

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

CENTRO TECNOLÓGICO

DEPARTAMENTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

Murillo Vasconcelos Henriques Bittencourt Castro

An Ontology to support Knowledge
Management Solutions for Human-

Computer Interaction Design

VITÓRIA
2021

Murillo Vasconcelos Henriques Bittencourt Castro

An Ontology to support Knowledge
Management Solutions for Human-

Computer Interaction Design

Dissertação de Mestrado apresentada ao

Programa de Pós-Graduação em

Informática da Universidade Federal do

Espírito Santo, como requisito parcial para

obtenção do Grau de Mestre em

Informática.

Orientador(a): Monalessa Perini Barcellos

Coorientador: Ricardo de Almeida Falbo

(in memoriam)

VITÓRIA
2021

Murillo Vasconcelos Henriques Bittencourt Castro

An Ontology to support Knowledge
Management Solutions for Human-

Computer Interaction Design

COMISSÃO EXAMINADORA

__
Prof. Monalessa Perini Barcellos, D. Sc.

Universidade Federal do Espírito Santo (UFES)
Orientadora

__
Prof. Vítor Estêvão Silva Souza, Ph. D.

Universidade Federal do Espírito Santo (UFES)
Avaliador Interno

__
Profa. Tayana Uchôa Conte, D. Sc.

Universidade Federal do Amazonas (UFAM)
Avaliador Externo

Vitória, 19 de maio de 2021

4

This work is dedicated to my parents, Estêvão and Eliana, in return for their investment in

my education, and to the memory and the legacy of Prof. Ricardo Falbo.

5

ACKNOWLEDGEMENTS

When this work began, I had absolutely no idea what the result would be. Since then,

many things have happened, causing substantial changes in me and in the world. Today, three

years and two months later, the balance is undoubtedly positive, despite the losses and

challenges along the way. From this experience, the main learnings I will take to my life are

to remain strong and comfortable in the face of discomfort, to enjoy the process regardless

of the result, and to celebrate the achievements, like the completion of this work. Celebrating

is also an act of thanking those who participated in the journey. Here is my gratitude to

everyone who shared moments with me during this period, especially those who participated

and contributed directly to this achievement.

I am immeasurably grateful to my Father and Mother for giving me my life, for

nurturing me with great love, and for being the main and best personal references I could

have. To my Sisters, my nephew, my niece, and other familiars and friends, for the moments

of fun, affection, and support. To Hosana Dias, and to Hilario Trigo & Escola Vida, for their

help in providing me psychological resources that enable me to live in peace with my

thoughts and emotions.

I have no words to thank Prof. Monalessa and Prof. Falbo, for having guided me

along this journey and for inspiring me as great models of teachers, supervisors, and people.

The synergy between them is so great that it is pretty hard to mention how much each of

them contributed separately to me and to this work. I particularly admire Monalessa’s

strength for moving forward after Falbo having an unfortunate and early passing, and I'm

sure he is proud of our work, wherever he is. After all, his presence remains and will remain

alive through his legacy and us.

I am also grateful to the other NEMO senior members, namely João Paulo,

Giancarlo, Renata, and Vítor, for the knowledge transmitted and inspiration, mainly during

their classes; to Simone and Bia for the partnership and collaboration in our works; to the

members of the examination board for their availability to evaluate this work; to Resultate,

for having been the environment that provided the early motivation for this work; and to the

participants of the studies, for their time availability to contribute to this work.

Finally, I am grateful to PPGI, UFES, and the Federative Republic of Brazil, for

offering this postgraduate program that contributed to my academic, professional, and

personal growth.

6

ABSTRACT

Developing interactive systems is a challenging task. It involves concerns related to the

human-computer interaction (HCI), such as usability and user experience. Therefore, HCI

design must be addressed when developing such systems. HCI design often involves people

with different backgrounds, technical languages, terms and knowledge, what makes

communication and knowledge transfer a challenging issue. In this scenario, knowledge

management can support understanding concepts from different knowledge areas and help

learn from previous experiences. Knowledge management has supported HCI design mainly

to improve product quality and reduce effort and time spent on design activities. However,

there is a need for simpler and more practical knowledge management solutions to support

HCI design. In addition, the lack of a common conceptualization about HCI design has been

one of the main challenges to be addressed. This leads to semantic interoperability problems,

such as ambiguity and imprecision when interpreting shared information, and hampers

communication and knowledge transfer. Aiming to provide a well-founded

conceptualization about HCI design domain in the context of the development of interactive

systems, this work proposes HCIDO (Human-Computer Interaction Design Ontology).

HCIDO is a reference ontology of the Human-Computer Interaction Ontology Network

(HCI-ON) and is also connected to the Software Engineering Ontology Network (SEON),

allowing for the reuse of concepts related to Software Engineering and HCI aspects, such as

requirements, code, interactive systems and users, as well as making them connected to

design aspects. HCIDO was evaluated through verification and validation techniques.

Moreover, a computational tool was developed using HCIDO as a reference model,

illustrating how the ontology can be applied to support knowledge management solutions in

HCI design. The tool supports knowledge management activities (e.g., knowledge capture,

representation, storage, retrieval, use and evaluation) in the HCI design of interactive systems

by allowing HCI designers to annotate structured information about design choices in design

artifacts shared with HCI design stakeholders.

Keywords: HCI Design, Knowledge Management, Ontology

7

 TABLE OF CONTENTS

Chapter 1 – Introduction ... 9

1.1 Context ... 9

1.2 Motivation .. 11

1.3 Objectives... 12

1.4 Research Approach... 13

1.5 Structure of this Document .. 17

Chapter 2 – Background ... 18

2.1 HCI Design .. 18

2.2 Knowledge Management ... 20

2.3 Ontologies .. 24

2.3.1 UFO (Unified Foundational Ontology) .. 26

2.3.2 SEON (Software Engineering Ontology Network) ... 28

2.3.3 HCI-ON (Human-Computer Interaction Ontology Network) ... 31

2.4 Ontologies in HCI Design context .. 35

2.5 Concluding Remarks .. 36

Chapter 3 – Systematic Mapping: KM in HCI Design ... 37

3.1 Introduction ... 37

3.2 Research protocol ... 38

3.3 Results ... 40

3.4 Discussion .. 47

3.5 Threats to validity ... 50

3.6 Concluding Remarks .. 51

Chapter 4 – Survey: KM in HCI Design Practice.. 52

4.1 Introduction ... 52

4.2 Survey Planning and Execution .. 52

4.3 Results ... 54

4.4 Discussion .. 60

4.5 Threats to Validity .. 63

4.6 Consolidated View of Findings .. 64

4.7 Concluding Remarks .. 65

Chapter 5 – Human-Computer Interaction Design Ontology .. 67

5.1 Introduction ... 67

8

5.2 Software Design Reference Ontology ... 69

5.2.1 SDRO Evaluation ... 76

5.2.2 Discussion .. 82

5.3 Human-Computer Interaction Design Ontology .. 83

5.3.1 HCIDO Evaluation .. 91

5.3.2 Discussion .. 99

5.4 Related Works .. 100

5.5 Concluding Remarks ... 101

Chapter 6 – KTID: A Computational Tool to Support KM Aspects in HCI Design 102

6.1 Introduction .. 102

6.2 KTID: Knowledge Tool for Interaction Design ... 103

6.3 Evaluating KTID ... 112

6.3.1 Study Planning ... 112

6.3.2 Study Execution ... 114

6.3.3 Study Results .. 114

6.3.4 Discussion ... 117

6.3.5 Threats to Validity ... 119

6.4 Concluding Remarks ... 120

Chapter 7 – Final Considerations and Future Work .. 121

7.1 Final Considerations .. 121

7.2 Contributions .. 123

7.3 Future Work ... 123

References ..126

Appendix A – Artifacts used in KTID Evaluation Study ...138

A.1 Instructions Document ... 138

A.2 Consent Form .. 147

A.3 Participants Profile Form ... 148

A.4 Feedback Questionnaire ... 152

9

Chapter 1

Introduction

This chapter presents the context, motivation and objectives of this work, as well as the adopted research approach

and the structure of this dissertation.

1.1 Context

The interest in interactive systems and their impact on people’s life has promoted the

study and practice of usability (CARROLL, 2014). Usability is a key aspect to a successful

interactive system and is related to user efficiency and satisfaction when interacting with the

system. To an interactive system reach high usability levels, it is necessary to take human-

computer interaction (HCI) design aspects into account during its development process

(CARROLL, 2014).

HCI is concerned with usability and other aspects related to the interaction between

users and computer systems, necessary to produce more usable software (CARROLL, 2014).

It involves knowledge from multiple fields, such as ergonomics, cognitive science, user

experience, human factors, among others (SUTCLIFFE, 2014). Due to the diverse body of

knowledge involved when designing HCI aspects of interactive systems, interactive system

development teams are frequently multidisciplinary, joining people from different

backgrounds, with their own technical language, terms and knowledge. Even the

conceptualization about the product may be conflicting among different stakeholders, which

hampers communication and knowledge transfer (CARROLL, 2014; ROGERS; SHARP;

PREECE, 2011).

Developing interactive systems is a knowledge-intensive task. Knowledge

Management (KM) principles and practices have been successfully applied to support

knowledge capture, storage, use and transfer in the software development context in general

(RUS; LINDVALL, 2002; VALASKI; MALUCELLI; REINEHR, 2012). KM can also be

helpful to address challenges in the HCI design of interactive systems, since it might provide

support to capture and represent knowledge in an accessible and reusable way. For example,

design solutions developed by an organization can be stored and related to the requirements

that motivate them, components and patterns used to build them and evaluation results. As

a result, the team can learn from previous experiences and share a common understanding

10

about the system, contributing to produce better products and perform processes more

efficiently.

HCI is a wide domain and as the area is getting more mature, new terms are proposed

and new meanings are assigned to existing terms. Consequently, it is not trivial to have a

common conceptualization of HCI, leading to semantic interoperability problems, such as

ambiguity and imprecision when interpreting shared information. Moreover, the integration

of HCI knowledge and practices into Software Engineering (SE) processes involves

additional challenges due to the knowledge intersection between them (OGUNYEMI;

LAMAS, 2014). For example, a lot of HCI related terms are also related to SE, such as

system, requirement, design and user interface. However, since HCI is more user centered

(i.e., more concerned on the tasks that users can perform with an interactive system to

achieve their goals) and SE is more system centered (i.e., more concerned on the functions

that an interactive system must provide to satisfy its requirements), different meanings can

be associated to the same term depending on the context (e.g., designers may refer to the

user interface as what they see through the graphical elements displayed on the screen, while

developers may refer to it as the portion of the code which produces the output displayed in

the screen) (OGUNYEMI; LAMAS, 2014).

Ontologies can be used to capture and organize knowledge based on a common

vocabulary to deal with interoperability and knowledge-related problems. An ontology is a

formal and explicit specification of a shared conceptualization (STUDER; BENJAMINS;

FENSEL, 1998). In the HCI context, they have been applied to knowledge representation,

to aid in interaction design and evaluation, interface adaptation, semantic annotation, among

others (COSTA et al., 2020). For a complex domain, representing its knowledge as a single

ontology results in a large and monolithic ontology that is hard to manipulate, use, and

maintain (SUÁREZ-FIGUEROA et al., 2012). On the other hand, representing each sub-

domain in isolation is a costly task that leads to a very fragmented solution that is again hard

to handle (RUY et al., 2016). In such cases, building an ontology network is an adequate

solution. An ontology network (ON) is a collection of ontologies related together by means

of dependency and alignment relationships (SUÁREZ-FIGUEROA et al., 2012). Being a

complex and wide domain, HCI ontologies should be organized in an ON. Moreover,

considering the strong relation between HCI and SE, HCI ontologies should reuse concepts

from SE ontologies. Hence, the development of an ontology about HCI design, integrated

into an HCI ontology network and reusing concepts from SE ontologies, may be useful to

support knowledge management solutions in the HCI design of interactive systems.

11

1.2 Motivation

HCI has received more and more attention in the software development context. It

is concerned with “the design, evaluation and implementation of interactive computing systems for human

use and with the study of major phenomena surrounding them” (HEWETT et al., 1992). HCI addresses

important aspects of a successful interactive system, such as usability, user experience, and

accessibility (CARROLL, 2014). Hence, there have been efforts to integrate HCI knowledge

and practices into Software Engineering processes, and there is still a lot of work to be done

in this context (HARNING; VANDERDONCKT; FLORINS, 2003; SEFFAH;

GULLIKSEN; DESMARAIS, 2005).

As any general design activity, HCI design of interactive systems embodies a large

amount of tacit knowledge, which cannot be easily articulated (BOFYLATOS; SPYROU,

2017). The lack of mechanisms to make tacit knowledge explicit leads to communication and

knowledge transfer challenges in HCI design. For example, a designer may not be able to

point out the reasons why some design choices were made and describe them in artifacts. As

a result, other stakeholders (e.g., developers and project managers) may have a wrong or

incomplete understanding about the design and, thus, other designers may not be able to

reuse the solution in future designs. Therefore, it is important to effectively manage HCI

design knowledge in interactive systems development.

Knowledge Management (KM) principles and methods can be helpful to address the

large amount of tacit knowledge involved in HCI design, since they aim to transform tacit

and individual knowledge into explicit and shared knowledge. By raising individual

knowledge to the organizational level, KM promotes knowledge propagation and learning,

making knowledge accessible and reusable across the entire organization (O’LEARY, 1998;

RUS; LINDVALL, 2002; SCHNEIDER, 2009). KM solutions (e.g., knowledge management

systems and knowledge-based systems) can be supported by ontologies to provide

knowledge access, optimize knowledge retrieval, support communication mechanisms and,

therefore, knowledge exchange (VARMA, 2007). Thus, the use of ontologies combined with

KM solutions in HCI design can help enhance reuse and facilitate reasoning and inferences

on existing HCI design knowledge.

Since HCI and SE are strongly related, it is important to consider aspects from both

domains when developing ontologies related to HCI design. Considering that SE and HCI

are complex and wide domains, ontologies addressing these domains should be organized as

ontology networks. ONs can be used to establish a comprehensive conceptualization that

12

provides a common understanding about the domain and can be used as a reference to solve

semantic interoperability and knowledge problems related to the conceptualization as a

whole or to extracts of it. In this sense, Ruy et al., (2016) proposed SEON, the Software

Engineering Ontology Network, which contains ontologies addressing several SE

subdomains and forming a network with a comprehensive and consistent conceptualization

of SE. In an analogous initiative, to address the HCI domain, Costa et al. (2020) have

developed HCI-ON, the Human-Computer Interaction Ontology Network, aiming to

establish a comprehensive conceptualization of HCI by including ontologies that provide

knowledge to talk about the whole life cycle of an HCI project (e.g., design, UI, modalities

of interaction, evaluation and context of use) (COSTA et al., 2020). Thus, the inclusion of an

ontology about HCI design in HCI-ON is required to address what is referred as HCI

Engineering (HEFLEY et al., 1994), providing knowledge to talk about important aspects of

the development of interactive systems, such as how a designer designs the user interface of

an interactive system and what is the relation between the design, the requirements and the

actual system that users interact with.

In view of the above, this work explores the combination of KM foundations with

ontologies and ontology networks to potentialize knowledge management solutions (i.e.,

solutions, automated or not, that support knowledge management activities such as

knowledge capture, representation, storage, retrieval, use or assessment) in the context of the

HCI design of interactive systems.

1.3 Objectives

This work has the main objective of proposing a well-founded consensual conceptualization

of HCI design to support knowledge management solutions to aid in HCI design of interactive systems. This

main objective can be detailed in the following specific objectives:

(i) Investigate the state of the art about knowledge management in HCI design: this

goal is intended to investigate how knowledge management has been used to

support HCI design and identify gaps that have not been addressed by the

proposed knowledge management solutions;

(ii) Investigate the state of the practice about knowledge management in HCI design:

aims at investigating knowledge management aspects (practices, technologies,

artifacts, etc.) in HCI design practice;

13

(iii) Develop a reference ontology about HCI design of interactive systems: aims at

building a reference ontology to provide a well-founded consensual

conceptualization of HCI design;

(iv) Apply the reference ontology to support HCI design of interactive systems:

intends to use the reference ontology in the development of a computational tool

to support knowledge management aspects in HCI design.

1.4 Research Approach

The research method adopted in this work followed the Design Science Research

(DSR) paradigm, which concerns extending human and organizational capabilities by

creating new and innovative artifacts (HEVNER, 2007). It comprises the following steps

(PEFFERS et al., 2007): (i) Problem identification and motivation; (ii) Define the objectives for a solution;

(iii) Design and development; (iv) Demonstration; (v) Evaluation, and (vi) Communication. These six

steps are associated with three cycles that characterize DSR as an iterative process, as defined

by Hevner (2007): Relevance Cycle, Design Cycle and Rigor Cycle. The Relevance Cycle involves

defining the problem to be addressed, the research requirements, and the criteria to evaluate

research results, including steps (i) and (ii). The Design Cycle involves developing and

evaluating artifacts or theories to solve the identified problem, comprising steps (iii), (iv) and

(v). Finally, the Rigor Cycle refers to using and generating knowledge, consisting in step (vi)

plus the use of knowledge and foundations along the work.

In the “Problem identification and motivation” step, the problem was first identified in

practice by the author of this dissertation, when working on the development of interactive

systems as a software engineer together with HCI designers. This author noticed problems

to share knowledge about HCI design decisions and difficulties to achieve a harmonized view

of the system from HCI designers’ and developers’ perspectives. Since they had different

views of the interactive system and different understandings of HCI design and its relation

to other aspects of software development, it was hard to establish a consensual

communication protocol and reuse knowledge from developed HCI design solutions. Thus,

an informal literature review was performed to learn about the research topic. As a result,

the problem to be focused by this work was established as the need to address difficulties

involved in managing knowledge in the HCI design of interactive systems. Aiming to

understand the subject in deep, we investigated the state of the art about knowledge

management in HCI design through a systematic mapping. The mapping results indicated,

among other results, that (i) the lack of a common conceptualization about HCI design leads

14

to communication problems between the different actors involved in the HCI design

process; and (ii) it is necessary to take knowledge management solutions into practical HCI

design environments to reduce the gap between theory and practice. After that, to

complement the mapping results and give us a better understanding about knowledge

management in HCI design in practice, we carried out a survey with 39 HCI design

professionals. The survey results reinforced the lack of a consensual conceptualization about

HCI design as a challenge and indicated that professionals have been concerned in managing

HCI design knowledge, preferring informal and simpler methods and tools.

Considering the identified problem, the gaps pointed by mapping, the survey results,

the benefits reported in the literature of using ontologies to address semantic interoperability

problems and the potential of ontologies to contribute with knowledge management

solutions, in the step “Define the objectives for a solution” we decided to develop a reference

ontology about HCI design of interactive systems. As requirements to the reference

ontology, we defined: (R1) the ontology must cover main aspects regarding HCI design,

including not only the created artifacts but also mental aspects that precede the creation of

design artifacts (e.g., the choices made by the designer regarding which elements will be

used); (R2) the ontology must consider aspects related from both HCI and SE; (R3) the

ontology must be modular; (R4) the ontology must be formally rigorous; (R5) the ontology

must be ground in a well-founded ontology; (R6) the ontology must be developed by

following an appropriate Ontology Engineering method; and (R7) the ontology must be used

to solve problems. These requirements were established based on some characteristics of

“beautiful ontologies”. A beautiful ontology is one that reflects an elegant solution for

modeling a problem and it is at the same time good (in terms of formal quality), usable and

practicable (D’AQUIN; GANGEMI, 2011). In addition to the requirements to be met by

the ontology, based on (FALBO, 2014), we defined the following criteria to evaluate it: (C1)

the ontology elements (concepts, relation and axioms) must be the ones sufficient and

necessary to cover the scope defined by means of competency questions; and (C2) the

ontology must be able to represent real-world situations. Moreover, to evaluate the ontology

use (i.e., R7), we defined that (C3) the solution built based on the ontology must be feasible

and useful.

During the “Design and development” step we developed the HCI Design Ontology

(HCIDO), the main artifact proposed in this work. To address R1, HCIDO is based on HCI

design literature, standards and also in theories related to design in general. To meet R2,

HCIDO was developed as a networked ontology of HCI-ON (COSTA et al., 2020) and

15

reuses concepts from SEON ontologies (RUY et al., 2016), particularly from the Software

Design Reference Ontology (SDRO), which was also developed in the context of this work

and reuses concepts from other SEON ontologies, namely: Software Process Ontology

(SPO) (BRINGUENTE; FALBO; GUIZZARDI, 2011); System and Software Ontology

(SysSwO) (BRINGUENTE; FALBO; GUIZZARDI, 2011; DUARTE et al., 2018); and

Software Requirements Ontology (RSRO) (DUARTE et al., 2018). To satisfy R3, HCIDO is

organized into two sub-ontologies. To meet R4, we defined HCIDO by means of conceptual

models, axioms and textual descriptions. Concerning R5, we grounded HCIO in UFO

(GUIZZARDI, 2005). As for R6, we followed SABiO (Systematic Approach for Building

Ontologies) (FALBO, 2014). Then, in the “Demonstration” step, we used HCIDO as a

reference model in the development of the Knowledge Tool for Interaction Design (KTID),

a computational tool to support HCI design knowledge management aspects in the

development of interactive systems. During the Evaluation step, to evaluate HCIDO

considering C1 and C2, we performed verification and validation activities, as suggested in

SABiO (FALBO, 2014). To evaluate HCIDO considering C3, we performed a study in which

two HCI designers used KTID in a HCI design scenario.

Finally, the “Communication” step involves presenting the research results to the

Academic and Industry communities, which involved elaborating this dissertation and some

papers (CASTRO et al., 2020; COSTA et al., 2020) published in the context of this research.

The main contribution of this work is HCIDO, a reference ontology providing a well-

founded conceptualization about HCI design. There are also other contributions: (i) the

systematic mapping investigating knowledge management in HCI design; (ii) the survey

investigating knowledge management aspects in HCI design practice; (iii) SDRO, a reference

ontology about design in the software context; and (iv) KTID, a computational tool based

on HCIDO to support knowledge management aspects in the HCI design of interactive

systems. Figure 1.1 summarizes the Design Science cycles performed in this work.

16

Figure 1.1 – Overview of Design Science cycles applied in this work.

17

1.5 Structure of this Document

This initial chapter presented the main ideas about this dissertation, describing the

context, motivations, objectives and followed research approach. Besides this introduction,

this dissertation is composed of the following chapters and appendices:

• Chapter 2 (Background): presents the background for the work, including

content related to HCI design, knowledge management, ontologies and

ontologies in HCI design.

• Chapter 3 (Systematic Mapping: KM in HCI Design): presents a

systematic mapping that investigated the use of knowledge management in

HCI design according to the literature.

• Chapter 4 (Survey: KM in HCI Design Practice): presents a survey

carried out with HCI design practitioners aiming to investigate knowledge

management in HCI design practice.

• Chapter 5 (Human-Computer Interaction Design Ontology): presents

HCIDO, the reference ontology about HCI design proposed in this work.

For that, the chapter also presents Software Design Reference Ontology

(SDRO), which was developed in this work to be reused in HCIDO

development.

• Chapter 6 (KTID: A Computational Tool to Support KM Aspects in

HCI Design): presents KTID, the computational tool developed based on

HCIDO to support knowledge management aspects in the HCI design of

interactive systems.

• Chapter 7 (Final Considerations and Future Work): presents our final

considerations, contributions and proposals of future works to continue and

improve the work proposed in this dissertation.

• Appendix A (Artifacts used in KTID Evaluation Study): presents the

forms and the instructions document used in KTID evaluation study.

18

Chapter 2

Background

 This chapter presents the background for this work. Section 2.1 addresses HCI Design. Section 2.2 concerns

Ontologies. Section 2.3 regards Ontologies in the HCI design context. Section 2.4 addresses Knowledge Management.

Finally, Section 2.5 presents the chapter concluding remarks.

2.1 HCI Design

Human-Computer Interaction (HCI) can be defined as the discipline responsible for

the analysis, design, implementation and evaluation of interactive computer systems for

human use (ROGERS; SHARP; PREECE, 2011). This discipline has evolved since the 1980s

through various terminologies, classifications and studies. An important study, for instance,

defines three paradigms to explain the HCI phenomenon (HARRISON; TATAR;

SENGERS, 2007). The first paradigm sees interaction as man-machine coupling, aims at

optimizing fit between man and machine, and mixtures engineering and human factors. The

second focuses on cognitive science and adopts the metaphor of mind and computer as

coupled information processors and aims at optimizing accuracy and efficiency of

information transfer. The third sees interaction as phenomenologically situated, has in its

center the meaning and meaning construction, and aims at supporting situated actions in the

world.

An interactive computer system (also referred in this work as “interactive system”) is

a combination of hardware and software that receives input from and communicates output

to users (ISO, 2019). Dix et al. (2003) consider the communication between users and

interactive computer systems the interaction itself. User and system are, thus, participants in

the interaction. Briefly, a human-computer interaction is the communication process that

occurs during the use of an interactive computer system and that involves user actions on

the system interface (user input) and user interpretations of the system responses (system

output) revealed through the user interface (Figure 2.1). The user interface includes all parts

of the system that a user has contact with, physically, perceptually or conceptually

(BENYON, 2013). Interactive computer systems aid in goals achievement by supporting the

accomplishment of tasks in some application domain or context of use where users interact

with the system through its interface.

19

Figure 2.1 – Human-Computer Interaction: (a) user goal triggering the interaction, (b) user action

and explicit user input, (c) system output (triggering the interaction or not) and user interpretation,

(d) user action (user internal state) and implicit user input (COSTA, 2021).

According to Norman (2013), the interaction cycle can start from the top, in a goal-

driven behavior (Figure 2.1, (a)), where the user first establishes a goal to be achieved and

then goes through user actions to accomplish the goal. In Figure 2.1, (a) together with (b)

represents that the interaction starts with the goal establishment and a user action that

triggers the interaction cycle. The interaction cycle can also start from the bottom, in a data-

driven or event-driven behavior, triggered by some event in the world (e.g., an event caused

by an interactive computer system) and then can go through user actions (Figure 2.1, (c)

when the system output triggers the interaction). This perspective refers to an asymmetrical

interaction, which has been the most predominant HCI mode (KROL et al., 2016). In

asymmetrical interaction, the system receives (explicit) user input through user perceptual-

motor and brain (GALLAGHER, 2006). Contemporary advances in HCI have led to

symmetrical interaction, where the system captures (implicit) user input through

psychological and physiological state (Figure 2.1, (d)) (FAIRCLOUGH, 2009). In both cases,

inputs can result from intentional or unintentional actions of the user. Symmetrical

interaction and asymmetrical interaction can occur concomitantly (COSTA, 2021).

HCI design focuses on how to design the interactive computer system to support

users to achieve their goals through the interaction between them and the system

(SUTCLIFFE, 2014). It is concerned with usability and other important attributes such as

user experience, accessibility and communicability. Usability is the extent to which a system,

product or service can be used by specified users to achieve specified goals with effectiveness,

efficiency and satisfaction in a specified context of use (ISO, 2019). It addresses the effort

20

and ease of the user during the interaction, considering her cognitive, perceptive and motor

skills. User experience relates to users' emotions and feelings and is essential for interaction

design because it takes into account how a product behaves and is used by people in the real

world (ROGERS; SHARP; PREECE, 2011). Accessibility refers to the removal of barriers

that prevent interface and interaction access. Finally, communicability concerns the ability of

the interface to communicate design logic to the user (DE SOUZA, 2005).

HCI design is user-centered, hence it is said User-Centered Design (UCD)

(CHAMMAS; QUARESMA; MONT’ALVÃO, 2015). UCD is based on ergonomics,

usability and human factors. It focuses on the use and development of interactive systems,

with emphasis on making products usable and understandable. It puts human needs,

capabilities and behavior first, then designs the system to accommodate them. Its main

principles are user focus (its characteristics, needs and objectives), observable metrics (user

performance and reactions) and iterative design (repeat as often as needed) (CHAMMAS;

QUARESMA; MONT’ALVÃO, 2015; ISO, 2019). The term Human-Centered Design

(HCD) has been adopted in place of UCD to emphasize the impact on all stakeholders and

not just on those considered users (ISO, 2019).

In general, the HCI design process comprises four main activities: understand and specify

context of use, which aims to study the product users and intended uses; specify requirements,

which aims to identify user needs and specify functional and other requirements for the

product; produce design solutions, which aims to achieve the best user experience and includes

the production of artifacts such as prototypes and mockups that will be used in the future as

a basis for developing the system; and evaluation, when the user evaluates the results produced

in the previous activities (ISO, 2019).

2.2 Knowledge Management

Schneider (2009) defines knowledge as a human specialty stored in people's minds,

acquired through experience and interaction with their environment. Knowledge helps

software organizations to react faster and better, supporting more accurate and precise

responses, which contributes to increase software quality and client satisfaction

(SCHNEIDER, 2009).

According to Polanyi (1966), knowledge can be classified in two types: tacit

knowledge and explicit knowledge. Tacit knowledge represents the subjective and non-

documented knowledge that lies in people’s mind. This kind of knowledge is related to

personal experience and involves intangible factors such as beliefs, perspectives, intuition

21

and values. Explicit knowledge, in turn, represents objective knowledge that can be documented

in such a way that it can be accessed by other people. Knowledge in this format can be easily

transmitted and shared in the form of general principles, scientific formulas, codified

procedures, among others.

