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Abstract

The core of the present thesis is the possibility of the change with the energy
scale (running) of the cosmological constant. Theoretically, this running in the IR
region is not ruled out. On the other hand, from the Quantum Field Theory (QFT)
viewpoint, the energy released due to the variation of the cosmological constant in
the late Universe cannot go to the matter sector. For this reason, the phenomenolog-
ical bounds on such a running are not sufficiently restrictive. The situation can be
different in the early Universe when the gravitational field was sufficiently strong to
provide an efficient creation of particles from the vacuum. We develop a framework
for systematically exploring this possibility. It is supposed that the running occurs
in the epoch when the Dark Matter (DM) already decoupled and is expanding adia-
batically, while the usual matter should be regarded approximately massless and can
be abundantly created from vacuum due to the decay of vacuum energy. By using
the handy model of Reduced Relativistic Gas (RRG) for describing the Warm Dark
Matter (WDM), we consider the dynamics of both cosmic background and linear
perturbations and evaluate the impact of the vacuum decay on the matter power
spectrum and to the first CMB peak. Additionally, using the combined SNIa+BAO
data, we find the best-fit values for the free parameters of the model.

Additionally, it is known than the inclusion of spatial curvature can modify
the evolution of matter perturbations and affect the Large Scale Structure (LSS)
formation. We quantify the effects of the non-zero space curvature in terms of LSS
formation for a cosmological model with a RCC and a WDM component. The
evolution of density perturbations and the modified shape of its power spectrum are
also reconstructed and analyzed in this context.

Finally, it is analytically constructed the scalar field actions minimally and non-
minimally coupled to gravity, which are equivalent to RRG (describing the WDM
component) in the sense they produce the same cosmological solutions for the con-
formal factor of the metric. In particular, we construct the scalar theory which
corresponds to the model of an ultra-relativistic ideal gas of spinless particles pos-
sessing conformal symmetry. The possibility of supplementing our scalar field model
for WDM with dynamical dark energy in the form of a RCC is also considered.

Keywords: Running cosmological constant, Running vacuum energy, warm dark
matter, observational constraints, reduced relativistic gas, scalar field theory.
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Resumo

O núcleo da presente tese é a possibilidade da variação da constante cosmológica
com a escala de energia. Teoricamente, essa variação na região IR é um modelo
possível e viável. Porém, do ponto de vista da Teoria Quântica dos Campos (QFT),
a energia resultante dessa variação da constante cosmológica não pode ser absorbida
pelo setor de matéria. É por isto que, os limites fenomenológicos sobre tal variação
não são suficientemente restritos. Essa situação pode ser diferente no universo pri-
mordial, época na qual o campo gravitacional foi grande o suficiente para facilitar
uma criação eficiente de partículas a partir do vácuo. Desenvolvemos aqui um marco
teórico para explorar esta possibilidade de forma sistemática, sob o suposto de que
dita variação ocorre numa época na qual a matéria escura (DM) está desacoplada e
se expande de forma adiabática, enquanto que a matéria usual pode ser considerada
como sem massa e pode ser criada de forma abundante a partir do decaimento da
energia do vácuo. Mediante o uso do simples modelo de gás relativistico reduzido
(RRG) para descrever matéria escura morna (WDM), consideramos aqui a dinâmica
tanto no nível de fundo quanto no nível perturbativo e avaliamos o impacto desse
decaimento do vácuo no espectro de potências da matéria e no primeiro pico acústico
do CMB. Adicionalmente, usando dados combinados de SNIa+BAO, encontramos
os valores do melhor ajuste para os parâmetros livres do nosso modelo.

Adicionalmente, é bem conhecido que a inclusão da curvatura espacial pode
modificar a evolução das perturbações da matéria e afetar a formação de estruturas
a grande escala (LSS). Quantificamos os efeitos dessa curvatura não nula em termos
da LSS para um modelo cosmológico considerando uma RCC e WDM. A evolução
das perturbações de densidade e a forma modificada do espectro de potências é
também reconstruída neste contexto.

Finalmente, as ações de campo escalar mínima e não-mínima equivalentes ao
RRG (descrevendo WDM) são construídas analíticamente, onde tais ações e suas
equações de movimento, reproduzem as mesmas soluções para o fator de escala cos-
mológico presente na métrica FRLW. Em particular, construímos a teoría escalar
correspondente com o modelo de gás ideal ultra-relativistico de partículas com spin
nulo que possui simetria conforme. É considerada também a possibilidade de com-
plementar nossa descrição escalar para WDM com um componente de energia escura
(DE) dinâmica na forma de uma constante cosmológica variável (RCC).

Palavras chave: Constante cosmológica variável, energia de vácuo variável, matéria
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Introduction

The standard model of cosmology (ΛCDM) describes the properties and evolu-
tion of the universe as a whole, considering the existence of a new kind of cosmic
fluids known as dark energy (DE) and dark matter (DM) and whose theoretical
predictions are in very good agreement with observational data [4, 5]. However, al-
though this model seems to pass most of the experimental tests, there are still some
discrepancies and tensions with data that cannot be explained naturally within this
framework [6].

In the ΛCDM model, the role of DE is assumed by the positive cosmological
constant (CC) Λ, which is considered as a fluid with negative pressure, as the most
natural and simple explanation for the current accelerating phase [7]-[8]. Nonethe-
less, this leads to the well known CC problem, opening new searches and possibilities
for the solution of the DE problem [9, 10]. These new developments have also given
rise to some extensions of the standard model or even modifications of the gravita-
tional theory which is based on [11, 12].

The improving quality of the data of observational cosmology leads to better
estimates of the equation of state of the Dark Energy, which is driving the accelerated
expansion of the Universe. The current data are consistent with the value of w = −1,
which means the cosmological constant. From the quantum field theory point of
view, the cosmological constant is a necessary element of a consistent semiclassical
theory [13][14][15][16] and hence it should not be taken as a surprise that it is non-
zero.

The ultimate word about the origin of the Dark Energy belongs to observations.
It can not be ruled out that at some moment the analysis of the data proves that the
density of the Dark Energy changes with time. Does this mean that there is another
component of the Dark Energy, besides the cosmological constant? Before answering
this question, one has to understand whether the cosmological constant can be not
exactly a constant. It is a standard assumption that the observable density of the
vacuum energy is a sum of the vacuum counterpart and the contribution generated
by a symmetry breaking, e.g. at the electroweak and QCD scales. In principle, both
vacuum and induced parts can be variable due to quantum effects.

The variation of cosmological “constant” term, because of the quantum effects,

xi



can be explored employing the renormalization group running of this parameter
[17][18]. The simplest version of such a running can be described in the framework
of a minimal subtraction scheme in curved space [14][19] (see also [15]), but this
kind of running leads to the inconsistent cosmological model [17]. The standard
interpretation is that the “correct” running at low energies (in the IR) should take
into account the decoupling of the massive fields. Such decoupling cannot be verified
for the cosmological constant case [20], but the non-running can be proved neither
[18]. Thus, the situation is such that one can explore the running cosmological
constant only in the phenomenological setting. However, it is important to have
this setting well-defined. And in this respect, the main point is what happens with
the energy when the cosmological constant varies according to the evolution of the
Universe and the corresponding change of the energy scale.

It is well-known that the quantum or semiclassical corrections to the action of
gravity are typically non-local and rather complicated (see e.g. [20]). However,
one can identify the terms responsible for the running of the cosmological constant
using the global scaling arguments [16]. Starting from this point, one can meet two
distinct possibilities to implement the cosmological constant running in cosmology.

The first one assumes the energy exchange between vacuum and matter sectors.
The cosmological model that emerges from this assumption has essential technical
advantages. In particular, the evolution of the cosmological background can be
easily described using elementary functions [21] and the analysis of perturbations is
also relatively simple [1]. For this reason, this model became popular (see, e.g, the
review [10] and the recent publication [22][23]), regardless of the existing conceptual
difficulties, that will be described below.

The second model is much more consistent for the low-energy regime, it is based
on the conservation law not involving the matter sector, and assumes a mixture
between the cosmological constant term and the Einstein-Hilbert action, that means
a running of the Newton constant G. This model is more complicated technically,
and also the phenomenological restrictions on the unique free parameter ν are very
weak, at least from the analysis of structure formation [24]1. In this thesis, we shall
concentrate on the models of running cosmological constant of the first kind and
explore the physical conditions where this model makes sense.

On the other hand, with respect to the dark matter, we know that describing
DM component in terms of particles or fields also represents an open question.
Besides the theoretical and experimental difficulties in detecting DM, there is a
possibility to assume that DM is warm (WDM) instead of cold (CDM). It is known
that the relativistic warmness of DM can change the global dynamic of the universe
and provide certain phenomenological advantages [27][28][29]. The full standard
description of WDM implies the use of the Boltzmann equation. However, the
problem can be greatly simplified using the reduced relativistic gas model (RRG).
Historically the first use of the equation of state equivalent to RRG was in the

1In compensation, running G has interesting astrophysical applications (see e.g. [25][26]).



pioneering work of A.D. Sakharov [30] on the matter acoustic oscillations. Later on,
it was rediscovered in [2] as a simplification to the relativistic Maxwell distribution
and the cosmological model constructed on this base.

The main point of the RRG is that it assumes the same kinetic energy for all
particles of relativistic gas. Such an artificial ideal relativistic gas model has a
very simple equation of state with the unique free parameter b, characterizing its
warmness. On the other hand, this equation of state closely reproduce similar
equation in the Jüttner model [31], based on the relativistic Maxwell distribution.
These two features enable one to use RRG, e.g., for the simplified phenomenological
description of WDM [2][32][33].

The simplicity of RRG is especially welcome in the theories with technical and
conceptual complications, such as the cosmological models with running parameters.
As far as most interesting models of running ρΛ (see e.g. [21] and [1]) are consistently
applicable only at high energy scale, we need to formulate them in the framework
of early universe, when the DM is supposed to have more warmness than today.
Then the RRG becomes a useful tool that enables to get the main features of the
model with the reduced amount of numerical calculations and more clear physical
understanding of the results. For this reason, in the recent work [34] we have started
the exploration of the running ρΛ and RRG model for the early Universe.

Different from the later epochs, in the epoch soon after inflation, the creation
of at least the Standard Model particles from the vacuum (see e.g. [35], [36] and
references therein), is not suppressed by the low energy density of the gravitational
field of the cosmological background. At the same time, the running of the cos-
mological constant density in the high-energy regime is the phenomena which may
leave observational traces in the late universe. This is the subject of the study in
Ref. [34]. We make the next step and quantify the effects of the non-zero spatial
curvature in the model with running ρΛ and the WDM contents described by RRG
model in the early universe. Our purpose is to evaluate the effect of spatial curvature
on some observables in the context of LSS formation as the matter power spectrum.
Technically, our purpose is to evaluate the constraints on the free parameters ν and
b in the presence of Ω0

k, using SNIa and DR11 cosmic data-sets [37][5].

Indeed, it is interesting to include curvature in the model of Ref. [34], and not
only for the sake of generality. In the last years, there was an intensive discussion
of the observational constraints on the space geometry, including the curvature of
the universe. For example, some observational results including SNIa, H, BAO,
QSO, etc have shown statistical consistency with a closed curvature universe (see
e.g. the references [38]-[39]). Thus, it looks natural to include consideration of space
curvature in the model with the running cosmological constant.

Another common possibility for explaining the current and primordial properties
of an expanding universe, it can be given in terms of a scalar field, where this field
can be minimally or non-minimally coupled to gravity, it has a time-dependent



equation of state and its dynamical evolution can be compatible with the solution
of the DE problem and even it can provide a suitable inflationary dynamics with
excellent confidence level according to observations [40]-[41].

It is interesting then, reconstructing and discussing a consistent scalar field the-
ory for describing WDM using the useful approximation of the simple RRG model,
as well as its cosmological consequences. For this purpose, we consider the descrip-
tion in terms of a minimal and non-minimal scalar field using the hydro-dynamical
approach and the properties of the conformal transformation. Additionally, the pos-
sible inclusion of a dynamical dark energy component in the form of an RCC within
this scalar field description is then considered.

This thesis is organized as follows. In Chapter 1 we give a brief review of some
essential concepts about modern relativistic cosmology, which are going to be used
along this thesis. In Chapters 2 and 3, we mention the main properties and some
applications of the running vacuum energy from quantum effects and the simple
warm dark matter model using the reduced relativistic gas. In chapter 4 we consider
both of mentioned models evolving together from a primordial phase of the universe.
In Chapter 5, we consider the inclusion of spatial curvature and its effect on the
matter power spectrum and the new possible constraints for the free paramaters of
the joint model, this is, the running parameter and the warmness. In Chapter 6 we
present an scalar field theory for the warm dark matter component as treated as a
reduced relativistic gas, also exploring the possibility of the inclusion of a dynamical
dark energy component in a form a running vacuum energy. Finally, in Chapter 6.3
we draw our conclusions, perspectives and summarize our contributions.



Chapter 1

Basics on modern cosmology

In this chapter we shall summarize some general and necessary concepts and
quantities that will be used along this document without discussing them in much
details and following the references [42] [43][44].

1.1 Elements of relativistic cosmology

1.1.1 Einstein field equations

Gravity is one of four fundamental interactions in nature. It is described by
GR and is the dominant interaction on very large scales. In the framework of this
theory of gravitation, the dynamics of matter and the spacetime itself is governed
by Einstein field equations (EFE), which are obtained by varying the total action
[42]

S = SEH + SM ,

with respect to the metric tensor gµν to get

Rµν −
1

2
Rgµν + Λgµν = κ2Tµν , (1.1)

which relate the matter content of the universe with the gravitational field described
in terms of its geometrical properties and where

SEH =
1

2κ2

∫
d4x
√
−g (R− 2Λ), SM =

∫
d4x
√
−gLM (1.2)

Tµν = − 2√
−g

δSM
δgµν

, (1.3)

1
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are the Einstein-Hilbert action, the matter action and the definition of the energy-
momentum tensor, respectively. This Tµν concentrates all possible matter compo-
nents such as baryons, photons, neutrinos or even DE or DM. Here, κ2 = 8π G
and Λ is the famous cosmological constant firstly introduced by Einstein in order
to describe an static universe, although nowadays is associated to the dark energy
(DE). In this form Λ has a geometric interpretation, but it is also possible to include
it through a fluid with density and pressure given by

ρΛ =
Λ

κ2
, pΛ = −ρΛ (1.4)

such that we can write the EFE as

Rµν −
1

2
Rgµν = κ2T tµν , (1.5)

where the total energy-momentum tensor would be

T tµν = Tmµν + TΛ
µν (1.6)

with
Tmµν = (ρm + pm)UµUν + pgµν , TΛ

µν = −ρΛgµν (1.7)

so Λ can be interpreted as an additional matter fluid, whose energy density is asso-
ciated to the vacuum energy.

