UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS HUMANAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS

Sistemática filogenética de Epyrinae (Hymenoptera, Bethylidae)

WESLEY DONDONI COLOMBO

Vitória, ES
Maio de 2021

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO
 CENTRO DE CIÊNCIAS HUMANAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS

Sistemática filogenética de Epyrinae (Hymenoptera, Bethylidae)

WESLEY DONDONI COLOMBO

Orientador: Celso Oliveira Azevedo
Coorientadora: Cecília Waichert Monteiro

Tese submetida ao Programa de Pós-Graduação em Ciências Biológicas (Biologia Animal) da Universidade Federal do Espírito Santo, como requisito parcial para a obtenção do grau de Doutor em Biologia Animal.

Ficha catalográfica disponibilizada pelo Sistema Integrado de Bibliotecas - SIBI/UFES e elaborada pelo autor

Colombo, Wesley, 1992-
C718s Sistemática filogenética de Epyrinae (Hymenoptera, Bethylidae) / Wesley Colombo. - 2021.

361 f. : il.
Orientador: Celso Azevedo. Coorientadora: Cecilia Waichert.
Tese (Doutorado em Biologia Animal) - Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais.

1. Himenóptero. 2. Vespas. 3. Zoologia - Classificação. I. Azevedo, Celso. II. Waichert, Cecilia. III. Universidade Federal do Espírito Santo. Centro de Ciências Humanas e Naturais. IV. Título.

CDU: 57

"Sistemática filogenética de Epyrinae (Hymenoptera, Bethylidae)"

Tese apresentada ao Programa de Pós-Graduação em Ciências Biológicas do Centro de Ciências Humanas e Naturais, da Universidade Federal do Espírito Santo, como requisito parcial para obtenção do Grau de Doutor em Biologia Animal.

Aprovada em 17 de maio de 2021.

Comissão Examinadora:

Prof. Dr. Celso Oliveira Azevedo (UFES)

Orientador e Presidente da Comissão

Profa. Dra. Taissa Rodrigues Marques da Silva (UFES)
 Examinadora Interna

> Prof. Dr. Celso Oliveira Azevedo
> Por: Prof. Dr. Dalton de Souza Amorim (USP)
> Examinador Externo

Prof. Dr. Celso Oliveira Azevedo
 Por: Profa. Dra. Isabel De Conte Carvalho de Alencar (IFES)
 Examinadora Externa

> Prof. Dr. Celso Oliveira Azevedo
> Por: Prof. Dr. Orlando Tobias Silveira (MPEG)
> Examinador Externo

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

PROTOCOLO DE ASSINATURA
O documento acima foi assinado digitalmente com senha eletrônica através do Protocolo Web, conforme Portaria UFES n 1.269 de 30/08/2018, por
CELSO OLIVEIRA AZEVEDO - SIAPE 1172772
Departamento de Ciências Biológicas - DCB/CCHN
Em 17/05/2021 às 19:19
Para verificar as assinaturas e visualizar o documento original acesse o link:
https://api.lepisma.ufes.br/arquivos-assinados/191628?tipoArquivo=O

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

PROTOCOLO DE ASSINATURA
O documento acima foi assinado digitalmente com senha eletrônica através do Protocolo Web, conforme Portaria UFES n 1.269 de 30/08/2018, por TAISSA RODRIGUES MARQUES DA SILVA - SIAPE 1555455
Departamento de Ciências Biológicas - DCB/CCHN
Em 17/05/2021 às 19:36
Para verificar as assinaturas e visualizar o documento original acesse o link:
https://api.lepisma.ufes.br/arquivos-assinados/191645?tipoArquivo=O
"Science is a willingness to accept facts even when they are opposed to wishes."

Burrhus Frederic Skinner.
Science and Human Behavior, 2012, p. 12

AGRADECIMENTOS

Agradeço aos meus pais, Frederico e Rosangela que me proporcionaram muitos momentos felizes, em particular agradeço todo o apoio espiritual que minha mãe, já falecida, me proporciona todos os dias e me motiva a sempre continuar.

Agradeço ainda, as minhas irmãs Fabiele e Fransciele pelo constante apoio. Meus sobrinhos Bernardo, Pedro Dhaví e Maria Edhuarda, por alegrarem a minha vida e transbordarem carinho e amor

Agradeço aos meus orientadores e amigos Celso e Cecilia, que me guiaram com astúcia e sabedoria e me despertaram um amor latente pela Sistemática Biológica.

Agradeço a minha tia Ana Maria por todos os dias compartilhados nestes seis anos de convívio, todos os conselhos, as pizzas, os jogos de baralho e todas as risadas que alegraram a minha caminhada e foram vitais para manter a minha caminhada.

Agradeço imensamente aos meus amigos do Instituto Bethylidae de Sistemática (IBeS), pelo apoio durante o desenvolvimento deste trabalho, especialmente Isabel e Felipe pelos 11 anos de convívio, cumplicidade, amizade, conselhos e por oportunizarem que minha caminhada não fosse interrompida. Agradeço a Fernanda, Chirlei e Lucyane, que nos anos finais do doutorado se tornaram cúmplices e indispensáveis para manter a sanidade, principalmente durante a pandemia de COVID. Vocês são importantes e insubstituíveis. Agradeço a Carly M. Tribull que me acolheu em sua casa durante minha viagem a Nova Iorque e hoje se tornou uma grande colaboradora e amiga.

Agradeço a todos os demais pesquisadores e professores do Programa de PósGraduação em Ciências Biológicas (Biologia Animal) da Universidade Federal do Espírito Santo que me ajudaram durante o doutorado, seja com conselhos ou críticas construtivas.

Agradeço também a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior pela bolsa e a Universidade do Espírito Santo pela infraestrutura e financiamento do projeto.

Agradeço todos os meus amigos que sempre estavam de prontidão para escutar minhas frustrações, perspectivas e ajudaram de certa forma, que este trabalho fosse desenvolvido.

Enfim, agradeço a todos que de alguma forma possibilitaram o desenvolvimento deste trabalho.
RESUMO 11
ABSTRACT 13
APRESENTAÇÃO 15
REFERÊNCIAS BIBLIOGRÁFICAS 18
CAPÍTULO I 21
Abstract 22
Résumé 23
Introduction 23
Material and Methods 24
Results 30
Systematic part 37
Discussion 95
Acknowledgements 97
References 98
CAPÍTULO II 143
Abstract 144
Introduction 144
Material and Methods 145
Results 146
Discussion 148
Acknowledgments 155
References 156
Appendix 1 164
Appendix 2 167
CAPÍTULO III 169
Abstract 170
Introduction 171
Material and Methods 172
Results 173
Discussion 215
Acknowledgments 220
References 221
CAPÍTULO IV 250
Abstract 251
Introduction 252
Material and Methods 255
Results 262
Discussion 268
Taxonomic Accounts 279
Conclusions 288
Acknowledgments 289
References 289
Appendix 1 297
Appendix 2 301
Appendix 3 312
Appendix 4. 313
Appendix 5 315
Appendix 6. 317
Appendix 7 319
Appendix 8 321
Supplementary material 344

RESUMO

Epyrinae são a segunda subfamília mais diversa de Bethylidae, com aproximadamente 950 espécies conhecidas e possuem 13 gêneros válidos, dos quais 12 são viventes: Anisepyris Kieffer; Aspidepyris Evans; Bakeriella Kieffer; Calyozina Enderlein; Chlorepyris Kieffer; Disepyris Kieffer, Epyris Westwood; Formosiepyris Terayama; Holepyris Kieffer; Laelius Ashmead; Trachepyris Kieffer e Xenepyris Kieffer; e um é extinto: †Elektroepyris. Os Epyrinae tiveram uma história taxonômica complexa e apenas na última década foram recuperados como monofiléticos. Devido à dificuldade em delimitar os Epyrinae, muitos táxons genéricos foram consequentemente classificados inadequadamente. Estudos que revisem o conceito dos gêneros de Epyrinae são necessários e urgentes, mas têm sido negligenciados devido à dificuldade de interpretação da diversidade morfoestrutural do grupo. Neste sentido, surgem os dados moleculares que tem auxiliado a elucidar os impasses morfoestruturais. Nesta tese, a diversidade dos Epyrinae foi explorada tanto alfataxonomicamente, quanto filogeneticamente, por meio de dados moleculares e morfológicos, através da reconstrução de árvores filogenéticas, sob os diferentes critérios de otimização (Máxima Parcimônia, Inferência Bayesiana e Máxima Verossimilhança). Adicionalmente, a paleodiversidade da subfamília foi revisada e ao final desta proposta, os Epyrinae foram organizados e redefinidos e a evolução de suas linhagens discutida. Esta tese é composta por quatro capítulos, sendo que os três primeiros objetivaram explorar e listar os padrões morfológicos e moleculares dos Epyrinae, fornecendo dados e informações para o último capítulo, que objetivou testar o monofiletismo dos gêneros de Epyrinae. No Capítulo 1, é apresentada uma revisão alfataxonômica dos Epyrinae da Papua Nova Guiné, visando explorar e listar os padrões morfológicos e preencher lacunas do conhecimento taxonômico do Velho Mundo. Foram reconhecidas, tanto morfologicamente quanto molecularmente 39 espécies, das quais 36 são novas e descritas. No Capítulo 2, o gênero extinto †Elektroepyris foi revisado e cladisticamente posicionado. Foram codificados 69 caracteres morfológicos, por meio da Máxima Parcimônia e representantes de todas as subfamílias de Bethylidae, viventes ou extintos, foram inseridos na análise. \dagger Elektroepyris foi recuperado como uma linhagem independente de todas as outras subfamílias de Bethylidae e por isto, uma nova subfamília, †Elektroepyrinae, foi descrita, baseada em uma autapomorfia nomeada asa anterior com a terceira abscissa da nervura Cu . No Capítulo 3, a paleodiversidade dos Epyrinae foi revisada alfataxonomicamente. Trinta espécies extintas de Epyrinae foram reconhecidas, distribuídas em seis gêneros
(Anisepyris, Chlorepyris, Epyris, †Gloxinius, Holepyris e Laelius). Um novo gênero, \dagger Gloxinius, foi proposto para a subfamília, para alocar \dagger G. bifossatus e duas espécies foram transferidas de Epyris para Chlorepyris. Três espécies foram transferidas de Epyris para Pristocerinae: \dagger Merascylla é proposto para alocar a espécie \dagger M. atavellus, e outras duas espécies são transferidos para Pseudisobrachium. Uma espécie é transferida de Epyris para Scleroderminae: \dagger Mael é proposto para alocar a espécie \dagger M. longiceps. A espécie \dagger Laelius nudipennis não é um betilídeo e foi transferida para Platygastroidea incertae sedis. No Capítulo 4, foi realizada uma análise de Inferência Bayesiana para reconstruir uma topologia de Evidência Total a partir de uma matriz com 195 táxons terminais e 3599 caracteres, sendo 232 caracteres morfológicos e os genes 16S, 18S, 28S, COI e Cytb. Este é o primeiro estudo filogenético que examinou todos os 42 nomes genéricos de Epyrinae, incluindo sinônimos juniores e táxons extintos. Os resultados recuperaram Anisepyris, Bakeriella, Calyozina, Chlorepyris, Disepyris, Laelius, e Trachepyris como monofiléticos e Formosiepyris, Epyris, e Holepyris como polifiléticos. Dois novos gêneros são propostos, GenusA será proposto como gen. nov. e GenusB será proposto como gen. nov., e seis gêneros foram revalidados, sendo cinco sinônimos juniores de Epyris e um de Holepyris: Calyoza será proposto como stat. rev., Dolus será proposto como stat. rev., Muellerella será proposto como stat. rev., Psilepyris será proposto como stat. rev., Rysepyris será proposto como stat. rev. e Trissepyris será proposto como stat. rev. Além disto, todas as 962 espécies de Epyrinae foram revisadas via observação direta do holótipo, ilustrações ou literatura e foram distribuídas ao longo de 17 gêneros: Anisepyris, Aspidepyris, Bakeriella, Calyoza será proposto como stat. rev., Calyozina, Chlorepyris, Dolus será proposto como stat. rev., Epyris, GenusA será proposto como gen. nov., GenusB será proposto como gen. nov., \dagger Gloxinius, Holepyris, Laelius, Muellerella será proposto como stat. rev., Psilepyris será proposto como stat. rev., Rysepyris será proposto como stat. rev. e Trissepyris será proposto como stat. rev.

Abstract

Epyrinae are the second most diverse subfamily of Bethylidae, with approximately 950 described species and 13 valid genera, of which 12 are extant: Anisepyris Kieffer; Aspidepyris Evans; Bakeriella Kieffer; Calyozina Enderlein; Chlorepyris Kieffer; Disepyris Kieffer, Epyris Westwood; Formosiepyris Terayama; Holepyris Kieffer; Laelius Ashmead; Trachepyris Kieffer and Xenepyris Kieffer; and one is extinct: \dagger Elektroepyris. Epyrinae have a complex taxonomic history and only in the last decade their monophyly has recovered. Due to the difficulty in delimiting Epyrinae, many generic taxa were consequently classified inappropriately. Studies revising the concept of the epyrine genera are necessary and crucial, but they have been neglected due to the difficulty in interpreting morphostructural diversity. As a solution, molecular data has been used to help elucidate the morphostructural impasses. In this dissertation, the diversity of Epyrinae is explored, both alphaxonomically and phylogenetically, through molecular and morphological data, and by reconstructing phylogenetic trees, under different optimization criteria (Maximum Parsimony, Bayesian Inference and Maximum Likelihood). Additionally, the subfamily's paleodiversity was revised and, at the end, the Epyrinae were organized and redefined and the evolution of their lineages discussed. This thesis consists of four chapters, the first three of which aimed to explore and list the morphological and molecular patterns of the Epyrinae, providing data and information for the last chapter, which aimed to test the monophyly of the Epyrinae genera. In Chapter 1, an alpha-taxonomic review of Epyrinae from Papua New Guinea is present, exploring and listing morphological patterns and filling in gaps in Old World taxonomic knowledge. Finally, 39 species were recognized, both morphologically and molecularly, of which 36 are new and described. In Chapter 2, the extinct genus \dagger Elektroepyris was revised and cladistically positioned. Morphological characters were coded, summing up to 69. The caracteres were used to perform Maximum Parsimony reconstruction, including representatives of all subfamilies of Bethylidae, extant or extinct. \dagger Elektroepyris was recovered as a lineage distinct from other subfamilies of Bethylidae and for this reason, a new subfamily, †Elektroepyrinae, was described, based on an autapomorphy of the anterior wing with the third abscissa of the Cu vein. In Chapter 3, the paleodiversity of Epyrinae was reviewed alpha-taxonomically. Thirty extinct species of Epyrinae were recognized, distributed in six genera (Anisepyris, Chlorepyris, Epyris, \dagger Gloxinius, Holepyris and Laelius). A new genus, †Gloxinius, has been proposed for the subfamily to allocate \dagger. bifossatus and two species were transferred from Epyris to

Chlorepyris. Three species were transferred from Epyris to Pristocerinae: \dagger Merascylla is proposed to allocate the species $\dagger M$. atavellus, and two other species are transferred to Pseudisobrachium. One species is transferred from Epyris to Scleroderminae: \dagger Mael is proposed to allocate the species \dagger M. longiceps. The species \dagger Laelius nudipennis is not a bethylid and has been transferred to Platygastroidea incertae sedis. In Chapter 4, a Bayesian inference analysis was performed to reconstruct a total evidence topology from a matrix with 195 terminal taxa and 3599 characters, containing 232 morphological characters and the genes $16 \mathrm{~S}, 18 \mathrm{~S}, 28 \mathrm{~S}$, COI and Cytb. This is the first phylogenetic study that examined all 42 generic names of Epyrinae, including junior synonyms and extinct taxa. The results recovered Anisepyris, Bakeriella, Calyozina, Chlorepyris, Disepyris, Laelius, and Trachepyris as monophyletic and Formosiepyris, Epyris, and Holepyris as polyphyletic. Two new genera are proposed, GenusA to be proposed as gen. nov. and GenusB to be proposed as gen. nov., and six genera were revalidated, five junior synonyms of Epyris and one of Holepyris: Calyoza to be proposed as stat. rev., Dolus to be proposed as stat. rev., Muellerella to be proposed as stat. rev., Psilepyris to be proposed as stat. rev., Rysepyris to be proposed as stat. rev. and Trissepyris to be proposed as stat. rev. In addition, all 962 species of Epyrinae were reviewed via direct observation of the holotype, illustrations, or literature and were distributed over 17 genera: Anisepyris, Aspidepyris, Bakeriella, Calyoza to be proposed as stat. rev., Calyozina, Chlorepyris, Dolus to be proposed as stat. rev., Epyris, GenusA to be proposed as gen. nov., GenusB to be proposed as gen. nov., \dagger Gloxinius, Holepyris, Laelius, Muellerella to be proposed as stat. rev., Psilepyris to be proposed as stat. rev., Rysepyris to be proposed as stat. rev. and Trissepyris to be proposed as stat. rev..

APRESENTAÇÃO

Biografia: de Barracão ao doutorado

Nasci no dia 22 de novembro de 1992, em Santa Teresa - Espírito Santo. Desde o primeiro ano de vida até a conclusão da minha graduação, eu morei e vivi em um distrito de Santa Teresa, chamado São João de Petrópolis e carinhosamente apelidado de "Barracão".

Sou o mais novo dos três filhos dos meus pais, Frederico e Rosangela. Minha família é simples, assim como as demais que vivem na roça. A Biologia surgiu muito cedo na minha vida, pois sempre fui apaixonado por dinossauros e meu quarto era repleto de brinquedos pré-históricos, que até hoje eles ainda existem, mas foram passados para a próxima geração, meus amados sobrinhos.

Esta minha paixão só foi aumentando, na medida que ingressei na Escola Estadual de Ensino Fundamental e Médio "Frederico Pretti". Escola esta que estudei todos os meus 13 anos do Ensino Básico e tive contato com profissionais maravilhosos, principalmente o Prof. Selso Luís Izabel. Selso ministrou aulas de Ciências e Biologia para mim, durante sete anos, e provavelmente foi o professor que manteve aquela semente que começava a germinar para o fantástico mundo da Biologia e claro, para que hoje eu estivesse aqui.

Com os recém 17 anos e concluindo o Ensino Médio, chegou o momento de escolher a tão almejada graduação, realidade um pouco distante para muitos oriundos de regiões rurais. Muitas pessoas falavam para tentar Medicina, Engenharias, entre outras, mas eu queria ser, Paleontólogo. Sim, eu queria trabalhar com dinossauros. Porém, Paleontologia é uma Pós-graduação, logo, eu deveria escolher alguma graduação relacionada, e eis que a Biologia venceu.

Curso escolhido e uma pitada de sorte, o Instituto Federal do Espírito Santo Campus Santa Teresa (IFES-ST) ofertou sua primeira seleção para cursos superiores, com vagas para o curso de Licenciatura em Ciências Biológicas. Este Instituto se localiza há pouco menos de 20 minutos de caminhada da minha residência. Nesta época, eu não podia tentar outras instituições ou sair de casa, pois minha mãe, infelizmente estava na fase terminal do câncer e meu avô acamado, logo, eu tinha responsabilidades.

Com o sonho de ser Paleontólogo ali, me guiando, ingressei no Curso de Licenciatura em Ciências Biológicas do IFES-ST, em 2010 e até hoje, lembro de sentar-se no auditório, durante a aula inaugural, com um misto de sensaçães perpassando cada célula
do meu corpo. Aproveito para ressaltar que foi neste momento que descobri que existia Mestrado e Doutorado, através da apresentação dos meus professores. Logo no início da minha graduação, conheci a professora Isabel Alencar, ministrando a disciplina de Introdução a Biologia. Imediatamente conversei com ela sobre minhas perspectivas de trabalho. Pois, ela era a única Zoóloga que se encontrava, até o momento, no IFES-ST. Para minha surpresa, ela trabalhava com insetos e me convidou a conhecer este grupo.

Comecei a trabalhar com a Isabel e juntos, no primeiro ano de graduação, organizamos uma Coleção Entomológica didática para o IFES-ST. No segundo ano, ela me encorajou a submeter um projeto de Iniciação Científica. O tema proposto foi "Os Impactos da Produção Bibliográfica de Benoit para Bethylidae". Apesar de não conhecer oficialmente um Bethylidae, neste momento eu comecei a me familiarizar com alguns termos, nomes e estudos científicos. O projeto foi aprovado, porém na mesma época fui chamado para estagiar no Laboratório de Biologia e ele foi repassado para outro bolsista. Logo, meu contato com os Bethylidae foi adiado.

Trabalhando no Laboratório de Biologia eu tive o primeiro contato com um escorpião vivo e neste exato momento, eu "abandonei" os insetos e comecei a focar exclusivamente nos escorpiões. A minha ligação com os escorpiões é tão significativa, que até hoje, eventualmente, desenvolvo atividades relacionadas. Eles foram os objetos de estudo do meu primeiro artigo, da minha monografia de conclusão de curso, além da minha monografia da especialização em Ensino de Biologia.

Concluindo a minha graduação, eu sonhava seguir para o mestrado e depois o doutorado. Eis que Isabel me apresenta para o seu orientador, Celso Azevedo. Entretanto, no primeiro ano que tentei a seleção do PPGBAN-UFES, não fui aprovado e fui obrigado a trabalhar em outros locais para me sustentar e confesso que achava que ser mestre e doutor não passava de um sonho bobo. Afinal, como um mero aluno do interior de Santa Teresa iria competir com alunos formados na UFES, que em relação ao IFES estava muito mais estruturada e preparada. Neste período, eu cheguei inclusive a ser caixa de supermercado e não querer mais seguir o ramo da Biologia.

O ano de 2014 foi muito turbulento. Eu comecei trabalhando como caixa de supermercado e em março assumindo a posição de professor de Biologia na mesma escola que eu havia estudado todo o meu ensino básico. Logo em maio outra oportunidade surgiu e eu assumi outra escola, agora como professor de Ciências. Nesta segunda escola, no final do ano, eu fui convidado para ser o diretor no ano de 2015, o que, além de me surpreender,
me trouxe alegria, afinal, eu com meus 22 anos, havia sido convidado para ser gestor de uma escola.

Nesta mesma época, o PPGBAN-UFES abriu novamente a seleção de mestrado e mesmo desanimado, eu fui novamente conversar com o Celso, sobre minha perspectiva de tentar o mestrado sob a orientação dele. Porém, eu não sabia nada de Bethylidae, nada de Taxonomia, nada de Sistemática, e tinha poucas chances de ser aprovado pela minha ignorância com o tal inglês. Lembro como se fosse ontem, na nossa reunião, Celso me perguntou com o que eu gostaria de trabalhar e acreditem, eu disse: "...com a mesma vespa que foi publicada no Facebook do laboratório". Mas qual vespa? Não sabia... não conhecia nada daquele mundo. Então, Isabel disse: "Dissomphalus". Sim! Foi assim que escolhi meu objeto de estudo. Acho que posso dizer, foi amor à primeira foto.

Para minha surpresa, eu fui aprovado no mestrado e ingressei nele em 2015 e com o desenrolar da minha dissertação percebi que não fui enganado pela foto e nem pela Isabel. Dissomphalus e Celso foram as melhores escolhas que eu poderia ter feito, e estou realmente agradecido por isto. Me descobri no mundo da Sistemática e não me vejo em outro caminho a não ser este. Porém, ainda não estava totalmente realizado, faltava adicionar a Paleontologia nesta mistura.

No final do mestrado, em 2016, eu tentei a duas seleções de doutorado, uma no próprio PPGBAN-UFES e outra no PGZOO-UFMG e para minha surpresa, fui aprovado em ambas. Eu escolhi o PPGBAN-UFES porque queria continuar estudando e me aprofundando em Bethylidae. Eu tinha duas opções de projetos para a tese, a primeira com Sistemática Filogenética de Dissomphalus e a segunda, Sistemática Filogenética de Epyris. Visando me desafiar e explorar o máximo possível da diversidade dos betilídeos, eu me aventurei com os Epyris.

Epyris é um gênero desafiador e atualmente considerado o maior problema taxonômico de Bethylidae. No decorrer do estudo ficou evidente que era impossível estudar Epyris isoladamente, pois este gênero está sobreposto com praticamente todos os outros Epyrinae e neste momento outras hipóteses foram lançadas para a subfamília e a pergunta da minha tese foi redesenhada para "quem são os Epyrinae?". Sendo assim, meu projeto de tese ficou intitulado "Sistemática filogenética de Epyrinae (Hymenoptera, Bethylidae).

Paralelamente, eu desenvolvi trabalhos com outras subfamílias de Bethylidae, que me forneceram uma visão amplificada da família e das metodologias relacionadas à

Sistemática Biológica, porém vale destacar que eu tive a oportunidade de trabalhar com os tão sonhados fósseis e adicionar a Paleontologia na minha vida. Desenvolvi e publiquei quatro trabalhos relacionados à paleodiversidade de Bethylidae, dos quais dois estão inseridos aqui, como capítulos. Hoje, ao final desta tese, me considero um profissional realizado e feliz com minhas escolhas e espero continuar trabalhando com Sistemática de Bethylidae, linha de pesquisa na qual me sinto realizado e realmente feliz.

Trabalhos paralelos ao doutorado

Ao longo dos quatro anos do meu doutorado (03/2017-05/2021), eu desenvolvi e publiquei, em parceria com pesquisadores nacionais e internacionais, 13 artigos científicos e três capítulos de livro. Destes, três estão incluídos nesta tese como capítulos e os demais são relacionados a outros táxons. No total, foram descritas 94 espécies, 11 gêneros e uma subfamília.

Foram publicados trabalhos envolvendo outros betilídeos (Azevedo et al. 2018a; 2018b; 2020; Colombo \& Azevedo 2019; 2020; Colombo et al. 2018; 2020a; 2020b; 2020c; 2021; Vargas et al. 2020), escorpiões (Colombo \& Alencar 2017), Pompilidae (Waichert et al. 2018), Odonata (Furieri \& Colombo 2020; Furieri et al. 2020) e sobre a fauna ameaçada do Espírito Santo (Fraga et al. 2019).

REFERÊNCIAS BIBLIOGRÁFICAS

Azevedo, C.O., Alencar, I.D.C.C., Colombo, W.D. (2018a) Pairs in copulation of the highly dimorphic genus Pristocera Klug (Hymenoptera, Bethylidae) from Madagascar solve taxonomic problems of male-female associations. Zootaxa, 4433(1), p.1-49.

Azevedo, C.O., Alencar, I.D.C.C., Ramos, M.S., Barbosa, D.N., Colombo, W.D., Vargas, J.M.R., Lim, J. (2018b) Global guide of the flat wasps (Hymenoptera, Bethylidae). Zootaxa, 4489(1), p.1-294.

Azevedo, C.O., Vargas, J.M.R., Colombo, W.D. (2020) Synopsis of world Discleroderma Kieffer (Hymenoptera, Bethylidae). Zootaxa, 4742(3), p.467-480.

Colombo, W.D., Alencar, I.D.C.C. (2017) Escorpiões: um estudo de caso com alunos do Ensino Fundamental em escolas dos municípios de Santa Teresa e São Roque do Canaã, Espírito Santo, Brasil. Boletim do Museu de Biologia Mello Leitão (Nova Série), 39(1), p.39-67.

Colombo, W.D., Alencar, I.D.C.C., Limeira-de-Oliveira, F., Azevedo, C.O. (2018) New species and records of Dissomphalus Ashmead (Hymenoptera, Bethylidae) from Cerrado, Caatinga and relicts of the Atlantic Forest from northeastern Brazil. Zootaxa, 4462(1), p.1-40.

Colombo, W.D., Azevedo, C.O. (2019) Synopsis of the fossil Scleroderminae (Hymenoptera, Bethylidae) with description of a new genus and four new species from Baltic amber. Historical Biology [published online], p.1-9.

Colombo, W.D., Azevedo, C.O. (2020) Revalidation of the polymorphic genus Acephalonomia (Hymenoptera: Bethylidae) and description of a new species from Micronesia. European Journal of Entomology, 117, p.235-242

Colombo, W.D., Gobbi, F.T., Perkovsky, E.E., Azevedo, C.O. (2020a) Synopsis of the fossil Pristocerinae (Hymenoptera, Bethylidae), with description of two new genera and six species from Burmese, Taimyr, Baltic and Rovno ambers. Historical Biology [published online], p.1-17.

Colombo, W.D., Perkovsky, E.E., Azevedo, C.O. (2020b) Phylogenetic overview of flat wasps (Hymenoptera, Bethylidae) reveals Elektroepyrinae, a new fossil subfamily. Palaeoentomology, 3(3), p.269-283

Colombo, W.D., Perkovsky, E.E., Waichert, C., Azevedo, C.O. (2021) Synopsis of the fossil flat wasps Epyrinae (Hymenoptera, Bethylidae), with description of three new genera and 10 new species. Journal of Systematic Palaeontology, 19, p.1-51.

Colombo, W.D., Waichert, C., Azevedo, C.O. (2020c) Molecular and morphological species delimitation of Epyrinae (Hymenoptera: Bethylidae) from Papua New Guinea. In: Robillard, T., Legendre, F., Villemant, C., Leponce, M. (Eds), Insects of Mount Wilhelm, Papua New Guinea. Muséum national d'Histoire naturelle, vol. 2., Paris, 599p.

Fraga, C.N., Peixoto, A.L., Leite, Y.L.R., Santos, N.D., Oliveira, J.R.P.M., Sylvestre, L.S., Schwartsburd, P.B., Tuler, A.C., Freitas, J., Lírio, E.J., Couto, D.R., Dutra, V.F., Waichert, C., Sobrinho, T.G., Hostim-Silva, M., Ferreira, R.B., Bérnils, R.S., Costa, L.P., Chaves, F.G., Formigoni, M.H., Silva, J.P., Ribeiro, R.S., Reis, J.C.L., Capellão, R.T., Lima, R.O., Saiter, F.Z., et al. (2019) Lista da fauna e flora ameaçadas de extinção no estado do Espírito Santo. In: Fraga, C.N, Formigoni, M.H. \& Chaves, F.G. (Eds.), Fauna e flora ameaçadas de extinção no estado do Espírito Santo. Instituto Nacional da Mata Atlântica, vol. 1., Espírito Santo, 432p.

Furieri, K.S., Colombo, W.D. (2020) A contribuição da coleção entomológica da Reserva Natural Vale para Odonata (Insecta). In: Oliveira-Júnior, J.M.B., Calvão, L.B. (Eds), Tópicos Integrados de Zoologia 2. Atene Editora, Paraná, 115p.

Furieri, K.S., Fraga, F.B., Tribull, C.M., Colombo, W.D. (2020) Description of two females of Leptagrion Selys (Odonata: Coenagrionidae). Zootaxa, 4821(2), p.343352.

Vargas, J.M.R., Colombo, W.D., Azevedo, C.O. (2020) Revisited phylogeny of Scleroderminae (Hymenoptera: Bethylidae) reveals a plastic evolutionary history. Arthropod Systematics and Phylogeny, 78(2), p.217-243
Waichert, C., Colombo, W.D., von Dohlen, C., Pitts, J.P. (2018) Taxonomic contributions to Ageniella Banks, 1912 (Hymenoptera: Pompilidae) from Brazil. Zootaxa, 4403(1), p.133-153.

CAPÍTULO I

Molecular and morphological species delimitation of Epyrinae (Hymenoptera, Bethylidae) from Papua New Guinea ${ }^{1}$

Abstract

The fauna of Epyrinae from Papua New Guinea is revised by using molecular, the Cytochrome C Oxidase Subunit I (COI) mitochondrial gene and morphological data. This study is based on the observation of 115 specimens of Epyrinae from Mount Wilhelm and Wanang Conservation Area. Twenty-one species of Chlorepyris, six species of Epyris and nine species of Holepyris were recognized, all of them described and illustrated as new to Science: Chlorepyris abelam Colombo \& Azevedo n. sp., C. angu Colombo \& Azevedo n. sp., C. baining Colombo \& Azevedo n. sp., C. baruya Colombo \& Azevedo n. sp., C. biangai Colombo \& Azevedo n. sp., C. bilibil Colombo \& Azevedo n. sp., C. chambri Colombo \& Azevedo n. sp., C. duna Colombo \& Azevedo n. sp., C. enga Colombo \& Azevedo n. sp., C. etoro Colombo \& Azevedo n. sp., C. fore Colombo \& Azevedo n. sp., C. gadsup Colombo \& Azevedo n. sp., C. gogodala Colombo \& Azevedo n sp., C. haroli Colombo \& Azevedo n. sp., C. hewa Colombo \& Azevedo n. sp., C. huli Colombo \& Azevedo n. sp., C. iatmul Colombo \& Azevedo n. sp., C. kaluli Colombo \& Azevedo n. sp., C. koteka Colombo \& Azevedo n. sp., C. kwoma Colombo \& Azevedo n. sp., C. maisin Colombo \& Azevedo n. sp., Epyris melpa Colombo \& Azevedo n. sp., E. mian Colombo \& Azevedo n. sp., E. min Colombo \& Azevedo n. sp., E. motu Colombo \& Azevedo n. sp., E. mundugumor Colombo \& Azevedo n. sp., E. ogea Colombo \& Azevedo n. sp., Holepyris orokaiva Colombo \& Azevedo n. sp., H. sambia Colombo \& Azevedo n. sp., H. swagap Colombo \& Azevedo n. sp., H. tairora Colombo \& Azevedo n. sp., H. telefol Colombo \& Azevedo n. sp., H. tsembaga Colombo \& Azevedo n. sp., H. wiru Colombo \& Azevedo n. sp., H. yaifo Colombo \& Azevedo n. sp., and H. zia Colombo \& Azevedo n. sp. Three species already reported from Papua New Guinea are investigated: Epyris erraticus Smith, E. interruptus Kieffer and Chlorepyris armatus (Kieffer). Holepyris is recorded for the first time from Papua New Guinea, making Epyrinae now known from three genera. A key for all genera and species of Epyrinae in Papua New Guinea is provided.

[^0]
RÉSUMÉ

La faune des Epyrinae de Papouasie-Nouvelle-Guinée est révisée à l'aide de données moléculaires, avec le marqueur mitochondrial Cytochrome C Oxydase sous-unité 1 (COI), et morphologiques. Cette étude s'appuie sur l'observation de 115 spécimens d'Epyrinae provenant du Mont Wilhelm et de Wanang Conservation Area. Vingt et une espèces de Chlorepyris, six espèces d'Epyris et neuf espèces de Holepyris ont été reconnues, toutes décrites et illustrées comme nouvelles pour la science: Chlorepyris abelam Colombo \& Azevedo n. sp., C. angu Colombo \& Azevedo n. sp., C. baining Colombo \& Azevedo n. sp., C. baruya Colombo \& Azevedo n. sp, C. biangai Colombo \& Azevedo n. sp., C. bilibil Colombo \& Azevedo n. sp., C. chambri Colombo \& Azevedo n. sp., C. duna Colombo \& Azevedo n. sp., C. enga Colombo \& Azevedo n. sp, C. etoro Colombo \& Azevedo n. sp., C. fore Colombo \& Azevedo n. sp., C. gadsup Colombo \& Azevedo n. sp., C. gogodala Colombo \& Azevedo n. sp., C. haroli Colombo \& Azevedo n. sp, C. hewa Colombo \& Azevedo n. sp., C. huli Colombo \& Azevedo n. sp., C. iatmul Colombo \& Azevedo n. sp., C. kaluli Colombo \& Azevedo n. sp., C. koteka Colombo \& Azevedo n. sp, C. kwoma Colombo \& Azevedo n. sp., C. maisin Colombo \& Azevedo n. sp., Epyris melpa Colombo \& Azevedo n. sp., E. mian Colombo \& Azevedo n. sp., E. min Colombo \& Azevedo n. sp, E. motu Colombo \& Azevedo n. sp., E. mundugumor Colombo \& Azevedo n. sp., E. ogea Colombo \& Azevedo n. sp., Holepyris orokaiva Colombo \& Azevedo n. sp, H. sambia Colombo \& Azevedo n. sp., H. swagap Colombo \& Azevedo n. sp., H. tairora Colombo \& Azevedo n. sp., H. telefol Colombo \& Azevedo n. sp., H. tsembaga Colombo \& Azevedo n. sp, H. wiru Colombo \& Azevedo n. sp., H. yaifo Colombo \& Azevedo n. sp. et H. zia Colombo \& Azevedo n. sp. Trois espèces déjà signalées en Papouasie-Nouvelle-Guinée sont examinées: Epyris erraticus Smith, E. interruptus Kieffer et Chlorepyris armatus (Kieffer). Holepyris est signalé pour la première fois en Papouasie-Nouvelle-Guinée, amenant à trois le nombre de genres d'Epyrinae connus pour ce pays. Une clé pour tous les genres et espèces d'Epyrinae en Papouasie-Nouvelle-Guinée est fournie.

INTRODUCTION

Epyrinae are currently the second most speciose subfamily of Bethylidae and the most diverse group of Bethylidae in morphological terms (Alencar \& Azevedo 2013). Epyrinae have approximately 930 species described and 13 genera (Azevedo et al. 2018).

Although cosmopolitan, few species occur in the Oceanian region (sense Holt et al. 2013). Currently, there are 46 species of Epyrinae recorded for this region, being 39 from Philippines, two from Hawaii, two from Indonesia and three from Papua New Guinea (PNG).

Papua New Guinea (PNG) is the second largest island on Earth, harboring an impressive diversity of climates zones and landforms (Leponce et al. 2016). Three species of Epyrinae have been reported to PNG. Among the genera of Epyrinae, Epyris Westwood and Chlorepyris Kieffer are cosmopolitan and have three species recorded from New Guinea: Epyris erraticus Smith, Epyris interruptus Kieffer and Chlorepyris armatus (Kieffer). Herein, we record one more genus from this island, Holepyris Kieffer, summing the fauna of Epyrinae up to three genera and 39 species.

Once again, the material analyzed in this study and the uncovering of several species of Epyrinae reveals that the knowledge on this subfamily, and the three above-mentioned genera, is underestimated. Finally, we propose for the first time in Bethylidae genetic distance analyses based on the mitochondrial Cytochrome C Oxidase Subunit I (COI), aiming to improve delimitation of the species.

MATERIAL AND METHODS

Collection and taxonomic methods

This study was based on 115 specimens of Epyrinae collected in PNG (Figure 1), in a rainforest transect (Mount Wilhelm and Wanang Conservation Area, Madang province) during the "Our Planet Reviewed - Papua New Guinea 2012-2013" expedition, which was launched by the Muséum national d'Histoire naturelle (MNHN, Paris, Philippe Bouchet) and Pro-Natura International (PNI, Paris, Olivier Pascal) in association with the Royal Belgian Institute of Natural Sciences (RBINS, Brussels, Maurice Leponce) and the New Guinea Binatang Research Center (NGBRC, Madang, Vojtech Novotny).

The samples were collected with Malaise traps and flight interception traps in 2012, for more details, see Leponce et al. 2016. The material belongs to and it is deposited at Muséum national d'Histoire naturelle (MNHN, Paris, curator: Claire Villemant), with retentions in the Universidade Federal do Espírito Santo (UFES, Brazil, curator: Marcelo T. Tavares) as specified.

The holotypes of Epyris interruptus and Chlorepyris armatus are deposited in the Museo Civico di Storia Naturale (MCSN, Genova, curator: Maria Tavano) and were
examined, photographed, illustrated and redescribed. The holotype of Epyris erraticus is supposed to be at the Natural History Museum in London (Gordh \& Móczár 1990) but was not found, so that we have analyzed it through its original description.

The nomenclature of the integument generally follows Harris (1979) and the Hymenoptera Anatomy Ontology project (HAO) (Yoder et al. 2010). Terminology of external morphology follows Evans (1964), Azevedo (1999) and Kawada et al. (2015), and those of male genitalia follow Snodgrass (1941). Taxonomic characters related to genitalia and hypopygium were examined; such structures were previously dissected according to the Proteinase K protocol described by Martinelli et al. (2017).

We illustrated and highlighted the following morphological characters used for delimitation of species: clypeus (Figure 2A), mandibles (Figures 2B, 3A, 3J), eyes (Figures 2C, 3B, 3K), frontal line (Figure 2D), occipital carina (Figure 3C), pronotum (Figure 3L), anterior mesofurcal pit (Figure 3D), posterior mesofurcal pit (Figure 3E), metafurcal pit (Figure 3F), metasternum (Figure 3G), anterior mesopleural fovea (Figure 3M), mesopleural pit (Figure 3N), lower mesopleural fovea (Figure 3O), mesopleural suture (Figure 3P), notaulus (Figures 2E, 3Q), parapsidal signum (Figure 2F), forewing flexion lines (Figure 2G), forewing 2r-rs\&Rs veins (Figure 2H), mesoscutellar foveae (Figures 2I, 3R), metascutellum (Figure 2J), metapostnotal anterior margin (Figure 2K), metapostnotal median carina (Figure 2L), first metapostnotal carina (Figures 2M, 3S), metapostnotalpropodeal suture (Figures 2N, 3T), metatibia (Figure 2O), petiole (Figures 2P, 3H, 3W), and metasoma (Figures 2Q, 3I, 3Y).

The specimens analyzed were compared with types, vouchers and original descriptions of the species reported from PNG, Indonesia, Philippines, Hawaii, and Australia.

The specific epithets of all new species refer to ethnic groups or languages from PNG.

FIGURE 1. Location of the two collecting areas in Papua New Guinea Madang province (© : Mount Wilhelm (\star) and Wanang Conservation Area ($\mathrm{\square}$).

FIGURE 2. Bethylidae. Morphological characters in dorsal view. A, clypeus; B, mandible; C, eye; D, frontal line; \mathbf{E}, notaulus; \mathbf{F}, parapsidal signum; \mathbf{G}, flexion lines of the forewing; \mathbf{H}, forewing 2 r -rs\&Rs vein; \mathbf{I}, mesoscutellar fovea; J, metascutellum; K, metapostnotal anterior margin; L, metapostnotal median carina; \mathbf{M}, first metapostnotal carina; \mathbf{N}, metapostnotal-propodeal suture; \mathbf{O}, metatibia; \mathbf{P}, petiole; \mathbf{Q}, metasoma. Scale bar: $250 \mu \mathrm{~m}$.

The images were taken under a Leica Z16 APO stereomicroscope coupled to a Leica DFC 2 video camera by Leica Microsystems (Switzerland) under Modular Dome Illumination System by Kawada \& Buffington (2016). To combine images, we used the Helicon Focus (HeliconSoft) and saved them in 300 DPI. The characters of the male genital structures were drawn in camera lucida adapted to a Leica DM 2500 microscope, then scanned into Photoshop and saved in 600 DPI.

For each specimen, illustrations were made as follows: head in dorsal view; mandible frontal view; mesosoma dorsal, ventral and lateral views; forewing in dorsal view and male genitalia in dorsal, ventral and lateral views. All photographs and drawings were based on holotypes or paratypes.

FIGURE 3. Bethylidae. Morphological characters in ventral view. A, mandible; B, eye; C, occipital carina; \mathbf{D}, anterior mesofurcal pit; \mathbf{E}, posterior mesofurcal pit; \mathbf{F}, metafurcal pit; G, metasternum; \mathbf{H}, petiole; I, metasoma; Bethylidae. Morphological characters in lateral view; J, mandible; K, eye; L, pronotum; M, anterior mesopleural fovea; \mathbf{N}, mesopleural pit; \mathbf{O}, lower mesopleural fovea; \mathbf{P}, mesopleural suture; \mathbf{Q}, notaulus; R, mesoscutellar fovea; \mathbf{S}, first metapostnotal carina; T, metapostnotal-propodeal suture; \mathbf{W}, petiole; \mathbf{Y}, metasoma. Scale bar: $250 \mu \mathrm{~m}$.

Molecular methods

For molecular protocols, we selected 37 specimens (11 早 and $26 \delta^{\top}$) of Epyrinae representing the morphospecies and the morphological variation previously recognized during morphospecies identification. All female representatives were included for potential conspecific male-female association. The DNA was extracted from the metasoma and mesosoma of the 37 adult specimens by using the NucleoSpin® Tissue Kit according to the manufacturer's protocol. The metasoma and head were disassembled to provide orifice to the reagents.

Standard PCR procedures and primers proposed by Folmer et al. (1994) were used to amplify the mitochondrial gene COI. Thermal setup of primers LCO1490/HCO2198 (Folmer et al. 1994) was: a 1-minute initial denaturation at $95^{\circ} \mathrm{C}$ followed by 43 cycles of 45 -second denaturation at $95^{\circ} \mathrm{C}, 45$ seconds of annealing at $47^{\circ} \mathrm{C}, 45$ seconds extension at $47^{\circ} \mathrm{C}$, and a 3-minute final extension at $72^{\circ} \mathrm{C}$.

The amplification products were detected in 1.5% agarose gel electrophoresis (AGE), and then successful products were purified using an enzymatic procedure with the ExoSAP-IT® kit (USB Corporation) incubated at $37^{\circ} \mathrm{C}$ for 15 minutes to degrade remaining primers and nucleotides and finally, incubated at $80^{\circ} \mathrm{C}$ for 15 minutes to inactivate ExoSAP-IT reagent. The eligible products were then sequenced in a T3500 Genetic Analyzer.

The returned forward and reverse chromatograms were examined and trimmed with MEGA 6 (Molecular Evolutionary Genetics Analysis version 6.0, Tamura et al. 2013). The alignments were made, adjusted, and edited manually in MEGA6.

Species delimitation methods

The nucleotide alignment was used to reconstruct a maximum likelihood phylogeny and to access genetic variability within the genera and species. The phylogenetic analysis was performed in RAxML (Stamatakis 2014) through CIPRES portal Science Gateway V. 3.0 (Miller et al. 2010) with GTRGAMMA model of nucleotide evolution; clades support were accessed by 1,000 bootstrap replications. We included three males of the genus Apenesia Westwood (Bethylidae, Pristocerinae) also collected in PNG, to root the tree (Figure 4).

The Kimura-2-parameter K2P model of base substitution was selected for pairwise distances calculation, which was made in MEGA6. The model was chosen to provide more accurate comparison between results as previous studies with Hymenoptera use K2P as model (Jiang et al. 2015; Waichert et al. 2015).

DNA barcoding based on a short fragment of mitochondrial DNA can provide an effective tool for species diagnosis (Zhu et al. 2017). Its effectiveness as a tool for rapid identification of species, and sex association, has been reported in some groups of insects, such as Hemiptera (Lee et al. 2011; Zhu et al. 2017), Hymenoptera (Smith et al. 2008), Coleoptera (Löbl \& Leschen 2005), and Lepidoptera (Hajibabaei et al. 2006) for instance.

RESULTS

Molecular protocol and distance analyses

A COI sequence was amplified from 34 specimens out of 37 sampled (Table 1). The length of the nucleotide sequences varied from 633-709 bp. As expected for Hymenoptera (Crozier et al. 1989; Simon et al. 1994; Li et al. 2010), adenine (A) and thymine (T) had the highest frequency $(\mathrm{A}=37.0 \%, \mathrm{C}=11.8 \%, \mathrm{G}=11.5 \%, \mathrm{~T}=39.4 \%)$.

We recognized 21 species of Chlorepyris, nine species of Holepyris and six species of Epyris. Considering that the sampling effort was low, these results indicate that Chlorepyris is the most diverse genus of Epyrinae in this region, and the potential for more species in future expeditions is high.

TABLE 1. Terminal taxa of PNG Epyrinae molecular analysis with GenBank codes.

Genbank code	Specimen voucher	Species	Sex
MK051186	W10	Chlorepyris abelam Colombo \& Azevedo n. sp.	$\overbrace{}^{\top}$
MK051187	W20	Chlorepyris gogodala Colombo \& Azevedo n. sp.	δ^{λ}
MK051188	W21	Chlorepyris haroli Colombo \& Azevedo n. sp.	δ^{λ}
MK051189	W22	Chlorepyris hewa Colombo \& Azevedo n. sp.	\bigcirc
MK051190	W23	Chlorepyris huli Colombo \& Azevedo n. sp.	\bigcirc
MK051191	W24	Chlorepyris iatmul Colombo \& Azevedo n. sp.	+
MK051192	W25	Chlorepyris kaluli Colombo \& Azevedo n. sp.	+
MK051193	W27	Chlorepyris koteka Colombo \& Azevedo n. sp.	+
MK051194	W28	Chlorepyris bilibil Colombo \& Azevedo n. sp.	¢
MK051195	W12	Chlorepyris baining Colombo \& Azevedo n. sp.	\bigcirc
MK051196	W31	Chlorepyris maisin Colombo \& Azevedo n. sp.	아
MK051197	W11	Chlorepyris angu Colombo \& Azevedo n. sp.	\bigcirc
MK051198	W26	Epyris ogea Colombo \& Azevedo n. sp.	+
MK051199	W32	Epyris melpa Colombo \& Azevedo n. sp.	${ }^{\top}$
MK051200	W33	Epyris mian Colombo \& Azevedo n. sp.	σ^{1}
MK051201	W34	Epyris min Colombo \& Azevedo n. sp.	\bigcirc
MK051202	W35	Epyris motu Colombo \& Azevedo n. sp.	+
MK051203	W29	Epyris mundugumor Colombo \& Azevedo n. sp.	+
MK051204	W1	Holepyris orokaiva Colombo \& Azevedo n. sp.	$\overbrace{}^{\top}$
MK051205	W6	Holepyris telefol Colombo \& Azevedo n. sp.	$\overbrace{}^{\top}$
MK051206	W7	Holepyris tsembaga Colombo \& Azevedo n. sp.	σ^{\top}
MK051207	W2	Holepyris sambia Colombo \& Azevedo n. sp.	σ^{\top}
MK051208	W13	Chlorepyris baruya Colombo \& Azevedo n. sp.	σ^{\star}
MK051209	W3	Holepyris swagap Colombo \& Azevedo n. sp.	$\overbrace{}^{\top}$
MK051210	W8	Holepyris wiru Colombo \& Azevedo n. sp.	+
MK051211	W9	Holepyris zia Colombo \& Azevedo n. sp.	+

MK051212	W5	Holepyris tairora Colombo \& Azevedo n. sp.	$\widehat{ }$
MK051213	W30	Chlorepyris kwoma Colombo \& Azevedo n. sp.	+
MK051214	W14	Chlorepyris bilibil Colombo \& Azevedo n. sp.	${ }^{2}$
MK051215	W15	Chlorepyris chambri Colombo \& Azevedo n. sp.	\bigcirc
MK051216	W16	Chlorepyris enga Colombo \& Azevedo n. sp.	${ }^{\top}$
MK051217	W17	Chlorepyris etoro Colombo \& Azevedo n. sp.	${ }^{2}$
MK051218	W18	Chlorepyris fore Colombo \& Azevedo n. sp.	\bigcirc
MK051219	W19	Chlorepyris gadsup Colombo \& Azevedo n. sp.	\bigcirc

Our results pointed to sex association. Conspecifics male and female specimens of Chlorepyris were associated based on identical nucleotide sequences. In the genus Holepyris, the lowest genetic distance observed between the species was 3%, but these taxa are morphologically distinct, especially in the male genitalia features. In Chlorepyris, besides the conspecific specimens that presented 0% of genetic distance, the minimum interspecific variation was 3%. Epyris presented lineages genetically distant, the shortest nucleotide distance among species was 10%. Overall, the mean genetic distance found among the lineages of Epyrinae in PNG was 24% variation (Figure 4).

FIGURE 4. Genetic distances between the species of tree of PNG Epyrinae from PNG.

When the nucleotide divergence was low, but the morphology presented differences, the morphological analysis prevailed. Different morphological data has been crucial to delimit and diagnose species (Waichert \& Azevedo 2009; Alencar \& Azevedo 2013).

Phylogenetics analysis

The resulting analysis of PNG Epyrinae likelihood tree supported Epyrinae (Bootstrap=100), but the genera sampled here were not reconstructed with support (Figure 5). Holepyris was the only lineage of Epyrinae recovered with statistical support (Bootstrap=100); whereas Epyris had at least four lineages, considering Bootstrap values >70. Species of Chlorepyris nested together but the cluster is statically unsupported (Bootstrap=39), splitting into two clusters with bootstrap values=37 and 80. The supported clade of Chlorepyris included nine species.

FIGURE 5. Phylogenetic maximum-likelihood tree based on the COI sequences.
A

FIGURE 6. Figures of the key to Epyrinae from PNG. A, mesoscutellar fovea never connected by evident sulcus, large (E. niger pattern); B, mesoscutellar fovea connected by evident sulcus, non-projected sides, trabeculate; C, mesoscutellar fovea connected by evident sulcus, non-projected sides, not trabeculate, small elevation present; D, mesoscutellar foveae connected by evident sulcus, projected sides, ocuppying almost all mesoscutellum; \mathbf{E}, mesoscutellar fovea connected by evident sulcus, M-shaped; \mathbf{F}, clypeal lateral lobe never developed; G, clypeal lateral lobe well developed; H, mesopleuron with anterior mesopleural fovea connected with lower mesopleural fovea, lower mesopleural fovea not trabeculate, subalar impression not connected with mesopleural suture, and mesopleural suture not trabeculate; I, mesopleuron with anterior mesopleural fovea not connected with lower mesopleural fovea, lower mesopleural fovea trabeculate, subalar impression connected with mesopleural suture, and mesopleural suture trabeculate; J, posterior mesofurcal pit oval; K, posterior mesofurcal pit elongated; L, posterior mesofurcal pit circular; M, metafurcal pit inserted into crown-shaped depression; \mathbf{N}, metafurcal pit inserted into triangle-shaped depression; \mathbf{O}, parapsidal signum smaller than notaulus, mesoscutellum with posterior margin touching from metapostnotal anterior margin, first metapostnotal carina as long as metapostnotal median carina, convergent posteriorly, and metapostnotal-propodeal suture smaller than first metapostnotal carina; \mathbf{P}, parapsidal signum as long as notaulus, mesoscutellum with posterior margin not touching from metapostnotal anterior margin, first metapostnotal carina smaller than metapostnotal median carina, divergent posteriorly, and metapostnotalpropodeal suture as long as first metapostnotal carina.

Key to genera of Epyrinae from Papua New Guinea

1. Mesoscutellar foveae never connected by evident sulcus ... Epyris Westwood, 1832
(Figure 6A) ... 3

- Mesoscutellar foveae connected by evident sulcus (Figure 6B-6E) ... 2

2. Lateral clypeal lobe well projected forward ... Holepyris Kieffer, 1904 (Figure 6G) ... 10

- Lateral clypeal lobe very short ... Chlorepyris Kieffer, 1913 (Figure 6F) ... 18

3. Female ... 4

- Male ... 7

4. Metapostnotal median carina not visible posteriorly ... Epyris erraticus Smith, 1860

- Metapostnotal median carina visible posteriorly ... 5

5. Median clypeal lobe tridentate; mandible with four distal teeth; body strongly punctate ... Epyris ogea Colombo \& Azevedo n. sp.

- Median clypeal lobe rounded; mandible with five distal teeth; body weakly punctate ... 6

6. Pedicel shorter than flagellomere I; eye setose; parapsidal signum as long as notaulus (Figure 6P) ... Epyris motu Colombo \& Azevedo n. sp.

- Pedicel as long as flagellomere I; eye glabrous; parapsidal signum shorter than notaulus (Figure 60) ... Epyris mundugumor Colombo \& Azevedo n. sp.

7. Lower mesopleural fovea connected to upper mesopleural fovea ... Epyris interruptus Kieffer, 1904

- Lower mesopleural fovea not connected to upper mesopleural fovea ... 8

8. Median clypeal lobe straight; mesopleural suture not trabeculate (Figure 6H); parapsidal signum shorter than notaulus (Figure 60) ... Epyris melpa Colombo \& Azevedo n. sp.

- Median clypeal lobe rounded; mesopleural suture trabeculate (Figure 6I); parapsidal signum as long as notaulus (Figure 6P) ... 9

9. Anterior and lower mesopleural foveae not connected (Figure 6I); lower mesopleural fovea trabeculate (Figure 6I); first metapostnotal carina as long as metapostnotal median carina (Figure 60) ... Epyris mian Colombo \& Azevedo n. sp.

- Anterior mesopleural fovea ill defined; lower mesopleural fovea not trabeculate (Figure 6 H); first metapostnotal carina shorter than metapostnotal median carina (Figure 6P) ... Epyris min Colombo \& Azevedo n. sp.

10. Female ... 11

- Male ... 13

11. Mesoscutellar sulcus not trabeculate, small elevation present (Figure 6C) ... Holepyris wiru Colombo \& Azevedo n. sp.

- Mesoscutellar sulcus trabeculate, small elevation absent (Figure 6B) ... 12

12. Mandible with one distal teeth; median clypeal lobe angulate ... Holepyris yaifo Colombo \& Azevedo n. sp.

- Mandible with two distal teeth; median clypeal lobe rounded ... Holepyris zia Colombo \& Azevedo n. sp.

13. Median clypeal lobe sharpened; posterior margin of mesoscutellum touching metapostnotal anterior margin (Figure 60) ... Holepyris telefol Colombo \& Azevedo n. sp. - Median clypeal lobe rounded; posterior margin of mesoscutellum not touching metapostnotal anterior margin (Figure 6P) ... 14
14. Posterior margin of mesoscutellum foveolate; first metapostnotal carina straight (Figure 60) ... Holepyris tsembaga Colombo \& Azevedo n. sp. - Posterior margin of mesoscutellum not foveolate; first metapostnotal carina outcurved or incurved (Figure 6P) ... 15
15. Parapsidal signum shorter than notaulus (Figure 60); lower mesopleural fovea ill defined ... 16

- Parapsidal signum longer than notaulus (Figure 6P); lower mesopleural fovea without trabeculae (Figure 6H) ... 17

16. Pedicel as long as flagellomere I; forewing with three distal flexion lines; mesoscutellar sulcus trabeculate (Figure 6B) ... Holepyris sambia Colombo \& Azevedo n. sp.

- Pedicel shorter flagellomere I; forewing with four distal flexion lines; mesoscutellar sulcus not trabeculate (Figure 6C) ... Holepyris orokaiva Colombo \& Azevedo n. sp.

17. Anterior and lower mesopleural foveae not connected (Figure 6I); notaulus present ... Holepyris swagap Colombo \& Azevedo n. sp.

- Anterior and lower mesopleural foveae connected (Figure 6H); notaulus absent ...

Holepyris tairora Colombo \& Azevedo n. sp.
18. Female ... 19

- Male ... 25

19. Ventral margin of mandible with two teeth ... Chlorepyris armatus (Kieffer, 1904)

- Ventral margin of mandible without teeth ... 20

20. Anterior and lower mesopleural foveae not connected (Figure 6I) ... 21

- Anterior and lower mesopleural foveae connected (Figure 6H) ... Chlorepyris bilibil Colombo \& Azevedo n. sp.

21. Lower mesopleural fovea not trabeculate (Figure 6H) ... 22

- Lower mesopleural fovea trabeculate (Figure 6I) ... 23

22. Pedicel as long as flagellomere I; posterior mesofurcal pit oval (Figure 6J); metapostnotal anterior carina outcurved (Figure 6P) ... Chlorepyris iatmul Colombo \& Azevedo n. sp.

- Pedicel longer than flagellomere I; posterior mesofurcal pit elongated (Figure 6K); metapostnotal anterior carina straight (Figure 6O) ... Chlorepyris koteka Colombo \& Azevedo n. sp.

23. Pronotum coriaceous; posterior margin of mesoscutellum not touching metapostnotal anterior margin (Figure 6P) ... 24

- Pronotum shiny; posterior margin of mesoscutellum touching metapostnotal anterior margin (Figure 60) ... Chlorepyris maisin Colombo \& Azevedo n. sp.

24. Posterior mesofurcal pit circular (Figure 6L); first metapostnotal carina as long as metapostnotal median carina (Figure 60) ... Chlorepyris kaluli Colombo \& Azevedo n. sp.

- Posterior mesofurcal pit elongated (Figure 6K); first metapostnotal carina shorter than metapostnotal median carina (Figure 6P) ... Chlorepyris kwoma Colombo \& Azevedo n. sp.

25. Posterior margin of mesoscutellar sulcus notched medially (Figure 6E) ... 26

- Posterior margin of mesoscutellar sulcus straight medially (Figure 6D) ... 30

26. Anterior and lower mesopleural foveae not connected (Figure 6I) ... 27

- Anterior and lower mesopleural foveae connected (Figure 6H) ... 28

27. Mandible with four distal teeth ... Chlorepyris fore Colombo \& Azevedo n. sp. - Mandible with five distal teeth ... Chlorepyris abelam Colombo \& Azevedo n. sp.
28. Pedicel shorter than flagellomere I; frontal line absent; pronotum polished; metafurcal pit inserted into crown-shaped depression (Figure 6M) ... Chlorepyris etoro Colombo \& Azevedo n. sp.

- Pedicel as long as flagellomere I; frontal line present; pronotum punctate; metafurcal pit inserted into triangle-shaped depression (Figure 6N) ... 29

29. Frons polished; posterior margin of mesoscutellum touching anterior margin of metapectal-propodeal complex (Figure 60); first metapostnotal carina diverging posteriorly to metapostnotal median carina (Figure 6P) ... Chlorepyris chambri Colombo \& Azevedo n. sp.

- Frons coriaceous; posterior margin of mesoscutellum not touching anterior margin of metapectal-propodeal complex (Figure 6P); first metapostnotal carina converging posteriorly to metapostnotal median carina (Figure 6O) ... Chlorepyris enga Colombo \& Azevedo n. sp.

30. Pedicel shorter than flagellomere I ... 31

- Pedicel as long as or longer than flagellomere I ... 34

31. Anterior and lower mesopleural foveae not connected (Figure 6I) ... 32

- Anterior and lower mesopleural foveae connected (Figure 6H) ... 33

32. Anterior margin of mesoscutellar sulcus straight medially ... Chlorepyris angu Colombo \& Azevedo n. sp.

- Anterior margin of mesoscutellar sulcus notched medially ... Chlorepyris biangai Colombo \& Azevedo n. sp.

33. Mesopleuron with subalar impression not connected with mesopleural suture (Figure 6H); parapsidal signum shorter than notaulus (Figure 6O) ... Chlorepyris baruya Colombo \& Azevedo n. sp.

- Mesopleuron with subalar impression connected with mesopleural suture (Figure 6I); parapsidal signum as long as notaulus (Figure 6P) ... Chlorepyris huli Colombo \& Azevedo n. sp.

34. Pedicel longer than flagellomere I ... 35

- Pedicel as long as flagellomere I ... 36

35. Mesopleuron with anterior and lower mesopleural foveae connected; mesopleural suture ill-defined ... Chlorepyris gadsup Colombo \& Azevedo n. sp.

- Mesopleuron with anterior and lower mesopleural foveae not connected; mesopleural suture defined ... Chlorepyris duna Colombo \& Azevedo n. sp.

36. First metapostnotal carina as long as metapostnotal median carina (Figure 60) ... 37

- First metapostnotal carina shorter than metapostnotal median carina (Figure 6P) ... 38

37. First metapostnotal carina straight ... Chlorepyris bilibil Colombo \& Azevedo n. sp.

- First metapostnotal carina converging posteriorly to metapostnotal median carina (Figure 6O) ... Chlorepyris baining Colombo \& Azevedo n. sp.

38. Metatibia spinose; metapostnotal-propodeal suture as long as first metapostnotal carina (Figure 6P) ... Chlorepyris hewa Colombo \& Azevedo n. sp.

- Metatibia not spinose; metapostnotal-propodeal suture shorter than first metapostnotal carina (Figure 60) ... 39

39. Lower mesopleural fovea not trabeculate; mesopleuron suture not trabeculate ... Chlorepyris gogodala Colombo \& Azevedo n. sp.

- Lower mesopleural fovea ill defined; mesopleuron suture trabeculate ... Chlorepyris haroli Colombo \& Azevedo n. sp.

SYSTEMATIC PART

Genus CHLOREPYRIS Kieffer, 1913

Chlorepyris Kieffer, 1913. Type-species: Chlorepyris semiviridis Kieffer, 1913.

Chlorepyris armatus (Kieffer, 1904)

Figure 7

Rhabdepyris armatus Kieffer, 1904: 410-411.
Chlorepyris armatus - Azevedo et al. 2018: 148.

TYPE MATERIAL - Holotype, \mathcal{q}°, N. Guinea S. E. [probably Papua New Guinea]. Hughibagu, Loria, V-IX/1991 (MCSN). [examined].

REDESCRIPTION - Female. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma dark brown; wings hyaline. Mandible with three distal teeth, ventral margin with two twisted teeth. Clypeus with rounded median lobe, not visible dorsally, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel smaller than flagellomere I. Eye weakly setose.

Frons weakly coriaceous and punctate. Frontal line present. Pronotum punctate and coriaceous. Posterior mesofurcal pit elongated. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum as long as notaulus. Forewing with ill defined distal flexion lines, 2 r -rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, narrower medially, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, straight posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia with spines. Petiolar root with apex strongly incurved. Metasoma polished.

Male. Unknown.
REMARKS — Waichert \& Azevedo (2009) redesigned Rhabdepyris Kieffer, 1904 under phylogenetic approach, making several new combinations. Rhabdepyris armatus was kept in Rhabdepyris because the authors were not able to locate its holotype, so that the species was not analyzed. Azevedo et al. (2018) transferred R. armatus to the genus Chlorepyris but did not provide details on this nomenclatural act. Here, analyzing the holotype, we concluded that this species belongs to Chlorepyris by having the pronotum punctate, coriaceous, and the mesoscutellar fovea connected by evident sulcus, not trabeculate. We did not find new specimens of C. armatus hindering molecular and phylogenetics analyses. This species is morphologically different from the other Chlorepyris species because it has the mandibles with five distal teeth, two are located in the ventral margin; the median clypeal lobe not visible dorsally; the posterior portion of the metapectal-propodeal complex polished. The teeth in the ventral margin of the mandibles have already been diagnosed for other Epyrinae, mainly in Epyris afer (Magretti, 1884) and related lineages (Stein et al. 2011).

DISTRIBUTION - Papua New Guinea.

Chlorepyris abelam Colombo \& Azevedo n. sp.

Figures 8-9

TYPE MATERIAL - Holotype, δ^{λ}, Papua New Guinea. Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 26-27/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 4, understorey, Malaise - MAL-MW1700D-02/16-d02, P2217-11357 (MNHN). Paratypes. Papua New Guinea. 1才, Province Madang, Mount Wilhelm ($5.759269,145.2356$), 1700m, 29-30/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1700D-05/16-d05, P2220-8756 (MNHN); đ̉, Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 26-27/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1700A-02/16-d02, P2169-11358 (MNHN); đ̂, Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 29-30/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1700A-05/16-d05, P2172-8760 (MNHN); , Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 30-31/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1700A-06/16-d06, P2173-8766 (MNHN); ô, Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 29-30/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1700D-05/16-d05, P2220-8756 (MNHN); $\widehat{3}$, Province Madang, Mount Wilhelm (-5.759910, 145.2347), 1700m, 26-27/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW1700B-02/16-d02, P2185-11356 (MNHN); 2才, Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 25-26/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1700D-01/16-d01, P2216-11361 (MNHN); §̧, Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 0910/11/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1700D-16/16-d16, P2231-8804 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna dark brown; wings amber; metasoma reddish. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel shorter than flagellomere I. Eye glabrous. Frons polished and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, deep. Metafurcal pit inserted into
triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin notched medially, weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina sinuous; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia with few spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere as long as basiparamere in lateral view, apex straight, not arched inward, dorsal margin straight; basiparamere wide, covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex aligned to apex of cuspis, its posterior margin serrated; aedeagus bottle-shaped, its apex aligned to apex of digitus, ventral margin with translucent projection, base of apodeme dilated.

Female. Unknown.

VARIATIONS - Paramere with apex weakly rounded and arched inward.
REMARKS - This species is morphologically similar to Chlorepyris etoro n. sp. and C. fore \mathbf{n}. sp. by having the median clypeal lobe rounded, the eye glabrous, the notauli complete, the mesoscutellar sulcus with the posterior margin notched medially and the mesopleuron with the lower fovea trabeculate. However, Chlorepyris abelam n. sp. has the paramere with the apex straight, not arched inward, the apex of the digitus is aligned to the apex of cuspis and the apex of aedeagus aligned to the apex of digitus; whereas C. etoro \mathbf{n}. sp. has the paramere with the apex sharpened, not arched inward, the digitus with apex anterior to the apex of cuspis and the apex of aedeagus anterior to the apex of digitus, and C. fore \mathbf{n}. sp. has the paramere with rounded apex, weakly arched inward, the digitus with apex anterior to the apex of cuspis and the apex of aedeagus aligned to the apex of digitus. These species are phylogenetic and genetically distant to each other, with nucleotide sequences differing 14% in their content (Figure 4).

ETYMOLOGY - The epithet abelam refers to Abelam people who live in the East Sepik province of Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Chlorepyris angu Colombo \& Azevedo n. sp.

Figures 10-11

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.741031, 145.3294), 200m, 30-31/10/2012, leg Dilu, Ray, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW0200B-06/16-d06, P1019-11963 (MNHN). Paratypes. Papua New Guinea. ${ }^{\lambda}$, Province Madang, Mount Wilhelm, (-5.739897, 145.3297), 200m, 27-28/10/2012, leg Dilu, Ray, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW0200A-03/16-d03, P1000-11953 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna light brown; wings hyaline; metasoma reddish. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel shorter than flagellomere I. Eye glabrous. Frons coriaceous and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, deep. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, narrower medially, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina sinuous; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, divergent. Metatibia with few spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere longer than basiparamere in lateral view, apex sharpened, not arched inward, dorsal margin straight; basiparamere wide, not covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex aligned to apex of cuspis, its posterior margin crenulate;
aedeagus bottle-shaped, its apex anterior to apex of digitus, ventral margin with opaque projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris enga n. sp. by having the mandibles with five distal teeth, the clypeus with the median lobe rounded, the occipital carina absent, the paramere longer than the basiparamere in lateral view, and the apex of cuspis anterior to the apex of paramere. However, C. angu n. sp. has the mesoscutellar sulcus with the posterior margin straight medially, the metapostnotalpropodeal suture is divergent to the metapostnotal median carina and the apex of the aedeagus is anterior to the apex of digitus; whereas C. enga n. sp. has the mesoscutellar sulcus with the posterior margin notched medially, the metapostnotal-propodeal suture converging posteriorly to the metapostnotal median carina and the apex of aedeagus is aligned to the apex of digitus. These species are phylogenetic and genetically distant to each other, with nucleotide sequences differing 17% in their content (Figure 4).

ETYMOLOGY - The epithet angu refers to Angu ethinic who live in the mountainous region of south-western Morobe, a province of Papua New Guinea.
DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris baining Colombo \& Azevedo n. sp.

Figures 12-13

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.720874, 145.2695), $1200 \mathrm{~m}, 28-29 / 10 / 2012$, leg Philip, Alois, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1200A-04/16-d04, P1781-11307 (MNHN). Paratypes. Papua New Guinea. $\widehat{\gamma}$, Province Madang, Mount Wilhelm (5.720903, 145.2715), 1200 m, 25-26/10/2012, leg Philip, Alois, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW1200C-01/16-d01, P1810-11292 (MNHN); $1 \widehat{N}^{\lambda}$, Province Madang, Mount Wilhelm (-5.732698, 145.2556), $700 \mathrm{~m}, 08-09 / 11 / 2012$, leg Keltim, Uma, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW0700B-15/16-d15, P141811285 (MNHN); 1才, Province Madang, Mount Wilhelm (-5.721022, 145.2703), 1200 m , 26-27/10/2012, leg Philip, Alois, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW1200B-02/16-d02, P1795-11299 (MNHN); 1 ${ }^{\lambda}$, Province Madang, Mount Wilhelm (-
5.741031, 145.3294), 200 m, 07-08/11/2012, leg Dilu, Ray, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW0200B-14/16-d14, P1027-11973 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna dark brown; wings hyaline; metasoma yellowish. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as flagellomere I. Eye weakly setose. Frons polished and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, deep. Metafurcal pit inserted into crown-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, incomplete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2 r -rs\&Rs vein angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, narrower medially, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina outcurved; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture as long as first metapostnotal carina, converging posteriorly. Metatibia with few spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere shorter than basiparamere in lateral view, apex rounded, not arched inward, dorsal margin incurved; basiparamere wide, covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin smooth; aedeagus bottle-shaped, its apex posterior to apex of digitus, ventral margin with translucent projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris baruya n. sp. by having the mandibles with five distal teeth, the median clypeal lobe rounded, the flagellar pubescence appressed, the eyes weakly setose, the mesoscutellar sulcus with the posterior margin straight medially, the lower fovea trabeculate and the paramere shorter than the basiparamere in lateral view. However, C. baining n. sp. has the pedicel as long as flagellomere I and the anterior and lower mesopleural foveae are not connected; whereas C. baruya \mathbf{n}. sp. has the pedicel shorter than the flagellomere I and the anterior and lower
mesopleural foveae connected. The genetic distance between C. baining n. sp. and C. baruya n. sp. was of 6% (Figure 4) and reconstructed as sister taxa in the phylogenetic analyses.

ETYMOLOGY - The epithet baining refers to the Baining ethnic, the first inhabitants of the Gazelle Peninsula of East New Britain, Papua New Guinea.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris baruya Colombo \& Azevedo n. sp.

Figures 14-15

TYPE MATERIAL - Holotype, δ^{λ}, Papua New Guinea. Province Madang, Mount Wilhelm (-5.720903, 145.2715), $1200 \mathrm{~m}, 25-26 / 10 / 2012$, leg Philip, Alois, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW1200C-01/16-d01, P1810-11292 (MNHN). Paratypes. Papua New Guinea. §, Province Madang, Mount Wilhelm ($5.732698,145.2556), 700 \mathrm{~m}, 08-09 / 11 / 2012$, leg Keltim, Uma, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW0700B-15/16-d15, P1418-11285 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole dark brown; antenna brown; wings hyaline; metasoma light brown. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel shorter than flagellomere I. Eye weakly setose. Frons polished and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, deep. Metafurcal pit inserted into crown-shaped depression. Mesopleuron with anterior and lower mesopleural foveae connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin straight medially weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture shorter than first
metapostnotal carina, converging posteriorly. Metatibia with many spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere shorter than basiparamere in lateral view, apex rounded, weakly arched inward, dorsal margin incurved; basiparamere wide, not covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin crenulate; aedeagus bottle-shaped, its apex posterior to apex of digitus, ventral margin with opaque projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris hewa n. sp. by having the median clypeal lobe rounded, the flagellar pubescence appressed, the notauli complete, the mesoscutellar sulcus with the posterior margin straight medially, the paramere shorter than the basiparamere in lateral view, and the apex of aedeagus posterior to the apex of digitus. However, Chlorepyris baruya n. sp. has the pedicel shorter than the flagellomere I, the frons is polished, the frontal line is present and the lower mesopleural fovea is trabeculate; whereas C. hewa \mathbf{n}. sp. has the pedicel as long as flagellomere I, the frons coriaceous, the frontal line is absent, and the lower mesopleural fovea is ill defined. The genetic distance between these species is low, 3% (Figure 4), the lowest nucleotide distance among all species of Chlorepyris.

ETYMOLOGY - The epithet baruya refers to Baruya ethinic, a tribe in the highlands of Papua New Guinea.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris biangai Colombo \& Azevedo n. sp.

Figures 16-17

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua-New-Guinea, Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 09-10/11/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1700D-16/16-d16, P2231-8804 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna dark brown; wings amber; metasoma reddish. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short,
not visible dorsally. Antenna with flagellar pubescence appressed; pedicel longer than flagellomere I. Eye glabrous. Frons polished and punctate. Frontal line absent. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, deep. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin straight medially, anterior margin of mesoscutellar sulcus notched medially, weakly inclined, narrower medially, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina sinuous; metapostnotal median carina incomplete, visible posteriorly; first metapostnotal carina longer than metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture longer than first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere longer than basiparamere in lateral view, apex rounded, weakly arched inward, dorsal margin incurved, strongly setose; basiparamere wide, covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin smooth; aedeagus bottle-shaped, its apex posterior to apex of digitus, ventral margin with opaque projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically and genetically similar to Chlorepyris angu \mathbf{n}. sp. by having the mandible with five distal teeth, median clypeal lobe rounded, the flagellar pubescence appressed, the metafurcal pit inserted into triangle-shaped depression, the mesoscutellar sulcus with the posterior margin straight medially, and the paramere longer than the basiparamere in lateral view. However, Chlorepyris biangai n. sp. has the pedicel longer than the flagellomere I, frontal line absent, and aedeagus bottle-shaped with apex posterior to apex of digitus; whereas C. angu \mathbf{n}. sp. has the pedicel shorter than the flagellomere I, frontal line present, and aedeagus bottle-shaped with apex anterior to apex of digitus.

ETYMOLOGY - The epithet biangai refers to Biangai ethinic, an ethnic group living on the slopes of the upper Bulolo vally, in Papua New Guinea.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris bilibil Colombo \& Azevedo n. sp.

Figures 18-20

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Wanang 3 station (-5.22767, 145.0797), 175m, 20-21/11/2012, leg Basset, Plot 1, understorey; Malaise - MAL-WAN01-D03, P4902-9231 (MNHN). Allotype, \uparrow, Papua New Guinea. Province Madang, Mount Wilhelm (-5.741031, 145.3294), 200m, 07-08/11/2012, leg Dilu, Ray, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW0200B-14/16-d14, P1027-11973 (MNHN). Paratypes. Papua New Guinea. Wilhelm (-5.731961, 145.2522), $700 \mathrm{~m}, 29-30 / 10 / 2012$, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-05/16-d05, P1440-11993 (MNHN).

DESCRIPTION - Male (Figures 18-19). Head, pronotum, mesoscutum, metapectalpropodeal complex and petiole dark brown; antenna brown; wings hyaline; metasoma dark brown to light brown. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as flagellomere I. Eye weakly setose. Frons coriaceous and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, $2 \mathrm{r}-\mathrm{rs} \& \mathrm{Rs}$ vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina sinuous; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as metapostnotal median carina, straight; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia with many spines. Petiolar root with apex strongly incurved.

Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere shorter than basiparamere in lateral view, apex rounded, arched inward, dorsal margin incurved; basiparamere wide, not covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin serrated, the aedeagus bottle-shaped, its apex posterior to apex of digitus, ventral margin with translucent projection, base of apodeme dilated.

Female (Figure 20). Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma dark brown; wings hyaline. Mandible with two distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as flagellomere I. Eye weakly setose. Frons polished and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as metapostnotal median carina, straight; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia with few spines. Petiolar root with apex strongly incurved. Metasoma polished.

