
André Georghton Cardoso Pacheco

Combining heterogeneous data and deep
learning models for skin cancer detection

Vitória

2020

André Georghton Cardoso Pacheco

Combining heterogeneous data and deep learning models
for skin cancer detection

Thesis presented to the Graduate Program in
Computer Science of the Federal University
of Espírito Santo as a partial requirement
to obtain the degree of Doctor in Computer
Science

Federal University of Espírito Santo - UFES

Graduate Program in Computer Science

Supervisor Prof. Dr. -Ing. Renato A. Krohling

Vitória
2020

Statement of Authorship

I hereby certify this thesis is based on my own work. All direct or indirect sources
of information used are acknowledged as references, including graphs and datasets. Also, I
have not submitted this thesis at any other institution in order to obtain a degree.

Ficha catalográfica disponibilizada pelo Sistema Integrado de
Bibliotecas - SIBI/UFES e elaborada pelo autor

P116c
Pacheco, Andre G. C., 1990-
PacCombining heterogeneous data and deep learning models for
skin cancer detection / Andre G. C. Pacheco. - 2020.
Pac150 f. : il.

PacOrientador: Renato Antônio Krohling.
PacTese (Doutorado em Informática) - Universidade Federal
do Espírito Santo, Centro Tecnológico.

Pac1. Deep Learning. 2. Data Aggregation. 3. Ensemble of Deep
Models. 4. Convolutional Neural Networks. 5. Image
Classification. 6. Skin Cancer Detection. I. Krohling, Renato
Antônio. II. Universidade Federal do Espírito Santo. Centro
Tecnológico. III. Título.

CDU: 004

Statement of Contributions for the creation of
PAD-UFES-20 dataset

The skin lesion dataset PAD-UFES-20 created during this doctorate is a result of the
effort of many people. First of all, I recognize the work of Professors Carlos Cley and Luiz F.
S. de Barros who founded the Programa de Assistência Cirurgica e Dermatológica (PAD)
in 1987. From this program all dataset were collected. Currently, Professor Patricia H. L.
Frasson is the plastic surgeon and coordinator of the PAD. Professor Renato A. Krohling
and Mr. Helder Knidel conceived the idea of this dataset and provided the computational
infrastructure of the LABCIN. I led software technical development and, along with
Gustavo R. Lima, Amanda S. Salomão, Igor P. Biral, Alana C. Simora, and Fábio C. R
Alves Jr., coordinated the data collection. Breno A. Krohling, Gabriel G. de Angelo, José G.
M. Esgario, Pedro B. C. Castro, and Felipe B. Rodrigues, worked on software development
and data collection. Dr. Maria C. S. Santos coordinates histopathology examination and
description. Dr. Rachel B. Espírito Santo, Dr. Telma L. S. Macedo, and Dr. Tânia R. P.
Canuto are the dermatologists of the program who provided all clinical diagnostics for
this dataset. I also recognize the effort of hundreds of medical students who work for the
PAD by assisting in the appointments.

To my beloved grandmother wherever she is.

Acknowledgements

Foremost, I would like to profoundly thank my whole family, in particular, my wife
Mariane, for the unconditional support, patience, and love; my parents, Almerinda and
José, who did the impossible to provide me the best education a person can have; my
parents-in-law, Jane e Marlucio, for all patience and understanding; the support of my
brother Lucas; my sisters-in-law Natalia and Marilia; sister-in-law’s husband Willyam, all
my cousins, uncles, and aunts; and my grandmother Nadir who has recently left us, but I
am sure she would be proud of me.

I would like to express my deep gratitude to my supervisor Prof. Renato A. Krohling
for the stimulus and guidance that made this work possible. To all doctors and students
from the Programa de Assistência Cirúrgica e Dermatológica (PAD-UFES), in particular
Dr. Patrícia, Dr. Rachel, Dr. Luiz, and the (former) monitors Thales, Marcela, Elionay,
Fabio, Igor, Jayme, Gustavo, and Amanda. I thank professors Thomas Trappenberg and
Saagev Oore for having me during my visiting research at Dalhousie University. Professors
Celso A. S. Santos and Daniel C. Cavalieri, who provided valuable observations to improve
this work, and Professors João Paulo Papa, Vinícius F. S. Mota, Maria C. S. Boeres, and
Mariella Berger for accepting the invitation to be part of the examination board. And the
foment research agencies CAPES and FAPES, which provided the financial support to my
scholarship and my doctoral project.

Finally, my sincere thanks to my lab partners Gabriel, Guilherme(s), Giuliano,
Breno, Carlos, Lucas, Pedro, Leandro, Arnauld, Yoshi, Zaher, and Chandramouli for
the technical support and advice. To Ivan and Rodolfo for all discussions about science,
research, and academic life. To the last but not least, my great friends Julio, Glicia, Félix,
Luis, Mateus, Jordana, Daniel, Aluisio, Gustavo, Pedro, Ramon, Dudu, and all my friends
from EngComp-09. All of you play an important role in my life and are a big part of this
work.

"We strive toward knowledge, always more knowledge, but must understand that we are,
and will remain, surrounded by mystery."

Marcelo Gleiser

Abstract
Currently, Deep Neural Networks (DNN) are the most successful and common method-
ologies to tackle medical image analysis. Despite the success, applying Deep Learning
for these types of problems involves several challenges such as the lack of large training
datasets, data variance, and noise sensitivity. In this thesis, our main focus is on proposing
solutions to assist Deep Learning models to deal with these issues when they are applied
to medical (clinical) image problems, in particular for skin cancer detection. Basically,
we work on two main topics: data classification using images and context meta-data and
dynamic weighting for an ensemble of deep models. First, we propose two methods to
combine images and meta-data; one method is based on features concatenation that uses a
mechanism to balance the contribution of each source of data; the second method, named
Meta-data Processing Block (MetaBlock), uses meta-data to support the classification by
identifying the most relevant features extracted from the images. Next, we propose an
approach, based on a Dirichlet distribution and Mahalanobis distance, to learn dynamic
weights for an ensemble of deep models. The learned weights are used to reduce the
impact of weak models on the aggregation operator and to online select models from the
ensemble. All these methods are evaluated in well-known image classification datasets
in different experiments. Results show that the proposed methods are competitive with
other approaches that deal with the same problems. Lastly, we carry out a case study
using a new skin lesion dataset – composed of clinical images collected from smartphones
and patient demographics – collected in partnership with the Dermatological and Surgical
Assistance Program of the Federal University of Espírito Santo. Results achieved using
this dataset are comparable to other recent performance reported in the literature, which
shows that the proposed algorithms are viable to deal with skin cancer detection.

Keywords: Deep Learning, Data Aggregation, Ensemble of Deep Models, Convolutional
Neural Networks, Image Classification, Skin Cancer Detection.

Resumo
Atualmente, as Redes Neurais Profundas (RNP) são os modelos que apresentam os melhores
resultados para lidar com a análise de imagens médicas. Apesar do sucesso, a aplicação
de Aprendizado Profundo para esses tipos de problemas apresenta vários desafios, como
a falta de grandes conjuntos de dados de treinamento, variação de dados e sensibilidade
ao ruído. O foco principal deste trabalho é propor soluções para auxiliar os modelos
de Aprendizado Profundo a lidar com esses desafios quando aplicados a problemas que
lidam com imagens (clínicas) médicas, em particular a detecção de câncer de pele. De
maneira geral, as propostas são feitas em dois tópicos principais: classificação de dados
utilizando imagens e metadados do contexto e ponderação dinâmica para um conjunto
de modelos profundos. Primeiro, foi proposto dois métodos para combinar imagens e
metadados; um método é baseado na concatenação de atributos que utiliza um mecanismo
para equilibrar a contribuição de cada fonte de dados; o segundo método, denominado
Bloco de Processamento de Metadados (MetaBlock), utiliza os metadados para apoiar
a classificação, identificando os atributos mais importantes extraídos das imagens. Em
seguida, propomos uma abordagem, baseada na distribuição de Dirichlet e na distância
de Mahalanobis, para aprender dinamicamente os pesos para um conjunto de modelos
profundos. Esses pesos são utilizados para reduzir o impacto de modelos ruins no operador
de agregação e para selecionar modelos do conjunto de maneira online. Todos os métodos
propostos são avaliados em diferentes bases de dados de classificação considerando diferentes
experimentos. Os resultados obtidos mostram que os métodos propostos são competitivos
com outras abordagens que lidam com os mesmos problemas. Por fim, é realizado um
estudo de caso utilizando uma nova base de dados de lesões de pele - composta por imagens
clínicas coletadas via smartphones e informações clínicas dos pacientes - coletados em
parceria com o Programa de Assistência Dermatológica e Cirúrgica (PAD) da Universidade
Federal do Espírito Santo (UFES). O desempenho obtido para essa base de dados é
comparável com outros resultados recentemente reportados na literatura, o que indica que
os algoritmos propostos são viáveis para lidar com detecção de câncer de pele.

Keywords: Aprendizado profundo, Agregação de Dados, Conjunto de Modelos Profundos,
Redes Neurais Convolutivas, Classificação de imagens, Detecção de Câncer de Pele.

List of Figures

Figure 1 – Estimated age-standardized incidence of skin cancer in the world for
both sexes and ages 0-74 (Bray et al., 2018). Countries in Europe, USA,
Canada, New Zealand, and Australia have the highest rates. In South
America, Brazil and Uruguay present the highest estimate occurrences. 22

Figure 2 – The differences between a clinical image (left) and a dermocopy image
(right) of the same skin lesion. As we can see, the dermoscopy one
present more details than the clinical one. Source: (Marghoob; Usatine;
Jaimes, 2020). 23

Figure 3 – The paradigm difference between ML and AI. While AI is based on
hardcoded rules to output answers, ML learns these rules from the data
and the answers. This figure is an adaptation from (Chollet, 2018) . . . 29

Figure 4 – Illustration of the bias-variance trade-off. As the model’s complexity
increases, the bias tends to decrease and variance to increase. Conversely,
as it decreases, bias tends to increase and variance to decrease. The
optimal point is a balance of all errors. Adapted from (Goodfellow;
Bengio; Courville, 2016). 33

Figure 5 – Illustration of the concepts of underfitting and overfitting. In the first
plot (from the left to the right) the model is too simple and cannot
learn properly the data structure. In the middle, the model’s complexity
represents a good fit for the data. Lastly, in the last plot, the model is
too complex that memorizes the training data. Adapted from scikit-learn
documentation (Pedregosa et al., 2011). 34

Figure 6 – Illustration of the perceptron, the basic unit of an FNN. As defined
by Haykin (2010), the neuron’s weights store the knowledge within the
neuron. 37

Figure 7 – Illustration of a neural layer composed of {P1, · · · , Pn} perceptrons. Each
perceptron has its own set of weights and outputs a single prediction.
For simplicity, the bias was omitted. 38

Figure 8 – Illustration of a Multilayer Perceptron (MLP) composed of L layers. As
it is a feedforward network, information flows from layer 1 to Layer L,
which represents the output predictions. Each layer may have a different
number of neurons. 38

Figure 9 – An example of Dropout regularization in a small neural network. The
red X means that the neuron is turned-off for the current step. Note
that Dropout is not applied to the output layer. 45

Figure 10 – Illustration of the local receptive fields in the visual cortex. Neurons in
this part of the brain reacts only for limited regions of the visual field
(Géron, 2019). 47

Figure 11 – An example of the convolution between a 3 × 3 input matrix and a
2× 2 kernel. In this example, the kernel convolves only in defined values
of the image. The symbol ⊗ represents the dot product between the
selected values. 48

Figure 12 – Illustration of a convolution layer containing six kernels. Each kernel
output a 2D feature map that are stacked at the end. The shape of the
feature maps are defined by Equation 2.35. 49

Figure 13 – Example of the pooling operation in a 4× 4 feature map using MaxPool
(left) and AvgPool (right) with pooling stride equal to 2 and spatial
neighborhood equat to 2× 2. 51

Figure 14 – A typical CNN architecture with two stacked layers performing convo-
lution, activation function, and pooling. The feature maps computed
in the last layer are flattened and acts as inputs to the fully connected
layer. Lastly, the fully-connected layer provides the network’s predictions. 52

Figure 15 – Example of data augmentation on an image sample. As we can note,
six samples are generated from the same image. Source: (Géron, 2019) . 53

Figure 16 – A schematic diagram illustrating the feature concatenation methodology.
Basically, the set of features extracted by a given image extractor is
stacked on top of each other and sent to the next method’s step, which
may be classification. Note that each extractor may produce a different
number of features. 56

Figure 17 – A diagram illustrating the proposed method to combine image and meta-
data features. First, the image features are extracted by the CNN feature
extractor. Next, these features are selected according to h. Finally, the
features are combined and sent to the models’ classifier. 60

Figure 18 – A schematic diagram of a standard LSTM block. Basically, the block
is composed of operations and gates that control and manipulate the
information flow. Figure from (Olah, 2015). 61

Figure 19 – An attention mechanism proposed by Rodríguez et al. (2018). The
original CNN architecture is extended by including several attention
blocks. The original model’s output is controlled by the global attention
gates. Figure from (Rodríguez et al., 2018). 62

Figure 20 – A schematic diagram illustrating the main idea of the proposed com-
bination approach. The image features are selected according to the
meta-data. In the end, the meta-data enhance the image features. . . . 63

Figure 21 – The internal structure of the Meta-data Processing Block. In summary,
the block learns how to modify the image features based on the meta-
data features. The output features array has the same shape as the
image features. 65

Figure 22 – An illustration of a MetaBlock layer attached to a CNN model. Observe
that the meta-data are used to identify the most relevant features from
the feature maps before sending them to the classifier. 65

Figure 23 – The A-TOPSIS rank for the four methods considering the BACC metric. 71
Figure 24 – The Macro average and melanoma ROC curves for no meta-data, conca-

tenation, MetaBlock, and MetaNet approaches considering the ResNet-
50 model. 71

Figure 25 – The confusion matrix for each methodology considering the ResNet-50
model. 73

Figure 26 – The workflow of the phases of an MCS. In the first step, a pool of
classifiers is created. Next, the selection phase is performed using the
validation partition. Finally, the classifiers are aggregated. Adapted
from (Cruz; Sabourin; Cavalcanti, 2018). 75

Figure 27 – An illustration of an MCS based on stacking without applying the selec-
tion phase. The ensemble decision is obtained through the aggregation
of all classifiers predictions. 76

Figure 28 – A schematic diagram illustrating both steps of the proposed algorithm
LewDir. In the first step, the validation data is used to get and save
the hit and miss distributions. In the second step, the distributions
are loaded and used to estimate the weights for each model within the
ensemble according to the probabilities assigned to the new sample. . . 85

Figure 29 – An example of an image from each medical dataset used in this experi-
ment. We may observe that they have different features that affect the
level of difficulty of each task. 88

Figure 30 – The macro average ROC curves for the ISIC and CheXpert datasets
considering all deep models and aggregation approaches. 92

Figure 31 – The A-TOPSIS rank for the seven aggregation methods considering the
BACC metric. 92

Figure 32 – Data collection workflow of the PAD-UFES-20 dataset from the clinical
field to the quality selection. 96

Figure 33 – Samples of each type of skin lesion present in PAD-UFES-20 dataset.
SCC, BCC, and MEL are skin cancers and NEV, SEK and ACK are
skin diseases. 99

Figure 34 – The patients’ age histogram stratified by gender and boxplots per
diagnostic. 100

Figure 35 – The total frequency of each region and the frequency per diagnostic. . . 101
Figure 36 – The skin lesion diameters distribution and scatterplot stratified per

diagnostic. 101
Figure 37 – Bar plots for three features based on the questions that dermatologists

make to the patients. 102
Figure 38 – The difference between the original images (left) and the images after

the color constancy pre-processing (right). 103
Figure 39 – The result of the data augmentation employed in this experiment for

some samples from PAD-UFES-20 dataset. 104
Figure 40 – Confusion matrices for ResNet-50 considering all methods. 107
Figure 41 – ROC curves for ResNet-50 considering all methods and all skin lesions. 108
Figure 42 – The A-TOPSIS rank for the three methods considering the BACC metric109
Figure 43 – The t-SNE visualization considering the ResNet-50 model with and

without using the meta-data . 110
Figure 44 – Examples of skin lesion wrongly predicted by the ResNet-50 model

without using the meta-data that was corrected by the MetaBlock
approach. 111

Figure 45 – The macro average ROC for the ensemble of CNN models considering
the same folder for all methods. 112

Figure 46 – The A-TOPSIS rank for all aggreationg methods and CNN models. . . 112
Figure 47 – Screenshots of the smartphone application used to collect skin lesion

images and patient data. 135
Figure 48 – A schematic diagram describing the relationship between front-end and

back-end. 135
Figure 49 – A screenshot of the web-system used to store and track all skin lesions

and patient data. 136
Figure 50 – Adding connection breakers (red X) into the MetaBlock in order to

assess the contribution of each gate. 139
Figure 51 – The performance of the Dirichlet distribution estimation algorithm in

terms of estimation error and time per number of samples. 141
Figure 52 – The performance of the Dirichlet distribution estimation algorithm in

terms of estimation error and time per dimension. 142
Figure 53 – The scatter plot of the original and estimated data using the Dirichlet

distribution. 143
Figure 54 – Confusion matrices for DenseNet-121 considering all methods. 144
Figure 55 – Confusion matrices for EfficientNet-b4 considering all methods. 145
Figure 56 – Confusion matrices for MobileNet-v2 considering all methods. 146
Figure 57 – Confusion matrices for VGGNet-13 considering all methods. 147
Figure 58 – ROC curve plots for DenseNet-121 considering all methods. 148

Figure 59 – ROC curve plots for EfficientNet-b4 considering all methods. 149
Figure 60 – ROC curve plots for MobileNet-v2 considering all methods. 150
Figure 61 – ROC curve plots for VGGNet-13 considering all methods. 151

List of Tables

Table 1 – Performance of the CNN models considering only the dermoscopy images. 69
Table 2 – Performance of the CNN models using the baseline concatenation appro-

ach to combine the dermoscopy images with the patient demographics. . 70
Table 3 – Performance of the CNN models using the MetaBlock to combine the

dermoscopy images with the patient demographics. 70
Table 4 – Performance of the CNN models using the MetaNet to combine the

dermoscopy images with the patient demographics. 70
Table 5 – Comparing the performance of the all methodologies in terms of BACC.

In bold is highlighted the highest average for each model. 72
Table 6 – The result of the Wilcoxon pairwise test for all methods. 72
Table 7 – Probabilities assigned by each model to a new sample. The true label is

NV. 85
Table 8 – The probabilities aggregated, after normalization, by each method to

each label in ISIC 2019 dataset. 86
Table 9 – Performance achieved by each CNN architecture individually for each

medical image dataset used in this experiment. 89
Table 10 – Performance achieved by the ensemble of CNNs for each medical image

dataset considering the different aggregation methods. In bold is high-
lighted the highest average for each metric. 90

Table 11 – Ensemble selection according to the weights assigned by our method for
the ISIC 2019 dataset . 93

Table 12 – The number of samples for each type of skin disorder present in the
PAD-UFES-20 dataset. Observe we have three types of skin cancer (BCC,
SCC, and MEL) and three types of skin diseases (ACK, NEV, and SEK). 97

Table 13 – Deep learning models’ performance for PAD dataset considering only
clinical images . 105

Table 14 – Deep learning models’ performance for PAD dataset considering clinical
images and patient demographics. In this case, the concatenation method
is applied to combine both data with a combination factor set to 0.8. . . 106

Table 15 – Deep learning models’ performance for PAD dataset considering clinical
images and patient demographics. In this case, the MetaBlock is applied
to combine both data. 106

Table 16 – Deep learning models’ performance for PAD dataset considering clinical
images and patient demographics. In this case, the MetaNet is applied
to combine both data. 106

Table 17 – Comparing the models’ performance in terms of BACC for each method.
In bold is highlighted the highest average BACC for each model. 107

Table 18 – The result of the Wilcoxon pairwise test for all methods. 108
Table 19 – Performance achieved by each aggregation approach for ensemble of CNN

models trained on PAD-UFES-20 dataset. 110
Table 20 – Ensemble selection according to the weights assigned by our proposed

method. 112
Table 21 – The number of features from both sources varying the combination factor

cf . 137
Table 22 – All CNN models performance considering different values for cf 138
Table 23 – Deep learning models’ performance using the MetaBlock considering

only the sigmoid connection. 140
Table 24 – Deep learning models’ performance using the MetaBlock considering

only the tangent hyperbolyc connection. 140
Table 25 – Comparison of the MetaBlock performance in terms of BACC using only

the sigmoid, hyperbolic tangent, and both gates. 140
Table 26 – The impact of the MetaBlock parameters in each CNN models size. . . . 140

Contents

1 INTRODUCTION . 20
1.1 Skin cancer detection . 21
1.2 Motivation . 24
1.3 Objectives and hypothesis . 24
1.4 Contributions . 25
1.5 List of publications . 26
1.6 Software implementations . 27
1.7 Thesis organization . 28

2 FUNDAMENTAL CONCEPTS ON MACHINE AND DEEP LEAR-
NING . 29

2.1 Fundamentals of Deep Learning . 29
2.1.1 Types of learning . 30
2.1.2 Data classification . 31
2.1.3 Generalization . 31
2.1.3.1 Bias and variance . 32
2.1.3.2 Underfitting and overfitting . 33
2.1.4 Maximum Likelihood Estimation . 34
2.2 Artificial Neural Networks (ANN) . 36
2.2.1 Feedforward Neural Networks . 36
2.2.1.1 Perceptron . 36
2.2.1.2 Multilayer Perceptrons (MLP) . 37
2.2.2 Training a Feedfoward Neural Network . 39
2.2.2.1 Gradient descent optimization . 39
2.2.2.2 Cost function . 40
2.2.2.3 Backpropagation algorithm . 40
2.2.3 Gradient descent variants . 41
2.2.3.1 Stochastic Gradient Descent (SGD) . 42
2.2.3.2 Momentum . 43
2.2.4 Regularization . 43
2.2.4.1 Weight decay . 44
2.2.4.2 Dropout . 44
2.2.4.3 Batch normalization . 44
2.2.4.4 Early stopping . 45
2.3 Convolutional Neural Networks (CNN) 46

2.3.1 Local receptive fields in the visual cortex 46
2.3.2 CNN layers . 47
2.3.2.1 Convolutional layer . 47
2.3.2.2 Pooling layer . 51
2.3.3 Connecting the layers . 51
2.3.4 Techniques to improve CNNs performance 52
2.3.4.1 Data augmentation . 53
2.3.4.2 Transfer learning . 53

3 COMBINING IMAGE AND META-DATA FEATURES 55
3.1 Notation and problem formulation . 57
3.2 Concatenating features based on a contribution factor 58
3.3 Meta-data Processing Block (MetaBlock): an attention-based me-

chanism to combine multi-source features 60
3.3.1 Long Short-Term Memory (LSTM) . 61
3.3.2 Attention mechanism . 62
3.3.3 Methodology . 63
3.3.4 Illustrative example . 66
3.4 Experimental results . 67
3.4.1 Experiments setup . 67
3.4.1.1 Experiment results . 69
3.4.1.2 Discussion . 72

4 LEARNING DYNAMIC WEIGHTS FOR AN ENSEMBLE OF DEEP
MODELS . 74

4.1 The Dirichlet distribution . 78
4.1.1 Expectation, variance and covariance . 79
4.1.2 Estimating a Dirichlet distribution . 79
4.2 Methodology . 81
4.2.1 Step 1: Estimating the probability distribution 82
4.2.2 Step 2: Computing the dynamic weights 83
4.2.3 Illustrative example . 84
4.3 Experimental results . 87
4.3.1 Experiments setup . 87
4.3.2 Experiment results . 88
4.3.3 Discussion . 93

5 SKIN CANCER DETECTION BASED ON CLINICAL IMAGES AND
PATIENT DEMOGRAPHICS - A CASE STUDY 95

5.1 PAD-UFES-20 dataset . 95

5.1.1 Data collection . 95
5.1.2 Data description . 98
5.1.3 Clinical features analysis . 100
5.2 Experimental results . 102
5.2.1 Experiments setup . 103
5.2.2 Experiment results . 105
5.3 Discussion . 113

6 CONCLUSION . 115

REFERENCES . 118

APPENDIX A – SOFTWARE TO COLLECT AND ANALYZE CLI-
NICAL SKIN CANCER IMAGES AND PATIENT
DATA . 134

A.1 Smartphone-based application . 134
A.2 Web-based system . 135

APPENDIX B – SUPPLEMENTARY MATERIAL 137
B.1 Sensitivity analysis of the combination factor 137
B.2 Assessing the contribution of each connection gate in the Meta-

data Processing Block (MetaBlock) 138
B.3 The impact of the MetaBlock in the size of the CNN models 140
B.4 Convergence tests of the Dirichlet distribution estimation algorithm 141
B.5 Confusion matrices and ROC curves 142

20

1 Introduction

Long before the invention of automated machines, ancient civilizations have ima-
gined robots and artificial lives that were made, not born (Mayor, 2018). Since the first
programmable computer was created, the idea of intelligent machines has risen (Love-
lace, 1842). Turing (1950) proposed an imitation game – also known as Turing test – to
address the philosophical question: can machines think? In his work, Turing introduced
key concepts that opened the doors to a new field that later would be named Artificial
Intelligence (AI), which may be defined as the effort to automate intellectual tasks normally
performed by humans (Chollet, 2018). Pioneers works in AI (Rosenblatt, 1958; Rosenblatt,
1961; Minsky, 1961; Ivakhnenko; Lapa, 1966; Minsky; Papert, 1969) successfully solved
problems that are difficult for human beings but relatively straightforward for computers
(Goodfellow; Bengio; Courville, 2016) – for example, a large sequence of hardcode rules
to play chess. Later, it turned out that the real challenge for AI algorithms is to solve
problems that are easy for human beings, such as recognizing traffic signs on the streets.
In order to deal with these kinds of problems, a new paradigm called Machine Learning
(ML) has risen. ML models learn hierarchy representations and concepts directly from
data – without specific rules to solve a given problem. In some cases, successive layers of
representations are built on top of each other, which allows the model to learn complex
concepts from simpler ones (Goodfellow; Bengio; Courville, 2016; Chollet, 2018; Sejnowski,
2018). As the number of layers increases, the model becomes deep, which defines an ML
subfield called Deep Learning (DL).

Although Deep Learning algorithms date back to the 1980s (Fukushima, 1980;
Schmidhuber, 2015), they only became truly viable over the last decade, mainly because
of the increase of computational power and availability of large datasets (Faes et al., 2019).
Since 2012, different Deep Learning models have been presenting important advances
for several tasks, such as computer vision (Krizhevsky; Sutskever; Hinton, 2012; Long;
Shelhamer; Darrell, 2015; Wu et al., 2019a), speech recognition (Chiu et al., 2018; Nassif
et al., 2019; Wu; Sahoo; Hoi, 2020), medical image analysis (Ronneberger; Fischer; Brox,
2015; Esteva et al., 2017; Ardila et al., 2019), natural language processing (NLP) (Radford
et al., 2019; Devlin et al., 2018), digital games (Berner et al., 2019; Vinyals et al., 2019),
among many others (Dargan et al., 2019). Many of these models present results comparable
to or better than human expert performance. Standard Deep Learning models include
the Restricted Boltzmann Machine (RBM) (Hinton, 2002; Hinton; Salakhutdinov, 2006),
Convolutional Neural Networks (CNN) (LeCun; Bengio et al., 1995; LeCun et al., 1998),
Autoencoder (Rumelhart; Hinton; Williams, 1985; Bengio; LeCun et al., 2007), Generative
Adversarial Networks (GAN) (Schmidhuber, 1992; Goodfellow et al., 2014), Long Short-

Chapter 1. Introduction 21

Term Memory (LSTM) (Hochreiter; Schmidhuber, 1997), and Capsule Networks (Sabour;
Frosst; Hinton, 2017).

Nowadays, Deep Neural Networks (DNN) are the most successful methodologies
to tackle medical image analysis (Litjens et al., 2017). State-of-the-art results have been
reported for chest radiography diagnosis (Irvin et al., 2019), lung cancer prediction (Ardila
et al., 2019), diabetic retinopathy grading (Sahlsten et al., 2019), breast cancer detection
(Shen et al., 2019), Alzheimer’s disease classification (Oh et al., 2019), skin cancer detection
(Tschandl et al., 2019; Pacheco; Krohling, 2020a), among others. Nonetheless, applying
Deep Learning for these types of problems presents several challenges such as the lack of
large training datasets, data variance, and noise sensitivity. In this thesis, our main focus
is on proposing solutions to assist Deep Learning models to deal with these issues when
they are applied to medical image analysis, in particular for skin cancer detection.

1.1 Skin cancer detection
Skin cancer occurs when skin cells are damaged, for example, by overexposure to

ultraviolet (UV) radiation from the sun (Bray et al., 2018). Unlike other forms of cancer,
the reporting of skin cancer diagnoses is not required by most cancer registries worldwide
(Siegel; Miller; Jemal, 2019). Regardless, the World Health Organization (WHO) estimates
that one in every three instances where a person is diagnosed with cancer is a skin cancer
(WHO, 2019). Over the recent decades, in countries such as Canada, USA, and Australia,
the number of people diagnosed with skin cancer has been increasing at a constant rate
(CCS, 2014; CCA, 2018; ACS, 2019). In Brazil, according to the Brazilian Cancer Institute
(INCA), skin cancer is the most common dysplasia and for 2020-2022 it is expected 177
thousand new cases across the nation (INCA, 2020). In Figure 1 is depicted the estimated
age-standardized incidence of skin cancer in the world.

There are three main types of skin cancer: Basal cell carcinoma (BCC), squamous
cell carcinoma (SCC), and melanoma (MEL). Melanoma is the rarest one; however, because
of the high level of metastasis1, it is the most lethal one. On the other hand, BCC and SCC,
which are known as non-melanoma skin cancers (NMSC), represent the major skin cancer
occurrence worldwide. As they rarely metastasize, they have low lethality risk (CCA, 2018).
Despite the lethality difference between both categories, the number of deaths caused by
both groups is similar. For instance, in 2017 the Brazilian government registered 2,250
deaths caused by melanoma against 1,835 by non-melanomas (INCA, 2020). Even with
low lethality risks, the higher NMSC’s incidence justifies a similar number of deaths.

In order to diagnose skin cancer, dermatologists screen the suspicious lesion on the
skin using their experience to identify it. Early detection is fundamental to increase patient
1 when damaged cells invade other parts of the body via blood vessels and lymph vessels

Chapter 1. Introduction 22

Figure 1 – Estimated age-standardized incidence of skin cancer in the world for both sexes
and ages 0-74 (Bray et al., 2018). Countries in Europe, USA, Canada, New
Zealand, and Australia have the highest rates. In South America, Brazil and
Uruguay present the highest estimate occurrences.

prognostics, in particular for melanoma. Accurate diagnosis is challenging and requires
proper training and experience in dermoscopy – a non-invasive diagnostic technique that
uses a medical device named dermatoscope to magnify subsurface structures of the skin
revealing morphologic features that are normally not visible to the naked eye (Argenziano;
Soyer, 2001). In Figure 2 is illustrated an example of clinical and a dermoscopy image.
Kittler et al. (2002) and Sinz et al. (2017) showed that dermoscopy substantially increases
diagnostic accuracy. However, it depends on the dermatologist’s experience level, i.e., less
experienced examiners do not present improvement using dermoscopy. As such, the high
incidence rate of skin cancer and the lack of experts and medical devices, particularly in
rural areas (Feng et al., 2018) and emerging countries (Scheffler et al., 2008), have increased
the demand for computer-aided diagnosis (CAD) systems for skin cancer detection.

Over the past decades, computer-aided diagnosis (CAD) systems for skin lesion
analysis have been intensively investigated and have demonstrated to be a promising
tool. Pioneer works, such as (Umbaugh et al., 1993), (Ercal et al., 1994) and (Green
et al., 1994), used low-level handcrafted features to distinguish melanomas and non-
melanoma cancers. Later, several computational approaches have been developed based on
ABCD(E) rule, pattern analysis, and 7-point checklist, which are common methods used
by dermatologists to diagnose skin cancer (Argenziano et al., 1998; Masood; Al-Jumaily,
2013). These approaches are mostly based on traditional computer vision algorithms to
extract various features such as shape, color, and texture (Celebi et al., 2007; Wighton et
al., 2011; Maglogiannis; Delibasis, 2015; Barata; Celebi; Marques, 2014; Oliveira et al.,
2018), to feed a classifier, for example, a Support Vector Machine (SVM) (Scharcanski;

Chapter 1. Introduction 23

Figure 2 – The differences between a clinical image (left) and a dermocopy image (right)
of the same skin lesion. As we can see, the dermoscopy one present more details
than the clinical one. Source: (Marghoob; Usatine; Jaimes, 2020).

Celebi, 2013; Codella et al., 2015; Spyridonos et al., 2017). Two limitations may be pointed
out in these approaches. First, the ABCD(E) rule and the 7-point checklist are designed
only for pigmented lesions, which means they cannot be used to diagnose BCC or SCC,
for example. Second, the handcrafted features extracted by these methods have limited
generalization capability (Yu et al., 2017).

As previously stated, Deep Learning models have recently become viable for medical
image analysis. As a consequence, several models have been proposed to deal with skin
cancer detection. Yu et al. (2017) presented a very deep CNN and a set of schemes to
learn under limited training data. Esteva et al. (2017) used a pre-trained GoogleNet CNN
architecture (Szegedy et al., 2016) to train over 120 thousand images and achieved a
dermatologist-level diagnostic. Haenssle et al. (2018) and Brinker et al. (2019) also used pre-
trained models to compare their performance to dermatologists. In both works, the models
have shown competitive or outperformed the dermatologists performance. Other efforts
using deep learning have been made to detect skin cancer, such as an ensemble of models
(Codella et al., 2017b; Harangi, 2018; Pacheco; Krohling, 2020b), feature aggregation of
different models (Yu et al., 2019), among others (Attia et al., 2017; Han et al., 2018; Nida
et al., 2019; Angelo; Pacheco; Krohling, 2019; Serte; Demirel, 2019). The majority of these
works are based on dermoscopy images, mainly for three reasons:

1. There is an open well-known dataset, provided by the International Skin Imaging
Collaboration (ISIC) (Codella et al., 2017a; Tschandl; Rosendahl; Kittler, 2018;
Combalia et al., 2019), containing over 30 thousand skin lesion images.