The creation of knowledge in an organization is considered by Nonaka (1994) as a

dynamic and continuous interaction between tacit and explicit knowledge. This interaction

(outlined in Figure 2.2) can happen in four different modes of knowledge conversion,

namely:

i. Socialization: is the conversion of tacit knowledge into tacit knowledge through

interaction between individuals. In this mode, tacit knowledge can be acquired

by an individual without using language, by means of observation, imitation and

practice.

ii. Internalization: is the process in which explicit knowledge is transformed into

tacit knowledge, usually realized by reading documents, for example.

iii. Externalization: is the transformation of tacit knowledge into explicit

knowledge through the symbolic representation of the tacit knowledge, usually

in the form of models, descriptions, sketches, among others.

iv. Combination: is the exchange of explicit knowledge that creates new explicit

knowledge, for example, two different spreadsheets joined to provide new

knowledge through the combination of their data.

Figure 2.2 – Knowledge creation conversion modes (NONAKA, 1994).

22

Historically, organization’s knowledge was undocumented, being represented

through the skills, experience and knowledge of its professionals (i.e., tacit knowledge), which

made its use and access limited and difficult (O’LEARY, 1998; RUS; LINDVALL, 2002).

Knowledge Management (KM) aims to transform tacit and individual knowledge into explicit

and shared knowledge. By raising individual knowledge to the organizational level, KM

promotes knowledge propagation and learning, making knowledge accessible and reusable

across the entire organization (O’LEARY, 1998; RUS; LINDVALL, 2002; SCHNEIDER,

2009). Therefore, when an organization implements KM, its experiences and knowledge are

recorded, evaluated, preserved, designed and systematically propagated to solve problems

(SCHNEIDER, 2009).

The literature presents different approaches, also known as KM cycles or models,

that propose a set of activities in order to effectively promote KM initiatives (DALKIR,

2011). A KM cycle has activities that encompass, for example, capturing, creating, encoding,

sharing, accessing, applying and reusing the individual, group and organizational knowledge

within and between organizations. Dalkir (2011) summarized the major steps of a KM cycle

in an integrated KM cycle (outlined in Figure 2.3), which consists of three main activities:

1. Knowledge capture and/or creation: Knowledge capture refers to the

identification and subsequent codification of existing knowledge and know-how.

Knowledge creation, in turn, is the development of new knowledge and know-

how. In the transition from knowledge capture/creation to knowledge sharing

and dissemination, knowledge content is assessed to verify if it provides sufficient

value to the organization that it should be added to the store of intellectual capital.

2. Knowledge sharing and dissemination: Once it has been decided that the

knowledge is of sufficient value, its content is contextualized in order to be

understood and used. This involves maintaining a link between the knowledge

and those knowledgeable about that content: the author or originator of the idea,

subject matter experts, and also those who have garnered significant experience

in making use of the content.

3. Knowledge acquisition and application: The knowledge management cycle

is reiterated as users understand and decide to make use of content. The users

will validate usefulness, help validate the scope of the content and, quite often,

come up with new content, which can contribute to the next cycle iteration.

23

Figure 2.3 – Integrated KM cycle (DALKIR, 2011).

Knowledge management depends on two aspects: KM foundations, which are

broad organizational aspects that support KM, consisting of KM infrastructure, KM mechanisms,

and KM technologies; and KM solutions, which refer to the ways in which specific aspects of

KM (discovery, capture, sharing, and application of knowledge) can be accomplished,

consisting of KM processes and KM systems (BECERRA-FERNANDEZ; SABHERWAL,

2010). KM infrastructure reflects the long-term foundation for knowledge management in an

organization, including five major components: organization culture, organization structure,

information technology infrastructure, common knowledge, and physical environment. KM

mechanisms, in turn, are organizational or structural means used to promote knowledge

management, which may (or may not) involve the use of information technology but involve

some kind of organizational arrangement or social or structural means of facilitating KM.

KM technologies are information technologies that can be used to facilitate knowledge

management, i.e., they are intrinsically no different from information technologies, but they

focus on knowledge management rather than information processing. KM systems are the

integration of KM technologies and KM mechanisms that are developed to support KM processes,

which are broad processes that help in discovering, capturing, sharing, and applying

knowledge. The relation between these KM aspects is outlined in Figure 2.4.

24

Figure 2.4 – An overview of KM Solutions and Foundation

(BECERRA-FERNANDEZ; SABHERWAL, 2010).

In summary, KM works for explicitly and systematically managing knowledge,

addressing knowledge acquisition, storage, organization, evolution, retrieval and usage. Being

software development a knowledge-intensive process, KM has been applied in this context

to support document management, competence management, experts identification,

software reuse, learning and product and project memory, among others (RUS; LINDVALL,

2002).

HCI design can also be understood as a knowledge-intensive process, requiring

effective mechanisms to collaboratively create and support a shared understanding about

users, the system, its purposes, context of use and the design necessary for the user to achieve

her goals. Thus, HCI design could take advantages of KM solutions. Furthermore, as HCI

design and SE processes are intrinsically related, the integration of knowledge processes and

methods may result in semantic interoperability conflicts (SEFFAH; GULLIKSEN;

DESMARAIS, 2005). Ontologies can be helpful in this sense, providing a well-founded and

consensual conceptualization of HCI design domain that can be used to enhance KM

solutions.

2.3 Ontologies

An ontology is a formal and explicit specification of a shared conceptualization

(STUDER; BENJAMINS; FENSEL, 1998). The conceptualization is an abstract and

simplified view of the world which is intended to be represented for some reason. Every

knowledge base, knowledge-based system or knowledge level agent is committed, either

explicitly or implicitly, with one conceptualization (STAAB; STUDER, 2004).

25

Ontologies can be classified according to their generality level, as suggested by

Guarino (1998). This classification defines four types of ontologies, as it is shown in Figure

2.5:

Figure 2.5 – Kinds of ontologies, accordingly to their generality level (GUARINO, 1998).

Top-level (or foundational) ontologies describe very general and domain independent

concepts, such as space, time, matter, objects, events, actions etc. Domain ontologies describe

the vocabulary related to a generic domain, such as health or automobiles, specializing terms

from the upper-level ontology. Task ontologies, in turn, describe the vocabulary related to a

generic task or activity, such as measurement, also specializing concepts from the upper-level

ontology. Typically, this kind of ontology describes a process rather than a specific task.

Finally, application ontologies describe concepts depending both on a particular domain and

task, which commonly are specializations of both related ontologies.

Scherp et al. (2011) also classify ontologies according to their generality level. Like

Guarino (1998), they consider foundational and domain ontologies. However, they define

another type of ontology between them and organize ontologies in a three-layered

architecture. Core ontologies are positioned between foundational and domain ontologies,

providing a refinement to foundational ontologies by adding detailed concepts and relations

in a specific area (such as service, process, organizational structure). Domain ontologies, in

turn, can make use of or be based on foundational and core ontologies, by specializing their

concepts. Falbo et al. (2013) additionally discusses that core ontologies lie in a continuous

spectrum between foundational ontologies and domain ontologies, i.e., there are some core

ontologies that are more general than others.

Another important distinction differentiates ontologies as conceptual models, called

reference ontologies, from ontologies as computational artifacts, called operational ontologies

26

(GUIZZARDI, 2007). A reference ontology is constructed with the goal of making the best

possible description of the domain in reality, representing a model of consensus within a

community, regardless of its computational properties. Operational ontologies, in turn, are

designed with the focus on guaranteeing desirable computational properties and, thus, are

machine-readable ontologies.

For a complex domain, representing its knowledge as a single ontology results in a

large and monolithic ontology that is hard to manipulate, use, and maintain (SUÁREZ-

FIGUEROA et al., 2012). On the other hand, representing each sub-domain in isolation is a

costly task that leads to a very fragmented solution that is again hard to handle (RUY et al.,

2016). In such cases, building an ontology network (ON) is an adequate solution (SUÁREZ-

FIGUEROA et al., 2012). In an ON, ontologies are connected to each other through

relationships. Two relationships can be highlighted: dependency and alignment. The former

occurs when, in order to define its own model, an ontology refers to concepts and relations

defined in another ontology (i.e., an ontology reuses concepts from another). The latter is a

way to put different models in correspondence by establishing equivalency mappings

between entities from different ontologies (i.e., the same as, a generalization of, a

specialization of) (SUÁREZ-FIGUEROA et al., 2012).

The ontologies proposed in this work were developed grounded in UFO (Unified

Foundational Ontology) (GUIZZARDI, 2005) as foundational ontology and integrated to

SEON (Software Engineering Ontology Network) (RUY et al., 2016) and HCI-ON (Human-

Computer Interaction Ontology Network) (COSTA et al., 2020). The following subsections

present fragments of UFO, SEON and HCI-ON that are relevant for this work.

2.3.1 UFO (Unified Foundational Ontology)

UFO is a foundational ontology that addresses many essential aspects for the

conceptual modeling of the HCI design domain, such as agents, objects and mental aspects.

UFO is composed of three main parts: UFO-A, an ontology of endurants (GUIZZARDI,

2005); UFO-B, an ontology of perdurants/events (GUIZZARDI et al., 2013); and UFO-C,

an ontology of social entities (both endurants and perdurants) built on top of UFO-A and

UFO-B (GUIZZARDI; FALBO; GUIZZARDI, 2008). Figure 2.6 presents the fragment of

UFO relevant to this work. Concepts that are directly used in this work are highlighted in

purple in the figure. The concepts descriptions are based on (GUIZZARDI, 2005) and

(GUIZZARDI; FALBO; GUIZZARDI, 2008). In the model description, UFO concepts are

written in italics.

27

Figure 2.6 – UFO fragment relevant to this work.

The first fundamental distinction in UFO is between Individuals (particulars) and

Universals (types). Individuals are entities that exist in reality, possess a unique identity (e.g., a

person, a car) and instantiate Universals, which are patterns of features that can be realized in

a number of different individuals (e.g., Person, Car). In this work, our focus is on Individuals.

Individuals can be Abstract or Concrete. Abstract Individuals include numbers, sets, propositions,

quality structures and quales, among others. Concrete Individuals are partitioned into Endurants

and Perdurants (Events). Endurants are said to be wholly present whenever they are present

(e.g., a person), while Events (Perdurants) are individuals composed of temporal parts (e.g., a

soccer match). Among the types of Endurants, two detach: Substantials and Moments.

Substantials are existentially independent individuals (e.g., an apple), while Moments, in

contrast, denote properties of individuals. Situations are special types of Endurants, i.e.,

complex entities constituted by possibly many Endurants (including other Situations), that

represent a portion of reality that can be comprehended as a whole, also known as a state of

affairs (e.g., John has the flu and a fever). A Situation may trigger an Event, which brings about

a new Situation. Intrinsic Moments are moments dependent on one single individual (e.g., an

apple’s color) and Dispositions are types of Intrinsic Moments that are only manifested in

particular Situations on the occurrence of certain triggering Events (e.g., a magnet attracting

property triggered after approaching to a metal object).

A basic distinction of Substantials is related to Agents and (non-agentive) Objects. Agents

are agentive substantial individuals that can be Physical Agents (e.g., a person) or Social Agents

(e.g., an organization, a society). Objects are non-agentive substantial individuals that can also

28

be physical (e.g., a book, a table) or social (e.g., money, language). Agents can bear special

types of Intrinsic Moments named Intentional Moments. In this case, intentionality refers to the

capacity of some properties of certain individuals to refer to possible situations in reality.

Thus, Intentional Moments have a propositional content (Proposition), which is an abstract

representation of a class of situations referred by that Intentional Moment. A proposition can

be satisfied by a Situation when the Situation actually occurs in the real world. Mental Moments

are specialization of Intentional Moments referring to mental components of a Physical Agent. A

specific type of Mental Moment is an Intention, which is the proper representation of “intending

something” that has a Goal as its propositional content.

2.3.2 SEON (Software Engineering Ontology Network)

SEON (RUY et al., 2016) is an ontology network that describes various subdomains

of the Software Engineering domain (e.g., software requirements, coding, testing, software

measurement, etc.). It organizes its networked ontologies according to the layers defined by

Scherp et al. (2011).

This work reuses concepts from three SEON ontologies, namely: Software Process

Ontology (SPO) (BRINGUENTE; FALBO; GUIZZARDI, 2011), a core ontology that

provides a conceptualization of software process, addressing aspects related to processes,

activities, resources, stakeholders, artifacts and procedures; System and Software Ontology

(SysSwO) (BRINGUENTE; FALBO; GUIZZARDI, 2011; DUARTE et al., 2018), a core

ontology about the nature of system and software, including, software artifacts, software

constitution, software execution, computer system and hardware equipment; and Software

Requirements Ontology (RSRO) (DUARTE et al., 2018), a domain ontology that deals with

concepts related to software requirements. Figure 2.7 shows the integrated view of the

concepts from these ontologies that are relevant for this work. For simplification reasons,

the model presents only the concepts directly reused in this work. In the figure, SPO

concepts are presented in gray, SysSwO in green, RSRO in red and UFO concepts in white.

Blue relationships represent the grounding of concepts in UFO. In the model description,

UFO concepts are written in italics while bold is used in SEON concepts.

29

Figure 2.7 – SEON fragment relevant to this work.

30

A Stakeholder is an Agent interested in a particular software project. It can be a

person, an organization or a team. In the first case, it is called Person Stakeholder. A

Stakeholder may be responsible for Software Artifacts, which are Objects intentionally

produced to serve a given purpose in the context of a software project or organization.

Software Artifacts can be classified according to their nature. A Software Item is a piece

of software, produced during the software process, not considered a complete product, but

an intermediary result (e.g., a component). A Document, in turn, is any written or pictorial,

uniquely identified information related to the software development, usually presented in a

predefined format (e.g., a requirements document). An Information Item is a piece of

relevant information for human use, produced or used by an activity (e.g., a component

description, a bug report). A Model is a representation (abstraction) of a process or system

from a particular perspective (e.g., a use case model, a class model).

A Software System (e.g., a system to buy airline tickets) (a subtype of Software

Item) is constituted of Programs and intends to implement a System Specification (a

subtype of Document). A Program, in turn, is also defined as a Software Item, a piece of

software, produced during the software process, not considered a complete Software

System (e.g., the system component to select available flights in a certain date). A program

aims at producing a certain result through execution on a computer, in a particular way, given

by the Program Specification, which is a Document describing structural and functional

information about the Program with enough detail that would allow implementation and

maintenance.

A Hardware Equipment is a Physical Object used to process, transform, store, display

or transmit information or data. A Hardware Equipment that can run programs, process,

transform and store data and information is a Computer Machine. A Computer System

is a system containing one or more Computer Machines and other Hardware Equipment

connected to them. A Loaded Software System is the materialization of a Software System

(e.g., the system to buy airline tickets loaded in Mary’s computer machine) as a complex

Disposition inhering in a Computer System, including one or more Loaded Program

Copies. A Loaded Program Copy, in turn, is the materialization of a Program (e.g., the

component to select available flights in a certain date loaded in Mary’s computer machine)

as a Disposition manifested by a Program Copy Execution (Event). A Program Copy

Execution (e.g., the execution of the program copy to show flights available in a certain

date) brings about a Computer Resulting State (e.g., a set of flights), a Situation involving

31

properties of the Computer Machine in which the Loaded Program Copy inheres, as well

as of entities residing in that Computer Machine (including the Loaded Program Copy

itself). A Computer Resulting State may also trigger another Program Copy Execution.

A Requirement is a Goal in the sense of UFO, i.e., the propositional content of an

Intention (Mental Moment) that inheres in a Requirements Stakeholder. When a

Requirement is recorded in some kind of document, there is a Requirement Artifact

describing that Requirement. A Requirement Artifact is an Information Item that is

responsible for keeping relevant information for human use. Requirements are connected

to implemented software through the following relation: a Program Specification intends

to satisfy some Requirement Artifacts. Thus, a Program that intends to implement a

Program Specification also intends to satisfy these Requirement Artifacts.

2.3.3 HCI-ON (Human-Computer Interaction Ontology Network)

HCI-ON (COSTA et al., 2020) is an ontology network that has been developed and

addresses several Human-Computer Interaction aspects, such as context of use, evaluation,

UI types & elements, among others. Since several HCI concepts are related to SE, HCI-ON

is integrated to SEON (RUY et al., 2016) and is also organized in three layers (SCHERP et

al., 2011).

Figure 2.8 presents an overview of HCI-ON architecture and its connection with

SEON, including the ontologies relevant to this work. Both HCI-ON and SEON adopt

UFO in the foundational layer, keeping the same foundation on both ONs concepts and

making it easier to connect them. In the figure, each circle (network’s node) represents HCI-

ON and SEON core or domain ontology. Dotted circles represent HCI-ON ontologies

under development. Red arrows (directed arcs) represent dependency relationships from

HCI-ON to SEON. HCI-ON dependency to SEON core ontologies are denoted by red

solid arrows, while to SEON domain ontologies are denoted by red dotted arrows.

32

Figure 2.8 – Overview of HCI-ON and its connections with SEON (adapted from (COSTA, 2021))

This work reuses concepts from the Human-Computer Interaction Ontology

(HCIO) (COSTA, 2021), a core ontology of HCI-ON. HCIO aims to clarify the main HCI

notions and establish an explicit common and shared conceptualization about the HCI

phenomenon. Being at the heart of HCI-ON, HCIO is organized in three sub-ontologies: (i)

Interactive Computer System sub-ontology focuses on what an interactive computer system is

and its constituent elements, including the user interface; (ii) User sub-ontology focuses on

the user and intentional or unintentional actions performed by users when interacting with

an interactive computer system; (iii) Human-Computer Interaction sub-ontology links concepts

from the other two sub-ontologies to define what a human-computer interaction is. Figure

2.9 presents a fragment of HCI-ON containing concepts that are relevant to this work. In

the figure, Interactive Computer System sub-ontology concepts are presented in yellow, User sub-

ontology in magenta and Human-Computer Interaction sub-ontology in light blue (the colors for

SysSwO and UFO are kept the same as from Figure 2.7). In the model description, UFO

concepts are written in italics, bold is used in SEON concepts and HCI-ON concepts are

underlined.

33

Figure 2.9 – HCIO fragment relevant to this work (COSTA, 2021).

34

Interactive Computer System is a subtype of Computer System, and like that, it

combines hardware and software. Concerning hardware, the striking feature of an Interactive

Computer System is that it has a User Interface, a complex Object composed of Input

Equipment and Output Equipment, which are devices (Hardware Equipment) connected

to the Computer Machine. Regarding software, an Interactive Computer System has a set

of Interactive Software Systems materialized as Loaded Interactive Software System Copies

inhering in its Computer Machine. An Interactive Software System is a Software System

constituted of Programs, of which some of them deal with aspects related to the User

Interface and, thus, are instances of User Interface Program. Hence, an Interactive Computer

System has a User Interface and copies of User Interface Programs loaded in its Computer

Machine (Loaded User Interface Program Copies), handling its User Interface.

User is a role played by a Person that participates in a human-computer interaction.

Such participation is said a User Participation, which can be either intentional or

unintentional. Intentional participations are caused by Intentions (User Intentions) that inhere

in the User. As an Intention, User Intention has a Goal (more specifically, a User Goal) as its

propositional content. In another classification, which considers the nature of participations

and is orthogonal to the one discussed above (i.e., they can also be either intentional or

unintentional), User Participations are classified into two disjoint types: User Initiated

Participation and User Interpretation. User Initiated Participation refers to an act performed

by the user making an input in the system (e.g., to click a button). User Interpretation, in

turn, regards interpreting a state of the system (e.g., to interpret what happened after the

button was clicked).

A User Initiated Participation is performed using one or more Input Equipment and,

as a result, a User Input Resulting State is achieved (e.g., the button is clicked). User Input

Resulting State is a Situation representing the data entered by the user before any program

execution. This situation triggers Program Copy Executions that brings about a

Computing Resulting State (internal computer state), which, in turn, can trigger other

Program Copy Executions. Some Program Copy Executions can bring about a special

type of Computing Resulting State, the one that is perceivable by the user, said User

Observable State (e.g., a message is shown because the button was clicked). A User

Observable State, thus, triggers User Interpretation, which may evaluate the achievement of

User Goals.

35

2.4 Ontologies in HCI Design context

The literature discusses several cases for employing ontologies in HCI Design

context. Paulheim and Probst (2010) presented a survey of state-of-the-art approaches in

which the development process or the usability of a user interface has been improved by

employing ontologies. Based on the survey results, they elicited three main purposes for using

ontologies to enhance user interfaces: (i) improving visualization capabilities, (ii) improving

interaction possibilities, and (iii) improving the development process of the user interface.

(i) and (ii) usually aim to support users of interactive systems, employing operational

ontologies at run-time, sometimes combined with other tools (e.g., reasoners), to change

interface or interaction aspects of the system (PAULHEIM; PROBST, 2010). For example,

they can be used to build adaptive user interfaces, where the interface components may

change based on specific user needs (e.g., users with color blindness) (KULTSOVA et al.,

2017). Another case in this context is to support self-explanatory user interfaces, in which

ontology-based formalizations are used to create help texts and visual hints at run-time

(KOHLHASE; KOHLHASE, 2009). On the other hand, approaches that aim (iii) often

occur at design time and the end user of the system does not see the ontologies, nor interact

with them (PAULHEIM; PROBST, 2010). A classic use in this context is to support the

creation of metamodels in a model driven approach (SUÀREZ; JÙNIOR; DE BARROS,

2004). Ontologies have also been used to support annotation and classification in

repositories of user interface components and repositories of usability patterns, enhancing

the search for elements that fit designers’ needs in different contexts (HAPPEL et al., 2006;

HENNINGER; KESHK; KINWORTHY, 2004).

With regard to the scope addressed by ontologies used in HCI design context, the

concepts are usually focused either on the interaction between user and system or on the

user interface and its components. Hence, they are not focused on describing the design of

the human-computer interaction itself. One example focused on the interaction is the formal

ontology proposed by Silva et al. (2017), which describes interactive behaviors on user

interfaces, aiming to support test automation of interactive systems functional requirements.

The formal ontology UI2Ont (PAULHEIM; PROBST, 2013), in turn, focuses on the user

interface, addressing general concepts that exist in the user interface domain (such as

components and activities) and detailed taxonomies of those concepts, i.e., a categorization

of component types etc. On the other hand, some ontologies focus on HCI design applied

to specific contexts, such as web design (BAKAEV; GAEDKE, 2016; BAKAEV;

AVDEENKO, 2010), design for haptic devices (MYRGIOTI; BASSILIADES; MILIOU,

36

2013) and design for gesture based interactions (CHERA; TSAI; VATAVU, 2012).

Therefore, none of the ontologies found in the literature provide a comprehensive

conceptualization about HCI design. Moreover, they are not concerned with representing

mental aspects of HCI design, which are very important to make explicit the connection

between the choices made when designing the HCI of an interactive system and the resulting

HCI design.

2.5 Concluding Remarks

This chapter addressed the main background related to this work. First, we discussed

some HCI design aspects, explaining how the human-computer interaction occur and what

HCI design is. HCI design focuses on how to design the interactive computer system to

support users to achieve their goals through the interaction between them and the system

(SUTCLIFFE, 2014). Then, we presented the main notions of KM.

After that, we discussed basic concepts about ontologies and presented fragments of

the foundational ontology and the ontology networks used in this work, namely UFO, SEON

and HCI-ON. We also discussed how ontologies have been used in the HCI design context

and pointed out the lack of ontologies that provide a comprehensive conceptualization about

HCI design, covering not only related artifacts, but also mental aspects.

HCI design is characterized as a knowledge-intensive process involving knowledge

transfer challenges and semantic interoperability issues that can be addressed by the

combination of ontologies with knowledge management solutions.

Aiming to investigate the use of KM in HCI design, we performed a systematic

mapping and a survey, which are addressed in the next two chapters.

37

Chapter 3

Systematic Mapping: KM in HCI Design

This chapter addresses a mapping study that investigated the use of KM in HCI design in the literature and presents

its main results. It is organized as follows: Section 3.1 presents the chapter introduction; Section 3.2 addresses the

research protocol; Section 3.3 summarizes the obtained results; Section 3.4 discusses the results; Section 3.5 presents

some of the limitations of the study; and Section 3.6 presents the chapter concluding remarks.

3.1 Introduction

Considering the challenges of designing interactive systems, mainly due to the

diversity of knowledge and people involved, and the potential of KM to help address those

challenges, we decided to investigate the use of KM in HCI design. First, we searched for

secondary studies addressing the research topic. Since we did not find any, we decided to

perform a systematic mapping in the literature.

A mapping study is a secondary study designed to give an overview of a research area

through classification and counting contributions in relation to the categories of that

classification. It makes a broad study in a topic of a specific theme and aims to identify

available evidence about that topic (PETERSEN; VAKKALANKA; KUZNIARZ, 2015).

Moreover, the panorama provided by a mapping study allows identifying issues in the

researched topic that could be addressed in future research. We followed the process defined

in (KITCHENHAM; CHARTERS, 2007), which comprises three phases:

1. Planning: In this phase, the topic of interest, study context and object of the

analysis are established. The research protocol to be used to perform the research

is defined, containing all the necessary information for a researcher to perform

the research: research questions, sources to be searched, publication selection

criteria, procedures for data storage and analysis and so on. The protocol must

be evaluated by experts and tested to verify its feasibility, i.e., if the results

obtained are satisfactory and if the protocol execution is viable in terms of time

and effort. Once the protocol is approved, it can be used to conduct the research.

2. Conducting: In this phase, the research is performed according to the protocol.

Publications are selected and data are extracted, stored and quantitatively and

qualitatively analyzed.

38

3. Reporting: In this phase, the produced research results are recorded and made

available to potential interested parties.

3.2 Research protocol

The study goal was to investigate the use of KM in HCI design context. For

achieving this goal, we defined the research questions presented in Table 3.1.

Table 3.1 – Systematic Mapping: research questions and their rationale.

ID Research Question Rationale

RQ1 When and where have publications been

published?

Give an understanding on when and where (journal /

conference / workshop) publications about KM in HCI

design context have been published.

RQ2 Which types of research have been done? Investigate which type of research is reported in each

selected publication. We consider the classification defined

in (WIERINGA et al., 2005). This question is useful to

evaluate the maturity stage of the research topic.

RQ3 Why has KM been used in the HCI design

context?

Understand the purposes and reasons of using KM in the

HCI design and verify if there have been predominant

motivations.

RQ4 Which knowledge has been managed in the HCI

design context?

Investigate which knowledge items have been managed in

the HCI design context, aiming to verify if some of them

have been managed more frequently and if there has been

more interest in certain HCI design aspects.

RQ5 How is the managed knowledge related to the

HCI design process?

Understand, in the context of the HCI design process,

from where the managed knowledge has coming from and

where it has been used.

RQ6 How has KM been implemented in the HCI

design context?

Investigate how KM has been implemented in HCI

context in terms of the adopted technologies.

RQ7 Which benefits and difficulties have been noticed

when using KM in the HCI design context?

Identify benefits and difficulties of using KM in HCI

design context and analyze if there is relation between

them.

The search string adopted in the study contains two groups of terms joined with

the operator AND. The first group includes terms related to HCI design. The general term

“Human-Computer Interaction” was used to provide wider search results. The second group

includes terms related to Knowledge Management. Within the groups, we used the OR operator

to allow synonyms. The following search string was used: ("human-computer interaction" OR

"user interface design" OR "user interaction design" OR "user centered design" OR "human-centered design"

OR "UI design" OR "HCI design") AND ("knowledge management" OR "knowledge reuse" OR

"knowledge sharing"). For establishing the string, we performed tests using different terms,

logical connectors, and combinations among them, and selected the string that provided

better results in terms of the number of publications and their relevance. More restrictive

strings excluded important publications identified during the informal literature review that

39

preceded the study. More comprehensive strings (e.g, those including “usability”) returned

too many publications out of the scope of interest.

The search was performed in four sources, namely Scopus, Science Direct,

Engineering Village and Web of Science. We selected these sources because Scopus is one

of the largest databases of peer-reviewed literature. It indexes papers from other important

sources such as IEEE and ACM, providing useful tools to search, analyze and manage

scientific research. Complementarily, to increase coverage, we selected Science Direct,

Engineering Village and Web of Science, which are also widely used in secondary studies

recorded in the literature and on other experiences in our research group.

Publications selection was performed in five steps. In Preliminary Selection and

Cataloging (S1), the search string was applied in the search mechanism of each digital library

used as source of publications (we limited the search scope to title, abstract and keywords

metadata fields). After that, in Duplications Removal (S2), publications indexed in more than

one digital library were identified and duplications were removed. In Selection of Relevant

Publications - 1st filter (S3), the abstracts of the selected publications were analyzed considering

the following inclusion (IC) and exclusion (EC) criteria: (IC1) the publication addresses KM

in the HCI design context; (EC1) the publication does not have an abstract; (EC2) the paper

was published only as an abstract; (EC3) the publication is not written in English; (EC4) the

publication is a secondary study, a tertiary study, a summary, an editorial or a tutorial. In

Selection of Relevant Publications - 2nd filter (S4), the full text of the publications selected in S3

were read and analyzed considering the cited inclusion and exclusion criteria. In this step, to

avoid study repetition, we considered another exclusion criterion: (EC5) the publication is

an older version of an already selected publication. When the full text of a publication was

not available either from the Brazilian Portal of Journals, from other Internet sources or by

contacting its authors, the publication was also excluded (EC6). Finally, in Snowballing (S5),

as suggested in (KITCHENHAM; CHARTERS, 2007), the references of publications

selected in S4 were analyzed by applying the first and second filters and, the ones presenting

results related to the research topic were included in the study.

