β computation.

Table 29 – Standard ELM computational complexity, based on Akusok et al. (2015)

Projection to hidden layer (H matrix computation)
Operation Time Complexity

H[N×n] = f(XW + b) O(Ndn)
β matrix computation

Operation Time Complexity
A[n×n] = HTH O(n2N)
B[n×c] = HTT O(nNc)
C[n×n] = αI + A O(n2)
D[n×n] = C−1 O(n3)

β[n×c] = (αI +HTH)−1HTT = DB O(n2c)
Final Time Complexity

O(n2N + n3)

In the SSOE-ELM algorithm, which performs the training process in an online
manner, the total number of training samples N is replaced by the size of each training
partition Nk in the input matrices dimensions and in the calculations performed. Generally,
the size of training partitions is smaller than the number of neurons, making parameter n
the most important when calculating computational time of SSOE-ELM.

Table 30 presents the computational complexity of each operation in SSOE-ELM,
and the final complexity. In addition to the standard ELM operations, SSOE-ELM
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computes the intermediate matrices L, J (for semi-supervised learning), U and V (for
online update) for each training partition. It is important to note that the β computation
(which is the operation with the highest computational cost) only needs to be performed
once at the end of the training. Therefore, the computational time of the SSOE-ELM
remains in the same order of magnitude as the Standard ELM.

Table 30 – SSOE-ELM computational complexity for each training partition k, based on
Akusok et al. (2015)

Projection to hidden layer (H matrix computation)
Operation Time Complexity

Hk[Nk×n] = f(XW + b) O(Nkdn)
Computation of Laplacian matrix Lk and Penalty matrix Jk

Operation Time Complexity
Find µ nearest neighbors in H O(nNkµ)
Ak[Nk×Nk][i, j] = adj(xi, xj) O(N2

k )
Dk[Nk×Nk][i, i] =

∑Nk
j=1 Ak[i, j] O(N2

k )
Lk[Nk×Nk] = Dk - Ak O(N2

k )
Jk[Nk×Nk][i, i] = C/Nti O(Nk)

Computation of intermediate matrices Uk and Vk
Operation Time Complexity

M1[Nk×Nk] = Jk + λkLk O(N2
k )

M2[n×Nk] = HT
kM1 O(nN2

k )
∆U[n×n] = HT

k (Jk + λkLk)Hk = M2Hk O(n2Nk)
M3[n×Nk] = HT

k Jk O(nN2
k )

∆V[n×c] = HT
k JkTk = M3Tk O(nNkc)

Uk[n×n] = Uk−1 + ∆U O(n2)
Vk[n×c] = Vk−1 + ∆V O(nc)

β matrix computation
Operation Time Complexity

M4[n×n] = αI + U O(n2)
M5[n×n] = M−1

4 O(n3)
β[n×c] = (αI + U)−1V = M5V O(n2c)

Final Time Complexity
Operation Time Complexity

At each training partition O(n2Nk)
At the end of the training process O(n2Nk + n3)

*M1, M2, M3, M4 and M5 are temporary matrices
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APPENDIX B – Time Complexity of
SSOE-FP-ELM

The SSOE-FP-ELM algorithm is based on SSOE-ELM, so the operations of the
semi-supervised learning and online update steps are the same for both algorithms. The
difference between the two proposed algorithms, in terms of computational time, is the
calculation of the semi-supervised forgetting parameter in the SSOE-FP-ELM.

Table 31 presents the computational complexity of each operation in SSOE-FP-ELM.
SSOE-FP-ELM has a longer training time than the SSOE-ELM, due to the supervised
factor of the forgetting parameter. To assess the accuracy of the model from one training
partition to another and check whether a label concept drift has occurred, it is necessary
to calculate the β output weights matrix, and this is the operation with the highest
computational cost. Thus, at each training partition the SSOE-FP-ELM needs to carry
out all operations (calculate the intermediate matrices L, J , U and V , compute the β
matrix and calculate the forgetting parameter), different from the SSOE-ELM that does
not need to calculate β.
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Table 31 – SSOE-FP-ELM computational complexity for each training partition k, based
on Akusok et al. (2015)

Projection to hidden layer (H matrix computation)
Operation Time Complexity

Hk[Nk×n] = f(XW + b) O(Nkdn)
Computation of Laplacian matrix Lk and Penalty matrix Jk

Operation Time Complexity
Find µ nearest neighbors in H O(nNkµ)
Ak[Nk×Nk][i, j] = adj(xi, xj) O(N2

k )
Dk[Nk×Nk][i, i] =

∑Nk
j=1 Ak[i, j] O(N2

k )
Lk[Nk×Nk] = Dk - Ak O(N2

k )
Jk[Nk×Nk][i, i] = C/Nti O(Nk)
Computation of Forgetting Parameter γ

Operation Time Complexity
Wilcoxon test in Xk−1 and Xk O(dNk)

Laplacian scores → S[1×d] O(dN2
k )

Normalized reversed Laplacian scores → S ′[1×d] O(d)
Laplacian scores of changed inputs → Ŝ[1×d] O(d)

Computation of intermediate matrices Uk and Vk
Operation Time Complexity

M1[Nk×Nk] = Jk + λkLk O(N2
k )

M2[n×Nk] = HT
kM1 O(nN2

k )
∆U[n×n] = HT

k (Jk + λkLk)Hk = M2Hk O(n2Nk)
M3[n×Nk] = HT

k Jk O(nN2
k )

∆V[n×c] = HT
k JkTk = M3Tk O(nNkc)

Uk[n×n] = (1− γ)Uk−1 + ∆U O(n2)
Vk[n×c] = (1− γ)Vk−1 + ∆V O(nc)

β matrix computation
Operation Time Complexity

M4[n×n] = αI + U O(n2)
M5[n×n] = M−1

4 O(n3)
β[n×c] = (αI + U)−1V = M5V O(n2c)

Final Time Complexity
Operation Time Complexity

At each training partition O(n2Nk + n3)
At the end of the training process O(n2Nk + n3)

*M1, M2, M3, M4 and M5 are temporary matrices
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