2. Collect a dataset composed of clinical skin lesion images – those ones taken from
standard cameras – is a quite hard task since it demands time to grow the dataset
and multidisciplinary effort.

Chapter 1. Introduction 24

3. It is easier to work with dermoscopy images since they provide more details about
the skin surface and they are not affected by illumination or camera resolution – see
Figure 2.

1.2 Motivation
Developing CAD systems to work with dermoscopy images is important; however,

in most remote places – such as emerging countries and rural areas – there is a lack
of experts and dermatoscope available to clinicians. As a result, these systems are not
applicable to those places. In this context, smartphones may be a low-cost solution to assist
non-expert clinicians to provide the first screening for people who live in these remote
places. Nonetheless, to embed a CAD system in a smartphone it must work with clinical
images instead of dermoscopy ones. This involves, first, the creation of a clinical image
dataset and the design of new methods to assess this type of data.

An important clue towards a more accurate clinical diagnosis is the patient demo-
graphics. In fact, dermatologists do not trust only on image screening; they also take into
account clinical information such as patient’s age, anatomical region of the skin lesion,
if the lesion bleeds, among many others (Wolff et al., 2017; Azulay, 2017). Brinker et
al. (2018) presented a review for deep learning models applied to skin cancer detection
and concluded that an improvement in classification quality could be achieved by adding
patient demographics into the classification process. Nonetheless, most of the reported
works consider only the skin image to yield the prediction.

Kharazmi et al. (2018), Liu et al. (2019), and Pacheco and Krohling (2020a)
proposed models to combine both skin lesion images and patient demographics. Although
they report promising improvements, all of these works combine both data using feature
concatenation, which may not take into account the potential relationship between meta-
data and the visual features extracted from the images. Recently, Li et al. (2020) proposed
the MetaNet: a multiplication-based fusion approach that uses 1D convolution on meta-
data to combine them with the image features. The authors reported promised results for
skin cancer detection, but only for some cases of this disease. In short, there is still room
for improvement, and better aggregation methodologies must be explored.

1.3 Objectives and hypothesis
The main objective of this thesis is to develop algorithms to improve medical image

classification using Deep Learning models and apply them to skin cancer detection. In
particular, we propose solutions to deal with the following two problems:

• Combining images and meta-data: some image classification problems are based

Chapter 1. Introduction 25

on images and meta-data – for example, in skin cancer detection, we may have
images from the skin lesion and patient demographics to support the detection. In
this sense, it is necessary to develop an approach to consider both types of data in
the classification process.

• Dynamic ensemble weighting: a common strategy to improve the classification
performance and robustness is to trust in predictions from an ensemble of different
deep models. The most common ensemble aggregation operators assign the same
importance to all models in the ensemble. As a consequence, they cannot identify
weak models that may negatively influence the ensemble performance. Dynamic
ensemble weighting is important to identify and reduce the influence of these weak
models on the ensemble output.

We propose solutions to these problems to answer two main hypothesis in this
thesis. First, is it possible to overcome the lack of details in clinical skin cancer images
with meta-data and achieve a classification performance as good as the one obtained
for dermoscopy images? Second, can we improve the image classification provided by an
ensemble of deep models by determining the relevance of each classifier on the fly? These
hypothesis are addressed and discussed in Chapters 3 and 4, respectively.

1.4 Contributions
The main contributions of this thesis are summarized as follows:

• We propose two methods to deal with data classification based on images and
meta-data.

– The first method is based on features concatenation and uses a mechanism to
control the contribution of each source of data before classification.

– The second method, named Meta-data Processing Block (MetaBlock), uses
meta-data to support the classification by identifying the most relevant features
extracted from the images without using concatenation.

– We show that meta-data, when available, is quite important to improve the
performance of skin cancer predictors based on deep learning models.

• We develop an approach, based on a Dirichlet distribution and Mahalanobis distance,
to learn dynamic weights for an ensemble of deep models

– The learned weights are used to reduce the impact of weak models on the
aggregation operator.

Chapter 1. Introduction 26

– It is also possible to apply online ensemble selection/pruning.

• In partnership with the Dermatological and Surgical Assistance Program (in Portu-
guese: Programa de Assistência Cirúrgica e Dermatológica - PAD) of the Federal
University of Espírito Santo (in Portuguese: Universidade Federal do Espírito Santo
- UFES), we developed a web-based system and a multi-platform smartphone appli-
cation to collect skin lesion images and patient demographics.

– From this software, we created a new dataset composed of clinical images and
patient demographics. This dataset is used as a case study in this thesis and is
made publicly available to support future research. As far as we know, this is
the first public dataset containing both types of data.

– Beyond data collection, the software allows clinicians to track patient lesions
and obtain statistics to improve their understanding of skin diseases. Previously,
most of these data were lost or collected and store in an unstructured way.

1.5 List of publications
In this section is presented the list of publications achieved during the doctorate.

1. Aggregation of neural classifiers using Choquet integral with respect to
a fuzzy measure. Published in Neurocomputing (Pacheco; Krohling, 2018a).

2. Restricted Boltzmann machine to determine the input weights for ex-
treme learning machines. Published in Expert Systems with Applications (Pa-
checo; Krohling; Silva, 2018).

3. An approach to improve online sequential extreme learning machines
using restricted Boltzmann machines. Published in IEEE International Joint
Conference on Neural Networks (IJCNN) (Pacheco; Krohling, 2018b).

4. Skin lesion segmentation using deep learning for images acquired from
smartphones. Published in IEEE International Joint Conference on Neural Networks
(IJCNN) (Angelo; Pacheco; Krohling, 2019).

5. Skin cancer detection based on deep learning and entropy to detect ou-
tlier samples. Published in Medical Image Computing and Computer Assisted
Intervention (MICCAI) at Skin Lesion Analysis Towards Melanoma Detection chal-
lenge (Pacheco; Ali; Trappenberg, 2019) – 4th and 3rd place in ISIC challenges 1
and 2, respectively.

Chapter 1. Introduction 27

6. Recent advances in deep learning applied to skin cancer detection. Pu-
blished in Neural Information Processing Systems (NeurIPS) at Retrospectives
workshop (Pacheco; Krohling, 2019).

7. The impact of patient clinical information on automated skin cancer de-
tection. Published in Computers in Biology and Medicine (Pacheco; Krohling,
2020a).

8. Learning dynamic weights for an ensemble of deep models applied to
medical imaging classification. Published in IEEE International Joint Conference
on Neural Networks (IJCNN) (Pacheco; Krohling, 2020b).

9. On Out-of-Distribution Detection Algorithms with Deep Neural Skin
Cancer Classifiers. Published in IEEE Computer Vision and Pattern Recognition
(CVPR) at Skin Image Analysis Workshop (ISIC) workshop (Pacheco et al., 2020b) –
Best Paper Award.

10. An App to Detect Melanoma Using Deep Learning: An Approach to
Handle Imbalanced Data Based on Evolutionary Algorithms. Published in
IEEE International Joint Conference on Neural Networks (IJCNN) (Castro et al.,
2020).

11. PAD-UFES-20: a skin lesion benchmark composed of patient data and cli-
nical images collected from smartphones. Published in Data in Brief (Pacheco
et al., 2020a).

12. An attention-based mechanism to combine images and metadata in deep
learning models applied to skin cancer classification. Published in IEEE
Journal of Biomedical and Health Informatics.

1.6 Software implementations
We used different open source frameworks to implement the algorithms propo-

sed/used in this work. All these frameworks use Python as the base programming language.
To handle general data, we use NumPy and Pandas. To deal with images, we use OpenCV
and Pillow. For general machine learning metrics and algorithms, we perform the scikit-learn
package. All visualizations are achieved using Matplotlib and Seaborn. Lastly, everything
that involves deep learning models is implemented by using Pytorch. All code we developed
is available on Github2.

In terms of hardware, the experiments performed in Chapter 4 used a NVIDIA Tesla
V100 16GB from the Compute Canada servers infrastructure. The remaining experiments
2 Avalaible on <https://github.com/paaatcha/raug> and on <https://github.com/paaatcha/my-thesis>

https://github.com/paaatcha/raug
https://github.com/paaatcha/my-thesis

Chapter 1. Introduction 28

were performed using a NVIDIA GTX 1060 6GB and a NVIDIA Titan X 12GB from
the Laboratório de Computação e Engenharia Inspirado na Natureza (LABCIN-UFES)
infrastructure.

1.7 Thesis organization
The remaining of this thesis is organized as follows: in Chapter 2, we introduce

fundamentals concepts in Deep Learning and describe the Convolutional Neural Network
(CNN), the deep model explored in this work. The proposed algorithms are described in
the next two chapters: in Chapter 3, we describe the algorithms to combine images and
meta-data for data classification; and in Chapter 4 we describe the algorithm to learn
dynamic weights for an ensemble of deep models. Each of these chapters has an experiment
section in which we evaluate each of the proposed approaches. Next, in Chapter 5, we
carry out a case study for skin cancer detection using the dataset we created during this
doctorate. This dataset is composed of clinical images and patient demographics – all
software we developed to collect and store the data is described in Appendix A. Finally,
in Chapter 6 we draw our conclusions and indicate directions that should be addressed in
the future.

29

2 Fundamental concepts on Machine and
Deep Learning

In this chapter, we introduce the fundamental concepts regarding Machine and
Deep learning. We start by describing the types of learning, learning theory, and Maximum
Likelihood Estimation (MLE). In the following, we introduce Artificial Neural Networks
(ANN) and Convolutional Neural Networks (CNN).

2.1 Fundamentals of Deep Learning
Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are

terms in which the concepts overlap each other. In brief, we may define each field as follows
(Jeffcock, 2018):

• Artificial Intelligence (AI): it consists of algorithms that allow computers to
mimic human behavior.

• Machine Learning (ML): this is a way to achieve AI, but learning concepts
directly from data, i.e., with minimal human intervention.

• Deep Learning (DL): this is an ML’s subfield in which models are composed
of stacks of artificial neural layers that are usually trained using an end-to-end
optimization algorithm. The term deep refers to the high number of layers.

The paradigm difference between ML and AI is illustrated in Figure 3.

Figure 3 – The paradigm difference between ML and AI. While AI is based on hardcoded
rules to output answers, ML learns these rules from the data and the answers.
This figure is an adaptation from (Chollet, 2018)

Chapter 2. Fundamental concepts on Machine and Deep Learning 30

As Deep Learning is a subfield of Machine Learning, they share many basic
principles, which we will discuss in this section. Mitchell (1997) defined Machine Learning
as follows:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T ,
as measured by P , improves with experience E.

The task T is the problem that an algorithm must learn to solve. Learning means identify
a function f : X → Y that maps the input distribution X to the output distribution Y .
Tasks in ML are usually described in terms of how an algorithm should process a new
sample x ∈ X (Goodfellow; Bengio; Courville, 2016). Examples of tasks that Machine
Learning can solve include clusterization, regression, denoising, density estimation, and
classification, which is the main focus of this thesis.

The performance measure P is the metric in which the algorithms’ effectiveness is
evaluated. Obviously, it depends on task T . For example, in the classification task, a
common performance measure is the accuracy, which is the proportion of samples x ∈ X
that the algorithm predicts the correct output y ∈ Y .

The experience E is the set of data containing examples that are used to train (the
process of learning concepts from data), to validate, and to test a Machine Learning
algorithm.

2.1.1 Types of learning

Machine Learning algorithms can be clustered into three main types of learning:
supervised learning, unsupervised learning, and reinforcement learning (Goodfellow; Bengio;
Courville, 2016; Géron, 2019):

• Supervised learning: algorithms are trained on datasets that include input samples
and target solutions – also known as labels. Classifying skin diseases is an example
of this type of learning.

• Unsupervised learning: algorithms are trained on datasets that include input
samples without target solutions. Clustering objects by color is an example of this
type of learning.

• Reinforcement learning: algorithms are trained by observing the environment,
selecting and performing actions, and getting rewards or penalties. Basically, the
algorithm must learn a strategy to solve a problem by itself. Algorithms that learns
how to play a computer game by itself is an example of this type of learning.

Chapter 2. Fundamental concepts on Machine and Deep Learning 31

In addition to these three main types of learning, it is worth pointing out two other
approaches: semi-supervised and self-supervised learning. Semi-supervised learning is a
combination of supervised and unsupervised ones. In brief, semi-supervised algorithms
are trained using both labeled and unlabeled samples. On the other hand, self-supervised
algorithms aim to learn pattern features using automatically generated labels without
any human annotations. Essentially, it may be considered as a sub-field of unsupervised
learning in which a machine learning model can be trained by learning objective functions
of pretext tasks and the features are learned through this process (Jing; Tian, 2020).

2.1.2 Data classification

Classification consists in identifying one or more labels to a new sample. Every
sample is composed of a set of features X = {x1, · · · ,xN} and one or more labels
Y = {y1, · · · , yN}, where N is the number of samples. As previously stated, in Machine
Learning, classification algorithms are trained in a supervised way. In this sense, the
algorithms’ ultimate goal is to learn a function f(xi;θ) that predicts the label yi to the
sample xi, with i = {1, · · · , N}. In other words, the algorithm aims to learn a distribution
p(yi | xi;θ) in which the probabilities can be interpreted as the likelihood or confidence of
xi belonging to the label yi and θ is the distribution parameters that control the algorithm
behavior.

A particular instance of this task is image classification, which is obviously the task
of assigning a label to an image. This is one of the most important problem in computer
vision and has several practical applications (Li et al., 2019a). Recognizing visual concepts
on images is such an easy task for human beings. Nonetheless, from the perspective of a
computer vision algorithm, there are several challenges involving this task, for example,
viewpoint variation, occlusion, illumination, scale variation, among others (Li et al., 2019a).
The most successful Machine Learning/Deep Learning approach to deal with this task is
the Convolutional Neural Network (CNN), which we describe in the next sections.

2.1.3 Generalization

In order to train Machine Learning algorithms, it is common to split the set of
data available to fit the model into training, validation, and test partitions. The training
partition is the set of data that algorithms learn from; the validation is a small part of the
training partition that is used to certify if the algorithm is really learning; lastly, the test
partition simulates the real world. The ability of ML models to correctly recognize test
samples is known as generalization. This concept is fundamental to ensure that trained
models work properly in the real world.

Given some error measure – a metric that computes the difference between predicted

Chapter 2. Fundamental concepts on Machine and Deep Learning 32

and real outputs – we can compute the training, validation, and test error. It is crucial
to reduce not only the training error but also the validation and test ones. The expected
value of test error is known as generalization error. Successful ML models must present
low test errors. This is what distinguishes Machine Learning from the optimization field
(Goodfellow; Bengio; Courville, 2016).

In Machine Learning, one usually assumes that the train and test sets are indepen-
dently and identically distributed (iid) (Smola; Vishwanathan, 2008; Bengio et al., 2009).
It means both sets are drawn from the same probability distribution. This is important in
statistical learning theory since it allows sampling from the training partition to fit f(xi;θ)
aiming to reduce the generalization error. In this context, the expected test error is always
greater than or equal to the expected value of training error. Therefore, it is important to
ML algorithms ensure both a low training error and a low difference between training and
test errors (Smola; Vishwanathan, 2008; James et al., 2013; Goodfellow; Bengio; Courville,
2016). This concept leads us to two other important definitions: 1) the trade-off between
bias and variance; 2) underfitting and overfitting.

2.1.3.1 Bias and variance

In Statistical and Machine Learning it is important to understand the trade-
off between bias and variance. Bias may be represented by the training error and the
variance by the test error. A model with high bias does not fit well the training data and,
consequently, the estimated distribution is far from the real one. On the other hand, a
model with high variance pays too much attention to training data and does not generalize
well, i.e., it has a high test error.

Let us consider one aims to fit a model to predict an output Y from an input X.
The relationship between Y and X is described by a function g(X). Thus, we may assume:

Y = g(X) + ε (2.1)

where ε is an irreducible error, i.e., a part of Y that is not predictable from X regardless
how well g(X) is estimated – because of noise, for example. An estimation function for
g(X) is represented by f(X) and an estimation/prediction of Y is described as:

Ŷ = f(X) (2.2)

We may compute the expected squared error of the estimated model f(X) as follows

Chapter 2. Fundamental concepts on Machine and Deep Learning 33

Figure 4 – Illustration of the bias-variance trade-off. As the model’s complexity increases,
the bias tends to decrease and variance to increase. Conversely, as it decreases,
bias tends to increase and variance to decrease. The optimal point is a balance
of all errors. Adapted from (Goodfellow; Bengio; Courville, 2016).

(James et al., 2013):

E [Err(X)] = E
[(
Y − Ŷ

)2
]

E [Err(X)] = E
[(
Y − E

[
Ŷ
]

+ E
[
Ŷ
]
− Ŷ

)2
]

E [Err(X)] = E
[(
Y − E

[
Ŷ
])2

+
(
E
[
Ŷ
]
− Ŷ

)2
+ 2

(
Y − E

[
Ŷ
]) (

E
[
Ŷ
]
− Ŷ

)]

E [Err(X)] = E
[(
Y − E

[
Ŷ
])2

+
(
E
[
Ŷ
]
− Ŷ

)2
]

+
��

���
���

���
���

���:
0

E
[
2
(
Y − E

[
Ŷ
]) (

E
[
Ŷ
]
− Ŷ

])

E [Err(X)] =

Y − E
[
Ŷ
]

︸ ︷︷ ︸
Bias

2

+ E
[(
E
[
Ŷ
]
− Ŷ

)2
]

︸ ︷︷ ︸
variance

(2.3)

From Equation 2.3, we observe that to minimize Err(X) it is necessary to estimate a
function f(X) that simultaneously produces low bias and variance. Nonetheless, these
errors are connected to the model’s complexity (also known as model’s capacity), as it
increases, the bias tends to decrease and variance to increase. On the other hand, as it
decreases, bias tends to increase and variance to decrease. This relationship, illustrated
in Figure 4, is known as the bias-variance trade-off and it is one of the most important
concepts in Machine Learning (Goodfellow; Bengio; Courville, 2016).

2.1.3.2 Underfitting and overfitting

Underfitting occurs when a model is quite simple to properly learn patterns on
data. It presents poor performance both on training and test partitions. Usually, it has
a high bias and variance. Potential solutions to this problem are increasing the model
complexity and/or improving the feature selection.

Chapter 2. Fundamental concepts on Machine and Deep Learning 34

Overfitting is the opposite of underfitting. It happens when a model performs well
on the training partition but it fails to generalize. In other words, the model is too complex
to properly extract the patterns on data. Sometimes, such models seem to memorize the
training data. As a result, they present low bias and high variance. Possible solutions to
this problem are to simplify the model and/or collect more data. In Figure 5 is illustrated
the concepts of underfitting and overfitting.

Figure 5 – Illustration of the concepts of underfitting and overfitting. In the first plot
(from the left to the right) the model is too simple and cannot learn properly
the data structure. In the middle, the model’s complexity represents a good fit
for the data. Lastly, in the last plot, the model is too complex that memorizes
the training data. Adapted from scikit-learn documentation (Pedregosa et al.,
2011).

2.1.4 Maximum Likelihood Estimation

In Statistical and Machine Learning, density estimation consists in estimating the
Probability Density Function (PDF) of a random process based on observed data (James
et al., 2013). There are different methods to estimate the data distribution. The Maximum
Likelihood Estimation (MLE) is a general approach that is applied to fit several non-linear
models in statistics (Myung, 2003; Smola; Vishwanathan, 2008). It is often considered the
standard estimator for Machine Learning algorithms mainly because as the number of
samples N →∞, the maximum likelihood estimate of a parameter converges to the true
value of the parameter (Hastie; Tibshirani; Friedman, 2009; Goodfellow; Bengio; Courville,
2016).

Let us consider a data distribution pm(X; Θ) parametrized by Θ. The idea behind
the MLE algorithm is to select a value of Θ that maximizes the likelihood that the data
would have been generated by pm(X; Θ). In other words, the algorithm aims to approximate
pm(X; Θ) to the true data distribution pd(X). The maximum likelihood estimation for Θ

Chapter 2. Fundamental concepts on Machine and Deep Learning 35

is defined as (Hastie; Tibshirani; Friedman, 2009):

L(Θ;X) = argmax
Θ

pm(X; Θ)

L(Θ;X) = argmax
Θ

∏N
i=1 pm(xi; Θ)

(2.4)

A mathematical trick to avoid the product of various probabilities, which may result in
numerical underflow, is to take the logarithmic of the likelihood. This operation does
not change the argmax value and convert the product into a sum (Goodfellow; Bengio;
Courville, 2016):

L(Θ;X) = argmax
Θ

N∑
i=1

log pm(xi; Θ) (2.5)

In addition to the logarithmic operation, the argmax does not change when the cost
function is rescaled. Thereby, we can divide it by N to get the function expressed as the
expectation of the empirical distribution pd(X) (Goodfellow; Bengio; Courville, 2016):

L(Θ;X) = argmax
Θ

Ex∼pd
[log pm(x; Θ)] (2.6)

The similarity between the model distribution pm(X,Θ) and the empirical distri-
bution pd(X) may be expressed by the Kullback–Leibler divergence (Kullback; Leibler,
1951) according to:

DKL(pd || pm) = argmax
Θ

Ex∼pd
[log pd(x)− log pm(x; Θ)] (2.7)

Thus, one way to approximate pm(X,Θ) to pd(X) is minimizing log pm(x; Θ). In this sense,
the term log pd(x) in Equation 2.7 refers only to the data generation process and does
not affect the model. Therefore, the maximum likelihood estimation may be achieved by
minimizing only the right part of the Equation 2.8, which results in the following equation:

L(Θ;X) = −Ex∼pd
[log pm(x; Θ)] (2.8)

Observe that minimizing DKL(pd || pm) is exactly the same as maximizing Equation
2.6. In addition, minimizing the KL divergence between both distributions is equivalent
to minimizing the cross-entropy between them. Therefore, any function defined as the
negative log-likelihood is a cross-entropy between pm(X,Θ) and pd(X) (Goodfellow; Bengio;
Courville, 2016).

Chapter 2. Fundamental concepts on Machine and Deep Learning 36

Thereby, for supervised learning problems, the MLE algorithm may also be applied
to estimate the conditional distribution pm(Y | X; Θ) – discussed in Section 2.1.2. In this
case, the MLE is achieved as follows:

L(Θ;X, Y) = argmax
Θ

E{x,y}∼pd
[log pm(y | x; Θ)] (2.9)

2.2 Artificial Neural Networks (ANN)
Artitificial Neural Networks (ANN) are a family of models that were inspired by

the structure and function of the brain. Haykin (2010) defined an ANN as follows:

A neural network is a massively parallel distributed processor made up of simple
processing units that has a natural propensity for storing experiential knowledge
and making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a
learning process.

2. Inter-neuron connection strengths, known as synaptic weights, are used to
store the acquired knowledge.

The massive interconnections are composed of processing units known as artificial neurons
(neurons for short). A group of neurons composes a layer. As the number of layers increases,
the network becomes deep, which is the core idea of Deep Learning. There are several types
of ANNs. As previously mentioned, it is a family of models. In this section, we introduce
the fundamentals of Feedforward Neural Network (FNN) and the learning process.

2.2.1 Feedforward Neural Networks

The Feedforward Neural Network (FNN) is a type of neural network in which infor-
mation flows through the layers without feedback. As any supervised learning algorithm,
an FNN aims to learn how to approximate a function f : X → Y to solve a given problem.
The basic unit of an FNN is the perceptron, which is described in the next section.

2.2.1.1 Perceptron

The perceptron is the simplest learnable processing unit of an FNN. It is defined
as (Haykin, 2010):

f(x) = ϕ

(
m∑
i=1

xiwi + w0

)
= ϕ

(
wTx + w0

)
(2.10)

Chapter 2. Fundamental concepts on Machine and Deep Learning 37

Figure 6 – Illustration of the perceptron, the basic unit of an FNN. As defined by Haykin
(2010), the neuron’s weights store the knowledge within the neuron.

where x = {xi, · · · , xm} are the input data, w = {w1, · · · , wm} are the neuron weights,
w0 is a special weight known as bias1, ϕ(·) is the activation function, and the true output
data y is estimated by ŷ = f(x). Examples of activation functions are:

• Sigmoid or logistic function:
σ(u) = 1

1 + e−u
(2.11)

• Hyperbolic tangent:
tanh(u) = eu − e−u

eu + e−u
(2.12)

• Softmax:
s(u) = euk∑

k euk
(2.13)

• Rectified linear units (ReLU):

ReLU(u) = max{0, u} (2.14)

In summary, the perceptron is basically an affine transformation followed by a
non-linear operation. Also, we may interpret the function f(x) as the p(y | x; Θ), where
Θ = {w, w0} is the distribution parameters. Thus, a perceptron neuron learns when its
weights is optimized for a given task. The perceptron is illustrated in Figure 6.

2.2.1.2 Multilayer Perceptrons (MLP)

A perceptron neuron outputs a single value ŷ. For multi-output tasks, we must use
a group of neurons to map each output ŷ = {ŷ1, · · · , ŷn}. This group of neurons is known
as neural layer (layer for short) and is defined as:

ŷn = fn(x) = ϕ
(
wT
nx + w0n

)
(2.15)

1 In this case, bias is a shift operator and is not related to the concepts introduced in Section 2.1.3.1

Chapter 2. Fundamental concepts on Machine and Deep Learning 38

Figure 7 – Illustration of a neural layer composed of {P1, · · · , Pn} perceptrons. Each
perceptron has its own set of weights and outputs a single prediction. For
simplicity, the bias was omitted.

In this case, each neuron has its group of weights, represented by W = {w1, · · · ,wn}, and
the predicted outputs is described as ŷ = f(x), which is composed of multiples output
functions {f1(x), · · · , fn(x)}. In Figure 7 is illustrated a neural layer.

In order to increase the network complexity, we may stack a sequence of layers to
form a Multilayer Perceptron (MLP) as illustrated in Figure 8. Mathematically, an MLP
can be interpreted as a sequence of composite functions that are parameretized by the
weights of the network:

f(x) = ϕL
(
W T
L

[
ϕL−1

(
W T
L−1

[
· · ·ϕ1

(
W T

1 x + w01

)]
w0L−1

)]
+ w0L

)
(2.16)

where L is the number of layers. In this sense, layer 1 provides the output for layer 2, layer
2 for layer 3, and so on. In addition, the first layer is the input, the last layer is the output,
and the remaining ones are the hidden layers. The number of hidden layers determines the
model’s depth.

Figure 8 – Illustration of a Multilayer Perceptron (MLP) composed of L layers. As it
is a feedforward network, information flows from layer 1 to Layer L, which
represents the output predictions. Each layer may have a different number of
neurons.

According to the universal approximation theorem (Cybenko, 1989) an MLP with
at least one hidden layer – and any non-linear activation function – can approximate any

Chapter 2. Fundamental concepts on Machine and Deep Learning 39

continuous function. However, the theorem does not inform how large – in terms of the
number of neurons in the hidden layer – the network must be. In addition, even in a
hypothetical situation in which we know this number, the learning algorithm can fail to
fit the model (Bengio et al., 2009). In practice, MLPs with more than four hidden layers
rarely present better generalization than those ones with fewer layers (Li et al., 2019a).

2.2.2 Training a Feedfoward Neural Network

Training a neural network is the task of finding the values for the weights connections
that best represent the observed data. Thereby, it is basically an optimization problem
with respect to a cost function. There are different ways to train an FNN such as using
evolutionary-based algorithms (Miller; Todd; Hegde, 1989; Salimans et al., 2017), simulated
annealing (Rere; Fanany; Arymurthy, 2015), and colony optimization (Mavrovouniotis;
Yang, 2015). However, the most successful approach is the backpropagation (BP) algorithm
(Rumelhart; Hinton; Williams, 1986), which is based on gradient descent optimization.

2.2.2.1 Gradient descent optimization

Let us consider a function fc(z) in which we aim to minimize – this function is
known as cost function. The vector containing all partial derivatives of fc(z) with respect
to a point zi ∈ z is named gradient and is defined as:

∇zf(z) = ∂fc(z)
∂zi

(2.17)

The gradient vector points towards the maximum value of fc. Thus, the idea of the
gradient descent optimization is to iteratively move z in small steps using the negative of
the gradient (Cauchy, 1847):

znew = z− α∇zf(z) (2.18)

where α is the learning rate, a hyperparameter that indicates the step size.

For functions in which both input and output are vectors, i.e., fc : Rn → Rm, we
need to compute a matrix J ∈ Rm×n of partial derivatives:

Ji,j = ∂f ic(z)
∂zj

⇒

∂f1

c (z)
∂z1

· · · ∂f1
c (z)
∂zn...

∂fm
c (z)
∂z1

· · · ∂fm
c (z)
∂zn

 ∵ i = 1, · · · ,m and j = 1, · · · , n (2.19)

This matrix is called Jacobian matrix and is quite useful to compute partial derivatives in
neural networks learning algorithms.

Chapter 2. Fundamental concepts on Machine and Deep Learning 40

2.2.2.2 Cost function

In order to apply an optimization algorithm to train an MLP, we need to define
a cost function for the network – most of the time referred to as loss function. Let us
consider a supervised problem with X = {x1, · · · ,xN} inputs and Y = {y1, · · · ,yN}
outputs, where N is the number o samples. The loss function measures the expected error
between the true output Y and the estimated network output Ŷ = f(X). The simplest
way to compute this error is through the mean squared error (MSE):

L(W) = 1
N

N∑
i=1

(ŷi − yi)2 (2.20)

Observe that it is only a different formulation of Equation 2.3.

As previously discussed, we may interpret an MLP as the conditional distribution
p(y | x; Θ). From this perspective, we may use the cross-entropy between the true and the
estimated conditional distribution – see Section 2.1.4 – as loss function:

L(Θ;X, Y) = −E{X,Y }∼pd
[log pm(Y | X; Θ)]

L(Θ;X, Y) = −1
2
∑N
i=1 yi log ŷi

(2.21)

where the distribution parameters Θ is composed of the network’s weights and the bias.
Thus, we can apply the gradient descent update rule, described in Equation 2.18, to the
cross-entropy loss function:

Θnew = Θ− α∇ΘL(Θ;X, Y) (2.22)

2.2.2.3 Backpropagation algorithm

In the gradient descent algorithm, we assume that the gradient computation of the
loss function is done analytically. However, as shown in Section 2.2.1.2, an MLP consists
of many functions chained together. As a result, evaluating such a sequence of functions
becomes computationally expensive as the network increases. To deal with this problem,
Rumelhart, Hinton and Williams (1986) proposed the backpropagation, a breakthrough
solution to efficiently compute the gradients through the network that is still used today.
In summary, the backpropagation is able to compute the gradient over the network’s loss
function with respect to every single parameter in Θ. Next, it applies the gradient descent
update rule until the network converges to a solution (Géron, 2019). It is worth noting that
backpropagation is a method to compute gradients. The network’s learning is performed
by another algorithm such as gradient descent and its variations (Goodfellow; Bengio;
Courville, 2016).

Chapter 2. Fundamental concepts on Machine and Deep Learning 41

The main idea of backpropagation algorithm is to propagate the error, obtained
by the network’s loss function, from the output layer back to the input layer to compute
the gradient using the calculus chain rule. For example, let us consider two functions
ν1 : Rm → Rn and ν2 : Rn → R. If u = ν1(v) and a = ν2(u), the chain rule is defined as:

∂a

∂vi
=
∑
j

∂a

∂uj

∂uj
∂vi

(2.23)

In vector notation:

∇va =
(
∂u
∂v

)T
∇ua (2.24)

where ∂u
∂v is the Jacobian matrix of ν1. This operation is applied to compute the gradient

through the network.

Let us consider the MLP with L layers illustrated in Figure 8. In addition, let al

and ul be the vector of pre-activations and activations functions, respectively. The gradient
of the loss function with respect to parameters Θl for the lth layer is computed as (Zhou;
Greenspan; Dinggang, 2017):

∂L(Θ)
∂Θl

= ∂L
∂aL

∂aL

∂aL−1 · · ·
∂al+2

∂al+1
∂al+1

∂al
∂al

∂ul
∂ul

∂Θl
(2.25)

Observe that ŷ = aL. In this sense, ∂L
∂aL correspond to the gradient of the predicted output.

Also, it is possible to observe that the gradient value is propagated from the output layer
through the network in the form of ∂al+1

∂al in association with ∂al

∂ul
∂ul

∂Θl . The derivative ∂al+1

∂al

may be computed as follows:

∂al+1

∂al = ∂al+1

∂ul+1
∂ul+1

∂al

∂al+1

∂al = ∂al

∂ul

(
Θl
)T (2.26)

Once the gradient of the loss function with respect to each weights and bias is computed,
the gradient descent update rule is applied.

2.2.3 Gradient descent variants

The gradient descent algorithm described in Section 2.2.2.1 has different variants
that improve its performance in terms of effectiveness and convergence time. In this section,
we describe the Stochastic Gradient Descent (SGD) and Momentum.

Chapter 2. Fundamental concepts on Machine and Deep Learning 42

2.2.3.1 Stochastic Gradient Descent (SGD)

The original gradient descent algorithm computes the gradient of the loss function
∇ΘL(Θ;X, Y) considering all samples X and Y in the training set to perform only one
update. Since in Deep Learning large datasets are required to achieve good generalization,
this computation becomes computationally expensive, and sometimes, unfeasible since the
dataset may not fit on memory.

Stochastic Gradient Descent (SGD) is an extension of the original method that
computes the gradient using a small set of samples called mini-batches. The method relies
on the fact that the gradient is an expectation that can be approximately estimated by the
mini-batches (Goodfellow; Bengio; Courville, 2016). In supervised learning, a mini-batch
is defined as B = {(X1, Y1), · · · , (Xbs, Ybs)} drawn from the training partition, where bs is
the batch size. Usually, it assumes values ranging from 1 to a few hundred. For example, if
a training set has 100 samples, we may set a batch size equal to 25 to get 4 mini-batches.
After this operation, the gradient update rule is defined as:

Θnew = Θ− α∇ΘL(Θ;X{1,··· ,bs}, Y{1,··· ,bs}) (2.27)

The update rule is performed to all mini-batches in the training set – this is known as an
epoch. After every epoch, the samples are shuffled and mini-batches are generated again.
The number of epochs required to reach convergence depends on the problem and the size
of the training set.

In addition to be much faster than the original method (Ruder, 2016), the SGD
allows online learning, i.e., it is possible to update the network with new samples on-the-fly.
This is a very desirable feature since the training samples may not be available at the same
time. Also, using SGD, we may train an MLP using a dataset with millions of samples,
since the update is done using only bs samples. For these reasons, SGD combined with
backpropagation is one of the algorithms of choice when training neural networks. In
Algorithm 1 is described the pseudocode of the SGD method.