REMARKS - The male of this species is morphologically similar to Chlorepyris hewa n. sp. by having the median clypeal lobe rounded, the flagellar pubescence appressed, the notauli complete, the mesoscutellar sulcus with the posterior margin straight medially, the paramere shorter than the basiparamere in lateral view, the apex of cuspis anterior to the apex of paramere, the apex of aedeagus posterior to the apex of digitus. However, Chlorepyris bilibil \mathbf{n}. sp. has the frontal line present, the anterior and lower mesopleural foveae not connected and the lower mesopleural fovea trabeculate; whereas C. hewa $\mathbf{n} . \mathbf{s p}$. has the frontal line absent, the anterior and lower mesopleural foveae connected, and the lower mesopleural fovea ill defined.

The female is morphologically similar to C. koteka \mathbf{n}. sp. by having the mandibles with two distal teeth, the mesoscutellar sulcus with the posterior margin straight medially and the metapostnotal-propodeal suture shorter than the first metapostnotal carina. However, Chlorepyris bilibil n. sp. has the pedicel as long as flagellomere I, the frons is polished, the pronotum is shiny and the anterior and lower mesopleural fovea are connected; whereas C. koteka \mathbf{n}. sp. has the pedicel longer than the flagellomere I, the frons is coriaceous, the pronotum is coriaceous and the anterior and lower mesopleural foveae are not connected.

The genetic distance between male and female of Chlorepyris bilibil $\mathbf{n} . \mathbf{s p}$. was of 0% (Figure 4) and they were associated based on molecular evidence.

ETYMOLOGY - The epithet bilibil refers to Bilibil ethnic who lived on the island offshore from Madang.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris chambri Colombo \& Azevedo n. sp.

Figures 21-22

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.720903, 145.2715), $1200 \mathrm{~m}, 28-29 / 10 / 2012$, leg Philip, Alois, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW1200C-04/16-d04, P1813-11304 (MNHN). Paratypes. Papua New Guinea. §̧, Province Madang, Mount Wilhelm (5.731961, 145.2522), 700m, 25-26/10/2012, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-01/16-d01, P1436-11978 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna brown; wings hyaline; metasoma dark brown. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as flagellomere I. Eye glabrous. Frons polished and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, deep. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae connected; lower mesopleural fovea trabeculate; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs
vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, narrower medially, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina outcurved; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, divergent; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere as long as basiparamere in lateral view, apex sharpened, not arched inward, dorsal margin straight; basiparamere wide, not covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin serrated; aedeagus bottle-shaped, its apex anterior to apex of digitus, ventral margin with translucent projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris huli n. sp. by having the mandibles with five distal teeth, the median clypeal lobe rounded, the frontal line present, the mesoscutellar sulcus with the posterior margin straight medially and the apex of cuspis anterior to the apex of paramere. However, Chlorepyris chambri n. sp. has the paramere shorter than the basiparamere in lateral view, the paramere has the apex rounded, arched inward and the apex of aedeagus is posterior to the apex of digitus; whereas C. huli n. sp. has the paramere with apex sharpened, weakly arched inward and apex of aedeagus is anterior to the apex of digitus. These species are phylogenetic and genetically distant to each other, with nucleotide sequences differing 5% in their content (Figure 4).

ETYMOLOGY - The epithet chambri refers to the Chambri ethnic, previously spelled Tchambuli, an ethnic group in the Chambri Lakes region in the East Sepik province of Papua New Guinea.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris duna Colombo \& Azevedo n. sp.

Figures 23-24

TYPE MATERIAL - Holotype, \widehat{o}^{λ}, Papua-New-Guinea, Province Madang, Mount Wilhelm (-5.731961, 145.2522), $700 \mathrm{~m}, 29-30 / 10 / 2012$, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-05/16-d05, P1440-11993 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna dark brown; wings hyaline; metasoma reddish. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel longer than flagellomere I. Eye glabrous. Frons polished and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, deep. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein weakly angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere as long as basiparamere in lateral view, apex rounded, weakly arched inward, dorsal margin incurved; basiparamere wide, not covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin crenulate; aedeagus bottle-shaped, its apex anterior to apex of digitus, ventral margin with opaque projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically and genetically similar to Chlorepyris gadsup n. sp. by having the mandible with five distal teeth, median clypeal lobe rounded, the flagellar pubescence appressed, the pedicel longer than the flagellomere I, the metafurcal pit inserted into triangle-shaped depression, and the mesoscutellar sulcus with the posterior margin straight medially. However, Chlorepyris duna n. sp. has the eye
glabrous, mesopleuron with anterior and lower mesopleural foveae not connected, and first metapostnotal carina shorter than metapostnotal median carina, whereas C. gadsup n. sp. has the eye weakly setose, mesopleuron with anterior and lower mesopleural foveae connected, and first metapostnotal carina longer than metapostnotal median carina.

ETYMOLOGY - The epithet duna refers to Duna ethinic, an indigenous people of Papua New Guinea (also known as Yuna) who live in the north-western area of the Southern Highlands Province.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris enga Colombo \& Azevedo n. sp.

Figures 25-26

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.720874, 145.2695), $1200 \mathrm{~m}, 27-28 / 10 / 2012$, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-03/16-d03, P1828-11300 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna brown; wings hyaline; metasoma dark brown. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as flagellomere I. Eye weakly setose. Frons coriaceous and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae connected; lower mesopleural fovea trabeculate; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2 r -rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin notched medially, weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina outcurved; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with
apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere longer than basiparamere in lateral view, apex rounded, very arched and expanded inward, dorsal margin outcurved; basiparamere wide, covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin serrated; aedeagus bottle-shaped, its apex aligned to apex of digitus, ventral margin with translucent projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris angu n. sp. by having the mandibles with five distal teeth, the clypeus with a rounded median lobe, the occipital carina absent, the paramere longer than the basiparamere in lateral view, and the volsella with the apex of cuspis anterior to the apex of paramere. However, C. enga n. sp. has the mesoscutellar sulcus with the posterior margin notched medially, the metapostnotal-propodeal suture converges posteriorly to metapostnotal median carina and the apex of the aedeagus is aligned to the apex of digitus; whereas C. angu n. sp. has the mesoscutellar sulcus with the posterior margin straight medially, the metapostnotalpropodeal suture diverges from the metapostnotal median carina and the aedeagus has its apex anterior to apex of digitus. The genetic distance between Chlorepyris enga \mathbf{n}. sp. and Chlorepyris angu n. sp. was of 17% (Figure 4).
ETYMOLOGY - The epithet enga refers to Enga language of the East New Guinea Highlands spoken by a quarter-million people in Enga Province, Papua New Guinea.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris etoro Colombo \& Azevedo n. sp.

Figures 27-28

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm, ($-5.758978,145.1861$), $2200 \mathrm{~m}, 27-28 / 10 / 2012$, leg Mogia, Lilip, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW2200A-12/16-d12, P2569-11884 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma dark brown; wings amber. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence erect; pedicel shorter than flagellomere
I. Eye glabrous. Frons polished and punctate. Frontal line present. Pronotum polished and shiny. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into crownshaped depression. Mesopleuron with anterior and lower mesopleural foveae connected; lower mesopleural fovea not trabeculate; subalar impression connected with mesopleural suture; mesopleural suture not trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2 r-rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin notched medially, weakly inclined, evenly wide, touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, ill defined; metapostnotal-propodeal suture as long as first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere shorter than basiparamere in lateral view, apex sharpened, not arched inward, dorsal margin incurved; basiparamere wide, covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin serrated; aedeagus bottleshaped, its apex anterior to apex of digitus, ventral margin with translucent projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris fore n. sp. by having the median clypeal lobe rounded, the eyes glabrous, the posterior mesofurcal pit elongated, the notauli complete and the mesoscutellar sulcus with the posterior margin notched medially. Chlorepyris etoro n. sp., however, has the mandibles with five distal teeth, the frons is polished, the frontal line is absent, the anterior and lower mesopleural foveae are connected, the male paramere is shorter than the basiparamere in lateral view and the apex of the aedeagus is anterior to the apex of digitus; whereas C. fore \mathbf{n}. sp. has the mandibles with four distal teeth, the frons is coriaceous, the frontal line is present, the anterior and lower mesopleural foveae are not connected, the male paramere is as long as the basiparamere in lateral view and the apex of the aedeagus is aligned to the apex of digitus. The genetic distance between C. fore \mathbf{n}. sp. and C. etoro \mathbf{n}. sp. was of 14% (Figure 4).

ETYMOLOGY - The epithet etoro refers to the Etoro, or Edolo, a tribe and ethnic group of Papua New Guinea.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris fore Colombo \& Azevedo n. sp.

Figures 29-30

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.720874, 145.2695), $1200 \mathrm{~m}, 04-05 / 11 / 2012$, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-11/16-d11, P1836-11337 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole dark brown; antenna brown; wings hyaline; metasoma light brown. Mandible with four distal teeth. Clypeus with median lobe rounded, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel shorter than flagellomere I. Eye glabrous. Frons coriaceous and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin notched medially, weakly inclined, evenly wide, touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina sinuous; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, divergent; metapostnotal-propodeal suture as long as first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere as long as basiparamere in lateral view, apex rounded, weakly arched inward, dorsal margin incurved; basiparamere wide, covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin crenulate; aedeagus bottle-
shaped, its apex aligned to apex of digitus, ventral margin with opaque projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris etoro n. sp. by having the median clypeal lobe rounded, the eyes glabrous, the posterior mesofurcal pit elongated, the notauli complete and the mesoscutellar sulcus with the posterior margin notched medially. However, Chlorepyris fore n. sp. has the mandibles with four distal teeth, the frons is coriaceous, the frontal line is present, the anterior and lower mesopleural foveae are not connected; whereas Chlorepyris etoro \mathbf{n}. sp. has the mandibles with five distal teeth, the frons is polished, the frontal line is absent, the anterior and lower mesopleural foveae are connected. The genetic distance between these species was of 14% (Figure 4).

ETYMOLOGY - The epithet fore refers to the Fore ethnic that lives in the Okapa District of the Eastern Highlands Province, Papua New Guinea.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris gadsup Colombo \& Azevedo n. sp.

Figures 31-32

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.720874, 145.2695), $1200 \mathrm{~m}, 26-27 / 10 / 2012$, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-02/16-d02, P1827-11296 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna brown; wings hyaline; metasoma dark brown. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel longer than flagellomere I. Eye weakly setose. Frons coriaceous and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture ill defined. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs
vein angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina outcurved; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as metapostnotal median carina, divergent; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia with few spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere as long as basiparamere in lateral view, apex rounded, not arched inward, dorsal margin outcurved; basiparamere wide, not covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin smooth; aedeagus bottle-shaped, its apex aligned to apex of digitus, ventral margin with translucent projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris chambri n. sp. by having the mandibles with five distal teeth, the median clypeal lobe rounded, the first metapostnotal carina divergent posteriorly to the metapostnotal median carina and the paramere as long as the basiparamere in lateral view. However, C. gadsup n. sp. has the pedicel longer than the flagellomere I and the mesoscutellar sulcus with the posterior margin straight medially; whereas C. chambri n. sp. has the pedicel as long as the flagellomere I and the mesoscutellar sulcus with the posterior margin notched medially. The genetic distance between C. gadsup n. sp. and C. chambri n. sp. was of 11% and between the male of C. gadsup n. sp. and C. abelam n. sp. was 8% (Figure 4). Thus, the lack of morphological and molecular evidences suggest that C. chambri n. sp. and C. gadsup n. sp. are two distinguished species.

ETYMOLOGY - The epithet gadsup refers to the Gadsup ethnic that lives in the Eastern Highlands of Papua New Guinea in or near the Aiyura Valley.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris gogodala Colombo \& Azevedo n. sp.

Figures 33-34

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.720874, 145.2695), 1200m, 26-27/10/2012, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-02/16-d02, P1827-11296 (MNHN). Paratypes. Papua New Guinea. 2δ, Province Madang, Mount Wilhelm (5.731961, 145.2522), 700 m, 26-27/10/2012, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-02/16-d02, P1437-11982 (MNHN); $1 \jmath^{\lambda}$, Province Madang, Mount Wilhelm (-5.731961, 145.2522), 700 m, 27-28/10/2012, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-03/16-d03, P143811983 (MNHN); 1 ${ }^{\lambda}$, Province Madang, Mount Wilhelm ($-5.731961,145.2522$), 700 m , 09-10/11/2012, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-16/16-d16, P1451-11290 (MNHN); 1§, Province Madang, Mount Wilhelm, ($5.720874,145.2695)$, $1200 \mathrm{~m}, 31-01 / 11 / 2012$, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-07/16-d07, P1832-11316 (MNHN); 1 ${ }^{\lambda}$, Province Madang, Mount Wilhelm (-5.732698, 145.2556), $700 \mathrm{~m}, 28-29 / 10 / 2012$, leg Keltim, Uma, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW0700B-04/16-d04, P140711997 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole dark brown; antenna brown; wings hyaline; metasoma light brown. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as flagellomere I. Eye glabrous. Frons coriaceous and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea ill defined; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, $2 r-r s \& R s$ vein angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, touching mesoscutellar lateral margin. Mesoscutellum with posterior margin touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina sinuous; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex strongly
incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere shorter than basiparamere in lateral view, apex rounded, weakly arched inward, dorsal margin straight; basiparamere wide, not covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin smooth; aedeagus bottle-shaped, its apex aligned to apex of digitus, ventral margin with translucent projection, base of apodeme dilated.

Female. Unknown.
VARIATIONS - Digitus with posterior margin crenulate.
REMARKS - This species is morphologically similar to Chlorepyris angu n. sp. by having the mandibles with five distal teeth, the median clypeal lobe is rounded, the eyes are glabrous and the mesoscutellar sulcus has the posterior margin straight medially. However, C. gogodala n. sp. has the pedicel as long as the flagellomere I, the lower mesopleural fovea is ill defined, the mesopleural subalar impression is disconnected with the mesopleural suture; whereas C. angu n. sp. has the pedicel shorter than the flagellomere I, the lower mesopleural fovea is trabeculate, and the mesopleural subalar impression is connected with the mesopleural suture. Although these species resemble morphologically, they are genetically distant with 25% of nucleotide sequence divergence (Figure 4).

ETYMOLOGY - The epithet gogodala refers to the Gogodala ethnic who lives in the Middle Fly District of the Western Province of Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Chlorepyris haroli Colombo \& Azevedo n. sp.

Figures 35-36

TYPE MATERIAL - Holotype, \widehat{o}^{λ}, Papua-New-Guinea, Province Madang, Mount Wilhelm (-5.720874, 145.2695), $1200 \mathrm{~m}, 29-30 / 10 / 2012$, leg Philip, Alois, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1200A-05/16-d05, P1782-11308 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole dark brown; antenna brown; wings hyaline; metasoma light brown. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as
flagellomere I. Eye glabrous. Frons coriaceous and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea not trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture not trabeculate. Notaulus dropshaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2 r -rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere as long as basiparamere in lateral view, apex rounded, weakly arched inward, dorsal margin straight; basiparamere wide, not covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin serrated; aedeagus bottle-shaped, its apex posterior to apex of digitus, ventral margin without translucent projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris abelam n. sp. by having the mandibles with five distal teeth, the mesoscutellum with posterior margin not touching the metapostnotal anterior margin, the first metapostnotal carina converging posteriorly to the metapostnotal median carina, the apex of cuspis anterior to the apex of paramere and the digitus with the posterior margin serrated. Chlorepyris haroli n. sp., however, has the pedicel as long as flagellomere I, the frons is coriaceous, the mesopleural subalar impression is disconnected with the mesopleural suture and the mesoscutellar sulcus has the posterior margin straight medially; whereas C. abelam n. sp. has the pedicel shorter than the flagellomere I, the frons is polished, the mesopleural subalar impression is connected with the mesopleural suture and the mesoscutellar sulcus has the posterior margin notched medially. The genetic distance between C. abelam n. sp. and C. haroli \mathbf{n}. sp. was of 19% (Figure 4).

ETYMOLOGY - The epithet haroli refers to the Haroli indigenous people who live in the Hela Province of Papua New Guinea.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris hewa Colombo \& Azevedo n. sp.

Figures 37-38

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.739897, 145.3297), 200m, 25-26/10/2012, leg Dilu, Ray, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0200D-01/16-d01, P1045-11941 (MNHN). Paratypes. Papua New Guinea. 1 ${ }^{\text {T, }}$, Province Madang, Mount Wilhelm (-5.741031, 145.3294), 200 m, 25-26/10/2012, leg Dilu, Ray, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW0200B-01/16-d01, P1014-11947 (MNHN); 1§, Province Madang, Mount Wilhelm (-5.759269, 145.2356), $1700 \mathrm{~m}, 30-31 / 10 / 2012$, leg Valeba, Tulei, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1700A-06/16-d06, P21738766 (MNHN); 1 §, Province Madang, Mount Wilhelm (-5.732698, 145.2556), $700 \mathrm{~m}, 09$ 10/11/2012, leg Keltim, Uma, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW0700B-16/16-d16, P1810-11292 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna light brown; wings hyaline; metasoma dark brown to light brown; metasoma light brown. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as flagellomere I. Eye weakly setose. Frons coriaceous and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae connected; lower mesopleural fovea ill defined; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, touching mesoscutellar lateral margin. Mesoscutellum with posterior margin touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal
carina shorter than metapostnotal median carina, straight; metapostnotal-propodeal suture as long as first metapostnotal carina, converging posteriorly. Metatibia with many spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere shorter than basiparamere in lateral view, apex rounded, not arched inward, dorsal margin incurved; basiparamere wide, not covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex aligned to apex of cuspis, its posterior margin crenulate; aedeagus bottle-shaped, its apex posterior to apex of digitus, ventral margin with translucent projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically and phylogenetically close related to Chlorepyris baruya n. sp. by having the median clypeal lobe rounded, the flagellar pubescence appressed, the notauli complete, the mesoscutellar sulcus with the posterior margin straight medially, the paramere shorter than the basiparamere in lateral view, and the apex of aedeagus posterior to the apex of digitus. However, C. hewa n. sp. has the pedicel as long as flagellomere I , the frons is coriaceous, the frontal line is absent and the lower mesopleural fovea is ill defined; whereas C. baruya n. sp. has the pedicel shorter than the flagellomere I, the frons is polished, the frontal line is present and the lower mesopleural fovea is trabeculate. The nucleotide sequences of C. hewa \mathbf{n}. sp. and C. baruya n. sp. diverge 3% (Figure 4). This value was the lowest genetic distance found among the studied species of Chlorepyris.

ETYMOLOGY - The epithet hewa refers to the Hewa indigenous people who live in the Koroba Lake Kopiago Electorate of Hela Province of Papua New Guinea, near the junction of the Strickland River.

DISTRIBUTION - Papua New Guinea (Madang).

Chlorepyris huli Colombo \& Azevedo n. sp.

Figures 39-40

TYPE MATERIAL - Holotype, $\widehat{\delta}^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.720874, 145.2695), $1200 \mathrm{~m}, 04-05 / 11 / 2012$, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-11/16-d11, P2225-11337 (MNHN). Paratypes. Papua New Guinea. 2 ${ }^{\lambda}$, Province Madang, Mount Wilhelm ($5.759910,145.2347$), $1700 \mathrm{~m}, 26-27 / 10 / 2012$, leg Valeba, Tulei, Novotny, Leponce, Plot

2, understorey; Malaise - MAL-MW1700B-02/16-d02, P2185-11356 (MNHN); ठ, Province Madang, Mount Wilhelm (-5.732514, 145.2568), $700 \mathrm{~m}, 28-29 / 10 / 2012$, leg Keltim, Uma, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW0700C-04/16d04, P1423-11996 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna dark brown; wings hyaline; metasoma dark brown to light brown. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence erect; pedicel shorter than flagellomere I. Eye glabrous. Frons polished and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae connected; lower mesopleural fovea trabeculate; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum as long as notaulus. Forewing with four distal flexion lines, 2 r -rs\&Rs vein angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina sinuous; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, straight; metapostnotal-propodeal suture as long as first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin straight. Genitalia: paramere longer than basiparamere in lateral view, apex sharpened, weakly arched inward, dorsal margin incurved; basiparamere wide, not covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex anterior to apex of cuspis, its posterior margin serrated; aedeagus bottle-shaped, its apex anterior to apex of digitus, ventral margin with translucent projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris chambri n. sp. by having the mandibles with five distal teeth, the median clypeal lobe rounded, the frontal line present, the mesoscutellar sulcus with the posterior margin straight medially and the apex of cuspis anterior to the apex of paramere. However, Chlorepyris huli n. sp. has the paramere longer than the basiparamere in lateral view, the paramere has the apex
sharpened, weakly arched inward, and the apex of the aedeagus is anterior to the apex of digitus; whereas C. chambri n. sp. has the paramere shorter than the basiparamere in lateral view, the paramere has the apex rounded, arched inward and the apex of aedeagus is posterior to the apex of digitus; whereas. The genetic distance between C. huli n. sp. and C. chambri n. sp. was of 5\% (Figure 4).

ETYMOLOGY - The epithet huli refers to the Huli indigenous ethnic who live in the Hela Province of Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Chlorepyris iatmul Colombo \& Azevedo n. sp.

Figure 41

TYPE MATERIAL - Holotype,, , Papua New Guinea. Province Madang, Wanang 3 station ($-5.22767,145.0797$), $175 \mathrm{~m}, 03-04 / 12 / 2012$, leg Basset, Plot 1, understorey; Malaise - MAL-WAN01-D16, P4915-11066 (MNHN).

DESCRIPTION - Female. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma dark brown; wings hyaline. Mandible with three distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as flagellomere I. Eye weakly setose. Frons weakly coriaceous and punctate. Frontal line present. Pronotum punctate and coriaceous. Posterior mesofurcal pit oval. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea not trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, $2 r-r s \& R s$ vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal
complex with metapostnotal anterior carina outcurved; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, straight. Metatibia with few spines. Petiolar root with apex strongly incurved. Metasoma polished.

Male. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris kaluli n. sp. by having the median clypeal lobe rounded, the eyes weakly setose and the mesoscutellar sulcus with the posterior margin straight medially. Chlorepyris iatmul n. sp., however, has the mandibles with three distal teeth, the pedicel is as long as flagellomere I, the posterior mesofurcal pit is oval and the lower mesopleural fovea is not trabeculate; whereas C. kaluli n. sp. has the mandibles with two distal teeth, the pedicel is shorter than the flagellomere I, the posterior mesofurcal pit is circular and the lower mesopleural fovea is trabeculate. The genetic distance between Chlorepyris iatmul n. sp. and Chlorepyris kaluli n. sp. was of 12\% (Figure 4).

ETYMOLOGY - The epithet iatmul refers to the Iatmul large ethnic group who inhabits around two-dozen politically autonomous villages along the middle Sepik River in Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Chlorepyris kaluli Colombo \& Azevedo n. sp.

Figure 42

TYPE MATERIAL - Holotype,, , Papua New Guinea. Province Madang, Wanang 3 station ($-5.22767,145.0797$), $175 \mathrm{~m}, 03-04 / 12 / 2012$, leg Basset, Plot 1, understorey; Malaise - MAL-WAN01-D16, P4915-11066 (MNHN).

DESCRIPTION - Female. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna light brown; wings hyaline; metasoma dark brown. Mandible with two distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence erect; pedicel shorter than flagellomere I. Eye weakly setose. Frons weakly coriaceous and punctate. Frontal line present. Pronotum punctate and coriaceous. Posterior mesofurcal pit circular. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and
lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished.

Male. Unknown.
REMARKS - This species is similar to Chlorepyris iatmul n. sp. by having the median clypeal lobe rounded, the eyes weakly setose and the mesoscutellar sulcus with the posterior margin straight medially. Chlorepyris kaluli n. sp., however, has the mandibles with two distal teeth, the pedicel is shorter than the flagellomere I , the posterior mesofurcal pit is circular and the lower mesopleural fovea is trabeculate; whereas C. iatmul $\mathbf{n} . \mathbf{s p}$. has the mandibles with three distal teeth, the pedicel is as long as the flagellomere I, the posterior mesofurcal pit is oval and the lower mesopleural fovea is not trabeculate. The genetic distance between C. kaluli n. sp. and C. iatmul n. sp. was of 12% (Figure 4). ETYMOLOGY - The epithet kaluli refers to Kaluli, a large clan of non-literate indigenous people who live in the rain forests of Great Papuan Plateau in Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Chlorepyris koteka Colombo \& Azevedo n. sp.

Figure 43

TYPE MATERIAL - Holotype, q, Papua New Guinea. Province Madang, Wanang 3 station (-5.22767, 145.0797), $175 \mathrm{~m}, 26-27 / 11 / 2012$, leg Gewa, Damag, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-WAN-D-11/16-d11, P542-867 (MNHN). DESCRIPTION - Female. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna dark brown; wings hyaline; metasoma light brown.

Mandible with two distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel longer than flagellomere I. Eye weakly setose. Frons coriaceous and punctate. Frontal line present. Pronotum punctate and coriaceous. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea not trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2 r -rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, not touching mesoscutellar lateral margin, very thin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, straight. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished.

Male. Unknown.
REMARKS - Females of this species are morphologically similar to females of Chlorepyris bilibil n. sp. by having the mandibles with two distal teeth, the mesoscutellar sulcus with the posterior margin straight medially and the metapostnotal-propodeal suture shorter than the first metapostnotal carina. Chlorepyris koteka n. sp., however, has the pedicel longer than the flagellomere I, the frons is coriaceous, the pronotum is coriaceous and the anterior and lower mesopleural foveae are not connected; whereas C. bilibil $\mathbf{n} . \mathbf{s p}$. has the pedicel as long as the flagellomere I, the frons is polished, the pronotum is shiny, and the anterior and the lower mesopleural foveae are connected. The genetic divergence between C. koteka n. sp. and C. bilibil n. sp. was of 12%, lacking morphological and molecular evidences to associate them. Finally, our results showed a male of C. hewa \mathbf{n}. sp. as the molecularly closest species to C. koteka n. sp. (11\% divergence). This high nucleotide divergence, compared to the observed in this study (Figure 4), prevents us from sex associating them.

ETYMOLOGY - The epithet koteka refers to the Koteka ethnic who lives in West Papua.

DISTRIBUTION - Papua New Guinea.

Chlorepyris kwoma Colombo \& Azevedo n. sp.

Figure 44

TYPE MATERIAL - Holotype, ${ }^{\text {, }}$, Papua New Guinea. Province Madang, Mount Wilhelm, (-5.741031, 145.3294), 200m, 09-10/11/2012, leg Dilu, Ray, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW0200B-16/16-d16, P1029-11974 (MNHN).

DESCRIPTION - Female. Pronotum, mesoscutum, metapectal-propodeal complex and petiole black; metasoma light brown; wings hyaline. Head lost. Pronotum punctate and coriaceous. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina sinuous; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished.

Male. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris kaluli n. sp. by having the pronotum punctate and coriaceous, the anterior and lower mesopleural foveae not connected; the lower mesopleural fovea trabeculate, the notauli complete and the mesoscutellar sulcus with the posterior margin straight medially. Chlorepyris kwoma n. sp., however, has the posterior mesofurcal pit elongated and the first metapostnotal carina shorter than the metapostnotal median carina; whereas C. kaluli n. sp. has the posterior mesofurcal pit circular and the metapostnotal carina as long as the metapostnotal median carina. The nucleotide sequences of C. kwoma n. sp. and C. kaluli n. sp. diverged 18%. The lowest genetic distance observed between the female of C. kwoma \mathbf{n}. sp. and the male of C. huli n. sp. or the male of C. chambri \mathbf{n}. sp. was 7% (Figure 4).

ETYMOLOGY - The epithet kwoma refers to the Kwoma ethnic who lives in the northeastern New Guinea, in the Peilungupo mountains north of the Sepik River.

DISTRIBUTION - Papua New Guinea.

Chlorepyris maisin Colombo \& Azevedo n. sp.

Figure 45

TYPE MATERIAL - Holotype, q, Papua New Guinea. Province Madang, Wanang 3 station ($-5.22767,145.0797$), $175 \mathrm{~m}, 24-25 / 11 / 2012$, leg Basset, Plot 1, understorey; Malaise - MAL-WAN01-D07, P4906-935 (MNHN). Paratypes. Papua New Guinea. 1 q, Province Madang, Mount Wilhelm (-5.731961, 145.2522), $700 \mathrm{~m}, 29-30 / 10 / 2012$, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-05/16d05, P1440-11993 (MNHN); 1早, Province Madang, Mount Wilhelm (-5.732514, 145.2568), $700 \mathrm{~m}, ~ 27-28 / 10 / 2012$, leg Keltim, Uma, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW0700C-03/16-d03, P1421-11988 (MNHN); 1q, Province Madang, Mount Wilhelm (-5.741031, 145.3294), $200 \mathrm{~m}, 01-02 / 11 / 2012$, leg Dilu, Ray, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW0200B-08/16-d08, P102111967 (MNHN).

DESCRIPTION - Female. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma light brown; wings hyaline. Mandible with five distal teeth. Clypeus with rounded median lobe, high in lateral view, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel longer than flagellomere I. Eye weakly setose. Frons polished and punctate. Frontal line present. Pronotum punctate and shiny. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar sulcus with posterior margin straight medially, weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina sinuous; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median
carina, converging posteriorly; metapostnotal-propodeal suture shorter than first metapostnotal carina, converging posteriorly. Metatibia with few spines. Petiolar root with apex strongly incurved. Metasoma polished.

Male. Unknown.
REMARKS - This species is morphologically similar to Chlorepyris kaluli n. sp. by having the clypeus with the median lobe rounded, the eyes weakly setose, the frontal line present, the anterior and lower mesopleural foveae not connected, the suture mesopleural trabeculate, the notauli complete and the mesoscutellar sulcus with the posterior margin straight medially. Chlorepyris maisin n. sp., however, has the mandibles with five distal teeth, the pedicel is longer than flagellomere I, the frons is polished and the posterior mesofurcal pit is elongated; whereas C. kaluli n. sp. has the mandibles with two distal teeth, the pedicel is shorter than flagellomere I, the frons is weakly coriaceous and the posterior mesofurcal pit is circular. The genetic divergence between C. maisin n. sp. and C. kaluli n. sp. was of 14%., lacking morphological and molecular evidences to associate them. Finally, our results showed a male of C. hewa n. sp. as the molecularly closest species to C. maisin n. sp. (12% divergence). This high nucleotide divergence, compared to the observed in this study (Figure 4), prevents us from sex associating them.
ETYMOLOGY - The epithet maisin refers to the Maisin indigenous people who live in Oro Province in Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Genus EPYRIS Westwood, 1832

Epyris Westwood, 1832. Type-species Epyris niger Westwood, 1832.

Epyris erraticus Smith, 1860

Epyris erraticus Smith, 1860: 136

TYPE MATERIAL - Holotype, ${ }^{+}$, [probably Papua New Guinea], Dory, [lost], [not examined].

DIAGNOSIS - Female. Head black; wings fuscuous; tibiae and tarsi obscure ferruginous; ovipositor rufo-testaceous. Head oblong, transverse behind, lateral angles rounded, scattered strong punctures. Eye large, oval, placed forwards. Antenna fulvous beneath, 13-jointed. Pronotum and mesonotum shining, strong punctate. Metapectal-
propodeal complex quadrate, truncate, with three carinae not extending posteriorly, between carinae roughly striated transversely, beyond which striation is much finer. Metasoma polished and shining.

Male. Unknown.
REMARKS - We were not able to find the holotype of E. erraticus. According to Gordh \& Móczar (1990), it is supposed to be deposited at the entomological collection of The Natural History Museum in London. However, the curator confirmed that this type is not there. We redescribe the original description of Smith (1860) to update nomenclatural terms currently used. The description lacks diagnostic characters for the valid genera of Epyrinae, such as the mesoscutellar fovea connected or not connected by evident sulcus, and mesopleuron. Based on the original description, this species can be distinguished from the other species of Epyrinae studied here, because the three carinae of the metapectalpropodeal complex (probably median carina, first metapostnotal carina, and metapostnotalpropodeal suture) are not visible posteriorly and in all the other species of Epyrinae, the median carina is visible posteriorly.

DISTRIBUTION - Papua New Guinea.

Epyris interruptus Kieffer, 1904

Figures 46-47

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, N. Guinea S. E. [probably Papua New Guinea], Hatam, VI/1875, leg. Beccari (MCSN).

REDESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma dark brown; wings hyaline. Mandible with four distal teeth. Clypeus with straight median lobe, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel shorter than flagellomere I. Eye weakly setose. Frons coriaceous and punctate. Frontal line absent. Pronotum punctate and coriaceous. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior mesopleural fovea not connected with lower mesopleural fovea; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum as long as notaulus. Forewing with four distal flexion lines, $2 \mathrm{r}-\mathrm{rs} \&$ Rs vein not angled. Mesoscutellar fovea not connected by evident sulcus, not trabeculate, large, separated each other by thin septum, weakly inclined, bean-shaped,
touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture as long as first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin outcurved. Genitalia: paramere smaller than basiparamere in lateral view, apex rounded, not arched inward, dorsal margin straight, strongly divided; basiparamere short; cuspis with apex anterior to apex of paramere, without small basal projection; digitus with apex not aligned to apex of cuspis, its posterior margin crenulate; aedeagus bottle-shaped, its apex posterior to apex of digitus, ventral margin ill defined, base of apodeme dilated.

Female. Unknown.
REMARKS - Kieffer (1904) described Epyris interruptus, and subsequently described Parepyris Kieffer, transferring E. interruptus to Parepyris (Kieffer 1914), and designated it as its type-species. Evans (1964) synonimized Parepyris with Epyris, returning the species to E. interruptus. Here, we describe for the first time the characters of the male genitalia of this species, and we conclude that male genitalia do not follow the reported patterns for Epyris. We did not find in the new analyzed specimens, representatives of this species to delimit molecular and phylogenetically this species in relation to the other Epyris. We have raised the question whether Parepyris can be considered a valid genus and have its reinstalled, but we do not have, at the moment, sufficient information to perform the nomenclatural act, keeping the species E. interruptus as valid for Epyris. Future molecular analyses with more genes and samples are required to better address such hypothesis. This species is different from the others of Epyris because it has the genitalia with very short paramere, much smaller than aedeagus and the well developed aedeagus.

DISTRIBUTION - Papua New Guinea.

Epyris melpa Colombo \& Azevedo n. sp.

Figures 48-49

TYPE MATERIAL - Holotype, δ^{λ}, Papua New Guinea. Province Madang, Mount Wilhelm (-5.7599114\%5.2347), 1700m, 26-27/10/2012, leg Valeba, Tulei, Novotny,

Leponce, Plot 2, understorey; Malaise - MAL-MW1700B-02/16-d02, P21851-11356 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna dark brown; wings amber; metasoma dark brown to yellowish. Mandible with five distal teeth. Clypeus with straight median lobe, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel shorter than flagellomere I. Eye glabrous. Frons coriaceous and punctate. Frontal line absent. Pronotum punctate and coriaceous. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior mesopleural fovea ill defined; lower mesopleural fovea not trabeculate; subalar impression connected with mesopleural suture; mesopleural suture not trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein angled. Mesoscutellar fovea not connected by evident sulcus, not trabeculate, large, separated each other by thin septum, weakly inclined, bean-shaped, touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina sinuous; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, ill defined; metapostnotal-propodeal suture as long as first metapostnotal carina, ill defined. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished. Hypopygeal posterior margin outcurved. Genitalia: paramere longer than basiparamere in lateral view, apex sharpened, not arched inward, dorsal margin straight; basiparamere short; cuspis with apex anterior to apex of paramere, without small basal projection; digitus with apex aligned to apex of cuspis, its posterior margin crenulate; aedeagus bottle-shaped, its apex aligned to apex of digitus, ventral margin ill defined, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically unique among the Epyrinae from PNG because it has the paramere longer than the basiparamere in lateral view, the apex is sharpened, not arched inward, very thin and the digitus has the apex bifurcated. Epyris melpa n. sp. is distinguished molecularly as well, the lowest genetic distance observed between Epyris melpa \mathbf{n}. sp. and the remaining species was between E. $\min \mathbf{n}$. sp. (25\%) (Figure 4).

This species is unmistakably addressed to the old genus Artiepyris Kieffer, mainly by having the paramere very slender. This genus was synonymized with Epyris by Evans (1964), which was considered as subgenus of Epyris. The females of both groups are very similar to each other, but the males are distinguished by the characters discussed above. The high molecular divergence of 25% from the other species of Epryis lead us to question whether such synonymy is correct, and perhaps Artiepyris should be reinstalled. Future molecular analyses with more genes and samples are required to better address such hypotheses.

ETYMOLOGY - The epithet melpa refers to the Melpa language spoken by about 130,000 people predominantly in Mount Hagen and the surrounding district of Western Highlands Province, Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Epyris mian Colombo \& Azevedo n. sp.

Figures 50-51

TYPE MATERIAL - Holotype, δ^{λ}, Papua New Guinea. Province Madang, Mount Wilhelm (-5.720874, 145.2695), 1200m, 28-29/10/2012, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-04/16-d04, P1829-11306 (MNHN). Paratypes. Papua New Guinea. 10 , Province Madang, Mount Wilhelm (5.721022, 145.2703), 1200m, 26-27/10/2012, leg Philip, Alois, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW1200B-02/16-d02, P1795-11299 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna dark brown; wings hyaline; metasoma light brown. Mandible with five distal teeth. Clypeus with rounded median lobe, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel shorter than flagellomere I. Eye glabrous. Frons polished and punctate. Frontal line present. Pronotum punctate and coriaceous. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum as long as than notaulus. Forewing with four distal flexion lines, 2rrs\&Rs vein not angled. Mesoscutellar fovea not connected by evident sulcus, not
trabeculate, large, separated each other by thin septum, weakly inclined, bean-shaped, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina outcurved; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as metapostnotal median carina, ill defined; metapostnotalpropodeal suture as long as first metapostnotal carina, straight. Metatibia without spines. Petiolar root with apex incurved. Metasoma polished. Hypopygeal posterior margin outcurved. Genitalia: paramere absent; basiparamere wide, not covering aedeagal base; volsella without small basal projection; digitus with apex posterior to apex of cuspis, its posterior margin denticulate; aedeagus bottle-shaped, its apex anterior to apex of digitus, ventral margin ill defined, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is unique among the Epyris because it presents the frontal line, the anterior and lower mesopleural foveae are not connected, the lower mesopleural fovea is trabeculate, the mesopleural subalar impression is not connected with the mesopleural suture and the metapectal-propodeal complex has the first metapostnotal carina as long as the metapostnotal median carina. The molecularly closest species observed in this study was E. motu n. sp., known from females only, with 10% divergence (Figure 4).

ETYMOLOGY - The epithet mian refers to the Mian ethnic who lives in the Telefomin district of the Sandaun province in Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Epyris min Colombo \& Azevedo n. sp.

Figures 52-53

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Wanang 3 station (-5.22767, 145.0797), 175m, 25-26/11/2012, leg Basset, Plot 2, understorey; Malaise - MAL-WAN02-D08, P4923-9045 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma dark brown; wings hyaline. Mandible with five distal teeth. Clypeus with rounded median lobe, lateral lobe short, not visible dorsally.

Antenna with flagellar pubescence appressed; pedicel shorter than flagellomere I. Eye glabrous. Frons coriaceous and punctate. Frontal line absent. Pronotum polished and coriaceous. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior mesopleural fovea ill defined; lower mesopleural fovea not trabeculate; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum as long as notaulus. Forewing with four distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar fovea not connected by evident sulcus, not trabeculate, large, separated each other by thin septum, weakly inclined, bean-shaped, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, ill defined; metapostnotal-propodeal suture longer than first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex incurved. Metasoma polished. Hypopygeal posterior margin outcurved. Genitalia: paramere as long as basiparamere in lateral view, apex rounded, not arched inward, dorsal margin straight; basiparamere short; cuspis with apex anterior to apex of paramere, without small basal projection; digitus with apex aligned to apex of cuspis, its posterior margin smooth; aedeagus bottle-shaped, its apex aligned to apex of digitus, ventral margin ill defined, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is distinguished from the other Papua New Guinean species of Epyris by having the metapostnotal anterior carina straight and the metapostnotalpropodeal suture longer than the first metapostnotal carina, converging posteriorly to the metapostnotal median carina. The lowest genetic distance observed was with a female representative of E. mundugumor n. sp., with 15% divergence (Figure 4).

ETYMOLOGY - The epithet min refers to the Min cultural group who lives in the West Sepik Province of Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Epyris motu Colombo \& Azevedo n. sp.

Figure 54

TYPE MATERIAL - Holotype, , Papua New Guinea. Province Madang, Wanang 3 station ($-5.22767,145.0797$), 175m, 19-20/11/2012, leg Basset, Plot 2, understorey; Malaise - MAL-WAN02-D02, P4917-9225 (MNHN).
DESCRIPTION - Female. Head weakly metallic, the pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna dark brown; wings hyaline; metasoma dark brown to reddish. Mandible with five distal teeth. Clypeus with rounded median lobe, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel shorter than flagellomere I. Eye setose. Frons coriaceous and punctate. Frontal line present. Pronotum punctate and coriaceous. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea not trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum as long as notaulus. Forewing with four distal flexion lines, 2 r -rs\&Rs vein not angled. Mesoscutellar fovea not connected by evident sulcus, not trabeculate, large, separated each other by large septum, weakly inclined, bean-shaped, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, straight; metapostnotal-propodeal suture longer than first metapostnotal carina, straight. Metatibia with many spines. Petiolar root with apex strongly incurved. Metasoma polished.

Male. Unknown.
REMARKS - This species is distinguished from the other Papua New Guinean species of Epyris by having the parapsidal signum as long as the notauli and the mesoscutellum with the posterior margin touching metapostnotal anterior margin. The molecularly closest species observed is Epyris mian n. sp., with COI sequences differing 10\% of their nucleotides (Figure 4).

ETYMOLOGY - The epithet motu refers to Motu native inhabitants who live in the along the southern coastal area of the Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Epyris mundugumor Colombo \& Azevedo n. sp.

Figure 55

TYPE MATERIAL - Holotype, $\varphi_{\text {, Papua New Guinea. Province Madang, Wanang } 3}$ station (-5.22767, 145.0797), 175m, 26-27/11/2012, leg Basset, Plot 2, understorey; Malaise - MAL-WAN02-D09, P4924-8658 (MNHN).

DESCRIPTION - Female. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma dark brown; wings hyaline. Mandible with five distal teeth. Clypeus with rounded median lobe, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as flagellomere I. Eye glabrous. Frons weakly coriaceous and punctate. Frontal line present. Pronotum punctate and coriaceous. Posterior mesofurcal pit elongated, shallow. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea not trabeculate; subalar impression not connected with mesopleural suture; mesopleural suture trabeculate. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, $2 r-r s \& R s$ vein not angled. Mesoscutellar fovea not connected by evident sulcus, not trabeculate, large, separated each other by thin septum, weakly inclined, bean-shaped, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, straight; metapostnotalpropodeal suture longer than first metapostnotal carina, straight. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished.

Male. Unknown.
REMARKS - This species is distinguished from the other Papua New Guinean species of Epyris by having the pedicel as long as the flagellomere I and the eyes glabrous. The molecularly closest species observed is Epyris mian n. sp., known from males, with COI sequences differing 15% of their nucleotides (Figure 4).

ETYMOLOGY - The epithet mundugumor refers to Mundugumor tribe who lives in the Sepik River region in Papua New Guinea's North West.

DISTRIBUTION - Papua New Guinea.

Epyris ogea Colombo \& Azevedo n. sp.

Figure 56

TYPE MATERIAL - Holotype, $\varphi_{\text {, Papua New Guinea. Province Madang, Wanang } 3}$ station (-5.22767, 145.0797), 175m, 28-29/11/2012, leg Gewa, Damag, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-WAN-D-13/16-d13, P0544-15389 (MNHN).

DESCRIPTION - Female. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma dark brown; wings hyaline. Mandible with four distal teeth. Clypeus with tridentate median lobe, lateral lobe short, not visible dorsally. Antenna with flagellar pubescence erect; pedicel shorter than flagellomere I. Eye setose. Frons coriaceous and punctate. Frontal line absent. Pronotum punctate and coriaceous. Posterior mesofurcal pit oval. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea ill defined; subalar impression not connected with mesopleural suture; mesopleural suture ill defined. Notaulus drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2 r -rs\&Rs vein not angled. Mesoscutellar fovea not connected by evident sulcus, not trabeculate, large, separated each other by thin septum, weakly inclined, bean-shaped, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, ill defined; metapostnotal-propodeal suture longer than first metapostnotal carina, converging posteriorly to metapostnotal median carina. Metatibia without spines. Petiolar root with apex strongly incurved. Metasoma polished.

Male. Unknown.
REMARKS - This species is distinguished from the other Papua New Guinean species of Epyris by having the median clypeal lobe tridentate and the body strongly punctate. The molecularly closest species observed is Epyris min n. sp., with COI sequences differing 21% of their nucleotides (Figure 4).

ETYMOLOGY - The epithet ogea refers to Ogea ethnic who lives in the Madang Province of Papua New Guinea speaking the Ogea language.

DISTRIBUTION - Papua New Guinea.

Genus HOLEPYRIS Kieffer, 1904

Holepyris orokaiva Colombo \& Azevedo n. sp.

Figures 57-58

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.721022, 145.2703). 1200m, 25-26/10/2012, leg Philip, Alois, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW1200B-01/16-d01, P1794-11295 (MNHN). Paratypes. Papua New Guinea. 1才, Province Madang, Mount Wilhelm (5.731961, 145.2522), 700m, 04-05/11/2012, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-11/16-d11, P1446-11270 (MNHN); 1§, Province Madang, Mount Wilhelm (-5.720903, 145.2715), 1200m, 05-06/11/2012, leg Philip, Alois, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW1200C-12/16-d12, P182111343 (MNHN); 1 ${ }^{\text {T, Province Madang, Mount Wilhelm (-5.720874, 145.2695), 1200m, }}$ 25-26/10/2012, leg Philip, Alois, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1200A-01/16-d01, P1778-11294 (MNHN); 1ठ, Province Madang, Mount Wilhelm (5.720903, 145.2715), 1200m, 26-27/10/2012, leg Philip, Alois, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW1200C-02/16-d02, P1811-11303 (MNHN); 1才, Papua-New-Guinea, Province Madang, Wanang 3 station (-5.22767, 145.0797), 175m, 2425/11/2012, leg Basset, Plot 3, understorey; Malaise - MAL-WAN03-D07, P4938-18131 (MNHN); 1 $\widehat{ }$, Province Madang, Wanang 3 station (-5.22767, 145.0797), 175m, 2324/11/2012, leg Basset, Plot 3, understorey; Malaise - MAL-WAN03-D06, P4937-9083 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma dark brown; wings hyaline. Mandible with one distal tooth. Clypeus with rounded median lobe, lateral lobe well developed, straight, visible dorsally. Antenna with flagellar pubescence erect; pedicel shorter than flagellomere I. Eye glabrous. Frons coriaceous and punctate. Frontal line absent. Pronotum punctate and coriaceous. Pronotal disc with anterior margin carinate, posterior margin with small foveae. Posterior mesofurcal pit thin. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior mesopleural fovea ill defined; lower mesopleural fovea ill defined; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Mesoscutellum without posterior margin foveolate. Notaulus not drop-
shaped, incomplete. Parapsidal signum shorter than notaulus. Forewing with four distal flexion lines, 2 r -rs\&Rs vein not angled. Mesoscutellar fovea connected by evident sulcus, not trabeculate, small elevation present, transversally, narrower medially, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, ill defined; metapostnotalpropodeal suture longer than first metapostnotal carina, straight. Metatibia without spines. Petiolar root with apex incurved. Metasoma polished. Hypopygeal posterior margin outcurved. Genitalia: paramere shorter than basiparamere in lateral view, apex rounded, not arched inward, dorsal margin straight; basiparamere wide, covering aedeagal base, translucent, ill defined; cuspis with apex anterior to apex of paramere, without small basal projection; digitus with apex aligned to apex of cuspis, its posterior margin serrated; aedeagus bottle-shaped, its apex anterior to apex of digitus, ventral margin with apex with translucent projection, base of apodeme dilated.

Female. Unknown.
VARIATIONS - Clypeus with lateral lobe rounded.
REMARKS - This species is similar to Holepyris swagap n. sp. by having the median clypeal lobe rounded, the eyes glabrous, the forewing with four distal flexion lines and the mesoscutellar fovea connected by an evident sulcus, which is not trabeculate and has a small elevation. However, Holepyris orokaiva n. sp. has the posterior mesofurcal pit thin, inserted into a triangle-shaped depression, the lower mesopleural fovea is ill defined, the paramere is shorter than the basiparamere in lateral view and the digitus is as long as the cuspis; whereas H. swagap n. sp. has the posterior mesofurcal pit foveolate, inserted into an ill defined depression, the lower mesopleural fovea is not trabeculate, the paramere is longer than the basiparamere in lateral view and the digitus has the apex anterior to apex of cuspis. The genetic distance between H. orokaiva n. sp. and H. swagap n. sp. was of 17%, but the molecularly closest species is H. wiru \mathbf{n}. sp. with DNA sequences diverging 3\% (Figure 4). Holepyris orokaiva \mathbf{n}. sp. is known from males only; whereas H. wiru n. sp. is known from females; the genetic distance, however, is superior than expected from coespecifics. Besides sexual dimorphism, this species has the pedicel shorter than flagellomere I; eye glabrous; metafurcal pit inserted into triangle-shaped depression; notauli present and forewing with four distal flexion lines; whereas H. wiru \mathbf{n}. sp. has the
pedicel as long as flagellomere I；eye setose；metafurcal pit inserted into crown－shaped depression；notauli absent，and forewing with two distal flexion lines．

ETYMOLOGY－The epithet orokaiva refers to Orokaiva people indigenous to Papua New Guinea，who occupied what is now Oro Province and the periphery of the area they inhabited was marked by the Owen Stanley Range in the south，German New Guinea in the west and the Hydrographers Range in the south．

DISTRIBUTION－Papua New Guinea．

Holepyris sambia Colombo \＆Azevedo n．sp．

Figures 59－60

TYPE MATERIAL－Holotype，${ }^{\lambda}$ ，Papua New Guinea．Province Madang，Wanang 3 station（－5．22767，145．0797），175m，19－20／11／2012，leg Gewa，Damag，Novotny，Leponce， Plot 4，understorey；Malaise－MAL－WAN－D－04／16－d04，P0535－9036（MNHN）．Paratypes． Papua New Guinea．1 $\widehat{\text { h }}$ ，Province Madang，Wanang 3 station（－5．22767，145．0797）， 175m，23－24／11／2012，leg Gewa，Damag，Novotny，Leponce，Plot 4，understorey；Malaise －MAL－WAN－D－08／16－d08，P0539－9071（MNHN）；1才，Province Madang，Wanang 3 station（ $-5.22767,145.0797$ ），175m，20－21／11／2012，leg Basset，Plot 2，understorey； Malaise－MAL－WAN02－D03，P4918－9228（MNHN）；1才，Province Madang，Wanang 3 station（－5．22767，145．0797），175m，19－20／11／2012，leg Basset，Plot 3，understorey； Malaise－MAL－WAN03－D02，P4933－9222（MNHN）；2 ${ }^{\lambda}$ ，Province Madang，Mount Wilhelm（－5．731961，145．2522），700m，26－27／10／2012，leg Keltim，Uma，Novotny， Leponce，Plot 1，understorey；Malaise－MAL－MW0700A－02／16－d02，P1389－11985 （MNHN）；1 ${ }^{\text {T，}}$ ，Province Madang，Mount Wilhelm（－5．732698，145．2556），700m，29－ 30／10／2012，leg Keltim，Uma，Novotny，Leponce，Plot 2，understorey；Malaise－MAL－ MW0700B－05／16－d05，P1408－11994（MNHN）；1 ${ }^{\lambda}$ ，Province Madang，Mount Wilhelm（－ 5．731961，145．2522），700m，02－03／11／2012，leg Keltim，Uma，Novotny，Leponce，Plot 4， understorey；Malaise－MAL－MW0700D－09／16－d09，P1444－11262（MNHN）； $1{ }^{1}$ ，Province Madang，Mount Wilhelm（－5．741031，145．3294），200m，25－26／10／2012，leg Dilu，Ray， Novotny，Leponce，Plot 2，understorey；Malaise－MAL－MW0200B－01／16－d01，P1014－ 11947 （MNHN）；1才，Province Madang，Mount Wilhelm（－5．720874，145．2695），1200m， 04－05／11／2012，leg Philip，Alois，Novotny，Leponce，Plot 1，understorey；Malaise－MAL－ MW1200A－11／16－d11，P1788－11331（MNHN）；1 $\widehat{ } 10$ ，Province Madang，Mount Wilhelm（－
5.761029,145.1860), 2200m, 29-30/10/2012, leg Mogia, Lilip, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW2200C-14/16-d14, P1603-11900 (MNHN); 1才, Province Madang, Mount Wilhelm (-5.720874, 145.2695), 1200m, 25-26/10/2012, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-01/16-d01, P182611293 (MNHN); 1才, Province Madang, Mount Wilhelm (-5.731961, 145.2522), 700m, 2627/10/2012, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-02/16-d02, P1437-11982 (MNHN); 1§, Province Madang, Mount Wilhelm (5.731961, 145.2522), 700m, 30-31/10/2012, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-06/16-d06, P1441-11252 (MNHN); 1§, Province Madang, Mount Wilhelm (-5.720874, 145.2695), 1200m, 01-02/11/2012, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-08/16-d08, P183311320 (MNHN); 1 ${ }^{\lambda}$, Province Madang, Mount Wilhelm ($-5.720874,145.2695$), 1200m, 02-03/11/2012, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-09/16-d09, P1834-11327 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma dark brown; wings hyaline. Mandible with one distal tooth. Clypeus with rounded median lobe, lateral lobe well developed, straight, visible dorsally. Antenna with flagellar pubescence erect; pedicel as long as flagellomere I. Eye glabrous. Frons coriaceous. Frontal line present. Pronotum punctate and coriaceous. Pronotal disc with anterior margin carinate, posterior margin with small foveae. Posterior mesofurcal pit thin. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior mesopleural fovea ill defined; lower mesopleural fovea ill defined; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Mesoscutellum without posterior margin foveolate. Notaulus not drop-shaped, incomplete. Parapsidal signum shorter than notaulus. Forewing with three distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar fovea connected by evident sulcus, trabeculate, small elevation absent, transversally, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, ill defined; metapostnotal-propodeal suture longer than first metapostnotal carina, straight. Metatibia without spines. Petiolar root with apex incurved. Metasoma polished. Hypopygeal posterior margin outcurved. Genitalia: paramere as long
as basiparamere in lateral view, apex sharpened, not arched inward, dorsal margin straight; basiparamere wide, not covering aedeagal base, translucent, ill defined; apex of cuspis aligned with apex of paramere, without small basal projection; digitus with apex anterior to apex of cuspis, its posterior margin crenulate; aedeagus bottle-shaped, its apex aligned to apex of digitus, ventral margin with apex ill defined, base of apodeme dilated.

Female. Unknown.
VARIATIONS - Aedeagus with apex sickle-shaped in ventral view.
REMARKS - This species is morphologically similar to Holepyris tairora n. sp. by having the median clypeal lobe rounded, the eyes glabrous, the posterior mesofurcal pit thin, the mesoscutellum with the posterior margin polished, the forewing with three distal flexion lines, the mesoscutellar fovea connected by an evident sulcus, trabeculate, without a small elevation and the apex of cuspis aligned to the apex of paramere. Holepyris sambia n. sp., however, has the pedicel as long as the flagellomere I; the metafurcal pit is inserted into a triangle-shaped depression, the notauli is present and the paramere is as long as the basiparamere in lateral view; whereas H. tairora \mathbf{n}. sp. has the pedicel shorter than the flagellomere I; the metafurcal pit is inserted into an ill defined depression, the notauli is absent and the paramere is longer than the basiparamere in lateral view. The genetic distance between H. sambia n. sp. and H. tairora n. sp. was of 15% (Figure 4), thus, we do not have either morphological or molecular evidences to associate them into one single species.

ETYMOLOGY - The epithet sambia refers to the Sambia ethnic who lives the fringes of the Eastern Highlands Province of Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Holepyris swagap Colombo \& Azevedo n. sp.

Figures 61-62

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.758978, 145.1861), 2200m, 17-18/10/2012, leg Mogia, Lilip, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW2200A-02/16-d02, P2559-11906 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma dark brown; wings hyaline. Mandible with one
distal tooth. Clypeus with rounded median lobe, lateral lobe well developed, rounded, visible dorsally. Antenna with flagellar pubescence erect; pedicel shorter than flagellomere I. Eye glabrous. Frons polished and punctate. Frontal line present. Pronotum punctate and coriaceous. Pronotal disc with anterior margin carinate, posterior margin with small foveae. Posterior mesofurcal pit foveolate. Metafurcal pit inserted into ill defined depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea not trabeculate; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Mesoscutellum without posterior margin foveolate. Notaulus not drop-shaped, incomplete. Parapsidal signum longer than notaulus. Forewing with four distal flexion lines, 2 r -rs\&Rs vein not angled. Mesoscutellar fovea connected by evident sulcus, not trabeculate, small elevation present, transversally, evenly wide, not touching mesoscutellar lateral margin, rectangular. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, ill defined; metapostnotal-propodeal suture longer than first metapostnotal carina, straight. Metatibia without spines. Petiolar root with apex incurved. Metasoma polished. Hypopygeal posterior margin outcurved. Genitalia: paramere longer than basiparamere in lateral view, apex rounded, not arched inward, dorsal margin straight; basiparamere wide, not covering aedeagal base, translucent, ill defined; apex of cuspis anterior to apex of paramere; with small basal projection; digitus with apex anterior to apex of cuspis, its posterior margin serrated; aedeagus bottle-shaped, its apex anterior to apex of digitus, ventral margin with apex with translucent projection, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Holepyris orokaiva n. sp. by having the median clypeal lobe rounded, the eyes glabrous, the forewing with four distal flexion lines and the mesoscutellar fovea connected by an evident sulcus, not trabeculate, with a small elevation present. Holepyris swagap n. sp., however, has the posterior mesofurcal pit foveolate, inserted into an ill defined depression, the lower mesopleural fovea is not trabeculate, the paramere is longer than the basiparamere in lateral view and the digitus has the apex anterior to the apex of cuspis; whereas H. orokaiva $\mathbf{n} . \mathbf{s p}$. has the posterior mesofurcal pit thin, inserted into a triangle-shaped depression, the lower mesopleural fovea is ill defined, the paramere is shorter than the basiparamere in lateral
view and the digitus is as long as the cuspis. The genetic distance between H. swagap \mathbf{n}. sp. and H. orokaiva \mathbf{n}. sp. was of 17% (Figure 4).
ETYMOLOGY - The epithet swagap refers to the Swagap indigenous tribes who live in a village that sits above the waters of the Sepik River, named Sawagap in Papua New Guinea. They are also known as the Insect Tribe.

DISTRIBUTION - Papua New Guinea.

Holepyris tairora Colombo \& Azevedo n. sp.

Figures 63-64

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.759910, 145.2347), 1700m, 26-27/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW1700B-02/16-d02, P2185-11356 (MNHN). Paratypes. Papua New Guinea. 10 , Province Madang, Mount Wilhelm (5.720903, 145.2715), 1200m, 05-06/11/2012, leg Philip, Alois, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW1200C-12/16-d12, P1821-11343 (MNHN); 1ठ, Province Madang, Mount Wilhelm (-5.758978, 145.1861), 2200m, 27-28/10/2012, leg Mogia, Lilip, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW2200D-12/16-d12, P261711887 (MNHN); 1才, Province Madang, Mount Wilhelm (-5.760178, 145.1863), 2200m, 25-26/10/2012, leg Mogia, Lilip, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW2200B-10/16-d10, P2583-11940 (MNHN); 2§, Province Madang, Mount Wilhelm (5.758978 , 145.1861), 2200m, 30-31/10/2012, leg Mogia, Lilip, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW2200D-15/16-d15, P2620-11879 (MNHN); 1ठ, Province Madang, Mount Wilhelm (-5.761029, 145.1860), 2200m, 25-26/10/2012, leg Mogia, Lilip, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW2200C-10/16-d10, P259911939 (MNHN); 1 ${ }^{\text {T, }}$, Province Madang, Mount Wilhelm (-5.758978 , 145.1861), 2200m, 27-28/10/2012, leg Mogia, Lilip, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW2200A-12/16-d12, P2569-11884 (MNHN).
DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole dark brown; antenna and metasoma light brown; wings hyaline. Mandible with one distal tooth. Clypeus with rounded median lobe, lateral lobe well developed, straight, visible dorsally. Antenna with flagellar pubescence erect; pedicel shorter than flagellomere I. Eye glabrous. Frons coriaceous and punctate. Frontal line present. Pronotum punctate
and coriaceous. Pronotal disc with anterior margin carinate, posterior margin with small foveae. Posterior mesofurcal pit thin. Metafurcal pit inserted into ill defined depression. Mesopleuron with anterior and lower mesopleural foveae connected; lower mesopleural fovea not trabeculate; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Mesoscutellum without posterior margin foveolate. Notaulus absent. Parapsidal signum longer than notaulus. Forewing with three distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar fovea connected by evident sulcus, trabeculate, small elevation absent, transversally, corners as wide as, not touching mesoscutellar lateral margin, rectangular. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina outcurved; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, ill defined; metapostnotal-propodeal suture longer than first metapostnotal carina, straight. Metatibia without spines. Petiolar root with apex incurved. Metasoma polished. Hypopygeal posterior margin outcurved. Genitalia: paramere longer than basiparamere in lateral view, apex rounded, not arched inward, dorsal margin incurved; basiparamere wide, not covering aedeagal base, translucent, ill defined; apex of cuspis aligned with apex of paramere, without small basal projection; digitus with apex aligned to apex of cuspis, its posterior margin serrated; aedeagus bottle-shaped, its apex anterior to apex of digitus, ventral margin with apex ill defined, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is morphologically similar to Holepyris sambia n. sp. by having the median clypeal lobe rounded, the eyes glabrous, the posterior mesofurcal pit thin, the posterior margin of mesoscutellum not foveolate, the forewing with three distal flexion lines, the mesoscutellar fovea connected by an evident sulcus, trabeculate and without a small elevation and the apex of cuspis aligned to the apex of paramere. Holepyris tairora \mathbf{n}. sp., however, has the pedicel shorter than the flagellomere I, the metafurcal pit is inserted into an ill defined depression, the notauli is absent and the paramere is longer than the basiparamere in lateral view; whereas H. sambia n. sp. has the pedicel as long as the flagellomere I, the metafurcal pit is inserted into a triangle-shaped depression, the notauli is present and the paramere is as long as the basiparamere in lateral view. The genetic sequences diverged 15% between H. tairora n. sp. and H. sambia n. sp. (Figure 4), supporting our decision to consider them two separate lineages.

ETYMOLOGY - The epithet tairora refers to the Tairora tribal group who live in Eastern Highlands of Papua New Guinea in or near the Aiyura Valley.

DISTRIBUTION - Papua New Guinea.

Holepyris telefol Colombo \& Azevedo n. sp.

Figures 65-66

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.731961, 145.2522), 700m, 26-27/10/2012, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-02/16-d02, P1437-11982 (MNHN). Paratypes. Papua New Guinea. 10 , Province Madang, Mount Wilhelm (5.731961, 145.2522), 700m, 28-29/10/2012, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-04/16-d04, P1439-11998 (MNHN); 1 ${ }^{\lambda}$, Province Madang, Mount Wilhelm (-5.720874, 145.2695), 1200m, 01-02/11/2012, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-08/16-d08, P183311320 (MNHN); $1 \delta^{\text {§ }}$, Province Madang, Mount Wilhelm (-5.731961, 145.2522), 700m, 0506/11/2012, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-12/16-d12, P1447-11275 (MNHN); 1 $\widehat{ } 1$, Province Madang, Mount Wilhelm (5.720903, 145.2715), 1200m, 25-26/10/2012, leg Philip, Alois, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW1200C-01/16-d01, P1810-11292 (MNHN); 1 ${ }^{\lambda}$, Province Madang, Mount Wilhelm (-5.731961, 145.2522), 700m, 04-05/11/2012, leg Keltim, Uma, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW0700D-11/16-d11, P144611270 (MNHN); $1^{\widehat{ }}$, Province Madang, Mount Wilhelm ($-5.720874,145.2695$), 1200m, 31-01/11/2012, leg Philip, Alois, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1200D-07/16-d07, P1832-11316 (MNHN); 1 ${ }^{\lambda}$, Province Madang, Mount Wilhelm (5.758978, 145.1861), 2200m, 18-19/10/2012, leg Mogia, Lilip, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW2200A-03/16-d03, P2560-11913 (MNHN); 1 ${ }^{\text {², }}$, Province Madang, Wanang 3 station (-5.22767, 145.0797), 175m, 24-25/11/2012, leg Basset, Plot 1, understorey; Malaise - MAL-WAN01-D07, P4906-0935 (MNHN); 1 ${ }^{\lambda}$, Province Madang, Mount Wilhelm (-5.720874, 145.2695), 1200m, 31-01/11/2012, leg Philip, Alois, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1200A-07/16-d07, P1784-11318 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna light brown; wings hyaline; metasoma dark brown. Mandible with one distal tooth. Clypeus with angulate median lobe, lateral lobe well developed, rounded, visible dorsally. Antenna with flagellar pubescence erect; pedicel shorter than flagellomere I. Eye glabrous. Frons coriaceous and punctate. Frontal line absent. Pronotum punctate and coriaceous. Pronotal disc with anterior margin carinate, posterior margin with small foveae. Posterior mesofurcal pit foveolate. Metafurcal pit inserted into triangleshaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea foveolate; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Mesoscutellum with posterior margin foveolate. Notaulus not drop-shaped, incomplete. Parapsidal signum as long as notaulus. Forewing with three distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar fovea connected by evident sulcus, trabeculate, small elevation absent, weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina outcurved; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as metapostnotal median carina, converging posteriorly; metapostnotal-propodeal suture as long as first metapostnotal carina, converging posteriorly to metapostnotal median carina. Metatibia without spines. Petiolar root with apex incurved. Metasoma polished. Hypopygeal posterior margin outcurved. Genitalia: paramere longer than basiparamere in lateral view, apex rounded, not arched inward, dorsal margin straight; basiparamere wide, not covering aedeagal base, translucent, ill defined; apex of cuspis aligned with apex of paramere, without small basal projection; digitus with apex aligned to apex of cuspis, its posterior margin serrated; aedeagus bottleshaped, its apex anterior to apex of digitus, ventral margin with apex ill defined, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is very different of all other Papuan species by having the median clypeal lobe with sharpened. The lowest genetic distance observed between the male of Holepyris orokaiva \mathbf{n}. sp. and the female of H. wiru n. sp. was 14% (Figure 4).

ETYMOLOGY - The epithet telefol refers to Telefol tribal group who live in Sandaun Province of Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

Holepyris tsembaga Colombo \& Azevedo n. sp.

Figures 67-68

TYPE MATERIAL - Holotype, ${ }^{\lambda}$, Papua New Guinea. Province Madang, Mount Wilhelm (-5.761029, 145.1860), 2200m, 18-19/10/2012, leg Mogia, Lilip, Novotny, Leponce, Plot 3, understorey; Malaise - MAL-MW2200C-03/16-d03, P2592-11915 (MNHN). Paratypes. Papua New Guinea. 1才, Province Madang, Mount Wilhelm ($5.758978,145.1861$), 2200m, 20-21/10/2012, leg Mogia, Lilip, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW2200A-05/16-d05, P2562-11894 (MNHN); 1 ${ }^{\lambda}$, Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 25-26/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1700A-01/16-d01, P2168-11360 (MNHN).

DESCRIPTION - Male. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole dark brown; antenna brown; wings hyaline; metasoma dark brown to light brown. Mandible with one distal tooth. Clypeus with rounded median lobe, lateral lobe well developed, straight, visible dorsally. Antenna with flagellar pubescence erect; pedicel shorter than flagellomere I. Eye glabrous. Frons coriaceous. Frontal line absent. Pronotum polished and coriaceous. Pronotal disc with anterior margin carinate, posterior margin with small foveae. Posterior mesofurcal pit elongated, deep. Metafurcal pit inserted into crownshaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea ill defined, transversally, evenly wide, not touching mesoscutellar lateral margin; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Mesoscutellum with posterior margin foveolate. Notaulus not drop-shaped, incomplete. Parapsidal signum as long as notaulus. Forewing with three distal flexion lines, 2 r -rs\&Rs vein not angled. Mesoscutellar fovea connected by evident sulcus, not trabeculate, small elevation present. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina shorter than metapostnotal median carina, straight; metapostnotal-propodeal suture shorter than first metapostnotal carina, straight. Metatibia without spines. Petiolar root with apex incurved. Metasoma polished. Hypopygeal posterior margin outcurved. Genitalia: paramere longer than basiparamere in lateral view,
apex rounded, not arched inward, dorsal margin straight; basiparamere wide, covering aedeagal base, opaque, rabbit ear-shaped; cuspis with apex anterior to apex of paramere, without small basal projection; digitus with apex anterior to apex of cuspis, its posterior margin serrated; aedeagus bottle-shaped, its apex anterior to apex of digitus, ventral margin with apex ill defined, base of apodeme dilated.

Female. Unknown.
REMARKS - This species is distinguished from the other Papua New Guinean species of Holepyris by having the basiparamere wide with rabbit ear-shaped, opaque and as long as the paramere. The molecularly closest species observed is H. orokaiva \mathbf{n}. sp., with COI sequences differing 8% of their nucleotides (Figure 4).

ETYMOLOGY - The epithet tsembaga refers to the Tsembaga group of horticulturists who live in the highlands of New Guinea.

DISTRIBUTION - Papua New Guinea.

Holepyris wiru Colombo \& Azevedo n. sp.

Figure 69

TYPE MATERIAL - Holotype, , Papua New Guinea. Province Madang, Mount Wilhelm (-5.758978, 145.1861), 2200m, 26-27/10/2012, leg Mogia, Lilip, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW2200A-11/16-d11, P2568-11931 (MNHN). Paratypes. Papua New Guinea. 1 \&, Province Madang, Mount Wilhelm ($5.759269,145.2356$), 1700m, 09-10/11/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1700A-16/16-d16, P2183-8801 (MNHN); 1 q, Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 07-08/11/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1700A-14/16-d14, P2181-8797 (MNHN); 1 Q Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 25-26/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1700A-01/16-d01, P2168-11360 (MNHN).

DESCRIPTION - Female. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna dark brown; wings hyaline; metasoma light brown. Mandible with two distal teeth. Clypeus with rounded median lobe, lateral lobe well developed, rounded, visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as flagellomere I. Eye setose. Frons coriaceous and punctate. Frontal line present.

Pronotum punctate and coriaceous. Posterior mesofurcal pit circular. Metafurcal pit inserted into crown-shaped depression. Mesopleuron with anterior mesopleural fovea ill defined; lower mesopleural fovea ill defined; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Notaulus absent. Parapsidal signum longer than notaulus. Forewing with two distal flexion lines, 2 r -rs\&Rs vein not angled. Mesoscutellar fovea connected by evident sulcus, not trabeculate, small elevation present, transversally, narrower medially, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as metapostnotal median carina, straight; metapostnotal-propodeal suture as long as first metapostnotal carina, straight. Metatibia without spines. Petiolar root with apex incurved. Metasoma polished.

Male. Unknown.
REMARKS - This species is morphologically similar to Holepyris zia n. sp. by having the median clypeal lobe rounded, the mandibles with two distal teeth and the forewing with two distal flexion lines. Holepyris wiru n. sp., however, has the metapostnotal-propodeal suture straight, the notauli is absent and the mesoscutellar fovea is connected by an evident sulcus, polished with a small elevation; whereas H. zia n. sp. has the metapostnotalpropodeal suture converging posteriorly to the metapostnotal median carina, the notauli is present and the mesoscutellar fovea is connected by an evident sulcus, trabeculate without a small elevation. The genetic distance between H. wiru n. sp. and H. zia n. sp. was of 10%, supporting our decision to consider two distinguished species. Holepyris wiru n. sp. is genetically close to H. orokaiva n. sp. (3\%), which is known from males. Besides sexual dimorphism this species has the pedicel as long as flagellomere I; eye setose; metafurcal pit inserted into crown-shaped depression; notauli absent and forewing with two distal flexion lines; whereas H. orokaiva \mathbf{n}. sp. has the pedicel shorter than flagellomere I; eye glabrous; metafurcal pit inserted into triangle-shaped depression; notauli present and forewing with four distal flexion lines.

ETYMOLOGY - The epithet wiru refers to the Wiru people who live in the Southern
Highlands Province of Papua New Guinea.
DISTRIBUTION - Papua New Guinea.

Holepyris yaifo Colombo \& Azevedo n. sp.

Figure 70

TYPE MATERIAL - Holotype, + , Papua-New-Guinea, Province Madang, Mount Wilhelm (-5.741031, 145.3294), 200m, 31-01/11/2012, leg Dilu, Ray, Novotny, Leponce, Plot 2, understorey; Malaise - MAL-MW0200B-07/16-d07, P1020-11968 (MNHN).

DESCRIPTION - Female. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna light brown; wings hyaline; metasoma dark brown. Mandible with one distal teeth. Clypeus with angulate median lobe, lateral lobe well developed, rounded, visible dorsally. Antenna with flagellar pubescence erect; pedicel smaller than flagellomere I. Eye setose. Frons coriaceous and punctate. Frontal line absent. Pronotum punctate and coriaceous. Posterior mesofurcal pit circular. Metafurcal pit inserted into triangle-shaped depression. Mesopleuron with anterior mesopleural fovea ill defined; lower mesopleural fovea ill defined; subalar impression connected with mesopleural suture; mesopleural suture not trabeculate. Notaulus absent. Parapsidal signum longer than notaulus. Forewing with two distal flexion lines, 2 r-rs\&Rs vein not rounded. Mesoscutellar fovea connected by evident sulcus, trabeculate, small elevation absent, weakly inclined, narrower medially, touching mesoscutellar lateral margin. Mesoscutellum with posterior margin touching metapostnotal anterior margin. Metapectalpropodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as metapostnotal median carina, diverging posteriorly; metapostnotal-propodeal suture as long as first metapostnotal carina, converging posteriorly. Metatibia without spines. Petiolar root with apex incurved. Metasoma polished.

Male. Unknown.

REMARKS - This species is morphologically similar to Holepyris zia n. sp. by having the antenna eye setose, posterior mesofurcal pit circular, forewing with two distal flexion lines, and first metapostnotal carina as long as metapostnotal median carina. However, Holepyris yaifo \mathbf{n}. sp., has the notauli absent, metafurcal pit inserted into triangle-shaped depression, and mesopleural suture not trabeculate; whereas H. zia n. sp. has the notauli present, metafurcal pit inserted into crown-shaped depression, and mesopleural suture trabeculate. The genetic distance was not performed because the specimen was found after molecular analysis.

ETYMOLOGY - The epithet yaifo refers to the Yaifo people who live in the remote tribe in the Chimbu Province of Papua New Guinea in the highlands.

DISTRIBUTION - Papua New Guinea.

Holepyris zia Colombo \& Azevedo n. sp.

Figure 71

TYPE MATERIAL - Holotype, + , Papua New Guinea. Papua-New-Guinea, Province Madang, Wanang 3 station (-5.22767 , 145.0797), 175m, 29-30/11/2012, leg Basset, Plot 3 , understorey; Malaise - MAL-WAN03-D12, P4943-1176 (MNHN). Paratypes. Papua New Guinea. 1 , Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 2627/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW1700A-02/16-d02, P2169-11358 (MNHN); 1ㅇ, Province Madang, Mount Wilhelm (5.739897, 145.3297), 200m, 30-31/10/2012, leg Dilu, Ray, Novotny, Leponce, Plot 1, understorey; Malaise - MAL-MW0200A-06/16-d06, P1003-11961 (MNHN); 1q, Province Madang, Mount Wilhelm (-5.759269, 145.2356), 1700m, 25-26/10/2012, leg Valeba, Tulei, Novotny, Leponce, Plot 4, understorey; Malaise - MAL-MW1700D-01/16-d01, P2216-11361 (MNHN).

DESCRIPTION - Female. Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; antenna and metasoma light brown; wings hyaline. Mandible with two distal teeth. Clypeus with rounded median lobe, lateral lobe well developed, rounded, visible dorsally. Antenna with flagellar pubescence appressed; pedicel as long as flagellomere I. Eye setose. Frons coriaceous and punctate. Frontal line present. Pronotum punctate and coriaceous. Posterior mesofurcal pit circular. Metafurcal pit inserted into crown-shaped depression. Mesopleuron with anterior and lower mesopleural foveae not connected; lower mesopleural fovea ill defined; subalar impression connected with mesopleural suture; mesopleural suture trabeculate. Notaulus not drop-shaped, complete. Parapsidal signum shorter than notaulus. Forewing with two distal flexion lines, 2r-rs\&Rs vein not angled. Mesoscutellar fovea connected by evident sulcus, trabeculate, small elevation absent, weakly inclined, evenly wide, not touching mesoscutellar lateral margin. Mesoscutellum with posterior margin not touching metapostnotal anterior margin. Metapectal-propodeal complex with metapostnotal anterior carina straight; metapostnotal median carina complete, visible posteriorly; first metapostnotal carina as long as
metapostnotal median carina, straight; metapostnotal-propodeal suture as long as first metapostnotal carina, converging posteriorly to metapostnotal median carina. Metatibia without spines. Petiolar root with apex incurved. Metasoma polished.

Male. Unknown.
REMARKS - This species is morphologically similar to Holepyris wiru n. sp. by having the median clypeal lobe rounded, the mandibles with two distal teeth and the forewing with two distal flexion lines. Holepyris zia n. sp., howeve, has the metapostnotal-propodeal suture converging posteriorly to the metapostnotal median carina, the notauli is present and the mesoscutellar fovea is connected by an evident sulcus, trabeculate without small elevation; whereas H. wiru n. sp. has the metapostnotal-propodeal straight suture, the notauli is absent and the mesoscutellar fovea is connected by an evident sulcus, not trabeculate and with a small elevation. Holepyris zia n. sp. and H. wiru n. sp. diverged 10% of their COI sequences; and the lowest genetic distance observed between the female of H. zia \mathbf{n}. sp. and the male of H. orokaiva \mathbf{n}. sp. or the male of H. tsembaga n. sp. was 8% (Figure 4).

ETYMOLOGY - The epithet zia refers to the Zia tribe who lives in the lower Waria Valley in Morobe Province, Papua New Guinea.

DISTRIBUTION - Papua New Guinea.

DISCUSSION

This is the first study of Epyrinae in which the species are hypothesized based on both morphological and molecular evidences. Here we report three genera to Papua New Guinea namely Chlorepyris, Epyris and Holepyris summing up to 36 species of Epyrinae.

