
Universidade Federal do Espírito Santo

Rafael Silva Guimarães

Cross-Layer Network Programmability for
Expressive and Agile Orchestration
Across Heterogeneous Resources

Vitória-ES

2021

 CROSS-LAYER NETWORK
PROGRAMMABILITY FOR EXPRESSIVE
AND AGILE ORCHESTRATION ACROSS

HETEROGENEOUS RESOURCES
Rafael Silva Guimarães

Tese submetida ao Programa de Pós-Graduação em Informática da Universidade Federal do
Espírito Santo como requisito parcial para a obtenção do grau de Doutor em Ciência da
Computação.

Aprovada em 28 de maio de 2021:

Prof. Dr. Magnos Martinello
Orientador

Moisés Renato Nunes Ribeiro

Coorientador

Prof. Dr. Vinícius Fernandes Soares Mota
Membro Interno

Prof. Dr. Charalampos Rotsos

Membro Externo

Prof. Dr. Leobino Nascimento Sampaio
Membro Externo

Prof. Dr. Daniel Kilper

Membro Externo

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO
Vitória-ES, 28 de maio de 2021.

Este documento foi assinado digitalmente por VINICIUS FERNANDES SOARES MOTA
Para verificar o original visite: https://api.lepisma.ufes.br/arquivos-assinados/203285?tipoArquivo=O
Este documento foi assinado digitalmente por MAGNOS MARTINELLO
Para verificar o original visite: https://api.lepisma.ufes.br/arquivos-assinados/204239?tipoArquivo=O

Dedico este trabalho à minha família e amigos.

Agradecimentos

Agradeço primeiramente a minha família, esposa e filhos, meus pais e meus
irmãos, que sempre me apoiaram e incentivaram durante toda a minha caminhada no
doutorado. Sem eles boa parte de minhas conquistas não teriam ocorrido. Agradeço
muita pela minha família, em especial minha esposa Vivianne, por encarar comigo
todos os desafios (e não foram poucos) ao longo dessa minha jornada no doutorado.
Descobrimos coisas maravilhosas do mundo, sempre juntos, confiando um no outro.
Agradeço pelo meu filho Theo, nascido na Inglaterra durante o doutorado (um
capitulo a parte em minha tese). Ao meu filho amado, João Pedro, por toda a sua
bravura, dedicação em nos ajudar e, principalmente, pelo companheirismo de pai
para filho que nós sempre tivemos. Enfim, tenho uma família completa e feliz, e isso
é o mais importante. Agradeço imensamente meu orientador, Magnos Martinello,
amigo de hoje e sempre, que sempre acreditou e depositou em mim toda a confiança.
Ao meu coorientador, Moisés, por toda a dedicação e carinho ao qual ele transmitiu
para mim e para todos os seus alunos. A todos os professores do laboratório, em
especial para Rodolfo, Vinícius e Giovanni. A professora Ana Locateli por toda a
ajuda, atenção e carinho.

Aos meus amigos do LabNERDS, não poderia deixar de esquecer algumas pessoas
que foram especiais e que contribuiram muito com a minha jornal, e que aprendi
muito com eles, como o Victor, Ricardo, João Henrique, Cristina, e Diego. Pessoas
bilhantes e que tiva a oportunidade de trabalhar/estudar. Em especial, ao meu
amigo/tiozão Renato, que por uma ironia do destino, contribuimos uma grande
amizade em Bristol/Uk e que se perdura ate hoje aqui no Brasil.

Aos meus amigos do IFES Cachoeiro de Itapemirim, agradeço por tudo e princi-
palmente pela amizade, em especial os amigos Bruno, Everson, Daniel e João Paulo e
Ricardo Maróquio. Aos meus amigos de Bristol, Rodrigo Stange, Anderson, Kalyani
Rajkumar (my best indian friend), Navid Solhjoo (my best iranian friend), Sarah e
Darren.

Sou muito grato pela minha familia e amizades que conquistei, e que ainda
mantenho, o que me faz ter a plena certeza de que esse é um dos principais pilares
da vida: ficar rodeado de pessoas que amamos que nos faz bem e que de alguma
maneira nos faz crescer como ser humano.

Resumo
A orquestração pode ser vista como uma cola de interoperabilidade agnóstica de

tecnologia que desacopla, entende, oferece suporte e fornece comunicação ponta a
ponta com base em uma visão unificada de nuvem de pacotes ópticos sem fio. Rede
definida por software (SDN) e virtualização de função de rede (NFV) trazem, como
habilitadores, novos paradigmas de rede nos quais prometem melhorar a flexibili-
dade e a programabilidade por controle centralizado. No entanto, a arquitetura das
redes de próxima geração precisa lidar com recursos heterogêneos que geralmente
se situam em domínios separados: tempo, frequência e espaço em tecnologias sem
fio; fibras ópticas, comprimentos de onda ópticos e portas em ambientes com fio;
colocação e recursos de computação nas infraestruturas de nuvem. Esta reengen-
haria disruptiva das arquiteturas de rede já trouxe recursos-chave como divisão
de rede (ou seja, compartilhamento da mesma infraestrutura por meio de difer-
entes requisitos de serviço), permitindo que as operadoras forneçam conectividade
e serviços personalizados e sob medida para cada fatia. Portanto, este trabalho
contribui estendendo os paradigmas SDN e NFV, introduzindo a programabilidade
de rede de camada cruzada que permite um controle e gerenciamento refinados
para suportar uma orquestração expressiva em recursos heterogêneos.

Além das extensões funcionais nos paradigmas SDN e NFV, o processo de orques-
tração precisa funcionar de acordo para atender às novas dinâmicas de reconfigu-
ração de aplicativos críticos, com demandas de comunicações ultraconfiáveis e de
baixa latência. Por exemplo, para garantir a transferência, um modelo de progra-
mação é necessário para permitir o controle conjunto de redes sem fio, com fio e na
nuvem, acompanhando a mobilidade do usuário, degradação do canal de comuni-
cação e interrupções. Como resultado, a orquestração deve selecionar rapidamente
entre os caminhos possíveis na rede subjacente. Isso nos levou a afirmar que o
processo de orquestração deve ser sustentado em uma nova proposta de roteamento
para atender a recursos rápidos e expressivos na configuração de conectividade
ponta a ponta.

A tese apresenta uma nova proposta de roteamento explorando as propriedades
do Residue Number System (RNS) que reduzem a carga de gerenciamento da
construção de tabelas de roteamento distribuídas, em contraste com as abordagens
tradicionalmente baseadas em tabelas que precisam manter e depender de operações
de consulta de tabela. Uma abordagem multicast de roteamento de origem baseada
em polinômios (M-PolKA) é criada, desenvolvida, implantada e avaliada para permitir
a reconfiguração ágil do caminho. A expressividade do M-PolKA é demonstrada ao
permitir novas funcionalidades, como duplicação de dados, transmissão / recepção
redundante de várias células para oferecer diversidade que aumenta a confiabilidade
da comunicação.

Palavras-chave: Next-Generation Networks, Network Functions Virtualization,
Software-Defined Networking, Service Function Chaining, Edge computing, 5G
paradigm, Source Routing, WiFi, Residue Number System.

Abstract

Orchestration can be viewed as an inter-working technology-agnostic glue that
decouples, understands, supports, and provides end-to-end communication based on
a unified optical-wireless-packet-cloud view. Software-defined network (SDN) and
network function virtualization(NFV) bring, as enablers, new networking paradigms
in which promise to improve flexibility and programmability by centralized control.
However, the architecture of next-generation networks has to deal with heteroge-
neous resources that generally sit across separate domains: time, frequency, and
space in wireless technologies; optical fibers, optical wavelengths, and ports in wired
environments; placement and computing resources in the cloud infrastructures. This
disruptive re-engineering of the network architectures has already brought key
features like network slicing (i.e., sharing the same infrastructure through different
service requirements), enabling the operators to deliver tailored and customized
connectivity and services for each slice. Therefore, this work contributes by ex-
tending SDN and NFV paradigms introducing cross-layer network programmability
that allows a fine-grained control and management for supporting an expressive
orchestration across heterogeneous resources.

Besides the functional extensions on SDN and NFV paradigms, the orchestration
process needs to perform accordingly to meet the new critical applications’ reconfig-
urability dynamics, such as demand ultra-reliable and low-latency communications.
For instance, to ensure handover, a programmability model is required to enable the
joint control of wireless, wired, and cloud catching up with user mobility, communi-
cation channel degradation, and outages. As a result, the orchestration must select
quickly among possible paths in the underlay network. This led us to claim that the
orchestration process must be underpinned in a novel routing proposal to meet fast
and expressive capabilities in setting up end-to-end connectivity.

The thesis introduces a novel routing proposal by exploring the Residue Number
System’s properties (RNS) that reduce the management burden of building up dis-
tributed routing tables, in contrast to traditionally table-based approaches that have
to maintain and rely on table lookup operations. A source routing multicast approach
based on polynomials (M-PolKA) is created, developed, deployed, and evaluated to
allow agile path reconfiguration. M-PolKA expressiveness is demonstrated by en-
abling new functionality such as data duplication, redundant transmission/reception
from multiple cells to deliver diversity that increases communication reliability.

Keywords: Next-Generation Networks, Network Functions Virtualization, Software-
Defined Networking, Service Function Chaining, Edge computing, 5G paradigm,
Source Routing, WiFi, Residue Number System.

List of Figures

1.1 Strategic role of the orchestration as the glue between the actual
services and the underlying management of resources. Adapted from
[Saraiva de Sousa et al. 2019]. 12

1.2 Positioning cross-layer programmability and heterogeneous resources. 13
1.3 Correlation between the main topics and publications of the thesis with

the intersection between them. 18

2.1 Traditional networking architecture versus OpenFlow architecture.
Source: [Sherwood et al. 2009]. 21

2.2 OpenFlow architecture. Source: [McKeown et al. 2008]. 22
2.3 Open vSwitch overview. Source: [Openvswitch.org 2015]. 23
2.4 Portable Switch Pipeline. Source: [P4 v16 2020]. 24
2.5 NFV implementation of network functions using virtualization tech-

niques over standard hardware. Source: [Han et al. 2015]. 25
2.6 Edge computing paradigm. Source [Shi and Dustdar 2016]. 27
2.7 Context and scope of Network Service Orchestration (NSO). Source:

[Saraiva de Sousa et al. 2019]. 27
2.8 High-level reference model to illustrate the scope of Network Service

Orchestration (NSO) in single-domain and multi-domain environment.
Source: [Saraiva de Sousa et al. 2019]. 28

2.9 5G Service Case: eMBB, mMTC and URLLC adapted from
[Martínez 2019]. 30

2.105G network slicing [Yousaf et al. 2017]. 32
2.11Cross-layer E2E Control and Orchestration [Guerzoni et al. 2017]. . . . 34
2.12Sketch of possible future research challenges: in red, the soft-

warization technologies; in green, the objectives; in blue, the tasks.
[Nencioni et al. 2018]. 36

2.13Experiment Scenario: Infrastructure [Martínez et al. 2018]. 39
2.14BIER routeID composition. 42
2.15Example of BIER table at the Node 1 based on a topology with 6 nodes.

Adapted from [Merling et al. 2018] . 43

3.1 Orchestration of heterogeneous resources in an intra-domain archi-
tecture enabling cross-layer network programmability. Adapted from
[Both et al. 2019] . 47

3.2 An example of using two slices separated by different 𝜆. 48
3.3 Highlighting the components used in the use-case 01: an inter-testbed

orchestration and control in optical and wireless networks. 53

3.4 Orchestration for heterogeneous resources [Slyne et al. 2019]. 54
3.5 Timing Results [Slyne et al. 2019]. 55
3.6 Highlighting the components used in the use-case 02: optical, wireless

and cloud slice scaling. 56
3.7 Detailed view of the control plane connectivity related to the experiment

components. Adapted from [Both et al. 2019]. 57
3.8 Experiment components interaction workflow [Both et al. 2019] 58
3.9 Orchestration of the physical optical-wireless resources [Both et al. 2019] 60
3.10Orchestration for automatic service for the Cloud re-

sources [Both et al. 2019] . 62

4.1 Architecture Design: handover and duplication routing. 67
4.2 Illustrating the encoding design for unicast/multicast communication. . 68
4.3 SFC operation mode. 70
4.4 System Operation. 71
4.5 Scenarios: a)Throughput in seamless handovers: multi-connectivity

with packet duplication from 𝑡 = 8𝑠 to 𝑡 = 18𝑠. 74
4.6 Throughput in seamless handovers: handover (𝑡 = 7𝑠) and failover

(𝑡 = 18𝑠), without packet duplication. 74
4.7 Throughput in seamless handovers: multi-connectivity with packet

duplication from 𝑡 = 8𝑠 to 𝑡 = 18𝑠. 75
4.8 Comparison of latency during handovers: CDF of the RTT measured in

each scenario. 76
4.9 Impact of packet duplication on packet loss: with and without packet

duplication. 77

5.1 Example of source routing by using M-PolKA. 81
5.2 LB-SR and M-PolKA headers. 88
5.3 Forwarding packets on multiple paths in P4 pipelines for core switches 89
5.4 Cloning from Ingress to Egress. Adapted from [P4 2017] 93
5.5 M-PolKA Controller and P4 Agent . 95
5.6 M-PolKA Controller and P4 Agent . 97
5.7 SmartNIC setup. 99
5.8 RARE/GÉANT P4 Lab European testbed [GÉANT 2021]. 100
5.9 Tofino P4 Pipeline [Networks 2017]. 102
5.10Linear topology. 103
5.11Linear scenario: comparison between LB-SR and M-PolKA. 104
5.12Comparison of LB-SR and M-PolKA test cases. 105
5.13Forwarding latency in M-PolKA vs. List-based SR vs. Table-based L2. . 106
5.14Migration from short path to long path. 107
5.15Use case Orchestration Framework Architecture. 108
5.16Edge Nodes Architecture. 112
5.17STA Architecture. 114
5.18Multipath routing for reliable communication use case 115
5.19Agile path migration. 117
5.20Duplication of traffic from S2 . 118
5.21Fast failure reaction for failure of link S4-S6. 120

List of Tables

2.1 Research projects for networking experimentation [Both et al. 2019]. . 35

3.1 Bandwidth to I/Q and application rate mapping [Slyne et al. 2019]. . . 54

5.1 Scalability of Header sizes (in bits) for different configurations. 87

List of Algorithms

1 Computation of the maximum 𝑙𝑒𝑛(𝑅). 86

List of Codes

3.1 Creating Grid . 49
3.2 Setting wavelength and attenuation . 49
3.3 Setting wavelength and attenuation for a slice by using the optical

controller . 51
5.1 Tranmission state P4 algorithm . 92
5.2 Clonning/Mirroring Code . 93
5.3 Example of a JSON message used in M-PolKA Python Library to get

automatically irreducible polynomials and routeIDs 94
5.4 CRC Polynomial mod in the TNA . 101
5.5 Timestamps in the TNA . 102
5.6 STA Node P4 algorithm . 112

Contents

1 Introduction 11
1.1 Research Question . 14

1.1.1 Hypotheses . 14
1.2 Objectives . 15
1.3 Contributions . 16
1.4 Text Structure . 19

2 Foundations and State-of-the-Art 20
2.1 Software-Defined Networking . 20

2.1.1 OpenFlow . 21
2.1.2 P4: Programming Protocol-Independent Packet Processors . . . 24

2.2 Network Function Virtualization . 24
2.2.1 Edge Computing . 26
2.2.2 Multi-domain network orchestration 27
2.2.3 Network Service Orchestration and standardization 28

2.3 Architecture of Next-Generation Mobile Networks (NGMN) 29
2.3.1 Network Programmability for Expressive Orchestration 31

2.4 Related Works . 33
2.4.1 Orchestration across heterogeneous resources 33
2.4.2 Orchestration for seamless and reliable mobility 37
2.4.3 Agile orchestration by using a source-routing mechanism 40

2.5 Chapter Remarks . 43

3 Enabling heterogeneous resource orchestration and cross-layer pro-
grammability 44
3.1 Overview . 44
3.2 Proposal . 45

3.2.1 Design principles . 45
3.2.2 Architecture design and enablers 46
3.2.3 Software-Defined Optical Networks 48
3.2.4 Software-Defined Radio . 51
3.2.5 Orchestration enabled by cross-layer programmability 52

3.3 Use-case 1: an inter-testbed orchestration and control in optical and
wireless networks . 52
3.3.1 Testbed description . 53
3.3.2 Proof-of-concept . 54

3.4 Use-case 2: optical, wireless and cloud slice scaling 55

3.4.1 Testbed description . 55
3.4.2 Proof-of-concept and evaluation 57

3.5 Chapter Remarks . 63

4 Orchestration for seamless, reliable and low-latency mobility 64
4.1 Overview . 64
4.2 Proposal . 66

4.2.1 Design Principles . 66
4.2.2 Architecture Design . 66
4.2.3 System Operation driven by Orchestrator Decisions 70

4.3 Testbed description . 72
4.4 Proof-of-concept and evaluation . 73

4.4.1 Orchestration for seamless and reliable handover 73
4.4.2 Comparison of latency during handovers 76
4.4.3 Impact of packet duplication on packet loss 76

4.5 Chapter Remarks . 77

5 Expressive and Agile Orchestration by Source Routing 78
5.1 Overview . 78
5.2 Multipath Routing Proposal - MPolKA 81

5.2.1 M-PolKA usage example . 82
5.2.2 Mathematical Background for M-PolKA approach 84
5.2.3 Scalability analysis . 85

5.3 Implementation Design . 87
5.3.1 Forwarding packets on multiple paths in P4 Pipelines 88
5.3.2 Data plane . 90
5.3.3 Control Plane . 94

5.4 Proof-of-concept and experimental validation 96
5.4.1 Emulated M-PolKA prototype . 97
5.4.2 M-PolKA deployment in SmartNICs hardware 98
5.4.3 M-PolKA deployment in Tofino Switch 100

5.5 Performance Evaluation: from emulation to testbed deployment 102
5.5.1 E2E tests in emulated prototype 103
5.5.2 Core latency evaluation in SmartNIC deployment 104
5.5.3 Core latency evaluation in P4 Tofino-switches testbed 106
5.5.4 M-PolKA fast-path reconfiguration in RARE testbed 107

5.6 Use case: Multipath routing for reliable communication 107
5.6.1 Use case architecture design . 107
5.6.2 Implementation Design . 111
5.6.3 Proof-of-concept and experimental validation 114
5.6.4 Agile and expressive orchestration deployment 115
5.6.5 Exploitation of path diversity for reliability 116

5.7 Chapter Remarks . 120

10

6 Conclusion and Future Works 122
6.1 Thesis Summary . 122
6.2 Future Works . 123
6.3 Final Remarks . 125

Bibliography 126

Chapter 1

Introduction

The emerging of new telecommunication infrastructures has brought the diver-

sity of optical, packet, wireless, and cloud resources, which essentially requires

high-level abstraction and control of physical and virtual resources. It poses

a new set of challenges to design, deploying, and operating the end-to-end

(E2E) communication in which has been commonly a manual and long process

[Saraiva de Sousa et al. 2019].

The architecture of next-generation networks requires the management of a

large variety of heterogeneous resources across different network infrastructures.

Network softwarization [Open Networking Foundation 2014] as well as cloud com-

puting introduce new means for efficient and flexible utilization of their infrastruc-

tures through a software-centric service paradigm. They bring new ways in which

network operators can create, deploy, and manage their services. However, there is

a need to model the end-to-end service and have the ability to abstract and automate

the control of physical and virtual resources delivering the service. The coordinated

set of activities behind such process is commonly referred to as orchestration.

For the sake of network design, there must be an orchestration process mastering

the heterogeneous resources that generally sit across separate domains: time, fre-

quency, and space in wireless technologies; optical fibers, optical wavelengths, and

ports in wired environments [Fu et al. 2018]; placement, and computing resources

in cloud infrastructures [Bogue 2017]. In this thesis, we refer to orchestration as the

coordination of resources and services embracing a single administrative domain

composed of its heterogeneous technology footprints. In one administrative domain,

multiple technology domains co-exist based on the type of technology in scope, for

example, Wireless, Optical Networks and Cloud.

Figure 1.1 highlights how the orchestration works as an inter-working technology-

agnostic glue, as an analogy to IP in the traditional network protocol stack. This

hourglass shape with a central orchestration framework decouples, understands,

supports, and provides a better E2E communication. The strategic role is based on

12

a unified view considering : (i) Software Defined Networking (SDN) orchestration

by interacting with optical network (SDON), wireless (SDR) and packet (P4) ; (ii)

Network Functions Virtualization (NFV) and Cloud orchestration capabilities, such

as handover, or automatic scaling of Virtualized Network Function (VNF) based

on monitoring of resource usage with VNF lifecycle management (e.g., start, stop,

migrate).

Orchestration

NFV

NetworkCloud

SDN

SDRP4

Handover Network
Slicing

C
ro
ss
-la
ye
r

Pr
og
ra
m
m
ab
ilit
y

MARKETPLACE

Monitoring

SDON

Figure 1.1: Strategic role of the orchestration as the glue between the ac-
tual services and the underlying management of resources. Adapted from
[Saraiva de Sousa et al. 2019].

Although SDN and NFV have promised high flexibility and new programmability

models, SDN was not designed to deal with the configuration of network physical

layer. Actually, there is a crucial need to create a broader number of functionalities

for the control plane and new capacities to the data plane to drive each resource

specificity with its fine granularity control (i.e., time, frequency, wavelength, and

space). NFV lacks uniform management of heterogeneous resources, especially

when different virtual infrastructure managers have been deployed. An NFV uni-

formization foresees a high level of virtualization to decouple the software from the

underlying hardware to abstract physical resources [Both et al. 2019].

It is worth mentioning that investigations in the state-of-the-art have tackled

issues orbiting around the orchestration of optical, wireless, or cloud networks

addressing their resources separately [Tzanakaki et al. 2017]. However, this thesis

13

Optical Wireless
Wired

Layer 1
Physical

Layer

L2
Forwarding

Flow-based
Forwarding

Tableless
Forwarding

Layer 2
Link

Layer

Label-based
Routing Unicast Multicast

Layer 3
Network

Layer

Optical
SwitchingLayer 0

Topology

Multi-association
points

Heterogeneous resources

C
ross-layer program

m
ability

Functionalities Seamless
Handover

Reliable
Handover

Use-cases Use-case 01 Use-case 02

Compute Container
Resource

VM
Resource

Baremetal
Resource

Autoscaling and SFC

- Bandwidth
- Wavelength
- Grid layout

- Bandwidth
- Channel
- Power

Figure 1.2: Positioning cross-layer programmability and heterogeneous resources.

differs from all other existing works by introducing a unique approach that relies on

an integrated orchestration of wireless, optical, packet, and cloud network resources.

Hence, this thesis argues that the orchestration process will emerge naturally as

network owners take control of their software and engage in open-source efforts due

to deep programmability across the stack, both vertically (control and data plane)

and horizontally (end to end) [Foster et al. 2020].

Figure 1.2 shows an overview of our approach that extends a range of config-

urable physical layer (e.g., wireless and optical channels with adaptive bandwidth),

link layer (e.g., flow-based forwarding, tableless forwarding, etc;) so that these

configurable parameters are exposed to create a cross-layer programmability ab-

straction (vertical arrow). This abstraction is under the command of an orchestration

process that provides functionalities (e.g. autoscaling) so that it may set parameters

across heterogeneous resources by using a cross-layer network programmability.

Yet, in terms of orchestration requirements, the orchestration system has to

provide a high expressiveness to set up devices and integrated them into a common

collection of functionalities, which differs from the traditional monolithic behavior.

14

This is a second requirement to support an expressive orchestration across hetero-

geneous resources. In high mobility scenarios, such as robots in Industry 4.0, there

is a stringent requirement for a fast reaction involved in a datapath configuration.

Such agility demands quick handovers that require to handle with a large amount of

distributed data plane states. This time to set the distributed states of the network

elements can significantly penalty the convergence time, affecting the reliability

during the handover task [Soliman et al. 2012, Heller et al. 2012]. This led us to

claim that the orchestration process must be underpinned in a novel routing proposal

to meet fast and expressive capabilities in setting up datapath.

Thus, this work also introduces a novel multipath routing, named M-PolKA

(Multipath Polynomial Key-based Architecture), mechanism founded on Residue

Number System (RNS) encoding, with polynomial arithmetic using Galois field (GF)

of order 2 [Shoup 2009], known as GF(2). The proposed scheme M-PolKA builds a

tree allowing a rapid configuration at the source. It generalizes a previous work

named PolKA [Dominicini et al. 2020], which focused on source routing for single

path. Hence, M-PolKA extends PolKA’s coding representation, architecture, and

deployment performed in an continental testbed 1.

This mechanism can significantly alleviate the pressure on data-plane resources

and the overhead on the control-plane during some events (i.e., mobility, failure,

and performance degradation). Thus, it allows the exploitation of path diversity

to deliver an expressive orchestration capability across heterogeneous resources,

enabling fast rerouting, agile path selection, packet duplication, and fast failure

recovery.

1.1 Research Question

To tackle the aforementioned problems, this dissertation aims to answer the following

question:

• Which are the mechanisms required to enable network programmability to

support an expressive and agile orchestration across heterogeneous resources?

1.1.1 Hypotheses

In this work, we envision the following hypotheses to tackle the described problem :

• Hypothesis H1: the SDN and NFV paradigms ought to be extended to give a

functional cross-layer control and management over heterogeneous resources.

1https://wiki.geant.org/display/RARE/Home

15

– Justification H1: Since the SDN architecture was not conceived to

deal with physical layer, this barrier needs to be overcome to achieve

the programmability of physical parameters. For NFV, the barrier is

about crossing heterogeneous resources that have different virtualized

infrastructure managers (VIMs). Therefore, the orchestration process

taking advantages of SDN and NFV extensions need to be developed to

coordinate what, how and when to set a variety of resources in a single

administrative domain. This abstraction should provide functionalities so

that it may set parameters for heterogeneous resources horizontally and

vertically express them by a cross-layer network programmability.

• Hypothesis H2: A source routing mechanism is fundamental to guarantee an

expressive and agile orchestration of multipath routing across heterogeneous

resources.

– Justification of H2: New critical applications, for example cloud robotics,

bring specific requirements such as zero mobility interruption time. De-

spite the SDN centralized control, there is still the need to set devices

up individually, along distributed switches that belong to a given path.

Usually in a SDN architecture, this is performed by using flow modifi-

cation messages sent to the switches for providing a route to a mobile

object. However, this approach is far from suitable in scenarios where

we have high dynamic clients, since the network is not agile enough for

datapath configuration. In fact, it demands to handle with a large amount

of distributed data plane states. Our premise is that the required agility

might be achieved if a tree is built over a stateless core with multipath

mechanism configurable at the source edge.

1.2 Objectives

To the best of our knowledge, we have not seen in the state-of-art, an orchestration

covering the following problems:

• Firstly, we define the Specific Objective SO1. To design and develop an

orchestration approach that requires cross-layer network programmability

allowing the management and control of heterogeneous resources allocated

from wireless, optical, packets, and cloud.

• The performance requirement of the orchestration is the SO2, which means

that it should support a reliable seamless handover and failover schemes

fostering zero mobility interruption time (MIT).

16

• Lately, the orchestration must be highly adaptable and flexible in setting de-

vices communication which is SO3. This objective leads us to introduce a

novel multipath routing mechanism founded on RNS encoding. The proposed

scheme can express a multi path (a tree) that traverses the network technolo-

gies allowing a rapid configuration at the source, even if the resources are

heterogeneous.

1.3 Contributions

This thesis makes two fundamental contributions:

1. Extents the SDN/NFV paradigms to provide cross-layer programmability across

heterogeneous resources, deploying and evaluating in a real testbed;

2. Introduces a novel source routing multipath mechanism, deploying and evalu-

ating in both emulated and intercontinental testbed.

This thesis was idealized through discussions and studies carried out in the

LabNERDS-UFES 2. Figure 1.3 gives an overview of how the author’s publications

are mapped to the different areas. While this thesis presents in reverse chronological

order, separated by conference and journal. The following contributions bring some

clarification about the author’s collaboration on each work.

1. List of conference papers:

• Publication A: Guimaraes, R. S, Martinez, V. M. G., Mello, R. C., et al.

“An SDN-NFV Orchestration for Reliable and Low Latency Mobility in Off-

the-Shelf WiFi“, 2020, IEEE International Conference on Communications.

Qualis A1.

• Publication B: Frank Slyne, Rafael S. Guimaraes, Yi Zhang, Magnos

Martinello, Reza Nejabati, Marco Ruffini, and Luiz A. DaSilva, “Coordi-

nated fibre and wireless spectrum allocation in SDN-controlled wireless-

optical-cloud converged architecture“, 2019, European Conference on

Optical Communication. Qualis B1.

• Publication C: Martinez, V. M. G., Guimaraes, R. S., Mello, R. C., Hasse,

P., Ribeiro, M. R. N., Martinello, M., and Frascolla, V. (2018). “Ultra Reli-

able Communication for Robot Mobility enabled by SDN Splitting of WiFi

Functions“, 2018, IEEE Symposium on Computers and Communications.

Qualis A2.
2http://nerds.ufes.br/en/

17

2. List of journal papers:

• Publication D: Both, C., Guimarães, R. S., Slyne, F., Wickboldt, J., Mar-

tinello, M., Dominicini, C., Dasilva, L. (2019). “FUTEBOL Control Frame-

work: Enabling Experimentation in Convergent Optical, Wireless, and

Cloud Infrastructures“, 2019, IEEE Communications Magazine. Qualis

A1. Impact factor: 11.05.

• Publication E: Carmo, A. P., Vassallo, R. F., Queiroz, F. M., Picoreti,

R., Fernandes, M. R., Gomes, R. L., Guimarães, R. S., Martinello, M.,

Simeonidou, D. (2019). “Programmable intelligent spaces for Industry 4.0:

Indoor visual localization driving attocell networks“, 2019, Transactions

on Emerging Telecommunications Technologies. Qualis B1. Impact factor:

1.594.

• Publication M: Dominicini, C. K., Guimarães, R. S., Mafioletti D., Mar-

tinello, M., Ribeiro, M. R. N., Villaça, R., Loui, F., Ortiz, J., Slyne, F., Ruffini,

M., Kenny, E. “Deploying PolKA Source Routing in P4 Switches“, 2021,

Under revision, International Conference on Optical Network Design and

Modelling (ONDM). Qualis A4.

• Publication N: Guimarães, R. S., Dominicini, C. K., Martínez, V. M. G.,

Xavier, B. M., Mafioletti, D. R., Locateli, A. C., Martinello, M., Ribeiro, M. R.

N. “M-PolKA: Multicast Polynomial Key-based Source Routing for Reliable

Communications“, 2021, Resubmition has been planed to September

2021, IEEE Transactions on Network and Service Management. Qualis

A1. Impact factor: 3.878.

The following publications (listed in reverse chronological order) are not directly

linked to this thesis. However, they helped to gain important knowledge in the

matter and, therefore, should also be considered relevant contributions.

1. List of conference papers:

• Publication F: Rodrigo S Tessinari, Anderson Bravalheri, Emilio Hugues-

Salas, Richard Collins, Djeylan Aktas, Rafael S. Guimarães, Obada Alia,

John Rarity, George T Kanellos, Reza Nejabati, Dimitra Simeonidou, “Field

Trial of Dynamic DV-QKD Networking in the SDN-Controlled Fully-Meshed

Optical Metro Network of the Bristol City 5GUK Test Network“, 2019,

European Conference on Optical Communication, ECOC 2019. Qualis

B1.

• Publication G: R. Nejabati, R. Wang, A. Bravalheri, A. Muqaddas, N.

Uniyal, T. Diallo, R. Tessinari, R. S. Guimarães, et al, “First Demonstration

18

Orches
tration

Routing

Covergent
Networks

Handover

Publication [B, D, H, I]

Publication [C]

Publication [A]

FUTEBOL CF

Publication [F, G, J]
Flex-Grid
Optical

Networks

Seamless
Handover

Publication [E] Context-aware
Handover

Reliable
Handover

Publication [M]

Publication [L]

Publication [K]

Publication [N]

Figure 1.3: Correlation between the main topics and publications of the thesis with
the intersection between them.

of Quantum-Secured, Inter-Domain 5G Service Orchestration and On-

Demand NFV Chaining Over Flexi-WDM Optical Networks“, 2019, Optical

Fiber Communications Conference and Exhibition (OFC), San Diego, Post

Deadline, OFC 2019. Qualis B1.

• Publication H: Paulo Marques, Alexandre P do Carmo, Valerio Frascolla,

Carlos Silva, Emanuel DR Sena, Raphael Braga, João Pinheiro, and et al.

“Optical and wireless network convergence in 5G systems–an experimental

approach“, 2018, IEEE 23rd International Workshop on Computer Aided

Modeling and Design of Communication Links and Networks (CAMAD).