Algorithm 1: Stochastic Gradient Descent (SGD)
1 Input:
2 Training set (Tr): X and Y ;
3 Loss function: L(Θ;X, Y);
4 Hyper-parameters: bs, α, and number of epochs (ep);
5 while j < ep do:
6 Shuffle Tr and compute the mini-batches;
7 while i < size(Tr)÷ bs do:
8 Θnew = Θ− α∇ΘL(Θ;Xi, Yi);
9 return Θ.

Chapter 2. Fundamental concepts on Machine and Deep Learning 43

2.2.3.2 Momentum

Although SGD is effective, it may present slow convergence for multimodal loss
functions. Momentum helps to accelerate the SGD learning (Qian, 1999). Formally, it
introduces a new variable v that represents velocity, i.e, the direction and speed at which
the parameters move through parameter space (Ruder, 2016; Goodfellow; Bengio; Courville,
2016):

vnew = γv− α∇ΘL(Θ;Xi, Yi) (2.28)

where γ is the momentum coefficient, a hyperparameter ranging from 0 to 1 that controls
the contributions of the previous gradient decay. The network parameters’ update rule is
now defined as:

Θnew = Θ + vnew (2.29)

To update Algorithm 1, we only need to replace the line 8 with Equations 2.28 and 2.29.
The remaining lines are still the same.

In Newtonian mechanics, momentum is mass times velocity. In the momentum
learning algorithm context, which is obviously inspired by physics concepts, the gradient
is a force that moves particles on parameter space. Ruder (2016) suggested the following
analogy:

Essentially, when using momentum, we push a ball down a hill. The ball
accumulates momentum as it rolls downhill, becoming faster and faster on
the way. The same thing happens to our parameter updates: the momentum
term increases for dimensions whose gradients point in the same directions and
reduces updates for dimensions whose gradients change directions. As a result,
we gain faster convergence and reduced oscillation.

2.2.4 Regularization

In statistics and machine learning, regularization is any procedure that aims to
increase the generalization of a deep model by introducing constraints or adding new
information into the model. Typically, a deep neural network may have millions of trainable
parameters and can easily overfit for most datasets (Géron, 2019). Regularization is a way
to tackle this problem. There are several regularization methods. In this section, we briefly
describe the weight decay, dropout, batch normalization, and early stopping.

Chapter 2. Fundamental concepts on Machine and Deep Learning 44

2.2.4.1 Weight decay

Weight decay, also known as `2 regularization, is probably the most common
technique for parametric regularization in Machine Learning. In brief, it is a regularization
method that stimulates the model to pursue small weights by adding a penalty term into
the cost function (Krogh; Hertz, 1992). Essentially, small weights may result in a more
stable model in which small input changes will not cause a significant change in the output
(Brownlee, 2018).

Let us consider an arbitrary cost function L(w). In order to ensure small weights
to w, we define a new cost function defined as:

LR(w) = L(w) + λ

2 ‖w‖
2 (2.30)

where ‖w‖ is the norm of the weights and λ is the regularization constant, a non-negative
hyperparameter. Now, if the weights get too large, the norm will increase and, consequently,
the cost function. Thus, the learning algorithm will focus on minimizing the norm, which
results in smaller weights (Zhang et al., 2020). To control the trade-off between the model
cost function and the penalty term, it is introduced a non-negative hyperparameter λ
known as regularization constant – in most machine learning libraries, this parameter and
the whole method is interchangeably named weight decay. Essentially, the higher the value
of λ, the more the learning algorithm constrains the weights. When λ = 0, no constrain is
applied.

2.2.4.2 Dropout

Another common technique to regularize neural networks is Dropout (Srivastava et
al., 2014). Basically, during the training phase, every neuron has a probability p of being
temporarily turned-off for a single training step, i.e., the neuron is ignored during this step
– see Figure 9. In the next training step, it may be activated again, depending on p, which
is a hyperparameter called dropout rate (Géron, 2019). Thereby, Dropout provides a quite
cheap way to simulate different models being trained in parallel. As a result, it tends to
slow down convergence. Nonetheless, despite simple, Srivastava et al. (2014) proved that
this method significantly reduces overfitting and improves generalization, which justifies
the extra time.

2.2.4.3 Batch normalization

Training deep neural networks with backpropagation may result in the vanishing/exploding
gradient problem. In summary, the vanishing/exploding gradient happens when the gra-
dients get too small/big that the algorithm either does not update the weights anymore
or the weights get huge values. In both cases, the model does not converge to a proper

Chapter 2. Fundamental concepts on Machine and Deep Learning 45

Figure 9 – An example of Dropout regularization in a small neural network. The red X
means that the neuron is turned-off for the current step. Note that Dropout is
not applied to the output layer.

solution (Géron, 2019). The main goal of the batch normalization (Ioffe; Szegedy, 2015)
is to deal with this problem, however, it also has a regularization effect that sometimes
makes dropout unnecessary (Goodfellow; Bengio; Courville, 2016).

The main idea behind the batch normalization method is that different layers may
learn at different speeds. Thus, the method normalizes batches of inputs of individual
layers of a deep model according to the following equation (Ioffe; Szegedy, 2015):

BN(x) = γ � x− µ̂
σ̂

+ β (2.31)

where x is the mini-batch of data, µ̂ and σ̂ are the mean and standard deviation of x,
respectively, and γ and β are the scaling and offset coefficients. The method works as
follows: for each training step, the mini-batch is normalized to get zero mean and unit
variance. Next, this value is re-scaled according to γ and β. This operation is important to
ensure that the activation magnitudes among the layers do not diverge. With large enough
mini-batch, the method is effective to speed up learning and improve generalization (Zhang
et al., 2020). It is important to note that γ and β must be jointly included to parameters
Θ to be learned during backpropagation.

2.2.4.4 Early stopping

Early stopping is a quite simple approach to regularize iterative learning algorithms.
The basic idea is to stop the training phase according to the error of the validation partition.
In other words, when the training error keeps decreasing and the validation error does
not, it means the model is overfitting and we should stop training (Zhang et al., 2020;
Géron, 2019). Two common thresholds we can use to stop training a model are described
as follows:

Chapter 2. Fundamental concepts on Machine and Deep Learning 46

• Minimum validation error: we can set a minimum error threshold and, if the
validation error reaches it, we stop training the model.

• Number of epochs without improvement: we can set a maximum number of
epochs without improvement on the validation error and, if the model reaches it, we
stop training the model.

Usually, the number of epochs without improvement is a more common threshold since
knowing the minimum validation error upfront may not be feasible. In any case, early
stopping is such a simple and efficient approach that is very desired when training any
kind of model.

2.3 Convolutional Neural Networks (CNN)
Convolutional Neural Network (CNN) (LeCun et al., 1989; LeCun; Bengio et al.,

1995; LeCun et al., 1998) is a special type of Artificial Neural Network that was designed
to handle grid-like data. Different architectures of CNNs have been successfully applied
to many real-world problems such as Natural Language Processing (NLP), automatic
video classification, voice recognition, self-driving car, among many others (Rawat; Wang,
2017; Géron, 2019; Shen et al., 2019). Nowadays, this is the most successful deep learning
method to learn visual features from images (Rawat; Wang, 2017). As the name suggests,
a CNN is a network that applies the convolution operator, instead of general matrix
multiplication, in at least one of their layers (Goodfellow; Bengio; Courville, 2016). The
network is designed to exploit extensive weight-sharing in order to reduce computational
complexity, which significantly differs it from traditional MLPs. In this section, we first
present the motivation and inspiration of CNNs models. Next, we describe the fundamental
concepts regarding this model.

2.3.1 Local receptive fields in the visual cortex

The convolutional neural network is a direct inspiration from studies of the brain’s
visual cortex, the part of brain responsible to process visual information. This part
is composed of different areas in the brain and each area has a specific function that
hierarchically process the vision information (Trappenberg, 2009). Hubel and Wiesel (1959)
demonstrated that neurons in the visual cortex have a small local receptive field, i.e., they
respond only to visual inputs from a limited region of the visual field. The receptive fields
of different neurons may overlap to cover the whole visual field, as illustrated in Figure
10. They also observed that neurons may have different sizes of receptive fields and some
of them only react to more complex patterns that are a composition of other lower-level

Chapter 2. Fundamental concepts on Machine and Deep Learning 47

patterns. This hierarchical architecture is able to identify complex patterns in any part of
the visual field (Géron, 2019).

Figure 10 – Illustration of the local receptive fields in the visual cortex. Neurons in this
part of the brain reacts only for limited regions of the visual field (Géron,
2019).

The concepts of the visual cortex inspired the development of the CNNs, which
was first introduced as Neocognitron (Fukushima, 1980) and gradually evolved to the
modern version that is widely used nowadays. Basically, the stack of layers of a CNN aims
to simulate the hierarchical architecture of the cortex. In addition, the local receptive
field concept is replicated in the convolutional layers through the kernels, which have
spatial connectivity and shared weights. These characteristics allow CNNs to deal with
high-dimensional data, which is a fundamental advantage compared to the MLPs.

2.3.2 CNN layers

Essentially, a standard CNN is composed of three types of layers: convolutional,
pooling, and fully-connected layers (LeCun et al., 1989; LeCun et al., 1998). In this section,
we describe the convolutional and pooling one. The fully-connected layer is the same
feedfoward network described in Section 2.2.1.

2.3.2.1 Convolutional layer

The convolutional layer is the most important layer of the network. It is based on
the convolution operator, a mathematical operation on two functions, let us say g and h,
that produces a third function that can be interpreted as how h modifies g:

(g ~ h)(t) =
∫ ∞
−∞

g(τ)h(t− τ) dτ (2.32)

where g and h are two continuous function in which the integral is defined. Considering
the discrete case:

(g ~ h)[n] =
∞∑

m=−∞
g[m]h[n−m] (2.33)

Chapter 2. Fundamental concepts on Machine and Deep Learning 48

Figure 11 – An example of the convolution between a 3×3 input matrix and a 2×2 kernel.
In this example, the kernel convolves only in defined values of the image. The
symbol ⊗ represents the dot product between the selected values.

In the convolutional network terminology, the function g is a multidimensional
array of data called input – for example, an image. The function h is a multidimensional
array of learnable parameters called kernel or filter. Lastly, the convolution result is another
multidimensional array of data named feature maps. These multidimensional arrays are
often named tensors (Goodfellow; Bengio; Courville, 2016).

Let us consider a 2D input matrix I and a 2D kernel K. Assuming that every point
that is not defined in these matrices is zero, it is possible to implement Equation 2.33 over
a finite number of array elements:

Fmap = (I ~K)[i, j] =
∑
n1

∑
n2

I[n1, n2]K[i− n1, j − n2] (2.34)

The convolution between an input matrix, which could be an image, and a kernel is
illustrated in Figure 11. This operation is commonly used in image processing algorithms
for edge detection, blurring, sharpen, among others (Solem, 2012). It means that different
kernels may extract different features from the image. Nonetheless, to perform these image
processing operations, the values of the kernels must be known beforehand. In CNN,
these values are the weights and are obtained using a learning process. After training,
feature maps generated by the convolution contain important characteristics that the
kernel learned to extract from the image. In a nutshell, the idea of local kernels follows
the concept of the local receptive fields in the visual cortex – in fact, many authors use
kernels and local receptive fields interchangeably (Zhang et al., 2020).

Parameters of a convolutional layer

The example illustrated in Figure 11 shows an image convolved by only one kernel.
Nevertheless, a convolutional layer may contain many kernels and feature maps. Actually,

Chapter 2. Fundamental concepts on Machine and Deep Learning 49

Figure 12 – Illustration of a convolution layer containing six kernels. Each kernel output a
2D feature map that are stacked at the end. The shape of the feature maps
are defined by Equation 2.35.

there are four parameters that impact on the size and number of feature maps (Li et al.,
2019a):

• Number of kernels (nk): it corresponds to the number of kernels that convolves over
the input matrix. Each kernel produces one feature map, which may be interpreted
as a stack of 2D matrices – as illustrated in Figure 12. For this reason, this number
is also known as the layer’s depth.

• Size of kernels (sk): it corresponds to the shape of the kernel. Typically, all kernels
within the same layer have the same shape [sk, sk].

• Stride (str): it corresponds to the number of pixels by which the kernel is slid over
the input matrix. When stride is 1, the kernel moves one pixel at a time; when it
is two, the kernel moves two pixels at a time; and so on. It is worth noting that a
larger stride will produce smaller feature maps – see Equation 2.35.

• Zero-padding (zp): it consists of wrapping the input matrix with zeros around the
border. This operation also allows us to control the feature maps’ size – see Equation
2.35. The parameter zp corresponds to the number of lines of zeros surrounded the
input matrix.

The equation to compute the feature maps spatial size of a convolutional layer is defined
as:

sfm = simg − sk + 2zp
str

+ 1 (2.35)

Applying this equation to the example illustrated in Figure 11, we have a 3 × 3 input
matrix, a 2× 2 kernel, stride equat to 1, and no zero-padding. Therefore, the size of the
feature map is 3−2+0

1 + 1, which results in a 2× 2 matrix.

Chapter 2. Fundamental concepts on Machine and Deep Learning 50

Non-linearity

After a convolution layer, usually is applied an activation function to add non-
linearity into the layer. Theoretically, this function can be, for example, a sigmoid or
ReLU, which were described in Section 2.2.1.1. In practice, Bengio (2012) showed that
ReLU generally works better for convolutional layers. Thus, it is straightforward to apply
the ReLU to a set of feature maps Fmap:

F̃map = ReLU(Fmap) (2.36)

In brief, this operation removes all negative pixels from the map.

Properties of a convolutional layer

The convolutional layer has three important properties that help to explain why
this model is the most successful one to handle large amounts of data, in particular, images.
They are: sparse interactions, parameter sharing, and equivariance.

In standard neural network layers every output neuron connects with every input
neuron. As described in Equation 2.10, it is defined in terms of matrix multiplication. For
a large matrix input, such as an image, connecting a neuron to each pixel is computatio-
nally expensive, and most of the time, unfeasible in terms of computational memory. In
convolutional layers, the kernel is smaller than the input matrix, which results in sparse
interactions. It means that the input matrix may have thousands of values, but only a
small portion is assessing to detect relevant features. In addition, convolutional layers use
the same weights in a kernel to generate multiples outputs that compose the feature maps.
In other words, each part of the kernel is convolved through the whole matrix input. This
characteristic is known as parameter sharing since there is no weight for each value of
the input matrix. Sparse interactions along with parameter sharing substantially reduce
the number of parameters and operations when compared to a standard MLP layer. As
a result, this layer is faster and requires less computational memory to run (Goodfellow;
Bengio; Courville, 2016).

Another important property of convolutinal layers is the equivariance to translation.
Mathematically, a function is equivariant if a change in the input results in a change in
the output in the same way. In the convolution operation, if we move an object in the
input image, its representation in the feature maps will move in the same way. This is
particularly useful to identify small variations in images pattern. However, it is important
to note that convolution is not naturally equivariant to all transformations. For example,
we need to provide other techniques to identify changes in scale or rotations in an input
image – we discuss this in Section 2.3.4.

Chapter 2. Fundamental concepts on Machine and Deep Learning 51

Figure 13 – Example of the pooling operation in a 4× 4 feature map using MaxPool (left)
and AvgPool (right) with pooling stride equal to 2 and spatial neighborhood
equat to 2× 2.

2.3.2.2 Pooling layer

The pooling operator (also known as sub-sampling) is a function that summarizes
a region of the feature maps by means of a pre-defined statistics. First of all, we need to
define two hyperparameters: the size of spatial neighborhood (spool) and the pooling stride
(strpool). Next, every region [spool, spool] is summarized by strpool points of spacing. This
function can be the maximum (MaxPool) or average (AvgPoll) of values, as illustrated in
Figure 13.

A clear benefit of the pooling layer is reducing spatial size of feature maps and,
consequently, the number of parameters and computation in the network. As we can
observe from Figure 13, the pooling operation reduces in 75% the size of the feature map.
In addition, since the pooling operation summarizes activations over a whole neighborhood,
it helps the network to deal with small translations and distortions in the input. However,
it is worth noting that a convolutional network may work properly without any pooling
layer. In fact, some works suggest that the pooling operation waste important features
that may be important in pattern recognition (Sabour; Frosst; Hinton, 2017). Other works
simulate a pooling layer by adding repeated convolutional layers before output a feature
map (Zagoruyko; Komodakis, 2016; Huang et al., 2017b). In the end, there is no consense
regarding this subject, since we also have successful networks that apply pooling in their
architectures (Simonyan; Zisserman, 2014; Szegedy et al., 2015; Sandler et al., 2018).

2.3.3 Connecting the layers

A standard covolutional network consists of a stack of convolution, activation
function, and pooling layers. These layers are the basic building blocks of CNNs. After a
predefined number of layers, the last feature maps are forwarded to a fully-connected layer,
which is a standard feedforward network. The name fully-connected refers to the fact that
in MLPs all inputs are connected to all neurons, as discussed in Section 2.3.2.1. In Figure
14 is shown a typical CNN architecture. As we can see, convolution layers, followed by a
non-linearity function, produce the feature maps. Pooling layers reduce these maps that
work as input to the next layer. The last feature map is flattened and becomes the input

Chapter 2. Fundamental concepts on Machine and Deep Learning 52

Figure 14 – A typical CNN architecture with two stacked layers performing convolution,
activation function, and pooling. The feature maps computed in the last
layer are flattened and acts as inputs to the fully connected layer. Lastly, the
fully-connected layer provides the network’s predictions.

to the fully-connected network, which produces the CNN’s output. Usually, it is applied
the softmax function – see Equation 2.13 – in the output layer, since it forces the output
array to lie within the interval 0 to 1 and sum up 1, i.e., each output neuron may be
interpreted as a probability.

Essentially, the fully-connected works as a classifier while the remaining layers
extract features from the image. The architecture organization, i.e, sequence of layers,
number of convolutions, number of fully-connected layers, and layers itself, are network
hyperparameters. However, it is known that deeper models, i.e, models with a high number
of convolution layers, perform better than the shallow ones (Goodfellow; Bengio; Courville,
2016). Successful CNN architectures in real-world problems may present more than one
hundred layers (He et al., 2016; Simonyan; Zisserman, 2014; Szegedy et al., 2015). Usually,
kernels of the first layers learn to detect basic features such as borders, shapes, corners,
etc. As the network gets deeper, the kernels learn higher concepts like an eye in a person’s
face. This is the essence of hierarchical learning, each layer learns different concepts
(Bengio, 2012).It is worth mentioning that it is possible to attach a different classifier
into convolutional networks. For example, Niu and Suen (2012) used a Support Vector
Machines (SVM) as a classifier instead of a feedforward network.

2.3.4 Techniques to improve CNNs performance

As described in Section 2.3.2.1, CNNs may present problems to deal with changes
in scale or rotations in an input image. In addition, a known issue with this model is that
it needs a large number of images to generalize well (Goodfellow; Bengio; Courville, 2016;
Chollet, 2018; Géron, 2019). In this section, we describe data augmentation and transfer
learning.

Chapter 2. Fundamental concepts on Machine and Deep Learning 53

Figure 15 – Example of data augmentation on an image sample. As we can note, six
samples are generated from the same image. Source: (Géron, 2019)

2.3.4.1 Data augmentation

Data augmentation is a technique to enlarge and diversify the number of samples
of dataset. It consists of generating artificial samples based on the original ones. In the
case that the samples are images, the new instances are generated using traditional
image processing operations, such as re-scale, rotations, shearing, zooming, cropping,
modifying brightness level, among others. As illustrated in Figure 15, these operations can
be combined. In addition, they are carried out randomly.

Data augmentation plays an important role by introducing diversity into the data.
These new samples make the model more tolerant to variations (Géron, 2019). In addition,
it contributes to avoiding overfitting. As a consequence, it is a basic technique to perform
when using CNNs. It is noteworthy that these operations cannot disturb the image at the
point to make it unrecognizable; If so, the model learns concepts that are not related to
the original data, which contributes to reduce performance.

2.3.4.2 Transfer learning

Collecting and annotating data may be a challenging task, in particular for medical
problems. As a result, many problems do not have large datasets available to be used
in deep learning models. In addition, data augmentation may not be enough to ensure
appropriate performance. In this context, the idea of transfer learning (also known as
knowledge transfer) arises. Basically, it involves training the model to another large dataset
and then using the same weights as a starting point to a problem with fewer data available.

It is quite common pre-train a model using ImageNet (Deng et al., 2009) – a dataset
that contains over 14 millions samples – and then finetune the same model for another
problem. For example, Perez et al. (2018) show that performing this procedure helps
to leverage performance for melanoma classification, even though images on ImageNet

Chapter 2. Fundamental concepts on Machine and Deep Learning 54

are significantly different from skin lesions. Recently, Raghu et al. (2019) concluded that
recycling the first layers is more important than the deeper ones on transfer learning for
medical imaging applications. The hypothesis is because the first layers learn to extract
common features, e.g., borders, that may be useful in different tasks. In any case, similar
to data augmentation, transfer learning is a widely used technique in deep learning and is
strongly recommended to handle problems that have small datasets.

55

3 Combining image and meta-data features

In Information Fusion (IF) the term multimodal fusion or heterogeneous fusion
stands for the task of combining different types of data obtained from different sources
(Atrey et al., 2010; Lin et al., 2016). Over the past few years, multimodal fusion has been
actively applied to multimedia analysis. For example, Ortega et al. (2019) proposed a
model to combine audio, video, and text data to perform human emotion recognition. The
rationale behind using such a method is that combining heterogeneous data may provide
complementary information as well as increase effectiveness in a decision-making pipeline
(Atrey et al., 2010). There are different strategies to perform multimodal fusion, nonetheless,
the most widely used is the feature level fusion, i.e., when features extracted from each
type of data are combined using a predefined methodology. This is the off-the-shelf method
applied to multimedia analysis that involves image processing.

Many image processing tasks such as disease classification, face recognition, image
retrieval, and object identification are challenging because the difference in the images’
visual pattern is quite small. This may be caused by different factors, for example, noise,
viewpoint, and data variance (Lin; RoyChowdhury; Maji, 2015). In order to improve
performance and increase robustness of methods that deal with these tasks, it is a common
practice combine different features extracted from different algorithms or obtained from
different sources of data (Nanni et al., 2016; Kharazmi et al., 2018; Liu et al., 2019; Ardila
et al., 2019; Kabbai; Abdellaoui; Douik, 2019; Pacheco; Krohling, 2020a).

Several methods have been proposed to combine image features extracted from
Convolutional Neural Networks (CNNs) and handcrafted features, i.e., those features
extracted using traditional image processing algorithms – to extract shapes, color, or
texture – or other computer vision methods such as Fisher Vector (Perronnin; Sánchez;
Mensink, 2010), Scale-Invariant Feature Transform (SIFT) (Lowe, 1999), Speed up Robust
Feature (SURF) (Bay et al., 2008), and Vector of Locally Aggregated Descriptors (VLAD)
(Jégou et al., 2010). To name a few, Arroyo and Zapirain (2014) and Majtner, Yildirim-
Yayilgan and Hardeberg (2016) combined convolutional and hancrafted features to improve
skin cancer classification, Nanni et al. (2016) for music genre classification, and Nguyen
et al. (2018) for face detection. Other works, such as (Lin; RoyChowdhury; Maji, 2015),
(Arroyo et al., 2016), (Liu et al., 2017), and (Ardila et al., 2019), proposed the combination
of image features extracted from different CNN architectures. In both cases, the most
common way to combine the extracted features are through feature concatenation (Nanni
et al., 2016; Wang et al., 2017; Akram et al., 2018; Pogorelov et al., 2018; Li et al., 2018;
Hai et al., 2019). A general example of a feature concatenation method is illustrated in
Figure 16. Basically, the idea of this method is to attach all extracted features within

Chapter 3. Combining image and meta-data features 56

Figure 16 – A schematic diagram illustrating the feature concatenation methodology.
Basically, the set of features extracted by a given image extractor is stacked
on top of each other and sent to the next method’s step, which may be
classification. Note that each extractor may produce a different number of
features.

the same structure and use it as input to another model, for example, a classifier. This is
an effective and simple way to achieve feature fusion, which justifies why this method is
widely used.

A slightly different problem is to combine features extracted from images with
other features obtained from different sources of data. For example, in medical disease
detection, we may have images and patient clinical data available to support the decision
over the image (Chai; Liu; Xu, 2018; Liu et al., 2019; Rodrigues; Markou; Pereira, 2019;
Pacheco; Krohling, 2020a). In other words, the image is the main source of information
and the extra data – usually named as meta-data – provide additional information about
the problem. Likewise in the previous problem, a simple concatenation is also the most
common approach to combine both images and meta-data (Zhang et al., 2018; Liu et
al., 2019). For example, Kharazmi et al. (2018) proposed a feature fusion system based
on concatenation and Sparse Autoencoder (SAE) to detect a specific type of skin cancer
named Basal Cell Carcinoma; and Sierra and González (2018) also used concatenation to
combine image features, extracted using two CNNs architectures, with textual meta-data
to perform user gender prediction.

In general, as images are high dimensional data, the number of features extracted
from them is much higher than the ones extracted from meta-data. In this context, a
simple concatenation may not be effective. Different works have proposed approaches
that, first, select/reduce the image features – using Principal Component Analysis (Abdi;
Williams, 2010) or a Neural Network, for example - and then perform the concatenation
step illustrated in Figure 16 (Audebert; Saux; Lefèvrey, 2017; Viswanath et al., 2017).

Chapter 3. Combining image and meta-data features 57

This kind of approach assumes that by selecting the image features, the pattern within
both set of features may be easier identified by a classifier, for example.

Recently, Li et al. (2020) stated that concatenation approaches are not able to
enforce a model to focus on specific parts of the features extracted from images. Particularly,
such approach may not consider the potential of the meta-data for visual tasks. Thereby,
they proposed the MetaNet, a multiplication-based data fusion approach that uses a
sequence of 1D convolution on meta-data to extract coefficients to assist visual features
extracted from images in the classification task. The authors applied this method for skin
cancer detection and achieved superior performance than a concatenation methodology.
However, the method fails to improve melanoma detection, which is the deadliest case of
skin cancer. Essentially, there is still room for improvement and better performance may
be achieved using a better aggregation methodology.

In this Chapter, we deal with the problem of combining images and meta-data
using deep learning models. The key contributions are summarized as follows:

• First, we introduce a baseline method that uses concatenation to combine images
and meta-data. This method introduces a straightforward mechanism to control the
contribution of each source of data to the combined feature array.

• Next, we propose the Meta-data Processing Block (MetaBlock) a structure that uses
meta-data to support data classification by identifying the most relevant features
extracted from the images.

• Both methods are designed to deal with Convolutional Neural Networks (CNNs)
and are agnostic to the architecture. We apply both of them to classify the ISIC
2019 dataset – a well-known skin lesion dataset composed of images and patient
demographics – using six different CNN architectures.

• We compare our results with the CNN models without using meta-data and with
the MetaNet, the approach proposed by Li et al. (2020).

3.1 Notation and problem formulation
Let us consider a classification problem in which each sample is composed of an

image (ximg), a group of meta-data representing context information (xmeta), and a label
y ∈ {1, · · · , Nlab}, where Nlab is the number of labels. We represent this problem by the
tuple {Ximg, Xmeta, Y }. For each type of data Ximg and Xmeta, we need to define a feature
extractor ψ. For the image, we define a CNN ψimg = gcnn(ximg) in which we extract the
last feature maps as the image features – see Section 2.3.3. Regarding the meta-data, the
extractor ψmeta depends on the type of data, which is a characteristic of the classification

Chapter 3. Combining image and meta-data features 58

problem. For example, the meta-data is represented by words, we may apply a word
embedding method such as Word2Vec (Mikolov et al., 2013), if it is a text file, we may
need to apply a more Natural Language Processing (NLP) technique to obtain the features.
The only requirement is that ψmeta return features in Rdmeta . Therefore, we assume that
ψmeta(xmeta) ∈ Rdmeta . Lastly, let us define both set of features as:

x̃img = ψimg(ximg)
x̃meta = ψmeta(xmeta)

(3.1)

where x̃img ∈ Rkimg×mimg×nimg and x̃meta ∈ Rdmeta .

At the end, our goal is to propose a method that estimates the probability of y
assuming a class c ∈ {1, · · · , Nlab} given the image and meta-data:

ŷ = p(y = c | x̃img, x̃meta) (3.2)

These notations are employed for both methods in the next sections.

3.2 Concatenating features based on a contribution factor
In this section, we describe our first approach to combine images and meta-data

for a classification problem. As previously described, the most common approach to deal
with data combination is the concatenation of features (Audebert; Saux; Lefèvrey, 2017;
Viswanath et al., 2017; Pogorelov et al., 2018; Li et al., 2018; Hai et al., 2019). Nonetheless,
we can point out two issues in directly applying this approach for the problem described
in Section 3.1:

1. The meta-data should be used to support image classification. The most important
information is still the image. By just concatenating both sets of features, we are
not considering this point.

2. Images are high dimensional data. Even the features extracted from them are usually
higher dimensional than meta-data. The result of concatenating a higher dimensional
array with a lower one may be ineffective.

Based on these two issues, we proposed a baseline approach that takes advantage of the
CNN architecture by including a single-layer neural network to play the role of a feature
learning block. In addition, we introduce a straightforward mechanism to control the
influence of each set of features generated by each extractor ψ.

Considering a set of feature maps x̃img, we first apply the flatten operation to
transform it in an x̃img ∈ Rdimg dimensional array – this operation is described in Section

Chapter 3. Combining image and meta-data features 59

2.3.3. As x̃img is high dimensional, we define a single-layer neural network to select features
from it:

s̃img = ϕ
(
W T
s x̃img + w0s

)
(3.3)

where the matrix of weights Ws ∈ Rdimg×h and the bias w0s ∈ Rh. The dimensionality of
s̃img is conditioned to the number of output neurons in the layer, which is represented by
h. In other words, h is the number of selected features from x̃img.

In order to determine the number selected features, we propose a combination factor
(cf), which is a mechanism to control and balance the number of image and meta-data
features. We define the total number of feature that we want to concatenate as follows:

tfeat = dcfh+ (1− cf)dmetae (3.4)

where 0 ≤ cf < 1 and de is the ceil operator. As we can note from equation 3.4, the
combination factor cf controls the dimensionality of both image and meta-data features.
In order to balance the features, we may condition the total number of features according
to the dmeta:

tfeat = dmeta

(1− cf)
(3.5)

Next, conditioned by dmeta, we compute h:

h = dtfeat − dmetae (3.6)

In brief, the combination factor controls the number of features selected from x̃img. For
example, if we have a problem in which dimg = 1000, dmeta = 50, and cf = 0.75, the number
selected features is equal to 150.

Once we determine the array of selected features s̃img, we concatenate it with the
meta-data features x̃meta:

x̃ = s̃img ⊕ x̃meta (3.7)

where ⊕ is the concatenation operator. Now, the concatenated array x̃ becomes the input
to the CNN’s fully-connected layer, which returns the p(y = c | x̃img, x̃meta). The full
method is illustrated in Figure 17.

As previously described, the feature learning block, defined in 3.3, is a single-layer
neural network. Since the CNN is trained by using an end-to-end backpropagation algorithm,

Chapter 3. Combining image and meta-data features 60

Figure 17 – A diagram illustrating the proposed method to combine image and meta-data
features. First, the image features are extracted by the CNN feature extractor.
Next, these features are selected according to h. Finally, the features are
combined and sent to the models’ classifier.

we include the feature learning weights within the CNN’s training parameters Θ and use
the same loss function L(Θ) – see section 2.2.2. Thereby, considering Θs = {Ws,w0s}, we
may compute ∇ΘsL(Θ) as:

∂L(Θ)
∂Θs

= ∂L
∂afc

∂ufc

∂Θfc

∂ufc

∂as

∂aa

∂Θs
(3.8)

where afc, ufc, as, and us are the activation and pre-activation functions of the fully-
connected layer and feature learning block, respectively. The remaining part of the training
is carried out according to Algorithm 1. Therefore, the proposed model is trained by an
end-to-end backpropagation. This is the main reason we employed a single-layer neural
network as the feature learning block. Another option could be applying a traditional
feature reducer such as PCA (Abdi; Williams, 2010). However, beyond the fact it is linear,
the proposed approach is faster and simpler since the backpropagation is already used to
train the image feature extractor layer. Since the computational cost to train CNNs is
high, designing approaches that take advantage of its training process is very desired.

3.3 Meta-data Processing Block (MetaBlock): an attention-based
mechanism to combine multi-source features
In the previous section, we assume that the contribution of each source can be

controlled by determining the number of its features that are sent to the classifier. Although
we show in the experiments it works properly, it is actually a strong assumption since a
model may learn to assign bigger or smaller weights to the meta-data feature connection
regardless of its dimensional size. In addition, the combination factor (cf) is a parameter
that must be defined beforehand.

Chapter 3. Combining image and meta-data features 61

Figure 18 – A schematic diagram of a standard LSTM block. Basically, the block is
composed of operations and gates that control and manipulate the information
flow. Figure from (Olah, 2015).

In this section, we present the Metadata Processing Block (MetaBlock) an attention-
based mechanism approach (Larochelle; Hinton, 2010; Bahdanau; Cho; Bengio, 2014) that
uses metadata to enhance the feature maps extracted from images. The proposed approach
does not rely on concatenation to combine features and its building blocks are inspired by
the Long Short-Term Memory (LSTM) (Hochreiter; Schmidhuber, 1997) gates, which are
basic composed of a single layer neural network, an activation function, and an element-wise
operation. Both the Attention Mechanism and the LSTM have several variants and it is
beyond the scope of this thesis describing them in detail. However, before describing the
MetaBlock, we offer a review of the main ideas of both of them that inspired us to create
our combination approach.

3.3.1 Long Short-Term Memory (LSTM)

LSTM is a special type of Recurrent Neural Networks (RNN) that is able to learn
long-term dependencies over input data (Hochreiter; Schmidhuber, 1997). Consequently, it
is widely applied to Natural Language Processing (NLP) problems (Young et al., 2018).
As any RNN, it is composed of a chain of repeating blocks that process the input data
using a sequence of operations and gates. In Figure 18 the traditional LSTM model is
illustrated. The model’s input and output are represented by xt and ht, respectively. The
variable Ct represent the state of each block. The gates (yellow squares) are represented
by a single-layer neural network using sigmoid and the tangent hyperbolic as activation
functions. The operations (pink circles) are pointwise addition and multiplication between
two arrays of data. The basic idea is to select information through the gates and compose
them with the addition and multiplication operations (Staudemeyer; Morris, 2019).