We used the StArt tool1 to support publications selection. To consolidate data,

publications returned in the publication selection steps were cataloged and stored in

spreadsheets. We defined an id for each publication and recorded the publication title,

authors, year, and vehicle of publication. Data from publications returned in S4 and S5 were

1 http://bit.ly/StArt-tool

http://bit.ly/StArt-tool

40

extracted and organized into a data extraction table oriented to the research questions. The

spreadsheets produced during the study can be found in http://bit.ly/Mapping-KM-in-HCI-

design.

The mapping was conducted by four researchers. The first and second researchers

performed publication selection and data extraction. The third and fourth researchers

(supervisors of this dissertations) reviewed both. Once data has been validated, the first and

the second researchers carried out data interpretation and analysis, and again third and fourth

researchers reviewed the results. Discordances were discussed and resolved. Quantitative

data were tabulated and used in graphs and statistical analysis. Finally, the four researchers

performed qualitative analysis considering the findings, their relation to the research

questions and the study purpose.

3.3 Results

The study considered papers published until October 2020. Searches were conducted

for the last time in November 2020. Figure 3.1 illustrates the followed process and the

number of publications selected in each step.

Figure 3.1 – Publications selection process

In the 1st step, as a result of searching the selected sources, a total of 381 publications

was returned. In the 2nd step, we eliminated duplicates, achieving 228 publications

(reduction of approximately 40%). In the 3rd step, we applied the selection criteria over the

abstract, resulting in 21 papers (reduction of approximately 91%). At this step, we only

excluded publications that were clearly unrelated to the subject of interest. In case of doubt,

the paper was taken to the next step. In the 4th step, the selection criteria were applied

considering the full text, resulting in 11 publications (reduction of approximately 48%).

Finally, in the 5th step, we performed snowballing technique by checking the references of

the 11 selected publications and identified 4 more publications, which in total added up to

15 publications. When analyzing the publications to identify the KM approaches applied in

HCI design context, we noticed that some publications addressed complementary works

from a same research group. Hence, we considered complementary works as a single KM

approach when extracting data about RQs 3, 4, 5, 6 and 7. Table 3.2 shows the list of

identified KM approaches, their description and corresponding publications. Two papers

http://bit.ly/Mapping-KM-in-HCI-design
http://bit.ly/Mapping-KM-in-HCI-design

41

were grouped into a KM approach and three other papers were grouped in another KM

approach. Thus, we considered a total of 12 different KM approaches found in 15 studies.

Along this and the next section we refer to the approaches by using the id listed in the table.

After Table 3.2, we present the data synthesis for each research question. Further

information about the selected publications, including detailed extracted data, can be found

in http://bit.ly/Mapping-KM-in-HCI-design.

Table 3.2 – Selected publications.

ID Approach Brief description Ref.

#01 Trading off usability

and security in user

interface design through

mental models

Proposes the development of an Organizational Mental

Model through knowledge transfer and transformation,

using collaborative brain power from various knowledge

constellations to design.

(MOHAMED;

CHAKRABORTY;

DEHLINGER,

2017)

#02 Knowledge management

challenges in

collaborative design of a

Virtual Call Centre

Proposes a knowledge-based system with the following

functionalities: (a) storing design primitives and formal

knowledge in an online library; (b) preserving procedures and

rules that proved successful in past design problems; (c)

formal modeling of knowledge elements which might be

applicable for usability improvements; (d) providing multiple

mechanisms for knowledge acquisition, preserving, transfer

and sharing.

(SIKORSKI et al.,

2011)

#03 Applying knowledge

management in UI

design process

Defines a process to automate the transformation of a task

description into an interaction description. First, it identifies

and uniformizes existing knowledge about UI design process

using knowledge classification techniques. Then, captured

knowledge is represented in the form of ontologies, deriving

a Task Metamodel and an Interaction Metamodel. This

extracted knowledge is integrated to design defining a

transformation of task description into interaction

description using an intermediate model between them and

a two-step transformation.

(SUÀREZ; JÙNIOR;

DE BARROS, 2004)

#04 A knowledge

management tool for

speech interfaces

Proposes a knowledge-based system to help developers of

speech driven interfaces learn with previous design solutions.

These solutions are collected, made accessible and divided

into categories regarding their content type. Solutions with

corresponding structures are clustered and compared within

their own category, providing to designers a suggestion

mechanism based on their desired kind of solution. There is

also a ranked suggestion mechanism of design elements

based on available design material and design guidelines.

(BOUWMEESTER,

1999)

#05 Design knowledge reuse

based on visualization

of relationships between

claims

Presents a tool that aims to improve design and knowledge

acquisition by exploring relationships between claims. It

allows a better search and retrieval mechanism to a design

knowledge repository, which is obtained by applying KM

strategies (generalize, classify, store, retrieve) to claims.

(WAHID et al., 2004;

WAHID, 2006)

#06 Design knowledge reuse

and notification systems

to support design in the

development process

Presents a system connected to a design knowledge

repository based on claims. It allows teams to leverage

knowledge from previous design efforts by searching for

reusable claims relevant to their current project and to extend

the repository by updating existing claims and creating new

ones.

(CHEWAR et al.,

2004; CHEWAR;

MCCRICKARD,

2005; SMITH;

BOHNER;

MCCRICKARD,

2005)

http://bit.ly/Mapping-KM-in-HCI-design

42

Table 3.2 (continuation) – Selected publications.

ID Approach Brief description Ref.

#07 Exploring knowledge

processes in user-centered

design process

Proposes a conceptual framework that guides the design process

based on five propositions: (1) designers and users should be

actively included as actors in the process, since they both have

knowledge needed to successful design; (2) this knowledge

possessed by them is context-specific; (3) there is useful

knowledge that has not been articulated by both users and

designers and, therefore (4) knowledge processes transforming

tacit knowledge into explicit knowledge by users and designers

are linked and should be combined; and finally, (5) resulting

knowledge obtained along the process is embedded into

concepts, products or services.

(STILL, 2006)

#08 Lessons learnt from an

HCI repository

Concerns the implementation of a knowledge repository using

Windows Help Files. It is maintained by a group within the

organization that receives content updates from the team and

properly insert this new material into the repository. New

versions are released from time to time and distributed as

physical copies to be installed in each computer.

(WILSON;

BORRAS, 1998)

#09 A pattern language

approach to usability

knowledge management

Presents a KM system that used principles of use case writing

and pattern languages to describe problems found in user testing

sessions and the following solutions to them. Patterns can be

retrieved by forms with filters, text search and database queries.

Filters include goals and subgoals, being useful respectively to

show all problems related to a specific user goal and possible

solutions and to provide insights of what interactions or devices

have been problematic regardless of user goal.

(HUGHES,

2006)

#10 An expert system for

usability evaluations of

business-to-consumer e-

commerce sites

Proposes a knowledge-based system to help on e-commerce

usability evaluations. A knowledge engineer is responsible for

acquiring and representing knowledge, eliciting knowledge from

textual, non-live sources of expertise about design guidelines that

affect usability of 11 e-commerce elements. The elicited

knowledge is consolidated and presented in a form of rules in

the expert system.

(GABRIEL,

2007)

#11 A framework for

developing experience-

based usability

guidelines

Presents a KM system to manage design guidelines

contextualized by usability examples. The system allows

designers to describe their current problem and requirements

and then search for cases with similar characteristics. They can

also follow hyperlinks to more general guidelines, which also

point to other cases and search from a list of hierarchically

arranged guidelines and follow other related guidelines and cases.

The system is initially seeded with organization-wide usability

guidelines and is updated as new projects are developed.

(HENNINGER;

HAYNES;

REITH, 1995)

#12 Prototype evaluation

and redesign: structuring

the design space through

contextual techniques

Proposes a method based on contextual inquiry and

brainstorming to identify usability issues in interface evaluations

and derive proper design solutions to then. First, interface

evaluation sessions are conducted with users, when they share

their perceptions while interacting with a high-fidelity prototype

of the system. Those sessions are recorded and, later, relevant

comments are transcribed into usability flaws. In a second

moment, there are brainstorm meetings where developers,

designers and HCI specialists propose design solutions to the

previously identified usability flaws.

(SMITH;

DUNCKLEY,

2002)

43

Publication year and type (RQ1): Figure 3.2 shows the distribution of the 15

selected publications over the years and their distribution considering the publication type.

Papers addressing KM in HCI design context have been published since 1995 in Journals

and Conferences (no Workshop publications were found). Conferences have been the main

forum, encompassing 73.3% of the publications (11 out of 15). Four papers (26.78%) were

published in journals.

Figure 3.2 – Publications over the years.

Research Type (RQ2): Figure 3.3 presents the classification of the research types

(according to the classification proposed in Wieringa et al. (2005)) reported in the 15 selected

publications. 13 publications (86.7%) propose a solution to a problem and argue for its

relevance. Thus, they were classified as Proposal of Solution. Five of them (33.3%) also present

some kind of evaluation, being one (6.7%) evaluated in practice (i.e., also classified as

Evaluation Research), and four (26.7%) investigating the characteristics of the proposed

solution not yet implemented in practice (i.e., Validation Research). One publication (6.7%)

refers exclusively to Evaluation Research, discussing the evaluation of KM an industrial setting,

and another is a Personal Experience Paper, reporting the experience of the authors in a

particular project in the industry.

Figure 3.3 – Research type of the identified studies.

44

Motivation for using KM in HCI design (RQ3): we identified six reasons for

using KM in HCI design, as shown in Table 3.3. Some approaches presented more than one

motivation, thus the total sum is greater than 12. Nine approaches (75%) use KM to improve

product quality, most of them concerning usability. These approaches aim to provide

benefits related to the quality of the interactive system in terms of its interaction with users.

For example, the approach #11 is proposed to help developers to design effective, useful

and usable applications. Approach #01, in turn, aims to improve alignment between design

features and users’ requirements. Seven approaches (58.3%) are motivated by improving one

or more aspects related to the HCI design process, namely: effort, time and cost. From these,

reducing effort is highlighted. Five approaches (41.7%) use KM to reduce manpower, mainly

by not depending on internal usability experts to perform HCI design activities. The

approach #02, for example, applied KM to decrease the need for experts to support the

design team with their knowledge and experience, due to lack of knowledge to be reused.

The approaches #04, #05 and #08 were motivated by reducing HCI design time through

the reuse of previous solutions implemented for similar problems. Reducing costs in the HCI

design process was the motivation for the approaches #05 and #10, which focus on

minimizing the involvement of external usability experts in the process and conducting

usability evaluation more effectively. The approach #06 aimed to improve design team

performance by providing support for team coordination and collaboration. This approach

also aimed to improve HCI learning to the students involved in the project.

Table 3.3 – Motivations for using KM in HCI design.

Motivation Approaches Total

Improve product quality #01, #02, #04, #05, #06, #07, #10, #11, #12 9

Reduce design effort #02, #03, #08, #09, #10 5

Reduce design time #04, #05, #08 3

Reduce design cost #05, #10 2

Improve design team performance #06 1

Improve HCI design learning #06 1

Managed knowledge in HCI design (RQ4): Analyzing the publications, we

identified 24 different types of knowledge items managed by the KM approaches, as shown

in Table 3.4. Some items are shown in the same line to safe space. The most common

knowledge items have been Design Guidelines and Design Solutions, addressed by four

approaches, followed by Test Results, addressed by three approaches. We noticed that, in

the context of HCI design, KM approaches have dealt with only one (#10) or two (#01,

#03, #05, #06, #09, #11 and #12) different knowledge items.

45

Table 3.4 – Managed knowledge items.

Knowledge Item Approaches Total

Design Guidelines #04, #08, #10, #11 4

Design Solutions #02, #04, #07, #08 4

Test Results #02, #04, #12 3

Claims #05, #06 2

Design Features #01, #12 2

Design Patterns #09, #11 2

Lessons Learned #04, #08 2

Usability Measures #02, #08 2

Claims Relationships #05 1

Design Changes #06 1

Design Feature Checklists; Design Methods; Design Processes; Design

Standards; Design Templates; Interface Objects

#08 1

Interaction Model; Task Model #03 1

Scenarios; Test Scenarios #02 1

User Knowledge; User Needs #07 1

User Requirements #01 1

User Tasks #09 1

We identified four different HCI design aspects addressed by the identified KM

approaches. The main aspect is Usability, which is treated in all the identified approaches.

Two approaches (#03 and #08) also address Ergonomics. #03 and #04 focus on particular

types of design or interface. The former focuses on Task-based Design while the latter on Speech

Driven Interfaces. Figure 3.4 shows the HCI aspects addressed in the identified KM approaches.

The sum exceeds 12 because some approaches address more than one aspect.

Figure 3.4 – HCI design aspects addressed in KM approaches.

When knowledge is captured and used (RQ5): Table 3.5 shows when HCI design

knowledge has been captured and when it has been used along the HCI design process.

Three approaches capture and use knowledge along the whole process. Eight approaches

(66.7%) use knowledge when producing design solutions. A smaller number (six, 50%)

46

capture knowledge in this activity. The behavior is the opposite in design evaluation: there

are more approaches capturing (five, 41.7%) than using (three, 25%) knowledge in this

activity. Only one (8.3%) approach captures knowledge during requirements specification.

Table 3.5 – Capture and use of knowledge along the HCI design process.

Activity Knowledge Capture Knowledge Use

Specify requirements
1

(#01)
0

Produce design solutions
6

(#02, #03, #04, #07, #10, #11)

8

(#01, #02, #03, #04, #07, #09, #11, #12)

Design Evaluation
5

(#02, #04, #09, #10, #12)

3

(#02, #09, #10)

Whole cycle
3

(#05, #06, #08)

3

(#05, #06, #08)

Technologies used in KM approaches (RQ6): Table 3.6 shows the technologies

(systems, methods, tools, theories, etc.) used in the analyzed KM approaches. The most

common technologies were knowledge-based systems and knowledge repositories, which are used in

three approaches. For example, #04 proposes a knowledge-based system to help developers

of speech driven interfaces learn with previous design solutions. #08, in turn, proposes the

implementation of a knowledge repository using Windows Help Files.

Knowledge management systems and knowledge-based analysis were used in two approaches.

A knowledge management system is proposed in #09 to describe problems detected in user

test sessions and the respective solutions and in #11 to describe design problems and

requirements and then search for usability examples with similar characteristics and

hyperlinks to more general related guidelines. Knowledge-based analysis, in turn, was used

in #03 and #07 combined with other technologies, such as ontology and model transformation

(#3) and conceptual framework (#7).

Other technologies such as brainstorming, contextual inquiry, heuristic evaluation and mental

models were used in only one KM approach.

Table 3.6 – Technologies used in KM approaches in HCI design context.

Technology Approaches Total

Knowledge-based System #02, #04, #10 3

Knowledge Repository #05, #06, #08 3

Knowledge Management System #09, #11 2

Knowledge-based Analysis #03, #07 2

Ontology; Model Transformation #03 1

Conceptual Framework #07 1

Contextual Inquiry; Brainstorming-based Technique #12 1

Mental Model; Internalization Awareness; Observation; Behavioral

Interviews; Absorptive Capacity; Heuristic Evaluation

#01 1

47

Benefits and challenges of using KM in HCI design (RQ7): Table 3.7 and Table

3.8 summarize the benefits and difficulties reported in the publications. Two approaches

(#04 and #10) did not report any benefit or challenge in using KM in HCI design.

Considering the 10 other approaches, it can be noticed that, in general, more benefits than

difficulties were reported.

The most reported benefit was to enable replicability of domain or context

knowledge. For example, #07 reached a wide scope applicability because of the common

conceptualization proposed as a conceptual framework. On the other hand, the most

reported difficulty was that knowledge is often too specific for a given context. For example,

in #11 it is stated that the approach is best suited for contexts in which common customer

needs are being addressed in similar application domains.

Table 3.7 – Benefits in using KM in HCI design context.

Benefits Approaches Total

Enable replicability of domain/context knowledge #03, #06, #07, #09, #12 5

Improve product quality #02, #05, #06, #12 4

Improve communication #01, #03, #11 3

Increase team engagement/empowerment #02, #06 2

Increase organizational integration #03, #08 2

Reduce design effort #03, #12 2

Improve design conceptualization #03, #07 2

Promote standardization #02 1

Increase productivity #11 1

Promote organizational competitive advantage #02 1

Decrease implementation and maintenance effort #08 1

Decrease implementation and maintenance costs #08 1

Table 3.8 – Difficulties in using KM in HCI design context.

Difficulties Approaches Total

Knowledge is often context-specific #02, #06, #09, #11 4

Issues related to features of the KM technologies #05, #06, #09 3

Low team engagement/empowerment #01, #05, #08 3

User involvement #07, #12 2

Integration of the KM approach into the organization #06, #11 2

KM implementation and maintenance effort #08, #09 2

Lack of consensus about HCI design conceptualization #01, #02 2

3.4 Discussion

Taking the period of publications into account (RQ1), we can notice a long-term

effort regarding the use of KM in HCI design, since this topic has been targeted by

researchers for more than 20 years. However, the low average of publications per year (0.6

since 1995) shows that the topic has not been widely addressed. We can also notice that most

48

of the publications are from the 2000s decade. The low percentage of journal publications,

which generally require more mature works, can be seen as a reinforcement that the research

on this topic is not mature enough yet. Besides, results about the research type (RQ2) show

that only 40% of the works included some kind of evaluation, being only 13% evaluation of

solutions in practice. This can be a sign of difficulty in applying the proposed approaches in

industry, what reinforces that research on this topic is not mature enough yet and there seems

to be a gap between theory and practice.

Concerning RQ3, we can notice that using KM in HCI design has been motivated

mainly by delivering better products to users or optimizing the HCI design process in terms

of effort, time and cost. Improving performance of the HCI design team was also mentioned,

what is consistent with the other motivations related to the HCI design process, since

increasing performance can contribute to decrease effort, time and cost. A common concern

in several publications was the need for HCI design expert consultants, which can increase

HCI design cost and effort. Capturing and reusing knowledge contribute to retain

organizational knowledge and reduce dependence on external consultants. Another concern

refers to communication problems. Smith and Dunckley (2002) highlight that barriers to

effective communication between designers, HCI specialists and users, due to their differing

perspectives, affect product quality. KM solutions are helpful in this context.

Usability has been the focus of the KM initiatives in HCI context (RQ4). In fact, this

is not a surprise, because usability has been the HCI design property more explored in the

last years. Moreover, this property is quite comprehensive and includes other important

aspects of HCI design, such as learnability, memorability, efficiency, safety and satisfaction

(ISO, 2019). However, there are other important properties not addressed in the analyzed

papers, such as user experience, communicability and accessibility. The knowledge items

managed by the KM approaches are quite diverse. Design solutions, guidelines, test results

and design patterns are some knowledge items found in different publications. Despite the

variety of knowledge items, we noticed that most of the approaches (66.7%) manage up two

different knowledge items. By analyzing the coverage of the approach in terms of single or

multiple projects, we found out that four approaches (#01, #03, #07 and #12) manage

knowledge involved in a single project, while the other eight approaches are more extensive,

accumulating knowledge from multiple projects. In order to elevate knowledge reuse to the

organizational level, it is important that a KM approach comprehends multiple projects in

that organization.

49

Concerning knowledge use and capture (RQ5), at first, we expected that knowledge

was captured and used in the same activity of the HCI design process. Therefore, results

showed us that the same knowledge can be produced and consumed in different parts of

HCI design process. For example, there are more approaches capturing knowledge in design

evaluation activity than using in it. This reinforces the iterative characteristic of HCI design,

where knowledge obtained in evaluation activity in one cycle can be used to improve the

design in the next cycle.

Different technologies have been used to implement KM in HCI design context

(RQ6). The most common are system-based approaches that use software to support KM

process and store knowledge. We expected this result because KM systems, knowledge-based

systems and knowledge repositories are widely adopted technologies in KM area. Earlier

steps of the development of KM solutions, such as knowledge analysis and modeling, are

also addressed in some publications. Moreover, there is also concern with latter steps, like

the integration of the KM system into the organization. Some approaches combine different

technologies, what can be a sign that the use of different techniques is a good strategy to

address a more complete KM approach in HCI design.

As for benefits and challenges of using KM in HCI design context (RQ7), when

categorizing the findings, we noticed that several of them are benefits and challenges of using

KM in general. However, by analyzing the context of each KM approach, we can better

understand how the findings relate to HCI design. For example, regarding the benefit improve

communication, the works highlight the use of KM to support communication among the

different actors involved in the HCI design process. In #10, communication between HCI

specialists, designers and users is mediated by prototypes aiming at an agreement about the

system design. In #01, KM facilitates the elicitation of the user’s knowledge for the designer

to apply it into the design. In #03, KM reduces errors of interpretation and contextualization

among the people involved in the system design.

Some of the identified challenges and benefits are opposite each other. For example,

on one hand, there is the challenge low team engagement. On the other hand, the benefit increase

team engagement. We kept both because they were cited in different publications, thus under

different perspectives. Moreover, we can see the challenge as a difficulty that, when

overcome by the use of KM, can be turned into a benefit.

By analyzing the most cited benefit and challenge, we noticed that the generality level

of the knowledge is an important question in a KM approach. The most cited benefit points

to knowledge replicability in a specific context/domain. The most cited challenge points to

50

the fact that it is difficult to generalize knowledge. Looking at data from RQ5, we noticed

that approaches that reported knowledge generalization challenge handle knowledge from

multiple projects, while approaches handling knowledge in a single project reported easy

replication of knowledge. Thus, how general will be knowledge should be determined by the

context where the KM approach will be applied. When dealing with high diversity of

knowledge and contexts, it becomes harder to produce general knowledge to be widely used

to solve specific problems and be adopted in different contexts. One way of achieving

improvements in replicability is using knowledge-based analysis methods, as reported by the

approaches #03 and #07.

Based on the panorama provided by the mapping study results, in summary, we can

say that KM has not been much explored in HCI context; it has been used mainly to improve

software quality and HCI design process efficiency; it has focused on usability; and the KM

approaches have been based on systems and repositories. As for benefits, KM has enabled

knowledge replicability, improved product quality and communication. The main difficulties

have been to generalize knowledge, address issues related to features of the system and low

engagement of the team.

3.5 Threats to validity

As any study, our mapping study has some limitations that must be considered

together the results. One limitation refers to the subjectivity embedded in publication

selection and data extraction. They were initially performed by two researchers and, to reduce

subjectivity, other two performed these same steps. Discordances and possible biases were

discussed until reaching a consensus.

Another limitation refers to the sources. We used four digital libraries selected based

on other secondary studies in Software Engineering. Although this set of digital libraries

represents a comprehensive source of publications, the exclusion of other sources may have

left some valuable publications out of our analysis. We performed snowballing aiming to

minimize this risk. There are also limitations related to the adopted search string. Even

though we have used several terms, there are still synonyms that we did not use.

Another important limitation is related to the classifications we made. We defined

classification schemas for categorizing data in some research questions. Some categories were

based on classifications previously proposed in the literature (e.g., type of research

(WIERINGA et al., 2005)). Others were established during data extraction, based on data

provided by the analyzed publications (e.g., RQ4). Classification schemas and data

51

categorization were done by two researchers and reviewed by other two. However,

determining the categories and how publications fit them involves a lot of judgment. Thus,

different results could be obtained by other researchers.

3.6 Concluding Remarks

In this chapter, we presented a mapping study that investigated the state of the art

concerning the use of KM in the HCI design context. The results of the mapping study

provide a panorama of research related to the topic. We noticed that, although HCI design

is a favorable area to apply KM, there have been only few studies exploring this research

topic.

In order to complement the mapping study and provide an overview of KM in HCI

design and insights of how to better apply KM to aid in HCI design practice, we carried out

a survey with HCI design practitioners, aiming to investigate KM in HCI design practice.

The survey is addressed in the next chapter.

52

Chapter 4

Survey: KM in HCI Design Practice

This chapter presents a survey carried out with HCI design practitioners aiming to investigate knowledge management

in HCI design practice. It is organized as follows: Section 4.1 presents the chapter introduction; Section 4.2 addresses

the survey planning and execution; Section 4.3 summarizes the obtained results; Section 4.4 discusses the results;

Section 4.5 presents some of the limitations of the survey; Section 4.6 presents a consolidated view of the findings of

the systematic mapping addressed in Chapter 3 and the survey; and Section 4.7 presents the chapter concluding

remarks.

4.1 Introduction

The systematic mapping provided information about KM approaches to support

HCI design according to the literature records. After conducting the mapping study, we

performed a survey with 39 Brazilian HCI design practitioners to investigate KM in HCI

design practice.

A survey is an experimental investigation method usually done after the use of some

technique or tool has already taken place (PFLEEGER, 1994). Surveys are retrospective, i.e.,

they allow to capture an “instant snapshot” of a situation. Questionaries and interviews are

the main instruments used to apply a survey, collecting data from a representative sample of

the population. The resulting data are analyzed, aiming to draw conclusions that can be

generalized for the whole population represented by that sample (MAFRA; TRAVASSOS,

2006).

4.2 Survey Planning and Execution

The study goal was to investigate aspects related to KM in HCI design practice.

Aligned to this goal, we defined the research questions presented on Table 4.1.

Table 4.1 – Survey: research questions and their rationale.

ID Research Question Rationale

RQ1 Which stakeholders have been

involved in HCI design practice?

Identify which stakeholders have been involved in HCI design practice,

which helps identify different perspectives and information needs in HCI

design.

RQ2 Which knowledge have been

involved in HCI design practice?

Investigate which knowledge has been involved in HCI design practice,

particularly knowledge items (e.g., design solutions, guidelines and lessons

learned) and design artifacts (e.g., wireframes, mockups and prototypes)

used as sources of knowledge or produced to record useful knowledge.

RQ3 Which HCI design activities

have demanded better KM

support?

Investigate which HCI design activities have needed better support of KM

(e.g., because there have not been enough knowledge resources to support

their execution).

53

Table 4.1 (continuation) – Survey: research questions and their rationale.

ID Research Question Rationale

RQ4 How has KM been applied in

HCI design practice?

Investigate how KM principles have been applied and identify technologies

(e.g., tools, methods, etc.) that have been used to support knowledge access

and storage in HCI design practice.

RQ5 Which benefits and difficulties

have been noticed when using

KM in HCI design practice?

Identify benefits and difficulties that have been experienced by

practitioners when applying KM in HCI design practice and verify if

practitioners have experienced more benefits or difficulties.

RQ6 Which goals the use of KM in

HCI design practice has

contributed to achieve?

Identify to which goals the use of KM in HCI design has contributed,

aiming to figure out predominant reasons for using KM in HCI design

practice.

The participants were 39 Brazilian professionals with experience in HCI design of

interactive software systems. The participants profile was identified through questions

regarding their current job positions, education level, knowledge of HCI design and practical

experience in HCI design activities. Most participants (79.5%) declared to play roles devoted

to HCI design activities (nine UX/UI designers; six UX designers; four product designers,

two designers, two UX research designers, one art director, one IT analyst & UX designer,

one interaction designer, one lead designer, one lead UI designer, one staff product designer

and one UI designer). Others play roles that perform some activities related to HCI design

(one programmer, one requirement analyst, one chief growth officer and one project leader).

Eight participants (20.5%) had masters’ degree, 26 (66.7%) had bachelor’s degree, and five

(12.8%) had not yet finished bachelor’s degree course.

All participants declared theoretical knowledge of HCI design. Four of them (10.3%)

declared low knowledge (i.e., knowledge acquired by himself/herself through books, videos

or other materials). 16 participants (41%) declared medium knowledge, acquired mainly

during courses or undergraduate research. Finally, 19 participants (48.7%) declared high

knowledge (i.e., they are experts or have a certification, Masters or Ph.D. degree related to

HCI design). Some areas of the courses cited by participants that declared medium or high

knowledge are Design (46.2%), Computer Science (38.5%), Arts (28.2%), Social

Communication (15.4%) and User Experience (7.7%). The participants were allowed to

choose more than one option, hence the sum of the values is over 100%. Other areas such

as Anthropology, Neuroscience, Information Science, Psychology were also mentioned by

one participant each. 26 participants (66.7%) declared more than three years of experience

in HCI design practice, 11 participants (28.2%) declared between one and three years and

two (5.1%) declared less than one year.

The instrument used in the study consisted of a questionnaire composed of 10

objective questions. The answer options of each question were defined based on the mapping

54

study results. For example, when asked about the goals achieved with the help of KM in HCI

design (RQ6), the options provided to the participants refer to the goals we found in the

mapping study. Most questions also allowed the participant to provide additional information

in text boxes to complement his/her answers. For example, besides selecting goals from the

list provided in the question related to RQ6, the participants were also allowed to include

new goals in their answers. The questionnaire is available at http://bit.ly/Questionnaire-

KM-in-HCI-design.

The procedure adopted in the study consisted in sending the invitation to participate

in the study, receiving the answers, verifying them, consolidating and analyzing data. The

invitation was posted in discussion groups on Facebook, LinkedIn and Interaction Design

Foundation’s website2. The researchers also sent the invitation by email to potential

participants. Since the platforms did not inform how many people visualized the posts, we

could not infer the percentage of invites that led to answers.

Before sending the invitation, we performed a pilot with three participants.

Considering the participants’ feedback, we improved the questionnaire aiming to ensure that

the questions were clear and understandable. The invitation to participate in the study was

posted on social medias and sent by email on December 16th, 2020. We received answers

until January 11th, 2021. After that, each provided answer was verified and data was

consolidated and analyzed against the research questions.

4.3 Results

In this section, we present a synthesis of the survey data for each research question

presented on Table 4.1.