• Publication I: Frascolla, V., Colman-Meixner, C., Nejabati, R., Simeonidou,

D., Slyne, F., Zhang, Y., Guimarães, R. S., and Ribeiro, M. R. N.. “When

optical networks meet wireless systems: experiments at the boundary“,

2018, In 2018 Photonics in Switching and Computing (PSC).

• Publication L: Xavier, B. M., Guimarães, R. S., Comarela, G., Mar-

tinello, M.,“Programmable Switches for in-Networking Classification“,

2021, IEEE International Conference on Computer Communications (IN-

FOCOM). Qualis A1.

2. List of journal paper:

19

• Publication J: R. Wang, R. Tessinari, E. Hugues-Salas, A. Bravalheri, N.

Uniyal, A. Muqaddas, R. S. Guimarães, T. Diallo, S. Moazzeni, Q. Wang,

G. Kanellos, R. Nejabati, and D. Simeonidou, “End-to-End Quantum Se-

cured Inter-Domain 5G Service Orchestration Over Dynamically Switched

Flex-Grid Optical Networks Enabled by a q-ROADM“, 2020, Journal of

Lightwave Technology. Qualis B2. Impact factor: 4.288.

• Publication K: Renato S. Silva, Carlos C. Meixner, Guimarães, R. S.,

et al. “REPEL: A Strategic Approach for Defending 5G Control Plane

from DDoS Signalling Attacks“, 2020, IEEE Transactions on Network and

Service Management. Qualis A1. Impact factor: 3.878.

1.4 Text Structure

The remainder of this thesis is divided as follows:

Chapter 2 presents in more detail the comparation with related works. It covers

crucial concepts related to network softwarization (SDN and NFV), seamless and

reliable mobility in next-generation networks (5G).

Chapter 3 gives an overview of orchestration architectures for next-generation

networks. This Chapter also presents i) the design and implementation of our

orchestration architecture to support the unified control of physical parameters for

optical, wireless, and cloud domains to guarantee a better expressiveness; and ii) a

solution enabling cross-layer programmability to the orchestrator.

Chapter 4 gives an overview the strict requirements on reliable and low-latency

communication of critical services. The Chapter also proposes an orchestration

architecture to ensure reliable and low-latency handover mobility with zero MIT

across heterogeneous resources. Finally, the Chapter prototypes the solution in

a proof-of-concept testbed for functional and performance tests in a closest-to-

production environment, and discuss about the obtained results and conclusion

remarks.

Chapter 5 gives an overview of the benefits regarding the use of source-routing

for fast reconfiguration and how it can be suitable for critical services in the next-

generation networks. Chapter 5 also fosters the next steps of our architecture

for a new residue number system that can provide a fast reconfiguration through

heterogeneous resources aiming reliable and low-latency handover solution in WiFi

and Cloud contexts. The Chapter finishes with a case study and discussions about

the obtained results and future works.

Chapter 6 concludes this Thesis discussing about the next steps and future works.

Chapter 2

Foundations and State-of-the-Art

This chapter describes some of the fundamental background and key concepts

that are relevant to understand this work. We discuss the network softwarization

principles and foundations including Software-Defined Networking (SDN), Network

Function Virtualization (NFV), Management and Orchestration.

2.1 Software-Defined Networking

SDN is an enabler of a network softwarization architecture based on the following

characteristics: (i) the separation between the control plane and data plane; (ii)

uniform and vendor-independent interface to the forwarding engine;(iii) logically

centralized control plane, and (iv) capability of virtualizing the underlying physical

network [McKeown et al. 2008] [Open Networking Foundation 2014].

The control plane acts as a networking operating system, which observes the

entire state of the network from a central point and controls the forwarding plane.

The idea is that a controller centralizes the communication with all programmable

network elements, and offer a unified view over the whole state of the network

[Casado et al. 2010]. Being this entire view, the controller can proceed with the

forwarding logic, where data plane acts. Hence, the data plane defines the behavior

of each forwarding element (switch, router, access point, or base station), hosting

features such as routing protocols, access control, network virtualization, and energy

management [Lantz et al. 2010].

Indeed, one of the great benefits of SDN is the ability to use this centralized

view to perform analysis and make custom decisions about the overall system

operation and the configuration of each network element. It is important to note

that the controller is logically centralized. However, it can also implement in a

distributed way by dividing the control elements between different domains or

in a truly distributed controller in which, for example, uses accord algorithms to

21

Figure 2.1: Traditional networking architecture versus OpenFlow architecture.
Source: [Sherwood et al. 2009].

consolidate a view among its parts [Guedes et al. 2012].

Further advantages of SDN is that network functionalities can open the inno-

vation of networks by the deployment without modifying the hardware, allowing

the network to evolve at the same speed as software, rather than to wait for the

development of standards and new hardware. As a particularly exciting benefit to

DCNs is that a centralized controller makes high-level packet manipulation deci-

sions, so that the data plane can be implemented in low-cost commodity switches

[Verdi et al. 2010].

2.1.1 OpenFlow

The OpenFlow standard is the most successful and widely adopted implementation

of the SDN paradigm. Its primary purpose is to provide a standard and open

programming interface that allows remote control of routing tables of forwarding

devices such as switches, routers and access points.

In [Sherwood et al. 2009], they compare a classical network architecture, where

control and data forwarding logics are located at the same device (for example, a

switch) and communicate through an internal proprietary bus, with the OpenFlow

architecture. The control logic is transferred to an external controller that communi-

cates with the device responsible for forwarding logic using the OpenFlow protocol.

Figure 2.1, shows in more details this difference.

According to the OpenFlow architecture, an OpenFlow switch has at least three

components [McKeown et al. 2008], as shown in Figure 2.2:

• The flow table, which has rules associating a flow by a match and action, hence,

telling the switch how to process each flow.

• The Secure Channel that connects the switch to the controller, allowing the

22

Figure 2.2: OpenFlow architecture. Source: [McKeown et al. 2008].

signaling between those planes sent with confidentiality and integrity.

• The OpenFlow Protocol, which provides standardization in an open protocol

for a controller to communicate with the switches. It also allows entries in the

flow table to be defined externally.

By abstracting forwarding rules as flow entries, the OpenFlow protocol calls the

collection of flow entries in the data as flow tables. Each flow table entry correlates

a rule with a flow, and, if a packet fits into a specific rule, the defined actions are

taken [Guedes et al. 2012] (e.g., forward the packet to a specific port, rewrite part

of its headers, or forward it for inspection in the network controller). If there is no

rule defined for a given packet, the data plane sends the message to the controller

and takes some decision (i.e., in most of the cases, the controller defines a new flow

entry). In this approach, these rules allow remote control of how packets that are

part of a specific flow must be forwarded and processed in each network element,

according to the interests identified by the centralized view of the controller.

2.1.1.1 OpenFlow Controllers

As earlier mentioned, that evolving networking paradigm, an OpenFlow controller

manipulates the flow table entries in the network elements through the OpenFlow

protocol and can act statically or dynamically [McKeown et al. 2008]. In the case of

a static controller, the controller may be, for example, a simple application running

on a PC that statically establishes a set of flow entries to enable the interconnection

of some test computers during an experiment. In the case of more sophisticated con-

trollers, the controller can add and remove flow entries dynamically during network

operation and even allow different users and applications to interfere with control

decisions. There are currently a number of controllers that support the OpenFlow

23

protocol, such as: Floodlight 1, Ryu 2, ONOS3, and OpenDaylight4. From this perspec-

tive, an orchestration coordinates multiple SDN controllers that recognize the needs

of higher-level orchestrator(s). Therefore, SDN controllers can be programmed to

monitor the network and make automated (real-time) decisions in case of security

problems, faulty devices, traffic congestion [Saraiva de Sousa et al. 2019].

2.1.1.2 Open vSwitch (OvS)

Figure 2.3: Open vSwitch overview. Source: [Openvswitch.org 2015].

Open vSwitch (OvS) is the most popular open-source software switch that sup-

ports a wide range of OpenFlow protocol versions and management interface. It

delivers a high production quality switch platform and opens the forwarding func-

tions to programmatic extension and control. It has features comparable to physical

switches, but with the flexibility and speed of development. Thus, it facilitates the

network management in virtual environments, as well as offers additional func-

tionalities not available hardware switch commodities [Verdi et al. 2010]. The OvS

offers improved performance for OpenFlow architecture by separating the data

plane into Kernel level from the Linux operating system. In contrast, the control

plane is accessed from the user space [Guedes et al. 2012] and gives us a powerful

tool for implementing network virtualization using the OpenFlow protocol. It was

designed to supports multiple Linux-based virtualization technologies, including

Xen/XenServer, KVM, and VirtualBox.

1http://www.projectfloodlight.org/floodlight/
2https://osrg.github.io/ryu/
3https://onosproject.org/
4https://www.opendaylight.org/

24

2.1.2 P4: Programming Protocol-Independent Packet Proces-

sors

P4 is a high-level language for programming protocol-independent packet processors.

P4 expresses how the packets are processed by the data plane of a programmable

forwarding element such as software switch, network interface card, router, or

network appliance. P4 can also work in conjunction with SDN control protocols

like OpenFlow. The newest version is P416 that makes many significant, backward-

incompatible changes to the syntax and semantics of the language. Therefore, P4

programs specify how the various programmable blocks of a target architecture are

programmed and connected. The Portable Switch Architecture (PSA) is a target

architecture that describes standard capabilities of network switch devices that

process and forward packets across multiple interface ports. The PSA Model has

six programmable P4 blocks and two fixed function blocks, as shown in Figure 2.4.

The behavior of the programmable blocks is specified using P4 language. The

Packet buffer and Replication Engine (PRE) and the Buffer Queuing Engine (BQE)

are target-dependent functional blocks that might be configured for a fixed set of

operations [P4 v16 2020].

Figure 2.4: Portable Switch Pipeline. Source: [P4 v16 2020].

2.2 Network Function Virtualization

The presence of proprietary hardware-based network appliances, known as middle-

boxes, is a crucial part of the operation of today’s computer and telecommunications

networks. It supports a diverse set of network functions, such as firewalls, intrusion

detection systems, load balancers, NAT, caches, and proxies [Martins et al. 2014].

For instance, in company networks, the number of these middleboxes is equivalent

to the number of routers and switches deployed [Sherry et al. 2012].

However, the presence of these middleboxes brings several problems, such

as [Han et al. 2015]: networks have become very complex with a wide variety of

proprietary elements; the time to bring new services and functionalities to the

market is high, as it depends on the production of new hardware; the operation of

the networks is costly and depends on specialized knowledge in each proprietary

platform; the costs of acquiring equipment to meet network demands are high, but

they quickly reach obsolescence; lack of flexibility and scalability, as resources,

25

cannot be moved according to demands, and need to be scaled to the peak scenario;

there are big barriers to innovation since it requires a significant investment to

develop a device in hardware; the technologies of different manufacturers are

incompatible with each other and do not allow reuse of hardware and software.

To address these problems and implement less costly and more flexible network

infrastructure, NFV takes network functions of commercial appliances, actually

dedicated hardware and software, to off-the-shelf equipment. By executing software-

based functionality on commodity hardware with virtualization technologies for

processing, storage, and networking, as exemplified in Figure 2.5, NFV frees a wide

range of innovation solutions for new networks.

Figure 2.5: NFV implementation of network functions using virtualization techniques
over standard hardware. Source: [Han et al. 2015].

The NFV objectives can be summarized as listed below [ETSI NFV ISG 2014]:

• Reduced CAPEX when compared to a specific target of hardware implementa-

tions: This goal is achieved by adopting commodity hardware and virtualization

techniques, reducing the number of different hardware architectures, and

resource sharing.

• Scalability and flexibility network functions: it is possible to decouple location

from functionality and allocate network functions in the most appropriate

places according to demands, increasing resiliency through virtualization,

and making resource sharing easier. It becomes a strong groundbreaking

mechanism on the next network generation as 5G networks.

• Software-based implementation: it incentives the innovation and time consum-

ing for creating a new product in which reach to a specific market share.

• Reduced OPEX (operational expenses) by automating the procedures and

making faster decisions for a specific event (e.g., fail, workload, and new

demand).

26

• Reduced power consumption by migrating workloads and shutting down un-

used hardware.

• Interoperability through open and standardized interfaces between the net-

work functions, the underlying infrastructure, and the associated management

entities. In this way, the elements of NFV architecture can be implemented by

different vendors.

These objectives have a huge impact on the business model of telecommunica-

tions networks, specifically in the new 5G networks. Consequently, this sector has

received more investments in the NFV standardization, as discussed in the next

section. However, it is essential to emphasize that the paradigm is applicable in both

computer networks and telecommunications networks, especially at a time when

both are converging to a resource-delivery model based on cloud computing.

2.2.1 Edge Computing

In addition to the increasing softwarization of infrastructure, content formats and

production and consumption patterns are continuously changing as users demand

improved Quality of Experience (QoE). This trend requires adaptation processes that

respond to aspects such as personalization, localization, interactivity, and mobility.

Therefore, edge computing brings a new paradigm in which shares computing,

storage, and bandwidth resources as close as possible to the mobile devices or

sensors. At the edge, the cloud services can deliver highly responsive time for

mobile computing [Satyanarayanan 2017]. The nodes at the edge DCs may perform

many computing tasks, such as data processing, caching, service delivery, and

privacy protection.

ETSI defines the term MEC as a new platform that provides IT and cloud com-

puting capabilities within the radio access network (RAN) near mobile subscribers

[ETSI MEC ISG 2014]. The terms mobile edge computing and edge computing will

be used in the context of the present work according to the scope. Those terms

are viewed as necessary to enable specific use case classes defined, for instance,

in 5G networks. The use cases have been classified into three service types (see,

e.g. [1]): eMBB (enhanced Mobile BroadBand), URLLC (Ultra Reliability, and Low

latency Communications), and mMTC (massive Machine Type Communications). A

common characteristic of these use cases is the need for low E2E latency or provide

a distributed content distribution. Therefore, we conclude that all call for some

processing of data can be delineated by the proximity at the edge of the Radio

Access Network (RAN).

As a result, we can foresee the emergence of this new kind of paradigm that

presents vast differences from centralized cloud DCs. Once the edge DCs are

27

Figure 2.6: Edge computing paradigm. Source [Shi and Dustdar 2016].

geographically distributed, they have a much smaller scale in terms of resources

when located close to the end-users; however, they support latency-critical applica-

tions [Mao et al. 2017]. To operationalize innovative services in MEC, the mobile

network operators (MNOs) will need new technologies that enable the orchestration

of multiple domains, which means across many distributed optical, wireless and

cloud resources, as opposed to their traditional centralized model.

2.2.2 Multi-domain network orchestration

Figure 2.7: Context and scope of Network Service Orchestration (NSO). Source:
[Saraiva de Sousa et al. 2019].

This section provides a brief background on SDN and NFV relationships with

28

multi-domain orchestration for next network generation. It will consist of infras-

tructure in which has heterogeneous specialized domains such as radio, access,

transport, core, and (virtualized) data center networks. Deploying and operating

E2E services are commonly manual and long processes performed via traditional

Operation Support Systems (OSS) [Saraiva de Sousa et al. 2019].

By [Saraiva de Sousa et al. 2019], orchestration means a coordinated set of pro-

cedures to meet a given requirement (e.g., a customer requesting a specific network

service). Beyond that, the orchestration also gives the capability of selecting and

controlling multiple resources, services, and systems. From this manner, Figure 2.7

shows the context and scope of a called Network Service Orchestration (NSO) or a

multi-domain orchestration entity, where it manages and controls the complete E2E

services across different types of domains.

Figure 2.8: High-level reference model to illustrate the scope of Network Ser-
vice Orchestration (NSO) in single-domain and multi-domain environment. Source:
[Saraiva de Sousa et al. 2019].

2.2.3 Network Service Orchestration and standardization

Figure 2.8 shows how generic high-level reference model for multi-domain orches-

tration. Orchestration in the single and multi-domain environment is different. Once

the orchestrator acts overall services and resource availability with its domains, as

well as, it takes total control over those resources. A domain orchestrator manages

the network service lifecycle and interacts with other components to control not

only VNFs, but also computing, storage, and networking resources. The adminis-

trative boundaries of the provider limit its scope. As shown in Figure 2.8, domain

orchestrators can comply with heterogeneous technological domains, such as SDN,

29

NFV, Legacy, and network resources like optical and wireless. Hence, multi-domain

orchestration is more complex, since it is supposed to provide E2E services, which

requires diverse resource interoperability [Rosa et al. 2015]. Currently, there is not

a standard for the information exchange process in multi-domain environments,

either multi-technology domains or multiple administrative domains.

2.3 Architecture of Next-Generation Mobile Networks

(NGMN)

The last three decades have been marked by an exponential growth in the use

of information technologies, with a society more and more dependent on the new

technologies. For this, wireless network technologies have played a fundamental role

in accessing services and applications almost anywhere, with user mobility as their

main benefit. This development has been led by two strong technological trends, (i)

Broadband Wireless Networks focused on the coverage of large areas for and (ii)

Wireless Local Area Networks (WLAN) that have dominated for many years indoor

wireless communications. In this chapter, a study of the main characteristics and

technologies of the new network paradigm for wireless communications popularly

known as Fifth Generation Networks is carried out. The relationship between

Broadband Wireless and WiFi technologies is also studied. It analyzes the role of

them in the future of wireless networks as well as the importance of coexistence

and collaborative work. Lastly, it pushes out the development of a new generation

of IEEE 802.11 standards to meet the demands and face challenges of wireless

networks.

To address the socio-economic development of recent years, with the emergence

of new business models and critical applications in different branches, the Interna-

tional Telecommunication Union (ITU) proposes the need for a new generation of

mobile networks. The requirements that must be fulfilled by these networks began

to be developed, preparing the open scenario for the investigation of new standards

that would lead to the 5G paradigm [ITU-R Recommendation 2015].

2.3.0.1 5G network service requirements

The new 5G networks are characterized by a rapid response to allows multiple

applications to provide several services simultaneously. It also seeks to enable

the possibility of having completely reliable services anywhere and anytime with

high quality performance independent of the access type to the system. These

features are to be achieved even in high user density scenarios. The ITU-R IMT-2020

recommendation introduced the different service scenarios that the new mobile

30

networks must address, resulting in an expansion of existing IMT. Three main service

cases were defined, becoming the main objectives to be achieved by the 5G networks,

as shown in Figure 2.9.

Figure 2.9: 5G Service Case: eMBB, mMTC and URLLC adapted from
[Martínez 2019].

• Enhanced Mobile Broadband (eMBB): Mobile broadband addresses the human-

centric use cases for access to multimedia content, services and data. A lot of

attention have been devoted to this particular use case by the telecommunica-

tions industry since it directly represents the evolution of broadband mobile

networks towards its fifth generation. For this, the main requirement that must

be met in this type of scenario are the connections with very high peak data

rates for all users. The objective of the eMBB service is to maximize data rates,

so that values between 1 Gbps and 10 Gbps can be reached in real network

scenarios.

• Ultra Reliable and Low Latency Communication (URLLC): This requirement

is designed to address critical applications that present strict reliability and

latency requirements, closely linked to the applications of Industry 4.0, future

Healthcare and Vehicle-to-Anything communications (V2X) [Li et al. 2018]. In

31

these cases, the URLLC data transmission rates are relatively low, being the

main objective to guarantee high reliability of data delivery with a Packet Error

Rate (PER) less than 10−5, which would represent networks with reliability of

99.99 %. In the transmissions of this type of applications, it is expected to

achieve latencies for the control plane less than 10 ms and in the user plane

less than 0.5 ms in the downlink or uplink communication in a separate way,

representing a round trip time of only 1 ms, which means a reduction of 10

times the current latency in 4G networks.

• Massive Machine Type Communications (mMTC): 5G is not just about high-

data rates but is an ecosystem of technologies that are going to provide a

wide range of use cases and requirements. Basically, it also refers to IoT and

about connecting devices without human intervention. It has been impacted by

industries, businesses, and the lives of people. Therefore, it aims to provide

connectivity to a massive number of devices whose traffic profile is typically a

small amount of data (spread) sporadically. In this case, latency and throughput

are not a big concern. However, the main concern is about power utilization

optimization on those devices. Such devices expect to safe battery life as much

as possible to achieve around ten years.

Simultaneously addressing all these use cases for a wide range of applications,

it is stated that the 5G network paradigm provides access to services 4𝐴, which

means Access Anytime, Anywhere, Anyone and Anything. We are in the presence of

a flexible and intelligent network architecture, capable of executing Tasks through a

virtualized platform and software defined orchestration. This architecture, based

on network programmability, will be able to analyze all network data in real time

to customize the services availability and the resources allocation. The new 5G

network is differentiated from 4G networks by the evolution in performance at the

radio level and by providing a great E2E flexibility, contributed by the introduction of

a network softwarization approach. With these features operating in an integrated

way, is projected the 5G network as a complex service-oriented network architecture

[Yousaf et al. 2017].

2.3.1 Network Programmability for Expressive Orchestration

The 5G architecture is expected to be network-agnostic, where the network core

will be common for all RATs that will be supported by the network, existing radio

interfaces, and the New Radio (NR) interface introduce for 5G. This feature makes

it necessary to implement rigorous control mechanisms that allow uncoupling the

network core from access technologies. At the same time, other mechanisms should

32

Figure 2.10: 5G network slicing [Yousaf et al. 2017].

be implemented to orchestrate the inter-working of this multi-RAT, 5G NR access

network, mobile access networks such as LTE-A, WLAN, and fixed networks. These

mechanisms must be capable of mobility management and user session management

for the continuity of the services during the transition from one technology to another.

The multi-connectivity offered by the access through multi-RAT provides robustness

to the network and better throughput performance.

With the network resources virtualization, multiple networks slices with different

characteristics can be implemented to address different service cases, as shown in

Figure 2.10, maximizing the network performance, QoS and Quality of Experience

(QoE). The implementation of the network slicing is one of the main techniques in

the deployment of 5G architectures [Li et al. 2017]. They allow network operators

to implement virtual logical networks and sets of network functions for different

services over the same physical infrastructure. As each network slice is a logical

entity independent of each other, it allows independent and customized functions of

Management and Orchestration (MO) for the services. Virtualization also offers the

33

possibility of having a network architecture with distributed functions that actively

contributes to the reduction of core and backhaul traffic by placing many services

on edge networks closer to users. Edge computing is assuredly beneficial in terms

of latency for many critical applications in URLLC.

The orchestration and management of the network should, therefore, allow

maximum performance during the implementation of distributed functions, network

slicing, and resource allocation. With different network domains working under the

range of 5G access technologies [Baranda et al. 2018], unified network management

is one of the biggest challenges in these architectures to ensure compatibility

and flexibility among all technologies. Within these scenarios, the management

of network slices to implement solutions of various service cases becomes the

heart of these architectures. The management must provide functionality such as

optimization and capacity planning for a slice, granting the necessary resources

according to the service type requested. It must be able to monitor the quality of

the provisioned slice to take the necessary actions in case of re-optimization. Other

vital functions that must be fulfilled are the management of the slice fault, inter-slice

orchestration, management of slice security and monitoring, and analysis of slices

resources.

2.4 Related Works

This section describes the related works focusing in network programmability for

efficient orchestration. Firstly, in Subsection 2.4.1 we position the capabilities of

orchestration across optical, wireless and cloud domains, showing the limitations of

current solutions. Furthermore, Subsection 2.4.2, we compare our solutions with

related works in the areas of seamless reliable mobility for convergent networks.

2.4.1 Orchestration across heterogeneous resources

The heterogeneity of optical, wireless and cloud networks is requiring a high level

of virtualization to enable the hierarchical decoupling of the software from the

underlying hardware by abstracting physical resources as shown in Figure 2.11. It

poses a new set of challenges that require the joint control of optical, wireless and

cloud environments [Boulogeorgos et al. 2018]. The resources generally sit across

different domains: time, frequency, and space in wireless environments; optical

fibers, wavelengths, and switches/lasers in wired environments [Fu et al. 2018];

placement, and computing resources in cloud environments [Bogue 2017].

As mentioned by [Nencioni et al. 2018], the possible future research challenges

denoted in Figure 2.12, whereas is worth noting, softwarization technologies as NFV

34

Figure 2.11: Cross-layer E2E Control and Orchestration [Guerzoni et al. 2017].

and SDN are the main enablers to develop novel solutions on top of new network

generation (e.g., 5G network). The centralized coordinator and control increases flex-

ibility and agility in service creating, and provides a customized network services for

each customer (i.e., slice). the success of the network virtualization heavily relies on

orchestrating end controlling capabilities, where optimizes the capital expenditure

and operating costs (CAPEX and OPEX). Additionally, the softwarization technolo-

gies help to adapt the network in responding of aspects such as personalization,

localization, interactivity, and mobility.

35

T
a
b

le
2

.1
:

R
e
se

a
rc

h
p

ro
je

ct
s

fo
r

n
e
tw

o
rk

in
g

e
xp

e
ri

m
e
n

ta
ti

o
n

[B
o
th

e
t

a
l.

2
0

1
9

].

M
a
in

T
o
o
ls

O
rc

h
e
st

ra
ti

o
n

a
n

d
P

ro
g

ra
m

m
a
b

il
it

y
P

ro
je

c
t

O
b

je
c
ti

ve
M

a
n

a
g

e
m

e
n

t
S

li
c
in

g
P

h
ys

ic
a
l

L
a
ye

r
L

in
k

L
a
ye

r

G
E

N
I:

G
lo

b
a
l

E
n

vi
ro

n
-

m
e
n

t
fo

r
N

e
tw

o
rk

In
n

o
va

-
ti

o
n

s

P
ro

vi
d

e
a

vi
rt

u
a
l

la
b

o
ra

to
ry

fo
r

n
e
t-

w
o
rk

in
g

G
C

F
F

lo
w

V
is

o
r;

O
p

e
n

V
ir

te
X

F
lo

w
S

p
a
ce

F
ir

e
w

a
ll

O
p

ti
ca

l
w

a
ve

-
le

n
g

th
s

S
w

it
ch

p
a
ck

e
t;

F
lo

w
s

H
a
n

d
o
ve

r

O
F

E
L

IA
:

O
p

en
F

lo
w

in
E

u
-

ro
p

e
-

L
in

k
in

g
In

fr
a
st

ru
c-

tu
re

a
n

d
A

p
p

li
ca

ti
o
n

s

O
p

e
n

F
lo

w
-b

a
se

d
to

co
n

tr
o
l

th
e

n
e
t-

w
o
rk

e
n

vi
ro

n
m

e
n

t

O
C

F
O

p
ti

ca
l

F
lo

w
V

is
o
r

V
e
rT

IG
O

O
p

ti
ca

l
w

a
ve

-
le

n
g

th
s

O
p

ti
ca

l
p

o
rt

s;
F

lo
w

s

O
F

@
T

E
IN

:
O

p
e
n

-
F

lo
w

/O
p

e
n

F
e
d

e
ra

ti
o
n

a
t

T
ra

n
s-

E
u

ra
si

a
In

fo
rm

a
-

ti
o
n

N
e
tw

o
rk

O
p

e
n

F
lo

w
-b

a
se

d
S

D
N

O
C

F
F

lo
w

V
is

o
r;

V
L

A
N

-b
a
se

d
O

p
ti

ca
l

sw
it

ch
in

g
S

w
it

ch
p

a
ck

e
t;

F
lo

w
s

R
IS

E
:

R
e
se

a
rc

h
In

fr
a
s-

tr
u

ct
u

re
fo

r
la

rg
e
-S

ca
le

E
xp

e
ri

m
e
n

ts

O
p

e
n

F
lo

w
in

fr
a
s-

tr
u

ct
u

re
R

IS
E

O
r-

ch
e
s-

tr
a
to

r

M
A

C
R

e
w

ri
t-

in
g

N
o
n

e
S

w
it

ch
P
o
rt

&
P
a
ck

e
t;

F
lo

w
s

F
IB

R
E

:
F

u
tu

re
In

te
rn

e
t

B
ra

zi
li

a
n

E
n

vi
ro

n
m

e
n

t
fo

r
E

xp
e
ri

m
e
n

ta
ti

o
n

F
u

tu
re

In
te

rn
e
t

te
st

b
e
d

O
M

F
6

F
lo

w
V

is
o
r;

T
D

D
W

ir
e
le

ss
ch

a
n

n
e
ls

S
w

it
ch

P
o
rt

&
P
a
ck

e
t;

F
lo

w
s

F
U

T
E

B
O

L
:

F
e
d

e
ra

te
d

U
n

io
n

o
f

T
e
le

co
m

m
u

n
ic

a
-

ti
o
n

s
R

e
se

a
rc

h
F
a
ci

li
ti

e
s

fo
r

a
n

E
U

-B
ra

zi
l
O

p
en

L
a
b

-
o
ra

to
ry

O
p

ti
ca

l,
w

ir
e
le

ss
,

a
n

d
cl

o
u

d
co

n
ve

r-
g

e
n

ce

C
B

T
M

;
F

O
A

M
;

O
2

C
M

F

T
D

D
;

O
p

ti
ca

l
w

a
ve

le
n

g
th

s
V

ir
tu

a
l

In
fr

a
s-

tr
u

ct
u

re

O
p

ti
ca

l-
W

ir
e
le

ss
C

h
a
n

n
e
ls

a
n

d
B

a
n

d
w

id
th

S
w

it
ch

P
o
rt

&
P
a
ck

e
t;

F
lo

w
s

36

For this purpose, there is a significant number of projects that have developed

experimental facilities for networking experimentation in which open the creation of

innovation and the new groundbreaking applications. In the United States, GENI

established an open infrastructure for at-scale networking and distributed systems

research and education [Huang et al. 2017]. In Europe, OFELIA created an ex-

perimental facility that allows researchers to control the network precisely and

dynamically uses OpenFlow to control the network environment [Huang et al. 2017].

The OF@TEIN project was designed to deploy a shared OpenFlow-based SDN

testbed infrastructure [Huang et al. 2017]. Similarly, Japan has the RISE project,

which offers OpenFlow-based research infrastructure on the Japan Gigabit Network

[Huang et al. 2017]. In Brazil, the FIBRE project built federated testbeds for re-

search and education. FUTEBOL was conceived to enable experimental research on

optical, wireless, and cloud convergence [Marques et al. 2017].

Figure 2.12: Sketch of possible future research challenges: in red, the softwarization
technologies; in green, the objectives; in blue, the tasks. [Nencioni et al. 2018].

Experimental infrastructure should provide flexible configuration through or-

chestration and programmability. The analysis summarized in Table 2.1 reflects

that FUTEBOL differs from all other projects through its integrated orchestration of

wireless, optical, packet, and cloud network resources [Both et al. 2019]. Besides,

FUTEBOL extends the range of configurable physical layer (e.g., wireless and optical

channels with adaptive bandwidth) and link layer (e.g., switch ports and packet,

flows, and wireless handover) parameters that are exposed to network controllers.

37

In this manner, it allows multi-domain programmability5 for the experimenters

interested in controlling physical and link layer parameters from different domains.

2.4.2 Orchestration for seamless and reliable mobility

SDN, a networking paradigm that separates control functions from the data plane, is

being enhanced into software-defined wireless networks (SDWN) [Fontes et al. 2017]

by adding clients’ seamless mobility and a better quality of service. SDWN makes

it possible to create handover mechanisms in which migration decisions are taken

by SDN controllers instead of STAs and allows more effectively to update the lo-

cations of the clients in the network and the related backhaul routes. In 802.11

networks working in infrastructure mode, the STAs are associated with an AP, which

can serve several clients while acting as a bridge to access the services of the

network [Mishra et al. 2003]. As a consequence of the mobility offered by these

networks, the STAs need to associate with different APs to maintain connectivity

when entering a different coverage area. This mechanism is driven by the clients

and not by the network infrastructure. It is based on several criteria used by man-

ufacturers, such as the loss of beacon frames or the degradation of link quality

[Raghavendra et al. 2007].

Several studies have been conducted to implement mobility management in

SDWN. Ethanol, an SDN architecture for WiFi networks, is proposed in [Moura et al. 2015].

This solution can control customer mobility characteristics and association/disassoci-

ation processes by denying association requests from the STA, forcing it to associate

with another AP. SDWN is proposed in [Suresh et al. 2012, Gilani et al. 2017], where

the creation of virtual AP for each client allows a seamless handoff process through

the migration of the virtual AP that serves the user who needs to move from physical

AP. In these solutions, although handoff processes are guaranteed without significant

degradation in throughput, the aspects of updating backhaul after migrations are

not addressed.

A mobility management mechanism presented in [Sanchez et al. 2016]. The

work’s solution is based on the concept domains and on updates made in the back-

haul, depending on whether migrations are intra-domain or inter-domain. Though, it

does not analyze the delays that the exchange of management frames during the

re-association process introduces. In [Zehl et al. 2016], a solution called BIGAP is

proposed, which proposes that all APs are configured with the same BSSID, creating

a single global BSSID, but with different channel configuration on each AP. When the

handoff decision has to be made, the SDN controller copies the client’s association

5Multi-domain in this thesis is not an inter-domain network of autonomous systems, but it is defined
as a heterogeneous network technology composed by wireless, optical or packet domains.