Chapter 3. Combining image and meta-data features 62

Figure 19 – An attention mechanism proposed by Rodríguez et al. (2018). The original
CNN architecture is extended by including several attention blocks. The
original model’s output is controlled by the global attention gates. Figure
from (Rodríguez et al., 2018).

3.3.2 Attention mechanism

Inspired by biological observations on human vision, Larochelle and Hinton (2010)
introduced the idea of fixation point strategy, which is an attempt to allow deep learning
models to concentrate on few relevant features. Later, Bahdanau, Cho and Bengio (2014)
proposed the idea of attention in NLP for machine translation. Basically, we can define
the attention mechanism as a part of a deep model architecture that allow the own model
to highlight relevant features extracted from the input data (Galassi; Lippi; Torroni,
2019). Nowadays, the concept of attention mechanism have been achieving state-of-the-art
performance on NLP (Devlin et al., 2018; Radford et al., 2019). It has been also applied
to improve interpretability in feature maps extracted using CNNs (Vaswani et al., 2017;
Li et al., 2019b; Chaplot et al., 2019).

The way the attention mechanism is included in the model depends on the type of
the model and the task it is employed. For example, in the original method, Bahdanau,
Cho and Bengio (2014) proposed a single-layer neural network to learn weights from
LSTM1 outputs – the variable ht in Figure 18 – and use them to scale the cell states (Ct).
For image processing with CNNs, the standard approach consist of receiving a feature map
as input and apply a function to learn new concepts from this map (Vaswani et al., 2017;
Li et al., 2019b). For most of the applications, this function is another neural network
mainly because it is easy to train them along with CNN’s kernels. Lastly, the output of
this function is applied to control another set of features or the CNNs output. In Figure
19 is depicted an attention structure proposed by Rodríguez et al. (2018). As we can note,
the authors include several attention blocks that contribute to the global attention gates,
which control the model’s output.
1 Actually, they applied a more sophisticated model based on LSTM. For simplicity, we may consider an

LSTM.

Chapter 3. Combining image and meta-data features 63

3.3.3 Methodology

As stated earlier, the Meta-data Processing Block (MetaBlock) algorithm aims
to enhance the image according to additional information. In other words, its goal is to
enhance the feature maps x̃img according to the meta-data features x̃meta. In Figure 20 is
depicted the MetaBlock’s concept. Observe that the output feature x̃ will have the same
shape of x̃img. However, it is modified to select the most relevant features according to the
meta-data features x̃meta.

Figure 20 – A schematic diagram illustrating the main idea of the proposed combination
approach. The image features are selected according to the meta-data. In the
end, the meta-data enhance the image features.

Essentially, we want that the MetaBlock, illustrated in Figure 20, works similarly to
an attention mechanism. It must help the model to concentrate on more important features
by incorporating the meta-data knowledge into the image feature maps. To achieve this
goal, we define the MetaBlock equation similar to the batch normalization one, described in
Equation 2.31 – please, refer to Section 2.2.4.3 to refresh the batch normalization concepts.
Basically, the idea is to learn a function to scale and shift the image features according
to the meta-data and apply LSTM-like gates to select the most relevant features. The
MetaBlock equation is defined as follows:

x̃ = σ [tanh [fb(x̃meta)× x̃img] + gb(x̃meta)] (3.9)

where both × and + perform an element-wise multiplication and addition, respectively;
σ(·) and tanh(·) are the sigmoid and hyperbolic tangent, defined by Equations 2.11 and
2.12, respectively, and are designed to work as the LSTM gates. The block is based
on two functions fb(x̃meta) and gb(x̃meta). Basically, these functions compose an affine
transformation on the image features – similar to the batch normalization idea – which is
an effective way to modify features while preserving their dimension. They can be designed
as any learnable function. Nonetheless, likewise a LSTM gate, we model both functions
as a single-layer neural network since it is a straightforward way to attach a non-linear

Chapter 3. Combining image and meta-data features 64

function into a deep learning pipeline. Thereby, the fb(x̃meta) and gb(x̃meta) are defined as:

fb(x̃meta) = W T
f x̃meta + w0f

(3.10)

gb(x̃meta) = W T
g x̃meta + w0g (3.11)

where both matrices of weights {Wf ,Wg} ∈ Rdmeta×kimg and the bias {w0f
,w0g} ∈ Rkimg –

recall that kimg is the number of feature maps extracted from the image. Therefore, each
function return kimg coefficients, which we name modifiers. The modifier coefficients may
be interpreted as weights that modify feature maps in order to enhance them and to help
the model concentrating on more important features.

After modifying the feature maps using the modifier coefficients, we select the most
relevant features using the hyperbolic tangent and sigmoid functions gates. In other words,
these gates decide which features should be let through and which one should not. From
Equation 3.9, we describe both gates as follows:

• hyperbolic tangent gate: it is the first gate of the MetaBlock and is defined by
this part of the Equation 3.9:

Tgate = tanh [fb(x̃meta)× x̃img] (3.12)

This gate controls the value of the scaling operator by adding a non-linearity that
outputs values ranging from -1 to 1. Essentially, the rationale behind this gate is to
increase or reduce the relevance of each feature by modifying its value to the range
[-1,1], where 1 is the most relevant and -1 the opposite. The modifier coefficient
responsible by the scaling aims to identify this pattern.

• sigmoid gate: it is the second gate of the MetaBlock and operates using the output
of the previous gate Tgate as follows:

Sgate = σ [Tgate + gb(x̃meta)] (3.13)

This gate shifts the values of the previous gate and outputs values ranging from 0 to
1. In other words, it works similarly to the previous one, however, this gate has the
power to turn-off a given feature by setting it to zero. Therefore, the key idea is to
output the most relevant features.

In Figure 21, the MetaBlock structure is illustrated – to standardize, we follow the
same pallet of colors presented in the LSTM block in Figure 18. In brief, we observe that
the meta-data is sent to the gb and fb function, which will produce the modifier coefficients.

Chapter 3. Combining image and meta-data features 65

Figure 21 – The internal structure of the Meta-data Processing Block. In summary, the
block learns how to modify the image features based on the meta-data features.
The output features array has the same shape as the image features.

Figure 22 – An illustration of a MetaBlock layer attached to a CNN model. Observe that
the meta-data are used to identify the most relevant features from the feature
maps before sending them to the classifier.

Next, the feature maps are scaled by the fb, and the output is modified by the hyperbolic
tangent gate. Finally, the result of the previous operation is shifted by the output of the
gb and selected by the sigmoid gate, which produces the block output. An illustrative
example of this method is described in the next subsection.

In Figure 22 is illustrated a CNN schematic in which the MetaBlock is used to
combine the meta-data and the feature maps. Observe that the MetaBlock outputs are
used to feed the classification layer. However, they can be used to feed any type of layer
before sending them to the classifier. Also, it is important to note that this method is
agnostic to the CNN architecture. As we show in the experiments, it can be easily adapted
to different architectures. Finally, in Appendix B.3, we show that, in the worse case
scenario, the MetaBlock parameters increase the total number of parameters of a CNN in
0.85%, which is insignificant in terms of training time.

The process of training the functions fb and gb is similar to the previous method
described in Section 3.2. It is also applied an end-to-end backpropagation. In this case,
we have Θf = {Wf ,w0f

} and Θg = {Wg,w0g}, which are also included into the CNN’s

Chapter 3. Combining image and meta-data features 66

training parameters Θ. To compute ∇Θf
L(Θ) and ∇ΘgL(Θ), we can also apply Equation

3.8. Finally, we apply batch normalization – see Section 2.2.4.3 – to regularize the functions
fb and gb.

3.3.4 Illustrative example

In this section, we present a numerical example to illustrate how the MetaBlock
works. To do so, let us consider a CNN model that output 10 feature maps with shape
equal to 4× 4. For this example, each of the gb and fb functions must learn 10 modifiers
coefficients to scale and shift each of the 10 feature maps as we describe in the previous
section. Let us also consider the meta-data dimension dmeta = 5. Thus, the weight matrices
and bias, described in Equations 3.10 and 3.11, are defined as {Wf ,Wg} ∈ R5×10 and the
bias {w0f

,w0g} ∈ R10. Each set of weights and bias related to gb and fb is responsible to
learn the scale and shift modifiers, let us say sc and sh, respectively.

Now, let us consider that gb and fb were trained along with the CNN model and
learned the following weights and bias:

Wf =

−0.408 0.107 −0.039 0.816 0.260 −0.332 −0.983 0.125 0.277 0.034
−0.927 −0.851 −0.734 −0.272 0.308 0.183 −0.823 −0.458 −0.218 −0.045
0.801 −0.810 0.592 −0.909 −0.812 0.985 −0.412 −0.548 0.321 0.874
0.422 −0.982 −0.737 −0.796 −0.144 0.378 −0.974 0.927 −0.368 −0.526
0.867 0.821 0.552 0.441 −0.750 −0.396 −0.775 0.507 0.468 −0.410

 (3.14)

w0f =
[
0.906 0.799 0.953 −0.262 0.492 0.26 0.518 −0.402 −0.271 0.694

]
(3.15)

Wg =

−0.898 −0.785 0.549 −0.686 −0.856 0.929 0.267 −0.720 −0.471 0.997
−0.686 0.425 −0.570 0.240 0.104 0.429 0.393 0.372 −0.801 −0.105
0.571 0.716 −0.419 −0.565 0.592 −0.541 −0.835 −0.465 −0.788 −0.603

−0.437 −0.903 −0.783 −0.043 −0.571 −0.035 0.791 0.565 0.385 0.997
0.957 0.304 0.861 0.572 −0.047 −0.638 0.367 0.310 0.258 0.459

 (3.16)

w0g =
[
0.906 0.799 0.953 −0.262 0.492 0.26 0.518 −0.402 −0.271 0.694

]
(3.17)

Considering the meta-data array as:

xmeta =
[
1 1 0 0 0.7

]
(3.18)

Through Equations 3.10 and 3.11 we compute the values of the scale and shift modifier
coefficients, which results in:

sc =
[
0.181 0.634 0.571 0.590 0.54 −0.176 −1.834 −0.383 0.120 0.400

]
(3.19)

Chapter 3. Combining image and meta-data features 67

sh =
[
−0.008 0.651 1.534 −0.307 −0.292 1.171 1.434 −0.533 −1.362

]
(3.20)

These values are used to enhance each of the 10 feature maps. For example, let us consider
the first feature maps as:

F1 =

0.628 −0.434 −0.223 −0.971
0.098 −0.249 0.776 −0.271
0.846 0.818 −0.321 0.270

−0.643 −0.583 0.336 0.749

 (3.21)

we compute the MetaBlock for this feature map as follows:

F̃1 = σ [tanh [0.181 × F1] + (−0.008)] , (3.22)

which results in the following feature map:

F̃1 =

0.526 0.479 0.488 0.455
0.502 0.487 0.532 0.486
0.535 0.534 0.484 0.510
0.470 0.472 0.513 0.531

 (3.23)

Lastly, we just need to repeat this process using the remaining values in sc and sh to
the other 9 feature maps. Obviously, these operations are computed at once through
vectorization. It is worth mentioning that all values using in this section are fictitious.
They are just for understanding purposes. In a real situation, the feature maps matrices
are much bigger.

3.4 Experimental results
In this section, we carry out experiments to evaluate the performance of both

combination approaches proposed in this chapter: the baseline using the contribution
factor and the Meta-data Processing Block (MetaBlock). We use six different CNN
architectures trained on ISIC 2019 dataset (ISIC, 2019), which is composed of dermoscopy
skin lesion images and patient demographics. Thereby, we start this section by describing
the experiment’s setup, including the dataset and the deep models. Next, we present a
discussion about the results.

3.4.1 Experiments setup

We evaluate the combination approaches using the following CNN architectures:
EfficientNet-B1 and B4 (Tan; Le, 2019), DenseNet-121 (Huang et al., 2017b), MobileNet-v2
(Sandler et al., 2018), ResNet-50 (He et al., 2016), and VGG-13 (Simonyan; Zisserman,

Chapter 3. Combining image and meta-data features 68

2014). All models are trained on ISIC 2019 dataset (ISIC, 2019), a skin lesion archive
containing 25,331 dermoscopy images, patient demographics, eight skin lesions: Melanoma
(MEL), Melanocytic nevus (NV), Basal cell carcinoma (BCC), Actinic keratosis (AK),
Benign keratosis (BKL), Dermatofibroma (DF), Vascular lesion (VASC), and Squamous
cell carcinoma (SCC). We compare the six models with and without using the patient
demographics as meta-data along with the images.

In order to combine both types of data, we attach the baseline concatenation
method, the MetaBlock, and MetaNet (Li et al., 2020) into the original architecture of the
six CNN models employed in this experiment. All models were pre-trained on ImageNet
(Deng et al., 2009) and fine-tuned on ISIC for 150 epochs using SGD optimizer with a
learning rate equal to 0.001, momentum equal to 0.9, and weight decay equal to 0.001. The
learning rate is reduced by a rate of 0.1 if the model does not improve for 10 consecutive
epochs. In addition, we used early stopping if the model does not improve for 15 consecutive
epochs. As the dataset is imbalanced, i.e., the samples are not represented equally among
the labels, we applied the weighted cross-entropy as the loss function in which the weights
are determined according to the labels’ frequency. All images were resized to 224× 224
and we applied data augmentation using common image processing operations: horizontal
and vertical flips, adjustments in brightness, contrast, and, saturation, image scaling, and
random noise (Perez et al., 2018; Gessert et al., 2019; Pacheco; Ali; Trappenberg, 2019;
Kather et al., 2019).

For all experiments, we reserved approximately 10% of each dataset for testing
respecting the labels’ frequency distribution. The remaining 90% of data were used on
the training phase through 5-fold cross-validation for assessing the effectiveness of the
models2. To measure the performance, we computed the average and standard deviation
of the following metrics: accuracy (ACC), balanced accuracy (BACC), the aggregated area
under the curve (AUC), and the cross-entropy (Loss). As the dataset is imbalanced, we
consider BACC as the main metric.

The patient demographics contain information about age, represented by an integer,
gender, and anatomical region of the skin lesion, both of them represented by strings. In
order to use this information as meta-data, we need to transform the categorical data
into scalar numbers. The attribute of gender may assume two values: male or female. On
the other hand, the anatomical region may assume six different values: anterior torso,
head/neck, lateral torso, lower extremity, oral/genital, palms/soles, posterior
torso, and upper. Thereby, we applied the one-hot encoding strategy (Zhang et al., 2020;
Géron, 2019) to encode the patient demographics into an array of 11 values – particularly,
Li et al. (2020) employed the same strategy to use MetaNet. For example, for the gender
2 We set this configuration because this experiment will also be used for the ensemble experiments in

the next section, which demands training, validation, and test partitions.

Chapter 3. Combining image and meta-data features 69

attribute, the employed strategy may assume [1,0], [0,1], or [0,0] if gender is male, female,
or if this information is missing, respectively. We applied the one-hot encoding strategy
mainly because the data do not demand a fancy strategy to encode it properly, i.e., the
values that each attribute assumes are well defined and in a set of possibilities; and the
method is simple to implement and allow us to map the missing data. Therefore, the
one-hot encode may be seen as the meta-data extractor ψmeta that results in an array in
xmeta ∈ R11, where dmeta = 11.

Lastly, for the baseline concatenation methodology, we use the contribution factor
equal to 0.8, i.e., 80% of features coming from the image and 20% from the meta-data.
Thus, the number of neurons of the feature selector block h is equal to 44 – see equation
3.6. A sensitivity analysis and a discussion about the combination factor may be found in
Appendix B.1. In order to compare the experiments results, we perform the non-parametric
Friedman test following by the Wilcoxon test (if applicable), using pvalue = 0.05 (Derrac et
al., 2011). We also perform the A-TOPSIS (Krohling; Pacheco, 2015), a straightforward
method to rank algorithms in terms of mean and standard deviation.

3.4.1.1 Experiment results

We now present the results obtained for the ISIC 2019 dataset with and without
considering the meta-data. In Tables 1, 2, 4, and 3 are presented the results, in terms of
mean and standard deviation, for each CNN model without using meta-data, for the models
using the concatenation approach, using the MetaBlock, and for MetaNet, respectively.
To ease the visualization, in Table 5 is presented the performance only in terms of BACC
for each method.

No meta-data
Model ACC BACC AUC Loss

EfficientNet-B1 0.746± 0.029 0.735± 0.01 0.952± 0.003 0.724± 0.053
EfficientNet-B4 0.776± 0.023 0.755± 0.013 0.956± 0.004 0.654± 0.051
DenseNet-121 0.774± 0.029 0.755± 0.024 0.961± 0.006 0.645± 0.062
MobileNet-v2 0.763± 0.008 0.742± 0.009 0.961± 0.001 0.647± 0.007
ResNet-50 0.767± 0.036 0.744± 0.035 0.959± 0.007 0.667± 0.076
VGGNet-13 0.722± 0.018 0.701± 0.016 0.948± 0.004 0.761± 0.041

Table 1 – Performance of the CNN models considering only the dermoscopy images.

As we can note from the tables, the use of the patient demographics provides a
visible performance improvement in terms of BACC and Loss, in particular when the
MetaBlock is applied. As the dataset is imbalanced, the ACC is slightly higher than the
BACC for all models, which is expected. To compare the four methods, we performed
the Friedman and Wilcoxon tests, considering the BACC metric as the tests input. The
Friedman test returned pvalue = 0.0011. Thus we performed the pairwise Wilcoxon test,
which is described in Table 6. As we can see, the test indicates that the MetaBlock approach

Chapter 3. Combining image and meta-data features 70

Concatenation
Model ACC BACC AUC Loss

EfficientNet-B1 0.735± 0.01 0.729± 0.006 0.949± 0.001 0.731± 0.013
EfficientNet-B4 0.784± 0.004 0.768± 0.015 0.96± 0.002 0.662± 0.03
DenseNet-121 0.738± 0.012 0.737± 0.01 0.952± 0.002 0.714± 0.023
MobileNet-v2 0.716± 0.009 0.723± 0.016 0.946± 0.004 0.759± 0.03
ResNet-50 0.729± 0.013 0.726± 0.013 0.948± 0.005 0.745± 0.029
VGGNet-13 0.724± 0.015 0.729± 0.013 0.949± 0.004 0.743± 0.036

Table 2 – Performance of the CNN models using the baseline concatenation approach to
combine the dermoscopy images with the patient demographics.

MetaBlock
Model ACC BACC AUC Loss

EfficientNet-B1 0.734± 0.027 0.731± 0.03 0.951± 0.008 0.736± 0.075
EfficientNet-B4 0.807± 0.008 0.762± 0.011 0.962± 0.003 0.581± 0.025
DenseNet-121 0.800± 0.011 0.769± 0.013 0.965± 0.002 0.577± 0.026
MobileNet-v2 0.777± 0.006 0.76± 0.004 0.958± 0.001 0.631± 0.017
ResNet-50 0.804± 0.006 0.771± 0.011 0.966± 0.002 0.569± 0.015
VGGNet-13 0.753± 0.031 0.74± 0.015 0.955± 0.007 0.683± 0.067

Table 3 – Performance of the CNN models using the MetaBlock to combine the dermoscopy
images with the patient demographics.

MetaNet
Model ACC BACC AUC Loss

EfficientNet-B1 0.742± 0.029 0.743± 0.018 0.953± 0.007 0.729± 0.085
EfficientNet-B4 0.766± 0.019 0.756± 0.012 0.959± 0.004 0.681± 0.025
DenseNet-121 0.725± 0.020 0.723± 0.016 0.949± 0.005 0.756± 0.051
MobileNet-v2 0.742± 0.019 0.731± 0.015 0.955± 0.006 0.713± 0.052
ResNet-50 0.753± 0.030 0.746± 0.022 0.956± 0.008 0.696± 0.081
VGGNet-13 0.767± 0.020 0.746± 0.013 0.959± 0.005 0.696± 0.066

Table 4 – Performance of the CNN models using the MetaNet to combine the dermoscopy
images with the patient demographics.

is statistically different from the remaining ones. We also performed the A-TOPSIS to
rank the three methods. The rank is presented in Figure 23 and it is in accordance with
the statistical test, i.e., the MetaBlock approach has a higher rank score and the three
remaining methods achieve quite similar values.

To get a gist of the AUC metric, in Figure 24 is shown the ROC curves, conside-
ring the ResNet-50 model, with no meta-data, concatenation, MetaBlock, and MetaNet
approaches considering macro average and melanoma, the deadliest type of skin cancer.
As we can see, both ROC curves for the MetaBlock approach are above the remaining
methods, which is in line with the previous results. In Figure 25 is shown the confusion
matrix, also considering the ResNet-503 model, for each methodology. As seen in the
3 As we would have 18 confusion matrices and 18 ROC curves, we decided to present these plots only

for the ResNet-50 because it achieves a proper average performance without using the meta-data.

Chapter 3. Combining image and meta-data features 71

Figure 23 – The A-TOPSIS rank for the four methods considering the BACC metric.

(a) Macro average ROC (b) Melanoma ROC

Figure 24 – The Macro average and melanoma ROC curves for no meta-data, conca-
tenation, MetaBlock, and MetaNet approaches considering the ResNet-50
model.

Chapter 3. Combining image and meta-data features 72

Comparing all approaches
Model No meta-data Concatenation MetaBlock MetaNet

EfficientNet-B1 0.735± 0.01 0.729± 0.006 0.731± 0.03 0.743 ± 0.018
EfficientNet-B4 0.755± 0.013 0.768 ± 0.015 0.762± 0.011 0.756± 0.012
DenseNet-121 0.755± 0.024 0.737± 0.01 0.769 ± 0.013 0.723± 0.016
MobileNet-v2 0.742± 0.009 0.723± 0.016 0.76 ± 0.004 0.731± 0.015
ResNet-50 0.744± 0.035 0.726± 0.013 0.771 ± 0.011 0.746± 0.022
VGGNet-13 0.701± 0.016 0.729± 0.013 0.74± 0.015 0.745 ± 0.013

Table 5 – Comparing the performance of the all methodologies in terms of BACC. In bold
is highlighted the highest average for each model.

Pair pvalue
No meta-data - Concatenation 0.502
No meta-data - MetaBlock 0.002
No meta-data - MetaNet 0.773

MetaBlock - Concatenation 0.001
MetaBlock - MetaNet 0.017

MetaNet - Concatenation 0.343

Table 6 – The result of the Wilcoxon pairwise test for all methods.

main diagonal of the confusion matrices, the MetaBlock approach improves almost all
true positive values, which reflects in the ROC curves and in the BACC metric. On the
other hand, the concatenation and MetaNet approaches reduce detection, in particular,
for melanoma.

3.4.1.2 Discussion

The results presented in the previous section indicate that combining meta-data
and patient demographics may improve the performance of CNN models for skin cancer
detection. However, the results also show the improvement depend on the combination
method. As indicated by the statistical test, the concatenation and MetaNet approaches do
not present differences from the models without using the meta-data. It happens because
these methods present better performances than the no meta-data one only for some
models – for example, MetaNet presents higher performance only for EfficientNet-B1
and VGGNet-13. On the other hand, MetaBlock is more stable and presents an average
improvement of over 1% in balanced accuracy and reduced the loss for all methods, except
the EfficientNet-B1. By reducing the loss function, the method indicates it can predict
the skin lesion diagnostic with more certainty, which is very desired for the skin cancer
detection task.

Analyzing the ROC curves for the ResNet-50 depicted in Figure 24, the concatena-
tion and MetaNet approaches present a fairly lower performance for both macro average
and melanoma curves. In the case of melanoma detection, the confusion matrices in Figure

Chapter 3. Combining image and meta-data features 73

(a) No meta-data (b) Concatenation

(c) MetaBlock (d) MetaNet

Figure 25 – The confusion matrix for each methodology considering the ResNet-50 model.

25 are also in line with the ROC curves. We believe this lower performance happens
because the ISIC 2019 dataset has only three meta-data attributes, age, anatomical region,
and gender, and the concatenation approach cannot handle it properly. Conversely, the
MetaBlock approach could handle this issue well and presented a higher performance
compared to all other approaches. In general, the experiment carried out in this section
shows that the MetaBlock approach is a promising tool for combining dermoscopy images
and patient demographics, even when just a few information is available. We will return
to discuss this topic in Chapter 5, where we present a thorough case study that contains
much more meta-data to be used. Also, in Appendix B.2 we assess the contribution of
each fb and gb in the MetaBlock.

To conclude, Li et al. (2020) analyzed the MetaNet only in terms of recall over
the labels, which also shows poor performance for melanoma detection. In addition, the
authors do not provide any statistical test or another method to further compare their
method with the no meta-data and concatenation approaches. In this experiment, we show
that MetaNet’s performance depends on CNN architecture and, most of the time, it is
similar to the concatenation approach.

74

4 Learning dynamic weights for an ensemble
of deep models

In order to learn a distribution that represents a set of data, Machine Learning
models must make assumptions about the data. In theory, these models are able to
generalize well using a finite set of samples. However, these samples do not represent all
possible data generated by the true distribution. In this context, data-driven algorithms
are able to learn rules that may be correct for most samples, i.e., there is a probability
that this rule is correct. The No Free Lunch theorem Wolpert (1996) states that there
is no universal Machine Learning algorithm that provides the best performance for all
problems. The only way to know which model is the best one for a task is evaluating it for
that task (Géron, 2019). However, it is impracticable to test all possible models. Thus, an
effective approach to deal with this problem is trusting in an ensemble of models instead
of only one.

Multiple Classifier Systems (MCSs)1 is the subfield of Machine Learning that
proposes algorithms to combine decisions from a group classifiers in order to obtain a more
accurate solution. Basically, an MCS is composed of three phases (Britto Jr; Sabourin;
Oliveira, 2014; Cruz; Sabourin; Cavalcanti, 2018):

1. Generation: this phase aims to create a set of base classifiers. These classifiers
should present some diversity in order to improve the group’s generalization. There
are several strategies to enforce diversity into a group of classifiers, such as using
different models or architectures, initializing the models using different methodologies,
using different hyperparameters, training the models for different datasets, among
others. These strategies can be applied alone or combining each other. When the
pool of classifiers is created using different models or architectures it is called a
heterogeneous ensemble. Conversely, when all classifiers are instances of the same
model it is named a homogeneous ensemble.

2. Selection or Pruning: in this phase, one or a set of classifiers is selected from
the pool according to a static or dynamic methodology. In brief, the static method
selects classifiers using the same rule for all unknown samples presented to the
pool. For example, we could select the classifiers according to their accuracy in the
validation partition. Conversely, the dynamic method selects classifiers according to
the unknown sample that the model is classifying.

1 Like most of the authors, we use the terms MCS, ensemble of classifiers, and committee of classifiers
interchangeably

Chapter 4. Learning dynamic weights for an ensemble of deep models 75

Figure 26 – The workflow of the phases of an MCS. In the first step, a pool of classifiers
is created. Next, the selection phase is performed using the validation parti-
tion. Finally, the classifiers are aggregated. Adapted from (Cruz; Sabourin;
Cavalcanti, 2018).

3. Aggregation or Fusion: this phase consists of the aggregation of outputs obtained
by the selected classifiers according to some function. This function may be non-
trainable – for example, majority voting schemes, average or maximum prediction
–, trainable – such as the Mixture of Experts (Masoudnia; Ebrahimpour, 2014) in
which the aggregation function is trained along with the classifiers –, or dynamic
weights, when the function weights the classifiers for each unknown sample on the
fly.

These three phases are illustrated in Figure 26. It is important to note that this represen-
tation is not rigid. For example, we can use MCS without a selection phase. In addition,
the selection and aggregation phases definitions may overlap, which is the case when a
dynamic weighting function is applied.

Three pioneers methods, but still widely used, to build an MCS pipeline are known
as boosting (Schapire et al., 1998), bagging (Breiman, 1996), and stacking (Wolpert, 1992).
Boosting is a homogeneous method that creates a chain of models that are sequentially
trained in a adaptive way. Each model in this sequence tries to correct the predictions
error of prior models in the chain. Bagging, short for bootstrap aggregating, is also a
homogeneous method, however, the models are trained in parallel using different subsets
that are randomly drawn, with replacement, from the entire training data (Polikar, 2006).
Stacking is quite similar to bagging, however, this method achieves diversity by using a
heterogeneous ensemble. In both cases, we may or may not include a selection phase and
the ensemble’s prediction is obtained using an aggregation function, as shown in Figure 27.

In Deep Learning, similar to Machine Learning, the performance of models may
vary due to multiple reasons such as weights’ initialization, hyperparameters, data variance,
and overfitting. An ensemble of deep models is a common and effective strategy to deal with
this issue (Codella et al., 2017b; Harangi, 2018; Valle et al., 2020; Qummar et al., 2019),
since it is known to be more robust and accurate than single deep models (Huang et al.,
2017a). Also, in Deep Learning, it is more common to use stacking or bagging approaches
since the computational burden of boosting makes it impracticable to handle deep models.

Chapter 4. Learning dynamic weights for an ensemble of deep models 76

Figure 27 – An illustration of an MCS based on stacking without applying the selection
phase. The ensemble decision is obtained through the aggregation of all
classifiers predictions.

Currently, this approach is applied by the top-ranked deep learning models in state-of-the-
art computer vision challenges such as ImageNet (Deng et al., 2009), International Skin
Imaging Collaboration (ISIC, 2019), and Chest X-Ray Competition (Irvin et al., 2019).

Usually, MCS pipelines for Deep Learning models do not include the selection phase
(Codella et al., 2017b; Harangi, 2018; Qummar et al., 2019). After the generation phase, the
model’s predictions are aggregated, typically, using common aggregation operators such
as the majority voting (Xiao et al., 2018; Wu et al., 2019b), predictions average (Codella
et al., 2017b; Perez; Avila; Valle, 2019; Gessert et al., 2019; Pacheco; Ali; Trappenberg,
2019), maximum prediction (Harangi, 2018), and product of predictions (Harangi, 2018).
Other known information fusion techniques such as Choquet integral (Štefka; Holeňa,
2015; Pacheco; Krohling, 2018a) and Dempster-Shafer theory (Quost; Masson; Denœux,
2011) are avoided due to the computational burden, which is an important issue since
deep learning itself is computationally expensive. Obviously, a drawback of skipping the
selection phase is that all models have the same importance in the ensemble. In other words,
it is not possible to identify weak models that may negatively impact on the ensemble
performance.

As previously stated, the selection phase may be clustered into static or dynamic
methods. The most common way to statically select classifiers from an ensemble is through
some classification metric, for example, we may select or weight classifiers predictions
according to their classification accuracy on validation partition (Kuncheva, 2014; Nguyen
et al., 2020). Search algorithms such as greedy search (Partalas; Tsoumakas; Vlahavas,
2008) and evolutionary algorithms (Santos; Sabourin, 2011; Nguyen et al., 2014) are also
common, however, they are time consuming. In general, static methods are unable to online
select/weight each unknown sample that is evaluated by the ensemble. This drawback is
the motivation for the rise of dynamic selection methods, which basically aim to identify
strong classifiers for each unknown sample. Given its relevance, Dynamic Selection (DS)

Chapter 4. Learning dynamic weights for an ensemble of deep models 77

has become a subfield of MCS.

Over the past few years, several DS algorithms have been proposed to deal with
MCS composed of general Machine Learning models (Britto Jr; Sabourin; Oliveira, 2014).
Before reviewing DS algorithms, it is important to clarify a key concept regarding DS and
dynamic weighting. A loose definition will consider both methods as the same, however,
they are slightly different. A DS algorithm aims to estimate the competence of the base
classifiers taking into account the local region of the feature space where the unknown
sample is located. In other words, it selects classifiers based on feature spaces and usually
demands some adaptation on the classifier or another method, such as K-nearest neighbors
(KNN) or clustering techniques, to identify the local region (Cruz; Sabourin; Cavalcanti,
2018). On the other hand, a dynamic weighting algorithm also aims to estimate the
competence of the base classifiers on the fly, however, the competence is measured as
weights/scores that usually are based on the classifier’s predictions. These weights may be
used to select/prune the ensemble of classifiers, however, the main goal of this approach is
to provide weights for a given aggregation function. This is the reason that most authors
include dynamic weighting within the aggregation phase instead of the selection one.

DS algorithms have been applied to an ensemble of general machine learning
models since the 90’s. To name a few, Sabourin et al. (1993) proposed the Classifier Rank
(DCS-Rank) which is basically an algorithm that rewards classifiers that correctly classifies
the highest number of consecutive samples. Later, Woods, Kegelmeyer and Bowyer (1997)
introduced the Overall Local Accuracy (OLA) in which the level of competence of a base
classifier is computed according to the classification accuracy in the region of competence.
Both methods use the KNN to identify the region of competence and select only one
classifier from the pool. Cruz et al. (2015) proposed the Meta-learning Dynamic Ensemble
(META-DES), a framework to select base classifiers that combines KNN and meta-learning
to identify the region of competence and select the models, respectively. Brun et al. (2016)
developed the Dynamic Selection On Complexity (DSOC) which is a new method that
takes into account the local classifiers’ performance and the data complexity measure (Ho;
Basu, 2002) of the test and training data. Lastly, Oliveira, Cavalcanti and Sabourin (2017)
introduced the Frienemy Indecision Region Dynamic Ensemble Selection (FIRE-DES)
which is a framework for two-class problems that pre-selects base classifiers according to an
indecision region in the region of competence. In general, all these methods are commonly
applied to a pool of classifiers composed of traditional Machine Learning algorithms, such
as Support Vector Machines, Decision Tree, and Naive Bayes (Fatima; Pasha et al., 2017).
For more complex models, such as the Deep Learning ones, DS methods are not common
because it is harder to find a competence region and the computational burden of these
types of models. Thereby, dynamic weighting appears as a feasible approach to tackle
these issues.

Chapter 4. Learning dynamic weights for an ensemble of deep models 78

Dynamic weighting is also widely applied to MCS. One of the first methods,
introduced by Merz (1999), is the Stacking Correspondent Analysis Nearest Neighbor
(SCANN). As the name suggests, this method generates an ensemble using the stacking
approach, performs a Correspondent Analysis (CA) (Greenacre, 1984) using the matrix of
predictions and a KNN to compute the weights. As the CA is performed to the matrix
containing all predictions, this method is problematic to large datasets. Cevikalp and
Polikar (2008) proposed the Local Classifier Weighing Quadratic Programming (LCS-
WP) a method that combines local classifier accuracies and quadratic optimization to
determine the best weights of the most competent base classifiers. Lastly, Krawczyk and
Woźniak (2016) proposed a straightforward approach based on the Gaussian function and
the classifier’s predictions to estimate the weights of each model within the ensemble.
Although simple, it depends on two parameters that may be tricky to set.