On the other hand, the gravitational field in GR is characterized by the geometry
of the cosmic manifold condensed in the metric tensor gµν and their related quantities
such as the Riemann curvature tensor

Rκ
λµν = ∂νΓ

κ
λµ − ∂µΓκλν + ΓρλµΓκνρ − ΓρλνΓ

κ
µρ (1.8)

from which, contracting with the metric, it is possible to obtain

Rλν = Rκ
λκν = gκγRγλκν , R = Rµ

µ = gµνR
µν .

known as Ricci tensor and curvature scalar. The quantities Γκµν are the Christoffel
symbols

Γκµν =
1

2
gκλ [∂µgλν + ∂νgλµ − ∂λgµν ] . (1.9)

As a consequence of Bianchi identities [42], we also have that the total energy-
momentum tensor is a conserved quantity

∇µT tµν = 0 (1.10)

describing the evolution of the matter content in an expanding universe. It will be
also useful to write the EFE in the alternative form

Rµν = κ2(T tµν −
1

2
T tgµν) (1.11)

such that, where perturbations are considered, we can avoid the calculations related
to curvature scalar R [45].
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1.1.2 FRLW universe

Currently, we have strong evidence to accept that matter distribution in the
universe, on very large scales, satisfies the cosmological principle (CP), so the uni-
verse on these scales is homogeneous and isotropic [44]. The solution to EFE that
is compatible with this CP and an expanding universe is the Friedmann-Robertson-
Lemaitre-Walker (FRLW) metric with maximally symmetric spatial part and whose
line element reads

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin θ2dφ2

]
, (1.12)

where a(t) is the scale factor and k is the spatial curvature, whose values 1, 0 and
-1, corresponds to spherical, plane and hyperbolic space, respectively. Considering
an energy-momentum tensor for a perfect fluid as

Tµν = (ρ+ p)UµUν + pgµν , (1.13)

the EFE (1.1) for this FRLW metric take the form(
ȧ

a

)2

=
8πGρ

3
− k

a2
+

Λ

3
,

(
ä

a

)
= −4πG

3
(ρ+ 3p) +

Λ

3
, (1.14)

known as Friedmann and Raychauduri equations. The conservation law (1.10) in
this case yields

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (1.15)

such that we can apply this set o three equations for describing the dynamics and
evolution of matter contents and scale factor in an homogeneous and isotropic back-
ground.

1.1.3 Cosmological parameters and the ΛCDM model

Let us recall some common definitions and main properties related to the stan-
dard cosmological model [44].

Relative density parameter

From the Friedmann equation we can define the critical energy density as the
energy density such that k = 0, this is

ρc =
3H2

8πG
(1.16)
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whose present value is

ρ0
c = 1.878× 10−29 h2 g cm−3. (1.17)

It is also very useful to define the relative density parameter, which is defined as

Ω =
ρ

ρc
(1.18)

such that we are normalizing with respect to to the critical density. We can rewrite
the Friedmann equation in the form

Ω + Ωk = 1 (1.19)

where the sum of all density parameters is always equal to unity and it has been
defined the curvature density parameter

Ωk =
ρ

ρc
, ρk = − 3k

8πGa2
. (1.20)

In what follows, we shall use the also common normalization with respect to the
critical density today

Ω =
ρ

ρ0
c

=
8πGρ

3H2
0

(1.21)

so the Friedmann equation now takes the form

H2 = H2
0

(∑
x

Ω0
xfx(a) +

Ω0
k

a2

)
(1.22)

and we also have the closure relation∑
x

Ω0
x + Ω0

k = 1 (1.23)

where we have one Ω0
x for each matter component.

Usual forms of matter

Assuming a matter component with equation of state p = wρ, with w as a
constant, the general solution of the cosmological continuity equation is given by

ρ = ρ0 a
−3(1+w) (1.24)

such that in the case of w = 0 (p = 0), w = 1/3 (p = ρ/3) and w = −1 (p =
−ρ), we are treating with cold and non-relativistic matter (dust-like or pressureless
matter), hot and relativistic matter (radiation-like matter) and vacuum energy (Λ-
like matter), respectively.
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ΛCDM model

Also known as the concordance model, it is the most successful cosmological
model in the light of all observations and is constructed on the basis of the CP
and considering a total matter content composed by: Λ, cold dark matter (CDM),
baryons and radiation (photons and neutrinos). The Hubble parameter for this case
is given by (

H

H0

)2

= ΩΛ +
Ω0
m

a3
+

Ω0
b

a4
+

Ω0
r

a4
+

Ω0
k

a2
(1.25)

where according to recent observations we have the approximate values for the pa-
rameters

Ω0
Λ = 0.6911± 0.0062, Ω0

m = 0.3089± 0.0062 (1.26)

with
Ω0

m = Ω0
m + Ω0

m, (1.27)

including both CDM and baryons. However, we also have

Ω0
bh

2 = 0.02230± 0.00014, Ω0
ch

2 = 0.1189± 0.0010 (1.28)

for h = 0.68 [46]. From this values we can conclude that our universe is composed
by 69% Λ, 29% CDM and 5% baryons.

Perhaps this ΛCDM model and their related equations describe the global dy-
namics of the universe according to our observations, they are insufficient to un-
derstand the nature and fundamental properties of DM and DE, as well as the
underlying mechanisms related to the large scale structure (LSS) or the properties
of the cosmic microwave background (CMB) [43]. Therefore, it is needed to consider
the presence of inhomogeneities introduced in the form of small perturbations as we
briefly shall review in next section.

1.2 Introducing perturbations

The FRLW universe is only reliable on very large scales where the CP is valid,
so if we want to understand the structure formation, which clearly represents a huge
deviation from CP, we need to consider the evolution of the small perturbations in
a flat expanding homogeneous and isotropic background [44][43].

Let us start defining the difference

δgµν(x) = gµν(x)− ḡµν(x) (1.29)

where ḡµν and gµν are the background and the physical spacetime metrics, respec-
tively. If we choose one gauge, such that [47]

|ḡµν | � δgµν (1.30)
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we are dealing with perturbations and our physical spacetime would be composed
by

gµν(x) = ḡµν + δgµν (1.31)

and consequently, for using this perturbed metric in the alternate form of EFE we
would need to compute the quantities

Γρµν = Γ̄ρµν + δΓρµν , Rµν = R̄µν + δRµν , (1.32)

where
δΓρµν =

1

2
ḡρλ
[
∂µδgλν + ∂νδgλµ − ∂λδgµν − 2δgλαΓ̄αµν

]
, (1.33)

δRµν = ∂ρδΓ
ρ
µν−∂νδΓρµρ+ Γ̄ρµνδΓ

σ
ρσ + δΓρµνΓ̄

σ
ρσ− Γ̄ρµσδΓ

σ
νρ− δΓρµσΓ̄σνρ. (1.34)

For instance, the background metric has the form

ḡµν = diag
{

1,−a2(t)δij
}
. (1.35)

such that in the synchronous gauge h0µ = 0, the (00) component of the Ricci tensor
is

R00 = R̄00 + δR00, (1.36)

where

δR00 =
1

2
ḣ+Hh and h =

∂

∂t

(hii
a2

)
. (1.37)

On the other hand, we also would have

Tµν = T̄µν + δTµν , T = T̄ + δT (1.38)

where to compute these last perturbed quantities we will assume that entropic
perturbations are negligible and that the total energy-momentum tensor is free of
anisotropic stresses. Therefore, it can be expressed via

T̄ µν = (ρ̄t + p̄t)Ū
µŪν − p̄tδµν (1.39)

such that
T̄ 0

0 = ρ̄t, T̄ ij = −p̄tδij . (1.40)

and the 4-vector velocity Uµ, in the comoving coordinates is

Ū0 = Ū0 = 1, Ū i = Ūi = 0 (1.41)

Therefore, considering simultaneous perturbations of the metric tensor and the total
density, pressure and 4-velocity

ρ = ρ̄+ δρ, p = p̄+ δp, Uα = Ūα + δUα, (1.42)
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we can find the perturbation of the energy momentum tensor as

δTµν = (ρ̄+ p̄)(δUµŪν + ŪµδUν) + (δρ+ δp)ŪµŪν + δpḡµν + p̄δgµν (1.43)

and their mixed components in the form

δT µν = ḡµρδTρν + δgµρT̄ρν (1.44)

such that perturbing the alternative Einstein equations (1.11), we obtain

δRµ
ν = 8πG

(
δT µν −

1

2
Tgρµδgρν −

1

2
δTδµν

)
. (1.45)

Finally, we also need the perturbation of the conservation law (1.10)

δ (∇µT
µ
ν ) = ∂µδT

µ
ν + ΓµµρδT

ρ
ν + δΓµµρT

ρ
ν − ΓρµνδT

µ
ρ − δΓρµνT µρ (1.46)

and thus we complete our set of hydrodynamical equations for the evolution of
the cosmological perturbations. Inhomogeneities in the matter distribution induce
metric perturbations and in the linear approximation different types of perturbations
evolve independently and therefore can be analyzed separately [47]. However this
set of differential equations requires suitable initial conditions to be solved with a
clear physical interpretation [43].
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Chapter 2

The running vacuum energy from
quantum effects

In this chapter we shall review some fundamental aspects of the running vacuum
energy model from the point of view of its origin in the quantum corrections to grav-
ity in the semiclassical approach and its applications to cosmology as a dynamical
form of dark energy. We shall follow here the references [15][16][48].

2.1 The semiclassical approach

This method consist in quantifying the quantum effects in a curved spacetime,
formulating a quantum theory for matter fields on a classical background. There-
fore, the classical actions for fields and gravity has to be well defined. Perhaps it is
possible to construct a great variety of this kind of actions, we have to impose three
fundamental principles: locality, general covariance and to hold the known symme-
tries (as gauge symmetry) in the extension to curved spacetime [16]. Additionally,
we expect renormalizability and simplicity.

The most general action of vacuum, according to these principles is given by

Svac = SEH + SHD (2.1)

where the high derivatives action takes the form

SHD =

∫
d4x
√
−g
(
a1C

2 + a2E + a3�R + a4R
2
)

(2.2)

with
C2 = R2

µναβ − 2R2
αβ +

1

3
R2 (2.3)

E = R2
µναβ − 4R2

αβ +R2 (2.4)

9
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as the square of the Weyl tensor and the integrand of the Gauss-Bonnet topological
term, respectively. It is worthwhile to mention that these high derivatives terms are
necessary to avoid problems of normalization and can be important in the primordial
phase of the universe, as in the context of cosmic inflation [49][15].

2.1.1 Effective action and renormalization

To describe the quantum effects of matter fields quantization, the fundamental
object is the effective action [15], which is defined by

eiΓ[gµν ] =

∫
Dφ eiS[φ;gµν ] (2.5)

where φ is the set of all matter fields and gauge ghosts, Dφ is the covariant measure of
the functional integration, and S[φ; gµν ] is the classical action, including matter fields
and its possible interactions, whose form depends on the metric and the classical
vacuum action (2.1).

Considering an effective action of vacuum, this is the purely metric background,
we can make a loop expansion in the form [15]

Γ[gµν ] = Svac[gµν ] + Γ̄(1) + Γ̄(2) + Γ̄(3) + · · ·. (2.6)

The most important one-loop contribution is [16]

Γ̄(1) =
i

2
Tr ln Ĥ (2.7)

where

Ĥ = Ĥ(x, y) =
1

2

δ2 S[φ, gµν ]

δφ(x)δφ(y)

∣∣
φ=0

. (2.8)

The effective action is a well-defined diffeomorphism invariant quantity, such that,
although we can propose alternative forms for it, we cannot include odd powers of
metric derivatives, which holds for any particular metric, including the cosmological
one.

On the other hand, to compute divergences and related quantities we employ
the useful and successful method of Schwinger-DeWitt expansion [50], where the
key point is the representation of trace

Tr ln Ĥ = lnDetĤ (2.9)

using the proper time integral

i

2
Tr ln Ĥ = − i

2
Tr

∫ 0

∞

ds

s
e−isĤ (2.10)
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where

e−isĤ = Û(x, x′; s) = Û0(x, x′; s)
∞∑
k=0

(is)k âk(x, x
′) (2.11)

and âk(x, x′) are the Schwinger-DeWitt coefficients, while

Û0(x, x′; s) =
1

(4πis)n/2
D1/2(x, x′)e−

σ(x,x′)
2is

−im2s. (2.12)

Here σ(x, x′) is the geodesic distance between x and x′ and

D(x, x′) = det [−∂µ∂νσ(x, x′)] (2.13)

is the Van Vleck-Morett determinant [51].

The most important divergences are the logarithmic ones, which are proportional
to

â2 = Tr lim
x′→x

â2(x, x′) (2.14)

and whose form in the vacuum sector is given by [16]

â2 =

∫
d4x
√
−g
(
βΛ + βER + β1C

2 + β2E + β3�R + β4R
2
)

(2.15)

where

(4π)2βΛ =
1

2
Nsm

4
s − 2Nfm

4
f , (2.16)

(4π)2βE = −Nsm
2
s

(
ξ − 1

6

)
+
Nfm

2
f

3
, (2.17)

(4π)2β4 =
Ns

2

(
ξ − 1

6

)2

(2.18)

(4π)2β1 =
1

120
Ns +

1

20
Nf +

1

10
Nv = ω, (2.19)

(4π)2β2 = − 1

360
Ns −

11

360
Nf −

31

180
Nv = b, (2.20)

(4π)2β3 =

[
1

180
+

1

6

(
ξ − 1

6

)]
Ns +

1

30
Nf −

1

10
Nv = c, (2.21)

and ξ is the non-minimal parameter associated to the scalar field action

Sscal =
1

2

∫
d4x
√
−g
(
gµν∂µϕ∂νϕ+m2ϕ2 + ξϕ2R

)
. (2.22)

Thus, we can write the total divergent part of the effective action of vacuum theory
for one-loop as [16]

Γ̄
(1)
div −

1

n− 4

∫
d4x
√
−g
(
β1C

2 + β2E + β4R
2 + β3�R + βER + βΛ

)
(2.23)
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including the presence of Ns real scalars, Nf Dirac spinors and Nv massless vectors.
The divergences at any loop order are of the same form as one-loop expressions,
therefore at any loops we can remove the counterterms by renormalizing all the
parameters of the theory, including couplings , masses, ξ and vacuum parameters
[52].

In the framework of the minimal subtraction scheme (MS-scheme) and assuming
dimensional regularization [15], the renormalization group equation for the effective
action implies

µ
dγ

dµ
=

[
µ
∂

∂µ
+ βP (n)

∂

∂P
+

∫
dnxγΦ(n)

δ

δΦ(x)

]
Γ[gαβ,Φ, P, n, µ] = 0 (2.24)

where
βP (n) = µ

dP

dµ
, γΦ(n)µ

dΦ

dµ
(2.25)

are the n-dim β and γ functions, while the usual ones correspond to the limit n→ 4.
Here Φ are the quantized fields, gαβ is the classical background metric and P denotes
the full set of parameters of the theory [16].

To interpret physically this renormalization group running in curved spacetime,
it is necessary to understand the physical role of µ parameter. The standard pro-
cedure in the context of MS-scheme is the introduction of form factors ∼ ln�/m2,
which can be successfully applied to quantify the quantum effects in classical action
of gravity in the case of, for instance, scalar field [53]. However, this is not the situ-
ation for the gravitational G and cosmological Λ constants, because the D’Alembert
operator acting on them gives automatically zero. Similarly, in the case of Einstein-
Hilbert term, the formfactor yields total derivatives or surface terms, which have no
effect in the equations of motion [20][54][55].