38

information to the destination AP and sends out a beacon containing a Channel

Switch Announcement (CSA) with the channel set to the target AP. After the destina-

tion AP is known, the SDN controller also updates the ARP tables or the routes in

the backhaul switches. Although BIGAP efficiently addresses migration’s issue to

different APs, and re-association delays (i.e., updating the backhaul switches), its

implementation becomes complex due to the number of states that has to manage.

The synchronization that is needed for the migration and for updating routes.

These proposals majority have one or more controllers triggering the handoff

process and performing client’s association updates to a given target AP. However,

none of them analyzes the occurrence of failures in the APs. This phenomenon

would cause a classic handover process once the controllers could not migrate the

client information for the available APs. Besides, these studies have maintained the

operation in classic infrastructure mode of the WiFi networks. Unavoidably, this

type of operation forces clients during their mobility to re-associate with new APs,

which imposes the need to find solutions that minimize re-association delays issue.

In [Gowda et al. 2016], the mobility is placed in an AP by using a robot to obtain

the best SNR between APs and STAs. Thus, if the normal 802.11 infrastructure

mode is split into functional blocks, mobility could be placed in the AP, and the

access to network services could happen through non-mobile STAs. In this context,

multi-connectivity can be guaranteed with the mobile terminal even if it has just one

wireless interface, and allows to have more efficient handoff processes and failover

mechanism.

Re-transmission schemes are one of the most used techniques to increase the

reliability and availability of communication systems [Buccheri et al. 2018], but such

techniques introduce latency into the system. On the other hand, diversity schemes

are today considered fundamental to achieve reliable communications in wireless

channels [Pocovi et al. 2018]. We can have different diversity methods, such as

frequency diversity (e.g., by using Orthogonal Frequency Division Multiplexing

(OFDM) systems to combat frequency fading of multipath wireless channels and

spatial diversity) [Popovski et al. 2018].

Regarding the diversity, Parallel Redundancy Protocol (PRP) concepts are im-

plemented in [Rentschler and Laukemann 2012], where uses a diversity method to

operate in IEEE 802.11 networks through parallel wireless links. The motivation

behind it is that two sufficiently uncorrelated channels can provide more reliable

communication with reduced latency compared to the transmission over a single

wireless channel. Overall, the average latency considering the parallel redundancy

path is significantly better than the one experienced by each link independently

[Cena et al. 2018]. The use of PRP wireless infrastructures for industrial control

applications is formalized in [Yang and Cheng 2019] through worst-case delays anal-

39

ysis by using network calculus theory. To evaluate the advantages of redundant WiFi

communications, [Lucas-Estañ et al. 2018] performs one of the first studies in real

scenarios with mobile industrial applications. However, in energy-constrained appli-

cations (e.g., cloud robotics and IoT) by using multiple interfaces directly impacts

battery usage, limiting the autonomy of mobile devices.

Software-Defined Wireless Networks (SDWN) solutions can help with client

mobility and QoS demand through network-centric schemes with global views

of the network to reduce the mobility interruption time (MIT) [Gilani et al. 2017,

Zeljković et al. 2018]. Several proposed frameworks use SDN orchestration together

with prediction mechanisms to perform more efficient handovers [Liu et al. 2019,

Zeljković et al. 2019]. Many works base their solutions on virtual AP (VAP) as a

virtual network function (VNF) for each client. High communication performance

during handover processes is reported despite the absence of fault recovery mech-

anisms. The use of SDWN architectures allows for the use of multiple connec-

tion schemes with mobile elements to achieve more reliable communications and

fault recovery capabilities. A multipath transmission architecture is proposed in

[Xu et al. 2017], which creates a connection with a VAP through multiple physical

APs. In [Martínez et al. 2018], an SDWN architecture explores multi-connectivity

and achieves improved communication reliability only with one radio interface on

the mobile element. Finally, only a few works address diversity for redundant

transmission over several wireless links (e.g., [Nielsen et al. 2018]).

mAP t(0)

STA 1 STA 2

CLOUD
DATACENTER

STA 3

AP COVERAGE AREA

mAP t(a)

Figure 2.13: Experiment Scenario: Infrastructure [Martínez et al. 2018].

The SDWN aimed to achieve more reliable communication when mobile robots

are deployed, for example, in applications involving robotic devices that assist

impaired individuals locomotion [Martínez et al. 2018]. The architecture splits the

functions in 802.11 network infrastructure, creating a mobile AP (𝑚AP) located in the

robot and an access network composed by non-mobile STAs that communicate with

the cloud, as presented in Figure 2.13 about the experiment scenario. A centralized

SDN controller is in charge of mobility management, operating according to the

information of the physical environment provided by the local agents installed in

the STAs. In this context, multi-connectivity can be guaranteed even if the STA has

40

just one wireless interface, thus allowing efficient handover processes and failover

mechanisms to reach ultra-reliable communications.

2.4.3 Agile orchestration by using a source-routing mechanism

In several source-routing schemes, a traditional switching SSR is represented by

outgoing ports, where the routeID ships a stack of switches and ports to send across

the whole path. ELMO and SecondNet are works that explore port switching SSR.

Recent works [Liberato et al. 2018, Dominicini et al. 2020] has brought RNS-based

SSR as an alternative method to perform SSR that defines the outgoing port on each

node by using modulo operation between the RouteID and the nodeID. This proposal

of thesis brings evidence that RNS-based SSR can be explored by using different

polynomial based in the residues system that would give more expressiveness for an

E2E communication in convergent networks, which, indeed, would open the creation

of new groundbreaking applications. Hence, the proposal of the thesis presents

many exciting properties that not exists in the RNS-based SSR, such as:

• Multipath packet forwarding: The forwarding operation is the direct result

of the modulo operation between routeID and nodeID. In this case, we have

another polynomial as a result of this operation that means the outgoing port.

• Multi resource reconfiguration embedded in the same path: As explained by the

works [Martinello et al. 2014, Gomes et al. 2016], one of the principles of the

source-routing is the fact that the order does not impact the forwarding on each

node. By using the modulo operation each node extract its output information.

Therefore, it is relevant to note that embracing information from different

resources pushes ahead the expressiveness to the forwarding capabilities, in

which each layer would be able to actuate in the result of the modulo operation

based on its behavior.

Therefore, we can explore these properties to provide networking functionalities

that cannot be covered by previous works. The following topics exemplify some

potential applications of these properties:

• Multipath packet forwarding: This property allows embedding in the routeID

the delivering of a packet to different paths in a given hop. For instance,

KAR [Gomes et al. 2016] is a fast failure reaction scheme that uses RNS-based

SSR and explores this property. It proactively adds redundant nodes in the

routeID to create resilient forwarding paths (called protection paths). ELMO

[Shahbaz et al. 2019], BIER [Wijnands et al. 2017], and [Reed et al. 2016] use

41

a source-routing scheme to addresses the multicast scalability problem in multi-

tenant data-centers and to overcome the group scalability presented in the

legacy protocol, such as [Cain et al. 2002, Fenner et al. 2016].

• Multi-domain information embedded in the same path: It is essential to note

that the order of the forwarding information in the path is irrelevant: This prop-

erty allows different embedding domains or redundant information from each

node in the routeID, even if they come from different domains. They are dis-

jointed of the desired route. This property is enabling scenarios where header

modification is challenging to implement, likewise, need to implement novel for-

warding method, such as wireless and optical switches [Wessing et al. 2002].

Initially, RNS-based SSR applied to optical packet-switched networks was ex-

plored by [Wessing et al. 2002] to avoid header rewriting and label distribution

protocols. Further, KeyFlow [Martinello et al. 2014] integrated with SDN in core

packet-switched networks, which builds a fabric model that replaces the table

lookup in the forwarding engine for RNS operations. Then, [Shahbaz et al. 2019,

Gomes et al. 2016] works explored additional properties of RNS to extend KeyFlow.

[Shahbaz et al. 2019] explored techniques to reduce the length of the forwarding

label, while KAR deviates packets from faulty links with routing deflections and

guides them to their original destination due to resilient paths added to the forward-

ing label. Beyond these ideas, PolKA has also brought an RNS encoding based on

polynomial that has given programmable, expressive, scalable, and agile Service

Function Chaining for Edge Data Centers.

As a previous work for multipath forwarding was [Reed et al. 2016] that uses

source-routing following Bloom Filter approach, implemented natively in SDN, as

a new technique for providing stateless multicast switching at operator scale. The

problem in using Bloom Filter is that the routeID has to grow to maintain a desired

false-positive probability. Moreover, their theoretical proposal presents some critical

limitations for real-world scenarios: (i) in contrast to our approach that performs

one modulo operation per core node, their data plane has increases considerably

the number of rules and tables. The work creates tables for each port to achieve

the pipelining transmission that supports multicast forwarding (i.e., to all outgoing

ports obtained from the routeID). It also implies scalability and performance issues

because there is a limited number of tables and TCAM entries supported by the

OpenFlow switches; ii) they reused the IPv4 and IPv6 headers to ship the routeID,

therefore, breaking the compatibility in the whole infrastructure by creating a

clean-slate solution. Their IPv4 and IPv6 packet headers do not have standard

behavior.

From a different perspective, [Shahbaz et al. 2019] proposed an optimized encod-

42

Figure 2.14: BIER routeID composition.

ing scheme by using bitmaps written for P414 Mellanox hardware switches; however,

considering a different overview, it is not a topology-agnostic solution that implies a

considerable barrier to develop novel solutions. Differently, BIER described in RFC

8279 [Wijnands et al. 2017] has proposed a hybrid approach, where there is a table

on each switch previously set defining the next-hop (i.e., it can be set based on some

IGP protocol such as OSPF or IS-IS), and the routeID in which defines the list of

switches where that packet has to be steered, as shown by Figure 2.14. Depending

on the hop, the data plane must perform the 𝑎𝑛𝑑 operation, modify the routeID

header, and the cloning operation to one or many interfaces for a given packet,

according to the Figure 2.15. To fast explore different paths, the controller and

orchestration layer has to set all the table’s states to act in some event of changing

in the topology (e.g., failure, traffic engineering). The time in reacting to some

failure or the granularity to fast express different becomes a stringent obstacle in

delivering new modern applications, especially those that need ultra-reliability and

low latency.

To this end, we envision M-PolKA as a generalized RNS-based SSR by using dif-

ferent polynomial bases and schemes to provide a reliable routing across heteroge-

neous resources, such as wireless and optical. This mechanism explores the Chinese

Remainder Theorem in finite fields of two or more elements [Schroeder 2009]. It has

been a shift from integer to polynomial arithmetic proposed by [Dominicini et al. 2020]

that enables performance optimization and reuse of off-the-shelf network hardware,

such as CRC (cyclic redundancy check). We also explore the use of CRC Polyno-

mial to be used in off-the-shelf hardware and high-performance switches (i.e., with

the support for 10Gbps, 40Gbps, 100Gpbs of throughput.) while portending new

network services.

43

Figure 2.15: Example of BIER table at the Node 1 based on a topology with 6 nodes.
Adapted from [Merling et al. 2018]

2.5 Chapter Remarks

In this Thesis, we advocate that the most appropriate expressive orchestration and

routing methods offer an agile and flexible handover solution for reliable applications

in a high-mobility scenario. A source routing algorithmic routing computation

mechanism becomes crucial by eliminating the lookup table time on each switch,

which gives more determinism in E2E communication. In this way, we eliminate

tables in intermediary core nodes to reduce latency, jitter, and control plane signaling.

The path information is inserted in a packet header only once when the packets

traverse ingress the edge nodes. Then, each edge core node can make forwarding

decisions based on a simple operation over a field of the packet header. Regarding

the hop count, as a logically centralized SDN Controller calculates the path and

decides to choose the minimal routing or not, depending on traffic engineering

aspects.

The primary advantage of source-routing is the elimination of tables and complex

routing responsibilities from intermediate nodes, placing the responsibility for route

selection at the ingress nodes [Sunshine 1977]. Some source routing methods

accomplish this by representing the path to any destination as a list of segment

addresses [Filsfils et al. 2015] or port labels [Soliman et al. 2012] traversed to reach

that destination. Then, the list is embedded at the ingress node in a packet header,

and used by each node in the path to take its forwarding decision.

Chapter 3

Enabling heterogeneous resource

orchestration and cross-layer

programmability

3.1 Overview

Emerging telecommunication trends, such as cell densification, millimeter-wave, het-

erogeneous networks, and E2E communications, pose stringent throughput, latency,

energy, and cost requirements that demand the coordinated control and management

of heterogeneous resources as optical, wireless and cloud [Boulogeorgos et al. 2018].

In this way, the design of next-generation networks must offer an orchestration archi-

tecture to virtualize and manage heterogeneous resources across different network

infrastructures in a unified manner. Several controllers offer northbound interfaces

that can be exploited to put into operation orchestration tasks.

Notwithstanding, such orchestrator must control heterogeneous network re-

sources that deal with the different aspects and belongs to each layer: time, fre-

quency, wavelength, and placement [Fu et al. 2018]. Besides, the heterogeneity of

optical and wireless networks requires a high level of virtualization to decouple the

software from the underlying hardware, by abstracting physical resources. Despite

all innovative features brought by SDN architecture, there is still, however, a barrier

in dealing with the physical layer to foster the programmability of physical param-

eters, once the SDN architecture was not conceived to deal with it. By promoting

functional cross-layer control and management over heterogeneous resources, we

can deliver programmability for a given E2E communication. Hence, the orchestra-

tor can provide better E2E communication by ranging resources from physical to

application layers. There is a need to meet the diverse E2E requirements that are

being fulfilled adequately by the networks [Yousaf et al. 2017].

45

This chapter describes the design principles, the architecture, and evaluation

of our orchestration architecture, which was integrated into the FUTEBOL Control

Framework (FUTEBOL CF) [Both et al. 2019]. Jointly with our orchestration archi-

tecture, FUTEBOL CF can provide a unified optical-wireless-cloud orchestration,

including: (i) cloud and NFV orchestration capabilities, such as policy-based au-

tomatic scaling of a VNF, resource monitoring across testbeds based on container

virtualization, and VNF life-cycle management; and (ii) cross-layer programmability

by interacting with the multiple network controllers in the wireless and optical

domains that virtualize physical network resources.

As experiment validation, we separate in two use-cases:

• The use-case 1, Section 3.3.2, we experimentally demonstrate our orches-

tration architecture of LTE multi-cell resource allocation in an integrated

LTE-over-PON architecture. The orchestrator dynamically adjusts the optical

and wireless bandwidth of each cell, according to their demand, jointly with

their fronthaul rate and reserved PON capacity onto an inter-testbed cloud

resource.

• The use-case 2, Section 3.4, we analyze the impact of scaling physical resources,

optical and wireless, according to mobile users’ demand on LTE/WiFi networks.

Finally, we analyze the effects of dynamically allocating computing resources

(vertical scaling) using a cloud auto-scaling feature, which adjusts the available

resources according to the demands from a mobile application to a web service.

Finally, our results show the impact of cross-layer programmability in the or-

chestration for better E2E service performance, demonstrating the benefits of our

orchestration architecture shipped as part of the FUTEBOL CF.

3.2 Proposal

This section describes the design principles, architecture and enablers, and the po-

tential limitations of our following proposals: an orchestration across heterogeneous

resources, enabling cross-layer programmability.

3.2.1 Design principles

The design principles of our proposal architecture were motivated by the orchestra-

tion challenge on heterogeneous resources that can enable cross-layer programma-

bility — it supports innovation, expressive and agile orchestration, fostering the

infrastructure slicing optimization.

46

To address the early-mentioned challenges, we design the solution based on the

following enablers:

• Introduction of a cross-layer network programmability model: By using

Openflow SDN switches, we can program the forwarding mechanism for a given

service, in a centralized manner. However, the current SDN approaches were

not designed to deal with physical programmability. Therefore, by leveraging

the programmability of physical parameters (e.g., the wavelength of optical

switches, FPGAs, and wireless), we expand the orchestration observability,

which gives a more refined control of the resources needed for a given E2E

communication.

• Unified orchestration control with management interfaces: this enabler

is introduced to design a unifying API for South Bound Interface (SBI) to pro-

vide underlying hardware management. For the North Bound Interface (NBI),

it is aimed to facilitate the routing, control, and management across hetero-

geneous resources. Also, a unified orchestration means that the orchestrator

is topology-aware which makes better decisions based on server monitoring

information and knowledge of the topology. It optimizes E2E provisioning

and reconfiguration, since the resources are distributed through different

places (i.e., inter- and intra-testbeds communications). For example, the or-

chestrator can place a given service application in the shortest path between

source and destination or spread service applications over different domains

to load-balance the demand.

3.2.2 Architecture design and enablers

Figure 3.1 shows a big picture of FUTEBOL CF architecture. We highlight the com-

ponents that we have incorporated to provide integrated control of optical, wireless,

and cloud resources through different testbeds. It allows the advancement of experi-

mental research telecommunication, which comprises heterogeneous resources from

distributed testbeds. The separation of functionalities and components distinguishes

among: (i) Physical Infrastructure Layer (optical, wireless, and cloud resources); (ii)

Virtualization Layer; (iii) Experiment Control and Orchestration Layer; (iv) Service

Layer; and (v) Testbed Management Layer.

The Application-Based Network Orchestration (ABNO), shown in Figure 3.1, is

based on IETF RFC 7941 and works as a network orchestrator of multiple resources

in the FUTEBOL CF. Initially, ABNO was in charge of the E2E control of optical

and packet network resources at the University of Bristol (UNIVIBRIS). However,

the orchestration for E2E network control and management essentially needs to be

47

Service Layer

Experiment Control and Orchestration Layer

Experimenta�on Slice

Physical Infrastructure Layer

Container and Service
 Orchestration

Cross-layer Network
 Orchestration Cloud Orchestration

 Virtualization Abstractions

Controllers

USRP-Based
Programmable RAN

Cloud
Infrastructure

Intelligent Space

Packet-Switched
OpenFlow Network

So�ware-Defined
Op�cal Network

DWDM

DWDM DWDM

OpenFlow

LXD OpenStack Open VSwtichLibvirt

Janet FIBREnetTCD UNIVBRIS UFRGS
UFES

UFMG

O2CMF

tcpdump

iperf

COPAABNO

Wireless and LTE
 environments

REST

LTE Agent Optical Agent

SDR/PON
Controller

Optical
Controller

OpenFlow
 Controller

MonitoringRobot Mobility

Voice RecognitionCamera Streaming

WiFi Agent

WiFi
Controller

Figure 3.1: Orchestration of heterogeneous resources in an intra-domain architec-
ture enabling cross-layer network programmability. Adapted from [Both et al. 2019]

improved, especially when virtual network operators come into the next-generation

mobile networks. Most of the existing SDN controllers rely on monolithic software,

by offering insufficient flexibility for heterogeneous resource controlling.

Our focus lies on providing a programmable forwarding mechanism and phys-

ical parameters for a unified control and management architecture and topology-

aware orchestration. For this purpose, we have extended ABNO and the under-

lying control to perform orchestration with wireless, optical, and OpenFlow net-

works, where OpenStack and OpenFlow Control Management Framework (O2CMF)

[Ceravolo et al. 2018] was used to deliver computing resources. As a remark, the

proposed architecture offers a flexible solution for both independent and joint opti-

cal/wireless orchestration. The main components of the architecture included in the

FUTEBOL CF are shown in Figure 3.1, and explained as follows:

• Optical and wireless controllers and agents are essential to provide pro-

grammable physical parameters, introducing a cross-layer network programma-

bility model.

• Extended ABNO capabilities to provide controllability and observability over

the new controllers lead a unified control and management architecture with a

48

full topology-aware.

To detail each component, in Section 3.2.3, we show how we designed and

developed our Software-Defined Optical Networks inside ABNO; Section 3.2.4 shows

how we designed and developed the integrated control and management with an

SDR/PON solution. Finally, in Section 3.2.5, we describe how all the components

were integrated into a unified control using ABNO.

3.2.3 Software-Defined Optical Networks

15 13

11 17

68

25

7

25

6

vlan 4000
NEC-C

NEC-D

NEC-A

NEC-B

4

vlan 4000

vlan
4000.57

24

24

BV-ROADM

VM1

Packet SDN
Network

Optical SDN
Network

BV-ROADM

VM2VM4

VM3

λ2

BV-ROADM

λ1

λ1

λ2

VM3 and VM4
through λ2

VM1 and VM2
through λ2

VM1 and VM2
through λ1

Figure 3.2: An example of using two slices separated by different 𝜆.

To achieve the programmability of optical resources, we developed a new optical

and controller abstraction for Bandwidth Variable - Wavelength Selective Switches

(BV-WSS) and Optical Matrix Switch. Figure 3.2 shows how optical devices placed at

the UNIVBRIS testbed, and topology with 2 slices where each slice is a combination

of computing resources in a given path thought a 𝜆𝑥 (e.g., VM1 to VM2 thought 𝜆1).

We used a total of two BV-WSS containing sixteen configurable optical ports and

one common port. An Optical Matrix Switch with forty-eight was also used. Sec-

tions 3.2.3.1 and 3.2.3.2 describes our optical agent and controller implementation,

respectively.

3.2.3.1 Optical Agent

As shown in Figure 3.1, we created optical agents that expose an Extreme South-

bound Interface (eSBI). The optical agents are in charge of interacting with the

optical devices and, further, expose the configuration by using a high-level API. The

API can be consumed according to the controller’s decisions. The underlying devices

may have different connectivity approaches (e.g., serial port), and, therefore, there

is a need to create a well-known abstraction interface to the controllers. A unified

49

control converts the abstraction function into the controllers and facilitates their

access to different devices.

1 {

2 "set":[

3 {

4 "id_device": 1,

5 "bandwidth": 50.0,

6 "spacing": 0.0

7 },

8 {

9 "id_device": 2,

10 "bandwidth": 50.0,

11 "spacing": 0.0

12 }

13]

14 }

Code 3.1: Creating Grid

The Optical Agent was developed in Python 3 and is in charge of managing optical

resources: Optical Switches and BV-WSS. To interact between Optical Controller,

the Optical Agent uses the REST API as eSBI API. To set a 𝜆 in the optical devices by

using the eSBI, we have to use the following messages: step 1, we define the grid

by informing bandwidth and spacing in a given device (“id_device“). Each optical

device has a unique identification. For instance, a JSON message code displayed in

3.1 shows the grid setup defined in the devices 1 and 2 (“id_serial“ equal 1 and 2).

In the devices 1 and 2, we set the bandwidth (i.e., channel width) equal 50.0 GHz

and width spacing equal 0.

1 {

2 "set": [

3 {

4 "id_device": 1,

5 "channels": [

6 {

7 "frequency": [193.85,193.95],

8 "port": 7,

9 "attenuation": 0

10 },

11 {

12 "frequency": [193.75,193.85],

13 "port": 1,

14 "attenuation": 0

15 }

16]

17 },

50

18 {

19 "id_device": 2,

20 "channels": [

21 {

22 "frequency": [193.85,193.95],

23 "port": 3,

24 "attenuation": 0

25 },

26 {

27 "frequency": [193.75,193.85],

28 "port": 4,

29 "attenuation": 0

30 }

31]

32 }

33]

34 }

Code 3.2: Setting wavelength and attenuation

Step 2, we set to a given optical port the interval of frequency or central frequency

according to the bandwidth setting, and, additionally, the attenuation control. As an

example, in Listing 3.2, we are setting the parameters, as mentioned earlier, for each

port in each device, wherein the device 1, port 7, we set the frequency interval from

193.85 to 193.95 and attenuation 0.0. The Optical Agent can return all the channels

available after setting the bandwidth. For futher details, the optical agent code has

been published at http://github.com/nerds-ufes/futebol-optical-agent/.

3.2.3.2 Optical Controller

The optical controller was developed using the Framework Ryu [Ryu 2015] version

4.23 that was extended to expose the available resources of a given optical network.

The OpenFlow interface was used as a standard communication with the orchestrator

ABNO. In this way, the orchestrator will only be allowed to see the resources that

the experiments provisioned, avoiding the conflicts of the raw resources available

for each slice. Therefore, ABNO interacts with the optical controller by using its

Northbound Interface (NBI), as shown by Figure 3.1. Once the experimenters have

a list of devices and ports available to experiment, ABNO installs a flow rule that

defines the combined configuration of port, VLAN tag and 𝜆𝑥. As an example, Listing

3.3 shows the JSON message code that attaches the port 3 and VLAN 65 to the

𝜆1. By using the datapath identification, ABNO can perform the configuration of

each optical device exposed to a slice. To summarize, the optical controller has the

following capabilities:

http://github.com/nerds-ufes/futebol-optical-agent/

51

• returns all the optical resources available for each slice, mapped as ports in

the dataplane (e.g., port 1 is mapped to a given 𝜆1).

• receives the flow rules and converts it in the appropriate message that is sent

to the optical agents by using their eSBI.

1 {

2 "dpid": 1,

3 "idle_timeout": 0,

4 "hard_timeout": 0,

5 "flags": 1,

6 "match":{

7 "in_port": 3,

8 "dl_vlan": 65

9 },

10 "actions":[

11 {

12 "type":"OUTPUT",

13 "port": 1

14 }

15]

16 }

Code 3.3: Setting wavelength and attenuation for a slice by using the optical

controller

3.2.4 Software-Defined Radio

3.2.4.1 SDR/PON agent

In Figure 3.1, the SDR/PON agent is implemented through the open-source srsLTE

library [Systems 2017] as the BBU part of the wireless system. Therefore, SDR/PON

agent interacts with this modified system that allows dynamic reconfiguration of

the bandwidth of both the Physical Downstream Shared Channel (PDSCH) and the

Physical Upstream Channel. Indeed, it is achieved by reconfiguring the number of

Physical Resource Blocks (PRBs) used by the signal, which affects the bandwidth,

sampling rate, FFT size, and other signal processing blocks. The RRH part is

implemented by using the USRP X310 reconfigurable radio device, which directly

connects to the ONU through a 10G Ethernet interface. In the downstream direction,

the BBU sends I/Q samples over the PON towards the USRP board, which operates

digital-to-analog conversion and upconverts the signal to the 2.5 GHz ISM band.

The LTE user equipment (UE) is implemented through a USRP B210 radio device,

linked to a server implementing the full-stack LTE UE (also open-source from srsLTE)

[Slyne et al. 2019].

52

3.2.4.2 SDR/PON Controller

[Slyne et al. 2019] access the SDR/PON controller located at Trinity College Dublin,

Ireland, to configure the fronthaul rate of each cell. Hence, it enables dynamic

physical resources reconfiguration of their wireless solution. Furthermore, the

SDR/PON controller can coordinate spectrum reuse across multiple adjacent cells.

The cell bandwidth can be dynamically modified as users move across the cells,

where, for instance, the higher bandwidth sets to cells with higher demand. It

enables efficient frequency reuse across adjacent cells, especially at the cell edges.

Besides, this is the main advantage of this proposal, since the fronthaul rate of each

cell over the PON is proportional to the cell bandwidth, by increasing/reducing a

cell bandwidth, we also increase/reduce the cell fronthaul rate. This synergy across

the optical and wireless bandwidth allocation significantly improves the statistical

multiplexing properties of the entire optical-wireless system.

3.2.5 Orchestration enabled by cross-layer programmability

In order to tackle the orchestration of experiments across wireless, packet-switched,

and optical network domains, ABNO architecture has been developed as a modular

component in FUTEBOL CF. We extended the ABNO capabilities to interact with

different northbound interfaces as access to the southbound interfaces. It has been

implemented to support the orchestration of wireless, optical, and packet-switched

networks. As a result, a REST API was defined as a standard interface taking into

account programmable parameters for optical, wired, and wireless physical layers.

This API considers the specific physical layer parameters that are exposed on top

of SDN and SDR controllers. Figure 3.1 shows how ABNO gives expressiveness

from different networks, once commands can be sent by using a unified REST

API interface to the PON/LTE controller, Optical controller, Openflow controller,

and WiFi controller. For futher details, the ABNO code has been published at

http://github.com/nerds-ufes/futebol-abno-orchestrator/.

3.3 Use-case 1: an inter-testbed orchestration and

control in optical and wireless networks

In this section, we present an experiment of optical and wireless spectrum allocation

in SDN-controlled wireless-optical-cloud architecture (Section 3.3.2). Section 3.3.1

gives an overview and description about the testbed. Figure 3.3 highlights all the

components and partners involved in the use-case. To clarify, Figure 3.3 highlights

in yellow the components and testbeds involved in this use-case.

http://github.com/nerds-ufes/futebol-abno-orchestrator/

53

Service Layer

Experiment Control and Orchestration Layer

Experimenta�on Slice

Physical Infrastructure Layer

Cross-layer Network
 Orchestration Cloud Orchestration

 Virtualization Abstractions

Controllers

USRP-Based
Programmable RAN

Packet-Switched
OpenFlow Network

So�ware-Defined
Op�cal Network

DWDM

DWDM DWDM

OpenFlow

OpenStack Open VSwtichLibvirt

Janet FIBREnetTCD UNIVBRIS

O2CMF

tcpdump

iperf

ABNO

REST

LTE Agent Optical Adapter

SDR/PON
Controller

Optical
Controller

OpenFlow
 Controller

MonitoringRobot Mobility

Figure 3.3: Highlighting the components used in the use-case 01: an inter-testbed
orchestration and control in optical and wireless networks.

3.3.1 Testbed description

As an example of our proposed solution, by combining ABNO and SDR/PON con-

troller, Figure 3.4 reproduces a scenario where we have two mobile users, UE1 and

UE2 [Slyne et al. 2019]. Each UE is assigned with necessary bandwidth allocation,

which is sufficient to conduct low bit rate communications, for instance, sending

an e-mail or browsing. In this figure, event 0 relates to the identification and au-

thentication of the UE devices by the EPC (Evolved Packet Core) MME (Mobile

Management Entity) and HSS (Home Subscriber Server). When user A starts using

a higher bandwidth service (Event 1), the increase of capacity is detected by ABNO

in which it increases the mobile capacity by sending instruction through the restful

API to Metro-Access SDN Controller (implemented in RYU [Ryu 2015]). It instructs

the BBU to change the PRBs (Event 3) and re-configures the OpenFlow switch to

guarantee capacity to the front-haul link over the PON (Event 4). When the BBU

updates its wireless bandwidth, it resets the physical channel with the UE, which

synchronizes to the new sampling rate, FFT size, etc. (Event 5).

We use Table 3.1, empirically derived in a previous experiment [Alvarez et al. 2018],

and revalidated it in our experiment, to correlate the relationship between channel

54

UE2

SDN Controller
OpenStack
Controller

Compute
Node1

15 13

11 17

68

25

7

25

6

vlan 4000

NEC-D

NEC-A

NEC-B

4

vlan 4000

vlan
4000.57

24

24

BV-ROADM

Packet
Network

BV-ROADM

Compute Node2
Compute

Node3

λ2

BV-ROADM

λ1

λ1

λ2

CN3 and OS1
through λ2

CN1 and CN2
through λ1

vlan
4000.57

vlan
4000.57

ABNO Orchestrator Metro Access
SDN Controller

BBU1

OLT

UE1

EPC

API
RESTFull API

RH1

ONU

RH1

NEC-C

 OpenFlow Switch

Optical
Network

Control Plane

Data Plane

0

1

2

3

4

5

Trinity College Dublin
University of Bristol

Host 1x

BBU2Host 2x

Synchronous
Source 2

Synchronous
Source 1

Figure 3.4: Orchestration for heterogeneous resources [Slyne et al. 2019].

Table 3.1: Bandwidth to I/Q and application rate mapping [Slyne et al. 2019].

Bandwidth Fronthaul Max Cell
Rate Capacity

3 MHz 121 Mbps 1.97 Mbps
5 MHz 184 Mbps 15.4 Mbps
10 MHz 368 Mbps 19.5 Mbps
15 MHz 488 Mbps 21.8 Mbps

bandwidth, front-haul rate, and cell capacity. Once the data stream terminates, the

Core domain controller detects a cell load that is below the current cell capacity,

and it triggers the reduction of the mobile bandwidth for that cell. The additional

capacity available over the PON can thus be reassigned to the other cells, together

with the freed spectrum resources.

3.3.2 Proof-of-concept

For the demonstration, the optical wireless equipment is located at Trinity College

Dublin, Ireland, while the ABNO, Optical controller and Optical core network are

located at the UNIVBRIS, UK. The two systems will be connected live at the control

plane level. Our demonstration shows the practical feasibility of synchronising

dynamic resource allocation across a mobile LTE and a fixed PON system, as well

as its benefit for improving the Quality of Service (QoS) of the UEs when high

bandwidth-demand applications and services are provided.

During the demonstration, we will show how the controller firstly receives a

report of low load and sets the number of PRBs to 15 (corresponding to a 3 MHz

wireless bandwidth). Then, after the start of the video application (event 1 in

Figure 3.5), the controller sets the number of PRBs to the higher rate 25 (5 MHz)

55

BBU

Controller

Openflow
Switch

0ms 200ms 400ms300ms 2 seconds100ms

UE

Application 1

2

3

4

5

Controller instructs
BBU to alter I/Q rate

Controller alters
committed information rate
Openflow switch

UE resyncs

Synchronous reporting
of application bit rate

Asynchronous change
in foreground traffic

Figure 3.5: Timing Results [Slyne et al. 2019].

and reconfigures the Committed Information Rate (CIR) of the switch to cope with

the extra load.