In this chapter, we describe our proposed approach to learn dynamic weights
for an ensemble of classifiers based on the Dirichlet distribution (Ng; Tian; Tang, 2011)
and Mahalanobis distance (Maesschalck; Jouan-Rimbaud; Massart, 2000). This approach
presents three main advantages: 1) it is based on the models’ predictions which makes
it agnostic to the model and can be easily applied to deep learning models; most of the
method’s computation is done offline using the validation partition, which makes the
ensembles’ inference fairly fast; 3) the method does not have hyperparameters to set. The
key contributions of this chapter are summarized as follows:

• We propose a new approach to learn dynamic weight for an ensemble of deep models.
In brief, we estimate the Dirichlet distribution of the models’ predictions and apply
the Mahalanobis distance to determine the weight of each model.

• The weights learned by the proposed approach are used to reduce the impact of
weak models’ predictions on the aggregation operator.

• We show that it is possible to use the learned weights to select the most competent
models before the aggregation operator.

• We apply the method using six well-known deep learning models to four different
medical imaging datasets. We present a discussion to demonstrate the advantages
and limitations of the proposed method.

4.1 The Dirichlet distribution
The Dirichlet distribution is a generalization of the Beta distribution for multiple

random variables. Let us consider a random variable p = {p1, · · · , pk}. The distribution is
defined for all p ∈ S, where S is the standard simplex defined as {p ∈ Rk : pi ≥ 0,∑ pi = 1}.

Chapter 4. Learning dynamic weights for an ensemble of deep models 79

In other words, the elements of p must be positive and sum up to 1. For this reason, each
pi may be interpreted as a probability itself and the Dirichlet distribution is known as
a distribution over probability distributions. Thus, it is commonly applied to estimate
proportional data (Ng; Tian; Tang, 2011).

The Dirichlet probability density function (PDF) is defined by (Ng; Tian; Tang,
2011):

p(p) ∼ D(p;α) =
Γ
(∑k

i=1 αi
)

∏k
i=1 Γ(αi)

k∏
i=1

pαi−1
i (4.1)

where α = {α1, · · · , αk} is the distribution’s parameters and αk > 0. It is important to
note that α and p are both k-dimensional. In addition, α does not need to be a distribution
itself, but only a positive value. Γ is the Gamma function defined as Γ(x) =

∫+∞
0 tx−1e−tdt.

In brief, this function is the generalization of the factorial function for any real value. It is
described as Γ(x) = (x− 1)! with three main properties: Γ(1) = 1, Γ(x+ 1) = xΓ(x) and
Γ(1

2) =
√
π. Using these properties we can compute Γ(x) for any x ∈ R (Sebah; Gourdon,

2002).

4.1.1 Expectation, variance and covariance

Considering a Dirichlet distribution D(p;α), with p = {p1, · · · , pk} and α =
{α1, · · · , αk}, the expectation, variance, and covariance of this distribution are defined in
Equations (4.2), (4.3), and (4.4), respectively (Ng; Tian; Tang, 2011).

E[pi] = αi∑k
j=1 αj

(4.2)

V ar[pi] =
αi
(∑k

i=1 αi − αi
)

(∑k
i=1 αi

)2 (∑k
i=1 αi + 1

) (4.3)

Cov[pi, pj] = −αiαj(∑k
i=1 αi

)2 (∑k
i=1 αi + 1

) , i 6= j (4.4)

with i = 1, · · · , k.

4.1.2 Estimating a Dirichlet distribution

Let us consider a set of data D = {p1, · · · ,pN}, where each pn = {p1, · · · , pk},
pn ∈ S, n = 1, · · · , N , and N is the number of samples in the set. The parameters α of a
Dirichlet distribution may be estimated from D using the Maximum Likelihood Estimation

Chapter 4. Learning dynamic weights for an ensemble of deep models 80

(MLE) – see Section 2.1.4. The Dirichlet log-likelihood function of the data is given by
(Minka, 2012):

L(α) = log p(D | α) = log
∏
n

p(pn | α)

= log
∏
n

Γ (∑k αk)∏
k Γ(αk)

∏
k

pαk−1
nk

= N

(
log Γ

(∑
k

αk

)
−
∑
k

log Γ(αk)+
∑
k

(αk − 1) log p̄k
) (4.5)

where log p̄k = 1
N

∑
n log pnk. Since the Dirichlet distribution belongs to the exponential

family (Ronning, 1989), the objective function L(α) is convex in α . Thus, it is guaranteed
that the function has a unique optimum (Minka, 2012).

A simple way to maximize L(α) is using the gradient ascent algorithm – see Section
2.2.2.1. To this end, the gradient of L(α) is computed as:

∇αL(α) = ∂L(α)
∂αk

= N

(
Ψ
(∑

k

αk

)
−Ψ(αk) + log p̄k

)
(4.6)

where Ψ = d log Γ(x)
dx

is known as Digamma function. From Equation (4.6), we can apply
the gradient ascent algorithm, considering the restriction α > 0, to estimate the Dirichlet
distribution for the set of data D. Nonetheless, Minka (2012) proposed a fixed-point
iteration for maximizing the log-likelihood, and consequently estimate α, that is faster
than gradient ascent method. The main task is to determine an initial value for α and to
find a lower bound function which is tight at α. Then, this function is optimized to find
a new value of α. Thereby, let us consider the following inequality (Dragomir; Agarwal;
Barnett, 2000):

Γ(x) ≥ Γ(x̂)e(x−x̂)Ψ(x̂) (4.7)

Applying this inequality to Γ(∑k αk), the following lower bound on the log-likelihood is
obtained (Minka, 2012):

L(α) ≥ N

[(∑
k

αk

)
Ψ
(∑

k

α̂k

)
−
∑
k

log Γ(αk) +
∑
k

(αk − 1) log p̄k + Const.
]

(4.8)

Next, one maximizes the previous equation by setting the gradient to zero and solving it
for α, which leads to the following fixed-point iteration (Minka, 2012):

αnew
k = Ψ−1

[
Ψ
(∑

k

αoldk + log p̄k
)]

(4.9)

Chapter 4. Learning dynamic weights for an ensemble of deep models 81

As we can note in Equation 4.9, the optimization requires the inversion of Ψ. This is
efficiently achieved by applying the Newton-Raphson update procedure (Ypma, 1995). Let
us consider two arrays a = {a1, · · · , ak} and b = {b1, · · · , bk}. It is possible to approximate
the Ψ−1(a) applying the following update rule (Minka, 2012):

bnew
k = bold

k −
Ψ(bk)− ak

∂Ψ(b)
∂bk

(4.10)

A starting point for b may be found using the following asymptotic equation:

bk ≈

log(ak − 1
2) if ak ≥ −2.22

− 1
ak
− γ if ak < −2.22

(4.11)

where γ = Ψ(−1) is known as Euler–Mascheroni constant. Only five iterations of Equation
4.10 is enough to approximate Ψ−1(a) with 14 digits of precision. In Algorithm 2 is
described the pseudo-code to the Dirichlet estimation via fixed-point iteration method.
In Appendix B.4 we present some tests to assess the convergence time and error of this
algorithm.

Algorithm 2: Dirichlet estimation using fixed-point iteration method
1 Input:
2 D = {p1, · · · ,pN} with p = {p1, · · · , pk} and p ∈ S;
3 A tolerance tol and maximum iterations max_iter;
4 Dlog = 1

N

∑
n,k log pnk;

5 αold = 1
N

∑
n,k pnk;

6 while j < max_iter do:
7 Compute αnew according to (4.9) and using bnew(4.10);
8 Compute L(αold) and L(αnew) according to (4.5);
9 if L(αold)− L(αnew) < tol:

10 break;
11 αold = αnew;
12 j = j + 1;
13 return αnew;

4.2 Methodology
In this section, we describe our method to learn dynamic weights for an ensemble

of deep learning models based on the Dirichlet distribution (LeWDir). The main idea
behind this method is to learn the probability distribution of the deep models’ predictions
for a set of unseen samples and compute a score that represents the relevance of each of
them within an ensemble. We describe the method in two steps. First, we describe the
probability distribution estimation of the validation set predictions. Second, we detail the
weights computation.

Chapter 4. Learning dynamic weights for an ensemble of deep models 82

4.2.1 Step 1: Estimating the probability distribution

Let us consider a classification problem with X = {x1, · · · ,xN} inputs, Y =
{y1, · · · ,yN} outputs, and c = {c1, · · · , cL} labels, where N and L are the number of
samples and labels, respectively. The first step to train a deep model on this task is to
split X and Y into training (Xtr and Ytr) and validation (Xval and Yval) partitions. The
model is trained using {Xtr, Ytr} to fit a function f(x) that outputs an array y containing
the logits for the sample x to each label c. Usually, the logit is converted to the probability
of y to assume a label c, i.e, p(y = c | x). The most common way to assign this probability
is through the softmax function:

pl(yl = cl | x) = eyl∑L
z=1 e

yz
, l = 1, · · · , L (4.12)

Therefore, when a new sample x̌ is presented to f , it outputs an array of probabilities p
that represents the confidence of this sample for each label cl ∈ c. In such case, we can
interpret each array p as a multivariate random variable and apply the fixed-point method,
described in Algorithm 2, to estimate the Dirichlet distribution of a given partition of X.
In particular, our goal is to estimate the Dirichlet distribution for the following sets of
probabilities:

• P h
l : the set of probabilities obtained by the model to the validation set considering

the label cl ∈ c when the label is correctly predicted by the network. We name it
the hit set for the label l.

• Pm
l : the set of probabilities obtained by the model to the validation set considering

the label cl ∈ c when the label is incorrectly predicted by the network. We name it
the miss set for the label l.

In order to sample in the model space, we applied the dropout sampling (Gal;
Ghahramani, 2016) for the validation partition. The dropout sampling consists of perfor-
ming the model with the dropout rate (Srivastava et al., 2014) active during the inference
phase. Normally, the dropout is active only during the training phase as a tool to avoid
overfitting and increase generalization (Gal; Ghahramani, 2016). The goal of activating it
also during inference is to vary the model and assess how well the model generalizes for
unseen samples. In our case, the sets P h

l and Pm
l are collected after de executions of the

network using dropout sampling with dropout rate equal to dr. The parameter de controls
the number of times that a given sample x̌ is presented to the model; while the parameter
dr is the rate of nodes in the model that will be active during the execution. Therefore, if
the model is well trained the output probabilities should not present a high variation for
the same sample.

Chapter 4. Learning dynamic weights for an ensemble of deep models 83

4.2.2 Step 2: Computing the dynamic weights

Let us consider an ensemble with G deep models E = {f1(x), · · · , fG(x)} trained
using {Xtr, Ytr}. For each model fg(x), we apply the step 1, i.e, we perform the dropout
sampling forXval and estimate the Dirichlet distributionsDg(P h

l ;αhl) andDg(Pm
l ;αml), i.e.,

the distributions for each P h
l and Pm

l sets. We name them as the hit and miss distributions
for the model g and label l, respectively.

Now, let us consider p̌g the predictions obtained to a new sample x̌ by a model fg.
The main goal of this step is to measure how far p̌g is from the hit and miss distributions
for each label l. In particular, we observed that a reliable prediction will be closer to a
hit and far from a miss. An effective method to measure the distance between a random
variable z from its distribution P (z) is the Mahalanobis distance, defined as (Maesschalck;
Jouan-Rimbaud; Massart, 2000):

Mah(z, P (z)) =
√

(z− E[P (z)])TS−1(z− E[P (z)]) (4.13)

where E[P (z)] is the expectation value of the distribution P (z) and S−1 is the inverse of the
covariance matrix of the distribution. It is effective because it takes into account not only the
expectation but also the variance of the distribution. Therefore, we apply the Mahalanobis
distance to measure the difference between p̌g and the distributions Dg(P h

l ;αhl) and
Dg(Pm

l ;αml). The Dirichlet expectation and covariance matrix are computed using (4.3)
and (4.4), and (4.2), respectively.

The standard way to select the label that the model fg assigns to a sample x̌ is
through argmax(p̌g). However, we interpret p̌g as a multivariate random variable. Thus,
to compute the Mahalanobis distance between p̌g and the hit and miss distributions, we
take into account the contribution of each label l according to the probability assigned to
it. This concept is described by (4.14) and (4.15).

Mahhfg
=

L∑
l=1

p̌glMah(p̌g,Dg(P h
l ;αhl)), g = 1, · · · , G (4.14)

Mahmfg
=

L∑
l=1

p̌glMah(p̌g,Dg(Pm
l ;αml)), g = 1, · · · , G (4.15)

Finally, we compute the relevance of the model fg for a new sample x̌ as follows:

wfg =
Mahmfg

Mahhfg

, g = 1, · · · , G (4.16)

As we may note, this simple equation implements the idea previously mentioned. If p̌g is
close to the hit distribution and far from the miss one, the weight increases. On the other

Chapter 4. Learning dynamic weights for an ensemble of deep models 84

hand, if p̌g is near to the miss and far from the hit, the weight decreases. To normalize
the weights in the interval [0, 1], we apply the following equation:

w̃fg = wfg∑G
j=1wfj

, g = 1, · · · , G (4.17)

The last step of the proposed method is to compute the final aggregation according to the
following equation:

aggfg
=

L∑
j=1

w̃fg p̌j, g = 1, · · · , G (4.18)

It is worth noticing that the learned weights may be used by any aggregation function.

In Figure 28 is illustrated a schematic diagram and in Algorithm 3 is described
the pseudocode of the proposed method. It is important to note that only the step 2 is
computed online. As shown in the figure, the Dirichlet estimations for each model are
saved during step 1. As such, the relevance of each model in the ensemble is computed
online for a new unseen sample x̌, which means that the weights are dynamic and change
according to the presented sample. In this context, using this method we can identify weak
models according to the sample. In addition, it is possible to prune the ensemble online by
selecting the best g models for each new sample or setting a threshold for the weights. In
the next section, we present an illustrative example of the proposed method.

Algorithm 3: Ensemble aggregation based on LewDir
1 Input:
2 An ensemble of G models E = {f1(x), · · · , fG(x)};
3 A validation partition Xval = {x1, · · · ,xN};
4 For each model fi ∈ E do:
5 Apply Algorithm 2 using Xval to estimate Dfi

(P h
l ;αhl) and Dfi

(Pm
l ;αml);

6 For a new sample x̌ do:
7 For each model fi ∈ E do:
8 Compute Mahhfi

and Mahmfi
;

9 Compute the normalized weights w̃i;
10 Compute the final aggregation gfi

;
11 return: aggregation array g = {gfi

, · · · , gfM
}

4.2.3 Illustrative example

In this section, we present a numerical example to show how the proposed method
to assign dynamic weights for an ensemble works. First, let us consider the six deep models
used in Section 3.4 to classify the ISIC 2019 dataset. These models, i.e., EfficientNet-B1
and B4, DenseNet-121, MobileNet-V2, ResNet-50, and VGGNet-13, are used to compose
an ensemble to classify the same dataset.

Chapter 4. Learning dynamic weights for an ensemble of deep models 85

Figure 28 – A schematic diagram illustrating both steps of the proposed algorithm LewDir.
In the first step, the validation data is used to get and save the hit and miss
distributions. In the second step, the distributions are loaded and used to
estimate the weights for each model within the ensemble according to the
probabilities assigned to the new sample.

Let us consider that a new unseen sample – in which the ground truth label is NV –
is evaluated by the ensemble and each model assigned the probabilities presented in Table
7:

Model AK BCC BKL DF MEL NV SCC VASC
EfficientNet-B1 0.000 0.001 0.003 0.003 0.093 0.898 0.000 0.002
EfficientNet-B4 0.000 0.001 0.012 0.000 0.291 0.691 0.001 0.002
DenseNet-121 0.000 0.000 0.005 0.000 0.544 0.450 0.000 0.000
MobileNet-v2 0.001 0.002 0.005 0.003 0.188 0.797 0.001 0.002
Resnet-50 0.000 0.001 0.004 0.000 0.067 0.927 0.000 0.001
VGG-13 0.000 0.000 0.004 0.000 0.155 0.840 0.000 0.000

Table 7 – Probabilities assigned by each model to a new sample. The true label is NV.

Now, we use the Mahalanobis distance, described in Equation 4.13, to compute the distance
between each models’ predictions to the miss and hit distributions according to Equations
4.14 and 4.15. For the models and prediction in Table 7, the distances returned for the
miss and hit are:

dmiss = [0.106, 0.250, 0.291, 0.187, 0.076, 0.145]
dhit = [0.339, 0.215, 0.189, 0.275, 0.346, 0.400]

(4.19)

Next, we compute the relevance of each model within the ensemble according to Equation

Chapter 4. Learning dynamic weights for an ensemble of deep models 86

Model AK BCC BKL DF MEL NV SCC VASC
AVG 0.000 0.001 0.005 0.001 0.223 0.767 0.000 0.001
MAX 0.001 0.002 0.008 0.002 0.365 0.620 0.001 0.002
PROD 0.000 0.000 0.000 0.000 0.010 0.990 0.000 0.000
MV 0.000 0.000 0.000 0.000 0.167 0.833 0.000 0.000
SWA 0.000 0.001 0.005 0.001 0.225 0.766 0.000 0.001

NP-AVG 0.000 0.001 0.006 0.001 0.216 0.774 0.000 0.001
LewDir 0.000 0.001 0.004 0.001 0.142 0.85 0.000 0.001

Table 8 – The probabilities aggregated, after normalization, by each method to each label
in ISIC 2019 dataset.

4.16, which results in the following scores:

w = [3.194, 0.859, 0.649, 1.473, 4.547, 2.753] (4.20)

Applying the normalization described in Equation 4.17, we obtain the final weights:

w̃ = [0.237, 0.064, 0.048, 0.109, 0.337, 0.204] (4.21)

As we can see, the method assigned the highest weights to EfficientNet-B1, ResNet-50, and
VGG-13, and the models that returned the highest probabilities for the correct label. Now,
we may use these weights to compute the aggregated probability according to Equation
4.18.

Let us consider the four most common aggregation operators: majority voting
(MV), predictions average (AVG), maximum prediction (MAX), and product of predictions
(PROD). Let us also consider the static weights average (SWA) proposed by Harangi
(2018) and the untrained dynamic weighting approach NP-AVG/NP-MAX proposed by
Krawczyk and Woźniak (2016) with standard deviation equal to 1. In Table 8 is presented
the aggregated probabilities assigned by LewDir and each of these aggregation methods
for this specific example. After the aggregation, we normalize all values to the interval
[0, 1]. As we can see, all aggregation methods resulted in the correct label. In addition, the
highest probabilities assigned to the correct label are produced by PROD and LewDir. The
PROD method performs well for this example because there is no strong disagreement in
the ensemble. However, it is fairly frequent to get a disagreement, and when this happens,
the method does not present the same performance. On the other hand, LewDir is more
stable in terms of assigned probabilities. Usually, it improves the aggregated probabilities
when compared to the other methods, as we can observe from the Table 8.

Chapter 4. Learning dynamic weights for an ensemble of deep models 87

4.3 Experimental results
In this section, we carry out a set of experiments to evaluate the performance

of the proposed method. First, we describe the setup of the experiments, including the
datasets and deep learning models applied. Next, we show the results and compare them
with standard approaches used in medical imaging tasks. Lastly, we present a discussion
about the results.

4.3.1 Experiments setup

In order to test our method, we create an heterogeneous ensemble composed of six
well-known CNN architecures: DenseNet-121 (Huang et al., 2017b), GoogleNet (Szegedy
et al., 2015), InceptionV4 (Szegedy et al., 2017), MobileNet-v2 (Sandler et al., 2018),
ResNet-50 (He et al., 2016), and VGG-16 (Simonyan; Zisserman, 2014). The ensemble was
trained on four state-of-the-art medical datasets:

• CheXpert (Irvin et al., 2019): a large chest radiograph dataset containing 224,316
images reporting the presence of different conditions in radiology. For this work,
we select the pleural effusion condition considering the U-MultiClass, which has 3
classes: positive, negative, or uncertainty of the condition.

• NCT-CRC-HE-100K (Kather et al., 2019): a set of 100,000 histological images of
human colorectal cancer (CRC), and normal tissue.

• OCT (Kermany et al., 2018): a dataset containing 83,495 images of retinal optical
coherence tomography (OCT) with 4 labels, 3 diseases, and a normal retina.

In addition to this list of datasets, we also include the ISIC 2019 dataset; however, as
this dataset has images and meta-data, we create an ensemble using the models that we
evaluate for the MetaBlock approach in Section 3.4. In Figure 29 is depicted an image
sample of each dataset previously described.

All models in the ensemble were trained using their original architecture, except
for the last layer that depends on the number of labels in the dataset. The training phase
is carried out using the same configuration we describe in Section 3.4.1, i.e., using SGD
optimizer along with weight decay, momentum, and early stopping. Likewise the ISIC
dataset, the rest of the datasets are also imbalanced. Thus, we also applied the weighted
cross-entropy as the loss function in which the weights are determined according to the
labels’ frequency. All images were resized to 224×224 and we applied a data augmentation
using simple image processing operations such as flips and scaling.

For all experiments, we also reserved approximately 10% of each dataset for testing
respecting the labels’ frequency distribution. The remaining 90% of data were used on

Chapter 4. Learning dynamic weights for an ensemble of deep models 88

(a) ISIC (b) CheXpert (c) OCT (d) NCT

Figure 29 – An example of an image from each medical dataset used in this experiment.
We may observe that they have different features that affect the level of
difficulty of each task.

the training phase through 5-fold cross-validation for assessing the effectiveness of the
models. For each folder, we trained the models and estimate Dg(Pm

l ;αml) and Dg(Pm
l ;αml)

as described in section 4.2. To measure the performance, we computed the average and
standard deviation of the following metrics: accuracy (ACC), balanced accuracy (BACC),
aggregated area under the curve (AUC), and the cross-entropy (Loss). We compared
the performance of our method with the other six aggregation methods described in the
illustrative example section. We also perform the Friedman test following by the Wilcoxon
test (if applicable), using pvalue = 0.05, and the A-TOPSIS ranking algorithm (Krohling;
Pacheco, 2015) to assess the results. All procedures involving CheXpert, OCT, and NCT
were implemented using Python and PyTorch and performed on Nvidia Tesla P-100.

4.3.2 Experiment results

In this section, we present the performance obtained by each deep model and the
ensemble for the medical imaging datasets previously described. We present the individual
results of each model for CheXpert, NCT, and OCT. The results for ISIC – considering
the MetaBlock approach – is already described in Table 3.

In Table 9 is reported the performance for each deep model and each dataset. As
we may note, there are different levels of performance among the datasets. While the
deep models present BACC over 90% for NCT and OCT, they do not present the same
performance for ISIC and, especially, for CheXpert. In fact, as we can see through the
loss metric, the models struggle to generalize to these latter datasets. It happens mainly
because they present a high variability of features and strong similarities among diseases.
For instance, in ISIC it is hard to distinguish melanoma and nevus (Gessert et al., 2019),
while in CheXpert it is common to confuse the uncertainty label between positive and
negative (Irvin et al., 2019).

Overall, due to the imbalance among the labels, the BACC is slightly lower than
ACC for ISIC, NCT, and OCT. For CheXpert, it is approximately 10% lower. The reason

Chapter 4. Learning dynamic weights for an ensemble of deep models 89

Model CheXpert
ACC BACC AUC Loss

DenseNet-121 0.676± 0.002 0.560± 0.006 0.781± 0.002 0.824± 0.015
GoogleNet 0.668± 0.002 0.561± 0.002 0.788± 0.001 0.830± 0.001
InceptionV4 0.656± 0.015 0.555± 0.003 0.768± 0.005 0.837± 0.015
MobileNet-V2 0.684± 0.008 0.549± 0.002 0.774± 0.001 0.817± 0.008
Resnet-50 0.685± 0.006 0.568± 0.009 0.794± 0.006 0.803± 0.010
VGG-16 0.675± 0.014 0.561± 0.020 0.789± 0.016 0.825± 0.010

Model NCT
ACC BACC AUC Loss

DenseNet-121 0.934± 0.014 0.909± 0.032 0.992± 0.001 0.403± 0.078
GoogleNet 0.924± 0.008 0.908± 0.003 0.989± 0.006 0.464± 0.191
InceptionV4 0.903± 0.005 0.883± 0.013 0.984± 0.006 0.502± 0.006
MobileNet-V2 0.935± 0.007 0.924± 0.001 0.993± 0.002 0.354± 0.023
Resnet-50 0.926± 0.004 0.920± 0.001 0.992± 0.001 0.442± 0.023
VGG-16 0.914± 0.014 0.911± 0.008 0.995± 0.002 0.392± 0.077

Model OCT
ACC BACC AUC Loss

DenseNet-121 0.976± 0.002 0.956± 0.002 0.999± 0.000 0.064± 0.004
GoogleNet 0.968± 0.007 0.944± 0.013 0.997± 0.002 0.095± 0.026
InceptionV4 0.976± 0.001 0.957± 0.002 0.998± 0.000 0.073± 0.002
MobileNet-V2 0.957± 0.003 0.943± 0.006 0.995± 0.001 0.132± 0.017
Resnet-50 0.972± 0.002 0.952± 0.006 0.998± 0.000 0.081± 0.008
VGG-16 0.978± 0.002 0.960± 0.003 0.999± 0.001 0.065± 0.007

Table 9 – Performance achieved by each CNN architecture individually for each medical
image dataset used in this experiment.

for this difference in performance is that the models are not identifying the uncertainty label
properly. Thereby, we also consider the BACC as the priority metric in this experiment.
Actually, this is the main metric for several medical task challenges such as ISIC (ISIC,
2019).

It is worth mentioning that there is no model that presents the best performance for
all datasets. Considering the average BACC, for ISIC and CheXpert the best performance
is presented by ResNet-50, for NCT by MobileNet-V2, and for OCT by VGG-16. This
result is in line with the No Free Lunch theory (Wolpert, 1996) and supports the use of an
ensemble of models as an approach to improve the performance and robustness of deep
learning models’ performance.

In Table 10 is presented the results achieved by the ensemble of CNN models,
considering the six aggregation methods and our proposed approach, for each medical
imaging dataset. In general, the aggregation methods present better performance than the
single models. We highlight the following observations for each dataset:

• ISIC: for this dataset, our method improved the average of the BACC in 4.2%
comparing to the best single model and almost 1% comparing to the second-best

Chapter 4. Learning dynamic weights for an ensemble of deep models 90

Method ISIC 2019
ACC BACC AUC Loss

AVG 0.824± 0.002 0.800± 0.005 0.970± 0.002 0.551± 0.011
MAX 0.814± 0.010 0.807± 0.040 0.971± 0.003 0.610± 0.028
PROD 0.826± 0.011 0.798± 0.080 0.975 ± 0.002 1.464± 0.048
MV 0.808± 0.040 0.790± 0.005 0.945± 0.003 2.580± 0.130
SWA 0.821± 0.003 0.805± 0.011 0.972± 0.002 0.552± 0.012

NP-AVG 0.823± 0.002 0.799± 0.005 0.974± 0.002 0.527± 0.010
LewDir 0.831 ± 0.004 0.813 ± 0.004 0.973± 0.002 0.512 ± 0.015

Method NCT
ACC BACC AUC Loss

AVG 0.941± 0.002 0.928± 0.002 0.996± 0.001 0.189± 0.015
MAX 0.940± 0.003 0.931± 0.003 0.995± 0.002 0.201± 0.013
PROD 0.942± 0.002 0.932 ± 0.003 0.995± 0.000 1.167± 0.051
MV 0.943 ± 0.001 0.931± 0.003 0.984± 0.002 0.782± 0.092
SWA 0.932± 0.002 0.922± 0.002 0.996± 0.001 0.196± 0.003

NP-AVG 0.942± 0.002 0.931± 0.002 0.996± 0.001 0.187 ± 0.003
LewDir 0.942± 0.001 0.932 ± 0.004 0.996± 0.002 0.251± 0.002

Method CheXpert
ACC BACC AUC Loss

AVG 0.697± 0.003 0.571± 0.004 0.801± 0.003 0.800± 0.003
MAX 0.715± 0.007 0.566± 0.002 0.788± 0.003 0.819± 0.001
PROD 0.695± 0.003 0.574 ± 0.005 0.797± 0.004 1.469± 0.014
MV 0.709± 0.001 0.567± 0.011 0.760± 0.006 3.689± 0.124
SWA 0.695± 0.003 0.572± 0.004 0.790± 0.006 0.801± 0.004

NP-AVG 0.702± 0.003 0.572± 0.005 0.793± 0.005 0.801± 0.004
LewDir 0.724 ± 0.002 0.568± 0.003 0.801 ± 0.005 0.728 ± 0.004

Method OCT
ACC BACC AUC Loss

AVG 0.980± 0.002 0.962± 0.002 0.999± 0.002 0.064± 0.004
MAX 0.979± 0.002 0.960± 0.003 0.999± 0.001 0.095± 0.003
PROD 0.980± 0.002 0.960± 0.004 0.998± 0.001 0.190± 0.033
MV 0.980± 0.003 0.962± 0.005 0.995± 0.001 0.198± 0.011
SWA 0.980± 0.002 0.961± 0.005 0.998± 0.000 0.063± 0.003

NP-AVG 0.99± 0.002 0.966± 0.002 0.999± 0.002 0.036± 0.004
LewDir 0.994 ± 0.002 0.972 ± 0.002 0.999± 0.000 0.029 ± 0.001

Table 10 – Performance achieved by the ensemble of CNNs for each medical image dataset
considering the different aggregation methods. In bold is highlighted the highest
average for each metric.

Chapter 4. Learning dynamic weights for an ensemble of deep models 91

aggregation method. In addition, it presents the lowest loss, which means it is
predicting the correct label with more confidence.

• NCT: the results obtained by the ensemble are slightly better than the single models
and all aggregation methods present similar performance for ACC and BACC.
Nonetheless, for this dataset, the lowest average loss is achieved by the NP-AVG
approach.

• CheXpert: our method improved the average ACC in 3.9% comparing to the best
single model. However, the BACC achieved by the ensemble is quite similar to the
single models. Again, our approach presents the lowest loss among all aggregation
methods.

• OCT: our method improved the average BACC in 1.2% comparing to the best single
model and almost 1% comparing to the second-best aggregation method. As the
models perform quite well for this dataset, the remaining metrics are quite similar.

Overall, our method presents the lowest average loss for 3 out of 4 datasets and best average
BACC for ISIC and OCT. Nonetheless, AVG, SWA, and NP-AVG present competitive
performance considering all four datasets. We also observe that the ensemble improves
the AUC only for ISIC and CheXpert. Lastly, it is worth to note that the PROD and
MV present the highest average loss among all methods. It happens because whenever
there is a disagreement in the ensemble, these methods allow it to impact too much in the
aggregation prediction.

In Figure 30 is shown the receiver operating characteristic (ROC) curves considering
one folder for ISIC and CheXpert datasets. As we may see, the aggregation methods
present competitive performance, although our method’s curve is slightly above the others.
In general, the deep models’ curve is below the aggregations’ ones. In addition, from the
ROC curve for the CheXpert dataset, we observe that the ensemble does not present the
same performance as the one presented to the ISIC 2019 dataset.

To compare the aggregation methods, first, we performed the Friedman test, which
returned pvalue = 0.0001. Thus, we performed the Wilcoxon test, which returned 21 pairwise
comparisons2. In summary, the test pointed out that LewDir, SWA, AVG, and NP-AVG
are statistically different from the others. The pvalue returned to LewDir when compared
to AVG, SWA, and NP-AVG is slightly below the defined threshold – approximately 0.045
for all pairs. To help visualization, in Figure 31 is depicted the aggregation approaches
rank generated by A-TOPSIS. As we can note, the ranking is close to the statistical test
and the AVG, NP-AVG, and LewDir are too close in the rank.
2 As there are too many comparisons, we summarize the test results without showing all pvalue

Chapter 4. Learning dynamic weights for an ensemble of deep models 92

(a) ISIC (b) CheXpert

Figure 30 – The macro average ROC curves for the ISIC and CheXpert datasets considering
all deep models and aggregation approaches.

Figure 31 – The A-TOPSIS rank for the seven aggregation methods considering the BACC
metric.

To conclude this experiment, although LewDir is not designed focusing on ensemble
selection, we test it to online select CNN models from the pool based on the weights
assigned to each model. For each new sample evaluated by the ensemble, we selected the
best models through ranking the weights. We performed this experiment using only the
ISIC dataset since the deep models present different results for this set. In Table 11 is
presented the results of the ensemble selection considering from 1 to 5 models from the
whole group. As the weights change according to the sample, the models selected may
change every time the ensemble evaluated a new sample.

As we may note from Table 11, the results present a similar performance for all
configurations, which suggests the weights assigned by the proposed approach are working

Chapter 4. Learning dynamic weights for an ensemble of deep models 93

No of models ACC BACC AUC Loss
1 0.807± 0.010 0.813± 0.009 0.962± 0.002 0.679± 0.030
2 0.811± 0.010 0.814± 0.006 0.968± 0.001 0.592± 0.019
3 0.813± 0.008 0.813± 0.004 0.970± 0.001 0.558± 0.018
4 0.816± 0.006 0.815± 0.005 0.971± 0.001 0.540± 0.016
5 0.817± 0.006 0.814± 0.003 0.972± 0.001 0.523± 0.016
All 0.831± 0.004 0.813± 0.004 0.973± 0.002 0.512± 0.015

Table 11 – Ensemble selection according to the weights assigned by our method for the
ISIC 2019 dataset

properly. In addition, we observe that the loss decreases as the number of selected models
increases. This result shows that even though it is possible to achieve similar performance,
in terms of BACC, by pruning the ensemble, the number of selected models is directly
proportional to the prediction confidence since the Loss decreases when the number of
selected models increases.

4.3.3 Discussion

The results presented in this section show that an ensemble of deep models worked
properly to deal with different medical imaging classification. Although the computational
burden to train several deep models is high, the improvement presented is desired, in
particular for medical tasks. However, it is important to point out that in some cases using
an ensemble is not feasible due to memory and/or processing limitations. For example, a
CAD system embedded in a smartphone or in limited hardware such as a Raspberry Pi,
may not be able to run an ensemble locally. Essentially, employing or not an ensemble of
deep models is a trade-off between computational resources and performance.