Finally, from the viewpoint of GR G and Λ gain a clear physical meaning through
the EFE

Rµν −
1

2
Rgµν = 8πGTµν + Λgµν (2.26)

so looking for their renormalization group equations

(4π)2µ
d

dµ

(
λ

8πG

)
= βΛ −

Λ

2πG
, µ

d

dµ

(
1

16πG

)
= βE −

1

8πG
(2.27)

we see that the second terms, which reflect the classical dimension of G and Λ, cancel
into the EFE. Therefore one has to use only the β-functions terms in cosmological
applications [16].

2.1.2 Effective action for massive fields

As we saw above, vacuum divergences can be removed by the renormalization
of the action (2.1), based on the MS-scheme for the renormalization group running
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introducing the formfactors by trading lnµ2 by ln� [56]. In the context of QED,
the main phenomenon at the low-energy regime (IR) is the decoupling of massive
fields [57]. We can expect a similar result in the vacuum gravitational sector.

Considering a scalar field and a resummation of the Schwinger-Dewitt series [58],
it is possible to find the result for the one-loop contribution of the effective action
[20][16]

Γ̄
(1)
scalar =

1

2(4π)2

∫
d4x
√
−g
{m4

2

(
1

ε
+

3

2

)
+

(
ξ − 1

6

)
m2R

(
1

ε
+ 1

)
+

1

2
Cµναβ

[
1

60ε
+ kW (a)

]
Cµναβ +R

[
1

2ε

(
ξ − 1

6

)2

+ kR(a)

]
R
}

(2.28)

in the O(R2...) approximation. Here ε is the parameter of dimensional regularization

1

ε
=

2

4− n
+ ln

(
4πµ2

m2

)
− γ. (2.29)

Note that the divergences has the same form as in the MS-scheme discussed above
in equation (2.15) and (2.23), but with a qualitative difference due to the presence
of the non-local formfactors [16]

kW (a) =
8A

15a2
+

2

45a2
+

1

150
(2.30)

kR(a) = A

(
ξ − 1

6

)2

− A

6

(
ξ − 1

6

)
+

2A

2a2

(
ξ − 1

6

)
+

A

9a2
− A

18a2
+

A

144
+

1

108a2
− 7

2160
− 1

18

(
ξ − 1

6

)
(2.31)

where
A = 1− 1

a
ln
(

2 + a

2− a

)
, a2 =

4�
�− 4m2

. (2.32)

It can be found similar equations for the case of massive fermion and vector loops
[20][59].

2.1.3 Renormalization group for the cosmological constant

Despite we get zero β-functions for the G and Λ as it can be noticed from
equation (2.28), the real situation is that the corresponding β1/G and βΛ come from
the contributions of massive quantum fields, so it is natural to expect a non zero
value for this functions. We can not prove that physical β1/G and βΛ are indeed zero,
therefore the conclusion has to be that also the MS-scheme and the flat-background
expansion are not appropriate to quantify this running [18].
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As alternative to this problem, and from the phenomenological viewpoint, we can
associate the scale parameter µ with the Hubble parameter and consider applications
and consequence to cosmology [48]. On the basis on covariance principle discussed
before and assuming that quadratic decouplings holds for the vacuum energy, it is
possible to conclude that the quantum correction for Λ take the form

δρΛ ∼
∑
i

Sim
2
iH

2 (2.33)

where the sum is over all massive particles, from the neutrino up to the possible
GUT constituents and even to the hypothetical Planck-scale particles. The coeffi-
cient Si may be different for different models and at one loop there are free fields
contributions such that one can expect to have opposite signs for fermions and
bosons. After this algebraic summation and adding the constant term required for
renormalization, we arrive to the expression

ρΛ = ρ0
Λ +

3ν

8πG

(
H2 −H2

0 ), (2.34)

where ρ0
Λ is the present-day vacuum energy density and ν is the unique free param-

eter of the model. The sign and magnitude of ν depend on the mass spectrum of
the particle physics model, according to (2.32).

Although we have not definitive arguments to assert that quadratic decoupling
takes place, what it is possible to claim is that, in the absence of cosmic scalar field
(or another form of dark energy), the equation (6.60) is the unique possible form for
a non constant vacuum energy [16].

Two clarifying observations considering the definition of our model, are in order
at this point. First of all, due to the Planck suppression, the fourth- and higher-
derivative terms in the classical action and loop corrections are irrelevant even at
the relatively high energy scale, such as the one we deal with in this paper. To
understand this, let us quote the Starobinsky model of inflation [49][60]. This model
is mostly based on the higher derivative R2-addition to the Einstein-Hilbert action.
In the presence of anomaly-induced terms, there is a solution with a constant Hubble
parameter H [49]. However, in the course of inflation H decreases (approximately
linearly with time) and its magnitude at the end of the inflationary epoch is supposed
to be about 1013GeV . This provides a sufficient difference between the effect of the
intensive running of the cosmological constant which we shall explore and the effect
of the R2-term. Indeed, the running Λ in the presence of the R2-term may be
relevant in earlier phases of inflation, but this is another issue to study and we leave
it to the future work.

Assuming the simultaneous energy exchange between the cosmological constant
density and Einstein-Hilbert sector and between the cosmological constant density
and matter sector leads to an ambiguity in the cosmological model. Due to this
feature, the models with double energy exchange were never elaborated, regardless
on an extensive literature on the running cosmological models (see e.g. [10]). Be-
sides the mentioned ambiguity, from the practical side there is no much sense in
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considering such a double energy exchange, because the effect of the running of G
is known to be much weaker than the one of the energy exchange with matter [24].

The main problem with the model based on the vacuum-matter energy exchange
is that during most of the history of the Universe the typical energies of the grav-
itational degrees of freedom are very small compared to the masses of all known
particles [61]. For instance, the value of the Hubble parameter today is about
H0 ∝ 10−42 GeV, while the lightest neutrino is supposed to have the mass about
thirty orders of magnitude greater. Thus, there is only a possibility to create pho-
tons and this is not phenomenologically interesting, since the energy density of such
photons would be about T 4, with the temperature T ≈ H. Such an energy density
is of course much smaller than the energy density of CMB, which is yet about four
orders of magnitude smaller compared to the present-day critical density, or to the
cosmological constant density. This argument represents a serious obstacle to using
this model for a late cosmology.

Let us note that the described restrictions do not apply to the early Universe,
e.g., to the epoch after inflation, where the value of the Hubble parameter is decreas-
ing from about 1013 GeV to the values that are comparable to the energy scale of the
Minimal Standard Model of elementary particle physics. This is a reheating period,
where the creation of particles is very intensive, and there is nothing wrong with
assuming that this happens because of the decay of the cosmological constant into
the matter. In the next section, we shall explore the model [21] in the high energy
domain. The description of quantum effects is based on the running of cosmological
constant described in this paper. At the same time, the models of early Universe
require special care about the description of matter. The matter contents of the
Universe consist mainly of the usual matter particles and DM. We assume that the
DM consists of the GUT remnants and hence has masses that are much greater
than the value of H. Thus, the DM can be regarded to decouple, in the sense that
DM particles are not created from the vacuum. Thus, an appropriate description
of DM is an ideal gas of massive particles adiabatically expanding and becoming
less relativistic with time. To describe such a gas, we shall use the simple and con-
venient Reduced Relativistic Gas (RRG) model, which was originally developed by
Sakharov in the classical paper [30], and recently reinvented in [2][3].

2.2 Cosmology with a running vacuum energy

Let us review now a simple cosmological model including the running of the CC,
following the reference [21]. Considering also the presence of usual non-relativistic
matter the Friedmann equation takes the form

H2 =
8πG

3
(ρm + ρΛ)− k

a2
(2.35)
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and expressing the running of the CC in terms of its beta function

dρΛ

dH
=

1

H
βtΛ (2.36)

we can write
dρΛ

dz
=

1

H

dH

dz
βtΛ =

3ν

4πG
H
dH

dz
(2.37)

where it has been defined the dimensionless running parameter

ν =
σM2

12πM2
p

. (2.38)

Additionally, we have a modified conservation law as given by the interaction be-
tween matter sector and this running vacuum, in the form

dρm
dz

+
dρΛ

dz
− 3(ρm + pm)

1 + z
= 0 (2.39)

Therefore, the system of equations for this model can be cast as [21]

H2(z) =
κ2

3

[
ρΛ(z) + ρ(z)

]
+H2

0 Ω0
k(1 + z)2, (2.40)

dρm
dz
− 3(1 + w)

1 + z
ρ = −dρΛ

dz
, (2.41)

dρΛ

dz
=

3ν

8πG

dH2

dz
, . (2.42)

where we have used

pm = wρm, − k

a2
= H2

0 Ω0
k(1 + z)2. (2.43)

The solution of this system can be obtained analytically by following the procedure
described in [62], such that we can find closed expression for H(z), ρm and ρΛ. Let
us summarize the main steps as follows. First, to obtain ρm(z) one has to consider
the derivative of Friedmann equation and then use the equation for the ρΛ running
such that we get

dρΛ

dz
=

3ν(1 + w)ρm
(1 + z)

+
3νH2

0

4πG
Ω0

k(1 + z). (2.44)

Using now the conservation law, one finally obtains the differential equation

dρm
dz
− ζρm

(1 + z)
= γ ρ0

c (1 + z) (2.45)

where we have defined the constants

ζ = 3(1 + w)(1− ν), γ = −2νΩ0
k (2.46)

and used the definition of the critical density today as

ρ0
c =

3H2
0

8πG
. (2.47)
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The solution of this differential equation (2.45) is given by

ρm(z) =

(
ρ0
m +

γρ0
c

ζ − 2

)
(1 + z)ζ − γ

ζ − 2
ρ0
c(1 + z)2, (2.48)

and with this solution we can find ρΛ(z) using

dρΛ

dz
=

3(1 + w)

(1 + z)
ρ− dρm

dz
(2.49)

which after integration yields

ρΛ(z) = ρ0
Λ + ρ0

mf(z) + ρ0
cg(z) (2.50)

with
f(z) =

1

1− ν
[
(1 + z)ζ − 1

]
(2.51)

and

g(z) = −γ(1 + 3w)

2(ζ − 2)
z(z + 2) + νγ

(1 + z)ζ − 1

(1− ν)(ζ − 2)
. (2.52)

Finally, using both of the solutions, it is possible to show that the Hubble parameter
takes the form

H2(z) = H2
0

{
1 +

(
Ω0

m −
2νΩ0

k

ζ − 2

)[
(1 + z)ζ − 1

1− ν

]
+

3νΩ0
k(1 + w)z(z + 2)

ζ − 2

}
(2.53)

thus completing the solution of our system of cosmological equations including the
running of the CC. Notice that the only free parameter of the model is the running
parameter ν, which should be constrained using some cosmic observables [62][25][63].

However, as a first step, we can estimate a constraint for ν from theoretical argu-
ments. In order to satisfy the Big bang nucleosyntheis (BBN) requirements, where
the universe is dominated by the radiation component (which would be equivalent
to take w = 1/3 in our model), we have that, in this RD regime (T � T0), the
solutions can be written as

ρr(T ) =
π2g∗
30

(
r−νT

)4 − ν

1− 2ν

[
r4(1−ν) − r2

]
Ω0
kρ

0
c (2.54)

and

ρΛ(T ) ≈ ν

1− ν
π2g∗
30

(
r−νT

)4 − ν

1− 2ν

[
ν

1− ν
r4(1−ν) − r2

]
Ω0
kρ

0
c (2.55)

Such that, according to BBN, one needs to guarantee that

|ρΛ/ρr| ≈ |
ν

1− ν
| � 1 (2.56)

which immediately implies that
|ν| � 1 (2.57)
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so the running parameter ν has to be small. To have more conclusive and quantita-
tive results about this qualitative constraint, is necessary to consider some cosmic
datasets (SNIa, BAO or the firs acoustic peak of the CMB) or the behavior of the
running model in the presence of perturbations and compare with some observables
like the matter power spectrum [1][63][24] [34][64]. Let us make now some comments
about the inclusion of cosmological perturbations in this running model.

2.3 Density perturbations for the running

It was already mentioned that considering the presence of cosmic perturbations
implies perturbations in the metric as well as in matter sector (see Sect. 1.2).
Therefore, in first place, we need the 00 component of the Einstein equations, which
for this case is

ḣ+ 2Hh = 8πG [(1 + 3w)δρm − 2δρΛ] (2.58)

To compute the perturbation of the running density δρΛ in a covariant form, re-
member that we can express it as

ρΛ = A+B(3H)2 (2.59)

where

A = ρ0
Λ −

3ν

8π
M2

pH
2
0 , B =

νM2
p

24π
(2.60)

but noting that with a very simple calculation, we can show the relation

∇µŪ
µ = ∂µŪ

µ + ΓµµνŪ
ν = 3H (2.61)

such that
δ
(
∇µŪ

µ
)

= 3δH = ∇i(δŪ
i) + δΓii0 = θ − h

2
(2.62)

with the definitions

θ = ∇i(δŪ
i), h =

∂

∂t

(
hii
a2

)
. (2.63)

Therefore we can rewrite the running density as

ρΛ = A+B(∇µU
µ)2 (2.64)

and its perturbation

δρΛ = Bδ
[
(∇µŪ

µ)2
]

= 2B(∇µŪ
µ)δ(∇µŪ

µ) (2.65)

but using (2.61) and (2.62), we finally get

δρΛ = 6BH

(
θ − h

2

)
. (2.66)
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To complete our perturbative description of the running model, we take the ν = 0
and ν = i components of the perturbed conservation equation δ(∇µT

µν), which yield

˙δρm +

(
θ − h

2

)
ρm + 3Hδρm = −δρΛ (2.67)

ρ̇mθ + 5Hρmθ + ρmθ̇ = −k
2

a2
δρΛ (2.68)

where we have taken the Fourier transform in the second equation and k is the
wave number and it makes no reference to spatial curvature here. The equations
(2.58), (2.67), together the constraint (2.66), form a complete and solvable system
of equations, where we have to use the expression for the Hubble parameter found in
previous section (2.53). To solve this system numerically, it is useful to write them
in terms of another variables

v = f1∇i(δŪ
i) f1 =

ρm
ρt
, f1 =

ρΛ

ρt
(2.69)

such that

δΛ =
g

f2

( v
f1

− h

2

)
. (2.70)

and our system now, in terms of the density contrast δm and the redshift z takes
the form

v′ +

[
(3f1 − s)
(1 + z)

− k2%(1 + z)

Hf1

]
v =

k2%(1 + z)

2H
h (2.71)

h′ +
2(ν − 1)

(1 + z)
h =

2ν

(1 + z)

(
2v

f1

− f1

%
δm

)
(2.72)

δ′m +

(
f − 1′

f1

− 3f2

(1 + z)

)
δm =

1

f1

(
%h

2
− %v

f1

)′
+

1

(1 + z)

(
3%− 1

H

)(
v

f1

− h

2

)
(2.73)

where
δm =

δρm
ρm

, % =
2νH(z)

3H2(z)− 3H2
0 Ω0

k(1 + z)2
. (2.74)

Thus, we a complete set of coupled Fourier modes for the velocity, density contrast
and metric perturbations for running CC model. In the case of ν = 0 they reproduce
the situation in the ΛCDM model [1]. From the numerical solution of the system it is
possible to reconstruct the matter power spectrum for arbitrary ν and compare with
observational data, finding new constraints for this running parameter. In figure 2.1
we show the plot of the matter power spectrum for different values of ν, where it
is possible to see that the larger is ν the more suppressed is the power, mainly at
large scales (large k). As it was estimated in last section ν is small and must have
values in the interval 10−8 < ν < 10−6 in order to fit the observational data. The
larger values are practically ruled out by this test.
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Figure 2.1: Power spectrum for the RRG-Λ model for fixed Ω0
B = 0.04, Ω0

DM =
0.21 and Ω0

Λ = 0.75, with the values b = 10−5, b = 10−4, b = 2 × 10−4 and
b = 10−3. The theoretical plots are presented together the LSS data from the
2dFGRS. Figure taken from [1]

From this example of numerical analysis of the running model and its validity in
the light of the matter power spectrum, we can estimate the effect of this running
on matter perturbations evolution in different epochs and explore the possibility of
having new cosmological results beyond the standard ΛCDM.