We will also provide insight into the E2E reconfiguration time of our implemen-

tation. Typically, the BBU changes the I/Q rate in 1 second and the UE resets and

synchronises within 10 seconds. At this point, the LTE capacity is increased towards

the UE and is made available at the application level. Indicatively, most of the

reconfiguration time is spent in the reset of the data plane, due to the re-set of the

PRB numbers of eNodeBs.

3.4 Use-case 2: optical, wireless and cloud slice

scaling

In this section, we present an experiment where an experimenter simultaneously

implements optical-wireless slice scaling, from the network infrastructure’s perspec-

tive (Subsection 3.4.2.1) and vertical service scaling in the cloud (Subsection 3.4.2.2),

using our components inside the FUTEBOL CF. Section 3.4.1 gives an overview and

description about the testbed. Figure 3.6 highlights in yellow the components and

testbeds used in this use-case.

3.4.1 Testbed description

As described by [Both et al. 2019], the Figure 3.7 portrays the physical and virtual

resources allocated from three different testbeds: i) in Brazil, the Federal University

56

Service Layer

Experiment Control and Orchestration Layer

Experimenta�on Slice

Physical Infrastructure Layer

Container and Service
 Orchestration

Cross-layer Network
 Orchestration Cloud Orchestration

 Virtualization Abstractions

Controllers

USRP-Based
Programmable RAN

Cloud
Infrastructure

Intelligent Space

Packet-Switched
OpenFlow Network

So�ware-Defined
Op�cal Network

DWDM

DWDM DWDM

OpenFlow

LXD OpenStack Open VSwtichLibvirt

Janet FIBREnetTCD UNIVBRIS UFRGS
UFES

UFMG

O2CMF

tcpdump

iperf

COPAABNO

Wireless and LTE
 environments

REST

LTE Agent Optical Adapter

SDR/PON
Controller

Optical
Controller

OpenFlow
 Controller

Monitoring

Voice Recognition

WiFi Agent

WiFi
Controller

Figure 3.6: Highlighting the components used in the use-case 02: optical, wireless
and cloud slice scaling.

of Rio Grande do Sul provides cloud resources using containers; ii) in Ireland, the

Trinity College Dublin has developed a coordinated allocation of fiber and wireless

spectrum; iii) and in the United Kingdom, the UNIVBRIS is providing the scalable

meshed optical and OpenFlow networks that give the physical connectivity for an

OpenStack cloud environment. ABNO is in charge to orchestrate optical and packet

resources at the UNIVBRIS and wireless at Trinity College Dublin (TCD). Thus, we

have extended ABNO to provide multi-resource and multi-domain orchestration

capabilities.

The Federal University of Rio Grande do Sul used COPA to provides VM as Ac-

cess Points managed by a WiFi-enabled SDN controller [Moura et al. 2015]. From

Trinity College Dublin was provided a PON/LTE-based C-RAN, by using VM and

USRPs with a full-stack LTE implementation of BBU, RRH, and UE, as well as

virtualized components of an EPC (e.g,. vMME, vS-/P-GW, vHSS) through Ope-

nAirInterface [Nikaein et al. 2014]. The control was carried out by a custom SDR

controller and as a controller piece onto the ABNO Orchestrator. These LTE devices

are interconnected to a PON fronthaul, composed of Optical Line Termination (OLT)

and Optical Network Terminal (ONT). Although we could collect results from the

57

TCD Edge

E
x
p
e
ri

m
e
n
t

S
lic

e
C

o
n
tr

o
l
Fr

a
m

e
w

o
rk

Bristol Cloud UFRGS Edge

O2CMFABNO COPA

SDR/PON
Controller

COPA
Pool

COPA
Pool

COPA
Pool

Wi-Fi SDN
Controller

Cloud
Orchestrator

Openflow
Controller

Optical
Controller

UE

EPCRRH
BBU

OLT
PON/LTE-based C-RAN

ONT
VXLAN VXLAN

APs Clients

Wi-Fi-SDN Network

Cloud
Resources

Central CloudCentral Cloud

Figure 3.7: Detailed view of the control plane connectivity related to the experiment
components. Adapted from [Both et al. 2019].

Federal University of Rio Grande do Sul, we decided to focus the gathering of the

results from the UNIVBRIS as our central cloud and Trinity College Dublin as our

edge.

Figure 3.8 shows the workflow of interactions between the Control Framework

components (upper part of Figure. 3.7) to orchestrate the provisioned resources

(lower part of Figure. 3.7) during the execution of the experiment. Initially, COPA is

responsible for deploying a distributed service as containers in COPA Pools at cloud

and edges, which is achieved in about ∼5 seconds. The COPA Pool is a component

of COPA that is added to the experiment slice and allows container deployment,

monitoring, and migration across testbeds. For this experiment, we employ a service

that analyzes sound samples provided by mobile users worried about their quality

of sleep. Users of this service utilize their smartphones (i.e. UEs) to record the

ambient audio for a night of sleep and send these audio samples to be analyzed by

the cloud service, which is done by a machine learning algorithm that identifies

patterns consistent with sleep disorders [Bublitz et al. 2017].

3.4.2 Proof-of-concept and evaluation

Figure 3.7 depicts the physical and virtual resources allocated from three different

testbeds in Brazil (UFRGS), Ireland (TCD), and UK (Bristol). Inter-testbed connec-

tivity is achieved through an overlay network (VLAN tagged). Over this network,

we established VXLAN tunnels to encapsulate our experiment’s control and data

traffic. In this experiment, UFRGS and TCD represent edge computing, while Bristol

58

S
er
vi
ce

D
ep

lo
ym

en
t

W
ir
el
es
s-
O
p
ti
ca
l

O
rc
h
es
tr
at
io
n

C
lo
u
d

O
rc
h
es
tr
at
io
n

Deploy Service

Deploy Service

Sendind Audio
Samples over

Wireless-Optical
Network

Send Demand
Fluctuation Report

Analize
Demand Report

Reconfigure Optical-
Wireless Parameters

Sending Audio
Processing
Requests

Monitor Processing
Demand Fluctuation

Analize Demand
Monitored Metrics

Reconfigure Cloud
Resource Allocation

Processing
Audio

Samples

(~5s)

(~5s)

(~750ms)

(~900ms)

O2CMFCOPAABNO Edge Cloud

Figure 3.8: Experiment components interaction workflow [Both et al. 2019]

characterizes a central cloud. As a rough estimate, the time required to provi-

sion this experiment slice and the associated Control Framework components is

approximately five to ten minutes.

The cloud computing resources in the UNIVBRIS testbed can be provisioned on

demand optical/packet SDN networks. UNIVBRIS also provides cloud resources

by using O2CMF over an OpenStack installation. The most processing-intensive

parts of the experiment are run from this testbed. Moreover, we can dynamically

assign a flow that ingresses the packet network towards the computing resources

of the central cloud, or forward traffic between the two edge/fog networks via

an optical switched network. To control these resources, we deployed two SDN

controllers, one for packet networks based on standard OpenFlow, and another for

optical networks based on an extended version of this same standard, which allows

controlling physical parameters of the optical network (e.g., central frequency and

bandwidth of each lightpath). UFRGS provides VM as Access Points managed by a

Wi-Fi-enabled SDN controller [Moura et al. 2015]. TCD provides a PON/LTE-based

C-RAN, by using VM and USRPs with a full stack LTE implementation of BBU, RRH,

and UE, as well as a software implementation of the EPC (e.g., MME, S-/P-GW, HSS)

from OpenAirInterface [Nikaein et al. 2014] managed by a custom SDR controller.

These LTE devices are interconnected to a PON fronthaul, composed of Optical Line

Termination (OLT) and Optical Network Terminal (ONT). Since UFRGS and TCD play

59

the same role of edge/fog computing for the experiment, and TCD implements a

more realistic and interesting optical-wireless scenario, for the sake of brevity, the

results reported in this section focus on the Bristol central cloud and TCD edge.

Figure 3.8 shows the workflow of interactions between the Control Framework

components (upper part of Figure 3.7) to orchestrate the provisioned resources

(lower part of Figure 3.7) during the execution of the experiment. Initially, COPA is

responsible for deploying a distributed service as containers in COPA Pools at cloud

and edges, which is achieved in ∼5 seconds. COPA Pool is a component of COPA that

is added to the experiment slice and allows container deployment, monitoring, and

migration across testbeds. For this experiment, we utilize a service that analyzes

sound samples provided by mobile users worried about their quality of sleep. Users

of this service utilize their smartphones (i.e. UEs) to record the ambient audio for

a night of sleep and send these audio samples to be analyzed by the cloud service,

which is done by a machine learning algorithm that identifies patterns consistent

with sleep disorders [Bublitz et al. 2017].

In this experiment, we emulate demand from clients activating the service over

24 minutes. Demand initially increases from 1 to 50 clients, and then decreases back

to 1, creating a demand fluctuation. As audio samples are sent over the wireless

network, traffic demand fluctuates at the edge, requiring ABNO to take action and

adjust optical-wireless resource allocation. As requests reach the service hosted

in the cloud, processing demand also changes, activating the cloud vertical scaling

feature provided by the O2CMF orchestrator to adjust the available resources

automatically.

3.4.2.1 Scaling optical-wireless resources

We evaluate the slicing of physical and virtual resources located in the TCD edge, and

orchestrated according to the service demand in Bristol’s central cloud. A typical

scenario might be that of a mobile user on an LTE network requesting dedicated

bandwidth through a core and fronthaul network for a pre-determined time. We have

previously demonstrated slicing and scaling of capacity in a converged fixed-mobile

network through variable rate LTE over a PON fronthaul [Alvarez et al. 2018].

We designed a customized SDR/PON controller for the converged optical and

wireless domains that assess the cell capacity required to provide a particular level

of fronthaul application bandwidth, and coordinate in real-time the allocation of

this capacity among the BBU, RRH, and PON, achieving ∼750ms reconfiguration

time. This SDR/PON controller provides a RESTful API to connect to ABNO, which

specifies optical parameters for provisioning the PON slice, as early mentioned in

Section 3.2. Moreover, ABNO requests changes in the wireless configuration to the

60

SDR controller, which reconfigures the bandwidth in the cell. These changes result

in an increase or decrease in the LTE network capacity, which ABNO sends to the

SDR controller to change the bandwidth used by the cell using LTE-specified Master

Information Block messages, reconfiguring its sampling rate. LTE cell bandwidth

is usually fixed by mobile operators, typically at 20 MHz, and requires a fixed

transmission of I/Q samples up to a rate of 730 Mbps over a dedicated optical

fiber. In our scheme, only the used cell bandwidth needs to be provided, so that

the freed-up PON capacity can be re-used by other adjacent LTE cells, or by other

lower-priority traffic.

1.4

Resource Capacity

3 5 3 1.4
Wireless
Bandwidth (MHz)

1.8 4.584 7.736 4.584 1.8 Cell (Mbps)

61 121 182 121 61 Fronthaul (Mbps)

Scaling Event

Wireless
Bandwidth

Time (minute)

S
am

pl
ed

 T
hr

ou
gh

pu
t

(M
bp

s)

Figure 3.9: Orchestration of the physical optical-wireless re-
sources [Both et al. 2019]

Figure 3.9 shows the configuration of the wireless bandwidth and measured

dynamics of the maximum rate for cell and fronthaul. The LTE network scaling is

shown in response to the fluctuation in the mobile users demand for the service

hosted in the cloud. Initially, the bandwidth is set to 1.4 MHz, corresponding to

the minimal cell bandwidth and minimal fronthaul capacity, since demand is at its

61

minimal (∼ 1.7 Mbps). As more clients activate the service, ABNO dynamically scales

the backhaul bandwidth to 3MHz and 5MHz, achieving a maximum throughput of

over 6 Mbps. As demand decreases, these changes revert to the initial state. The

fluctuation in service demand not only triggers the reconfiguration of the optical-

wireless capacity in the edge, but also impacts the demand for the application

running in the cloud, as explained next.

3.4.2.2 Vertical scaling in the cloud

In our experiment setup, the service is provided by a Web server virtualized in a

container deployed by using COPA. The container runs in a server hosted by a cloud

infrastructure provided by O2CMF. In our experiment setup, both the service and

the mobile application are deployed in containers using COPA Pools. The COPA Pool

is a component of the COPA architecture that is added to the experiment slice and

allows deployment and migration of containers across testbeds. As in the real-world

counterpart, clients can use the service and have their audio samples processed

over the time they are connected. Hence, O2CMF automatically scales the COPA

Pool’s resources in response to perceived demand; orchestrated resources are RAM,

from 1 to 4 GB, and virtual CPUs, from 1 to 4. Results for the experiment are

presented in Figure 3.10, where the time evolution is registered in the lower x-axis,

and the clients’ demand in the upper x-axis; the y-axis shows the processing time for

requests performed. Scaling events, i.e., time instants when O2CMF orchestration

increases or decreases the server’s resources, are marked with vertical lines, and

the status on the allocation of resources is depicted in the upper part of the graph.

Overall, O2CMF orchestration takes about 7 seconds to complete the whole vertical

scaling process as shown in Figure 3.8, including the thresholds monitoring. The

vertical scaling itself takes about 900 ms.

As shown in Figure 3.10, the mean processing time remains roughly constant from

the start of the experiment, with just one client connected, to the eight-minute mark,

when 30 clients are served. The following increase in clients from 35 to 50, observed

from the eighth to the eleventh minute, results in a significant increase in the

mean processing time. The result indicates that the cloud orchestration is efficient

in providing CPU units when demand increases; a decline in performance (i.e.,

higher response times) is perceived only after the stipulated maximum allocation

(4 CPUs) is reached. Moreover, the experiment uses a memory-intensive service,

RAM utilization rapidly increases with the constant influx of new clients, ultimately

resulting in service failures marked with red X’s in Figure 3.10. This behavior can be

explained by the chosen parameters for orchestration, such as the minimal interval

between scaling events (6 seconds) and the fixed amount of resources scaled in each

62

Figure 3.10: Orchestration for automatic service for the Cloud re-
sources [Both et al. 2019]

event (0.5 GB for RAM; 1 virtual core for CPU). Chosen orchestration parameters

thus indicate a Cloud tendency to lean towards resource-saving, at the expense of

service availability.

As the experiment uses a memory-intensive service, RAM utilization rapidly

increases with the constant influx of new clients, ultimately resulting in service

failures (red X’s in Figure 3.10). RAM insufficiency results in service inability to

process incoming requests, which occurs when the scaling is delayed, as seen by the

ten-minute mark. Note that all failures occur when demand increases to 45 clients,

and not afterwards when it reaches 50. Although the reconfiguration time is fairly

small, taking ∼900 ms (Figure 3.8), this behavior can be explained by the parameters

chosen for the orchestration algorithm developed for this experiment, such as the

minimal interval between scaling events (6 seconds), the usage threshold for scaling

resources up (80% for both CPU and RAM), and the fixed amount of resources

scaled by each event (0.5 GB RAM; 1 virtual CPU). These parameters indicate an

orchestrator tendency to lean towards resource-saving, at the expense of service

availability. The experimenter can work the trade-off between resource-saving and

service availability by adjusting the parameters with O2CMF.

63

The experiment investigates the efficient allocation of cloud resources, assisted

by the metrics provided by COPA. Throughout the experiment, the average resource

allocation for the server was of 2.97 virtual CPUs, and 2.71 GB of RAM. A cloud

with no scaling support would require constant allocation of 4 virtual CPUs and

3.86 GB of RAM. The dynamic allocation represents an average resource-saving

of 1.03 virtual CPUs and 1.15 GB of RAM over the the experiment duration. This

surplus could thus be reallocated and the resulting resource-saving credited for the

underused service, e.g., depending on cloud’s service agreement. Orchestration

aggressiveness, i.e., how quickly (and by how much) the cloud scales the resources,

plays a significant role in this and should be fine-tuned according to each application

requirements (e.g., high availability applications may require aggressive scaling up,

and conservative scaling down, of resources).

Hence, in this experiment, the FUTEBOL CF enabled the network scaling or-

chestration between the optical-wireless resources to fit the spectrum utilization

with the traffic fluctuations from clients activating/deactivating a sample service,

and the corresponding vertical scaling of resources in the cloud to cope with the

increase/decrease of incoming audio processing requests.

3.5 Chapter Remarks

The proposed architecture was integrated in the The FUTEBOL CF, which facilitates

experimentation across optical, wireless, and cloud domains. ABNO plays an essen-

tial role of cross-layer orchestrator by interacting with the network controllers in

optical and wireless resources, whereas COPA and O2CMF are orchestrator tools for

computing resources, which, for instance, can enable the monitoring and live migra-

tion of light VNFs across heterogeneous testbeds. We have designed and developed

the extension tool for orchestration in the FUTEBOL CF, adding new functionalities

to enrich to the experimenters an integrated research over optical and wireless

networks. Future discussions involve solution for new critical applications that bring

specific requirements, such as zero mobility interruption time. Hence, it can provide

a flexible and proactively solution aiming, for example, ultra-reliable and low-latency

handover, to perform the reconfiguration as fast as needed to meet the E2E require-

ments [Martínez et al. 2018, do Carmo et al. 2019b, Guimaraes S et al. 2020].

Chapter 4

Orchestration for seamless, reliable

and low-latency mobility

4.1 Overview

The next-generation networks will need to deal with a new set of groundbreaking

applications such as intelligent transportation systems, tactile Internet, and cyber-

physical systems (CPS) for Industry 4.0. Among the major of service groups, the ultra-

reliable and low-latency communications (URLLC) aim to foster new applications

stringent demanding on latency and reliability [Pocovi et al. 2018]. Nevertheless,

notwithstanding their promising capabilities, those networks also expect to coexist

with different resources and technologies, such as WiFi and LTE networks crossing

optical layers.

Despite all innovative features brought by this new breed of wireless systems, it

is clear that URLLC and other services will coexist, complement, or even face com-

petition from different technologies, such as WiFi and LTE. The scientific community

noticed this trend early and is already pushing WiFi in such direction with a series

of new standards to meet requirements similar to 5G systems [Ayyash et al. 2016].

Off-the-shelf WiFi equipment is already used to consistently offload a considerable

part of the 4G and 5G mobile traffic. Besides, WiFi has potentially better performance

in indoor environments than broadband wireless networks for low-speed mobility

cases. Little has been done, however, to equip current low-cost off-the-shelf WiFi

with extra functionalities to bring it closer to 5G new requirements. Similarly, WiFi

could be exploited in the future to fulfill the requirements of many – less demanding –

emerging applications, offloading 5G networks and, as a result, significantly reducing

cost [Bayhan et al. 2018].

There is, however, beg the question regarding WiFi co-existence/competition

for serving URLLC indoor applications: the non-existing native WiFi orchestration

65

mechanisms with heterogeneous network and systems behind them. Mobile systems

have all-encompassing solutions bridging across radio heads and wired layers of

the network. This integration is essential, such as for handover tasks; and, more

recently, to provide efficient access to the cloud. The latter is an essential piece of

the new communication puzzle since clouds will not only host most of the user’s

applications and data, but also critical network services will be virtualized there.

The use of software-defined networking (SDN) and network function virtualization

(NFV) are of great help in achieving control integration and also the management

of several physical resources. The goal is meeting E2E requirements of these

services that foster the innovative applications expected by next-generation networks

[Both et al. 2019]. For instance, macro-diversity techniques are used in mobile

networks to deal with the slow fading phenomena in wireless channels (e.g., path

loss and shadowing) and with cell failures [Li et al. 2018]. These techniques enable

multiple links to different radio access points, which may use the same access

technology or combine different technologies. By using data duplication and multiple

transmission from the base stations, the macro-diversity helps to increase the

reliability of the wireless communications. It provides robustness to the systems

during handover and fault recovery processes [Nielsen et al. 2018].

Although macro-diversity and multi-connectivity schemes are widespread in

current mobile networks, present, and future IEEE 802.11 standards, do not leverage

such techniques appropriately. Thus, it seems that WiFi is unprepared to meet

requirements from upcoming real-time applications such as Industry 4.0 or eHealth

verticals [Mello et al. 2019]. Nevertheless, there is still a vast and mostly untapped

potential in orchestrating SDN and NFV alongside conventional WiFi. These wireless

network solutions do not present an efficient handover scheme and also suffer from

interference and noisy channels. It hampers performance and imposes prohibitive

packet loss rates for real-time applications. This poor performance, in terms of

reliability and latency, can be improved by implementing multi-connectivity schemes.

This chapter argues that the combined orchestrability and control actions may

unleash comprehensive, reliable, and low latency mobility management functions

in low-cost off-the-shelf WiFi devices. We also experimentally demonstrate an

orchestration and control of multi-connectivity WiFi solutions for seamless han-

dover, using a new context network approach (e.g., SNR and computer vision) to

achieve a better high traffic density industrial environments [do Carmo et al. 2019b,

Guimaraes S et al. 2020]. The solution is demonstrated by enabling a challenging

cloud-robotics application with real-time remote control and mobility requirements.

66

4.2 Proposal

This section describes the potential limitations, the design principles, and the

architecture of our following proposals seamless and reliable handover orchestration

in off-the-shelf WiFi.

4.2.1 Design Principles

The design principle of our proposal SDN/NFV architecture was motivated by the

following challenges in enabling the management of WiFi networks to balance relia-

bility and traffic density trade-offs during handovers while optimizing the throughput

capacity of each cell.

To address the early-mentioned challenges, we design the solution based on the

following integrated enablers:

• a source-routing solution for E2E communication including cloud, wired, and

wireless resources;

• packet duplication for reliable wireless communication; and

• seamless handover and failover schemes with zero mobility interruption time

(MIT).

All the integrated enablers are to form a coordinated orchestration that performs

the network reconfiguration that meets the requirements of an E2E communication.

4.2.2 Architecture Design

The design principles of our SDN architecture are motivated by URLLC require-

ments for new real-time applications in off-the-shelf WiFi environments. The

core of our architecture is based on the splitting of WiFi functions to reverse

the roles of traditional WiFi equipment and provide AP functionality to a mobile

element [Martínez et al. 2018]. The path diversity relies on an infrastructure cross-

connecting cloud, wired and wireless environments. We detail the full architecture

and its operation in the following sections.

4.2.2.1 Multi-connectivity: Splitting WiFi functions

Figure 4.1 illustrates the functional components of the architecture. It is composed

by three main blocks: i) the specific and individual mobile element (e.g., a robot or

IoT device) and its wireless communication module; ii) the wireless access network

and the backhaul network, which are responsible for routing and forwarding data

67

Figure 4.1: Architecture Design: handover and duplication routing.

packets during mobile-cloud communication, and; iii) the edge cloud platform,

composed by a Virtualized Infrastructure Manager (VIM) environment, responsible

for providing services to a specific group of mobile devices. These components are

managed by an orchestrator with a global view of the system, also hosted in the

cloud.

a) Mobile Access Point (mAP) : Through the use of SDN techniques, it is possible

to provide mobility to the AP of a WiFi infrastructure. This change in role

allows the mobile element to establish and to manage multiple associations

with other devices. This modified communication module hosted in the mobile

element is referred to mobile Access Point (mAP). Similarly, the wireless

devices composing the infrastructure bear the role of fixed client stations

(fSTAs), which are the wireless access network in our architecture. This special

feature creates the possibility of multi-connectivity through association of

the mAP module and different fSTAs. An SDN-WiFi controller placed in the

mAP module provides a control communication channel between the wireless

element and the architecture orchestrator. Moreover, a virtual switch connects

the wireless domain and container-enabled mobile applications in a docker

environment without modifying the IEEE.802.11 standard stack.

b) Access/Backhaul Infrastructure: The radio access network is composed by

elements operating as fSTAs. The multi-connectivity scheme is established by

authenticating and associating all nearby fSTAs to the mAP. Software agents

installed in each fSTA continuously monitor the wireless channel. This infor-

mation is sent via SDN-WiFi controllers to the architecture orchestrator. It

then uses this information to manage mobility in a network-centric approach.

Finally, the fSTAs share an OpenFlow-enabled backhaul network, in which

routing and forwarding tasks are carried out.

68

c) Edge Cloud Platform: Both user applications and orchestration applications

(i.e., control and management) are virtualized in a cloud platform. The cloud

controller manages the interaction of VNFs with hardware resources and

communicates with the orchestrator to manage routing.

4.2.2.2 SDN Source-Routing for Unicast/Multicast Communication

Figure 4.2: Illustrating the encoding design for unicast/multicast communication.

In order to exploit this multi-connectivity scheme more efficiently, multipath

routing mechanisms enabled. For instance, Figure 4.2 illustrates an mAP that

initially obtains the fSTA1 and fSTA2 associations at time 𝑡0 and is then handed

over to different covered areas (i.e., times 𝑡1 and 𝑡2) as it moves around. Given

some available metric (e.g., SNR), path diversity can be leveraged to route data

packets through the – current – best wireless association. Thereby, the re-routing of

packets handover the connection of the mAP to a more suitable fSTA. Furthermore,

communication reliability can be improved by packet duplication over this multi-

connectivity scheme.

To illustrate the E2E communication setup, consider the scenario depicted in

Figure 4.2 consisting of two cloud apps (App1) and (App2). Each app has its own E2E

communication requirements. For instance, App1 deals with the demand from the

69

area of the leaf 𝐿1, whereas App2 deals with the leaf 𝐿2. Therefore, parallel paths

(spatial diversity) can be exploited from App1 to the mAP at the instant 𝑡0 within its

coverage area (fSTA1 and fSTA2 both on 𝐿1), whereas at the instant 𝑡1 its covered

areas will be fSTA2 on 𝐿1 and fSTA3 on 𝐿2.

A codification approach has been designed to exploit the multiple paths by using

source-routing schemes likewise to [Shahbaz et al. 2019, Liberato et al. 2018]. For

every fSTA, there is a sequence of bits (i.e., bitmap) representing a single fSTA (e.g.

fSTA1 = 01). Each bitmap consists of a set of output ports according to a tag.

4.2.2.3 Multipath Routing

The exclusive-or (XOR) logical operation is used to define the tag, which represents

an aggregation of output ports in each layer (fSTA1 ⊕ fSTA2 = 11). The design has

considered a three-tier multi-rooted CLOS topology composed of one spine (S1) and

two leaves (L1 and L2) as shown in Figure 4.2, limited by two nodes per layer .

For instance, a bitmap of 𝐾2 is obtained as 11 10 01 01 in which bits b7 to b6

represent the result of the operation 𝐿1 ⊕ 𝐿2 and, by using for it the right-most

significant bit 1, b5 to b4 represent the result of the leaf 𝐿1 (fSTA3 = 10), and bits b3

and b2 represent the result of the leaf 𝐿2 (fSTA3 = 01). The bits b1 and b0 indicate

the wireless port (i.e., 01 for 5 Ghz and 10 for 2.4 Ghz). Hence, 𝐾2 indicates the

multiple paths for the data flow that cross different spines and leave, reaching the

mAP in a specific wireless frequency. Furthermore, 𝐾1 and 𝐾3 have the following

bitmaps, 01 11 00 01 and 10 11 00 01, in which packet duplication is set by using

the bits b5 and b4, however, forwarded to different leaves (bits b7 to b6). The tags

are defined by Openflow rules at the virtual switches in the cloud (hosting Apps).

The packets are identified by their group specific 𝐾𝑖 tags, using the encoded value,

which indicates the path for routing the data flow. The tag is implemented at the

Type of Service (ToS) field in the IP packet header. To carry out the routing, the

orchestrator must first determine a preferred route to reach the mAP based on

the information gathered by the fSTA’s monitoring agents. Then, each outgoing

packet is tagged – represented in Figure 4.1 by the 𝐾1 tag – by using an encoded

value to indicate to the backhaul switch the port route of the data flow. Each port

in the backhaul switch is linked to one fSTA, thus this routing schemes ultimately

determines through which fSTAs the data must flow. The tag is implemented at the

Type of Service (ToS) field in the IP header.

4.2.2.4 Packet duplication approach

For packet duplication schemes in WiFi networks, our architecture implements a

VNF-based solution, and this fundamentally differs our proposal from previous ap-

70

proaches exploiting duplication of packets such as [Rentschler and Laukemann 2012,

Cena et al. 2018]. Our approach leads to a hardware-agnostic solution with more

agility in the creation of future services. When packets are forwarded according

to the SDN Source-routing scheme explained previously, a VNF at the destination

checks whether the tag represents a duplicated or a single flow. Once the data plane

identifies the type of flow, it determines how the packet is forwarded: i) with the

packet duplication tag, the data plane sends the traffic to be treated by the VNF,

represented by the VNF𝑑𝑝𝑘𝑡 at the mAP in Figure 4.1; ii) with the normal packet

identification, the data plane redirects the traffic strictly to the destination, VNF𝑎𝑝𝑝.

SwitchSource DestinationvSwitch

VNFdpkt

MAC1/IP1

1
2

3

MAC2/IP2

normal packet

duplicated
packet

Figure 4.3: SFC operation mode.

4.2.2.5 VNF implementation

Packets are analyzed and forwarded according to their classification when in the

mAP or in the cloud. Whenever a packet is either in mAP or in the cloud, it is

analyzed and forwarded according to its classification as shown in Figure 4.3. Then

the data plane decides if a given packet must pass through the VNF𝑑𝑝𝑘𝑡. The VNF in

the chaining is responsible for the flow de-duplication function performed by a group

of OpenFlow rules previously defined. The VNF𝑑𝑝𝑘𝑡 receives a packet 𝑝𝑖, generates a

hash ℎ(𝑝𝑖) by using the TCP/IP headers, and compares if the current hashed packet

ℎ(𝑝𝑖) already exists in a circular list 𝛽. If so, then the packet 𝑝𝑖 is automatically

dropped, otherwise, ℎ(𝑝𝑖) /∈ 𝛽, then the packet is forwarded to its destination and

ℎ(𝑝𝑖) added to 𝛽. Each hash inserted in the circular list 𝛽 has its own time-to-live to

limit the size of the list, which avoids bottlenecks in the matching process.

4.2.3 System Operation driven by Orchestrator Decisions

Tackling better decisions implies getting as much as possible well-coordinated

information from different network resources in a centralized view. For this purpose,

71

suitable to the proposed architecture, our Orchestrator Architecture was developed

being in mind to control three kinds of resources, as shown in Figure 4.1: SDN,

WiFi and Cloud. The Orchestrator has a view of the entire network as SNR of each

mAP, traffic density, and computing resources usage, considering the impact of each

action on the network as a whole.

Figure 4.4: System Operation.

In the proposed architecture, an orchestrator is responsible to control SDN,

WiFi and cloud resources, as illustrated in Figure 4.1. The orchestrator centralizes

information on the entire network, such as SNR in wireless nodes, current traffic

density, and computing resources usage, considering the impact of each action on

the network as a whole. The orchestrator can be configured to use any suitable

algorithm to define the best route. It opens the possibility to make accurate decisions

in defining E2E routes (e.g. satisfying the requirements regarding communication

from a cloud application to a mobile application in the mAP).

The system operation detailed in Figure 4.4 illustrated an initial condition where

two fSTAs are associated with the mAP and the traffic is routed through the fSTA1.

The agents in each fSTA send the monitoring information to the orchestrator using

a common Message Queuing Protocol (AMQP) interface. In this example, the

orchestrator considers the SNR as the main metric for decision making. With the

72

SNR information relating the devices, the orchestrator calculates the best route (i.e.,

the fSTA with the best link conditions). Thus, the orchestrator modifies the rule in

the network infrastructure to tag the packets with the encoded value of the selected

fSTA. The tagged packets are analyzed on the backhaul switch to be forwarded

through the new fSTA. As exemplified in Figure 4.4, the mAP then receives the data

flow through the fSTA2, completing the handover process.

The packet duplication process is performed when the orchestrator determines

that the link conditions of the associated fSTAs do not guarantee the necessary

reliability of the communication, in the presence of a lossy wireless channel. In this

case, the source routing tag is encoded with the information of the fSTAs, which

will perform the redundant transmission to increase the probability of successful

delivery to mAP. In Figure 4.4, the traffic is forwarded by fSTA1 and fSTA2, and once

received by the mAP, it is delivered to the VNF to perform the de-duplication function

that finally forwards it to the mobile application. The answer is also duplicated in

the mAP and the same de-duplication process is carried out in the cloud platform.

4.3 Testbed description

The main functional blocks that compose our architecture have been developed and

tested in a real-world testbed. The mAP is installed in a Raspberry Pi 3B with the

Hostapd application to enable AP functionality, equipped with one Ralink Technology

RT5572 802.11 a/b/g/n wireless adapter. The access network (i.e., the fSTAs) consists

of Linux PCs (Ubuntu 16.04) equipped with a wireless card based on the Qualcomm

Atheros AR9300 chipset. In the backhaul, the fSTAs are connected via an Ethernet

interface to an Supermicro OpenFlow-enabled switch. The architecture orchestrator

manages and controls the mAP and fSTAs through SDN-WiFi OpenFlow controllers

using the Ryu 4.20 Framework. The cloud platform is implemented with OpenStack

Queens.