In general, the proposed approach LewDir presented a competitive performance
compared to the other methods, in particular to the NP-AVG, which also determines
weights for the ensemble. It is worth mentioning that the NP-AVG assigns weights for
each model and each label while LewDir considers only the models. Beyond to achieve
the best average BACC for 3 out of 4 datasets, the method increases the confidence of
the predictions since it presented the lowest loss for 3 out of 4 datasets. The advantage of
providing online weights for each new evaluated sample is important towards understanding
the real contribution of each model within the ensemble. In addition, it can be applied to
select models in the pool, as shown in the experiments.

Despite promising results, we point out a limitation in LewDir. As it depends on
the validation set to estimate the Dirichlet distributions of the hit and miss sets, the model
is sensitive to this partition. For instance, if the distribution of this set is too far from
the test set, i.e., the real world, the approach performance may decrease. However, deep
learning training also depends on this assumption, i.e., the data distribution used in the

Chapter 4. Learning dynamic weights for an ensemble of deep models 94

training phase is close to the one in which the model will be applied – see Section 2.1.3. In
any case, it is important to ensure a validation partition that represents well the problem.

95

5 Skin cancer detection based on clinical ima-
ges and patient demographics - A case
study

In this chapter, we present a case study about skin cancer detection using clinical
images collected from smartphone and patient demographics. First, we describe the dataset
we collected along with the Dermatological and Surgical Assistance Program (PAD) at the
Federal University of Espírito Santo (UFES). Next, we perform experiments combining
both images and patient demographics – using the methods described in Chapter 3. Finally,
we create an ensemble of deep models and aggregate them using the method proposed in
Chapter 4.

5.1 PAD-UFES-20 dataset
The Dermatological and Surgical Assistance Program (PAD) at the Federal Uni-

versity of Espírito Santo (UFES) is a nonprofit program that provides free skin lesion
treatment, in particular, to low-income people who cannot afford private treatment. This
is a full skin lesion treatment, from the screening to the surgical process (if needed), in 11
different countryside cities in Espírito Santo state. For historical reasons, the Espírito Santo
state has received thousands of immigrants from Europe throughout the 19th century. As
Brazil is a tropical country, most of these immigrants and their descendants were/are not
adapted to this climate. As a result, there is a high incidence of skin lesions/cancer in this
state and the PAD plays a fundamental role to assist these people (Frasson et al., 2017).

In late 2017, the Nature Inspired Computing Laboratory (LABCIN-UFES) and
the PAD started a partnership that resulted in the creation of a web-based platform and a
multi-platform smartphone application to collect and store patient clinical data and skin
lesion images – a description of these software is available in Appendix A. In this section,
we first detail the data collection workflow. Next, we describe the PAD-UFES-20 dataset
(Pacheco et al., 2020a). Finally, we present an exploratory data analysis to get a gist from
the meta-data.

5.1.1 Data collection

The data collection workflow is summarized in Figure 32. First of all, the patients
have an appointment with a group of up to three senior dermatologists (at least 15 years

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 96

Figure 32 – Data collection workflow of the PAD-UFES-20 dataset from the clinical field
to the quality selection.

of experience) that assesses the skin lesion. If the group identifies a neoplasm, the skin
lesion is removed through surgical procedure – performed by medical students under the
supervision of two senior plastic surgeons of the PAD – and sent to the Pathological
Anatomy Unit of the University Hospital Cassiano Antônio Moraes (HUCAM) at the
UFES to perform histopathology examination. On the other hand, if the group has a
consensus that there is no neoplasm, they do not request a biopsy. In both cases, we collect
images and clinical data. Later, when the biopsy result is available, it is filled for those
lesions in which it was requested. All data is stored in a web-server and the final step is a
quality selection to review every single sample that was collected in the previous steps.

The dataset was collected during 2018 and 2019. In total, there are over 50 types
of skin lesions that were collected during this period. However, most of them are rare
and contain only a few samples. For this reason, we selected the seven most common
skin lesions diagnosed at PAD, which are: Basal Cell Carcinoma (BCC), Squamous Cell
Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Bowen’s disease
(BOD), Melanoma (MEL), and Nevus (NEV). As the Bowen’s disease is considered SCC
in situ (Wolff et al., 2017), we clustered them together, which results in six skin lesions1

in the dataset, three skin cancers (BCC, SCC, and MEL) and three skin diseases (ACK,
NEV, and SEK). The number of samples of each skin lesion is presented in Table 12. As
we can see, the dataset is imbalanced, in particular for melanoma, the deadliest case of
skin cancer. Unfortunately, imbalanced datasets are quite common for skin lesion datasets
(Tschandl; Rosendahl; Kittler, 2018; Combalia et al., 2019), and finding solutions to deal
with this issue is part of the skin cancer detection task.

Concerning the skin lesion diagnostic, for NEV, SEK, and ACK, only the clinical
diagnosis is performed according to the PAD’s dermatologists consensus during the patient’s
appointment. As these skin lesions are benign, it is not necessary to perform a skin biopsy.
On the other hand, for skin lesions that dermatologists suspect malignancy, a biopsy is
1 We name wounds, moles or spots on the skin as skin lesions. After the diagnosis, the skin cancers will

be named as so and the remaining ones will be called skin diseases

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 97

Diagnostic No of samples % biopsied
Squamous Cell Carcinoma (SCC) 192 100%
Basal Cell Carcinoma (BCC) 845 100%

Melanoma (MEL) 52 100%
Actinic Keratosis (ACK) 730 24.4%

Nevus (NEV) 244 24.6%
Seborrheic Keratosis (SEK) 235 6.4%

Total 2298 58.4%

Table 12 – The number of samples for each type of skin disorder present in the PAD-
UFES-20 dataset. Observe we have three types of skin cancer (BCC, SCC, and
MEL) and three types of skin diseases (ACK, NEV, and SEK).

requested for clinical diagnostic confirmation. In this dataset, all BCC, SCC, and MEL
are proved by biopsy. The histopathology procedure involves the following steps: 1) the
collection of a skin fragment, 2) tissue fixation in formaldehyde (at a concentration of 10%),
3) macroscopic analysis of the skin fragment, 4) histological processing, 5) producing the
microscope slides, 6) and a microscopic study with diagnosis’ formulation and interpretation
(Werner, 2009). As described in Table 12, 58.4% of the skin lesions in PAD-UFES-20
dataset are proved by biopsy, including 100% of the skin cancer. This number is compatible
with other skin lesion datasets described in literature (Tschandl; Rosendahl; Kittler, 2018;
Combalia et al., 2019).

Regarding the metadata features, they were collected according to the anamnesis
of a patient, which beyond the skin lesion screening, dermatologists also consider the
anatomical region, diameter, ulceration, itching, bleeding, among others characteristics of
the skin lesion (Wolff et al., 2017; Azulay, 2017). In addition, risk factors are also taken
into account such as exposure to chemicals, cancer history, and the type of skin (Duarte et
al., 2018). In the dataset there are approximately 120 different anatomical regions used by
the PAD’s dermatologists and pathologists. We clustered these regions in 15 macro-regions
that are more frequent and have more potential to raise a skin lesion, they are: face, scalp,
nose, lips, ears, neck, chest, abdomen, back, arm, forearm, hand, thigh, shin, and foot.
As skin lesions have preferences for some regions of the body (Wolff et al., 2017; Azulay,
2017), it is an important feature to consider.

The last step of the collection workflow is quality selection. The goal of this step
is to review the patient clinical data and remove poor quality images. All data from
the appointment are filled by senior medical students and the images are collected using
different types of smartphone devices. In addition, the smartphone application allows the
user to crop the image to select only the region of interest. As a result, images in different
conditions are uploaded to the server. Thereby, during the quality selection, we delete
those images according to the following rules:

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 98

• The image resolution is very poor and it is not possible to identify the lesion.

• The patient may be identified because of a tattoo, for example.

• The lesion is completely occluded by hair or ink marking.

It is worth noticing that the images present in the dataset have different resolutions, sizes,
and lighting conditions. Essentially, an application to detect skin cancer using clinical
images needs to deal with such variability. Thus, it aims to close to the real world.

We also review all patient clinical data in order to correct typos and information
that are clearly wrong, for example, birth dates before 1900 or skin lesions’ diameter that
are much bigger than it looks on the image according to visual inspection. For these cases,
we re-checked the physical files in order to fix the information. If it is not possible to fix it,
we remove the wrong information from the clinical data and it becomes missing data. To
conclude, for those cases in which the pathology yielded a biopsy that is inconclusive, we
also removed the sample from the dataset.

It is important to mention the dataset was collected along with the Dermatological
and Surgical Assistance Program (PAD) of the Federal University of Espírito Santo. The
program is managed by the Department of Specialized Medicine and was approved by
the university ethics committee (no 500002/478) and the Brazilian government through
Plataforma Brasil (no 4.007.097), the Brazilian agency responsible for research involving
human beings. In addition, all data were collected under patient consent and the patient’s
privacy is completely preserved.

5.1.2 Data description

All samples within PAD-UFES-20 represents a skin lesion of a patient that is
composed of an image and a set of metadata. A patient may have one or more skin
lesions and a skin lesion may have one or more images. In total, there are 1,373 patients,
1,641 skin lesions, and 2,298 images present in the dataset. As previously mentioned, the
images present in the dataset have different sizes because they are collected using different
smartphone devices. In Figure 33 is illustrated image samples for each skin lesion present
in the dataset.

The metadata associated with each skin lesion is composed of up to 21 features.
We describe all of them in the following:

• smoke: a boolean to map if the patient smokes cigarettes.

• drink: a boolean to map if the patient consumes alcoholic beverages.

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 99

(a) BCC (b) SCC (c) MEL (d) ACK (e) NEV (f) SEK

Figure 33 – Samples of each type of skin lesion present in PAD-UFES-20 dataset. SCC,
BCC, and MEL are skin cancers and NEV, SEK and ACK are skin diseases.

• background of the father and background of the mother: a string representing
the country in which the patient’s father and mother descends.

• age: an integer representing the patient’s age.

• pesticide: a boolean to map if the patient uses pesticides – since most of them are
work farmers.

• gender: a string representing the patient’s gender.

• skin cancer history: a boolean to map if the patient or someone in their family
has had skin cancer in the past.

• cancer history: a boolean to map if the patient or someone in their family has had
any type of cancer in the past.

• piped water: a boolean to map if the patient has access to piped water in their
home.

• sewage system: a boolean to map if the patient has access to a sewage system in
their home.

• fitspatrick: a integer representing the Fitspatrick skin type (Wolff et al., 2017).

• anatomical region: a string representing one of the 15 macro-regions previously
described.

• diameter 1 and diameter 2: a float representing the skin lesions’ horizontal and
vertical diameters.

• itch: a boolean to map if the skin lesion itches.

• grew: a boolean to map if the skin lesion has recently grown.

• hurt: a boolean to map if the skin lesion hurts.

• changed: a boolean to map if the skin lesion has recently changed.

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 100

• bleed: a boolean to map if the skin lesion has bled.

• elevation: a boolean to map if the skin lesion has an elevation.

It is important to note that some features may be missing for some lesions because they
depend on the patient’s answers and if the lesion was biopsied or not. In general, missing
values are left blank. When a patient does not know the answer for some question – for
example, he/she does not know their father’s background – we fill the feature as UNK
(unknown). All data records are available on Mendeley Data (Pacheco et al., 2020c).

5.1.3 Clinical features analysis

In order to get a gist of patient clinical information on skin cancer detection in
PAD-UFES-20 dataset, we performed an Exploratory Data Analysis (EDA) using the
clinical features described in the previous section. The complete analysis is available on
the thesis repository on Github2. In this section, we highlight the main findings.

We start analyzing the patient’s age distribution. In Figure 34 is depicted the age
histogram and boxplots stratified by gender and diagnostic, respectively. As we can note,
there is no significant difference between female and male age distribution. In general, the
patient age average is around 62 years old. Observing the boxplots in Figure 34, we can
see that the patients’ age may be useful to distinguish NEV from the other skin lesions
since it presents a lower median.

(a) Histogram per gender (b) Boxplots per diagnostic

Figure 34 – The patients’ age histogram stratified by gender and boxplots per diagnostic.

In terms of anatomical region, in Figure 35 is shown the total frequency of each
region and the frequency per diagnostic. As we can note, the most common anatomical
regions are face and forearm. It is expected since sun exposure is the main risk factor
for skin cancer and normally these regions are not covered by clothes in daily life. In
2 <https://github.com/paaatcha/my-thesis/blob/master/benchmarks/pad/analysis/

pad-ufes-20-analysis.ipynb>

https://github.com/paaatcha/my-thesis/blob/master/benchmarks/pad/analysis/pad-ufes-20-analysis.ipynb
https://github.com/paaatcha/my-thesis/blob/master/benchmarks/pad/analysis/pad-ufes-20-analysis.ipynb

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 101

addition, ACK and BCC are more common in these regions and they are the most frequent
diagnostics in PAD-UFES-20. We also analyzed the diameters per diagnostic. As shown in
Figure 36, the skin lesion diameters have similar size, which suggests that this attribute is
not useful to distinguish them.

(a) Histogram per gender (b) Boxplots per diagnostic

Figure 35 – The total frequency of each region and the frequency per diagnostic.

Figure 36 – The skin lesion diameters distribution and scatterplot stratified per diagnostic.

In Figure 37 is presented the bar plots for three boolean features that provide
important insights about this dataset. As described in the previous section, these three
features are acquired through questioning the patient. We observe that pigmented skin
lesions usually do not hurt, bleed, and itch more than the non-pigmented ones. Thereby,
these features seem to be quite useful to differentiate these lesions.

We also analyzed the remaining features present in the dataset. In general, we
summarize the key points as follows:

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 102

(a) Does the skin lesion hurts? (b) Has the skin lesion bleed? (c) Does the skin lesion itch?

Figure 37 – Bar plots for three features based on the questions that dermatologists make
to the patients.

• It is expected that these features improve the model performance for pigmented and
non-pigmented lesions detection.

• Certain features, such as a change in the lesion pattern and elevation are important
for MEL detection.

• In general, SCC and BCC share the same clinical features values. Both bleed, hurt,
itch, present elevation, occur in the same age range and have the same preferred
region. Thus, it is expected that these features will not be helpful in distinguishing
between SCC and BCC.

• Germany and Pomerania are the most common answer for father/mother background.
In fact, it is expected since most of the people from the 11 cities in which PAD
takes place descends from immigrants of these countries. Nonetheless, it might not
be useful to distinguish skin lesions.

• Most of the patients reported they do not drink or smoke. Thus, we can not find a
correlation between skin lesion and this risk factor in PAD-UFES-20 dataset.

• The gender distribution is quite close for all skin lesions, which also makes it hard
to find correlation.

5.2 Experimental results
In this section, we present experiments using the dataset described in Section 5.1.

We perform the proposed methods described in Chapter 3 and 4 to detect skin cancer using
clinical images and patient demographics. We start by describing the experiments setup;
next, we carry out experiments regarding the meta-data and images combinations; Then,
we create an ensemble of deep models and evaluate the aggregation methods presented in
Chapter 4; Finally, we provide a discussion about the case study.

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 103

(a) Original (b) Processed (c) Original (d) Processed

Figure 38 – The difference between the original images (left) and the images after the
color constancy pre-processing (right).

5.2.1 Experiments setup

The experiments setup is quite similar to the previous experiments carried out in
Section 3.4 and 4.3. We perform all experiments using five competitive CNN architectures:
EfficientNet-B1 (Tan; Le, 2019), DenseNet-121 (Huang et al., 2017b), MobileNet-v2
(Sandler et al., 2018), ResNet-50 (He et al., 2016), and VGGNet-13 (Simonyan; Zisserman,
2014). Likewise the previous sections, all models are trained using their original architecture
and including the baseline concatenation method, the MetaBlock, and MetaNet. The
training phase is carried out using the same configuration described in Sections 3.4.1 and
4.3, i.e., using SGD optimizer along with weight decay, momentum, and early stopping.

For all experiments, we also reserved approximately 10% of each dataset for testing
respecting the labels’ frequency distribution. The remaining 90% of data are used on
the training phase through 5-fold cross-validation for assessing the effectiveness of the
models. All methods performance are also measured computing the average and standard
deviation of the accuracy (ACC), balanced accuracy (BACC), aggregated area under the
curve (AUC), and the cross-entropy (Loss). In order to compare the experiments results,
we also perform the Friedman test followed by the Wilcoxon test (if applicable), using
pvalue = 0.05, and the A-TOPSIS ranking algorithm (Krohling; Pacheco, 2015).

The PAD-UFES-20 dataset presents similar characteristics as any medical dataset.
As we describe in the previous sections, the amount of data is not large and the dataset
is imbalanced. In addition, as the dataset is collected using smartphone cameras, it
presents fewer details of the skin lesion when compared to dermoscopic images. Also,
camera resolution and illumination affect the images’ quality. Vasconcelos and Vasconcelos
(2017) presented a review in which they discuss approaches to handle these types of
issues in skin cancer datasets. In summary, they state we may tackle these problems
with transfer learning, up/down-sampling, data augmentation, and using an ensemble of
models. Additionally, Barata, Celebi and Marques (2014) showed the benefits of using
color constancy algorithms for skin cancer detection. Following their recommendations,
we applied the shades of gray method (Finlayson; Trezzi, 2004) for all images before the
training phase. The difference between the clinical images with and without the color

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 104

Figure 39 – The result of the data augmentation employed in this experiment for some
samples from PAD-UFES-20 dataset.

constancy pre-processing can be seen in the samples depicted in Figure 38.

We also applied data augmentation using the following image processing operations:
we adjust brightness, saturation, and hue. We also apply horizontal and vertical rotations,
translations, re-scale, shear, random noise, and blur. In Figure 39 is shown the result of
these data augmentation operations for some random samples from PAD-UFES-20 dataset.

To tackle the labels’ imbalanced issue, we use a weighted loss function based on
the label’s frequency. The weight for a given label l is computed as follows:

wl = N

nl
(5.1)

where N is the total number of samples in the dataset and nl is the number of samples for
label l. We also tried to use oversampling to equalize the number of samples for each class.
However, it created a high bias for the MEL label, which resulted in a lower performance

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 105

compared to the weighted loss function approach.

Regarding the clinical features, likewise in Section 3.4 we also applied the one-hot
strategy to encode the features represented by strings for the same reasons we previously
describe, i.e., most of data are boolean and this strategy can properly encode them. Thus,
the 21 attributes are mapped in a array of 81 values. These features are used as meta-data
to support the skin lesion classification.

5.2.2 Experiment results

We start the case study experiments by evaluating the methods to combine images
and meta-data proposed in Chapter 3. In this case study, each sample in the dataset is
a skin lesion that is represented by an image and clinical data, which is interpreted as
meta-data. We perform the classification considering only the images, combining images
and meta-data using the concatenation approach, MetaNet, and MetaBlock. For the
concatenation approach, we use the combination factor cf equal to 0.8, which results in
324 neurons in the feature learning block – see equation 3.6. In Appendix B.1, we present
a sensitivity analysis regarding the combination factor parameter.

In this part of the experiment, we compare the deep learning models’ performance
with and without considering the meta-data. In Tables 13, 14, 16, and 15 are presented the
results, in terms of mean and standard deviation, for each method. To ease the visualization,
in Table 17 is summarized the performance only in terms of BACC for each method. As
we can note from the tables, there is a notable improvement for all metrics when the
meta-data is included into the classification process. Quantitatively, in terms of BACC,
there is an average improvement of around 9% when meta-data are used. Comparing with
the results achieved for ISIC 2019 dataset, presented in Section 3.4, the improvement was
much higher, in particular, because we have access to a more valuable 21 patient clinical
attributes instead of only 3.

No meta-data
Model ACC BACC AUC Loss

EfficientNet-B4 0.656± 0.027 0.64± 0.029 0.911± 0.006 0.867± 0.053
DenseNet-121 0.636± 0.055 0.64± 0.042 0.893± 0.02 0.98± 0.117
MobileNet-V2 0.655± 0.016 0.637± 0.018 0.898± 0.01 0.934± 0.03
ResNet-50 0.616± 0.051 0.651± 0.05 0.901± 0.007 1.0± 0.072
VGGNet-13 0.709± 0.019 0.654± 0.022 0.901± 0.003 0.865± 0.024

Table 13 – Deep learning models’ performance for PAD dataset considering only clinical
images

Observing the models’ performance when the meta-data is employed, we note
that they present performances varying from 71.7% to 77% in terms of BACC. Similar
to ISIC 2019 dataset, the MetaBlock presents a more stable performance compared

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 106

Concatenation
Model ACC BACC AUC Loss

EfficientNet-B4 0.765± 0.032 0.758± 0.012 0.945± 0.005 0.637± 0.053
DenseNet-121 0.742± 0.035 0.747± 0.019 0.932± 0.005 0.786± 0.057
MobileNet-V2 0.738± 0.026 0.741± 0.017 0.927± 0.007 0.767± 0.087
ResNet-50 0.741± 0.014 0.728± 0.029 0.929± 0.006 0.833± 0.08
VGGNet-13 0.712± 0.035 0.72± 0.018 0.929± 0.002 0.765± 0.051

Table 14 – Deep learning models’ performance for PAD dataset considering clinical images
and patient demographics. In this case, the concatenation method is applied
to combine both data with a combination factor set to 0.8.

MetaBlock
Model ACC BACC AUC Loss

EfficientNet-B4 0.748± 0.018 0.77± 0.016 0.944± 0.004 0.636± 0.031
DenseNet-121 0.723± 0.037 0.746± 0.039 0.931± 0.006 0.743± 0.047
MobileNet-V2 0.724± 0.016 0.754± 0.014 0.938± 0.005 0.701± 0.037
ResNet-50 0.735± 0.013 0.765± 0.017 0.935± 0.004 0.717± 0.034
VGGNet-13 0.728± 0.022 0.736± 0.018 0.933± 0.002 0.781± 0.03

Table 15 – Deep learning models’ performance for PAD dataset considering clinical images
and patient demographics. In this case, the MetaBlock is applied to combine
both data.

MetaNet
Model ACC BACC AUC Loss

EfficientNet-B4 0.744± 0.014 0.737± 0.017 0.931± 0.007 0.718± 0.041
Densenet-121 0.745± 0.022 0.745± 0.029 0.932± 0.008 0.723± 0.063
MobileNet-V2 0.700± 0.013 0.717± 0.020 0.922± 0.005 0.787± 0.027
ResNet-50 0.732± 0.054 0.742± 0.019 0.936± 0.006 0.707± 0.048
VGGNet-13 0.749± 0.037 0.754± 0.033 0.937± 0.011 0.706± 0.073

Table 16 – Deep learning models’ performance for PAD dataset considering clinical images
and patient demographics. In this case, the MetaNet is applied to combine
both data.

to the concatenation and MetaNet. In this experiment, we selected the ResNet-50 for
further analysis. In Figure 40 and 41 are depicted the confusion matrix and ROC curve,
respectively, for this model considering all methods3. These plots show an interesting
result, in general, the meta-data helped to improve the diagnostic rates for ACK, MEL,
NEV, and SEK. However, it increases miss-classification between SCC and BCC. This
result is in accordance with the analysis provided in Section 5.1.3, in which we show that
both lesions share almost the same values of clinical features. In fact, even dermatologists
get confusing regarding these two lesions. As shown in Figures 33a and 33b, both lesions
are very similar and distinguishing them is a challenging task even for experts using a
dermatoscope. Nonetheless, confusing SCC and BCC is not quite a problem, since both
are skin cancer and need to be biopsied. The real problem is confusing them with ACK,
3 The plots for the remaining models are available in Appendix B.5

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 107

Model No meta-data Concatenation MetaBlock MetaNet
EfficientNet-B4 0.64± 0.029 0.758± 0.012 0.77 ± 0.016 0.737± 0.017
DenseNet-121 0.64± 0.042 0.747 ± 0.019 0.746± 0.039 0.745± 0.029
MobileNet-V2 0.637± 0.018 0.741± 0.017 0.754 ± 0.014 0.717± 0.020
ResNet-50 0.651± 0.05 0.728± 0.029 0.765 ± 0.017 0.742± 0.019
VGGNet-13 0.654± 0.022 0.72± 0.018 0.736± 0.018 0.754 ± 0.033

Table 17 – Comparing the models’ performance in terms of BACC for each method. In
bold is highlighted the highest average BACC for each model.

(a) No meta-data (b) Concatenation

(c) MetaBlock (d) MetaNet

Figure 40 – Confusion matrices for ResNet-50 considering all methods.

which is just a minor skin disease that is treated without a surgical process. For MEL, the
deadliest case of skin cancer, the MetaBlock approach achieves maximum performance,
while the concatenation and MetaNet do no present an improvement.

We performed the Friedman and Wilcoxon tests, considering the BACC metric, to
compare the performance of the method. The Friedman test returned pvalue ≈ 5× 10−11.
Thus, we performed the Wilcoxon test, in which the p values are presented in Table 18.
As we can see, the test returns pvalue < 0.05 for all pairwise comparisons, except the pair
MetaNet-Concatenation. In other words, it means all methods are statistically different

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 108

(a) No meta-data (b) Concatenation

(c) MetaBlock (d) MetaNet

Figure 41 – ROC curves for ResNet-50 considering all methods and all skin lesions.

from each other, except the MetaNet and Concatenation approaches. Based on the results
presented throughout this section, we may conclude that the MetaBlock performs better
than the concatenation and MetaNet approaches. This assumption is confirmed by the
A-TOPSIS rank, depicted in Figure 42, which shows the MetaBlock with a higher rank
score while the concatenation and MetaNet have quite close values.

Pair pvalue
No meta-data - Concatenation ∼ 10−5

No meta-data - MetaBlock ∼ 10−5

No meta-data - MetaNet ∼ 10−5

MetaBlock - Concatenation 0.008
MetaBlock - MetaNet 0.04

MetaNet - Concatenation 0.81

Table 18 – The result of the Wilcoxon pairwise test for all methods.

In order to visualize the contribution of the patient demographics in distinguishing
the skin lesion in this dataset, we applied the t-Distributed Stochastic Neighbor Embedding
(t-SNE) (Maaten; Hinton, 2008) to reduce the ResNet-50 features into low-dimensional

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 109

Figure 42 – The A-TOPSIS rank for the three methods considering the BACC metric

space of two dimensions. The scatter plot of this reduction is shown in Figure 43. As we
can see, the patient demographics impacted more in distinguishing the pigmented skin
lesions (NEV, MEL, SEK) from the non-pigmented ones (BCC, SCC, and ACK). This
result is in line with our previous analysis in Section 5.1.3. BCC and SCC samples are
still hard to cluster, which also reflected in the confusion matrices plot in Figure 40.

In addition to the t-SNE scatter plots, in Figure 44 is depicted examples of miss-
predictions assigned by the ResNet-50 without using clinical data that were correctly
classified by the model when the MetaBlock is used to combine the clinical images and
the meta-data. As we can note, there are two cases of cancer that were predicted as skin
diseases, i.e., a BCC was predicted as NEV and a MEL was predicted as SEK. These false
negatives are the worst scenario for skin cancer detection, in particular, for the melanoma
case. This example shows the importance to propose methodologies to properly combine
the clinical images and patient clinical information. For these cases, the clinical data were
fundamental to properly predict the dysplasia.

To conclude this case study, we use the results of the combination methods to
create an ensemble of the five models previously presented. As described in Chapter 4,
many real-world problems apply an ensemble in order to improve performance and increase
robustness. We have the same goal in this part of the case study. The experiment in this
section has the same structure that the one carried out in Section 4.3. In Table 19 is
presented the performance of the seven aggregation approaches for the ensemble of models
considering the clinical images and patient demographics. To ease the comparison, we
also include the performance of the EfficientNet-B4, the model that achieves the highest
BACC in the ensemble.

All seven aggregation methods present similar performance for all metrics. Quanti-
tatively, compared to the best model within the ensemble, the average ACC and BACC
were improved in almost 1.2% and 1%, respectively; the Loss was slightly reduced by the

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 110

(a) No meta-data (b) Concatenation

(c) MetaNet (d) MetaBlock

Figure 43 – The t-SNE visualization considering the ResNet-50 model with and without
using the meta-data

Method ACC BACC AUC Loss
AVG 0.758± 0.016 0.778± 0.013 0.944 ± 0.004 0.647± 0.022
MAX 0.752± 0.024 0.775± 0.022 0.942± 0.003 0.692± 0.023
PROD 0.760 ± 0.020 0.777± 0.022 0.943± 0.003 1.671± 0.138
MV 0.755± 0.023 0.775± 0.015 0.910± 0.007 4.623± 0.494
SWA 0.759± 0.017 0.778± 0.012 0.934± 0.004 0.678± 0.044

NP-AVG 0.759± 0.017 0.778± 0.013 0.942± 0.004 0.645± 0.022
LewDir 0.752± 0.021 0.779± 0.010 0.942± 0.003 0.622 ± 0.024

EfficientNet-B4 0.748± 0.018 0.770± 0.016 0.944± 0.004 0.636± 0.031

Table 19 – Performance achieved by each aggregation approach for ensemble of CNN
models trained on PAD-UFES-20 dataset.

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 111

(a) BCC predicted as NEV (b) MEL predicted as SEK

(c) SCC predicted as BCC (d) SEK predicted as NEV

Figure 44 – Examples of skin lesion wrongly predicted by the ResNet-50 model without
using the meta-data that was corrected by the MetaBlock approach.

LewDir approach; and the AUC is basically the same, except for MV, which reflects in
the ROC curve depicted in Figure 45. We performed the Friedman test using the BACC
metric as a reference, and as expected the method returned pvalue > 0.05, which indicates
that there is no aggregation method statistically different for this dataset. This result is in
line with the A-TOPSIS rank depicted in Figure 46.

We also applied the online ensemble selection based on the weights assigned by our
method. In Table 20 is presented the ensemble pruning that selects from 1 to 4 models
from the group. In the last line, the results for all models are included to ease comparison.
Recall that as the weights change according to the sample, the models selected may change
every time the ensemble evaluated a new sample. As we can see, the results obtained
for PAD-UFES-20 dataset are similar to the ones obtained for ISIC in Section 4.3. The
performance in terms of average BACC are similar to all number of models, however, the
best result is still achieved when the ensemble contains all models. As the number of models
decreases, the loss function decreases. For example, it is possible to get similar ACC by
decreasing the number of models in the ensemble; however, the BACC and the prediction
confidence decrease. Essentially, this experiment suggests that LewDir is properly assigning
the weights of the models, i.e., the weak models are already getting low weights and does
not affect too much in the final prediction.

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 112

Figure 45 – The macro average ROC for the ensemble of CNN models considering the
same folder for all methods.

Figure 46 – The A-TOPSIS rank for all aggreationg methods and CNN models.

No of models ACC BACC AUC Loss
1 0.737± 0.031 0.759± 0.030 0.932± 0.004 0.762± 0.035
2 0.749± 0.019 0.775± 0.019 0.941± 0.003 0.692± 0.038
3 0.745± 0.030 0.767± 0.028 0.941± 0.004 0.674± 0.032
4 0.750± 0.023 0.772± 0.017 0.941± 0.003 0.666± 0.028
All 0.752± 0.021 0.779± 0.020 0.942± 0.003 0.622± 0.0024

Table 20 – Ensemble selection according to the weights assigned by our proposed method.

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 113

5.3 Discussion
The results presented in this case study confirm the hypothesis raised by Brinker et

al. (2018) that patient clinical data are important to improve deep learning performance
for skin cancer detection. Both proposed approaches, the concatenation and MetaBlock,
to combine the images and meta-data presented higher performance than the models
without using the meta-data. The results achieved in this experiment are competitive
to other state-of-the-art deep learning approaches reported in the literature. First of all,
as we showed, the concatenation approach achieves similar performance to MetaNet (Li
et al., 2020) and the MetaBlock generally performs better than both previous methods.
In addition, Han et al. (2018) applied a ResNet-152, which is similar to ResNet-50, to
classify 12 skin lesions considering two different datasets. They reported an average AUC
of 0.91 and 0.89 for each dataset, respectively. Esteva et al. (2017) validated a GoogleNet
model for benign/malignant classification. They achieved an AUC equal to 0.96, which is
on par with the dermatologist level. These two works also use clinical images; however,
they do not consider the patient demographics. Kharazmi et al. (2018) took into account
the clinical information, but for dermoscopic images. The authors proposed an approach
based on sparse autoencoder (SAE) (Ng et al., 2011) to combine clinical features and
dermoscopic images. They achieved an improvement in AUC from 0.847 to 0.911, when the
clinical data were included. Lastly, Udrea et al. (2020) applied a proprietary algorithm4 to
classify clinical images into low or high-risk skin lesions. They reported a sensitivity and
specificity of 95.1% and 78.3%, respectively, to detect (pre)malignant conditions. Even
though only one of these works consider clinical images and patient demographics, the
results achieved in this study case are in accordance with them. In addition, these results
are also similar to the ones achieved by the PAD dermatologists5, which is our baseline for
this case study. However, it is quite important to note that this study case considers only
the six most common skin lesions at the PAD. The PAD dermatologist must deal with
more than 50 different kinds of skin lesions during the appointments.

The ensemble of deep models presented a slight gain of performance when compared
to the models individually. The proposed method achieved a BACC approximately 1%
higher than the best model in the ensemble. However, the performance of the remaining
methods are quite close to the proposed one, which suggests there is a room for improvement
of LewDir. In fact, in the conclusion section, we indicate a path we believe that will lead
to improvements in the proposed method. In general, as Vasconcelos and Vasconcelos
(2017) reviewed, an ensemble of models is an effective way to improve performance and
robustness for skin cancer detection. However, there is no silver bullet. As stated before,
employing an ensemble is a trade-off between performance and computational resources.
4 This algorithm belong to Skin Vision Inc and it is not publicly.
5 As the PAD dermatologists are not anonymized, we understand that is unethical to reveal their

detection performance and reserved this information only for the PAD staff.

Chapter 5. Skin cancer detection based on clinical images and patient demographics - A case study 114

For skin cancer detection, if there is enough hardware available, an ensemble of deep
models may be useful to improve the prediction certainty, in particular for melanoma.
As shown in the experiments, the ensemble can provide a boost in terms of performance,
however, developing approaches to combine the clinical images and patient demographics
was demonstrated to impact much more in the skin cancer detection.