Chapter 3

Warm dark matter as a reduced
relativistic gas

In this chapter we present a warm dark matter (WDM) description using the
simple and useful model of the reduced relativistic gas (RRG), discussing its main
properties and some cosmological applications at background as well as perturbative
levels. We shall follow here the references [3][2][65].

3.1 The reduced relativistic gas equation

The equation of state for the RRG is one of several examples of fluids whose
state parameter is not a constant, but it has some dependence with time [40], the
field itself [66] or even the scale factor [67]. In order to show the two well known
forms of the RRG equation of state, we follows and summarize here the procedure
of the references [2][65].

Let us consider first a set of N relativistic particles of mass m in a box of volume
V . The time average of the pressure produced by the particles on the walls of the
box is given by

p =
nε

3V

v2

c2
(3.1)

with

ε =
mc2√
1− v2

c2

, n =
N

V
, (3.2)

and we have the relativistic dispersion relation

ε2 = P 2c2 +m2c4 (3.3)

21
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where P is the momentum of the particle. On the other hand, the energy density
would be

ρ = nε =
nmc2√
1− v2

c2

, (3.4)

and therefore we can write the first form for the equation of state for the RRG

p =
ρ

3

[
1−

(
mc2

ε

)2
]
. (3.5)

Introducing now the notations

ρ1 = Nmc2/V0, ρd = ρ1V0/V = Nmc2/V, (3.6)

where V0 is some fixed initial value of the volume, we can rewrite the equation of
state in its second form as

p =
ρ

3

(
1− ρ2

d

ρ2

)
(3.7)

where it is very clear now that w = p/ρ = w(ρ), so is not constant.

It is also possible to derive the RRG equation, remembering that, in phase space,
the number of particles can be written in terms of the distribution function as

N =

∫
d3x d3p f(x, p) (3.8)

Now, instead of considering a Maxwell-Boltzmann distribution, it is supposed equal
kinetic energy ε0 for all particles [65], such that

f(x, p) = f0δ(ε− ε0), (3.9)

where f0 is a constant. Coming back to the expression for N, we have

N = f0

∫
d3x dΩ p2 dpδ(ε− ε0) (3.10)

but
ε2 = p2c2 +m2c4, c2p2dp =

√
ε2 −m2c4E dE (3.11)

so
N =

f0

c2

∫
d3xdΩ

√
ε2 −m2c4ε dε δ(ε− ε0) (3.12)

which after integration, it is possible to find

f0 =
nc2

4πε0
√
ε20 −m2c4

, (3.13)

and thus the distribution function takes the form

f(E) =
nc2

4πε0
√
ε20 −m2c4

δ(ε− ε0). (3.14)
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The energy-momentum tensor can be written as

T µν (x, p) =

∫
d3p

pµ pν
ε

f(x, p) (3.15)

such that

T 0
0 = ρ(ε) =

∫
d3 p εf(ε) (3.16)

=

∫
dε dΩε2

√
ε2 −m2c4f0δ(ε− ε0) = nc2 ε0 (3.17)

or
ρ(E) = nc2ε0 (3.18)

The spatial component would be

T ij =

∫
d3pp2p̂ip̂j

f(ε)

ε
(3.19)

and taking the trace

T ii = 3p(ε) =

∫
d3p p2f(ε)

ε
=

∫
dε dΩ f0

(
ε2 −m2c4

)3/2
δ(ε− ε0). (3.20)

By integrating we get the result

p(ε) =
n

3ε0

(
ε20 −m2c4

)
, (3.21)

and defining ρd = nmc2 and using the expression for the energy density we see that

p =
ρ

3

(
1− ρ2

d

ρ2

)
(3.22)

which is exactly the equation of state for the RRG obtained previously using more
simple arguments (3.7).

3.2 Comparing with Jüttner model

Let us consider now the relativistic correction of the Maxwell-Boltzmann distri-
bution for this ideal gas of massive particles [68]. The partition function for a single
particle is given by the expression

Z =

∫
d3 pd3 qe−ε/kT = 4πm2cV K2

(
mc2

kT

)
(3.23)

where Kl(x) is a modified Bessel function of index l. The equation of state of N
particles can be derived as usual in the form

pJV = kTN

(
∂ lnZ
∂ lnV

)
T

= NkT (3.24)
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Figure 3.1: Difference between RRG and original Jüttner models. The maxi-
mum discrepancy is about 2, 5%. Figure taken from [2].

while the average energy of the particle is

ε̄ =
1

Z

∫
d3p d3q e−ε/kT ε = mc2

K3

(
mc2

kT

)
K2

(
mc2

kT

) − kT. (3.25)

Now, to see the difference between the RRG and the original relativistic Jüttner
description, let us solve the equation (3.24) for kT and substitute the result in
(3.25) to obtain

ρJ = ρd
K3

(
mc2

kT

)
K2

(
mc2

kT

) − pJ . (3.26)

We can also rewrite the RRG equation of state (3.7) as

ρR =
3

2
ρR +

√
ρ2
d +

9

4
ρ2
R (3.27)

such that if we define the dimensionless quantity [2]

δρ =
|ρR − ρJ |

ρJ
(3.28)

it is possible to study numerically and to find a maximal difference of approximately
2, 5% as is showed in the figure 3.1.

3.3 Simple cosmological model using the RRG

As in the case of perfect fluid, whose equation of state p = wρ, where w is a
constant, we are also interested in determining the cosmological evolution of the
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RRG energy density using the correspondent conservation law. Then, substituting
the expression for the pressure (3.7) in (1.15) (in terms of the redshift z)

dρ

dz
− 3

(1 + z)
(ρ+ p) = 0 (3.29)

we get a Bernoulli equation in the form

dρ

dz
− 4

(1 + z)
ρ = −ρ1(1 + z)5ρ−1 (3.30)

whose solution is
ρ(z) =

√
ρ2

1(1 + z)6 + ρ2(1 + z)8 (3.31)

or in terms of scale factor

ρ(a) =

√
ρ2

1

(a0

a

)6

+ ρ2

(a0

a

)8

(3.32)

where we have used the initial condition ρ(a0) =
√
ρ2

1 + ρ2
2, ρ1 is the rest energy at

some initial point V = V0 and ρ2 can be interpreted as the radiation component of
the RRG [2]. This solution can be also cast in the form

ρR(a) =
ρ1

a3

√
1 +

b2

a2
(3.33)

where
b2 =

ρ2
2

ρ2
1

(3.34)

is the warmness parameter b, which can also be expressed as

b =
v/c√
1− v2

c2

(3.35)

such that, for a low warmness v/c� 1, we have b ∼ v/c. Thus, b ≈ 0 means that
the matter content is “cold”. The non-relativistic (NR) and ultra-relativistic (UR)
limits correspond to the cases when ρ2 = 0 and ρ1 = 0, respectively, setting up the
well known interpolation between radiation and dust components for the RRG [3].
We can also write these limits in the form

UR :

{
ρ1 → 0

a→ 0
⇒ a2

b2
� 1, (3.36)

NR :

{
ρ2 → 0

a→∞
⇒ b2

a2
� 1 (3.37)

such that, the equation of state parameter ωR(ρ) = pR/ρR for this RRG satisfies

lim
a→∞

ωR(ρ) = ωnr(ρ) = 0, lim
a→0

ωR(ρ) = ωur(ρ) =
1

3
(3.38)

representing exactly the aforementioned interpolation. Let us review briefly in the
following subsections, the main cosmological properties of this RRG and its simple
variants.
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3.3.1 Pure RRG

For this case, we can find the behavior of the scale factor and compare with the
NR and UR limits of the model. From Friedmann equation (1.14) we have(

ȧ

a

)2

=
8πG

3
ρ (3.39)

with the solution (
a2 +

ρ2
2

ρ2
1

)3/4

=
√

6πGt (3.40)

where is very clear that in the NR limit, when ρ2 → 0, we obtain

a ∼ t2/3, (3.41)

as expected for a non-relativistic matter. The UR case is singular, however, we can
consider that ρ1 � ρ2 and expand in series the ratio ρ1/ρ2, obtaining

a(t) = ã
√
t− t0 (3.42)

with

ã =

√
32πGρ2

3
, t0 =

ρ
3/2
2√

6πGρ2
1

(3.43)

so we have
a(t) ∼ t1/2 (3.44)

as expected, again, for a radiation component.

3.3.2 RRG and radiation

In this case the Friedmann equation takes the form(
ȧ

a

)2

=
8πG

3
(ρ+ ργ) (3.45)

whose solution can be cast in the form

a2 − 1

3

(
ρ1

ργ0

)(
a2 + b2

)3/2
=

√
32πGργ0

3
t. (3.46)

Considering that ρ� ργ, which is the case for a radiation dominated (RD) universe,
we can interpret the effect of the RRG as a small correction of the a ∼ t1/2 law for a
radiation component. In the figure 3.2 we show the plot of the scale factor for this
model in contrast with the standard radiation and dust-like matter cases.
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Figure 3.2: Scale factor for the cases: pure radiation (a(t) ∼ t1/2), pure dust-
like (a(t) ∼ t2/3) and RRG+Radiation, corresponding to dashed, dotted and
continuous lines, respectively. Figure taken from [2]

3.3.3 RRG and cosmological constant

Here, the correspondent Friedmann equation is(
ȧ

a

)2

=
8πG

3
(ρ+ ρΛ) (3.47)

whose approximate solution can be written as

ln a+X(a) + λt (3.48)

with the X(a) function as

X(a) =
ρ1

8ρΛ

[√
a2 + b2

a4
+

√
a2 + b2

2b2a4
+

1

4b3
ln

(√
a2 + b2 − b√
a2 + b2 + b

)]
(3.49)

In the figure 3.3 we show the plot of the scale factor for this model in contrast with
the standard CC+dust-like matter and CC+radiation cases.

3.4 Including perturbations

It is also possible to consider the evolution of the RRG-Λ model in the presence
of perturbations following the approach developed in Refs. [1] and [3]. This implies
simultaneous perturbations of metric, energy density and the four-velocitiy in the
co-moving coordinates, such that

gµν → gµν + hµν , ρR → ρR + δρR, Uα → Uα + δUα, (3.50)
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Figure 3.3: Scale factor for the cases: CC+dust-like matter, CC+radiation and
CC+RRG, corresponding to dotted, dashed and continuous line, respectively.
Figure taken from [2]

where Uα is the WDM velocity. The perturbation of the WDM pressure should be
derived from the equation of state (3.5),

δPdm =
δρdm

3

[
1−

(mc2

ε

)2]
=

δρdm(1− r)
3

, (3.51)

meaning that the perturbations satisfy the same equation of state as the background
quantities. Technically, this means that the variations of the energy density δρdm and
the rest energy density δρd are always proportional. The reason for this restriction
is that in the framework of the RRG model one has to provide kinetic energies of
all particles to be equal and, therefore, we have no right to change the ratio mc2/ε
[3]. In the synchronous gauge h0µ = 0 and using the constraint δU0 = δV 0 = 0, the
system of equations for the perturbed quantities is given by

δp =
δρ

3
(1− s) (3.52)

h′ − 2h

(1 + z)
= −f1(2− s)

g
δ (3.53)

δ′ − 1

(1 + z)

[
4− s− (1 + z)ρ′

ρ

]
δ +

4− s
3H(1 + z)

(
h

2
− v

f1

)
= 0 (3.54)

v′ +

(
ρ′

ρ
− s′

4− s
− 5

1 + z
− f ′1
f1

)
v +

k2(1 + z)f1

H

1− s
4− s

δ = 0 (3.55)

where
v = f1(∇iδU

i), f1 =
ρ

ρt
(3.56)

and

δ(x, z) =

∫
d3k

(2π)3
δ(k, z)eik·x, v(x, z) =

∫
d3k

(2π)3
v(k, z)eik·x, k = |k|

(3.57)
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Figure 3.4: Power spectrum for the RRG-Λ model for fixed Ω0
B = 0.04, Ω0

DM =
0.21 and Ω0

Λ = 0.75, with the values b = 10−5, b = 10−4, b = 2 × 10−4 and
b = 10−3. The theoretical plots are presented together the LSS data from the
2dFGRS. Figure taken from [3]

It is possible to solve this system of equations numerically and to reconstruct the
matter power spectrum, defined by

P = δ2
k (3.58)

in order to compare with observational data, for instance, using the 2dFGRS [69].
The quantity δk is the component of the Fourier transform of the density contrast
δ(t), computed by integrating the system of equations for a given value of k and with
a given initial conditions [1]. In the figure 3.4 we show the plots of the reconstructed
matter power spectrum for the above system, for several values of the warmness
paramater b and in contrast to the 2dFGRS data. From the plots is possible to see
that the small constraint b ∼ 10−5 fits quite well the observational data while bigger
values for b can be practically ruled out.
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Chapter 4

Running vacuum energy and warm
dark matter

In this chapter we present a cosmological model where is considered the presence
of a running vacuum energy and a warm dark matter (WDM) component in the
form of a reduced relativistic gas (RRG). We study the behavior at background
and perturbative levels, comparing and testing its predictions against some well
known cosmological observables as the CMB first acoustic peak and the matter
power spectrum.

4.1 Background solution

We consider a cosmological model with the possibility of particle creation in the
primordial Universe due to the quantum effects of vacuum. More precisely, we study
the vacuum energy decay as a result of the renormalization group (RG) equation for
the density of the cosmological constant term as it was discussed in 2.