Currently, it is difficult to establish the identity of the species of Epyrinae, mainly because most of the description are outdated and some types are lost. In Bethylidae, identification at the species level is difficult because of the lack of unique diagnostic characters, and usually requires the detailed analyses of male genitalia, making them determinant in the taxonomy of the group. Some species have different morphological characteristics in male and female, in species of Pristocerinae for example, which show high sexual dimorphism (see Azevedo et al. 2016). We emphasize that in morphological terms, the subfamily Epyrinae is the most complex in Bethylidae (Alencar \& Azevedo 2013). Moreover, taxonomic keys, representatives from both sexes and taxonomic revisions are scarce in Epyrinae.

We were able to distinguish morphological patterns among species of Chlorepyris, Epyris and Holepyris, showing generic and specific morphological boundaries. Some genera are easily delimited, for example Holepyris presented a more conserved morphology, whereas Epyris is a very complex genus and urges a taxonomic revision as suggested by previous works (Waichert \& Azevedo 2009; Alencar \& Azevedo 2013). Among the most conserved structures within the genera, we highlight the tarsal claw, the flexion lines and the posterior hypopygeal margins of the specimens. Peculiarities in the male genitalia are much generalized for each genus, for instance, the basiparameres are wide, covering the aedeagal base in Chlorepyris, and the volsella with cuspis is very long in Holepyris. We found some variations between males and females, mainly in the flexion lines of forewing, mesoscutellar foveae, and mandibles.

In Bethylidae, molecular studies are scarce (see Carr et al. 2010, Jiang et al. 2015, Alencar et al. 2018). The reconstructed phylogenetic tree based on the COI sequences (Figure 4) endorses those of Carr et al. (2010) and Alencar \& Azevedo (2013), showing the subfamily Epyrinae monophyletic but with conflictic genera boundaries.

The phylogenetic tree, assisted with morphological examination, led to sex association. The identical genetic material indicates conspecificity in female and male representatives of Chlorepyris bilibil Colombo \& Azevedo n. sp. In the genus Holepyris, the lowest genetic distance observed between species was 3% (H. wiru Colombo \& Azevedo n. sp. and H. orokaiva Colombo \& Azevedo n. sp.), but the species are morphologically distinct, especially for characteristics of the male genitalia. In Chlorepyris, besides specimens of Chlorepyris bilibil Colombo \& Azevedo n. sp. that presented 0% of genetic distance, other species presented genetic distance superior to 5% divergence, but also were morphologically different. Finally, in Epyris the shortest distance was 10%, indicating that the diversity was probably poorly sampled and that the genus might be composed of several lineages and needs more sampling effort and taxonomic revision. Han et al. (2018), using COI barcodes in bumble bees (Hymenoptera: Apidae), detected distinct clades with large interspecific genetic distances (> 3%), and recent clades with low interspecific genetic distances (range: 1.2-2.7\%), similar to what we found in PNG, supporting our results and taxonomic acts. Finally, all species were delimited based on morphological and genetic data.

The genera of Epyrinae vary by $3-30 \%$ of their COI genetic distances. We need to emphasize that high genetic distance, such as above 18% as in Epyris melpa n. sp., for
example, may be considered intergeneric values. Therefore, we conclude that some lineage currently identified as Epyris, might be better placed as distinct genera. However, further morphological, and molecular analyzes must be achieved before nomenclatural acts are carried out. Chlorepyris also presented high genetic variation ($\sim 15 \%$), but the morphology of the species is conserved and the phylogenetic analysis indicates common ancestry. Finally, Holepyris is less variable in both morphological characters, and molecular sequences.

The reduced number of specimens (35) and lack of duplicates used in the molecular analysis unabled us to discuss intraspecific genetic variation. However, since this is the first attempt to study Epyrinae based on molecular data, we strongly suggest new studies to support these findings.

Finally, this is our third contribution on the Bethylidae fauna of PNG. Mugrabi \& Azevedo (2016) cited 91 species of Dissomphalus Ashmead, 1893, and Vargas \& Azevedo (2016) reported one species of Galodoxa Nagy, 1974. Considering the present contribution, there are 131 known species of Bethylidae in PNG up to date.

ACKNOWLEDGEMENTS

We thank Claire Villemant (curator of MNHN) and Maria Tavano (curator of MCSN) for loaning specimens from Papua New Guinea; "Our Planet Reviewed - Niugini 2012-2013" program team, especially Tony Robillard and Claire Villemant for inviting to propose this manuscript to this volume; Juliana Justino from Núcleo de Genética Aplicada à Conservação da Biodiversidade (NGACB) at Universidade Federal do Espírito Santo (UFES) for support during molecular protocols and Felipe Bertholdi Fraga for photographing species. This paper was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant \#305746/2014-6 and grant \#465562/2014-0. WDC has a Doctoral scholarship of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). CW thanks to Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES)/CAPES for Postdoctoral fellowship, grant \#71026436. COA of CNPQ grant \#305746/2014-6. We thank two anonymous reviewers for the useful suggestions. This study was conducted in the framework of "Our Planet Reviewed - Papua-New-Guinea 2012-2013" set up by Pro-Natura International, the Muséum national d’Histoire naturelle (MNHN, France), the Institut de Recherche pour le

Développement (IRD, France) in partnership with the Royal Belgian Institute of Natural Sciences, the New Guinea Binatang Research Center, the University of Papua New Guinea, and the Divine Word University of Madang and with core funding of Prince Albert II of Monaco Foundation, the Stavros Niarchos Foundation, the Total Foundation, the Fondation d'entreprise EDF, the Fonds Pacifique, Spiecapag, Entrepose Contracting, the New-Caledonia Government, the Reef Foundation and the Belgian National Lottery. The IBISCA expert network, the patron for this project, Prof. R.L. Kitching AM, and all other participants in this collective effort are thanked for their contribution.

REFERENCES

ALENCAR I. D. C. C., WAICHERT C. \& AZEVEDO C. O . 2018 - Opening Pandora's box of Pristocerinae: molecular and morphological phylogenies of Apenesia (Hymenoptera, Bethylidae) reveal several hidden genera. Systematic Entomology 43: 129. https://doi.org/10.1111/syen. 12295

ALENCAR I. D. C. C. \& AZEVEDO C. O . 2013 — Reclassification of Epyrini (Hymenoptera: Bethylidae): a tribal approach with commentary on their genera. Systematic Entomology 38: 45-80. https://doi.org/10.1111/j.1365-3113.2012.00648.x

AZEVEDO C. O . 1999 — Revision of the Neotropical Dissomphalus Ashmead, 1893 (Hymenoptera, Bethylidae) with median tergal process. Arquivos de Zoologia 35: 301394. https://doi.org/10.11606/issn.2176-7793.v35i4p301-394

AZEVEDO C. O ., COLOMBO W. D., ALENCAR I. D. C. C., BRITO C. D. \& WAICHERT C. 2016 - Pairs in phoretic copulation, a tool for male-female association in highly dimorphic insects of the wasp genus Dissomphalus Ashmead (Hymenoptera, Bethylidae). Zoologia 33(6): e20160076. https://doi.org/10.1590/s1984-4689zool20160076

AZEVEDO C. O ., ALENCAR I. D. C. C., RAMOS M. S., BARBOSA D. N., COLOMBO W. D., VARGAS J. M. R. \& LIM J. 2018 - Global Guide of the flat wasps (Hymenoptera, Bethylidae). Zootaxa 4489(1): 1-294. https://doi.org/10.11646/zootaxa.4489.1.1

CARR M., YOUNG J. P. W. \& MAYHEW P. J. 2010 — Phylogeny of bethylid wasps (Hymenoptera: Bethylidae) inferred from 28S and 16S rRNA genes. Insect Systematics and Evolution 41: 55-73. https://doi.org/10.1163/187631210X486995

CROZIER R. H ., CROZIER Y. C. \& MACKINLAY A. G. 1989 - The COI and COII region of honeybee mitochondrial DNA: evidence for variation in insect mitochondrial evolutionary rates. Molecular Biology Evolution 6: 399-411.

EVANS H. E . 1964 - A synopsis of the American Bethylidae (Hymenoptera, Aculeata). Bulletin of the Museum of Comparative Zoology 132: 1-222. http://www.biodiversitylibrary.org/page/4315704

FOLMER O., BLACK M., HOEH W., LUTZ R. \& VRIJENHOEK R. 1994 — DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3(5): 294-299.

GORDH G. \& MÓCZÁR L. 1990 - A catalog of the world Bethylidae (Hymenoptera, Aculeata). Memoirs of the American Entomological Institute 46:1-364.

HAJIBABAEI M., JANZEN D. H , BURNS J. M, HALLWACHS W. \& HEBERT P. D. N. 2006 - DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 103(4): 968-971. https://doi.org/10.1073/pnas. 0510466103

HAN T., KIM S. H., YOO N H.J., PARK I.G. \& PARK H. 2018 - Genetic variations of DNA barcoding region of bumble bees (Hymenoptera: Apidae) from South Korea. Mitochondrial DNA Part A 30, 30-42. https://doi.org/10.1080/24701394.2018.1450396

HARRIS R. A . 1979 - A glossary of surface sculpturing. Occasional Papers in Entomology 28: 1-31.

HOLT B. G., LESSARD J. P., BORREGAARD M. K., FRITZ S. A ., ARAÚJO M. B ., DIMITROV D., FABRE P. H ., GRAHAM C. H ., GRAVES G. R ., JØNSSON K. A ., NOGUÉS-BRAVO D., WANG Z., WHITTAKER R. J., FJELDSÅ J. \& RAHBEK C. 2013 - An update of Wallace's zoogeographic regions of the world. Science 339(6115): 74-78. https://doi.org/10.1126/science. 1228282

JIANG Y., YANG Z., WANG X. \& HOU Y. 2015 - Molecular identification of sibling species of Sclerodermus (Hymenoptera: Bethylidae) that parasitize buprestid and cerambycid beetles by using partial sequences of mitochondrial DNA Cytochrome Oxidase Subunit 1 and 28S ribosomal RNA gene. PLoS ONE 10(3): e0119573. https://doi.org/10.1371/journal.pone. 0119573

KAWADA R. \& BUFFINGTON M. L. 2016 - A scalable and modular dome illumination system for scientific microphotography on a budget. PLoS ONE 11(5): e0153426. https://doi.org/10.1371/journal.pone. 0153426

KAWADA R., LANES G. O . \& AZEVEDO C. O . 2015 - Evolution of metapostnotum in flat wasps (Hymenoptera, Bethylidae): implications for homology assessments in Chrysidoidea. PLoS ONE 10 (10): e0140051. https://doi.org/10.1371/journal.pone. 0140051

KIEFFER J. J. 1904 — Description de nouveaux Dryininae et Bethylinae. Du Musée Civique de Gênes. Annali del Museo Civico di Storia Naturale di Genova 41: 351-412.

KIEFFER J. J. 1905 - Description de noveaux Proctotrypides exotiques avec une planche et une figure dans le texte. Société Scientifique de Bruxelles 29(2): 95-142.

KIEFFER J. J. 1914 — Bethylinae Das Tierreich. Akademie der Wissenschaften zu Berlin 41: 228-595.

LEE W., KIM H., LIM J., CHOI H. R , KIM Y., KIM Y. S., JI J. Y, FOOTTIT R. G. \& LEE S. 2011 - Barcoding aphids (Hemiptera: Aphididae) of the Korean Peninsula: updating the global data set. Molecular Ecology Resources 11(1): 32-37. https://doi.org/10.1111/j.1755-0998.2010.02877.x

LEPONCE M., NOVOTNY V., PASCAL O., ROBILLARD T., LEGENDRE F., VILLEMANT C., MUNZINGER J., MOLINO J.F., DREW R., ODEGAARD F., SCHMIDL J., TISHECHKIN A., SAM K., BICKEL D., DAHL C., DAMAS K., FAYLE T. M., GEWA B., JACQUEMIN J., KELTIM M., KLIMES P., KOANE B., KUA J., MANTILLERI A., MOGIA M., MOLEM K., MOSES J., NOWATUO H., ORIVEL J., PINTAUD J.C., ROISIN Y., SAM L., SIKI B., SOLDATI L., SOULIERPERKINS A., TULAI S., YOMBAI J., WARDHAUGH C. \& BASSET Y. 2016 Land module of Our Planet Reviewed - Papua New Guinea: aims, methods and first taxonomical results, in Robillard T., Legendre F., Villemant C. \& Leponce M. (eds), Insects of Mount Wilhelm, Papua New Guinea. Muséum national d'Histoire naturelle, Paris : 11-48 (Mémoires du Muséum national d'Histoire naturelle; 209). ISBN : 978-2-85653-784-8.

LI Y., ZHOU X., FENG G., HU H., NIU L., HEBERT P. D. N. \& HUANG D. 2010 COI and IT S2 sequences delimit species, reveal cryptic taxa and host specificity of figassociated Sycophila (Hymenoptera, Eurytomidae). Molecular Ecology Resources 10: 31-40. https://doi.org/10.1111/j.1755-0998.2009.02671.x

LOBL I. \& LESCHEN R. A . B . 2005 - Demography of coleopterists and their thoughts on DNA barcoding and the phylocode, with commentary. Coleopterists Bulletin 59(3): 284-292. https://doi.org/10.1649/850.1

MAGRETTI P. 1884 - Risultati di raccolte imenotterologiche nell' Africa orientale. Annali de Museo Civico di Storia Naturale d'Genova 21(1): 523-636.
MARTINELLI A. B ., WAICHERT C., BARBOSA D. N., FAGUNDES V. \& AZEVEDO C. O. 2017 - The use of Proteinase K to access genitalia morphology, vouchering and DNA extraction in minute wasps. Anais da Academia Brasileira de Ciências 89(3): 1629-1633. https://doi.org/10.1590/0001-3765201720160825

MILLER M. A ., PFEIFFER W. \& SCHWARTZ T. 2010 - Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees; SC10 Workshop on Gateway Computing Environments (GCE10).

MUGRABI D. F \& AZEVEDO C. O. 2016 - Description of 91 new species of Dissomphalus Ashmead (Hymenoptera: Bethylidae) from New Guinea Island and surrounded areas, in ROBILLAR D T., LEGENDRE F., VILLEMANT C. \& LEPONCE M. (eds), Insects of Mount Wilhelm, Papua New Guinea. Muséum national d'Histoire naturelle, Paris : 451-564 (Mémoires du Muséum national d'Histoire naturelle; 209).

PACKER L. \& RUZ L. 2017 - DNA barcoding the bees (Hymenoptera: Apoidea) of Chile: species discovery in a reasonably well known bee fauna with the description of a new species of Lonchopria (Colletidae). Genome 60(5): 414-430.
https://doi.org/10.1139/gen-2016-0071
SIMON C., FRATI F., BECKENBACH A., CRESPI B., LIU H. \& FLOOK P. 1994 Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651-701. https://doi.org/10.1093/aesa/87.6.651
SMITH F. 1860 - Descriptions of hymenopterous insects collected by Mr. A. R. Wallace in the islands of Batchian, Kaisaa, Amboyna, Gilolo, and at Dory in New Guinea. Journal of the Proceeding of the Linnean Society, Zoology Suplement, 5: 93-143.
SMITH M. A ., RODRIGUEZ J. J., WHITFIELD J. B ., DEANS A. R ., JANZEND. H ., HALLWACHS W. \& HEBERT P. D. N. 2008 - Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proceedings of the National Academy of Sciences of the United States of America 105(34): 12359-12364.
https://doi.org/10.1073/pnas. 0805319105

SNODGRASS R. G. 1941 - The male genitalia of Hymenoptera. Smithsonian Miscellaneous Collections 99(14): 1-86.

SOLDATI L., CONDAMINE F. L ., CLAMENS A. L ., MOGIAM. \& KERGOAT G. J. 2016 - The Tenebrionidae (Coleoptera) of Mount Wilhelm and Wanang, with description of a new species and a preliminary phylogeny of Stenochiinae, in ROBILLAR D T., LEGENDRE F., VILLEMANT C. \& LEPONCE M. (eds), Insects of Mount Wilhelm, Papua New Guinea. Muséum national d'Histoire naturelle, Paris : 4982 (Mémoires du Muséum national d'Histoire naturelle; 209).

STAMATAKIS A. 2014 — RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 30(9): 1312-1313. https://doi.org/10.1093/bioinformatics/btu033

STEIN P. R . W., ALENCAR I. D. C. C., BARBOSA D. N. \& AZEVEDO C. O . 2014 Revision of Epyris afer (Magretti, 1884), comb. rev. (Hymenoptera: Bethylidae) with new synonymy and description of two new species. Zootaxa 3032: 17-32.
https://doi.org/10.11646/zootaxa.3032.1.2
TAMURA K., STECHER G., PETERSON D., FILIPSKI A. \& KUMAR S. 2013 MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725-2729. https://doi.org/10.1093/molbev/mst197

TERAYAMA M. 2003 - Phylogenetic Systematics of the family Bethylidae (Insecta: Hymenoptera) Part II. Keys to subfamilies, tribes and genera in the world. Academic Reports of the Faculty of Engineering of Tokyo Polytechnic University 26: 16-29.

VARGAS R. J. M. \& AZEVEDO C. O . 2016 — Discovery of the male of Galodoxa Nagy (Hymenoptera: Bethylidae), with emended generic diagnosis, in ROBILLAR D T., LEGENDRE F., VILLEMANT C. \& LEPONCE M. (eds), Insects of Mount Wilhelm, Papua New Guinea. Muséum national d’Histoire naturelle, Paris : 393-406 (Mémoires du Muséum national d'Histoire naturelle; 209).

WAICHERT C. \& AZEVEDO C. O . 2009 — Phylogenetic analysis of Rhabdepyris (Hymenoptera: Bethylidae) and redefinition of generic limits based on morphological characters. Zootaxa 2284: 1-29. https://doi.org/10.11646/zootaxa.2284.1.1

WAICHERT C., VON DOHLEN C. D. \& PITT S, J. P. 2015 - Resurrection, revision and molecular phylogenetics of Eragenia Banks with implications for Ageniellini systematics (Hymenoptera: Pompilidae). Systematic Entomology 40, 291-321. https://doi.org/10.1111/syen. 12101

WESTWOOD J. O. 1832 — Descriptions of several new British forms amongst the parasitic hymenopterous insects. London and Edinburgh Philosophical Magazine and Journal of Science 1: 27-129. http://www.biodiversitylibrary.org/page/15699063

YODER M. J., MIKÓ I., SELT MANN K. C., BERTO NE M. A . \& DEANS A. R . 2010 - A gross anatomy ontology for Hymenoptera. PLoS ONE 5: e15991. https://doi.org/10.1371/journal.pone.0015991

ZHU X., CHEN J., CHEN R., JIANG L. \& QIAO G. 2017 — DNA barcoding and species delimitation of Chaitophorinae (Hemiptera, Aphididae). ZooKeys (656): 25-50. https://doi.org/10.3897/zookeys.656.11440

FIGURE 7. Chlorepyris armatus (Kieffer, 1904), holotype female. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 8. Chlorepyris abelam Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; D, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 9. Chlorepyris abelam Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view.

FIGURE 10. Chlorepyris angu Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; D, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 11. Chlorepyris angu Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; C, paramere in lateral view; \mathbf{D}, Apex of aedeagus in dorsal view.

FIGURE 12. Chlorepyris baining Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 13. Chlorepyris baining Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view.

FIGURE 14. Chlorepyris baruya Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 15. Chlorepyris baruya Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view.

FIGURE 16. Chlorepyris biangai Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 17. Chlorepyris biangai Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view.

FIGURE 18. Chlorepyris bilibil Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C , pronotum in dorsal view; \mathbf{D}, mesosoma in dorsal view; \mathbf{E}, mesosoma in lateral view; \mathbf{F}, mesosoma in ventral view; \mathbf{G}, forewing in dorsal view.

FIGURE 19. Chlorepyris bilibil Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view.

FIGURE 20. Chlorepyris bilibil Colombo \& Azevedo n. sp., female. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 21. Chlorepyris chambri Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 22. Chlorepyris chambri Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view.

FIGURE 23. Chlorepyris duna Colombo \& Azevedo n. sp., male. A, body in lateral view; B, head in dorsal view; \mathbf{C}, mandible in frontal view; \mathbf{D}, mesosoma in dorsal view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 24. Chlorepyris duna Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; C, paramere in lateral view.

FIGURE 25. Chlorepyris enga Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 26. Chlorepyris enga Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view.

FIGURE 27. Chlorepyris etoro Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 28. Chlorepyris etoro Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; C, paramere in lateral view.

FIGURE 29. Chlorepyris fore Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 30. Chlorepyris fore Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; C, paramere in lateral view.

FIGURE 31. Chlorepyris gadsup Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, pronotum in dorsal view; \mathbf{D}, mesosoma in dorsal view; \mathbf{E}, pronotum in lateral view; \mathbf{F}, mesosoma in lateral view; \mathbf{G}, pronotum in ventral view; \mathbf{H}, mesosoma in ventral view; \mathbf{I}, forewing in dorsal view.

FIGURE 32. Chlorepyris gadsup Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; C, paramere in lateral view.

FIGURE 33. Chlorepyris gogodala Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, pronotum in dorsal view; \mathbf{D}, mesosoma in dorsal view; \mathbf{E}, pronotum in lateral view; \mathbf{F}, mesosoma in lateral view; \mathbf{G}, pronotum in ventral view; \mathbf{H}, mesosoma in ventral view; \mathbf{I}, forewing in dorsal view.

FIGURE 34. Chlorepyris gogodala Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view.

FIGURE 35. Chlorepyris haroli Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 36. Chlorepyris haroli Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view.

FIGURE 37. Chlorepyris hewa Colombo \& Azevedo n. sp., male. A, body in lateral view; B, head in dorsal view; \mathbf{C}, mandible in frontal view; \mathbf{D}, mesosoma in dorsal view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 38. Chlorepyris hewa Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view.

FIGURE 39. Chlorepyris huli Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 40. Chlorepyris huli Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; C, paramere in lateral view.

FIGURE 41. Chlorepyris iatmul Colombo \& Azevedo n. sp., female. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; D, mesosoma in lateral view; E, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 42. Chlorepyris kaluli Colombo \& Azevedo n. sp., female. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; D, mesosoma in lateral view; E, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 43. Chlorepyris koteka Colombo \& Azevedo n. sp., female. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; D, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 44. Chlorepyris kwoma Colombo \& Azevedo n. sp., female. A, mesosoma in dorsal view; B, mesosoma in lateral view; \mathbf{C}, mesosoma in ventral view; \mathbf{D}, forewing in dorsal view.

FIGURE 45. Chlorepyris maisin Colombo \& Azevedo n. sp., female. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 46. Epyris interruptus Kieffer, male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 47. Epyris interruptus Kieffer, male. A, hypopygium in dorsal view; B, genitalia in lateral view; C, genitalia in dorsal view; \mathbf{D}, genitalia in ventral view.

FIGURE 48. Epyris melpa Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 49. Epyris melpa Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view.

FIGURE 50. Epyris mian Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 51. Epyris mian Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view.

FIGURE 52. Epyris min Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 53. Epyris min Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; C, paramere in lateral view.

FIGURE 54. Epyris motu Colombo \& Azevedo n. sp., female. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 55. Epyris mundugumor Colombo \& Azevedo n. sp., female. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 56. Epyris ogea Colombo \& Azevedo n. sp., female. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 57. Holepyris orokaiva Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 58. Holepyris orokaiva Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view; \mathbf{D}, apex of aedeagus in dorsal view.

FIGURE 59. Holepyris sambia Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 60. Holepyris sambia Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view; \mathbf{D}, apex of aedeagus in dorsal view.

FIGURE 61. Holepyris swagap Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 62. Holepyris swagap Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view; \mathbf{D}, apex of aedeagus in dorsal view.

FIGURE 63. Holepyris tairora Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 64. Holepyris tairora Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view; \mathbf{D}, apex of aedeagus in dorsal view.

FIGURE 65. Holepyris telefol Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; \mathbf{C}, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 66. Holepyris telefol Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view; \mathbf{D}, apex of aedeagus in dorsal view.

FIGURE 67. Holepyris tsembaga Colombo \& Azevedo n. sp., male. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; F, forewing in dorsal view.

FIGURE 68. Holepyris tsembaga Colombo \& Azevedo n. sp., male. A, genitalia in dorsal view; B, genitalia in ventral view; \mathbf{C}, paramere in lateral view; \mathbf{D}, apex of aedeagus in dorsal view.

FIGURE 69. Holepyris wiru Colombo \& Azevedo n. sp., female. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; D, mesosoma in lateral view; E, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 70. Holepyris yaifo Colombo \& Azevedo n. sp., female. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; D, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

FIGURE 71. Holepyris zia Colombo \& Azevedo n. sp., female. A, head in dorsal view; B, mandible in frontal view; C, mesosoma in dorsal view; \mathbf{D}, mesosoma in lateral view; \mathbf{E}, mesosoma in ventral view; \mathbf{F}, forewing in dorsal view.

CAPÍTULO II

Phylogenetic overview of flat wasps (Hymenoptera, Bethylidae) reveals Elektroepyrinae, a new fossil subfamily ${ }^{2}$

Abstract

The flat wasps, Bethylidae, are cosmopolitan and one of the most diverse families of Chrysidoidea. Bethylidae have 2,920 described extant species and almost 90 fossil species. The oldest geological record of the family is the Lower Cretaceous, from Lebanese and Spanish ambers and Transbaikalian rock fossils. Here we describe and illustrate one new fossil subfamily of Bethylidae: †Elektroepyrinae subfam. nov. represented by \dagger Elektroepyris Perrichot \& Nel from the lowermost Eocene Oise amber (France), which was cladistically assessed against all other eight subfamilies of Bethylidae. The new taxon is easily distinguished from other subfamilies by the forewing venation with the third abscissa of Cu present. Phylogenetic analyses support the monophyly of all subfamilies of Bethylidae, with a matrix with 69 morphological characters and 22 terminal taxa from where \dagger Elektroepyrinae subfam. nov. emerged as independent lineage from all other subfamilies.

Keywords: Aculeata, Eocene, French amber, Oise amber

INTRODUCTION

The flat wasps, Bethylidae, belong to the Chrysidoidea (Hymenoptera) and have shown to be a monophyletic taxon (Brothers \& Carpenter, 1993; Ronquist, 1999; Ronquist et al., 1999; Carr et al., 2010). Bethylidae are external gregarious parasitoids of the larval stage of Coleoptera and Lepidoptera (Evans, 1964). The family has 2,920 species, arranged in 96 genera (Azevedo et al., 2018), which are currently divided into five extant subfamilies: Bethylinae, Epyrinae, Mesitiinae, Pristocerinae and Scleroderminae, and three extinct subfamilies: \dagger Lancepyrinae, \dagger Holopsenellinae and \dagger Protopristocerinae.

The history of taxonomic assignment of bethylids is complex, but was recently summarized by Azevedo et al. (2018) and is not repeated here. Recently, many works on the fossil fauna of Bethylidae have been published, as in Azevedo \& Azar (2012), Barbosa et al. (2013), Ramos et al. (2014), Engel et al. (2016), Engel (2019), Falières \& Nel (2018, 2019a, 2019b, 2019c, 2020), Colombo \& Azevedo (2019) and Colombo et al. (2020).

[^1]Many of these works have managed to detect new taxa and expand our knowledge about the evolution of bethylids. The family has hitherto almost 90 valid fossil species.

The main goals of this paper are to describe the new fossil subfamily \dagger Elektroepyrinae, which is proposed to accommodate the extinct genus \dagger Elektroepyris Perrichot \& Nel, 2008 from the lowermost Eocene Oise amber (France), and to ascertain its phylogenetic position in the first phylogeny, which covers all subfamilies of Bethylidae.

MATERIAL AND METHODS

The amber piece containing the inclusion with the holotype of \dagger Elektroepyris magnificus Perrichot \& Nel, 2008 is deposited in the Museum National d'Histoire Naturelle, France (MNHN, curator: André Nel) and was examined by the photos and original description.

The terms applied to the integument sculpture follow Harris (1979) and those applied to the general morphology follow Lanes et al. (2020).

The material used in this study for phylogenetic analyses was provided by insect collection of the following institutions: California Academy of Sciences, U.S.A. (CAS), Iziko South African Museum, South Africa (ISAM), Queen Sirikit Botanical Garden, Thailand (QSBG), Universidad de Panama, Panama (MIUP) and Universidade Federal do Espírito Santo, Brazil (UFES).

For this purpose, the ingroup includes 21 terminals, representing all current eight subfamilies of Bethylidae, extant and extinct (Tab. 1). The outgroup is represented by the scolebythid wasp Clystopsenella longiventris Kieffer, 1910.

We worked on improving character-coding system, avoiding as much as possible the continuous quantitative characters. Several characters have been proposed from the codification of new features of the forewing, especially associated with venation. Sixtynine morphological characters were analyzed, including one character from general body, 26 characters from the head, 22 from the mesosoma, 18 characters from the wing and two from the metasoma (Appendix 1).

The morphological dataset was analyzed using parsimony, considering the coherence with several groups generally accepted by previous research. The characters were treated as unordered and non-polarized. Inapplicable characters were treated as "-", and missing data were treated as "?" (Appendix 2).

The searches for the most parsimonious (MP) trees were carried out with the software TNT version 1.1 (Goloboff et al., 2008). For the heuristic searches (Goloboff et
al., 2003, 2008), searches were performed under New Technology methods using the following parameters: memory with 99999 trees; collapsing rules as TBR; best score hits with 10 times; random seed as default (1); a sectorial search as default; ratchet perturbation phase (up-weighting prob and down-weighting prob $=10$) and with 10000 iterations; treedrifting of 10000 cycles and, tree-fusing of ten rounds. Implied weights analyses using a concavity function (K) that weights against homoplastic data (Goloboff et al., 1993) were also conducted, using a TNT script (setk.run) written by Salvador Arias to calculate the appropriate value. A value of 2.343 was returned and subsequently used in the implied weighting scheme. Resampling support values were calculated using bootstrap and reported as absolute frequencies from 1000 replicates.

The cladogram recovered with the software TNT was manipulated with WinCladaASADO version 1.61 (Nixon, 2002) and edited in Adobe Illustrator CS6 version 23.0.3.

RESULTS

For the search with equal weighting, 7.054.582.423 rearrangements were examined, and retrieved three MP trees, with a best score of 150 . The strict consensus of equal weight analyses resulted in one cladogram with steps (L) of 165, consistency index (CI) of 0.42 and retention index (RI) of 0.60 (Fig. 1A). In the search with implied weighting, 7.389.707.320 rearrangements were examined, and retrieved three MP trees, with a best score of 16.43 . The strict consensus of implied weight analyses resulted in one cladogram with $\mathrm{L}=165, \mathrm{CI}=0.42$ and $\mathrm{RI}=0.60$ (Fig. 1B).

In the topology of the tree obtained under both equal and implied weights, all subfamilies of Bethylidae are retrieved as monophyletic, and \dagger Elektroepyrinae subfam. nov. as an independent clade as well. All five major groups of Bethylidae were recovered as monophyletic groups, and in all analyses \dagger Elektroepyris failed to cluster within them. Because of that, we allocated it into a distinct subfamily, \dagger Elektroepyrinae subfam. nov. One autapomorphy supports this clade, namely, the forewing venation with the third abscissa of Cu (57:0, Fig. 2D).

Systematic palaeontology

Family Bethylidae Haliday, 1839
 Subfamily \dagger Elektroepyrinae Colombo \& Azevedo subfam. nov.

Type genus. \dagger Elektroepyris Perrichot \& Nel, 2008.
Included genus. \dagger Elektroepyris Perrichot \& Nel, 2008.
Diagnosis. Female holotype (Fig. 2). Antenna with 11 flagellomeres. Eye very large, much longer than frons width, bulging. Frons strongly coriaceous. Frontal angle of ocellar triangle acute. Median clypeal carina not extending posterad into frons. Anterior ocellus anterior to supra-ocular line. Dorsal pronotal area longer than wide, ecarinate. Macropterous, forewing with C, R, 1 Cu closed cells, Rs+M vein fully absent, distal flexion lines not visible, 2 r -rs\&Rs vein tubular, long, well pigmented, curved, not converging posteriorly to R 1 vein, third abscissa of Cu tubular, and indistinct to claval flexion line. Pterostigma subcircular. Mesoscutum-mesoscutellar sulcus apparently absent, fovea large, circular. Metanotum undeveloped medially, not overlapping mesoscutellum. Claws slightly curved.

Male. Unknown.

Genus \dagger Elektroepyris Perrichot \& Nel, 2008

Type species. \dagger Elektroepyris magnificus Perrichot \& Nel, 2008.
Included species. \dagger Elektroepyris magnificus Perrichot \& Nel, 2008.
Diagnosis. As in subfamily because of monotypy.
Locality and horizon. Oise amber, Le Quesnoy, Chevrière, region of Creil, Oise Department, France. Ypresian, 53 million years ago (Nel \& Brasero 2010); lowermost Eocene.

\dagger Elektroepyris magnificus Perrichot \& Nel, 2008

Type material. Holotype, female, piece code PA-6470, deposited in MNHN collection, examined by photos.

Diagnosis. As in subfamily because of monotypy.

Description. Female holotype (Fig. 2). Body length $\sim 3.78 \mathrm{~mm}$. Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma dark castaneous; wings hyaline. Head as long as wide and quadrate, not globoid in lateral view. Flagellomere about as long as wide; flagellar pubescence appressed; pedicel longer than flagellomere I, rectangular. Clypeus with median lobe not visible. Median clypeal carina not visible. Eye glabrous, located close to mandibular base. Frons strongly coriaceous, punctures large, very close one to another. Frontal line inconspicuous. Frontal angle of ocellar triangle acute. Anterior ocellus anterior to supra-ocular line. Dorsal pronotal area without posterior sulcus, lateral surface strongly concave. Posterior mesofurcal pit dropshaped. Metafurcal pit drop-shaped. Notaulus present, very narrow. Parapsidal signum absent. Mesoscutum-mesoscutellar sulcus absent, fovea large, circular and aligned with notaulus. Metapectal-propodeal disc apparently longer than wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae not visible. Mesotibia without spines. Metasoma polished, weakly setose.

Male. Unknown.

DISCUSSION

Oise amber deposit provides the best studied Eocene amber fauna (Nel et al., 1999, Nel \& Brasero, 2010) that is older than Baltic amber; although data on the fauna of early and middle Eocene fossil resins are common (Wang et al., 2014; Nadein \& Perkovsky, 2019; Dietrich \& Perkovsky, 2019 and references therein) still, other bethylids with similar age are known only from Fushun amber (see below). Bethylids are the best known chrysidoids in Oise amber (Martynova et al., 2019). Other known Oise amber chrysidoids are Scolebythidae with "Gondwanan" extant distribution (Zhang et al., 2020 and references therein) and a single dryinid species from the genus Pseudodryinus Olmi, 1991 (Peinado et al., 2006, Martynova et al., 2019) with an extant tropical distribution (four Oriental species, two Afrotropical species, two species from Queensland and New Guinea, one species from western Honshu (Japan) and South Korea). Apparently †Pseudodryinus parisiensis Peinado et al., 2006 belongs to a different evolutionary lineage from recent species; at least it is not close to the species from western Honshu and South Korea (M. Olmi, pers. comm.).

FIGURE 1. Parsimonious trees. A, Equal weighting analyses. B, Implied weighting analyses. Black circles represent homologies and

Oise amber hymenopterans are very diverse (14 families, 23 genera and 25 species); ants (except one species) and chalcidoids from Oise fauna are still undescribed (A. Nel, pers. comm.). Very uncommon is the bethylid overrepresentation in Oise hymenopteran
fauna (nine from 25 species); one of the reasons can be the very abundant and diverse Oise coleopteran fauna (Kirejtshuk \& Nel, 2013), many of Oise beetles could be the bethylid hosts. Even if we will count the known percentage of Oise bethylids in all hymenopteran species except ants and chalcidoids, the bethylids (35\%) will be evidently higher than in the next bethylid diversity hotspot, Rovno amber. In the Rovno amber, 14 bethylid species are found (Ramos et al., 2014; Colombo et al., 2020; our unpublished data) representing 26% of 54 Rovno hymenopteran species (ants and chalcidoids not included) (Perkovsky, 2018; Martynova et al., 2019; Perkovsky et al., 2020). High bethylid percentage and diversity (it includes three subfamilies unknown from Priabonian ambers) can be explained by paratropical climate of Oise amber forest, favourable for bethylids and their hosts. However, we must use caution in affirming any biological trends, because there are many wasps still undescribed from Oise amber, so that the relative abundance of flat wasps can be different.

Half of the Oise bethylid subfamilies and three from nine genera are common with Baltic amber (see below). The single known bethyline genus from Oise amber is Eupsenella with 45 extant species limited to Australia and New Zealand (Ramos \& Azevedo, 2012); and seven fossil species, including four Priabonian species evenly distributed between Rovno and Baltic amber (Ramos et al., 2014), one from Oise amber (De Ploëg \& Nel, 2004) and two from Fushun amber (Hong, 2002). The extinction of Eupsenella in the Northern Hemisphere can be associated with the transition from an equable climate to a more pronounced seasonality in high and middle latitudes after the end of Eocene (Archibald \& Farrell, 2003). At least half of extant Eupsenella are thermophiles: only 24 of 45 extant species are unknown from tropical regions in Australasia. All known early Eocene Eupsenella were thermophiles as well. The Oise species Eupsenella neoeocenica Ramos \& Azevedo, 2018 in Azevedo et al. (2019), as new name for Eupsenella eocenica (De Ploëg \& Nel, 2004), is morphological similar to the Fushun genus \dagger Fushunochrysites Hong, 2002, synonymized with Eupsenella by Azevedo et al. (2018), mainly because both have the forewing with 1M cell almost elliptical and, the extant species are similar to the Priabonian species. Eupsenella is known from four different ambers and is the single bethylid genus known from Eocene of Europe and Asia. The genus Lytopsenella Kieffer, 1911 has the largest number of fossil species compared to the other Bethylinae, but has not been found in Oise amber and this does not seem surprising. One possible explanation for this is that all fossil Lytopsenella species are from
the Baltic and Rovno ambers (one species in common to both ambers and all other exclusive for Baltic) and all extant Lytopsenella species are distributed in the subtropical regions of Chile. The climate of this latter region is somewhat similar to the past equable climate of Baltic and Rovno amber forests (Perkovsky et al., 2020), but differs from paratropical climate of Oise amber. Two groups can be especially good indicators of these climatic differences: in equable climate of Baltic and Rovno amber forests, with winters warm and summers not hot (Archibald \& Farrell, 2003), aphids were nearly as abundant (Perkovsky \& Wegierek, 2018 and references therein) as in the Cretaceous Baeomorpha realm. In contrast, the Oise amber forest with hot summers was as unfavorable for aphids (still not reported for Oise amber) as the paratropical or tropical climate of the Cretaceous Isoptera realm (Gumovsky et al., 2018). The Priabonian amber forests were too cold for thermophile mastotermitids, but in Oise amber they are nearly as common as kalotermitids (Nel \& Bourguet, 2006).

Regarding the Pristocerinae, †Eopristocera bilobata Falières \& Nel, 2019 was discussed in our previous paper (Colombo et al., 2020). Pristocera is reported from both Oise and Baltic amber (Colombo et al., 2020). Still, it was argued that \dagger Pristocera alaini Falières \& Nel, 2019 may belongs to the thermophile genus Pseudisobrachium Kieffer, 1904 (Colombo et al., 2020). The latter genus is unknown from Baltic amber, but is represented by two species in the more southern Rovno amber (Colombo et al., 2020) and the reason for it is that the warmer Rovno amber climate (Sokoloff et al., 2018) results in a larger "tropical" share in the Rovno fauna vs. the Baltic fauna (Legalov et al., 2018, 2019). Recently, the first fossil species of Dissomphalus (D. schubnelli Falières \& Nel, 2020) was published from Oise amber, its possible association with Micromalthidae (Coleoptera) and Cecidomyiidae (Diptera) is specially discussed (Falières \& Nel, 2020).

Micromalthidae are still not described from Baltic amber, but is not rare in Rovno amber (Perkovsky, 2016 and our unpublished data), and Rovno amber gall midges are very common and diverse (90 named species in 20 genera: Fedotova \& Perkovsky, 2009, 2017; Perkovsky \& Fedotova, 2016 and references therein). It seems that Priabonian amber records of Dissomphalus could be limited by Rovno amber.

Epyrinae present the biggest paleodiversity of Bethylidae. The genus Chlorepyris Kieffer, 1913 was known in Europe by one extinct species, \dagger C. gallicus (Perrichot \& Nel, 2008), but we know many undescribed Priabonian species from succinites; and the Oise Epyris supposedly belongs to this genus as well (data in prep.). Chlorepyris has no extant
species in the Palaearctic region (Azevedo et al., 2018) but it is the most diverse genus in the number of fossil species: 13 Priabonian species (four from Rovno and nine from Baltic amber) were found (data in prep.). Currently, the genus has 65 species and was revalidated by Waichert \& Azevedo (2009) but this genus is probably polyphyletic (Alencar \& Azevedo, 2013).

There are nine sclerodermines are registered (Colombo \& Azevedo, 2019), and the only genus and species, †Paleoscleroderma lamarrei Falières \& Nel, 2019 has been registered for Oise amber. In comparison, five species and five genera are reported for Baltic amber, including a single fossil representative of the thermophilic Glenosema Kieffer, 1905 and the Neotropical genus Nothepyris Evans, 1973 (Colombo \& Azevedo, 2019). Scleroderminae were presumably abundant in the Eocene, with $\sim 66 \%$ of all fossil species, and for this reason we assume that the Oise sclerodermines diversity is mostly unknown.

Differences between bethylids, and other chrysidoids, from succinites, Rovno and Baltic ambers, and Oise amber can be explained by differences between the paratropical climate of Oise amber forest and the equable climate of Baltic and Rovno amber forests. Abundance and diversity of bethylids in the representative Oise and Rovno amber collections predict their great unstudied diversity in much more abundant equable Baltic.

Perrichot \& Nel (2008) provided a detailed discussion for \dagger Elektroepyris and concluded that this genus shares the following synapomorphies with the clade (Epyrinae + Mesitiinae + Galodoxinae) sensu Terayama (2003): pterostigma located in basal half of forewing length, metanotum undeveloped medially, and dorsal pronotal area longer than anteromesoscutum. Terayama (2003) treated Epyrinae as an independent subfamily, although without any cladistic support. Galodoxinae were synonymized with the tribe Sclerodermini (Azevedo \& Lanes, 2009). Later in the cladistic analyses performed by Alencar \& Azevedo (2013), the genus \dagger Elektroepyris was excluded, and was transferred to Epyrinae sensu Alencar \& Azevedo (2013). The reasons of this genus transfer were not discussed by Alencar \& Azevedo (2013).

We performed new cladistic analyses and included for the first time \dagger Elektroepyris. We found that this genus is a distinct lineage from all other subfamilies of Bethylidae and for this reason, we are proposing \dagger Elektroepyrinae as new subfamily.

Recently, several morphological studies have cladistically analyzed the subfamilies and genera of Bethylidae (e.g., Lanes \& Azevedo, 2008; Azevedo \& Azar, 2012) but this is
the first to include representatives from all subfamilies. The \dagger Holopsenellinae were recovered as sister-group for all other Bethylidae (Fig. 1A, B) and the first lineage to diverge as was hypothesized by Engel et al. (2016). Bethylinae were the second subfamily to diverge, as recovered by our implied weighting analysis (Fig. 1B) and previous works (Carr et al., 2010 and Azevedo \& Azar, 2012). This subfamily was recovered as monophyletic (Ramos \& Azevedo, 2018). †Lancepyrinae were the third subfamily to diverge (Fig. 1B) emerging immediately after Bethylinae, as also found by Azevedo \& Azar (2012). We were not able to find any synapomorphy for this group, probably because of the inclusion of more fossil terminals. This procedure increases the gaps in analyses since many structures are not visible. A characteristic shared by \dagger Holopsenellinae, Bethylinae and \dagger Lancepyrinae is the presence of the forewing with a tubular RS +M vein, at least as stub and for this reason, we hypothesized that this group diverged before the remaining subfamilies. The positioning of the other subfamilies varied in the analyses, however, all of them were recovered as monophyletic. For more details about the extant subfamilies, see Lanes \& Azevedo (2008) and Vargas et al. (2020) for Scleroderminae, Alencar \& Azevedo (2013) for Epyrinae, Alencar et al. (2018) for Pristocerinae. \dagger Protopristocerinae were included in a cladistic analysis for the first time, and have been recovered as sister-group of Epyrinae. As in Mesitiinae, these subfamilies lack phylogenetic inferences that seek to explore the positioning of their genera.

The positioning of \dagger Elektroepyrinae varied between the two analyzes and were supported by an autapomorphy in both analyzes: the forewing with the third abscissa of Cu tubular (57:0). Among the flat wasps, this character is present only in this taxon, and this vein is unusually long. This character is present in some species of Chrysidini (Chrysididae), but and in other chrysidids are not present (Kimsey \& Bohart, 1991). In the topology of equal weighting \dagger Elektroepyris is recovered as a sister-group of all other subfamilies of Bethylidae, with the exception of \dagger Holopsenellinae (Fig. 1A). However, in the topology of implied weighting \dagger Elektroepyrinae share with Scleroderminae two synapomorphies: head shape in lateral view and anteromesoscutum short (Fig. 1B). Scleroderminae were diagnosed by Azevedo et al. (2018) as wasps with the body slender, sometimes strongly flat and forewing of the macropterous forms with anterior margin incurved and various configurations of cells and veins, but never with the third abscissa of Cu present, whereas \dagger Elektroepyrinae have the body robust and forewing with anterior margin straight and with the third abscissa of Cu present.

Chrysidoids were confirmed as the sister-group of all remaining Aculeata by phylogenomic data and whose early diversification occurred 224-160 Ma (Peters et al., 2017), probably during the Jurassic (Branstetter et al., 2017). Among the ten families of Chrysidoidea, Chrysididae have the oldest representative, \dagger Dahurochrysis veta Rasnitsyn, 1990, an imprint from Turga, Russian Federation (Berriasian-Valangian, Lower Cretaceous) (Rasnitsyn, 1990). For Embolemidae, the oldest representatives are the genera \dagger Baissobius Rasnitsyn, 1975 and \dagger Embolemopsis Olmi, Rasnitsyn \& Guglielmino, 2010, from Aptian of Russian Federation and Mongolia (Rasnitsyn, 1975, 1996; Olmi et al., 2010). In Dryinidae, the oldest representative is \dagger Archaeodryinus palaeophoenicius (Olmi, 2000), from lower Barremian Lebanese amber, Lower Cretaceous (Olmi et al., 2020). For Scolebythidae, the oldest representatives are three genera from lower Barremian Lebanese amber, Lower Cretaceous: †Libanobythus Prentice \& Poinar, 1996, †Uliobythus Engel \& Grimaldi, 2007 and \dagger Zapenesia Engel \& Grimaldi, 2007 (Prentice \& Poinar, 1996; Engel \& Grimaldi, 2007). In Sclerogibbidae, the oldest is \dagger Sclerogibbodes embioleia Engel \& Grimaldi, 2006, from lower Barremian Lebanese amber, Lower Cretaceous (Engel \& Grimaldi, 2006). About the other four families, Plumariidae are represented only by extant species (Rasnitsyn, 1975; Brothers 2011; Perrichot et al., 2014) and \dagger Falsiformicidae, \dagger Plumalexiidae and \dagger Chrysobythidae are known for the Upper Cretaceous (Evans, 1973; Rasnitsyn, 1975; Brothers, 2011; Lucena \& Melo, 2018; Melo \& Lucena, 2019).

In flat wasps, the fossil evidence suggests that this group began to diverge in the Early Cretaceous, and during the Barremian were already well established, given the presence of \dagger Lancepyris and \dagger Holopsenella in this period and their cladistic positions in our analyses. The Eocene was an important setting in generating the currently recognized generic diversity of extant bethylid subfamilies, as the majority of genera appear to have evolved between 34 and 56 Ma . A few genera are estimated as being of very young crowngroup age, such as Anisepyris Kieffer, 1905 (15-20 Ma) and Apenesia Westwood, 1874 ($15-20 \mathrm{Ma}$). These estimates must be viewed with prudence as incomplete taxon sampling could influence them.

FIGURE 2. \dagger Elektroepyris magnificus Perrichot \& Nel, piece code PA-6470, female holotype. A, Habitus, dorsal view. B, Head, dorsal view. C, Habitus, lateral view. D, Forewing, dorsal view. Scale bars $=0.5 \mathrm{~mm}$. ©MNHN.

ACKNOWLEDGMENTS

The authors are sincerely grateful to Prof. Alexandr P. Rasnitsyn (PIN) for discussing the earlier version of manuscript. The authors also grateful to André Nel, Gaëlle Doitteau and the MNHN for sending photos of \dagger Elektroepyris magnificus, and for
providing data on Oise amber, and Massimo Olmi for data on Pseudodryinus. We thank Diying Huang, André Nel again and Alexandr P. Rasnitsyn for their valuable comments and Neal Evenhuis by the English corrections. This work was benefited from the support of the French state via the program "Investissements d'avenir" (ANR-11-INBS-0004RECOLNAT). CAPES supported WDC with a Ph.D. bursary of Demanda Social; CNPq grant \# 303748/2018-4 supported COA with a bursary.

REFERENCES

Alencar, I.D.C.C. \& Azevedo, C.O. (2013) Reclassification of Epyrini (Hymenoptera: Bethylidae): A tribal approach with commentary on their genera. Systematic Entomology, 38 (1), 45-80. https://doi.org/10.1111/j.1365-3113.2012.00648.x

Alencar, I.D.C.C., Waichert, C. \& Azevedo, C.O. (2018) Opening Pandora's box of Pristocerinae: molecular and morphological phylogenies of Apenesia (Hymenoptera, Bethylidae) reveal several hidden genera. Systematic Entomology, 43, 481-509. https://doi.org/10.1111/syen. 12295
Archibald, B. \& Farrell, B.D. (2003) Wheeler's dilemma. Acta zoologica cracoviensia, 46, 17-23.

Azevedo, C.O. \& Azar, D. (2012) A new fossil subfamily of Bethylidae (Hymenoptera) from the Early Cretaceous Lebanese amber and its phylogenetic position. Zoologia, 29, 210-218.
https://doi.org/10.1590/S1984-46702012000300004
Azevedo, C.O. \& Lanes, G.O. (2009) Cladistic assessment and redescription of Galodoxa torquata Nagy (Hymenoptera, Bethylidae), a striking species with swallow tailed metasomal sternite. Zoologische Mededelingen, 83, 841-851.

Azevedo, C.O., Alencar, I.D.C.C., Ramos, M.S., Barbosa, D.N., Colombo, W.D., Vargas, J.M. \& Lim, J. (2018) Global guide of the flat wasps (Hymenoptera, Bethylidae). Zootaxa, 4489, 1-294. https://doi.org/10.11646/zootaxa.4489.1.1

Azevedo, C.O., Alencar, I.D.C.C., Ramos, M.S., Barbosa, D.N., Colombo, W.D., Vargas, J.M. \& Lim, J. (2019) Erratum, Global guide of the flat wasps (Hymenoptera, Bethylidae) (vol. 4489, 1-294, 2018). Zootaxa, 4559 (3), 598-600. http://dx.doi.org/10.11646/zootaxa.4559.3.13

Barbosa, D.N., Perkovsky, E.E. \& Azevedo, C.O. (2013) Two new species of Laelius Ashmead (Hymenoptera: Bethylidae) from Upper Eocene Rovno amber. Neues Jahrbuch fur Geologie und Paläontologie, 267, 67-73. https://doi.org/10.1127/0077-7749/2012/0297

Branstetter, M.G., Danforth, B.N., Pitts, J.P., Faircloth, B.C., Ward, P.S., Buffington, M.L., Gates, M.W., Kula, R.R. \& Brady, S.G. (2017) Phylogenomic Insights into the Evolution of Stinging Wasps and the Origins of Ants and Bees. Current Biology, 27, 1019-1025. https://doi.org/10.1016/j.cub.2017.03.027

Brothers, D.J. (2011) A new Late Cretaceous family of Hymenoptera, and phylogeny of the Plumariidae and Chrysidoidea (Aculeata). ZooKeys, 130, 515-542. https://doi.org/10.3897/zookeys.130.1591

Brothers, D.J. \& Carpenter, J.M. (1993) Phylogeny of Aculeata: Chrysidoidea and Vespoidea (Hymenoptera). Journal of Hymenoptera Research, 2, 227-304. https://doi.org/10.5281/zenodo. 17378

Carr, M., Young, J.P.W. \& Mayhew, P.J. (2010) Phylogeny of bethylid wasps (Hymenoptera: Bethylidae) inferred from 28S and 16S rRNA genes. Insect Systematic and Evolution, 41, 55-73. https://doi.org/10.1163/187631210X486995

Colombo, W.D. \& Azevedo, C.O. (2019) Synopsis of the fossil Scleroderminae (Hymenoptera, Bethylidae) with description of a new genus and four new species from Baltic amber. Historical Biology, 1-10. [online only] https://doi.org/10.1080/08912963.2019.1650275

Colombo, W.D., Gobbi, F.T., Perkovsky, E.E. \& Azevedo, C.O. (2020) Synopsis of the fossil Pristocerinae (Hymenoptera, Bethylidae), with description of two new genera and species from Burmese, Taimyr, Baltic and Rovno ambers. Historical Biology, 117. [online only]
https://doi.org/10.1080/08912963.2020.1733551
De Ploëg, G. \& Nel, A. (2004) A new bethylid wasp from the Lowermost Eocene amber of France (Hymenoptera: Bethylidae: Bethylinae). Geologica Acta, 2, 1-10. https://doi.org/10.1344/105.000001637

Dietrich, C.H. \& Perkovsky, E.E. (2019) First record of Cicadellidae (Insecta: Hemiptera: Auchenorrhyncha) from Eocene Sakhalinian amber. ZooKeys, 886, 127-134.
https://doi.org/10.3897/zookeys.886.3882.
Engel, M.S. (2019) A holopsenelline wasp in mid-Cretaceous amber from Myanmar (Hymenoptera: Bethylidae). Palaeoentomology, 2, 199-204. https://doi.org/10.11646/palaeoentomology.2.2.10
Engel, M.S. \& Grimaldi, D.A. (2006) The first Cretaceous sclerogibbid wasp (Hymenoptera: Sclerogibbidae). American Museum Novitates, 3515, 1-7. https://doi.org/10.1206/0003-0082(2006)3515[1:TFCSWH]2.0.CO;2

Engel, M.S. \& Grimaldi, D.A. (2007) Cretaceous Scolebythidae and phylogeny of the family (Hymenoptera: Chrysidoidea). American Museum Novitates, 3568, 1-16. https://doi.org/10.1206/0003-0082(2007)475[1:CSAPOT]2.0.CO;2
Engel, M.S., Ortega-B., J. \& Azevedo, C.O. (2016) A new bethylid wasp in Lebanese Early Cretaceous amber (Hymenoptera: Chrysidoidea), with comments on other Mesozoic taxa. American Museum Novitates, 3855, 1-14. https://doi.org/10.1206/3855.1
Evans, H.E. (1964) A synopsis of the American Bethylidae (Hymenoptera, Aculeata). Bulletin of the Museum of Comparative Zoology, 132, 1-222.
Evans, H.E. (1973) Cretaceous Aculeate wasps from Taimyr, Siberia (Hymenoptera). Psyche, 80 (3), 166-178. https://doi.org/10.1155/1973/16876

Falières, E. \& Nel, A. (2018) The oldest representative of the extant genus Epyris in the Lowermost Eocene amber of France (Hymenoptera: Bethylidae: Epyrinae). Palaeoentomology, 1, 32-36. https://doi.org/10.11646/palaeoentomology.1.1.3

Falières, E. \& Nel, A. (2019a) The first sclerodermine and pristocerine flat wasps in Lowermost Eocene amber of France (Hymenoptera: Bethylidae). Comptes Rendus Palevol, 18, 509-515. https://doi.org/10.1016/j.crpv.2019.04.007

Falières, E. \& Nel, A. (2019b) A new bethylid wasp from the Lowermost Eocene Oise amber, France (Insecta: Hymenoptera). Palaeoentomology, 2, 211-214. https://doi.org/10.11646/palaeoentomology.2.3.2

Falières, E. \& Nel, A. (2019c) The first representative of the extinct flat wasp subfamily Protopristocerinae (Insecta: Hymenoptera, Bethylidae). Palaeoentomology, 2, 322326.
https://doi.org/10.11646/palaeoentomology.2.4.4
Falières, E. \& Nel, A. (2020) First fossil of the extant flat wasp genus Dissomphalus Ashmead, 1893 (Hymenoptera: Bethylidae: Pristocerinae). Zoosystema, 42 (15), 207-213. https://doi.org/10.5252/zoosystema2020v42a15
Fedotova, Z.A. \& Perkovsky, E.E. (2009) New gall midges of the tribe Leptosynini (Diptera, Cecidomyiidae) from the Late Eocene ambers and the classification of the supertribe Heteropezidi. Paleontological Journal, 43 (9), 1101-1179. https://doi.org/10.1134/S0031030109090111
Fedotova, Z.A. \& Perkovsky, E.E. (2017) New genus and species of gall midges (Diptera, Cecidomyiidae, Porricondylinae, Holoneurini) from the Late Eocene amber of Olevsk (Zhitomir Region, Ukraine). Vestnik Zoologii, 51 (1), 23-30. https://doi.org/10.1515/vzoo-2017-0004

Goloboff, P.A. (1993) Character optimization and calculation of tree lengths. Cladistics, 9, 433-436.
https://doi.org/10.1111/j.1096-0031.1993.tb00236.x
Goloboff, P.A., Farris, J.S., Källersjö, M, Oxelman, B., Ramírez, M.J. \& Szumik, C.A. (2003) Improvements to resampling measures of group support. Cladistics, 19, 324332.
https://doi.org/10.1111/j.1096-0031.2003.tb00376.x
Goloboff, P.A., Farris, J.S. \& Nixon, K.C. (2008) TNT, a free program for phylogenetic analysis. Cladistics, 24, 774-786.
https://doi.org/10.1111/j.1096-0031.2008.00217.x
Gumovsky, A., Perkovsky, E. \& Rasnitsyn, A. (2018) Laurasian ancestors and "Gondwanan" descendants of Rotoitidae (Hymenoptera: Chalcidoidea): What a review of Late Cretaceous Baeomorpha revealed. Cretaceous Research, 84, 286322.
https://doi.org/10.1016/j.cretres.2017.10.027
Harris, R.A. (1979) A glossary of surface sculpturing. Occasional Papers in Entomology, 28, 1-31.
Hong, Y.C. (2002) Atlas of amber insects of China. Henan Scientific and Technological Publishing House, 394 pp.

Kimsey, L.S. \& Bohart, R.M. (1990) The chrysidid wasps of the world. Oxford Science Publications, New York, 652 pp.

Kirejtshuk A.G. \& Nel A. (2013) Current knowledge of Coleoptera (Insecta) from the Lowermost Eocene Oise amber. Insect Systematics \& Evolution, 44, 175-201. https://doi.org/10.1163/1876312X-04402007

Lanes, G.O. \& Azevedo, C.O. (2008) Phylogeny and Taxonomy of Sclerodermini (Hymenoptera, Bethylidae, Epyrinae). Insect Systematics and Evolution, 39, 55-86. https://doi.org/10.1163/187631208788784165

Lanes, G.O., Kawada, R., Azevedo, C.O. \& Brothers, D. (2020) Revisited morphology applied for Systematic of flat wasps (Hymenoptera, Bethylidae). Zootaxa, 4752 (1), 1-127.
https://doi.org/10.11646/zootaxa.4752.1.1
Legalov, A.A., Nazarenko, V.Y. \& Perkovsky, E.E. (2018) A new genus of fungus weevils (Coleoptera: Anthribidae) in Rovno amber. Fossil Record, 21, 207-212. https://doi.org/10.5194/fr-21-207-2018
Legalov, A.A., Nazarenko, V.Y. \& Perkovsky, E.E. (2019) New weevils (Coleoptera: Curculionidae) from Rovno Amber. Paleontological Journal, 53(10), 63-77. https://doi.org/10.1134/S0031030119100101

Lucena, D.A.A. \& Melo, G.A.R. (2018) Chrysidid wasps (Hymenoptera: Chrysididae) from Cretaceous Burmese amber: phylogenetic affinities and classification. Cretaceous Research, 89, 279-291.
https://doi.org/10.1016/j.cretres.2018.03.018
Martynova, K.V., Perkovsky, E.E., Olmi, M. \& Vasilenko, D.V. (2019) New records of Upper Eocene chrysidoid wasps (Hymenoptera: Chrysidoidea) from basins of Styr and Stokhod rivers (Rovno Amber). Paleontological Journal, 53(10), 998-1023. https://doi.org/10.1134/S0031030119100125

Melo, G.A.R. \& Lucena, D.A.A. (2019) \dagger Chrysobythidae, a new family of chrysidoid wasps from Cretaceous Burmese amber (Hymenoptera, Aculeata). Historical Biology, 1-13. https://doi.org/10.1080/08912963.2019.1570184
Nadein, K.S. \& Perkovsky, E.E. (2019) Small and common: the oldest tropical Chrysomelidae (Insecta: Coleoptera) from the lower Eocene Cambay amber of India. Alcheringa: An Australasian Journal of Palaeontology, 43 (4), 597-611
https://doi.org/10.1080/03115518.2019.1622780
Nel, A. \& Brasero N. (2010) Oise amber. In: Penney, D. (Ed.), Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp. 137-148.
Nel, A. \& Bourguet, E. (2006) Termite of the Early Eocene amber of France (Isoptera: Mastotermitidae, Kalotermitidae). Neues Jahrbuch fur Geologie und Paläontologie, 2006 (2), 101-115. https://doi.org/10.1127/njgpm/2006/2006/101

Nel, A., De Ploëg, G., Dejax, J., Dutheil, D., Franceschi, D., Gheerbrant, E., Godinot, M., Hervet, S., Menier, J.-J., Augé, M., Bignot, G., Cavagnetto, C., Duffaud, S., Gaudant, J., Hua, S., Jossang, A., Lapparent de Broin, F., Pozzi, J.-P., Paicheler, J.C., Bouchet, F. \& Rage, J.-C. (1999) An exceptional Sparnacian locality with plants, arthropods and vertebrates (Earliest Eocene, MP7): Le Quesnoy (Oise, France). Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science, 329, 65-72. https://doi.org/10.1016/S1251-8050(99)80229-8
Nixon, K. C. (2002) WinClada, version 1.00.08. Published by the author, Ithaca, New York.

Olmi, M., Rasnitsyn, A.P. \& Guglielmino, A. (2010) Revision of rock fossils of Dryinidae and Embolemidae (Hymenoptera: Chrysidoidea). Zootaxa, 2499, 21-38. https://doi.org/10.11646/zootaxa.2499.1.2

Olmi, M., Perkovsky, E. E., Martynova, K. V., Contarini, M., Bückle, C. \& Guglielmino, A. (2020) An important intermediate step in the evolution of pincer wasps: an extraordinary new type of chela from mid-Cretaceous Burmese amber (Hymenoptera, Dryinidae). Cretaceous Research, 104420. https://doi.org/10.1016/j.cretres.2020.104420

Peinado, J., Nel, A. \& Waller, A. (2006). A dryinid wasp in Early Eocene amber from the Paris Basin (Hymenoptera: Dryinidae). Zootaxa, 1168, 31-41. https://doi.org/10.11646/zootaxa.1168.1.3

Peters, R.S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Peterse, M., Lanfear, R., Diez, P.A., Heraty, J., Kjer, K.M., Klopfstein, S., Meier, R., Polidori, C., Schmitt, T., Liu, S., Zhou, X., Wappler, T., Rust, J., Misof, B. \& Niehuis, O. Evolutionary History of the Hymenoptera. Current Biology, 27, 1013-1018.
https://doi.org/10.1016/j.cub.2017.01.027
Perkovsky, E.E. (2016) A new species of Micromalthidae (Coleoptera) from the Rovno amber: 1. Adult morphology. Paleontological Journal, 50 (3), 293-296. https://doi.org/10.1134/S0031030116030047
Perkovsky, E.E. (2018) Only a half of species of Hymenoptera in Rovno amber is common with Baltic amber. Vestnik Zoologii, 52, 353-360. https://doi.org/10.2478/vzoo-2018-0037
Perkovsky, E.E. \& Fedotova, Z.A. (2016) Rovnodiplosis eduardi gen. et sp. nov., the first record of a fossil gall midge of the supertribe Mycodiplosidi (Diptera, Cecidomyioidea, Cecidomyiidae) in the Late Eocene of the Rovno amber. Paleontological Journal, 50, 1027-1032. https://doi.org/10.1134/S0031030116090124

Perkovsky, E.E. \& Wegierek, P. (2018 [2017]). Aphid-Buchnera-Ant symbiosis, or why are aphids rare in the tropics and very rare further south? Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 107 (2-3), 297-310. https://doi.org/10.1017/S1755691017000147

Perrichot, V., Engel, M.S., Nel, A., Ortega-Blanco, J., Delclòs, X., Soriano, C., Lohrmann, V. \& Tafforeau, P. (2014) "False ants" from the Cretaceous (Hymenoptera: Chrysidoidea: Falsiformicidae). Mitteilungen des Entomologischen Vereins Stuttgart, 49, 26.

Perrichot, V. \& Nel, A. (2008) Eocene bethylid wasps from French amber (Hymenoptera: Bethylidae). Neues Jahrbuch für Geologie und Paläontologie, 248 (1), 91-101. https://doi.org/10.1127/0077-7749/2008/0248-0091
Prentice, M.A., Poinar, G.O., Jr. \& Milki, R. (1996) Fossil scolebythids (Hymenoptera: Scolebythidae) from Lebanese and Dominican amber. Proceedings of the Entomological Society of Washington, 98 (4), 802-811.
Ramos, M.S. \& Azevedo, C.O. (2012) Revision of Eupsenella Westwood, 1874 (Hymenoptera, Bethylidae). Zootaxa, 3539, 1-80. https://doi.org/10.11646/zootaxa.3539.1.1
Ramos, M.S. \& Azevedo, C.O. (2018) Revisited phylogeny of Bethylinae (Hymenoptera, Bethylidae) solves basal polytomy. Insect Systematics and Evolution, 2018, 1-51. [online only] https://doi.org/10.1163/1876312X-00002202

Ramos, M.S., Perkovsky, E.E., Rasnitsyn, A.P. \& Azevedo, C.O. (2014) Revision of Bethylinae fossils (Hymenoptera: Bethylidae) from Baltic, Rovno and Oise amber, with comments on the Tertiary fauna of the subfamily. Neues Jahrbuch fur Geologie und Paläontologie, 271, 203-228.
https://doi.org/10.1127/0077-7749/2014/0385
Rasnitsyn, A.P. (1975) Hymenoptera Apocrita of Mesozoic. Transactions of the Palaeontological Institute, Akademii Nauk SSSR, 147, 1-134.

Rasnitsyn, A.P. (1990) Hymenopterans. Vespida. Akademiya Nauk SSSR, Trudy Paleontologicheskogo Instituta, 239, 177-205 (In Russian).
Rasnitsyn, A.P. (1996) New Early Cretaceous Embolemidae (Vespida = Hymenoptera: Chrysidoidea). Memoirs of the Entomological Society of Washington, 17, 183-187.

Ronquist, F. (1999) Phylogeny of the Hymenoptera (Insecta): The state of the art.
Zoologica Scripta, 28, 3-11.
https://doi.org/10.1046/j.1463-6409.1999.00019.x
Ronquist, F., Rasnitsyn, A.P., Roy, A., Eriksson, K. \& Lindgren, M. (1999) Phylogeny of the Hymenoptera: a cladistic reanalysis of Rasnitsyn's (1988) data. Zoologica Scripta, 28, 13-50.
https://doi.org/10.1046/j.1463-6409.1999.00023.x
Sokoloff, D.D, Ignatov, M.S., Remizowa, M.V, Nuraliev, M.S., Blagoderov, V., Garbout, A. \& Perkovsky, E.E. (2018) Staminate flower of Prunus s. l. (Rosaceae) from Eocene Rovno amber (Ukraine). Journal of Plant Research, 131, 925-943. https://doi.org/10.1007/s10265-018-1057-2

Terayama, M. (2003) Phylogenetic Systematics of the Family Bethylidae (Insecta:
Hymenoptera) Part I. Higher classification. Academic Reports of the Faculty of Engineering of Tokyo Polytechnic University, 26, 1-14.
Wang, B., Rust, J., Engel, M.S., Szwedo, J., Dutta, S., Nel, A., Fan, Y., Meng, F.W., Shi, G.L., Jarzembowski, E.A., Wappler, T., Stebner, F., Fang, Y., Mao, L.M., Zheng, D.R. \& Zhang, H.C. (2014) A diverse paleobiota in early Eocene Fushun amber from China. Current Biology, 24, 1606-1610. https://doi.org/10.1016/j.cub.2014.05.048

Zhang, Q., Rasnitsyn, A.P., Olmi, M., Martynova, K.V. \& Perkovsky, E.E. (2020) First scolebythid wasp (Hymenoptera: Chrysidoidea, Scolebythidae) in mid-Cretaceous Burmese amber. Palaeoentomology, 3 (1), 41-45.

APPENDIX 1. Character list.

1. Head, ratio LH/WH: (0) wider than long; (1) longer than wide; (2) as long as wide.
2. Head shape, lateral view: (0) oval; (1) rectangular; (2) triangular.
3. Number of antennomeres: (0) 12 ; (1) 13.
4. Torulus: (0) projected; (1) reduced.
5. Scape length: (0) short, \leq than $2 \times$ pedicel length; (1) long, $>$ than $2 \times$ pedicel length.
6. Scape apical width: (0) wider than base; (1) as wide as base.
7. Pedicel shape: (0) progressively widening apicad; (1) evenly wide.
8. Pedicel length: (0) wider than long; (1) about as long as wide; (2) longer than wide.
9. Flagellomere I length: (0) shorter than pedicel; (1) about as long as pedicel; (2) longer than pedicel.
10. Length of antenna: (0) long, reaching at least posterior half of dorsal pronotal area; (1) short, reaching at most anterior half of dorsal pronotal area.
11. Relative size of ventral tooth: (0) distinctly larger than others; (1) equally-sized.
12. Exposition of clypeal base, dorsal view: (0) covered by frons; (1) not covered by frons.
13. Median clypeal carina: (0) high, in lateral view; (1) short, in lateral view.
14. Number of maxillar palpomeres: (0) 6 ; (1) 5 ; (2) 4 ; (3) 3 ; (4) 2 ; (5) 1 .
15. Number of labial palpomeres: (0) 4 ; (1) 3 ; (2) 2 ; (3) 1 .
16. Eye: (0) multifaceted; (1) with very few facets.
17. Eye outline: (0) protuberant; (1) not protuberant.
18. Eye length, dorsal view: (0) long, $\mathrm{HE}>0.38 \times \mathrm{LH}$; (1) short, $\mathrm{HE}<0.33 \times \mathrm{LH}$.
19. Eye shape in lateral view: (0) elongate; (1) circular.
20. Eye setation: (0) scarce or nearly so; (1) abundant.
21. Ocelli: (0) present; (1) absent.
22. Position of posterior ocelli: (0) far from vertex crest, posterior ocelli distant from vertex crest at least DAO; (1) closed to vertex crest, posterior ocelli distant from vertex crest less than DAO.
23. Position of anterior margin of anterior ocellus: (0) posterior to supra-ocular line; (1) anterior to supra-ocular line.
24. Ventral profile of gena in lateral view: (0) curved; (1) angled.
25. Frontal line: (0) present; (1) absent.
26. Frontal line: (0) long, touching anterior ocellus; (1) short, not touching anterior ocellus.
27. Shape of dorsal pronotal area: (0) narrow anteriorly; (1) wide anteriorly.
28. Length of anterior region of pronotal collar: (0) long, pronotal collar more than $0.16 \times$ pronotal disc length, visible dorsally; (1) short, pronotal collar less than $0.14 \times$ pronotal disc length, not visible dorsally.
29. Length of dorsal pronotal area, dorsal view: (0) short, when median width more than median length; (1) median-sized, when median width and length are equally-sized; (2) elongate, when median width less than median length.
30. Humeral angle of dorsal pronotal area, dorsal view: (0) rounded; (1) angulate.
31. Posterior margin of dorsal pronotal area, dorsal view: (0) incurved; (1) outcurved; (2) almost straight.
32. Prosternum length, maximum length/maximum width ratio, ventral view: (0) long, at least $1.5 \times$ longer than wide; (1) short, at most as long as wide.
33. Mesoscutum: (0) anteromesoscutum and mesoscutellum undivided; (1) anteromesoscutum and mesoscutellum clearly outlined.
34. Length of anteromesoscutum: (0) long, when longer than dorsal pronotal area; (1) medium-sized, as long as half of dorsal pronotal area; (2) short, when shorter than half of dorsal pronotal area.
35. Notaulus: (0) present; (1) absent.
36. Parapsidal signum: (0) present; (1) absent.
37. Length of mesoscutellum: (0) long, at least $0.60 \times$ longer than basal width; (1) short, less than $0.50 \times$ basal width.
38. Mesoscutum-mesoscutellar sulcus: (0) present; (1) absent.
39. Mesopleuron profile, dorsal view: (0) flat; (1) bulging.
40. Tegula: (0) present; (1) absent.
41. Aptery: (0) present; (1) absent.
42. Microptery: (0) present; (1) absent.
43. Brachyptery: (0) present; (1) absent.
44. Macroptery: (0) present; (1) absent.
45. Costal cell (C) of forewing: (0) present; (1) absent.
46. Costal cell (C) of forewing, size: (0) wide; (1) narrow.
47. Radial cell (R) of forewing: (0) closed; (1) opened.
48. First cubital cell $(1 \mathrm{Cu})$ of forewing: (0) opened; (1) closed.
49. First cubital cell (1 Cu) of forewing, size: (0) as long as Radial cell; (1) shorter than Radial cell.
50. Second cubital cell (2 Cu) of forewing: (0) opened; (1) closed.
51. First medial cell (1M) of forewing: (0) closed; (1) opened.
52. First radial 1 cell (1R1) of forewing: (0) closed; (1) opened.
53. Rs+M vein of forewing: (0) present; (1) absent.
54. Rs+M vein of forewing, shape: (0) angled; (1) straight.
55. Second radial 1 cell (2R1) of forewing: (0) closed; (1) opened.
56. Second radial 1 cell (2R1) of forewing: (0) lanceolate; (1) subcircular.
57. Third abscissa of Cu of forewing: (0) present; (1) absent.
58. Jugal lobe of hind wing: (0) large; (1) reduced.
59. Protrochanter insertion at coxa: (0) medially; (1) apically.
60. Profemur width, lateral view: (0) wide, more than $0.6 \times$ as wide as long; (1) narrow, less than $0.45 \times$ as wide as long.
61. Tarsal claws: (0) simple; (1) bifid; (2) trifid.
62. Claw shape, frontal or lateral views: (0) curved; (1) angled.
63. Metanotum median length: (0) developed; (1) reduced.
64. Metapectal-propodeal complex: (0) long, longer than wide; (1) short, wider than long.
65. Propodeal spiracle position: (0) on lateral surface of metapectal-propodeal complex; (1) on dorsal surface of metapectal-propodeal complex.
66. Spine of posterior corner of metapectal-propodeal complex: (0) present; (1) absent.
67. Petiole: (0) root and body fused; (1) root and body divided.
68. Metasomal segment II: (0) as long as other segments; (1) distinctly longer than other segments.
69. Dimorphism sexual: (0) strong; (1) absent or nearly so.