The long term goal of the PAD researchers is to embed the proposed model into a
smartphone application in order to assist them to detect skin cancer during the appoint-
ments. Actually, we have already developed a prototype (Castro et al., 2020); however,
it is necessary to perform exhaustive tests6 before deploying such a system. Regarding
this matter, we believe the AI researcher community must be careful in providing auto-
diagnostic solutions to general patients. Beyond problems regarding patient confidentiality
and privacy, such applications have the potential to harm or mislead patients with an
incorrect diagnostic. Let us consider a hypothetical situation of a false negative for mela-
noma to a given user. It may delay their treatment and, in the worst scenario, it may lead
them to death. This is a serious problem that we need to confront. We understand that
the best way to use these solutions is along with experts. In other words, a CAD system
should be used to assist detection, and an expert must have the final word.

To conclude, it is important to note that the PAD-UFES-20 dataset is composed
of clinical and biopsied diagnostics. As described in Section 5.1, 58.4% of all samples are
biopsy-proven, including 100% of the skin cancer. In fact, having a mix of diagnostic is a
recurrent issue in skin cancer datasets. For example, consensus diagnosis is also applied
to the dataset used by Esteva et al. (2017), Han et al. (2018), and in ISIC archive (ISIC,
2019). In order to reduce the number of unnecessary biopsies and consequently, the costs,
most of the skin lesions are not referred to histopathology. In this context, the achieved
results represent an advance towards automated skin cancer detection, in particular to
detectors using clinical images and patient demographics. However, it is still necessary to
increase the dataset in terms of the number of samples and including more skin lesions.
We expected that by using the software we developed in this work – see Appendix A –, in
the next years this dataset may achieve the same number of samples and skin lesions as
ISIC 2019.

6 Tests were scheduled to be performed during this year, however, due to the COVID-19 pandemic, the
PAD was deactivated for this year.

115

6 Conclusion

Despite the success of Deep Learning models for several relevant tasks, there are
still many challenges in applying this technique, in particular for medical imaging analysis.
In this thesis, we worked on two relevant topics involving Deep Learning: the combination
of images and context data represented by meta-data and dynamic weighting an ensemble
of deep models. For each topic, we summarize the key contributions as follows:

• We proposed two methodologies to combine images and meta-data. First, we described
a concatenation approach, to work as a baseline, that is based on a combination
factor between both source of data. Next, we introduced the Meta-data Processing
Block (MetaBlock), a new algorithm that allows deep learning models to consider
both meta-data and image in classification problems. In this method, the meta-data
is used to support the classification by guiding the most relevant features extracted
from the images without using feature concatenation.

• We proposed a new method that employs a Dirichlet distribution and the Mahalanobis
distance to online determine the weights for an ensemble of deep models. Beyond
reducing the impact of weak models on the aggregation operator, this method may
also be used as an ensemble selection for each new sample evaluated by the set of
models.

For the problem of combining images and context data, we performed experiments
using different deep learning models architectures for the ISIC 2019 dataset to combine
dermoscopy images and patient demographics. As we showed, the use of meta-data provided
an average improvement of over 1% in balanced accuracy and reduced the loss for most
models. Nonetheless, we also showed that the combination method is important for this
task since the MetaBlock presented a better performance than the concatenation and
MetaNet approaches. These latter approaches did not deal well with meta-data with just
a few information, three patient attributes in this particular case. Nonetheless, it provided
a fair improvement when the number of meta-data increases, as we showed in the case
study.

For the online ensemble weighting problem, we performed experiments using four
state-of-the-art medical imaging datasets. Results showed that the proposed method
presented a competitive performance compared to the other methods. Beyond achieving
the best average balanced accuracy (BACC) for half of the datasets, the method increased
the confidence of the predictions since it presented the lowest loss among all methods.
However, the improvement comes with a cost. Training and running multiple deep learning

Chapter 6. Conclusion 116

models demand computational resources. In some cases, this approach is not feasible, since
the hardware may not have such resources. Therefore, using an ensemble is basically a
trade-off between performance and resources.

Next, we presented a case study on skin cancer detection based on clinical images
and patient demographics. In this study, we presented the PAD-UFES-20, a new dataset
composed of six common skin lesions – three skin cancers and three skin diseases –
composed of images collected from smartphones and patient clinical information. This
dataset was collected along with the Dermatological Assistance Program (PAD) at the
Federal University of Espírito Santo (UFES) and we made it open in order to support skin
cancer research. In this case study, we first applied both combination methods to handle
the images and meta-data. In general, both methods provided a significant improvement
to performance when compared to the deep learning models without using the meta-data.
In addition, the MetaBlock seems to be a more stable method and generally presented
a better perfomance than MetaNet and concatenation approaches. Quantitatively, there
was an improvement of around 9% on the average balanced accuracy. Lastly, we used
the results achieved by the combination approaches to create an ensemble of models and
applied the LewDir method to provide online weights for the aggregation approach. In
general, the method improved the average balanced accuracy in around 1% for this task.
However, it presented similar performance as the remaining aggregation functions used in
the experiments.

Despite the promising results achieved by the proposed approaches, there are many
points of improvement that may be addressed in the future. We would like to mention a
few:

• Both the concatenation and MetaBlock approaches do not identify the importance
of each meta-data feature. In addition, they cannot handle the uncertainty on the
data. We believe these are important avenues that might be explored.

• The proposed method to determine dynamic weights for an ensemble of deep models
uses only the posterior distribution provided by the softmax. It might be an advantage
since the method may be used by different types of models. However, we believe we
can achieve better performance by using the intermediate feature maps to extract
performance metrics. Then, we may use these metrics to identify the miss and hit
scores to determine the weights.

• Bias is an important issue in deep learning models that affects skin cancer detection.
It is natural to hypothesize that this problem also extends to the meta-data. Thus,
we think it is important to investigate this problem in the future.

Another general subject related to skin cancer detection that we believe to be a great

Chapter 6. Conclusion 117

avenue to the future is the models’ interpretability. Currently, the most common way that
models provide the diagnosis is selecting the label that produces the highest probability.
However, how can a clinician interpret a low probability assigned to a melanoma? In fact,
they require more explanations than only the model’s predictions. In general, a clinician is
interested in CAD systems that support their diagnostic by presenting insights and visual
explanations of the features used by the model in the classification process. They want
to know why the model is selecting such disease. In this sense, we also need to focus on
models that are able to output not only the labels’ probabilities but the pattern analysis
as well. While it is very desirable it is also a challenging task that should be addressed in
the future.

Finally, another aspect we believe will become a trend in the near future is the
use of three types of skin cancer images: clinical, dermoscopy, and histopathological. Each
of these images presents different characteristics, which may help to correlate features
to improve the predicted diagnosis. In addition, CAD systems will be able to act from
clinical diagnosis to biopsy, which makes it more desirable and useful.

118

References

Abdi, H.; Williams, L. J. Principal component analysis. Computational Statistics, v. 2,
n. 4, p. 433–459, 2010.

ACS. Cancer Facts & Figures 2019. 2019. American Cancer Society. Last
accessed: 10 March 2020. Available on: <https://www.cancer.org/content/dam/
cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/
cancer-facts-and-figures-2019.pdf>.

Akram, T. et al. A deep heterogeneous feature fusion approach for automatic land-use
classification. Information Sciences, v. 467, p. 199–218, 2018.

Angelo, G. G. de; Pacheco, A. G. C.; Krohling, R. A. Skin lesion segmentation using deep
learning for images acquired from smartphones. In: IEEE International Joint Conference
on Neural Networks. 2019. p. 1–8.

Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning
on low-dose chest computed tomography. Nature Medicine, v. 25, n. 6, p. 954, 2019.

Argenziano, G. et al. Epiluminescence microscopy for the diagnosis of doubtful melanocytic
skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist
based on pattern analysis. Archives of Dermatology, American Medical Association, v. 134,
n. 12, p. 1563–1570, 1998.

Argenziano, G.; Soyer, H. P. Dermoscopy of pigmented skin lesions – a valuable tool for
early. The Lancet Oncology, v. 2, n. 7, p. 443–449, 2001.

Arroyo, J. L. G.; Zapirain, B. G. Detection of pigment network in dermoscopy images
using supervised machine learning and structural analysis. Computers in Biology and
Medicine, v. 44, p. 144–157, 2014.

Arroyo, R.; Alcantarilla, P. F.; Bergasa, L. M.; Romera, E. Fusion and binarization of
CNN features for robust topological localization across seasons. In: IEEE International
Conference on Intelligent Robots and Systems (IROS). 2016. p. 4656–4663.

Atrey, P. K.; Hossain, M. A.; Saddik, A. E.; Kankanhalli, M. S. Multimodal fusion for
multimedia analysis: a survey. Multimedia Systems, v. 16, n. 6, p. 345–379, 2010.

Attia, M.; Hossny, M.; Nahavandi, S.; Yazdabadi, A. Skin melanoma segmentation using
recurrent and convolutional neural networks. IEEE 14th International Symposium on
Biomedical Imaging, p. 292–296, 2017.

Audebert, N.; Saux, B. L.; Lefèvrey, S. Fusion of heterogeneous data in convolutional
networks for urban semantic labeling. In: IEEE Joint Urban Remote Sensing Event. 2017.
p. 1–4.

Azulay, R. D. Dermatologia. 7. ed. Rio de Janeiro, Brazil: Guanabara Koogan, 2017.

Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473, 2014.

https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf

References 119

Barata, C.; Celebi, M. E.; Marques, J. S. Improving dermoscopy image classification
using color constancy. IEEE Journal of Biomedical and Health Informatics, v. 19, n. 3, p.
1146–1152, 2014.

Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L. V. Speeded-up robust features (SURF).
Computer Vision and Image Understanding, v. 110, n. 3, p. 346–359, 2008.

Bengio, Y. Practical recommendations for gradient-based training of deep architectures.
Neural networks: Tricks of the trade, p. 437–478, 2012.

Bengio, Y.; LeCun, Y. et al. Scaling learning algorithms towards AI. Large-scale Kernel
Machines, v. 34, n. 5, p. 1–41, 2007.

Bengio, Y. et al. Learning deep architectures for AI. Foundations and Trends in Machine
Learning, Now Publishers, Inc., v. 2, n. 1, p. 1–127, 2009.

Berner, C. et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

Bray, F. et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, v. 68,
n. 6, p. 394–424, 2018.

Breiman, L. Bagging predictors. Machine Learning, v. 24, n. 2, p. 123–140, 1996.

Brinker, T. J. et al. Deep learning outperformed 136 of 157 dermatologists in a
head-to-head dermoscopic melanoma image classification task. European Journal of
Cancer, v. 113, p. 47–54, 2019.

Brinker, T. J. et al. Skin cancer classification using convolutional neural networks:
Systematic review. Journal of Medical Internet Research, v. 20, n. 10, p. e11936, 2018.

Britto Jr, A. S.; Sabourin, R.; Oliveira, L. E. Dynamic selection of classifiers - a
comprehensive review. Pattern Recognition, v. 47, n. 11, p. 3665–3680, 2014.

Brownlee, J. Better Deep Learning: Train Faster, Reduce Overfitting, and Make Better
Predictions. Melbourne, Australia: Machine Learning Mastery, 2018.

Brun, A. L.; Britto, A. S.; Oliveira, L. S.; Enembreck, F.; Sabourin, R. Contribution of
data complexity features on dynamic classifier selection. In: IEEE International Joint
Conference on Neural Networks. 2016. p. 4396–4403.

Castro, P. B. C.; Krohling, B. A.; Pacheco, A. G.; Krohling, R. A. An app to detect
melanoma using deep learning: An approach to handle imbalanced data based on
evolutionary algorithms. IEEE International Joint Conference on Neural Networks, p. 1–8,
2020.

Cauchy, A. Méthode générale pour la résolution des systemes d’équations simultanées.
Comp. Rend. Sci. Paris, v. 25, n. 1847, p. 536–538, 1847.

CCA. Understanding Skin Cancer - A guide for people with cancer, their families and
friends. 2018. Cancer Council Australia. Last accessed 10 March 2020. Available on:
<https://www.cancer.org.au/about-cancer/types-of-cancer/skin-cancer.html>.

https://www.cancer.org.au/about-cancer/types-of-cancer/skin-cancer.html

References 120

CCS. Canadian Cancer Statistics 2014 - Special topic: Skin cancers. 2014. Canadian
Cancer Society’s Advisory Committee on Cancer Statistics. Last accessed: 10 March 2020.
Available on: <https://www.cancer.ca/statistics>.

Celebi, M. E. et al. A methodological approach to the classification of dermoscopy images.
Computerized Medical Imaging and Graphics, v. 31, n. 6, p. 362–373, 2007.

Cevikalp, H.; Polikar, R. Local classifier weighting by quadratic programming. IEEE
Transactions on Neural Networks, v. 19, n. 10, p. 1832–1838, 2008.

Chai, Y.; Liu, H.; Xu, J. Glaucoma diagnosis based on both hidden features and domain
knowledge through deep learning models. Knowledge-Based Systems, v. 161, p. 147–156,
2018.

Chaplot, D. S.; Lee, L.; Salakhutdinov, R.; Parikh, D.; Batra, D. Embodied multimodal
multitask learning. arXiv preprint arXiv:1902.01385, 2019.

Chiu, C.-C. et al. State-of-the-art speech recognition with sequence-to-sequence models.
In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2018. p. 4774–4778.

Chollet, F. Deep Learning with Python. Nova York, USA: Manning Publications, 2018.
v. 1.

Codella, N. et al. Deep learning, sparse coding, and SVM for melanoma recognition in
dermoscopy images. In: Springer. International Workshop on Machine Learning in Medical
Imaging. 2015. p. 118–126.

Codella, N. et al. Skin lesion analysis toward melanoma detection: A challenge at the
2017 international symposium on biomedical imaging, hosted by the International Skin
Imaging Collaboration (ISIC). arXiv:1710.05006, 2017.

Codella, N. C. et al. Deep learning ensembles for melanoma recognition in dermoscopy
images. IBM Journal of Research and Development, v. 61, n. 4, p. 5–1, 2017.

Combalia, M. et al. BCN20000: Dermoscopic lesions in the wild. arXiv:1908.02288, 2019.

Cruz, R. M.; Sabourin, R.; Cavalcanti, G. D. Dynamic classifier selection: Recent advances
and perspectives. Information Fusion, v. 41, p. 195–216, 2018.

Cruz, R. M.; Sabourin, R.; Cavalcanti, G. D.; Ren, T. I. Meta-des: A dynamic ensemble
selection framework using meta-learning. Pattern Recognition, v. 48, n. 5, p. 1925–1935,
2015.

Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, v. 2, n. 4, p. 303–314, 1989.

Dargan, S.; Kumar, M.; Ayyagari, M. R.; Kumar, G. A survey of deep learning and its
applications: A new paradigm to machine learning. Archives of Computational Methods in
Engineering, p. 1–22, 2019.

Deng, J. et al. Imagenet: A large-scale hierarchical image database. In: IEEE Conference
on Computer Vision and Pattern Recognition. 2009. p. 248–255.

https://www.cancer.ca/statistics

References 121

Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm and Evolutionary Computation, v. 1, n. 1, p. 3–18, 2011.

Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Dragomir, S. S.; Agarwal, R. P.; Barnett, N. S. Inequalities for beta and gamma functions
via some classical and new integral inequalities. Journal of Inequalities and Applications,
v. 5, n. 2, p. 103–165, 2000.

Duarte, A. F.; Sousa-Pinto, B.; Haneke, E.; Correia, O. Risk factors for development
of new skin neoplasms in patients with past history of skin cancer: A survival analysis.
Scientific Reports, v. 8, n. 1, p. 1–6, 2018.

Ercal, F.; Chawla, A.; Stoecker, W. V.; Lee, H.-C.; Moss, R. H. Neural network diagnosis
of malignant melanoma from color images. IEEE Transactions on Biomedical Engineering,
v. 41, n. 9, p. 837–845, 1994.

Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural
networks. Nature, v. 542, n. 7639, p. 115, 2017.

Faes, L. et al. Automated deep learning design for medical image classification by
health-care professionals with no coding experience: a feasibility study. The Lancet Digital
Health, v. 1, n. 5, p. e232–e242, 2019.

Fatima, M.; Pasha, M. et al. Survey of machine learning algorithms for disease diagnostic.
Journal of Intelligent Learning Systems and Applications, v. 9, n. 01, p. 1, 2017.

Feng, H.; Berk-Krauss, J.; Feng, P. W.; Stein, J. A. Comparison of dermatologist density
between urban and rural counties in the United States. JAMA Dermatology, American
Medical Association, v. 154, n. 11, p. 1265–1271, 2018.

Finlayson, G. D.; Trezzi, E. Shades of gray and colour constancy. In: Society for Imaging
Science and Technology. Color and Imaging Conference. 2004. p. 37–41.

Frasson, P. H. L. et al. Profile of skin cancer in Pomeranian communities of the state of
Espírito Santo. Revista do Colégio Brasileiro de Cirurgiões, v. 44, n. 2, p. 187–193, 2017.

Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, v. 36, n. 4, p.
193–202, 1980.

Gal, Y.; Ghahramani, Z. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In: International Conference on Machine Learning. 2016. p.
1050–1059.

Galassi, A.; Lippi, M.; Torroni, P. Attention, please! a critical review of neural attention
models in natural language processing. arXiv preprint arXiv:1902.02181, 2019.

Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. California, USA: O’Reilly
Media, 2019.

References 122

Gessert, N.; Nielsen, M.; Shaikh, M.; Werner, R.; Schlaefer, A. Skin lesion classification
using ensembles of multi-resolution efficientNets with meta data. arXiv preprint
arXiv:1910.03910, 2019.

Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning. Cambridge, Massachusetts, USA:
MIT press, 2016.

Goodfellow, I. et al. Generative adversarial nets. In: Advances in Neural Information
Processing Systems. 2014. p. 2672–2680.

Green, A.; Martin, N.; Pfitzner, J.; O’Rourke, M.; Knight, N. Computer image analysis in
the diagnosis of melanoma. Journal of the American Academy of Dermatology, v. 31, n. 6,
p. 958–964, 1994.

Greenacre, M. J. Theory and Applications of Correspondence Analysis. London, United
Kingdom: London Academic Press, 1984.

Haenssle, H. A. et al. Man against machine: diagnostic performance of a deep learning
convolutional neural network for dermoscopic melanoma recognition in comparison to 58
dermatologists. Annals of Oncology, v. 29, n. 8, p. 1836–1842, 2018.

Hai, J. et al. Multi-level features combined end-to-end learning for automated pathological
grading of breast cancer on digital mammograms. Computerized Medical Imaging and
Graphics, v. 71, p. 58–66, 2019.

Han, S. S. et al. Classification of the clinical images for benign and malignant cutaneous
tumors using a deep learning algorithm. Journal of Investigative Dermatology, v. 138, n. 7,
p. 1529–1538, 2018.

Harangi, B. Skin lesion classification with ensembles of deep convolutional neural networks.
Journal of Biomedical Informatics, v. 86, p. 25–32, 2018.

Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Berlin, Germany: Springer Science & Business Media,
2009.

Haykin, S. Neural Networks and Learning Machines. 3. ed. New Jersey, USA: Pearson
Education Inc., 2010.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition. 2016. p. 770–778.

Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural
Computation, v. 14, n. 8, p. 1771–1800, 2002.

Hinton, G. E.; Salakhutdinov, R. R. Reducing the dimensionality of data with neural
networks. Science, v. 313, n. 5786, p. 504–507, 2006.

Ho, T. K.; Basu, M. Complexity measures of supervised classification problems. IEEE
Transactions on Pattern Analysis and Machine Intelligence, v. 24, n. 3, p. 289–300, 2002.

Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural computation, v. 9, n. 8,
p. 1735–1780, 1997.

References 123

Huang, G. et al. Snapshot ensembles: Train 1, get m for free. In: International Conference
on Learning Representations (ICLR). 2017. p. 1–14.

Huang, G.; Liu, Z.; Maaten, L. V. D.; Weinberger, K. Q. Densely connected convolutional
networks. In: IEEE Conference on Computer Vision and Pattern Recognition. 2017. p.
4700–4708.

Hubel, D. H.; Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex.
The Journal of Physiology, v. 148, n. 3, p. 574, 1959.

INCA. The cancer incidence in Brazil. 2020. National Institute of Can-
cer José Alencar Gomes (INCA). Last accessed 13 March 2020. Available
on: <https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document/
/estimativa-2020-incidencia-de-cancer-no-brasil.pdf>.

Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Irvin, J. et al. Chexpert: A large chest radiograph dataset with uncertainty labels and
expert comparison. In: AAAI Conference on Artificial Intelligence. 2019. v. 33, p. 590–597.

ISIC. Skin Lesion Analysis Towards Melanoma Detection. 2019. International
Skin Imaging Collaboration. Last accessed: 10 March 2020. Available on: <https:
//www.isic-archive.com>.

Ivakhnenko, A. G.; Lapa, V. G. Cybernetic Predicting Devices. Purdue University, School
of Electrical Engineering. West Lafayette, Indiana, USA, 1966.

James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning.
Berlin, Germany: Springer, 2013.

Jeffcock, P. What’s the Difference Between AI, Machine Learning, and Deep Learning?
2018. Last accessed: 16 March 2020. Available on: <https://blogs.oracle.com/bigdata/
difference-ai-machine-learning-deep-learning>.

Jégou, H.; Douze, M.; Schmid, C.; Pérez, P. Aggregating local descriptors into a compact
image representation. In: IEEE Conference on Computer Vision and Pattern Recognition.
2010. p. 3304–3311.

Jing, L.; Tian, Y. Self-supervised visual feature learning with deep neural networks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

Kabbai, L.; Abdellaoui, M.; Douik, A. Image classification by combining local and global
features. The Visual Computer, v. 35, n. 5, p. 679–693, 2019.

Kather, J. N. et al. Predicting survival from colorectal cancer histology slides using deep
learning: A retrospective multicenter study. PLOS Medicine, v. 16, n. 1, p. e1002730, 2019.

Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based
deep learning. Cell, v. 172, n. 5, p. 1122–1131, 2018.

Kharazmi, P.; Kalia, S.; Lui, H.; Wang, Z.; Lee, T. A feature fusion system for basal
cell carcinoma detection through data-driven feature learning and patient profile. Skin
Research and Technology, v. 24, n. 2, p. 256–264, 2018.

https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2020-incidencia-de-cancer-no-brasil.pdf
https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2020-incidencia-de-cancer-no-brasil.pdf
https://www.isic-archive.com
https://www.isic-archive.com
https://blogs.oracle.com/bigdata/difference-ai-machine-learning-deep-learning
https://blogs.oracle.com/bigdata/difference-ai-machine-learning-deep-learning

References 124

Kittler, H.; Pehamberger, H.; Wolff, K.; Binder, M. Diagnostic accuracy of dermoscopy.
The Lancet Oncology, v. 3, n. 3, p. 159–165, 2002.

Krawczyk, B.; Woźniak, M. Untrained weighted classifier combination with embedded
ensemble pruning. Neurocomputing, v. 196, p. 14–22, 2016.

Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems. 2012. p.
1097–1105.

Krogh, A.; Hertz, J. A. A simple weight decay can improve generalization. In: Advances
in Neural Information Processing Systems. 1992. p. 950–957.

Krohling, R. A.; Pacheco, A. G. A-TOPSIS – an approach based on TOPSIS for ranking
evolutionary algorithms. Procedia Computer Science, v. 55, p. 308–317, 2015.

Kullback, S.; Leibler, R. A. On information and sufficiency. The Annals of Mathematical
Statistics, JSTOR, v. 22, n. 1, p. 79–86, 1951.

Kuncheva, L. I. Combining Pattern Classifiers: Methods and Algorithms. New Jersey,
USA: John Wiley & Sons, 2014.

Larochelle, H.; Hinton, G. E. Learning to combine foveal glimpses with a third-order
Boltzmann machine. In: Advances in neural information processing systems. 2010. p.
1243–1251.

LeCun, Y.; Bengio, Y. et al. Convolutional networks for images, speech, and time series.
The handbook of Brain Theory and Neural Networks, n. 10, p. 1–12, 1995.

LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural
Computation, v. 1, n. 4, p. 541–551, 1989.

LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, v. 86, n. 11, p. 2278–2324, 1998.

Li, C.; Wu, X.; Zhao, N.; Cao, X.; Tang, J. Fusing two-stream convolutional neural
networks for RGB-T object tracking. Neurocomputing, v. 281, p. 78–85, 2018.

Li, F.; Johnson, J.; Yeung, S. et al. Convolutional Neural Networks for Visual Recognition
CS231n. Stanford University, 2019. Last accessed: 15 March 2020. Available on:
<http://cs231n.stanford.edu/>.

Li, K.; Wu, Z.; Peng, K.-C.; Ernst, J.; Fu, Y. Guided attention inference network. IEEE
Transactions on Pattern Analysis and Machine Intelligence, v. 42, p. 2996–3010, 2019.

Li, W.; Zhuang, J.; Wang, R.; Zhang, J.; Zheng, W.-S. Fusing metadata and dermoscopy
images for skin disease diagnosis. In: IEEE International Symposium on Biomedical
Imaging. 2020. p. 1996–2000.

Lin, G.; Fan, G.; Kang, X.; Zhang, E.; Yu, L. Heterogeneous feature structure fusion for
classification. Pattern Recognition, v. 53, p. 1–11, 2016.

Lin, T.-Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN models for fine-grained visual
recognition. In: IEEE International Conference on Computer Vision. 2015. p. 1449–1457.

http://cs231n.stanford.edu/

References 125

Litjens, G. et al. A survey on deep learning in medical image analysis. Medical Image
Analysis, v. 42, p. 60–88, 2017.

Liu, Y.; Chen, X.; Cheng, J.; Peng, H. A medical image fusion method based on
convolutional neural networks. In: IEEE International Conference on Information Fusion.
2017. p. 1–7.

Liu, Y. et al. A deep learning system for differential diagnosis of skin diseases. arXiv
preprint arXiv:1909.05382, 2019.

Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic
segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. 2015. p.
3431–3440.

Lovelace, A. C. Translator’s notes to an article on Babbage’s analytical engine. Scientific
Memoirs, v. 3, p. 691–731, 1842.

Lowe, D. G. Object recognition from local scale-invariant features. In: IEEE Conference
on Computer Vision and Pattern Recognition. 1999. v. 2, p. 1150–1157.

Maaten, L. V. D.; Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning
Research, v. 9, p. 2579–2605, 2008.

Maesschalck, R. D.; Jouan-Rimbaud, D.; Massart, D. L. The Mahalanobis distance.
Chemometrics and Intelligent Laboratory Systems, v. 50, n. 1, p. 1–18, 2000.

Maglogiannis, I.; Delibasis, K. K. Enhancing classification accuracy utilizing globules and
dots features in digital dermoscopy. Computer Methods and Programs in Biomedicine,
v. 118, n. 2, p. 124–133, 2015.

Majtner, T.; Yildirim-Yayilgan, S.; Hardeberg, J. Y. Combining deep learning and
hand-crafted features for skin lesion classification. In: IEEE Conference on Image
Processing Theory, Tools and Applications. 2016. p. 1–6.

Marghoob, A. A.; Usatine, R. P.; Jaimes, N. Dermoscopy – two step algorithm.
2020. Last accessed: 17 June 2020. Available on: <https://usatinemedia.com/app/
dermoscopy-two-step-algorithm/>.

Masood, A.; Al-Jumaily, A. A. Computer aided diagnostic support system for skin cancer:
a review of techniques and algorithms. International Journal of Biomedical Imaging,
Hindawi, v. 2013, n. ID 323268, p. 1–22, 2013.

Masoudnia, S.; Ebrahimpour, R. Mixture of experts: a literature survey. Artificial
Intelligence Review, v. 42, n. 2, p. 275–293, 2014.

Mavrovouniotis, M.; Yang, S. Training neural networks with ant colony optimization
algorithms for pattern classification. Soft Computing, v. 19, n. 6, p. 1511–1522, 2015.

Mayor, A. Gods and Robots: Myths, Machines, and Ancient Dreams of Technology.
Princeton, New Jersey: Princeton University Press, 2018.

Merz, C. J. Using correspondence analysis to combine classifiers. Machine Learning, v. 36,
n. 1-2, p. 33–58, 1999.

https://usatinemedia.com/app/dermoscopy-two-step-algorithm/
https://usatinemedia.com/app/dermoscopy-two-step-algorithm/

References 126

Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781, 2013.

Miller, G. F.; Todd, P. M.; Hegde, S. U. Designing neural networks using genetic
algorithms. In: International Conference on Genetic Algorithms. 1989. v. 89, p. 379–384.

Minka, T. Estimating a Dirichlet distribution. 2012. MIT Technical report. Last accessed:
15 March 2020. Available on: <https://tminka.github.io/papers/dirichlet/minka-dirichlet.
pdf>.

Minsky, M. Steps toward artificial intelligence. IEEE proceedings of the IRE, v. 49, n. 1, p.
8–30, 1961.

Minsky, M.; Papert, S. Perceptrons. Cambridge, USA: MIT Press, 1969. v. 1.

Mitchell, T. M. Machine learning. New York, USA: McGraw-hill, 1997.

Myung, I. J. Tutorial on maximum likelihood estimation. Journal of Mathematical
Psychology, v. 47, n. 1, p. 90–100, 2003.

Nanni, L.; Costa, Y. M.; Lumini, A.; Kim, M. Y.; Baek, S. R. Combining visual and
acoustic features for music genre classification. Expert Systems with Applications, v. 45, p.
108–117, 2016.

Nassif, A. B.; Shahin, I.; Attili, I.; Azzeh, M.; Shaalan, K. Speech recognition using deep
neural networks: A systematic review. IEEE Access, v. 7, p. 19143–19165, 2019.

Ng, A. et al. Sparse autoencoder. CS294A Lecture notes, Stanford University, v. 72, p.
1–19, 2011.

Ng, K. W.; Tian, G.-L.; Tang, M.-L. Dirichlet and Related Distributions: Theory, Methods
and Applications. New Jersey, USA: John Wiley & Sons, 2011. v. 888.

Nguyen, D. T.; Pham, T. D.; Baek, N. R.; Park, K. R. Combining deep and handcrafted
image features for presentation attack detection in face recognition systems using
visible-light camera sensors. Sensors, v. 18, n. 3, p. 699, 2018.

Nguyen, T. T.; Liew, A. W.-C.; Tran, M. T.; Pham, X. C.; Nguyen, M. P. A novel
genetic algorithm approach for simultaneous feature and classifier selection in multi
classifier system. In: 2014 IEEE Congress on Evolutionary Computation (CEC). 2014. p.
1698–1705.

Nguyen, T. T.; Luong, A. V.; Dang, M. T.; Liew, A. W.-C.; McCall, J. Ensemble selection
based on classifier prediction confidence. Pattern Recognition, v. 100, p. 104–107, 2020.

Nida, N.; Irtaza, A.; Javed, A.; Yousaf, M. H.; Mahmood, M. T. Melanoma lesion
detection and segmentation using deep region based convolutional neural network and
fuzzy c-means clustering. International Journal of Medical Informatics, v. 124, p. 37–48,
2019.

Niu, X.-X.; Suen, C. Y. A novel hybrid CNN–SVM classifier for recognizing handwritten
digits. Pattern Recognition, v. 45, n. 4, p. 1318–1325, 2012.

https://tminka.github.io/papers/dirichlet/minka-dirichlet.pdf
https://tminka.github.io/papers/dirichlet/minka-dirichlet.pdf

References 127

Oh, K.; Chung, Y.-C.; Kim, K. W.; Kim, W.-S.; Oh, I.-S. Classification and visualization
of Alzheimer’s disease using volumetric convolutional neural network and transfer learning.
Scientific Reports, v. 9, n. 1, p. 1–16, 2019.

Olah, C. Understanding LSTM Networks. 2015. Last accessed: 18 March 2020. Available
on: <http://colah.github.io/posts/2015-08-Understanding-LSTMs>.

Oliveira, D. V.; Cavalcanti, G. D.; Sabourin, R. Online pruning of base classifiers for
dynamic ensemble selection. Pattern Recognition, v. 72, p. 44–58, 2017.

Oliveira, R. B.; Papa, J. P.; Pereira, A. S.; Tavares, J. M. R. Computational methods for
pigmented skin lesion classification in images: review and future trends. Neural Computing
and Applications, v. 29, n. 3, p. 613–636, 2018.

Ortega, J. D. et al. Multimodal fusion with deep neural networks for audio-video emotion
recognition. arXiv preprint arXiv:1907.03196, 2019.

Pacheco, A. G.; Ali, A.-R.; Trappenberg, T. Skin cancer detection based on deep learning
and entropy to detect outlier samples. In: Medical Image Computing and Computer
Assisted Intervention (MICCAI) at Skin Lesion Analysis Towards Melanoma Detection
(ISIC) challenge. 2019. p. 1–6.

Pacheco, A. G.; Krohling, R. A. Aggregation of neural classifiers using Choquet integral
with respect to a fuzzy measure. Neurocomputing, v. 292, p. 151–164, 2018.

Pacheco, A. G.; Krohling, R. A. An approach to improve online sequential extreme
learning machines using restricted Boltzmann machines. In: IEEE International Joint
Conference on Neural Networks. 2018. p. 1–8.

Pacheco, A. G.; Krohling, R. A. Recent advances in deep learning applied to skin cancer
detection. In: Neural Information Processing Systems at Retrospectives workshop. 2019.
p. 1–8.

Pacheco, A. G.; Krohling, R. A. The impact of patient clinical information on automated
skin cancer detection. Computers in Biology and Medicine, v. 116, p. 103545, 2020.

Pacheco, A. G.; Krohling, R. A. Learning dynamic weights for an ensemble of deep models
applied to medical imaging classification. In: IEEE International Joint Conference on
Neural Networks. 2020. p. 1–8.

Pacheco, A. G.; Krohling, R. A.; Silva, C. A. da. Restricted Boltzmann machine
to determine the input weights for extreme learning machines. Expert Systems with
Applications, v. 96, p. 77–85, 2018.

Pacheco, A. G. et al. PAD-UFES-20: a skin lesion dataset composed of patient data and
clinical images collected from smartphones. Data in Brief, v. 32, p. 1–10, 2020.

Pacheco, A. G.; Sastry, C. S.; Trappenberg, T.; Oore, S.; Krohling, R. A. On
out-of-distribution detection algorithms with deep neural skin cancer classifiers. In:
IEEE Computer Vision and Pattern Recognition (CVPR) at ISIC Skin Image Analysis
Workshop. 2020. p. 1–10.

http://colah.github.io/posts/2015-08-Understanding-LSTMs

References 128

Pacheco, A. G. C. et al. PAD-UFES-20: a skin lesion dataset composed of patient data
and clinical images collected from smartphones. 2020. Mendeley Data, v1. Available on:
<http://dx.doi.org/10.17632/zr7vgbcyr2.1.>

Partalas, I.; Tsoumakas, G.; Vlahavas, I. P. Focused ensemble selection: A diversity-based
method for greedy ensemble selection. In: European Conference on Artificial Intelligence.
2008. p. 117–121.