Stakeholders involved in HCI design practice (RQ1): aiming to identify

stakeholders involved in HCI design practice, we asked the participants to identify the

stakeholders they directly interact with in their HCI design practice. As it can be seen in

Table 4.2, developer has been the most common stakeholder involved in HCI design practice,

being mentioned by 37 participants (94.9%). Following that, project manager, designer, user and

client were mentioned, respectively, by 34 (87.2%), 33 (84.6%), 27 (69.2%) and 26 (66.7%)

participants. Product owner was cited by three participants (7.7%) and others (business analyst,

costumer experience analyst, data analyst, HR people, product manager and scrum master) were

mentioned only once.

2 https://www.interaction-design.org

http://bit.ly/Questionnaire-KM-in-HCI-design
http://bit.ly/Questionnaire-KM-in-HCI-design
https://www.interaction-design.org/

55

Table 4.2 – Stakeholders involved in HCI design practice.

Stakeholder Number of participants %

Developer 37 94.9%

Designer 34 87.2%

Project Manager 33 84.6%

Client 27 69.2%

User 26 66.7%

Product Owner 3 7.7%

Business Analyst 1 2.6%

Customer Experience Analyst 1 2.6%

Data Analyst 1 2.6%

HR People 1 2.6%

Product Manager 1 2.6%

Scrum Master 1 2.6%

Knowledge involved in HCI design practice (RQ2): first, the participants were

asked about the knowledge items they use or produce during HCI design activities. We consider

as knowledge items pieces of knowledge that can be useful in HCI design, such as lessons

learned, standards, guidelines and patterns. Figure 4.1 presents the results of this question.

Some items have been used and produced by a high number of participants: organizational

design standards (used by 34 participants, 87.2%, and produced by 26 participants, 66.7%),

lessons learned (used by 34 participants, 87.2%, and produced by 24 participants, 61.5%),

guidelines (used by 34 participants, 87.2%, and produced by 22 participants, 56.4%) and libraries

of design components or elements (used by 32 participants, 82.1%, and produced by 23 participants,

59%). Other knowledge items have also been used by many participants, but produced by a

smaller number, such as examples (used by 34 participants, 87.2%, and produced by 14

participants, 35.9%), design solutions from the organization (used by 35 participants, 89.7%, and

produced by 18 participants, 46.2%) and design solutions from outside the organization (used by 35

participants, 89.7%, and produced by 11 participants, 28.2%). In general, HCI design

practitioners have used and produced different knowledge items (11.1 and 6.6 in average,

respectively).

56

Figure 4.1 – Knowledge items used and produced in HCI design practice.

The participants were also asked about design artifacts they use or produce during

HCI design activities. We use the term design artifact to refer to documents, models,

protypes and others that record information about the design solution. Figure 4.2 shows the

results. User requirements, scenarios and interaction models were the most cited as artifacts used

during HCI design. On the other hand, wireframes, functional prototypes and mockups were the

most cited as artifacts produced during HCI design.

Figure 4.2 – Design artifacts used and produced in HCI design practice.

57

We also asked the participants to inform whether the artifacts used and produced by

them sufficiently provide all information needed to describe the HCI design solution (i.e., if

the knowledge recorded in the artifacts is enough to the implementation and evaluation of

the solution). 26 participants (66.7%) answered “yes” and 13 (33.3%) answered “no”. Eight

out of the 13 participants pointed out they miss information about personas, user research

data and usability tests. These 13 participants were also asked about the ways the missing

information is communicated. The results are presented in Table 4.3. Annotations and talks

have been the most used ways (eight participants, 61.5%) to complement information

provided in design artifacts. Seven participants (53.9%) reported the use of meetings, while

one uses documentation or specific tools. The participants indicated that annotations and talks

have been used informally, while meetings, documentation or tools have been used

systematically, following organizational practices.

Table 4.3 – Ways to obtain missing information.

Method Number of participants %

Annotations 8 61.5%

Talks 8 61.5%

Meetings 7 53.9%

Documentation or Tool 1 7.7%

None 1 7.7%

HCI design activities demanding better KM support (RQ3): taking the HCI

design activities established by ISO 9241-210 (ISO, 2019) as a reference, the participants

were asked to judge whether the knowledge resources (e.g., knowledge items, artifacts) used

by them have provided sufficient knowledge to support each activity. Figure 4.3 presents the

results. In general, most participants consider that they have access to enough knowledge to

perform HCI design activities. Produce design solutions has the highest number of participants

(31 participants, 79.5%) reporting to have had sufficient knowledge to perform it. On the

other hand, evaluate design solutions has the highest number of participants (10 participants,

25.6%) declaring that the available knowledge has not been enough. Sixteen participants

(41%) declared to have not had sufficient knowledge to support at least one HCI design

activity. They pointed out that, in order to address the lack of knowledge, they have

performed user research, searched for successful use cases, talked to stakeholders, and

looked at the literature.

58

Figure 4.3 – Available knowledge to support HCI design activities.

How KM has been applied in HCI design practice (RQ4): Figure 4.4 shows the

approaches that have been used to support knowledge access or storage in HCI design

practice. Brainstorming and blogs have been the most used ways to access knowledge (28

participants, 71.8%), followed by mental models and electronic documents and spreadsheets (26

participants, 66.7%). Except by blogs, those have also been the most used ways to store

knowledge: brainstorming has been used by 27 participants (69.2%); mental models and electronic

documents and spreadsheets by 24 (61.6%). Ontologies have been the less used way by the

participants. Only 7 participants (18%) have used ontologies to access knowledge and 5

participants (12.8%) have used it to store knowledge. Concerning knowledge storage, social

networks (6 participants, 15.4%) and forums (8 participants, 20.5%) have also not been much

used. In general, the approaches shown in Figure 4.4 have been more used to support

knowledge access than to support knowledge storage.

Figure 4.4 – Approaches to support knowledge access and storage in HCI design.

59

Benefits and difficulties of using KM in HCI design practice (RQ5): 34

participants (87.2%) reported to perform KM practices to support HCI design activities. 16

of them (41.0%) have followed institutionalized organizational practices, while 18 (46.2%)

have performed on their own initiative. These 34 participants were asked about benefits and

difficulties they have perceived in using KM to support HCI design. The results are

summarized on Table 4.4 and Table 4.5.

Table 4.4 – Benefits of using KM in HCI design practice.

Benefit Number of participants %

Enable replicability of domain or context knowledge 27 79.4%

Promote standardization 26 76.5%

Improve communication 25 73.5%

Increase productivity 24 70.6%

Reduce design effort 24 70.6%

Improve product quality 23 67.6%

Improve design conceptualization 20 58.8%

Improve team learning 18 52.9%

Reduce dependency on specialists 18 52.9%

Increase team engagement or empowerment 17 50.0%

Increase organizational integration 16 47.1%

Reduce design cost 16 47.1%

Promote organizational competitive advantage 11 32.4%

Table 4.5 – Difficulties of using KM in HCI design practice.

Difficulty Number of participants %

Low team engagement or empowerment 16 47.1%

KM implementation and maintenance effort 15 44.1%

Integration of the KM approach into the organization 15 44.1%

Lack of consensus about HCI design conceptualization 14 41.1%

Find relevant knowledge to a given context 13 38.2%

Low user involvement 9 26.5%

Issues related to features of the KM technologies 8 23.5%

Unclear business model 1 2.9%

Goals to which the use of KM in HCI design practice has contributed (RQ6):

Aiming to identify the predominant reasons for using KM in HCI design practice, the

participants were asked how much KM support to HCI design contributes to achieve certain

goals. The goals presented to them were identified in the systematic mapping as motivations

to perform KM in HCI design context. Figure 4.5 shows the results.

60

Figure 4.5 – KM contribution to goals achievement when supporting HCI design.

According to the participants, the goals to which using KM in HCI design contributes

the most are improve product quality (84.6% of the participants stated that KM contributes a lot

or contributes to it) and reduce effort spent on design activities (79.5% of the participants stated

that KM contributes a lot or contributes to it). On the other hand, the participants have seen

less contribution of KM in HCI design to reduce the usage of financial resources in design and to

reduce the dependency on specialists (43.6% of the participants stated that KM contributes little or

is indifferent to both of them).

4.4 Discussion

In this section, we present some discussions about the results shown in the previous

section.

Concerning stakeholders (RQ1), it can be noticed a variety of them being involved in

HCI design. Considering that the interactions usually occur in the context of projects, the

results indicate that teams of HCI design projects have included designers, developers,

project managers, and frequently also have involved clients and users. These stakeholders

have different roles in HCI design, and thus may have different HCI design knowledge needs.

For example, a developer may need to implement the design solution presented in a design

artifact. For that, this artifact should present technical decisions that affect the

implementation. A project manager, in turn, may need to have a broader view of several

design artifacts to verify if the implemented solution satisfies the requirements agreed with

the client. Hence, it is important that KM approaches consider needs of different

stakeholders to properly support HCI design. Moreover, it may be necessary to integrate

knowledge from different sources to provide a solution that integrates needs of different

61

stakeholders. This can be done, for example, with a knowledge management system with

multiple views for each different role.

Regarding knowledge involved in HCI design (RQ2), by analyzing the knowledge items

used and produced in HCI design practice, we can notice which knowledge has been more

useful to practitioners. Most participants use knowledge items that provide design knowledge

obtained from previous design experiences, such as design solutions from the organization,

design solutions from outside the organization and examples. This can be a sign that new

designs have been created based on previous experiences adapted to the new context.

However, these knowledge items have not been much produced by the participants. This

may be due to the effort required to record knowledge for future reuse. Hence, it would be

important to facilitate capture, recording and retrieval of knowledge embedded in design

solutions. On the other hand, two of the knowledge items produced by the highest number

of participants (organizational design standards and guidelines) record general principles and

practices to be followed when designing HCI solutions. This may indicate that the

participants have found it easier to produce knowledge independent of specific solutions.

Considering the relation between the number of knowledge items used and produced by the

participants, the higher number of used items shows that, in general, the participants have

acted more as knowledge consumers than knowledge producers. This may happen because

either the participants do not have enough time to produce knowledge items, or the

knowledge production is done by someone else. Consulting knowledge directly helps

designers in the activities they were doing in that moment. In contrast, knowledge production

does not seem to be immediately useful to them, although it is important in an organizational

level. We believe that approaches that promote knowledge recording and storage requiring

less effort could motivate designers to act as knowledge producers.

As for design artifacts, we noticed that the ones produced by more participants

(wireframes, functional prototypes and mockups) represent abstractions of the design

solution. Hence, the creation of such artifacts is part of the design solution development. On

the other hand, the artifacts used by more participants (user requirements, sceneries and

interaction models) provide useful information to develop the design solution (i.e., they

represent inputs to design development). One third of the participants (33.3%) considered

the artifacts used or produced by them limited to meet information needs about the design

solution and reported the use of complementary ways to transfer missing knowledge. When

analyzing the three most cited ways, we observed that two of them (talks and meetings) are

based on conversation between team members. This can be a sign that it may be difficult to

62

articulate certain knowledges in artifacts. This is reinforced by the high usage of annotations,

which are less formal and structured, and the low usage of documentations and tools.

Besides, considering that the use of more than one method of knowledge transfer is a

common practice used by the participants, it is likely that they prefer to have this

communication redundancy as a way of reinforcing the understanding of all stakeholders

about the design. Therefore, we believe that the missing knowledge in HCI design artifacts

can be transferred, for example, by performing regular meetings and by providing means to

easily attach additional annotations on design artifacts.

Concerning HCI design activities (RQ3), ‘produce design solutions’ was the one that

more participants (79.5%) indicated to have access to enough knowledge to perform it. This

can be a sign that participants have used knowledge mainly to support the creation of design

solutions. On the other hand, a high number of participants indicated that have not had

sufficient knowledge to perform the activities ‘understand and specify the context of use’

(23%), ‘specify user requirements’ (23%) and ‘evaluate the design solution’ (25.6%).

Therefore, it is necessary to identify useful knowledge to support these activities (e.g., missing

knowledge related to personas and user research data, as reported in RQ2) and provide

means to represent and access it in an easy way.

As for the approaches to support knowledge access and storage in HCI design (RQ4), it can be

observed that the most used approaches, such as brainstorming, mental models and

electronic spreadsheets and documents, usually support both knowledge access and storage.

This may suggest that it is easier and simpler to implement and use them. Brainstorming for

example, has the advantage of the participants share and obtain knowledge at the same time.

On the other hand, web-based resources, such as blogs, forums and social networks are more

used to support knowledge access than knowledge storage. Probably, these resources have

been used more as sources of inspiration to bring new ideas from outside the organization.

In addition, the reason why these resources have been less used by practitioners to record

knowledge may be a concern in not exposing organizational design knowledge on the

internet. HCI design knowledge must be captured, recorded and propagated in order to be

raised from the individual level to the organizational level. Hence, we believe that KM

initiatives in HCI design should consider approaches such the ones most used by

practitioners to support both knowledge access and storage.

Concerning benefits and difficulties of using KM in HCI design (RQ5), most participants

declared to have experienced KM practices in HCI design. 41.0% followed institutionalized

practices and 46.2% have performed on their own initiative. This indicates that HCI design

63

professionals have been concerned with the need of practices to help manage knowledge and

are seeking for solutions by themselves when they are not provided by the organization.

According to the participants, in general, using KM to support HCI design brings more

benefits than difficulties. The most cited benefits were related to standardization, reuse,

communication and productivity, while the most cited difficulties were related to the lack of

consensus in HCI design conceptualization and to the effort of implementing, engaging the

team and integrating the KM approach in the organization. Based on that, to effectively

implement a KM approach, it would be interesting to convince people and the organization

that the additional effort in the beginning is worth the benefits they obtain afterwards.

Finally, by analyzing goals to which the use of KM in HCI design has contributed (RQ6),

‘reduce the usage of financial resources’ and ‘reduce the dependency on specialists’ have been

considered less impacted by the use of KM in HCI design. This may be because reducing

costs can be a side effect of reducing time spent on design or producing better designs, with

less errors. Moreover, even if expert’s knowledge is transferred and managed at

organizational level, user centered design deals with people, hence there are subjective

aspects that still needs to be addressed by specialists. It is also important to note that ‘reduce

the effort spent on design activities’ was the goal which participants believe to be most

impacted by the use of KM in HCI design. By having in hand proper knowledge resources,

the designer can learn from previous experiences, reuse solutions and explore more design

alternatives, which can lead to designing better and more efficiently.

4.5 Threats to Validity

As discussed in the context of the systematic mapping, when carrying out a study, it

is necessary to consider threats to the validity of its results. In this section we discuss some

threats involved in the survey.

With regard to the quality of the answers provided by the participants, there was the

threat of the participants have misunderstood some questions. To address this threat, we

performed a pilot that allowed us to improve and clarify questions. Moreover, we provided

definitions for the terms used and examples of information that should be included in the

survey, so that the participants could better understand how to answer it.

Another threat refers to the subjectivity in data analysis, which may reflect the

researchers’ point of view. In addition, the results reflect the participants’ personal

experience, interpretation and beliefs. Hence, the answers can embed subjectivity that cannot

be captured through the questionnaire.

64

The limited number of participants and the fact that all of them are Brazilian

professionals are also threats to the results. Moreover, some of the participants were invited

based on the researchers’ relationship network, which may have influenced the answers.

Considering these threats, the survey results must be understood as preliminary

evidence and should not be generalized.

4.6 Consolidated View of Findings

In this section, we present some discussions involving the systematic mapping and

survey results, aiming to provide a consolidated view of the findings from both studies.

The three most cited motivations for using KM found in the systematic mapping

(RQ3) are the same as the three goals most impacted by the use of KM in HCI design

practice, according to survey participants (RQ6). This shows that, in general, it is expected

that the use of KM in HCI design can contribute to improve product quality and reduce

effort and time spent on design activities.

Considering the most reported benefits and difficulties of using KM in HCI design,

the survey results provided some ones not observed in the literature. For example, most

survey participants reported ‘standardization’ and ‘productivity’ as benefits and ‘KM

implementation and maintenance effort’ and ‘lack of consensus about HCI design

conceptualization’ as difficulties. This difference is not a surprise, since the mapping results

showed that most proposed approaches have not been applied in industry. We believe that

to achieve success in implementing knowledge management, it is important to consider HCI

design professionals’ perspective, pursuing the benefits and implementing strategies to

overcome the difficulties.

There are other differences between the mapping and survey results. For example,

traditional KM technologies, such as knowledge management systems, knowledge

repositories and knowledge-based systems, have been the most used approaches reported in

the literature, but have not been much used by HCI design professionals. The reasons why

they do not use those approaches may be quite diverse, including being not aware that they

exist or considering them too complex. Since 46.2% of the participants perform KM

practices on their own initiative, it is likely that they have preferred simpler approaches that

can be implemented by themselves. This reinforces the gap between industry and academy

perceived from the analysis of the systematic mapping results. In order to decrease this gap,

KM approaches to support HCI design should be closer to approaches that professionals

are already familiar with, which can contribute to simpler and easier implementation and use.

65

Results from both studies show that design guidelines and design solutions have been

reused in HCI design. Organizational design standards, lessons learned, and design

component libraries have also been useful for HCI design professionals. Therefore, KM

approaches to support HCI design should be able to handle these knowledge items,

supporting their capture, storage and retrieval. As indicated by results from both studies,

these knowledge items have probably been most used to support the activity ‘produce design

solutions’. This was the activity in which most approaches found in the literature use

knowledge and most participants considered having sufficient knowledge support. KM

approaches should also provide support to other activities such as ‘understand and specify

context of use’, ‘specify user requirements’ and ‘evaluate design solutions’, contributing to

the HCI design process as a whole.

4.7 Concluding Remarks

This chapter and the previous one presented an investigation about the use of

knowledge management in the HCI design context. To investigate the state of the art, we

performed a systematic mapping presented in Chapter 3. After that, we carried out the survey

presented in this Chapter, with 39 Brazilian professionals who work on HCI design. As the

main result of the studies, we provided a panorama of research related to the topic and

identified gaps and opportunities of improvements to organizations interested in applying

KM initiatives in HCI design context.

For example: (i) The lack of a common conceptualization of HCI design (pointed

out in #01 and #02 in the mapping study and also by 35.9% of the survey participants) leads

to communication problems between the different actors involved in the HCI design

process. We believe that the use of ontologies to establish this common conceptualization

could help in this matter. However, since ontologies are not much familiar to practitioners

(survey RQ4 results), ontology-based KM approaches in HCI design should abstract the

ontology to final users (e.g., using the ontology to derive the conceptual model of a

knowledge-based system). (ii) The gap between theory and practice (systematic mapping

RQ2 results) shows that it is necessary to take KM solutions to practical HCI design

environments. The survey results show that HCI design professionals are familiar with more

robust KM approaches (such as knowledge management systems) but prefer to use simpler

ways to deal with knowledge, such as brainstorming sessions and electronic spreadsheets and

documents. Therefore, lightweight technologies and a divide and conquer strategy to reduce

complexity of the conception, implementation and evaluation of a KM approach might be

66

useful, allowing to provide results for the organizations in smaller periods of time and

increasing benefits as the approach evolves. (iii) Other aspects besides usability (e.g., user

experience, communicability and accessibility) should be explored in KM initiatives to

improve HCI design. (iv) The benefits and difficulties identified in mapping (RQ7) and

reported by the survey participants (RQ5) indicate issues that can be investigated in future

research. For example, case studies can be carried out in organizations to evaluate the use of

KM approaches in HCI design context.

We did not find any study investigating the use of KM in HCI design context. A

work that can be related to ours is (STEPHANIDIS; AKOUMIANAKIS, 2001), consisting

in a literature review about categories of computer aided HCI design tools and a proposal

of a new category to address the knowledge complexity involved in HCI design. However,

the study focused on computational tools, not investigating how other kinds of KM

approaches can help in HCI design process.

67

Chapter 5

Human-Computer Interaction Design

Ontology

This chapter presents the Human-Computer Interaction Design Ontology (HCIDO), the reference ontology about

HCI design proposed in this work. Section 5.1 presents the chapter introduction. Section 5.2 presents the Software

Design Reference Ontology (SDRO), which addresses design in the software context and was developed to be reused in

HCIDO development. Section 5.3 presents HCIDO. Section 5.4 discusses related works. Finally, Section 5.5

presents the chapter concluding remarks.

5.1 Introduction

The investigation about KM in HCI design presented in chapters 3 and 4 indicated

that the lack of a common conceptualization about HCI design has been one of the main

challenges in applying KM to support HCI design of interactive systems. The use of

ontologies can help to address this challenge, by providing a formal and explicit specification

of a shared conceptualization (STUDER; BENJAMINS; FENSEL, 1998). Hence, we

propose in this chapter the Human-Computer Interaction Design Ontology (HCIDO),

which aims at establishing a common conceptualization of HCI design of interactive systems.

HCIDO is a networked domain ontology of HCI-ON (COSTA et al., 2020) and

reuses concepts related to HCI and SE by specializing other ontologies from HCI-ON and

SEON (RUY et al., 2016) , respectively. From SEON, we highlight the Software Design

Reference Ontology (SDRO), which was also developed in this work and addresses general

design aspects in the software context, connecting them to other SE aspects, such as

requirements, code and testing. HCIDO and SDRO are respectively placed in the domain

layer of HCI-ON and SEON architectures, as it is shown in Figure 5.1 (the notation used in

the figure is the same used in Figure 2.7 and explained in Section 2.3.3).

The development of HCIDO considered six of the seven requirements3 established

during activities of the Relevance Cycle of the research method followed in this work, as we

3 (R1) the ontology must cover main aspects regarding HCI design, including not only the created artifacts but
also mental aspects that precede the creation of design artifacts; (R2) the ontology must consider aspects related
from both HCI and SE; (R3) the ontology must be modular; (R4) the ontology must be formally rigorous; (R5)
the ontology must be ground in a well-founded ontology; (R6) the ontology must be developed by following
an appropriate Ontology Engineering method; and (R7) the ontology must be used to solve problems.

68

explained in Chapter 1 (Section 1.4). The last requirement (R7) concerns HCIDO use.

Hence, it was addressed after HCIDO development and will be discussed in Chapter 6. In

order to meet the other six requirements, HCIDO is based on HCI design literature,

standards and also in theories related to design in general (R1); it was developed as a

networked ontology of HCI-ON (COSTA et al., 2020) and reuses concepts from SEON

ontologies (RUY et al., 2016) (R2); it is organized into two sub-ontologies (R3); it is defined

by means of conceptual models and textual descriptions (R4); it is grounded in UFO

(GUIZZARDI, 2005) (R5) and (like SRDO) it was developed by following SABiO (FALBO,

2014), a Systematic Approach for Building Ontologies (R6).

 SABiO supports the development of domain reference ontologies, as well as the

design and coding of operational ontologies. SABiO was chosen because it has been

successfully used to develop domain ontologies, in particular Software Engineering reference

domain ontologies, including the ones already integrated to SEON and reused in this work,

namely: Software Process Ontology – SPO (BRINGUENTE; FALBO; GUIZZARDI,

2011), System and Software Ontology – SysSwO (DUARTE et al., 2018) and the Reference

Software Requirements Ontology – RSRO (DUARTE et al., 2018).

Figure 5.1 – Placement of HCIDO and SDRO in HCI-ON and SEON architectures.

SABiO’s development process comprises five main phases, namely (FALBO, 2014):

(1) Purpose Identification and Requirements Elicitation; (2) Ontology Capture and Formalization; (3)

Design; (4) Implementation; and (5) Testing. These phases are accompanied by support processes:

Knowledge Acquisition, Reuse, Documentation, Evaluation and Configuration Management. SABiO aims

at developing both reference ontologies (phases 1 and 2) and operational ontologies (phases

3, 4 and 5). SDRO and HCIDO are domain reference ontologies, thus only the first two

69

phases were performed. During the Purpose Identification and Requirements Elicitation phase, we

raised the competency questions that the ontologies should be able to answer. In Ontology

Capture and Formalization, the required concepts were captured, formalized in UML diagrams

and described. Knowledge acquisition was performed based on the literature and international

standards, as well as by consulting domain specialists. Reuse consisted in reusing HCI and SE

concepts from HCI-ON and SEON and general design concepts from the works by Ralph

and Wand (2009) and Guarino (2014). Evaluation was conducted using verification (checking

if the ontologies were able to answer the proposed competency questions) and validation

(using data from real-world situations to instantiate the ontologies concepts). In

Documentation, we produced the ontologies specifications presented in this chapter. Finally,

during Configuration Management, we controlled different versions of the ontologies until

reaching the version presented in this work. Details about the development of SDRO and

HCIDO are presented in the next two sections.

5.2 Software Design Reference Ontology

Understanding the meaning of design in general helps understand what is design in

the software development context, since the activity of designing shares many common

characteristics across different fields (MCPHEE, 1996). The meaning of “design” in the

dictionary can be either a verb (e.g., “to make or draw plans for something” (DESIGN, 2020a); “to

conceive and plan out in the mind” (DESIGN, 2020b)) or a noun (e.g., “a drawing or set of drawings

showing how a product is to be made and how it will work and look” (DESIGN, 2020a); “a mental

project or scheme in which means to an end are laid down” (DESIGN, 2020b)). One meaning does

not exclude the other, rather, they are complementary and suggest different viewpoints of

the design phenomenon.

In the Software Engineering literature, we can also find definitions referring to

“software design” as a verb and as a noun. For example, software design is defined as the

process of describing architecture, components, modules, interfaces, and data for a software

system, to specify how requirements are to be met by the implemented software, being

applied regardless of the software process model that is used (BUDGEN, 2003;

ISO/IEC/IEEE, 2017; PRESSMAN; MAXIM, 2020). The result of this process is a

description that acts like a blueprint for constructing software, which is also referred as the

software design.

A more formal conceptualization of “design” as a verb and as a noun was proposed

by Ralph and Wand (2009), which was based on a literature review of design definitions

70

across different fields, summarizing what they have in common and trying to resolve

disagreements between them. Design as a noun is defined by these authors as “a specification

of an object (the design object), manifested by an agent, intended to accomplish goals, in a particular

environment, using a set of primitive components, satisfying a set of requirements, subject to constraints”,

while as a verb, it is defined as the process of creating a design (RALPH; WAND, 2009).

Hence, a designer is the agent who manifests a specification. A specification, in turn, is a

detailed description of a design object’s structural properties and, it may be purely mental,

presented as physical or symbolic representation or as the object itself. This is in accordance

with the aforementioned definitions (from dictionary) and with the discussion provided by

Guarino (2014). According to him, the design object is the thing being designed, which in

the context of this work is software. It has essential characteristics that result from the design

choices encoded in the design specification (GUARINO, 2014). These choices involve the

selection and manipulation of components (or primitives) that will compose the designed

object. Guarino and Melone (2015) highlighted that components that designers refer when

designing have a different ontological status from the physical components that constitute

the realized design object. They are called conventional system components and represent

what designers have in mind. They exist in a particular place of the object, where they play a

specific role. Goals, requirements, constraints and the design object environment are

considered inputs to the design process (RALPH; WAND, 2009) and are all encompassed

by term “requirements” in software development.

 In this work, we propose the Software Design Reference Ontology (SDRO) to

provide a formal conceptualization about the design phenomenon in the software context

and to be reused in the development of HCIDO. SDRO is integrated to SEON, uses the

works by Ralph and Wand (2009) and Guarino (2014) as a reference to describe the core

design notions and reuses concepts from other SEON ontologies to address software

particularities. By combining general notions of design and specific aspects of Software

Engineering, it is possible to provide a conceptualization about design in the software context

integrated to other aspects, such as requirements, code and testing. SDRO allows the

instantiation of software design situations regardless of the design paradigm, process or

method used in software development. It is focused on design as noun, i.e., it is not focused

on describing activities involved in a general software design process, which is addressed in

SEON by the Design Process Ontology (RUY et al., 2016).

The ontology scope was defined by means of competency questions, i.e., questions

the ontology must be able to answer and are used as a basis to develop the ontology

71

conceptual model. Considering the ontology purpose, the following set of competency

questions (CQ) was established:

Table 5.1 – SDRO Competency Questions

Competency Question Rationale

CQ1. How does a software

designer reason about the object

being designed?

Understand the mental nature of software design.

CQ2. What is a software design

specification?

CQ3. Which are the components

of a software design specification?

Understand what a software design specification is and its constituents.

CQ4. What is a software design

object?

CQ5. Which are the components

of a software design object?

Represent the software built from a design specification and its

components.

CQ6. What is described in a

software design specification?

Understand the design-related information described in a design

specification and the relation between the software design specification

of an object and the mental elements of the design of that object.

CQ8. How can a software design

object be implemented from a

software design specification?

Understand how the information encoded in a software design

specification is transformed into an implemented software design

object.

CQ7. What is the motivation for a

software design choice?

Understand the reason why a designer makes a design choice regarding

a software design object.

CQ9. How can a software design

object be evaluated against a

software design specification?

Understand how the information encoded in a software design

specification can be used to evaluate the implementation of the

software design object.

SDRO addresses “design” as a noun, describing the mental and physical elements

involved in the design of software systems and the relations between them. Here, the term

“physical” is borrowed from other works (BAKER; HOEK, 2006; GUARINO, 2014;

RALPH; WAND, 2009) referring to the perception of something through the senses. But it

is important to highlight that software is something abstract. Thus, there are differences in

the way it is perceived when compared to physical objects like a chair or a car. Considering

these differences, we divided SDRO into two sub-ontologies: the Mental Aspects sub-ontology

and the Physical Aspects sub-ontology. Figure 5.2 shows the organization of these sub-

ontologies in SDRO and their dependency relations with other SEON ontologies. A

dependency relation between two ontologies means that the source ontology reuses concepts

from the target ontology.