APPENDIX 2. Data matrix of 69 characters used in the cladistic analyses.

| Taxa/Characters | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| :---: |
| Clystopsenella | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| Bethylus | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Eupsenella | 0 | 2 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Lytopsenella | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Sierola | 2 | 2 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Bakeriella | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Epyris | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Holepyris | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| \dagger Elektroepyris | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| \dagger Cretabythus | 2 | 0 | 1 | $?$ | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | $?$ | 0 | 0 | 0 | 0 | $?$ | 0 | 1 | $?$ |
| \dagger Holopsenella | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| \dagger Lancepyris | 2 | 0 | 1 | 0 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Pycnomesitius | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| Sulcomesitius | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Apenesia | $0 / 2$ | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | $0 / 1$ | 0 | 0 | 0 | 0 | $0 / 1$ | 1 | 0 |
| Dissomphalus | $1 / 2$ | 0 | 1 | 0 | 1 | 0 | 0 | 1 | $0 / 1$ | $0 / 1$ | 0 | 1 | 1 | 0 | 1 | $0 / 1$ | 0 | 0 | 0 | $0 / 1$ | $0 / 1$ | 0 | 0 |
| Pristocera | $1 / 2$ | 0 | 1 | 0 | 1 | 0 | 0 | 1 | $1 / 2$ | 1 | 0 | 1 | 0 | 0 | 1 | $0 / 1$ | 0 | 0 | 0 | 0 | $0 / 1$ | 0 | 1 |
| Pseudisobrachium | $1 / 2$ | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | $0 / 1$ | 0 | 1 | $0 / 1$ | 0 | 1 | $0 / 1$ | 0 | 0 | 0 | $0 / 1$ | $0 / 1$ | 0 | 0 |
| \dagger Gynopteron | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Allobethylus | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Cephalonomia | 2 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | $1 / 2$ | $2 / 3$ | 0 | 1 | 1 | 1 | 0 | $0 / 1$ | 0 | 0 |
| Sclerodermus | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | $0 / 1$ | 0 | 0 |

	4			5										6	6										
Taxa/Characters	7	8	9	0	1	2	3	4	5	6	7	8	9		0	1	2	3	4	5	6	7	8	9	
Clystopsenella	0	1	0	0	0	0	0	1	0	0	1	0	1		0	0	0	1	1	0	1	1	0	1	
Bethylus	0	1	1	0	1	1	0	0	1	-	1	0	0	0	0	1	1	1	1	1	1	1	0	1	
Eupsenella	0	1	1	0	0	0	0	0	0	1	1	0	0		0	1	1	1	1	1	1	1	0	1	
Lytopsenella	0	1	1	0	0	0	0	0	0	1	1	0	0		0	1	0	1	1	1	1	1	0	1	
Sierola	0	1	1	0	0	1	0	0	0	1	1	0	0		0	1	1	1	1	1	1	1	0	1	
Bakeriella	0	1	1	0	1	1	1	-	1	-	1	0	0	0	0	1	0	1	0	1	1	0	0	1	
Epyris	0	1	1	0	1	1	1	-	1	-	1	0	0		0	1	0	1	0	1	1	0	0	1	
Holepyris	0	1	1	0	1	1	1	-	1	-	1	0	0		0	1	0	1	0	1	1	0	0	1	
\dagger Elektroepyris	0	1	0	0	1	1	1	-	1	-	0	0	0		0	?	0	1	1	?	1	?	0	?	
\dagger Cretabythus	0	1	0	1	0	0	0	1	0	0	1	?	0		1	?	0	1	1	?	1	1	0	?	
\dagger Holopsenella	0	1	0	1	0	0	0	1	0	0	1	?	0		0	1	0	1	1	?	1	1	0	?	
\dagger Lancepyris	0	1	0	0	1	1	0	1	0	0	1	0	0		0	1	0	1	1	?	1	1	0	?	
Pycnomesitius	0	1	0	0	1	1	1	-	1	-	1	0	0		0	1	0	1	1	1	0	1	1	1	
Sulcomesitius	0	1	0	0	1	1	1	-	1	-	1	0	0		1	1	0	1	1	1	0	1	1	1	
Apenesia	0	1	0	0	1	1	1	-	1	-	1	0	0		1	1	0	0/1	0	0	1	1	0	0	
Dissomphalus	0	1	0	0	1	1	1	-	1	-	1	0	0		1	1	0	0/1	0	0	1	1	0	0	
Pristocera	0	1	0	0	1	1	1	-	1	-	1	0	0		1	0/1	0	0/1	0	0	1	1	0	0	
Pseudisobrachium	0	1	0	0	1	1	1	-	1	-	1	0	0		1	1	0	0/1	0	0/1	1	1	0	0	
\dagger Gynopteron	0	1	0	0	1	1	1	-	1	-	1	?	0		0	?	?	0	0	?	0	?	0	?	
Allobethylus	0	1	0	0	1	1	1	-	1	-	1	0	0		1	0	0	1	1	1	1	1	0	?	
Cephalonomia	0/1	0	-	0	1	1	1	-	1	-	1	1	0		1	0	0	1	1	0	1	1	0	1	
Sclerodermus	0	0	-	0	1	1	1	-	1	-	1	1	0		0	0	0	1	1	0	1	1	0		1

Synopsis of the fossil flat wasps Epyrinae (Hymenoptera, Bethylidae), with description of three new genera and ten new species ${ }^{3}$

Abstract

The subfamily Epyrinae is the most common in the bethylid fossil record. Its geological history ranges from the Eocene to the Pleistocene and it is the only subfamily that has no records in the Cretaceous. Here we revise, diagnose, and illustrate known epyrine fossil wasps. A new genus is proposed, \dagger Gloxinius Colombo \& Azevedo gen. nov., to contain the species \dagger Gloxinius bifossatus (Brues, 1939) comb. nov., transferred from Epyris Westwood, 1832. The species †Chlorepyris concaptus (Brues, 1933) comb. nov., \dagger Chlorepyris invelatus (Brues, 1933) comb. nov., and \dagger Chlorepyris setosus (Brues, 1933) comb. nov. are transferred from Epyris Westwood, 1832 to Chlorepyris Kieffer, 1913. Three species are transferred from Epyris Westwood, 1832 to Pristocerinae: \dagger Merascylla Colombo \& Azevedo gen. nov. is proposed to contain \dagger Merascylla atavella (Cockerell, 1920) comb. nov. \dagger Pseudisobrachium elatus (Brues, 1933) comb. nov., and \dagger Pseudisobrachium inhabilis (Brues, 1923) comb. nov. are transferred to Pseudisobrachium Kieffer, 1904. One species is transferred from Epyris Westwood, 1832 to Scleroderminae: \dagger Mael Colombo \& Azevedo gen. nov. is proposed to contain \dagger Mael longiceps (Brues, 1923) comb. nov. Ten new species are described from Baltic and Rovno ambers: †Chlorepyris deploegi Colombo \& Azevedo sp. nov., †Chlorepyris engeli Colombo \& Azevedo sp. nov., †Chlorepyris hopei Colombo \& Azevedo sp. nov., \dagger Chlorepyris jouaulti Colombo \& Azevedo sp. nov., \uparrow Chlorepyris mckellari Colombo \& Azevedo sp. nov., \dagger Chlorepyris meunieri Colombo \& Azevedo sp. nov., \dagger Chlorepyris neli Colombo \& Azevedo sp. nov., †Chlorepyris perrichoti Colombo \& Azevedo sp. nov., \dagger Holepyris rasnitsyni Colombo \& Azevedo sp. nov., and \dagger Holepyris terayamai Colombo \& Azevedo sp. nov. The species \uparrow Laelius nudipennis Brues, 1933 is no longer classified as Bethylidae and it is transferred to Platygastroidea incertae sedis. Eighty-one fossil species are now recognised in Bethylidae, with 30 belonging to Epyrinae and distributed within six genera. A key for fossil epyrines is provided.

Keywords: Aculeata, amber; Chrysidoidea; Platygastroidea; revisionary Systematics.

[^2]
INTRODUCTION

Epyrinae have a complex taxonomic history. The classification of this group has varied from the tribe (Kieffer 1914; Evans 1964) to the subfamily level (Berland 1928; Alencar \& Azevedo 2013). Currently, it is proposed as a subfamily based on phylogenetic analyses of morphological data (Alencar \& Azevedo 2013) and recovered as a monophyletic group by molecular (Carr et al. 2011).

Epyrinae are the second most diverse subfamily in Bethylidae, with c. 930 described species worldwide distributed into 12 valid genera (Azevedo et al. 2018; Colombo et al. 2020b). They are also the most diverse subfamily in terms of known fossil species (see Table 1 in Azevedo et al. 2018, p. 9-10). The status and relationships between the genera were reviewed by Alencar and Azevedo (2013) and we adopt their subfamily concept, which is similar to the one proposed by Evans (1964) for Epyrini.

Epyrinae represent the first described fossils of flat wasps. Epyris staphylinoides (Hope, 1837) was described by Hope (1837) based on Pleistocene copal resin and "animé" gum from Zanzibar or Madagascar copal. Since then, the epyrine fossil record has been considerably increased, currently encompassing 25 species. Most fossil species of Epyrinae, 14 in total, were described by Brues (1910, 1923, 1933, 1939). Of these, 13 species were found in the Priabonian Baltic amber (succinite), and one was based on exoskeleton impression from the late Priabonian lacustrine, shale in the Florissant Formation of Colorado, U.S.A. (Brues 1910).

The fossil species of Epyrinae are distributed into six genera, of which five have extant species (Anisepyris Kieffer, 1905; Chlorepyris Kieffer, 1913; Epyris Westwood, 1832; Holepyris Kieffer, 1904; and Laelius Ashmead, 1893), while a sixth is based exclusively on fossils (\dagger Gloxinius Colombo \& Azevedo gen. nov.). Among these genera, Chlorepyris Kieffer, 1913 is the most diverse, with twelve fossil species, followed by Holepyris Kieffer, 1904, with seven species.

Despite changes in the taxonomy of the family (Azevedo et al. 2018), the classification and revision of diagnostic characters in the epyrine fossil records have never been challenged. This study aims to revise all previously described fossils of epyrine wasps, providing redescriptions and illustrations. We describe and illustrate three new genera and ten new species and provide the first key for all fossil species of Epyrinae. This study represents the first comprehensive taxonomic revision of fossil Epyrinae.

MATERIAL AND METHODS

The new pieces in this study are from Baltic and Rovno ambers. The Rovno amber pieces were mined from the Pugach quarry, Klesiv, Rivne Oblast (Klesov, Rovno region) except SIZK UA-68, which was mined in either the Pugach or Volnoje quarry, Dubrovytsia, Rivne Oblast, Ukraine (Dubrovitsa, Rovno region) and obtained from the state-owned Ukramber factory (Rovno). All Rovno amber material belongs to Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine in Kiev (SIZK), as assigned in the text. The Baltic amber pieces, described here for the first time, were extracted from an amber mine in Yantarny (Kaliningrad Oblast, Russia), in the Prussian Formation dating to the upper Eocene, and belong to the Paleontological Institute, Russian Academy of Sciences (PIN).

Photos of holotypes were provided by curators from the following collections: American Museum of Natural History, U.S.A. (AMNH), Los Angeles County Museum of Natural History, U.S.A. (LACM), Museum of Comparative Zoology, U.S.A. (MCZ), Muséum National d'Histoire Naturelle, France (MNHN), the Natural History Museum, United Kingdom (NHM), Oxford University Museum of Natural History (OUMNH), Schmalhausen Institute of Zoology of National Academy of Sciences, Ukraine (SIZK), and the Forschungsinstitut und Naturmuseum Senckenberg, Germany (SMF). Some material, which was said to be deposited in the Evers, Königsberg and Strong collections is unavailable and probably lost. In this study, we examine their records and original descriptions, which we discuss in the text. We tried to find all types assigned to be deposited in the Geological Institution and Amber Collection of the University of Königsberg. Nevertheless, because of World War II, parts of the collection of Baltic Amber from the Кенигсбергский университет (University of Königsberg) were transferred to the Volpriehausen potash mine near Göttingen (Gehler et al. 2018). The former Königsberg Amber Collection (Baltic amber) has now been incorporated into Göttingen's Geoscience Museum (Reich et al. 2015). When contacted, the curators of Göttingen's amber collections confirmed that the types of Bethylidae from Königsberg must be considered to have been lost during World War II.

The stratigraphic distribution of the fossils follows Iturralde-Vinent \& MacPhee (1996) for Dominican amber from the Miocene, Cohen et al. (2020) for Rovno amber from the Priabonian upper Eocene and for Baltic amber from the Priabonian upper Eocene, Nel
\& Brasero (2010) for Oise amber from Ypresian lowermost Eocene, Prothero \& Sanchez (2004) for Florissant Formation from the Priabonian upper Eocene, Ross \& Self (2014) for the Bouldnor Formation from the Priabonian upper Eocene, Petrulevičius et al. (2011) for the Rott Formation from the Chattian upper Oligocene, Geirnaert (2002) for Zanzibar copal from the Pleistocene and Shi et al. (2012) for Burmese amber from the Cenomanian mid-Cretaceous.

The terms applied to the integument sculpture follow Harris (1979) and those applied to general morphology follow Lanes et al. (2020).

The generic names are an allusion to the characters of the Japanese fantasy manga The Seven Deadly Sins (Nanatsu no Taizai) written and illustrated by Nakaba Suzuki, as specified in the etymologies. All new species are named after taxonomists who have described at least one fossil species of flat wasps, and whose names have never previously been used for any species of this family.

The key proposed here is modified from Azevedo et al. (2018). The species \dagger Epyris deletus Brues, 1910, \dagger Epyris rectinervis (Cockerell, 1921), and \dagger Epyris tenellus Statz, 1938 were excluded from the key because of their poorly preserved fossils, which lack reliable characteristics to key them.

The drawings were made with a camera lucida adapted to a Leica DM 2500 microscope, then scanned into Adobe Illustrator CS6 version 23.0.3. The images were taken under a Leica Z16 APO stereomicroscope coupled to a Leica DFC 2 video camera by Leica Microsystems (Switzerland) using a modular dome illumination system per Kawada \& Buffington (2016). Helicon Focus was used to combine the images obtained at different focal heights (HeliconSoft).

RESULTS

Systematic palaeontology

Family Bethylidae Haliday, 1839
Subfamily Epyrinae Kieffer, 1914
Genus Anisepyris Kieffer, 1905
\dagger Anisepyris gradatus Sorg, 1988
Figure 1

Holotype. Female, piece code SMF-Be 559, deposited in the SMF collection.
Diagnosis (based on the original description and illustration provided by the curator). Body length $\sim 6.0 \mathrm{~mm}$. Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma castaneous; wings hyaline. Head as long as wide and subquadrate, not globoid in lateral view. Mandible apparently tetradentate. Clypeus with rounded median lobe, visible dorsally, lateral lobe reduced. Median clypeal carina outlined, higher than frons. Antenna short, not surpassing posterior margin of mesoscutoscutellar suture. Flagellomere as long as wide; flagellar pubescence appressed; pedicel as long as flagellomere I, rectangular, apex dilated. Eye located far from mandibular base, setose, bulging. Frons coriaceous, punctures large. Frontal line not visible. Frontal angle of ocellar triangle acute. Anterior ocellus anterior to supra-ocular line. Dorsal pronotal area wider than long; transverse pronotal carina complete; posterior pronotal sulcus present, bearing sequence of foveae. Posterior mesofurcal pit drop-shaped. Metafurcal pit not visible. Notauli present, narrow, converging posteriorly. Parapsidal signum shorter than notaulus. Fore wing with four distal flexion lines; 2 r -rs\&Rs vein tubular, long, well pigmented, straight, not converging posteriorly to R1 vein. Pterostigma subcircular. Mesoscutum-mesoscutellar sulcus present, incurved medially. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae absent. Mesotibia without spines. Metasoma polished. Male unknown.

Remarks. This species was proposed by Sorg (1988, Figs. 23a, 23b, and 41a) and is hitherto the sole fossil species known in Anisepyris Kieffer, 1905. Barbosa \& Azevedo (2018, p. 132) redescribed it and allocated it into the cupreolus species-group. This species, however, is missing in their key for females of the cupreolus species-group (p. 111). Moreover, \dagger A. gradatus Sorg, 1988 keys out to the amazonicus species-group (Barbosa \& Azevedo 2018, p. 12) since it has tetradentate mandibles (see Fig. 1B and Sorg 1988, Fig. 23a, p. 90) with the distal teeth not equally sized and the posterior mesopleural foveae absent.
\dagger Anisepyris gradatus Sorg, 1988 is morphologically similar to A. beori Barbosa \& Azevedo, 2018, and A. beori Barbosa \& Azevedo, 2018 and A. analis (Cresson, 1872) are morphologically similar (Barbosa \& Azevedo 2018, p. 45). Indeed, †A. gradatus Sorg, 1988, A. beori Barbosa \& Azevedo, 2018 and A. analis (Cresson, 1872) are morphologically similar in sharing tetradentate mandibles; a median clypeal carina; very
long scapes, and pedicels as long as flagellomere I, with appressed flagellar pubescence; extremely large and setose eyes; a dorsal pronotal area wider than long, with the transverse pronotal carina complete and the posterior pronotal sulcus present, with a sequence of foveae; narrow notauli, converging posteriorly; fore wings with four distal flexion lines, as well as a tubular, long, well pigmented and straight 2 r -rs\&Rs vein, not converging posteriorly to the R1 vein; non-spinose mesotibiae.

The main differences between these three species are that the median clypeal lobe has a median carina shorter than the frons in A. analis (Cresson, 1872), and higher than the frons in \dagger A. gradatus Sorg, 1988 and A. beori Barbosa \& Azevedo, 2018 when seen in the lateral view; and the pterostigma is elongated in A. analis (Cresson, 1872) and subcircular in \dagger A. gradatus Sorg, 1988 and A. beori Barbosa \& Azevedo, 2018. Finally, \dagger A. gradatus Sorg, 1988 occurred 15-20 million years ago, which, given the typical duration of insect species, adds further support to the conclusion that \dagger A. gradatus Sorg, 1988 is a valid species.

Locality and age. Dominican amber, Burdigalian/Langhian terrestrial amber in the Dominican Republic. Miocene, 15 to 20 million years ago.

Genus Chlorepyris Kieffer, 1913
\dagger Chlorepyris deploegi Colombo \& Azevedo sp. nov.
Figure 2
Derivation of name. This species is named after Gael De Ploëg, who described a fossil bethylid species.

Holotype. Male, piece code SIZK K-364. The sample was found in the piece and weighed 3.1 grams after primary treatment. Deposited in the SIZK collection.

Diagnosis. Body length $\sim 4.7 \mathrm{~mm}$. Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma dark castaneous; wings hyaline. Head as long as wide and subcircular, not globoid in lateral view. Mandible tetradentate. Clypeus with median lobe angular, lateral lobe reduced. Antenna long, surpassing posterior margin of metapectal-propodeal complex. Flagellomere longer than wide; flagellar pubescence erect; pedicel longer than flagellomere I, rectangular. Eye located far from mandibular base, glabrous, bulging. Frons weakly coriaceous, punctures small, very sparse. Frontal line not visible. Frontal angle of ocellar triangle obtuse. Anterior ocellus posterior to supra-ocular line. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior
pronotal sulcus absent. Posterior mesofurcal pit elongated. Metafurcal pit apparently circular. Notauli present, wide, converging posteriorly. Parapsidal signum shorter than notaulus. Fore wing with four distal flexion lines; $2 \mathrm{r}-\mathrm{rs} \& \mathrm{Rs}$ vein tubular, long, well pigmented, angled, not converging posteriorly to R1 vein. Pterostigma rectangular. Mesopleuron with subalar impression connected with mesopleural suture, trabeculate; mesopleural suture connected with mesopleural epicoxal sulcus; lower mesopleural foveae delimited, not connected with mesopleural suture; transepisternal line present; mesopleural pit evident. Mesoscutum-mesoscutellar sulcus present, weakly incurved medially, wide, foveae indistinct. Metapectal-propodeal disc as long as wide; poorly preserved. Mesotibia without spines. Metasoma polished, weakly setose. Genitalia: paramere with apex straight, not arched inward, dorsal margin straight; basiparamere not visible; basivolsella not visible; aedeagus bottle-shaped, poorly preserved. Female unknown.

Remarks. This species is similar to \dagger Chlorepyris mckellari sp. nov. in the presence of mandibles with four teeth, angular median clypeal lobe, pedicel longer than flagellomere I, eyes far from mandibular bases, anterior ocellus positioned posterior to supra-ocular line, and notauli. However, \dagger C. deploegi sp. nov. has long antennae, surpassing the posterior margin of the metapectal-propodeal complex, as well as a dorsal pronotal area as long as wide, and fore wings with the 2 r -rs\&Rs vein angled. Conversely, \dagger C. mckellari sp. nov. has short antennae, not surpassing the posterior margin of the mesoscuto-scutellar suture, a dorsal pronotal area longer than wide, and fore wings with the 2 r -rs\&Rs vein curved.

Locality and age. Klesiv, Rovno amber, Ukraine. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

\dagger Chlorepyris concaptus (Brues, 1933)

Figure 3
Holotype. Female, piece without code, supposed to be deposited in the Königsberg collection, lost (see Methods section).

Diagnosis (based on original description and illustration). Body length 3.6 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma black or dark castaneous; wings hyaline. Head as long as wide and subquadrate, not globoid in lateral view. Mandible tetradentate. Clypeus not visible. Antenna mid-sized, not surpassing posterior margin of metapectal-propodeal complex. Flagellomeres as long as wide; flagellar pubescence not visible; pedicel as long as flagellomere I, apex dilated. Eye
apparently located far from mandibular base, glabrous, bulging. Frons weakly coriaceous. Frontal line not visible. Frontal angle of ocellar triangle acute. Anterior ocellus anterior to supra-ocular line. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus absent. Parapsidal signum present. Fore wing with distal flexion lines not visible; 2 r -rs\&Rs vein tubular, long, well pigmented, curved, not converging posteriorly to R1 vein. Pterostigma rectangular. Mesoscutum-mesoscutellar sulcus present, incurved medially. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished, setose. Male unknown.

Remarks. This species was originally placed in Isobrachium Förster, 1856 and later transferred to Epyris Westwood, 1832 by Azevedo et al. (2018). Brues (1933, p. 138-139) provided a detailed description of the holotype, as well as a drawing (Pl. 12, Fig. 77). He described the species as having the 'scutellum with a very small fovea at each side, connected by a narrow groove that bends sharply backward at each end'. He is referring to the presence of a mesoscutum-mesoscutellar sulcus, which is absent in Epyris Westwood, 1832. Among the extant genera of Epyrinae, only Anisepyris Kieffer, 1905 and Chlorepyris Kieffer, 1913 have a mesoscutum-mesoscutellar sulcus, which resembles the shape mentioned by Brues. We note that other characters support the attribution of this species to Chlorepyris Kieffer, 1913, including glabrous eyes, an ecarinate dorsal pronotal area without angulate anterior corners, and fore wings with $2 \mathrm{r}-\mathrm{rs} \& R \mathrm{~s}$ present as a tubular vein.

The original description of this species was based on one specimen, so that no other specimen is candidate to be lectotype. Besides, we were not able to find any additional material that could be used as neotype. Given that the original description of $\dagger C$. concaptus (Brues, 1933) does not provide enough information to propose any nomenclatural act, its taxonomic identity is uncertain, and this species should be omitted from phylogenetic timecalibration analysis (see Discussion section).

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

\dagger Chlorepyris engeli Colombo \& Azevedo sp. nov.

Figure 4

Derivation of name. This species is named after Michael Engel, who described various bethylid fossil species, genera, and subfamilies.

Holotype. female, piece code PIN 964/122. Deposited in the PIN collection.
Diagnosis. Body length $\sim 3.6 \mathrm{~mm}$. Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma light to dark castaneous; wings hyaline. Head as long as wide and subquadrate, not globoid in lateral view. Mandible with dorso-apical margin denticulate. Clypeus with median lobe apparently trapezoidal, lateral lobe reduced. Median clypeal carina well delimited, higher than frons, in lateral view. Antenna short, not surpassing posterior margin of mesoscuto-scutellar suture. Flagellomeres as long as wide; flagellar pubescence appressed; pedicel longer than flagellomere I, rectangular in dorsal view, apex dilated. Eye located far from mandibular base, glabrous, flat. Frons coriaceous, punctures absent. Frontal line narrow. Frontal angle of ocellar triangle obtuse. Anterior ocellus posterior to supra-ocular line. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus apparently absent. Parapsidal signum present. Fore wing with three distal flexion lines; 2 r -rs\&Rs vein tubular, long, well pigmented, curved, not converging posteriorly to R1 vein. Pterostigma rectangular. Mesoscutummesoscutellar sulcus present, strongly incurved medially, inconspicuous, circular foveae distinct. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished.

Male unknown.
Remarks. Chlorepyris engeli is distinguished from its fossil congeners by its mandibles with denticulate dorso-apical margins and its mesoscutum-mesoscutellar sulcus, which is strongly incurved medially.

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.
\dagger Chlorepyris gallicus (Perrichot \& Nel, 2008)
Figure 5
Holotype. Male, piece code MNHN.F.A30297, deposited in the MNHN collection.
Diagnosis (based on original description and new illustration provided by the curator). Body length 1.3 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex,
petiole, antenna, and metasoma castaneous; wings hyaline. Head as long as wide and subquadrate, not globoid in lateral view. Mandibular teeth not visible. Clypeus with rounded median lobe, weakly visible dorsally, lateral lobe reduced. Median clypeal carina outlined, shorter than frons. Antenna long, surpassing posterior margin of metapectalpropodeal complex. Flagellomeres as long as wide; flagellar pubescence erect; pedicel as long as flagellomere I, rectangular. Eye located far from mandibular base, glabrous, bulging. Frons weakly coriaceous, punctures small, very sparse. Frontal line not visible. Frontal angle of ocellar triangle obtuse. Anterior ocellus posterior to supra-ocular line. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit drop-shaped. Metafurcal pit not visible. Notaulus apparently present, incomplete posteriorly. Parapsidal signum shorter than notaulus. Fore wing with distal flexion lines not visible; 2r-rs\&Rs vein tubular, long, well pigmented, curved, not converging posteriorly to R1 vein. Pterostigma rectangular. Mesoscutummesoscutellar sulcus present, incurved medially. Metapectal-propodeal disc longer than wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae not visible. Mesotibia without spines. Metasoma polished, setose. Genitalia not visible. Female unknown.

Remarks. This species was originally allocated in Rhabdepyris Kieffer, 1904 (Perrichot \& Nel 2008) and was transferred to Chlorepyris Kieffer, 1913 by Azevedo et al. (2018). Chlorepyris gallicus (Perrichot \& Nel, 2008) has glabrous eyes. Moreover, the male has antennae with a rather long flagellomere I, which is well separated from flagellomere II (Perrichot \& Nel 2008), and the mesoscutum-mesoscutellar sulcus is present (absent in Epyris Westwood, 1832). These characteristics are diagnostic for Chlorepyris Kieffer, 1913 (see Azevedo et al. 2018).

Locality and age. Le Quesnoy, in Chevrières, Oise Department, France. Ypresian, 53 million years ago, lowermost Eocene.

\dagger Chlorepyris hopei Colombo \& Azevedo sp. nov.

Figure 6
Derivation of name. This species is named after Frederick William Hope, who described the first fossil bethylid species.
Holotype. Female, piece code PIN 964/118. Deposited in the PIN collection.

Diagnosis. Body length $\sim 2.3 \mathrm{~mm}$. Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma dark castaneous; wings hyaline. Head as long as wide and subcircular, not globoid in lateral view. Mandible not visible. Clypeus not visible. Antenna short, not surpassing posterior margin of mesoscuto-scutellar suture. Flagellomeres as long as wide; flagellar pubescence appressed; pedicel longer than flagellomere I, rectangular. Eye located far from mandibular base, glabrous, bulging. Frons weakly coriaceous, punctures small, very sparse. Frontal line not visible. Frontal angle of ocellar triangle acute. Anterior ocellus posterior to supra-ocular line. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus absent. Parapsidal signum not visible. Fore wing apparently with four distal flexion lines; 2r-rs\&Rs vein tubular, long, weakly pigmented, curved, not converging posteriorly to R1 vein. Pterostigma subcircular. Mesopleuron not visible. Mesoscutum-mesoscutellar sulcus present, weakly incurved medially, wide, foveae distinct. Metapectal-propodeal disc as long as wide; poorly visible. Mesotibia without spines. Metasoma polished. Male unknown.

Remarks. This species is similar to †Chlorepyris invelatus (Brues, 1933) in sharing a pedicel longer than flagellomere I, lacking notauli, possessing fore wings with 2 r -rs\&Rs present as a tubular, long and curved vein, and possessing a mesoscutum-mesoscutellar sulcus that is incurved medially. However, \dagger C. hopei sp. nov. has the anterior ocellus positioned posterior to the supra-ocular line and its dorsal pronotal area is as long as it is wide, whereas the anterior ocellus of $\dagger C$. invelatus (Brues, 1933) is positioned anterior to the supra-ocular line and the dorsal pronotal area is longer than it is wide.

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.
\dagger Chlorepyris invelatus (Brues, 1933) comb. nov.
Holotype. Female, piece without code, supposed to be deposited in the Königsberg collection, lost (see Methods section).

Diagnosis (based on original description). Body length 4.0 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma black or dark castaneous; wings hyaline. Head as long as wide, not globoid in lateral view. Mandible not visible. Clypeus not visible. Flagellomeres longer than wide; flagellar pubescence not
visible; pedicel longer than flagellomere I. Eye of moderate size. Frons weakly coriaceous. Frontal line not visible. Frontal angle of ocellar triangle probably acute. Anterior ocellus situated anterior to supra-ocular line. Dorsal pronotal area longer than wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus absent. Parapsidal signum present. Fore wing with distal flexion lines not visible and $2 \mathrm{r}-\mathrm{r} \&$ Rs vein present. Pterostigma small. Mesoscutum-mesoscutellar sulcus present, straight medially. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished, setose. Male unknown.

Remarks. This species was originally placed in Isobrachium Förster, 1856. Azevedo et al. (2018) synonymised Isobrachium Förster, 1856 with Epyris Westwood, 1832 and transferred E. invelatus (Brues, 1933) to Epyris Westwood, 1832. Brues (1933, p. 139) provided a detailed description of the holotype, though unfortunately without drawings. He described the species as having a 'scutellum with a pair of small, deeply impressed foveae at base, connected by a straight transverse furrow'. Therefore, we conclude that this species does not belong to Epyris Westwood, 1832 due to the presence of the mesoscutummesoscutellar sulcus, uncommon in the latter genus. Moreover, Brues (1933) described the species as having a body covered with tiny-polished punctations, which support its classification as Chlorepyris Kieffer, 1913.

The original description of this species was based on three specimens, but they are all lost, so that no other specimen is candidate to be lectotype. Besides, we were not able to find any additional material that could be used as neotype. Given that the original description of $\dagger C$. invelatus (Brues, 1933) does not provide enough information to propose any nomenclatural act, its taxonomic identity is uncertain, and this species should be omitted from phylogenetic time-calibration analysis (see Discussion section).

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.
\dagger Chlorepyris jouaulti Colombo \& Azevedo sp. nov.
Figure 7
Derivation of name. This species is named after Corentin Jouault, who described various bethylid fossil species and genera.

Holotype. Male, piece code SIZK K-7725: a complete flat wasp embedded in a amber piece; air bubbles present, over the mesosoma and metasoma. The sample was cut from a clear amber piece and weighed 26.65 grams after primary treatment (Perkovsky et al. 2012). Deposited in the SIZK collection.

Syninclusions. SIZK K-7720 Ceratopogonidae [female of Ceratopogon Meigen, 1803]; SIZK K-7721 Formicidae [worker of Lasius schiefferdeckeri Mayr, 1868]; SIZK K-7722 Thripidae [Praedendrothrips avus Priesner, 1924, see Shmakov \& Perkovsky 2009]; SIZK K-7723 Miridae; SIZK K-7724 Empididae, Collembola (Entomobryomorpha); SIZK K7725 stellate trichomes; SIZK K-7726 Ceratopogonidae [male of Monohelea clunipes (Loew, 1850)]; SIZK K-7727 Encyrtidae [holotype of Archaeocercus schuvachinae Simutnik in Simutnik \& Perkovsky 2018]; SIZK K-7728 Ceratopogonidae [female of Brachypogon Kieffer, 1899]. Legs of other arthropods and stellate trichomes present.

Diagnosis. Body length $\sim 2.1 \mathrm{~mm}$. Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma dark castaneous; wings hyaline. Head as long as wide and subcircular, not globoid in lateral view. Mandible apparently tetradentate. Clypeus not visible. Antenna mid-sized, not surpassing posterior margin of metapectalpropodeal complex. Flagellomeres as long as wide; flagellar pubescence appressed; pedicel longer than flagellomere I, rectangular. Eye located close to mandibular base, glabrous, bulging. Frons weakly coriaceous, punctures small, very sparse. Frontal line not visible. Ocelli not visible. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal not visible. Metafurcal not visible. Notaulus absent. Parapsidal signum present. Fore wing poorly preserved. Mesopleuron not visible. Mesoscutum-mesoscutellar sulcus present, weakly incurved medially, wide, foveae distinct. Metapectal-propodeal disc as long as wide, poorly preserved. Mesotibia without spines. Metasoma polished, glabrous. Genitalia not visible. Female unknown.

Remarks. This species is similar to †Chlorepyris meunieri sp. nov. by in having the antennae mid-sized and not surpassing the posterior margin of metapectal-propodeal complex, the dorsal pronotal area wider than long, lacking notauli, and possessing fore wings with a tubular and long 2 r -rs\&Rs vein. \dagger Chlorepyris jouaulti sp. nov., however, has tetradentate mandibles, eyes that are located close to the mandibular bases and a mesoscutum-mesoscutellar sulcus that is incurved medially, whereas \dagger C. meunieri has pentadentate mandibles, eyes that are located far from the mandibular bases and a mesoscutum-mesoscutellar sulcus that is straight medially.

Locality and age. Klesiv, Rovno amber, Ukraine. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

\dagger Chlorepyris mckellari Colombo \& Azevedo sp. nov.

Figure 8
Derivation of name. This species is named after Ryan McKellar, who described various bethylid fossil species and genera.

Holotype. Female, piece code SIZK K-24565. Deposited in the SIZK collection.
Syninclusions. SIZK K-24566, Sciaridae.
Diagnosis. Body length $\sim 2.5 \mathrm{~mm}$. Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma dark castaneous; wings hyaline. Head as long as wide and subquadrate, not globoid in lateral view. Mandible tetradentate. Clypeus with median lobe apparently angular, lateral lobe reduced. Antenna short, not surpassing posterior margin of mesoscuto-scutellar suture. Flagellomeres longer than wide; flagellar pubescence appressed; pedicel longer than flagellomere I, with cross-section subcircular. Eye located far from mandibular base, glabrous, bulging. Frons weakly coriaceous, punctures small, very sparse. Frontal line inconspicuous. Frontal angle of ocellar triangle obtuse. Anterior ocellus posterior to supra-ocular line. Dorsal pronotal area longer than wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit drop-shaped. Metafurcal pit circular. Notaulus present, wide. Parapsidal signum shorter than notaulus. Fore wing with four distal flexion lines, 2r-rs\&Rs vein tubular, long, well pigmented, curved, not converging posteriorly to R1 vein. Pterostigma subrectangular. Mesopleuron with subalar impression not connected with mesopleural suture, smooth; mesopleural suture not connected with mesopleural epicoxal sulcus; lower mesopleural foveae not delimited; transepisternal line absent; mesopleural pit as puncture. Mesoscutum-mesoscutellar sulcus present, weakly incurved medially, wide, circular foveae distinct. Metapectal-propodeal disc longer than wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae absent. Mesotibia without spines. Metasoma polished, glabrous. Male unknown.

Remarks. This species is similar to †Chlorepyris neli sp. nov. in having short antennae that do not surpass the posterior margin of mesoscuto-scutellar suture, the pedicels longer than flagellomeres I, the eyes located far from the mandibular bases, notauli present, parapsidal signum shorter than notauli, and fore wings with tubular, long and curved 2 r -
rs\&Rs vein. However, the dorsal pronotal area of \dagger Chlorepyris mckellari sp. nov. is longer than it is wide and its mesoscutum-mesoscutellar sulcus is incurved medially, whereas the dorsal pronotal area of \dagger C. neli sp. nov. is wider than it is long and its mesoscutummesoscutellar sulcus is straight medially.

Locality and age. Klesiv, Rovno amber, Ukraine. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.
\dagger Chlorepyris setosus (Brues, 1933) comb. nov.
Holotype. Female, piece code 13919, supposed to be deposited in the Königsberg collection, lost (see Methods section).

Diagnosis (based on original description). Body length 4.0 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna black, and metasoma probably greenish metallic; wings hyaline. Head as long as wide, not globoid in lateral view. Mandible not visible. Clypeus not visible. Flagellomeres as long as wide; flagellar pubescence not visible; pedicel as long as flagellomere I. Eye elongate, not bulging. Frontal line not visible. Frontal angle of ocellar triangle probably acute. Anterior ocellus probably posterior to supra-ocular line. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notauli present, narrow, converging posteriorly. Parapsidal signum shorter than notaulus. Fore wing with distal flexion lines not visible, 2rrs\&Rs vein present. Pterostigma small, rectangular. Mesoscutum-mesoscutellar sulcus present, incurved medially. Metapectal-propodeal disc probably as long as wide; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished, setose. Male unknown.

Remarks. This species was originally allocated in Rhabdepyris Kieffer, 1904 and later transferred to Epyris Westwood, 1832 by Azevedo et al. (2018). Brues (1933, p. 140-141) provided a detailed description of the holotype, though without drawings. We note that the presence of a mesoscutum-mesoscutellar sulcus, which is incurved medially in $\dagger C$. setosus (Brues, 1933), is diagnostic for Chlorepyris Kieffer, 1913, suggesting that the species should be to that genus.

Brues (1933, p. 141) commented that this species is similar to Trachepyris Kieffer, 1905, mainly due to the arrangement of the bristles along the body. However, Trachepyris

Kieffer, 1905, like Epyris Westwood, 1832, does not have a mesoscutum-mesoscutellar sulcus.

The original description of this species was based on four specimens, but they are all lost, so that no other specimen is candidate to be lectotype. Besides, we were not able to find any additional material that could be used as neotype. Given that the original description of \dagger C. setosus (Brues, 1933) does not provide enough information to propose any nomenclatural act, its taxonomic identity is uncertain, and this species should be omitted from phylogenetic time-calibration analysis (see Discussion section).

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

\dagger Chlorepyris meunieri Colombo \& Azevedo sp. nov.

Figure 9
Derivation of name. This species is named after Fernand Meunier, who described a fossil bethylid species.

Holotype. Female, piece code PIN 964/121; air bubbles present over the metasoma. Deposited in the PIN collection.
Diagnosis. Body length $\sim 4.8 \mathrm{~mm}$. Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma dark castaneous; wings hyaline. Head as long as wide and subquadrate, not globoid in lateral view. Mandible apparently pentadentate. Clypeus with median lobe weakly incurved, lateral lobe reduced. Antenna mid-sized, surpassing posterior margin of mesoscuto-scutellar suture. Flagellomeres longer than wide; flagellar pubescence appressed; pedicel as long as flagellomere I, quadrate. Eye located far from mandibular base, glabrous, bulging. Frons weakly coriaceous, punctures small, very sparse. Frontal line inconspicuous. Frontal angle of ocellar triangle acute. Anterior ocellus crossing to supra-ocular line. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus absent. Parapsidal signum present. Fore wing with three distal flexion lines; 2r-rs\&Rs vein tubular, long, well pigmented, curved, not converging posteriorly to R1 vein. Pterostigma subrectangular. Mesopleuron with subalar impression connected with mesopleural suture, foveolate; mesopleural suture not visible posteriorly; lower mesopleural foveae not delimited; transepisternal line absent; mesopleural pit present, circular. Mesoscutum-mesoscutellar sulcus present, straight
medially, narrow, circular foveae distinct. Metapectal-propodeal disc poorly preserved. Mesotibia without spines. Metasoma polished, weakly setose. Male unknown.

Remarks. This species is similar to †Chlorepyris jouaulti sp. nov. in sharing mid-sized antennae that do not surpass the posterior margin of the metapectal-propodeal complex, a dorsal pronotal area wider than long, lacking notauli, and possessing fore wings with a tubular and long 2 r -rs\&Rs vein. However, \dagger C. meunieri sp. nov. has pentadentate mandibles, its eyes are located far from the mandibular bases, and its mesoscutummesoscutellar sulcus is straight medially; whereas, $\dagger C$. jouaulti sp. nov. has tetradentate mandibles, its eyes are located close to the mandibular bases, and its mesoscutummesoscutellar sulcus is incurved medially.

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

\dagger Chlorepyris neli Colombo \& Azevedo sp. nov.

Figure 10
Derivation of name. This species is named after André Nel, who described various bethylid fossil species and genera.

Holotype. Female, piece code SIZK UA-68, a complete flat wasp is embedded in a amber piece. The piece weighed 1.35 grams after primary treatment. Deposited in the SIZK collection.

Syninclusions. stellate trichomes.
Diagnosis. Body length $\sim 3.0 \mathrm{~mm}$. Head, dorsal pronotal area, mesoscutum, metapectalpropodeal complex, petiole, antenna, and metasoma dark castaneous; wings hyaline. Head as long as wide and subcircular, weakly globoid in lateral view. Mandible not visible. Clypeus not visible. Antenna short, not surpassing posterior margin of mesoscuto-scutellar suture. Flagellomeres as long as wide; flagellar pubescence appressed; pedicel longer than flagellomere I, rectangular. Eye located far from mandibular base, glabrous, bulging. Frons weakly coriaceous, punctures small, very sparse. Frontal line not visible. Ocelli not visible. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notauli present, narrow, converging posteriorly. Parapsidal signum shorter than notaulus. Fore wing with four distal flexion lines; 2 r -rs\&Rs vein tubular, long, weakly pigmented, curved, not converging posteriorly to R1 vein. Pterostigma subcircular. Mesopleuron not visible.

Mesoscutum-mesoscutellar sulcus present, straight medially, wide, foveae distinct. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina incurved; metapostnotal median carina present; metapostnotal carinae not visible. Mesotibia without spines. Metasoma polished, setose. Male unknown.

Remarks. This species is similar to \dagger Chlorepyris mckellari sp. nov. in sharing short antennae that do not surpass the posterior margin of the mesoscuto-scutellar suture, pedicels longer than flagellomeres I, eyes located distant from the mandibular bases, notauli present, parapsidal signum shorter than notauli, and fore wings with tubular, long and curved 2 r -rs\&Rs veins. However, the dorsal pronotal area of \dagger C. neli $\mathbf{s p}$. nov. is wider than it is long and its mesoscutum-mesoscutellar sulcus is straight medially, whereas the dorsal pronotal area of \dagger C. mckellari sp. nov. is longer than it is wide and its mesoscutummesoscutellar sulcus is incurved medially.

Locality and age. Klesiv, Rovno amber, Ukraine and Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

\dagger Chlorepyris perrichoti Colombo \& Azevedo sp. nov.

Figure 11

Derivation of name. This species is named after Vincent Perrichot, who described various bethylid fossil species and one genus.

Holotype. Female, piece code PIN 964/116. Deposited in the PIN collection.
Diagnosis. Body length $\sim 4.0 \mathrm{~mm}$. Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma dark castaneous; wings hyaline. Head longer than wide and subquadrate, not globoid in lateral view. Mandible tetradentate. Clypeus poorly preserved. Antenna mid-sized, surpassing posterior margin of mesoscuto-scutellar suture. Flagellomeres longer than wide; flagellar pubescence appressed; pedicel longer than flagellomere I, rectangular. Eye poorly preserved. Frons weakly coriaceous, punctures small, very sparse. Frontal line not visible. Frontal angle of ocellar triangle obtuse. Anterior ocellus posterior to supra-ocular line. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit drop-shaped. Metafurcal pit circular. Notauli present, narrow. Parapsidal signum as long as notaulus. Fore wing with four distal flexion lines; 2r-rs\&Rs vein tubular, long, well pigmented, angled, not converging posteriorly to R1 vein. Pterostigma subrectangular.

Mesopleuron with subalar impression connected with mesopleural suture, trabeculate; mesopleural suture connected with mesopleural epicoxal sulcus; lower mesopleural foveae delimited, connected with mesopleural suture; transepisternal line present; mesopleural pit not evident. Mesoscutum-mesoscutellar sulcus present, incurved medially, narrow, foveae indistinct. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished, weakly setose. Male unknown.

Remarks. This species differs from all other congeners since its head is longer than it is wide and its parapsidal signum is as long as the notauli, which makes it easily to distinguish from other fossil species of Chlorepyris Kieffer, 1913.

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

Genus Epyris Westwood, 1832
\dagger Epyris deletus Brues, 1910
Figure 12
Holotype. Female, piece code AMNH-FI 18891. Deposited in the AMNH collection.
Diagnosis (based on original description and illustration provided by the curator). Body length 5.5 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma back or dark castaneous. Head slightly wider than long, not globoid in lateral view. Mandible not visible. Clypeus not visible. Antenna poorly preserved. Eye not visible. Frons not visible. Frontal line not visible. Frontal angle of ocellar triangle not visible. Dorsal pronotal area longer than wide; transverse pronotal carina apparently present; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus not visible. Parapsidal signum not visible. Fore wing with distal flexion lines not visible, $2 \mathrm{r}-\mathrm{rs} \&$ Rs vein long. Pterostigma subrectangular. Mesoscutum-mesoscutellar sulcus not visible. Metapectal-propodeal disc poorly preserved. Mesotibia not preserved. Metasoma elongate. Male unknown.

Remarks. The original description of \dagger Epyris deletus Brues, 1910 was based on a poorly preserved fossil. Brues (1910, p. 9) commented on the similarity of this species with Epyris Westwood, 1832 and Mesitius Spinola, 1853 and reaffirmed its classification as Epyris Westwood, 1832. However, we were not able to find any diagnostic character to place this species in Epyris Westwood, 1832 or any other genera of Epyrinae and will therefore
abstain from a nomenclatural act until more information comes to light, and this species should be omitted from phylogenetic time-calibration analysis (see Discussion section).

Locality and age. Florissant Formation of Colorado, U.S.A. Priabonian, 34 to 35 million years ago, upper Eocene.
\dagger Epyris kiefferi Brues, 1910
Holotype. Male, piece code 9026, supposed to be deposited in Königsberg collection, lost (see Methods section).

Diagnosis (based on original description). Body length 2.2 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma black or dark castaneous; wings hyaline. Head wider than long, not globoid in lateral view. Flagellomere shorter than long; pedicel as long as flagellomere I. Eye glabrous, bulging. Frons weakly coriaceous. Frontal line not visible. Frontal angle of ocellar triangle probably acute. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notauli probably absent. Parapsidal signum present. Fore wing with distal flexion lines not visible, 2r-rs\&Rs vein present. Pterostigma rectangular. Mesoscutum-mesoscutellar sulcus present, foveae distinct. Metapectal-propodeal disc poorly preserved. Mesotibia without spines. Metasoma polished, setose. Genitalia not visible. Female unknown.

Remarks. This species was originally allocated in Artiepyris Kieffer, 1913 and transferred to Epyris Westwood, 1832 by Evans (1964, p. 111). Brues (1933, p. 131) provided a detailed description of the holotype, though it lacked illustrations. He described the "scutellum with two small, widely separated foveae connected by a straight impressed line or groove". The presence of the mesoscutum-mesoscutellar sulcus therefore suggests that this species does not belong to Epyris Westwood, 1832. Brues (1933) suggested that this species belongs to Artiepyris Kieffer, 1913 since its antennae have twelve antennomeres. Although Artiepyris Kieffer, 1913 had been described with this characteristic (Kieffer 1913a), Evans (1964) indicated that Artiepyris Kieffer, 1913 actually has an extremely reduced flagellomere I, so Artiepyris Kieffer, 1913 actually has 13 antennomeres, and has subsequently been synonymized into Epyris Westwood, 1832.

Moreover, the description suggests this species does not belong to Epyris Westwood, 1832 or even to Artiepyris Kieffer, 1913 in the old sense, since its body length is less than 2.2 mm and it has a mesoscutum-mesoscutellar sulcus, while the body length of Artiepyris Kieffer, 1913 is usually around 5.0 mm at least, and the mesoscutum-mesoscutellar sulcus is absent. The antennae with twelve antennomeres and the small size of the specimen seem to imply that this species should be allocated in Scleroderminae. Nevertheless, we do not have illustrations, and the holotype has been lost. We therefore abstain from a nomenclatural act here.

The original description of this species was based on one specimen, so that no other specimen is candidate to be lectotype. Besides, we were not able to find any additional material that could be used as neotype. Given that the original description of \dagger E. kiefferi Brues, 1910 does not provide enough information to propose any nomenclatural act, its taxonomic identity is uncertain, and this species should be omitted from phylogenetic timecalibration analysis (see Discussion section).

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

\dagger Epyris moulyi Falières \& Nel, 2018

Figure 13
Holotype. Male, piece code MNHN.F.A70620 (PA-16149), deposited in the MNHN collection.

Diagnosis (based on original description and new illustration provided by the curator). Body length 3.8 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma castaneous; wings hyaline. Head as long as wide and subquadrate, not globoid in lateral view. Mandible pentadentate. Clypeus with angular median lobe, weakly visible dorsally, lateral lobe reduced. Median clypeal carina outlined, shorter than frons. Antenna mid-sized, not surpassing posterior margin of metapectalpropodeal complex. Flagellomeres as long as wide; flagellar pubescence appressed; pedicel longer than flagellomere I, rectangular. Eye located far from mandibular base, glabrous, bulging. Frons strongly coriaceous, punctures large, very closely space. Frontal line not visible. Frontal angle of ocellar triangle acute. Anterior ocellus positioned anterior to supra-ocular line. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not
visible. Notauli present, converging posteriorly. Parapsidal signum shorter than notaulus. Fore wing with distal flexion lines not visible; 2r-rs\&Rs vein tubular, long, well pigmented, angled, not converging posteriorly to R1 vein. Pterostigma rectangular. Mesoscutum-mesoscutellar sulcus absent, foveae large, subrectangular, apparently trabeculate. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae not visible. Mesotibia without spines. Metasoma polished, setose. Genitalia not visible. Female unknown.

Remarks. This species was assigned to Epyris Westwood, 1832 by Falières \& Nel (2018), who provided detailed comments, high-quality photos, and justification for addressing this species in Epyris Westwood, 1832. The authors, however, described the mesoscutoscutellar suture as being comprised of three pairs of pits not connected by a continuous sulcus. We analysed the figures provided by Falières \& Nel (2018, Figs. 1D, 1F and 2A, p. 33-34) and concluded that the mesoscuto-scutellar suture has two large foveae that are probably trabeculate or which were deformed during the formation of the fossil. The authors therefore interpreted it as having three pairs of pits, which does not occur in Bethylidae.

The presence of a trabeculate mesoscuto-scutellar suture is common in Holepyris Kieffer, 1904, Formosiepyris Terayama, 2004 and Disepyris Kieffer, 1905 (Azevedo et al. 2018). This specimen clearly does not belong to these genera, mainly because the mesoscutum-mesoscutellar sulcus is absent in the fossil and present in these genera. Moreover, the lateral clypeal lobes are reduced in \dagger E. moulyi Falières \& Nel, 2018, whereas Holepyris Kieffer, 1904 has lateral clypeal lobes that are as long as the median lobe. The eyes of $\dagger E$. moulyi Falières \& Nel, 2018 are of moderate size and its fore wings have a long 2r-rs\&Rs vein, whereas Disepyris Kieffer, 1905 has very large eyes and the 2rrs\&Rs vein of the fore wing is usually short. Finally, in $\dagger E$. moulyi Falières \& Nel, 2018, the dorsal pronotal area is not posteriorly foveolate and the anteromesoscutum lacks a foveolate transverse groove, whereas the dorsal pronotal area in Formosiepyris Terayama, 2004 is posteriorly foveolate and the anteromesoscutum has a foveolate transverse groove.

Furthermore, we note that dorsal pronotal area of this species is ecarinate with the anterior corner not angular (see Fig. 1D in Falières \& Nel 2018), the mandibles are pentadentate, the median clypeal lobe is well-projected forward, the notauli are present, the parapsidal signum is present, the 2 r-rs\&Rs vein of the fore wings is long, and the mesoscutum-mesoscutellar sulcus is absent.

Locality and age. Le Quesnoy, in Chevrières, Oise Department, France. Ypresian, 53 million years ago; lowermost Eocene.
\dagger Epyris rectinervis (Cockerell, 1921)
Figure 14
Holotype. Indeterminate sex, piece code NHMUK I.9352. Deposited in the NHM collection.

Diagnosis (based on original description and illustration provided by the curator). Wing length 3.0 mm . Integument castaneous. Head not preserved. Dorsal pronotal area apparently wider than long; transverse pronotal carina apparently absent; posterior pronotal sulcus absent. Notaulus not preserved. Parapsidal signum not preserved. Fore wing with two distal flexion lines, 2r-rs\&Rs vein long. Pterostigma subrectangular. Mesoscutoscutellar suture not preserved. Metapectal-propodeal disc longer than wide. Mesotibia not preserved. Metasoma not preserved.

Remarks. \dagger Epyris rectinervis (Cockerell, 1921) was first published as Mesitius Spinola, 1853 (?). Brues (1933, p. 168) listed the species as Epyris Westwood, 1832 but did not provide any information or a nomenclatural act. Gordh \& Móczar (1990, p. 103) considered that Brues’ (1933) listing had transferred the species to Epyris Westwood, 1832, an assessment that was followed by Perrichot \& Nel (2008, p. 101) and Azevedo \& Azar (2012, p. 217), who likewise listed it in Epyris Westwood, 1832. Later, Antropov et al. (2014, p. 394) cited the species as Mesitius? rectinervis Cockerell, 1921, providing an image of the holotype and reporting that 'the type was not re-studied, and its taxonomic position is not confirmed'. Finally, Azevedo et al. (2018), Falières \& Nel (2018) and Martynova et al. (2019) cited the species as Epyris Westwood, 1832 following Brues' classification.

We highlight the shape of metapectal-propodeal disc, with corners angular, and the fore wing with three cells closed $(\mathrm{C}, \mathrm{R}, 1 \mathrm{Cu})$ as characteristics that place this species within Epyrinae. However, the specimen lacks diagnostic characters that would place it more narrowly in Epyris Westwood, 1832 or any other genera of Epyrinae; therefore, we will abstain from a nomenclatural act until more information comes to light and this species should be omitted from phylogenetic time-calibration analysis (see Discussion section).

Locality and age. Bembridge Marls, Bouldnor Formation, Isle of Wight, United Kingdom. Priabonian, 34 million years ago, upper Eocene.
\dagger Epyris tenellus Statz, 1938
Figure 15
Holotype. Female, piece code LACMIP-2533.790. Deposited in the LACM collection.
Diagnosis (based on original description and new illustration provided by the curator). Body length 4.8 mm . Integument castaneous to black. Head as long as wide. Mandible tridentate. Eye large, circular. Antenna mid-sized, not surpassing posterior margin of metapectal-propodeal complex, with 11 flagellomeres. Dorsal pronotal area as long as wide. Fore wing with apparently three cells closed ($\mathrm{C}, \mathrm{R}, 1 \mathrm{Cu}$), poorly preserved, 2 r -rs\&Rs vein long. Pterostigma rectangular. Mesoscuto-scutellar suture not preserved. Metapectalpropodeal disc apparently as long as wide. Mesotibia not spinose. Metasoma with subequals tergites. Male unknown.

Remarks. The description of \dagger Epyris tenellus Statz, 1938 was based on a poorly preserved fossil. The general morphology of the specimen is similar to Chlorepyris Kieffer, 1913, though we abstain from any nomenclatural act because of the lack of observable characteristics and this species should be omitted from phylogenetic time-calibration analysis (see Discussion section).

Locality and age. Rott Formation, Germany. Chattian, 23 to 24 million years ago, upper Oligocene.

Epyris staphylinoides (Hope, 1837)

1901 Calyoza Ashmeadi Enderlein; Synonymy by Krombein 1992, 94: 347.
$1906 \dagger$ Calyoza ramosa Meunier; Synonymy by Krombein 1992, 94: 348.

Holotype. Male, piece without code, deposited in Strong collection, examined based on literature, lost.

Neotype. Male, deposited in the OUMNH collection.
Diagnosis (based on original description and illustration from Krombein,1992). Male neotype. Body length 6.5 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole and antenna black; last three metasomal segments reddish; wings hyaline.

Head as long as wide, not globoid in lateral view. Mandible tetradentate. Clypeus with rounded median lobe, weakly visible dorsally, lateral lobe reduced. Median clypeal carina outlined, as long as frons. Antenna pectinate; flagellar pubescence appressed; pedicel longer than flagellomere I, apex strongly dilated; flagellomere I reduced into ring-shape. Eye large, elongate, glabrous. Frontal line inconspicuous. Frontal angle of ocellar triangle probably acute. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus present, drop-shaped. Parapsidal signum longer than notaulus. Fore wing with one distal flexion line; 2r-rs\&Rs vein present, short. Pterostigma large, rectangular. Mesoscutum-mesoscutellar sulcus absent, foveae oval. Metapectal-propodeal disc wider than long; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia with short spines. Metasoma polished. Genitalia: paramere longer than basiparamere in dorsal view, apex straight, not arched inward, tubular.

Female. Body length 7.7 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole; mandible, antenna, all tarsi and last three metasomal segments reddish; wings hyaline. Head as long as wide, not globoid in lateral view. Mandible pentadentate. Clypeus with rounded median lobe, weakly visible dorsally, lateral lobe reduced. Median clypeal carina outlined, as long as frons. Antenna filiform; flagellar pubescence appressed; pedicel as long as flagellomere I, apex dilated; flagellomere I not reduced into ring-shape. Eye large, elongate, glabrous. Frontal line inconspicuous. Frontal angle of ocellar triangle probably acute. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus present, drop-shaped. Parapsidal signum longer than notaulus. Fore wing with one distal flexion line; 2r-rs\&Rs vein present, short. Pterostigma large, rectangular. Mesoscutum-mesoscutellar sulcus absent, foveae oval. Metapectal-propodeal disc wider than long; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia with spines. Metasoma polished.

Remarks. This is the type species of Calyoza Hope, 1837, designated by monotypy. Krombein (1992) designated a neotype, synonymised Calyoza Hope, 1837 with Epyris Westwood, 1832, and provided a detailed and illustrated description of this taxon.

Locality and age. Holotype from 'Animé gum', corresponding to East African (Zanzibar) or Madagascar copal; precise age unknown, likely Holocene. Neotype from Port Natal, South Africa (Recent).

Genus Holepyris Kieffer, 1904
\dagger Holepyris neodubius Azevedo, 2018
Holotype. Male, piece without code, supposed to be deposited at the Königsberg collection, lost (see Methods section).

Diagnosis (based on original description). Body length 3.5 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma black; wings hyaline. Head as long as wide, not globoid in lateral view. Mandible not visible. Clypeus not visible. Flagellomeres as long as wide; flagellar pubescence not visible; pedicel as long as flagellomere I. Eye elongate, bulging. Frontal line not visible. Frontal angle of ocellar triangle probably obtuse. Anterior ocellus probably anterior to supra-ocular line. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notauli present, converging posteriorly. Parapsidal signum shorter than notaulus. Fore wing with distal flexion lines not visible, 2 r-rs\&Rs vein present. Pterostigma small, rectangular. Mesoscutum-mesoscutellar sulcus present, foveae indistinct. Metapectal-propodeal disc probably as long as wide; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished, setose. Female unknown.

Remarks. This species was originally placed in Misepyris Kieffer, 1913. Evans (1964, p. 140) transferred this species to Holepyris Kieffer, 1904. The original description of this species was based on one specimen, so that no other specimen is candidate to be lectotype. Besides, we were not able to find any additional material that could be used as neotype. Given that the original description of $\dagger H$. neodubius Azevedo, 2018 does not provide enough information to propose any nomenclatural act, its taxonomic identity is uncertain, and this species should be omitted from phylogenetic time-calibration analysis (see Discussion section).

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

Figure 16
Derivation of name. This species is named after Alexandr P. Rasnitsyni, who described a bethylid fossil species and genus.
Holotype. Male, piece code PIN 964/115. Deposited in the PIN collection.
Diagnosis. Body length $\sim 3.0 \mathrm{~mm}$. Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma black; wings hyaline. Head as long as wide and subcircular, not globoid in lateral view. Mandible tetradentate. Clypeus with median lobe trapezoidal, well-developed, lateral lobes shorter than median lobe. Antenna long, surpassing posterior margin of metapectal-propodeal complex. Flagellomeres longer than wide; flagellar pubescence appressed; pedicel shorter than flagellomere I, subrectangular. Eye located far from mandibular base, glabrous, bulging. Frons coriaceous. Frontal line present, narrow. Ocelli poorly preserved. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus present, containing sequence of foveae. Posterior mesofurcal pit drop-shaped. Metafurcal pit elongated. Notaulus absent. Parapsidal signum present. Fore wing with four distal flexion lines; 2 r -rs\&Rs vein tubular, long, well pigmented, curved, not converging posteriorly to R1 vein. Pterostigma rectangular. Mesopleuron with subalar impression connected with mesopleural suture, trabeculate; mesopleural suture connected with mesopleural epicoxal sulcus; lower mesopleural foveae not delimited, not connected with mesopleural suture; transepisternal line absent; mesopleural pit evident. Mesoscutum-mesoscutellar sulcus present, incurved medially, narrow, foveae distinct, smooth. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished, weakly setose. Genitalia: paramere with apex acute, not arched inward, dorsal margin straight; basiparamere not visible; cuspis longer than wide; aedeagus subtrapezoidal, apical margins converging. Female unknown.

Remarks. \dagger Holepyris rasnitsyni, along with \dagger Holepyris neodubius Azevedo, 2018, is described based on a male specimen. \dagger Holepyris rasnitsyni sp. nov. has the pronotal sulcus partially comprised of a sequence of foveae, lacks notauli, and its mesoscutummesoscutellar sulcus has distinct foveae; whereas $\dagger H$. neodubius Azevedo, 2018 lacks a pronotal sulcus, has notauli, and its mesoscutum-mesoscutellar sulcus has indistinct foveae.

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

\dagger Holepyris terayamai Colombo \& Azevedo sp. nov.

Figure 17
Derivation of name. This species is named after Mamoru Terayama, who described one bethylid fossil species in addition to hundreds of extant species.

Holotype. Female, piece code SIZK K-797. The sample was cut from a clear amber piece, which weighed 11.2 grams after primary treatment (Perkovsky et al. 2012).
Syninclusions. SIZK K-796 Mycetophilidae (Synapha Meigen, 1818); SIZK K-797 [male of Chironomidae (Orthocladiinae)], Collembola (Entomobryomorpha); SIZK K-798 Collembola (Entomobryomorpha); SIZK K-799 Acari (Bdellidae). The amber was not subjected to any fixation. Deposited in the SIZK collection.

Diagnosis. Body length $\sim 4.4 \mathrm{~mm}$. Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma black; wings hyaline. Head as long as wide and subcircular, not globoid in lateral view. Mandible bidentate. Clypeus with median lobe rounded, well-developed, lateral lobes shorter than median lobe. Antenna mid-sized, not surpassing posterior margin of metapectal-propodeal complex. Flagellomeres longer than wide; flagellar pubescence appressed; pedicel shorter than flagellomere I, subrectangular. Eye located far from mandibular base, glabrous, bulging. Frons coriaceous. Frontal line present, narrow. Frontal angle of ocellar triangle apparently obtuse. Anterior ocellus posterior to supra-ocular line. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit elongated. Metafurcal pit apparently circular. Notauli present, narrow, converging posteriorly. Parapsidal signum shorter than notaulus. Fore wing with four distal flexion lines; 2r-rs\&Rs vein tubular, long, well pigmented, curved, not converging posteriorly to R1 vein. Pterostigma rectangular. Mesopleuron with subalar impression apparently connected with mesopleural suture, smooth; mesopleural suture not visible posteriorly; lower mesopleural foveae delimited, connected with mesopleural suture; transepisternal line present; mesopleural pit evident. Mesoscutum-mesoscutellar sulcus present, straight, narrow, with foveae distinct, trabeculate. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished, weakly setose. Male unknown.

Remarks. This species is similar to \dagger Holepyris planiceps Brues, 1933 in possessing pedicels shorter than flagellomere I, bidentate mandibles, eyes far from the mandibular bases, and anterior ocellus posterior to the supra-ocular line. However, the mesoscutummesoscutellar sulcus of \dagger Holepyris terayamai sp. nov. is trabeculate with distinct foveae, whereas the mesoscutum-mesoscutellar sulcus of \dagger H. planiceps Brues, 1933 is smooth with indistinct foveae.

Locality and age. Klesiv, Rovno amber, Ukraine. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

\dagger Holepyris minor (Brues, 1939)

Figure 18
Holotype. Female, piece code PALE-6634. Deposited in the MCZ collection.
Diagnosis (based on original description and illustration provided by the curator). Body length 1.8 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black, antenna and legs castaneous; wings hyaline. Head as long as wide, not globoid in lateral view. Mandible not visible. Clypeus not visible. Antenna short, not surpassing posterior margin of mesoscuto-scutellar suture. Flagellomeres as long as wide; flagellar pubescence not visible; pedicel longer than flagellomere I. Eye elongate, bulging, close to mandibular base. Frontal line not visible. Frontal angle of ocellar triangle acute. Anterior ocellus crossing to supra-ocular line. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus present, narrow, diverging posteriorly. Parapsidal signum absent. Fore wing with distal flexion lines not visible; 2r-rs\&Rs vein long, curved. Pterostigma small, subcircular. Mesoscutum-mesoscutellar sulcus present, incurved medially, smooth. Metapectal-propodeal disc longer than wide; metapostnotal median carina present; metapostnotal carinae absent. Mesotibia without spines. Metasoma polished. Male unknown.

Remarks. This species was originally proposed in the genus Misepyris Kieffer, 1913 and later transferred to Holepyris Kieffer, 1904 (Evans 1964, p. 140).

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

Figure 19A
Holotype. Female, piece without code, supposed to be deposited in the Königsberg collection, lost (see Methods section).
Diagnosis (based on original description and illustration). Body length 2.2 mm . Wings hyaline. Head longer than wide, not globoid in lateral view. Mandible bidentate. Clypeus not visible. Antenna mid-sized, not surpassing posterior margin of metapectal-propodeal complex. Flagellomeres longer than wide; flagellar pubescence not visible; pedicel as long as flagellomere I. Eye elongate, not bulging, far from mandibular base. Frontal line not visible. Frontal angle of ocellar triangle oblique. Anterior ocellus posterior to supra-ocular line. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus absent. Parapsidal signum present. Fore wing with two distal flexion lines; 2rrs\&Rs vein long, curved. Pterostigma small, subcircular. Mesoscutum-mesoscutellar sulcus present, with indistinct foveae, smooth. Metapectal-propodeal disc longer than wide; metapostnotal median carina present; metapostnotal carinae absent. Mesotibia without spines. Metasoma polished. Male unknown.
Remarks. The original description of this species was based on one specimen, so that no other specimen is candidate to be lectotype. Besides, we were not able to find any additional material that could be used as neotype. Given that the original description of $\dagger H$. planiceps Brues, 1933 does not provide enough information to propose any nomenclatural act, its taxonomic identity is uncertain, and this species should be omitted from phylogenetic time-calibration analysis (see Discussion section).
Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.
\dagger Holepyris precursor Brues, 1933
Figure 19B
Holotype. Female, piece code B14174, supposed to be deposited in the Königsberg collection, lost (see Methods section).
Diagnosis (based on original description and illustration). Body length 2.3 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex and petiole black; legs and metasoma castaneous; wings hyaline. Head as long as wide, not globoid in lateral view. Mandible tridentate. Clypeus not visible. Antenna long, surpassing posterior margin of
metapectal-propodeal complex. Flagellomeres as long as wide; flagellar pubescence not visible; pedicel longer than flagellomere I. Eye oval, not bulging, glabrous, far from mandibular base. Frontal line not visible. Frontal angle of ocellar triangle probably acute. Anterior ocellus posterior to supra-ocular line. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus absent. Parapsidal signum present. Fore wing with distal flexion lines not visible; 2r-rs\&Rs vein long, almost touching the R1 vein. Pterostigma small, subcircular. Mesoscutum-mesoscutellar sulcus present, with indistinct foveae, smooth. Metapectal-propodeal disc longer than wide; metapostnotal median carina present; metapostnotal carinae absent. Mesotibia without spines. Metasoma polished. Male unknown.

Remarks. The original description of this species was based on one specimen, so that no other specimen is candidate to be lectotype. Besides, we were not able to find any additional material that could be used as neotype. Given that the original description of $\dagger H$. precursor Brues, 1933 does not provide enough information to propose any nomenclatural act, its taxonomic identity is uncertain, and this species should be omitted from phylogenetic time-calibration analysis (see Discussion section).

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.
\dagger Holepyris robustus (Brues, 1933)
Figure 20
Holotype. Female, piece without code, supposed to be deposited in the Königsberg collection, lost (see Methods section).

Diagnosis (based on original description and illustration). Body length 3.0 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole; legs and metasoma black; wings hyaline. Head as long as wide. Mandible not visible. Clypeus not visible. Antenna short, not surpassing posterior margin of mesoscuto-scutellar suture. Flagellomeres as long as wide; flagellar pubescence not visible; pedicel longer than flagellomere I. Eye oval, not bulging, glabrous, far from mandibular base. Frontal line not visible. Frontal angle of ocellar triangle probably acute. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notauli present, converging posteriorly. Parapsidal signum
present. Fore wing with distal flexion lines not visible; 2r-rs\&Rs vein long, almost touching the R1 vein. Pterostigma small. Mesoscutum-mesoscutellar sulcus present, with indistinct foveae, smooth. Metapectal-propodeal disc longer than wide; metapostnotal median carina present; metapostnotal carinae absent. Mesotibia without spines. Metasoma polished. Male unknown.

Remarks. This species was originally placed in Misepyris Kieffer, 1913 and later transferred to Holepyris Kieffer, 1904 by Evans (1964, p.140).

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

Genus Laelius Ashmead, 1893
\dagger Laelius pallidus Brues, 1933
Holotype. Female, piece without code, supposed to be deposited in the Königsberg collection, lost (see Methods section).

Diagnosis (based on original description). Body length 2.5 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma black; wings hyaline. Head as long as wide, globoid in lateral view. Mandible not visible. Clypeus not visible. Flagellomeres as long as wide; pedicel longer than flagellomere I. Eye large, elongate, glabrous. Frontal line inconspicuous. Frontal angle of ocellar triangle obtuse. Anterior ocellus anterior to supra-ocular line. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus absent. Parapsidal signum absent. Fore wing with distal flexion lines not visible; 2r-rs\&Rs vein present, very short. Pterostigma indistinct. Mesoscutum-mesoscutellar sulcus present, foveae apparently distinct. Metapectal-propodeal wider than long; metapostnotal anterior carina absent; metapostnotal median carina absent; metapostnotal carinae absent. Mesotibia without spines. Metasoma polished. Male unknown.

Remarks. The original description of this species was based on one specimen, so that no other specimen is candidate to be lectotype. Besides, we were not able to find any additional material that could be used as neotype. Given that the original description of $\dagger L$. pallidus Brues, 1933 does not provide enough information to propose any nomenclatural act, its taxonomic identity is uncertain, and this species should be omitted from phylogenetic time-calibration analysis (see Discussion section).

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

\dagger Laelius preteritus Barbosa \& Azevedo, 2013

Figure 21

Holotype. Female, piece code K-4207, deposited in the SIZK collection, type examined.
Diagnosis. Body length 4.32 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma black; wings hyaline. Head as long as wide, globoid in lateral view. Mandible pentadentate. Clypeus with trapezoidal median lobe, visible dorsally, lateral lobe reduced. Median clypeal carina outlined, shorter than frons. Antenna short, not surpassing posterior margin of mesoscuto-scutellar suture. Flagellomeres as long as wide; flagellar pubescence appressed; pedicel as long as flagellomere I, apex weakly dilated. Eye large, elongate, glabrous. Frontal line inconspicuous. Frontal angle of ocellar triangle probably obtuse. Anterior ocellus crossing to supra-ocular line. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit drop-shaped. Metafurcal pit circular. Notauli absent. Parapsidal signum present. Fore wing with four distal flexion lines; 2r-rs\&Rs vein present, very long. Pterostigma small, subcircular. Mesoscutummesoscutellar sulcus present, foveae apparently distinct. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished. Male unknown.

Locality and age. Klesiv, Rovno amber, Ukraine. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.
\dagger Laelius rovnensis Barbosa \& Azevedo, 2013
Figure 22
Holotype. Female, piece code K-3672. Deposited in the SIZK collection, type examined. Syninclusions. Anystidae (Erythracarinae), piece code K-3671, SIZK collection.

Diagnosis. Body length 4.71 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma black; wings hyaline. Head as long as wide, globoid in lateral view. Mandible pentadentate. Clypeus with angular median lobe, visible dorsally, lateral lobe reduced. Median clypeal carina outlined, shorter than frons. Antenna
mid-sized, not surpassing posterior margin of metapectal-propodeal complex. Flagellomeres as long as wide; flagellar pubescence appressed; pedicel longer than flagellomere I, apex weakly dilated. Eye large, elongate, glabrous. Frontal line inconspicuous. Frontal angle of ocellar triangle obtuse. Anterior ocellus crossing to supraocular line. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus present, with sequence of foveae. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus present, incomplete anteriorly. Parapsidal signum shorter than notaulus. Fore wing with two distal flexion lines; 2r-rs\&Rs vein present, very long. Pterostigma small, subcircular. Mesoscutum-mesoscutellar sulcus present, foveae apparently distinct. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished. Male unknown.

Locality and age. Klesiv, Rovno amber, Ukraine. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

Genus \dagger Gloxinius Colombo \& Azevedo gen. nov.

Derivation of name. The generic epithet Gloxinius refers to the Gloxinia, the first king of the Fairy King's Forest. Gender masculine.

Type species. \dagger Epyris bifossatus Brues, 1939 by original designation.
Diagnosis (based on original description and new illustrations provided by the curator). Male holotype. Head as long as wide and subquadrate, not globoid in lateral view. Mandible pentadentate. Clypeus with rounded median lobe, weakly visible dorsally, lateral lobe reduced. Median clypeal carina outlined, as long as frons. Antenna long, surpassing posterior margin of metapectal-propodeal complex. Flagellomeres longer than wide; flagellar pubescence appressed; pedicel as long as flagellomere I, rectangular. Eye located close to mandibular base, glabrous, bulging. Frons weakly coriaceous, punctures small and very sparse. Frontal line not visible. Frontal angle of ocellar triangle obtuse. Anterior ocellus situated posterior to supra-ocular line. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit drop-shaped. Metafurcal pit drop-shaped. Notaulus absent. Parapsidal signum longer than notaulus. Fore wing with distal flexion lines not visible; 2 r -rs\&Rs vein tubular, long, well pigmented, curved, not converging posteriorly to R1 vein. Pterostigma subcircular. Mesoscutum-mesoscutellar sulcus present, incurved medially. Metapectal-propodeal disc
as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished. Female unknown.

Remarks. \dagger Gloxinius gen. nov. is morphologically related to Chlorepyris Kieffer, 1913 and keys out to couplet 7 (metapostnotal carina usually long, not incurved medially) in Azevedo et al. (2018, p. 135-136). However, the dorsal pronotal area of \dagger Gloxinius gen. nov. is much wider than it is long and almost angulate, which is more similar to the pristocerine genera Dissomphalus Ashmead, 1893 and Trichiscus Benoit, 1956 than to epyrine taxa. \dagger Gloxinius gen. nov. also shares the following similarities with Anisepyris Kieffer, 1905: usually with long antennae, surpassing the posterior margin of metapectalpropodeal complex; anteromesoscutum longer than the dorsal pronotal area; and clypeus with an angulated median lobe and median clypeal carina outlined. However, the eyes of \dagger Gloxinius gen. nov. are glabrous, its pronotal dorsal area is ecarinate, it lacks notauli, and the genitalia have a subtrapezoidal aedeagus; whereas the eyes of Anisepyris Kieffer, 1905 are densely setose, the pronotal dorsal area is usually carinate, notauli are present, and the genitalia have a bottle-shaped aedeagus.

\dagger Gloxinius bifossatus (Brues, 1939) comb. nov.

Figure 23
Holotype. Male, piece code PALE-7679, deposited in the MCZ collection.
Diagnosis (based on original description and new illustrations provided by the curator). Similar to the genus description, and with the following additional species-level characteristics: body length 2.75 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma dark castaneous; wings hyaline. Genitalia: paramere longer than basiparamere in dorsal view, apex straight, not arched inward, dorsal margin straight; basiparamere wide, not covering aedeagal base; apex of cuspis anterior to apex of paramere; digitus with apex apparently aligned to apex of cuspis; aedeagus subtrapezoidal, its apex aligned to apex of digitus, base of apodeme not visible. Female unknown.

Remarks. This species was originally erected in Homoglenus Kieffer, 1905. Terayama (2003) synonymised Homoglenus Kieffer, 1905 with Epyris Westwood, 1832 and transferred this species to Epyris Westwood, 1832. We analysed the holotype of this species using high-quality images herein. We note that a mesoscutum-mesoscutellar sulcus
is present (Fig. 3C) in E. bifossatus (Brues, 1939), which is absent in Epyris Westwood, 1832. The specimen was preserved with the genitalia exposed (Figs. 3E-3F), and we were able to observe that the aedeagus progressively narrows apically, the basivolsella is long, and the paramere is wide. These characteristics are missing in Epyris Westwood, 1832. We therefore transfer E. bifossatus (Brues, 1939) to Gloxinius gen. nov.

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

Species transferred to Pristocerinae:

Subfamily Pristocerinae Mocsáry, 1881
Genus \dagger Merascylla Colombo \& Azevedo gen. nov.
Derivation of name. The generic epithet Merascylla refers to the Merascylla (Malascula), an elite warrior of the Demon Clan, serving directly under the Demon King as the Faith of the Ten Commandments. Gender feminine.

Type species. \dagger Epyris atavellus Cockerell, 1920 by original designation
Description (based on original description and new illustrations provided by the curator). Male holotype (Fig. 24). Head longer than wide, not globoid in lateral view. Mandible tetradentate. Clypeus with rounded median lobe. Antenna long, surpassing posterior margin of metapectal-propodeal complex. Pedicel shorter than flagellomere I, flagellomeres longer than wide; flagellar pubescence appressed. Eye apparently small. Propleuron extremely elongate. Fore wing with distal flexion lines not visible; 2r-rs\&Rs vein angled, long. Pterostigma subrectangular. Mesotibia without spines. Metasoma polished. Genitalia not visible. Female unknown.

Remarks. \dagger Merascylla gen. nov. is morphologically related to Foenobethylus Kieffer, 1913 due to the presence of an apparently flat and elongated body, strongly elongated propleuron, enlarged and accentuatedly curved metafemur, arched protrochanter, and fore wing without a poststigmal abscissa of R1. However, \dagger Merascylla gen. nov. has fore wings with the intersection of the Rs\&M and $\mathrm{Sc}+\mathrm{R}$ veins almost touching the pterostigma, and the metafemora without a spine and sharply narrowing distally; whereas, Foenobethylus Kieffer, 1913 has fore wings with the intersection of the Rs\&M and Sc+R veins far from the pterostigma, and the metafemora with a spine and smoothly narrowing distally.

\dagger Merascylla atavella (Cockerell, 1920) comb. nov.

Figure 24
Holotype. Male, piece code NHMUK In.20149(1). Deposited in the NHM collection.
Diagnosis (based on original description and new illustrations provided by the curator). Similar to the genus description, and with the following additional species-level characteristics: body length 3.0 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma castaneous; wings hyaline. Female unknown.

Locality and age. Burmese amber, Myanmar. Cenomanian, approximately 99 million years ago, mid-Cretaceous.

Genus Pseudisobrachium Kieffer, 1904
\dagger Pseudisobrachium elatus (Brues, 1933) comb. nov.
Holotype. Male, piece without code, supposed to be deposited in the Königsberg collection, lost (see Methods section).

Diagnosis (based on original description). Body length 5.0 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma black; wings hyaline. Head as long as wide, not globoid in lateral view. Mandible not visible. Clypeus not visible. Flagellomeres as long as wide; flagellar pubescence not visible; pedicel not visible. Eye small, elongate, setose. Frontal line not visible. Frontal angle of ocellar triangle probably acute. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus present. Parapsidal signum present. Fore wing with distal flexion lines not visible, 2r-rs\&Rs vein present. Pterostigma small. Mesoscutum-mesoscutellar sulcus present, foveae indistinct. Metapectal-propodeal disc as long as wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae present. Mesotibia without spines. Metasoma polished. Genitalia not visible. Female unknown.

Remarks. This species was originally proposed in the genus Rhabdepyris Kieffer, 1904. Azevedo et al. (2018) synonymised Rhabdepyris Kieffer, 1904 with Epyris Westwood, 1832 and transferred it to Epyris Westwood, 1832. Brues (1933, p. 141) provided a detailed description of the holotype, but without drawings. In remarks on this species, Brues (1933) commented 'In Kieffer's key this species will fall in the subgenus Xestobethylus Cameron, 1909 which is represented by a single living species from South

America'. Evans (1973) synonymised Xestobethylus Cameron, 1909 with Pseudisobrachium Kieffer, 1904.

Characteristics such small and setose eyes, flagellomeres that are as long as they are wide, and a mesoscutum-mesoscutellar sulcus with indistinct foveae are found in species of Pseudisobrachium Kieffer, 1904. Based on these characters and Brues' observations about morphological similarity to Xestobethylus Cameron, 1909, as well as recent records of Pseudisobrachium Kieffer, 1904 from Rovno and Baltic ambers (Colombo et al. 2020a), we transfer E. elatus (Brues, 1933) to Pseudisobrachium Kieffer, 1904 here.

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.
\dagger Pseudisobrachium inhabilis (Brues, 1923) comb. nov.
Holotype. Male, piece without code, supposed to be deposited in the Königsberg collection, lost (see Methods section).