The prototyping of our solution has been developed and tested in a real testbed

scenario composed of one 𝑚AP and four 𝑓STAs. Each 𝑓STA and 𝑚AP has an SDN

and WIFI controller; both are created by using the Ryu Framework [Ryu 2015]. The

𝑚AP is a Raspberry Pi 3 device that uses hostapd to provide AP functionalities and

is equipped with one Ralink Technology RT5572 802.11 a/b/g/n wireless adapter.

The 𝑓STAs are based on PC with Ubuntu 16.04 and have one Qualcomm Atheros

AR9300 wireless network adapter. We performed the experiments setting up the

wireless network in 5 GHz, operating in 802.11n mode, and selecting less noisy

channel according to the spectrum utilization.

The experiments are conducted for 802.11n at the 5 GHz band. The topology in

all scenarios consists of one mAP, and two 𝑓STAs connected through the backhaul

73

switch with the cloud. Beside to the orchestrador, the cloud hosts the applications

accesses by the mobile element. The iperf3 tool is used to generate UDP traffic

between the ends of the communication similar to those used in common real-time

applications.

4.4 Proof-of-concept and evaluation

In this section, we aim to evaluate the impacts of our handover, and packet duplica-

tion approaches in the latency, throughput, and loss. We implemented a prototype in

our testbed as a proof-of-concept to validate the proposed solution, and tools like

iperf, ping, bwm-ng and tcpdump are used to collect and to analyze how our solution

affects an E2E communication.

4.4.1 Orchestration for seamless and reliable handover

In this section, we aim to evaluate SDN-NFV solution for seamless and reliable

handover, by using packet duplication approach. We evaluate the latency, throughput,

and loss during a E2E transmission. We also implement a prototype in our testbed

as a proof-of-concept to validate the proposed solution, and tools like iperf, ping,

bwm-ng and tcpdump are used to collect and to analyze how our solution affects an

E2E communication.

4.4.1.1 Experimental methodology and workload

The first objective is to run a simple experiment seeking to demonstrate the basic

functionality of our architecture by reducing mobility interruption times during mi-

gration (i.e., when the mAP migrates from one fSTA to another). For this purpose, an

experiment collects throughput information in an E2E communication that performs

handover processes and packet duplication under our approach.

The second objective is to analyze our architecture performance with different

mechanisms implemented. Performance metrics are evaluated by using services

average latency in Round Trip Time (RTT) between the mobile element and the cloud,

and packet loss improvement in the presence of lossy wireless channels. In this way,

a second experiment was carried out to measure RTT and to analyze the latency

in good wireless channel conditions i) without performing handovers (assumed as

baseline), ii) performing simple handovers and iii) with handover implementing

packet duplication during the transitions period. The experiment runs over 1 minute,

sending a ping packet every 0.5 ms and the handover processes are triggered by

the orchestrator every 1 second. This handover rate simulates a mobile element

74

 fSTA1 fSTA2Handover

VNFapp

 fSTA1 fSTA2Handover
DPkt

VNFapp

 fSTA1 fSTA2Handover
DPkt

VNFapp

LOSSLOSS

Figure 4.5: Scenarios: a)Throughput in seamless handovers: multi-connectivity with
packet duplication from 𝑡 = 8𝑠 to 𝑡 = 18𝑠.

Figure 4.6: Throughput in seamless handovers: handover (𝑡 = 7𝑠) and failover
(𝑡 = 18𝑠), without packet duplication.

that travels at a speed of 1 m/s in a small cell scenario with cell size of 1𝑚2, where

handover processes are very frequent and their performance is decisive for the

communication reliability.

A third experiment seeks to analyze redundant transmissions by packet duplica-

tion. The experiment also runs over 1 minute in the presence of wireless channels

with losses for both links (mAP-fSTA1 and mAP-fSTA2), so the orchestrator imple-

ments full packet duplication through both fSTAs.

4.4.1.2 Throughput in seamless handovers

In the first experiment, we measure the throughput from the VNF𝑎𝑝𝑝 in the Cloud

to the mAP→VNF𝑎𝑝𝑝, the experiment duration was 25 seconds generating 10 Mbps

UDP packets from the source. To understand the E2E throughput, a handover is

75

Figure 4.7: Throughput in seamless handovers: multi-connectivity with packet
duplication from 𝑡 = 8𝑠 to 𝑡 = 18𝑠.

triggered from fSTA1 to fSTA2 at t = 7 s and then a fault is introduced in the fSTA2

when t = 18 s. As it can be seen in Figure4.6, there is no interruption times due to

mobility of the mAP. The system keeps the throughput performance, despite a little

degradation around 5% during the handover and 10% during failure recovery. The

difference can be explained by the reactive process in the failover process, since

the orchestrator needs to wait for a notification of failure to move the traffic to

another fSTA. Despite the performance degradation, there were only few packet

losses during the experiment, not very representative for the final communication

performance.

Also as part of the first experiment and under the same conditions, the packet

duplication scheme implemented in the architecture was tested. In this case, the

full duplication of the traffic is carried out through fSTA1 and fSTA2, as shown in

Figure 4.7. A throughput degradation of 50% is expected as long as the duplication

of traffic happens (blue line). This occurs due to the fact that at the destination,

the mAP manages two data connections through the same wireless interface. This

result evidences the existing trade-offs between reliability versus throughput or

traffic density that can be managed by area. This requires an efficient orchestration

scheme capable of determining the appropriate times to start/stop the duplication

of packages, so that the best reliability-throughput trade-off can be obtained. For

this purpose, some techniques can be shipped in the orchestrator, such as machine

learning with supervised learning, determining the best moment to start duplicating

packets fitting this trade-off. Then, a machine learning algorithm can classify ac-

cordingly depending on the application’s requirements and the parameters exposed

by the orchestrator.

76

Figure 4.8: Comparison of latency during handovers: CDF of the RTT measured in
each scenario.

4.4.2 Comparison of latency during handovers

The results of the second experiment related to latency are shown in Figure 4.8. The

figure presents the end-to-end RTT CDF without performing handovers (baseline),

performing simple handovers and with handovers implementing packet duplication

during the transitions periods. The results show that for 60% of the packets,

analyzed by the RTT, the handover scheme does not introduce noticeable latency

when compared to the baseline. However, packet duplication adds extra latency due

to de-duplication process carried out with a VNF scheme at user plane. For about

85% of the packets, the handover RTT already matches the duplication RTT, and

both differ about 0.2 ms from the baseline, which represents the highest latency

introduced by any of the schemes implemented in our architecture. Finally, 99% of

the packets experience less than 2.0 ms of RTT in the three scenarios. This indicates

that our architecture can even support the 1 ms latency real-time applications

requirements described in URLLC.

4.4.3 Impact of packet duplication on packet loss

The last experiment analyzes the performance of our packet duplication solution

under lossy channel conditions imposed by lowering transmitted powers. For this

experiment, the validation consists in comparing the number of losses, sending in

the same condition using: i) single path to fSTA1 or fSTA2; ii) multiple paths using

fSTA1 and fSTA2. Figure 4.9 presents the packet loss percentage measured on each

link.

The results show that packet duplication does significantly reduce the variability

77

Figure 4.9: Impact of packet duplication on packet loss: with and without packet
duplication.

of packet loss. However, the average packet seems to be unaffected due to the

wireless channel used in this experiment. The main reason for this result is that

the links used for parallel transmissions still have a high level of correlation, so the

negative effects that affect one link would most likely affect the other. Thus, the

identification and use of poorly correlated channels is a necessary condition to be

tackled to increase the reliability.

4.5 Chapter Remarks

Reliability and latency will certainly be requirements for any URLLC offload solution

using WiFi. The solution presented an architecture for better mobility management

in WiFi networks by using orchestration of SDN-NFV functionalities. Our experi-

mental results brought evidence that we can significantly reduce communication

interruption caused by handover and failover events. Moreover, a packet duplication

scheme over a multipath source-routing strategy does not introduce significant

latency in E2E communication. Future work will involve efforts in the direction of

WiFi-5G orchestration integration. Furthermore, by centralizing the channel state

information of all wireless elements, a systematic reliability characterization and the

support of the orchestrator prediction can be tackled by machine learning techniques,

giving us more accurate information about the correlation of the different wireless

channels. To this end, latency and jitter will be achieved to fully meet 3GPP by ex-

ploiting deterministic forwarding mechanisms for backhaul [Martinello et al. 2014],

and datacenter networking [Liberato et al. 2018, Dominicini et al. 2017].

Chapter 5

Expressive and Agile Orchestration

by Source Routing

5.1 Overview

The new generation of networks requires routing and forwarding packets under

strict reliability requirements. For that purpose, the exploitation of redundant paths

is one of the techniques that can deliver more reliability in network communications.

The modern networks are characterized by topologies with high path diversity, which

can be exploited to route traffic across diverse paths. Multipath routing can be a

way to provide an efficient usage of the existing paths guaranteeing high-quality

network services, and increasing the reliability and resilience in the end-to-end

communications [Nielsen et al. 2018].

Multipath routing has emerged as a technology which can offer benefits for an

expressive and agile orchestration as follows [Suer et al. 2020, Singh et al. 2015] :

• Reliable communication can be realized with the implicit fault tolerance aspect

of multipath provisioning. In single path routing, when a path fails (e.g fiber

cuts), routing protocols use alternate paths [Ramos et al. 2013]. The applica-

tion is interrupted for the transitional time until an alternate path is set up

between end-hosts. On the other hand, in the multipath scenario, mostly of

the concurrent flows get affected, as they generally use disjoint paths. The

lost packets can then be quickly retransmitted over existing non-faulty paths.

Hence, the communication remain uninterrupted in the multipath scenario,

albeit at lower throughput.

• Traffic Engineering (TE) : TE mechanisms map the traffic flows and network

resources of a network in such a way that some of the major objectives, such as

reliable communication, higher throughput, minimum delay, congestion control

can be achieved ;

79

• Load balancing and congestion control : are important aspects of TE and can

be achieved by using multipath provisioning. Traffic flows can be distributed

over multiple concurrent paths such that all the links are optimally loaded,

thereby avoiding network hot-spots. If some of the links/nodes are congested

in the network, multipath routing can be efficiently used to shift fraction of

the traffic from congested paths to less congested ones. In order to achieve

load-balancing, either routers need to disseminate link-load information in the

network, or the end-hosts.

• Security : While single-path routing is vulnerable to security threats, such as

denial-of-service attack (by over-loading a particular node/link/path), multipath

routing can provide greater security by dispersing data over multiple paths

between end-hosts, where each path carries a portion of data between a source-

destination pair. Moreover, multipath routing using unpredictable selection of

links/paths makes it difficult for an attacker to conduct such attack against any

single link/path [Lee et al. 2007].

In order to classify any multipath approach as basis for our source routing

mechanism to guarantee an expressive and agile orchestration, there are three basic

dimensions to consider [Suer et al. 2020, Singh et al. 2015]:

1. Multipath computation algorithm to compute multiple paths for a flow; To

find multiple paths for a given traffic flow, multipath computation algorithms

require a global view of the network topology as well as its resources. We

may select paths that are node-disjoint (no common nodes except source and

destination), link-disjoint (no common links) or non-disjoint (may have common

nodes as well as links). Node/link-disjoint paths improve fault-tolerance and

offer more aggregate bandwidth than non-disjoint paths, since a bottleneck

node/link failure for non-disjoint paths can severely impact the performance

of multiple paths. However, non-disjoint paths are easy to discover due to no

constraint on common nodes and links.

2. Multipath forwarding algorithm to forward packets on diverse paths; Once

intermediate routers and end-hosts compute the connectivity (path) informa-

tion, the subsequent question that arises is: how to forward packets along

these multiple paths? Forwarding is a method which maps incoming packets to

outgoing links. In today’s IP network, packets are forwarded along a shortest

path by the intermediate routers based on their destination addresses. The

well-known forwarding mechanisms that can be utilized in multipath packet

forwarding are destination-based (hop-by-hop) forwarding and source-based

routing approach.

80

3. Traffic splitting algorithm to effectively split traffic across multiple paths,

aiming to support requirements such as reliable communication, congestion

control, traffic engineering, load balancing and security. Once a set of paths for

a given flow are determined and a forwarding technique is selected, the source

node (edge) can begin sending data to the destination along the specified paths.

Traffic splitting along multiple paths refers to how to distribute traffic over

multiple paths. Broadly speaking, traffic splitting algorithms can be classified

as Round-Robin, Per-flow , Burst (or Flowlet) with traffic splitting functions at

the granularity of burst (i.e., a group of packets) and Per-packet traffic splitting

techniques [Suer et al. 2020].

We organize the contributions of this chapter as follows:

• (i) we propose M-PolKA, a topology-agnostic RNS-based multipath SR scheme

architecture (Section 5.2);

• (ii) we propose a technique to enable the implementation of the polynomial

mod operation in P4-enabled programmable switches by reusing Cyclic Redun-

dancy Check (CRC) hardware [Dominicini et al. 2020] (Section 5.3).

• To evaluate the aforementioned work (Sections 5.4 and 5.5),

(i) we demonstrate in an emulated environment that M-PolKA can achieve

similar performance to list-based approaches (Sections 5.4.1 and 5.5.1);

(ii) we prototype and evaluate into SmartNIC to demonstrate that the M-

PolKA can achieve similar performance to list-based approches (Sections 5.4.2

and 5.5.2);

and (iii) we prototype and evaluate into P4-based ASIC Tofino switches1

• To demonstrate the feasibility of using polynomial operation in the new modern

and high-capacity P4 programmable switches with the same performance

comparing to list-based and table-based approaches (Sections 5.4.3, 5.5.3,

and 5.5.4).

• In Section 5.6 we propose, demonstrate and evaluate, as a use case, a cross-

layer network programmability with agile and expressive orchestration.
1https://www.intel.com/content/www/us/en/products/network-io/

programmable-ethernet-switch/tofino-series/tofino.html

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html

81

5.2 Multipath Routing Proposal - MPolKA

A major challenge to support an efficient multipath routing is the inherent data and

control planes scalability limitations in a legacy SDN table-based approach [Suer et al. 2020].

As the switching hardware supports limited table sizes from the data plane side,

the growing number of table entries leads to scalability and performance issues.

From the control plane side, path diversity brings the challenge of dealing with

many control messages needed to reconfigure the network and consequently keep

the multipath state. This is far from a trivial problem due to the scale, dynam-

ics, heterogeneity, mobility, and high-performance required by modern applica-

tions [Guimaraes S et al. 2020].

In this context, source routing (SR) schemes for multipath forwarding algo-

rithm arise as strong candidates to replace table-based routing since they avoid

the reconfiguration of all the nodes along the path and to overcome data- and

control-plane scalability limitations [Komolafe 2017]. These schemes allow traffic

engineering to dynamically exploit all existing paths to achieve maximum throughput

[Jyothi et al. 2015]. SR also reduces the control signaling and latency related to

path setup convergence, once migrating paths are only a matter of changing the

state at source or edge nodes2, which are ingress and egress domain gateways.

In this chapter, we want to push to an extreme design choice and answer the

following questions:

• Is it possible to define a fully stateless multipath SR approach (i.e., no state

in the core nodes, nor in the packet) in a network that intrinsically enables

2The edge node may be a virtual switch in a server, a hypervisor, a top-of-rack (ToR) switch.

S1 S2 S31 2

o1 = (10)bin o2 = (0110)bin o3 = (10010100)bin

1

2 3

5

4

7
8

64

1

2

3Edge Edge

Edge
Src

Dst2

Dst1CONTROLLER

10101100101100

Figure 5.1: Example of source routing by using M-PolKA.

82

reliable communication via exploitation of path diversity ?

• How to implement such approach in modern and commodity network hardware

with support to any topology?

To this end, we propose a SR multipath approach named M-PolKA (Multipath

Polynomial Key-based Architecture), which explores special properties from the

Residue Number System (RNS) with polynomial arithmetic using Galois field (GF) of

order 2 [Shoup 2009], known as GF(2). These properties are topology-agnostic and

guarantee that the node sequence is irrelevant to derive the routing label, which re-

mains unchanged throughout all the path [Martinello et al. 2014, Wessing et al. 2002].

M-PolKA generalizes a previous work named PolKA [Dominicini et al. 2020], which

only focused on providing an RNS-based SR scheme for single path.

In M-PolKA multipath routing shown in Figure 5.1, the architecture is composed

of: (i) edge nodes, (ii) core nodes, and (iii) a SDN Controller, responsible for configur-

ing core and edge nodes. The SR relies on three polynomial identifiers over GF(2): (i)

routeID : a route identifier, calculated by the controller using the polynomial CRT and

embedded into the packet by the edge nodes; (ii) nodeID : an identifier previously

assigned to core nodes by the controller in a network configuration phase; and (iii)

portID : an identifier assigned to the output ports of each core node.

5.2.1 M-PolKA usage example

Figure 5.1 shows a usage example in a topology composed of three core nodes.

Suppose the host 𝑆 wishes to communicate with destinations 𝐷𝑠𝑡1 and 𝐷𝑠𝑡2. Consider

that packets should be routed via a selected path, represented by 𝑆1, 𝑆2, 𝑆3 core

nodes and their respective output ports.

In M-PolKA core nodes, the transmission states of the output ports are given

by the remainder of the binary polynomial division (i.e., a mod operation) of the

route identifier of the packet by the node identifier.

To understand all the steps on how M-PolKA works, let 𝑆 = {𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑁(𝑡)}
be the set of the polynomials representing the nodeIDs of the nodes in this path.

The set 𝑆 must be composed of pairwise co-prime (irreducible) polynomials and

satisfy the condition 𝑑𝑒𝑔(𝑠𝑖) ≥ 𝑛𝑝𝑜𝑟𝑡𝑠, where 𝑛𝑝𝑜𝑟𝑡𝑠 denotes the number of ports in

the node.

Let O = {𝑜1(𝑡), 𝑜2(𝑡), . . . , 𝑜𝑁(𝑡)} be the set of 𝑁 polynomials, where 𝑜𝑖(𝑡) represents

the transmission state of the ports (i.e., 0 does not transmit, 1 transmits a packet

copy). For instance, the polynomial 𝑜𝑖(𝑡) = 𝑎2𝑡
2 + 𝑎1𝑡 + 𝑎0 maps the state 𝑎2𝑎1𝑎0,

which means that there are 3 ports in the node 𝑠𝑖, and each coefficient represents

the state of one port. If the output port polynomial is 𝑜𝑖(𝑡) = 𝑡2 + 𝑡 = 110 then 𝑎2 = 1,

83

𝑎1 = 1, and 𝑎0 = 0. This means that port 2 is transmitting, port 1 is transmitting, and

port 0 is not transmitting.

The degrees of the polynomials assigned to 𝑠1, 𝑠2, and 𝑠3 must be equal or greater

than 2, 4, and 8, respectively, to represent the necessary number of transmission

states at each node. Consider that the following irreducible polynomials are assigned

to the 𝑠𝑖 nodes:

𝑠1(𝑡) = 𝑡2 + 𝑡+ 1 = 111

𝑠2(𝑡) = 𝑡4 + 𝑡+ 1 = 10011

𝑠3(𝑡) = 𝑡8 + 𝑡4 + 𝑡3 + 𝑡+ 1 = 100011011

Considering the nodes 𝑠1, 𝑠2, and 𝑠3 and the transmission states of Figure 5.1,

the output ports set 𝑂 is composed by:

𝑜1(𝑡) = 𝑡 = 10

𝑜2(𝑡) = 𝑡2 + 𝑡 = 0110

𝑜3(𝑡) = 𝑡7 + 𝑡4 + 𝑡2 = 10010100

Thus, 𝑅(𝑡) must satisfy the conditions of Eq. 5.1:

𝑅(𝑡) ≡ (𝑡) mod (𝑡2 + 𝑡+ 1)

𝑅(𝑡) ≡ (𝑡2 + 𝑡) mod (𝑡4 + 𝑡+ 1)

𝑅(𝑡) ≡ (𝑡7 + 𝑡4 + 𝑡2) mod (𝑡8 + 𝑡4 + 𝑡3 + 𝑡+ 1)

As in CRT for polynomials (Section 5.2.2), we have:

𝑀(𝑡) = (𝑡2 + 𝑡+ 1) · (𝑡4 + 𝑡+ 1) · (𝑡8 + 𝑡4 + 𝑡3 + 𝑡+ 1)

𝑚1(𝑡) = 𝑠2(𝑡) · 𝑠3(𝑡) = (𝑡4 + 𝑡+ 1) · (𝑡8 + 𝑡4 + 𝑡3 + 𝑡+ 1)

𝑚2(𝑡) = 𝑠1(𝑡) · 𝑠3(𝑡) = (𝑡2 + 𝑡+ 1) · (𝑡8 + 𝑡4 + 𝑡3 + 𝑡+ 1)

𝑚3(𝑡) = 𝑠1(𝑡) · 𝑠2(𝑡) = (𝑡2 + 𝑡+ 1) · (𝑡4 + 𝑡+ 1)

And solving Eq. (5.5), we find the polynomials 𝑛𝑖(𝑡):

𝑛1(𝑡) = 𝑡, 𝑛2(𝑡) = 𝑡3 + 𝑡+ 1, 𝑛3(𝑡) = 𝑡6 + 𝑡5 + 𝑡4

Finally, we can calculate 𝑅(𝑡) according to Eq. (5.2):

𝑅(𝑡) = 𝑡13 + 𝑡11 + 𝑡9 + 𝑡8 + 𝑡5 + 𝑡3 + 𝑡2 = 10101100101100

84

Note that a polynomial 𝑓(𝑡) = 𝑎𝑛𝑡
𝑛+𝑎𝑛−1𝑡

𝑛−1+ . . .+𝑎1𝑡
1+𝑎0𝑡

0 can be represented

by the bit vector 𝑎𝑛𝑎𝑛−1 . . . 𝑎1𝑎0. Thus, an identifier is represented by a bit vector

formed by the coefficients of a polynomial, which are either 0 or 1. Also, the bit

length of the identifier is 𝑙𝑒𝑛(𝑓).

Based on the definition of the path represented by 𝑆 and 𝑂, the Controller

calculates the routeID using the polynomial CRT (see Section 5.2.2) as the polynomial

𝑅(𝑡) that satisfies:

𝑅(𝑡) ≡ 𝑜𝑖(𝑡) mod 𝑠𝑖(𝑡), 𝑓𝑜𝑟 𝑖 = 1,2, . . . 𝑁 (5.1)

The routeID is embedded in the packet by the edge element, and the forwarding

operation in each core node calculates the transmission state of the output ports

as the remainder of the euclidean division of the routeID in the packet by its

nodeID : 𝑜𝑖(𝑡) = < 𝑅(𝑡) >𝑠𝑖(𝑡). Therefore, packets receive at the edge the routeID

10101100101100, then each node calculates the remainder of 𝑅(𝑡) = 10101100101100

by its own nodeID 𝑠3(𝑡) = 100011011 which gives 𝑜2(𝑡) = 100101000. For example, in

𝑠3 ports 3, 5 and 8 must transmit packets.

The Controller may proactively compute 𝑅(𝑡) or calculate it when the first packet

of a flow arrives. On the other hand, core nodes only execute a simple mod

operation per packet.

The following subsections are organized as follows: i) to describe the mathemati-

cal formulation and scheme supported by M-PolKA (5.2.2); and ii) scalability analysis

(5.2.3).

5.2.2 Mathematical Background for M-PolKA approach

Polynomial Ring over GF(2): Let GF(2) = {0,1} be the Galois Field of order 2,

whose elements are residue classes modulo 2. The arithmetic operations of addition

and multiplication in GF(2) are defined modulo 2. The set of all polynomials in

one variable 𝑡 with coefficients in GF(2), called polynomials over GF(2), is a ring

considering the arithmetic operations of addition and multiplication modulo 2. If

𝑓(𝑡) = 𝑎𝑛𝑡
𝑛 + 𝑎𝑛−1𝑡

𝑛−1 + . . . + 𝑎1𝑡 + 𝑎0 is a polynomial over GF(2), where 𝑎𝑛 ̸= 0, 𝑛

is defined as the degree of 𝑓(𝑡), denoted by 𝑑𝑒𝑔(𝑓). The length of 𝑓(𝑡), denoted by

𝑙𝑒𝑛(𝑓), is defined by 𝑙𝑒𝑛(𝑓) = 𝑑𝑒𝑔(𝑓) + 1.

Euclidean Division Theorem for Polynomials: Let 𝑓(𝑡) and 𝑔(𝑡) be polynomials

over GF(2) , where 𝑔(𝑡) ̸= 0. There exist unique polynomials 𝑞(𝑡) and 𝑟(𝑡) over

GF(2) such that 𝑓(𝑡) = 𝑔(𝑡).𝑞(𝑡) + 𝑟(𝑡), where either 𝑟(𝑡) = 0 or 𝑑𝑒𝑔(𝑟) < 𝑑𝑒𝑔(𝑔). The

polynomial 𝑟(𝑡) is called the remainder of the division of 𝑓(𝑡) by 𝑔(𝑡), and will be

denoted by < 𝑓(𝑡) >𝑔(𝑡).

Polynomial congruence: Given 𝑓(𝑡), 𝑔(𝑡), and ℎ(𝑡) polynomials over GF(2), we

85

say that 𝑓(𝑡) is congruent to ℎ(𝑡) modulo 𝑔(𝑡), and write 𝑓(𝑡) ≡ ℎ(𝑡) 𝑚𝑜𝑑 𝑔(𝑡), if

ℎ(𝑡) =< 𝑓(𝑡) >𝑔(𝑡).

Irreducible Polynomials: A non-zero polynomial 𝑔(𝑡), is called a divisor of 𝑓(𝑡)

over GF(2) if 𝑓(𝑡) = 𝑎(𝑡).𝑔(𝑡), for some polynomial 𝑎(𝑡) over GF(2). Two polynomials

𝑓(𝑡) and 𝑔(𝑡) over GF(2) are coprime if their only common divisor is 1. A non-constant

polynomial 𝑓(𝑡) over GF(2) is called irreducible over GF(2) if its only divisors are

possibly a constant polynomial and itself.

Chinese Remainder Theorem (CRT) for polynomials: Let 𝑠1(𝑡), 𝑠2(𝑡), . . . ,𝑠𝑁(𝑡) be

monic pairwise coprime polynomials over GF(2) and let 𝑀(𝑡) =
∏︀𝑁

𝑖=1 𝑠𝑖(𝑡). There

exists a unique polynomial 𝑅(𝑡) over GF(2) with 𝑑𝑒𝑔(𝑅) < 𝑑𝑒𝑔(𝑀), satisfying 𝑅(𝑡) ≡
𝑜𝑖(𝑡) 𝑚𝑜𝑑 𝑠𝑖(𝑡), for 𝑖 = 1,2, ...,𝑁 , where:

𝑅(𝑡) = < 𝑅̃(𝑡) >𝑀(𝑡) (5.2)

𝑅̃(𝑡) =
𝑁∑︁
𝑖=1

𝑜𝑖(𝑡) ·𝑚𝑖(𝑡) · 𝑛𝑖(𝑡) (5.3)

𝑚𝑖(𝑡) = 𝑀(𝑡)/𝑠𝑖(𝑡) (5.4)

𝑛𝑖(𝑡) ·𝑚𝑖(𝑡) ≡ 1 𝑚𝑜𝑑 𝑠𝑖(𝑡) (5.5)

The computation of 𝑛𝑖(𝑡) can be implemented by using the Extended Euclidean Algo-

rithm, which basically consists in applying the Euclidean Division Theorem several

times. The algorithm complexity for computing 𝑅(𝑡) is 𝒪
(︀
𝑙𝑒𝑛(𝑀)2

)︀
[Shoup 2009].

5.2.3 Scalability analysis

The goal of this section is to investigate the overhead of our new scheme in the

bit length of routeID in comparison to the Port Switching and integer RNS-based

approaches. The bit length of 𝑅(𝑡), 𝑙𝑒𝑛(𝑅), in PolKA is given by the equation:

𝑙𝑒𝑛(𝑅) = 𝑙𝑒𝑛(< 𝑅̃(𝑡) >𝑀(𝑡)) ≤
𝑁∑︁
𝑖=1

𝑑𝑒𝑔(𝑠𝑖) (5.6)

Algorithm 1 shows a pseudo-code for computing the maximum 𝑙𝑒𝑛(𝑅), given: the

number of ports in each node (𝑛𝑝𝑜𝑟𝑡𝑠), the number of nodes (𝑠𝑖𝑧𝑒), and the topology

diameter (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟). For the sake of simplicity, we consider that all nodes have the

same number of ports. A list of nodeID polynomials (𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡) is generated, which

consists of 𝑠𝑖𝑧𝑒 irreducible polynomials with degree greater than or equal to the

minimum degree (𝑚𝑖𝑛𝑑𝑒𝑔). Note that we select polynomials with the lowest possible

degree (e.g., if 𝑚𝑖𝑛𝑑𝑒𝑔 = 5, we start assigning one of the 6 existing irreducible

polynomials of degree 5 to nodes, and, if necessary, we use the 9 existing irreducible

86

Algorithm 1 Computation of the maximum 𝑙𝑒𝑛(𝑅).

1: function maxlen(𝑛𝑝𝑜𝑟𝑡𝑠, 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝑠𝑖𝑧𝑒)
2: 𝑚𝑖𝑛𝑑𝑒𝑔 ← 𝑛𝑝𝑜𝑟𝑡𝑠
3: 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑖𝑟𝑟𝑒𝑑_𝑝𝑜𝑙𝑦_𝑙𝑖𝑠𝑡(𝑚𝑖𝑛𝑑𝑒𝑔,𝑠𝑖𝑧𝑒)
4: 𝑝𝑎𝑡ℎ𝑙𝑖𝑠𝑡← 𝑔𝑒𝑡_𝑙𝑎𝑠𝑡_𝑖𝑡𝑒𝑛𝑠(𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡,𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟)
5: 𝑙𝑒𝑛𝑔𝑡ℎ← 0
6: for 𝑒𝑙𝑒𝑚 ∈ 𝑝𝑎𝑡ℎ𝑙𝑖𝑠𝑡 do
7: 𝑙𝑒𝑛𝑔𝑡ℎ← 𝑙𝑒𝑛𝑔𝑡ℎ+ 𝑑𝑒𝑔(𝑒𝑙𝑒𝑚);
8: end for
9: return 𝑙𝑒𝑛𝑔𝑡ℎ Maximum 𝑙𝑒𝑛(𝑅)

10: end function

polynomials of degree 6, and so forth). Thus, 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 is already ordered by degree.

Finally, we select the worst case scenario in which the polynomials in 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 with

the greatest degrees assigned to the nodes in the longest possible path (i.e., the

diameter). To this end, we pick the 𝑥 last elements of 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡, where 𝑥 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟,

and calculate the maximum 𝑙𝑒𝑛(𝑅) according to Eq.(5.6).

Table 5.1 compares the scalability of M-PolKA, ELMO [Shahbaz et al. 2019], and

BIER [Wijnands et al. 2017] for two common DC topologies (fat-tree and two-tier),

and three continental backbone topologies [Routray et al. 2013] (ARPANET, and

GEANT2). This topology set covers diverse properties for switch fan-outs (i.e.

number of ports), network diameter and size. For backbone topologies, as the

number of ports varies per node, we considered 𝑛𝑝𝑜𝑟𝑡𝑠 as the maximum number of

ports of any node. The results for the integer RNS-based approach were omitted,

because they are very close to M-PolKA. This means that using M-PolKA instead of

the integer version does not incur in reserving extra bits for the routeID header.

For the topologies under worst case analysis in Table 5.1, the maximum 𝑙𝑒𝑛(𝑅)

results show that M-PolKA fits existing packet headers (e.g., 96 bits of Ethernet

source and destination addresses, or a stack of MPLS labels with 20 bits per label,

plus BIER header). When deploying RNS-based SR, the cost to exploit RNS features

may be to reserve more bits in the packet header for representing the routeID .

Nevertheless, there are known techniques that make optimal assignment of nodeIDs

(avoiding the worst-case scenario), and reduce routeID length [Ren et al. 2017,

Liberato et al. 2018].

As shown in Table 5.1, ELMO as a well-known existing multipath LB-SR, does not

scale well with different topologies and demonstrates a good scale for only fat-tree

topologies. On the other hand, BIER has a problem in scaling for topologies with

higher diameters, such as fat-tree with either 16 or 24 pods. However, noteworthy

to say that the number of bits needed by the BIER considering it as a hybrid SR

(i.e., hop-by-hop match-action table operation), there is still the need to maintain the

forwarding states on all nodes. It penalizes either the convergence time, once we

87

Table 5.1: Scalability of Header sizes (in bits) for different configurations.