Pedregosa, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.

Perez, F.; Avila, S.; Valle, E. Solo or ensemble? choosing a CNN architecture for melanoma
classification. In: IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 2019. p. 1–9.

Perez, F.; Vasconcelos, C.; Avila, S.; Valle, E. Data augmentation for skin lesion analysis.
In: Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical
Image-Based Procedures, and Skin Image Analysis. 2018. p. 303–311.

Perronnin, F.; Sánchez, J.; Mensink, T. Improving the Fisher kernel for large-scale image
classification. In: European Conference on Computer Vision. 2010. p. 143–156.

Pogorelov, K. et al. Deep learning and handcrafted feature based approaches for automatic
detection of angiectasia. In: IEEE International Conference on Biomedical & Health
Informatics. 2018. p. 365–368.

Polikar, R. Ensemble based systems in decision making. IEEE Circuits and Systems
Magazine, v. 6, n. 3, p. 21–45, 2006.

Qian, N. On the momentum term in gradient descent learning algorithms. Neural
Networks, v. 12, n. 1, p. 145–151, 1999.

Qummar, S. et al. A deep learning ensemble approach for diabetic retinopathy detection.
IEEE Access, v. 7, p. 150530–150539, 2019.

Quost, B.; Masson, M.-H.; Denœux, T. Classifier fusion in the Dempster–Shafer framework
using optimized t-norm based combination rules. International Journal of Approximate
Reasoning, v. 52, n. 3, p. 353–374, 2011.

Radford, A. et al. Language models are unsupervised multitask learners. OpenAI Blog,
v. 1, n. 8, p. 9, 2019.

Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding transfer
learning for medical imaging. In: Advances in Neural Information Processing Systems.
2019. p. 3342–3352.

Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A
comprehensive review. Neural Computation, v. 29, n. 9, p. 2352–2449, 2017.

Rere, L. R.; Fanany, M. I.; Arymurthy, A. M. Simulated annealing algorithm for deep
learning. Procedia Computer Science, v. 72, n. 1, p. 137–144, 2015.

Rodrigues, F.; Markou, I.; Pereira, F. C. Combining time-series and textual data for taxi
demand prediction in event areas: A deep learning approach. Information Fusion, v. 49, p.
120–129, 2019.

http://dx.doi.org/10.17632/zr7vgbcyr2.1.

References 129

Rodríguez, P.; Gonfaus, J. M.; Cucurull, G.; XavierRoca, F.; Gonzalez, J. Attend and
rectify: a gated attention mechanism for fine-grained recovery. In: European Conference
on Computer Vision (ECCV). 2018. p. 349–364.

Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical
image segmentation. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. 2015. p. 234–241.

Ronning, G. Maximum likelihood estimation of Dirichlet distributions. Journal of
Statistical Computation and Simulation, v. 32, n. 4, p. 215–221, 1989.

Rosenblatt, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, American Psychological Association, v. 65,
n. 6, p. 386, 1958.

Rosenblatt, F. Principles of Neurodynamics. Perceptrons and the Theory of Brain
Mechanisms. Cornell Aeronautical Lab Inc. Buffalo, NY, USA, 1961.

Ruder, S. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning internal representations by
error propagation. University of California, San Diego, California, USA, 1985.

Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning representations by
back-propagating errors. Nature, v. 323, n. 6088, p. 533–536, 1986.

Sabour, S.; Frosst, N.; Hinton, G. E. Dynamic routing between capsules. In: Advances in
Neural Information Processing Systems. 2017. p. 3856–3866.

Sabourin, M.; Mitiche, A.; Thomas, D.; Nagy, G. Classifier combination for hand-printed
digit recognition. In: IEEE International Conference on Document Analysis and
Recognition. 1993. p. 163–166.

Sahlsten, J. et al. Deep learning fundus image analysis for diabetic retinopathy and
macular edema grading. Scientific reports, v. 9, n. 1, p. 1–11, 2019.

Salimans, T.; Ho, J.; Chen, X.; Sidor, S.; Sutskever, I. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted
residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern
Pecognition. 2018. p. 4510–4520.

Santos, E. M. D.; Sabourin, R. Classifier ensembles optimization guided by population
oracle. In: 2011 IEEE Congress of Evolutionary Computation (CEC). 2011. p. 693–698.

Schapire, R. E.; Freund, Y.; Bartlett, P.; Lee, W. S. et al. Boosting the margin: A new
explanation for the effectiveness of voting methods. The Annals of Statistics, v. 26, n. 5, p.
1651–1686, 1998.

Scharcanski, J.; Celebi, M. E. Computer Vision Techniques for the Diagnosis of Skin
Cancer. Berlin, Germany: Springer Science & Business Media, 2013.

References 130

Scheffler, R. M.; Liu, J. X.; Kinfu, Y.; Poz, M. R. D. Forecasting the global shortage
of physicians: an economic-and needs-based approach. Bulletin of the World Health
Organization, SCIELO Public Health, v. 86, p. 516–523B, 2008.

Schmidhuber, J. Learning factorial codes by predictability minimization. Neural
Computation, v. 4, n. 6, p. 863–879, 1992.

Schmidhuber, J. Deep learning in neural networks: An overview. Neural networks, v. 61, p.
85–117, 2015.

Sebah, P.; Gourdon, X. Introduction to the gamma function. American Journal of
Scientific Research, p. 2–18, 2002.

Sejnowski, T. J. The Deep Learning Revolution: Artificial Intelligence Meets Human
Intelligence. Cambridge, Massachusetts, USA: MIT press, 2018.

Serte, S.; Demirel, H. Gabor wavelet-based deep learning for skin lesion classification.
Computers in Biology and Medicine, p. 103423, 2019.

Shen, L. et al. Deep learning to improve breast cancer detection on screening
mammography. Scientific reports, v. 9, n. 1, p. 1–12, 2019.

Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. CA: A Cancer Journal for
Clinicians, v. 69, n. 1, p. 7–34, 2019.

Sierra, S.; González, F. A. Combining textual and visual representations for multimodal
author profiling. Working Notes Papers of the CLEF, v. 2125, p. 219–228, 2018.

Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sinz, C. et al. Accuracy of dermatoscopy for the diagnosis of nonpigmented cancers of the
skin. Journal of the American Academy of Dermatology, v. 77, n. 6, p. 1100–1109, 2017.

Smola, A.; Vishwanathan, S. Introduction to Machine Learning. Cambridge, United
Kingdom: Cambridge University Press, 2008.

Solem, J. E. Programming Computer Vision with Python: Tools and Algorithms for
Analyzing Images. Cambridge, USA: O’Reilly Media, Inc., 2012.

Spyridonos, P.; Gaitanis, G.; Likas, A.; Bassukas, I. D. Automatic discrimination of
actinic keratoses from clinical photographs. Computers in Biology and Medicine, v. 88, p.
50–59, 2017.

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a
simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, v. 15, n. 1, p. 1929–1958, 2014.

Staudemeyer, R. C.; Morris, E. R. Understanding LSTM – a tutorial into long short-term
memory recurrent neural networks. arXiv preprint arXiv:1909.09586, 2019.

Štefka, D.; Holeňa, M. Dynamic classifier aggregation using interaction-sensitive fuzzy
measures. Fuzzy Sets and Systems, v. 270, p. 25–52, 2015.

References 131

Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. A. Inception-v4, Inception-Resnet and the
impact of residual connections on learning. In: AAAI Conference on Artificial Intelligence.
2017. p. 4278–4284.

Szegedy, C. et al. Going deeper with convolutions. In: IEEE Conference on Computer
Vision and Pattern Recognition. 2015. p. 1–9.

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception
architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern
Recognition. 2016. p. 2818–2826.

Tan, M.; Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Trappenberg, T. Fundamentals of Computational Neuroscience. New York, USA: Oxford
University Press, 2009.

Tschandl, P. et al. Comparison of the accuracy of human readers versus machine-learning
algorithms for pigmented skin lesion classification: an open, web-based, international,
diagnostic study. The Lancet Oncology, v. 20, n. 7, p. 938–947, 2019.

Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of
multi-source dermatoscopic images of common pigmented skin lesions. Nature Scientific
Data, v. 5, 2018.

Turing, A. Computer machinery and intelligence. Mind - A Quarterly Review of
Psychology and Philosophy, n. 236, p. 433–460, 1950.

Udrea, A. et al. Accuracy of a smartphone application for triage of skin lesions based
on machine learning algorithms. Journal of the European Academy of Dermatology and
Venereology, v. 34, n. 3, p. 648–655, 2020.

Umbaugh, S. E.; Moss, R. H.; Stoecker, W. V.; Hance, G. A. Automatic color segmentation
algorithms with application to skin tumor feature identification. IEEE Engineering in
Medicine and Biology Magazine, v. 12, n. 3, p. 75–82, 1993.

Valle, E. et al. Data, depth, and design: Learning reliable models for skin lesion analysis.
Neurocomputing, v. 383, p. 303–313, 2020.

Vasconcelos, C. N.; Vasconcelos, B. N. Experiments using deep learning for dermoscopy
image analysis. Pattern Recognition Letters, 2017.

Vaswani, A. et al. Attention is all you need. In: Advances in Neural Information Processing
Systems. 2017. p. 5998–6008.

Vinyals, O. et al. Grandmaster level in starcraft II using multi-agent reinforcement
learning. Nature, v. 575, n. 7782, p. 350–354, 2019.

Viswanath, S. E. et al. Dimensionality reduction-based fusion approaches for imaging and
non-imaging biomedical data: concepts, workflow, and use-cases. BMC Medical Imaging,
v. 17, n. 1, p. 2, 2017.

Wang, C.; Elazab, A.; Wu, J.; Hu, Q. Lung nodule classification using deep feature fusion
in chest radiography. Computerized Medical Imaging and Graphics, v. 57, p. 10–18, 2017.

References 132

Werner, B. Biópsia de pele e seu estudo histológico: Por quê? para quê? como? Anais
Brasileiros de Dermatologia, SCIELO Brasil, v. 84, n. 5, p. 507–513, 2009.

WHO. How common is the skin cancer? 2019. World Health Organization (WHO). Last
accessed: 10 March 2020. Available on: <http://www.who.int/uv/faq/skincancer/en/
index1.html>.

Wighton, P.; Lee, T. K.; Lui, H.; McLean, D. I.; Atkins, M. S. Generalizing common tasks
in automated skin lesion diagnosis. IEEE Transactions on Information Technology in
Biomedicine, v. 15, n. 4, p. 622–629, 2011.

Wolff, K.; Johnson, R. A.; Saavedra, A. P.; Roh, E. K. Fitzpatrick’s Color Atlas and
Synopsis of Clinical Dermatology. 8. ed. New York, USA: McGraw-Hill Education, 2017.

Wolpert, D. H. Stacked generalization. Neural networks, v. 5, n. 2, p. 241–259, 1992.

Wolpert, D. H. The lack of a priori distinctions between learning algorithms. Neural
Computation, v. 8, n. 7, p. 1341–1390, 1996.

Woods, K.; Kegelmeyer, W. P.; Bowyer, K. Combination of multiple classifiers using local
accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence,
v. 19, n. 4, p. 405–410, 1997.

Wu, H.; Zhang, J.; Huang, K.; Liang, K.; Yu, Y. FastFCN: Rethinking dilated convolution
in the backbone for semantic segmentation. arXiv preprint arXiv:1903.11816, 2019.

Wu, J. M.-T. et al. Applying an ensemble convolutional neural network with
Savitzky–Golay filter to construct a phonocardiogram prediction model. Applied Soft
Computing, v. 78, p. 29–40, 2019.

Wu, X.; Sahoo, D.; Hoi, S. C. Recent advances in deep learning for object detection.
Neurocomputing, v. 396, p. 39–64, 2020.

Xiao, Y.; Wu, J.; Lin, Z.; Zhao, X. A deep learning-based multi-model ensemble method
for cancer prediction. Computer Methods and Programs in Biomedicine, v. 153, p. 1–9,
2018.

Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based
natural language processing. IEEE Computational Intelligence Magazine, v. 13, n. 3, p.
55–75, 2018.

Ypma, T. J. Historical development of the Newton–Raphson method. SIAM review, v. 37,
n. 4, p. 531–551, 1995.

Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.-A. Automated melanoma recognition in
dermoscopy images via very deep residual networks. IEEE Transactions on Medical
Imaging, v. 36, n. 4, p. 994–1004, 2017.

Yu, Z. et al. Melanoma recognition in dermoscopy images via aggregated deep
convolutional features. IEEE Transactions on Biomedical Engineering, v. 66, n. 4, p.
1006–1016, 2019.

Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

http://www.who.int/uv/faq/skincancer/en/index1.html
http://www.who.int/uv/faq/skincancer/en/index1.html

References 133

Zhang, A.; Lipton, Z. C.; Li, M.; Smola, A. J. Dive into deep learning. D2L AI,
Pennsylvania, USA, v. 1, p. 977, 2020.

Zhang, L.; Xie, Y.; Xidao, L.; Zhang, X. Multi-source heterogeneous data fusion. In: IEEE
International Conference on Artificial Intelligence and Big Data. 2018. p. 47–51.

Zhou, K.; Greenspan, H.; Dinggang, S. Deep Learning for Medical Image Analysis. 1. ed.
Cambridge, USA: Academic Press, 2017.

134

APPENDIX A – Software to collect and
analyze clinical skin cancer images and patient

data

In this appendix, we describe the software developed to collect the PAD-UFES-20
dataset. As presented in Section 5.1, the PAD takes place in 11 different countryside cities
in the Espírito Santo state. Most of these places are rural areas and do not have internet
access, which is an important requisite to take into account. In this context, the software
infrastructure is composed of three main parts: a local web-server, a remote web-server,
and a multi-platform smartphone application. Basically, all data is collected using the
smartphone application, which locally connects to the local web-server to store the data.
After the data collection is done, as soon as the local web-server gets access to the internet,
it synchronizes all data with remote one. In the following, we present a brief description of
each system.

A.1 Smartphone-based application
In order to collect the data from the patients, we developed a smartphone-based

application for both Android1 and iPhone2 platforms. The app was developed using React-
Native3, which is an open-source library, based on Javascript4, for building user interfaces
for both platforms. In Figure 47 is depicted some screenshots of the application using the
Android version.

The application is used by clinicians and medical students to collect both skin
lesion images and clinical data, such as patient’s age, lesion’s size, the part of the body
where the lesion is located, if the lesion itches, among others. After data collection, the
application connects to the local web system to transfer all data from the smartphone
device to the online server.
1 Available on <https://play.google.com/store/apps/details?id=ufes.pad.app>
2 Available on <https://apps.apple.com/br/app/pad-ufes/id1388412988>
3 <https://reactnative.dev/>
4 <https://www.javascript.com/>

https://play.google.com/store/apps/details?id=ufes.pad.app
https://apps.apple.com/br/app/pad-ufes/id1388412988
https://reactnative.dev/
https://www.javascript.com/

APPENDIX A. Software to collect and analyze clinical skin cancer images and patient data 135

Figure 47 – Screenshots of the smartphone application used to collect skin lesion images
and patient data.

Figure 48 – A schematic diagram describing the relationship between front-end and back-
end.

A.2 Web-based system
To store all data collected from PAD, we developed a web-based system5 that works

as a webserver and offers a friendly interface to clinicians to analyze the collected data. The
system was developed using two main frameworks: Angular6 and SpringBoot7. Angular is
open-source framework, based on Typescript8, for developing efficient and sophisticated
single-page applications. It is used in our front-end side. On the other hand, the back-end
was built using SpringBoot9, which is also an open-source framework, based on Java10,
that is used to create a micro service on the server side. In addition, it is responsible to
manage the database system, which is built using MySQL11. In Figure 48 is illustrated
the relationship between front-end and back-end.
5 Available on <https://labcin.ufes.br/sade>
6 <https://angular.io/>
7 <https://spring.io/projects/spring-boot>
8 <https://www.typescriptlang.org/>
9 <https://spring.io/>
10 <https://www.java.com>
11 <https://www.mysql.com/>

https://labcin.ufes.br/sade
https://angular.io/
https://spring.io/projects/spring-boot
https://www.typescriptlang.org/
https://spring.io/
https://www.java.com
https://www.mysql.com/

APPENDIX A. Software to collect and analyze clinical skin cancer images and patient data 136

Figure 49 – A screenshot of the web-system used to store and track all skin lesions and
patient data.

Beyond store all data in an organized and structured way, this system is important
to keep tracking patient lesions, since evolution is an important feature to pay attention
on skin cancer detection. Also, it helps clinicians with statistics about lesions and patients.
These data are important to understand and improve the quality of the program. Lastly,
it is possible to know the dermatologists’ performance in detecting skin cancer. Therefore,
the system is a significant contribution since it provides important information to PAD
and will allow further research in the future.

137

APPENDIX B – Supplementary material

In this appendix, we present supplementary material regarding the sensitivity
analysis of the combination factor – described in Section 3.2 –, ablation tests for the
Meta-data Processing Block (MetaBlock) – introduced in Section 3.3 –, and convergence
tests to assess the Dirichlet distribution estimation algorithm – described in Section 4.1.
Lastly, we present the remaining plots of confusion matrix and ROC curves for the models
used in the case study.

B.1 Sensitivity analysis of the combination factor
The goal of this section is to assess the contribution of the extracted features and

the meta-data considering the same experimental setup employed to the PAD-UFES-20
case study presented in Chapter 5. As previously described, the total number of clinical
features (dmeta) after the one-hot-encoding is 81. To vary only the number of selected
image features (h) – see Section 3.2 –, we keep dmeta and vary cf from 0.5 to 0.9. In Table
21 is presented the amount of features for each source according to cf – see Equation 3.4
for more information.

cf h dmeta tfeat
0.5 81 81 162
0.6 121 81 202
0.7 189 81 270
0.8 324 81 405
0.9 728 81 809

Table 21 – The number of features from both sources varying the combination factor cf
.

In order to assess each value of cf presented in Table 21, we trained all five models
described in Section 5.2.2, they are EfficientNet-B4, DenseNet-121, MobileNet-v2, ResNet-
50, and VGGNet-13, on PAD-UFES-20 dataset considering all values of cf . The result for
each metric is detailed in Table 22. As we can see, the results for all values of cf presents
similar performance, in particular for values above 0.7.

We performed the Friedman test considering the BACC metric for all cf ≥ 0.7.
The result of the test indicates that there is no statistical difference among these cf values.
In this context, we conclude that any value within [0.7, 0.9] could be used to combine
both types of data. We decided to use cf = 0.8 for our experiments because, as previously
discussed, the meta-data, in particular for skin cancer detection, should be used as a
support source of information. The features extracted from images are still the main source.

APPENDIX B. Supplementary material 138

cf = 0.5
Model ACC BACC AUC Loss

EfficientNet-b4 0.772± 0.018 0.749± 0.038 0.947± 0.006 0.655± 0.041
DenseNet-121 0.723± 0.050 0.73± 0.0340 0.925± 0.007 0.796± 0.076
MobileNet-v2 0.741± 0.0170 0.743± 0.0200 0.943± 0.006 0.646± 0.047
ResNet-50 0.719± 0.039 0.708± 0.038 0.918± 0.011 0.845± 0.064
VGGNet-13 0.725± 0.064 0.728± 0.032 0.928± 0.008 0.778± 0.118

cf = 0.6
Model ACC BACC AUC Loss

EfficientNet-b4 0.762± 0.019 0.759± 0.017 0.942± 0.004 0.645± 0.018
DenseNet-121 0.707± 0.043 0.739± 0.026 0.926± 0.006 0.800± 0.094
MobileNet-v2 0.743± 0.028 0.76± 0.0060 0.938± 0.005 0.689± 0.064
ResNet-50 0.75± 0.0100 0.726± 0.014 0.928± 0.006 0.827± 0.070
VGGNet-13 0.709± 0.039 0.735± 0.020 0.923± 0.003 0.799± 0.059

cf = 0.7
Model ACC BACC AUC Loss

EfficientNet-b4 0.758± 0.040 0.761± 0.015 0.943± 0.005 0.632± 0.066
DenseNet-121 0.678± 0.028 0.723± 0.028 0.919± 0.008 0.878± 0.110
MobileNet-v2 0.733± 0.031 0.751± 0.021 0.936± 0.004 0.704± 0.046
ResNet-50 0.748± 0.035 0.731± 0.020 0.929± 0.007 0.857± 0.136
VGGNet-13 0.747± 0.024 0.75± 0.0120 0.926± 0.006 0.744± 0.049

cf = 0.8
Model ACC BACC AUC Loss

EfficientNet-b4 0.765± 0.032 0.758± 0.012 0.945± 0.005 0.637± 0.053
DenseNet-121 0.742± 0.035 0.747± 0.019 0.932± 0.005 0.786± 0.057
MobileNet-v2 0.738± 0.026 0.741± 0.017 0.927± 0.007 0.767± 0.087
ResNet-50 0.741± 0.014 0.728± 0.029 0.929± 0.006 0.833± 0.080
VGGNet-13 0.712± 0.035 0.720± 0.0180 0.929± 0.002 0.765± 0.051

cf = 0.9
Model ACC BACC AUC Loss

EfficientNet-b4 0.735± 0.038 0.734± 0.068 0.938± 0.016 0.711± 0.017
DenseNet-121 0.723± 0.040 0.728± 0.028 0.921± 0.007 0.868± 0.087
MobileNet-v2 0.734± 0.023 0.741± 0.020 0.932± 0.004 0.71± 0.0370
ResNet-50 0.747± 0.014 0.727± 0.018 0.93± 0.0050 0.843± 0.045
VGGNet-13 0.720± 0.024 0.734± 0.012 0.919± 0.008 0.803± 0.034

Table 22 – All CNN models performance considering different values for cf
.

In this sense, the method assumes that this statement may be achieved by considering
80% of the final features coming from the image.

B.2 Assessing the contribution of each connection gate in the
Meta-data Processing Block (MetaBlock)
In this section, we aim to assess the contribution of each gate in the Meta-data

Processing Block (MetaBlock) architecture described in Section 3.3. To better understand

APPENDIX B. Supplementary material 139

Figure 50 – Adding connection breakers (red X) into the MetaBlock in order to assess the
contribution of each gate.

this section, let us modify Figure 21 to get Figure 50. In the previous experiments, we
performed the MetaBlock considering both sigmoid and hyperbolic tangent gates. In this
section, we perform the block removing a gate connection per time, i.e., first, we perform
the block cutting the hyperbolic tangent connection; next, we cut the sigmoid one and
connect the tangent directly to the output. These two experiments are illustrated in Figure
50. Imagine each red X as a connection breaker. To remove the sigmoid connection, we
activate 1 and 2 and connect tanh to the output. On the other hand, to remove the tangent
connection, we activate 1 and deactivate 2. It is worth noting that by removing a gate we
are also intentionally removing the scaling and shifting operation, as we can note in the
figure.

We perform both experiments using the same Deep Learning models described
in the case study. All models are also trained on PAD-UFES-20 dataset considering the
modification on the MetaBlock. In Table 23 and 24 are presented the performance of each
model considering only the sigmoid connection and the hyperbolic tangent connection,
respectively. In Table 25 is presented the comparison of the MetaBlock considering only one
and both connections. As we can note, the results considering only the sigmoid connection
are slightly better than considering only the hyperbolic tangent one. In general, the average
BACC is higher and the loss is lower. Nonetheless, the difference is not enough to conclude
that this connection is more relevant to the block. Essentially, both connections are playing
important roles in the block. The results in Table 25 support this statement. As we may
observe, both connections contribute to MetaBlock for achieving better performance. For
all models, except MobileNet-v2, the average BACC is higher when both connections are
employed.

APPENDIX B. Supplementary material 140

Considering only the sigmoid connection
Model ACC BACC AUC Loss

EfficientNet-B4 0.655± 0.028 0.706± 0.021 0.922± 0.007 0.856± 0.045
DenseNet-121 0.695± 0.026 0.728± 0.022 0.931± 0.004 0.774± 0.050
MobileNet-v2 0.759± 0.019 0.768± 0.024 0.943± 0.003 0.642± 0.018
ResNet-50 0.696± 0.048 0.721± 0.024 0.929± 0.005 0.797± 0.110
VGGNet-13 0.698± 0.036 0.733± 0.034 0.935± 0.009 0.768± 0.081

Table 23 – Deep learning models’ performance using the MetaBlock considering only the
sigmoid connection.

Considering only the hyperbolic tangent connection
Model ACC BACC AUC Loss

EfficientNet-B4 0.676± 0.023 0.685± 0.024 0.897± 0.010 0.903± 0.076
DenseNet-121 0.695± 0.024 0.736± 0.013 0.923± 0.009 0.828± 0.069
MobileNet-v2 0.730± 0.026 0.763± 0.020 0.937± 0.003 0.723± 0.031
ResNet-50 0.714± 0.024 0.719± 0.019 0.934± 0.007 0.734± 0.056
VGGNet-13 0.686± 0.032 0.727± 0.002 0.911± 0.014 0.869± 0.094

Table 24 – Deep learning models’ performance using the MetaBlock considering only the
tangent hyperbolyc connection.

Model Sigmoid Hyperbolic tangent Both
EfficientNet-B4 0.706± 0.021 0.685± 0.024 0.770± 0.016
DenseNet-121 0.728± 0.022 0.736± 0.013 0.746± 0.039
MobileNet-V2 0.768± 0.024 0.763± 0.020 0.754± 0.014
ResNet-50 0.721± 0.024 0.719± 0.019 0.765± 0.017
VGGNet-13 0.733± 0.034 0.727± 0.028 0.736± 0.018

Table 25 – Comparison of the MetaBlock performance in terms of BACC using only the
sigmoid, hyperbolic tangent, and both gates.

B.3 The impact of the MetaBlock in the size of the CNN models
In Table 26, we show the impact of the MetaBlock parameters in each CNN

model size using the PAD-UFES-20, the dataset that has the higher number of patient
demographics available. As we can see, the most impacted model is the VGG-13, in which
the MetaBlock increases it by only 0.85%, which is not relevant in terms of the model’s
training time.

Model Original Metablock Impact (%)
EfficientNet-B4 19,352,374 9,408 0,05%
DenseNet-121 6,960,006 5,376 0,08%
MobileNet-v2 2,231,558 6,720 0,30%
ResNet-50 23,520,326 10,752 0,05%
VGGNet-13 9,611,592 81,534 0,85%

Table 26 – The impact of the MetaBlock parameters in each CNN models size.

APPENDIX B. Supplementary material 141

(a) Estimation error × number of samples (b) Estimation time × number of samples

Figure 51 – The performance of the Dirichlet distribution estimation algorithm in terms
of estimation error and time per number of samples.

B.4 Convergence tests of the Dirichlet distribution estimation al-
gorithm
In this section, we perform experiments to assess the convergence of the algorithm

described in Section 4.1.2 to estimate the Dirichlet distribution. We evaluate the algorithm
in terms of computational time and estimation error.

In the first experiments, we randomly select a Dirichlet distribution parameters
α = {α1, · · · , αk}, where k is the distribution’s dimension. Next, we sample from this
distribution to generate a set of data D = {d1, · · · ,dn}, where d = {d1, · · · , dk} and n is
the number of samples. After sampling, we apply Algorithm 2 to estimate α̂ for D and we
measure the estimation error using the following relative error:

Error = | α̂−α |
| α̂ |

(B.1)

where | · | represents the vector norm.

We start by setting k = 5 and changing the number of samples n from 100 to
10,000 using a step of 100. We repeat this experiment 30 times. In Figure 51 is depicted
the plot of the estimator’s performance in terms of relative error and computational time
per number of samples. We can observe that even for a small number of samples, the
algorithm can estimate the distribution with an error of around 0.04. When the number of
samples is close to 2,000, the error decreases to around 0.01. In terms of the computational
time, for the maximum number of samples, 10,000, the computational time is around 4
seconds1, which shows the algorithm is pretty fast.
1 Experiments carried out using a machine with a i7 8Th generation processor and 8GB of RAM

APPENDIX B. Supplementary material 142

(a) Estimation error × dimension (b) Estimation time × dimension

Figure 52 – The performance of the Dirichlet distribution estimation algorithm in terms
of estimation error and time per dimension.

Now, we keep the number of samples n = 2, 000 and vary the dimension k from 3
to 100 using a step of 1. We also repeat this experiment 30 times. In Figure 52 is shown
the plot of the estimator’s performance in terms of relative error and computational time
per dimension. From the figure, we observe that the relative error starts around 0.05 and
decrease for higher dimensions. In terms of time, likewise the previous experiment, for the
maximum dimension, the algorithm converges after around 2.5 seconds.

To conclude this section, we perform an experiment to measure the estimation
competence for the ISIC 2019 dataset. We perform the ResNet-50 to 4,300 samples in the
dataset and use the posterior distribution obtained by the softmax to estimate the Dirichlet
distribution for this set. In this case, the dataset is our D with n = 4, 300 examples and
k = 8, which is the number of labels within the dataset. After estimating α̂, we sample
a new dataset D̂ from the estimated distribution and compute the Mean Squared Error
(MSE) between D and D̂ to check if the estimated data is close to the original one. In
Figure 53 is shown the scatter plot of both D and D̂ using Principal Component Analysis
(PCA) to reduce the data dimension from 8 to 2. As we can note, the data inferred from
the estimated distribution is close to the original one and overlap the original samples in
many cases. This difference is reflected by the MSE error which returned 0.087 for this
experiment. The estimation time is around 3 seconds, which is in line with the previous
experiments and shows that the algorithm is also fast for non-sintetic data.

B.5 Confusion matrices and ROC curves
In Section 5.2.2 of the case study, when we analyze the results for the combination

of image and meta-data approaches, we presented the confusion matrix and ROC curve
plots only for ResNet-50. In this section, we present the rest of the plots for DenseNet-121,

APPENDIX B. Supplementary material 143

Figure 53 – The scatter plot of the original and estimated data using the Dirichlet distri-
bution.

EfficientNet-b4, MobileNet-v2, and VGGNet-13. The results for these models are similar
to the analysis presented for ResNet-50. In general, from Figures 54 to 61, we observe
that the combination methods improved the performance mainly to the pigmented skin
lesions. Likewise our analysis for ResNet-50, the remaining models are still confusing BCC
and SCC quite often. However, recall that this is not a significant problem since both
diagnostics are skin cancers and must be referred to biopsy.

APPENDIX B. Supplementary material 144

(a) No meta-data (b) Concatenation

(c) MetaBlock (d) MetaNet

Figure 54 – Confusion matrices for DenseNet-121 considering all methods.

APPENDIX B. Supplementary material 145

(a) No meta-data (b) Concatenation

(c) MetaBlock (d) MetaNet

Figure 55 – Confusion matrices for EfficientNet-b4 considering all methods.

APPENDIX B. Supplementary material 146

(a) No meta-data (b) Concatenation

(c) MetaBlock (d) MetaNet

Figure 56 – Confusion matrices for MobileNet-v2 considering all methods.

APPENDIX B. Supplementary material 147

(a) No meta-data (b) Concatenation

(c) MetaBlock (d) MetaNet

Figure 57 – Confusion matrices for VGGNet-13 considering all methods.

APPENDIX B. Supplementary material 148

(a) No meta-data (b) Concatenation

(c) MetaBlock (d) MetaNet

Figure 58 – ROC curve plots for DenseNet-121 considering all methods.

APPENDIX B. Supplementary material 149

(a) No meta-data (b) Concatenation

(c) MetaBlock (d) MetaNet

Figure 59 – ROC curve plots for EfficientNet-b4 considering all methods.

APPENDIX B. Supplementary material 150

(a) No meta-data (b) Concatenation

(c) MetaBlock (d) MetaNet

Figure 60 – ROC curve plots for MobileNet-v2 considering all methods.

APPENDIX B. Supplementary material 151

(a) No meta-data (b) Concatenation

(c) MetaBlock (d) MetaNet

Figure 61 – ROC curve plots for VGGNet-13 considering all methods.

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Skin cancer detection
	Motivation
	Objectives and hypothesis
	Contributions
	List of publications
	Software implementations
	Thesis organization

	Fundamental concepts on Machine and Deep Learning
	Fundamentals of Deep Learning
	Types of learning
	Data classification
	Generalization
	Bias and variance
	Underfitting and overfitting

	Maximum Likelihood Estimation

	Artificial Neural Networks (ANN)
	Feedforward Neural Networks
	Perceptron
	Multilayer Perceptrons (MLP)

	Training a Feedfoward Neural Network
	Gradient descent optimization
	Cost function
	Backpropagation algorithm

	Gradient descent variants
	Stochastic Gradient Descent (SGD)
	Momentum

	Regularization
	Weight decay
	Dropout
	Batch normalization
	Early stopping

	Convolutional Neural Networks (CNN)
	Local receptive fields in the visual cortex
	CNN layers
	Convolutional layer
	Pooling layer

	Connecting the layers
	Techniques to improve CNNs performance
	Data augmentation
	Transfer learning

	Combining image and meta-data features
	Notation and problem formulation
	Concatenating features based on a contribution factor
	Meta-data Processing Block (MetaBlock): an attention-based mechanism to combine multi-source features
	Long Short-Term Memory (LSTM)
	Attention mechanism
	Methodology
	Illustrative example

	Experimental results
	Experiments setup
	Experiment results
	Discussion

	Learning dynamic weights for an ensemble of deep models
	The Dirichlet distribution
	Expectation, variance and covariance
	Estimating a Dirichlet distribution

	Methodology
	Step 1: Estimating the probability distribution
	Step 2: Computing the dynamic weights
	Illustrative example

	Experimental results
	Experiments setup
	Experiment results
	Discussion

	Skin cancer detection based on clinical images and patient demographics - A case study
	PAD-UFES-20 dataset
	Data collection
	Data description
	Clinical features analysis

	Experimental results
	Experiments setup
	Experiment results

	Discussion

	Conclusion
	References
	Software to collect and analyze clinical skin cancer images and patient data
	Smartphone-based application
	Web-based system

	Supplementary material
	Sensitivity analysis of the combination factor
	Assessing the contribution of each connection gate in the Meta-data Processing Block (MetaBlock)
	The impact of the MetaBlock in the size of the CNN models
	Convergence tests of the Dirichlet distribution estimation algorithm
	Confusion matrices and ROC curves