72

Figure 5.2 – SDRO architecture.

The Mental Aspects sub-ontology is presented in Figure 5.3, while the Physical Aspects

sub-ontology is presented in Figure 5.4. In the figures, the black single-dashed horizontal

lines separate concepts from different ontologies at the same layer. Red double-dashed lines

separate the layers of SEON architecture. Different colors are used to indicate concepts from

different ontologies (the same colors are used in Figure 2.7 for concepts from UFO, SPO,

SysSwO and RSRO). Concepts from SDRO are presented in different shades of violet

according to the sub-ontology to which they belong: light violet is used for Mental Aspects

sub-ontology and dark violet for Physical Aspects sub-ontology. In the model description,

SEON concepts are written in bold and SDRO concepts are written in bold italics.

Figure 5.3 – SDRO Mental Aspects sub-ontology conceptual model.

73

Figure 5.4 – SDRO Physical Aspects sub-ontology conceptual model.

74

Mental aspects are treated in SDRO as Software Designer Mental Moments that

inhere in a Software Designer, which is a Person Stakeholder that uses his/her skills to

directly contribute to the outcome of the design effort. The propositional content of a

Software Designer Mental Moment is a Software Design Proposition, i.e., a sentence

describing an idea in the designer’s mind about software design aspects of a certain object.

Thus, Software Designer Mental Moments represent mental properties of a Software

Designer that enable him/her to imagine possible solutions for software design problems,

while Software Design Propositions are the expression of such solutions in a conversation

or in the internal dialogue of the designer. The realization of design solutions is given by

situations in reality where the propositional content of Software Designer Mental

Moments (i.e., Software Design Propositions) are true. The number of design solutions

that can be actually realized varies according to the intersection between desirable situations

that satisfy the requirements and feasible situations that respect the constraints (e.g., time,

cost and computational resources) (BAKER; HOEK, 2006).

Five different types of Software Design Propositions were identified, based on

what their subject refers to. A Mental Software Design Object concerns the software

object being designed, which may not exist yet (i.e., it represents what designers visualize as

the final design object when they refer to “the system”). A Mental Software Design Object

is specified by a Mental Software Design Specification, a detailed description of the object

structure (i.e., how the object should be decomposed and organized in smaller elements and

how these elements interact with each other). In the beginning of the design process, this

description usually represents the object structure in a higher level of abstraction (e.g.,

architecture aspects) and as design iterations occur, it is refined into more detailed

representations (e.g., components and modules) at lower levels of abstraction (PRESSMAN;

MAXIM, 2020). The Mental Software Design Specification consists of one or more

Mental Software Design Choices made by the Software Designer. Each Mental

Software Design Choice can be motivated by Requirements or by other Mental Software

Design Choices and contains details about a decision made by the Software Designer

concerning structural or behavioral properties of the designed object or about its

components and their connections. Thus, a Mental Software Design Choice may concern

Mental Software Design Components, which represent what the Software Designer

expects to exist as a part of the designed object in a particular place, playing a specific role

and having its own properties (e.g., modules, partitions and layers in which the system’s

architecture is organized), also referred as “conventional system components” by Guarino

75

and Melone (2015). A Mental Software Design Choice may also concern a Mental

Computing Resulting State, which represents an expected result of a Mental Software

Design Choice that can only be assessed in runtime (e.g., obtaining a certain return code

after the execution of a system’s module).

SDRO physical aspects, in turn, are treated as sub-types of Software Artifact. For

example, a Software Design Object is a Software System that implements a Mental

Software Design Object. This does not imply that every Mental Software Design Object

results in the development of a new Software System. An existing Software System is

considered a Software Design Object when it complies with a Mental Software Design

Specification and, consequently, implements the specified Mental Software Design

Object. Software Design Objects are composed of Software Design Components,

which are Programs that play specific roles in the designed Software System, implementing

Mental Software Design Components. Software Design Components can be composed

of sub-components, allowing the representation of more complex architectures. A

(sub)component can also be part of more than one component (e.g., in situations where the

code is properly modularized and reused).

In order to be executed and used, a Software Design Object and its Software

Design Components must be, respectively, materialized as a Loaded Software Design

Object (Loaded Software System Copy) and Loaded Software Design Components

(Loaded Program Copies) inhering in a Computer Machine, i.e., the software must be

loaded in the computer’s main memory. A Loaded Software Design Component can be

executed as a Program Copy Execution that brings about a Computing Resulting State.

If the program was implemented and executed correctly, this Computing Resulting State

may satisfy a Mental Computing Resulting State associated in a Mental Software Design

Choice with the corresponding Mental Software Design Component materialized by the

executed Loaded Software Design Component. This relationship allows us to verify if the

implemented software meets the design specification.

Another type of Software Artifact is a Software Design Specification, which is

created by a Software Designer and can be either a Model (e.g., a class diagram), a

Document (e.g., a detailed textual description) or a Software Item (e.g., a functional

prototype), providing an explicit representation that describes Mental Software Design

Specifications (also referred as Software Design Descriptions in IEEE 1016 (IEEE, 2009)).

A Software Design Specification encodes one or more Software Design Choices, which

are Information Items describing Mental Software Design Choices. Therefore, a

76

Software Design Choice is a piece of information that physically represents choices made

by a Software Designer and can be used for communication and evaluation purposes (e.g.,

a sentence like “The system will be implemented in Java” or details added in a class diagram that

indicates how entities and relations should be represented in the database). As a derived

relation, a Software Design Choice intends to satisfy a Requirement Artifact when the

Mental Software Design Choice it describes is motivated by the Requirement described

by the Requirement Artifact. This connection establishes a traceability relation between

design and requirements artifacts.

5.2.1 SDRO Evaluation

To evaluate SDRO, we performed Ontology Verification & Validation (V&V)

activities by using two approaches: assessment by human approach and data-driven approach

(BRANK; GROBELNIK; MLADENIĆ, 2005). In the first, we performed a verification

activity by means of expert judgment, in which we checked if the concepts and relations

defined in SDRO are able to answer the competency questions. In the second, to validate

SDRO, we instantiated its concepts and relations using data extracted from a real-world

scenario. Table 5.2 presents the results of SDRO verification, which showed that the

ontology answers all the CQs and, thus, is able to cover the scope established to it.

Table 5.2 – SDRO verification against its CQs.

CQs Description, Concepts and Relations

CQ1

How does a software designer reason about the object being designed?

Software Design Proposition is the propositional content of a Software

Designer Mental Moment that inheres in a Software Designer, a role

played by a Person Stakeholder.

Mental Software Design Object, Mental Software Design

Specification, Mental Software Design Choice, Mental Software

Design Component and Mental Computing Resulting State are subtypes

of Software Design Proposition.

CQ2

What is a software design specification?

Software Design Specification is a Software Artifact created by Software

Designers that describes Mental Software Design Specifications.

CQ3

Which are the components of a software design specification?

Software Design Specification is composed of Software Design Choices,

which are Information Items that describe Mental Software Design Choices.

CQ4

What is a software design object?

Software Design Object is a role played by a Software System that

implements Mental Software Design Objects.

CQ5

Which are the components of a software design object?

Software Design Object is composed of Software Design Components.

Software Design Component is a role played by a Program that implements

Mental Software Design Components. It can be composed of other

Software Design Components.

77

Table 5.2 (continuation) – SDRO verification against its CQs.

CQs Description, Concepts and Relations

CQ6

What is described in a software design specification?

Software Design Specification describes a Mental Software Design

Specification which specifies a Mental Software Design Object and is

composed of Mental Software Design Choices, which may concern to Mental

Software Design Components or Mental Computing Resulting States.

CQ7

What is the motivation for a software design choice?

Software Design Choice describes Mental Software Design Choices, which

are motivated by Requirements or by other Mental Software Design Choices.

As derived relations, Software Design Choice is motivated by Requirement

Artifacts or by other Software Design Choices.

CQ8

How can a software design object be implemented from a software design

specification?

Software Design Specification is composed of Software Design Choices that

describe Mental Software Design Choices concerning Mental Software

Design Components. Mental Software Design Components are

implemented as Software Design Components, which are components of a

Software Design Object that realizes the Software Design Specification.

CQ9

How can a software design object be evaluated against a software design

specification?

Software Design Object is materialized as a Loaded Software Design

Object, which is a role played by a Loaded Software System composed of

Loaded Software Design Components. Loaded Software Design

Component is a role played by a Loaded Program Copy that materializes a

Software Design Component and can be executed in a Program Copy

Execution. A Program Copy Execution brings about a Computing

Resulting State that can satisfy Mental Computing Resulting States

concerned by Mental Software Design Choices described by Software Design

Choices encoded in a Software Design Specification.

For SDRO validation, we took a fictional car rental software system, here referred as

CRS, as an example of design object and used the ontology to instantiate and analyze a

scenario considering its design. It is worthy pointing out that, although we considered a

fictional scenario, it is consistent with real-world cases. The scenario is described below,

showing that SDRO can represent real-word situations like that.

The CRS system aims to support rent-a-car companies in managing fleets of cars and

rentals, as well as allowing customers to make car rentals via internet. Based on this context,

the following Requirements of CRS had been elicited: (i) a rent-a-car company wants to

manage fleets of cars; (ii) a rent-a-car company wants to manage customers; (iii) a rent-a-car

company wants to manage car rentals; and (iv) customers want to make car rentals via

internet. These Requirements were described in a document as Requirement Artifacts,

which is reproduced in Figure 5.5:

78

Figure 5.5 – Documented requirements of the CRS system.

Two fictional software engineers, John and Mary, were responsible for designing CRS

(i.e., playing the role of Software Designers) and discussed how they would address these

requirements in the system’s implementation. In their discussions, they referred to the

software system being designed (Mental Software Design Object) as “the system” or

“CRS”, corresponding to what they had in mind (Software Designer Mental Moments)

as a solution to satisfy the Requirements. In order to treat the NFR01 requirement, John

made some Mental Software Design Choices and communicated them to Mary, proposing

to implement the system in Java using libraries that can run in different browsers (Google

Chrome, Mozilla Firefox and Internet Explorer) and to implement the user interface (a Mental

Software Design Component in this context) as a separate component independent from

the rest of the application. These Mental Software Design Choices were also related to

Mental Computing Resulting States corresponding to John’s visualization of the system’s

user interface being executed in each of those different browsers. Mary agreed with his

suggestions and complemented that they could organize the system in an architecture based

on a combination of partitions and layers: “Fleet Control Partition” would address FR01,

and “Customer Service Partition” would address FR02 and FR03, corresponding to the part

of the system that should be available via internet. Both partitions were composed of three

layers: “Presentation Layer”, addressing the interaction between the system and users;

“Business Layer”, containing the functionality that support business processes; and “Data

Layer”, managing the data access for the application. Partitions and layers were Mental

Software Design Components which were related to each other in Mary’s Mental

Software Design Choices. She considered that the combination of the Mental Software

79

Design Choices made by her with the ones made by John (i.e., Mary’s Mental Software

Design Specification) was sufficient to start implementing the system. However, John was

having trouble in understanding the choices proposed by Mary (i.e., his Mental Software

Design Specification was not equivalent to hers), so he asked her to produce a Software

Design Specification describing what she had in mind. Mary presented him a diagram

(shown in Figure 5.6) encoding Software Design Choices (e.g., the representation of the

partitions and layers as UML elements) describing the Mental Software Design Choices

she had in mind.

Figure 5.6 – Software architecture proposed by Mary to the CRS system.

 After seeing the diagram in the Software Design Specification produced by Mary,

John understood what she proposed (i.e., their Mental Software Design Specifications

became equivalent) and then they decided to implement the system. They presented the

Software Design Specification to a developer and explained what they had in mind to him.

The interpretation of the developer produced a Mental Software Design Specification in

his mind, as well as other Software Design Propositions associated with it. After that, the

developer produced a Software System written in Java, which satisfied the specification he

had in mind (i.e., a Software Design Object implementing the Mental Software Design

Object specified by his Mental Software Design Specification). Then, he asked John and

Mary to assess if the implemented software corresponded to what they had designed. John

and Mary first inspected the code and observed that the partitions and layers had been

correctly implemented as Software Design Components (i.e., the Software Design

Object realized the Software Design Specification). In the sequence, they loaded a copy

80

of the system in the computer’s main memory (a Loaded Software Design Object

composed of Loaded Software Design Components) and accessed the system’s user

interface through all three browsers previously specified. Each of those accesses produced a

Program Execution of the Loaded Software Design Component that materialized the

implementation of the “Presentation Layer” of the “Customer Service Partition” (i.e., a

Mental Software Design Component), which, in turn, might had triggered the execution

of the other components. When the execution was completed, it brought about a

Computing Resulting State (e.g., a HTTP response code 200) that satisfied the Mental

Computing Resulting State imagined by John. Based on that, John and Mary concluded

that the Software Design Object had been correctly implemented according to their

Mental Software Design Objects.

Table 5.3 presents a summary with some instances of SDRO concepts extracted from

the CRS example.

Table 5.3 – SDRO instantiation for the CRS system.

Concept Instance

Software Designer John; Mary

Requirement (REQ)

REQ1. “A rent-a-car company wants to manage fleets of cars.”

REQ2. “A rent-a-car company wants to manage customers.”

REQ3. “A rent-a-car company wants to manage car rentals.”

REQ4. “Customers want to make car rentals via internet”

Requirement Artifact (RA)

RA1. The description of R1 expressed by FR01.

RA2. The description of R2 expressed by FR02.

RA3. The description of R3 expressed by FR03.

RA4. The description of R4 expressed by NFR01.

Software Designer Mental

Moment

Mental properties in the minds of John and Mary expressed by Software

Design Propositions.

Software Design Proposition

/ Mental Software Design

Object

“The CRS system”

Software Design Proposition

/ Mental Software Design

Specification

MSDCH1 + MSDCH2

Software Design Proposition

/ Mental Software Design

Choice (MSDCH)

MSDCH1. “to implement the system in Java using libraries that can be run

in different browsers.”

MSDCH2. “to organize the system in an architecture based on a

combination of partitions and layers”

Software Design Proposition

/ Mental Software Design

Component (MSDC)

MSDC1. “Customer Service Partition”.

MSDC1.1. “Presentation Layer” from the “Customer Service Partition”.

MSDC1.2. “Business Layer” from the “Customer Service Partition”.

MSDC1.3. “Data Layer” from the “Customer Service Partition”.

MSDC2. “Fleet Control Partition”.

MSDC2.1. “Presentation Layer” from the “Customer Service Partition”.

MSDC2.2. “Business Layer” from the “Customer Service Partition”.

MSDC2.3. “Data Layer” from the “Customer Service Partition”.

81

Table 5.3 (continuation) – SDRO instantiation for the CRS system.

Concept Instance

Software Design Proposition

/ Mental Computing

Resulting State (MCRS)

MCRS1. “The system’s user interface accessible from the Google Chrome

browser.”

MCRS2. “The system’s user interface accessible from the Mozilla Firefox

browser.”

MCRS3. The system’s user interface accessible from the Internet Explorer

browser.

Document / Software Design

Specification
A document containing SDCH1 + SDCH2

Software System / Software

Design Object

The implementation in Java of the CRS system, consisting of SDC1 +

SDC1.1 + SDC1.2 + SDC 1.3 + SDC2 + SDC2.1 + SDC 2.2 + SDC 2.3.

Program / Software Design

Component (SDC)

Programs written in Java implementing the mental software design

components, including:

SDC1. The implementation of MSDC1.

SDC1.1. The implementation of MSDC1.1.

SDC1.2. The implementation of MSDC1.2.

SDC1.3. The implementation of MSDC1.3.

SDC2. The implementation of MSDC2.

SDC2.1. The implementation of MSDC2.1.

SDC2.2. The implementation of MSDC2.2.

SDC2.3. The implementation of MSDC2.3.

Loaded Software System

Copy / Loaded Software

Design Object

A copy of the CRS system loaded in the main memory of the computer

used by John and Mary to assess the implementation, consisting of LSDC1

+ LSDC1.1 + LSDC1.2 + LSDC 1.3 + LSDC2 + LSDC2.1 + LSDC 2.2

+ LSDC 2.3.

Loaded Program Copy /

Loaded Software Design

Component (LSDC)

Copies of the software design components loaded in the main memory of

the computer used by John and Mary to assess the implementation,

including:

LSDC1. The materialization of SDC1.

LSDC1.1. The materialization of SDC1.1.

LSDC1.2. The materialization of SDC1.2.

LSDC1.3. The materialization of SDC1.3.

LSDC2. The materialization of SDC2.

LSDC2.1. The materialization of SDC2.1.

LSDC2.2. The materialization of SDC2.2.

LSDC2.3. The materialization of SDC2.3.

Program Copy Execution

(PCE)

PCE1. The execution of LSDC1.1 triggered when the system is accessed

through the Google Chrome browser in the computer used by John and Mary

to assess the implementation.

PCE2. The execution of LSDC1.1 triggered when the system is accessed

through the Mozilla Firefox browser in the computer used by John and Mary

to assess the implementation.

PCE3. The execution of LSDC1.1 triggered when the system is accessed

through the Internet Explorer browser in the computer used by John and

Mary to assess the implementation.

Computing Resulting State

(CRS)

CRS1. The HTTP response code 200 brought about by PCE1.

CRS2. The HTTP response code 200 brought about by PCE2.

CRS3. The HTTP response code 200 brought about by PCE3.

82

5.2.2 Discussion

Since SDRO is a networked ontology of SEON, it can also be used as a conceptual

framework to discuss design aspects in a wider software development context, exploring

questions such as: when a design succeeds or fails, the role of design documentation and the

relation between software design and human-computer interaction.

A design effort is considered complete in SDRO when the design specification is

realized, which can be satisfied by the following condition: if there are Software Design

Components implementing all Mental Software Design Components concerned in all Mental

Software Design Choices that are described in Software Design Choices of a Software Design

Specification, then we can say that this Software Design Specification is realized by the

Software Design Object composed of those Software Design Components. Hence, an

incomplete design occurs when at least one Mental Software Design Component is not

implemented. However, a complete design does not mean necessarily that the software is

correctly implemented, since Software Design Choices that prescribe behaviors of the system

can only be assessed when the system is running. Therefore, the correct implementation

occurs when all Mental Computing Resulting States concerned by these choices are satisfied

by at least a Computing Resulting State. An incomplete or incorrect implementation may

happen when a programmer does not follow what was described in the Software Design

Specification. In this case, the programmer interpretation of the Software Design Choices

probably was not the same as the Designer’s. Another reason could be that the Software

Design Specification does not describe properly the Mental Software Design Specification

created by the Designer, maybe because the tools and the language used to create the

specification were not adequate (BAKER; HOEK, 2006).

In SDRO, it is possible to represent a Software System (Design Object) developed

without the existence of any physical Software Design Specification. This is the case where

Ralph and Wand (2009) describe that the specification is presented as the Design Object

itself. Although doing so could be considered a bad practice in software development, it

addresses simpler situations where the designer creates the specification only in his mind and

develops the system by himself or communicates the design verbally to the developer. Since

software development often involves teams and more complex systems, the use of artifacts

to represent design specifications is essential to evaluation in early stages and communication

of design ideas between designers and other stakeholders. Moreover, it also provides a form

of reflexive conversation where the designer can have insights of improvements as he looks

to the specification (SCHÖN, 1983; SIMON, 1996).

83

Finally, it is important to highlight what makes software and software design unique

compared to other fields involving design: there is a large gap between what is produced as

the Software Design Object and what is perceived by the user in his/her interaction

experience. The Software Design Object, a Software System constituted by code (DUARTE

et al., 2018), does not interact directly with the user as does a car or a house, for example. It

must be loaded in a computer system (i.e., Loaded Software Design Object and Loaded

Software Design Components) and then executed, so the user can interact with the result of

this execution (i.e., Computing Resulting States). Therefore, software design methods, tools

and languages should consider not only the internal structural aspects of software but also

its external characteristics exhibited to the user. Traditionally, Software Engineering research

is more focused on the former, while the latter is relegated to Human-Computer Interaction

(HCI) studies (TAYLOR; VAN DER HOEK, 2007). Thus, to reduce the gap between

software design and user experience, it is essential to have a holistic view of design and look

at software as a whole. The Human-Computer Interaction Design Ontology (HCIDO) aims

to help in reducing this gap, merging design aspects from Software Engineering and HCI

areas. In next section, we present HCIDO.

5.3 Human-Computer Interaction Design Ontology

HCI design is focused on how to design an interactive computer system to support

users to achieve their goals through the interaction between them and the system

(SUTCLIFFE, 2014). The Human-Computer Interaction Design Ontology (HCIDO) is

proposed in this work to provide a well-founded consensual conceptualization about the

HCI design of interactive systems. In its current version, HCIDO is focused on the design

of interactive software systems, rather than interactive computer systems (i.e., it does not

address the design of hardware aspects). HCIDO addresses the knowledge intersection

between SE and HCI domains by connecting software design concepts from SDRO (a

domain ontology of SEON) with HCI core concepts from HCIO (a core ontology of HCI-

ON). Just like SDRO, HCIDO scope was defined by means of competency questions. The

set of the identified competency questions (CQ) is presented in Table 5.4. HCIDO

specializes SDRO to the HCI design domain. Thus, as it can be noticed in Table 5.4, the

competency questions defined to HCIDO are, in fact, SDRO competency questions

specialized to the HCI context.

84

Table 5.4 – HCIDO Competency Questions

Competency Question Rationale

CQ1. How does a HCI designer

reason about the object being

designed?

Understand the mental nature of HCI design.

CQ2. What is a HCI design

specification?

CQ3. Which are the components

of a HCI design specification?

Understand what a HCI design specification is and its constituents.

CQ4. What is a HCI design

object?

CQ5. Which are the components

of a HCI design object?

Represent the system built from a HCI design specification and its

components.

CQ6. What is described in a HCI

design specification?

Understand the design-related information described in a HCI design

specification and the relation between the HCI design specification of

an object and the mental elements of the design of that object.

CQ7. What is the motivation for a

HCI design choice?

Understand the reason why a designer makes a design choice regarding

a HCI design object.

CQ8. How can a HCI design

object be implemented from a

HCI design specification?

Understand how the information encoded in a HCI design

specification is transformed into an implemented HCI design object.

CQ9. How can a HCI design

object be evaluated against a HCI

design specification?

Understand how the information encoded in a HCI design

specification can be used to evaluate the implementation of a HCI

design object.

HCIDO reuses the distinction between mental and physical aspects from SDRO and

is focused on characterizing specific aspects related to the design specification and the design

object, which have differences in the HCI design context in relation to the software design

domain. In order to highlight this difference between HCIDO and SDRO, we decomposed

HCIDO into two sub-ontologies: the Design Specification sub-ontology and the Design Object

sub-ontology. The architecture of HCIDO is presented in Figure 5.7.

HCIDO Design Specification sub-ontology is presented in Figure 5.8 and Design Object

sub-ontology is presented in Figure 5.9. In the figures, red double-dashed lines separate the

layers of SEON and HCI-ON architectures, according to the classification proposed by

Scherp et al. (2011). The black single-dashed horizontal lines separate concepts from different

ontologies at the same layer. The same colors used in SDRO (Figure 5.3 and Figure 5.4) are

used to indicate concepts from different ontologies and the name of each ontology is

indicated in the figures next to the right border. Concepts from HCIDO are presented in

different shades of orange according to the sub-ontology to which they belong: light orange

is used for Design Specification sub-ontology and dark orange for Design Object sub-ontology. In

the model description, SEON concepts are written in bold, SDRO concepts are in bold

italics), while HCI-ON concepts are underlined and HCIDO concepts are underlined in italics.

85

Figure 5.7 – HCIDO architecture.

86

Figure 5.8 – HCIDO Design Specification sub-ontology conceptual model.

87

Figure 5.9 – HCIDO Design Object sub-ontology conceptual model.

88

A HCI Designer is a Software Designer that uses his or her skills to directly contribute

to the creation of a specification containing design choices about human-computer

interaction aspects of the Interactive Software System being designed. The mental aspects of

HCIDO are treated as subtypes of Software Design Propositions which are the

propositional content of Software Designer Mental Moments inhering in HCI Designers.

A Mental HCI Design Choice is a Mental Software Design Choice defining how the human-

computer interaction should be implemented, including aspects related to the system’s

appearance, the disposition of components in space and time and their expected behaviors

in response to user actions.

Mental HCI Design Choices can be motivated by previous Mental HCI Design Choices or

by User Requirements, which are Requirements that refer to User Goals (i.e., Requirements

concerned with users’ needs or capabilities that should be addressed by the system in order

to allow users to achieve their goals in an effective, efficient, safe and satisfying manner).

User Requirement Artifacts are Requirement Artifacts that describe User Requirements (e.g., user

requirements written as user stories). When performing a HCI design process based on ISO

9241-210 (ISO, 2019), for example, User Requirement Artifacts are usually produced in the

activity “specifying the user requirements”. It is important to highlight that the motivation

for the Mental HCI Design Choices is not always explicit in real-world situations (e.g., when

design choices are motivated by designer’s tacit knowledge).

The content of a Mental HCI Design Choice may be related either to the Interactive

Software System (e.g., the definition of which colors should be used in the system’s interface)

or to Mental HCI Design Components, which are Mental Software Design Components that

can be perceived or actioned by users (e.g., a text label and a button) through the user

interface. A Mental HCI Design Choice related to a Mental HCI Design Component that can be

perceived by users is also associated to Mental User Observable States, which are Mental

Computing Resulting States describing how a Mental HCI Design Component should be

presented to users. For example, in a Mental HCI Design Choice of “displaying products in a

paginated list with 12 products per page”, the product and the list are Mental HCI Design

Components. The product may have a default layout and an alternative one that is used when

some field is empty (e.g., presenting a product without picture in a different manner). These

two layouts are described by Mental User Observable States resulting from Mental HCI Design

Choices associated to the same Mental HCI Design Component (i.e., the product). Conversely, a

Mental HCI Design Choice related to a Mental HCI Design Component that can be actioned by

users is associated to Mental User Input Resulting States, which are Software Design

89

Propositions describing situations, conditions or constraints related to actions that users

can or cannot perform in a Mental HCI Design Component (e.g., a button that can only be

clicked after filling all required fields in a form, a text input field that accepts only numbers).

A Mental HCI Design Specification is a Mental Software Design Specification

consisting of a set of Mental HCI Design Choices. It represents ideas that give form to a detailed

description in the designer’s mind about HCI structural and behavioral aspects of the

interactive system. These ideas can be encoded in a HCI Design Specification, which is a

Software Design Specification describing Mental HCI Design Specifications (e.g., a hand-

drawn sketch or a text document). HCI Design Specifications encode one or more HCI Design

Choices, which are Software Design Choices that describe Mental HCI Design Choices (e.g.,

the fragment of a sketch showing the fields of a form arranged in two columns or a sentence

written in a document describing the expected behavior after a form submission). Hence,

HCI Design Choices are the physical representation of Mental HCI Design Choices, which can be

used for communication and evaluation purposes.

Three subtypes of HCI Design Specifications are defined in HCIDO: Wireframes, Mockups

and Functional Prototypes. A Wireframe is a Document outlining the basic structure of the

interactive system’s user interface (e.g., how elements are visually organized when displayed

at the screen) in a low fidelity sketch, which does not address specific details such as colors

and typography. A Mockup, in turn, is a higher fidelity Document depicting how the

interactive system should be presented to users, similar to screenshots of the system’s future

screens. Finally, a Functional Prototype is a piece of code (i.e., a Software Item) intended to

present basic functionality of an interactive system or of its components. It is developed for

early evaluation purposes and cannot be considered the final implementation. We decided to

represent only these three types because our focus was to illustrate some kinds of HCI design

specifications, and we did not intend to create a complete taxonomy. Moreover, the survey

results presented in Chapter 4 showed that these were the most popular artifacts produced

by HCI designers. In a design process, it is common that low fidelity artifacts are used in

initial steps and are refined into higher fidelity artifacts as feedback is provided by other

stakeholders and the solution gets more mature.

The design object is addressed as an Interactive Software System in HCIDO.

Although HCI design involves both the design of software and hardware elements of an

interactive computer system, HCIDO addresses HCI design in the context of software

development, thus hardware aspects are treated as (non-functional) Requirements. Hence,

a Mental HCI Design Object is a Mental Software Design Object specified by a Mental HCI

90

Design Specification that refers to an Interactive Software System being designed (i.e., what is

expected to exist after the HCI design effort). It is physically manifested as a HCI Design

Object, which is an Interactive Software System that plays the role of Software Design

Object and implements a Mental HCI Design Object. A HCI Design Object is composed of HCI

Design Components, which are User Interface Programs that play the role of Software Design

Components and implement Mental HCI Design Components. Each HCI Design Component has

its own structure, appearance and behavior and usually is composed of other HCI Design

Components (e.g., a piece of code that implements the user interface of a “product”

component, which can be used both in a “list of products” component and in a “shopping

cart” component).

HCI Design Components can be classified into two types considering the role they play

in the human-computer interaction. A Presentational HCI Design Component (e.g., a text label)

implements Mental User Observable States and aims to present information that can be

perceived through users’ senses. An Interactive HCI Design Component (e.g., a button), in turn,

implements Mental User Input Resulting States and is expected to be actioned or not in certain

conditions after actions performed by users of the interactive system. It is important to notice

that these two types are not disjoint, i.e., a HCI Design Component can be both Presentational

and Interactive. HCI Design Components are materialized as Loaded HCI Design Components,

which are Loaded User Interface Programs that play the role of Loaded Software Design

Components (i.e., copies of programs that deal with user interface aspects loaded in the

memory of an interactive computer system).