In what follows primes indicate derivatives with respect to the redshift parameter

1 + z =
a0

a
. (4.1)

The matter contents of the Universe include usual matter, DM and radiation, ac-
cording to the current estimate [46]. Here, the WDM component is described as
a reduced relativistic gas (RRG) of massive particles, which take into account in
a simple and useful way the warmness of the fluid and for the usual matter we
assume an ultra-relativistic equation of state Pb ≈ 1

3
ρb. Here we consider an early

post-inflationary Universe, where the WDM has already decoupled from the other
matter components and satisfies a proper continuity equation in the form

ρ′w −
(4− s)
1 + z

ρw = 0. (4.2)

31
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In the early Universe, one can restrict the consideration by the spatially flat FLRW
metric (k = 0). The solution for Eq. (4.2) can be easily found for a single adia-
batically expanding fluid [3]. Then the scaling law for the relative energy density
(relative to the critical density today1) for the relativistic gas representing the WDM,
is given by the expression

Ωw(z) =
Ω0
w(1 + z)3

√
1 + b2

√
1 + b2(1 + z)2, (4.3)

and Ω0
w is the WDM density in the present-day Universe. This model can be used

also to describe several fluids in the thermal contact [70][33]. According to our
physical setting, the running cosmological constant [18] is exchanging energy only
with the usual matter and the last has the approximate equation of state of radiation.
Then the conservation law has the form

ρ′r −
3(1 + w)

1 + z
ρr = −ρ′Λ, (4.4)

where we left w to be the equation of state parameter for the sake of generality.
When starting to deal with the numerical estimates, we shall set w = 1/3. Finally,
the Hubble parameter is given by the Friedman equation

H2(z) =
8πG

3

[
ρΛ(z) + ρr(z) + ρw(z)

]
. (4.5)

The solution of the system (2.34), (4.4) and (4.5) can be performed again fol-
lowing the pattern of [62], since the technical complications related to the presence
of DM are not critical. In order to obtain Ωr(z) one has to consider the derivative
of Eq. (4.5) and then use (2.34). After this, we arrive at the equation

ρ′Λ =
ν

1− ν
(
ρ′r + ρ′w

)
. (4.6)

Using (4.6) in (4.4) to eliminate ρΛ, after some simple algebra we obtain the differ-
ential equation for ρr(z),

ρ′r −
ζ

1 + z
ρr = −νρ′w, (4.7)

where

ζ = 3(1 + w)(1− ν). (4.8)

Let us stress that the interaction between radiation (remember it is all usual mat-
ter in this case) and DM, is not direct, but occurs because of the running of the
cosmological constant term in Eq. (6.60), parameterized by ν, and the Friedmann
equation (4.5). This implicit interaction occurs regardless of the DM satisfies sepa-
rate continuity equation (4.2).

1Here and from now on we use the notation Ωi(z) = ρi(z)/ρ
0
c , where ρ0

c = 3H2
0/8πG.
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Using Eq. (4.3) the solution of (4.7) can be found in the form

Ωr(z) = C0(1 + z)ζ − νΩ0
w(1 + z)3

√
1 + b2

[√
1 + b2(1 + z)2 +

ζ

3− ζ 2F1(fa, fb; fc;Z)
]
,(4.9)

with

C0 = Ω0
r +

νΩ0
w√

1 + b2

[√
1 + b2 +

ζ

3− ζ 2F1(fa, fb; fc;−b2)
]
. (4.10)

Here 2F1(fa, fb; fc;Z) is the hypergeometric function defined as

2F1(fa, fb; fc;Z) =
∞∑
k=0

(fa)k(fb)k
(fc)k

Zk

k!
, (4.11)

where (fa)k is the Pochhammer symbol. In our case

fa = −1

2
, fb =

3− ζ
2

, fb =
5− ζ

2
and Z = −b2(1 + z)2. (4.12)

Furthermore, ΩΛ(z) is directly obtained by integrating (4.6),

ΩΛ(z) = B0 +
ν

1− ν
[Ωr(z) + Ωw(z)], (4.13)

where

B0 = Ω0
Λ −

ν

1− ν
(
Ω0
r + Ω0

w

)
. (4.14)

Finally, the Hubble parameter can be found from the Friedmann equation,

H(z) = H0

√
ΩΛ(z) + Ωr(z) + Ωw(z). (4.15)

To illustrate the behavior of the model we can consider the total effective equation
of state. It can be obtained using the second Friedman equation,

−2(1 + z)HH ′ + 3H2 = −8πGPt ≡ −8πGweff (z)ρt, (4.16)

where

ρt(z) ≡ ρΛ(z) + ρr(z) + ρw(z). (4.17)

Thus,

weff (z) =
2H ′

3H
− 1. (4.18)

In Fig. 4.1, we plot weff (z) for the energy balance obtained by the best fit of
χ2
l1

and χ2
l1

+ χ2
BAO + χ2

SNIa (see subsections 4.3.1 and 4.3.2 below). As expected
weff (z) → −1 when z → −1, while weff (z) → 1

3
for z → ∞ [71]. When compared

with the ΛCDM model with the same Ω’s and CMB+BAO+SNIa combined data are
used, our model fits better for small z and approaches faster to radiation dominated
epoch when z increases.
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Figure 4.1: The dotted and dot-dashed lines represent our model for χ2
l1

and χ2
l1

+ χ2
BAO + χ2

SNIa best fits, respectively, based on the results from
Sec. 5.3. The dashed one represents the ΛCMD model. On the left, we
plot weff (z) for small values of z and in the right plot there are higher
values of z. In the far future, weff (z) approaches the equation of state of
constant Λ. On the other hand, when z → ∞, the effective equation of
state approaches radiation.

4.2 Including perturbations

As it was mentioned previously in Chap.2 and Chap.3, we need to consider the
perturbations

gµν → gµν + hµν , ρi → ρi + δρi, Uα → Uα + δUα, V α → V α + δV α . (4.19)

Here Uα is the DM velocity and V α is the usual, or baryonic, matter (radiation, in
our case) velocity. In the following calculations we use the constraint δU0 = δV 0 = 0
and the synchronous gauge h0µ = 0. The perturbation of the WDM pressure, as
discussed before, is given by

δPw =
δρw
3

[
1−

(mc2

ε

)2]
=

δρw(1− r)
3

, (4.20)

Introducing now the useful notations Eq. (4.17),

f1(z) =
ρr(z)

ρt(z)
, f2(z) =

ρΛ(z)

ρt(z)
, f3(z) =

ρw(z)

ρt(z)
, g(z) =

2ν

3H(z)
, (4.21)

we arrive at the 00-component of Einstein equations,

h′ − 2h

1 + z
= − 2ν

(1 + z)g

[
(1 + 3w)f1δr − 2f2δΛ + (2− r)f3δw

]
, (4.22)
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Equations corresponding to the time and spatial components of the perturbation for
the conservation law δ(∇µT

µν) = 0, have the form

δ′r +
[f ′1
f1

− 3(1 + w)f2

1 + z
+

(1− r − 3w)f3

1 + z

]
δr −

1 + w

(1 + z)H

( v
f1

− h

2

)
= − 1

f1

(δΛf2)′ − 3(1 + w)f2

1 + z

[
1 +

(4− r)f3

3(1 + w)f1

]
δΛ, (4.23)

v′ +
[3(1 + w)f1 + (4− r)f3 − 5]

1 + z
v =

k2(1 + z)

(1 + w)H
(f2δΛ − wf1δr) , (4.24)

δ′w +
{ f ′3
f3

+
3(1 + w)f1 + (r − 4)(f1 + f2)

1 + z

}
δw +

4− r
3H(1 + z)

(h
2
− u

f3

)
= 0,(4.25)

u′ +
[3(1 + w)f1 + (4− r)f3 − 5

1 + z
− r′

4− r

]
u+

k2(1 + z)f3

H

(1− r
4− r

)
δw = 0. (4.26)

Here we used the notations v = f1∇i(δV
i) and u = f3∇i(δU

i) for divergences of
the peculiar velocities and we rewrote all the previous perturbation equations in the
Fourier space, using

f(x, t) =

∫
d3k

(2π)3
f(k, t) eik·x, with k = |k|. (4.27)

Perturbing the formula (2.64) for this case, one finds

δΛ =
g

f2

( v
f1

− h

2

)
. (4.28)

The last equation is not dynamical, representing a constraint that can be replaced
into other equations. Using (4.28) in (4.22), (4.23), and (4.24), we arrive at the
equations

h′ +
2(ν − 1)

1 + z
h =

2ν

1 + z

[2v

f1

− (1 + 3w)
f1

g
δr − (2− r)f3

g
δw

]
, (4.29)

δ′r +
[f ′1
f1

− 3(1 + w)f2

1 + z
+

(1− r − 3w)f3

1 + z

]
δr =

1

f1

(gh
2
− gv

f1

)′
+

1 + w

1 + z

[
3g +

(4− r)gf3

(1 + w)f1

− 1

H

](h
2
− v

f1

)
, (4.30)

v′ +
{ [3(1 + w)f1 + (4− r)f3 − 5]

1 + z
− k2g(1 + z)

(1 + w)Hf1

}
v

= − k
2g(1 + z)

2(1 + w)H

(
h+

2wf1

g
δr

)
, (4.31)

such that the complete system of perturbation equations includes (5.1), (5.2), (5.3),
(5.4) and (5.5).

4.3 Observational tests

The free parameters of the cosmological model for the early Universe with run-
ning cosmological constant and energy exchange between vacuum and matter can
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be constrained from various observational tests. Thus, the general framework of the
model formulated above may have different applications (one can see e.g. [32] for
the possibilities in a simpler model without cosmological constant running). As a
first step, in the present section we consider the two tests, namely the position of
the first acoustic peak of the CMB power spectrum and the inclusion of SNIa+BAO
combined data.

Let us note that the process of cosmological constant decay into normal particles,
as discussed in the previous sections, is effective in the primordial Universe, that is
long before BBN. For this reason, we are allowed to use the transfer function in the
usual standard format. However, this process leaves traces for the later epochs of
the Universe evolution, encoded in the values of parameters ν and b. In this way,
one can use the tests from the late phase of the Universe for exploring the effect of
running cosmological constant in the earlier epoch.

The statistical analysis of the data starts with the χ2 functions, constructed
according to the general expression

χ2(Xj) =
N∑
i=1

[
µobsi − µthi (Xj)

σi

]2

, (4.32)

where N is the total number of observational data, µthi are the theoretical predictions
depending on free parameters Xj, and µobsi represent the observational values with
an error bar given by σi. In our case the free parameters are ν, Ω0

w and b. Let
us remember that ν defines the running of the vacuum energy, while Ω0

w and b
describe the DM relative density and warmness. As usual, Ω0

Λ = 1−Ω0
w −Ω0

b −Ω0
r.

It is worth mentioning that here we are dealing with the late Universe, hence usual
matter (baryonic) and radiation contents are separated.

The probability distribution function is constructed from χ2 as

P (Xj) = Ae−χ
2(Xj)/2, (4.33)

where A is a normalization constant.

4.3.1 The first CMB peak

The position of the first peak in the CMB spectrum l1 is related to the acoustic
scale lA by the relation

l1 = lA(1− δ1), where δ1 = 0.267
( r̄

0.3

)0.1

, (4.34)

with r̄ = ρr(zls)
ρm(zls)

is evaluated at the redshift of the last scattering surface, zls = 1090

[72]. The acoustic scale is defined by

lA =
π
∫ zls

0
dz
H(z)∫∞

zls

cs(z)
c

dz
H(z)

, (4.35)
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Figure 4.2: The first CMB peak one-dimensional probability distribution,
after marginalizing on the other variables.

where cs(z) is the sound speed

cs(z) = c

(
3 +

9

4

Ω0
b

Ω0
γz

)−1/2

. (4.36)

Here Ω0
b and Ω0

γ stand for the present density parameters of usual (baryonic) matter
and photons, respectively. The relation (4.34) does not depend on the dark energy
model. Here we consider the estimate l1 = 220.6 ± 0.6 and we use the values
Ω0
γ = 2.47× 10−5/h2, Ω0

b = 0.022/h2 and Ω0
r = 4.18× 10−5/h2 with the reduced

Hubble constant h = 0.6732 [46]. Furthermore, we let the free parameters run in
the intervals ν ∈

(
0, 10−4

)
, b ∈

(
0, 10−4

)
and Ω0

w ∈
(
0, 0.95

)
. The minimization

of the χ2 statistics is done according to

χ2
l1

=

[
220.6− l1(Ω0

w, ν, b)

0.6

]2

, (4.37)

where this function has a local minimum around

Ω0
w = 0.550, ν = 1.130× 10−5, b = 4.117× 10−5. (4.38)
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Here we can see that the current DM energy density value Ω0
w is higher than ex-

pected, indicating the necessity of a more robust observational test to get a better
fit with respect to the standard model of cosmology (see Sec. 4.3.2).

It is easy to note that the value of Ω0
w quoted in (4.38) is dramatically different

from the optimized value in ΛCDM. Certainly, this is not what should be expected
taking the relatively small values of DM warmness and running into account. Indeed,
the difference can be understood by the fact that it corresponds only to the one
particular observable, namely the first CMB peak. In this special situation, b 6= 0
(that indicates a WDM) implies that more matter is required to reproduce the
observed matter agglomeration. In what follows, we will use a more complete set of
the observational data. Then the lower values for b and ν will be obtained, implying
also a lower value for Ω0

w, much closer to the conventional optimized value. In
particular, taking both b and ν equal to zero, the usual ΛCDM results are obtained.

In Fig. 6.1 one can see the results for the one-dimensional marginalized prob-
ability distribution (PDF) for the free parameters of the model. It is easy to see
that this test alone cannot constraint too much the parameters. Furthermore, the
two-dimensional probability distribution, with both parameters being varied and
one is integrated out, is shown in Fig. 6.2. The regions of higher probabilities in
these plots are indicated by brighter tons. The PDF distribution shown in this sub-
section does not cover a compact and finite domain in the parameter space. This
output of the numerical analysis is due to two reasons. First of all, it is due to the
physical restriction on the parameters of the model which we imposed. For example,
we assumed that both ν and b should be positive and Ωw cannot be either negative,
neither greater than a threshold value. Certainly, from the statistical point of view,
this is odd, and hence we can not be surprised by the unconventional form of the
region in the parameter space.

Second, it is known that for some specific models, a given parameter may have
a non-negligible PDF for disjoint regions. Even if such a feature may look unusual,
it can be found in the literature. One particular example is the predictions for
the equation of state parameter α of the Generalised Chaplygin gas, where the
constraints from the Integrated Sachs-Wolfe (ISW) effect implies either α ≈ 0 or
α > 350, with the limit α→∞ giving results similar to α = 0 [73].

4.3.2 Including BAO and SNIa data

To find better constraints for our free parameters, in this section it is constructed
a more robust test using SNIa and BAO combined data. Thus, we shall use

χ2
total = χ2

l1
+ χ2

BAO + χ2
SNIa, (4.39)
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Figure 4.3: Two-dimensional probability distribution for the observational
test using the first CMB acoustic peak. The brighter regions have higher
probabilities.

where χ2
BAO and χ2

SNIa are constructed following the reference [74]. The results of
this test are summarized in Table 4.2 and are given by

Ω̄0
m = 0.321, ν̄ = 2.442× 10−6, b̄ = 1.888× 10−6. (4.40)

Note that this Ω0
m is lower than the previous estimate (4.38) and therefore looks

closer to the constraints obtained with the ΛCDM model. It is also important to
note that in this combined test, it was used Ω0

m = Ω0
w + Ω0

b , instead of Ω0
w as in

section 2. Additionally, we observe considerable variations in ν and b values.