Topology 𝑛𝑝𝑜𝑟𝑡𝑠 𝑑𝑖𝑎𝑚. 𝑠𝑖𝑧𝑒
Bits for
M-PolKA

Bits for
ELMO

Bits for
BIER

Two-tier S6 L6* 24 3 12 72 74 12
Two-tier S12 L12* 24 3 24 72 122 24
Two-tier S16 L16* 24 3 32 72 154 32
Fat-tree 8 pods 8 5 80 45 42 80
Fat-tree 16 pods 16 5 320 80 82 320
Fat-tree 24 pods 24 5 720 120 122 720
ARPANET 4 7 20 44 x 20
GEANT2 8 7 30 56 x 30

* Two-tier topology with 16 spine switches and 16 leaf switches.

need to update the forwarding state on all nodes, or it becomes tough to explore

other paths for a given E2E communication (i.e., for load-balance or protection

paths).

5.3 Implementation Design

The most traditional way of executing source routing is a list-based SR (LB-SR)

approach, which is the case of ELMO. Indeed, the routing label represents an

ordered list (or stack) of output ports, and the forwarding operation is a pop of

the first element [Jin et al. 2016]. Although this approach drastically reduces the

burden of managing network states by eliminating tables in core nodes, it still needs

to maintain a state in the packet by using a routing label rewrite operation in

every node to update the list. This operation may be costly for packet networks and

difficult to implement in other network domains [Wessing et al. 2002].

We have decided to extend the simplest LB-SR called Sourcey [Jin et al. 2016]

by adding the support for multipath and multicast, in which it does not affect the

properties of the operations needed to be performed in the list hop-by-hop. In reality,

the difficulty of reproducing ELMO is inherent to the fact that ELMO only shares an

initial 𝑃4
3 code missing some critical information and code about the externs used in

the code and also information on how to reproduce a new experiment minimally.

This section studies how to implement M-PolKA and simplified LB-SR methods

according to P4 architecture [P4 v16 2020]. We decided to implement a simplified

LB-SR with the multipath capability to make a baseline comparison with M-PolKA

approach. Design choices may change according to application requirements and

3https://github.com/Elmo-MCast/p4-programs

https://github.com/Elmo-MCast/p4-programs

88

t_stateethernet IP databos t_statebost_statebos ...version proto

(a) LB-SR header with variable length

routeIDethernet IP dataversion proto

(b) M-PolKA header with fixed length

Figure 5.2: LB-SR and M-PolKA headers.

target platform features. For instance, the routeID can be added in a new or existing

header, while the header’s size depends on the network topology, diameter, and the

number of ports per switch. This section is organized as follows: i) Pipeline design

(5.3.1); ii) Data plane (5.3.2); iii) Control plane (5.3.3).

5.3.1 Forwarding packets on multiple paths in P4 Pipelines

5.3.1.1 LB-SR pipeline

Our implementation of LB-SR creates a new header that includes the port stack after

the Ethernet header, as shown in Figure 5.2(a). Each item of the stack has a bos

(bottom of stack) bit and a port number. The bos bit is 1 only for the last entry.

When the packet reaches an edge node from an end-host, the etherType in the

Ethernet header is TYPE_IPv4=0x800. Thus, the switch must parse the IPv4 header,

encapsulate the SR header, and change the etherType to TYPE_SR=0x1234.

Each edge switch has a table, which is populated by the controller and maps

destination IP address to their routing paths, represented by a port list. The result

of this table lookup is an action that sets the output port to the directly connected

core switch and encapsulates 𝑛 SR headers, where 𝑛 is the number of core switches

in the path. At core switches, the pipeline of Figure 5.3(a) is executed. Firstly, the

Ethernet header is parsed to check if the etherType is TYPE_SR. Then, the switch

parses the first SR header, gets the version, which identifies the protocol version,

and the bit vector (bit_vector). Finally, the switch pops this bit vector header from

the stack. If the bos bit is one, it is identified as the last hop and then the etherType

is changed to TYPE_IPv4. Another possible implementation for progressing in the

list is to increment an index of each hop’s current position. The protocol version

identifies how the bit vector will be interpreted (i.e., version equal 1 is unicast or

version equal 2 is multicast).

5.3.1.2 M-PolKA pipeline

The M-PolKA header contains a routeID , whose maximum length depends on the

network topology, as explained in Section 5.2.3. Figure 5.2(b) shows the format of

89

extract
ethernet header

etherType==
TYPE_SR?

extract SR
header

& get version
and t_state

start

end

T

pop header

drop packet
F

emit packet

T

T

Tport n in t_state?

port 2 in t_state?

port 1 in t_state?

continue

continue

clone packet
to port

... ...

continue

set output port =
t_state

version ==
multipath?

T

F

set output port

(a) LB-SR

lookahead
ethernet header

etherType==
TYPE_SR?

lookahead
version and

routeID

emit packet

start

end

T

routeID mod
nodeID
=> aux

drop packet
F

T

T

Tport n in t_state?

port 2 in t_state?

port 1 in t_state?

continue

continue

clone packet
to port

... ...

version ==
M-PolKA?

set output port

continue

set output port =
aux

set t_state = aux

T = multipath

F = unicast

(b) M-PolKA

Figure 5.3: Forwarding packets on multiple paths in P4 pipelines for core switches

M-PolKA header with a fixed length field for storing the routeID , after the Ethernet

header. At edge switches, M-PolKA pipeline for encapsulating the SR header is

similar to LB-SR, but the result of the table lookup is an action that sets the output

port to the directly connected core switch and encapsulates a single routeID .

At core switches, the pipeline of Figure 5.3(b) is executed. When etherType

is TYPE_SR, as M-PolKA only needs read access to packet headers, it uses the

lookahead method of P4 language that evaluates a set of bits from the input packet

without advancing the packet index pointer. To obtain the bit vector, which can

represent either the output port or a transmission state (t_state), the switch has to

perform a mod operation between the routeID in the packet and its own nodeID .

To iterate onto the bit vector, we use a chain of if (<condition>) statements for

each port. We do not use resubmit or recirculate actions once we observed a

huge overload in the latency when we have used them since these built-in actions

behave as repetition statements. The protocol version is only used to identify how

the bit vector will be interpreted. In this case, when the version is equal to 1, the

90

packet is handled as unicast, whereas for a version equal to 2, the packet is handled

as multicast.

Besides, in M-PolKA, there is no information in the header to identify the last hop.

This is not a problem in networks, because the packet delivery to an edge switch

represents the end of the SR path. At the edge switch, the SR header is removed

and the etherType is changed to TYPE_IPv4.

5.3.1.3 Comparison between LB-SR and M-PolKA pipelines.

• LB-SR header has variable size, depending on the number of remaining hops

in the path. On the other hand, M-PolKA has a fixed-length header to store the

routeID ;

• In P4, LB-SR needs to create one encapsulating action for each stack size

(e.g., add_header_1hop, add_header_2hops, ...), which increases the number

of code lines and memory for deploying the edge code;

• In LB-SR, each core switch performs a header rewrite to update the stack when

performing the pop operation (yellow in Figure 5.3(a)). On the other hand, in

M-PolKA (Figure 5.3(b)), the packet remains unchanged along the path;

• In LB-SR, the bit vector is directly available in the SR header, while M-PolKA

requires an arithmetic operation over the routeID to calculate the bit vector.

• After acquiring the bit vector, for the multicast approach, the data plane

iterates onto the bit vector in both approaches to check if the ports belong to

the bit vector. If it is true, the data plane clones the packet that is enqueued in

the packet buffer with the respective egress port to afterwards be processed

by the egress stage. For the unicast approach, the data plane does the casting

from the bit vector to an integer value, which identifies the output port.

Thus, if we can perform the mod operation of M-PolKA with equivalent latency

to the rewrite operation of LB-SR, we could take advantage of RNS properties

without compromising performance when compared to Port Switching.

5.3.2 Data plane

5.3.2.1 Reuse of CRC for implementing mod operation in P4

Polynomial or integer mod operations with non-constant operands are not natively

supported by commodity network hardware and are not available in P4 language.

Thus, as stated before, one of the main contributions of this chapter is to generalize

91

the technique proposed by [Dominicini et al. 2020], which allows the execution of

the polynomial mod in hardware by reusing common CRC operations.

In CRC operations, sender and receiver agree on a generator polynomial (𝐺),

which is an 𝑟 + 1 bit pattern used for error-detection. For data 𝐷 with 𝑑 bits, the

sender calculates additional 𝑟 bits (𝑅), and appends them to 𝐷 in such a way that the

result is a polynomial with 𝑑+ 𝑟 bits that is divisible by 𝐺 using modulo-2 arithmetic

[Peterson and Brown 1961].

Thus, the CRC code is the remainder of 𝐷 shifted left by 𝑟 bits, divided by 𝐺:

𝑅 =< 𝐷 · 2𝑟 >𝐺. Therefore, we could try to map the routeID as D, and the nodeID as

G. However, M-PolKA does not perform a shift operation over the routeID as done in

the CRC strategy.

As the degree of G is 𝑟, this problem can be solved if we separate the routeID

in two parts: routeID = 𝐷 * 2𝑟 + 𝑑𝑖𝑓 , where 𝑑𝑖𝑓 is the 𝑟 least significant bits of the

routeID . Firstly, we shift right the routeID by 𝑟 bits to produce the data 𝐷, which

will be the input of the CRC function. Then, the bits that were lost with the shift

right operation (𝑑𝑖𝑓) can be added back to the calculated CRC remainder in the end

of the computation to produce a bit vector. Since the degree of the bitmap obtained

is less than 𝑟, the unicity property in division algorithm for polynomials assures that

the outcome polynomial coincides with the remainder obtained by direct division of

routeID by the nodeID . Also, in binary arithmetic, both the addition and subtraction

operations are identical to the logical XOR operation. These steps are described as

follows:

1. 𝐺 = nodeID, 𝑟 = 𝑑𝑒𝑔𝑟𝑒𝑒(𝐺)

2. 𝐷 = routeID÷ 2𝑟 (SHIFT RIGHT)

3. 𝑑𝑖𝑓 = routeID−𝐷 * 2𝑟 (SHIFT LEFT, XOR)

4. 𝑅 =< 𝐷 * 2𝑟 >𝐺 (CRC)

5. 𝑏𝑖𝑡_𝑣𝑒𝑐𝑡𝑜𝑟𝐼𝐷 = 𝑑𝑖𝑓 +𝑅 (XOR)

Therefore, the switch calculates the transmission state by using two SHIFT,

one CRC, and two XOR operations, which is more computationally efficient than

executing a division.

With the use of this technique, M-PolKA can be deployed in P4 targets that allow

the configuration of generator polynomials. Since P4 supports CRC operations

through the use of external libraries, called externs [P4 v16 2020], the support

for customized polynomials depends on the architecture models and how specific

92

targets implement them. The PSA4 and v1model5 architectures support customized

polynomials of 16 and 32 bits. In terms of targets, the software switch bmv26 and the

hardware switch Tofino from Barefoot support customized CRC polynomials, while

Netronome SmartNICs only support fixed CRC polynomials.

5.3.2.2 Transmission State

Let a bit vector representing the transmission state denoted by 𝑡_𝑠𝑡𝑎𝑡𝑒𝑥. The 𝑡_𝑠𝑡𝑎𝑡𝑒𝑥

expresses the transmission state to one or many ports in a given hop, looking from

the least significant bit (LSB) to the most significant bit (MSB). In this case, the

data plane needs to perform the cloning/mirroring function, supported by PSA and

v1model architectures, to steer the packet’s clones to other ports. For instance, if

we have a 𝑡_𝑠𝑡𝑎𝑡𝑒𝑥 = 100100, the packet is steered to port 3 (LSB), and also a clone is

steered to port 6 (MSB). To check if ∀𝑃𝑖 ∈ 𝑡_𝑠𝑡𝑎𝑡𝑒 = {1,...,𝑛}, where 𝑃𝑖 represents a

given port number and 𝑛 represents the number of ports, we use the following steps:

1. 𝑎𝑢𝑥 = 𝑝𝑜𝑟𝑡𝑁𝑢𝑚𝑏𝑒𝑟 − 1 (SUBTRACTION)

2. 𝑚𝑎𝑠𝑘 = 1≪ 𝑎𝑢𝑥 (SHIFT LEFT)

3. 𝑅 = 𝑡_𝑠𝑡𝑎𝑡𝑒 ∧𝑚𝑎𝑠𝑘 (AND)

Hence, if 𝑅 > 0 then the packet must be steered to the port 𝑃𝑖. The Code 5.1

shows our P4 implementation based on the aforementioned steps.

1 apply {

2 /* ... */

3 if (meta.version == 2){

4 // to process the transmission state

5 if(meta.count == 0){

6 meta.count = 1;

7 meta.has_lsb = 0;

8 }

9 // Porta 1

10 if((meta.bitvector & (64w1 << (bit<63>)(meta.count - 1))) > 0){

11 if(meta.has_lsb){

12 clone_packet((bit<32>)meta.count);

13 } else {

14 meta.lsb_port = meta.count;

15 meta.has_lsb = 1;

16 }

17 }

4https://p4.org/p4-spec/docs/PSA.html
5https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4
6https://github.com/p4lang/behavioral-model

https://p4.org/p4-spec/docs/PSA.html
https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4
https://github.com/p4lang/behavioral-model

93

18 meta.count = meta.count + 1;

19 // End Port 1

20 /* ... */

Code 5.1: Tranmission state P4 algorithm

Ingress

Match
Action

I
N
P
U
T

P
A
R
S
E
R

Queues
and/or
Buffers

Clone Packet Type = Ingress to Egress

Egress

Match
Action

O
U
T
P
U
T

Figure 5.4: Cloning from Ingress to Egress. Adapted from [P4 2017]

The cloning/mirroring operation is a mechanism to create a copy of a packet and

send the copy to a specified port. This mechanism is implemented by most of the

targets with the support of two packet paths for packet cloning/mirroring: i) Ingress

to Egress (I2E); ii) Egress to Egress (E2E) [P4 2018]. As shown by Figure 5.4, when

the packet arrives at the Ingress stage, the switch performs the I2E clone function,

and then a replica is sent to the beginning of the egress pipeline after passing

through the buffer. To create a new clone instance, we must associate the packet to

a given CloneSessionID. This specifies one of several possible clone session settings

that were already pre-defined by the control plane (i.e., we can create many clones

of one packet by using different CloneSessionIDs). For each clone session, we have

to set two attributes:

1. CloneSessionID : 32 bits unique number.

2. EgressPort : 9 bits egress port number.

In the Code 5.2 we create the action clone_packet that must receive CloneSes-

sionID parameter. Once this function is invoked, it calls the clone extern presented

at the v1model with the parameters CloneType.I2E (Ingress to Egress) and Clone-

SessionID.

1 action clone_packet(bit<32> clone_session_id) {

2 // Clone from ingress to egress pipeline

3 clone(CloneType.I2E, clone_session_id);

4 }

94

5 apply {

6 /* ... */

7 clone_packet((bit<32>)meta.count);

8 /* ... */

9 }

Code 5.2: Clonning/Mirroring Code

5.3.3 Control Plane

One of the M-PolKA control planes’ main roles is topology discovery and monitoring

since other steps depend on full knowledge of the network. The SDN Controller is

also responsible for a network setup phase, where it assigns unique nodeIDs to each

core node. With the knowledge of the number of nodes and the number of ports

of each node, the controller must calculate the N irreducible polynomials for the

nodeIDs while ensuring the degree. We have developed a Python library7 to auto-

matically calculate and return the nodeIDs based on a given topology specified via a

JSON message, as shown in Code 5.3 one. The library abstracts the whole process in

figuring out the irreducible polynomials and, based on that, the routeID calculation

for a desired end-to-end communication (i.e., GF(2) arithmetic operations).

1 { "name": "Topo01",

2 "multicast_enabled": true,

3 "nodes": [

4 {

5 "name": "switch 1",

6 "type": 1,

7 "ports": [1,2,3]

8 },

9 {

10 "name": "edge 1",

11 "type": 2,

12 "ports": [1,2]

13 },

14 # ... #

15],

16 "links": [

17 {

18 "src": {

19 "name": "s1",

20 "port": 3,

21 },

22 "dst": {

23 "name": "s2",

7https://pypi.org/project/polka-routing/

https://pypi.org/project/polka-routing/

95

24 "port": 2

25 }

26 },

27 # ... #

28]

29 },

30 "routes": [

31 {

32 "from": "e1",

33 "to": "e2"

34 },

35 {

36 "from": "e2",

37 "to": "e1"

38 },

39]

40 }

Code 5.3: Example of a JSON message used in M-PolKA Python Library to get

automatically irreducible polynomials and routeIDs

M-POLKA CONTROLLER

Edge Node
Tables

Core Node
Settings

Polynomial
Calculation

AMQP

Monitoring

Worker

AMQP
P4 ABSTRACTION LAYER

P4
Agent

Figure 5.5: M-PolKA Controller and P4 Agent

As Figure 5.6 illustrates, the key components of the M-PolKA control plane

architecture consist of:

• Edge Node Tables: responsible for inserting, deleting, and updating rules at

96

the edge nodes. Each rule in the table identifies the routeID used for a given

flow, making it possible for the edge nodes to add and remove the appropriately

routeID for each packet.

• Polynomial Calculation: calculate routeID around its domain to alleviate the

orchestration overload by taking autonomous decisions regarding link failure,

elements mobility, and the use of protection paths.

• Core Node Settings: in charge of setting nodeIDs and CloneSessionIDs up. This

abstraction hides all the procedures involved in the setup of those parameters

independently of the architecture. We have developed “drivers“ to enable

compatibility with both BMv2 and ASIC Tofino architectures. For the ASIC

Tofino, we have developed a driver by using the proprietary Python Library

provided by Inte/Barefoot that interacts with the switch device.

• Monitoring: collects and reports the network state, such as link failure and

congestion, in order to provide a feedback loop needed for upper layer decisions

(e.g., to a multi-domain orchestration layer).

• Worker: acts as an internal broker aiming to coordinate disaggregate controller

applications with their actuation scope. It provides the opportunity to plug

easily other third-party library functions or modifies existing functionalities via

a unified interface.

P4 Abstraction Layer consists of a P4 agent that receives messages via a publish-

subscribe channel and translates them to a P4 runtime command. Therefore, the

P4 agent uses the same publish-subscribe channel to send some events regarding

link failure and congestion to the M-PolKA control plane. The publish-subscribe

paradigm provides more scalability, resilience, and maintainability because, in

general, it offers a more loosely coupled communication system than gRPC8 and

point-to-point messaging technologies [Comer and Rastegarnia 2019].

5.4 Proof-of-concept and experimental validation

To evaluate the main functionalities of M-PolKA in comparison to the LB-SR, two pro-

totypes were implemented: (i) an emulated setup to evaluate end-to-end scenarios,

and (ii) a physical setup that uses Netronome SmartNICs9 to evaluate forwarding in

a single hop scenario.

8https://grpc.io/
9https://www.netronome.com/

https://grpc.io/
https://www.netronome.com/

97

M-POLKA CONTROLLER

Edge Node
Tables

Core Node
Settings

Polynomial
Calculation

AMQP

Monitoring

Worker

AMQP
P4 ABSTRACTION LAYER

P4
Agent

Figure 5.6: M-PolKA Controller and P4 Agent

5.4.1 Emulated M-PolKA prototype

5.4.1.1 P4 architecture and target

The software switch bmv2 simple_switch with the v1model architecture was se-

lected as the target for this prototype, once it supports all the functionalities required

by M-PolKA, such as the configuration of CRC polynomials. Also, we use the clone3

primitive action (P4_16) to enable the multipath feature. The number of clone ses-

sion IDs is limited to 65535 in the bmv2 simple_switch. It is important to highlight

that this software switch is a user-space implementation that focuses on feature

testing. There are other high performance implementations of P4 software switches

and compilers (e.g., PISCES10, P4ELTE11, and MACSAD12), but they do not yet cover

all the features required by M-PolKA. As these implementations arise, it will be

possible to test our prototype with higher loads. For the time being, the solution

was to limit the link rates to 10Mbps in our emulated prototype to avoid reaching

the processing capacity limits of bmv2 simple_switch.

10http://pisces.cs.princeton.edu/
11http://p4.elte.hu/
12https://github.com/intrig-unicamp/macsad/

http://pisces.cs.princeton.edu/
http://p4.elte.hu/
https://github.com/intrig-unicamp/macsad/

98

5.4.1.2 Setup description

The setup consists of one server Dell PowerEdge T430, with one Intel Xeon E5-2620

v3 2.40 GHz processor and 64 GB of RAM. To build our emulated environment,

we used Mininet [Mininet 2018] with P413, which becomes a tool that augments

the well-known Mininet emulator by including virtual wireless stations (STA) and

access points (AP), and, likewise, allows running P4 programs on different switches.

This functionality is crucial to emulate wireless and wired networks, which require

different P4 programs for the edge, core, and AP elements.

5.4.1.3 Control plane implementation

It has two main functionalities: (i) for core: compute nodeIDs, and configure core

switches with their respective identifiers; and (ii) for the edge: compute routing

paths for the traffic flows, calculate routeIDs for these paths, and configure table

entries in edge switches that will be responsible for encapsulating routeIDs. For the

RNS computation of nodeIDs and routeIDs, as described in Section 5.2.1, we devel-

oped a Python library presented at Section 5.3.3 that uses the package galoistools

of the sympy library14 for GF(2) arithmetic operations. For programming each core

and edge switch, we developed a driver at the P4 abstraction layer in the control

plane, as described in Section 5.3.3, which communicates with the switches by using

the CLI commands provided by the bmv2 simple_switch. As shown in Figure 5.6,

the control messages format is defined by an API that connects to the P4 abstraction

layer via the AMQP interface.

5.4.1.4 Header size

The bmv2 simple_switch only supports the specification of CRC polynomials of 16

and 32 bits. Therefore, although our tests could use much smaller degrees, our PoC

must adopt polynomials of degree 16. As the diameters of our test topologies are

smaller than 10, the size of the M-PolKA header was defined as 160 bits. To a fairness

comparison, we defined the LB-SR header as 16 bits (bos and port); therefore, for

10 hops, the array of headers has 160 bits.

5.4.2 M-PolKA deployment in SmartNICs hardware

In the emulated prototype, the CRC operation is executed in software by using

CRC tables. However, the main benefit of using CRC is the execution of the mod

13https://github.com/jafingerhut/p4-guide
14https://www.sympy.org/

https://github.com/jafingerhut/p4-guide
https://www.sympy.org/

99

app.p4

SmartNICs

Server S1

edge.p4

TX

RX

P0

P1

V0

V1

*tsout

*tsin

Server S0

Receiver

Sender

Figure 5.7: SmartNIC setup.

operation in hardware with better performance. To this end, we built a hardware

prototype by using SmartNICs.

5.4.2.1 Setup description

The setup is illustrated by Figure 5.7 and consists of two servers: (i) S0: a device

under test (DUT), running the core functionalities; and (ii) S1: a traffic genera-

tor (TG), running the edge functionalities, and transmitter (TX) and receiver (RX)

functionalities in separate network namespaces. Both servers are Dell PowerEdge

T430, with one Intel Xeon E5-2620 v3 2.40 GHz processor, 16 GB of RAM, and one

Netronome Agilio CX 2x10GbE SmartNIC.

Netronome SmartNICs give access to hardware timestamps into the P4 pro-

grams.They partially implement the functionalities of v1model for P4 16, but it

currently supports only a small set of fixed CRC polynomials, which restricts the use

of its CRC hardware in M-PolKA. Nevertheless, we could use them for measuring

forwarding latency in one core node, as proposed in the next section.

5.4.2.2 P4 programs

The P4 programs are adaptations of the codes used in the emulated prototype.

The new edge code encapsulates both SR headers and a timestamp header for

executing latency measurements, which is composed of an egress (𝑡𝑠𝑜𝑢𝑡) and an

ingress timestamp (𝑡𝑠𝑖𝑛).

At server S0, packets are generated at TX and forwarded to the SmartNIC, where

the edge adds SR (M-PolKA or LB-SR) and timestamp headers. When the packet

leaves the edge, the hardware timestamp is assigned to 𝑡𝑠𝑜𝑢𝑡. Then, it is transmitted

to server S1 and processed by the core code at the SmartNIC, which is responsible

100

S1 FRA
nodeID: 0x002d

S2 BUD
nodeID: 0x002b

S3 POZ
nodeID: 0x0039

S4 AMS
nodeID: 0x003f

H2

128

132

140

148

144 136 132

128

140

136

H1

BUD

AMS

FRA

POZ

Figure 5.8: RARE/GÉANT P4 Lab European testbed [GÉANT 2021].

for parsing the SR header and computing the output port. Since it is impossible to

configure customized CRC polynomials in the SmartNICs, we use a standard CRC

operation with a fixed CRC-16 polynomial. In this way, we execute all the M-PolKA

pipeline steps (including the CRC operation) to measure their contribution to the

total latency. As a result, the packet is delivered to server S0, where the edge

code assigns the value of the hardware timestamp to 𝑡𝑠𝑖𝑛, removes the SR header,

and delivers the packet to RX. Finally, all packets are captured with tcpdump tool,

and parsed offline to extract the core forwarding latency for each packet by using

𝑡𝑠𝑖𝑛 − 𝑡𝑠𝑜𝑢𝑡.

5.4.3 M-PolKA deployment in Tofino Switch

To validate and push the use of Cyclic Redundancy Check (CRC) to the production

level, we propose an implementation that suits commercial programmable switches

to prove the effectiveness of using it in a real-world environment. Therefore, i) we

implement M-PolKA by using the P4 language [P4 v16 2020] in the high-performance

switching ASIC Tofino; and ii) we deploy our implementation in the continental

P4 Lab testbed and conduct the first hardware-based comparison of polynomial

calculation, used in M-PolKA and PolKA, with traditional approaches: Table-Based

L2 and LB-SR.

5.4.3.1 Setup description

RARE15 (Router for Academia, Research, and Education) is an effort under the

GÉANT 3rd program16 focused on creating a routing software platform solution

that can fit research and education use-case purposes. The project deployed a

P4 Lab distributed among various European countries, as presented in Figure5.8,

and is also expanding to Brazil (via RNP) and the US (via Starlight). The testbed

used by our PoC comprises four Intel/Barefoot Tofino WEDGE100BF32X switches

15https://wiki.geant.org/display/RARE
16https://www.geant.org/Projects/GEANT_Project_GN4-3

https://wiki.geant.org/display/RARE
https://www.geant.org/Projects/GEANT_Project_GN4-3

101

powered by the TOFINO Network Processor Unit (NPU). They are geographically

spread through the following locations: Amsterdam (AMS), Frankfurt (FRA), Poznan

(POZ), and Budapest (BUD). As illustrated by Figure 5.8, the setup consists of two

possible paths: i) the shortest (AMS-FRA); and ii) the longest (AMS-POZ-BUD-FRA).

A 10Gbps optical link provides the inter-switches connectivity. Two edge nodes

(𝐻1 and 𝐻2) are in charge of generating traffic according to the packet size and

forwarding method. To this end, we have used the pktgen-dpdk, version 19.12, with

DPDK version 19.11.5, capable of sending custom packets via pcap files. Although

DPDK is a fast-packet processing framework that allows pktgen-dpdk to generate

10 Gbit rate traffic with 64 bytes frames, the number of Packet Per Seconds (pps) is

imposed by the network interface card (NIC) limitations.

5.4.3.2 CRC Polynomial mod Feature in ASIC Tofino

The ASIC Tofino Architecture (TNA) [P4 2018] supports the specification of an

arbitrary CRC polynomial of 16 and 32 bits. The Code 5.4 shows how to initialize

and calculate the hash value in the TNA, by using a set of parameters defined by its

extern CRC polynomial mod in hardware. Note that it is possible to configure all

the parameters of the CRC generator polynomial, as required by M-PolKA and PolKA

to set the nodeIDs in each switch.

1 /* ... */

2 CRCPolynomial<bit<16>>(

3 coeff = nodeID,

4 reversed = false,

5 msb = false,

6 extended = false,

7 init = 16w0x0000,

8 xor = 16w0x0000) poly;

9 Hash<bit<16>>(HashAlgorithm_t.CUSTOM, poly) hash_algo;

10 /* ... */

Code 5.4: CRC Polynomial mod in the TNA

5.4.3.3 Timestamp Header for Forwarding Latency Measurements

To measure latency into the P4 pipeline, Tofino’s ASIC gives access to the following

hardware timestamps, as illustrated in 5.9:

• ingress global timestamp: 48-bit field that represents the timestamp (ns) taken

upon arrival at ingress control.

• egress global timestamp: 48-bit field that represents the timestamp (ns) taken

upon arrival at egress control.

102

Figure 5.9: Tofino P4 Pipeline [Networks 2017].

As shown in Code 5.5 and Figure5.9, when a packet arrives at the data plane, we

update the IP options by adding the global timestamp in the ingress control and,

further, the egress control’s global timestamp.

1 /* ... */

2 control Ingress(

3 /* ... */

4 {

5 apply {

6 hdr.int_count.fim = ig_prsr_md.global_tstamp;

7 /* ... */

8 }

9 }

10 /* ... */

11 control Egress (

12 /* ... */

13 {

14 apply {

15 hdr.int_count.ini = eg_prsr_md.global_tstamp;

16 /* ... */

17 }

18 }

19 /* ... */

Code 5.5: Timestamps in the TNA

5.5 Performance Evaluation: from emulation to testbed

deployment

This section evaluates M-PolKA and LB-SR for: (i) end-to-end tests in the emulated

prototype, and (ii) single-hop latency test in the hardware prototype. Also, it

103

E1 E10

H10

E2

H2

E3

H3

S1 S10S2 S3

H1 H21 H12 H13 H20

Figure 5.10: Linear topology.

demonstrates path migration, failure recovery, and multipath exploration in M-PolKA.

We considered Ethernet frames of 98 Bytes as small packets and frames of 1242

Bytes as big packets for the tests. The average and standard deviation are presented

in all the results.

5.5.1 E2E tests in emulated prototype

The test uses the linear topology of Figure 5.10 to compare M-PolKA and LB-SR as

the number of hops increases in the core network (e.g., from 0 for path 𝐻1 → {𝐻21}

to 9 for path 𝐻1 → {𝐻10, 𝑐𝑙𝑜𝑛𝑒(𝐻20)}). It envisions to show how much the routeID

size impacts the forwarding latency by increasing the number of hops. It is important

to emphasize that we got all the measurements regarding the last cloned packet.

Hence, the following experiments were executed:

1. round trip time (RTT): host 𝐻1 sends 1 ICMP packet/s during 60 s to each of

the other hosts by using ping tool;

2. jitter: host 𝐻1 sends a UDP traffic of 5 Mbps (half of the link capacity) with big

packets to each of the other hosts during 60 s by using the iperf tool; and

3. flow completion time (FCT): host 𝐻1 transmits a file of 100 Mb with big packets

over a TCP connection to each of the other hosts by using the iperf tool (3

repetitions).

Figure 5.11 shows the comparison between M-PolKA and a simple List-based SR

solution (Sourcey) for RTT, jitter, and FCT experiments.

In the RTT experiment results, shown in the Figure 5.11(a) and Figure 5.11(b), it

is possible to observe that the RTT grows linearly with the increase of the number

104

0 1 2 3 4 5 6 7 8 9
Number of core hops

0

2

4

6

RT
T

(m
s)

LB-SR
M-PolKA

(a) RTT small packet

0 1 2 3 4 5 6 7 8 9
Number of core hops

0

2

4

6

RT
T

(m
s)

LB-SR
M-PolKA

(b) RTT big packet

0 1 2 3 4 5 6 7 8 9
Number of core hops

0.00

0.05

0.10

0.15

0.20

Jit
ter

 (m
s)

LB-SR
M-PolKA

(c) Jitter

0 1 2 3 4 5 6 7 8 9
Number of core hops

0

25

50

75

100

125

150

FC
T

(s)

LB-SR
M-PolKA

(d) FCT

Figure 5.11: Linear scenario: comparison between LB-SR and M-PolKA.

of hops for both solutions. The LB-SR solution presents better RTT performance

than M-PolKA, and for both solutions the standard deviation is small and in the same

order of magnitude. Besides, there is no significant difference in the results for

different packet sizes in the RTT experiments. This is because Mininet-P4 does not

consider transmission time in the emulation. In addition, jitter (Figure 5.11(c)) is

small and equivalent for both solutions. Finally, the FCT experiment (Figure 5.11(d))

shows that both solutions require approximately the same time to transfer the file

and the standard deviation is small.

The fact that LB-SR has a better RTT performance than M-PolKA is related to

two facts: an LB-SR loses one SR header per hop, so the average packet header

size is smaller than the fixed header used by M-PolKA, and the CRC operation for

M-PolKA in this emulated prototype is executed in software. Nevertheless, the

difference between the two solutions is small and can decrease if the CRC operation

is performed in hardware, as shown in the Sections 5.5.2, 5.5.3, and 5.5.4.