The Program Execution of a Loaded HCI Design Component that materializes a

Presentational HCI Design Component brings about User Observable States. If a User Observable

State satisfies the Mental User Observable State which the component implements, this means

that the Presentational HCI Design Component was correctly implemented. Conversely, a User

Input Resulting State may trigger a Program Execution of a Loaded HCI Design Component

that materializes an Interactive HCI Design Component. The implementation of an Interactive HCI

Design Component is correct when a User Input Resulting State satisfies a Mental User Input

Resulting State implemented by an Interactive HCI Design Component and the triggered Program

Execution comes from a Loaded HCI Design Component that materializes that same Interactive

HCI Design Component.

91

5.3.1 HCIDO Evaluation

Like SDRO, the evaluation of HCIDO was also performed through Ontology

Verification & Validation (V&V) activities using assessment by human and data-driven

approaches (BRANK; GROBELNIK; MLADENIĆ, 2005). Verification and validation

activities were performed considering, respectively, the evaluation criteria C1 (the ontology

elements must be the ones sufficient and necessary to cover the scope defined by means of

competency questions) and C2 (the ontology must be able to represent real-world situations),

defined during the Relevance Cycle of the research method followed in this work, as explained

in Chapter 1 (Section 1.4).

Table 5.5 presents the results of verification of HCIDO by means of expert

judgment, which showed that the ontology answers all of the CQs and, thus, covers the

established scope.

Table 5.5 – HCIDO verification against its CQs.

CQs Description, Concepts and Relations

CQ1

How does a HCI designer reason about the object being designed?

HCI Designer is a Software Designer.

Mental HCI Design Object, Mental HCI Design Specification, Mental HCI

Design Choice, Mental HCI Design Component, Mental User Observable

State and Mental User Input Resulting State are propositional contents of Software

Designer Mental Moments that inhere in a HCI Designer.

CQ2

What is a HCI design specification?

HCI Design Specification is a Software Design Specification created by HCI

Designer that describes Mental HCI Design Specifications.

Wireframe and Mockup are Documents and Functional Prototype is a Software

Item. They are subtypes of HCI Design Specification.

CQ3

Which are the components of a HCI design specification?

HCI Design Specification is composed of HCI Design Choices, which are Software

Design Choices that describe Mental HCI Design Choices.

CQ4

What is a HCI design object?

HCI Design Object is an Interactive Software System that plays the role of

Software Design Object and implements a Mental HCI Design Object.

CQ5

Which are the components of a HCI design object?

HCI Design Object is composed of HCI Design Components.

HCI Design Component is a User Interface Program that plays the role of

Software Design Component and implements a Mental HCI Design Component.

It can be composed of other HCI Design Components.

Interactive HCI Design Component and Presentational HCI Design

Component are subtypes of HCI Design Component. An Interactive HCI Design

Component expects to be actioned by Mental User Input Resulting States. A

Presentational HCI Design Component aims to present Mental User Observable

States.

CQ6

What is described in a HCI design specification?

HCI Design Specification describes Mental HCI Design Specification which

specifies a Mental HCI Design Object and is composed of Mental HCI Design

Choices, which may concern to Mental HCI Design Components, Mental User

Observable States and Mental User Input Resulting States.

92

Table 5.5 (continuation) – HCIDO verification against its CQs.

CQs Description, Concepts and Relations

CQ7

What is the motivation for a HCI design choice?

User Requirement is a Requirement that refers to a User Goal.

User Requirement Artifact is a Requirement Artifact that describes a User

Requirement.

HCI Design Choice describes Mental HCI Design Choices, which are motivated by

User Requirements or by other Mental HCI Design Choices. As derived relations,

HCI Design Choice is motivated by User Requirement Artifacts or by other HCI

Design Choices.

CQ8

How can a HCI design object be implemented from a HCI design specification?

HCI Design Specification is composed of HCI Design Choices that describe Mental

HCI Design Choices concerning Mental HCI Design Components. Mental HCI

Design Components are implemented as HCI Design Components, which are

components of a HCI Design Object that realizes the HCI Design Specification.

CQ9

How can a HCI design object be evaluated against a HCI design specification?

HCI Design Object is composed of HCI Design Components, which are materialized

as Loaded HCI Design Components. Loaded HCI Design Component is a

Loaded User Interface Program Copy that plays the role of Loaded Software

Design Component.

A Loaded HCI Design Component can be executed in a Program Copy Execution,

which is triggered by a User Input Resulting State and brings about a User Observable

State. User Input Resulting State and User Observable State respectively satisfy

Mental User Input Resulting States and Mental User Observable States, which

are concerned with Mental HCI Design Choices described by HCI Design Choices

encoded in a HCI Design Specification.

For the validation of HCIDO, we took the same fictional car rental software system

presented in Section 5.2.1 (the CRS system) and used the ontology to instantiate and analyze

a scenario considering its HCI design. The scenario is described below, showing that HCIDO

can represent real-world situations like that.

After the first version of the CRS was implemented, John and Mary invited some

potential customers (Users) to perform the task of renting a car using the CRS system (User

Goal), in order to evaluate the system under the users’ point of view. After that, John and

Mary asked them to point out improvements that could be made in CRS, considering the

experience they had with the system. Some of the considerations pointed by the users (User

Requirements) were that (i) the car rental form was too extensive and could be broken into a

multi-step form and (ii) after filling all the information requested by the form, they were

requested to log in or register a new account, and then were redirected to another page, losing

the information they had filled in the previous form. Based on that, John and Mary described

two additional requirements NFR02 and NFR03 (User Requirement Artifacts) in the CRS

requirements document, which are depicted in Figure 5.10.

93

Figure 5.10 – User requirements (highlighted in yellow) added to the CRS requirements document.

Since John and Mary had limited knowledge about HCI aspects, they asked Mark, a

HCI Designer, to propose a new version of the system’s user interface satisfying those User

Requirements. Mark had the idea (Mental HCI Design Choice) of meeting NFR02 by grouping

related fields (e.g., rental duration, customer info, payment details) from the car rental form

and splitting them into different pages, showing a progress indicator at the top of each page

(fields, forms, pages and the progress indicator are instances of Mental HCI Design Component).

In order to meet NFR03, he also thought (Mental HCI Design Choice) about embedding the

sign-up and sign in forms into the car rental form. Then, Mark decided to draw a Wireframe

(HCI Design Specification) sketching these ideas, in order to have a better vision on how these

Mental HCI Design Component could be visually organized on the screen and also communicate

them to John and Mary. The Wireframe drawn by Mark is reproduced in Figure 5.11 and is

composed of several other pieces of information (HCI Design Choices) describing the Mental

HCI Design Choices he had made, which may have motivated other Mental HCI Design Choices

displayed in the figure. For example, the choice of inserting the “Have an account?” field

was made in the moment he was drawing the Wireframe and was motivated by the choice of

embedding the sign-up and sign in forms into the car rental form. Some choices did not have

a clear and explicit motivation, i.e., they were neither motivated by other previous choices

94

nor made to meet the specified requirements. That was the case of using a date picker to

allow users selecting the pick-up and drop-off dates, which may had been decided based on

Mark’s knowledge about best practices, for example.

Figure 5.11 – Wireframe proposed by Mark for the CRS system.

John and Mary approved Mark’s proposal and asked him to present how the final

user interface will look like in a Mockup. When Mark was drawing the Mockup, he was making

Mental HCI Design Choices that associated Mental User Observable States to Mental HCI Design

Components (e.g., the submit button would have sharp corners, no borders, blue background

and white text). He also decided to use an input mask in the phone field to help users enter

their phone numbers in the right format (Mental User Input Resulting State). A fragment of the

Mockup drawn by Mark describing the choices related to the sign-up form is presented in

Figure 5.12.

95

Figure 5.12 – Fragment of a mockup showing the “Register account” form of the CRS system.

Mark also produced a UI kit (presented in Figure 5.13), which was a Mockup

describing the style of each kind of form component used in the system. For each

component, he detailed how it would provide visual feedback about a certain state (Mental

User Observable State) (e.g., a button can be unclicked, mouse overed, clicked or disabled). The

transitions between these states could be actioned by user actions (Mental User Input Resulting

States), for example the user moving the mouse pointer over the button and the button going

from unclicked to mouse overed. A Functional Prototype was also developed by Mark, aiming

to describe the behavior he imagined for the sign up and sign in forms. He implemented a

piece of software in which the sign-up form is displayed when the option “No” for the “Have

an account?” field is checked, and the sign in form is displayed when it is set to “Yes”.

After that, John and Mary asked a developer to implement the new user interface

based on the artifacts produced by Mark and the developer implemented it using web

technologies such as Java Server Pages, HTML, CSS and JavaScript. Part of the code produced

by the developer for the sign-up form is presented in Figure 5.14 and the implementation of

the style of the submit button is detailed in Figure 5.15. Both the implementation of the form

and of the button are instances of (Interactive and Presentational) HCI Design Components. The

element represented by the “p” HTML tag, in turn, is just a Presentational HCI Design

Component, since it has no interactive behavior.

96

Figure 5.13 – Mockup of the different states of form elements used in the CRS system.

Figure 5.14 – HTML code implementing the user interface of the sign-up form in the CRS system.

97

Figure 5.15 – CSS code implementing the user interface of the submit button of the sign up form in

the CRS system.

In the sequence, the code of the new user interface was integrated into the CRS code

base and a new version of the system was deployed, loading the implemented programs

(Loaded HCI Design Components) in the computer machine of the web server. Then, John and

Mary tested it by accessing the system’s user interface in a browser and registering a new

account (in this case, they were acting as Users in order to evaluate the system). They

observed (User Observable State) that it looked the same way as Mark had depicted in the

Mockup (i.e., the planned Mental User Observable States were satisfied). Moreover, when filling

the phone field, John accidently pressed the “R” key (a User Input Resulting State caused by

an unintentional action of the user) and observed that it was not displayed in the input value

(User Observable State), thus they perceived that the input mask was working well (i.e., the

Mental User Input Resulting State designed by Mark was not satisfied by the User Input Resulting

State created after his unintentional action).

Table 5.6 presents a summary with some instances of HCIDO concepts extracted

from the CRS example.

Table 5.6 – HCIDO instantiation.

Concept Instance

HCI Designer Mark

User Requirement (UR)

UR1. “The car rental form was too extensive and could be broken into a

multi-step form.”

UR2. “After filling all the information requested by the form, users were

requested to log in or register a new account, and then were redirected to

another page, losing the information they had filled in the previous form.”

User Requirement Artifact

(URA)

URA1. The description of UR1 expressed by NFR02.

URA2. The description of UR2 expressed by NFR03.

Mental HCI Design Object “The CRS system”

Mental HCI Design

Specification
MHDCH1 + MHDCH2

98

Table 5.6 (continuation) – HCIDO instantiation.

Concept Instance

Mental HCI Design Choice

(MHDCH)

MHDCH1. “grouping related fields (e.g., rental duration, customer info,

payment details) from the car rental form and splitting them into different

pages, showing a progress indicator at the top of each page.”

MHDCH2. “embedding the sign-up and sign in forms into the car rental

form.”

MHDCH3. “inserting the ‘Have an account?’ field to control the exhibition

of the sign-up and sign in forms.”

MHDCH4. “displaying the submit button with sharp corners, no borders,

blue background and white text.”

MHDCH5. “using an input mask in the phone field to help users entering

their phone numbers in the right format.”

Mental HCI Design

Component (MHDC)

MHDC1. The car rental form.

MHDC2. The sign-up form.

MHDC3. The sign in form.

MHDC4. The submit button from the sign-up form.

MHDC5. The phone field from the sign-up form.

Mental User Observable State
“The submit button with sharp corners, no borders, blue background and

white text.”

Mental User Input Resulting

State

“A sequence of numbers entered in the phone field that follows the format

defined by the input mask.”

HCI Design Specification /

Wireframe
The wireframe produced by Mark for the car rental form.

HCI Design Specification /

Mockup
The mockup produced by Mark for the sign-up form.

HCI Design Specification /

Functional Prototype

The prototype developed by Mark to demonstrate the “Have an account?”

field.

HCI Design Choice (HDCH)

HDCH1. The pick-up and drop-off date fields using a date picker displayed

in the wireframe.

HDCH2. The progress indicator displayed in the wireframe.

HDCH3. The forms displayed in the wireframe.

HDCH4. The sign-up form displayed in the mockup.

HDCH5. The submit button of the sign-up form displayed in the mockup.

HCI Design Object The implementation of CRS with the new user interface.

HCI Design Component /

Interactive HCI Design

Component (IHDC)

IHDC1. The form HTML element whose id is “signUpForm”.

IHDC2. The input HTML element whose id is “sign-up__submit”.

HCI Design Component /

Presentational HCI Design

Component (PHDC)

PHDC1. The “p” HTML element in the “signUpForm” containing the

instructions to fill the form.

Loaded HCI Design

Component

IHDC1, IHDC2 and PHDC1 deployed in the web server and loaded in its

computer machine.

User Input Resulting State

(UIRS)

UIRS1. The value of the phone field of the sign-up form after John

pressing the “R” key.

User Observable State (UOS)

UOS1. The submit button for the sign-up form displayed the same way as

it was prescribed by the mockup.

UOS2. The phone field of the sign-up form not displaying “R” in its value.

99

5.3.2 Discussion

The example presented above as an instantiation of HCIDO can be explored to

analyze challenges related to communication and knowledge transfer in HCI design. We

discuss them below and propose solutions that consider the application of HCIDO.

As the interactive system development process advances, the number of design

choices tend to increase more and more. Consequently, if the motivations for design choices

are not documented (i.e., transformed into explicit knowledge), in the future there are less

chances of remembering the reasons why each choice was made, making it more difficult to

reuse that knowledge. Moreover, when the motivation for design choices is not explicit, other

stakeholders are hampered to have a complete understanding about what the designer

proposed. This happens because some design choices are made based on the designer’s tacit

knowledge, which cannot be easily articulated. In this scenario, HCIDO can be used to

support knowledge representation, integration, search and retrieval. For example, HCIDO

can support HCI design teams instantiating information from real HCI design projects,

making team members aware of possible mental elements not described in artifacts or

elements described in artifacts that do not have a clear motivation. By doing so, the ontology

helps link physical information with the mental aspects encoded in people’s mind, supporting

the transformation of tacit knowledge into explicit knowledge in a knowledge externalization

process.

However, even explicit HCI design knowledge encoded in design artifacts (i.e., design

specifications) can lead to interpretation conflicts if the purpose of each kind of artifact and

the semantics of their elements are not clear, explicit and shared among the team. For

instance, in Figure 5.12, the information inside the phone field represents an input mask that

should be visible while the user is typing. On the other hand, the information inside the e-

mail field represents a placeholder, which aims to give an example of a possible input to users

and disappears when the field is focused (i.e., user starts typing). Although they have different

semantics, they are syntactically represented in the same way, relying on a shared and implicit

understanding between who produced and who consumed the artifact to make the

distinction between their meanings. This may occur because some artifacts are not

appropriate to describe certain aspects (e.g., wireframes are not so good to represent

interactive behaviors), thus the combination of different kinds of artifacts providing different

and complementary views about the design solution can be a good strategy. Moreover,

HCIDO can be used as a reference framework to provide a better understanding of the

meaning of each kind of design specification or to semantically annotate design artifacts to

100

support knowledge retrieval. Since HCIDO is integrated to HCI-ON and SEON, design

artifacts can be annotated using a common structure with documents addressing

requirements, code and testing, providing information traceability among these artifacts and

supporting knowledge reuse.

5.4 Related Works

The ontologies presented in this chapter are strongly influenced by the works by

Ralph and Wand (2009) and Guarino (2014), which discussed ontological aspects of design.

Although they provide a good framework to understand the meaning of design in general,

they do not explain the ontological distinction between design specifications that are purely

mental and design specifications encoded in artifacts, for example. In addition, design in the

software development context is different from other fields since it results in an intangible

and abstract object (i.e., a program that is coded in a programming language, to be run in

computers, resulting in the behaviors prescribed by the program), rather than a physical and

tangible object like a car or a house (OSTERWEIL, 2007). Specific aspects related to this

abstract nature of the software design object (e.g., how it can be evaluated against a design

specification) are also not addressed by these works.

Other important contributions about software design also highlighted some

additional aspects that were considered in this work. For example, Baker and van der Hoek

(2006) provide a more explicit understanding about the mental and physical elements and

their connections, as well as Ralph’s Sensemaking-Coevolution-Implementation Theory

(RALPH, 2015). Gero’s FBS and sFBS (GERO, 1990; GERO; KANNENGIESSER, 2014)

ontologies highlight the cognitive and physical processes of transformations between

function, behavior and structure that enable designers to create a description of a design

solution from a set of requirements. However, they are more general and neither of them go

into further details about the design specification and the composition of the design object.

Other works, on the other hand, provide ontologies of more specific aspects of software

design, namely domain-driven design (SAIYD; SAID; NEAIMI, 2009), model-based design

(DE MEDEIROS; SCHWABE; FEIJÓ, 2005) e design intent (SOLANKI, 2015). Hence,

they cannot provide a general conceptualization about software design.

Considering ontologies that address the HCI design domain, as we presented in

Chapter 2, none of the analyzed works provide a comprehensive conceptualization about

HCI design. Nevertheless, we defined the types of HCI design components in HCIDO based

on the work by Paulheim and Probst (2013). Taking into account the purposes for using

101

ontologies in user interface development (PAULHEIM; PROBST, 2010), since HCIDO is a

reference ontology, it cannot be used at runtime (unless it is transformed in an operational

ontology) and can be used only for improving the development process of user interface. In

this sense, Happel et al. (2006) proposed a component library based on ontologies aiming to

support software reuse, which is similar to the idea behind the computational tool developed

in this work and presented in the next chapter. However, their work focuses on the reuse of

(implemented) software components, while our work focuses on the representation,

dissemination and reuse of knowledge about HCI design choices and HCI design

components.

5.5 Concluding Remarks

This chapter presented the HCI Design Ontology (HCIDO), the reference ontology

about HCI design proposed in this work, and the Software Design Reference Ontology

(SDRO), which was also developed in this work to provide central notions of design in the

software context and be reused in HCIDO development. HCIDO provides a well-founded

conceptualization of HCI design. It is a domain ontology of HCI-ON and is also integrated

to SEON, addressing the knowledge intersection between SE and HCI. Moreover, HCIDO

describes mental and physical aspects involved in HCI design, as well as the relationship

between them.

In order to demonstrate how HCIDO can be used as a conceptual framework

supporting the development of knowledge management solutions for HCI design of

interactive systems, we developed a computational tool based on HCIDO. The tool allows

HCI designers and other stakeholders to annotate HCI design artifacts with structured

information based on HCIDO conceptual model. Hence, when these pieces of information

are combined, they provide new explicit knowledge about aspects that were previously only

on people’s mind. Moreover, by providing structured search mechanisms, the tool allows

this knowledge to be retrieved and reused in future HCI design initiatives. The tool is

presented in the next chapter.

102

Chapter 6

KTID: A Computational Tool to Support

KM Aspects in HCI Design

This chapter presents the Knowledge Tool for Interaction Design (KTID), a computational tool developed based on

HCIDO conceptualization to support KM aspects in HCI Design. Section 6.1 presents the chapter introduction,

Section 6.2 presents KTID, and Section 6.3 presents the study carried out to evaluate KTID. Finally, Section 6.4

presents the chapter concluding remarks.

6.1 Introduction

As we presented in chapters 3 and 4, the lack of a common conceptualization about

HCI design has been as one of the main challenges involved in KM solutions for HCI design.

HCIDO, the Human-Computer Interaction Design Ontology presented in Chapter 5, aims

to address this challenge by providing a well-founded and consensual conceptualization of

HCI design. In this chapter, we present the Knowledge Tool for Interaction Design (KTID),

a computational tool to support KM aspects in HCI design, which was developed based on

a conceptual model that reuses concepts and relations from HCIDO conceptualization. Since

HCI designers in general have not been familiar with ontologies, HCIDO was used to

support the conceptual modeling of KTID, abstracting the ontology to the final users of the

tool (i.e., HCI designers). We developed KTID in order to meet R7 (the ontology must be

used to solve problems), a requirement established in the Relevance Cycle of the research

method followed in this work, as we presented in Chapter 1 (Section 1.4). The use of HCIDO

to develop KTID served as a proof of concept that showed that it is possible to use HCIDO

to develop KM solutions. As a proof of concept, the results show that the use of HCIDO is

feasible, but they are not enough to indicate that it works in real settings different from the

one considered in this dissertation.

Details about the development and evaluation of KTID are presented in the next

sections. For readability reasons, we may sometimes refer to “HCI design” as “design” in

this chapter, since we are addressing design specifically in HCI context.

103

6.2 KTID: Knowledge Tool for Interaction Design

When analyzing HCIDO conceptual model, we observed that the physical

representations of design choices did not reflect the same relationships as their mental

counterparts (i.e., the physical representation of Mental HCI Design Choices, Mental HCI

Design Components, Mental User Observable States and Mental User Input Resulting States

are all collapsed in HCI Design Choices). Moreover, since HCI Design Specifications are

aggregations of HCI Design Choices, sometimes it might be hard to easily perceive all

choices as parts of the specification in which they are encoded (i.e., HCI Design

Specifications are viewed as a whole). This motivated us to develop KTID as a tool to

support HCI designers in describing, sharing and retrieving structured information

associated to HCI Design Choices made in HCI Design Specifications. By doing so, KTID

aims to aid HCI designers in representing, storing, accessing and evaluating knowledge

related to HCI design.

The use of HCIDO in the development of KTID contributed to the understanding

of the tool application domain (i.e., HCI design) and to the development of KTID

conceptual model through the reuse of parts of HCIDO conceptual model. Since our goal

was to allow HCI designers to describe tacit knowledge associated with design choices, we

considered only concepts and relationships between mental and physical aspects from

HCIDO Design Specification sub-ontology. Figure 6.1 presents the UML class diagram

representing the KTID conceptual model, with the corresponding reused HCIDO concepts.

In the figure, classes painted in yellow were derived from HCIDO and classes painted in grey

were created to address specific aspects of KTID application context. Green notes highlight

HCIDO concepts that were used directly to derive KTID classes, purple notes inform

HCIDO and SEON concepts (as respective relationships) that inspired KTID classes.

Finally, pink notes describe constraints to assure data integrity.

104

Figure 6.1 – KTID conceptual model and corresponding HCIDO reused concepts.

As for main benefits of using HCIDO in the development of KTID, we point out:

(i) we believe that the development of KTID conceptual model based on a general

conceptualization of HCI design, rather than on a particular context of the HCI design

domain (e.g., HCI design in a specific organization), enabled KTID to be suitable for more

HCI design scenarios; and (ii) HCIDO conceptualization allowed us to spend less effort in

the conceptual modeling of KTID because we have already obtained knowledge about the

domain of interest. HCIDO contributed to our understanding about the HCI design domain,

which allowed us to “import” general HCI design concepts and relationships from HCIDO

conceptual model, instead of modeling them from scratch. It is worth highlighting that,

although we have not used all HCIDO concepts in the KTID conceptual model, HCIDO

conceptualization made it clearer for us the existence of mental aspects in HCI design that

should be turned into explicit knowledge. As a drawback, we believe that it might be harder

to someone less experienced in working with ontologies and ontology networks to

understand HCIDO conceptualization, thus he/she might need additional training on this

subject.

KTID was developed by a Computer Engineering student in an undergraduate work

supervised by the author of this dissertation (OGIONI, 2021). An overview of the main use

cases of KTID is presented below through the presentation of some KTID features and

screens. HCIDO concepts involved in each use case are written in italics and underlined.

105

Manage Design Objects: this use case aims to record information about HCI design

Objects being developed and further associate them with their User Requirements and HCI Design

Specifications. Figure 6.2 presents a screen showing the list of design objects recorded in KTID

and Figure 6.3 presents a screen in which we can record a new design object.

Figure 6.2 – List of design objects recorded in KTID.

Figure 6.3 – Recording a new design object in KTID.

Manage User Requirements: this use case aims to record information about User

Requirements associated to a HCI Design Object to indicate the user requirements that must be

addressed by the HCI design object. Figure 6.4 presents a KTID screen which shows the list

of user requirements for a specific design object (in the example, user requirements are

represented by means of user stories) and Figure 6.5 presents a screen in which we can record

new user requirements.

106

Figure 6.4 – List of user requirements for a design object recorded in KTID.

Figure 6.5 – Recording a new user requirement to a design object in KTID.

Manage Design Specifications: this use case aims to record HCI Design

Specifications, which consist of a set of image files. We can insert several specifications for the

same HCI Design Object, with different levels of fidelity (e.g., Mockups, Wireframes or sketches),

viewport sizes (e.g., mobile phone, tablets or desktops) and version numbers. Figure 6.6

presents a KTID screen showing the list of files of a design specification as well its design

choices and Figure 6.7 presents the screen in which a new design specification can be

recorded.

107

Figure 6.6 – Details of a design specification recorded in KTID.

Figure 6.7 – Recording a new design specification for a design object in KTID.

Describe Design Choices: this is one of the main functionalities of KTID. It aims

at allowing HCI Designers to identify, represent and describe HCI Design Choices and related

HCI Design Components encoded in HCI Design Specifications, as well link them with their

108

associated User Requirements. Figure 6.8 presents a KTID screen in which a design choice can

be described and recorded for a design specification and Figure 6.9 presents a screen showing

the details of a design choice recorded in KTID.

Figure 6.8 – Describing a design choice in KTID.

Figure 6.9 – Details of a design choice recorded in KTID.

109

Search for Design Choices: this is another important functionality of KTID. Figure

6.10 presents a KTID screen in which we can search for all HCI Design Choices recorded in

KTID. In this screen, we can visualize contextual details (e.g., related components and user

requirements, the referred design object and design specification, author, date and time of

creation and last update) about each choice. Each column of the table can be filtered or

sorted, making it easier to the find previous design choices related to contextual information

similar to that of another specific context.

Figure 6.10 – Searching for design choices in KTID.

Evaluate Design Choices: once a HCI Designer finds a HCI Design Choice satisfying

his/her search criteria, he/she can use the design choice and then, evaluate it rating how

much it was useful for him/her. By doing so, other designers can make decisions about using

or not certain design choice based on its average rating. Figure 6.11 presents a KTID screen

in which we can evaluate a design choice and figure 6.12 presents a screen showing the list

of evaluations of a design choice.

110

Figure 6.11 – Evaluating a design choice.

Figure 6.12 – Previous evaluations of a design choice.

The idea of developing KTID was influenced by the experience of the author of this

dissertation with commercial tools (e.g., Zeplin4, Avocode5 and Invision6), when working on the

development of interactive systems as a software engineer together with HCI designers.

These tools were useful for communication and collaboration purposes, i.e., presenting

design specifications created by HCI designers to other stakeholders and allowing them to

make comments with feedback about the specifications. However, they did not provide a

structured way of representing, storing and retrieving important pieces of information

associated with design choices (e.g., design components) that were not explicitly described

in design specifications (i.e., these pieces of information were clear in designers’ minds, but

were not accurately represented in artifacts, hampering a complete and correct understanding

of them by other stakeholders). Although KTID is focused on supporting KM aspects, we

took the experience with these tools as an inspiration for the way of using KTID, in the

4 https://zeplin.io/
5 https://avocode.com/
6 https://www.invisionapp.com/

111

sense of storing and making available design specifications created in other tools. By using

commercial tools as a reference, we aimed to propose a tool able to meet the needs of HCI

design professionals and, consequently, reduce the gap between academy and industry

identified in our previous investigation about KM in HCI design (studies presented in

chapters 3 and 4).

It is important to highlight that KTID cannot be considered a complete KM solution

or a knowledge management system, since it does not provide support to all activities in the

KM cycle (e.g., it does not provide a robust curation to assess and make available knowledge

items considered valuable for the organization). Table 6.1 associates KTID use cases with

the activities that they support in the integrated KM cycle (DALKIR, 2011). We decided to

leave out more robust KM features aiming to make a simpler KM solution, requiring minimal

additional effort to integrate it into HCI design process. As we pointed in Chapter 4, the use

of lightweight technologies and a divide and conquer strategy to reduce complexity of the

adoption of a KM approach might be useful to take more KM solutions for HCI design into

industrial environments, also contributing to reduce the gap between theory and practice.

Table 6.1 – Support of KTID use cases to KM activities.

KM Activities KTID Use Cases

Knowledge capture and/or creation

Manage Design Objects,

Manage User Requirements,

Manage Design Specifications,

Describe Design Choices

Knowledge sharing and dissemination Search for Design Choices

Knowledge acquisition and application Evaluate Design Choices

Thus, the use of HCIDO as a basis to develop KTID conceptual model served as a

proof of concept that showed that it is feasible to use HCIDO to develop KM solutions as

the one built in this work. As a proof of concept, its results only indicate that using HCIDO

is viable, and it does not mean that HCIDO is useful in practical settings. Therefore, studies

about the use of HCIDO by other people than the researchers involved in this work are

necessary.

112

6.3 Evaluating KTID

Aiming to evaluate KTID and, consequently, the feasibility of applying HCIDO to

support knowledge management solutions in HCI design, we carried a study in which two

HCI designers used the tool in a HCI design scenario. With this study, we sought to find

preliminary evidence that allows us to evaluate and improve the feasibility of using the tool,

as well as its utility.