Diagnosis (based on original description). Body length 5.0 mm . Head longer than wide. Mandibular teeth not visible. Clypeus not visible. Flagellomeres as long as wide; flagellar pubescence not visible; pedicel longer than flagellomere I, rectangular. Eye glabrous. Frons weakly coriaceous, punctures small, very sparse. Frontal line not visible. Frontal angle of ocellar triangle probably acute. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus apparently present, complete. Parapsidal signum present. Fore wing with distal flexion lines not visible; 2 r -rs\&Rs vein tubular, long. Pterostigma subcircular. Mesoscutum-mesoscutellar sulcus probably present. Metapectalpropodeal disc longer than wide; metapostnotal anterior carina straight; metapostnotal median carina present; metapostnotal carinae not visible. Mesotibia without spines. Metasoma polished, setose. Genitalia not visible. Female unknown.

Remarks. The original description of this species lacks any illustration. Brues (1922, p. 339) commented:
this species may possibly belong to one of the groups recently segregated from Epyris Westwood, 1832, agreeing well with Monepyris Kieffer, 1905 except that there is no third closed basal cell in the wing. As it does not agree perfectly with any of these, I have preferred to let it remain in the old genus.

The genus Monepyris Kieffer, 1905 was synonymised with Pseudisobrachium Kieffer, 1904 by Kieffer (1906, in Kieffer \& Marshall 1904-1906).

Later, Brues (1933, p. 130) noted that there "are two amber species which will have to be left in this genus as formerly constituted as I have been unable to assign them to any more definite positions". He was referring to the genus Epyris Westwood, 1832 and the species E. inhabilis (Brues, 1923) and E. longiceps (Brues, 1923) (=Epyris neolongiceps Azevedo, 2018). Given Brues' observations on the similarity of this species to Xestobethylus Cameron, 1909 and the recent records of Pseudisobrachium Kieffer, 1904 from Rovno and Baltic ambers (Colombo et al. 2020a), we transfer E. inhabilis (Brues, 1923) to Pseudisobrachium Kieffer, 1904.

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

Species transferred to Scleroderminae:

Subfamily Scleroderminae Kieffer, 1914
Genus \dagger Mael Colombo \& Azevedo gen. nov.
Derivation of name. The generic epithet Mael refers to the Mael, one of the Four Archangels of the Goddess Clans.

Type species. \dagger Calyoza longiceps Brues, 1923 by original designation
Description (based on original description). Head longer than wide, not globoid in lateral view. Mandible pentadentate. Clypeus not visible. Flagellomeres as long as wide; flagellar pubescence not visible; pedicel longer than flagellomere I. Eye located close to mandibular base, oval. Frontal line not visible. Frontal angle of ocellar triangle probably acute. Anterior ocellus probably posterior to supra-ocular line. Dorsal pronotal area wider than long; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus present. Parapsidal signum absent. Fore wing with apparently two cells closed ($\mathrm{R}, 1 \mathrm{Cu}$), distal flexion lines not visible, 2r-rs\&Rs vein long. Pterostigma small, rectangular. Mesoscuto-scutellar suture absent. Metapectal-propodeal disc wider than long; metapostnotal median carina present;
metapostnotal carinae present. Mesotibia without spines. Metasoma polished, setose. Male unknown.

Remarks. This species was originally allocated in Calyoza Hope, 1837 as C. longiceps Brues, 1923. Later, Brues (1933, p. 130) compared it with living species of Calyoza Hope, 1837 and transferred it to Epyris Westwood, 1832. Azevedo et al. (2018) synonymised Rhabdepyris Kieffer, 1904 with Epyris Westwood, 1832 and consequently transferred the species from the former genus. Rhabdepyris longiceps Kieffer, 1913 was also transferred, giving rise to a secondary homonymy. For this reason, a new name was proposed for Epyris longiceps (Brues, 1923): Epyris neolongiceps Azevedo, 2018.

Brues (1923, p. 336-337) provided a good description of the holotype, but without drawings. Three features described by Brues (1923) are unusual for epyrine wasps, namely the head being much longer than it is wide, the complete lack of a mesoscuto-scutellar suture, and the fore wing with only two closed cells.

On the fore wing, the costal vein (C) was poorly preserved and the author either did not describe it, or the species only has two closed cells. Brues (1933) commented that the head is very long. Finally, the absence of a mesoscuto-scutellar suture (comprised of foveae or a sulcus) confirms that this species does not belong to Epyrinae and would be better addressed to Scleroderminae.
\dagger Mael gen. nov. is morphologically similar to Megaprosternum Azevedo, 2006 and Allobethylus Kieffer, 1905 since its head is much longer than it is wide. Mael gen. nov. does not have the mesoscuto-scutellar suture and costal cell in the fore wing, whereas Allobethylus Kieffer, 1905 has the mesoscuto-scutellar suture and costal cell in the fore wing. In Megaprosternum Azevedo, 2006, females are apterous and only the males are macropterous.
\dagger Mael longiceps (Brues, 1923) comb. nov. et rev. nom.
Reinstalled name of Calyoza longiceps Brues, 1923 from Epyris neolongiceps Azevedo, 2018 (in Azevedo et al. 2018).

Holotype. Female, piece without code, deposited in the Königsberg collection, lost (see Methods section).

Diagnosis. Similar to the genus description, for species level characteristics, which include: body length 2.7 mm . Male unknown.

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

Species transferred to Platygastroidea incertae sedis:

Superfamily Platygastroidea Haliday, 1833
\dagger Laelius nudipennis Brues, 1933
Figure 25
Holotype. Female, piece without code, supposed to be deposited in the Königsberg collection, lost (see Methods section).
Diagnosis (based on original description and illustration). Body length 2.6 mm . Head, pronotum, mesoscutum, metapectal-propodeal complex, petiole, antenna, and metasoma black; wings hyaline. Head as long as wide, globoid in lateral view. Mandible not visible. Clypeus not visible. Flagellomeres as long as wide; pedicel longer than flagellomere I. Eye large, elongate, glabrous. Frontal line inconspicuous. Frontal angle of ocellar triangle obtuse. Anterior ocellus anterior to supra-ocular line. Dorsal pronotal area as long as wide; transverse pronotal carina absent; posterior pronotal sulcus absent. Posterior mesofurcal pit not visible. Metafurcal pit not visible. Notaulus absent. Parapsidal signum absent. Fore wing with distal flexion lines not visible; 2r-rs\&Rs vein present, very short. Pterostigma poorly visible. Mesoscutum-mesoscutellar sulcus present, foveae apparently distinct. Metapectal-propodeal wider than long; metapostnotal anterior carina absent; metapostnotal median carina absent; metapostnotal carinae absent. Mesotibia without spines. Metasoma polished. Male unknown.
Remarks. The original description and illustration (Brues 1933) do not allow a precise classification of this species because some parts of the body seem to be distorted, crushed, or artificially flattened. Even so, the reported characteristics are sufficient to affirm that this species does not belong to Bethylidae, because of the different style of wing venation and the antennae.

We initially believed that it belonged to Pteromalidae or Platygastridae, because these traits somewhat resemble the pattern found in these groups. Certainly, the wing venation does bear a greater resemblance to some Platygastroidea than it does to a chalcidoid, since its submarginal vein goes directly into a punctiform marginal vein from which the stigmal vein originates. In a typical chalcidoid, there would also be a distinct marginal vein resulting in a venation pattern that extends further along the length of the
wing with the apex of the postmarginal vein extending at least halfway along the wing (Gary Gibson, pers. comm.). Furthermore, the body structure does not match that of a chalcid neither in its pronotal structure nor its head, while no notauli or axillae have been described or illustrated.

The illustration does seem problematic, especially since the specimen's stigma are more similar to those typical of Platygastroidea. However, including it in the latter group would be incorrect if the specimen is a female with exposed and normal ovipositor sheaths, which the drawings suggest is the case (Roger Burks, pers. comm.). Furthermore, it seems clear that there are no defined lateral margins on the metasoma which would rule out the core Scelionidae as a possibility, though it does not preclude the specimen from belonging to Telenominae, particularly if the metasoma has been laterally flattened in the preservation process (Simon van Noort, pers. comm.).

The presence of ovipositor sheaths could preclude this species from being classified as a platygastroid. Indeed, the drawings do appear to show very distinct, exserted ovipositor sheaths, while no slender lancets are visible (Gary Gibson, pers. comm.). However, there are a few platygastroids that have unextruded ovipositors as well as distinct and elongate gonoplacs. Species of Phanuromyia Dodd, 1914, especially those found in South Africa, have protective sheaths, though their degree of exsertion does differ (Norman Johnson, pers. comm.). If this specimen is, in fact, a bethylid, the exserted genital structures could be the male harpe rather than the third valvulae of a female.

According to Gary Gibson (pers. comm.), this species is likely not a chalcidoid because of the following features: the flagellum is filiform rather than clavate; there is no evidence of a prepectus, with the posterior limit of the pronotum extends much closer to the tegula than typical for chalcidoids; the mesonotum lacks both notauli and axillae, the former of which are often absent or so weak in some chalcidoids that they might not be apparent in a fossil, while evident axillae would be expected if the specimen was a chalcidoid. Finally, there is evidence of a petiole, while the gaster has too few segments.

We should also note that many platygastroids, especially those at the base of the phylogeny, do not have clearly clavate antennae and the scape is relatively shorter than is typical for most species today (Norman Johnson, pers. comm.).

If the specimen is, in fact, a platygastrid, it does not fit into any described genus. Norman Johnson (pers. comm.) suggests that the strongly depressed body may indicate either \dagger Proplatyscelio or Janzenella, the former described by Brues (1940) from Baltic
amber and the latter by Masner \& Johnson (2007) from extant material and Dominican amber. However, \dagger Proplatyscelio has distinct notauli, though small, and the wing venation of Janzenella is quite different from that of the specimen. Further conclusions on the classification of \dagger Laelius nudipennis Brues, 1933 would require an examination of whether the fossil (which is lost) has papillary sensilla on the antennal clava.

Given the uncertainty discussed above and the fact that the material is lost, it is prudent to address it to Platygastroidea incertae sedis until the fossil is found.

Locality and age. Baltic amber, Russian Federation. Priabonian, 33,9 to 37,7 million years ago, upper Eocene.

Key to Epyrinae from fossil and subfossil resins

1. Mesoscuto-scutellar suture with pits not connected by sulcus ... 2

- Mesoscuto-scutellar suture with pits connected by sulcus ... 3

2. Flagellomere I very reduced, ring-shaped ... Epyris staphylinoides (Hope, 1837)

- Flagellomere I as long as wide, quadrate $\ldots \dagger$ Epyris moulyi Falières \& Nel, 2018

3. Transverse pronotal carina present ... †Anisepyris gradatus Sorg, 1988

- Transverse pronotal carina absent ... 4

4. Lateral clypeal lobe developed, as long as median lobe ... 5

- Lateral clypeal lobe reduced, shorter than median lobe ... 11

5. Metapectal-propodeal disc as long as wide ... 6

Metapectal-propodeal disc longer than wide ... 8
6. Posterior pronotal sulcus present $\ldots \dagger$ Holepyris rasnitsyni sp. nov.

- Posterior pronotal sulcus absent ... 7

7. Pedicel shorter than flagellomere I; anterior ocellus posterior to supra-ocular line ...
\dagger Holepyris terayamai sp. nov.

- Pedicel as long as flagellomere I; anterior ocellus anterior to supra-ocular line ..
\dagger Holepyris neodubius Azevedo, 2018

8. Head longer than wide; pedicel as long as flagellomere I ... \dagger Holepyris planiceps Brues, 1933

- Head as long as wide; pedicel longer than flagellomere I ... 9

9. Dorsal pronotal area as long as wide $\ldots \dagger$ Holepyris robustus (Brues, 1933)

- Dorsal pronotal area wider than long ... 10

10. Anterior ocellus posterior to supra-ocular line; notaulus absent; mesoscutummesoscutellar sulcus straight medially $\ldots \dagger$ Holepyris precursor Brues, 1933

- Anterior ocellus crossing to supra-ocular line; notaulus present; mesoscutummesoscutellar sulcus incurved medially ... \dagger Holepyris minor (Brues, 1939)

11. Body with black setae; head globoid in lateral view ... 12

- Body with setae; head triangular or subtriangular in lateral view ... 14

12. Fore wing with 2 r -rs\&Rs vein absent or reduced $\ldots \dagger$ '. Laelius pallidus Brues, 1933

- Fore wing with 2 r -rs\&Rs vein developed ... 13

13. Median clypeal lobe angular; notaulus present ... †Laelius rovnensis Barbosa \& Azevedo, 2013

- Median clypeal lobe straight; notaulus absent ... †Laelius preteritus Barbosa \& Azevedo, 2013

14. Anteromesoscutum $2 \times$ longer than dorsal pronotal area $\ldots \dagger$ Gloxinius bifossatus (Brues, 1939)

- Anteromesoscutum as long as dorsal pronotal area ... 15

15. Dorso-apical margin of mandible denticulate $\ldots \dagger$ Chlorepyris engeli sp. nov.

- Dorso-apical margin of mandible not denticulate ... 16

16. Dorsal pronotal area as long as or longer than wide ... 17

- Dorsal pronotal area wider than long ... 23

17. Head longer than wide; mesoscutum-mesoscutellar sulcus with indistinct foveae ...
\dagger Chlorepyris perrichoti sp. nov.

- Head as long as wide; mesoscutum-mesoscutellar sulcus with distinct foveae

18. Anterior ocellus anterior to supra-ocular line ... 19

- Anterior ocellus posterior to supra-ocular line ... 20

19. Pedicel longer than flagellomere I; dorsal pronotal area longer than wide ...
\dagger Chlorepyris invelatus (Brues, 1933)

- Pedicel as long as flagellomere I; dorsal pronotal area as long as wide $\ldots \dagger$ Chlorepyris concaptus (Brues, 1933)

20. Notaulus absent ... \dagger Chlorepyris hopei sp. nov.

- Notaulus present ... 21

21. Pedicel as long as flagellomere I ... \dagger Chlorepyris setosus (Brues, 1933)

- Pedicel longer than flagellomere I ... 22

22. Dorsal pronotal area longer than wide; fore wing with 2 r -rs\&Rs vein curved ...
\dagger Chlorepyris mckellari sp. nov.

- Dorsal pronotal area as long as wide; fore wing with $2 \mathrm{r}-\mathrm{rs} \& R \mathrm{R}$ vein angled ...
\dagger Chlorepyris deploegi sp. nov.

23. Mesoscutum-mesoscutellar sulcus straight medially ... 24

- Mesoscutum-mesoscutellar sulcus incurved medially ... 25

24. Pedicel as long as flagellomere I; notaulus absent $\ldots \dagger$ Chlorepyris meunieri sp. nov. - Pedicel longer than flagellomere I; notaulus present ... †Chlorepyris neli sp. nov.
25. Pedicel as long as flagellomere I; eye not touching mandibular base; notaulus present
$\ldots \dagger$ Chlorepyris gallicus (Perrichot and Nel, 2008)
> - Pedicel longer than flagellomere I; eye touching mandibular base; notaulus absent ... \dagger Chlorepyris jouaulti sp. nov.

DISCUSSION

Epyrine wasps are easily identified in amber pieces, generally because the current generic classification in Epyrinae is based mostly on the mesoscuto-scutellar suture with sulcus and/or foveae. Luckily, these characters are usually visible in amber-preserved specimens, permitting reliable identification. This is not the case in other subfamilies, with identification in groups such as Pristocerinae relying on male genitalic characters (Azevedo et al. 2018).

The fossil fauna of Epyrinae has hitherto consisted of 25 species belonging to six genera. Our study adds ten species to the fossil fauna of Epyrinae and transfers four species to other subfamilies, resulting in a group now containing 30 fossil species (Figure 26). More than 50% of the species are from the Baltic amber, contrasting with findings by Perkovsky et al. (2007), who reported a higher diversity of arthropod fauna in Rovno amber. The difference in fauna between sites is an indication of their different geographic origin (Perkovsky et al. 2007). The difference in the number of samples between mine sites can also be associated with the levels of exploitation of each mine. In a discussion of the legal mining activities in each site, Perkovsky et al. (2010) noted that output at the Ukrainian site averaged c. $32,000 \mathrm{~kg}$ per year over a 16 -year period, while the mining permit for the Kaliningrad Oblast covers c. $310,000 \mathrm{~kg}$ per year. Since mining in the Kaliningrad region is c. $150 \times$ higher than in Ukraine, the probability of finding inclusions with flat wasps is considerably higher. Furthermore, legal mining in Ukraine started in 1993, while it began over a century earlier in the Samland peninsula, Kaliningrad Oblast (Weitshat \& Wichard 2002). The effect is seen in the historical records of fossils of flat wasps, with the first recorded fossil species found in the Baltics and described by Brues (1923), with the first species record from Ukraine following 90 years later by Barbosa \& Azevedo (2013).

A comprehensive taxonomy of epyrine fossils is severely hindered by lost holotypes. Epyrinae have ten missing types, eight of which come from the Baltic amber (Königsberg collection), and two from the Zanzibar copal resin (it is possible that one is from Madagascar copal). The latter two types correspond to \dagger Epyris ramosus Meunier, 1906 and \dagger Epyris staphylinoides (Hope, 1837) from the Evers and Strong collections, respectively.

Krombein (1992) designated a neotype for \dagger E. staphylinoides (Hope, 1837) and synonymised $\dagger E$. ramosus Meunier, 1906 as a junior synonym, partially solving the problem. Unfortunately, almost 30% of all fossil epyrine types remain lost. The lost types comprise three species of Chlorepyris Kieffer, 1913, \dagger C. concaptus (Brues, 1933), \dagger C. invelatus (Brues, 1933), and \dagger C. setosus (Brues, 1933), one species of Epyris Westwood, 1832 (\dagger E. kiefferi Brues, 1910), three species of Holepyris Kieffer, 1904 (\dagger H. neodubius Azevedo, 2018, \dagger H. planiceps Brues, 1933, and $\dagger H$. precursor Brues, 1933), and one species of Laelius Ashmead, 1893 (\dagger L. pallidus Brues, 1933). Brues provided detailed descriptions of the mesoscutum-mesoscutellar sulcus, which was decisive for transferring the first three species to Chlorepyris Kieffer, 1913, as noted in the remarks of each species. Nevertheless, the descriptions and drawings of the species of Epyris Westwood, 1832, Holepyris Kieffer, 1904 and Laelius Ashmead, 1893 whose types have been lost lack sufficient taxonomic information to accurately identify these taxa, making generic and suprageneric classifications doubtful. These species should therefore be omitted from phylogenetic time-calibration analysis.

Among the genera of Epyrinae, Chlorepyris Kieffer, 1913 is noteworthy for its fossil diversity and current disjunct distribution. The genus has been found in the Neotropics and Australia, with morphological dissimilarities between species from these regions. The Australian species are morphologically similar to those of Trachepyris Kieffer, 1905 with respect to features such as a narrow $2 \mathrm{r}-\mathrm{rs} \& \mathrm{Rs}$ vein in the fore wing. Meanwhile, the Neotropical species are morphologically similar to Epyris Westwood, 1832. The only known occurrence of this genus in northern Eurasia was the extinct species $\dagger C$. gallicus (Perrichot \& Nel, 2008) (Azevedo et al. 2018). Our analysis adds ten extinct species of Chlorepyris Kieffer, 1913 from this region, making it the most diverse genus in terms of number of fossil species in Bethylidae. Our findings show that Chlorepyris Kieffer, 1913 has been present as a lineage and was presumably abundant in Europe during the Eocene.

The Eurasian fossil species of Chlorepyris Kieffer, 1913 show similarity to both morphological patterns found in the group. The striking morphological distinction between extant and extinct species suggests that Chlorepyris Kieffer, 1913 was very morphologically diverse during the Eocene and indicates a broader distribution of the genus in the past. Extinction likely played a role in the biogeographic history of the group and the fixation of a phenotype in the current disjunct distribution. Chlorepyris Kieffer, 1913 has 65 described species, most of which are found in the tropics, with no species
found in temperate regions, though about one third have distributions that include subtropical areas (Azevedo et al. 2018). Similar current and past distributions have been observed in other warm-adapted bethylids, such as the pristocerine Pseudisobrachium Kieffer, 1904 (see Colombo et al. 2020a, 2020b) and the sclerodermine Glenosema Kieffer, 1905 (see Azevedo \& van Noort 2019, Colombo \& Azevedo 2019). The Eocene was the terminal phase of transition from the warm to cold biosphere (Akhmet'ev \& Beniamovski 2006). The cooling trend following the Eocene may have caused local extinction or dispersal to warmer areas. Molecular dating analyses should provide further support to elucidate the historical distribution of the group. Finally, Chlorepyris Kieffer, 1913 was revalidated as a genus by Waichert \& Azevedo (2009). The species are reliably identified, and an Eocene origin can be used to constrain the stem group Chlorepyris Kieffer, 1913 in phylogenetic time-calibrations.

Epyris Westwood, 1832 is other genus that needs discussion. Historically, several fossil species were mistakenly classified as Epyris Westwood, 1832, likely due to an inability to identify the specimen at the genus level. Epyris Westwood, 1832 is currently the largest taxonomic problem in Bethylidae and is considered a major taxonomic wastebasket. The type-species, Epyris niger Westwood, 1832, has been lost and several synonymies have been proposed without cladistic analyses. In this study, we propose new combinations within Epyrinae for eight species previously identified as Epyris Westwood, 1832. For example, when the genera Isobrachium Förster, 1856, Rhabdepyris Kieffer, 1904 and Calyoza Hope, 1837 were synonymised with Epyris Westwood, 1832, their fossil species were reassigned as well, at times without careful fossil examination. It is important to point out that although five species have been allocated in Epyris Westwood, 1832, the only species that has well-preserved and conclusive diagnostic characteristics is E. moulyi Falières \& Nel, 2018, from the Oise amber, making it a good candidate for time-calibration in phylogenetic analyses. The other five species are poorly preserved and remain in Epyris Westwood, 1832 due to a lack of information, as explained in the specific remarks.

Our results contribute to the fauna of different deposits. The Bethylidae fauna for Rovno amber comprises three subfamilies (Bethylinae, Pristocerinae and Epyrinae). Laelius Ashmead, 1893 was hitherto the only genus of Epyrinae recorded in Rovno amber (Barbosa \& Azevedo 2013). We have added two genera, Chlorepyris Kieffer, 1913 and Holepyris Kieffer, 1904, to its fauna, suggesting a broad diversity of Bethylidae in this region's past. The extant species of Holepyris Kieffer, 1904 thrive in cold temperatures,
with nearly half of the known species occurring in the Holarctic region. Past distribution patterns are consistent with this trend, with six species recorded from Baltic amber and one from Rovno amber. Finally, the Priabonian distribution of Laelius Ashmead, 1893, with one species from Baltic and two from Rovno amber, is consistent with the distribution of its dermestid host. Dermestids are abundant and diverse in Baltic amber, though they have not been as thoroughly explored Rovno amber (Perkovsky et al. 2021). However, scolytines, another host of Laelius Ashmead, 1893, have been found in the Rovno amber (Petrov \& Perkovsky 2008, 2018).

We add two new genera (\dagger Gloxinius gen. nov. and Chlorepyris Kieffer, 1913) to the fauna of Bethylidae from Baltic amber, which now represents 20 genera. Lytopsenella kerneggeri Ohl, 1995 (Bethylinae) is the only species found in multiple deposits: Rovno, Hamburg-Harburg, and the Kaliningrad Oblast (Ramos et al. 2014). The other species have single records. The established north-eastern Eocene fauna of flat wasps differs in that Sierola Cameron, 1881 and Pseudisobrachium Kieffer, 1904 have been recorded in Rovno amber, though they are unknown in Baltic amber (Ramos et al. 2014; Perkovsky 2018, Colombo et al. 2020a). Additionally, the Florissant Formation of Colorado in the U.S.A. (\dagger Epyris deletus Brues, 1910) and Bembridge Marls in England (\dagger Epyris rectinervis (Cockerell, 1921)) have recorded confirmed occurrences of epyrine flat wasps. We can therefore conclude that, during the Eocene, Epyrinae were already quite diverse, abundant, and established (Fig. 26). The Eocene was an important setting in generating the currently recognised generic diversity of extant bethylid subfamilies, as the majority of genera appear to have evolved between 56 and 34 Ma (Colombo et al. 2020b). A single record of the group exists from the Miocene, †Anisepyris gradatus Sorg, 1988, which was found in Dominican amber in the Dominican Republic. The youngest fossil in the family, Epyris staphylinoides (Hope, 1837), likely dates to the Holocene and was found in the Zanzibar copal resin of Tanzania, also known as East African "animé" or Madagascar copal. East African "animé" is derived almost entirely from the trees of Hymenaea verrucosa Gaertner, 1971 (Fabaceae), the natural range of which was recently restricted to East Africa and Zanzibar (Poinar 1992; Geirnaert 2002; Langenheim 2003). The age of "résine animé" from East Africa is still a matter of debate. Following radiocarbon analysis, Burleigh \& Whalley (1983) did not determine a minimum age, describing this resin as a very modern one. Meanwhile, Schlüter \& Von Gnielinski (1987) claim that it stems from the Pleistocene and is no older than the Upper Pliocene (based on the stratigraphy of

Tanzanian mainland and Zanzibar). Kosmowska-Ceranowicz (2001) discussed the age of copals (young semifossilised resins) and assigned them to the Pleistocene period (radiocarbon dating). Geirnaert (2002) suggested that East African copal was about 100,000 years old. The ambiguous definitions and age of copal resins were recently summarised by Matuszewska (2010) and Solórzano-Kraemer et al. (2020). However, all we can presently conclude is that this resin is much younger than Baltic amber, the age of which ranges between several thousands of years (Feist et al. 2007), likely Holocene. It must be pointed out that most recent discussions and investigations on "animé" (copal) pertain to Madagascar (Penney et al. 2005; Feist et al. 2007; Bosselaers et al. 2010), rather than Zanzibar or the East African coast.

The bethylid fauna of Oise is represented by nine species belonging to six subfamilies. The amber deposit of Oise was discovered by Gael De Ploëg in 1996 (Nel et al. 1999). Among the Epyrinae, the occurrence of Chlorepyris Kieffer, 1913 (\dagger C. gallicus (Perrichot \& Nel, 2008)) and Epyris Westwood, 1832 (\dagger E. moulyi Falières \& Nel, 2018) has been recorded. Flat wasps from Oise are extensively discussed by Colombo et al. (2020b) and not repeated here.

Hymenoptera represent a significant part of global biodiversity and have done so since at least the Cretaceous (Zhang et al. 2018). Flat wasps began to diverge in the Early Cretaceous and were already well established during the Barremian (Colombo et al. 2020b). Thus, the lack of representatives of Epyrinae from the Cretaceous is probably a gap in sampling or a lack of preserved specimens. The subfamilies with the greatest representation in the fossil record (Epyrinae and Bethylinae) are not present in Burmese amber. The only species of Epyrinae from that region is transferred to Pristocerinae, \dagger Merascylla atavella (Cockerell, 1920) in this analysis. It is important to note that the known fauna of Bethylidae may well increase significantly. Zhang et al. (2018) report 124 pieces (almost 7\% of all Hymenoptera), including bethylids, in a collection of Burmese amber kept at the Nanjing Institute of Geology and Palaeontology, China Academy of Sciences (NIGPCAS).

With this line of research, revisions of the fossils of the five largest subfamilies of Bethylidae will be completed. This will allow future paleostudies to advance further in the evolutionary history of this family. In addition, phylogenetic studies will be able to use the taxa reviewed here more reliably, as well as other review works (Ramos et al. 2014; Colombo \& Azevedo, 2019; Colombo et al. 2020a, 2020b) focused on molecular clock
analysis, for example. Finally, it is likely that further exploration in major deposits, such as Burmese, Oise and Rovno, will lead to the emergence of new Bethylidae and help to clarify their evolutionary gaps and the current configuration of extant fauna.

ACKNOWLEDGMENTS

The authors are grateful to Alexandr P. Rasnitsyn (PIN) for discussing an earlier version of this manuscript and loaning material; Neil Landman (American Museum of Natural History) for granting permission to use the image of \dagger Epyris deletus Brues, 1910 and Herb Meyer (Florissant Fossil Beds National Monument, Colorado); Lindsay Walker (Natural History Museum of Los Angeles County) for sending images of \dagger Epyris tenellus Statz, 1938; Crystal A. Maier, Philip Perkins, Ricardo Perez de la Fuente, and Charles W. Farnum (MCZ) for photos of \dagger Gloxinius bifossatus (Brues, 1939) and \dagger Holepyris minor (Brues, 1939); André Nel and Gaëlle Doitteau (Muséum National d'Histoire Naturelle) for photos of \dagger Chlorepyris gallicus (Perrichot \& Nel, 2008) and \dagger Epyris moulyi Falières \& Nel, 2018; Claire Mellish (The Natural History Museum, London, Curator of Fossil Arthropods), for photos of \dagger Merascylla atavella (Cockerell, 1920) and \dagger Epyris rectinervis (Cockerell, 1921) and Harry Taylor for the photography; Mónica M. Solórzano Kraemer (Senckenberg Naturmuseum Frankfurt) for photos of \dagger Anisepyris gradatus Sorg, 1988; Mike Reich and Alexander Gehler (Geowissenschaftliches Museum der Universität Göttingen), for clarifications about the Königsberg amber collection; Simon van Noort (Iziko South African Museum), Rogers Burks (National Museum of Natural History, Washington), Gary Gibson (Canadian National Collection of Insects), and Norman Johnson (Ohio State University), who helped us to elucidate the classification of \dagger Laelius nudipennis Brues, 1933. We also thank CNPq/FAPES grant \#52263010/2011, Pronex Programme, for providing imaging facilities. This contribution was supported by Brazilian CNPq grant \#3037482018-4, which provided a bursary to the fourth author and all laboratory facilities and INCT-Hymenoptera Parasitoides CNPq grant \#8887.136354/201700. The French government via the programme Investissements d'avenir (ANR-11-INBS-0004-RECOLNAT); NSF-DBI Award\#1304992 to Dr. Brian Farrell (Harvard University). The digitisation of the LACMIP specimens included in this manuscript was completed as part of the Fossil Insects of Los Angeles project (U.S. National Science Foundation Award \#1702342). We are also grateful to CAPES Demanda Social, Finance Code 001, for providing a bursary to the first author. We are grateful to EscritaLAB for the English
revision, and CAPES and PPGBAn-UFES (Graduate School of Zoology) for supporting the English revision. Finally, our thanks to the Subject Editor and the anonymous reviewers for providing comments on the final version of the manuscript.

REFERENCES

Akhmet'ev, M. A. \& Beniamovski, V. N. 2006. The Paleocene and Eocene in the Russian Part of West Eurasia. Stratigraphy and Geological Correlation, 14, 49-72.

Alencar, I. D. C. C. \& Azevedo, C. O. 2013. Reclassification of Epyrini (Hymenoptera: Bethylidae): a tribal approach with commentary on their genera. Systematic Entomology, 38, 45-80. doi:10.1111/j.1365-3113.2012.00648.x

Antropov, A. V., Belokobylskij, S. A., Compton, S. G., Dlussky, G. M., Khalaim, A. I., Kolyada, V. A., Kozlov, M. A., Perfilieva, K. S. \& Rasnitsyn, A. P. 2014. The wasps, bees and ants (Insecta: Vespida $=$ Hymenoptera) from the Insect Limestone (Late Eocene) of the Isle of Wight, UK. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104, 335-446. doi:10.1017/S1755691014000103

Ashmead, W. H. 1893. A monograph of the North American Proctotrypidae. Bulletin of the United States National Museum, 45, 1-472. doi:10.5479/si.03629236.45.1

Azevedo, C. O. 2006. Two new genera of Sclerodermini (Hymenoptera: Bethylidae: Epyrinae) with large, scolebythid-like prosternums. Zootaxa, 1191, 35-47. doi:10.11646/zootaxa.1191.1.3

Azevedo, C. O., Alencar, I. D. C. C., Ramos, M. S., Barbosa, D. N., Colombo, W. D., Vargas, J. M. \& Lim, J. 2018. Global guide of the flat wasps (Hymenoptera, Bethylidae). Zootaxa, 4489, 1-294. doi:10.11646/zootaxa.4489.1.1

Azevedo, C. O. \& Azar, D. 2012. A new fossil subfamily of Bethylidae (Hymenoptera) from the Early Cretaceous Lebanese amber and its phylogenetic position. Zoologia, 29, 210-218. doi:10.1590/S1984-46702012000300004

Azevedo, C. O. \& van Noort, S. 2019. Review of Afrotropical Glenosema Kieffer (Hymenoptera, Bethylidae) with description of 13 new species. Zootaxa, 4585, 401437. doi:10.11646/zootaxa.4585.3.1.

Barbosa, D. N. \& Azevedo, C. O. 2018. Revision of Anisepyris Kieffer (Hymenoptera, Bethylidae), with description of 135 new species. Zootaxa, 4416, 001-258. doi:10.11646/zootaxa.4416.1.1

Barbosa, D. N., Perkovsky, E. E. \& Azevedo, C. O. 2013. Two new species of Laelius Ashmead (Hymenoptera: Bethylidae) from upper Eocene Rovno amber. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 267, 67-73. doi:10.1127/0077-7749/2012/0297

Berland, L. 1928. Faune de France 19. Hyménoptères Vespiformes II. Office Central de Faunistique, Paris, 215 pp.

Bosselaers, J., Dierick, M., Cnudde, V., Masschaele, B., Van Hoorebeke, L. \& Jacobs, P. 2010. High resolution X-ray computed tomography of an extant new Donuea (Araneae: Liocranidae) species in Madagascan copal. Zootaxa, 2427, 25-35. doi:10.11646/zootaxa.2427.1.3

Brues, C. T. 1910. The parasitic Hymenoptera of the Tertiary of Florissant, Colorado. Bulletin of the Museum of Comparative Zoology, 54, 1-125.

Brues, C. T. 1923. Some new fossil parasitic Hymenoptera from Baltic amber. Proceedings of the American Academy of Arts and Sciences, 58, 327-346. doi:10.2307/20025999

Brues, C. T. 1933. The parasitic Hymenoptera of the Baltic amber. Part I. BernsteinForschungen, 3, 4-172.

Brues, C. T. 1939. New Oligocene Braconidae and Bethylidae from Baltic amber. Annals of the Entomological Society of America, 31, 251-263. doi:10.1093/aesa/32.2.251

Brues, C. T. 1940. Fossil parasitic Hymenoptera of the family Scelionidae from Baltic amber. Proceedings of the America Academy of Arts and Sciences, 74, 69-90.
Burleigh, R. \& Whalley, P. 1983. On the relative geological ages of amber and copal. Journal of Natural History, 17, 919-921. doi:10.1080/00222938300770721
Cameron, P. 1881. Notes on Hymenoptera, with descriptions of new species. Transactions of the Entomological Society of London, 1881, 555-577.

Cameron, P. 1909. A contribution to the knowledgeof the parasitic Hymenoptera of Argentina. Transactions of the American Entomological Society, 35, 419-450.

Carr, M., Young, J. P. W. \& Mayhew, P. J. 2010. Phylogeny of bethylid wasps (Hymenoptera: Bethylidae) inferred from 28S and 16S rRNA genes. Insect Systematics and Evolution, 41, 55-73. doi:10.1163/187631210X486995
Cockerell, T. D. A. 1920. Fossil arthropods in the British Museum, I. Annals and Magazine of Natural History, 5, 273-279. doi:10.1080/00222932008632376

Cockerell, T. D. A. 1921. Fossil arthropods in the British Museum, V. Oligocene Hymenoptera from the Isle of Wight. Annals and Magazine of Natural History, 7, 125. doi:10.1080/00222932108632485

Cohen, K. M., Harper, D. A. T. \& Gibbard, P. L. 2020. ICS International Chronostratigraphic Chart 2020/03. International Commission on Stratigraphy, IUGS. www.stratigraphy.org (visited: 2020/10/20)

Colombo, W. D. \& Azevedo, C. O. 2019. Synopsis of the fossil Scleroderminae (Hymenoptera, Bethylidae) with description of a new genus and four new species from Baltic amber. Historical Biology, published online 08 August 2019. doi:10.1080/08912963.2019.1650275

Colombo, W. D., Gobbi, F. T., Perkovsky, E. E. \& Azevedo, C. O. 2020a. Synopsis of the fossil Pristocerinae (Hymenoptera, Bethylidae), with description of two new genera and species from Burmese, Taimyr, Baltic and Rovno ambers. Historical Biology, published online 13 March 2020. doi:10.1080/08912963.2020.1733551

Colombo, W. D., Perkovsky, E. E. \& Azevedo, C. O. 2020b. Phylogenetic overview of flat wasps (Hymenoptera, Bethylidae) reveals Elektroepyrinae, a new fossil subfamily. Palaeoentomology, 3, 269-283. doi:10.11646/palaeoentomology.3.3.8
Cresson, E. T. 1872. Hymenoptera Texana. Transactions of the American Entomological Society, 4, 153-292. doi:10.2307/25076272

Dodd, A. P. 1914. Further new genera and species of Australian Proctotrypoidea. Proceedings of the Royal Society of Queensland, 26, 91-140. doi:10.5281/zenodo. 23758

Enderlein, G. 1901. Neue Evaniiden, Stephaniden, Mutilliden (Apterogyna), Proctotrupiden Und Chalcididen: Mit Einer Bestimmungstabelle Der Afrikanischen Stephaniden. Archiv für Naturgeschichte, 1, 187-220.
Evans, H. E. 1964. A synopsis of the American Bethylidae (Hymenoptera, Aculeata). Bulletin of the Museum of Comparative Zoology, 132, 1-222.

Evans, H. E. 1973. Further studies on South American Bethylidae (Hymenoptera). Proceedings of the Entomological Society of Washington, 75, 194-204.

Falières, E. \& Nel, A. 2018. The oldest representative of the extant genus Epyris in the lowermost Eocene amber of France (Hymenoptera: Bethylidae: Epyrinae). Palaeoentomology, 1, 32-36. doi:10.11646/palaeoentomology.1.1.3

Feist, M., Lamprecht, I. \& Müller, F. 2007. Thermal investigations of amber and copal. Thermochimica Acta, 458, 162-170. doi:10.1016/j.tca.2007.01.029
Förster, A. 1856. Hymenopterologische studien: Chalcidiae und Proctotrupii. Ernst ter Meer, Aachen, 152 pp. doi:10.5962/bhl.title. 8795
Gaertner, J. 1791. De fructibus et seminibus plantarum. Sumtibus Auctoris, Typis Academiae Carolinae, Stutgardiae, 306 pp. doi:10.5962/bhl.title. 53838

Gehler, A., Reich, M. \& Reitner, J. 2018. Göttingen: The Palaeontological Collections of the Geoscience Museum at the Georg-August University in Göttingen. Pp. 261-270 in L. A. \& U. Joger (eds) Paleontological Collections of Germany, Austria and Switzerland. Springer, Cham, 573 pp. doi:10.1007/978-3-319-77401-5
Geirnaert, E. 2002. L'Ambre: Miel de Fortune et Memoire de Vie. Les Editions du Piat, Monistrol-sur-Loire, 176 pp.

Gordh, G. \& Móczár, L. 1990. A catalog of the world Bethylidae (Hymenoptera: Aculeata). Memoirs of the American Entomological Institute, 46, 1-364.

Haliday, A. H. 1833. An essay on the classification of the parasitic Hymenoptera of Britain, which correspond with the Ichneumones minuti of Linnaeus. Entomological Magazine, 1, 259-276.
Haliday, A. H. 1839. Hymenoptera Britannica: Oxyura. Hippolytus Bailliere, London, 16 pp.
Harris, R. 1979. A glossary of surface sculpturing. Occasional Papers in Entomology, 28, 1-31.

Hope, F. W. 1837. Description of various new species of insects found in gum animè. Transaction of Entomological Society of London, 2, 52-57.
Iturralde-Vinent, M. A. \& MacPhee, R. D. E. 1996. Age and paleogeographical origin of Dominican amber. Science, 273, 1850-1852. doi:10.1126/science.273.5283.1850

Kawada, R. \& Buffington, M. L. 2016. A scalable and modular dome illumination system for scientific microphotography on a budget. PLoS ONE, 11, e0153426. doi:10.1371/journal.pone. 0153426
Kieffer, J. J. 1899. Description d'un genre nouveau et tableau des genres européens de la famille des Chironomides [Dipt.]. Bulletin de la Société entomologique de France, 4, 66-70.
Kieffer, J. J. 1904a. Descriptions de nouveaux Dryinidae et Bethylidae du Musée Civique de Gênes. Annali del Museo Civico di Storia Naturale di genova, 41, 351-412.

Kieffer, J. J. 1904b. Nouveaux proctotrypides myrmécophiles. Bulletin de la Société d'Histoire Naturelle de Metz, 23, 31-58. doi:10.5281/zenodo. 24240

Kieffer, J. J. 1905. Description de nouveaux Proctotrypides exotiques avec une planche et une figure dans le texte. Annales de la Société Scientifique de Bruxelles, 29, 95-142.
Kieffer, J. J. 1913a. Nouveaux microhyménoptères de l'Afrique équatoriale. Bollettino del Laboratorio di Zoologia Generale e Agraria della R. Scuola Superiore d'Agricultura, 7, 105-112. doi:10.5281/zenodo. 23805

Kieffer, J. J. 1913b. Serphides des Iles Philippines. Insecta, 3, 317-324. doi:10.5281/zenodo. 23750
Kieffer, J. J. 1914. Bethylidae. Das Tierreich, 41, 228-595.
Kieffer, J. J. \& Marshall, T. A. 1904-1906. Proctotrypides. [Publication dates of the different parts: Pp. 1-64 1st January 1904; Pp. 65-144 1st April 1905; Pp. 145-288 1st November 1905; Pp. 289-368 31st January 1906; Pp. 369 until the end 1st October 1906] in E. André (ed) Species des Hyménoptères d'Europe et d'Algérie. Librairie Scientifique, A. Hermann, Paris, 9, 551 pp.
Kosmowska-Ceranowicz, B. 2001. Bursztyn i inne żywice kopalne świata. Kopale i żywice sztuczne - imitacje lub fałszerstwa bursztynu. Polski Jubiler, 1, 24-27. [In Polish].

Krombein, K. V. 1992. Systematics of the genera of Epyrinae with ramose male antennae (Hymenoptera: Bethylidae). Proceedings of the Entomological Society of Washington, 94, 345-360.

Lanes, G.O., Kawada, R., Azevedo, C.O. \& Brothers, D.J. 2020. Revisited morphology applied for systematics of flat wasps (Hymenoptera, Bethylidae). Zootaxa, 4752, 001-127. doi:10.11646/zootaxa.4752.1.1
Langenheim, J. H. 2003. Plant resins: chemistry, evolution, ecology and ethnobotany. Timber Press, Portland, Cambridge, 586 pp.

Loew, H. 1850. Ueber den Bernstein und die Bernsteinfauna. Programm Der Königlichen Realschule Zu Meseritz, 1850, 1-44. doi:10.5962/bhl.title. 98386
Martynova, K. V., Perkovsky, E. E., Olmi, M. \& Vasilenko, D. V. 2019. New records of upper Eocene Chrysidoid wasps (Hymenoptera: Chrysidoidea) from basins of Styr and Stokhod Rivers (Rovno Amber). Paleontological Journal, 53, 16-41.

Masner, L. \& Johnson, N. F. 2007. Janzenella, an enigmatic new genus of scelionid wasp from Costa Rica (Hymenoptera, Platygastroidea, Scelionidae). American Museum Novitates, 3574, 1-7. doi:10.1206/3574.1

Matuszewska, A. 2010. Bursztyn i inne żywice kopalne, subfossylne i wspótczesne. Uniwersytet Śląski, Oficyna Wydawnicza Wacław Walasek, Katowice, 234 pp. [In Polish].

Mayr, G. 1868. Die Ameisen des Baltischen Bernstein. Beiträge zur Naturkunde Preussens Physikalische-Ökonomischen Gesellschaft, Königsberg, 102 pp.

Meigen, J. W. 1803. Versuch einer neuen Gattungs Einteilung der europäischen zweiflügeligen Insekten. Magazin für Insektenkunde (Illiger), 2, 259-281.

Meigen, J. W. 1818. Systematische Beschreibung der bekannten europäischen zweiflügeligen Insekten. Bei Friedrich Wilhelm Forstmann, Gedrukt bei Beaufort Sohn, Aachen, 332 pp. doi:10.5962/bhl.title. 12464

Meunier, F. 1906. Sur deux insectes (Hyménoptère et Diptère) du copal fossile de Zanzibar et sur un "Asilidae" (Diptère) du Copal récent de Zanzibar. Revue Scientifique du Bourbonnais et du Centre de la France, 19, 59-63.
Nel, A. \& Brasero, N. 2010. Oise amber. Pp. 137-148 in D. Penney (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, 304 pp.
Nel, A., De Plöeg, G., Dejax, J., Dutheil, D., Franceschi, D., Gheerbrant, E., Godinot, M., Hervet, S., Menier, J. -J., Augé, M., Bignot, G., Cavagnetto, C., Duffaud, S., Gaudant, J., Hua, S., Jossang, A., Lapparent De Broin, F., Pozzi, J. -P., Paicheler, J. -C., Bouchet, F. \& Rage, J. -C. 1999. An exceptional Sparnacian locality with plants, arthropods and vertebrates (Earliest Eocene, MP7): Le Quesnoy (Oise, France). Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science, 329, 65-72. doi: 10.1016/S1251-8050(99)80229-8

Ohl, M. 1995. Eine neue Bethylidae der Gattung Lytopsenella Kieffer 1911 aus dem Baltischen Bernstein (Hymenoptera: Chrysidoidea). Palaeontologische Zeitschrift, 69, 409-416.

Penney, D., Ono, H. \& Selden, P. A. 2005. A new synonymy for the Madagascan copal spider fauna (Araneae, Selenopidae). Journal of Afrotropical Zoology, 2, 41-44.

Perkovsky, E. E. 2018. Only a half of species of Hymenoptera in Rovno amber is common with Baltic Amber. Vestnik Zoologii, 52, 353-360. doi:10.2478/vzoo-20180037

Perkovsky, E. E., Hava, J. \& Zaitsev, A. A. 2021. First finding of skin beetle (Coleoptera, Dermestidae) from Sakhalinian amber. Paleontological Journal, 55, in press.

Perkovsky, E. E., Rasnitsyn, A. P., Vlaskin, A. P. \& Rasnitsyn, S. P. 2012. Contribution to the study of the structure of amber forest communities based on analysis of syninclusions in the Rovno amber (Late Eocene of Ukraine). Paleontological Journal, 46, 293-301. doi:10.1134/S0031030112030136

Perkovsky, E. E., Rasnitsyn, A. P., Vlaskin, A. P. \& Taraschuk, M. V. 2007. A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples. African Invertebrates, 48, 229-245.
Perkovsky, E. E., Zosimovich, V. Yu. \& Vlaskin, A. P. 2010. Rovno amber. Pp. 116136 in D. Penney (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, 304 pp.
Perrichot, V. \& Nel, A. 2008. Eocene bethylid wasps from French amber (Hymenoptera: Bethylidae). Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 248, 91-101. doi:10.1127/0077-7749/2008/0248-0091

Petrov, A. V. \& Perkovsky, E. E. 2008. New species of bark beetles from the Rovno amber (Insecta: Coleoptera: Scolytidae). Paleontological Journal, 42, 406-408.

Petrov, A. V. \& Perkovsky, E. E. 2018. A new genus and species of Scolytinae (Coleoptera: Curculionidae) from the Rovno amber. Paleontological Journal, 52, 164-167.

Petrulevičius, J. F., Wappler, T., Nel, A. \& Rust, J. 2011. The diversity of Odonata and their endophytic ovipositions from the upper Oligocene Fossillagerstätte of Rott (Rhineland, Germany). ZooKeys, 130, 67-89. doi:10.3897/zookeys.130.1441

Poinar, G. O. Jr. 1992. Life in amber. Stanford University Press, Palo Alto, California, 350 pp .
Priesner, H. A. 1924. Bernstein-Thysanopteren I. Entomologische Mitteilungen, 13, 130151.

Prothero, D. R. \& Sanchez, F. 2004. Magnetic stratigraphy of the upper Eocene Florissant Formation, Teller County, Colorado. New Mexico Museum of Natural History and Science Bulletin, 26, 129-135.
Ramos, M. S., Perkovsky, E. E., Rasnitsyn, A. P. \& Azevedo, C. O. 2014. Revision of Bethylinae fossils (Hymenoptera: Bethylidae) from Baltic, Rovno and Oise amber, with comments on the Tertiary fauna of the subfamily. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 271, 203-228. doi:10.1127/00777749/2014/0385
Reich, M., Gehler, A. \& Stegemann, T. R. 2015. Amber Collections [Göttingen University, Germany]. Pp. 84-85 in Göttingen University (ed) The Collections, Museums and Gardens of Göttingen University. Universitätsbibliothek Göttingen, Germany, 121 pp .

Ross, A. J. \& Self, A. 2014. The fauna and flora of the Insect Limestone (Late Eocene), Isle of Wight, UK: introduction, history and geology. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104, 232-44. doi:10.1017/S1755691014000073

Schlüter, T. \& Von Gnielinski, F. 1987. The East African copal: its geologic, stratigraphic paleontologic significance and comparison with fossil resins of similar age. National Museums of Tanzania Occasional Paper, 8, 1-32.

Shi, G., Grimaldi, D. A., Harlow, G. E., Wang, J., Wang, J., Yand, M., LEI, W., Li, Q. \& Li, X. 2012. Age constraint on Burmese amber based on $\mathrm{U}-\mathrm{Pb}$ dating of zircons. Cretaceous Research, 37, 155-163. doi:10.1016/j.cretres.2012.03.014

Shmakov, A. S. \& Perkovsky, E. E. 2009. Thrips (Thysanoptera, Insecta) from the Rovno amber, Eocene of Ukraine. Paleontological Journal, 43, 669-674.
Simutnik, S. A. \& Perkovsky, E. E. 2018. Archaeocercus gen. nov. (Hymenoptera, Chalcidoidea, Encyrtidae) from Late Eocene Rovno Amber. Zootaxa, 4441, 543548. doi:10.11646/zootaxa.4441.3.8

Solórzano-Kraemer, M. M., Delclòs, X., Engel, M. S. \& Peñalver, E. 2020. A revised definition for copal and its significance for palaeontological and Anthropocene biodiversity-loss studies. Scientific reports, 10, 1-12. doi:10.1038/s41598-020-76808-6

Sorg, M. 1988. Zur Phylogenie und Systematik der Bethylidae (Insecta: Hymenoptera, Chrysidoidea). Sonderveröffentlichungen des Geologischen Instituts der Universität Köln, 63, 1-146.

Spinola, M. 1853. Compte rendu des Hyménoptères inédits provenants du voyage entomologique de M. Ghiliani dans la Para en 1846. Memorie della Reale Accademia Delle Scienze di Torino, 13, 19-94. doi: 10.5281/zenodo. 24751

Statz, G. 1938. Neue funde parasitischer Hymenopteren aus dem Tertiär von Rott am Siebengebirge. Decheniana, 98, 71-151.

Terayama, M. 2003. Phylogenetic systematics of the family Bethylidae (Insecta: Hymenoptera) part I. Higher classification. Academic Reports of the Faculty of Engineering of Tokyo Polytechnic University, 26, 1-14.

Terayama, M. 2004. Formosiepyris, a new genus of the family Bethylidae (Hymenoptera, Chrysidoidea) from the Oriental Region, with a proposal of a new synonymy of genus. Liberal Arts, 12, 91-99.

Waichert, C. \& Azevedo, C. O. 2009. Phylogenetic analysis of Rhabdepyris (Hymenoptera: Bethylidae) and redefinition of generic limits based on morphological characters. Zootaxa, 2284, 1-29. doi: 10.5281/zenodo. 191239

Weitschat W. \& Wichard W. 2002. Atlas of plants and animals in Baltic amber. Verlag Dr. Friedrich Pfeil, München, 256 pp.

Westwood, J. O. 1832. Descriptions of several new British forms amongst the parasitic hymenopterous insects. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1, 127-129. doi:10.1080/14786443208647849

Zhang, Q., Rasnitsyn, A. P., Wang, B. \& Zhang, H. 2018. Hymenoptera (wasps, bees and ants) in mid-Cretaceous Burmese amber: A review of the fauna. Proceedings of the Geologists Association, 129, 736-747. doi:10.1016/j.pgeola.2018.06.004

FIGURE 1. \dagger Anisepyris gradatus Sorg, 1988, piece code SMF-Be 559, female holotype. A,
Habitus, dorsolateral view; B, Habitus, ventrolateral view. Scales: 0.5 mm . Reproduced with permission of SMF.

FIGURE 2. †Chlorepyris deploegi sp. nov., piece code SIZK K-364, male holotype. A, Habitus, lateral view; B, Habitus, ventral view; C, Head, frontal view; D, Head and mesosoma, dorsal view. Scales: 0.2 mm for A-C, 0.5 mm for D .

FIGURE 3. †Chlorepyris concaptus (Brues, 1933), piece without code, female holotype, habitus, dorsolateral view [redrawn digitally from Brues 1933].

FIGURE 4. †Chlorepyris engeli sp. nov., piece code PIN 964/122, female holotype. A, Habitus, lateral view; B, Habitus, dorsolateral view; C, Head, frontal view; D, Head, dorsal view; E, Mandible, frontal view; F, Mesosoma, dorsal view; G, Fore wing, dorsal view. Scales: 0.5 mm for D and G, 0.2 mm for A-C.

FIGURE 5. \dagger Chlorepyris gallicus (Perrichot \& Nel, 2008), piece code MNHN.F.A30297, male holotype. A, Habitus, dorsal view; B, Habitus, ventral view. Scales: 0.5 mm . Reproduced with permission of MNHN.

FIGURE 6. \dagger Chlorepyris hopei $\mathbf{\text { sp. nov., piece code PIN 964/118, female holotype. A, Habitus, dorsal view; }}$ B, Habitus, frontal view; C, Habitus, dorsolateral view; D, Head, dorsal view. Scales: 1.0 mm for C and D, 0.2 mm for A and B.

FIGURE 7. \dagger Chlorepyris jouaulti sp. nov., piece code SIZK K-7725, male holotype. A, Habitus, lateral view; B, Mesoscutellum, dorsal view; C, Fore wing, dorsal view. Scales: 1.0 mm for B and C, 0.2 mm for A.

FIGURE 8. †Chlorepyris mckellari sp. nov., piece code SIZK K-24565, female holotype. A, Habitus, dorsal view; B, Habitus, frontal view. C, Habitus, posterolateral view. Scales: 0.2 mm .

FIGURE 9. \dagger Chlorepyris meunieri sp. nov., piece code PIN 964/121, female holotype. A, Habitus, dorsal view; B, Habitus, lateral view; C, Head, dorsal view; D, Head and pronotum, lateral view; E, Mesosoma and fore wing, dorsal view; F, Mesopleuron, lateral view. Scales: 0.5 mm for D-F, 0.2 mm for A-C.

FIGURE 10. \dagger Chlorepyris neli sp. nov., piece code SIZK UA-68, female holotype. A, Habitus, dorsal view; B, Habitus, posterolateral view; C, Head, dorsal view; D, Habitus, dorsal view. Scales: 1.0 mm for D, 0.5 mm for C and 0.2 mm for A and B .

FIGURE 11. \dagger Chlorepyris perrichoti sp. nov., piece code PIN 964/116, female holotype. A, Habitus, dorsal view; B, Habitus, lateral view; C, Mesosoma, dorsal view; D, Mesopleuron, lateral view. Scales: 0.5 mm for C and D, 0.2 mm for A and B .

FIGURE 12. \dagger Epyris deletus Brues, 1910, piece code AMNH-FI 18891, female holotype. A and B, Habitus, lateral view. Scales: 0.5 mm . Reproduced with permission of AMNH, Paleontology.

FIGURE 13. \dagger Epyris moulyi Falières \& Nel, 2018, piece code PA 16149, male holotype. A, Habitus, dorsolateral view; B, Habitus, ventrolateral view. Scales: 0.5 mm . Reproduced with permission of MNHN.

FIGURE 14. \dagger Epyris rectinervis (Cockerell, 1921), piece code NHMUK I.9352, holotype. A and B, Mesosoma and fore wing, dorsolateral view. Scales: 0.5 mm . Reproduced with permission of NHM, London.

FIGURE 15. \dagger Epyris tenellus Statz, 1938, piece code LACMIP-2533.790, female holotype. A and B, Habitus, dorsal view. Reproduced with permission of LACMIP, GBIF: https://www.gbif.org/occurrence/1851091819.

FIGURE 16. \dagger Holepyris rasnitsyni sp. nov., piece code PIN 964/115, male holotype. A, Habitus, ventral view; B, Genitalia, dorsal view; C, Head, lateral view; D, Mandible, frontal view; E, Mesosoma, dorsal view; F, Genitalia, dorsal view; G, Genitalia, ventral view. Scales: 0.3 mm for $\mathrm{D}-\mathrm{G}, 0.5 \mathrm{~mm}$ for C and 0.2 mm for A and B.

FIGURE 17. \dagger Holepyris terayamai sp. nov., piece code SIZK K-797, female holotype. A, Habitus, dorsal view; B, Habitus, ventrolateral view; C, Clypeus and mandible, dorsal view; D, Habitus, dorsal view. Scales: 0.2 mm for $\mathrm{A}-\mathrm{C}, 1.0 \mathrm{~mm}$ for D .

FIGURE 18. \dagger Holepyris minor (Brues, 1939), piece code PALE-6634, female holotype, habitus, dorsal view. Scales: 0.5 mm . Reproduced with permission of President and Fellows of Harvard College.

FIGURE 19. A, \dagger Holepyris planiceps Brues, 1933, piece without code, female holotype, habitus in dorsal view; B, \dagger Holepyris precursor Brues, 1933, piece code B14174, female holotype, habitus in lateral view. [redrawn digitally from Brues 1933].

FIGURE 20. \dagger Holepyris robustus (Brues, 1933), piece without code, female holotype, habitus in ventrolateral view. [redrawn digitally from Brues 1933].

FIGURE 21. †Laelius preteritus Barbosa \& Azevedo, 2013, piece code K-4207, female holotype. A, Habitus, ventrolateral view; B, Habitus, dorsal view; C, Mesosoma and fore wings, dorsal view. Scales: 0.2 mm .

FIGURE 22. †Laelius rovnensis Barbosa \& Azevedo, 2013, piece code K-3672, female holotype. A, Habitus, dorsolateral view; B, Habitus, ventral view. Scales: 0.2 mm .

FIGURE 23. \dagger Gloxinius bifossatus (Brues, 1939), piece code PALE-7679, male holotype. A, Habitus, dorsolateral view; B, Head, lateral view; C, Mesoscutellum, dorsal view; D, Mesosoma, dorsolateral view; E and F, Genitalia, dorsal view. Scales: 0.25 mm for B-F, 0.5 mm for A. Reproduced with permission of President and Fellows of Harvard College.

FIGURE 24. \dagger Merascylla atavella (Cockerell, 1920), piece code NHMUK In.20149(1), male holotype, habitus, ventral view. Scales: 1.0 mm . Reproduced with permission of NHM, London.

FIGURE 25. \dagger Laelius nudipennis Brues, 1933, piece without code, female holotype. [redrawn digitally from Brues 1933].

FIGURE 26. Chronostratigraphic chart of Epyrinae fossils. Numerical dates attached to each time interval by Cohen et al. (2020).

CAPÍTULO IV

Systematics of Epyrinae (Hymenoptera, Bethylidae) with a worldwide phylogeny using total evidence ${ }^{4}$

Abstract

Epyrinae are one of most species-rich subfamily in Bethylidae. A phylogeny of Epyrinae is reconstructed with parsimony, likelihood, and Bayesian inferences using the nuclear markers 18S and 28S, the mitochondrial genes 16S, Cytochrome Oxidase Subunit I, and Cytochrome B, and 232 morphological characters. This is the first phylogenetic study to examine all 42 epyrine genera, including junior synonyms and extinct taxa. In total, this study considered 195 terminal taxa, with 175 as ingroup taxa and 20 as outgroup. The resulting tree of total evidence recovered Anisepyris, Bakeriella, Calyozina, Chlorepyris, Disepyris, Laelius, and Trachepyris as monophyletic; Formosiepyris, Epyris, and Holepyris are non-monophyletic. Here, we describe two new genera: GenusA to be proposed as gen.n. and GenusB to be proposed as gen.n.; we revalidate six genera, five of them junior synonyms of Epyris and one of Holepyris, they are: Calyoza to be proposed as stat. rev., Dolus to be proposed as stat. rev., Muellerella to be proposed as stat. rev., Psilepyris to be proposed as stat. rev., Rysepyris to be proposed as stat. rev. and Trissepyris to be proposed as stat. rev. The genera Artiepyris, Calyozella, Paracalyoza, Peudocalyoza, and Xenepyris will be proposed as junior synonyms of Calyoza to be proposed as stat. rev.; Homoglenus and Neodisepyris will be proposed as junior synonyms of Dolus to be proposed as stat. rev.; Disepyris, Formosiepyris and Lytepyris will be proposed as junior synonyms of Holepyris; Acanthepyris, Planepyris, Pristobethylus and Trachepyris will be proposed as junior synonyms of Muellerella to be proposed as stat. rev.; Misepyris and Parepyris will be proposed as junior synonyms of Rysepyris to be proposed as stat. rev. In addition, we provide a checklist of all species of Epyrinae, analysed via direct observation of the type, illustrations, or literature. Finally, we split Epyrinae into 17 genera: Anisepyris, Aspidepyris, Bakeriella, Calyoza to be proposed as stat. rev., Calyozina, Chlorepyris, Dolus to be proposed as stat. rev., Epyris, \dagger Gloxinius, GenusA to be proposed as gen.n., Holepyris, GenusB to be proposed as gen.n., Laelius, Muellerella to be proposed as stat. rev., Psilepyris to be proposed as stat. rev., Rysepyris

[^3]to be proposed as stat. rev. and Trissepyris to be proposed as stat. rev., allocating 962 species within them.
Key words. Integrative taxonomy, Epyris, molecular, morphology evolution.

INTRODUCTION

Bethylidae are external gregarian parasitoids, mainly of larval Coleoptera and Lepidoptera (Evans, 1964; Gordh \& Móczár, 1990; Azevedo et al., 2018). The family belongs to Chrysidoidea (Hymenoptera) and has been shown to be a monophyletic taxon and sister-group of Chrysididae (Peter et al., 2017; Branstetter et al., 2017). Bethylidae contain about 3,000 species, which are divided into four extinct subfamilies: \dagger Elektroepyrinae, \dagger Holopsenellinae, \dagger Lancepyrinae, and \dagger Protopristocerinae, and five living subfamilies: Bethylinae, Pristocerinae, Mesitiinae, Scleroderminae, and Epyrinae (Azevedo et al., 2018; Colombo et al., 2020). The latter is the subject of this present study.

Epyrinae, one of the larger subfamilies of Bethylidae, contain about 962 species in 13 genera: Anisepyris Kieffer, Aspidepyris Evans, Bakeriella Kieffer, Calyozina Enderlein, Chlorepyris Kieffer, Disepyris Kieffer, Epyris Westwood, Formosiepyris Terayama, \dagger Gloxinius Colombo \& Azevedo, Holepyris Kieffer, Laelius Ashmead, Trachepyris Kieffer, and Xenepyris Kieffer.

In their original form, Epyrinae were composed of two tribes, Epyrini and Sclerodermini, as proposed by Kieffer (1914). Both tribes were raised to subfamily rank by Berland (1928), but were collapsed back to tribal status by Evans (1964), with the addition of a third tribe, Cephalonomiini. Epyrini were the largest and most morphologically diverse of the tribes. Evans (1964) proposed that Sclerodermini and Cephalonomiini were related to Epyrini by a series of "intermediate genera" (e.g., Laelius and Plastanoxus Kieffer) without phylogenetic investigation. Evans (1964) diagnosed Epyrini by having 13 antennomeres, eyes laterally placed, a median projecting lobe on the clypeus, well-defined notauli, and the metapectal-propodeal disc bordered by a transverse carina. However, these characters are highly variable within the group, and are present in other subfamilies of Bethylidae (Sorg, 1988; Carpenter, 1999; Terayama, 2003; Alencar \& Azevedo, 2013).

Taxonomic revisions based on phylogenetic reconstructions of Epyrinae and their tribes began with Lanes \& Azevedo (2008). The authors recovered Sclerodermini as monophyletic only when they contained Cephalonomiini, proposing that both tribes should be merged into Sclerodermini. Carr et al. (2010) reconstructed the first molecular
phylogeny using mitochondrial 16 S and nuclear 28S genes, and reconstructed Epyrini and Sclerodermini as monophyletic, but not the subfamily. Sclerodermini were retrieved sister to Mesitiinae, although a small sampling number prevented the authors from proposing taxonomic changes (Carr et al., 2010). In Alencar \& Azevedo (2013), Epyrini and Sclerodermini were subjected to a thorough morphological analysis in which characters from genitalia were examined. Sampling throughout Bethylidae, they found that Epyrinae sensu Evans (1964) were non-monophyletic, recovering the topology (Bethylinae + (Sclerodermini ((Mesitiinae + Pristocerinae) + Epyrini))). For the first time, synapomorphies were attributed to Epyrini: posterior pronotal sulcus punctate, propleural epicoxal sulcus circular, radial 1 vein of the forewing short, anterior area of the second abdominal sternum with anterior margin outcurved and median margin with narrow emargination, second abdominal segment not divided, with anterior area and posterior area fused, and aedeagus short with apex not reaching the cuspis maximum height. Thus, Epyrini and Sclerodermini were re-elevated to the subfamily status (Alencar \& Azevedo, 2013).

While Epyrinae are well defined as a subfamily, several taxonomic questions remained, mainly about the limits of genera and their relationships. Only two phylogenetic analyses within Epyrinae have been published. Waichert \& Azevedo (2009) analysed Rhabdepyris Kieffer, 1904 based on morphological characters, finding that the genus was paraphyletic, and transferred many species to Laelius, Anisepyris, and Chlorepyris. Azevedo et al. (2018) then synonymized the genus Rhabdepyris with Epyris. Barbosa \& Azevedo (2011) synonymized Allepyris Kieffer, 1905, Paralaelius Kieffer, 1906, and Prolaelius Kieffer, 1905 with Laelius based on the results of a similar morphological phylogenetic approach.

Several genera in Epyrinae described by Kieffer (1905, 1913a), such as Melanepyris Kieffer, 1913, Pristepyris Kieffer, 1905, Trissepyris Kieffer, 1905, and Neurepyris Kieffer, 1905, have been synonymized with other genera (Alencar \& Azevedo, 2009; Azevedo \& Alencar, 2009; Azevedo \& Alencar, 2010a; Azevedo \& Alencar, 2010b; Alencar \& Azevedo, 2011). Azevedo et al. (2018) synonymized Neodisepyris and Leptepyris with Epyris based on the original descriptions, and discussed the taxonomic position of Xenepyris, but abstained from proposing a nomenclatural act for the latter. Alencar \& Azevedo (2013) were also unable to locate specimens of Neodisepyris, as well as the Baker Collection in the Philippines, in which the single species of Leptepyris Kieffer, 1914 and
the two species of Xenepyris were deposited. Therefore, these taxa have never been analysed under phylogenetic approaches.

The most speciose genus within Epyrinae, with over 300 species described worldwide, is Epyris. It is likely a taxonomic wastebasket because it cannot be defined by synapomorphies (Carpenter, 1999; Alencar \& Azevedo, 2013). Previous phylogenetic investigations of Bethylidae, only contained a small sample of Epyris. In a molecular analysis by Carr et al. (2010) using 16S and 28S genes, only four species of Epyris were analysed and the genus was not always recovered as monophyletic. In Alencar \& Azevedo (2013) it was found as paraphyletic in all analyses, but represented by only three species.

Epyris has numerous generic synonyms. Evans (1964) synonymized Muellerella Saussure, 1892, Parepyris Kieffer, 1913, Psilepyris Kieffer, 1913, and Artiepyris Kieffer with Epyris. Later, Evans studied Artiepyris and associated it morphologically with the dodecatomus species group (Evans 1969). Evans (1969) also split the Nearctic and Neotropical species of Epyris into nine species groups, pointing out that some groups were easily defined by distinctive characters (Evans' montivagus and depressigaster groups for instance), whereas others were possibly arbitrary because of shown plasticity (tricostatus and rufipes groups). Evans (1969) also provided an intuitive dendrogram to display relationships among the genera, suggesting that they derived from Rhabdepyris. Evans (1979a) removed the montivagus species group and placed them in a separate genus, Bakeriella Kieffer, 1910. Outside of Evans’ work, several other genera have been synonymized within Epyris, such as Dolus Motschulsky, 1863 (Krombein, 1987a), Calyoza Hope, Paracalyoza Cameron, Pseudocalyoza Turner and Calyozella Enderlein (Krombein, 1992), Homoglenus Kieffer (Terayama, 2003), Melanepyris Kieffer and Trissepyris Kieffer (Azevedo \& Alencar, 2010a; 2010b), Leptepyris, Isobrachium Förster, Rhabdepyris and Neodisepyris (Azevedo et al., 2018), totaling 16 junior synonyms of Epyris.

Bakeriella is represented by 31 species and has a wide range of phenotypic plasticity (Azevedo et al., 2018), which makes it difficult to place species within the genus. All species were revised, illustrated and keyed by Azevedo (2014). Calyozina and Aspidepyris are the least speciose extant genera in Epyrinae, rarely collected, but morphologically well distinguished. Calyozina is an Oriental genus, with only three species, distinguished by having the dorsal pronotal area with anterior, lateral and posterior margins incurved and anterolateral corners angularly shaped. Aspidepyris is a Neotropical genus with two
species, easily recognized by having the dorsal pronotal area with an elevation that is wide anteriorly and narrows progressively posterad, a unique configuration in Bethylidae.

Finally, the taxonomic history of Epyrinae and their genera combines numerous synonymizations, species groups that are likely arbitrary, and generic taxa poorly distinguished among the subfamilies. Moreover, Epyris, the second largest genus within Bethylidae is likely an unnatural genus and its delimitation overlaps with other genera. Herein, we aim to reconstruct the phylogenetic relationship and clarify the generic delimitation within Epyrinae by examining a large, representative sample of Epyris, molecular and morphological datasets, and a complete representation of the genera of Epyrinae.

MATERIAL AND METHODS

Material examined. We examined all 962 species hitherto classified as Epyrinae during collection visits, or loans, and by the original descriptions. The material was provided by the following institutions (curators at the time material was accessed): ACC - Instituto de Ecología y Sistemática de Cuba, Havana, Cuba (R.N. Aguilla); AEIC - American Entomological Institute, Logan, U.S.A. (D. Wahl, now in Utah); AMNH - American Museum of Natural History, New York, U.S.A. (J.M. Carpenter); BMNH - Natural History Museum, London, U.K. (K. Goodger); BPBM - Bernice Pauahi Bishop Museum, Honolulu, U.S.A. (A. Ramsdale); CAS - California Academy of Sciences, San Francisco, U.S.A. (R. Zuparko); CMNH - Carnegie Museum of Natural History, Pittsburgh, U.S.A. (J. Ashe); CNC - Canadian National Collection of Insects, Ontario, Canada (J. Huber); CUIC - Cornell University, Ithaca, U.S.A. (E. R. Hoebecke); CZMA - Coleção Zoológica do Maranhão, São Luis, Brazil (F. Limeira-de-Oliveira); DZUP - Universidade Federal do Paraná, Curitiba, Brazil (K. Zanol); FIFML - Fundación y Instituto Miguel Lillo, Tucumán, Argentina (V. Colomo); HNHM - Magyar Természettudományi Múzeum, Budapest, Hungary (S. Csõsz); IAVH - Instituto Alexander von Humboldt, Bogota, Colombia (M. Ospina); INHS - Illinois Natural History Survey, Chicago, U.S.A. (C. Favret); INPA - Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil (J. A. Rafael); ISAM - Iziko South African Museum, Cape Town, South Africa (S. van Noort); LACM - Los Angeles County Museum of Natural History, Los Angeles, U.S.A. (B. Brown); MACN - Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos

Aires, Argentina (A. Roig Alsina); MCZC - Museum of Comparative Zoology, Cambridge, U.S.A. (S. Cover \& P.D. Perkins); MCSN - Museo Civico di Storia Naturale Giacomo Doria, Genova, Italy (M. Tavano); MNHN - Museum National d'Histoire Naturelle, Paris, France (A. Touret-Alby) ; MPEG - Museu Paraense Emílio Goeldi, Belém, Brazil (A. Harada); MRAC - Musée Royale d’Afrique Centrale, Tervuren, Belgium (S. Hanot); NIAES - National Institute of Agro-Environmental Sciences, Tsukuba, Japan (S. Yoshimatsu); NHMW - Naturhistorisches Museum Wien, Vienna, Austria (D. Zimmermann); NMKE - National Museum of Kenya, Nairobi, Kenya (R. Copeland); OUMNH - Oxford University Museum of Natural History, Oxford, U.K. (C. O‘Toole and J. E. Hogan) PMAE - Royal Alberta Museum, Alberta, Canada (M. Buck); QMSB - Queensland Museum South Bank, South Brisbane, Australia (C. Burwell); QSBG - Queen Sirikit Botanical Garden, Mae Rim, Chiang Mai, Thailand (W. Srisuka); RMNH Nationaal Natuurhistorische Museum, Leiden, Netherlands (C. van Achterberg); SEMC Snow Entomological Collection, The University of Kansas, Kansas, U.S.A. (Z. Falin); UFES - Universidade Federal do Espírito Santo, Vitória, Brazil (C.O. Azevedo); UQIC The University of Queensland Insect Collection, Brisbane, Australia (S. Wright); USNM National Museum of Natural History, Washington, U.S.A. (T. Schultz \& D. Furth); YNU Yeungnam University, Gyeongsan(-si), South Korea (J.W. Lee); ZMHB - Museum fur Naturkunde, Berlin, Germany (F. Koch).

Terminology and treatment. The terminology for general morphology follows Lanes et al. (2020), measurements and indices follows Evans (1964), Azevedo (1999a), Lanes \& Azevedo (2008) and Alencar \& Azevedo (2013). Integument sculpture terminology follows Harris (1979), except for the term coriaceous, which follows Eady (1968).

Taxonomic characters related to the male genitalia and hypopygium were examined after dissection. Each dissected genitalia and hypopygium was diaphanized according to Martinelli et al. (2017). After this step, the genitalia were transferred into a microvial filled with glycerin for preservation. Each microvial was pinned together with the specimens for morphological analyses and illustration. Genital and hypopygeal characters were examined under a Leica DM2500 light microscope (Germany).

Terminal taxa. Phylogenetic relationships were inferred from 175 specimens of Epyrinae with three specimens of Chrysididae (two from Chrysidinae and one from Cleptinae),
which are the sister group to Bethylidae (Grimaldi \& Engel, 2005). Bethylids from the other subfamilies were also included as outgroups, as follows: three specimens of Bethylinae, five of Pristocerinae, four specimens of Mesitiinae, and five specimens of Scleroderminae. Our taxon sampling heavily focused on Epyrinae morphological and geographical diversity, including representatives from all genera (extant and extinct), a broad range of zoogeographical regions, and different species group representatives (for example staphylinoides and depressigaster) of Epyris, aiming to test the validity of some synonyms (Appendix 1)

The genus Trachepyris Kieffer, 1905 was recognized only from females because the synapomorphies diagnostic for the group are only found within females (with males indistinguishable from male representatives of Epyris). Features used to identify female representatives of Trachepyris prior to phylogenetic analyses were: 1) mandible with a horizontal apex, which could be well-developed (as in Trachepyris sp. 1 and Trachepyris sp. 2), or a more subtle expansion as in Trachepyris sp., and 3) protarsus with strong setae. Potential males of Trachepyris are elaborated upon in the conclusion, and are identified as Epyris/Trachepyris.

Molecular data sampling

The molecular analyses were performed on a selection of 186 terminal taxa (19 taxa as outgroup and 167 as ingroup). We sampled specimens from all epyrine genera, except Xenepyris, as follows: Anisepyris (nine specimens), Aspidepyris (one specimen), Bakeriella (four specimens), Calyozina (one specimen), Chlorepyris (20 specimens), Disepyris (three specimens), Epyris (83 specimens), Formosiepyris (two specimens), Holepyris (22 specimens), Laelius (eight specimens), Trachepyris (three specimens) and Epyris/Trachepyris (11 specimens). All terminal taxa information for molecular data and GenBank accession numbers are listed in Appendix 1.

Morphological data sampling

The morphological analyses were performed on a selection of 168 terminal taxa, which represent the greatest morphological diversity possible (eight taxa as outgroup and 160 as ingroup). We utilized many of the same terminal taxa from the molecular analysis and representatives of type species and holotype specimens whenever possible for potential nomenclatural acts (Appendix 1), as follows: Anisepyris (nine specimens), Aspidepyris
(one specimen), Bakeriella (five specimens), Calyozina (two specimens), Chlorepyris (20 specimens), Disepyris (three specimens), Epyris (75 specimens), Formosiepyris (three specimens), \dagger Gloxinius (one specimen), Holepyris (20 specimens), Laelius (seven specimens), Trachepyris (three specimens), and Epyris/Trachepyris (11 specimens).

Total evidence data sampling

The total evidence analyses were performed on a selection of 194 terminal taxa (20 taxa as outgroup and 174 as ingroup). We sampled specimens from all epyrine genera, except Xenepyris and \dagger Gloxinius (Appendix 1), as follow: Anisepyris (nine specimens), Aspidepyris (one specimen), Bakeriella (five specimens), Calyozina (two specimens), Chlorepyris (21 specimens), Disepyris (three specimens), Epyris (85 specimens), Formosiepyris (three specimens), Holepyris (23 specimens), Laelius (eight specimens), Trachepyris (three specimens), and Epyris/Trachepyris (11 specimens).

Morphological data. The characters were treated as hypotheses of primary homology following De Pinna (1991). We worked on improving character-coding systems, avoiding continuous quantitative characters as much as possible. Important characters have been proposed from the codification of new features, mainly of the mesoscutum-mesoscutellar suture (a morphological structure widely used in taxonomy of Epyrinae); several characters are used again or modified mostly from Lanes \& Azevedo (2008) and Alencar \& Azevedo (2013). A total of 232 morphological characters were analysed: two from the general body, 64 characters from the head, 91 from the mesosoma, 21 characters from the wings, 12 from the metasoma; six from male hypopygium and 36 from male genitalia (Appendix 2). All characters were coded using Leica M80 microscopes and we coded the character states through examination of the specimens or high-quality photographs.

All character states were treated as unordered and non-polarized. Inapplicable and unknown characters were represented as '-' (Supplementary material). The data were included in the matrix using the program DELTA EDITOR (Description Language Taxonomy) by Dallwitz (1980). We used DELTA to generate a nexus file from the matrix.

DNA extraction and molecular protocols. Specimens were stored in 95 percent ethanol and refrigerated prior to extraction. Genomic DNA was isolated using a QIAGEN DNeasy Tissue Kit and NucleoSpin Tissue, following the manufacturer's protocols, with the
exception of using non-destructive lysing techniques (Paquin \& Vink, 2009). This allowed for specimens to be pinned, identified, and used in morphological analyses after DNA extraction.