On the other hand, in Tables 4.1 and 4.3 we have written the best fit values for
ΛCDM (ν = b = 0) as our reference frame and the comparative analysis between
both models. Two of the main statistical criteria to select models is the Akaike
Information Criterion (AIC) [75], and the Bayesian Information Criterion (BIC)
[76], defined respectively by, AIC = χ2

min + 2µ and BIC = χ2
min + 2µ lnN , where µ

is the number of degree of freedom and N the number of observational data. These
criteria take into account the number of free parameters of each model since the
general tendency of models of higher number of free parameters is to fit better the
data.
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Parameter SNIa SNIa+BAO SNIa+BAO+CMB

χ2
min 562.227 583.289 585.440

Ω0
m 0.261 0.275 0.308

Ω0
Λ 0.680 0.647 0.656

AIC 566.227 587.289 589.440
BIC 587.679 608.823 610.981

Table 4.1: Summary of the observational constraints for the free parame-
ters and for the case of ν = b = 0 (ΛCDM with two free parameters).

Parameter SNIa SNIa+BAO SNIa+BAO+CMB

χ2
min 562.315 583.402 585.374

Ω0
m 0.263 0.291 0.321
ν 1.970 ×10−6 3.149×10−6 2.442 ×10−6

b 1.170×10−5 1.870×10−5 1.888 ×10−6

AIC 568.315 589.402 591.374
BIC 600.493 621.703 623.685

Table 4.2: Summary of the observational constraints for the free param-
eters and for the model RRG+RGE (with three free parameters: Ω0

m, ν
and b).

Parameter SNIa SNIa+BAO SNIa+BAO+CMB

∆ikAIC 2.088 2.113 1,934
∆ikBIC 12.814 12.880 12.704

Table 4.3: Comparative analysis between the model RRG+RGE (with
three free parameters: Ω0

m, ν and b) and the case of ν = b = 0 (ΛCDM
with two free parameters).

Frequently it is used on the Jeffreys scale [77] to quantify the relativity statistical
relevance of the models. For the AIC (BIC) parameter, models such ∆AIC(∆BIC) <
2 have strong support, weak support in the case ∆AIC(∆BIC) < 5 and are dis-
favored for ∆AIC(∆BIC) > 10. From table 4.3 the Jeffreys scale applied to the
AIC statistical criterion favors the model RRG+RGE, while this model is strongly
disfavored using the BIC criterium, a consequence of the large number of observa-
tional data, specially the SNIa data. This discrepancy in using the two criteria is a
common feature found in the literature [78]-[79]. The contourplots with 1σ and 2σ
levels for the CMB+BAO+SNIa combined data are shown in Fig. 4.4.

Let us note that the fact that the most probable values (4.38) and (4.40) include
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Figure 4.4: Observational constraints for our three free parameters ν,
b and Ω0

m, for 1σ and 2σ levels. Here we have used SNIa+BAO+CMB
combined data. The marked points are given by (Ω̄0

m, b̄), (Ω̄0
m, ν) and

(ν̄, b̄), respectively, in correspondence with best fit values presented above
in Table 4.2.

ν 6= 0 does not constitute proof of the running of the cosmological constant. As
usual, the statistics with an extra free parameter, such as ν, always gives the best
values for the non-zero parameter, and this is what we observe here. At the same
time, it is remarkable that letting cosmological constant run does not lead to dra-
matic changes in the best fit for other parameters, such as DM relative density Ω0

w

and the warmness b.

4.3.3 Matter power spectrum

The matter power spectrum at z = 0 is given by

P (k) = |δm(k)|2 = AkT 2(k)
[ ḡ(Ω0

t )

ḡ(Ω0
m)

]2

, (4.41)
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Figure 4.5: Solid line: power spectrum of our model using the best fit
of χ2

l1
+ χ2

BAO + χ2
SNIa. One can see that these values provide the linear

power spectrum which is compatible with the 2dFGRS data. Dashed line:
power spectrum obtained by BBKS transfer function with ΛCDM energy
balance.

where A is a normalization constant of the spectrum. This constant can be fixed
from the spectrum of anisotropy of the CMB radiation and

ḡ(Ω) =
5Ω

2
[
Ω4/7 + 1.01(Ω/2 + 1)− 0.75

] . (4.42)

Here we use the Bardeen-Bond-Kaiser-Szalay (BBKS) transfer function [80]

T (k) =
ln (1 + 2.34q)

2.34q

(
1 + 3.89q + 16.1q2 + 5.64q3 + 6.71q4

)−1/4
, (4.43)

where

q(k) =
k

hΓMpc−1 and Γ = Ω0
mh exp

{
− Ω0

b −
Ω0
b

Ω0
m

}
, (4.44)

to construct a set of initial conditions for the system of equations (5.1), (5.2), (5.3)-
(5.5). In Fig. 4.5 we compare the data from the 2dFGRS survey [69] with the
matter power spectrum of our model for the energy balance obtained by the best fit
of χ2

l1
+ χ2

BAO + χ2
SNIa (see Table 4.2). Compared to more recent surveys (see e.g.

[81]), the 2dFGRG data present the advantage of being less contaminated by the
standard model used in the calibration.



Chapter 5

Including spatial curvature and some
new constraints

In this chapter we shall consider the presence of spatial curvature and analyze the
consequences for a cosmic epoch after recombination, this is, in a matter-dominated
(MD) universe with the aim of finding some changes in the matter power spectrum
and some new constraints for the free parameters ν and b with respect to Ω0

k.

5.1 Background solution

For the sake of generality, we shall hold ω in all the expressions, but when
starting the numerical estimates in Sec. 5.3, we shall set ω = 0, as expected for
a usual matter (in what follows we call it baryonic) component in a MD universe
after recombination. The system of equations for this case, with a non-zero spatial
curvature, energy exchange between cosmological constant density and baryonic
matter, and adiabatically expanding ideal gas of WDM, is given by

H2(z) =
κ2

3

[
ρΛ(z) + ρb(z) + ρw(z)

]
+H2

0 Ω0
k(1 + z)2 (5.1)

ρ′b −
3(1 + w)

1 + z
ρb = −ρ′Λ, (5.2)

ρ′w =
(4− s)
1 + z

ρw. (5.3)

In what follows we will need the total energy-momentum tensor, that is given by
the sum of the baryonic, vacuum and WDM parts,

T µν = Lµν +Mµ
ν , (5.4)
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44 5.1. Background solution

where

Lµν = (1 + ω)ρbU
µUν − (ωρb − ρΛ)δµν ,

Mµ
ν =

4− s
3

ρwV
µVν −

1− s
3

ρwδ
µ
ν , (5.5)

with the associated 4-velocities Uµ and V µ.

On the other hand, let us remember once more that one can parameterize the
running of ρΛ in terms of a free parameter ν [17][16][21], as

dρΛ

dz
=

3ν

8πG

dH2

dz
(5.6)

or, equivalently, as

ρΛ = ρ0
Λ +

3ν

8πG

(
H2 −H2

0 ), (5.7)

where the sign of ν indicates whether bosons or fermions dominate in the running
[21]. The set of equations formulated above, is appropriate for a simple albeit reliable
description of the phase of the Universe with the running cosmological constant and
the energy exchange with the matter sector. To solve the system of four equations
(5.1)-(5.3) and (5.6), note first that in our model the WDM component is also
decoupled, so its conservation law directly to get again

Ωw(z) =
Ω0
w(1 + z)3

√
1 + b2

√
1 + b2(1 + z)2, (5.8)

Using (5.6) in (5.1) we get

dρΛ

dz
=

ν

1− ν

[
dρb
dz

+
dρw
dz

+
6H2

0

κ2
Ω0
k(1 + z)

]
(5.9)

and, substituting this result in (5.2), we at the simple differential equation for ρb,

dρb
dz
− ζ

1 + z
ρb = −ν dρw

dz
− 6ν

κ2
H2

0 Ω0
k(1 + z), (5.10)

where ρw is determined by the product Ωwρ
0
c. The solution to Eq. (5.10) is given

by

Ωb(z) = C0(1 + z)ζ − 2ν

2− ζ
Ω0
k(1 + z)2

− νΩ0
w(1 + z)3

√
1 + b2

[√
1 + b2(1 + z)2 +

ζ

3− ζ 2F1(α, β; γ;Z)
]
, (5.11)

where

C0 = Ω0
b +

2ν

2− ζ
Ω0
k +

νΩ0
w√

1 + b2

[√
1 + b2 +

ζ

3− ζ 2F1(α, β; γ;−b2)
]
, (5.12)
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Figure 5.1: Dynamic evolution of the three energy-matter components of the
Universe. One can observe the WDM domination and the domination of the
running cosmological constant part for big and small redshifts z, respectively.
The growing of DE as a consequence of baryons decay, it is also observed.

and 2F1(α, β; γ;Z) is the hypergeometric function defined defined in previous chap-
ter (see (4.11)).

The solution for ρΛ can be found by integrating (5.8),

ΩΛ(z) = B0 +
ν

1− ν
[
Ωr(z) + Ωw(z) + Ω0

k z(z + 2)
]
, (5.13)

where

B0 = Ω0
Λ −

ν

1− ν
(
Ω0
r + Ω0

w

)
. (5.14)

Finally, for the square of the Hubble parameter we find

(
H(z)

H0

)2

= 1 +

(
Ω0
b +

2νΩ0
k

2− ζ

)[
(1 + z)ζ − 1

1− ν

]
+ Ω0

k(z
2 + 2z)

[
1− νζ

(1− ν)(2− ζ)

]
+

Ω0
w

1− ν

{[
ν +

νζ

3− ζ
2F1(fa, fb; fc;−b2)√

1 + b2

]
(1 + z)ζ − 1

}
+

Ω0
w(1 + z)3

√
1 + b2

[√
1 + b2(1 + z)2 − νζ

(1− ν)(3− ζ)
2F1(fa, fb; fc;Z)

]
.(5.15)

In the limits of ν → 0 and b → 0 we recover the standard ΛCDM model and in
the case of ω = 0 and Ω0

w = 0 (that is, without WDM), we recover exactly the
result presented in [1]. In Figure 6.1 is presented the cosmic evolution of the relative
energy densities for normal matter, running vacuum and warm dark matter with
respect to redshift z.
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5.2 Cosmic perturbations

Let us consider the cosmological perturbations in this model including curvature.
It proves useful once more introducing the quantities

f1(z) =
ρb(z)

ρt(z)
, f2(z) =

ρΛ(z)

ρt(z)
, f3(z) =

ρw(z)

ρt(z)
, (5.16)

and

g(z) =
2νH(z)

3H2(z)− 3H2
0 Ω0

k(1 + z)2
, (5.17)

where ρt is the total energy density. Thus, we arrive at the 00-component of the
linearized Einstein equations,

h′ − 2h

1 + z
= − 2ν

(1 + z)g

[
(1 + 3w)f1δb − 2f2δΛ + (2− s)f3δw

]
, (5.18)

Following the same notation for the divergences of the peculiar velocities as previous
chapter, the time and spatial components of the perturbations satisfy the linear
equations

δ′b +
[f ′1
f1

− 3(1 + w)f2

1 + z
+

(1− s− 3w)f3

1 + z

]
δr −

1 + w

(1 + z)H

( v
f1

− h

2

)
= − 1

f1

(δΛf2)′ − 3(1 + w)f2

1 + z

[
1 +

(4− s)f3

3(1 + w)f1

]
δΛ, (5.19)

v′ +
[3(1 + w)f1 + (4− s)f3 − 5]

1 + z
v =

k2(1 + z)

(1 + w)H
(f2δΛ − wf1δb) , (5.20)

δ′w +
{ f ′3
f3

+
3(1 + w)f1 + (s− 4)(f1 + f2)

1 + z

}
δw +

4− s
3H(1 + z)

(h
2
− u

f3

)
= 0, (5.21)

u′ +
[3(1 + w)f1 + (4− s)f3 − 5

1 + z
− s′

4− s

]
u+

k2(1 + z)f3

H

(1− s
4− s

)
δw = 0. (5.22)

and using again the perturbation of the running equation, we arrive at the equations

h′ +
2(ν − 1)

1 + z
h =

2ν

1 + z

[2v

f1

− (1 + 3w)
f1

g
δb − (2− s)f3

g
δw

]
, (5.23)

δ′b +
[f ′1
f1

− 3(1 + w)f2

1 + z
+

(1− s− 3w)f3

1 + z

]
δb =

1

f1

(gh
2
− gv

f1

)′
+

1 + w

1 + z

[
3g +

(4− s)gf3

(1 + w)f1

− 1

H

](h
2
− v

f1

)
, (5.24)

v′ +
{ [3(1 + w)f1 + (4− s)f3 − 5]

1 + z
− k2g(1 + z)

(1 + w)Hf1

}
v

= − k
2g(1 + z)

2(1 + w)H

(
h+

2wf1

g
δb

)
. (5.25)

where we shall set w = 0 for numerical purposes and the effect of the curvature is
carried by the modified Hubble parameter H.
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5.3 Some observational constraints

Let us use the equations calculated above and some of the available observational
data to constrain the parameters of our model, including ν, b and Ω0

k.

5.3.1 Supernovae Ia

In this subsection we will use the data from Supernovas Ia called “Pantheon”
sample [37], which is the largest combined sample of SNIa and consists of 1048
data with the redshifts in the range 0.01 < z < 2.3. It is a collection of the SNe Ia,
discovered by the Pan-STARRS1 (PS1) Medium Deep Survey and SNe Ia from Low-
z, SDSS, SNLS and HST surveys. This supernova Ia compilation uses the SALT
2 program to transform light curves into distances using a modified version of the
Tripp formula [82],

µ = mB −M + αx1 − βc+ ∆M + ∆B, (5.26)

where µ is the distance modulus, ∆M is a distance correction based on the host-
galaxy mass of the SNIa and ∆B is the distance correction based on predicted bias
from simulations. Also, α is the coefficient of the relation between luminosity and
stretch; β is the coefficient of the relation between luminosity and color and M is
the absolute B-band magnitude of the fiducial SNIa with x1 = 0 and c = 0. Also
c is the color and x1 is the light-curve shape parameter and mB is the log of the
overall flux normalization. A covariance matrix C is defined such that

χ2
SNIa = ∆µT ·C−1 ·∆µ, (5.27)

where ∆µ = µobs − µmodel and µmodel is a vector of distance modulus from a given
cosmological model and µobs is a vector of observational distance modulus. The
µ = m−M , where M is the absolute magnitude and m is the apparent magnitude,
which is is given by

mmodel = M + 5Log10

(
DL

)
+ 5Log10

( c/H0

1Mpc

)
+ 25 = M̄ + 25 + 5Log

(
DL

)
, (5.28)

where DL = H0

c
dL and M̄ = M + 5Log( c/H0

1Mpc
) is an nuisance parameter, which

depends on the Hubble constant H0 and the absolute magnitude M . To minimize
with respect to the nuisance parameter we follow a process similar to Refs. [83][84].
Therefore, the χ2

M̄marg
is,

χ2
M̄marg = ã+ log

( ẽ

2π

)
− b̃2

ẽ
, (5.29)

where

ã = ∆mT · C−1 ·∆m, b̃ = ∆mT · C−1 · I, ẽ = IT · C−1 · I. (5.30)

Here ∆m = mobs −mmodel and I is the identity matrix.
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Parameters Best-fitting
Ω0
w 0.249± 0.107

Ω0
k −0.05± 0.120
b 0.000655± 0.000300
ν 0.000407± 0.000070

Table 5.1: Best-fitting parameters for 1σ confidence intervals and for the χ2
total

including the SNIa and DR11 data sets.

5.3.2 Power Spectrum

The numerical analysis of the perturbations in our model can be confronted
with the power spectrum data of the BOSS-DR11 project [5]. For the comparison
of these data with the theoretical model described in the previous section, we use
the chi-square statistics,

χ2
DR11 =

n=37∑
i=1

[
Pthe(zobs,i, k,Ω

0
w,Ω

0
k, b, ν)− Pobs,i

]2
σ2
obs,i

, (5.31)

where P denotes the power spectrum and we used the Planck collaboration value
Ω0
b = 0.049 [46] and H0 = 70km/s

Mpc
. In our case, the theoretical power spectrum,

(Pthe), results from the solution of the coupled system of Eqs. (5.21), (5.22) and
(5.23)-(5.25). Namely, the power spectrum of the normal (baryonic) matter at the
current redshift is determined as

P (k) =
∣∣δb(k)

∣∣2. (5.32)

Solving system of equations (5.21), (5.22), (5.23), (5.24) and (5.25) requires specify-
ing the initial conditions for all the variables. For this end, we follow Ref. [32] and
assume the transfer function BBKS [80][85]. The first results of the numerical analy-
sis can be seen in Table 5.1. The plot for the power spectrum which results from the
approach explained above, is shown in Figure 5.2. The blue line is calculated using
the best fitting given by the Table 5.1. The other lines keep all the parameters fixed
while varying the parameter of the running ν (red line) or the warmness b (green
line).

To determine the observational constraints using the two data sets described
above, namely SNIa and matter power spectrum DR11, we define the total χ2 as
the sum of the individual contributions, in the form

χ2
total = χ2

SNIa + χ2
DR11 (5.33)

and elaborate this value using the data presented in this section. The results of
this treatment are illustrated in Fig. 5.3, where we show how the parameters that
characterize our model vary with respect to the curvature Ω0

k. One can observe that
the two data sets are complementary, except the case of the plane (Ω0

k, b).
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Figure 5.2: Reconstruction of the power spectrum (PS) of matter from the
solution of the system of equations (5.21), (5.22), (5.23), (5.24) and (5.25). The
blue line is constructed with the best fitting from Table 5.1. The green and red
dashed lines correspond to the values of b = 10−3 and ν = 10−3, respectively,
letting fixed all the other values. It is evident that the matter PS is quite sensible
to ν and b values. On the other hand, no essential changes under variation of Ω0

k

were observed.
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50 5.3. Some observational constraints



Chapter 6

Scalar field theory for warm dark
matter

In this chapter we construct a scalar field theory for the warm dark matter
component modelled using again the simple reduced relativistic gas model. The
main purpose is to describe the same cosmological properties of the original RRG
but using the useful scalar field description, in the case of minimal coupling to gravity
and conformal coupling, where the latter is constructed from the former through the
properties of the conformal transformation for general scalar field actions. At the
end of the chapter is also explored the possibility of including a dynamical form of
dark energy introducing the running of the cosmological constant.

The RRG equation of state and other relations like continuity and warmness
equations indicate that this is the model describing an ideal, this is, non-interacting
gas of relativistic massive particles. Therefore, if thinking about its mapping to
the theory of the scalar field, in the zero-order approximation our physical insight
suggests that such a scalar model should correspond to a free scalar theory. On
the other hand, since the RGG slightly deviates from the Jüttner model [31], there
can be a certain defect or deviation from the free scalar field. Thus, the conformal
potential should take the approximate form

Uur(ϕ) =
m2

2
ϕ2 + ∆U(ϕ) (6.1)

where ∆U(ϕ) should be a small quantity.

6.1 Minimal scalar field

In this section, we reconstruct a general form of the scalar field potential in
correspondence with the RRG. Firstly, we set up the basic relations between the
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52 6.1. Minimal scalar field

scalar field and hydrodynamic variables and later we recover some basic properties
of the RRG model through the equation of state in this scalar field context.

For the simple RRG cosmological model, we can use the Friedmann equations in
the form

ρw =
3H2

κ2
, pw = − 1

κ2

(
3H2 + 2Ḣ

)
, (6.2)

for a spatially flat FRLW metric with line element

ds2 = −dt2 + a2(t)dx2, (6.3)

where a(t) is the scale factor and the dot denotes derivatives with respect to the
cosmic time t. We also have the correspondent continuity equation

dρw
da

+
(4− s)
a

ρw = 0, (6.4)

6.1.1 Reconstructing the potential

Consider the Lagrangian for a scalar field φ minimally coupled to gravity1 [86]

S =

∫
d4x
√
−g
[

1

2κ2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (6.5)

with κ2 = 8πG = M−2
pl . The energy-momentum tensor for this scalar field is

T φµν = ∂µφ∂νφ−
[

1

2
(∂φ)2 − V (φ)

]
gµν (6.6)

so using again the line element (6.3), the associated energy density and pressure are
given by2

ρφ =
1

2
φ̇2 + V (φ), pφ =

1

2
φ̇2 − V (φ) (6.7)

and the conservation law ∇µT
µν = 0 yields the Klein-Gordon equation

φ̈+ 3Hφ̇+
dV

dφ
= 0. (6.8)

We want to construct a scalar field theory which describes the same cosmological
evolution as the simple model for the RRG discussed in last section, following a
similar procedure as was discussed, for example, in the case of Chaplygin gas [67].
For this purpose, we need to make the equivalence

ρw =
1

2
φ̇2 + V (φ), pw =

1

2
φ̇2 − V (φ), (6.9)

1We adopt here and what follows the next notations: φ is the scalar field minimally coupled to
gravity and ϕ is the scalar field conformally coupled to gravity.

2When φ or ϕ appear as indices will only make reference to minimal and conformal scalar field
quantities, respectively, so they are not tensor indices.
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such that
ρw + pw = φ̇2, ρw − pw = 2V (φ). (6.10)

Using the first of these expressions for φ, the Friedmann equations (6.2) and changing
time derivatives by scale factor derivatives (′ ≡ d/da), we would get(

dφ

da

)2

= −1

κ

1

aH2

dH2

da
= − 1

κ a ρw

dρw
da

, (6.11)

and using now the conservation equation (6.4)

dφ

da
=

1

κ a

√
4− s. (6.12)

In order to simplify our calculations, let us to consider the redefiniton of the rest
density in the form

ρd = ρ1a
−3 → ρd =

√
3ρ1a

−3 (6.13)

such that equation (6.12) becomes

dφ

da
=

1

2κa

(
a2 + 4b2

a2 + b2

)1/2

, (6.14)

which is the fundamental and most general relation between minimal scalar field φ
and the scale factor a, when a mapping between minimal scalar field and the RRG
model is considered. Now, if we make the change of variable

y2 =
a2 + 4b2

a2 + b2
, (6.15)

we obtain the next integral

φ(y) =
1

2κ

∫
6y2dy

(y2 − 1)(y2 − 4)
, (6.16)

whose solution is given by

φ(y) =
1

2κ
ln

[(
1 + y

1− y

)(
2− y
2 + y

)2
]
, (6.17)

or alternatively

cosh 2κφ = −1

2

(
9y6 − 15y4 + 72y2 + 16

y6 − 9y4 + 24y2 − 16

)
. (6.18)

After some simple algebra we can find a cubic equation for y2, this is

y6 − λ(φ)y4 + µ(φ)y2 + θ(φ) = 0, (6.19)

whose solution, which gives y in terms of scalar field φ, is given by

y2(φ) =
1

3

[
21/3χ(φ)

ι(φ)
+
ι(φ)

21/3
− λ(φ)

]
, (6.20)
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where we have defined the functions

ι(φ) = ψ(φ) +
√
ψ2(φ)− 4χ3(φ), χ(φ) = λ2(φ)− 3µ(φ), (6.21)

ψ(φ) = −2λ3(φ) + 9λ(φ)µ(φ)− 27θ(φ), (6.22)

with

λ(φ) =
3
[
1− 12 cosh2 κφ

]
7 + 12 cosh2 κφ

, µ(φ) =
24
[
1 + 4 cosh2 κφ

]
7 + 12 cosh2 κφ

, (6.23)

θ(φ) =
16
[
3− 4 cosh2 κφ

]
7 + 12 cosh2 κφ

. (6.24)

Therefore, we have found the solution of the scale factor a as a function of the scalar
field φ through the auxiliary variable y, namely

a2(φ) = b2y
2(φ)− 4

1− y2(φ)
. (6.25)

Additionally, solving the second equation in (6.10), we can find the potential as a
function of scale factor a, this is

V (a) =
ρ1

6a4

5a2 + 2b2

√
a2 + b2

. (6.26)

where substituting the solutions for a(φ) and y(φ) given by previous equation (6.25)
and (6.20), we can obtain the scalar potential V (φ), and therefore, a scalar field
theory for the RRG in the case of minimal coupling. In figure 6.1 (on the left) we
plot this potential as a function of minimal scalar field κφ.

6.1.2 UR-NR limits and equation of state

In previous section we could obtain a general expression for the potential in
this minimal scalar field context, but due the long and non-simple form of the
function y(φ) in (6.20), the analytical treatment of this mapping can be complicated.
However, we are interested in mapping our RRG model of WDM taking into account
the behavior in the UR and NR limits, in order to compare our results, for instance,
with the expected form of the conformal potential (see equation (6.1)). For this
particular purpose, it is enough to consider the UR and NR version of fundamental
relation (6.14), such that

UR :
dφ

da
=

2

κa
, ⇒ aur(φ) = eκφ/2 ⇒ Vur(φ) =

ρ2

3
e−2κφ (6.27)

and

NR :
dφ

da
=

1

κa
, ⇒ anr(φ) = eκφ ⇒ Vnr(φ) =

5ρ1

6
e−3κφ (6.28)



6. Scalar field theory for warm dark matter 55

-10 -5 0 5 10

-1.94

-1.92

-1.90

-1.88

-1.86

-1.84

-1.82

κϕ

V
(ϕ
)

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

a

ω
(a
)

Figure 6.1: Left panel: The scalar potential V (φ) as a function of κφ.
Right panel: The equation of state ω(a) for the minimally coupled scalar
field model for the RRG where is showed the interpolation between the
radiation and matter domination phases.

thus obtaining simpler expressions which can be employed in next section, when a
conformal coupling for the scalar field is considered.

On the other hand, it would be interesting to check if the correspondent equation
of state for this effective scalar field, it does satisfy the original properties of the
equation of state for the simple RRG model, in these limits, as it was established in
conditions (3.38). In this scalar context, the equation of state is given by the usual
expression

ωφ =
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

(6.29)

but using both Friedmann equations (6.2), we can write

1

2
φ̇2 = − 1

κ2

1

aH2

dH2

da
, V (φ) =

3H2

κ2
+

a

2κ2

dH2

da
(6.30)

and therefore we get

ωφ = −1− a

3H2

dH2

da
= −1 +

1

3

(
3a2 + 4b2

a2 + b2

)
, (6.31)

where it is very clear now that, for the aforementioned limits, we simply obtain

ωφur =
1

3
, ωφnr = 0, (6.32)

respectively. In the figure 6.1 (on the right) we have plotted the equation of state
parameter in this scalar context. Additionally, using equations in (6.30) we find that
that the trace of energy-momentum tensor is

Tφ = 4 φ̇2 − V (φ) = 3ρφ
(
ωφ − 1

)
(6.33)
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which, in the UR limit, simply vanishes, such that, we can recover the properties of
the original RRG model in this minimal scalar field formalism.

6.2 Non-minimal scalar field

In this section, we explore the possibility of completing our scalar field description
of the RRG model but considering a more general action, where the conformal sym-
metry, as a connection between minimal and non-minimal cases, it receives special
attention. We use simultaneous conformal transformation and reparametrization for
constructing the non-minimal (conformal) potential from the minimal case.

6.2.1 Conformal transformation and the general potential

Let us consider now the general action for a scalar field theory in the form [87]

S̄(φ) =

∫
d4x
√
−ḡ
[
Ā(φ)ḡµν∂µφ∂νφ+ B̄(φ)R̄ + C̄(φ)

]
(6.34)

where Ā, B̄ and C̄ are arbitrary functions of φ and consider also the simulta-
neous conformal transformation with arbitrary field σ = σ(ϕ) and scalar field
reparametrization φ = φ(ϕ), where

ḡµν = gµνe−2σ,
√
−ḡ =

√
−ge4σ (6.35)

R̄ = e−2σ
[
R− 6∇2σ − 6(∇σ)2

]
(6.36)

with
∇2σ = gµν∇µ∇νσ, (∇σ)2 = gµν∇µσ∇νσ. (6.37)

After applying these transformations and reparametrization, we could rewrite the
action (6.34), in the new variables as

S(ϕ) =

∫
d4x
√
−g

{[
e2σĀ(φ)

(
dφ

dϕ

)2

+6e2σ
[
B̄(φ)

(
dσ

dϕ

)2

+
dB̄

dφ

dσ

dϕ

dφ

dϕ

]]
gµν∂µϕ∂νϕ+ B̄(φ)e2σR + e4σC̄(φ)

}
(6.38)

such that we have the equivalence relations between both actions

A(ϕ) = e2σ

{
Ā(φ)

(
dφ

dϕ

)2

+ 6

[
B̄(φ)

(
dσ

dϕ

)2

+
dB̄

dφ

dσ

dϕ

dφ

dϕ

]}
(6.39)

B(ϕ) = B̄(φ)e2σ, C(ϕ) = C̄(φ)e4σ, (6.40)
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which can be used to find the explicit form of conformal field σ(ϕ), the reparametriza-
tion φ = φ(ϕ) and also the C(ϕ), for two given theories related by the conformal
transformation [88]. In our case, let S̄(φ) be the action for a minimally coupled
scalar field, such that

Ā(φ) = −1

2
, B̄(φ) = α, C̄(φ) = −V (φ), (6.41)

where we left α as an arbitrary constant, which can be fixed later on. Additionally,
let S(ϕ) be the action for the conformally coupled scalar field model, so we demand
that its corresponding functions take the explicit form

A(ϕ) = −1

2
, B(ϕ) =

1

2κ2
− ξ

2
ϕ2, C(ϕ) = −U(ϕ) (6.42)

where we will consider
U(ϕ) = Uξ(ϕ)

∣∣∣
ξ=1/6

(6.43)

in order to hold the conformal symmetry of the action S(ϕ). Using the relation
(6.40), we can find the conformal field σ, which is given by

σ(ϕ) = ln
[

1

2ακ2

(
1− κ2ϕ2

6

)]1/2

, (6.44)

and using (6.39), we can solve for φ and to obtain its relation with ϕ, this is

φ(ϕ) =
√

3α ln

(
1 + κϕ√

6

1− κϕ√
6

)
=

1

β
ln

(
1 + κϕ√

6

1− κϕ√
6

)
, (6.45)

where we have taken α = 1/(3β2) for convenience, letting β as another arbitrary
constant. Finally, using the last relation in (6.40), we can find the function U(ϕ),
in the form

U(ϕ) =
9β4

4κ4
V (φ(ϕ))

(
1− κ2ϕ2

6

)2

(6.46)

where the minimal potential V (φ(ϕ)) was already determined in previous section
according to equation (6.26).

6.2.2 Explicit potential in the UR limit

To obtain explicit formula for this potential, we need to substitute equation
(6.45) in the solution for a(φ(ϕ)) and take the result as an input into the expression
for the potential (6.26). In Figure 6.2 we plot this potential as function of conformal
field ϕ.

From the equation (6.44), it is clear that we have the condition

1

2ακ2

(
1− κ2ϕ2

6

)
> 0, =⇒ ϕ2 <

3M2
p

4π
≈
M2

p

4
(6.47)
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Figure 6.2: The conformal potential U(ϕ) as a function of ϕ.

as expected for a classical scalar field. As mentioned at the end of section 2, let us
to see what happen with this conformal potential once the UR limit is considered.
Thus, using (3.37) in (6.14), we get again equation (6.27), namely

Vur(φ) = V (aur(φ)) =
ρ2

3
e−2κφ (6.48)

but using (6.45) on this UR version of the minimal potential, we get

Vur(ϕ) ≈ ρ2

3

(
1− κϕ√

6

1 + κϕ√
6

)2κ/β

. (6.49)

At this point it is possible to see that the only acceptable possibility for our arbitrary
constant is β = κ, such that the conformal potential on this UR limit takes the form

Uur(ϕ) = U0(ϕ) + ∆U(ϕ) (6.50)

where
U0(ϕ) =

3ρ2

4

(
(κϕ)2 − 4(κϕ)√

6
+ 1

)
, (6.51)

and
∆U(ϕ) =

3ρ2

4

(
κ4ϕ4

36
− 2κ3ϕ3

3
√

6

)
� U0(ϕ), (6.52)

as we can easily check, due both of these terms are proportional to M−4
p and M−3

p ,
respectively, so ∆U(ϕ) is certainly small. Finally, it is possible to rewrite (6.50) in
terms of an auxiliary field defined as

κϕ =

√
χ2 − 1

3
+

2√
6

(6.53)

such that
Uur(χ) =

3ρ2

4
χ2 + ∆U(χ) (6.54)
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also satisfying the condition
∆U(χ)� ρ2

κ2
χ2 (6.55)

exactly as was expected and in perfect agreement with the above equation (6.1) in
section 2.

Additionally, due the the correspondent transformation of the energy-momentum
tensor and its trace, which are given by

T (ϕ)
µν = e−2σT (φ)

µν ⇒ T (ϕ) = e−4σT (φ) (6.56)

in the UR limit T (ϕ) also vanishes, as a consequence of the above result for T (φ) as
given by (6.33). Therefore, we can reproduce the original UR limit for the RRG
also in this non-minimal (conformal) scalar field description.

6.3 Including running vacuum energy

Let us explore the possibility of including a dark energy component in our scalar
field model to unify the dark sector in a unique field. The simplest alternative is
the CC, whose case only implies a constant contribution to the scalar field potential
as given in (6.26) because its equation of state pΛ = −ρΛ does not modify the
previous fundamental relation (6.14). However, the situation can be very different
if a dynamical form of dark energy is considered. In previous work, the author and
collaborators have considered a cosmological model for an RCC and WDM, where
it was studied the evolution of the model in both background and perturbative
contexts and it was compared with some cosmic observables as the first acoustic
peak and the matter power spectrum [34, 64].

Let us consider the inclusion of this RCC for our scalar field model of WDM. To
avoid a trivial running and to hold the WDM as a decoupled component, it is also
needed to add a baryonic matter with an equation of state

pb = ωbρb (6.57)

such that the Friedmann equations and the conservation law for this baryonic matter
and RCC reads

ρw + ρb + ρΛ =
3

κ2
H2, pw + ωbρb − ρΛ = − 1

κ2

(
3H2 + 2Ḣ

)
(6.58)

ρ̇b + 3(1 + ωb)ρbH = −ρ̇Λ (6.59)

where the running of the CC is given by the renormalization group equation, this is

ρΛ = ρ0
Λ +

3ν

κ2

(
H2 −H2

0 ) = A+BH2 (6.60)
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with
A = ρ0

Λ −
3νH2

0

κ2
, B =

3ν

κ2
, (6.61)

and the WDM component evolves independently as given in (6.4). In order to map
this model to a minimally coupled scalar field, we can use these Friedmann equations
in (6.58) to write the relations [89]

φ̇2 = −2Ḣ

κ2
, V (φ) =

3H2

κ2
+
Ḣ

κ
(6.62)

or alternatively

φ′2 = − 1

κ2a

(H2)′

H2
, V (φ) =

3H2

κ2
+

a

2κ2
(H2)′ (6.63)

so we need to find an expression for the Hubble parameter. The general and ana-
lytical solution of this system of equations was presented in [64], where the Hubble
parameter, in the case of null spatial curvature, takes the form

H(a)2 =H2
0

[
Ω0

Λ −
ν

1− ν
(
Ω0
b + Ω0

dm

)
+

a−ζ

1− ν
(
Ω0
b + νΩ0

dm

)
+

Ω0
dma

−3

√
1 + b2

√
1 +

b2

a2

(6.64)

+ 2F1(fa, fb; fc;−b2)Ca−ζ − 2F1(fa, fb; fc;Z)Da−3
]

(6.65)

and we have defined the constants

C =
νζΩ0

dm

(1− ν)(3− ζ)
, D =

C√
1 + b2

. (6.66)

The complete solution for the scalar field mapping in this case, using the general
expression for H(a) implies two technical steps : integrating the terms evolving the
hypergeometric function and inverting the resulting expression to get a = a(φ). We
let the details and discussion about this full treatment for a future work. For now,
and in order to compare the results with previous section 6.1, we can take the UR
limit in H(a), thus obtaining simpler expressions and mapping our model to a scalar
field for this particular case. In this limit we can also take |ν| ≈ 0, such that this
expression simply reduces to

Hur(a) = H2
0

(
Ω0

Λ + Ω0
ma
−4
)

(6.67)

where Ω0
m = Ω0

b + Ω0
dm. Therefore, the first equation of the scalar field mapping

yields
dφ

da
=

2/κa√(
Ω0

Λ

Ω0
m

)
a4 + 1

(6.68)

and the potential takes the form

Vur(a) =
H2

0

2κ2

(
3Ω0

Λ + Ω0
ma
−4
)

(6.69)

where, in order to compare with our previous result, we have to take the limit
Ω0

Λ → 0 and Ω0
b → 0, thus obtaining exactly the expressions (6.26) and (6.27).



Conclusions

Let us conclude this thesis by summarizing our contributions and commenting
them, including some perspectives and possible future work.

Summary of achievements

This thesis is devoted to the study of the cosmological model considering a
running vacuum energy and the reduced relativistic gas as simple model of warm
dark matter, where we report the following original results:

• It was understood that the renormalization group running of the cosmological
constant, with the energy exchange between vacuum and matter can take
place only in the early Universe, when the energy density of the gravitational
background may be sufficient to create massive particles.

• We have implemented the model for the running of the cosmological constant
in an early stage of the Universe, where the dark matter sector is modeled using
the reduced relativistic gas and explore some observational consequences.

• At the background level, the model was solved analytically, taking into account
the energy exchange between vacuum energy and usual (baryonic) matter. The
effective equation of state parameter presented an expected evolution and we
found the best fit with respect to the standard model, once the constrained val-
ues using SNIa+BAO+CMB combined data are obtained. Additionally, this
effective parameter goes to radiation value faster than in the standard model
for large redshift z. Besides the first CMB peak, the SNIa and BAO data are
used for constraining our free parameters, obtaining a better correspondence
with observations for this case.

• When considering perturbations to compute the matter power spectrum, the
system of equations for the geometric perturbation, density contrasts, and
velocities are found and solved numerically. We compared our results with
the ones of the 2dFRG data, obtaining a better correspondence for small k, in
contrast to the standard ΛCDM model.
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• On the other hand, we have developed a cosmological model with a non-zero
spatial curvature, running cosmological constant and warm dark matter. At
the background level, we have found the analytical and general expressions for
the corresponding relative energy densities, as well as the general expansion
rate given by the Hubble parameter.

• The analysis of density perturbations for all involved fluids leads to the system
of equations for the density contrasts. The new element compared to the
previous works [1][32][34] is that this time we took into account modifications
caused by the spatial curvature, including on the expansion rate. This system
of equations has been solved numerically to reconstruct the corresponding
matter power spectrum and to impose the restrictions on the free parameters
of our model, such as the running parameter ν and the warmness b, taking
into account the effect of the spatial curvature Ω0

k.

• Once we include spatial curvature, the observational constraints, using new
Pantheon Supernovae and BOSS-DR11 power spectrum data, restrict the mag-
nitudes of both parameters ν and b at the order of 10−4. The combined data
prefers a relatively low warm dark matter component of the order of Ω0

w = 0.25,
as a component of the total matter balance today, Ω0

m = Ω0
w + Ω0

b = 0.299.
However, there is a degeneracy in the observational constraints on the pa-
rameter Ω0

k, which can be clearly observed in the diagram showing the plane
(Ω0

k, b) in Fig. 5.3. Even though, a slight preference for a closed universe can
be identified.

• Aditionally, we have studied the scalar field theory for a warm dark matter
(WDM) component which is modeled using the simple reduced relativistic gas
approximation (RRG). As a general result, we have found a mapping between
the RRG model and a scalar field minimally coupled to gravity. Additionally,
we have reconstructed the non-minimal action and potential from this minimal
case.

• For the minimal coupling between gravity and the scalar field φ, we found
the correspondent scalar potential and analyze the behavior of its analogous
equation of state and the trace of the energy-momentum tensor, where the
properties of the original RRG model were verified in terms of this minimal
scalar field.

• In the context of non-minimal coupling to gravity, we have constructed the
conformal potential from the minimal case using the properties of the confor-
mal transformation of the metric tensor, where, as expected, we could verify
the consistency of this general scalar field description in the UR limit and for
the case of conformal invariance of the action S(ϕ) (ξ = 1/6).
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Comments on the running cosmological constant in
a primordial universe

Our results suggest that a primordial running of the cosmological constant and
the possible creation of usual (baryonic) matter particles at this early stage from
vacuum energy, cannot be ruled out and deserves more detailed exploration, e.g. in
the possible future work.

The model which we developed here explores the possibility that the cosmological
term decays into the baryonic component in the early Universe, when the running of
the cosmological constant and the intensity of the gravitational field are sufficiently
strong and, on the other hand, baryonic matter contents can be regarded as ultra-
relativistic particles. The parameter ν 6= 0 indicates a non-constant cosmological
term and the parameter b parameterizes the warmness of the matter component.

The comparison with observation points to a small deviation from the ΛCDM
model as the preferred scenario, even though the strict ΛCDM case, given by ν = 0, is
not excluded. It must be remembered also that the running of the cosmological term
implies a new free parameter in comparison to the standard cosmological model and,
therefore, the results can not be interpreted such that the statistical analysis proves
that the cosmological constant runs. Furthermore, the warmness of the dark matter
component b 6= 0 is allowed, with a present-day average speed of the corresponding
particles (or indefinite origin, as usual) of the order of 10−5 c.

Let us stress now the similarities and, on the other hand, conceptual and tech-
nical differences between the model of running cosmology which we dealt with in
this work and the purely phenomenological models describing the variable Dark En-
ergy. The model developed in this paper belongs to the class of interaction models,
where the energy-momentum tensor for some components does not conserve sepa-
rately as it happens in the Standard Model. This means that a given component
decays into another one. This class of interacting model is nowadays very popular
in the study of the dark sector of the Universe, addressing some questions like the
coincidence problem. However, the framework assumed here is quite different from
most of these papers. In the first place, we deal with an interacting model for the
early Universe, instead of a model for the late Universe. In the present case, the
(dynamical) cosmological term decays into the usual (baryonic) matter when it is in
the ultra-relativistic regime. On the other hand, the form of the H-dependence for
the cosmological constant density in our model is defined from the quantum field
theory arguments [18][17] [16]. These arguments defined the form of the IR running
(6.60), leaving the unique arbitrariness in the coefficient ν.

From the technical side, it is interesting to see whether some known phenomeno-
logical models describe an energy exchange between vacuum and matter, like the
one we considered here. Since there are numerous models of this sort, the complete
analysis is beyond our possibilities, so we mention only one particular example.
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There is some similarity with the model developed earlier in Refs. [90][91] where
it was considered the energy exchange between vacuum and radiation, through the
evaporation of primordial black hole. In those references the form of decaying of the
cosmological term was fixed as an exponential decay, leading to a smooth transition
from inflation to a radiation dominated phase, but with a prediction for the spectral
index of scalar perturbations was found to contradict the observational constraints.
This problem can be solved on the base of Eq. (6.60), by imposing upper bounds
on the coefficient ν. On the other hand, the comparison with the scenario described
above is not direct since we consider a post-inflationary phase in contrast with the
case treated in the mentioned references.

Comments on the inclusion of curvature in the model
of running

Adding the curvature parameter to our model of running cosmological constant
with WDM, increases the number of dimensions of the parameter space, regardless
the effect of space curvature is phenomenologically not very strong. Additional
tests may be useful to obtain more robust constraints on the parameters ν and b.
In particular, we expact that the observational constraints coming from CMB and
BAO may give a strong enforcements of our results. The theoretical basis of these
tests would be a natural continuation of the present work.

On the other hand, considering the generality of the model and its ability to
describe different phases of the Universe, another possible perspective for further
investigations work could be to study the Hubble tension by including the parameter
w of baryons the equation of state, as a new free parameter and estimating the
Hubble parameter today. We consider this possibility for a possible future works.

Comments on the scalar field theory for warm dark
matter

Our results suggest that the RRG approximation can be successfully replaced by
the scalar models, in terms of simple minimal and conformal scalar fields.

We also explore the possibility of making a similar map including a dynamical
dark energy component in the form of a running cosmological constant (RCC). It
was possible to verify in the UR case and for the limit of null baryon and vacuum
energy densities, the correspondence with the aforementioned pure WDM case. The
complete mapping for this model, considering the most general expression for the
Hubble parameter H(a) and taking into account a non-zero running parameter ν
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will be considered in future work. The scalar field mapping of this RCC could be
especially interesting because its original formulation does not admit an explicitly
covariant description and therefore represents a difficult challenge for the analysis
of cosmic perturbations, especially CMB and gravitational waves.
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