6.3.1 Study Planning

The study goal was to evaluate if KTID is useful to support knowledge management

aspects in HCI design and if its use is feasible. Following the GQM approach (BASILI;

CALDIERA; ROMBACH, 1994), this goal is formalized as follows: Analyze KTID, for the

purpose of evaluating its use to aid in HCI design, with respect to the utility and the feasibility of

using it for knowledge representation, storage, retrieval and assessment, from the viewpoint of

HCI designers, in the context of the development of interactive systems. In order to analyze the

results, the following indicators were considered: utility and feasibility. The former was

evaluated considering the participants perceptions about the adequacy of the tool (taking its

purpose into account) and how much the tool helped them in HCI design. The latter

considered the participants perceptions about ease of use and how much feasible they

considered using the tool to aid in HCI design. Benefits and drawbacks pointed by the

participants were also considered to indicate if the tool is useful and feasible.

The instrument used in the study consisted of four artifacts: (i) a document

presenting the context of this work, the main functionalities of KTID and the instructions

to be considered by the participants when using the tool; (ii) a consent form to participate in

the study, which aims to safeguard the participants’ rights regarding the study and its results;

(iii) a form to characterize the participants’ profile, which aims to obtain information about

the participants’ knowledge and experience in HCI design; and (iv) a questionnaire that allows

participants to record their perception after using the tool. The forms were prepared with

the help of Google Forms and are presented in Appendix A of this dissertation together with

the document cited in (i).

The procedure adopted in the study consisted in inviting the participants and

sending them the document that presents KTID and the study instructions. The author of

this dissertation also made a brief presentation of the document and made himself available

to assist and answer questions during the study. The participants were chosen considering

convenience criteria (i.e., they were invited based on the researchers’ relationship network

113

and should be available to participate within the time necessary to conclude this dissertation).

Four people were invited and only two of them were available to participate in the study.

After the KTDI presentation made by the author of this work, the participants should use

KTID to support them in performing the HCI design activity described in the document

and then answer a questionnaire in which they should record their perception about the use

of KTID in supporting HCI design.

The questionnaire included questions aimed to extract the participants perception

about the adequacy of KTID in supporting KM aspects in HCI design, the utility of the tool

for HCI design and the feasibility of using it in HCI design practice. The questionnaire

consisted of objective and subjective questions. For the objective ones, the participants were

asked to justify their answers. There was also a subjective question in which the participants

could provide general improvement suggestions to KTID, aiming to provide a better support

to KM aspects in HCI design. A fragment of the questionnaire is presented in Figure 6.13.

Figure 6.13 – Fragment of the feedback questionnaire about the use of KTID.

114

6.3.2 Study Execution

The participants of the study were two designers who had medium HCI design

theoretical knowledge (i.e., acquired mainly during courses or undergraduate research) and

low KM theoretical knowledge (i.e., acquired by themselves through books, videos or other

materials). They reported they had already used KM resources to support HCI design on

their own, without following organizational practices. Participant P1 was an undergraduate

student with low practical experience in HCI design (i.e., less than one year) and participant

P2 had bachelor’s degree and a high practical experience in HCI design (i.e., more than three

years).

Following the planned procedure, after a presentation made by the researcher, the

participants read the document with the instructions and the description of a HCI design

scenario for which they should produce a design solution (i.e., a HCI Design Specification

in the sense of HCIDO). The scenario description and the instructions are presented in

Appendix A. Before the study, we recorded an initial data set in KTID, aiming to help the

participants understand which kind of information they could manage in the tool.

During the study execution, participant P1 asked some questions regarding the use

of the tool and uploaded to KTID only the mobile version of the design specification for

the interactive system proposed in the instructions document. Participant P2 did not make

questions during the study execution and did not produced any design specification,

justifying that he could understand, use and evaluate the tool by inserting fictitious data.

After the participants use KTID and answer the feedback questionnaire, the author

carried a brief interview with the participants aiming to capture their overall perception about

the tool and validate their answers to the questionnaire.

6.3.3 Study Results

This section summarizes the answers and the comments provided by the participants

to each of the questions of the questionnaire.

a) Use of KTID to find relevant previous knowledge to support HCI design:

Both participants reported that they found relevant knowledge in KITD to help them

produce design solutions. Participant P1 commented that the available design choices served

as inspiration and supported her to make new design choices according to what she was

supposed to design in the study. Participant P2, in turn, highlighted that, although he found

useful knowledge available in the tool, some knowledge items were confusing.

115

b) Use of KTID to include new knowledge to support HCI design in the

future: Only participant P1 included new knowledge in the tool. She justified her answer

with the fact that she usually considers references from design choices of other interactive

systems and makes her design choices based on what is adequate in the context for which

she is designing. Since she is benefited from design choices from others, it also makes sense

for her to include design choices her own. On the other hand, participant P2 did not include

new knowledge because he informed that he could quickly understand and evaluate the tool

by only reading the instructions and inserting some fictitious data, since he uses similar tools

in his daily routine as a designer.

c) KTID’s adequacy for supporting KM activities in HCI design: Both

participants considered KTID adequate at a certain point for supporting the following KM

activities: knowledge representation, knowledge storage, knowledge retrieval and knowledge

evaluation. Participant P1 considered that KTID is adequate for supporting all those KM

activities and complemented that she considered the tool promising for storing design

systems aiming to guarantee that designers follow the same guidelines and visual identity in

a particular project or organization. Participant P2, in turn, considered that KTID is partially

adequate for supporting those KM activities and explained that he considered using the tool

a good idea, however it still cannot be used in an optimal format (i.e., in his opinion, the tool

could be more practical and visual, since in most situations he needs to quickly consult

knowledge displayed in a visual way).

d) KTID’s utility in HCI design: Participant P1 considered the tool useful for

aiding in HCI design, for the same reasons she considered it adequate for supporting KM

activities. She also complemented that the use of the tool could facilitate communication in

general and reduce the time spent in designing. On the other hand, participant P2 considered

the tool neutral in terms of its utility. He commented that the tool lacks a “more real-world

dynamics”, which should consider different professional profiles of designers (i.e., users of

the tool). Furthermore, he also considered that formally specifying aesthetic aspects in the

tool is not as useful as specifying functional aspects, because aesthetic aspects are more

connected to personal choices and are more likely to change when they do not comply with

the purpose of the system or with users or customers opinions.

e) Results obtained from the use of KTID in HCI design: The opinion of the

participants differed regarding the results that can be obtained from using KTID in HCI

design. Participant P1 believed that KTID can contribute to increase the quality of the HCI

design solution, to reduce the effort designing the solution and to spend less time designing

116

the solution. She also said that reusing previous design choices can contribute to the creative

process and to inspire new design choices. Participant P2, in turn considered that KTID can

partially help reach those results, because he is familiar with using similar tools in his daily

routine, and he probably could only evaluate the actual contribution of KTID by using it in

a real-world scenario.

f) KTID’s ease of use in HCI design: None of the participants considered KTID

easy to use. Participant P1 had a neutral perception regarding the tool’s ease of use and

reported that she missed some elements that could improve the navigability and usability of

the tool, such as “next” and “previous” buttons in design choices visualization (instead of

needing to return to the search page), and more complete edit features for design

specifications and design choices. In participant P2’s opinion, the tool was hard to use and

lacked the exploration of visual aspects, since designers are used to think in visual terms (i.e.,

text descriptions should be displayed in a secondary moment to provide a deeper

understanding about the content).

g) Feasibility of using KTID in HCI design: The participants considered KTID

feasible to be used in supporting HCI design. In participant P1’s opinion the use of the tool

is very feasible, because of the benefits it brought to HCI design, by allowing designers to

store and retrieve ideas. Participant P2, in turn, considered KTID just feasible to be used, as

long as it is improved in terms of navigation flow, user interface and user interaction aspects.

h) Recommendation of the use of KTID to other people: Only participant P1

would recommend other people to use KTID, because she took into account her own

experience with the tool and considered it interesting and promising. Participant P2 would

not recommend the tool in its current stage of development because he considered that it is

not mature enough to be used in HCI design practice.

i) Benefits that could be obtained and difficulties that could be faced when

using KTID in a practical HCI design context: Both participants reported that they

could obtain benefits from using KTID in a practical HCI design context. The benefits

reported by participant P1 are storing design standards and their application context.

Participant P2 informed that the tool can provide more quality control, standardization and

agility in developing new products, but it still needs to be improved. Difficulties were only

reported by participant P2. He believed that using the tool could probably stiffen the process

of emerging new and different ideas (i.e., the reuse of design choices could lead to the

repetition of the same solutions).

117

j) Suggestions for the evolution of KTID in order to improve the support for

KM aspects in assisting HCI design: The following suggestions were provided by the

participants in order to improve KTID: (i) make the tool more user friendly and beautiful;

(ii) provide more robust edit features to design choices and design specifications; (iii) include

navigation buttons on design choices view; and (iv) design a new user flow and a new layout

for the tool’s user interface based on similar tools used by designers, such as Trello, Zero Height

and Pinterest.

6.3.4 Discussion

In this section, we present a discussion about the results presented in the previous

section in terms of the indicators defined on the study planning. Results from questions (a)

to (e) were used to analyze KTID’s usefulness. In this context, questions (a) to (c) refer

particularly to adequacy. Questions (f), (g) and (h) were used to analyze KTID in terms of the

feasibility of using the tool in HCI design. Finally, question (i) provided results to analyze

KTID in terms of both usefulness and feasibility (i.e., if there are several benefits and few

difficulties in using KTID, it means that the tool is feasible and useful).

Concerning the adequacy of KTID for supporting KM aspects in HCI design, the

results from the study indicated that the tool is adequate but should be improved to allow the

representation of HCI design knowledge using more visual elements (e.g., images). As HCI

designers deal with design objects that, in general, are most perceived in visual terms by users,

it is natural that HCI designers also employ more their visual sense when acquiring new HCI

design knowledge. We believe that replacing the table view of KTID design choices search

with a more fluid layout that highlights image elements could contribute to improve KTID’s

adequacy in supporting KM aspects in HCI design.

We observed that, in general, participant P1 considered the tool more useful than

participant P2. Considering the difference in their experience in HCI design practice, this

result may indicate that KTID can be more useful for novice HCI designers than to expert HCI designers.

This is an expected result, since expert designers rely on a larger amount of tacit knowledge

which they have acquired during their HCI design practice. On the other hand, novice

designers with less experience in HCI design may need more support from formalized

knowledge. Therefore, we believe that a future improvement of KTID should address expert

and novice designers in two different user profiles with different needs and use cases. While

the former should be more focused on representing and storing knowledge, the latter should

be more target to retrieving and reusing knowledge.

118

KTID was viewed by the participants as a promising tool, but not easy to use. Considering

its current stage of development, its use is not appropriate in the industry yet. The use of

KTID was feasible in an experimental context and can be feasible in an industrial context by

addressing the participants suggestions and carrying further studies to improve the tool.

In summary, considering that the number of potential benefits of using KTID in

HCI design is higher when compared with the number of difficulties, we can conclude that

there is indication that KTID can be useful and its use feasible. However, as pointed out

before, the tool needs improvements.

Using KTID to aid in HCI design can contribute to standardization and,

consequently, to increase quality, reduce effort and reduce the time spent in the development

of new products. On the other hand, it can hamper creativity, which could be a side effect

from the standardization benefit. Since the promotion of standardization ensures consistency

in the design, it also reduces the number of possible design choices that can be made. To

avoid this limitation, we suggest using KTID as a complementary source of knowledge in

HCI design combined with other external sources of knowledge to promote a mix between

knowledge reuse and creation.

As for the future evolution of KTID, based on participants perception we believe

that substantial improvements can be obtained by enhancing presentation and interaction

aspects of the tool. Hence, we suggest for future studies the implementation and the

evaluation of a new user interface in KTID, which can be inspired by commercial tools that

are already familiar to HCI designers. By addressing more HCI aspects in KTID

development, the tool can come closer to meeting the needs of HCI design professionals,

increasing the chance of using it in practice.

The overall results of the study indicated that KTID aided in HCI design, although

it needs to be improved in terms of user interface and interaction aspects. Consequently, the

use of HCIDO may be suitable for supporting KM solutions in HCI design. Considering

that the use of HCIDO in KTID development occurred in its conceptual phase and that

KTID was evaluated from its users’ point of view, further studies are necessary to evaluate

the application of HCIDO to aid in conceptual modeling and development of HCI design

tools.

119

6.3.5 Threats to Validity

As any study, KTID evaluation study has some limitations that may have threatened

the validity of its results. Thus, these limitations must be considered together the results. In

this section we discuss some threats involved in the study.

One limitation to be considered is the short deadline that was given to participants

perform the study. A few days were made available because we needed to have enough time

to analyze the study results and to conclude this dissertation. Moreover, the study was carried

remotely, thus the participants may have performed other tasks parallel to the study. If the

participants had more time and if we could guarantee that they were exclusively focused on

the study, maybe the study results could have been different.

The behavior of each participant when performing the study activities was different,

which may also have threatened the results. Participant P1 produced a design solution while

using KTID and P2 only inserted fictitious data to evaluate the tool (even we have asked him

to follow the procedure described in the instructions document). Since our goal was to

evaluate the use of KTID, rather than evaluating the design solutions produced with the

support of the tool, the impact of the lack of a design solution produced by participant P2

can be minimized. However, it is still a threat, since, different from P1, P2 did not use the

tool to develop a HCI design. Moreover, the different participants’ behaviors were even

useful for us to notice that depending on the experience level of the designer, he/she can

use the tool under a different perspective and with different purposes.

With regard to the quality of the answers provided by the participants, there is the

threat of the participants have misunderstood some questions. To address this threat, the

author of this dissertation made himself available to answer questions and support the

participants while they carried the study. The participants may also have not understood the

tool’s use cases or the motivation for using it. To mitigate this threat, we made a brief

presentation about the tool and provided a document describing the tool’s main use cases

and the context in which it was developed. The questions contained in the questionnaire can

also be a threat to the results. Some of them can lead to confirmation bias. We minimized

this threat by asking the participants to justify their answers, so that they could reflect about

the given answers instead of only answer yes or no.

Another limitation refers to the fact that the study occurred in a controlled

environment that do not necessarily reflect a real-world scenario. Moreover, the participants

used the tool in a short period of time. Hence, further studies are necessary to evaluate the

use of KTID in industrial contexts. The small number of participants is also a threat to the

120

results. Moreover, the participants were invited based on the researchers’ relationship

network, which may have influenced the answers.

Considering these threats, the study results cannot be generalized and must be

understood as preliminary evidence that KTID, a KM solution built based on HCIDO, can

be useful and feasible to support HCI design.

6.4 Concluding Remarks

This chapter presented the Knowledge Tool for Interaction Design (KTID), a

computational tool developed based on HCIDO to support KM aspects in HCI design.

HCIDO conceptualization was used to produce KTID conceptual model, reducing the effort

in the conceptual modeling and providing knowledge about the application domain. The tool

was developed to meet the requirement R7 (the ontology must be used to solve problems),

established to HCIDO and presented in Chapter 1.

KTID was evaluated in a study which analyzed the utility and feasibility of using

KTID to support knowledge management aspects in HCI design. The study indicated that

the tool is useful and its use is feasible, as required in the evaluation criteria C3 (the solution

built based on the ontology must be feasible and useful) established to HCIDO and

presented in Chapter 1. However, the tool must be improved in terms of user interface and

interaction aspects to become more user friendly. The results of KTID evaluation also

suggest that HCIDO can be applied to support the development of KM solutions as the one

built in this work. These results should be considered as an initial evidence and must be

complemented by further studies.

121

Chapter 7

Final Considerations and Future Work

This chapter presents the final considerations (Section 7.1), contributions (Section 7.2) and proposals of future works

(Section 7.3) to continue and improve the work proposed in this dissertation.

7.1 Final Considerations

HCI design plays an important role in the development of interactive systems, since

it is concerned with how the system should be designed to support users achieving their goals

through the interaction with the system (SUTCLIFFE, 2014). However, there have been

communication and knowledge transfer challenges in the integration of HCI design

knowledge, principles and methods into SE processes, since HCI design involves a diverse

body of knowledge from several fields and embodies a large amount of tacit knowledge

(BOFYLATOS; SPYROU, 2017; CARROLL, 2014). Moreover, due to the knowledge

intersection between HCI and SE, different meanings can be associated in each area to the

same term, which can lead to semantic interoperability issues (OGUNYEMI; LAMAS,

2014).

In this sense, ontologies can help to capture and organize knowledge about HCI

design based on a common vocabulary to deal with semantic interoperability and knowledge-

related problems (STUDER; BENJAMINS; FENSEL, 1998). They can be used to support

KM technologies to provide knowledge access, optimize knowledge retrieval, support

communication mechanisms and, therefore, knowledge exchange (VARMA, 2007).

However, our investigation about knowledge management in HCI design indicated that

ontologies have not been much used in KM solutions, although the lack of a common

conceptualization about HCI design has been one of the main challenges reported both in

the literature and by HCI design practitioners.

Considering this scenario, in this work, we explored the combination of ontologies

and ontology networks with KM to potentialize knowledge creation, transfer and reuse in

the context of the HCI design of interactive systems. Hence, the main objective of this work

was to propose a well-founded consensual conceptualization of HCI design to support

knowledge management solutions to aid in HCI design of interactive systems. This main

objective was detailed in four specific objectives, and all of them were achieved. Table 7.1

122

presents the specific objectives of this work and the main product that serves as an evidence

that the objective was achieved.

Table 7.1 – Specific objectives of this work.

Objectives Products

Investigate the state of the art about

knowledge management in HCI design.

Systematic Mapping

(Chapter 3)

Investigate the state of the practice about

knowledge management in HCI design.

Survey

(Chapter 4)

Develop a reference ontology about HCI

design of interactive systems.

HCIDO and SDRO

(Chapter 5)

Apply the reference ontology to support

HCI design of interactive systems.

KTID

(Chapter 6)

Among the limitations of this work, we can highlight its evaluation. KTID was

evaluated by a limited number of professionals, in a noticeably short period and outside the

organizational context. Moreover, the evaluation of the participants may have been

influenced by limitations of the tool (which was not the focus of this work) rather than to

the ontology. Hence, the results of the evaluation cannot be considered conclusive.

The tool needs to be improved to be able to achieve our goal of getting academic

research results closer to practical settings. Due to time constraints, it was not possible to

develop a tool suitable for being delivered to the Industry. However, we must emphasize

that, in this work, the tool is a means to apply the proposed ontology, which is the main

artifact produced in this work. The ontology itself also needs further evaluation, being

required to be used for other people to solve other knowledge-related problems.

Furthermore, it is important to point out that HCI is a multidisciplinary area that

deals with human aspects, thus the problem addressed in this work may also be influenced

by social, cultural, psychological and other factors. Therefore, we believe that the

combination of the use of ontologies and KM solutions as the ones built in this work can

contribute to solve communication and knowledge transfer issues in HCI design, but it

should not be used as the only approach to handle the problem.

123

7.2 Contributions

The main contributions of this work are:

(i) The HCI Design Ontology (HCIDO), which provided a well-founded

conceptualization about HCI design in the context of interactive systems

development.

(ii) The Software Design Reference Ontology (SDRO), which provided a well-founded

conceptualization about design in the software context considering its mental

and physical natures and was reused in HCIDO.

(iii) KTID, the computational tool developed based on HCIDO, which

demonstrated that the ontology can be applied in practice to support

knowledge management aspects in HCI design.

(iv) The systematic mapping, which investigated the state of the art concerning the

use of KM in the HCI design context and provided a panorama of research

related to the topic. The systematic mapping main results were published in

(CASTRO et al., 2020). The paper received the best paper award of the

Experimental Software Engineering Track of CIbSE 2020 and an extended

version is currently under review in the Journal of Software Engineering

Research and Development.

(v) The survey, which investigated KM in HCI design practice and complemented

the systematic mapping, identifying gaps and improvement opportunities to

organizations interested in applying KM initiatives in HCI design context.

7.3 Future Work

Considering the current stage presented here, some perspectives for future work are

presented below. Concerning the research scope, we can highlight:

(i) Update the investigation in the literature, to verify if new works have been

published reporting the use of KM in HCI design.

(ii) Extend the survey with HCI design practitioners to include more participants

from different countries and to further investigate other aspects of KM in

HCI design (e.g., which knowledge management activities HCI designers

have been performing).

124

(iii) Use the ontologies proposed in this work to support other types of

applications (e.g., semantic documentation or semantic interoperability

between tools).

(iv) Explore the use of HCIDO integrated to other ontologies of SEON and

HCI-ON, to provide more comprehensive solutions (e.g., covering from user

requirements to testing; integrating HCI design and HCI evaluation).

(v) Propose a KM process associated with a complete KM solution to support

HCI design, in order to extend the coverage of the solution proposed in this

work.

In relation to the well-founded conceptualization of HCIDO and SDRO:

(i) Extend the scope of both ontologies, addressing more types of design

components and design specifications, as well as detailing with other mental

aspects that motivate design choices, such as standards, best practices,

intuition, among others. In HCIDO, the design of interactive computer

systems (including hardware aspects) can also be addressed.

(ii) Continue the development process for HCIDO and SDRO, creating

operational ontologies that could be used to support HCI in runtime,

improving visualization capabilities (e.g., supporting information clustering

and adaption of user interface appearance) or improving interaction

possibilities (e.g., supporting input assistance and user interface integration)

(PAULHEIM; PROBST, 2010).

(iii) Extend the validation of the ontologies by using formal validation techniques

(e.g., using Alloy).

(iv) Extend the evaluation of the ontologies by instantiating other scenarios (e.g.,

real-world situations).

(v) Perform an evaluation study to evaluate the use of HCIDO regarding its

capacity of supporting the conceptual modeling of HCI design tools.

(vi) Integrate SDRO with the Design Process Ontology (DPO) and develop a

new HCI design process ontology integrated to HCIDO, providing a

conceptualization that addresses design both as a noun and as a verb.

125

Concerning KTID: the computational tool to support knowledge in HCI design:

(i) Integrate an operational version of HCIDO to the tool, in order to enhance

some of its functionalities (e.g., making complex search queries using

SPARQL).

(ii) Carry out new evaluations of the tool, with more HCI designers and

organizations and considering real projects. Then, use the results to make

improvements in the tool, aiming to increase the chance of using it in

practice.

(iii) Enhance the identification of design choices and components in the tool with

text and image recognition combined with artificial intelligence, suggesting

possible candidates based on past records, which could reduce the human

effort for inserting new knowledge in the tool.

(iv) Enhance the reuse of design choices with an intelligent search mechanism

that suggests previous design choices motivated by similar requirements or

design choices of a current project.

(v) Integrate the tool with other HCI design tools, using HCIDO as a reference

framework for aligning their concepts and data models.

(vi) Implement the improvements suggested by the participants of KTID

evaluation study, making the tool easier to use by HCI designers.

126

References

BAKAEV, M.; GAEDKE, M. Application of evolutionary algorithms in interaction design:

From requirements and ontology to optimized web interface. In: NW RUSSIA YOUNG

RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENG. CONF. 2016, Anais

[...]. [s.l: s.n.] p. 129–134.

BAKAEV, Maxim; AVDEENKO, Tatiana. Ontology to Support Web Design Activities in

E-Commerce Software Development Process. [S. l.], n. August 2015, 2010. DOI:

10.2316/P.2010.691-075.

BAKER, Alex; HOEK, André Van der. Examining Software Design from a General

Design Perspective. Irvine.

BASILI, V.; CALDIERA, G.; ROMBACH, H. D. The Goal Question Metric Approach. In:

1994, Anais [...]. [s.l: s.n.]

BECERRA-FERNANDEZ, Irma; SABHERWAL, Rajiv. Knowledge Management:

Systems and Processes. New Delhi: PHI Learning Private Limited, 2010.

BENYON, D. Designing interactive systems : a comprehensive guide to HCI, UX and

interaction design. In: 2013, Anais [...]. [s.l: s.n.]

BOFYLATOS, Spyros; SPYROU, Thomas. Meaning, knowledge and artifacts, giving a voice

to tacit knowledge. The Design Journal, [S. l.], v. 20, n. sup1, p. S4422–S4433, 2017.

DOI: 10.1080/14606925.2017.1352938.

BOUWMEESTER, Niels. A Knowledge Management Tool for Speech Interfaces (Poster

Abstract). In: PROCEEDINGS OF THE 22ND ANNUAL INTERNATIONAL ACM

SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN

INFORMATION RETRIEVAL 1999, New York, NY, USA. Anais [...]. New York, NY,

USA: ACM, 1999. p. 293–294. DOI: 10.1145/312624.312721.

BRANK, Janez; GROBELNIK, Marko; MLADENIĆ, Dunja. A survey of ontology

evaluation techniques. In: IN IN PROCEEDINGS OF THE CONFERENCE ON

DATA MINING AND DATA WAREHOUSES (SIKDD 2005 2005, Anais [...]. [s.l:

s.n.]

BRINGUENTE, Ana Christina de Oliveira; FALBO, Ricardo de Almeida; GUIZZARDI,

127

Giancarlo. Using a Foundational Ontology for Reengineering a Software Process

Ontology. Journal of Information and Data Management, [S. l.], v. 2, n. 3, p. 511–

526, 2011. DOI: 10.5753/jidm.2011.1424.

BUDGEN, D. Software design. 2nd ed ed. Harlow, England ; New York: Addison-Wesley,

2003.

CARROLL, John Millar. Human Computer Interaction (HCI). In: SOEGAARD, Mads;

DAM, Rikke Friis (org.). The Encyclopedia of Human-Computer Interaction. 2nd.

ed. Aarhus, Denmark: The Interaction Design Foundation, 2014. p. 21–61.

CASTRO, Murillo Vasconcelos H. B.; COSTA, Simone Dornelas; BARCELLOS, Monalessa

P.; FALBO, Ricardo de A. Knowledge management in human-computer interaction

design: A mapping study. In: 23RD IBEROAMERICAN CONFERENCE ON

SOFTWARE ENGINEERING, CIBSE 2020 2020, Anais [...]. [s.l: s.n.]

CHAMMAS, Adriana; QUARESMA, Manuela; MONT’ALVÃO, Cláudia. A Closer Look

on the User Centred Design. Procedia Manufacturing, [S. l.], v. 3, p. 5397–5404, 2015.

DOI: https://doi.org/10.1016/j.promfg.2015.07.656.

CHERA, C.; TSAI, W.; VATAVU, R. Gesture ontology for informing Service-oriented

Architecture. In: INT. SYMPOSIUM ON INTELLIGENT CONTROL 2012, Anais

[...]. : IEEE, 2012. p. 1184–1189.

CHEWAR, C. M.; BACHETTI, Edwin; MCCRICKARD, D. Scott; BOOKER, John E.

Automating a Design Reuse Facility with Critical Parameters. In: (Robert J. K. Jacob,

Quentin Limbourg, Jean Vanderdonckt, Org.)COMPUTER-AIDED DESIGN OF

USER INTERFACES IV 2004, Dordrecht. Anais [...]. Dordrecht: Springer Netherlands,

2004. p. 235–246.

CHEWAR, C. M.; MCCRICKARD, D. S. Links for a Human-Centered Science of Design:

Integrated Design Knowledge Environments for a Software Development Process. In:

PROCEEDINGS OF THE 38TH ANNUAL HAWAII INTERNATIONAL

CONFERENCE ON SYSTEM SCIENCES 2005, Anais [...]. [s.l: s.n.] p. 256c-256c.

DOI: 10.1109/HICSS.2005.390.

COSTA, Simone Dornelas; BARCELLOS, Monalessa Perini; FALBO, Ricardo de Almeida;

CASTRO, Murillo Vasconcelos Henriques Bittencourt. Towards an Ontology Network

128

on Human-Computer Interaction. In: (Gillian Dobbie, Ulrich Frank, Gerti Kappel,

Stephen W. Liddle, Heinrich C. Mayr, Org.)CONCEPTUAL MODELING 2020, Cham.

Anais [...]. Cham: Springer International Publishing, 2020. p. 331–341.

COSTA, Simone Dornellas. An Ontology Network to support Knowledge

Representation and Semantic Interoperability in the HCI Domain. 2021. Federal

University of Espírito Santo, Vitória – ES, Brazil., [S. l.], 2021.

D’AQUIN, Mathieu; GANGEMI, Aldo. Is there beauty in ontologies? Applied Ontology,

[S. l.], v. 6, p. 165–175, 2011. DOI: 10.3233/AO-2011-0093.

DALKIR, K. Knowledge Management in Theory and Practice, seccond editionThe

MIT press Cambridge, Massachussets, , 2011.

DE MEDEIROS, Adriana Pereira; SCHWABE, Daniel; FEIJÓ, Bruno. Kuaba Ontology:

Design Rationale Representation and Reuse in Model-Based Designs. In: (Lois

Delcambre, Christian Kop, Heinrich C. Mayr, John Mylopoulos, Oscar Pastor,

Org.)CONCEPTUAL MODELING – ER 2005 2005, Berlin, Heidelberg. Anais [...].

Berlin, Heidelberg: Springer, 2005. p. 241–255. DOI: 10.1007/11568322_16.

DE SOUZA, Clarisse Sieckenius. The Semiotic Engineering of Human-Computer

Interaction. [s.l.] : The MIT Press, 2005.

DESIGN. Design meaning in the Cambridge English Dictionary, 2020. a. Disponível

em: https://dictionary.cambridge.org/dictionary/english/design. Acesso em: 1 jun. 2020.

DESIGN. Definition of Design in Merriam-Webster Dictionary, 2020. b. Disponível

em: https://www.merriam-webster.com/dictionary/design. Acesso em: 1 jun. 2020.

DIX, Alan; DIX, Alan John; FINLAY, Janet; ABOWD, Gregory D.; BEALE, Russell.

Human-computer interaction. [s.l.] : Pearson Education, 2003.