PCR amplification was accomplished using General Electric PuReTaq Ready-To-Go beads with the following primers: the 16 S region was amplified using 16 SWb (5^{\prime}-CAC CTG TTT ATC AAA AAC AT- 3^{\prime}) and 16 SWa (5^{\prime} '-CGT CGA TTT GAA CTC AAA TC3') (Dowton \& Austin, 1994), the 18S region was amplified using 18SF2 (5'-CTA CCA CAT CCA AGG AAG GCA G- 3^{\prime}) and 18 SR2 (5^{\prime}-AGA GTC TCG TTC GTT ATC GGA-3') (Rokas et al., 2002), the 28S D2-D3 region was amplified using For28Vesp (5'AGA GAG AGT TCA AGA GTA CGT G-3') and Rev28SVesp (5^{\prime}-GGA ACC AGC TAC TAG ATG G-3') (Hines et al., 2007), the Cytochrome Oxidase I (COI) was amplified for the Folmer/barcode region using LCO (5^{\prime}-GGT CAA CAA ATC ATA AAG ATA TTG G3') and HCO (5'-TAA ACT TCA GGG TGA CCA AAA AAT CA-3') (Folmer et al., 1994) and the Cytochrome b (Cytb) region was amplified using CB1 (5’-TAT GTA CTA CCA TGA GGA CAA ATA TC-3') and CB2 (5^{\prime}-ATT ACA CCT CCT AAT TTA TTA GGA AT-3') (Simon et al., 1994). Thermocycler protocols are detailed in Appendix 3 from adaptations of Alencar et al. (2018).

Amplified DNA fragments were purified with the ExoSAP-IT (USB Corporation, Cleveland, OH, U.S.A.) enzyme purification protocol kit. Sequencing was performed at the American Museum of Natural History (AMNH-USA) in the Sackler Institute for Comparative Genomics on an ABI 3730 and at the Universidade Federal do Espírito Santo (UFES-Brazil) in the Núcleo de Genética Aplicada à Conservação da Biodiversidade (NGACB) on an ABI 3500.

The sequences of each gene were analysed with the program MEGA 7 (Kumar et al., 2016) and the identity confirmed through the BLAST method (Altschul et al., 1997). The alignments were made through the online program MAFFT 7 (Katoh, 2013) with setting the algorithm to E-INS-I and the scoring matrix to 200PAM/k=2, subsequently refined manually. Finally, a molecular concatenated matrix was produced using the MeSQuite 3.61 (Maddison \& Maddison, 2019), resulting in 3367 nucleotide base pairs.

Combined morphology and molecular data. The Total Evidence (TE) matrix was manually compiled using the program NoTEPAD++ with the morphological and combined molecular data sets, and consisted of 195 taxa and 3599 characters.

Phylogenetic analyses

Morphological analyses

The morphological dataset was analysed using maximum parsimony. The searches for the most parsimonious (MP) trees were carried out with the software TNT 1.1 (Goloboff et al., 2008). Characters were treated under implied weights (Goloboff, 1993; Goloboff et al. 2008). We used the parameter settings as follows: space for 99999 trees in memory; Wagner trees random seed $1 ; 1000$ replications; TBR algorithm; 10 trees saved per replication; other parameter as in default mode. The tree was rooted with Eupsenella diemenensis Dodd.

Heuristic searches (Goloboff, 2003; Goloboff et al., 2008) were performed under New Technology methods using a sectorial search, ratchet weighting probability of 10% with 1000 iterations, tree-drifting of 1000 cycles and tree-fusing of ten rounds. These parameters were used to generate robust trees. Implied weights analyses using a concavity function (K) that weights against homoplastic data (Goloboff, 1993) were also conducted, using a TNT script (setk.run) written by Salvador Arias to calculate the appropriate value. A value of 33,447266 was returned and subsequently used in the implied weighting scheme. Branch support was investigated using resampling support values, which were calculated using bootstrap with New Technology (default parameters) and reported as absolute frequencies from 100 replicates. The cladograms recovered with the software TNT was manipulated with Winclada-ASAdo 1.61 (Nixon, 2002) and further edited in Adobe Illustrator CS6 23.0.3. For the best results, the character mesoscutum-mesoscutellar suture was mapped onto the implied weighting tree using Winclada-asado, and edited in Adobe Illustrator CS6 23.0.3.

Molecular analyses

We applied Maximum Likelihood (ML) and Bayesian Inference (BI) approaches to reconstruct the molecular topologies. The gene trees were reconstructed through BI to check for topological incongruence. The BI was performed in mRbayes (Ronquist \& Huelsenbeck, 2003) using the Cipres Science Gateway service (Miller et al., 2010, https://www.phylo.org/), with the Bayesian Markov chain Monte Carlo (MCMC) chains
running simultaneously for a total of 10 million generations, with sampling every 1000 generations and burn-in of 25%.

For the concatenated matrix, the optimal partition strategy and models of molecular evolution for the data were determined in PARTITIONFINDER 1.01 (Lanfear et al., 2012). The model selection analyses under Bayesian information Criterion (BIC) returned SYM+I+G (set as nst=6 rates=invgamma in MRBAYES) for eight partitions: 16S; 18S; 28S; COI, codons 1-3; Cytb, codons 1, 2; and returned SYM+G (set as nst=6 rates=gamma in MRBAYES) for one partition: Cytb, codon 3.

For the concatenated matrix, we carried out the BI in mRbayes using Cipres with MCMC chains running simultaneously for a total of 60 million generations, sampling every 2000 generations and burn-in of 25%. Trace plots and effective sample size (ESS) were examined in TRACER 1.5 to determine MCMC mixing and convergence for the gene trees and concatenated matrix. All BI analyses were rooted with Cleptes seoulensis Tsuneki, 1959.

The ML analyses were conducted with RaXML 8 (Stamatakis, 2014) through the Cipres Science Gateway under the model GTR GAMMA for each gene. We performed 1000 bootstrap replications to assess node supports. The ML analyses were rooted with Cleptes seoulensis, Chrysis cembricola Krombein and Chrysis principalis Smith. Phylogenetic tree viewing was performed in FIGTREE 1.4.2 (Rambaut, 2014, http://tree.bio.ed.ac.uk/software/figtree/), and then edited in ADOBE ILLUSTRatOR CS6 23.0.3.

Total Evidence analyses

We carried out Bayesian Inference (BI) approaches to reconstruct the Total Evidence topology. The models of molecular evolution for the nine partitions were imported from the molecular matrix. The tenth partition (standard data) was added for the morphological characters (3368-3599). The evolutionary model MK- Jukes-Cantor (prset Symdirihyperpr $=$ fixed(infinity)) was selected for this partition following Lewis (2001).

The analyses were rooted with Cleptes seoulensis, with 60 million generations, sampling every 2000 generations and burn-in of 25%. Trace plots and ESS were examined in TRACER 1.5. Phylogenetic tree viewing was performed in FIGTREE 1.4.2, and then edited in Adobe IlLustrator CS6 23.0.3.

Illustrations

Specimens were photographed with a Leica Z16 APO stereomicroscope fitted with a camera adaptor coupled to a Leica DFC 295 video camera (Leica Microsystems, Switzerland, Germany). The software Leica application suite 3.6.0 and Microsystems by Leica Limited (LAS) were used to capture individual focal planes. We used a scaleable and modular LED illumination dome for microscopic scientific photography as described by Kawada \& Buffington (2016). Helicon focus (version 4.2.9; HeliconSoft, Dominica) software was used for stacking the layers into a single combined-focus image.

RESULTS

Subfamily topology

Total evidence (TE) (posterior probability $(\mathrm{PP})=1$) and molecular topologies recovered a monophyletic Epyrinae (Bootstrap (B)=100 and PP=1) (Fig. 1; Appendix 4-6), as well as Scleroderminae, Pristocerinae, Bethylinae, and Mesitiinae. The subfamilies most closely related to Epyrinae are (Mesitiinae + Scleroderminae), however, the relationship among bethylids subfamilies remain uncertain. Subfamily topologies in TE and molecular analyses were (Bethylinae + (Pristocerinae + (Mesitiinae + Scleroderminae) + Epyrinae)).

All datasets resulted in similar species clustering. The statistical support and the phylogenetic relationships among the internal clades varied within the reconstruction approaches. The parsimony tree differed not only from the phylogenetic relationship between the clades, but also in the taxonomic composition of the clades themselves (Appendix 7). For instance, Aspidepyris and Calyozina were recovered as sister group in the parsimony reconstruction, whereas they nested within Epyris group 6 and Epyris group 2 , respectively, in the approaches using only molecular dataset. However, extinct species and holotype representatives from monotypic genera were excluded from the molecular analyses, which showed similar topology in BI and ML approaches. Moreover, the molecular and the TE trees were congruent.

Representatives of Epyris and Holepyris clustered with different genera and were divided into several independent lineages in the topology. In the TE and molecular phylogenies, species of Epyris split up within seven different lineages (Epyris sensu stricto and groups 1-6, Fig. 1; Appendix 4-6), however, in the morphology-only parsimony analysis, the genus was split in six clades (all linages with low statistical support) and only

Epyris sensu stricto had the same taxon composition as seen in the ML and BI approaches. Species of Holepyris split within two lineages (group 1 and Holepyris sensu stricto).

FIGURE 1. Bayesian topology of total evidence analysis with 232 morphological and 3367 molecular characters. Posterior probability values are shown above branches. Current classification as taxa terminal and new proposed classification at the ends.

The phylogenetic reconstruction of the TE retrieved 14 monophyletic groups within Epyrinae with good statistical supports: Anisepyris ($\mathrm{PP}=1$), Bakeriella ($\mathrm{PP}=1$), Calyozina ($\mathrm{PP}=1$), Chlorepyris $(\mathrm{PP}=1)$, Disepyris ($\mathrm{PP}=1$), Epyris sensu stricto ($\mathrm{PP}=0.99$), Epyris (group 2) ($\mathrm{PP}=0.99$), Epyris (group 3) ($\mathrm{PP}=1$), Epyris (group 4) ($\mathrm{PP}=1$), Epyris (group 5) ($\mathrm{PP}=1$), Epyris (group 6) ($\mathrm{PP}=1$), Holepyris (group 1) ($\mathrm{PP}=1$), Laelius ($\mathrm{PP}=1$) and Trachepyris ($\mathrm{PP}=0.98$). Aspidepyris was sampled based on a single specimen, which clustered with species of Epyris (group 6). Holepyris sensu stricto had a single representative in the analyses, which clustered with Formosiepyris and Disepyris. Formosipeyris is a polyphyletic group.

Eleven of the lineages recovered in TE were reconstructed in the ML and BI analyses. Both topologies had similar clades: Anisepyris ($\mathrm{PP}=1 ; \mathrm{B}=100$), Bakeriella ($\mathrm{PP}=1$; $\mathrm{B}=100)$, Epyris sensu stricto $(\mathrm{PP}=1 ; \mathrm{B}=100)$, Epyris (group 1) $(\mathrm{PP}=1 ; \mathrm{B}=100)$, Epyris (group 2) ($\mathrm{PP}=1 ; \mathrm{B}=76$), Epyris (group 3) $(\mathrm{PP}=1 ; \mathrm{B}=100)$, Epyris (group 4) $(\mathrm{PP}=1$; $\mathrm{B}=100$), Epyris (group 5) ($\mathrm{PP}=1 ; \mathrm{B}=100$), Epyris (group 6) ($\mathrm{PP}=1 ; \mathrm{B}=100$), Holepyris (group 1) $(\mathrm{PP}=1 ; \mathrm{B}=100)$ and Trachepyris $(\mathrm{PP}=1 ; \mathrm{B}=100)$. Aspidepyris and Calyozina were sampled based on a single specimen. The first clustered with the Epyris (group 6 similar to TE approach) and the second clustered with Epyris (group 2 - unlike TE approach). Chlorepyris was grouped with low statistical support ($\mathrm{B}=60$) in the ML, and paraphyletic in the BI analysis.

The phylogenetic morphological reconstruction (Appendix 7) returned one parsimonious cladogram with 2433 steps (L) under implied weights. The consistency index (CI) was 12 and the retention index (RI) was 65 . The subfamilial node was recovered with three synapomorphies: 131:0 (propleural epicoxal sulcus circular/subcircular, in lateral view); 180:0 (convex anterior margin with a narrow emargination of the anterior area of the S2, in ventral view); and 181:1 (anterior and posterior areas of the S2 fused). Six genera are recovered as monophyletic with good statistical support: Anisepyris $(B=97)$, Bakeriella (B=89), Calyozina (B=100), Disepyris (B=100), Laelius (B=91) and Holepyris (group 1) (B=93). Epyris (groups 1-6) showed low statistical support (B<75) and, in addition, the lineages show a composition of terminal taxa different from all other topologies. Chlorepyris, Epyris sensu stricto and Trachepyris are grouped, but with low statistical support. Holepyris sensu stricto was sampled from a single representative and grouped with Formosiepyris. Formosiepyris is paraphyletic in our results.

Relationships within subfamily

Two major clades (A and B) were recovered within Epyrinae in all analyses, except the morphology-only parsimony topology ($\mathrm{B} \geq 97$ (Appendix 5), $\mathrm{PP}=1$ (Fig. 1; Appendix 4, 6)). Clade A includes Anisepyris, Laelius, and Chlorepyris, whereas clade B has representatives of Aspidepyris, Bakeriella, Calyozina, Disepyris, Epyris sensu stricto, Epyris (groups 1-6), Formosiepyris, Holepyris sensu stricto, Holepyris (group 1), and Trachepyris.

Topology of clade A varied in each of the four analyses. In TE, the relationship among genera was (Chlorepyris + (Anisepyris + Laelius)); in ML the outcome was
(Anisepyris + (Laelius + Chlorepyris)), in the Bayesian topology, Chlorepyris was paraphyletic and Anisepyris was the sister genus to all others. Species of Chlorepyris split into two clades. One composed entirely of species from Australia with the exception of a single species from Peru [hereby referred as Peru+Australia and another clade of Chlorepyris composed of exclusively Neotropical species [hereby referred to as Neotropical]. Finally, in the parsimony tree, Laelius and Anisepyris are sister-group and Chlorepyris is sister to Laelius + Anisepyris.

The second clade in Epyrinae (B) includes the remaining lineages. It is split into two subdivisions (C and D) in the total evidence tree. A small clade $(\mathrm{PP}=1)$ is composed of Disepyris, Formosiepyris, Holepyris sensu stricto and Holepyris (group 1), whereas a major clade ($\mathrm{PP}=94$) includes Aspidepyris, Bakeriella, Calyozina, Epyris sensu stricto, Epyris (groups 1-6) and Trachepyris. The taxa included in clade C was similar in the different analyses. Holepyris (group 1) is the sister-group of Disepyris, Formosiepyris and Holepyris sensu stricto. Disepyris is monophyletic in all analyses, however, except in the parsimony, this genus is grouped with species of Formosiepyris and Holepyris and with this, the latter two are polyphyletic. Clade D shows polytomy within internal lineages in total evidence topology. In molecular topologies, however, Epyris (group 1) nested outside of clade D.

Morphological traits

Several of the morphological characters used in our analyses ended up being homoplasious. However, the most important alpha taxonomic character confirmed homologous in TE and parsimony topologies, e.g., the mesoscutum-mesoscutellar suture, with the evident loss of the sulcus between the foveae (Fig. 2).

The shape of the mesoscutum-mesoscutellar suture was also shown to be homologous between the lineages. In both topologies (parsimony and TE) the clade Holepyris (sensu stricto and group 1) + Disepyris + Formosiepyris share the mesoscutummesoscutellar suture sulcate, wide, transverse and usually trabeculate. The other major pattern of the mesoscutum-mesoscutellar suture present in the Epyrinae was recovered as homologous in the TE topology, but not in the parsimony analysis. The clade composed of Laelius, Anisepyris and Chlorepyris share a common mesoscutum-mesoscutellar suture sulcate, never trabeculate and with posterior margin incurved.

The mesoscutum-mesoscutellar suture without sulcus between foveae is homologous in Epyrinae, however its shapes and variations were presented with little resolution. In the TE topology, a major polytomy was recovered and in parsimony, at least 13 different patterns were identified on the tree. In the latter, the mesoscutummesoscutellar suture without sulcus were important characters in the delimitation of some linages, such as Epyris sensu stricto, for example.

FIGURE 2. Phylogenetic character mapping: mesoscutum-mesoscutellar suture, based on Parsimony topology with 232 morphological characters.

Taxonomic implications

Based on the phylogenies recovered in our analyses, the generic delimitation in Epyrinae is incongruent with the evolutionary lineages. Here we propose a new classification for Epyris sensu Azevedo et al. (2018) based on phylogenetic relationship, describe two new genera, revalidate five genera and transfer species within epyrine taxa. We provide a checklist addressing each taxon in Appendix 5. Most of the species were
analysed directly from the holotype exemplar, and others were analysed using pictures and drawings from the literature. We divide Epyrinae into 17 genera: Anisepyris, Aspidepyris (=Epyris group 6), Bakeriella, Calyoza to be proposed as stat. rev. (=Epyris group 1), Calyozina, Chlorepyris, Dolus to be proposed as stat. rev. (=Epyris group 2), Epyris (=Epyris sensu stricto), †Gloxinius, Holepyris (=Holepyris sensu stricto + Disepyris + Formosiepyris), GenusA to be proposed as gen.n. (=Epyris group 4), Laelius, Muellerella to be proposed as stat. rev. (=Trachepyris), GenusB to be proposed as gen.n. (=Epyris group 5), Psilepyris to be proposed as stat. rev. (=Epyris group 3), Rysepyris to be proposed as stat. rev. (=Holepyris group 1) and Trissepyris to be proposed as stat. rev. (=Epyris ruficeps). The taxonomic implications, with the comparison between the classification of Epyrinae sensu previous studies and the current classification, that will be proposed here, are summarized in Fig. 3.

Previous Classifications Azevedo et al. (2018); Colombo et al. $(2020,2021)$		Current Classification This study	
TAXA	SYNONYMS	taxa	SYNONYMS
Anisepyris	Lophepyris	Anisepyris	Lophepyris
	Procalyoza		Procalyoza
	Trichotepyris		Trichotepyris
Aspidepyris	-	Aspidepyris	-
Bakeriella	-	Bakeriella	-
Calyozina	-	Calyozina	-
Chlorepyris	-	Chlorepyris	-
Xenepyris	-	Calyoza	Artiepyris
Epyris	Artiepyris		Calyozella
	Calyoza		Paracalyoza
	Calyozella		Pseudocalyoza
	Paracalyoza		Xenepyris
	Pseudocalyoza	GenusB	-
	Dolus	Genus A	-
	Homoglenus	Dolus	
	Neodisepyris		
	Isobrachium	Epyris	Isobrachium
	Leptepyris		Leptepyris
	Melanepyris		Melanepyris
	Parepyris		Parepyris
	Rhabdepyris		Rhabdepyris
	Psilepyris	Psilepyris	-
	Trissepyris	Trissepyris	-
	Muellerella	Muellerella	Acanhepyris
Trachepyris	Acanhepyris		Planepyris
	Planepyris		Pristobethylus
	Pristobethylus		Trachepyris
\dagger Gloxinius	-	\dagger Gloxinius	-
Disepyris	Lytepyris	Holepyris	Disepyris
Formosiepyris	-		Formosiepyris
Holepyris	Misepyris		Lytepyris
	Parepyris		Misepyris
	Rysepyris	Rysepyris	Parepyris
Laelius	Allepyris	Laelius	Allepyris
	Paralaelius		Paralaelius
	Prolaelius		Prolaelius

FIGURE 3. Diagram showing taxonomic changes that will be proposed in this study.

DISCUSSION

Unlike other studies, we focused on representing the vast diversity of Epyris by sampling from various species groups and numerous geographical regions, while also incorporating other genera of Epyrinae.

The phylogenies presented here support the results found by Alencar \& Azevedo (2013) in elevating Sclerodermini and Epyrini to subfamilies; and by Colombo et al. (2020) showing that Epyrinae are monophyletic. However, the largest genus of the subfamily, Epyris, is non-monophyletic and thus is an unnatural genus. As seen in previous studies, species of Epyris had close phylogenetic association with species of Aspidepyris, Calyozina, Bakeriella, and Muellerella to be proposed as stat. rev. (Alencar \& Azevedo, 2013).

Waichert \& Azevedo (2009) revised the diagnostic feature of Laelius pointing out the presence of $2 \mathrm{r}-\mathrm{rs} \& R \mathrm{~s}$ vein short in the forewings, which is also present in Disepyris and some Muellerella to be proposed as stat. rev., the trapezoidal clypeus with a median apical bump, and the presence of thick black setae on the body surface. As a result, many specimens of Rhabdepyris (subgenus Rhabdepyris) sensu Evans (1965) were transferred to Laelius. Barbosa \& Azevedo (2011) added another synapomorphy to the genus: three distal hamuli on the hind wing, and established Prolaelius as a junior synonym of Laelius. These characteristics were present in all Laelius specimens in this study, but were not recovered as synapomorphies in the reconstruction with morphological characters.

The genus Chlorepyris clustered with Laelius and Anisepyris in the molecular and TE topologies and showed low support in the morphological topology. Moreover, two lineages were recovered in each analysis. Further morphological study could split Chlorepyris sensu Waichert \& Azevedo (2009) into two genera with the analyses here as a starting guide. The two clades of Chlorepyris comprise (1) all the Australian specimens and a specimen from Peru and (2) the Neotropical specimens (File S2).

Herein, the following morphological characteristics were found that differentiate the Peru + Australia and Neotropical clades of Chlorepyris: (1) Chlorepyris (Peru + Australia) - the females have a distinct mandible with a large apical tooth, which was often expanded inward, and a denticulate dorsal edge. These features match the description of Evans's anxius and platycephalus groups of Australian Chlorepyris (Evans 1979b, 1982). In males, the mandible always has a large apical tooth, 2-3 intermediary teeth, and a larger dorsal tooth curved upward. In all Australian male specimens, we observed five teeth, three intermediary teeth, but the Peruvian specimen showed a single intermediary tooth. The size of the dorsal tooth varies as well, with extreme size difference between the dorsal and intermediary teeth in Chlorepyris sp. 10, which closely resembled the male of Chlorepyris platycephalus Westwood, 1874; (2) Chlorepyris (Neotropical): the third antennomere is
wider than long in males, such as described for the Neotropical species Chlorepyris longifoveatus Azevedo, 1999 and Chlorepyris vesiculosus Azevedo, 1999 (Azevedo, 1999b). The mandibles always have five teeth, with a large apical tooth and four smaller dorsal teeth that became progressively larger posteriorly. In Waichert \& Azevedo (2009), the expanded Chlorepyris was phylogenetically associated with Trachepyris (=Muellerella to be proposed as stat. rev.). Herein, Muellerella to be proposed as stat. rev. was found within a clade with species of Epyris, Calyozina, and Bakeriella. These specimens shared a thin, slightly elongate 2 r -rs\&Rs vein of the forewing and thick setae on the scape, with the latter character reconstructed as synapomorphy.

The clade (Holepyris + Rysepyris to be proposed as stat. rev.) was retrieved in all of the analyses. Holepyris sensu Azevedo et al. (2018) has as junior synonyms Rysepyris, Parepyris Brèthes and Mysepyris. The genera Formosiepyris and Disepyris were recovered as related to Holepyris through the phylogeny of Alencar \& Azevedo (2013). According to Alencar \& Azevedo (2013), this clade had one synapomorphy, the presence of elongated setae on protarsomere I. This characteristic is considered diagnostic for females of Disepyris (Krombein, 1987b; Terayama, 2004), yet the condition is common to all the genera of the clade Holepyris + Formosiepyris + Disepyris (Alencar \& Azevedo, 2013). Indeed, they all share the clypeus trilobed and the mesoscutum-mesoscutellar sulcus well impressed deep, and usually trabeculate. Terayama (2004), when describing Formosiepyris, indicated its possible phylogenetic proximity to Disepyris due to the elongated eyes and medially depressed mesoscutum. The taxonomic analysis of the type species of Holepyris and Disepyris demonstrate similarities between them (Alencar \& Azevedo, 2013). Disepyris and Formosiepyris have the clypeus with a median lobe wider than usually found in Holepyris sensu Azevedo et al. (2018). However, African species of Holepyris, including its type species H. africanus Kieffer, present the same condition. Here, based on the phylogenetic analyses and study of the type species of Disepyris, Formosiepyris and Holepyris, we propose that Formosiepyris and Disepyris are junior synonyms of Holepyris. Holepyris sensu Azevedo et al. (2018) creates confusion due to the species transferred to this genus when Evans (1964) synonymized Rysepyris, Parepyris and Misepyris. The current morphological concept for Holepyris sensu Azevedo et al. (2018) comes from Rysepyris, whose clypeus is trilobed, which differs from the type species, H. africanus. Furthermore, we revalidated Rysepyris to be proposed as stat. rev.

While previous studies had pointed to a non-monophyletic Epyris (Waichert \& Azevedo, 2009; Carr et al., 2010; Alencar \& Azevedo, 2013), none had sampled the wider diversity of the genus. Our study is the first to sample broadly across Epyris with an increased number of molecular markers and undoubtedly shows that Epyris is nonmonophyletic. Several species of Epyris, however, formed well-supported clades throughout the analyses. We identified seven lineages of Epyris in the total evidence and molecular topologies, named as Aspidepyris (Epyris group 6), Calyoza to be proposed as stat. rev. (Epyris group 1), Dolus to be proposed as stat. rev. (Epyris group 2), Epyris (sensu stricto), GenusB to be proposed as gen.n. (Epyris group 5), GenusA to be proposed as gen.n. (Epyris group 4) and Psilepyris to be proposed as stat. rev. (Epyris group 3); another lineage was identified only in the morphological analysis, named as Trissepyris to be proposed as stat. rev..

For the first time, the type species of Epyris, E. niger Westwood, 1832, was recovered in a well-supported clade $(\mathrm{PP}=1)$ that contained both male and female specimens with large mesoscutum-mesoscutellar foveae, referred as large-pitted style by Azevedo et al. (2018), as opposed to the well-spaced, small mesoscutellar foveae that are found throughout the rest of Epyris species, named as small-pitted style by Azevedo et al. (2018). All terminals within this clade have two metapostnotal carina that are at least $2 / 3$ as long as the metapectal-propodeal disc. These specimens are from Europe, Africa, Asia, and Australia.

Another clade recovered within Epyris sensu Azevedo et al. (2018) is Calyoza to be proposed as stat. rev. (=Epyris group 1) (Fig. 1). Within this clade, all males have the third antennomere reduced to a small, often difficult to detect, ring-shaped antennomere. In some males (Epyris (staphylinoides group) sp. 6, E. (staphylinoides group) sp. 7 and E. (staphylinoides group) sp. 11), the remainder of the antennae is strikingly ramose. The presence of a reduced, ring-shaped third antennomere in males is reported in three different species groups of Epyris sensu Azevedo et al. (2018) - the dodecatomus group, the staphylinoides group, and the subramosus group (Evans, 1969; Krombein, 1992). The latter two groups contain species that were previously part of Calyozina and Pseudocalyoza and were synonymized as Epyris by Krombein (1992). Only in the staphylinoides group do males have ramose antennae (Krombein, 1992). Mandible shape also differs between the dodecatomus, staphylinoides, and subramosus species groups. The dodecatomus species group is known exclusively from the New World and was described
in Evans (1969) with four species, two of which have males undescribed. Known males of this species group have slender mandibles with three teeth, while females in the group possess mandibles that are broad, with five teeth. In the staphylinoides group, males also possess slender mandibles with 3-4 teeth, with females possessing a broader mandible with 4-5 teeth with a blunt sub-apical tooth on the ventral margin (Krombein, 1992). The single species of the subramosus group has the male with a tridentate mandible that is stouter than in either the dodecatomus or staphylinoides species group and the female has a mandible with five teeth and lacks a subapical tooth.

Alencar \& Azevedo (2013) did not find the Xenepyris types and therefore did not include this genus in their analysis. Xenepyris was described by Kieffer (1913b) and was diagnosed by Azevedo et al. (2018) as having glabrous eyes, 12 antennomeres, mesoscutum-mesoscutellar fovea oval and not connected by sulcus, being the unique Epyrinae that has 10 flagellomeres (common for Scleroderminae). Alencar \& Azevedo (2013) divided the genera and transferred Xenepyris to Epyrinae without explanation. We were unable to locate the two species of Xenepyris, and the genus was excluded from the analyses. However, we were able to hypothesize, based on the previous comments, that (1) Xenepyris should be transferred to Scleroderminae, due to the presence of the 10 flagellomeres; or (2) it is synonymous of Epyris sensu Azevedo et al. (2018), as suggested by Alencar \& Azevedo (2013); or (3) the third antennomere is reduced to ring-shaped (common among males of Calyoza), and was missed by Kieffer (1913b). Kieffer (1913a) described Artiepyris with 12 antennomeres, but later Evans (1964) reported that the third antennomere was so reduced and ring-shaped that it was not noticed by Kieffer (1913a). So, Evans (1964) concludes that Artiepyris has 13 antennomeres. Argaman (unpublished data) also reported that he studied unknown specimens of Xenepyris collected by van Achterberg and stated that the third antennomere was extremely small and ring-shaped. Additionally, information from the description of the type species, X. compressicornis, such as large body size, and mesoscutum-mesoscutellar sulcus absent, both diagnostic character of Calyoza, corroborate our proposition of Xenepyris as a junior synonym of Calyoza.

The clade Epyris group 2 (=Dolus to be proposed as stat. rev.) (Fig. 1) contains specimens that are spread throughout North America, South America, Asia, and Africa and are morphologically diverse. While all specimens within this clade have mesoscutummesoscutellar suture without sulcus that are well separated, they range in shape from
oblique slits to ovals. The configuration of the metapectal-propodeal disc is similar overall - the median area is distinctly sculptured, but unbounded by strong metapostnotal propodeal carina with distinct inner and outer margins. The male genitalia have harpe wide and cuspis partially divided. Epyris festivus is included in this clade and belongs to the depressigaster group from Evans (1969) in which males are unknown. The defining feature of the depressigaster group is the metasoma strongly depressed apically with sternite V possessing a thin plate overlapping the following sternite (Evans, 1969). However, preservation of specimens in ethanol for long periods causes the metasoma to collapse, making these plates difficult to observe without dissecting the specimens, although the metasoma of most females in this clade was strongly depressed apically. Another feature that Evans (1969) described for the depressigaster group is the shape of the mandibles, which are bidentate with a pointed apical tooth and dorsal tooth broad and blunt. All female specimens in this clade have a bidentate mandible with a larger apical tooth, and a dorsal tooth, which was typically blunt, and the clypeus was rounded apically. There was variation in the dorsal tooth - the tooth could be round and symmetrical (Epyris sp. 48), receding anteriorly (Epyris sp. 57), or receding anteriorly with very slight serrations (Epyris sp. 56). In males, the mandible always has a large apical tooth, with 3-4 smaller dorsal teeth, and the shape of the clypeus is either pointed apically (Epyris sp. 42, Epyris sp. 43, Epyris sp. 46, and Epyris sp. 47) or rounded apically (remaining male specimens). Because the clade is phylogenetically supported ($\mathrm{PP}=1$) and the species share the morphological diagnostic characteristics abovementioned, we reestablish the taxon Dolus to be proposed as stat. rev.

Another clade that was recovered within Epyris sensu Azevedo et al. (2018) is Psilepyris to be proposed as stat. rev. (Epyris group 3), containing eight species from Laos, Borneo, Thailand, Mozambique, Uganda, and the Democratic Republic of Congo. In both sexes, the metapostnotal carinae are usually distinctive; the mesoscutummesoscutellar foveae are well separated and droop-shaped and the posterior margin of the mesoscutellum does not touch the transverse anterior carina of the metapectal-propodeal complex. The mandibles were variable and ranged from unidentate, unidentate with a broad cutting edge dorsally, to bidentate. All male specimens have the genitalia subtrapezoidal with harpe wide, cuspis undivided and elongate. This clade is called Psilepyris to be proposed as stat. rev. because the species share the morphological
characteristics abovementioned with the type-species Psilepyris indivisus, so we reestablish the taxon Psilepyris to be proposed as stat. rev.

GenusA to be proposed as gen.n. (Epyris group 4) is the sister group to GenusA to be proposed as gen.n. + Aspidepyris in TE topology, but its relationship varies between molecular topologies. GenusA was not recovered in the morphological analysis. The clade is composed of three species $(\mathrm{PP}=1)$ with shared diagnostic features. All three species share unidentate mandibles, large mesoscutum-mesoscutellar foveae, but separated from each other by at least $1.0 \times$ their diameter, and lack strong metapostnotal carinae, with the median area of the metapectal-propodeal disc strongly reticulate. Male genitalia have aedeagus bottle-shaped, harpe elongate and thin and cuspis partially divided.

GenusB to be proposed as gen.n. (Epyris group 5) contains four Nearctic and one Neotropical species $(\mathrm{PP}=1)$ and key out to Epyris species group tricostatus (Evans, 1969) for Epyris sp. 1 and Epyris sp. 2, and the rufipes species group for Epyris sp. 3, Epyris sp. 4, and Epyris rufipes (Say). All specimens share medium-sized elliptical mesoscutummesoscutellar foveae, but separated from each other by at least $2.0 \times$ their diameter. In males, the mandibles always have one large apical tooth and three smaller dorsal teeth, with the dorsal tooth larger and curved upward. The clypeus is rounded apically. The genitalia are very short, quadrate aedeagus, harpe bottle-shaped and cuspis undivided. The single female specimen, Epyris rufipes, had a large apical tooth and a blunt, receding dorsal tooth and the clypeus is rounded apically.

Epyris group 6 contains specimens from the Nearctic and Neotropical regions. Using Evans (1969), most specimens key out to the rufipes species group, but Epyris sp. 15 and Epyris sp. 16, key to the subspinosus group by a short metapectal-propodeal complex with a strong metapostnotal carinae with strong reticulation between and a mandible with a strong apical tooth and blunt 1-2 dorsal teeth. The subspinosus group is known only from males and contains four species from Central and South America (Evans, 1969). The other males in this clade key out to the rufipes group. The females were all keyed to the rufipes species group and possessed simple mandibles as well. Aspidepyris is grouped in this clade, being a sister species to Epyris sp. 15 on molecular and the TE topologies. However, in the morphological topology, Aspidepyris failed to group with other genera and presented two synapomorphies. It is important to highlight that because it is a rare genus, like Calyozina, we were able to sequence only one specimen. For this, we will expand the boundaries of Aspidepyris. It is possible that Aspidepyris are males with a specialized
morphology of species belonging to this clade, because only the two species originally described as Aspidepyris (A. austrinus Evans and A. foveolatus Evans) have the diagnostic features of the genus. Evans (1969) hypothesized that Aspidepyris evidently was derived and specialized from the flavicrus group of Epyris, mainly due to the strong sculpturing of the body. Here, in our analyses, specimens from this group have not been sampled and in future phylogenetic studies may help to clarify the internal relationships of this clade.

We revalidate Trissepyris to be proposed as stat. rev. based on the morphological uniqueness of the taxon and supported by the morphological topology. Trissepyris was synonymized with Epyris by Azevedo \& Alencar (2010b). However, the authors pointed out that this species has peculiar characters, both in relation to Epyris, as well as to Epyrinae. Trissepyris is distinguished among the other Epyrinae by having large size (about 15 mm long); the ocellar triangle is very compact, with the distance among the ocelli being less than their individual diameters, whereas in Epyris the ocelli are usually distant from one another; the occipital carina is missing at the median part on the ventral side, whereas the pattern of Epyris is complete; the posterior half of the notauli is wide, to the extent that one nearly touches the other; the mesoscutum-mesoscutellar foveae are elliptical and parallel, unique in Epyrinae; there is an asymmetry in the number of hamuli of the hind wing: the right wing has four basal hamuli and eight apical hamuli, whereas the left wing has five and nine respectively; but on both sides the basal hamuli are placed at the end of the basal fourth, whereas in Epyrinae, they are usually placed much closer to the base (Azevedo \& Alencar, 2010b).

Another junior synonym of Epyris that we revalidate here is Muellerella to be proposed as stat. rev. This genus was described by Saussure (1892) and was synonymized with Epyris by Evans (1964) without further information. After analysing the holotype of M. amabilis, we concluded that the diagnostic characters match those proposed to Trachepyris, and we justify synonymization based on the following shared characteristics: ventral margin of mandible with laminar expansion; scape with spine-shaped pectens; notaulus present; mesoscutum-mesoscutellar suture without sulcus and forewings with 2 r rs\&Rs vein short. The name Muellerella to be proposed as stat. rev. is older than Trachepyris, which should be placed as a junior synonym, revalidating Muellerella to be proposed as stat. rev.

In our analyses, there are three females that were identified as Muellerella to be proposed as stat. rev. Males within this clade were indistinguishable from male Epyris.

Characteristics that were shared amongst all males were a head and metapectal-propodeal suture that was wider than long, notauli that were thin anteriorly but broadening posteriorly, mesoscutum-mesoscutellar foveae small and spaced far apart and genitalia with a long harpe. Males also share a similar mandible with a large apical tooth with 3-4 smaller dorsal teeth, often with the dorsal tooth larger and curved upwards. Muellerella to be proposed as stat. rev., despite having been recovered with low statistical support in the morphological analysis, has a synapomorphy (character 209:0 - base of harpe strongly angled, crossing each other). Interestingly, this synapomorphy is exclusive to males, but the three female specimens were included in the cluster. Therefore, more morphological studies need to be carried out in order to investigate characteristics that transcend the sexual dimorphism.

Morphological trait

The genera of Epyrinae have been historically distinguished based on a set of homoplasious characters. The presence of antero-lateral foveae and/or anterior sulcus, as well as the shape, inclination, depth, size and internal sculpturing are taxonomically important for the definition of genera and species (Alencar \& Azevedo, 2013). However, there is a spectrum of morphological diversity for the sulcus, which makes its interpretation and coding difficult. Waichert \& Azevedo (2009) cited the difficulty in coding this character and their results indicate multiple independently origins of the sulcus and fovea in Epyrinae. Alencar \& Azevedo (2013) also recovered this character as homoplastic for Epyrinae.

We mapped those characters in the morphological topology (Fig. 2) and our results do not support previous studies. Unlike all previous studies, we recovered the loss of the sulcus between the mesoscutum-mesoscutellar foveae as a homology. For instance, the very large fovea, like as Epyris, Bakeriella and Calyozina has arisen at least five times independently in Epyrinae (Fig. 2). The small fovea like as Muellerella to be proposed as stat. rev. has arisen at least four times independently in Epyrinae (Fig. 2). The mesoscutum-mesoscutellar sulcus (87:1) is recovered in \dagger Gloxinius, Holepyris, Rysepyris to be proposed as stat. rev., Laelius, Anisepyris and Chlorepyris.

Although other historically used characters have been misleading, our analyses indicate the mesoscutum-mesoscutellar suture and male genitalia as good characteristics to distinguish the lineages within Epyrinae.

Synapomorphy-less genera and further studies

In the morphological topology, we found that few genera are supported by homologous characters and we present below, possible reasons for the low support found.

First, we treated both sexes as different terminal taxa. We aimed (1) to include all genera in the same topology, as some are known exclusively by males (for example, Aspidepyris) or females (for example, Trissepyris to be proposed as stat. rev.) and (2) to search for homologies that are generic and not related to only one sex. Epyrinae, unlike Pristocerinae, do not have strong sexual dimorphism, but many diagnostic generic characters are only for males and focused on their genitalia. For example, the bottle-shaped aedeagus is diagnostic for Anisepyris and the third ring-shaped antennomere of males is diagnostic for Calyoza

Second, our morphological matrix is composed mainly of characters that have already been used in previous studies (see Waichert \& Azevedo, 2009 and Alencar \& Azevedo, 2013). These characters are exclusive to the external morphology of the Bethylidae and the male genitalia. However, they have proven homoplasious and insufficient to recover clades that were well-supported in molecular analyses. Although still rare, there is precedent for using internal characters to resolve the systematics of other insect families with similarly well-explored external morphological characters. In a study on long-tongued bees (Roig-Alsina \& Michener, 1993) and crabonids (Melo, 1999), several external and internal structures were explored, including musculature. Brożek \& Bourgoin (2013) described sensory structures on the labium in fifteen fulgoromorphan (Hemiptera) families and provided a range of new characters for phylogenetic studies in the group. Kawada et al. (2015) studied the evolution of the metapostnotum in Bethylidae and concluded that, along with other characteristics, metapostnotum characteristics can provide further evidence of potentially erroneously positioned taxa in other subfamilies, such as Glenosema Kieffer, which belongs to Scleroderminae but has a similar configuration to genera found in Epyrinae. Barbosa et al. (2021) explored the sting apparatus of Chrysidoidea, including the musculature and recovered several
synapomorphies for Bethylidae. Although promising, the internal morphology of Bethylidae has just recently been investigated and it remains poorly explored. Due to the lack of terminology standardization, the inclusion of such characters in phylogenetic analyses has not been implemented. More work with a focus on comparative morphology must be performed, making it possible for phylogenetic studies to include such information.

Third, this is the third phylogenetic study of Bethylidae that encompasses both extinct and extant species. Colombo et al. (2020) tested the monophyly of the nine subfamilies of Bethylidae and Vargas et al. (2020) revisited the evolutionary history of Scleroderminae and highlighted the difficulty, problems, and advantages of including fossils as terminal taxa. In general, the incompleteness of the data and the difficulty in visualizing the characteristics makes it difficult to establish homologies. Although there are problems, the use of fossil data can make important contributions (Novacek, 1992; Smith, 1998; Kearney \& Clark, 2003), and, for that reason, we included these terminals in our analyses.

Fourth, the number of old holotypes, some of which are lost, with descriptions insufficient to extract any information. Well-defined genera are those whose species have been extensively revised. Excluding less speciose genera, like Aspidepyris and Calyozina, other genera like Anisepyris, Bakeriella, Chlorepyris, Holepyris sensu strictu and Laelius, had their species studied almost in their entirety. Here, it is these genera that showed monophyly and little variation in the different analyses. Consequently, other genera whose species are lost and poorly preserved are the taxonomic problems, such as Epyris sensu Azevedo et al. (2018) and its synonyms.

Finally, genera with an unstable taxonomic history, like Epyris, might indicate poor taxa delimitation and a prevalence of homoplasious morphological characters. These genera might confound morphological topologies and the search for synapomorphies to define them. Epyris is the taxon with the most taxonomic problems within Bethylidae, while also being the second most speciose within the family. This genus is polyphyletic in all previous studies and has largely been considered a taxonomic wastebasket. Here, we were able to show homoplasy in diagnostic characters and split Epyris sensu Azevedo et al., (2018) into seven genera, including a revised Epyris supported by homology, Calyoza and Trissepyris. Several species that do not fit this new concept have been transferred to

Dolus and Psilepyris. These genera urgently need studies based on the world fauna, to redefine and increase the morphological characters.

TAXONOMIC ACCOUNTS

Epyrinae Kieffer, 1914

Type-genus: Epyris Westwood, 1832
Epyrini Kieffer 1914, 41: 308; Evans 1964, 132: 90.
Epyrinae Berland 1928, 10: 111; Alencar \& Azevedo 2013, 38: 77.

Epyris Westwood, 1832 (Figs 4A, 5A)

Epyris Westwood, 1832, 1: 129. Type-species: E. niger Westwood, 1832 by original monotypy.

Isobrachium Förster, 1856. Synonymy by Azevedo et al. 2018, 4489: 156.
Leptepyris Kieffer, 1914. Synonymy by Azevedo et al. 2018, 4489: 156.
Melanepyris Kieffer, 1913a. Synonymy by Azevedo \& Alencar 2010a, 27: 403.
Parepyris Kieffer, 1913a. Synonymy by Evans 1964, 132: 104.
Rhabdepyris Kieffer, 1904. Synonymy by Azevedo et al. 2018, 4489: 156.

Diagnosis. Female: mandible with one to five apical teeth, without ventral tooth; median clypeal lobe well projected forward; lateral clypeal lobe usually inconspicuous; antenna filiform with 11 flagellomeres; first flagellomere never ring-shaped; occipital carina complete; dorsal pronotal area ecarinate; notaulus present; parapsidal signum present; mesoscuto-mesoscutellar suture with foveae not connected by sulcus, very large, subrectangular, distant each other by at least $0.2 \times$ total size of fovea; forewing with 2 r rs\&Rs vein, long. Male: same data of female, except: genitalia with harpe shorter than gonostipes, in dorsal view; aedeagus shorter than basivolsella and subtriangular.

Remarks. We reviewed the types of the type species of the genera Epyris, Melanepyris, Parepyris and Rhabdepyris. However, the holotypes of the type species of Isobrachium and Leptepyris are lost and the synonym was maintained by the same arguments already detailed by Azevedo et al. (2018). It represents lineage Epyris sensu stricto in our analyses.

Distribution. Old World; 81 species (Appendix 5: Table 8).

Aspidepyris Evans, 1964 (Figs 4B-C, 5B-C)

Aspidepyris Evans, 1964, 132: 115-116. Type-species: A. foveolatus Evans, 1954 by original monotypy.

Diagnosis. Male: mandible with one to five apical teeth, without ventral tooth; median clypeal lobe well projected forward; lateral clypeal lobe usually conspicuous; antenna filiform with 11 flagellomeres; first flagellomere never ring-shaped; occipital carina complete; dorsal pronotal area ecarinate; notaulus present, expanded posteriorly; parapsidal signum usually present; mesoscuto-mesoscutellar suture with foveae not connected by sulcus, foveae large to small, circular or elliptical, distant each other by at least $1.0 \times$ total size of fovea; forewing with 2 r -rs\&Rs vein, long; genitalia with aedeagus slender, harpe large apically, cuspis usually elongate. Female: same data of male.

Remarks. It represents lineage Epyris group 6 in our analyses.
Distribution. New World; 26 species (Appendix 5: Table 2).

Calyoza Hope, 1837 to be proposed as stat. rev. (Figs 4D-G, 5D-E)
Calyoza Hope, 1837, 2: 56. Type-species: C. staphylinoides Hope, 1832 by original monotypy.

Artiepyris Kieffer, 1913a, 7: 108. To be proposed as syn.n.
Calyozella Enderlein, 1920, 51: 24. To be proposed as syn.n.
Paracalyoza Cameron, 1909, 3: 377. To be proposed as syn.n.
Pseudocalyoza Turner, 1915, 16: 298. To be proposed as syn.n.
Xenepyris Kieffer, 1913b, 3: 259. To be proposed as syn.n.

Diagnosis. Female: mandible with one to five apical teeth, with ventral tooth; median clypeal lobe well projected forward; lateral clypeal lobe usually inconspicuous; antenna filiform with 11 flagellomeres; first flagellomere never ring-shaped; occipital carina complete; dorsal pronotal area ecarinate; notaulus present; parapsidal signum present; mesoscuto-mesoscutellar suture with foveae not connected by sulcus, foveae large, circular, distant each other by at least $0.5 \times$ total size of fovea; forewing with 2 r -rs\&Rs vein, long. Male: same data of female, except: antenna filiform or pectinate; first
flagellomere ring-shaped; genitalia with harpe usually tubular, extremely long; aedeagus shorter than basivolsella and subtriangular.

Remarks. We reviewed the types of the type species of the genera Calyoza, Artiepyris, Paracalyoza, and Pseudocalyoza. However, the types of Calyozella and Xenepyris are lost. It represents lineage Epyris group 1 in our analyses.

Distribution. Cosmopolitan, except Nearctic; 25 species (Appendix 5: Table 4)

Dolus Motschulsky, 1863 to be proposed as stat. rev. (Figs 4H, 5F)
Dolus Motschulsky, 1863, 36: 27. Type-species: D. politus Motschulsky, 1863 by subsequent designation.

Homoglenus Kieffer, 1905, 29: 109. To be proposed as syn.n.
Neodisepyris Kurian, 1955, 4: 106. To be proposed as syn.n.

Diagnosis. Female: mandible with one to five apical teeth, without ventral tooth; median clypeal lobe well projected forward; lateral clypeal lobe usually inconspicuous; antenna filiform with 11 flagellomeres; first flagellomere never ring-shaped; occipital carina complete; dorsal pronotal area ecarinate; notaulus present; parapsidal signum present; mesoscuto-mesoscutellar suture with foveae not connected by sulcus, foveae mediumsized, subcircular, distant each other by at least $1.0 \times$ total size of fovea; forewing with 2 r rs\&Rs vein, long; metasoma strongly depressed dorsoventrally, in some species. Male: same data of female, except: metasoma not depressed dorsoventrally; genitalia with harpe longer than gonostipes, in dorsal view; aedeagus shorter than basivolsella and subtriangular.

Remarks. Kieffer (1904) described Homoglenus with only one originally included species (also described as new), Homoglenus tripartitus Kieffer, 1904 (holotype examined here). It is the type of the genus by monotypy and not Homoglenus punctatus Kieffer, 1906, described two years later. We reviewed the types of the type species of the genera Dolus, Homoglenus and Neodisepyris. It represents lineage Epyris group 2 in our analyses.

Distribution. Cosmopolitan; 84 species (Appendix 5: Table 7).

GenusB to be proposed as gen.n. (Figs 4I, 5G)
GenusB Colombo, Tribull \& Azevedo. Type species: Bethylus rufipes Say, 1824 by original designation.

Diagnosis. Female: mandible bidentate; median clypeal lobe well projected forward; lateral clypeal lobe conspicuous, $2 \times$ shorter than median lobe; antenna filiform with 11 flagellomeres; first flagellomere never ring-shaped; occipital carina complete; eye remarkably large; dorsal pronotal area ecarinate; anteromesoscutum without foveolate transverse groove; notaulus present; parapsidal signum present; mesoscuto-mesoscutellar suture with foveae not connected by sulcus, foveae medium-sized, elliptical, distant each other by at least $2.0 \times$ total size of fovea; forewing with 2 r -rs\&Rs vein, long; protarsus without long spatulate spine-shaped filament. Male: unknown.

Remarks. It represents lineage Epyris group 5 in our analyses.
Distribution. Nearctic and Neotropical; 01 species (Appendix 5: Table 10).
Etymology. The names derives from Epyris, the type-genus of Epyrinae. Gender masculine.

Holepyris Kieffer, 1904 (Figs 4J, 5H)

Holepyris Kieffer, 1906 (in Kieffer \& Marshall 1904-1906), 9: 341. Type-species:
Holepyris africanus Kieffer, 1904 by subsequent designation.
Disepyris Kieffer, 1905, 29: 115-116. To be proposed as syn.n.
Formosiepyris Terayama, 2004, 12: 91-92. To be proposed as syn.n.
Lytepyris Kieffer, 1913a, 7: 108. To be proposed as syn.n.

Diagnosis. Female: mandible with three to four apical teeth, without ventral tooth; median clypeal lobe well projected forward; lateral clypeal lobe conspicuous, almost as long as median lobe; antenna filiform with 11 flagellomeres; first flagellomere never ring-shaped; occipital carina complete; eye remarkably large; dorsal pronotal area foveolate posteriorly; anteromesoscutum with foveolate transverse groove; notaulus present; parapsidal signum present; mesoscuto-mesoscutellar suture with foveae connected by sulcus, usually trabeculate, not arched posteriorly; forewing with 2 r -rs\&Rs vein, long or short; protarsus with long spatulate spine-shaped filament. Male: same data of female, except: genitalia with harpe longer than gonostipes, in dorsal view; aedeagus shorter than basivolsella and almost bottle-shaped.

Remarks. We reviewed the types of the type species of the genera Holepyris, Disepyris and Formosiepyris. However, the type of genus Lytepyris is lost. It represents lineage Holepyris sensu stricto in our analyses.

Distribution. Old World; 38 species (Appendix 5: Table 12).

GenusA to be proposed as gen.n. (Figs 4K, 5I)
GenusA Colombo, Tribull \& Azevedo. Type species: Epyris idaten Terayama, 2006 by original designation.

Diagnosis. Male: mandible unidentate; median clypeal lobe well projected forward; lateral clypeal lobe conspicuous, $2 \times$ shorter than median lobe; antenna filiform with 11 flagellomeres; first flagellomere never ring-shaped; occipital carina complete; eye remarkably large; dorsal pronotal area ecarinate; anteromesoscutum without foveolate transverse groove; notaulus present; parapsidal signum present; mesoscuto-mesoscutellar suture with foveae not connected by sulcus, foveae medium-sized, elliptical, distant each other by at least $1.0 \times$ total size of fovea; forewing with 2 r -rs\&Rs vein, long; protarsus without long spatulate spine-shaped filament; genitalia with harpe longer than gonostipes, in dorsal view, bottle-shaped; aedeagus very shorter than basivolsella and almost quadrate; cuspis divided partially. Female: unknown.

Remarks. It represents lineage Epyris group 4 in our analyses.
Distribution. Oriental; 01 species (Appendix 5: Table 11).
Etymology. The name derives from the specific name of the type-species. Gender masculine.

Muellerella Saussure, 1892 [1890] to be proposed as stat. rev. (Figs 4L, 5J)
Muellerella Saussure, 1892 [1890], 20. Type-species: M. amabilis Saussure, 1892[1890] by original monotypy.

Acanthepyris Kieffer, 1912, 3: 103. To be proposed as syn.n.
Planepyris Kieffer, 1905, 29: 108. To be proposed as syn.n.
Pristobethylus Kieffer, 1906 (in Kieffer \& Marshall 1904-1906), 9: 248. To be proposed as syn.n.

Trachepyris Kieffer, 1905, 29: 107. To be proposed as syn.n.

Diagnosis. Female: mandible with three to four apical teeth, with ventral tooth, ventral margin with laminar expansion and chaetica sensillae; median clypeal lobe well projected forward; lateral clypeal lobe inconspicuous; antenna filiform with 11 flagellomeres; first flagellomere never ring-shaped, scape with spine-shaped pectens; occipital carina complete; dorsal pronotal area ecarinate; notaulus present; parapsidal signum present; mesoscuto-mesoscutellar suture with foveae not connected by sulcus, medium-sized, circular, distant each other by at least $1.0 \times$ total size of fovea; forewing with $2 \mathrm{r}-\mathrm{rs} \& R \mathrm{R}$ vein short; protarsus strongly spinose. Male: same data of female, except: mandible without ventral tooth, ventral margin without laminar expansion and chaetica sensillae; scape with thick setae; genitalia with harpe longer than gonostipes, in dorsal view; cuspis very long, as long as harpe; aedeagus longer than basivolsella and subtrapezoidal.

Remarks. We reviewed the types of the type species of the genera Muellerella, Acanthepyris, Planepyris and Trachepyris. However, we did not find the type of the type species of Pristobethylus and this is probably deposited in OUMNH (Gordh \& Móczár 1990) or is lost.

Distribution. Old World; 21 species (Appendix 5: Table 14).

Psilepyris Kieffer, 1913 to be proposed as stat. rev. (Figs 4M-N, 5K-L)
Psilepyris Kieffer, 1913a, 7: 108. Type-species: Epyris indivisus Kieffer, 1906 by subsequent designation.

Diagnosis. Female: mandible with one to five apical teeth, without ventral tooth; median clypeal lobe well projected forward; lateral clypeal lobe usually inconspicuous; antenna filiform with 11 flagellomeres; first flagellomere never ring-shaped; occipital carina complete; dorsal pronotal area ecarinate; notaulus present; parapsidal signum present; mesoscuto-mesoscutellar suture with foveae not connected by sulcus, foveae large, droopshaped, distant each other by at least $1.0 \times$ total size of fovea; forewing with $2 \mathrm{r}-\mathrm{rs} \& R \mathrm{~s}$ vein, long. Male: same data of female, except: genitalia with harpe shorter than gonostipes, in dorsal view; aedeagus shorter than basivolsella and subtrapezoidal; cuspis undivided.

Remarks. We reviewed the type of the type species of the genus Psilepyris. It represents lineage Epyris group 3 in our analyses.

Distribution. Cosmopolitan; 90 species (Appendix 5: Table 15).

Rysepyris Kieffer, 1906 to be proposed as stat. rev. (Figs 40, 5M)
Rysepyris Kieffer, 1906 (in Kieffer \& Marshall 1904-1906), 9: 341. Type-species:
Holepyris numicidus Kieffer, 1906 by subsequent designation.
Misepyris Kieffer, 1913a, 7: 108. To be proposed as syn.n.
Parepyris Brèthes, 1913, 24: 87. To be proposed as syn.n.

Diagnosis. Female: mandible slender with one to two apical teeth, without ventral tooth; median clypeal lobe well projected forward, with dorsal carina; lateral clypeal lobe conspicuous, as long as median lobe; antenna filiform with 11 flagellomeres; first flagellomere never ring-shaped; occipital carina complete; dorsal pronotal area with anterior carina and posterior transverse groove; anteromesoscutum short, without foveolate transverse groove; notaulus present, usually impressed on anterior half of anteromesoscutum; parapsidal signum present; mesoscuto-mesoscutellar suture with foveae connected by sulcus, usually trabeculate, not arched posteriorly; forewing with 2 r rs\&Rs vein, long or short. Male: same data of female, except: genitalia with harpe as long as gonostipes, in dorsal view; cuspis elongate, usually as long as harpe apex; aedeagus shorter than basivolsella and subtriangular.

Remarks. We reviewed the types of the type species of the genera Misepyris and Parepyris. However, the type of genus Rysepyris is lost. It represents lineage Holepyris group 1 in our analyses.

Distribution. Cosmopolitan; 133 species (Appendix 5: Table 16).

Trissepyris Kieffer, 1905 to be proposed as stat. rev. (Figs 4P, 5N)
Trissepyris Kieffer, 1905, 29: 109, 116-117. Type-species: T. ruficeps Kieffer, 1905 by original monotypy.

Diagnosis. Female: mandible with three apical teeth, without ventral tooth; median clypeal lobe well projected forward; lateral clypeal lobe inconspicuous; antenna filiform with 11 flagellomeres; first flagellomere never ring-shaped; occipital carina incomplete ventrally; ocellar triangle very compact, far from vertex; dorsal pronotal area ecarinate; notaulus present, conspicuously wide posteriorly; parapsidal signum present; mesoscutomesoscutellar suture with foveae not connected by sulcus, elliptical, parallel, distant each
other by at least $5.0 \times$ total size of fovea; forewing with 2 r -rs\&Rs vein, long. Male: unknown.

Distribution. Afrotropical; 1 species (Appendix 5: Table 17).

FIGURE 4. Head, dorsal view. (A) Epyris; (B) Aspidepyris type morphological pattern; (C) Aspidepyris non-type morphological pattern; (D-G) Calyoza will be proposed as stat. rev.; (F-G) Third antennomere ringshaped; (H) Dolus will be proposed as stat. rev.; (I) GenusB gen.n.; (J) Holepyris; (K) GenusA gen.n. (adapted from Lim et al., 2011); (L) Muellerella will be proposed as stat. rev.; (M) Psilepyris will be proposed as stat. rev., type morphological pattern.; (N) Psilepyris will be proposed as stat. rev., non-type morphological pattern; (O) Rysepyris will be proposed as stat. rev., (P) Trissepyris will be proposed as stat. rev. (adapted from Azevedo \& Alencar, 2010b). Scales-bar: $250 \mu \mathrm{~m}$, except $200 \mu \mathrm{~m}$ for I and K.

FIGURE 5. Mesosoma, dorsal view. (A) Epyris; (B) Aspidepyris type morphological pattern; (C) Aspidepyris non-type morphological pattern; (D) Calyoza will be proposed as stat. rev.; (E) Calyoza will be proposed as stat. rev., pectinate form; (F) Dolus will be proposed as stat. rev.; (G) GenusB gen.n.; (H) Holepyris; (I) GenusA gen.n. (adapted from Lim et al., 2011); (J) Muellerella will be proposed as stat. rev.; (K) Psilepyris will be proposed as stat. rev., type morphological pattern.; (L) Psilepyris will be proposed as stat. rev., non-type morphological pattern; (M) Rysepyris will be proposed as stat. rev., (N) Trissepyris will be proposed as stat. rev. (adapted from Azevedo \& Alencar, 2010b). Scales-bar: $250 \mu \mathrm{~m}$, except $500 \mu \mathrm{~m}$ for I and $200 \mu \mathrm{~m}$ for G .

CONCLUSIONS

The addition of all extant and extinct genera and the combination of morphological and molecular data in our analyses, have generated a better resolution of the topology of Epyrinae and aided in our understanding of the evolutionary history of this group of wasps. We revalidate six genera of Epyrinae, corresponding to about 40% of the previous number of epyrine genera. Previous studies had pointed to a non-monophyletic Epyris, but poorly sampled the genus. Herein, we sample the broad diversity of the genus and conclusively show non-monophyly. Additionally, we included representatives of all extant valid genera, with exception of Xenepyris, in the molecular phylogeny. This study did not recover the major species groups within Epyris proposed by Evans (1969), like the rufipes and tricostatus groups. Here, they are invalid and exhibited how historically used characters such as the sculpturing of the metapectal-propodeal complex, clypeus shape, and mandible shape are insufficient to define lineages in Epyrinae and should be used with caution. The type species of Epyris, E. niger, nests within a clade with shared large, nearly touching mesoscutum-mesoscutellar foveae, and we propose this clade should be retained as Epyris sensu stricto. We redefine Epyris sensu Azevedo et al. (2018) splitting it into eight lineages: Aspidepyris, Calyoza to be proposed as stat. rev., Dolus to be proposed as stat. rev., Epyris, GenusA to be proposed as gen.n., GenusB to be proposed as gen.n., Psilepyris to be proposed as stat. rev. and Trissepyris to be proposed as stat. rev. The morphological characters that have been used to classify many of the genera within Epyrinae present problems when analysed phylogenetically. Many diagnostic characteristics are male- or female-specific or are often found in other genera, like a subapical tooth, thick setae on the scape, or spines on the protarsus, and are probably one of the reasons that the molecular topology in this study differs from all morphological phylogenetic analyses. Revising taxonomic descriptions for genera of Epyrinae, and adding new features (for example, internal morphology) to have clear synapomorphies that are not dependent on sex is a necessary step for furthering phylogenetic analyses of these wasps. Alternatively, and perhaps additionally, the amplification of nuclear protein-coding genes could resolve many of the ambiguities in the trees presented here. Although difficult to amplify, nuclear protein-coding genes have been utilized in a variety of Hymenopteran molecular phylogenies (Klopfstein et al., 2013; Danforth et al., 2013) and could aid future molecular analyses of Epyrinae.

ACKNOWLEDGMENTS

The authors are grateful to anonymous reviewers and the Subject Editor for providing valuable suggestions and corrections on the final version of the manuscript; to the institutions and curators who provided specimens for this study. We also thank CNPq/FAPES grant \#52263010/2011, Pronex Programme, for providing imaging facilities. This contribution was supported by Brazilian CNPq grant \#3037482018-4, which provided a bursary to the fourth author and all laboratory facilities and INCT-Hymenoptera Parasitoides CNPq grant \#8887.136354/2017-00. We are also grateful to CAPES Demanda Social, Finance Code 001, for providing a bursary to the first author and the National Science Doctoral Dissertation Improvement Grant for providing a bursary to the second author. The authors declare no conflict of interest.

REFERENCES

Alencar, I.D.C.C. \& Azevedo, C.O. (2009) Rediscovery of Planepyris Kieffer: a new synomym of Trachepyris Kieffer (Hymenoptera, Bethylidae). Doriana, 8, 1-12.

Alencar, I.D.C.C. \& Azevedo, C.O. (2011) Review of Neurepyris Kieffer, 1905 (Hymenoptera, Bethylidae), a new synonym of Pristocera Klug, 1808. European Journal of Taxonomy, 4, 1-12. https://doi.org/10.5852/ejt.2011.4

Alencar, I. D.C.C. \& Azevedo, C.O. (2013) Reclassification of Epyrini (Hymenoptera: Bethylidae): a tribal approach with commentary on their genera. Systematic Entomology, 38, 45-80. https://doi.org/10.1111/syen. 12295

Alencar, I. D.C.C., Waichert, C. \& Azevedo, C.O. (2018) Opening Pandora's box of Pristocerinae: molecular and morphological phylogenies of Apenesia (Hymenoptera, Bethylidae) reveal several hidden genera. Systematic Entomology, 43, 481-509. https://doi.org/10.1111/syen. 12295

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. \& Lipman, D.J. (1997) Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.

Azevedo, C.O. (1999a) Revision of the Neotropical Dissomphalus Ashmead, 1893 (Hymenoptera, Bethylidae) with median tergal process. Arquivos de Zoologia, 35, 301-394. https://doi.org/10.11606/issn.2176-7793.v35i4p301-394

Azevedo, C.O. (1999b) On the Neotropical Rhabdepyris Kieffer (Hymenoptera, Bethylidae) of the subgenus Chlorepyris. Revista Brasileira de Zoologia, 16, 887897. https://doi.org/10.1590/S0101-81751999000300026

Azevedo, C.O. (2014) Synopsis of Bakeriella Kieffer, 1910 (Hymenoptera: Bethylidae). Zootaxa, 3878, 501-535. https://doi.org/10.11646/zootaxa.3878.6.1

Azevedo, C.O. \& Alencar, I.D.C.C. (2009) Rediscovery of Pristepyris Kieffer (Hymenoptera, Bethylidae), a new synonym of Acrepyris Kieffer. Zootaxa, 2287, 45-54. https://doi.org/10.11646/zootaxa.2287.1.2

Azevedo, C.O. \& Alencar, I.D.C.C. (2010a) Rediscovery of Melanepyris (Hymenoptera: Bethylidae): a new synonym of Epyris. Zoologia (Curitiba), 27, 403-407. http://dx.doi.org/10.1590/S1984-46702010000300012

Azevedo, C.O. \& Alencar, I.D.C.C. (2010b) Rediscovery of the Afrotropical genus Trissepyris Kieffer (Hymenoptera: Bethylidae), a new synonym of Epyris Westwood. Journal of Afrotropical Zoology, 6, 3-7.

Azevedo, C.O., Alencar, I.D.C.C., Ramos, M.S., Barbosa, D.N., Colombo, W.D., Vargas R., J.M. \& Lim, J. Global guide of flat wasps (Hymenoptera, Bethylidae). Zootaxa, 4489, 1-294. https://doi.org/10.11646/zootaxa.4489.1.1

Barbosa, D.N. \& Azevedo, C.O. (2011) Phylogeny and reclassification of Laelius (Hymenoptera: Bethylidae) and description of four new species. Insect Systematics \& Evolution, 42, 237-275. https://doi.org/10.1163/187631211X559777

Barbosa, D.N., Vilhelmsen, L. \& Azevedo, C.O. (2021) Morphology of sting apparatus of Chrysidoidea (Hymenoptera, Aculeata). Arthropod Structure \& Development, 100999, 1-20. https://doi.org/10.1016/j.asd.2020.100999

Berland, L. (1928) Hyménoptères Vespiformes II. Faune de France, 19, 1-215.
Branstetter, M.G., Danforth, B.N., Pitts, J.P., Faircloth, B.C., Ward, P.S., Buffington, M.L., Gates, M.W., Kula, R.R. \& Brady, S.G. Phylogenomic Insights into the Evolution of Stinging Wasps and the Origins of Ants and Bees. Current Biology, 27, 1019-1025. https://doi.org/10.1016/j.cub.2017.03.027

Brożek, J. \& Bourgoin, T. (2013) Morphology and distribution of the external labial sensilla in Fulgoromorpha (Insecta: Hemiptera). Zoomorphology, 132, 33-65. https://doi.org/10.1007/s00435-012-0174-z

Carpenter, J.M. (1999) What do we know about chrysidoid (Hymenoptera) relationships?
Zoologica Scripta, 28, 215-231. https://doi.org/10.1046/j.1463-6409.1999.00011.x

Carr, M., Young, J.P.W. \& Mayhew, P.J. (2010) Phylogeny of bethylid wasps (Hymenoptera: Bethylidae) inferred from 28S and 16S rRNA genes. Insect Systematics \& Evolution, 41, 55-73. https://doi.org/10.1163/187631210X486995 Colombo, W.D., Perkovsky, E.E. \& Azevedo, C.O. (2020) Phylogenetic overview of flat wasps (Hymenoptera, Bethylidae) reveals Elektroepyrinae, a new fossil subfamily. Palaeoentomology, 3, 269-283. https://doi.org/10.11646/palaeoentomology.3.3.8 Colombo, W.D., Perkovsky, E.E., Waichert, C. \& Azevedo, C.O. (2021) Synopsis of the fossil flat wasps Epyrinae (Hymenoptera, Bethylidae), with description of three new genera and 10 new species. Journal of Systematic Palaeontology, 1-52. https://doi.org/10.1080/14772019.2021.1882593

Dallwitz, M.J. (1980) A general system for coding taxonomic descriptions. Taxon, 29, 4146. https://doi.org/10.2307/1219595

Danforth, B.N., Cardinal, S., Praz, C., Almeida, E.A. \& Michez, D. (2013) The impact of molecular data on our understanding of bee phylogeny and evolution. Annual Review of Entomology, 58, 57-58. https://doi.org/10.1146/annurev-ento-120811-153633

De Pinna, M.C.C. (1991) Concepts and tests of homology in the cladistic paradigm. Cladistics, 7, 367-394. https://doi.org/10.1111/j.1096-0031.1991.tb00045.x

Dowton, M. \& Austin, A.D. (1994) Molecular phylogeny of the insect order Hymenoptera: Apocritan relationships. Proceedings of the National Academy of Sciences of the United States of America, 91, 9911-9915. https://doi.org/10.1073/pnas.91.21.9911

Evans, H.E. (1964) A synopsis of the American Bethylidae (Hymenoptera, Aculeata). Bulletin of the Museum of Comparative Zoology, 132, 1-222.
Evans, H.E. (1965) A revision of the genus Rhabdepyris in the Americas (Hymenoptera, Bethylidae). Bulletin of the Museum of Comparative Zoology, 133, 67-151.
Evans, H.E. (1969) A revision of the genus Epyris in the Americas (Hymenoptera: Bethylidae). Transactions of the American Entomological Society, 95, 181-352.

Evans, H.E. (1979a) A reconsideration of the genus Bakeriella (Hymenoptera: Bethylidae). Journal of the New York Entomological Society, 87, 256-266.
Evans, H.E. (1979b) The Platycephalus group of the genus Rhabdepyris Kieffer (Hymenoptera: Bethylidae: Epyrinae). Australian Journal of Entomology, 18, 377381.

Evans, H.E. (1982) The Anxius group of the genus Rhabdepyris Kieffer (Hymenoptera: Bethylidae: Epyrinae). Australian Journal of Entomology, 21, 55-61.

Folmer, O., Black, M., Hoeh, W., Lutz, R. \& Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.

Goloboff, P. (1993) Estimating character weights during tree search. Cladistics, 9, 83-91. https://doi.org/10.1006/clad.1993.1003
Goloboff, P.A., Farris, J.S., Källersjö, M., Oxelmann, B., Ramírez, M. \& Szumik, C. (2003) Improvements to resampling measures of group support. Cladistics, 19, 324332. https://doi.org/10.1111/j.1096-0031.2003.tb00376.x

Goloboff, P.A., Farris, J.S. \& Nixon, K.C. (2008) TNT, a free program for phylogenetic analysis. Cladistics, 24, 774-786. https://doi.org/10.1111/j.1096-0031.2008.00217.x.

Gordh, G. \& Móczár, L. (1990) A catalog of the world Bethylidae (Hymenoptera:
Aculeata). Memoirs of the American Entomological Institute, 46, 1-364.
Grimaldi, D. \& Engel, M.S. (2005) Evolution of the Insects. Cambridge University Press, Cambridge, UK.

Hines, H.M., Hunt, J.H., O'Connor, T.K., Gillespie, J.J. \& Cameron, S.A. (2007) Multigene phylogeny reveals eusociality evolved twice in vespid wasps. Proceedings of the National Academy of Sciences of the United States of America, 104, 32953299. https://doi.org/10.1073/pnas. 0610140104

Katoh, S. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780 (outlines version 7).

Kawada, R. \& Buffington, M.L. (2016) A scalable and modular dome illumination system for scientific microphotography on a budget. PLoS ONE, 11, e0153426. https://doi.org/10.1371/journal.pone. 0153426
Kawada, R., Lanes, G.O. \& Azevedo, C.O. (2015) Evolution of metapostnotum in flat wasps (Hymenoptera, Bethylidae): implications for homology assessments in Chrysidoidea. PLoS ONE, 10, e0140051. https://doi.org/10.1371/journal.pone.0140051
Kearney M. \& Clark J.M. (2003) Problems due to missing data in phylogenetic analyses including fossils: a critical review. Journal of Vertebrate Paleontology, 23, 263-274. https://doi.org/10.1671/0272-4634(2003)023[0263:PDTMDI]2.0.CO;2

Kieffer, J.J. (1905) Description de nouveaux Proctotrypides exotiques. Annales de la Société scientifique de Bruxelles, 29, 95-142.

Kieffer, J.J. (1910) Description de nouveaux microhyménoptères du Brésil. Annales De La Société Entomologique De France, 78, 287-348.
http://doi.org/10.5281/zenodo. 23748
Kieffer, J.J. (1913a) Nouveaux microhyménoptères de l'Afrique équatoriale. Bollettino del Laboratorio di zoologia generale e agraria della R. Scuola superiore d'agricoltura in Portici, 7, 105-112.

Kieffer, J.J. (1913b) Serphides de iles Philippines. Insecta, 3, 253-462. http://doi.org/10.5281/zenodo. 23750

Kieffer, J.J. (1914) Bethylidae. Das Tierreich, 41, 1-205.
Klopfstein, S., Vilhelmsen, L., Heraty, J.M., Sharkey, M. \& Ronquist, F. (2013) The hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data. PLoS ONE, 8, e69344. https://doi.org/10.1371/journal.pone. 0069344

Krombein, K.V. (1987a) Synonymic notes on the Bethylidae described by V. de Motschulsky (Hymenoptera: Aculeata). Proceedings of the Entomological Society of Washington, 89, 356-358.

Krombein, K.V. (1987b) Biosystematic studies of Ceylonese wasps. XVIII. The species of Trachepyris Kieffer (Hymenoptera: Bethylidae: Epyrinae). Pan-pacific Entomologist, 515, 1-41.

Krombein, K.V. (1992) Systematics of the genera of Epyrinae with ramose male antennae (Hymenoptera: Bethylidae). Proceedings of the Entomological Society of Washington, 94, 345-360.

Kumar, S., Stecher, G. \& Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874. https://doi.org/10.1093/molbev/msw054

Kurian, C. (1955) Bethyloidea (Hymenoptera) from India. Agra University Journal of Research, 4, 67-155.

Lanes, G.O. \& Azevedo, C.O. (2008) Phylogeny and taxonomy of Sclerodermini (Hymenoptera, Bethylidae, Epyrinae). Insect Systematic and Evolution, 39, 55-86. https://doi.org/10.1163/187631208788784165

Lanes, G.O., Kawada, R., Azevedo, C.O. \& Brothers, D.J. (2020) Revisited morphology applied for Systematics of flat wasps (Hymenoptera, Bethylidae). Zootaxa, 4752, 1127. https://doi.org/10.11646/zootaxa.4752.1.1

Lanfear, R., Calcott, B., Ho, S.Y.W. \& Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695-1701. https://doi.org/10.1093/molbev/mss020

Lewis, P.O. A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data. Systematic Biology, 50, 913-925. https://doi.org/10.1080/106351501753462876

Lim, J., Lee, J., Koh, S., Lee, B., Azevedo, C.O. \& Lee, S. (2011) Taxonomy of Epyris Westwood (Hymenoptera: Bethylidae) from Korea, with the descriptions of ten new species. Zootaxa, 2866, 1-38. https://doi.org/10.11646/zootaxa.2866.1.1

Maddison, W.P. \& Maddison, D.R. (2019) Mesquite: a modular system for evolutionary analysis. [software]. Available from URL http://www.mesquiteproject.org/

Martinelli, A.B., Waichert, C., Barbosa, D.N., Fagundes, V. Azevedo, C.O. (2017). The use of Proteinase K to access genitalia morphology, vouchering and DNA extraction in minute wasps. Anais da Academia Brasileira de Ciências, 89, 1629-1633. https://doi.org/10.1590/0001-3765201720160825

Melo, G A.R. (1999) Phylogenetic relationships and classification of the major lineages of Apoidea (Hymenoptera) with emphasis on the crabronid wasps. Scientific Papers, 14, 1-55. https://doi.org/10.5962/bhl.title. 4053

Miller, M.A., Pfeiffer, W. \& Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November, 2010, pp. 1-8. New Orleans, Louisiana.

Motschulsky, V. (1863) Essai d'un catalogue des Insectes de l'Ile Ceylan. Bulletin de la Société impériale des naturalistes de Moscou, 36, 421-532.

Nixon, K.C. (2002) WinClada ver. 1.0000. Published by the Author, Ithaca, New York. [Software].

Novacek, M. (1992) Fossils as critical data for phylogeny. In Novacek M.J., Wheeler Q.D. (eds.). Extinction and phylogeny. Columbia University Press, New York, pp. 46-88.

Paquin, P. \& Vink, C.J. Testing compatibility between molecular and morphological techniques for arthropod systematics: a minimally destructive DNA extraction method that preserves morphological integrity, and the effect of lactic acid on DNA
quality. Journal of Insect Conservation, 13, 453-457.
https://doi.org/10.1007/s10841-008-9183-0
Peters, R.S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P.A., Heraty, J., Heraty, K.M., Klopfstein, S., Meier, R., Polidori, C., Schmitt, T., Liu, S., Zhou, X., Wappler, T., Rust, J., Misof, B., Niehuis. (2017) Evolutionary History of the Hymenoptera. Current Biology, 27, 1013-1318. https://doi.org/10.1016/j.cub.2017.01.027

Rambaut, A. (2014) A Graphical Viewer of Phylogenetic Trees. [software]. Available from URL http://tree.bio.ed.ac.uk/software/figtree/

Roig-Alsina, A. \& Michener, C. D. (1993) Studies of the phylogeny and classification of long-tongued bees (Hymenoptera: Apoidea). University of Kansas Science Bulletin 55, 123-160. https://doi.org/10.5962/bhl.part. 775

Rokas, A., Nylander, J.A.A., Ronquist, F., Stone, G.N. (2002) A maximum-likelihood analysis of eight phylogenetic markers in gallwasps (Hymenoptera: Cynipidae): implications for insect phylogenetic studies. Molecular Phylogenetics and Evolution, 22, 206-219. https://doi.org/10.1006/mpev.2001.1032
Ronquist, F. \& Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574. https://doi.org/10.1093/bioinformatics/btg180

Sausurre, H.D. de (1892[1890]) Volume XX. Histoire naturallle des Hyménoptères. In: Grandidier, A. (Ed.), Histoire physique, naturelle, et politique de Madagascar. L'Imprimerie Nationale, Paris pp. i-xxii +1-590.