5.5.2 Core latency evaluation in SmartNIC deployment

The goal in this experiment is to measure the core forwarding latency for a single

hop in M-PolKA and an LB-SR when the path length increases. We consider the

105

1 2 3 4 5
Path length

10

11

12

13

14

15
Av

er
ag

e c
or

e l
ate

nc
y

(u
s) LB-SR

M-PolKA

(a) Low throughput, small packets

1 2 3 4 5
Path length

10

11

12

13

14

15

Av
er

ag
e c

or
e l

ate
nc

y
(u

s) LB-SR
M-PolKA

(b) Low throughput, big packets

1 2 3 4 5
Path length

10

11

12

13

14

15

Av
er

ag
e c

or
e l

ate
nc

y
(u

s) LB-SR
M-PolKA

(c) High throughput, small packets

1 2 3 4 5
Path length

10

11

12

13

14

15

Av
er

ag
e c

or
e l

ate
nc

y
(u

s) LB-SR
M-PolKA

(d) High throughput, big packets

Figure 5.12: Comparison of LB-SR and M-PolKA test cases.

path length as the number of core nodes included in the SR header to reach the

destination. For each test execution, the traffic generator tool at TX varies the

IP destination address. The last digit of the IP destination address represents

the number of core nodes (e.g., if the IP destination is 10.0.100.1, the number of

hops to the destination is 1, while IP destination 10.0.100.5 represents 5 hops to

the destination). Depending on the number of hops, the edge encapsulates the

appropriate SR headers (e.g., 5 hops, 5 SR headers in an LB-SR). The following

experiments were executed for small and big packets: (i) low throughput: one ICMP

pps, 100 packets in total, generated with ping tool; and (ii) high throughput: 1Gbps

UDP packets, 1000 packets in total, generated with pktgen tool.

Figure 5.12 compares the test cases for LB-SR and M-PolKA. In each test, the

average latency and standard deviation in M-PolKA are small when the path length

increases, while in an LB-SR, the average latency grows linear when the path length

increases. This linear increase in latency measurements for an LB-SR is emphasized

in the test case with high pps values (Figure 5.12(c)) when the standard deviation

is a bit higher for both M-PolKA and LB-SR due to the stress in edge and core

elements. More investigation needs to be carried out in a hardware prototype that

allows multi-hop tests, such as switches with Intel Tofino Architecture17. Despite

17https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-

106

64 1500 9000

Packet Size

0

250

500

750

1000

1250

L
a
te

n
c
y
 (

n
s
)

M-PolKA

List-based SR

Table-based L2

(a) 1Gbps

64 1500 9000

Packet Size

0

250

500

750

1000

1250

L
a
te

n
c
y
 (

n
s
)

M-PolKA

List-based SR

Table-based L2

(b) 10Gbps

Figure 5.13: Forwarding latency in M-PolKA vs. List-based SR vs. Table-based L2.

this, the results collected so far indicate that M-PolKA implementation by using CRC

hardware is promising and can offer equivalent RTT and jitter performance to an

LB-SR approach.

5.5.3 Core latency evaluation in P4 Tofino-switches testbed

The goal is to compare the core forwarding latency for the three methods by analyz-

ing different packet sizes in the throughput rate of 10Gbps. To this end, we measure

the forwarding latency at BUD during the transmission from 𝐻1 to 𝐻2. When a

packet arrives at BUD, the P4 application performs a sequence of match and action

operations at the Ingress control (polynomial calculation for M-PolKA), as usual;

however, it also adds in the IPv4 options field two 48-bit timestamps regarding upon

arrival at the ingress and egress control blocks, as shown by Figure 5.9. Therefore,

we have obtained the forwarding latency measurements about the whole packet’s

trajectory into four stages: ingress control, ingress de-parser, packet buffer, and

egress parser. Finally, all packets are captured and parsed offline to extract the

forwarding latency for each packet by subtracting the egress global timestamp

from the ingress global timestamp. Our experiments were performed by using the

pktgen-dpdk tool to generate traffic for small (64 bytes), medium (1500 bytes), and

jumbo frame packets (9000 bytes) with a throughput of 10Gbps of UDP packets. In

total, we captured 10000 packets as samples to obtain the average and the standard

deviation about each forwarding method. As shown in Figure 5.13, the average for

small packets is on the scale of about 300ns, whereas for medium and jumbo frames,

the average is about 1300ns. The results show the capability of M-PolKA to run in

high-performance switches and the potential of either PolKA or M-PolKA to replace

well-known forwarding methods, such as table-based, with the same performace.

switch.html

107

0 10 20 30 40 50
Time (s)

0

200

400

600

800

1000

1200
Th

ou
gh

pu
t M

bp
s

shortest path longest path

(a) 1Gbps

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

Th
ou

gh
pu

t G
bp

s

shortest path longest path

(b) 4Gbps

Figure 5.14: Migration from short path to long path.

5.5.4 M-PolKA fast-path reconfiguration in RARE testbed

The first experiment starts a 1Gbps UDP traffic (Figure 5.14(a)) from 𝐻1 to 𝐻2. In

the second experiment, we start a 4Gbps UDP traffic (Figure 5.14(b)) from 𝐻1 to

𝐻2. The throughput measurements were collected by using the bwm-ng tool at

𝐻2. In both experiments, we start using the blue path (short) and, as shown in

Figure 5.8, at 29s, the red path (long) is selected by the traffic engineering. To

perform the path reconfiguration, the SDN Controller is in charge of modifying a

single flow entry at the edge node 𝐻1 to achieve the destination 𝐻2. The only field

that has to be modified is the routeID to embed the new route through the red path

(𝐻1 −→ 𝑆1 −→ 𝑆2 −→ 𝑆3 −→ 𝑆4 −→ 𝐻2). Once this single operation is executed, all the

packets of flow into the blue path will be tagged with the new routeID and steered

to the red path. Therefore, it is important to note that a small packet loss is detected

at the 30s in the destination, demonstrating the fast-reconfiguration capability of

M-PolKA.

5.6 Use case: Multipath routing for reliable commu-

nication

5.6.1 Use case architecture design

The design principles of this use case are motivated by the high-reliability require-

ments for the new-generation networks. For our use case architecture, we have

separated it in four layers, as shown in Figure 5.15:

(i) the physical infrastructure layer;

(ii) virtualization abstraction;

108

PHYSICAL INFRAESTRUCTURE LAYER

ABSTRACTION LAYER

ORCHESTRATION LAYER

SERVICE LAYER

M-POLKA WIFICLOUD

CONTROLLERS

TOPOLOGY
KNOWLEGMENT

ROBOT
MOBILITY

NETWORK
FUNCTIONS

MACHINE
LEARNING

VIDEO
STREAMING

WiFi
AGENT

PATH
COMPUTATION

 POLYNOMIAL
CALCULATION

P4
AGENT

MANIPULATION
OF TABLE

CLOUD
AGENT

WiredCloud WiFi

MONITORING

Edge
AP

Edge
Cloud

Core
Nodes

Figure 5.15: Use case Orchestration Framework Architecture.

(iii) the control and orchestration layer;

(iv) and the service layer.

The separation of functionalities and components among the layers gives us

a modular architecture and makes its implementation and third-part integration

easier. Therefore, we design and deploy this use case envisioning the orchestration

layer with components (topology, path computation, polynomial calculation) that

unified the orchestration software, but delegating the controller per technology with

heterogeneous resources (cloud, network and WIFI).

109

5.6.1.1 Physical infrastructure layer

To meet reliability requirements, the physical infrastructure of the M-PolKA architec-

ture assumes the existence of a physical topology with sufficient path redundancy to

allow the implementation of mechanisms to guarantee a reliable communication. It is

worth mentioning that the multipath computation algorithms to find the best routes

with node-disjoint, link-disjoint or even non-disjoint paths to improve fault-tolerance

will be future work of this thesis.

Taking advantage of the network’s physical redundancy, M-PolKA can implement

multipath forwarding to support multicast communication, enabling better network

resource utilization based on the fast reaction of network changes. The physical

infrastructure is composed of four specific elements:

(i) Edge cloud nodes that add and remove the routeIDs from the packets coming

and arriving from the cloud infrastructure; The traffic splitting at the edge for

load balancing over multiple paths has not been fully explored in this work.

(ii) Edge AP nodes perform polynomial operations for the forwarding process

to know which WiFi ports belong to the routeID in which they have to steer.

They also add and remove the routeIDs from the packets when receiving and

sending to the STA nodes, respectively;

(iii) STA nodes analyze the traffic type and perform the function chaining (SFC)

accordingly (i.e., duplicated packet or not). The nodes also provide a pro-

grammable data plane to steer the traffic to the Edge AP Nodes according to

given traffic engineering;

(iv) Core nodes are in charge of performing polynomial operations for the forward-

ing process to steer the traffic to one or any ports.

Implementing all these operations in P4 improves latency once operations and

decisions can be made directly at the hardware level. Furthermore, P4 is a platform-

and protocol-independent architecture that takes full advantage of writing our own

forwarding data plane (i.e., the same P4 code for virtual and bare-metal switches).

5.6.1.2 Virtualization Abstraction

In the Virtualization Abstraction, each agent creates a unified SB API to the con-

trollers to abstract the interface with the hardware independently of the vendor,

version, and model. When the agent receives a request from a control plane service,

a control plane core service uses an SBI to communicate. Then, the agent uses

drivers to interact with underlying network devices and then uses the information to

110

reply to the request. In each driver, we translate requisitions from the SBI to instruc-

tions that a specific device can interpret. We have implemented three Virtualization

Abstraction agents, as follows:

1. Cloud Agent is in charge of interacting with IaaS or PaaS solutions, such

as OpenStack, Kubernetes, or COPA [Both et al. 2019]. Indeed, the agent is

used to create a common interface that interacts with the Iaas and/or PaaS

architectures to form end-to-end connectivity across different domains.

2. P4 Agent is in charge of adding, removing, and updating rules in the tables in

a P4 switch. It can also set irreducible polynomials in edge AP or edge core

nodes and cloning sessions for all types of nodes, as shown in Section 5.3.3.

The P4 Agent uses a driver to translate the instructions to a P4 Runtime in the

BMv2 or a P4 Runtime ASIC Tofino. For the ASIC Tofino, we have developed

the driver using a proprietary Python Library that interacts with the switch

device.

3. WiFi Agent sets the WiFi parameter (e.g., channel, SSID, BSSID, and power.)

from messages delivered by the WiFi controller and sends information about

the SNR, association, and disassociation of each STA. Also, the agent can take

some forwarding decisions based on its scope of visibility, such as link failure

or low SNR.

5.6.1.3 Control and orchestration layer

The design of new-generation networks requires control and orchestration facilities

to offer a harmonious operation of all the architectural elements. This layer repre-

sents the heart of the architecture, whose main function is to control and manage

the multiple domains through an integrated manipulation of the underlying physical

layer elements. By operating under the principles of software-defined networks and

microservices, the controllers in this network can be found in distributed schemes.

Each element can take better forwarding decisions, ordered via a central entity or

local. As an outcome, we have a faster manipulation time with the data plane since

the devices can directly do certain triggers instead of going to the upper layers. It

alleviates the control and orchestration layers and, thus, provides a more scalable

and reliable architecture.

Distributed throughout the switching elements, software agents monitor all the

nodes and their links and send information from all domains (i.e., wired and wireless)

to the orchestrator by using a common AMQP interface. With this information, the

orchestrator can maintain updated information about the network’s active topology

and use the available network diversity accordingly (Topology Knowlegment and

111

Monitoring). The best routes are calculated for simple communications between

source and destination (Path Computation). Depending on the network conditions

and the end-to-end requirements, the orchestrator can explore multiple paths to

ensure more communication reliability. Besides, the orchestrator can include backup

routes, increasing the resilience of the routeID in case of failure.

With the available routes calculated, the control and orchestration layer has on

its hand a multicast RNS SR scheme to ship routing information being transported

by the packets themselves. Based on the nodes to be traversed and the transmission

state at each node, Polynomial Calculation module generates a routeID for an

entire end-to-end communication (simple route or multipath route) across different

domains. Then, the routeID is added as a new packet’s header from the Edge Cloud

and Edge AP nodes via Manipulation of Tables. As already mentioned, the edge

nodes are the elements in charge of adding the M-PolKA header in each packet that

enters the M-PolKA domain. The orchestrator, via the controllers, adds, removes,

or updates the data plane using the P4 agent. The P4 data plane’s implementation

to compute the irreducible polynomial used in our SR scheme and the polynomial

operation were discussed more deeply in the section 5.3.

5.6.1.4 Service layer

This layer comprises all user applications and other tools used in the architecture im-

plementation and validation stages. Those applications can push ahead an additional

integrated layer with the control and orchestration layer in order to deliver, for

example, applications for handover focused on robot mobility and traffic engineering

by using machine learning techniques. This layer also embraces tools in charge

of generation traffic (e.g., iperf and pktgen) and video streaming to be used for

architecture validation.

5.6.2 Implementation Design

In our architecture, there are nodes responsible for inter-connect traffic from dif-

ferent domains that do not understand M-PolKA. For instance, for incoming traffic,

there is a need to add in the packet a M-PolKA header with the appropriate routeID .

Nevertheless, for outgoing traffic, there is a need to remove and deliver according to

the transmission state obtained by the operation 𝑚𝑜𝑑 between nodeID and routeID .

Hence, this section aims to explain how we implement the elements edge and STA

nodes using P4 into wired and wireless domains. For this purpose, we have divided

the following sections as (i) edge cloud nodes (5.6.2.1); (ii) edge AP nodes (5.6.2.2);

(iii) STA nodes (5.6.2.3).

112

Edge Cloud Node

cloud lan2 lan1

tbl_lookup() add_header()

calc_poly()rem_header()

send_to(ports)

send_to(ports)

P4 Switch
P4 Agent

(a) Edge Cloud

Edge AP Node

lan1 wlan2 wlan1

calc_poly() rem_header()

tbl_lookup()add_header()

send_to(ports)

send_to(ports)

P4 Switch
P4 Agent

WiFi Agent

(b) Edge AP

Figure 5.16: Edge Nodes Architecture.

5.6.2.1 Edge Cloud Nodes

As shown by Figure 5.16(a), during the incoming traffic from the cloud domain,

the edge cloud node initially executes a lookup that returns the routeID and the

transmission state associated with the flow. After that, the edge cloud node adds the

M-PolKA header with the associated routeID and steers the traffic to one or more

ports on that hop. Incoming traffic from M-PolKA domain to the cloud domain, the

edge cloud node calculates the polynomial, removes the M-PolKA header, and last

steers the traffic based on the polynomial operation result.

5.6.2.2 Edge AP Nodes

Similar to the edge cloud nodes, the edge AP node adds and removes the M-PolKA

header based on a lookup table operation, which results in the routeID and trans-

mission state, as shown by Figure 5.16(b). Furthermore, the edge AP node has a

WiFi agent integrated into the control loop systems that can act to some WiFi event

(e.g., migration, link failure). As well as happens in the cloud domains, the WiFi

domains do not understand M-PolKA. That’s why we have to perform the add and

remove the M-PolKA’s header for each packet.

1 action hash_() {

2 hash<bit<32>, bit<16>, tuple<bit<16>,bit<16>,bit<8>,bit<8>,bit<32>,

3 bit<32>,bit<16>,bit<16>,bit<16>,bit<16>>

4 (meta.fw_index,

5 HashAlgorithm.crc32, 16w0,

6 { hdr.ipv4.totalLen,

7 hdr.ipv4.identification,

113

8 hdr.ipv4.ttl,

9 hdr.ipv4.protocol,

10 hdr.ipv4.srcAddr,

11 hdr.ipv4.dstAddr,

12 hdr.ipv4.hdrChecksum,

13 meta.srcPort,

14 meta.dstPort,

15 meta.t_checksum },

16 REGISTER_LENGTH); // REGISTER_LENGTH is the list size

17 }

18 action read(bit<32> hash) {

19 has_pkt.read(meta.checksum, hash);

20 }

21 action write(bit<32> hash) {

22 has_pkt.write(hash, meta.t_checksum);

23 }

24 /* ... */

25 apply {

26 if (hdr.ipv4.isValid()) {

27 do_hash();

28 get_hash(meta.fw_index); // check duplicated packets is in the list

29 if (meta.has_pkt == 0) { // is a new packet

30 set_hash(meta.fw_index); // add hash to the list

31 } else {

32 if (hdr.tcp.isValid())

33 if (meta.checksum == hdr.tcp.checksum)

34 drop(); // drop duplicated packet

35 if (hdr.udp.isValid())

36 if (meta.checksum == hdr.udp.checksum)

37 drop(); // drop duplicated packet

38 }

39 /* continues performing M-PolKA */

40 do_mpolka();

41 } /* ... */ }

Code 5.6: STA Node P4 algorithm

5.6.2.3 STA Nodes

One of our STA nodes’ main capabilities is to perform an SFC to filter duplicated

packets before sending them to the application. In our new P4-based implemen-

tation, instead of offloading the traffic to traditional VNF on vCPU, we decompose

and deploy this functionality into small embedded Network Functions (eNFs), as

previously proposed by the work [Mafioletti et al. 2020]. Our hardware-agnostic

packet duplication scheme is described in Section 4.2.2.4; the VNF in the chaining

is responsible for the flow de-duplication function.

114

STA Node

wlan1 wlan2 ns1

do_hash() check_dup()

tbl_lookup()send_to(ports)

eNF
send_to(ports)

drop()

P4 Switch
P4 Agent

WiFi Agent

Figure 5.17: STA Architecture.

Instead, as shown by Figure 5.17 and Code 5.6, the eNF receives a packet denoted

by 𝑝𝑖, generates a hash 𝑑𝑜_ℎ𝑎𝑠ℎ(𝑝𝑖) using the TCP/IP headers, and compares if the

current hashed packet 𝑐ℎ𝑒𝑐𝑘_𝑑𝑢𝑝(𝑝𝑖) already exists in a circular hash list denoted by

𝛽. If so, then the packet 𝑝𝑖 is automatically dropped, otherwise, 𝑐ℎ𝑒𝑐𝑘_𝑑𝑢𝑝(𝑝𝑖) /∈ 𝛽,

then the packet is forwarded to its namespace, and then 𝑑𝑜_ℎ𝑎𝑠ℎ(𝑝𝑖) is added to 𝛽.

For this matter, we save end-host server CPU cores and avoid overheads generated

by the whole virtualization stack while achieving lower latency for service requests.

5.6.3 Proof-of-concept and experimental validation

To evaluate the main functionalities of M-PolKA compared to the LB-SR, an emulated

prototype was implemented to evaluate end-to-end scenarios, where we increase the

communication reliability by exploiting path diversity. As an outcome, we demon-

strate (i) agile path migration during the handover process in the next generation

networks (Section 5.6.5.1); (ii) packet duplication to provide redundant path during

an end-to-end communication in a given time (Section 5.6.5.2); and (iii) fast failure

recovery to recover the communication during some failure event (Section 5.6.5.3).

115

sf1

Edge
node

R1 s2 s4

s3

s6

s9

s7

s8 AP2

AP1

s1
STA1

Core Network

10 10

10

10

10

10

s5

s10

10

Cloud Wireless

100
1000

1000

100

Figure 5.18: Multipath routing for reliable communication use case

5.6.4 Agile and expressive orchestration deployment

5.6.4.1 P4 architecture and target

The software switch bmv2 simple_switch with the v1model architecture was se-

lected as the target for this prototype, once it supports all the functionalities required

by M-PolKA, such as the configuration of CRC polynomials. Also, we use the clone3

primitive action (P4_16) to enable the multipath feature. The number of clone ses-

sion IDs is limited to 65535 in the bmv2 simple_switch. It is important to highlight

that this software switch is a user-space implementation focusing on feature testing.

There are other high performance implementations of P4 software switches and

compilers (e.g., PISCES18, P4ELTE19, and MACSAD20), but they do not yet cover all

the features required by M-PolKA. As these implementations arise, it will be possible

to test our prototype with higher loads. For the time being, the solution was to limit

the link rates to 10Mbps in our emulated prototype to avoid reaching the processing

capacity limits of bmv2 simple_switch.

5.6.4.2 Setup description

The setup consists of one server Dell PowerEdge T430, with one Intel Xeon E5-2620

v3 2.40 GHz processor and 64 GB of RAM. To build our emulated environment,

we used Mininet-WiFi[Fontes et al. 2015] with P421, which becomes a tool that

augments the well-known Mininet emulator by including virtual wireless stations

18http://pisces.cs.princeton.edu/
19http://p4.elte.hu/
20https://github.com/intrig-unicamp/macsad/
21https://github.com/jafingerhut/p4-guide

http://pisces.cs.princeton.edu/
http://p4.elte.hu/
https://github.com/intrig-unicamp/macsad/
https://github.com/jafingerhut/p4-guide

116

(STA) and access points (AP), and, likewise, allows running P4 programs on different

switches. This functionality is crucial to emulate wireless and wired networks, which

require different P4 programs for the edge AP, edge cloud, core, and STA elements.

5.6.4.3 Control plane implementation

It has two main functionalities: (i) for core: compute nodeIDs, and configure core

switches with their respective identifiers; and (ii) for the edge: compute routing

paths for the traffic flows, calculate routeIDs for these paths, and configure table

entries in edge switches that will be responsible for encapsulating routeIDs. For

the RNS computation of nodeIDs and routeIDs, as described in Section ??, we

developed a Python library22 and application that uses the package galoistools of

the sympy library23 for GF(2) arithmetic operations. For programming each core and

edge switch, we developed a control plane application in Python that communicates

with the switches using the CLI commands provided by the bmv2 simple_switch.

The control messages format is defined by an API that connects to a Thrift RPC

server running in each switching process.

5.6.4.4 Header size

The bmv2 simple_switch only supports the specification of CRC polynomials of 16

and 32 bits. Therefore, although our tests could use much smaller degrees, our PoC

must adopt polynomials of degree 16. As the diameters of our test topologies are

smaller than 10, the size of the M-PolKA header was defined as 160 bits. To a fairness

comparison, we defined the LB-SR header as 16 bits (bos and port); therefore, for

10 hops, the array of headers has 160 bits.

5.6.5 Exploitation of path diversity for reliability

This section explores a software-defined wireless network as a use case to demon-

strate how M-PolKA can exploit path diversity for enabling reliable communication.

To this end, three experiments were designed as a proof-of-concept of the following

reliability functionalities: agile path migration, packet duplication, and fast failure

reaction.

Figure 5.18 shows the experiment scenario with three network domains: cloud,

core network, and wireless. The cloud composes a virtualized environment responsi-

ble for providing service function (SF) to a specific mobile device group. In the core

network, we have 9 switches (𝑆𝑛) running core functionalities and two access points

22https://pypi.org/project/polka-routing/
23https://www.sympy.org/

https://pypi.org/project/polka-routing/
https://www.sympy.org/

117

0 10 20 30 40 50 60 70 80
Time(s)

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (M

bp
s) STA1

AP1 AP2

Figure 5.19: Agile path migration.

(APs) (𝐴𝑃𝑖) running edge functionalities. The wireless environment includes mobile

elements (station - 𝑆𝑇𝐴𝑖), where each STA has two wireless interfaces in order to

provide multi-connectivity from different APs.

5.6.5.1 Agile path migration

This experiment shows how the traffic can be steered using SR for mobile elements

with an agile path migration in the scenario of Figure 5.18. This feature can be used

for improving reliability when the orchestrator identifies that a path migration can

provide better perfomance.

As shown in Fig. 5.19, at 10 s, a flow (𝑆𝐹1 → 𝑆𝑇𝐴1) starts TCP traffics with

big packets using the iperf tool. Initially, the flow is allocated to blue path (𝑆1 −
𝑆2 − 𝑆3 − 𝑆7 − 𝐴𝑃1). The 𝑆𝑇𝐴1 is already connected to both 𝐴𝑃1 and 𝐴𝑃2. At 40s,

the orchestrator starts triggering the handover process from the 𝑆𝑇𝐴1, once the

𝐴𝑃2 becomes the best option (e.g., signal-to-noise ratio). Hence, the orchestrator

migrates the flow from the blue path to the red path (𝑆1 − 𝑆2 − 𝑆4 − 𝑆8 −𝐴𝑃2). Even

though the 𝑆𝑇𝐴1 can be served by multiple APs, from this moment, the traffic now

is only steered via 𝐴𝑃2.

To perform path migration, the SDN Controller only has to modify a single flow

entry at the edge switch Edge Node to set a routeID to the destination 𝑆𝑇𝐴1. It

modifies the routeID to steer the traffic through the red path. Then, once this single

operation is executed, all the packets of flow that leave 𝑆𝐹1 are tagged with the

routeID of the new path, and no packet loss is detected at the destination. Although

this scenario emulates a simple example of horizontal handover, the same method

can be used for vertical handover [Kassar et al. 2008] solutions in heterogeneous

networks.

118

0 10 20 30 40 50 60 70 80
Time(s)

0

2

4

6

8

10

12
Th

ro
ug

hp
ut

 (M
bp

s)
start stop

AP1

AP2

App1

(a) Throughput at AP1, AP2 and STA1

S1

S2

S4 S3

S8 S7

(b) Multipath

Figure 5.20: Duplication of traffic from S2

5.6.5.2 Packet duplication

For multipath scheme, our architecture implements a VNF-based solution proposed

by [Guimaraes S et al. 2020]. In this work, once the data plane in the 𝑆𝑇𝐴𝑠 identifies

the type of flow, it determines how the packet will be forwarded: i) for packet

duplication, the data plane sends the traffic to be treated by the VNF at the STA

before sending to 𝐴𝑝𝑝1; ii) for the normal packet, the data plane redirects the traffic

strictly to the destination, the VNF App1. However, during the whole experiment,

the traffic is forwarded strictly to the 𝑉 𝑁𝐹 before being sent to the 𝐴𝑝𝑝1 by the STA,

even in simple path conditions.

Figure 5.18 shows an example scenario to provide reliable communication be-

tween 𝑆𝐹1 and 𝑆𝑇𝐴1. The list of switches for the segment (𝑆𝐹1 → 𝑆𝑇𝐴1) that

is used for providing the multipath scheme is: nodes S = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆7, 𝑆8}. A

routeID carries the set of transmission state of each node, where it steers between

simple and multipath traffics.

Initially, the path is represented by the nodes S = {𝑆1, 𝑆2, 𝑆3, 𝑆7}, which achieves

the 𝑆𝑇𝐴1 using 𝐴𝑃1. During the handover process, before stabilizing the connection

with the 𝐴𝑃2, the control plane sets the transmission state on node 𝑆2 to 110, which

means to steer the packets to the nodes 𝑆3 and 𝑆4, ports 2 and 3, respectively. Thus,

when the link becomes stable between 𝑆𝑇𝐴1 and 𝐴𝑃2, the control plane sets the

transmission state on node 𝑆2 to 10, which steers the traffic to only 𝑆4. It implies

modifying the routeID during the element’s mobility as the path has to contain a

new set of transmission state of the nodes.

To integrate with the wireless mechanism in our prototype, we developed an

orchestrator that modifies the traffic according to the elements’ mobility (STA). It

is not the focus of this work to identify the optimal time based on, for example,

119

signal-to-noise ratio to do the transitions between different access points. Addi-

tionally, we modified the core application to perform the packet cloning forwarding

based on the mod operation between nodeID and routeID .

Figure 5.20 shows throughput measurements using the bwm-ng tool at STA1,

𝐴𝑃1, 𝐴𝑃2 (Figure 5.20(a)), the traffic is duplicated through 𝑆3 and 𝑆4 during the

handover process. At 10 s, we start a 10 Mbps UDP traffic from SF1 to STA1 passing

through 𝐴𝑃1. At 40 s, the transmission state on node S2 is initiated to pass through

𝑆3 − 𝑆7 − 𝐴𝑃1 and 𝑆4 − 𝑆8 − 𝐴𝑃2. At 𝐴𝑝𝑝1 in 𝑆𝑇𝐴1, the traffic constantly perceives

about 10 Mbps as the VNF discards duplicated packets before sending to the 𝑆𝑇𝐴1.

There is no throughput degradation during migration between APs. Therefore, our

scheme could increase reliability once there is a high probability of losses during the

handover processes (mobility interruption time - MIT). We do not need to maintain

the state in the whole path with our approach as all transmission states’ nodes were

already included in the routeID .

5.6.5.3 Fast failure recovery

This experiment aims to show an example of how M-PolKA can take advantage of

special RNS properties. More specifically, it explores a property that states that the

nodes’ order in the path is irrelevant. Based on this property, we integrate a fast

failure reaction mechanism proposed by KAR [Gomes et al. 2016] to the mobility

scenario proposed in [Guimaraes S et al. 2020]. KAR proposes the concept of a

resilient forwarding path, called protection path. The main idea is to proactively add

redundant nodes in the routeID that are not part of the original route. When there is

a link failure, packets are deviated from faulty links with routing deflections and may

occasionally reach these redundant nodes responsible for guiding the packets back

to the original route. In this way, there is no need to communicate with a controller

(or even the source) to compute an alternative path because, as soon as the core

node detects a failure, it randomly deflects packets to one of its healthy links.

Figure 5.18 shows an example scenario for fast failure properties (𝑆𝐹1 →
𝑆𝑇𝐴1). The path in the core switches for the segment 𝑆𝐹1 → 𝑆𝑇𝐴1 is: nodes S =

{𝑆1, 𝑆2, 𝑆4, 𝑆8} and ports O = {10, 10, 10, 10}. You can have paths called unprotected

paths, because they do not add any redundant node for failure protection. Therefore,

if any link of these paths fails, the packets will be dropped.

By applying the protection mechanism to generate the routeID of the segment

(𝑆𝐹1 → 𝑆𝑇𝐴1), we add the extra nodes 𝑆3, and 𝑆5 with ports 1000, and 100, respec-

tively. Thus, when link 𝑆2-𝑆4 fails, 𝑆2 deflects packets to any of its other links, and

packets will be driven back to 𝑆8, as shown in Fig. 5.21(b). Thus, the protected path is

represented by nodes S = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆8} and ports O = {10, 10, 1000, 10, 100, 10}.

120

0 10 20 30 40 50 60 70 80
Time(s)

0

2

4

6

8

10

12
Th

ro
ug

hp
ut

 (M
bp

s) STA1

S3

Link failure

(a) Throughput at destination and S3

S1

S2

S4

S5 S3

S8
(b) Protected Path

Figure 5.21: Fast failure reaction for failure of link S4-S6.

As the protected path already contains redundant nodes, no change in the routeID

is needed when the failure happens.

To integrate KAR [Gomes et al. 2016] mechanism in our prototype, we developed

a simple control plane application that causes link failures and makes port failure

information available to the data plane by populating a table of faulty ports. Ad-

ditionally, we modified the core pipeline to perform a lookup in this table before

sending the packet to the output port.

If there is a hit, the packet is randomly deflected to one of the other healthy

ports. Otherwise, the packet is transmitted normally. The generation of a random

value within an interval is provided by v1model and could also be replaced by a hash

function if the objective is always to select the same port per flow. Failure detection

mechanisms are not in the scope of this work.

Figure 5.21 shows throughput measurements using the bwm-ng tool at STA1 and

𝑆3 (Fig. 5.21(a)). Results for 𝑆5 were omitted, because they are similar to Fig. 5.21(a)

as the traffic was uniformly deflected through 𝑆3, and 𝑆5 after the failure. At 10 s, we

start a 10 Mbps UDP traffic from SF1 to STA1. At 40 s, the link S2-S4 is disconnected.

At STA1, the traffic perceives a small loss until the failure is signalized by the

control plane and deflections start. Therefore, our scheme could react to failures

without any packet modification as the redundant nodes were already included in

the routeID .

5.7 Chapter Remarks

Herein, a binary polynomial representation of a fully stateless multipath SR approach,

called M-PolKA, was proposed, implemented, and evaluated. M-PolKA extends and

121

generalizes PolKA by giving more expressiveness and providing multicast/multi-

path functionality, opening the possibility to enable reliability functionalities in the

new generation networks for any topology. Moreover, our P4-based emulated and

hardware prototypes demonstrated that it is feasible to deploy RNS-based SR in

high-performance network equipment by reusing CRC hardware, with performance

equivalent to traditional routing approaches. As future work, this achievement has

the potential to enable a new range of complex network applications that explore

RNS intrinsic features, such as route authenticity, hybrid forwarding methods to

save TCAM, and cross-layer programmability and slicing.

Chapter 6

Conclusion and Future Works

In this concluding chapter, we summarize this thesis and the work hereby presented

to discuss the implications of our research. We then give our view concerning possi-

ble research directions that may emerge from our work and how other techniques

can extend the network programmability for expressive and agile orchestration.

Finally, we finish the thesis with our concluding remarks.

6.1 Thesis Summary

The broader considerations of this thesis only grasp the tip of the iceberg that

seeks to challenge the commonly held view that the network needs to provide

cross-layer programmability as an enabler for orchestration across heterogeneous

resources. Given that, we have explored various aspects of expressiveness and

agility during the orchestration process in which led us to tackle the following

questions: "how to extend SDN paradigm to set up physical layer parameters by a

cross-layer programmability?"; "and, in parallel, how to provide more agility in the

orchestration process in order to set up an E2E communication?".

The work presented in Chapter 3 and 4 explores these questions experimentally.

The merit of our approach is on extending the range and the way to control physical

layer (e.g., wireless and optical channels with adaptive bandwidth), link layer (e.g.

new tableless forwarding mechanism;) so that these configurable parameters are

exposed to create a cross-layer programmability abstraction. This abstraction is

under the command of an orchestration process that provides functionalities (e.g.

automatic scaling policies) so that it may set parameters across heterogeneous

resources.

The orchestration paradigm designed in FUTEBOL’s CF [Both et al. 2019] was

extended by adding expressiveness and agility dimensions to its orchestration. An

expressive orchestration is achieved by exposing physical parameters crossing the

123

network layers in order to boost the network programmability activated by a high-

level API. Orchestration agility demands extremely fast route configuration involved

in a datapath configuration. Orchestration agility is also required to meet quick

handovers for seamless mobility support. These two new dimensions were pushed

by applications with stringent requirements that involve providing ultra-reliable

and low-latency communications with fast reconfigurability, such as cloud robotics

[do Carmo et al. 2019a]. For this matter, we developed an architecture for better

mobility management in WiFi networks.

In order to fully meet the agility and expressiveness capabilities in setting up

datapaths, we claim that the orchestration process must be underpinned in a source

routing approach. Therefore, in Chapter 5, we introduced a novel multipath routing,

named M-PolKA (Multipath Polynomial Key-based Architecture). M-PolKA’s rout-

ing mechanism is based on RNS encoding [Liberato et al. 2018], with polynomial

arithmetic using GF of order 2 [Shoup 2009].

M-PolKA’s approach proposed a new representation for a fully stateless multipath

SR approach as a generalization of a previous work named PolKA [Dominicini et al. 2020],

which was driven to single paths. Thus, we demonstrated its feasibility deploying it

at a high-performance network testbed (RARE 1) composed by a set of latest Tofino’s

switches [GEANT 2021] and mapping the polynomial mathematical operations im-

plemented by reusing CRC within the programmable switches. That implementation

achieved equivalent performance for packets forwarding compared to the tradi-

tional table based forwarding approaches. M-PolKA gives us more expressiveness

and provides multipath capability, opening the possibility of enabling reliability

functionalities in the new generation networks for any topology.

6.2 Future Works

Notwithstanding our efforts to limit the scope of this work, our research activities

have inevitably touched on a diversity of other topics. Hence, the future works

involve exploring the RNS-based SR properties in programmable data planes to

enable a new range of modern and innovative applications, such as:

• Traffic engineering and quality of service, once we allow traffic engineering

to make optimized decisions via exploring all the network capacities of the

underlay when mapping the service overlay; we can explicitly select amongst

all the existing paths and quickly modify these paths for variable demands

and also load-balance the traffic according to the QoS of each application

into the network. Thus, with M-PolKA we can effectively maximize network

1https://wiki.geant.org/display/RARE

https://wiki.geant.org/display/RARE

124

resource utilization and alleviate all the states’ maintenance across the network.

As shown by Chapter 5, we did not explore all the mechanisms for traffic

engineering, such as load balance;

• Multi-layer networks and slicing, to deliver expressiveness of M-PolKA’s

polynomial scheme that can extend by using GFs of higher orders for more

complex routing problems or via stacked routeIDs, which can add to the

encoding routeID information like wavelength switching, network slicing, and

traffic classification. Another aspect that we have not explored is regarding

the inter-domain routing, such as using stacked routeIDs, where each routeID

regards a specific domain. Finally, an open issue is how to cooperate with

legacy protocols, such as MPLS or GMPLS, which, for example, we can ship

the routeID inside the MPLS protocol. The project RARE [GEANT 2021] uses

the BIER label as part of the MPLS protocol;

• Route authenticity, brings the tampering of the routeID as one of the chal-

lenges for SR approaches. To solve this problem, it is possible to explore

the property of forwarding without header modifications. Since the packet

header does not change throughout all the paths, the source can sign the

routeID information, and the nodes could verify this signature before making

the forwarding decision. In our approach, taking the premise of no header

modification during the forwarding process, we do not need to recalculate the

decision on every hop, which eliminates many operations being performed by

the switches;

• Use of In-band Telemetry, despite not yet supporting a full queue scheduling

programmability in the P4 language [Paolucci et al. 2021], it may provide per-

packet latency/jitter performance in multiple paths guaranteed by employing

in-band telemetry (INT) and M-PolKA presented in Chapter 5. For example,

we can use the M-PolKA representation to send packets into multipaths with

the INT headers to collect the telemetry overall links in parallel. Therefore,

P4 INT header [Cugini et al. 2019] can be added/modified all packets at each

traversed node, informing the outgoing time spent across each queue onto

the network. Furthermore, by analyzing the INT data on cumulated delay,

indirect dynamic packet scheduling policies may be implemented (i.e., dynamic

per-packet classification and priority enforcement) to minimize the jitter and

latency in an E2E communication.

125

6.3 Final Remarks

From a broader perspective, there is an amazing list of research questions around

our proposals. For example, one great challenge of modern networks is selecting

paths and reacting to highly variable and demanding traffic patterns. Indeed, the

orchestration process has to deliver better resource utilization, reliability, and even

better experience quality (QoE). Whereas, in recent years, emerging networking

languages and architectures, such as P4/PISA, have created unprecedented oppor-

tunities for rapidly prototyping disruptive solutions in programmable data planes.

In addition, the potential impacts of providing cross-layer programmability aligned

with the line-rate performance of commercial hardware are far-reaching with the

principle of separating control- and data-planes.

Therefore, even after all these years in which we have conducted this work, cross-

layer network programmability and source routing are still exciting research fields.

However, various properties are missing to be explored in M-PolKA. It was shown a

viable paradigm to enable and empower a wide range of network applications, which

was not the case when we started with this line of research. Finally, we conclude by

reaffirming our belief that the work present in this thesis provides solid guidelines

and interesting insight to foster expressive and agile orchestration research and

experimentation across heterogeneous resources.

Bibliography

[Alvarez et al. 2018] Alvarez, P., Slyne, F., Blumm, C., Marquez-Barja, J., DaSilva, L.,

and Ruffini, M. (2018). Experimental demonstration of sdn-controlled variable-rate

fronthaul for converged lte-over-pon. In Optical Fiber Communication Conference,

pages Th2A–49. Optical Society of America. 53, 59

[Ayyash et al. 2016] Ayyash, M. et al. (2016). Coexistence of wifi and lifi toward

5g: concepts, opportunities, and challenges. IEEE Communications Magazine,

54(2):64–71. 64

[Baranda et al. 2018] Baranda, J., Mangues-Bafalluy, J., Pascual, I., Nunez-Martinez,

J., l. Cruz, J. L. D., Casellas, R., Vilalta, R., Salvat, J. X., and Turyagyenda, C.

(2018). Orchestration of end-to-end network services in the 5g-crosshaul multi-

domain multi-technology transport network. IEEE Communications Magazine,

56(7):184–191. 33

[Bayhan et al. 2018] Bayhan, S., Gür, G., and Zubow, A. (2018). The future is unli-

censed: Coexistence in the unlicensed spectrum for 5g. CoRR. 64

[Bogue 2017] Bogue, R. (2017). Cloud robotics: a review of technologies, develop-

ments and applications. Industrial Robot: An International Journal, 44(1):1–5. 11,

33

[Both et al. 2019] Both, C. et al. (2019). Futebol control framework: Enabling

experimentation in convergent optical, wireless, and cloud infrastructures. IEEE

Communications Magazine, 57(10):56–62. vi, vii, viii, 12, 35, 36, 45, 47, 55, 57,

58, 60, 62, 65, 110, 122

[Boulogeorgos et al. 2018] Boulogeorgos, A. et al. (2018). Terahertz technologies

to deliver optical network quality of experience in wireless systems beyond 5G.

IEEE Communications Magazine, 56(6):144–151. 33, 44

[Bublitz et al. 2017] Bublitz, C. F. et al. (2017). Unsupervised segmentation and

classification of snoring events for mobile health. In IEEE Global Communications

Conference, pages 1–6. 57, 59

127

[Buccheri et al. 2018] Buccheri, L. et al. (2018). Hybrid retransmission scheme for

qos-defined 5g ultra-reliable low-latency communications. In IEEE WCNC. 38

[Cain et al. 2002] Cain, B., Deering, D. S. E., Fenner, B., Kouvelas, I., and Thyagara-

jan, A. (2002). Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol

Specification (Revised). RFC 3376, RFC Editor. 41

[Casado et al. 2010] Casado, M., Koponen, T., Ramanathan, R., and Shenker, S.

(2010). Virtualizing the Network Forwarding Plane. In ACM, PRESTO ’10, pages

8:1–8:6, New York, NY, USA. ACM. 20

[Cena et al. 2018] Cena, G., Scanzio, S., and Valenzano, A. (2018). A prototype

implementation of wi-fi seamless redundancy with reactive duplication avoidance.

In 2018 IEEE 23rd International Conference on Emerging Technologies and

Factory Automation (ETFA), volume 1, pages 179–186. 38, 70

[Ceravolo et al. 2018] Ceravolo, I. et al. (2018). O2CMF: Experiment-as-a-service

for agile Fed4Fire deployment of programmable NFV. In 2018 Optical Fiber

Communications Conference and Exposition (OFC), pages 1–3. 47

[Comer and Rastegarnia 2019] Comer, D. and Rastegarnia, A. (2019). Toward disag-

gregating the sdn control plane. IEEE Communications Magazine, 57(10):70–75.

96

[Cugini et al. 2019] Cugini, F., Gunning, P., Paolucci, F., Castoldi, P., and Lord, A.

(2019). P4 in-band telemetry (int) for latency-aware vnf in metro networks. In

2019 Optical Fiber Communications Conference and Exhibition (OFC), pages 1–3.

124

[do Carmo et al. 2019a] do Carmo, A. P., Vassallo, R. F., de Queiroz, F. M., Picoreti,

R., Fernandes, M. R., Gomes, R. L., Martinello, M., Dominicini, C. K., Guimarães,

R., Garcia, A. S., Ribeiro, M. R. N., and Simeonidou, D. (2019a). Programmable

intelligent spaces for industry 4.0: Indoor visual localization driving attocell

networks. Trans. Emerg. Telecommun. Technol., 30(11). 123

[do Carmo et al. 2019b] do Carmo, A. P., Vassallo, R. F., de Queiroz, F. M., Pi-

coreti, R., Fernandes, M. R., Gomes, R. L., Martinello, M., Dominicini, C. K.,

Guimarães, R., Garcia, A. S., Ribeiro, M. R. N., and Simeonidou, D. (2019b). Pro-

grammable intelligent spaces for industry 4.0: Indoor visual localization driving

attocell networks. Transactions on Emerging Telecommunications Technologies,

30(11):e3610. e3610 ett.3610. 63, 65

128

[Dominicini et al. 2017] Dominicini, C. K. et al. (2017). Virtphy: Fully programmable

nfv orchestration architecture for edge data centers. IEEE Transactions on

Network and Service Management, 14(4):817–830. 77

[Dominicini et al. 2020] Dominicini, C. K., Mafioletti, D. R., Locateli, A. C., Villaca,

R., Martinello, M., and Ribeiro, M. N. (2020). Polka: Polynomial key-based

architecture

for source routing in network fabrics. In Proceedings of the IEEE Conference on

Network Softwarization - NETSOFT ’20, pages 154–155, Ghent, Belgian. ACM

Press. 14, 40, 42, 80, 82, 91, 123

[ETSI MEC ISG 2014] ETSI MEC ISG (2014). Mobile edge computing - introductory

technical white paper. 26

[ETSI NFV ISG 2014] ETSI NFV ISG (2014). NFV 002 V1.2.1. Network Functions

Virtualisation (NFV); Architectural Framework. 25

[Fenner et al. 2016] Fenner, B., Handley, M. J., Holbrook, H., Kouvelas, I., Parekh,

R., Zhang, Z. J., and Zheng, L. (2016). Protocol Independent Multicast - Sparse

Mode (PIM-SM): Protocol Specification (Revised). RFC 7761, RFC Editor. 41

[Filsfils et al. 2015] Filsfils, C., Nainar, N. K., Pignataro, C., Cardona, J. C., and

Francois, P. (2015). The Segment Routing Architecture. In 2015 IEEE Global

Communications Conference (GLOBECOM), pages 1–6. IEEE. 43

[Fontes et al. 2017] Fontes, R. D. R., Mahfoudi, M., Dabbous, W., Turletti, T., and

Rothenberg, C. (2017). How Far Can We Go? Towards Realistic Software-Defined

Wireless Networking Experiments. Computer Journal, 60(10):1458–1471. 37

[Fontes et al. 2015] Fontes, R. R., Afzal, S., Brito, S. H. B., Santos, M. A. S., and

Rothenberg, C. E. (2015). Mininet-wifi: Emulating software-defined wireless

networks. In 2015 11th International Conference on Network and Service Man-

agement (CNSM), pages 384–389. 115

[Foster et al. 2020] Foster, N., McKeown, N., Rexford, J., Parulkar, G., Peterson, L.,

and Sunay, O. (2020). Using deep programmability to put network owners in

control. SIGCOMM Comput. Commun. Rev., 50(4):82–88. 13

[Fu et al. 2018] Fu, S. et al. (2018). Software defined wireline-wireless cross-

networks: Framework, challenges, and prospects. IEEE Communications Maga-

zine, 56(8):145–151. 11, 33, 44

[GEANT 2021] GEANT (2021). Home - rare - gÉant federated confluence. https:

//wiki.geant.org/display/RARE/Home. (Accessed on 08/10/2021). 123, 124

https://wiki.geant.org/display/RARE/Home
https://wiki.geant.org/display/RARE/Home

129

[Gilani et al. 2017] Gilani, S. M. M. et al. (2017). Mobility management in IEEE

802.11 WLAN using SDN/NFV technologies. Eurasip Journal on Wireless Commu-

nications and Networking, 2017(1). 37, 39

[Gomes et al. 2016] Gomes, R. R. et al. (2016). KAR: Key-for-any-route, a resilient

routing system. In 2016 46th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks Workshop, pages 120–127. 40, 41, 119, 120

[Gowda et al. 2016] Gowda, M., Dhekne, A., and Choudhury, R. R. (2016). The

Case for Robotic Wireless Networks. Proceedings of the 25th World Wide Web

Conference (WWW 2016), pages 1317–1327. 38

[Guedes et al. 2012] Guedes, D., Vieira, L., Vieira, M., Rodrigues, H., and Nunes, R.

(2012). Redes Definidas por Software: uma abordagem sistêmica para o desen-

volvimento de pesquisas em Redes de Computadores. Minicursos do Simpósio

Brasileiro de Redes de Computadores-SBRC 2012, 30(4):160–210. 21, 22, 23

[Guerzoni et al. 2017] Guerzoni, R., Vaishnavi, I., Pérez-Caparrós, D., Galis, A., Tusa,

F., Monti, P., Sganbelluri, A., Biczók, G., Sonkoly, B., Toka, L., Ramos, A., Melian, J.,

Dugeon, O., Cugini, F., Martini, B., Iovanna, P., Giuliani, G., de Oliveira Figueiredo,

R., Murillo, L. M. C., Bernardos, C. J., Santana, C., and Szabó, R. (2017). Analysis of

end-to-end multi-domain management and orchestration frameworks for software

defined infrastructures: an architectural survey. Trans. Emerg. Telecommun.

Technol., 28. vi, 34

[Guimaraes S et al. 2020] Guimaraes S, R., Martinez M G, V., Mello, R. C., Mafioletti,

D. R., Martinello, M., and Ribeiro, M. R. N. (2020). An SDN-NFV orchestration for

reliable and low latency mobility in Off-the-Shelf WiFi. In 2020 IEEE International

Conference on Communications (ICC): Mobile and Wireless Networks Symposium

(IEEE ICC’20 - MWN Symposium), Dublin, Ireland. 63, 65, 81, 118, 119

[GÉANT 2021] GÉANT (2021). https://wiki.geant.org/pages/viewpage.

action?pageId=148085131. (Accessed on 02/03/2021). vii, 100

[Han et al. 2015] Han, B., Gopalakrishnan, V., Ji, L., and Lee, S. (2015). Network

function virtualization: Challenges and opportunities for innovations. Communi-

cations Magazine, IEEE, 53(2):90–97. vi, 24, 25

[Heller et al. 2012] Heller, B., Sherwood, R., and Mckeown, N. (2012). The con-

troller placement problem. Computer Communication Review, 42(4):473–478.

14

https://wiki.geant.org/pages/viewpage.action?pageId=148085131
https://wiki.geant.org/pages/viewpage.action?pageId=148085131

130

[Huang et al. 2017] Huang, T. et al. (2017). A survey on large-scale software defined

networking SDN testbeds: Approaches and challenges. IEEE Communications

Surveys Tutorials, 19(2):891–917. 36

[ITU-R Recommendation 2015] ITU-R Recommendation (2015). ITU-R M.2083 IMT

Vision: Framework and overall objectives of the future development of IMT for

2020 and beyond. 29

[Jin et al. 2016] Jin, X. et al. (2016). Your data center switch is trying too hard.

In Proceedings of the ACM SIGCOMM Symposium on SDN Research, pages

12:1–12:6, New York, NY, USA. ACM. 87

[Jyothi et al. 2015] Jyothi, S. A. et al. (2015). Towards a flexible data center fabric

with source routing. In Proceedings of the ACM SIGCOMM Symposium on SDN

Research, pages 10:1–10:8, New York, NY, USA. ACM. 81

[Kassar et al. 2008] Kassar, M., Kervella, B., and Pujolle, G. (2008). An overview

of vertical handover decision strategies in heterogeneous wireless networks.

Computer Communications, 31:2607–2620. 117

[Komolafe 2017] Komolafe, O. (2017). IP multicast in virtualized data centers:

Challenges and opportunities. In 2017 IFIP/IEEE Symposium on Integrated

Network and Service Management (IM), pages 407–413. IEEE. 81

[Lantz et al. 2010] Lantz, B., Heller, B., and McKeown, N. (2010). A Network in a

Laptop: Rapid Prototyping for Software-defined Networks. In ACM, Hotnets-IX,

pages 19:1–19:6, New York, NY, USA. ACM. 20

[Lee et al. 2007] Lee, P. P. C., Misra, V., and Rubenstein, D. (2007). Distributed

algorithms for secure multipath routing in attack-resistant networks. IEEE/ACM

Transactions on Networking, 15(6):1490–1501. 79

[Li et al. 2017] Li, X., Samaka, M., Chan, H. A., Bhamare, D., Gupta, L., Guo, C.,

and Jain, R. (2017). Network slicing for 5g: Challenges and opportunities. IEEE

Internet Computing, 21(5):20–27. 32

[Li et al. 2018] Li, Z. et al. (2018). 5g urllc: Design challenges and system concepts.

In 15th International Symposium on Wireless Communication Systems. 30, 65

[Liberato et al. 2018] Liberato, A. et al. (2018). Rdna: Residue-defined networking

architecture enabling ultra-reliable low-latency datacenters. IEEE Transactions

on Network and Service Management, 15(4). 40, 69, 77, 86, 123

131

[Liu et al. 2019] Liu, Q. et al. (2019). Proactive mobility management based on

virtual cells in sdn-enabled ultra-dense networks. In 2019 IEEE International

Conference on Communications Workshops (ICC Workshops), pages 1–6. 39

[Lucas-Estañ et al. 2018] Lucas-Estañ, M. C. et al. (2018). An experimental evalu-

ation of redundancy in industrial wireless communications. In 2018 IEEE 23rd

International Conference on Emerging Technologies and Factory Automation

(ETFA), volume 1, pages 1075–1078. 39

[Mafioletti et al. 2020] Mafioletti, D. R., Dominicini, C. K., Martinello, M., Ribeiro, M.

R. N., and d. S. Villaça, R. (2020). Piaffe: A place-as-you-go in-network framework

for flexible embedding of vnfs. In ICC 2020 - 2020 IEEE International Conference

on Communications (ICC), pages 1–6. 113

[Mao et al. 2017] Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017).

A Survey on Mobile Edge Computing: The Communication Perspective. IEEE

Communications Surveys & Tutorials, 19(4):2322–2358. 27

[Marques et al. 2017] Marques, P. et al. (2017). Experiments Overview of the EU-

Brazil FUTEBOL Project. In European Conference on Networks and Communica-

tions, pages 1–2. 36

[Martinello et al. 2014] Martinello, M. et al. (2014). Keyflow: a prototype for evolv-

ing sdn toward core network fabrics. IEEE Network, 28(2):12–19. 40, 41, 77,

82

[Martínez 2019] Martínez, V. M. G. (2019). WIFI MOBILE ACCESS WITH SOFT-

WARE DEFINED MULTI-CONNECTIVITY. dissertation, Universidade Federal do

Espirito Santo. vi, 30

[Martins et al. 2014] Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M.,

Bifulco, R., and Huici, F. (2014). ClickOS and the Art of Network Function

Virtualization. In NSDI, NSDI’14, pages 459–473, Berkeley, CA, USA. USENIX

Association. 24

[Martínez et al. 2018] Martínez, V. M. G. et al. (2018). Ultra reliable communica-

tion for robot mobility enabled by sdn splitting of wifi functions. In 2018 IEEE

Symposium on Computers and Communications (ISCC). vi, 39, 63, 66

[McKeown et al. 2008] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.,

Peterson, L., Rexford, J., Shenker, S., and Turner, J. (2008). OpenFlow: Enabling

Innovation in Campus Networks. ACM SIGCOMM Computer Communication

Review, 38(2):69. vi, 20, 21, 22

132

[Mello et al. 2019] Mello, R. et al. (2019). On human-in-the-loop cps in healthcare:

A cloud-enabled mobility assistance service. Robotica, page 1–17. 65

[Merling et al. 2018] Merling, D., Menth, M., Warnke, N., and Eckert, T. (2018). An

overview of bit index explicit replication (bier) – ietf journal. IETF. vi, 43

[Mininet 2018] Mininet (2018). An Instant Virtual Network on your Laptop (or other

PC). 98

[Mishra et al. 2003] Mishra, A., Shin, M., and Arbaugh, W. (2003). An Empirical

Analysis of the IEEE 802.11 MAC Layer Handoff Process. ACM SIGCOMM

Computer . . . , 33(2):93–102. 37

[Moura et al. 2015] Moura, H. et al. (2015). Ethanol: Software defined networking

for 802.11 wireless networks. In IFIP/IEEE International Symposium on Integrated

Network Management, pages 388–396. 37, 56, 58

[Nencioni et al. 2018] Nencioni, G., Garroppo, R. G., Gonzalez, A. J., Helvik, B. E.,

and Procissi, G. (2018). Orchestration and Control in Software-Defined 5G Net-

works: Research Challenges. Wireless Communications and Mobile Computing,

2018:1–18. vi, 33, 36

[Networks 2017] Networks, I. (2017). P4d2 – programmable data plane at terabit

speeds. vii, 102

[Nielsen et al. 2018] Nielsen, J. J., Liu, R., and Popovski, P. (2018). Ultra-reliable

low latency communication using interface diversity. IEEE Transactions on Com-

munications, 66(3):1322–1334. 39, 65, 78

[Nikaein et al. 2014] Nikaein, N. et al. (2014). OpenAirInterface: an open LTE

network in a PC. In Proceedings of the 20th Annual International Conference on

Mobile Computing and Networking, MobiCom, pages 305–308. ACM. 56, 58

[Open Networking Foundation 2014] Open Networking Foundation (2014).

OpenFlow-enabled SDN and Network Functions Virtualization. 11, 20

[Openvswitch.org 2015] Openvswitch.org (2015). What is Open vSwitch? vi, 23

[P4 2017] P4 (2017). The p4 14 language specification. https://p4.org/p4-spec/

p4-14/v1.0.4/tex/p4.pdf. vii, 93

[P4 2018] P4 (2018). P4~16~ portable switch architecture (psa). https://p4.org/

p4-spec/docs/PSA-v1.1.0.html. 93, 101

https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html

133

[P4 v16 2020] P4 v16 (2020). P4 16 Language Specification version 1.0.0. vi, 24,

87, 91, 100

[Paolucci et al. 2021] Paolucci, F., Cugini, F., Castoldi, P., and Osinski, T. (2021).

Enhancing 5g sdn/nfv edge with p4 data plane programmability. IEEE Network,

pages 1–7. 124

[Peterson and Brown 1961] Peterson, W. W. and Brown, D. T. (1961). Cyclic codes

for error detection. Proceedings of the IRE, 49(1):228–235. 91

[Pocovi et al. 2018] Pocovi, G., Shariatmadari, H., Berardinelli, G., Pedersen, K.,

Steiner, J., and Li, Z. (2018). Achieving ultra-reliable low-latency communications:

Challenges and envisioned system enhancements. IEEE Network, 32(2):8–15. 38,

64

[Popovski et al. 2018] Popovski, P., Nielsen, J. J., Stefanovic, C., d. Carvalho, E.,

Strom, E., Trillingsgaard, K. F., Bana, A., Kim, D. M., Kotaba, R., Park, J., and

Sorensen, R. B. (2018). Wireless access for ultra-reliable low-latency communica-

tion: Principles and building blocks. IEEE Network, 32(2):16–23. 38

[Raghavendra et al. 2007] Raghavendra, R., Belding, E. M., Papagiannaki, K., and

Almeroth, K. C. (2007). Understanding Handoffs in Large IEEE 802 . 11 Wireless.

Wireless Networks, pages 333–338. 37

[Ramos et al. 2013] Ramos, R. M., Martinello, M., and Rothenberg, C. E. (2013).

Slickflow: Resilient source routing in data center networks unlocked by openflow.

In 38th Annual IEEE Conference on Local Computer Networks, Sydney, Australia,

October 21-24, 2013, pages 606–613. IEEE Computer Society. 78

[Reed et al. 2016] Reed, M. J., Al-Naday, M., Thomos, N., Trossen, D., Petropoulos,

G., and Spirou, S. (2016). Stateless multicast switching in software defined

networks. In 2016 IEEE International Conference on Communications, ICC 2016,

pages 1–7. IEEE. 40, 41

[Ren et al. 2017] Ren, Y. et al. (2017). Flowtable-free routing for data center net-

works: A software-defined approach. In GLOBECOM 2017 - 2017 IEEE Global

Communications Conference, pages 1–6. 86

[Rentschler and Laukemann 2012] Rentschler, M. and Laukemann, P. (2012). To-

wards a reliable parallel redundant wlan black channel. In 2012 9th IEEE In-

ternational Workshop on Factory Communication Systems, pages 255–264. 38,

70

134

[Rosa et al. 2015] Rosa, R. V., Santos, M. A. S., and Rothenberg, C. E. (2015). Md2-

nfv: The case for multi-domain distributed network functions virtualization. In

2015 International Conference and Workshops on Networked Systems (NetSys),

pages 1–5. 29

[Routray et al. 2013] Routray, S. K. et al. (2013). Statistical model for link lengths

in optical transport networks. J. Opt. Commun. Netw., 5(7):762–773. 86

[Ryu 2015] Ryu (2015). Ryu SDN Framework Community. 50, 53, 72

[Sanchez et al. 2016] Sanchez, M. I., De La Oliva, A., and Mancuso, V. (2016). Ex-

perimental evaluation of an SDN-based distributed mobility management solution.

2016 ACM Workshop on Mobility in the Evolving Internet Architecture, MobiArch

2016, 03-07-Octo. 37

[Saraiva de Sousa et al. 2019] Saraiva de Sousa, N. F., Lachos Perez, D. A., Rosa,

R. V., Santos, M. A., and Esteve Rothenberg, C. (2019). Network Service Orches-

tration: A survey. Computer Communications, 142-143(May):69–94. vi, 11, 12,

23, 27, 28

[Satyanarayanan 2017] Satyanarayanan, M. (2017). The Emergence of Edge Com-

puting. Computer, 50(1):30–39. 26

[Schroeder 2009] Schroeder, M. (2009). Number theory in science and communica-

tion: with applications in cryptography, physics, digital information, computing,

and self-similarity. Springer, Berlin, Heidelberg. 42

[Shahbaz et al. 2019] Shahbaz, M. et al. (2019). Elmo. In Proceedings of the ACM

Special Interest Group on Data Communication - SIGCOMM ’19, pages 458–471,

New York, New York, USA. ACM Press. 40, 41, 69, 86

[Sherry et al. 2012] Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy,

S., and Sekar, V. (2012). Making Middleboxes Someone else’s Problem: Network

Processing As a Cloud Service. In SIGCOMM, SIGCOMM ’12, pages 13–24, New

York, NY, USA. ACM. 24

[Sherwood et al. 2009] Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado,

M., McKeown, N., and Parulkar, G. (2009). FlowVisor: A Network Virtualization

Layer. OpenFlow Switch Consortium, Tech. Rep. vi, 21

[Shi and Dustdar 2016] Shi, W. and Dustdar, S. (2016). The Promise of Edge Com-

puting. Computer, 49(5):78–81. vi, 27

[Shoup 2009] Shoup, V. (2009). A Computational Introduction to Number Theory

and Algebra. Cambridge University Press. 14, 82, 85, 123

135

[Singh et al. 2015] Singh, S. K. et al. (2015). A survey on internet multipath routing

and provisioning. IEEE Communications Surveys Tutorials, 17(4):2157–2175. 78,

79

[Slyne et al. 2019] Slyne, F., Guimaraes, R. S., and Zhang, Y. (2019). Coordinated

fibre and wireless spectrum allocation in SDN-controlled wireless-optical-cloud

converged architecture. In Optical Fiber Communication Conference 2019. IEEE.

vii, viii, 51, 52, 53, 54, 55

[Soliman et al. 2012] Soliman, M., Nandy, B., Lambadaris, I., and Ashwood-Smith, P.

(2012). Source routed forwarding with software defined control, considerations

and implications. CoNEXT Student 2012 - Proceedings of the ACM Conference on

the 2012 CoNEXT Student Workshop, pages 43–44. 14, 43

[Suer et al. 2020] Suer, M. et al. (2020). Multi-connectivity as an enabler for reli-

able low latency communications—an overview. IEEE Communications Surveys

Tutorials, 22(1):156–169. 78, 79, 80, 81

[Sunshine 1977] Sunshine, C. A. (1977). Source routing in computer networks.

SIGCOMM Comput. Commun. Rev., 7(1):29–33. 43

[Suresh et al. 2012] Suresh, L., Schulz-Zander, J., Merz, R., Feldmann, A., and Vazao,

T. (2012). Towards programmable enterprise WLANS with Odin. Proceedings of

the first workshop on Hot topics in software defined networks - HotSDN ’12, page

115. 37

[Systems 2017] Systems, S. R. (2017). srsLTE Library https://github.com/srslte. 51

[Tzanakaki et al. 2017] Tzanakaki, A. et al. (2017). Wireless-optical network conver-

gence: Enabling the 5G architecture to support operational and end-user services.

IEEE Communications Magazine, 55(10):184–192. 12

[Verdi et al. 2010] Verdi, F. L., Rothenberg, C. E., Pasquini, R., and Magalhães, M.

(2010). Novas arquiteturas de data center para cloud computing. XXVIII Simpósio

Brasileiro de Redes de Computadores e Sistemas Distribuídos-Gramado-RS. 21,

23

[Wessing et al. 2002] Wessing, H., Christiansen, H., Fjelde, T., and Dittmann, L.

(2002). Novel Scheme for Packet Forwarding Without Header Modifications in

Optical Networks. J. Lightwave Technol., 20(8):1277. 41, 82, 87

[Wijnands et al. 2017] Wijnands, I., Rosen, E. C., Dolganow, A., Przygienda, T., and

Aldrin, S. (2017). Multicast Using Bit Index Explicit Replication (BIER). RFC 8279.

40, 42, 86

136

[Xu et al. 2017] Xu, C. et al. (2017). A novel multipath-transmission supported

software defined wireless network architecture. IEEE Access, pages 2111–2125.

39

[Yang and Cheng 2019] Yang, H. and Cheng, L. (2019). Bounding network-induced

delays of wireless prp infrastructure for industrial control systems. In ICC 2019 -

2019 IEEE International Conference on Communications (ICC). 38

[Yousaf et al. 2017] Yousaf, F. Z., Bredel, M., Schaller, S., and Schneider, F. (2017).

NFV and SDN-Key technology enablers for 5G networks. IEEE Journal on Selected

Areas in Communications, 35(11):2468–2478. vi, 31, 32, 44

[Zehl et al. 2016] Zehl, S., Zubow, A., and Wolisz, A. (2016). BIGAP - A seamless han-

dover scheme for high performance enterprise IEEE 802.11 networks. Proceed-

ings of the NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management

Symposium, 1(Noms):1015–1016. 37

[Zeljković et al. 2018] Zeljković, E. et al. (2018). Proactive access point driven

handovers in ieee 802.11 networks. In 2018 14th International Conference on

Network and Service Management (CNSM), pages 261–267. 39

[Zeljković et al. 2019] Zeljković, E. et al. (2019). Abraham: Machine learning

backed proactive handover algorithm using sdn. IEEE Transactions on Network

and Service Management, 16(4):1522–1536. 39