DUARTE, Bruno Borlini; DE CASTRO LEAL, Andre Luiz; FALBO, Ricardo De Almeida;

GUIZZARDI, Giancarlo; GUIZZARDI, Renata S. S.; SILVA SOUZA, Vítor E.

Ontological foundations for software requirements with a focus on requirements at

runtime. Applied Ontology, [S. l.], v. 13, n. 2, p. 73–105, 2018. DOI: 10.3233/AO-

180197.

FAIRCLOUGH, Stephen H. Fundamentals of physiological computing. Interacting with

129

computers, [S. l.], v. 21, n. 1–2, p. 133–145, 2009.

FALBO, Ricardo de Almeida. SABiO: Systematic Approach for Building Ontologies. In:

CEUR WORKSHOP PROCEEDINGS 2014, Rio de Janeiro, Brazil. Anais [...]. Rio de

Janeiro, Brazil: CEUR-WS.org, 2014.

FALBO, Ricardo de Almeida; BARCELLOS, Monalessa Perini; NARDI, Julio Cesar;

GUIZZARDI, Giancarlo. Organizing ontology design patterns as ontology pattern

languages. Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), [S. l.], v. 7882 LNCS,

p. 61–75, 2013. DOI: 10.1007/978-3-642-38288-8-5.

GABRIEL, Isaac J. An Expert System for Usability Evaluations of Business-to-Consumer

E-Commerce Sites. In: PROCEEDINGS OF THE 6TH ANNUAL ISONEWORLD

CONFERENCE, LAS VEGAS, NV 2007, Anais [...]. [s.l: s.n.]

GALLAGHER, Shaun. How the body shapes the mind. [s.l.] : Clarendon Press, 2006.

GERO, John S. Design Prototypes: A Knowledge Representation Schema for Design. AI

Magazine, [S. l.], v. 11, n. 4, p. 26, 1990. DOI: 10.1609/aimag.v11i4.854.

GERO, John S.; KANNENGIESSER, Udo. The Function-Behaviour-Structure Ontology

of Design. In: CHAKRABARTI, Amaresh; BLESSING, Lucienne T. M. (org.). An

Anthology of Theories and Models of Design: Philosophy, Approaches and

Empirical Explorations. London: Springer, 2014. p. 263–283. DOI: 10.1007/978-1-

4471-6338-1_13.

GUARINO, Nicola. Formal ontology in information systems: Proceedings of the first

international conference (FOIS’98), June 6-8, Trento, Italy. [s.l.] : IOS press, 1998.

v. 46

GUARINO, Nicola. Artefactual Systems, Missing Components and Replaceability. In:

FRANSSEN, Maarten; KROES, Peter; REYDON, Thomas A. C.; VERMAAS, Pieter E.

(org.). Artefact Kinds: Ontology and the Human-Made World. Cham: Springer

International Publishing, 2014. p. 191–206. DOI: 10.1007/978-3-319-00801-1_11.

GUARINO, Nicola; MELONE, Maria Rosaria Stufano. On the Ontological Status of

Design Objects. In: (Francesca Alessandra Lisi, Stefano Borgo, Org.)AIDE@ AI* IA

2015, Anais [...]. : CEUR-WS.org, 2015. p. 27–32.

130

GUIZZARDI, Giancarlo. Ontological foundations for structural conceptual models.

2005. Telematica Instituut / CTIT, [S. l.], 2005.

GUIZZARDI, Giancarlo. On Ontology, ontologies, Conceptualizations, Modeling

Languages, and (Meta)Models. In: PROCEEDINGS OF THE 2007 CONFERENCE

ON DATABASES AND INFORMATION SYSTEMS IV: SELECTED PAPERS

FROM THE SEVENTH INTERNATIONAL BALTIC CONFERENCE

DB\&IS’2006 2007, NLD. Anais [...]. NLD: IOS Press, 2007. p. 18–39.

GUIZZARDI, Giancarlo; FALBO, Ricardo de Almeida; GUIZZARDI, Renata. Grounding

Software Domain Ontologies in the Unified Foundational Ontology (UFO): The case of

the ODE Software Process Ontology. In: CIBSE 2008, Anais [...]. [s.l: s.n.]

GUIZZARDI, Giancarlo; WAGNER, Gerd; DE ALMEIDA FALBO, Ricardo;

GUIZZARDI, Renata S. S.; ALMEIDA, João Paulo A. Towards ontological foundations

for the conceptual modeling of events. In: INTERNATIONAL CONFERENCE ON

CONCEPTUAL MODELING 2013, Berlin, Heidelberg. Anais [...]. Berlin, Heidelberg:

Springer, 2013. p. 327–341. DOI: 10.1007/978-3-642-41924-9_27.

HAPPEL, Hans-Jörg; KORTHAUS, Axel; SEEDORF, Stefan; TOMCZYK, Peter.

KOntoR: An Ontology-enabled Approach to Software Reuse. In: 2006, Anais [...]. [s.l:

s.n.] p. 349–354.

HARNING, Morten; VANDERDONCKT, Jean; FLORINS, Murielle. Closing the Gaps:

Software Engineering and Human-Computer Interaction. [S. l.], 2003.

HARRISON, Steve; TATAR, Deborah; SENGERS, Phoebe. The three paradigms of HCI.

In: ALT. CHI. SESSION AT THE SIGCHI CONFERENCE ON HUMAN FACTORS

IN COMPUTING SYSTEMS SAN JOSE, CALIFORNIA, USA 2007, Anais [...]. [s.l:

s.n.] p. 1–18.

HEFLEY, William E.; BUIE, Elizabeth A.; LYNCH, Gene F.; MULLER, Michael J.;

HOECKER, Douglas G.; CARTER, Jim; ROTH, J. Thomas. Integrating human factors

with software engineering practices. In: PROCEEDINGS OF THE HUMAN

FACTORS AND ERGONOMICS SOCIETY ANNUAL MEETING 1994, Anais [...].

[s.l: s.n.] p. 315–319.

HENNINGER, Scott; HAYNES, Kyle; REITH, Michael W. A Framework for Developing

131

Experience-based Usability Guidelines. In: PROCEEDINGS OF THE 1ST

CONFERENCE ON DESIGNING INTERACTIVE SYSTEMS: PROCESSES,

PRACTICES, METHODS, & TECHNIQUES 1995, New York, NY, USA. Anais [...].

New York, NY, USA: ACM, 1995. p. 43–53. DOI: 10.1145/225434.225440.

HENNINGER, Scott; KESHK, Mohamed; KINWORTHY, Ryan. Capturing and

Disseminating Usability Patterns with Semantic Web Technology. [S. l.], 2004.

HEVNER, Alan R. A three cycle view of design science research. Scandinavian journal of

information systems, [S. l.], v. 19, n. 2, p. 4, 2007.

HEWETT, Thomas T.; BAECKER, Ronald; CARD, Stuart; CAREY, Tom; GASEN, Jean;

MANTEI, Marilyn; PERLMAN, Gary; STRONG, Gary; VERPLANK, William. ACM

SIGCHI curricula for human-computer interaction. [s.l.] : ACM, 1992.

HUGHES, Michael. A Pattern Language Approach to Usability Knowledge Management. J.

Usability Studies, Bloomingdale, IL, v. 1, n. 2, p. 76–90, 2006.

IEEE. IEEE Std 1016-2009 (Revision of IEEE Std 1016-1998), IEEE Standard for

Information Technology—Systems Design—Software Design Descriptions. [s.l:

s.n.]. v. 2009

ISO/IEC/IEEE. ISO/IEC/IEEE 24765 - Int. Standard - Systems and software

engineering Vocabulary, 2017.

ISO. ISO 9241-210:2019(en) - Ergonomics of human-system interaction - Part 210:

Human-centred design for interactive systemsInt. Organization for

Standardization, 2019.

KITCHENHAM, Barbara A.; CHARTERS, Stuart. Guidelines for performing

Systematic Literature Reviews in Software Engineering. [s.l: s.n.].

KOHLHASE, Andrea E.; KOHLHASE, Michael. Semantic Transparency in User

Assistance Systems. In: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL

CONFERENCE ON DESIGN OF COMMUNICATION 2009, New York, NY, USA.

Anais [...]. New York, NY, USA: Association for Computing Machinery, 2009. p. 89–96.

DOI: 10.1145/1621995.1622013.

KROL, Laurens R.; FREYTAG, Sarah-Christin; FLECK, Markus; GRAMANN, Klaus;

132

ZANDER, Thorsten O. A task-independent workload classifier for neuroadaptive

technology: Preliminary data. In: 2016 IEEE INTERNATIONAL CONFERENCE ON

SYSTEMS, MAN, AND CYBERNETICS (SMC) 2016, Anais [...]. [s.l: s.n.] p. 3171–

3174.

KULTSOVA, Marina; POTSELUICO, Anastasiya; ZHUKOVA, Irina; SKORIKOV,

Alexander; ROMANENKO, Roman. A Two-Phase Method of User Interface

Adaptation for People with Special Needs. In: CREATIVITY IN INTELLIGENT

TECH AND DATA SCIENCE. 2017, Anais [...]. : Springer, 2017. p. 805–821.

MAFRA, Sômulo Nogueira; TRAVASSOS, Guilherme Horta. Estudos Primários e

Secundários apoiando a busca por Evidência em Engenharia de Software. Relatório

Técnico, RT-ES, [S. l.], v. 687, n. 06, 2006.

MCPHEE, Kent. Design Theory and Software Design. [s.l: s.n.]. DOI:

10.7939/R3MS3K15D.

MOHAMED, Mona A.; CHAKRABORTY, Joyram; DEHLINGER, Josh. Trading off

Usability and Security in User Interface Design Through Mental Models. Behav. Inf.

Technol., Bristol, PA, USA, v. 36, n. 5, p. 493–516, 2017. DOI:

10.1080/0144929X.2016.1262897.

MYRGIOTI, Eirini; BASSILIADES, Nick; MILIOU, Amalia. Bridging the HASM: An

OWL ontology for modeling the information pathways in haptic interfaces software.

Expert Systems with Applications, [S. l.], v. 40, n. 4, p. 1358–1371, 2013.

NONAKA, Ikujiro. A dynamic theory of organizational knowledge creation. Organization

science, [S. l.], v. 5, n. 1, p. 14–37, 1994.

NORMAN, Donald A. The Design of Everyday Things: Revised and Expanded

Edition. 2nd. ed. [s.l.] : Basic Books, 2013.

O’LEARY, Daniel E. Enterprise Knowledge Management. Computer, Los Alamitos, CA,

USA, v. 31, n. 3, p. 54–61, 1998. DOI: 10.1109/2.660190.

OGIONI, Beatriz Sessa. Uma Ferramenta Computacional para Apoiar Aspectos de

Gerência de Conhecimento no Design de IHC. 2021. Universidade Federal do

Espírito Santo, Vitória-ES, Brasil, [S. l.], 2021.

133

OGUNYEMI, Abiodun; LAMAS, David. Interplay between human-computer interaction

and software engineering. Iberian Conference on Information Systems and

Technologies, CISTI, [S. l.], 2014. DOI: 10.1109/CISTI.2014.6877024.

OSTERWEIL, Leon J. A Future for Software Engineering? In: FUTURE OF SOFTWARE

ENGINEERING (FOSE ’07) 2007, Anais [...]. [s.l: s.n.] p. 1–11. DOI:

10.1109/FOSE.2007.1.

PAULHEIM, Heiko; PROBST, Florian. Ontology-Enhanced User Interfaces: A Survey. Int.

J. Semantic Web Inf. Syst., [S. l.], v. 6, p. 36–59, 2010. DOI: 10.4018/jswis.2010040103.

PAULHEIM, Heiko; PROBST, Florian. UI2Ont—A Formal Ontology on User Interfaces

and Interactions. In: [s.l: s.n.]. p. 1–24. DOI: 10.1007/978-1-4471-5301-6_1.

PEFFERS, Ken; TUUNANEN, Tuure; ROTHENBERGER, Marcus A.; CHATTERJEE,

Samir. A design science research methodology for information systems research. Journal

of management information systems, [S. l.], v. 24, n. 3, p. 45–77, 2007.

PETERSEN, Kai; VAKKALANKA, Sairam; KUZNIARZ, Ludwik. Guidelines for

conducting systematic mapping studies in software engineering: An update. Information

and Software Technology, Newton, MA, USA, v. 64, p. 1–18, 2015. DOI:

https://doi.org/10.1016/j.infsof.2015.03.007.

PFLEEGER, Shari Lawrence. Design and analysis in software engineering: the language of

case studies and formal experiments. ACM SIGSOFT Software Engineering Notes,

[S. l.], v. 19, n. 4, p. 16–20, 1994.

POLANYI, Michael. The Tacit Dimension. Garden City, NY: Doubleday, 1966.

PRESSMAN, Roger S.; MAXIM, Bruce R. Software engineering: a practitioners

approach. 9th. ed. [s.l.] : McGraw Hill, 2020.

RALPH, Paul. The Sensemaking-Coevolution-Implementation Theory of software design.

Science of Computer Programming, Towards general theories of software engineering.

[S. l.], v. 101, Towards general theories of software engineering, p. 21–41, 2015. DOI:

10.1016/j.scico.2014.11.007.

RALPH, Paul; WAND, Yair. A Proposal for a Formal Definition of the Design Concept. In:

DESIGN REQUIREMENTS ENG.: A TEN-YEAR PERSPECTIVE 2009, Anais [...].

134

: Springer, 2009. p. 103–136.

ROGERS, Yvonne; SHARP, Helen; PREECE, Jenny. Interaction Design: Beyond

Human-Computer Interaction. 3rd. ed. Chichester, United Kingdom: John Wiley &

Sons, 2011.

RUS, I.; LINDVALL, M. Knowledge management in software engineering. IEEE

Software, [S. l.], v. 19, n. 3, p. 26–38, 2002. DOI: 10.1109/MS.2002.1003450.

RUY, Fabiano Borges; FALBO, Ricardo de Almeida; BARCELLOS, Monalessa Perini;

COSTA, Simone Dornelas; GUIZZARDI, Giancarlo. SEON: A Software Engineering

Ontology Network. In: KNOWLEDGE ENG. AND KNOWLEDGE

MANAGEMENT 2016, Anais [...]. : Springer, 2016. p. 527–542.

SAIYD, Nedhal Al; SAID, Intisar Al; NEAIMI, Afaf Al. Towards an ontological concepts

for domain-driven software design. In: 2009 FIRST INTERNATIONAL

CONFERENCE ON NETWORKED DIGITAL TECHNOLOGIES 2009, Anais [...].

[s.l: s.n.] p. 127–131. DOI: 10.1109/NDT.2009.5272092.

SCHERP, Ansgar; SAATHOFF, Carsten; FRANZ, Thomas; STAAB, Steffen. Designing

core ontologies. Applied Ontology, [S. l.], v. 6, n. 3, p. 177–221, 2011.

SCHNEIDER, Kurt. Experience and Knowledge Management in Software

Engineering. 1st. ed. Heidelberg, Berlin: Springer Publishing Company, Incorporated,

2009.

SCHÖN, Donald A. The reflective practitioner: how professionals think in action. New

York: Basic Books, 1983.

SEFFAH, Ahmed; GULLIKSEN, Jan; DESMARAIS, Michel. Human-Centered Software

Engineering — Integrating Usability in the Software Development Lifecycle. [s.l:

s.n.]. DOI: 10.1007/1-4020-4113-6.

SIKORSKI, Marcin; GARNIK, Igor; LUDWISZEWSKI, Bohdan; WYRWIŃSKI, Jan.

Knowledge Management Challenges in Collaborative Design of a Virtual Call Centre. In:

KNOWLEGE-BASED AND INTELLIGENT INFORMATION AND

ENGINEERING SYSTEMS 2011, Berlin, Heidelberg. Anais [...]. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011. p. 657–666.

135

SILVA, Thiago Rocha; HAK, Jean Luc; WINCKLER, Marco. A Formal Ontology for

Describing Interactive Behaviors and Supporting Automated Testing on User Interfaces.

International Journal of Semantic Computing, [S. l.], v. 11, n. 4, p. 513–539, 2017.

DOI: 10.1142/S1793351X17400219.

SIMON, Herbert A. The sciences of the artificial. 3rd ed ed. Cambridge, Mass: MIT Press,

1996.

SMITH, A.; DUNCKLEY, L. Prototype evaluation and redesign: structuring the design

space through contextual techniques. Interacting with Computers, [S. l.], v. 14, n. 6, p.

821–843, 2002. DOI: 10.1016/S0953-5438(02)00031-0.

SMITH, J. L.; BOHNER, S. A.; MCCRICKARD, D. S. Toward introducing notification

technology into distributed project teams. In: 12TH IEEE INTERNATIONAL

CONFERENCE AND WORKSHOPS ON THE ENGINEERING OF COMPUTER-

BASED SYSTEMS (ECBS’05) 2005, Anais [...]. [s.l: s.n.] p. 349–356. DOI:

10.1109/ECBS.2005.69.

SOLANKI, Monika. DIO: A Pattern for Capturing the Intents Underlying Designs. In:

PROCEEDINGS OF THE 6TH WORKSHOP ON ONTOLOGY AND SEMANTIC

WEB PATTERNS (WOP 2015) 2015, Anais [...]. : CEUR-WS.org, 2015.

STAAB, Steffen; STUDER, Rudi (ORG.). Handbook on Ontologies. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2004. DOI: 10.1007/978-3-540-24750-0.

STEPHANIDIS, Constantine; AKOUMIANAKIS, Demosthenes. Knowledge

Management in HCI Design. In: W. KARWOWSKI (org.). International Encyclopedia

of Ergonomics and Human Factors. Vol. 1 ed. [s.l.] : Taylor & Francis, 2001. p. 705–

710.

STILL, Kaisa. Exploring Knowledge Processes in User-Centered Design Process. In: THE

7TH EUROPEAN CONFERENCE ON KNOWLEDGE MANAGEMENT 2006,

Anais [...]. [s.l: s.n.] p. 533.

STUDER, Rudi; BENJAMINS, V. Richard; FENSEL, Dieter. Knowledge engineering:

Principles and methods. Data & Knowledge Engineering, [S. l.], v. 25, n. 1, p. 161–

197, 1998. DOI: 10.1016/S0169-023X(97)00056-6.

SUÁREZ-FIGUEROA, Mari Carmen; GÓMEZ-PÉREZ, Asunción; MOTTA, Enrico;

136

GANGEMI, Aldo. Ontology Engineering in a Networked World. [s.l.] : Springer,

2012.

SUÀREZ, Pablo Ribeiro; JÙNIOR, Bernardo Lula; DE BARROS, Marcelo Alves. Applying

knowledge management in UI design process. In: (Pavel Slavik, Philippe Palanque,

Org.)PROCEEDINGS OF THE 3RD ANNUAL CONFERENCE ON TASK

MODELS AND DIAGRAMS - TAMODIA ’04 2004, NY, NY, USA. Anais [...]. NY,

NY, USA: ACM Press, 2004. p. 113–120. DOI: 10.1145/1045446.1045468.

SUTCLIFFE, Alistair G. Requirements Engineering from an HCI Perspective. In:

SOEGAARD, Mads; DAM, Rikke Friis (org.). The Encyclopedia of Human-

Computer Interaction. 2. ed. Aarhus, Denmark: The Interaction Design Foundation,

2014. p. 707–760.

TAYLOR, Richard N.; VAN DER HOEK, Andre. Software Design and Architecture: The

once and future focus of software engineering. In: FUTURE OF SOFTWARE

ENGINEERING (FOSE ’07) 2007, Minneapolis, MN. Anais [...]. Minneapolis, MN:

IEEE, 2007. p. 226–243. DOI: 10.1109/FOSE.2007.21.

VALASKI, Joselaine; MALUCELLI, Andreia; REINEHR, Sheila. Review: Ontologies

Application in Organizational Learning: A Literature Review. Expert System with

Applications: An International Journal, Tarrytown, NY, USA, v. 39, n. 8, p. 7555–

7561, 2012. DOI: 10.1016/j.eswa.2012.01.075.

VARMA, Vasudeva. Use of ontologies for organizational knowledge management and

knowledge management systems. In: ontologies. [s.l.] : Springer, 2007. p. 21–47.

WAHID, S.; SMITH, J. L.; BERRY, B.; CHEWAR, C. M.; MCCRICKARD, D. S.

Visualization of design knowledge component relationships to facilitate reuse. In:

PROCEEDINGS OF THE 2004 IEEE INTERNATIONAL CONFERENCE ON

INFORMATION REUSE AND INTEGRATION, 2004. IRI 2004. 2004, Anais [...].

[s.l: s.n.] p. 414–419. DOI: 10.1109/IRI.2004.1431496.

WAHID, Shahtab. Investigating Design Knowledge Reuse for Interface Development. In:

PROCEEDINGS OF THE 6TH CONFERENCE ON DESIGNING INTERACTIVE

SYSTEMS 2006, New York, NY, USA. Anais [...]. New York, NY, USA: ACM, 2006. p.

354–356. DOI: 10.1145/1142405.1142462.

137

WIERINGA, Roel; MAIDEN, Neil; MEAD, Nancy; ROLLAND, Colette. Requirements

Engineering Paper Classification and Evaluation Criteria: A Proposal and a Discussion.

Requir. Eng., Secaucus, NJ, USA, v. 11, n. 1, p. 102–107, 2005. DOI: 10.1007/s00766-

005-0021-6.

WILSON, Paul; BORRAS, John. Lessons learnt from an HCI repository. International

Journal of Industrial Ergonomics, [S. l.], v. 22, n. 4, p. 389–396, 1998. DOI:

https://doi.org/10.1016/S0169-8141(97)00093-0.

138

Appendix A

Artifacts used in KTID Evaluation Study

This appendix presents the artifacts we used in the evaluation study of KTID.

A.1 Instructions Document

UFES (Universidade Federal do Espírito Santo)
NEMO (Núcleo de Estudos em Modelagem Conceitual e

Ontologias)

Evaluation study of the use of a computational tool to support
knowledge management aspects in HCI design.

Student: Murillo Vasconcelos Henriques Bittencourt Castro
Advisors: Monalessa Perini Barcellos (UFES) e Ricardo de Almeida Falbo (UFES) (in
memoriam)

I. Introduction

Human-computer interaction (HCI) design is focused on designing an interactive

software system to support its user to achieve their goals through the interaction with the

system. It involves knowledge from multiple fields, such as ergonomics, cognitive science,

human factors, among others. Due to this diverse knowledge field, HCI design teams are

frequently multidisciplinary, gathering people with different backgrounds and experiences,

with their own technical terms and knowledge. Hence, they may have different

conceptualizations about HCI design, which can hamper communication and knowledge

transfer. Moreover, HCI design employs a huge amount of tacit knowledge, a type of

knowledge that cannot be easily articulated and described for who holds it, aggravating to

the difficulties in communication and knowledge transfer.

For instance, a designer may not be able to describe the reasons why he/she made

certain design choice, or maybe he/she describe it in such a way that other designers,

developers and project managers cannot correctly understand it. Therefore, the design may

be not correctly implemented, and the knowledge employed to perform that task may be

inaccessible for reuse in the future. In this context, Knowledge Management (KM)

principles, practices, methods and tools may be useful, providing support to capture and

represent knowledge in an accessible and reusable way, promoting knowledge from

individual level to the organizational level.

139

In the context of the research in which this study is being carried, we proposed a

computational tool to support knowledge management aspects in HCI design. The

tool aims to allow designers to describe HCI design choices in HCI design solutions in a

structured way, making this knowledge explicit and accessible. Next, we present the main

functionalities of the tool.

Manage Design Objects: this use case aims to record information about design

objects that are being developed and further associate them with their user requirements and

design specifications. Figure 1 presents a screen which showing the list of design objects

recorded in KTID and Figure 2 presents a screen in which we can record a new design object.

Figure 1 – List of design objects recorded in KTID.

Figure 2 – Recording a new design object in KTID.

Manage User Requirements: this use case aims to record information about user

requirements associated to a design object. Figure 3 presents a KTID screen which shows

the list of user requirements for a specific design object and Figure 4 presents a screen in

which we can record new user requirements.

140

Figure 3 – List of user requirements for a design object recorded in KTID.

Figure 4 – Recording a new user requirement to a design object in KTID.

Manage Design Specifications: this use case aims to record design specifications,

which consist of a set of image files. We can insert several specifications for the same design

object, with different levels of fidelity (e.g., mockups, wireframes or sketches), viewport sizes

(e.g., mobile phone, tablets or desktops) and version numbers. Figure 5 presents a KTID

screen showing the list of files of a design specification as well its design choices and Figure

6 presents the screen in which a new design specification can be recorded.

141

Figure 5 – Details of a design specification recorded in KTID.

Figure 6 – Recording a new design specification for a design object in KTID.

Describe Design Choices: this is one of the main functionalities of KTID. It aims

at allowing designers to identify, represent and describe design choices and related design

components encoded in design specifications, as well link them with their associated user

142

requirements. Figure 7 presents a KTID screen in which a design choice can be described

and recorded for a design specification and Figure 8 presents a screen showing the details of

a design choice recorded in KTID.

Figure 7 – Describing a design choice in KTID.

Figure 8 – Details of a design choice recorded in KTID.

143

Search for Design Choices: this is another important functionality of KTID. Figure

9 presents a KTID screen in which we can search for all design choices recorded in KTID.

In this screen, we can visualize contextual details (e.g., related components and user

requirements, the referred design object and design specification, author, date and time of

creation and last update) about each choice. Each column of the table can be filtered or

sorted, making it easier to the find previous design choices related to contextual information

similar to that of another specific context.

Figure 9 – Searching for design choices in KTID.

Evaluate Design Choices: once a designer finds a design choice satisfying his/her

search criteria, he/she can evaluate the design choice rating how much it was useful in

another context. By doing so, other designers can make decisions about using or not certain

design choice based on its average rating. Figure 10 presents a KTID screen in which we can

evaluate a design choice and figure 11 presents a screen showing the list of evaluations of a

design choice.

144

Figure 10 – Evaluating a design choice.

Figure 11 – Previous evaluations of a design choice.

II. Instructions

This study goal is to evaluate the use of a computational tool to aid in HCI

design, considering its feasibility and utility in supporting knowledge management aspects.

Hence, this study is not concerned with evaluating the tool design itself, but rather its

use to aid HCI design providing support to knowledge representation, storage, retrieval and

evaluation.

In order to carry out the study, the participant must use the tool as a support resource

to perform a task that consists of the elaboration of a design solution for an interactive

system. The tool is available through the link http://bit.ly/KTID-tool. To access it, you must

log in using the user “admin@admin.com” and the password “password”. After

completing the task, the participant must complete the questionnaire available at

http://bit.ly/KTID-Evaluation.

Below we present a description of the domain for which the interactive system is

being developed, as well as detailed instructions for carrying out the task.

http://bit.ly/KTID-tool
http://bit.ly/KTID-Evaluation

145

Domain description: A company that offers movie streaming services wants to

build a platform (FilmFlix) where its customers can access the company’s catalog and watch

the available movies. The platform contains the following information for each film in the

catalog: name, release date, cover image, synopsis and genre. From its customers, the

company wants to know their name, date of birth, e-mail and profile picture. When accessing

the catalog, customers can book movies that they have interest in watching in the future.

Such films are available in a list of movies called “Next films”. In addition, customers can

consult the catalog to search for specific films, through textual search or by genre selection.

The platform should also provide customers with a list of the most recent releases and a

featured list with the most popular films. When the customer chooses to watch a certain film,

the platform must open the video player and play it.

Instructions for carrying out the task: Considering the domain presented above,

the participant must develop a design solution in the form of wireframes for the graphical

interface of the initial screen of the FilmFlix platform. Wireframes are artifacts that

outline the basic structure of the graphical interface of an interactive system (e.g., how the

elements are visually organized when viewed on the screen), represented in the form of low-

fidelity sketches, that do not address specific details such as colors and typography. Figure

12 shows an example of a wireframe for the Facebook profile page.

Figure 12 – Wireframe of the Facebook profile page7.

7Adapted from: https://www.flickr.com/photos/mockupbuilder/8705902051 (accessed on April 22, 2021)

https://www.flickr.com/photos/mockupbuilder/8705902051

146

Since the platform will be accessed through both mobile devices and desktop

computers, the design solution to be produced by the participant must contemplate specific

aspects of the interaction with each type of device (e.g., changing the layout of the elements

due to the difference in viewport size or using other elements that are more suitable for touch

interaction on mobile devices). The steps that must be followed to perform the task are

described below. The order in which they are listed is only suggestive and should not

necessarily be followed. In addition, the participant can repeat a step more than once if

deemed necessary.

• Access the user requirements page at http://bit.ly/FilmFlixRequirements and

verify the specified user requirements for FilmFlix based on its domain

description.

• Access the design choices search page at http://bit.ly/DesignChoicesSearch and

verify which design choices available in the tool can be useful to produce FilmFlix

design solution.

• Produce the proposed design solution for FilmFlix. We recommend using a

computational tool that allows to export the solution as an image file. If the

participant prefers, the solution can be drawn on paper, since the drawing is

digitalized or photographed.

• Upload the produced solution in the FilmFlix design specification.

• Describe the design choices made by the participant during the elaboration of

the design solution and associate them with the related user requirements.

• Evaluate previous design choices that were reused or adapted in the solution

produced by the participant.

• Answer the feedback questionnaire available at http://bit.ly/KTID-Evaluation.

http://bit.ly/DesignChoicesSearch
http://bit.ly/KTID-Evaluation

147

A.2 Consent Form

148

A.3 Participants Profile Form

149

150

151

152

A.4 Feedback Questionnaire

153

154

155

156