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. Flook, P., 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651-701. https://doi.org/10.1093/aesa/87.6.651

Smith A.B. (1998) What does Palaeontology contribute to Systematics in a molecular world? Molecular Phylogeny and Evolution, 9: 437-447. https://doi.org/10.1006/mpev.1998.0488
Sorg, M. (1988) Zur Phylogenie und Systematik der Bethylidae (Insecta: Hymenoptera: Chrysidoidea). Sonderveröffentlichungen des Geologishcen Instituts der Universität zи Köln, 63, 1-146.

Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313.
https://doi.org/10.1093/bioinformatics/btu033
Terayama, M. (2003) Phylogenetic systematics of the family Bethylidae (Insecta:
Hymenoptera) Part I. Higher classification. The Academic Reports of the Faculty of Engineering of Tokyo Polytechnic University, 26, 1-15.

Terayama, M. (2004) Formosiepyris a new genus of the family Bethylidae (Hymenoptera, Chrysidoidea) from the Oriental Region with a proposal of a new synonym of genus. Liberal Arts, 12, 91-99.

Terayama, M. (2006) Insects of Japan, Bethylidae (Hymenoptera), Vol. 1. Touka Shobo Co, Fukuoka.

Vargas R., J.M., Colombo, W.D. \& Azevedo, C.O. (2020) Revisited phylogeny of Scleroderminae (Hymenoptera: Bethylidae) reveals a plastic evolutionary history. Arthropod Systematics \& Phylogeny, 78, 217-243. http://www.doi.org/10.26049/ASP78-2-2020-02

Waichert, C. \& Azevedo, C.O. (2009) Phylogenetic analysis of Rhabdepyris (Hymenoptera: Bethylidae) and redefinition of generic limits based on morphological characters. Zootaxa 2284, 1-29. https://doi.org/10.11646/zootaxa.2284.1.1

APPENDIX 1. Terminal taxa of analysis. In bold type species. In green box, terminal taxa included in the analysis; In white box, terminal taxa included in the analysis; In blue box, specimens different.

SPECIES	LOCALITY	DEPOSITED	CODE	MORPHO.	MOLECULAR					$\begin{gathered} \text { TOTAL } \\ \text { EVIDENCE } \end{gathered}$
Outgroup					16S	18S	28 S	COI	CytB	
Cleptes seoulensis	Genbank	-	-							
Chrysis cembricola	Genbank	-	-							
Chrysis principalis	Genbank	-	-							
Bethylus fuscicornis	Genbank	-	-							
Eupsenella diemenensis	Australia	UFES	-							
Goniozus japonicus	South Korea	-	-							
Apenesia sp. 1	USA	AMNH	-							
Apenesia sp. 2	USA	AMNH	-							
Dissomphalus sp. 1	Genbank	-	-							
Dissomphalus sp. 2	Ghana	CNC	-							
Eleganesia elegans	Genbank	-	-							
Parvoculus sp. 1	South Africa	CNC	-							
Sulcomesitius sp. 1	Saba	BNHM/UMS	-							
Sulcomesitius sp. 2	Saba	BNHM/UMS	-							
Sulcomesitius sp. 3	-	UFES	-							
Allobethylus tomoae	Genbank	-	-							
Cephalonomia sp. 1	USA	AMNH	-							
Cephalonomia sp. 2	USA	AMNH	-							
Plastanoxus sp. 1	Genbank	-	-							
Sclerodermus harmandi	Genbank	-	-							
Ingroup										
Anisepyris sp. 1	Brazil	UFES	-							
Anisepyris sp. 2	Brazil	UFES	-							
Anisepyris sp. 3	Brazil	UFES	-							
Anisepyris sp. 4	Brazil	UFES	-							
Anisepyris sp. 5	USA	AMNH	-							
Anisepyris sp. 6	USA	AMNH	-							
Anisepyris sp. 7	USA	AMNH	-							
Anisepyris sp. 8	USA	AMNH	-							
Anisepyris sp. 9	USA	AMNH	-							
Aspidepyris austrinus	Brazil	UFES	W80							
Bakeriella sp. 1	Venezuela	UFES	-							
Bakeriella sp. 2	Venezuela	UFES	-							
Bakeriella sp. 3	Brazil	UFES	-							
Bakeriella sp. 4	French Guiana	CNC	-							
Bakeriella flavicornis	Brazil	CAS	-							
Calyozina ramicornis	Taiwan	ZMB								
Calyozina nepalensis	Nepal	CNC	W36							
Chlorepyris viridissimus	Brazil	UFES	-							
Chlorepyris sp. 1	French Guiana	CNC	-							
Chlorepyris sp. 2	French Guiana	AMNH	-							
Chlorepyris sp. 3	French Guiana	CNC	-							
Chlorepyris sp. 4	French Guiana	CNC	-							
Chlorepyris sp. 5	French Guiana	AMNH	-							
Chlorepyris sp. 6	Brazil	UFES	-							
Chlorepyris sp. 7	Venezuela	UFES	-							
Chlorepyris sp. 8	Peru	UFES	-							
Chlorepyris sp. 9	Australia	UFES	-							
Chlorepyris sp. 10	Australia	UFES	-							
Chlorepyris sp. 11	Australia	QLD	-							
Chlorepyris sp. 12	Australia	UFES	-							
Chlorepyris sp. 13	Australia	CNC	-							
Chlorepyris sp. 14	Australia	QLD	-							
Chlorepyris sp. 15	Australia	QLD	-							
Chlorepyris sp. 16	Australia	QLD	-							

Chlorepyris sp. 17	Australia	UFES	-						
Chlorepyris sp. 18	Australia	UFES	-						
Chlorepyris sp. 19	Australia	CNC	-						
Chlorepyris sp. 20	Australia	CNC	-						
Disepyris sp. 1	South Africa	ISAM	W44						
Disepyris sp. 2	South Africa	ISAM	W45						
Disepyris sp. 3	South Africa	ISAM	W47						
Epyris afer	Thailand	RMNH	-						
Epyris festivus	Genbank	-	-						
Epyris idaten	South Korea	-	-						
Epyris koreanus	South Korea	-	-						
Epyris niger	Switzerland	CNC	-						
Epyris niwoh	South Korea	-	-						
Epyris ruficeps	Congo DR	MNHN							
Epyris yamatonis	South Korea	-	-						
Epyris sp. 1	USA	AMNH	-						
Epyris sp. 2	Nicaragua	CNC	-						
Epyris sp. 3	USA	AMNH	-						
Epyris sp. 4	USA	AMNH	-						
Epyris rufipes	Canada	CNC	-						
Epyris sp. 6	Laos	UFES	-						
Epyris sp. 7	Saba	BNHM/UMS	-						
Epyris sp. 8	Saba	BNHM/UMS	-						
Epyris sp. 9	Thailand	UFES	-						
Epyris sp. 10	Mozambique	MNHM	-						
Epyris sp. 11	Mozambique	CNC	-						
Epyris sp. 12	DR Congo	BNHM	-						
Epyris sp. 13	Uganda	CNC	-						
Epyris sp. 14	USA	AMNH	-						
Epyris sp. 15	Panama	AMNH	-						
Epyris sp. 16	Brazil	UFES	-						
Epyris sp. 17	Venezuela	UFES	-						
Epyris sp. 18	Venezuela	UFES	-						
Epyris sp. 19	French Guiana	CNC	-						
Epyris sp. 20	Brazil	UFES	-						
Epyris sp. 21	Brazil	UFES	-						
Epyris sp. 22	Brazil	UFES	-						
Epyris sp. 23	Brazil	UFES	-						
Epyris sp. 24	Australia	CNC	-						
Epyris sp. 25	Australia	UFES	-						
Epyris sp. 26	Mozambique	CNC	-						
Epyris sp. 27	South Africa	UFES	-						
Epyris sp. 28	Australia	UFES	-						
Epyris sp. 29	Australia	CNC	-						
Epyris sp. 30	Australia	CNC	-						
Epyris sp. 31	Australia	QLD	-						
Epyris sp. 32	Australia	QLD	-						
Epyris sp. 33	Saba	BNHM/UMS	-						
Epyris sp. 34	DR Congo	BNHM	-						
Epyris sp. 35	DR Congo	BNHM	-						
Epyris sp. 36	South Korea	CNC	-						
Epyris sp. 37	Switzerland	CNC	-						
Epyris sp. 38	Kenya	CNC	-						
Epyris sp. 39	Mozambique	CNC	-						
Epyris sp. 40	South Korea	CNC	-						
Epyris sp. 41	South Korea	CNC	-						
Epyris sp. 42	Saba	BNHM/UMS	-						
Epyris sp. 43	USA	CNC	-						
Epyris sp. 44	Kenya	CNC	-						
Epyris sp. 45	South Africa	UFES	-						
Epyris sp. 46	Madagascar	UFES/CAS	-						
Epyris sp. 47	French Guiana	AMNH	-						
Epyris sp. 48	Brazil	UFES	-						

Epyris sp. 49	South Africa	UFES	-						
Epyris sp. 50	South Africa	UFES	-						
Epyris sp. 51	South Africa	UFES	-						
Epyris sp. 52	South Africa	UFES	-						
Epyris sp. 53	South Africa	UFES	-						
Epyris sp. 54	USA	AMNH	-						
Epyris sp. 55	USA	AMNH	-						
Epyris sp. 56	USA	AMNH	-						
Epyris sp. 57	South Africa	UFES	-						
Epyris sp. 58	Central African R.	CNC	-						
Epyris sp. 59	South Africa	UFES	-						
Epyris sp. 60	USA	AMNH	-						
Epyris sp. 61	USA	AMNH	-						
Epyris sp. 62	USA	AMNH	-						
Epyris sp. 63	USA	AMNH	-						
Epyris (staphyl.) sp. 1	Saba	BNHM/UMS	-						
Epyris (staphyl.) sp. 2	Laos	UFES	-						
Epyris (staphyl.) sp. 3	Laos	UFES	-						
Epyris (staphyl.) sp. 4	Saba	BNHM/UMS	-						
Epyris (staphyl.) sp. 5	Saba	BNHM/UMS	-						
Epyris (staphyl.) sp. 6	Saba	BNHM/UMS	-						
Epyris (staphyl.) sp. 7	Saba	BNHM/UMS	-						
Epyris (staphyl.) sp. 8	Saba	BNHM/UMS	-						
Epyris (staphyl.) sp. 9	Thailand	UFES	-						
Epyris (staphyl.) sp. 10	Thailand	UFES	-						
Epyris (staphyl.) sp. 11	Uganda	CNC	-						
Epyris (staphyl.) sp. 12	Uganda	CNC	-						
Epyris (staphyl.) sp. 13	DR Congo	BNHM	-						
Epyris (staphyl.) sp. 14	Uganda	CNC	-						
Epyris/Trachepyris sp. 1	Mozambique	MNHM	-						
Epyris/Trachepyris sp. 2	Mozambique	MNHM	-						
Epyris/Trachepyris sp. 3	South Africa	UFES	-						
Epyris/Trachepyris sp. 4	Thailand	UFES	-						
Epyris/Trachepyris sp. 5	Thailand	UFES	-						
Epyris/Trachepyris sp. 6	Thailand	UFES	-						
Epyris/Trachepyris sp. 7	Thailand	UFES	-						
Epyris/Trachepyris sp. 8	Thailand	UFES	-						
Epyris/Trachepyris sp. 9	Thailand	UFES	-						
Epyris/Trachepyris sp. 10	South Africa	UFES	W65						
Epyris/Trachepyris sp. 11	South Africa	UFES	W66						
Formosiepyris marish	Thailand	PMAE	-						
Formosiepyris sp. 1	South Africa	ISAM	W50						
Formosiepyris sp. 2	South Africa	ISAM	W55						
${ }_{\dagger}{ }^{\text {Gloxinius bifossatus }}$	Baltic amber	MCZ	-						
Holepyris africanus	Eritrea	MCSN	-						
Holepyris brevicarinatus	-	-	-						
Holepyris susanowo	-	-	-						
Holepyris sp. 2	South Korea	CNC	-						
Holepyris sp. 3	Saba	BNHM/UMS	-						
Holepyris sp. 4	Madagascar	UFES/CAS	-						
Holepyris sp. 5	Thailand	UFES	-						
Holepyris sp. 6	Papua New Guinea	CNC	-						
Holepyris sp. 7	Australia	CNC	-						
Holepyris sp. 8	Kenya	CNC	-						
Holepyris sp. 9	Mozambique	MNHM	-						
Holepyris sp. 10	Madagascar	UFES/CAS	-						
Holepyris sp. 11	USA	AMNH	-						
Holepyris sp. 12	DR Congo	BNHM	-						
Holepyris sp. 13	Saba	BNHM/UMS	-						
Holepyris sp. 14	Saba	BNHM/UMS	-						
Holepyris sp. 15	Papuan New Guinea	CNC	-						
Holepyris sp. 16	Ghana	CNC	-						
Holepyris sp. 17	Ghana	CNC	-						

APPENDIX 2. List of morphological characters and states. (* = Adapted from Alencar \& Azevedo 2013).

1. General body setae thickness*: (0) widely thick; (1) widely very thin.
2. Head in profile: (0) globoid, ventral margin very outcurved; (1) subrectangular, triangular or oval, ventral margin straight or weakly outcurved. Adapted from Vargas et al. (2020).
3. Antenna, type*: (0) moniliform; (1) filiform; (2) pectinate or subpectinate.
4. Antennal insertion, position: (0) lateral to clypeus; (1) dorsal to clypeus. Adapted from Lanes \& Azevedo (2013).
5. Number of antennomeres: (0) Thirteen; (1) Twelve.
6. Antenna maximum length: (0) not surpassing posterior pronotal margin; (1) not surpassing posterior margin of mesoscutum-mesoscutellar suture; (2) surpassing posterior margin of mesoscutum-mesoscutellar suture; (3) surpassing posterior margin of metapectal-propodeal complex; (4) surpassing posterior margin of tergite II.
7. Antennal rim: (0) not protuberant; (1) protuberant.
8. Antennal rim, distance: (0) more than own diameter; (1) same as or less than own diameter.
9. Scape length*: (0) long, longer than pedicel; (1) short, shorter than pedicel; (2) midsized, as long as pedicel.
10. Scape apical width, in dorsal view*: (0) wider than base; (1) as wide as base; (2) narrower than base.
11. Scape spine*: (0) absent; (1) present.
12. Pedicel shape*: (0) rectangular, evenly wide; (1) caliciform, progressively widening.
13. Pedicel length*: (0) long, longer than flagellomere I length; (1) short, shorter than flagellomere I length; (2) mid-sized, as long as flagellomere I length.
14. Pedicel spines*: (0) absent; (1) present.
15. Pedicel pubescence*: (0) apressed; (1) suberect or erect.
16. Relative length of flagellomeres*: (0) uniform; (1) progressively longer; (2) progressively shorter.
17. Ventral sulcus in median flagellomeres: (0) present; (1) absent.
18. Frons: (0) punctate; (1) foveolate.
19. Frons texture: (0) coriaceous; (1) polished.
20. Vertex shape, in dorsal view: (0) outcurved; (1) incurved; (2) straight or nearly so. 21. Mandibular apex, orientation in frontal view*: (0) horizontal or nearly so; (1) vertical or nearly so.
21. Mandibular apex*: (0) as wide as base; (1) wider than base; (2) narrower than base.
22. Laminar expansion on ventral mandibular margin*: (0) present; (1) absent.
23. Number of mandibular distal teeth: (0) one; (1) two; (2) three; (3) four; (4) five; (5) six; (6) eleven.
24. Relative size of ventralmost tooth*: (0) distinctly larger than dorsal ones; (1) as large as dorsal ones.
25. Size of mandible dorsal teeth (all except ventralmost)*: (0) equally sized; (1) differently sized.
26. Dorsal tooth, orientation*: (0) horizontal; (1) vertical.
27. Apex of dorsal tooth, direction*: (0) parallel to ventral ones; (1) strongly curved inward.
28. Mandibular pre-apical tooth: (0) absent; (1) present.
29. Pre-apical tooth, position in ventral view: (0) internal margin, seen behind sensilla;
(1) ventral margin, seen in front of sensilla.
30. Ventral depression in ventral margin of mandible: (0) present; (1) absent.
31. Row of long bristles on mandible ventral margin: (0) absent; (1) present.
32. Mandibular sensilla: (0) present; (1) absent.
33. Mandibular sensilla, position*: (0) near inner margin of mandible; (1) near ventral margin of mandible.
34. Shape of mandibular sensilla: (0) cylindrical; (1) spatulate.
35. Exposition of clypeal base, dorsal view*: (0) not covered by frons; (1) covered by frons.
36. Median clypeal lobe, shape: (0) rounded; (1) sharpened; (2) straight; (3) incurved.
37. Median clypeal tooth: (0) ill-defined; (1) defined.
38. Median clypeal carina*: (0) present; (1) absent.
39. Median clypeal carina, in lateral view: (0) mid-high, as long as frons; (1) low, shorter than frons; (2) high, longer than frons.
40. Lateral clypeal lobe: (0) present; (1) absent.
41. Lateral clypeal lobe, size*: (0) reduced; (1) almost as long as median lobe; (2) as long as the median lobe.
42. Lateral clypeal lobe shape: (0) sharpened; (1) rounded; (2) straight.
43. Genal suture, visibility: (0) conspicuous; (1) inconspicuous.
44. Genal projection: (0) evident; (1) not evident.
45. Number of maxillary palpomeres*: (0) three to five; (1) six.
46. Maxillary palpomere III: (0) as long as IV; (1) longer than IV; (2) shorter than IV.
47. Distinct hook-shaped bristles in apex maxillary palpus: (0) present; (1) absent.
48. Number of labial palpomeres*: (0) one; (1) two; (2) three.
49. Hypostomal carina, shape: (0) angled; (1) straight; (2) rounded.
50. Eye outline, frontal view*: (0) protuberant; (1) not protuberant.
51. Eye shape in lateral view*: (0) circular; (1) elongated.
52. Eye setation*: (0) absent or scarse; (1) abundant.
53. Eye, position*: (0) touching base of mandible; (1) not touching base of mandible.
54. Dorsal part of occipital carina*: (0) present; (1) absent.
55. Ventral part of occipital carina*: (0) present; (1) absent.
56. Frontal line*: (0) absent; (1) present.
57. Frontal line*: (0) sulcate; (1) carinate.
58. Frontal line, extension: (0) long, present from posterior margin of clypeus to anterior ocellus; (1) short, present only in anterior third of frons.
59. Frontal line, posterior region: (0) evenly linear; (1) oval-shaped depression; (2) distinctly wider posteriorly.
60. Ocelli outline, dorsal view: (0) protuberant; (1) not protuberant.
61. Intra-ocellar area*: (0) shorter than anterior ocellus size; (1) wider than anterior ocellus size.
62. Anterior ocellus: (0) posterior to supra-ocular line; (1) crossing supra-ocular line; (2) anterior to supra-ocular line.
63. Posterior ocelli: (0) very close to vertex crest, when $\leq 1.0 \times$ ocelli diameter; (1) far from vertex crest, when $>1.0 \times$ and $\leq 2.0 \times$ ocelli diameter; (2) very far from vertex crest, when $>2.0 \times$ ocelli diameter.
64. Sequence of short bristles in vertex: (0) present; (1) absent.
65. Humeral angle*: (0) indistinct; (1) distinct, not projected; (2) distinct, projected. 67. Size of dorsal pronotal area, dorsal view*: (0) short, when distinct wider than long medially; (1) elongate, when distinct longer than wider medially; (2) as long as wide medially.
66. Profile of anterior margin of dorsal pronotal area*: (0) outcurved; (1) straight or nearly so; (2) incurved.
67. Wide anterior pronotal elevation*: (0) present; (1) absent.
68. Pronotal signum, visibility: (0) delimited; (1) not delimited.
69. Transverse pronotal carina: (0) present; (1) absent.
70. Transverse pronotal carina, extension: (0) anterior and laterally; (1) only anterior;
(2) only laterally.
71. Transverse pronotal carina, texture: (0) foveolate; (1) sulcate; (2) carinate.
72. Posterior pronotal sulcus on dorsal pronotal area*: (0) present; (1) absent.
73. Posterior pronotal sulcus on dorsal pronotal area, texture*: (0) sequence of foveae;
(1) sulcus.
74. Median pronotal line on dorsal pronotal area*: (0) absent; (1) present.
75. Median pronotal line on dorsal pronotal area, texture: (0) sulcate; (1) carinate.
76. Notaulus: (0) absent; (1) present.
77. Posterior extension on notaulus*: (0) reaching posterior margin of mesoscutum; (1) not reaching posterior margin of mesoscutum.
78. Posterior region of notaulus, direction*: (0) convergent; (1) parallel.
79. Notaulus width: (0) narrow; (1) evenly wide; (2) posteriorly wider.
80. Notaulus depth: (0) inconspicuous; (1) shallow; (2) deep.
81. Notaulus, texture: (0) trabeculate; (1) smooth.
82. Parapsidal signum: (0) present; (1) absent.
83. Parapsidal signum width: (0) as long as notauli; (1) shorter than notauli; (2) longer than notauli.
84. Parapsidal signum, texture: (0) carinate; (1) sulcate.
85. Mesoscuto-scutellar suture*: (0) not sulcate medially; (1) sulcate medially.
86. Posterior margin of mesoscuto-scutellar suture: (0) touching anterior margin of mesoscuto-scutellar suture, as suture; (1) not touching anterior margin of mesoscutoscutellar suture.
87. Mesoscuto-scutellar foveae, dilation*: (0) as dilated as mesoscuto-scutellar sulcus, so that fovea is indistinct; (1) more dilated than mesoscuto-scutellar sulcus, so that fovea is distinct.
88. Posterior margin of mesoscuto-scutellar suture, direction: (0) straight or nearly so;
(1) outcurved medially; (2) incurved medially.
89. Mesoscuto-scutellar sulcus, texture*: (0) trabeculate; (1) not trabeculate.
90. Median carina-like trabeculate, mesoscuto-scutellar sulcus: (0) without median carina, when as short as lateral trabeculae and lower than level of mesoscutellar surface; (1) with median carina, when higher than lateral trabeculae and at same level of mesoscutellar surface.
91. Mesoscuto-scutellar sulcus, depth: (0) shallow, poorly defined; (1) deep, welldefined.
92. Mesoscuto-scutellar foveae, size*: (0) large, at least $0.80 \times$ maximum size of mesoscutellum; (1) small, $\leq 0.75 \times$ maximum size of mesoscutellum.
93. Mesoscuto-scutellar foveae, shape: (0) circular; (1) rectangular or nearly so; (2) oval;
(3) subtriangular.
94. Distance between inner margins of mesoscuto-scutellar foveae: (0) very distant, longer than $2.0 \times$ size of fovea; (1) very close, smaller than $2.0 \times$ size of fovea.
95. Mesoscuto-scutellar foveae, texture: (0) not trabeculate; (1) trabeculate.
96. Mesoscutellar posterior region, texture*: (0) not foveolate; (1) foveolate.
97. Mesoscutellar posterior region, distance: (0) touching metapostnotal anterior margin; (1) not touching metapostnotal anterior margin.
98. Metascutellum: (0) well developed; (1) ill developed.
99. Metapectal-propodeal disc, width: (0) long, longer than wide; (1) short, wider than long or as long as wide.
100. Transverse anterior carina of metapectal-propodeal disc: (0) present; (1) absent.
101. Transverse anterior carina of metapectal-propodeal disc, visibility: (0) conspicuous; (1) inconspicuous.
102. Metapleural carina, visibility: (0) conspicuous; (1) inconspicuous.
103. Transverse posterior carina of metapectal-propodeal disc*: (0) present; (1) absent.
104. Transverse posterior carina of metapectal-propodeal disc, visibility: (0)
conspicuous; (1) inconspicuous.
105. Paraspiracular carina*: (0) present; (1) absent.
106. Paraspiracular carina, visibility: (0) conspicuous; (1) inconspicuous.
107. Paraspiracular sulcus*: (0) present; (1) absent.
108. Paraspicular sulcus, texture: (0) trabeculate; (1) smooth.
109. Metapostnotal median carina*: (0) present; (1) absent.
110. Metapostnotal median carina: (0) complete; (1) incomplete.
111. Metapostnotal carina*: (0) absent; (1) presence.
112. First pair of metapostnotal carina, length: (0) longer than metapostnotal median carina; (1) as long as metapostnotal median carina; shorter than metapostnotal median carina.
113. Posterior region of first pair of metapostnotal carina, orientation: (0) converging posteriorly; (1) parallel; (2) diverging posteriorly.
114. Second pair of metapostnotal carina, length: (0) longer than metapostnotal median carina; (1) as long as metapostnotal median carina; (2) shorter than metapostnotal median carina.
115. Posterior region of second pair of metapostnotal carina, orientation: (0) converging posteriorly; (1) parallel; (2) diverging posteriorly.
116. Third pair of metapostnotal carina, length: (0) longer than metapostnotal median carina; (1) as long as metapostnotal median carina; (2) shorter than metapostnotal median carina.
117. Posterior stretch of third pair of metapostnotal carina, orientation: (0) converging posteriorly; (1) parallel; (2) diverging posteriorly.
118. Metapostnotal-propodeal suture*: (0) present; (1) absent.
119. Metapostnotal-propodeal suture, visibility: (0) conspicuous; (1) inconspicuous.
120. Metapostnotal-propodeal suture, length: (0) shorter than median metapostnotal carina; (1) longer than median metapostnotal carina; (2) as long as median metapostnotal carina.
121. Posterior region of metapostnotal-propodeal suture: (0) divergent; (1) convergent;
(2) straight.
122. Median carina of propodeal declivity*: (0) present; (1) absent.
123. Median carina of propodeal declivity, extension: (0) complete; (1) incomplete.
124. Posterior propodeal projection*: (0) presence; (1) absent.
125. First abdominal spiracle, position*: (0) dorsal, on edge of dorsal and lateral surfaces of metapectal-propodeal complex; (1) lateral, on lateral surface of metapectalpropodeal complex; (2) dorso-lateral, on lateral part and dorsal part of metapectalpropodeal complex.
126. First abdominal spiracle, position*: (0) surpassing metapleural carina; (1) not surpassing metapleural carina.
127. First abdominal spiracle, shape*: (0) circular or elliptical and wide, as long as wide;
(1) elongate, as a narrow crack, longer than wide.
128. First abdominal spiracle, direction: (0) straight or weakly curved; (1) strongly curved.
129. Propleural epicoxal sulcus, lateral view*: (0) circular or subcircular; (1) elongate.
130. Anterior mesofurcal pit inserted into depression: (0) elongated; (1) drop-shaped;
(2) circular or subcircular.
131. Posterior mesofurcal pit, visibility: (0) distinct; (1) indistinct.
132. Posterior mesofurcal pit, shape: (0) circular; (1) elongate; (2) oval.
133. Posterior metafurcal pit inserted into depression: (0) V-shaped; (1) triangleshaped; (2) crown-shaped; (3) pentagonal-shaped.
134. Lower mesopleural fovea: (0) delimited; (1) not delimited.
135. Lower mesopleural fovea, texture: (0) trabeculate; (1) not trabeculate.
136. Mesopleuron with anterior and lower mesopleural foveae: (0) connected; (1) not connected.
137. Subalar impression: (0) delimited; (1) not delimited.
138. Subalar impression, texture: (0) not trabeculate; (1) trabeculate.
139. Mesopleural suture: (0) delimited; (1) not delimited.
140. Mesopleural suture, texture: (0) trabeculate; (1) smooth.
141. Subalar impression and mesopleural suture: (0) connected; (1) not connected.
142. Mesopleural suture and mesopleural upper fovea: (0) connected; (1) not connected.
143. Position of mesopleural pit*: (0) central; (1) dorsal.
144. Size of mesopleural pit*: (0) broad, occupying almost all of upper fovea area; (1) small, as a puncture.
145. Mesopleural upper elevation*: (0) present; (1) absent.
146. Mesopleural upper elevation, visibility: (0) conspicuous; (1) inconspicuous.
147. Protrochanter, length*: (0) long, at least as long as procoxa; (1) short, when shorter than procoxa.
148. Protrochanter shape, lateral view*: (0) badly wider apicad; (1) distinctly wider apicad.
149. Elongate setae on protarsomere I*: (0) absent; (1) present.
150. Spines on lateral face of protarsomeres I-IV*: (0) absent; (1) present.
151. Spines on lateral face of mesotibia*: (0) absent; (1) present.
152. Spines on apex of mesotibia*: (0) absent; (1) present.
153. Tarsal claw: (0) simple; (1) bifid; (2) trifid.
154. Tarsal claws, direction*: (0) curved; (1) straight or nearly so.
155. Wings, general color: (0) hyaline; (1) subhyaline or yellowish.
156. Costal cell of forewing: (0) absent; (1) present.
157. Radial cell of forewing: (0) absent; (1) present.
158. First cubital cell of forewing: (0) absent; (1) present.
159. Rs+M vein of forewing: (0) absent; (1) present.
160. Cubital vein of forewing: (0) absent; (1) present.
161. Shape of cubital vein at intersection with first medio-cubital cross vein of forewing: (0) rounded; (1) angled; (2) straight or nearly so.
162. Cubital vein of forewing, visibility: (0) widely tubular; (1) widely spectral.
163. Pterostigma, shape: (0) rectangular or subrectangular; (1) circular or subcircular.
164. 2r-rs\&Rs vein of forewing*: (0) present; (1) absent.
165. 2r-rs\&Rs vein of forewing, size*: (0) short, at most $1.40 \times$ length of Rs\&M vein; (1) long, at least $1.60 \times$ length of Rs\&M vein.
166. Connection between $2 r-r s$ and $2 r$-sr\&Rs vein of forewing, visibility: (0) angled;
(1) curved.
167. Thickness of $2 \mathbf{r}-$ rs\&Rs vein of forewing, posteriorly: (0) thin; (1) thick.
168. Distal shape of $2 \mathbf{r}$-rs\&Rs vein of forewing: (0) straight; (1) slightly arched dorsally;
(2) strongly arched dorsally.
169. Forewing distal flexions lines: (0) present; (1) absent.
170. Forewing distal flexions lines, number: (0) one; (1) two; (2) three; (3) four; (5) five. 173. Poststigmal abscissa of $R 1$ vein of forewing: (0) present; (1) absent.
171. Poststigmal abscissa of R1 vein of forewing: (0) without unpigmented anterior spot;
(1) with unpigmented anterior spot.
172. Hindwing number of distal hamuli: (0) three; (1) four; (2) five; (3) six; (4) seven; (5) eight.
173. Distance between distal hamuli*: (0) discontinuous, at least one of hamuli distant of others; (1) adjacent, hamuli next one to the others.
174. Jugal lobe*: (0) not distinctly outlined; (1) distinctly outlined.
175. Anterior area of the $\mathbf{S 2}$, ventral view: (0) absent; (1) present.
176. Transverse edge of the $\mathbf{S 2}$, ventral view*: (0) absent; (1) present.
177. Anterior margin of anterior area of the $S 2$, ventral view*: (0) outcurved with median narrow emargination; (1) slightly concave medially.
178. Differentiation of anterior area of the S2, ventral view*: (0) posterior area of the S2 overlapping anterior area; (1) posterior and anterior area of the S2 fused.
179. Flap on anterior area of the S2: (0) absent; (1) present.
180. Setation on median region of posterior area of the $\mathbf{S 2}$, ventral view: (0) absent; (1) present.
181. Size of posterior area of the $S 2$, ventral view: (0) short, as long as wide, or shorter than wide; (1) long, longer than wide.
182. Posterior area of the $\mathbf{S 2}$, shape: (0) petiolate; (1) subquadrate.
183. Surface of T2: (0) widely polished; (1) widely coriaceous.
184. Length of T3: (0) long, length/width $\geq 0.7 \times$; (1) short, length/width $<0.7 \times$.
185. Texture of T3: (0) widely coriaceous; (1) widely polished.
186. Texture of S3: (0) widely polished; (1) widely coriaceous.
187. Shape of posterior margin of $\mathbf{S 9}^{*}$: (0) outcurved; (1) straight; (2) incurved.
188. Lateral margin of \mathbf{S}^{*} : (0) angled; (1) straight.
189. S9 thick setae: (0) absent; (1) with at least one distinctly thick seta.
190. Spiculim of S9: (0) present; (1) absent.
191. Size of spiculum of S9: (0) as long as anterolateral apodeme of the S9; (1) smaller than anterolateral apodeme of the S9; (2) longer than anterolateral apodeme of the S9. 195. Shape of spiculum of S9: (0) evenly narrow; (1) apically narrower; (2) apically wider; (3) evenly wider.
192. Harpe: (0) present; (1) absent.
193. Harpe, insertion: (0) lateral; (1) dorsal.
194. Harpe, extension: (0) evenly wide; (1) wide basally; (2) evenly narrow; (3) very narrow basally; (4) narrow basally.
195. Harpe, shape: (0) laminar or nearly so; (1) tubular or nearly so.
196. Harpe maximum length: (0) shorter than gonostipes maximum length; (1) as long as gonostipes maximum length; (2) longer than gonostipes maximum length.
197. Harpe, when longer: (0) distinctly largest structure of genitalia; (1) distinctly not largest structure of genitalia.
198. Apical invagination of harpe: (0) present; (1) absent.
199. Apical invagination of harpe, size: (0) longer than half of maximum harpe length; (1) shorter than half of maximum harpe length.
200. Apex of harpe: (0) inclined inward; (1) inclined outward; (2) parallel to gonostipes. 205. Basal shape of harpe, lateral view*: (0) inclined ventrad; (1) inclined dorsad; (2) straight.
201. Harpe membranous expansion*: (0) present; (1) absent.
202. Basal projection, inner margin of harpe: (0) present; (1) absent.
203. Base of harpe: (0) strongly angled, crossing each other; (1) not angled, not crossing each other.
204. Harpe with one distinctly very long apical seta: (0) absent; (1) present.
205. Gonostipes, dorsal view: (0) distinctly divided; (1) indistinctly divided or nearly so.
206. Gonostipes shape, ventral view: (0) rectangular; (1) quadrate.
207. Apical projection on basivolsella*: (0) present; (1) absent.
208. Profile of basivolsella*: (0) aligned with gonostipes; (1) anterior to gonostipes; (2) posterior to gonostipes.
209. Emargination between cuspis and digitus*: (0) present; (1) absent.
210. Number of arms of cuspis*: (0) uniramous; (1) biramous, entirely divided; (2) biramous, partially divided.
211. Medial arm of cuspis: (0) as wide as lateral arm; (1) narrow than lateral arm; (2) wider than lateral arm.
212. Cuspis length: (0) very long, at least $7.0 \times$ as long as wide; (1) long, at least $5.0 \times$ as long as wide; (2) medium, at least $4.0 \times$ as long as wide; (3) short, at least $1.5 \times$ as long as wide; (4) very short, at most as long as wide.
213. Cuspis expansion*: (0) absent; (1) present.
214. Setation on cuspis base*: (0) dense; (1) absent or scarce.
215. Digitus apex width: (0) as long as cuspis; (1) anterior to cuspis; (2) posterior to cuspis.
216. Aedeagus shape, dorsal view*: (0) subtrapezoidal, margins of basal half converging apicad; (1) subrectangular, margins of basal half parallel; (2) bottle-shaped, margins of basal half strongly outcurved.
217. Aedeagus apex length: (0) anterior to cuspis; (1) as long as cuspis; (2) posterior to cuspis.
218. Angulation between aedeagal apical lobes: (0) parallel; (1) convergent.
219. Sub-apical cavity of aedeagus, dorsal view*: (0) present; (1) absent.
220. Apical membrane of aedeagus: (0) present; (1) absent.
221. Ventral aedeagal expansion: (0) strongly angled anterad; (1) if present, never angled.
222. Aedeagal apical constriction: (0) apical half abruptly constricted; (1) apical half progressively constricted; (2) apical half not constricted.
223. Base of genital apodeme*: (0) not bifurcated; (1) bifurcated.
224. Base of genital apodeme, orientation: (0) parallel to aedeagus; (1) divergent anteriorly; (2) convergent anteriorly.
225. Extension of genital ring*: (0) complete; (1) incomplete ventrally.
226. Dorsal margin of genital ring, ventral view*: (0) as developed as ventral margin;
(1) more developed than ventral margin.
227. General body color*: (0) widely black or castaneous; (1) widely metallic.

APPENDIX 3. Termociclador protocols.

CytB	
Primer names:	CB1/CB2
Heated Lid	$110^{\circ} \mathrm{C}$
Initial Temp.	$95^{\circ} \mathrm{C}$ for 5 minutes
Start Cycle	40 cycles
Denaturation	$95^{\circ} \mathrm{C}$ for 1 minute
Annealing	$42^{\circ} \mathrm{C}$ for 1 minute
Extension	$72^{\circ} \mathrm{C}$ for 1 minute
End Cycle	
Final Extension	$72^{\circ} \mathrm{C}$ for 10 minutes
COI	
Primer names:	HCO2198/LCO1490
Heated Lid	$110^{\circ} \mathrm{C}$
Initial Temp.	$95^{\circ} \mathrm{C}$ for 5 minutes
Start Cycle	35 cycles
Denaturation	$95^{\circ} \mathrm{C}$ for 1 minute
Annealing	$40^{\circ} \mathrm{C}$ for 1 minute
Extension	$72^{\circ} \mathrm{C}$ for 1.5 minutes
End Cycle	
Final Extension	$72^{\circ} \mathrm{C}$ for 10 minutes
16S	
Primer names:	16Saf/16Sar
Heated Lid:	$110^{\circ} \mathrm{C}$
Initial Temp.	$94^{\circ} \mathrm{C}$ for 5 minutes
Start Cycle	34 cycles
Denaturation	$94^{\circ} \mathrm{C}$ for 1 minute
Annealing	$45^{\circ} \mathrm{C}$ for 1 minute
Extension	$72^{\circ} \mathrm{C}$ for 1 minute
End Cycle	
Final Extension	$72^{\circ} \mathrm{C}$ for 5 minutes
18S	
Primer names:	18SF2/18SR2
Heated Lid	$110^{\circ} \mathrm{C}$
Initial Temp.	$95^{\circ} \mathrm{C}$ for 5 minutes
Start Cycle	34 cycles
Denaturation	$95^{\circ} \mathrm{C}$ for 30 seconds
Annealing	$56^{\circ} \mathrm{C}$ for 40 seconds
Extension	$72^{\circ} \mathrm{C}$ for 40 seconds
End Cycle	
Final Extension	$72^{\circ} \mathrm{C}$ for 10 minutes
$28 S$	
Primer names:	For28SVesp/Rev28SVesp
Heated Lid:	$110^{\circ} \mathrm{C}$
Initial Temp.	$94^{\circ} \mathrm{C}$ for 5 minutes
Start Cycle	35 cycles
Denaturation	$94^{\circ} \mathrm{C}$ for 1 minute
Annealing	$50^{\circ} \mathrm{C}$ for 1 minute
Extension	$72^{\circ} \mathrm{C}$ for 1 minute
End Cycle	
Final Extension	$72^{\circ} \mathrm{C}$ for 5 minutes

APPENDIX 4. Total evidence topology. PP values are shown above branches.

APPENDIX 5. Maximum likelihood topology. Bootstrap values are shown below branches.

APPENDIX 6. Bayesian topology. PP values are shown below branches.

APPENDIX 7. Parsimony topology. Characters are shown above branches.

APPENDIX 8. Checklist of all 962 epyrine species, distributed into a new classification

 that will be proposed in this study.Table 1. List of Anisepyris. Type-species of Anisepyris ${ }^{1}$; type-species of Procalyoza ${ }^{2}$; type-species of Trichotepyris ${ }^{3}$; The type-species of Lophepyris is A. bridwelli Evans (junior synonym of A. aeneus Kieffer).

\#	SPECIES	COLLECTION	OCURRENCE	STUDY
1	aegnori Barbosa \& Azevedo, 2018	UFES	Neotropical	type
2	aeneus Kieffer, 1906	CAS	Neotropical	type
3	aerini Barbosa \& Azevedo, 2018	UFES	Neotropical	type
4	aghani Barbosa \& Azevedo, 2018	AMNH	Nearctic	type
5	albistigmus Evans, 1966	USNM	Neotropical	type
6	alienus Evans, 1966	MCZC	Neotropical	type
7	amabilis (Fouts, 1927)	USNM	Nearctic	type
8	amandili Barbosa \& Azevedo, 2018	UFES	Neotropical	type
9	amariei Barbosa \& Azevedo, 2018	UFES	Neotropical	type
10	amazonicus (Westwood, 1874) ${ }^{1}$	OUMNH	Neotropical	type
11	amlachi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
12	amrasis Barbosa \& Azevedo, 2018	UFES	Neotropical	type
13	amrodi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
14	analis (Cresson, 1872)	CNC	Nearctic, Neotropical	type
15	ancalagoni Barbosa \& Azevedo, 2018	MEL	Neotropical	type
16	andrethi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
17	androgi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
18	anduzei Evans, 1966	MCZC	Neotropical	type
19	angrimi Barbosa \& Azevedo, 2018	INPA	Neotropical	type
20	angrodi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
21	angulatus Santos \& Azevedo, 2000	UFES	Neotropical	type
22	angusticeps (Evans, 1965)	MCZC	Nearctic	type
23	annaeli Barbosa \& Azevedo, 2018	UFES	Neotropical	type
24	antiguensis Evans, 1966	MCZC	Neotropical	type
25	apache (Evans, 1965)	MCZC	Nearctic, Neotropical	type
26	aradunakhori Barbosa \& Azevedo, 2018	INPA	Neotropical	type
27	aranwei Barbosa \& Azevedo, 2018	CNC	Neotropical	type
28	arapaho Evans, 1959	SEMC	Nearctic	type
29	aratani Barbosa \& Azevedo, 2018	INPA	Neotropical	type
30	aratari Barbosa \& Azevedo, 2018	UFES	Neotropical	type
31	arawak Snelling, 1996	LACM	Neotropical	type
32	aredheli Barbosa \& Azevedo, 2018	INPA	Neotropical	type
33	argimilzori Barbosa \& Azevedo, 2018	INPA	Neotropical	type
34	arieni Barbosa \& Azevedo, 2018	INPA	Neotropical	type
35	arizonicus Evans, 1959	USNM	Nearctic	type
36	arpharazoni Barbosa \& Azevedo, 2018	UFES	Neotropical	type
37	arsakalthori Barbosa \& Azevedo, 2018	UFES	Neotropical	type
38	arthadi Barbosa \& Azevedo, 2018	INPA	Neotropical	type
39	artus Santos \& Azevedo, 2008	UFES	Neotropical	type

40	arzimrathoni Barbosa \& Azevedo, 2018	UFES	Neotropical	type
41	asgoni Barbosa \& Azevedo, 2018	MPEG	Neotropical	type
42	attenuatus Santos, 2002	UFES	Neotropical	type
43	aulei Barbosa \& Azevedo, 2018	UFES	Neotropical	type
44	aureus Kieffer, 1910	MCZC	Neotropical	type
45	aurichalceus (Westwood, 1874)	OUMNH	Nearctic, Neotropical	type
46	azaghali Barbosa \& Azevedo, 2018	CNC	Neotropical	type
47	bakeri Evans, 1966	USNM	Neotropical	type
48	balrogi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
49	barachi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
50	baragundi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
51	barahiris Barbosa \& Azevedo, 2018	UFES	Neotropical	type
52	barani Barbosa \& Azevedo, 2018	UFMG	Neotropical	type
53	basilargus Santos \& Azevedo, 2008	UFES	Neotropical	type
54	basilongus Santos \& Azevedo, 2008	UFES	Neotropical	type
55	basipilosus Santos \& Azevedo, 2008	UFES	Neotropical	type
56	belegi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
57	belegundi Barbosa \& Azevedo, 2018	IBGE	Neotropical	type
58	belemiri Barbosa \& Azevedo, 2018	UFES	Neotropical	type
59	beori Barbosa \& Azevedo, 2018	UFES	Neotropical	type
60	beregi Barbosa \& Azevedo, 2018	UFMG	Neotropical	type
61	bereni Barbosa \& Azevedo, 2018	MPEG	Neotropical	type
62	bifidus Evans, 1966	USNM	Neotropical	type
63	bipartitus Santos \& Azevedo, 2000	INPA	Neotropical	type
64	bogotensis (Kieffer, 1910)	ZMHB	Neotropical	type
65	bolivari Evans, 1966	MCZC	Neotropical	type
66	bori Barbosa \& Azevedo, 2018	INPA	Neotropical	type
67	borlachi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
68	borladi Barbosa \& Azevedo, 2018	MPEG	Neotropical	type
69	boromiri Barbosa \& Azevedo, 2018	MZPW	Neotropical	type
70	borthandis Barbosa \& Azevedo, 2018	UFES	Neotropical	type
71	bradleyi (Evans, 1959)	CNC	Nearctic, Neotropical	type
72	brandiri Barbosa \& Azevedo, 2018	UFES	Neotropical	type
73	brasiliensis Evans, 1966	USNM	Neotropical	type
74	bregoi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
75	bregolasi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
76	bregori Barbosa \& Azevedo, 2018	INPA	Neotropical	type
77	breviramus Santos \& Azevedo, 2000	INPA	Neotropical	type
78	broddai Barbosa \& Azevedo, 2018	CNC	Neotropical	type
79	calmacili Barbosa \& Azevedo, 2018	UFES	Neotropical	type
80	caranthiri Barbosa \& Azevedo, 2018	UFES	Neotropical	type
81	carcharothi Barbosa \& Azevedo, 2018	MZSP	Neotropical	type
82	carinatus Santos \& Azevedo, 2000	IBGE	Neotropical	type
83	carineceps Evans, 1966	MCZC	Neotropical	type
84	carolinianus (Evans, 1965)	MCZC	Nearctic	type
85	celebrimbori Barbosa \& Azevedo, 2018	UFES	Neotropical	type
86	celegormi Barbosa \& Azevedo, 2018	CNC	Neotropical	type
87	cepus Santos \& Azevedo, 2008	UFES	Neotropical	type
88	chupah Snelling, 1996	LACM	Neotropical	type

89	cirdani Barbosa \& Azevedo, 2018	UFES	Neotropical	type
90	ciryoni Barbosa \& Azevedo, 2018	UFES	Neotropical	type
91	colimae Evans, 1966	MCZC	Neotropical	type
92	columbianus (Ashmead, 1893)	USNM	Nearctic, Neotropical	type
93	coriaceus Kieffer, 1908	CAS	Nearctic, Neotropical	type
94	cubiceps (Evans, 1967)	CNC	Neotropical	type
95	cupreolus (Evans, 1965)	MCZC	Neotropical	type
96	curufini Barbosa \& Azevedo, 2018	UFES	Neotropical	type
97	curvicarinatus (Rosmann \& Azevedo, 2005)	UFMG	Neotropical	type
98	daeroni Barbosa \& Azevedo, 2018	INPA	Neotropical	type
99	dairuini Barbosa \& Azevedo, 2018	MZSP	Neotropical	type
100	darlingtoni Evans, 1959	MCZC	Neotropical	type
101	delicatus Evans, 1966	MCZC	Nearctic, Neotropical	type
102	denethori Barbosa \& Azevedo, 2018	MPEG	Neotropical	type
103	dentatus Santos \& Azevedo, 2000	MPEG	Neotropical	type
104	dietrichorum Evans, 1959	USNM	Nearctic, Neotropical	type
105	diori Barbosa \& Azevedo, 2018	INPA	Neotropical	type
106	divisus Santos, 2002	UFES	Neotropical	type
107	dominicanus Evans, 1966	USNM	Neotropical	type
108	dorlasi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
109	draugluini Barbosa \& Azevedo, 2018	UFES	Neotropical	type
110	durini Barbosa \& Azevedo, 2018	UFES	Neotropical	type
111	earendili Barbosa \& Azevedo, 2018	MPEG	Neotropical	type
112	earenduri Barbosa \& Azevedo, 2018	MEL	Neotropical	type
113	earweni Barbosa \& Azevedo, 2018	UFES	Neotropical	type
114	ecthelion Barbosa \& Azevedo, 2018	CNC	Neotropical	type
115	ecuadiroanus Evans, 1966	BPBM	Neotropical	type
116	eganellus (Westwood, 1874)	INPA	Neotropical	type
117	eilineli Barbosa \& Azevedo, 2018	UFES	Neotropical	type
118	elatani Barbosa \& Azevedo, 2018	UFES	Neotropical	type
119	elegantulus Evans, 1966	BPBM	Neotropical	type
120	elemmirei Barbosa \& Azevedo, 2018	UFES	Neotropical	type
121	elendili Barbosa \& Azevedo, 2018	MEL	Neotropical	type
122	elenduri Barbosa \& Azevedo, 2018	UFES	Neotropical	type
123	elenwei Barbosa \& Azevedo, 2018	UFES	Neotropical	type
124	elrondi Barbosa \& Azevedo, 2018	CNC	Neotropical	type
125	elrosi Barbosa \& Azevedo, 2018	MEL	Neotropical	type
126	eluredi Barbosa \& Azevedo, 2018	CNC	Neotropical	type
127	elwingi Barbosa \& Azevedo, 2018	MPEG	Neotropical	type
128	emeldiri Barbosa \& Azevedo, 2018	UFES	Neotropical	type
129	eoli Barbosa \& Azevedo, 2018	MPEG	Neotropical	type
130	eonwei Barbosa \& Azevedo, 2018	UFES	Neotropical	type
131	erellonti Barbosa \& Azevedo, 2018	AMNH	Nearctic	type
132	estei Barbosa \& Azevedo, 2018	AMNH	Nearctic	type
133	excisus Evans, 1959	MCZC	Neotropical	type
134	falathari Barbosa \& Azevedo, 2018	UFES	Neotropical	type
135	fasciipennis Kieffer, 1906	UCDC	Neotropical	type
136	feanori Barbosa \& Azevedo, 2018	AMNH	Nearctic	type
137	finarfini Barbosa \& Azevedo, 2018	INPA	Neotropical	type

138	finduilasi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
139	fingolfini Barbosa \& Azevedo, 2018	UFES	Neotropical	type
140	fingoni Barbosa \& Azevedo, 2018	UFES	Nearctic, Neotropical	type
141	finrodi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
142	finwei Barbosa \& Azevedo, 2018	MZSP	Neotropical	type
143	fortunatus (Evans, 1965)	MCZC	Neotropical	type
144	foveapertus Santos \& Azevedo, 2008	UFES	Neotropical	type
145	franciscanus Evans, 1966	BPBM	Neotropical	type
146	fuinuri Barbosa \& Azevedo, 2018	MEL	Neotropical	type
147	fuscicornis Kieffer, 1908	Lost[?]	Neotropical	literature
148	galadrieli Barbosa \& Azevedo, 2018	CNC	Neotropical	type
149	galdori Barbosa \& Azevedo, 2018	MEL	Nearctic, Neotropical	type
150	gamilziraki Barbosa \& Azevedo, 2018	INPA	Neotropical	type
151	gelmiri Barbosa \& Azevedo, 2018	DZUP	Neotropical	type
152	gibbosifrons Evans, 1959	USNM	Nearctic, Neotropical	type
153	gildori Barbosa \& Azevedo, 2018	UFES	Neotropical	type
154	gigaladi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
155	gimilkhadi Barbosa \& Azevedo, 2018	CNC	Neotropical	type
156	glaurungi Barbosa \& Azevedo, 2018	CNC	Neotropical	type
157	glirhuini Barbosa \& Azevedo, 2018	UFMG	Neotropical	type
158	gloredheli Barbosa \& Azevedo, 2018	CNC	Neotropical	type
159	glorfindeli Barbosa \& Azevedo, 2018	IBGE	Neotropical	type
160	gorlimi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
161	gothmogi Barbosa \& Azevedo, 2018	MEL	Neotropical	type
162	\dagger gradatus Sorg, 1988	SMF	Dominican amber	type
163	grandis (Ashmead, 1887)	UCDC	Nearctic, Neotropical	type
164	grisselli Evans, 1979	FSCA	Neotropical	type
165	guianae Evans, 1966	BPBM	Neotropical	type
166	guilini Barbosa \& Azevedo, 2018	UFES	Neotropical	type
167	gundori Barbosa \& Azevedo, 2018	UFES	Neotropical	type
168	gwindori Barbosa \& Azevedo, 2018	UFES	Neotropical	type
169	hadori Barbosa \& Azevedo, 2018	INPA	Neotropical	type
170	haldadi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
171	haldani Barbosa \& Azevedo, 2018	UFES	Neotropical	type
172	haldari Barbosa \& Azevedo, 2018	INPA	Neotropical	type
173	haldiri Barbosa \& Azevedo, 2018	UFES	Neotropical	type
174	halethi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
175	halmiri Barbosa \& Azevedo, 2018	MZSP	Neotropical	type
176	harethi Barbosa \& Azevedo, 2018	IBGE	Neotropical	type
177	hathaldiri Barbosa \& Azevedo, 2018	UFES	Neotropical	type
178	herumori Barbosa \& Azevedo, 2018	UFES	Neotropical	type
179	hondurensis Evans, 1966	AMNH	Neotropical	type
180	huani Barbosa \& Azevedo, 2018	OSUC	Neotropical	type
181	hundadi Barbosa \& Azevedo, 2018	INPA	Neotropical	type
182	hunthori Barbosa \& Azevedo, 2018	UFES	Neotropical	type
183	huori Barbosa \& Azevedo, 2018	CNC	Neotropical	type
184	hurini Barbosa \& Azevedo, 2018	MPEG	Neotropical	type
185	ibuni Barbosa \& Azevedo, 2018	UFES	Neotropical	type
186	idrili Barbosa \& Azevedo, 2018	UFES	Neotropical	type

187	ilmarei Barbosa \& Azevedo, 2018	CEPLAC	Neotropical	type
188	iluvatari Barbosa \& Azevedo, 2018	UFES	Neotropical	type
189	immarginatus Evans, 1966	MCZC	Neotropical	type
190	inca Evans, 1966	MCZC	Neotropical	type
191	inconspicuus Santos, 2002	UFES	Neotropical	type
192	indisi Barbosa \& Azevedo, 2018	CNC	Neotropical	type
193	indivisus Barbosa \& Azevedo, 2018	UFES	Neotropical	type
194	ingwei Barbosa \& Azevedo, 2018	UFES	Neotropical	type
195	insularis (Ashmead, 1894)	USNM	Neotropical	type
196	interruptus Santos \& Azevedo, 2000	INPA	Neotropical	type
197	inzilbethi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
198	iorlasi Barbosa \& Azevedo, 2018	INPA	Neotropical	type
199	iridescens (Evans, 1965)	MCZC	Neotropical	type
200	irmoi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
201	isilduri Barbosa \& Azevedo, 2018	UFES	Neotropical	type
202	jandirae Santos \& Azevedo, 2000	DZUP	Neotropical	type
203	jocundus Evans, 1966	MCZC	Neotropical	type
204	khimi Barbosa \& Azevedo, 2018	UFES	Neotropical	type
205	lalaithi Barbosa \& Azevedo, 2018	MZSP	Neotropical	type
206	laticeps Evans, 1966	MEL	Neotropical	type
207	lobatus Santos \& Azevedo, 2000	UFES	Neotropical	type
208	longimerus Santos \& Azevedo, 2000	UFES	Neotropical	type
209	lupus (Evans, 1965)	MCZC	Neotropical	type
210	megacephalus (Ashmead, 1893)	USNM	Nearctic	type
211	metallicus Kieffer, 1905	HNM	Neotropical	type
212	mexicanus (Evans, 1965)	MCZC	Neotropical	type
213	nigripes Evans, 1966	MCZC	Neotropical	type
214	occidentalis (Ashmead, 1893)	USNM	Nearctic, Neotropical	type
215	olivaceus (Evans, 1965)	USNM	Neotropical	type
216	pallidicornis Evans, 1966	MCZC	Neotropical	type
217	pallidipennis (Kieffer, 1906) ${ }^{3}$	Lost[?]	Palaearctic	literature
218	papago Evans, 1966	MCZC	Nearctic	type
219	penai Evans, 1966	MCZC	Neotropical	type
220	peruvianus (Kieffer, 1910)	ZMHB	Neotropical	type
221	planiceps (Fabricius, 1804)	ZMUC	Nearctic, Neotropical	type
222	plaumanni (Evans, 1965)	BMNH	Neotropical	type
223	pollicis Santos \& Azevedo, 2000	IBGE	Neotropical	type
224	portoricensis Evans, 1965	USNM	Neotropical	type
225	proteus Evans, 1966	MCZC	Neotropical	type
226	pulchripennis (Evans, 1965)	USNM	Neotropical	type
227	punctatus Santos \& Azevedo, 2000	DZUP	Neotropical	type
228	ramosus Santos \& Azevedo, 2008	MZSP	Neotropical	type
229	rectus Santos \& Azevedo, 2000	IBGE	Neotropical	type
230	robustus Santos \& Azevedo, 2000	UFES	Neotropical	type
231	rotundus Santos, 2002	UFES	Neotropical	type
232	rufitarsis Kieffer, 1908	Lost[?]	Neotropical	literature
233	rufosigmatus Kieffer, 1908	MCZC	Neotropical	type
234	rugosicollis Brues, 1908	USNM	Nearctic	type
235	sculptilis Evans, 1966	MCZC	Nearctic, Neotropical	type

$\mathbf{2 3 6}$	semiviridis Santos \& Azevedo, 2000	INPA	Neotropical	type
$\mathbf{2 3 7}$	similis Santos \& Azevedo, 2000	INPA	Neotropical	type
$\mathbf{2 3 8}$	smithanus (Westwood, 1874)	BMNH	Neotropical	type
$\mathbf{2 3 9}$	speciosus Evans, 1967	CAS	Neotropical	type
$\mathbf{2 4 0}$	strictus Santos \& Azevedo, 2000	INPA	Neotropical	type
$\mathbf{2 4 1}$	subaeneus (Kieffer, 1906)	CAS	Neotropical	type
$\mathbf{2 4 2}$	subviolaceus Kieffer, 1910	CAS	Nearctic, Neotropical	type
$\mathbf{2 4 3}$	superpilosus (Azevedo, 1993)	DCBU	Neotropical	type
$\mathbf{2 4 4}$	texanus (Evans, 1965)	MCZC	Nearctic, Neotropical	type
$\mathbf{2 4 5}$	tlaloc Evans, 1966	MCZC	Nearctic, Neotropical	type
$\mathbf{2 4 6}$	triangularis Moreira \& Azevedo, 2000	UFES	Neotropical	type
$\mathbf{2 4 7}$	trinitatis Evans, 1966	MCZC	Neotropical	type
$\mathbf{2 4 8}$	tuberosus Santos \& Azevedo, 2000	UFES	Neotropical	type
$\mathbf{2 4 9}$	venustus Evans, 1964	MCZC	Neotropical	type
$\mathbf{2 5 0}$	werneri (Evans, 1965)	USNM	Nearctic, Neotropical	type
$\mathbf{2 5 1}$	westwoodi $\left(\right.$ Cameron, 1888) ${ }^{2}$	BMNH	Neotropical	type
$\mathbf{2 5 2}$	williamsi Evans, 1959	CAS	Nearctic, Neotropical	type
$\mathbf{2 5 3}$	wilsoni Evans, 1966	MCZC	Neotropical	type
$\mathbf{2 5 4}$	wolcotti Evans, 1959	USNM	Neotropical	type

Table 2. List of Aspidepyris. Type-species ${ }^{1}$. *, to be proposed as comb. nov.

\#	SPECIES	COLLECTION	OCURRENCE	STUDY
1	angulatus (Evans, 1969)* from Epyris	BPBM	Neotropical	type
2	angustatus (Evans, 1969)* from Epyris	MCZ	Neotropical	type
3	argentinicus (Evans, 1969)* from Epyris	IFML	Neotropical	type
4	asperatus (Evans, 1969)* from Epyris	HKT	Neotropical	type
5	austrinus Evans, 1967	USNM	Neotropical	type
6	bipunctatus (Kieffer, 1910)* from Epyris	ZMB	Neotropical	type
7	chilensis (Azevedo, 1999)* from Epyris	MNNC	Neotropical	type
8	cochise (Evans, 1969)* from Epyris	MCZ	Nearctic, Neotropical	type
9	cochlear (Santos \& Azevedo, 2003)* from Epyris	DZUP	Neotropical	type
10	distinctus (Correa \& Azevedo, 2002)* from Epyris	UFES	Neotropical	type
11	eriogoni (Kieffer, 1906)* from Epyris	Baker collection[?]	Nearctic, Neotropical	literature
12	foveolatus Evans, $1964{ }^{1}$	AMNH	Neotropical	type
13	guana (Snelling, 1906)* from Epyris	LACM	Neotropical	type
14	guatemalensis (Cameron, 1888)* from Epyris	BMNH	Nearctic, Neotropical	type
15	hirsutus (Evans, 1969)* from Epyris	MCZ	Neotropical	type
16	hispaniolae (Evans, 1964)* from Epyris	MCZ	Neotropical	type
17	insolitus (Evans, 1969)* from Epyris	MCZ	Neotropical	type
18	intermedius (Evans, 1969)* from Epyris	CMNH	Neotropical	type
19	jareckii (Snelling, 1996)* from Epyris	LACM	Neotropical	type
20	longus (Correa \& Azevedo, 2002)* from Epyris	UFES	Neotropical	type
21	luteicornis (Evans, 1969)* from Epyris	MCZ	Neotropical	type
22	manni (Evans, 1964)* from Epyris	MCZ	Neotropical	type
23	oriplanus (Kieffer, 1911)* from Epyris	BMNH	Neotropical	type
24	perpolitus (Evans, 1969)* from Epyris	HKT	Neotropical	type
25	porosus (Evans, 1969)* from Epyris	MCZ	Neotropical	type
26	tretonotum (Evans, 1969)* from Epyris	HKT	Neotropical	literature

Table 3. List of Bakeriella. Type-species ${ }^{1}$.

\#	SPECIES	COLLECTION	OCURRENCE	STUDY
1	absens Kawada \& Azevedo, 2003	CNC	Neotropical	type
2	aurata Kawada \& Azevedo, 2003	INPA	Neotropical	type
3	azteca Evans, 1964	MCZC	Neotropical	type
4	brasiliana Evans, 1964	USNM	Neotropical	type
5	bulbosa Azevedo \& Moreira, 2005	CNC	Neotropical	type
6	cristata Evans, 1964	CMNH	Neotropical	type
7	denteata Azevedo, 1991	DCBU	Neotropical	type
8	erythrogaster Evans, 1979	UCDC	Neotropical	type
9	flavicornis Kieffer, 1910 ${ }^{1}$	CAS	Neotropical	type
10	floridana Evans, 1964	MCZC	Nearctic, Neotropical	type
11	grandis Evans, 1979	UCDC	Neotropical	type
12	grossensis Azevedo, 1994	MZSP	Neotropical	type
13	inca Evans, 1964	CUIC	Neotropical	type
14	incompleta Azevedo, 1994	UFES	Neotropical	type
15	inconspicua Evans, 1964	USNM	Neotropical	type
16	lobans Azevedo \& Moreira, 2005	CNC	Neotropical	type
17	lata Kawada \& Azevedo, 2003	MPEG	Neotropical	type
18	lindigi (Kieffer, 1910)	ZMHB	Neotropical	type
19	mira Evans, 1997	USNM	Nearctic, Neotropical	type
20	montivaga (Kieffer, 1910)	ZMHB	Neotropical	type
21	nuda Evans, 1964	CNC	Neotropical	type
22	olmeca Evans, 1964	CAS	Neotropical	type
23	polita Evans, 1964	CNC	Neotropical	type
24	quadriceps Evans, 1979	MCZC	Neotropical	type
25	quinquepartita (Kieffer, 1910)	ZMHB	Neotropical	type
26	reclusa (Evans, 1969)	MCZC	Neotropical	type
27	rossi Evans, 1964	CAS	Neotropical	type
28	rufocaudata Evans, 1964	MCZC	Neotropical	type
29	subcarinata Evans, 1965	MCZC	Neotropical	type
30	sulcaticeps Kawada \& Azevedo, 2003	INPA	Neotropical	type

Table 4. List of Calyoza species. Type-species of Calyoza ${ }^{1} ;{ }^{2}$, type-species of Artiepyris; ${ }^{3}$, type-species of Calyozella; ${ }^{4}$, type-species of Paracalyoza; ${ }^{5}$, type-species of Pseudocalyoza; ${ }^{6}$, type-species of Xenepyris. ${ }^{*}$, to be proposed as comb. nov.; **, to be proposed as comb. rev.; ${ }^{* * *}$, to be proposed as nom. rev. et.

$\#$	SPECIES	COLLECTION	OCURRENCE	STUDY
$\mathbf{1}$	aequatorialis $($ Terayama, 2005)* from Epyris	PMAE	Oriental	literature
$\mathbf{2}$	azurea (Evans, 1978)* from Epyris	CNC	Neotropical	type
$\mathbf{3}$	budda (Terayama, 2005)* from Epyris	PMAE	Oriental	literature
$\mathbf{4}$	camerounensis $($ Terayama, 2005)* from Epyris	ZMHB	Afrotropical	literature
$\mathbf{5}$	compressicornis $(\text { Kieffer, 1913 })^{6 *}$ from Xenepyris	Lost[?]	Oriental	literature
$\mathbf{6}$	dodecatoma $\left(\right.$ Kieffer, 1906) ${ }^{2 *}$ from Epyris	MCZC	Neotropical	type
$\mathbf{7}$	exaratus $($ Kieffer, 1922)* from Xenepyris	Lost[?]	Oriental	literature
$\mathbf{8}$	hirtipennis $(\text { Cameron, 1909 })^{4 *}$ from Epyris	BMNH	Oriental	type
$\mathbf{9}$	indra (Terayama, 2005)* from Epyris	PMAE	Oriental	literature

10	leyteana (Terayama, 2005)* from Epyris	PMAE	Oceanian	literature
11	maya (Terayama, 2005)* from Epyris	PMAE	Oriental	literature
12	melpa (Colombo \& Azevedo, 2020)* from Epyris	MNHN	Oceanian	type
13	puduma (Krombein, 1992)* from Epyris	USNM	Oriental	type
14	puncta (Kieffer, 1906)* from Epyris	MHN	Palaearctic	literature
15	quadripartita (Benoit, 1957)* from Epyris	MRAC	Afrotropical	type
16	rufiventris (Kieffer, 1907)* from Epyris	BMNH	Australian	type
17	sabahensis (Terayama, 2005)* from Epyris	PMAE	Oriental	literature
18	sauteri (Enderlein, 1920)* from Epyris	ZMHB	Palaearctic	type
19	shakha (Terayama, 2005)* from Epyris	PMAE	Oriental	literature
20	shiva (Terayama, 2005)* from Epyris	PMAE	Oriental	literature
21	staphylinoides Hope, 1837 ${ }^{1 * *}$ from Epyris	OUMNH	Afrotropical	neotype
22	subramosua (Turner, 1915) ${ }^{5}$ from Epyris	BMNH	Afrotropical	type
23	sumatrana Enderlein, 1917** from Epyris	ZMSZ	Oceanian	literature
24	flavipennis Enderlein, 19203*** from Epyris	ZMSZ	Oceanian	literature
25	tsunekii (Terayama, 2008)* from Epyris	NIAES	Oceanian	type

Table 5. List of Calyozina species examined with emphasis on which types were analysed directly. Type-species ${ }^{1} .{ }^{*}$, to be proposed as comb. rev.

$\#$	SPECIES	COLLECTION	OCURRENCE	STUDY
$\mathbf{1}$	dilatata Azevedo, 1996* from Epyris	INPA	Neotropical	type
$\mathbf{2}$	nepalensis Terayama, 2005	CNC	Oriental	type
$\mathbf{3}$	ramicornis Enderlein, 1912	Oriental	type	
$\mathbf{4}$	thaiana Terayama, 2005	ZMHB	Oren	

Table 6. List of Chlorepyris. The type-species of Chlorepyris is C. semiviridis Kieffer, 1913 (junior synonym of C. viridissimus Kieffer 1). *, to be proposed as comb. nov.

\#	SPECIES	COLLECTION	OCURRENCE	STUDY
1	abjectus (Evans, 1982)	ANIC	Australian	type
2	abelam Colombo \& Azevedo, 2020	MNHN	Oceanian	type
3	ablusus (Evans, 1982)	ANIC	Australian	type
4	aethiops (Turner \& Waterson, 1917)* from Epyris	BMNH[?]	Afrotropical	literature
5	aletris (Evans, 1982)	ANIC	Australian	type
6	angu Colombo \& Azevedo, 2020	MNHN	Oceanian	type
7	anxius (Evans, 1982)	ANIC	Australian	type
8	arcanellus (Evans, 1982)	BMNH	Australian	type
9	arenarius (Evans, 1982)	ANIC	Australian	type
10	armatus (Kieffer, 1904)	MCSN	Oceanian	type
11	asperulus (Evans, 1982)	ANIC	Australian	type
12	atlanticus (Rosmann \& Azevedo, 2005)	DZUP	Neotropical	type
13	australiae (Kieffer, 1907)	ZSZM	Australian	literature
14	avidus (Evans, 1982)	ANIC	Australian	type
15	baining Colombo \& Azevedo, 2020	MNHN	Oceanian	type
16	baruya Colombo \& Azevedo, 2020	MNHN	Oceanian	type
17	biangai Colombo \& Azevedo, 2020	MNHN	Oceanian	type
18	biharina Kurian, 1955	IFRI	Oriental	type
19	bilibil Colombo \& Azevedo, 2020	MNHN	Oceanian	type

20	blantoni (Evans, 1965)	USNM	Neotropical	type
21	breviventris (Kieffer, 1906)	BMNH	Australian	type
22	callosus (Stein \& Azevedo, 2007)	CNC	Neotropical	type
23	caperatus (Krombein, 1990)* from Epyris	USNM	Sino-Japanese	literature
24	chambri Colombo \& Azevedo, 2020	MNHN	Oceanian	type
25	circinnatus (Rosmann \& Azevedo, 2005)	MZSP	Neotropical	type
26	clavatus (Rosmann \& Azevedo, 2005)	UFMG	Neotropical	type
27	coeruleus (Kieffer, 1906)	BMNH	Australian	type
28	\dagger concaptus (Brues, 1933)	Konigsberg[?]	Baltic amber	literature
29	concavus (Stein \& Azevedo, 2007)	CNC	Neotropical	type
30	cyanosoma (Evans, 1973)	IFML	Neotropical	type
31	demissus (Stein \& Azevedo, 2007)	CNC	Neotropical	type
32	\dagger deploegi Colombo \& Azevedo, 2021	SIZK	Rovno amber	type
33	duna Colombo \& Azevedo, 2020	MNHN	Oceanian	type
34	enga Colombo \& Azevedo, 2020	MNHN	Oceanian	type
35	\dagger engeli Colombo \& Azevedo, 2021	PIN	Baltic amber	type
36	erythrogaster (Dodd, 1916)* from Epyris	SAM	Australian	literature
37	etoro Colombo \& Azevedo, 2020	MNHN	Oceanian	type
38	fasciatus (Kieffer, 1906)* from Epyris	BMNH	Palaearctic	literature
39	flavipennis Kieffer, 1914	BMNH	Australian	type
40	fore Colombo \& Azevedo, 2020	MNHN	Oceanian	type
41	foveatus (Cameron, 1905)	Lost[?]	Sri Lanka	literature
42	fulgens (Brues, 1907)	USNM	Nearctic, Neotropical	type
43	fuscinervis (Cameron, 1899)* from Epyris	BMNH[?]	Oriental	literature
44	gadsup Colombo \& Azevedo, 2020	MNHN	Oceanian	type
45	\dagger gallicus (Perrichot \& Nel, 2008)	MNHN	Oise amber	type
46	gogodala Colombo \& Azevedo, 2020	MNHN	Oceanian	type
47	haroli Colombo \& Azevedo, 2020	MNHN	Oceanian	type
48	hemipterus (Kieffer, 1906)* from Epyris	Giraud Collection[?]	Palaearctic	literature
49	hewa Colombo \& Azevedo, 2020	MNHN	Oceanian	type
50	\dagger hopei Colombo \& Azevedo, 2021	PIN	Baltic amber	type
51	huli Colombo \& Azevedo, 2020	MNHN	Oceanian	type
52	humboldti (Vargas, 2001)	IAVH	Neotropical	type
53	iatmul Colombo \& Azevedo, 2020	MNHN	Oceanian	type
54	\dagger invelatus (Brues, 1933)	Konigsberg[?]	Baltic amber	literature
55	\dagger jouaulti Colombo \& Azevedo, 2021	SIZK	Rovno amber	type
56	kaluli Colombo \& Azevedo, 2020	MNHN	Oceanian	type
57	kongohyasha (Terayama, 2005)* from Epyris	CNC	Oriental	literature
58	koteka Colombo \& Azevedo, 2020	MNHN	Oceanian	type
59	kwoma Colombo \& Azevedo, 2020	MNHN	Oceanian	type
60	latimerus (Magesky \& Azevedo, 2001)	INPA	Neotropical	type
61	latissimus (Stein \& Azevedo, 2007)	INPA	Neotropical	type
62	litoralis (Azevedo, 1992)	DCBU	Neotropical	type
63	longiceps (Kieffer, 1913)* from Epyris	Lost[?]	Oceanian	literature
64	longifoveatus (Azevedo, 1999)	DCBU	Neotropical	type
65	longimerus (Magesky \& Azevedo, 2001)	INPA	Neotropical	type
66	luteipennis (Evans, 1965)	MCZC	Neotropical	type
67	maisin Colombo \& Azevedo, 2020	MNHN	Oceanian	type
68	manii (Kurian, 1955)	IFRI	Oriental	literature

69	\dagger mckellari Colombo \& Azevedo, 2021	SIZK	Rovno amber	type
70	metallicus (Kieffer, 1908)* from Epyris	Baker collection[?]	Neotropical	literature
71	\dagger ¢eunieri Colombo \& Azevedo, 2021	PIN	Baltic amber	type
72	mexicanus (Evans, 1965)* from Epyris	MCZC	Neotropical	type
73	mirandus (Evans, 1969)* from Epyris	USNM	Neotropical	type
74	muscarius (Westwood, 1874)	HMO	Neotropical	type
75	\dagger neli Colombo \& Azevedo, 2021	SIZK	Rovno amber	type
76	nigerrimus Evans, 1965	SEMC	Neotropical	literature
77	obliquus (Kieffer, 1922)* from Epyris	Baker collection[?]	Oceanian	literature
78	obscuripennis (Kieffer, 1910)* from Epyris	Baker collection[?]	Neotropical	literature
79	ocultatus (Rosmann \& Azevedo, 2005)	DZUP	Neotropical	type
80	opistolatus (Magesky \& Azevedo, 2001)	INPA	Neotropical	type
81	origenus (Kieffer, 1911)	BMNH	Neotropical	type
82	pectinatus (Magesky \& Azevedo, 2001)	INPA	Neotropical	type
83	peregrinus (Evans, 1979)	ANIC	Australian	type
84	perpulcher (Evans, 1979)	ANIC	Australian	type
85	\dagger perrichoti Colombo \& Azevedo, 2021	PIN	Baltic amber	type
86	platycephalus (Westwood, 1874)	BMNH	Australian	literature
87	pleurorrectus (Magesky \& Azevedo, 2001)	INPA	Neotropical	type
88	puncticeps (Evans, 1965)	CUIC	Neotropical	type
89	pusana Kurian, 1955	IFRI	Oriental	type
90	quinquelineatus (Kieffer, 1906)	CAS	Neotropical	type
91	raripilus Kieffer, 1922	Baker collection[?]	Oceanian	literature
92	rufiventris (Kieffer, 1907)	BMNH	Australian	type
93	septemlineatus (Kieffer, 1906)	CAS	Neotropical	type
94	\dagger ¢etosus (Brues, 1933)	Konigsberg[?]	Baltic amber	literature
95	subangulatus (Rosmann \& Azevedo, 2005)	UFES	Neotropical	type
96	subviridis (Kieffer, 1911)	BMNH	Neotropical	type
97	sulcatus (Rosmann \& Azevedo, 2005)	MZSP	Neotropical	type
98	surinamensis (Evans, 1969)	RMNH	Neotropical	type
99	tarapachensis (Vargas, 2001)	IAVH	Neotropical	type
100	tricolor (Evans, 1965)	USNM	Neotropical	type
101	truncatus (Kieffer, 1906)	BMNH	Australian	type
102	unidens Kieffer, 1922	Baker collection[?]	Oceanian	literature
103	unifoveatus (Rosmann \& Azevedo, 2005)	MZSP	Neotropical	type
104	vesculus (Evans, 1965)	MCZC	Neotropical	type
105	vesiculosus (Azevedo, 1999)	KSUC	Neotropical	type
106	violaceus (Evans, 1965)	BMNH	Neotropical	type
107	virescens (Evans, 1965)	BMNH	Neotropical	type
108	viridis (Cameron, 1888)	BMNH	Neotropical	type
109	viridissimus (Kieffer, 1911) ${ }^{1}$	BMNH	Neotropical	type

Table 7. List of Dolus. *, type-species of Dolus; **, type-species of Homoglenus; ***, type-species of Neodisepyris. *, to be proposed as comb. nov.; **, to be proposed as comb. rev.; ${ }^{* * *}$, to be proposed as nom. rev. et.

$\#$	SPECIES	COLLECTION	OCURRENCE	STUDY
$\mathbf{1}$	acutidens (Kieffer, 1922)* from Epyris	MNHN	Oceanian	type
$\mathbf{2}$	alachua $($ Evans, 1969)* from Epyris	USNM	Nearctic	type

3	albipalpis (Kieffer, 1906)* from Epyris	CAS	Neotropical	type
4	algoae (Kieffer, 1911)* from Epyris	Brauns collection[?]	Afrotropical	literature
5	alius (Gorbatovsky, 1995)* from Epyris	ZIN	Palaearctic	type
6	amazonicus (Evans, 1964)* from Epyris	USNM	Neotropical	type
7	apicalis Motschulsky, 1863** from Epyris	ZMUM	Saharo-Arabian	literature
8	bombayensis (Kurian, 1955) ${ }^{3}$ (from Epyris	IFRI	Oriental	type
9	breviclypeatus (Lim \& Lee, 2011)* from Epyris	SNU	Palaearctic	type
10	carbunculus (Nagy, 1970)* from Epyris	Argaman collection[?]	Palaearctic	literature
11	conjunctus (Kieffer, 1905)* from Epyris	HNM	Oriental	type
12	cuprinus (Evans, 1969)* from Epyris	USNM	Neotropical	type
13	darani (Terayama, 2006)* from Epyris	NIAES	Sino-Japanese	type
14	deficiens (Krombein, 1956)* from Epyris	USNM	Nearctic	type
15	depressigaster (Evans 1966 [1965])* from Epyris	BMNH	Neotropical	type
16	despectus (Kieffer, 1922)* from Epyris	Baker collection[?]	Oceanian	literature
17	duni (Kurian, 1955)* from Epyris	IFRI	Oriental	type
18	duttai (Kurian, 1955)* from Epyris	IFRI	Oriental	type
19	emiae (Terayama, 2006)* from Epyris	NIAES	Sino-Japanese	type
20	enerteros (Stein \& Azevedo, 2011)* from Epyris	MSNG	Oriental	type
21	erythrocerus (Kieffer, 1906)* from Epyris	MNHN	Palaearctic	type
22	exsculptus (Evans, 1969)* from Epyris	CMNH	Neotropical	type
23	feai (Kieffer, 1904)* from Epyris	MSNG	Oriental	literature
24	festivus (Evans, 1969)* from Epyris	USNM	Nearctic	literature
25	finitus (Lim \& Lee, 2011)* from Epyris	SNU	Palaearctic	type
26	flavicrus (Kieffer, 1910)* from Epyris	ZMHB	Neotropical	type
27	geniculatus (Kieffer, 1904)* from Epyris	MSNG	Afrotropical	literature
28	gracilipennis (Kieffer, 1904)* from Epyris	MSNG	Afrotropical	literature
29	indicus (Kieffer, 1905)* from Epyris	HNM	Oriental	literature
30	inermis (Kieffer, 1906)* from Epyris	HNM	Palaearctic	type
31	isthmicus (Evans, 1969)* from Epyris	USNM	Neotropical	type
32	jugatus (Evans, 1969)* from Epyris	MCZC	Neotropical	type
33	konishii (Terayama, 1999)* from Epyris	NIAES	Sino-Japanese	literature
34	kuchingensis (Cameron, 1910)* from Epyris	BMNH	Oriental	type
35	lienfuaensis (Terayama, 2005)* from Epyris	NSMT	Oriental	literature
36	limatulus (Lim \& Lee, 2011)* from Epyris	SNU	Palaearctic	type
37	liukueiensis (Terayama, 2005)* from Epyris	NSMT	Oriental	literature
38	lutescens (Kieffer, 1905)* from Epyris	MNHN	Australian	type
39	mackenziei (Kurian, 1955)* from Epyris	IFRI	Oriental	type
40	marcapata (Evans, 1969)* from Epyris	HKT	Neotropical	type
41	maximus (Berland, 1928)* from Epyris	MNHN	Palaearctic	literature
42	meifengensis (Terayama, 2005)* from Epyris	NSMT	Oriental	literature
43	mixtecus (Evans, 1969)* from Epyris	HKT	Neotropical	type
44	manticolus (Ashmead, 1890)* from Epyris	USNM	Nearctic, Neotropical	type
45	mureungensis (Lim \& Lee, 2011)* from Epyris	SNU	Palaearctic	literature
46	nanshanchiensis (Terayama, 2005)* from Epyris	NSMT	Oriental	literature
47	nantohensis (Terayama, 2005)* from Epyris	PMAE	Oriental	literature
48	neotropicus (Evans, 1964)* from Epyris	USNM	Neotropical	type
49	nigriculus (Evans, 1969)* from Epyris	MCZC	Neotropical	type
50	nigrivirens (Evans, 1973)* from Epyris	AMNH	Neotropical	literature
51	niwoh (Terayama, 2006)* from Epyris	HUS	Palaearctic, Sino-Japanese	type

52	nubatama (Terayama, 2006)* from Epyris	NIAES	Sino-Japanese	type
53	osanus (Evans, 1969)* from Epyris	AMNH	Neotropical	type
54	otome (Terayama, 1999)* from Epyris	NIAES	Sino-Japanese	type
55	pectinatus (Terayama, 2006)* from Epyris	HUS	Sino-Japanese	literature
56	philippinensis (Kieffer, 1913)* from Epyris	Baker collection[?]	Oceanian	literature
57	piceiventris (Westwood, 1874)* from Epyris	HMO	Australian	type
58	pleuralis (Kieffer, 1922)* from Epyris	MNHN[?]	Oceanian	literature
59	politus Motschulsky, 1863 ${ }^{1 * *}$ from Epyris	ZMUM	Saharo-Arabian	type
60	psilommus (Kieffer, 1922)* from Epyris	Baker collection[?]	Oceanian	literature
61	pusae (Kurian, 1955)* from Epyris	IFRI	Oriental	literature
62	pusillus (Evans, 1969)*,*** from Epyris	MCZC	Neotropical	literature
63	quadratus (Kieffer, 1922)* from Epyris	MNHN	Oceanian	type
64	reitteri (Kieffer, 1906)* from Epyris	Reitter collection[?]	Palaearctic	literature
65	rotundus (Santos \& Azevedo, 2003)* from Epyris	DZUP	Neotropical	type
66	schingeri (Evans, 1969)* from Epyris	CAS	Neotropical	type
67	schwarzi (Evans, 1969)* from Epyris	USNM	Neotropical	type
68	sculleni (Evans, 1969)* from Epyris	MCZC	Nearctic, Neotropical	type
69	similis (Bridwell, 1919)* from Epyris	USNM	Oceanian	type
70	squamosus (Evans, 1969)* from Epyris	MCZC	Neotropical	type
71	stangei (Evans, 1969)* from Epyris	FIFML	Neotropical	type
72	sublevis (Kieffer, 1904)* from Epyris	MSNG[?]	Palaearctic	literature
73	subspinosus (Kieffer, 1910)* from Epyris	ZMHB	Neotropical	type
74	tanoi (Terayama, 2008)* from Epyris	NIAES	Oceanian	type
75	tenanus (Evans, 1969)* from Epyris	BPBM	Neotropical	type
76	texanus (Ashmead, 1893)* from Epyris	USNM	Nearctic	type
77	transversarius (Zu, He \& MA, 2003)* from Epyris	Zhejiang University	Oriental	literature
78	tripartitus (Kieffer, 1904) ${ }^{2}$ (from Epyris	MSNG	Afrotropical	type
79	unicarina (Kieffer, 1922)* from Epyris	Baker collection[?]	Oceanian	literature
80	vierecki (Krombein, 1962)* from Epyris	USNM	Nearctic	type
81	vogti (Evans, 1969)* from Epyris	USNM	Nearctic	type
82	willinki (Evans, 1969)* from Epyris	FIFML	Neotropical	type
83	yakushi (Terayama, 2006)* from Epyris	KUF	Sino-Japanese	literature
84	zeteki (Evans, 1969)* from Epyris	USNM	Neotropical	type

Table 8. List of Epyris. ${ }^{1}$, type-species of Epyris; ${ }^{2}$, type-species of Isobrachium; ${ }^{3}$, typespecies of Leptepyris; ${ }^{4}$, type-species of Melanepyris; ${ }^{5}$, type-species of Parepyris Kieffer; ${ }^{6}$, type-species of Rhabdepyris. ${ }^{*}$, to be proposed as comb. nov.; ${ }^{* *}$, to be proposed as comb. rev.; ${ }^{* * *}$, to be proposed as nom. rev. et.

$\boldsymbol{\#}$	SPECIES	COLLECTION	OCURRENCE	STUDY
$\mathbf{1}$	asiaticus (Kieffer, 1922)	MNHN	Oriental	type
$\mathbf{2}$	azevedoi Tribull, 2016	ANIC	Australian	type
$\mathbf{3}$	bayeri Hoffer, 1935	Hoffer collection	Palaearctic	literature
$\mathbf{4}$	bidens Kieffer, 1922	MNHN	Oceanian	type
$\mathbf{5}$	bipunctatus (Kieffer, 1922)	Baker collection[?]	Oceanian	literature
$\mathbf{6}$	brevipennis Kieffer, 1906	MNHN	Palaearctic	literature
$\mathbf{7}$	carpenteri Tribull, 2016	ANIC	Australian	type
$\mathbf{8}$	chasanicus Gorbatovsky, 1995	RAS	Palaearctic	type
$\mathbf{9}$	claripennis Kieffer, 1922	MNHN	Oceanian	type

10	congolensis Benoit, 1957	MRCB	Afrotropical	literature
11	crassicornis Walker, 1874	BMNH	Sino-Japanese	literature
12	defectus (Kieffer, 1922)	Baker collection[?]	Oceanian	literature
13	\dagger deletus Brues, 1910	AMNH	Florissant Formation	type
14	dilaticeps (Benoit, 1957)	MRAC	Afrotropical	literature
15	erraticus Smith, 1860	Lost[?]	Oceanian	literature
16	filiformis Kieffer, 1914	Baker collection[?]	Oceanian	literature
17	fulgeocauda Tribull, 2016	QM	Australian	type
18	fulvimanus Kieffer, 1907	BMNH	Australian	type
19	fuscipalpis Kieffer, 1906	MNHN[?]	Palaearctic	literature
20	fuscipes (Kieffer, 1906)	en aout (Solari)[?]	Palaearctic	type
21	hagoromonis Terayama, 1999	NIAES	Sino-Japanese	literature
22	herschae Tribull, 2016	CNC	Australian	type
23	hiten Terayama, 2006	KUF	Sino-Japanese	literature
24	imicola (Kieffer, 1913) ${ }^{4}$	Lost[?]	Oceanian	literature
25	indicae (Kurian, 1955)	IFRI	Oriental	type
26	interruptus Kieffer, 1904 ${ }^{5}$	MSNG	Oceanian	type
27	jeonbukensis Lim \& Lee, 2011	SNU	Palaearctic	type
28	\dagger kiefferi (Brues, 1933)	Königsberg[?]	Baltic amber	literature
29	kurzenkoi Gorbatovsky, 1995	RAS	Palaearctic	type
30	leleji Gorbatovsky, 1995	RAS	Palaearctic	type
31	lippensi Benoit, 1957	RMCB	Afrotropical	literature
32	loisae Tribull, 2016	ANIC	Australian	type
33	longiantennatus Lim \& Lee, 2011	SNU	Palaearctic	type
34	longicephalus Terayama, 2005	NSMT	Palaearctic	type
35	luzonicus (Kieffer, 1913)	Baker collection[?]	Oceanian	literature
36	macrocerus Kieffer, 1906	HNM[?]	Palaearctic	literature
37	macromma Kieffer, 1906	HNM[?]	Palaearctic	literature
38	malayanus Terayama, 2005	PMAE	Oriental	literature
39	mian Colombo \& Azevedo, 2020	MNHN	Oceanian	type
40	min Colombo \& Azevedo, 2020	MNHN	Oceanian	type
41	miroku Terayama, 2006	NIAES	Sino-Japanese	type
42	montanus Kieffer, 1905	HNM	Oriental	literature
43	motu Colombo \& Azevedo, 2020	MNHN	Oceanian	type
44	\dagger moulyi Falières \& Nel, 2018	MNHN	Oise amber	type
45	mundugumor Colombo \& Azevedo, 2020	MNHN	Oceanian	type
46	myrmecophilus Kieffer, 1904 ${ }^{6} * * *$	NHME	Palaearctic	literature
47	neofiliformis Azevedo, $2018{ }^{3}$	Baker collection[?]	Oceanian	literature
48	neoluzonicus Azevedo, 2018	MNHN	Oceanian	literature
49	niger Westwood, 1832 ${ }^{1}$	OUMNH	Palaearctic, Saharo-Arabian	type
50	nigricornis (Nees ab Esenbeck, 1834) ${ }^{2}$	Lost[?]	Palaearctic	literature
51	ogea Colombo \& Azevedo, 2020	MNHN	Oceanian	type
52	ovatus Xu, He \& Ma, 2003	Zhejiang University	Oriental	literature
53	pallidinervis (Kieffer, 1904)	Wasmann Collection [?]	Palaearctic	literature
54	patnae Kurian, 1955	IFRI	Oriental	type
55	politiceps Muesebeck, 1934	USNM	Oriental	literature
56	pusillus Kieffer, 1922	MNHN	Oceanian	type
57	quaesitor Kieffer, 1922	MNHN	Oceanian	type
58	\dagger †rectinervis (Cockerell, 1921)	BMNH	Bouldnor Formation	type

59	rectinervis (Cockerell, 1921)	BMNH	Bouldnor Formation	type
60	ruficollis Ashmead, 1903	USNM[?]	Oriental	literature
61	rejectus Kieffer, 1922	MNHN	Oceanian	type
62	shohki Terayama, 2006	NIAES	Sino-Japanese	literature
63	striatus Kieffer, 1904	MSNG[?]	Oriental	literature
64	subramosus Kieffer, 1922***	Baker collection[?]	Oceanian	literature
65	tardus Kieffer, 1906	HNM	Palaearctic	literature
66	thaianus Terayama, 2005	PMAE	Oriental	literature
67	\dagger tenellus Statz, 1938	LACM	Rott Formation	type
68	tibialis Kieffer, 1906	MNHN[?]	Afrotropical	literature
69	transversus Kieffer, 1906	HNM[?]	Palaearctic	literature
70	tricolor Cameron, 1888	Lost[?]	Palaearctic	literature
71	tridens Kieffer, 1922	MNHN	Oceanian	type
72	tridentatus Kieffer, 1904	MSNG[?]	Afrotropical	literature
73	troglodytes Kieffer, 1922	MNHN	Oceanian	type
74	truncatidens (Kieffer, 1922)	MNHN	Oceanian	type
75	viduatus (Turner, 1928)	BMNH	Afrotropical	type
76	voeltzkowii (Kieffer, 1910)	ZMHB	Madagascan	literature
77	wanei Risbec, 1956	Lost[?]	Afrotropical	literature
78	yakushimanus Terayama, 1999	NIAES	Sino-Japanese	literature
79	yamatonis Terayama, 1999	NIAES	Sino-Japanese	type
80	yasha Terayama, 1999	NIAES	Sino-Japanese	type
81	yetus Lim \& Lee, 2011	SNU	Palaearctic	type

Table 9. List of \dagger Gloxinius species examined with emphasis on which types were analysed directly. ${ }^{1}$, type-species.

\#	SPECIES	COLLECTION	OCURRENCE	STUDY
$\mathbf{1}$	\dagger †ifossatus (Brues, 1939)			

Table 10. List of GenusB to be proposed as gen.n. species examined with emphasis on which types were analysed directly. ${ }^{1}$, type-species. *, to be proposed as comb. nov.

\#	SPECIES	COLLECTION	OCURRENCE	STUDY
$\mathbf{1}$	rufipes $(\text { Say, 1824 })^{1 *}$	Lost[?]	Nearctic, Neotropical	literature

Table 11. List of GenusA to be proposed as gen.n. species examined with emphasis on which types were analysed directly. ${ }^{1}$, type-species. *, to be proposed as comb. nov.

	SPECIES	COLLECTION	OCURRENCE	STUDY
	idaten (Terayama, 2006) ${ }^{1 *}$	NIAES	Sino-Japanese	type

Table 12. List of Holepyris. ${ }^{1}$, type-species of Holepyris; ${ }^{2}$, type-species of Disepyris; ${ }^{3}$, type-species of Formosiepyris; ${ }^{4}$, type-species of Lytepyris. *, to be proposed as comb. nov.; **, to be proposed as comb. rev.

$\#$	SPECIES	COLLECTION	OCURRENCE	STUDY
$\mathbf{1}$	abacinus (Benoit, 1952)* from Disepyris	MCSN	Saharo-Arabian	type
$\mathbf{2}$	africanus Kieffer, 1904			
			MCSN	Afrotropical

3	agraensis (Kurian, 1955)* from Formosiepyris	IFRI	Oriental	type
4	algoaensis Kieffer, 1911	Brauns collection[?]	Afrotropical	literature
5	angusticollis Kieffer, 1906	MNHN	Sino-Japanese	literature
6	arabicus (Barbosa \& Azevedo, 2014)* from Disepyris	UFES	Saharo-Arabian	type
7	bergevini Duchaussoy, 1916[1914]	Lost[?]	Saharo-Arabian	literature
8	berlandi (Benoit, 1963)* from Disepyris	MNHN	Saharo-Arabian	literature
9	bidentatus Kieffer, 1904	MCSN	Palaearctic	literature
10	biscrensis (Kieffer, 1906) ${ }^{4 *}$ from Disepyris	HNM	Afrotropical	type
11	crenulatus Kieffer, 1906	HNM	Palaearctic	literature
12	decipulus (Benoit, 1952)* from Disepyris	MCSN	Saharo-Arabian	type
13	fasciipennis Kieffer, 1906	MNHN	Palaearctic	literature
14	fessus (Lim \& Azevedo, 2014)* from Disepyris	UFES	Palaearctic	type
15	fuscipennis Kieffer, 1906	MNHN	Saharo-Arabian	literature
16	guigliae (Benoit, 1952)* from Disepyris	MCSN	Saharo-Arabian	type
17	hyacintho (Barbosa \& Azevedo, 2014)* from Disepyris	UFES	Saharo-Arabian	type
18	kenyaensis (Lim \& Azevedo, 2014)* from Disepyris	NMKE	Afrotropical	type
19	levicollis Kieffer, 1906	HNM	Saharo-Arabian	literature
20	lineatus Kieffer, 1906	MNCNM[?]	Palaearctic	literature
21	maculipennis (Marshall, 1874)	BMNH[?]	Palaearctic	literature
22	marishi (Terayama, 2004) ${ }^{3 *}$ from Formosiepyris	PMAE	Oriental	type
23	mongoliaensis (Lim \& Azevedo, 2014)* from Disepyris	UFES	Palaearctic	type
24	natalensis Kieffer, 1913	SAFM	Afrotropical	literature
25	niveus (Lim \& Azevedo, 2014)* from Disepyris	UFES	Saharo-Arabian	type
26	orientalis Kieffer, 1906	Lost[?]	Palaearctic	literature
27	pallidinervis (Cameron, 1907)* from Disepyris	BMNH	Oriental	type
28	prolatatus (Lim \& Azevedo, 2014)* from Disepyris	UFES	Saharo-Arabian	type
29	punctaticollis Kieffer, 1906	MNHN	Palaearctic	literature
30	rufipes (Kieffer, 1905) ${ }^{2}$ from Disepyris	MNHN	Oriental	type
31	rufitarsis Kieffer, 1906	Lost[?]	Palaearctic	literature
32	rugulosus (Xu \& He, 2005)* from Formosiepyris	Zhejiang University	Oriental	literature
33	semiruber Kieffer, 1911** from Disepyris	Brauns collection[?]	Afrotropical	literature
34	shiva (Terayama, 2004)* from Formosiepyris	RBCM	Oriental	type
35	takasago (Terayama, 2004)* from Formosiepyris	NSMT	Oriental	type
36	tibialis Kieffer, 1906	MNHN	Palaearctic	literature
37	vietnamensis (Tsujii et al., 2015)* from Formosiepyris	ITLJ	Oriental	type
38	vittatus Turner, 1928	BMNH	Afrotropical	literature

Table 13. List of Laelius. The type-species of Laelius is L. trogodermatis Ashmead, 1893 (junior synonym of L. centratus Say). ${ }^{1}$, type-species of Allepyris; ${ }^{2}$, type-species of Paralaelius; ${ }^{3}$, type-species of Prolaelius.

$\#$	SPECIES	COLLECTION	OCURRENCE	STUDY
$\mathbf{1}$	agraensis Kurian, 1955	IFRI	Oriental	type
$\mathbf{2}$	akares Barbosa \& Azevedo, 2009	CAS	Madagascan	type
$\mathbf{3}$	anfractuosus Benoit, 1952	MCSN	Saharo-Arabian	type

anthrenivorus Trani, 1909	IZUN	Palaearctic	literature
antropovi Gorbatovsky, 1995	Lost[?]	Palaearctic	literature
arryni Barbosa \& Azevedo, 2014	MPEG	Neotropical	type
baratheoni Barbosa \& Azevedo, 2014	UFES	Neotropical	type
billi Barbosa \& Azevedo, 2014	CAS	Neotropical	type
bipartitus Kieffer, 1906	Perris collection [?]	Palaearctic	literature
borealis Vikberg, 2005	DABH	Palaearctic	literature
brachistos Barbosa \& Azevedo, 2010	UFES	Saharo-Arabian	type
canchinensis (Azevedo, 1992)	DCBU	Neotropical	type
centratus (Say, 1836)	Lost [?]	Nearctic, Neotropical	literature
elisae Russo, 1938	IZUN [?]	Palaearctic	literature
femoralis (Förster, 1860)	DBAH	Palaearctic	literature
firmipennis (Cameron, 1905) ${ }^{3}$	Lost [?]	Afrotropical	literature
foveaticeps (Rosmann \& Azevedo, 2005)	DZUP	Neotropical	type
fulvipes Kieffer, 1906	MCSN	Palaearctic	type
fumimarginalis Vikberg, 2005	NHRS	Palaearctic	literature
glossinae (Turner \& Waterson, 1916)	BMNH	Afrotropical	type
gracilis (Evans, 1965)	CAS	Nearctic, Neotropical	type
haplos Barbosa \& Azevedo, 2011	ANIC	Australian	type
hirticulus (Evans, 1965)	MCZC	Neotropical	type
huachucae (Evans, 1965)	MCZC	Nearctic	type
jilinensis Lim \& Lee, 2010	SNU	Sino-Japanese	type
lannisteri Barbosa \& Azevedo, 2014	INPA	Neotropical	type
maboya (Snelling, 1996)	LACM	Neotropical	type
macfarlanei Ward, 2013	NZAC	Australian	type
martelli Barbosa \& Azevedo, 2014	UFES	Neotropical	type
mekes Barbosa \& Azevedo, 2009	CASENT	Madagascan	type
mellipes (Evans, 1965)	USNM	Nearctic	literature
mesitioides (Duchaussoy, 1916[1914])	Lost [?]	Saharo-Arabian	literature
microneurus (Kieffer, 1906) ${ }^{1}$	MNHN	Palaearctic, Sino-Japanese	literature
minutulus (Evans, 1965)	USNM	Neotropical	type
muesebecki (Evans, 1965)	UNSM	Nearctic, Neotropical	type
multilineatus (Evans, 1965)	BPBM	Neotropical	type
naniwaensis Terayama, 2006	NIAES	Sino-Japanese	literature
nigriscapus (Evans, 1965)	CAS	Neotropical	literature
nigrofemoratus Terayama, 2006	NIAES	Sino-Japanese	type
ogmos Barbosa \& Azevedo, 2011	QSBG	Oriental	type
\dagger ¢allidus Brues, 1933	Lost [?]	Baltic amber	literature
parcepilosus Vikberg, 2005	DABH	Palaearctic	literature
pedatus (Say, 1836) ${ }^{2}$	Lost [?]	Nearctic, Neotropical	type
perrisi Kieffer, 1906	Perris collection [?]	Palaearctic	literature
\dagger ¢reteritus Barbosa \& Azevedo, 2013	SIZK	Rovno amber	type
quadrangulus Barbosa \& Azevedo, 2011	ANIC	Australian	type
\dagger rovnensis Barbosa \& Azevedo, 2013	SIZK	Rovno amber	type
ruficrus (Kieffer, 1906)	MCSN	Palaearctic	type
rufipes (Förster, 1860)	DBAH	Palaearctic	type
seticornis (Duchaussoy, 1916[1914])	Lost [?]	Saharo-Arabian	literature
simplex Evans, 1978	CAS	Nearctic	literature
sinicus Xu, He \& Terayama, 2003	Zhejiang University	Sino-Japanese	literature

$\mathbf{5 3}$	starki Barbosa \& Azevedo, 2014	UFES	Neotropical	type
$\mathbf{5 4}$	targaryeni Barbosa \& Azevedo, 2014	UFES	Neotropical	type
$\mathbf{5 5}$	tibialis Kieffer, 1906	Perris collection [?]	Palaearctic	literature
$\mathbf{5 6}$	titanokkos Barbosa \& Azevedo, 2011	QSBG	Oriental	type
$\mathbf{5 7}$	tullyi Barbosa \& Azevedo, 2014	UFES	Neotropical	type
$\mathbf{5 8}$	utilis Cockerell, 1920	USNM	Nearctic	type
$\mathbf{5 9}$	versicolor (Evans, 1970)	MCZC	Neotropical	type
$\mathbf{6 0}$	virilis Vikberg, 2005	DABH	Palaearctic	literature
$\mathbf{6 1}$	voracis Muesebeck, 1939	USNM	Nearctic, Oriental	type
$\mathbf{6 2}$	yamatonis Terayama, 2006	NIAES	Sino-Japanese	type
$\mathbf{6 3}$	yokohamensis Terayama, 2006	NIAES	Sino-Japanese	type

Table 14. List of Muellerella. ${ }^{1}$, type-species of Muellerella; ${ }^{2}$, type-species of Acanthepyris; ${ }^{3}$, type-species of Planepyris; ${ }^{4}$, type-species of Pristobethylus; ${ }^{5}$, typespecies of Trachepyris. ${ }^{*}$, to be proposed as comb. nov.; **, to be proposed as comb. rev.

\#	SPECIES	COLLECTION	OCURRENCE	STUDY
1	amabilis Saussure, 1892 [1890] ${ }^{1 * *}$ from Epyris	MHNG	Afrotropical	type
2	appendiculatus (Kieffer, 1913) ${ }^{3}$ from Trachepyris	MCSN	Afrotropical	type
3	armatitarsis (Kieffer, 1904)* from Trachepyris	MCSN	Saharo-Arabian	type
4	breviscapus (Kieffer, 1904)* from Trachepyris	MCSN	Afrotropical	type
5	ceresensis (Turner, 1928)* from Trachepyris	BMNH	Afrotropical	type
6	crenaticollis (Kieffer, 1912)* from Trachepyris	Fullerborn collection [?]	Afrotropical	literature
7	flavipennis (Kieffer, 1907)* from Trachepyris	BMNH	Australian	literature
8	haemorrhoidalis (Kieffer, 1911)* from Trachepyris	BMNH	Oriental	type
9	hildebrandti (Kieffer, 1912) ${ }^{2 *}$ from Trachepyris	ZMHB[?]	Afrotropical	type
10	indicus (Muesebeck, 1934)* from Trachepyris	USNM	Oriental	type
11	levissimis (Turner, 1928)* from Trachepyris	BMNH	Afrotropical	literature
12	microphthalmus (Turner, 1928) * from Trachepyris	BMNH	Afrotropical	literature
13	sanctipauli (Kurian, 1955)* from Epyris	IFRI	Oriental	type
14	sarawakensis (Terayama, 2005)* from Epyris	PMAE	Oriental	literature
15	semiserratus (Kieffer, 1911)* from Trachepyris	Brauns collection[?]	Afrotropical	literature
16	serricolis (Westwood, 1874) ${ }^{4 *}$ from Trachepyris	HMO	Afrotropical	literature
17	spiniscapus (Kieffer, 1904)* from Trachepyris	MCSN	Afrotropical	type
18	spinosipes (Kieffer, 1905) ${ }^{\text {\% }}$ from Trachepyris	MNHN	Saharo-Arabian	type
19	superbus (Terayama, 2005)* from Epyris	PMAE	Oceanian, Oriental	literature
20	torridus (Kieffer, 1912)* from Epyris	ZMHB	Afrotropical	literature
21	valens (Kieffer, 1911)* from Epyris	BMNH	Oriental	type

Table 15. List of Psilepyris. The type-species of Psilepyris is Epyris indivisus Kieffer, 1906 (junior synonym of E. clarimontis Kieffer). *, to be proposed as comb. nov.; **, to be proposed as comb. rev.

$\#$	SPECIES	COLLECTION	OCURRENCE	STUDY
$\mathbf{1}$	aegyptius $($ Kieffer, 1921)* from Epyris	NMW[?]	Afrotropical	literature
$\mathbf{2}$	aequalis (Lim \& Lee, 2011)* from Epyris	SNU	Palaearctic	type
$\mathbf{3}$	afer (Magretti, 1884)* from Epyris	MSNG	Afrotropical	type
$\mathbf{4}$	agrensis (Kurian, 1955)* from Epyris	IFRI	Oriental	literature

5	alluaudi (Kieffer, 1905)* from Epyris	MNHN	Afrotropical, Madagascan	literature
6	apertus (Kieffer, 1914)* from Epyris	Baker collection[?]	Oceanian	literature
7	arcuatus (Kieffer, 1906)* from Epyris	Marshall collection[?]	Palaearctic	literature
8	asura (Terayama, 2006)* from Epyris	NIAES	Sino-Japanese	type
9	atayal (Terayama, 2005)* from Epyris	PMAE	Oriental	literature
10	berlandi (Gordh \& Móczár, 1990)* from Epyris	MNHN	Saharo-Arabian	literature
11	bicolor (Fouts, 1934)* from Epyris	USNM	Afrotropical	literature
12	bilineatus (Thomson, 1862[1861])* from Epyris	NRS	Palaearctic	type
13	biroi (Móczár, 1966)* from Epyris	HNM	Palaearctic	literature
14	blandus (Terayama, 2006)* from Epyris	NIAES	Sino-Japanese	type
15	brachypterous (Ashmead, 1893)* from Epyris	ZMB	Nearctic	literature
16	caffrarius (Kieffer, 1911)* from Epyris	Brauns collection[?]	Afrotropical	literature
17	californicus (Ashmead, 1893)* from Epyris	USNM	Nearctic, Neotropical	type
18	cariniceps (Evans, 1969)* from Epyris	CAS	Nearctic, Neotropical	literature
19	clarimontis (Kieffer, 1906)* from Epyris	CAS	Nearctic, Neotropical	literature
20	connexus (Evans, 1967)* from Epyris	MCZ	Nearctic	literature
21	corcyraeus (Kieffer, 1907)* from Epyris	BMNH	Palaearctic	type
22	coriaceous (Muesebeck, 1934)* from Epyris	USNM	Oriental	type
23	corticinus (Evans, 1969)* from Epyris	USNM	Nearctic	type
24	crassifemur (Evans, 1969)* from Epyris	MCZ	Neotropical	type
25	cubanus (Evans, 1966)* from Epyris	USNM	Neotropical	type
26	delhiensis (Kurian, 1955)* from Epyris	IFRI	Oriental	type
27	distans (Kieffer, 1922)* from Epyris	Baker collection[?]	Oceanian	literature
28	dulicus (Lim \& Lee, 2011)* from Epyris	SNU	Palaearctic	type
29	ebneri (Kieffer, 1921)* from Epyris	NMW[?]	Afrotropical	literature
30	egestus (Benoit, 1952)* from Epyris	MSNG	Saharo-Arabian	literature
31	elongatulus (Turner \& Waterson, 1917)* from Epyris	BMNH	Afrotropical	type
32	evanescens (Kieffer, 1906)* from Epyris	HNM	Palaearctic	literature
33	extraneus (Bridwell, 1917)* from Epyris	BPBM	Neotropical	literature
34	fallax (Benoit, 1957)* from Epyris	MNCB	Afrotropical	literature
35	fuelleborni (Kieffer, 1912)* from Epyris	ZMB	Afrotropical	literature
36	fujianensis (Xu, He \& Ma, 2003)* from Epyris	Zhejiang University	Sino-Japanese	literature
37	gaullei (Kieffer, 1906)* from Epyris	MNHN[?]	Palaearctic	literature
38	hangunensis (Terayama, 2005)* from Epyris	NSMT	Palaearctic	literature
39	hispanicus (Cameron, 1881)* from Epyris	BMHN	Palaearctic	literature
40	hottentottus (Turner, 1928)* from Epyris	BMNH	Afrotropical	type
41	insulanus (Kieffer, 1906)* from Epyris	Marshall collection[?]	Palaearctic	literature
42	karli (Snelling, 1996)* from Epyris	LACM	Neotropical	type
43	karnatakensis (Terayama, 2005)* from Epyris	PMAE	Oriental	literature
44	kichijo (Terayama, 2006)* from Epyris	NIAES	Sino-Japanese	type
45	kokuzoh (Terayama, 2006)* from Epyris	NIAES	Sino-Japanese	literature
46	laticeps (Kieffer, 1913)* from Epyris	MSNG	Afrotropical	type
47	laticrus (Kieffer, 1911)* from Epyris	BMNH	Oriental	type
48	longicollis (Kieffer, 1906)* from Epyris	MNHN	Palaearctic	literature
49	magniceps (Kieffer, 1922)* from Epyris	Baker collection[?]	Oceanian	literature
50	marshalli (Kieffer, 1906)* from Epyris	Marshall collection[?]	Palearctic	literature
51	mauritanicus (Kieffer, 1910)* from Epyris	Lost[?]	Palearctic	literature
52	miaoliensis (Terayama, 2005)* from Epyris	TARI	Oriental	literature
53	michaelseni (Kieffer, 1914)* from Epyris	Lost[?]	Afrotropical	literature

54	minoensis (Terayama, 2006)* from Epyris	NIAES	Sino-Japanese	literature
55	minor (Kieffer, 1906)* from Epyris	HNM[?]	Palaearctic	literature
56	muiri (Turner \& Waterson, 1917)* from Epyris	BMNH	Afrotropical	type
57	multicarinatus (Cameron, 1888)* from Epyris	BMNH	Neotropical	type
58	myrmecophilus (Brues, 1903)* from Epyris	MCZ	Nearctic	literature
59	natalicola (Kieffer, 1913)* from Epyris	SAFM	Afrotropical	literature
60	neolaticeps (Azevedo, 2018)* from Epyris	MNHN[?]	Afrotropical	literature
61	nitidiceps (Cameron, 1888)* from Epyris	BMNH	Neotropical	type
62	oraniensis (Duchaussoy, 1916[1914])* from Epyris	Lost[?]	Afrotropical	literature
63	paraensis (Kieffer, 1910)* from Epyris	CAS	Neotropical	type
64	parallelus (Evans, 1969)* from Epyris	IFML	Neotropical	type
65	paramedius (Correa \& Azevedo, 2002)* from Epyris	UFES	Neotropical	type
66	parvidens (Kieffer, 1922)* from Epyris	Baker collection[?]	Oceanian	literature
67	penatti (Stein \& Azevedo, 2011)* from Epyris	MSNG	Afrotropical	type
68	perversus (Benoit, 1957)* from Epyris	RMCB	Afrotropical	literature
69	quinquecarinatus (Kieffer, 1906)* from Epyris	MNHN	Palearctic, Afrotropical, Saharo-Arabian	literature
70	raptor (Kieffer, 1922)* from Epyris	Baker collection[?]	Oceanian	literature
71	rhizoperthae (Menon, Chatterjee \& Sarup, 1959)* from Epyris	IARI	Oriental	literature
72	rotundiceps (Evans, 1969)* from Epyris	USNM	Neotropical	type
73	ruficaudus (Kieffer, 1913)* from Epyris	ISAM[?]	Afrotropical	literature
74	rufimanus (Kieffer, 1914)* from Epyris	AN collection	Palaearctic	literature
75	sanctus (Turner, 1928)* from Epyris	BMNH	Afrotropical	type
76	septemcarinatus (Evans, 1969)* from Epyris	RMNH	Neotropical	type
77	sepulchralis (Evans, 1969)* from Epyris	MCZ	Nearctic	type
78	shishami (Kurian, 1955)* from Epyris	IFRI	Oriental	literature
79	silvestrii (Kieffer, 1913)* from Epyris	Silvestri collection[?]	Afrotropical	literature
80	sinaloa (Evans, 1969)* from Epyris	CNC	Neotropical	type
81	spissus (Evans, 1969)* from Epyris	USNM	Nearctic	literature
82	striatellus (Evans, 1969)* from Epyris	CU	Neotropical	type
83	subalatus (Turner, 1928)* from Epyris	BMNH	Afrotropical	type
84	sudosanensis (Lim \& Lee, 2011)* from Epyris	SNU	Palaearctic	type
85	surusumi (Terayama, 2006)* from Epyris	KUF	Sino-Japanese	literature
86	tennyo (Terayama, 2006)* from Epyris	KUF	Sino-Japanese	literature
87	tricostatus (Evans, 1969)* from Epyris	USNM	Nearctic	type
88	variatus (Correa \& Azevedo, 2002)* from Epyris	UFES	Neotropical	type
89	windhukiensis (Kieffer, 1914)* from Epyris	ZMB[?]	Afrotropical	literature
90	wittei (Benoit, 1957)* from Epyris	RMCB	Afrotropical	literature

Table 16. List of Rysepyris. ${ }^{1}$, type-species of Rysepyris; ${ }^{2}$, type-species of Misepyris; ${ }^{3}$, type-species of Parepyris Brèthes. *, to be proposed as comb. nov.; **, to be proposed as comb. rev.

\#	SPECIES	COLLECTION	OCURRENCE	STUDY
1	aeki (Terayama, 2005)* from Holepyris	PMAE	Oriental	literature
2	aekoh (Terayama, 2005)* from Holepyris	NSMT	Oriental	literature
3	amamiinsulanus (Terayama, 1999)* from Holepyris	NIAES	Sino-Japanese	type
4	amplipennis (Motschulsky, 1863)* from Holepyris	ZMUM	Oriental	literature

5	andrei (Kieffer, 1905)* from Holepyris	André collection[?]	Oriental	literature
6	angulatus (Xu, He \& Ma, 2003)* from Holepyris	Zhejiang University	Oriental	literature
7	atamensis (Ashmead, 1904)* from Holepyris	USNM	Sino-Japanese	type
8	atlanticus (Benoit, 1976)* from Holepyris	MRAC	Afrotropical	type
9	bakeri (Kieffer, 1906)* from Holepyris	CAS	Nearctic	type
10	benten (Terayama, 2006)* from Holepyris	NIAES	Sino-Japanese	type
11	bifasciatus (Kieffer, 1907)* from Holepyris	BMNH	Australian	literature
12	bimini (Evans, 1977)* from Holepyris	AMNH	Neotropical	type
13	biskranus (Benoit, 1952)* from Holepyris	MCSN	Saharo-Arabian	type
14	brevicarinatus (Lim \& Lee, 2010)* from Holepyris	SNU	Palaearctic	type
15	breviceps (Evans, 1977)* from Holepyris	USNM	Neotropical	type
16	cameroni (Evans, 1964)* from Holepyris	BMNH	Neotropical	type
17	capax (Evans, 1977)* from Holepyris	USNM	Neotropical	type
18	capensis (Kieffer, 1911)* from Epyris	Brauns collection[?]	Afrotropical	literature
19	capicola (Kieffer, 1911)* from Holepyris	Brauns collection[?]	Afrotropical	literature
20	catalinae (Evans, 1977)* from Holepyris	USNM	Nearctic	type
21	cerostrotoideus (Benoit, 1957)* from Holepyris	MRCB	Afrotropical	type
22	cerostrototus (Benoit, 1957)* from Holepyris	MRCB	Afrotropical	literature
23	clytus (Benoit, 1957)* from Holepyris	MRCB	Afrotropical	type
24	coriaceus (Evans, 1977)* from Holepyris	UCDC	Neotropical	type
25	coronatus (Ashmead, 1893)* from Holepyris	USNM[?]	Nearctic	literature
26	crassus (Evans, 1977)* from Holepyris	USNM	Nearctic, Neotropical	type
27	crinitus (Lim \& Lee, 2010)* from Holepyris	SNU	Palaearctic	type
28	cursor Kieffer, 1906* from Holepyris	Lost[?]	Saharo-Arabian	literature
29	daiitoku (Terayama, 2005)* from Holepyris	PMAE	Oriental	literature
30	dimidiatus (Lim \& Lee, 2010)* from Holepyris	SNU	Palaearctic	type
31	dolichocephalus (Turner, 1928)* from Holepyris	BMNH	Afrotropical	literature
32	dubiosus (Kieffer, 1922)* from Holepyris	Baker collection[?]	Oriental	literature
33	dubius (Kieffer, 1904)* from Holepyris	MCSN	Palaearctic	literature
34	eminentus (Gobbi \& Azevedo, 2006)* from Holepyris	MPEG	Neotropical	type
35	erythroderes (Marshall, 1906)* from Holepyris	HNM	Palaearctic, Saharo-Arabian	literature
36	evansi (Xu, He \& Ma, 2003)* from Holepyris	Zhejiang University	Oriental	literature
37	exaratus (Kieffer, 1913)* from Holepyris	Lost[?]	Oriental	literature
38	floridanus (Ashmead, 1887)* from Holepyris	USNM	Nearctic	type
39	fulvus (Xu, He \& Ma, 2003)* from Holepyris	Zhejiang University	Oriental	literature
40	fuscus (Xu, He \& Ma, 2003)* from Holepyris	Zhejiang University	Oriental	literature
41	gaigherae (Azevedo \& van Noort, 2018)* from Holepyris	ISAM	Madagascan	type
42	glabratus (Fabricius, 1798)* from Holepyris	ZMC	Nearctic, Neotropical	type
43	gouzanze (Terayama, 2005)* from Holepyris	PMAE	Oriental	literature
44	gracilentus (Evans, 1977)* from Holepyris	CNC	Neotropical	type
45	gracilis (Kieffer, 1908)* from Holepyris	Lost[?]	Neotropical	literature
46	graminis (Evans, 1977)* from Holepyris	MCZC	Nearctic, Neotropical	type
47	grandiceps (Kieffer, 1921)* from Holepyris	Lost[?]	Oriental	literature
48	gundari (Terayama, 2005)* from Holepyris	PMAE	Oriental	literature
49	gutianshanensis (Xu, He \& Ma, 2003)* from Holepyris	Zhejiang University	Oriental	literature
50	habilis (Evans, 1977)* from Holepyris	USNM	Nearctic	type
51	haemorrhoidalis (Kieffer, 1904)* from Holepyris	NRS	Nearctic	literature

hispaniolae (Evans, 1977)* from Holepyris	MCZC	Neotropical	type
hospes (Perkins, 1910)* from Holepyris	BPBM[?]	Neotropical	literature
hotei (Terayama, 2006)* from Holepyris	NIAES	Sino-Japanese	type
hyalinipennis (Kieffer, 1904)* from Holepyris	MCSN	Palearctic	literature
incertus (Ashmead, 1894)* from Holepyris	USNM	Neotropical	type
inermis (Kieffer, 1906)* from Holepyris	Magretti collection[?]	Palearctic	literature
inops (Evans, 1977)* from Holepyris	UCDC	Nearctic	literature
kasparyani (Gorbatovsky, 1995)* from Holepyris	RAS	Palearctic	type
kuchingensis (Cameron, 1910)* from Holepyris	BMNH[?]	Oriental	literature
lautus (Evans, 1977)* from Holepyris	MCZC	Nearctic, Neotropical	type
lavagnei (Duchaussoy, 1916[1914])* from Holepyris	Lost[?]	Palearctic	literature
longicephalus (Lim \& Lee, 2010)* from Holepyris	SNU	Palearctic	type
longiceps (Kieffer, 1913)* from Holepyris	Baker collection[?]	Oriental	literature
longicollis (Cameron, 1888)* from Holepyris	BMNH	Neotropical	type
longulus (Evans, 1977)* from Holepyris	MCZC	Neotropical	type
macilentus (Xu, He \& Ma, 2003)* from Holepyris	Zhejiang University	Oriental	literature
matsumurai (Terayama, 1999)* from Holepyris	NIAES	Sino-Japanese	literature
mboroi (Risbec, 1956)* from Epyris	MNHN	Afrotropical	type
micidus (Evans, 1977)* from Holepyris	USNM	Nearctic, Neotropical	type
minimus (Magretti, 1897)* from Holepyris	MCSN	Oriental	literature
\dagger minor (Brues, 1939)* from Holepyris	MCZC	Baltic amber	type
montandoni (Duchaussoy, 1916[1914])* from Holepyris	Lost[?]	Palearctic	literature
montivagus (Evans, 1977)* from Holepyris	MCZC	Neotropical	literature
mисro (Lim \& Lee, 2010)* from Holepyris	SNU	Palearctic	type
multidentatus (Kieffer, 1911)* from Holepyris	BMNH	Saharo-Arabian	literature
multo (Lim \& Lee, 2010)* from Holepyris	SNU	Palearctic	type
napocaensis (Nagy, 1968)* from Holepyris	AN collection	Palearctic	literature
neglectus (Kieffer, 1906)* from Holepyris	HNM	Palearctic	literature
\dagger neodubius (Azevedo, 2018)* from Holepyris	Lost[?]	Baltic amber	literature
nigerrimus (Kieffer, 1906)* from Holepyris	MNHN	Palearctic	literature
numidicus Kieffer, 1906 ${ }^{*}$ from Holepyris	Lost[?]	Saharo-Arabian	literature
omotoensis (Terayama, 1999)* from Holepyris	NIAES	Sino-Japanese	type
opacicollis (Motschulsky, 1863)* from Holepyris	ZMUM	Oriental	literature
opacus (Kieffer, 1906)* from Holepyris	MNHN	Saharo-Arabian	literature
orokaiva (Colombo \& Azevedo, 2020)* from Holepyris	MNHN	Oceanian	type
parvus (Magretti, 1897)* from Holepyris	MCSN	Oriental	literature
pauper (Evans, 1977)* from Holepyris	UCR	Nearctic, Neotropical	type
pauxillus (Evans, 1977)* from Holepyris	CAS	Nearctic	type
pedestris Kieffer, 1904* from Holepyris	MCSN	Palearctic	literature
philippinensis (Kieffer, 1922)* from Holepyris	Baker collection[?]	Oriental	literature
\dagger planiceps (Brues, 1933)* from Holepyris	Lost[?]	Baltic amber	literature
plebejus (Benoit, 1957)* from Holepyris	MRCB	Afrotropical	type
pondo (Turner, 1928)* from Holepyris	BMNH	Afrotropical	literature
precursor (Brues, 1933)* from Holepyris	Lost[?]	Baltic amber	literature
pygmaeus (Ashmead, 1895)* from Holepyris	BMNH	Neotropical	literature
\dagger rasnitsyni (Colombo \& Azevedo, 2021)* from Holepyris	PIN	Baltic amber	type
remotus (Kieffer, 1911) ${ }^{2 *}$ from Holepyris	BMNH	Nearctic, Neotropical	type

99	robustus (Brues, 1933)* from Holepyris	Lost[?]	Baltic amber	literature
100	ruficollis (Kieffer, 1906)* from Holepyris	HNM	Saharo-Arabian	literature
101	ruficornis Kieffer, 1906* from Holepyris	Lost[?]	Saharo-Arabian	literature
102	rwindius (Benoit, 1957)* from Holepyris	MRCB	Afrotropical	type
103	sambia (Colombo \& Azevedo, 2020)* from Holepyris	MNHN	Oceanian	type
104	scorteus (Evans, 1977)* from Holepyris	USNM	Nearctic, Neotropical	type
105	seidakka (Terayama, 2005)* from Holepyris	NSMT	Oriental	literature
106	shamensis (Terayama, 2005)* from Holepyris	NIAES	Oriental	type
107	sinensis (Xu, He \& Ma, 2003)* from Holepyris	Zhejiang University	Oriental	literature
108	skip (Snelling, 1996)* from Holepyris	LACM	Neotropical	type
109	strigosus (Evans, 1977)* from Holepyris	UCDC	Neotropical	type
110	subapterus (Melander \& Brues, 1903)* from Holepyris	MCZC	Nearctic	literature
111	subtilis (Evans, 1977)* from Holepyris	USNM	Nearctic, Neotropical	type
112	susanowo (Terayama, 1999)* from Holepyris	NIAES	Sino-Japanese	type
113	swagap (Colombo \& Azevedo, 2020)* from Holepyris	MNHN	Oceanian	type
114	sylvanidis (Brèthes, 1913) ${ }^{3 *}$ from Holepyris	BMNH	Neotropical	type
115	sylvaticus Turner, 1928* from Holepyris	BMNH[?]	Afrotropical	literature
116	tairora (Colombo \& Azevedo, 2020)* from Holepyris	MNHN	Oceanian	type
117	telefol (Colombo \& Azevedo, 2020)* from Holepyris	MNHN	Oceanian	type
118	tenuis (Evans, 1977)* from Holepyris	CNC	Neotropical	type
119	\dagger terayamai (Colombo \& Azevedo, 2021)* from Holepyris	SIZK	Rovno amber	type
120	thailandensis (Terayama, 2005)* from Holepyris	NIAES	Oriental	type
121	tricarinatus (Kieffer, 1906)* from Holepyris	MNHN	Palearctic	literature
122	troglodytes (Turner \& Waterson, 1917)* from Holepyris	BMNH[?]	Afrotropical	literature
123	tsembaga (Colombo \& Azevedo, 2020)* from Holepyris	MNHN	Oceanian	type
124	tsugaruensis (Terayama, 2006)* from Holepyris	NIAES	Sino-Japanese	type
125	turrialbae (Evans, 1977)* from Holepyris	USNM	Neotropical	type
126	ulmi (Szabo, 1960)* from Holepyris	HNM	Palearctic	literature
127	vagneri (Kieffer, 1914)* from Holepyris	ZMHB[?]	Afrotropical	literature
128	vison (Evans, 1970)* from Holepyris	CNC	Neotropical	type
129	wiru (Colombo \& Azevedo, 2020)* from Holepyris	MNHN	Oceanian	type
130	yaifo (Colombo \& Azevedo, 2020)* from Holepyris	MNHN	Oceanian	type
131	yambaru (Terayama, 1999)* from Holepyris	NIAES	Sino-Japanese	type
132	yebis (Terayama, 2006)* from Holepyris	NIAES	Sino-Japanese	type
133	zia (Colombo \& Azevedo, 2020)* from Holepyris	MNHN	Oceanian	type

Table 17. List of Trissepyris species examined with emphasis on which types were analysed directly. ${ }^{1}$, type-species. ${ }^{*}$, to be proposed as comb. rev.

$\#$	SPECIES	COLLECTION	OCURRENCE	STUDY
$\mathbf{1}$	ruficeps Kieffer, $1905^{1 *}$ from Epyris	MNHN	Afrotropical	type

Table 18. Species that will be transferred from Epyrinae to other subfamilies of Bethylidae.

\#	SPECIES	COLLECTION	OCURRENCE	STUDY
Pristocerinae				
1	Pristocera amatorius (Cameron, 1897)* from Epyris	BMNH[?]	Oriental	literature
2	Propristocera foveatus (Kieffer, 1904)* from Epyris	MSNG	Palaearctic	type
Scleroderminae				
3	Plastanoxus tricristatus (Ward, 2013)* from Epyris	NZAC	Australian	literature

Table 19. Species mislisted in Epyris by previous studies.

\boldsymbol{c}	SPECIES	COLLECTION	OCURRENCE	REMARKS
$\mathbf{1}$	Mesitius apterus (Cameron, 1888)	BMNH	Saharo-Arabian	Transferred by Kieffer (1905)
$\mathbf{2}$	Cleptidea scutellaris (Cameron, 1887)	BMNH	Neotropical	Transferred for Chrysididae by
				Kimsey \& Bohart (1991)

SUPPLEMENTARY MATERIAL. Morphological matrix.

Epyris sp．
Epyris sp． 1
Epyris sp． 11
Epyris sp． 12
Epyris sp． 14
Epyris sp． 15
Epyris sp． 16
Epyris sp． 17
Epyris sp． 18
Epyris sp． 19
Epyris sp． 19
Epyris sp． 20
Epyris sp． 21
Epyris sp． 21
Epyris sp． 22
Epyris sp． 23
Epyris s． 23
Epyris sp． 26
Epyris sp． 26
Epyris sp． 27
Epyris sp． 29
Epyris sp． 30
Epyris sp． 31
Epyris sp． 33
Epyris sp． 34
Epyris sp． 34
Epyris sp． 35
Epyris sp． 35
Epyris sp． 36
Epyris sp． 37
Epyris sp． 38
Epyris sp． 39
Epyris sp． 40
Epyris sp． 41
Epyris sp． 41
Epyris s． 42
Epyris sp． 43
Epyris sp． 44
Epyris sp． 45
Epyris sp． 46
Epyris sp． 47
Epyris sp． 48
Epyris sp． 49
Epyris sp． 50
Epyris sp． 51
Epyris sp． 51
Epyris sp． 52
Epyris sp． 52
Epyris sp． 53
Epyris sp． 54
Epyris sp． 55
Epyris sp． 56
Epyris sp． 57
Epyris sp． 58
Epyris sp． 60
Epyris sp． 61
Epyris sp． 63
Epyris sp． 63
Epyris／Trachepyris sp． 2
Epyris／Trachepyris sp． 3
Epyris／Trachepyris sp．
Epyris／Trachepyris sp．
Epyris／Trachepyris sp． 7
Epyris／Trachepyris sp． 8
Epyris／Trachepyris sp． 9
Epyris／Trachepyris sp． 10
Epyris／Trachepyris sp． 11
Formosiepyris sp． 1
Formosiepyris sp． 2
$\dagger{ }^{\dagger}$ Gloxinius bifossatus
Holepyris sp． 2
Holepyris sp． 3
Holepyris sp． 5
Holepyris sp． 6
Holepyris sp． 7
$00000 N 00000000000000000100001000000000001000000000000000000000000000000 N 00$

 000000000000000000000,00 －ー－ー－ー－－

 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$?$
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

 NOOONNOOOO－NN－ー－ー－ー－ー－O．000000NOOOONOOOOON－ーNN－ー－ー－ー－ー－ー－OONNNNNNNOON－NNNNO

Epyris sp． Epyris sp． 11 Epyris sp． 11 Epyris sp． 13 Epyris sp． 1
Epyris sp． 15 Epyris sp． 16 Epyris sp． 17 Epyris sp． 18 Epyris sp． 19 Epyris sp． 20 Epyris sp． 21 Epyris sp． 22 Epyris sp． 23 Epyris sp． 26
Epyris sp． 27 Epyris sp． 29 Epyris sp． 30 Epyris sp． 31 Epyris sp． 32 Epyris sp． 34 Epyris sp． 34 Epyris sp． 35 Epyris sp． 36
Epyris sp． 37 Epyris sp． 37 Epyris sp． 38
Epyris sp． 39 Epyris sp． 40 Epyris sp． 41 Epyris sp． 42 Epyris sp． 44 Epyris sp． 45 Epyris sp． 46 Epyris sp． 47 Epyris sp． 48 Epyris sp． 49 Epyris sp． 50 Epyris sp． 51 Epyris sp． 52 Epyris sp． 5
Epyris sp． 5 Epyris s． 54
Epyris s． 55 Epyris sp． 56 Epyris sp． 57 Epyris sp． 58 Epyris sp． 59 Epyris sp． 60
Epyris sp． 61 Epyris sp． 61
Epyris/Trachepyris sp. 1
Epyris/Trachepyris sp. 2
Epyris/Trachepyris sp.
Epyris/Trachepyris sp.
Epyris/Trachepyris sp.
Epyris/Trachepyris sp. 7
Epyris/Trachepyris sp. 8
Epyris/Trachepyris sp. 9
Epyris/Trachepyris sp. 10
Epyris/Trachepyris sp. 11
Formosiepyris marish
Formosiepyris sp .1
Formosiepyris sp. 1
Formosiepyris sp. 2
Formosiepyris sp. 2
\dagger Gloxinius bifossatus
\dagger Gloxinius bifossatus
Holepyris africanus
Holepyris african
Holepyris sp. 2
Holepyris sp. 3
Holepyris sp. 5
Holepyris sp. 6
Holepyris sp. 7

 000 001000000000000000000000000000000000

 －ー－ー－ー－ 00000000000000 NUNNNNNNNNNNNNNNNGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGI
 00 ーーールーーーーーー－

5 6
0

12
56
Epyris sp.
Epyris sp. 10 Epyris sp. 11
Epyris sp. 12 Epyris sp. 13 Epyris sp. 14
Epyris sp. 15 Epyris sp. 15
Epyris sp. 16 Epyris sp. 16
Epyris sp. 17 Epyris sp. 17
Epyris sp. 18 Epyris sp. 18
Epyris sp. 19 Epyris sp. 19
Epyris sp. 20 Epyris sp. 20 Epyris sp. 22 Epyris sp. 23 Epyris sp. 26
Epyris sp. 27 Epyris sp. 29 Epyris sp. 30 Epyris sp. 32 Epyris sp. 32 Epyris sp. 33
Epyris sp. 34
Epyris sp. 35
Epyris sp. 35
Epyris sp. 36
Epyris sp. 37
Epyris sp. 38
Epyris sp. 39
Epyris sp. 39
Epyris sp. 40
Epyris sp. 41
Epyris sp. 43
Epyris sp. 44
Epyris sp. 45
Epyris sp. 46
Epyris sp. 46
Epyris sp. 47
Epyris sp. 48
Epyris sp. 49
Epyris sp. 50
Epyris sp. 51
Epyris sp. 51
Epyris sp. 53
Epyris sp. 54
Epyris sp. 56
Epyris sp. 57
Epyris sp. 58
Epyris sp. 59
Epyris sp. 60
Epyris sp. 61
Epyris sp. 63
Epyris/Trachepyris sp
Epyris/Trachepyris sp.
Epyris/Trachepyris sp.
Epyris/Trachepyris sp.
Epyris/Trachepyris sp. 5
Epyris/Trachepyris sp. 6
Epyris/Trachepyris sp. 7
Epyris/Trachepyris sp. 8
Epyris/Trachepyris sp. 9
Epyris/Trachepyris sp. 10 Epyris/Trachepyris sp. 11
Formosiepyris sp. 1
Formosiepyris sp. 2
$\dagger{ }^{\dagger}$ Gloxinius bifossatus
Holepyris african
Holepyris sp. 2
Holepyris sp. 3
Holepyris sp. 4
Holepyris sp. 5
Holepyris sp. 6
Holepyris sp. 7

 $00.00000000---------10000-1$ NNNNNN-ONNNNNNNNNNNNNNNNNNNNN-N-NNNTOOONO OONNNNNNUNNNNNNNNNNNNNNNNNNNNNNI

 000

 0
0
0
0
0
0
1
0
1
0
1
1
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1

TAXA/CHARACTER
Epyris sp. 8
Epyris sp.
Epyris sp. 10
Epyris sp. 11
Epyris sp. 12
Epyris sp. 12
Epyris sp. 13
Epyris sp. 13
Epyris sp. 14
Epyris sp. 14
Epyris sp. 15
Epyris sp. 15
Epyris sp. 16
Epyris sp. 17
Epyris sp. 17
Epyris sp. 18
Epyris sp. 18
Epyris sp. 19
Epyris sp. 19
Epyris sp. 20
Epyris sp. 22
Epyris sp. 23
Epyris sp. 27
Epyris sp. 29
Epyris sp. 30
Epyris sp. 31
Epyris sp. 32
Epyris sp. 33
Epyris sp. 34
Epyris sp. 35
Epyris sp. 36
Epyris sp. 38
Epyris sp. 39
Epyris sp. 40
Epyris sp. 41
Epyris sp. 42
Epyris sp. 43
Epyris sp. 44
Epyris sp. 45
Epyris sp. 46
Epyris sp. 47
Epyris sp. 48
Epyris sp. 49
Epyris sp. 49
Epyris sp. 50
Epyris sp. 50
Epyris sp. 5
Epyris sp. 52
Epyris sp. 54
Epyris sp. 55
Epyris sp. 56
Epyris sp. 57
Epyris sp. 58
Epyris sp. 59
Epyris sp. 60 Epyris sp. 6
Epyris/Trachepyris sp .1
Epyris/Trachepyris sp. 3
Epyris/Trachepyris sp. 4
Epyris/Trachepyris sp. 5
Epyris/Trachepyris sp.
Epyris/Trachepyris sp. 8
Epyris/Trachepyris sp. 9
Epyris/Trachepyris sp. 10
Epyris/Trachepyris sp. 10
Epyris/Trachepyris sp. 11
Formosiepyris marish
Formosiepyris sp. 1
Formosiepyris sp. 2
Formosiepyris sp. 2
\dagger Gloxinius bifossatus
Holepyris africanu
Holepyris sp 2
Holepyris sp. 3
Holepyris sp. 4
Holepyris sp. 5
Holepyris sp. 5
Holepyris sp. 6
Holepyris s. 7

$1000000000000000000000-0000-10000000000000000000000000000000000$ 000000-0---100
0 $-$ 000 N
 001
0001 0000000,000

TAXA/CHARACTER
Epyris sp.
Epyris sp. 9
Epyris sp. 11
Epyris sp. 12
Epyris s. 13
Epyris sp. 13
Epyris sp. 14
Epyris sp. 14
Epyris sp. 15
Epyris sp. 15
Epyris sp. 16
Epyris sp. 16
Epyris sp. 17
Epyris sp. 18
Epyris sp. 19
Epyris sp. 20
Epyris sp. 21
Epyris sp. 22
Epyris sp. 23
Epyris sp. 26
Epyris sp. 27
Epyris sp. 27
Epyris sp. 29
Epyris sp. 30
Epyris sp. 31
Epyris sp. 31
Epyris sp. 32
Epyris sp. 33
Epyris sp. 34
Epyris sp. 35
Epyris sp. 36
Epyris sp. 37
Epyris sp. 38
Epyris sp. 38
Epyris sp. 39
Epyris sp. 40
Epyris sp. 41
Epyris sp. 42
Epyris sp. 43
Epyris sp. 44
Epyris sp. 45
Epyris sp. 45
Epyris sp. 46
Epyris sp. 46
Epyris sp. 47
Epyris sp. 47
Epyris sp. 48
Epyris sp. 48
Epyris sp. 49
Epyris sp. 49
Epyris sp. 50
Epyris sp. 50
Epyris sp. 51
Epyris sp. 52
Epyris sp. 53
Epyris sp. 53
Epyris sp. 54
Epyris sp 55
Epyris sp. 55
Epyris sp. 56
Epyris sp. 57
Epyris sp. 58
Epyris sp. 59
Epyris sp. 59
Epyris sp. 60
Epyris sp. 60
Epyris sp. 61
Epyris sp. 63
Epyris/Trachepyris sp. 1
Epyris/Trachepyris sp. 2
Epris/Trachepyris s. 3
Epyris/Trachepyris sp. 4
Epyris/Trachepyris sp. 5
Epyris/Trachepyris sp. 6
Epyris/Trachepyris sp. 6
Epyris/Trachepyris sp. 7
Epyris/Trachepyris sp. 8
Epyris/Trachepyris sp. 9
Epyris/Trachepyris sp. 10
Epyris/Trachepyris sp. 11
Formosiepyris marish
Formosiepyris sp. 1
Formosiepyris sp. 2
\dagger 'Gloxinius bifossatus
Holepyris african 2
Holepyris s. 2
Holepyris sp. 2
Holepyris sp. 3
Holepyris sp. 4
Holepyris sp. 5
Holepyris sp. 5
Holepyris sp. 7
 $0000000000-1-0001-000000001000000$
 00 N

 $\begin{array}{ll}6 & 7 \\ - \\ - & \end{array}$ $\begin{array}{ll}7 & 8 \\ - & - \\ - & \end{array}$ 9
00
$0000000000000000000000000000000000-10000000000000000000000000000000000000 N$
$0000 O N N N N N O O O 00000000000000000000000000000 O N N N N O N O O N N N N O O O O O O O O O O O O O O N ~$ $0-1-100-0000-10000000000000000-000000000000001000000000000000000000000000001$ $1100,00,00001100000000000000001000000000000001010000000000000000000000011$ NNNNNNNTNNO000V

 001
 $0000000,000 \omega$ 001
TAXA／CHARACTERS
Epyris sp． 8
Epyris sp． 9
Epyris sp． 10
Epyris sp． 11
Epyris sp． 12
Epyris sp． 12
Epyris sp． 13
Epyris sp． 13
Epyris sp． 14
Epyris sp． 15
Epyris sp． 16
Epyris sp． 17
Epyris sp． 18 Epyris sp． 19 Epyris sp． 20 Epyris sp． 21
Epyris s． 22 Epyris sp． 22
Epyris s． 23 Epyris sp． 26 Epyris sp． 27 Epyris sp． 30 Epyris sp． 30 Epyris sp． 31 Epyris sp． 32
Epyris sp． 33 Epyris sp． 33
Epyris s． 34 Epyris sp． 35 Epyris sp． 36 Epyris sp． 37 Epyris sp． 38
Epyris sp． 39 Epyris sp． 40 Epyris sp． 41 Epyris sp． 42 Epyris sp． 43 Epyris sp． 44 Epyris sp． 45 Epyris sp． 46 Epyris sp． 47 Epyris sp． 48 Epyris sp． 49 Epyris sp． 51 Epyris sp． 51
Epyris sp． 52 Epyris sp． 53 Epyris sp． 55 Epyris sp． 56
Epyris sp． 57
Epyris sp． 57
Epyris sp． 58
Epyris sp． 58
Epyris s． 59 Epyris sp． 6 Epyris s． 6
Epyris sp． 63 Epyris／Trachepyris sp． 1 Epyris／Trachepyris sp． 2
Epyris／Trachepyris sp． 3 Epyris／Trachepyris sp． 4 Epyris／Trachepyris sp． 5 Epyris／Trachepyris sp． 7 Epyris／Trachepyris sp． 8 Epyris／Trachepyris sp． 9
Epyris／Trachepyris sp． 10 Epyris／Trachepyris sp． 10
Epyris／Trachepyris sp． 11 Epyris／Trachepyris sp．
Formosiepyris marish
Formosiepyris sp． Formosiepyris sp． 2
\dagger Gloxinius bifossatus Holepyris sp 2 Holepyris sp． 3 Holepyris sp． 4
Holepyris sp． 5
Holepyris sp． 7

 000000000000000000000001001

 ーーールールーーーが －ーー－ $0000000000000000000000000000000-00000000000000000000000000000000004$

 0001

[^4]| TAXA／CHARACTERS | 3 |
| :---: | :---: |
| Epyris sp． 8 | 0 |
| Epyris sp． 9 | 0 |
| Epyris sp． 10 | 0 |
| Epyris sp． 11 | 1 |
| Epyris sp． 12 | 1 |
| Epyris sp． 13 | 0 |
| Epyris sp． 14 | 0 |
| Epyris sp． 15 | 0 |
| Epyris sp． 16 | 1 |
| Epyris sp． 17 | 1 |
| Epyris sp． 18 | 1 |
| Epyris sp． 19 | 0 |
| Epyris sp． 20 | 1 |
| Epyris sp． 21 | 0 |
| Epyris sp． 22 | 0 |
| Epyris sp． 23 | 0 |
| Epyris sp． 26 | 0 |
| Epyris sp． 27 | 1 |
| Epyris sp． 29 | 0 |
| Epyris sp． 30 | 1 |
| Epyris sp． 31 | 0 |
| Epyris sp． 32 | 0 |
| Epyris sp． 33 | 0 |
| Epyris sp． 34 | 0 |
| Epyris sp． 35 | 0 |
| Epyris sp． 36 | 0 |
| Epyris sp． 37 | 0 |
| Epyris sp． 38 | 0 |
| Epyris sp． 39 | 0 |
| Epyris sp． 40 | 1 |
| Epyris sp． 41 | 1 |
| Epyris sp． 42 | 0 |
| Epyris sp． 43 | 0 |
| Epyris sp． 44 | 0 |
| Epyris sp． 45 | 0 |
| Epyris sp． 46 | 0 |
| Epyris sp． 47 | 0 |
| Epyris sp． 48 | 0 |
| Epyris sp． 49 | 0 |
| Epyris sp． 50 | 0 |
| Epyris sp． 51 | 1 |
| Epyris sp． 52 | 1 |
| Epyris sp． 53 | 1 |
| Epyris sp． 54 | 0 |
| Epyris sp． 55 | 0 |
| Epyris sp． 56 | 0 |
| Epyris sp． 57 | 1 |
| Epyris sp． 58 | 0 |
| Epyris sp． 59 | 0 |
| Epyris sp． 60 | 0 |
| Epyris sp． 61 | 0 |
| Epyris sp． 63 | 0 |
| Epyris／Trachepyris sp． 1 | 0 |
| Epyris／Trachepyris sp． 2 | 0 |
| Epyris／Trachepyris sp． 3 | 0 |
| Epyris／Trachepyris sp． 4 | 0 |
| Epyris／Trachepyris sp． 5 | 0 |
| Epyris／Trachepyris sp． 6 | 0 |
| Epyris／Trachepyris sp． 7 | 0 |
| Epyris／Trachepyris sp． 8 | 0 |
| Epyris／Trachepyris sp． 9 | 0 |
| Epyris／Trachepyris sp． 10 | 0 |
| Epyris／Trachepyris sp． 11 | 0 |
| Formosiepyris marish | 0 |
| Formosiepyris sp． 1 | 1 |
| Formosiepyris sp． 2 | 1 |
| \dagger Gloxinius bifossatus | － |
| Holepyris africanus | 1 |
| Holepyris sp． 2 | 0 |
| Holepyris sp． 3 | 0 |
| Holepyris sp． 4 | 0 |
| Holepyris sp． 5 | 0 |
| Holepyris sp． 6 | 1 |
| | |

ーーーーーーー，－ーーート $0000000000000000000000001001-0000001000000001-100000-000-1-1000000000000000011$ 000000010001

 0000000.001 ーーーーーーールーー－

 $0000000100000000000000000000000000000000100000000000000000000000000000000 N$
 0000000100000000000000000000000000000000010000000000000000001000000000000000011

										1										2							
$\underset{\text { RS }}{\text { TAXA/CHARACTE }}$	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7
Holepyris sp. 8	1	1	1	1	0	2	0	1	0	1	0	0	0	0	1	1	1	0	0	2	1	2	1	0	-	-	-
Holepyris sp. 9	1	1	1	1	0	2	0	1	0	1	0	1	0	0	1	1	1	0	0	1	1	2	1	0	-	-	-
Holepyris sp. 10	1	1	1	1	0	1	0	1	0	0	0	0	2	0	1	1	1	0	0	1	1	0	1	1	1	0	1
Holepyris sp. 11	1	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
Holepyris sp. 13	1	1	1	1	0	1	0	1	0	0	0	1	2	0	1	1	1	0	0	1	1	0	1	1	1	0	1
Holepyris sp. 14	1	1	1	1	0	3	0	1	0	0	0	0	2	0	1	1	1	0	0	1	1	2	1	0	-	-	-
Holepyris sp. 15	1	1	1	1	0	3	0	1	0	0	0	0	2	0	1	1	1	0	0	2	1	2	1	0	-	-	-
Holepyris sp. 16	1	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
Holepyris sp. 17	1	1	1	1	0	1	0	1	0	0	0	0	1	0	1	1	1	0	0	2	1	2	1	0	-	-	-
Holepyris sp. 18	1	1	1	1	0	1	0	1	0	0	0	0	1	0	1	1	1	0	0	1	1	2	1	0	-	-	-
Holepyris sp. 19	1	1	1	1	0	3	0	1	0	1	0	0	1	0	1	2	1	0	0	1	1	2	1	0	-	-	-
Holepyris sp. 20	1	1	1	1	0	3	0	1	0	0	0	0	1	0	1	1	1	0	0	1	1	2	1	0	-	-	-
Holepyris sp. 21	1	1	1	1	0	3	0	1	2	1	0	0	2	0	1	1	1	0	0	1	1	2	1	0	-	-	-
Laelius sp. 1	0	0	1	1	0	2	0	1	0	1	0	0	0	0	1	2	1	0	0	2	1	1	1	4	0	0	1
Laelius sp. 2	0	0	1	1	0	3	0	1	0	1	0	0	2	0	1	2	1	0	0	2	1	1	1	4	0	0	1
Laelius sp. 4	0	0	1	1	0	2	0	1	0	1	0	1	0	0	1	1	1	0	0	1	1	1	1	4	0	0	1
Laelius sp. 5	0	0	1	1	0	2	0	1	0	1	0	1	0	0	1	1	1	0	0	2	1	1	1	4	0	0	1
Laelius sp. 6	0	0	1	1	0	2	0	1	0	1	0	1	0	0	1	1	1	0	0	2	1	1	1	4	0	0	1
Laelius sp. 7	0	0	1	1	0	?	0	1	0	1	0	1	1	0	1	1	1	0	0	1	1	1	1	4	0	0	1
Laelius sp. 8	0	0	1	1	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	2	1	1	1	4	0	0	1
Trachepyris sp. 1	1	1	1	1	0	1	0	1	0	0	1	0	1	1	0	1	1	0	0	1	0	1	0	4	1	0	1
Trachepyris sp. 2	1	1	1	1	0	1	0	1	0	0	1	0	1	1	0	1	1	0	0	1	0	1	0	4	1	0	1
Trachepyris sp. 3	1	1	1	1	0	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0	1	0	4	1	0	1
	2		3										4										5				
$\underset{\text { RS }}{\text { TAXA/CHARACTE }}$	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4
Holepyris sp. 8	-	0	-	1	0	1	-	-	1	0	0	0	1	0	2	1	0	1	1	2	0	2	1	0	1	0	1
Holepyris sp. 9	-	0	-	1	0	1	-	-	1	0	0	0	1	0	2	1	1	1	1	2	0	2	1	0	1	0	1
Holepyris sp. 10	0	0	-	1	0	1	-	-	1	0	0	0	1	0	2	1	0	1	1	2	0	2	1	0	1	0	1
Holepyris sp. 11	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
Holepyris sp. 13	0	0	-	1	0	1	-	-	1	0	0	0	1	0	2	1	0	1	1	2	0	2	1	0	1	0	1
Holepyris sp. 14	-	0	-	1	0	1	-	-	1	1	0	0	1	0	2	1	1	1	1	2	0	2	1	0	1	0	1
Holepyris sp. 15	-	0	-	1	0	1	-	-	1	0	0	0	0	0	2	1	0	1	1	2	0	2	1	0	1	0	1
Holepyris sp. 16	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
Holepyris sp. 17	-	0	-	1	0	1	-	-	1	1	0	0	1	0	2	1	1	1	1	2	0	2	1	1	0	0	1
Holepyris sp. 18	-	0	-	1	0	1	-	-	1	0	0	0	1	0	2	1	0	1	1	2	0	2	2	1	0	0	1
Holepyris sp. 19	-	0	-	1	0	1	-	-	1	0	0	0	1	0	2	1	0	1	1	2	0	2	1	0	1	0	1
Holepyris sp. 20	-	0	-	1	0	1	-	-	1	1	0	0	2	0	2	1	0	1	1	2	0	2	1	0	1	0	1
Holepyris sp. 21	-	0	-	1	0	1	-	-	1	0	0	0	0	0	2	1	0	1	1	2	0	2	1	0	1	0	1
Laelius sp. 1	0	0	-	1	0	1	-	-	1	1	1	0	1	1	-	-	0	1	1	0	1	2	2	0	0	0	1
Laelius sp. 2	0	0	-	1	0	1	-	-	1	1	1	0	1	1	-	-	0	1	1	0	1	2	2	0	0	0	1
Laelius sp. 4	0	0	-	1	0	1	-	-	1	1	0	0	1	1	-	-	0	1	1	0	0	2	2	0	0	0	1
Laelius sp. 5	0	0	-	1	0	1	-	-	1	1	0	0	1	1	-	-	0	1	1	0	0	2	2	0	0	0	1
Laelius sp. 6	0	0	-	1	0	1	-	-	1	1	0	0	1	1	-	-	0	1	1	0	0	2	2	0	0	0	1
Laelius sp. 7	0	0	-	1	0	1	-	-	1	1	0	0	1	1	-	-	0	1	1	0	0	2	2	0	0	0	1
Laelius sp. 8	0	0	-	1	0	1	-	-	1	1	0	0	1	1	-	-	0	1	1	0	0	2	2	0	0	0	1
Trachepyris sp. 1	1	0	-	0	0	0	1	1	1	2	0	0	1	0	0	2	1	1	1	2	0	2	0	0	1	0	1
Trachepyris sp. 2	1	0	-	0	0	0	1	1	1	2	0	0	1	0	0	2	1	1	1	2	0	2	1	0	1	0	1
Trachepyris sp. 3	0	0	-	0	0	0	1	1	1	2	0	0	1	0	0	2	1	1	1	2	0	2	0	0	1	0	0
	5					6										7										8	
TAXA/CHARACTE RS	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
Holepyris sp. 8	0	0	1	0	1	0	0	1	0	2	1	0	2	1	1	1	0	1	1	0	0	0	-	0	-	-	-
Holepyris sp. 9	0	0	1	0	1	0	0	1	0	2	1	0	2	1	1	1	0	1	1	0	0	0	-	0	-	-	-
Holepyris sp. 10	0	0	1	0	1	0	0	1	0	2	1	0	2	1	1	1	0	1	1	0	0	0	-	0	-	-	-
Holepyris sp. 11	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	0	-	-	-
Holepyris sp. 13	0	0	1	0	1	0	0	1	0	0	1	0	2	1	1	1	0	1	1	0	0	0	-	0	-	-	-
Holepyris sp. 14	0	0	1	0	1	0	0	1	0	0	1	0	2	1	1	1	0	1	1	0	0	0	-	0	-	-	-
Holepyris sp. 15	0	0	1	0	1	0	0	1	0	0	1	0	2	1	1	1	0	1	1	0	0	0	-	0	-	-	-
Holepyris sp. 16	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	0	-	-	-
Holepyris sp. 17	0	0	1	0	1	2	0	1	0	1	1	0	2	1	1	1	0	1	1	0	0	0	-	0	-	-	-
Holepyris sp. 18	0	0	1	0	1	2	0	1	0	2	1	0	2	1	1	1	0	1	1	0	0	0	-	0	-	-	-
Holepyris sp. 19	0	0	1	0	1	2	0	1	0	2	1	0	2	1	1	1	0	1	1	0	0	0	-	0	-	-	-
Holepyris sp. 20	0	0	1	0	1	0	0	1	0	2	1	0	2	1	1	1	0	1	1	0	0	0	-	1	1	1	0
Holepyris sp. 21	0	0	1	0	1	2	0	1	0	1	1	0	2	1	1	1	0	1	1	0	0	0	-	1	1	,	0
Laelius sp. 1	0	0	1	1	1	0	1	1	0	2	1	1	2	2	1	1	1	-	-	1	-	0	-	1	1	1	0
Laelius sp. 2	0	0	1	1	1	0	0	1	0	2	1	1	2	2	1	1	1	-	-	1	-	0	-	0	-	-	-
Laelius sp. 4	0	0	1	1	1	0	1	1	0	2	1	1	2	2	1	1	1	-	-	1	-	0	-	1	0	0	0
Laelius sp. 5	0	0	1	1	1	0	0	1	0	2	1	1	0	2	1	1	1	-	-	0	0	0	-	1	0	0	2
Laelius sp. 6	0	0	1	1	1	0	0	1	0	2	1	1	0	2	1	1	1	-	-	0	0	0	-	1	1	0	2
Laelius sp. 7	0	0	1	1	1	0	0	1	0	2	1	1	0	2	1	1	1	-	-	0	0	0	-	1	1	0	2
Laelius sp. 8	0	0	1	1	1	0	0	1	0	2	1	1	0	2	1	1	1	-	-	0	0	0	-	1	1	0	2
Trachepyris sp. 1	0	1	1	0	1	0	1	1	1	2	0	0	2	1	1	1	1	-	-	1	-	0	-	1	1	0	1
Trachepyris sp. 2	0	1	1	0	1	0	1	1	0	2	0	0	2	1	1	1	1	-	-	1	-	0	-	1	1	0	1
Trachepyris sp. 3	0	1	1	0	1	0	1	1	0	2	0	0	2	1	1	1	1	-	-	1	-	0	-	1	1	0	1

[^0]: ${ }^{1}$ Capítulo publicado e formatado seguindo as instruções para os autores do Jornal Mémoires du Muséum national d'histoire naturelle.

[^1]: ${ }^{2}$ Capítulo publicado e formatado seguindo as instruções para os autores da Revista Palaeoentomology (ISSN 26242826).

[^2]: ${ }^{3}$ Capítulo publicado e formatado seguindo as instruções para os autores da Revista Journal of Systematic Palaeontology (ISSN 1477-2019).

[^3]: ${ }^{4}$ Capítulo formatado seguindo as instruções para os autores da Revista Systematic Entomology (ISSN 1477-2019).

[^4]:

