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Abstract

While the detection of gravitational waves was an outstanding achievement in theo-
retical and observational physics, data science, computer science and engineering on
their own merit, it also allowed us to observe black holes for the first time. Black hole
physics had a tumultuous research history, from a nearly non-existent field to work, in
the first years of general relativity, culminating in the golden age of general relativity
in the sixties and mid-seventies, where black holes entered the mainstream theoretical
physics. We could be arguably living in the second golden age of general relativity,
but this time around black holes entered the mainstream observational physics. In
light of this, this thesis tackle some problems in black hole physics, or in a broader
sense, the current understanding of gravity. The first part of this thesis is devoted
to developing the machinery of first-order perturbation theory in order to obtain the
quasi-normal modes from both singular and non-singular black holes, that is, the
frequencies related to the oscillation of a black hole after its merging. In the next
section we contrast how a particular analytical model, that works from the merger
up to the ringdown phase, constrains both the final mass and spin parameter when
compared to the published results. In the second part, we investigate a series of works
related to spherically-symmetric solutions of both k-essence and Rastall theories, where
a possible solution to what seems a coincidence in both theories, might be related to a
formulation of a lagrangian formalism for the latter theory. We end this thesis finding
black hole solutions to a novel theory of gravity, entangled gravity. This model is
not defined in the absence of any matter field, but we argue that black hole solutions
satisfying the near vacuum condition resembles solutions obtained in standard general
relativity.

Keywords: black hole, perturbation theory, quasi-normal modes, stability, modified
gravity.



Resumo

A detecção de ondas gravitacionais foi uma incŕıvel conquista da f́ısica teórica e ob-
servacional, ciência de dados, ciência da computação e engenharia, cada qual com seus
próprios méritos, que nos permitiu observar buracos negros pela primeira vez. A f́ısica
de buracos negros teve uma tumultuada história em sua pesquisa, desde um campo de
trabalho quase inexistente, culminando na era de ouro da relatividade geral nos anos
sessenta e meados nos anos setenta, onde buracos negros entraram na f́ısica teórica tradi-
cional. Nós podemos, discutivelmente, estar vivendo na segunda era de ouro da relativi-
dade geral, mas desta vez buracos negros entraram na f́ısica observacional convencional.
Por meio disso, esta tese aborda alguns problemas da f́ısica de buracos negros, ou em
um sentido mais amplo, no atual entendimento da gravitação. A primeira parte desta
tese é direcionada no desenvolvimento da teoria perturbativa de primeira-ordem para
obter of modos quasi-normais de buracos negros singulares e não-singulares, ou seja, as
frequências relacionadas com a oscilação do buraco negro após sua fusão. Na próxima
seção comparamos como um modelo anaĺıtico particular, que funciona desde a fusão
até a fase de ringdown, restringe a massa e o parâmetro de rotação quando comparado
com os resultados publicados. Na segunda parte investigamos uma série de trabalhos
relacionados à soluções esfericamente-siméricas das teorias de k-essência e Rastall, onde
uma posśıvel resolução para o que parece ser uma coincidência em ambas teorias, pode
estar relacionada com a formulação de um formalismo lagrangiano para este modelo.
Terminamos essa tese encontrando soluções de buraco negro em uma nova teoria de
gravitação, chamada gravidade “entangled”. Este modelo não é definido na ausência
de campos de matéria, mas argumentamos que soluções de buraco negro satisfazendo a
condição de quase vácuo se assemelham às soluções obtidas na relatividade geral padrão.
Palavras-chaves: buraco negro, teoria de perturbação, modos quasi-normais, estabil-
idade, teoria modificada da gravitação.
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2.4. Pöschl–Teller Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5. The WKB method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1. Stability condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1. Schwarzschild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.2. Reissner-Nordström . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.3. Schwarzschild de-Sitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.4. Bardeen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.5. Hayward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7. The ringdown gravitational wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.1. A toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.2. A merger-ringdown analytical model . . . . . . . . . . . . . . . . . . . . . 30

2.7.2.1. Some preliminary results . . . . . . . . . . . . . . . . . . . . . . 32

3. The connection between k-essence and Rastall and their stability 35
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2. Reviewing the two theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1. K-essence theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2. Rastall theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



Table of Contents

3.3. The duality between the two theories . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1. Scalar-vacuum comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2. Cosmology with matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2.1. Case 1: No mixing of scalar field and matter . . . . . . . . . . . 42
3.3.2.2. Case 2: Conservative matter . . . . . . . . . . . . . . . . . . . . 43

3.3.3. Perturbations and the speed of sound considerations . . . . . . . . . . . . 44
3.3.4. Some special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.4.1. Special case 1: n = 1/2 . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.4.2. Special case 2: b = 3/2 . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.4.3. Special case 3: b = 2 . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.4.4. Special case 4: b = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.5. Explicit examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.5.1. Scalar-vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.5.2. Dust and Rastall-Case 1 models . . . . . . . . . . . . . . . . . . 47
3.3.5.3. Dust and Rastall-Case 2 models . . . . . . . . . . . . . . . . . . 48

3.4. The stability of these two theories . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1. K-essence stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1.1. Main equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1.2. Verifying the solution’s stability . . . . . . . . . . . . . . . . . . 51

3.4.2. Rastall stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2.1. Main equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2.2. Master equation and a discrepancy . . . . . . . . . . . . . . . . . 53
3.4.2.3. Verifying the solution’s stability . . . . . . . . . . . . . . . . . . 54

4. Seeking out a Lagrangian for Rastall theory 56
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2. Seeking out a Lagrangian for Rastall theory . . . . . . . . . . . . . . . . . . . . . 56

4.2.1. Rastall theory as a f(R,Lm) theory . . . . . . . . . . . . . . . . . . . . . 57
4.2.2. Rastall theory as a f(R, T ) theory . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2.1. Electromagnetic case . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2.2. Perfect-fluid case . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2.3. Scalar field case . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2.4. Self-interacting scalar field and fluid correspondence . . . . . . . 61

4.2.3. ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.3.1. Background evolution . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3.2. Evolution of matter perturbation . . . . . . . . . . . . . . . . . . 63

5. Charged BH and radiating solutions in entangled relativity 65
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2. Action and field equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3. Charged BH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1. Discussion on the validity of the solution beyond the event horizon . . . . 69
5.4. Pure electromagnetic radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6. Conclusions 72

A. Spherical Harmonics 75



List of Figures

2.1. The axial gravitational Schwarschild potential, curve in blue, and the Pöschl-Teller
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CHAPTER 1.

Introduction

It is an exciting time to be a young researcher in the gravitation-related field. We have a
well established mathematical toolbox: general relativity (GR), which has survived the test of
time for more than a hundred years. Lots of open questions yet to be solved: Can we find a
renormalization procedure that works for gravity? Can we get rid of the singularities? Is there
any way to merge this theory with quantum-field theory? What is the deal with both dark matter
and dark energy? And now we are finally having some answers: Yes, gravitational waves exist
[3]. It propagates at the speed of light [4]. The universe is expanding at an accelerating pace [5].
Black holes (BH) do exist [6].

With more questions than answers, we have many possibilities to circumvent some questions:
What if the universe is not four-dimensional [7]? Dark matter may be just BHs [8]. Graviton’s
mass may be hiding under some screening mechanism [9]. Gravity may emerge from thermo-
dynamics [10]. Bearing that in mind, in this thesis we investigate some of these problems, and
potential explanations to these questions.

After two BHs merge together in the coalescence process, the single remnant BH emits gravi-
tational waves in the form of quasi-normal modes. Contrary to the usual normal modes, where
the oscillation process keeps perpetually ringing, in this case the oscillations are damped since
the waves are either entering the BH’s event horizon, or propagating to the radial infinity. This
is what we go over on chapter 2. In a more mathematical approach, we uncover the spatial angu-
lar rotation symmetry, investigate the spherical harmonics decomposition of the two orthogonal
parities, discuss about the test-fields and its perturbation types, while developing two different
methods to analyze the quasi-normal frequencies.

As we established, one of the main issues in gravitation is the existence of singularities within
BHs. Some authors may agree1 that this may be an indication of something ill-defined in our
current understanding of gravity. One possible way to remedy this situation is to add some kind
of matter inside the BH, which turns the solution non-singular, or regular. We explore these
solutions, and compare the quasi-normal frequencies with the singular ones.

While modeling the merging process of a binary system throughout its entirety is a great en-
deavor accomplished, it was done matching several different methods for each stage. In chapter
2.7 we investigate one model that tries to encapsulate the merger-ringdown stage of the coales-
cence process, through the merger to the ringdown into a single framework. This model takes
the remnant final BH and trace it back to the before-merger state, when the two bodies were still
afar from each other. We use this model to check how we can estimate both the mass and the
dimensionless spin parameter for two different gravitational waves signals, and how they compare
to the results already obtained.

1Me included.





Introduction Section 1.0

Taking into account that GR may not be our final theory of gravity, we check some peculiarities
in two different extensions to GR. Using two different models of gravity, k-essence and Rastall
with a scalar field, it was possible to obtain the same BH-like solution for the metric field. This
result, at first really surprising due to the different nature of the two theories, must be checked
and thoroughly investigated. Therefore, in chapter 3, much more as an exploratory investigation,
we try to answer some questions concerning this coincidence: under which conditions are these
two theories alike each other? Are the solutions stable in each case?

We could argue that between these two theories, Rastall bears more exotic traits since it is
a fundamentally non-conservative theory that may encapsulate some yet to be found effect in
curved space time. With this, in chapter 4 we tackle its main issue: Rastall theory does not
posses any lagrangian, that is, its field equations are induced to give the field equations that
satisfy some desired conditions. We will show that all the proposals in the literature does not
recover the expected results, while we convey one possible way out of this conundrum.

We finish this thesis in chapter 5 where we check a theory cast as a particular case of a
f(R,Lm) model, called entangled gravity. This model “entangles” the gravity lagrangian and
the matter component into a single term, that is, it is impossible to exist gravity without matter,
and vice-versa. One of the main properties of this theory is the lack of a vacuum solution, the
total lagrangian density vanishes when setting the matter lagrangian to zero. Despite this, we
will argue that the BH solutions that we found resembles the BHs solutions obtained in GR
satisfying the near vacuum condition.
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CHAPTER 2.

Black holes quasi-normal modes

2.1. Introduction

One of the main solutions obtained in general relativity (GR) are black holes (BH) spacetimes.
In agreement with the no-hair theorem [11], the BH solutions are fully described by its mass
M , charge Q and the angular momentum parameter a, aside from the cosmological constant, Λ,
that may be directly introduced into the field equations. These solutions can be classified as a
sub-class of the Kerr-Newman (anti) de-Sitter space-time.

When the spin of the BH is not considered, that is, assuming that the solution is not only
stationary but also static, the general spherically-symmetric metric1 gµν can be arranged in the
form

ds2 = f(r)dt2 − f(r)−1dr2 − r2dΩ2, (2.1)

where the lapse function f(r) contains the BHs properties.
In this given form, Schwarzschild obtained the first analytic solution for GR [12]. Assuming no

matter content, the inner region of this solution describes a BH, presenting a point of no-return
described by its event horizon. Adding some matter to its core, this metric now describes the
outer region of spherically-symmetric objects like stars or planets, making the classical examples
of GR’s prediction possible, like the perihelion precession of Mercury and the deflection of light
by the Sun [13].

Another proposed prediction from GR is the emission of gravitational waves. Although these
waves were first proposed by Einstein in 1916 [14], they were only discovered a hundred years
later by the LIGO-Virgo collaboration [15] due to the coalescence of two BHs.

This coalescence process is roughly divided into three different stages, each with their own
unique features: the first stage is the inspiral phase, where both bodies are spiraling inward due
to the emission of gravitational waves, albeit far enough from each other to be distinguished as
two objects. The horizons then coincide and the merger phase begins; this is where the strongest
gravitational waves are emitted. The modeling of this phase requires the computation of the full-
solution of Einstein’s non-linear equations, which is only possible through numerical analysis. The
remnant of this collision is a single vibrating BH, with its frequency decaying exponentially. The
last stage of the coalescence is known as the ringdown phase and is well described by perturbation
theory.

Perturbation theory was first applied to BH physics by Regge and Wheeler [16] and was picked
up more than a decade later by Zerilli [17]. The main result obtained in these papers was the
reduction of the cumbersome set of perturbed equations into a single Schrödinger-like equation
for the radial perturbations. Subsequently, the first paper to effectively calculate quasi-normal

1In standard GR.
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modes, that is, the damped oscillation signal of a BH, was done by Vishveshwara [18]. Thereafter,
the calculation of quasi-normal modes for singular BHs in a wide variety of contexts and methods
was initiated ([19, 20, 21] and references therein).

Although the singularities are unavoidable due to the singularities theorems, they may be
overlooked in some considerations related to BHs. But in the last stages of BH evaporation, due
to Hawking radiation in the semiclassical regime of GR [22], these singular regions cannot be
discarded either due to the information loss paradox (see [23] for a review in the subject) or to
establish how BHs evolve in the last stages of evaporation. One of the proposed solutions for
both of these issues, is to assume that as a result of some quantum effect, yet to be fully described
by a quantum gravity theory, the singular regions in BHs would be regularized. Thus the BH’s
centre would not present any divergences, neither in the sense of its curvature scalars nor due
to geodesic incompleteness of the spacetime. These solution are called regular, or non-singular,
BHs.

In light of this, in section 2.2 we review the basics of BH perturbation theory. In section
2.3 we uncover the main properties of the singular and regular BHs which will be examined
later on. In the next two sections, 2.4 and 2.5, we examine two different methods to obtain the
oscillation frequencies: first we review the method of Pöschl-Teller potential, where a closed form
for the frequencies are obtained using an approximate effective potential; then we describe the
semi-analytical WKB method, where we generalize it to the third-order. We present and discuss
the plots of the frequencies against the BHs parameters obtained for each solution in section
2.6. Section 2.7 ends this chapter focusing in the ringdown gravitational waveform, where we
compare how a novel analytical waveform model contrasts with the results already obtained for
two different gravitational waves signals.

2.2. Black hole perturbation theory

BH perturbation theory began with the pioneering work of Regge and Wheeler [16], where they
investigated whether Schwarzschild’s metric was stable under the general perturbation

g′µν(xλ) = gµν(xλ) + hµν(xλ), (2.2)

where gµν(xλ) is the background metric and hµν(xλ) is the perturbed metric. To guarantee the
validity of the linearized field equations, the following condition must be satisfied∣∣∣∣hµν(xλ)

gµν(xλ)

∣∣∣∣� 1, (2.3)

that is, the perturbation term is never dominant over the background metric.

2.2.1. Perturbation of the Einstein equations

The standard theory of gravitation, using the geometrized unit system 8πG = c = 1, is given by
the Einstein field equations (EFE) as

Gµν = Tµν , (2.4)

where Gµν is the usual definition of the Einstein tensor given by Gµν = Rµν − 1
2gµνR, in terms of

the Ricci tensor, Rµν , and its correspondent scalar, R, and Tµν is the stress-energy tensor (SET).
With the well-established background solutions for BHs (like Schwarzschild, Reissner-Nordström

and Kerr, for example), we can check what happens to these solutions under a perturbation of
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the type (2.2). Therefore, the main objective of this section is to outline the procedure to obtain
the general perturbed EFE. To achieve this, we first revise the main elements of the EFE. The
components of the Christoffel symbols may be evaluated via

Γλµν =
1

2
gλα(∂µgαν + ∂νgµα − ∂αgµν), (2.5)

and the Riemann tensor as

Rαµβν = ∂βΓαµν − ∂νΓαµβ + ΓαρβΓρµν − ΓαρνΓρµβ. (2.6)

The Ricci tensor, and its correspondent scalar, are obtained by contracting the Riemann tensor
via

Rµν = Rαµαν , (2.7)

and
R = Rαα. (2.8)

To obtain the perturbed EFE, we have to calculate how each of these quantities behave un-
der first-oder perturbation separately. In the linear regime, where we denote each perturbed
component with a δ, the perturbed affine connection may be obtained via

δΓλµν =
1

2
gλα(∇µhαν +∇νhµα −∇αhµν). (2.9)

Using the same method, the perturbed Riemann tensor may be obtained through the use of

δRαµβν = ∇βδΓαµν −∇νδΓαµβ, (2.10)

which may be recast in terms of the perturbed metric hµν as

δRαµβν =
1

2
(∇β∇µh α

ν +∇β∇νh α
µ −∇β∇αhµν −∇ν∇µh α

β −∇ν∇βh α
µ +∇ν∇αhµβ). (2.11)

Through the contraction of the perturbed Riemann tensor we get the following perturbed Ricci
tensor

δRµν =
1

2
(∇ρ∇µh ρ

ν +∇ρ∇νh ρ
µ −�hµν −∇ν∇µh), (2.12)

where we defined the trace of the perturbed metric as h = hρρ. With a final contraction of the
remaining indices of the perturbed Ricci tensor, we determine the perturbed Ricci scalar as

δR = −hµνRµν +∇µ∇νhµν −�h. (2.13)

By the definition of the Einstein tensor, its perturbation is

δGµν = δRµν −
1

2
Rhµν −

1

2
gµνδR, (2.14)

and we may use the quantities that we calculated to cast it in terms of h

δGµν =
1

2
[(∇α∇µh α

ν +∇α∇νh α
µ −∇ν∇µh) + gµν(hαβRαβ −∇α∇βhαβ + �h)− hµνR]. (2.15)

With all the main components evaluated the perturbed EFE may be written as

δGµν = δTµν , (2.16)
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in which we defined a general SET perturbation as δTµν .
Up to this point this whole structure of equations is general for any linear perturbation given by

equation (2.2). However, despite the linear nature of the perturbed EFE, it is clear that dealing
with them is still a difficult task. Since in this work we are dealing solely with spherically-
symmetric BHs solutions, we must exploit this symmetry to further simplify the equations. In
the next section we set the mathematical ground, using the spherical harmonics as basis of the
two-dimensional sub-space of the sphere, to obtain a simpler set of equations.

2.2.2. Axial and polar decomposition

A second-rank tensor possess the following general transformation law

gµ′ν′(x
λ′) =

∂xµ
′

∂xµ
∂xν

′

∂xν
gµν(xλ). (2.17)

The BHs solutions that we are analyzing possess spherical symmetry, with this we can check how
each component of this metric behave under a general two-dimensional rotation, given by the
following transformation

∂xµ
′

∂xµ
=


1 0
0 1

0 0
0 0

0 0
0 0

R j
i

 . (2.18)

Each component of the metric transforms as [24]

g′00 = g00, g′11 = g11, g′01 = g01,

g′0i = R k
i g0k, g′1i = R k

i g1k,

g′ij = R k
i R l

j gkl,

(2.19)

that is, under a two-dimensional rotation, a general four-dimensional metric transforms as: three
scalars (g00, g01 and g11), two vectors (g0i and g1i) and one tensor (gij). This may be summarized
via the matrix representation of the metric

gµν =


S1 S2 V1 V1

sym S3 V2 V2

sym sym T T
sym sym sym T

 , (2.20)

with the sym indicating the symmetric terms of the metric. This procedure is known as Scalar,
Vector and Tensor (SVT) decomposition. The ease of using this scheme is that each perturbation
type decouple and they can be treated separately.

Usually in BH physics, the scalar perturbations are called of the polar type, which causes
deformation on the BH horizon, and the vector ones as the axial type, responsible for small
increments on the BH’s rotation. As we will see in the following sections, the tensor perturbation
may be gauged-off with a suitable choice, hence they are not dynamical [19].

Due to the spherical symmetry, we use the spherical-harmonics to decompose the axial and
polar perturbations, which form an orthogonal set. Any scalar function may be directly decom-
posed using the spherical-harmonic function, with the usual notation Y m

` (θ, φ)2. It is clear that

2A quick review of its main properties may be found in appendix A
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since it is a scalar, it must be invariant under rotation, thus it is of the polar type. However
we are decomposing the functions over the two-dimensional sphere, hence the vector and tensor
parts must also be decomposed using what is known as vectorial and tensorial harmonics. Since
the axial and polar functions form an orthogonal group, we can assemble the vector-harmonics
into its axial and polar components, and the same can be done to the tensor-harmonics.

The vector-harmonics decomposed in its polar part are defined as

Y m
`i = ∂iY

m
` (2.21)

while the axial -part is
Xm
`i = ε ji ∂jY

m
` , (2.22)

where we defined the pseudo-tensor

ε ji =

(
0 −1/ sin θ

sin θ 0

)
. (2.23)

Similarly, the tensor-harmonic of the polar type is

Y m
`ij = ∇i∂jY m

` (2.24)

and the correspondent axial type is

Xm
`ij =

1

2
(ε ki ∇j + ε kj ∇i)∂kY m

` . (2.25)

Through direct inspection, it can be seen that equations (2.21) and (2.24), under parity
transformation transforms as (−1)`, exactly as the (scalar) spherical-harmonic transforms via
Y m
` (θ, φ) = (−1)`Y m

` (θ, φ). In comparison, the axial parts, equations (2.22) and (2.25) trans-
forms as (−1)`+1. Due to this reason, the axial part is also known as the odd -parity class, and
the polar part as the even-parity class.

These vectorial and tensorial harmonics (as it is used in reference [25]) are a generalization
of the usual spherical-harmonics. This whole set of harmonics are unified in what is called
spin-weighted spherical harmonics, sY

m
` . For s = 0 we would have 0Y

m
` , which are the usual

(scalar) spherical-harmonics used to decompose scalar functions; the vector-harmonics would be
of spin equal to 1, 1Y

m
` ; and the tensor-harmonics would be represented as 2Y

m
` , with s = 2.

This formalism was rediscovered, and first applied to gravitational radiation, by Newman and
Penrose in reference [26]. For an approach more inclined to the mathematical aspects of this
decomposition, we refer the reader to reference [27].

2.2.2.1. Axial-parity

Since the scalar part, expanded in spherical harmonic transforms as (−1)`, its axial contribution
is equal to zero.

Using equation (2.22), the vectorial harmonics are

Xm
`θ = − 1

sin θ
∂φY

m
` ,

Xm
`φ = sin θ∂θY

m
` .

(2.26)
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Its tensorial part, through the use of equation (2.25), may be written as

Xm
`θθ = − 1

sin θ
(∂θ∂φ − cot θ∂φ)Y m

` ,

Xm
`φφ = (sin θ∂θ∂φ − cos θ∂φ)Y m

` ,

Xm
`θφ = 1/2

(
sin θ∂2

θ − csc θ∂2
φ − cos θ∂θ

)
Y m
` .

(2.27)

With each component of the matrix (2.20) decomposed in its axial -parity part, we can rewrite
it in the most general way as

haµν =


0 0 −h0(t, r) 1

sin θ∂φY
m
` h0(t, r) sin θ∂θY

m
`

sym 0 −h1(t, r) 1
sin θ∂φY

m
` h1(t, r) sin θ∂θY

m
`

sym sym −K(t, r) 1
sin θ (∂θ∂φ − cot θ∂φ)Y m

` K(t, r)1
2

(
sin θ∂2

θ −
1

sin θ∂
2
φ − cos θ∂θ

)
Y m
`

sym sym sym K(t, r)(sin θ∂θ∂φ − cos θ∂φ)Y m
`


(2.28)

whereas we defined the general functions h0(t, r), h1(t, r) and K(t, r), depending on both the
radial coordinate r and the time coordinate t. What we have obtained with equation (2.28) is
the most general metric of the axial type. That is, from here we could plug these components
back into equation (2.16), to obtain the perturbed axial EFE. But we have another trick up our
sleeve: a suitable gauge choice to further simplify this set of equations.

The gauge freedom in general relativity is expressed by the following expression

hnewµν = holdµν +∇µξν +∇νξµ,
= holdµν + ∂µξν + ∂νξµ − 2Γαµνξα.

(2.29)

In other words, this equation relates how the perturbed metric holdµν changes along the vector ξµ.
This transformation leaves the linearized Riemann tensor, equation (2.11), unchanged, hence the
new perturbed metric hnewµν is physically the same as the previous one, allowing the freedom on
choosing a convenient ξµ. The ξµ vector components can also be decomposed in its axial -part
through the use of (2.22). That is

ξt = 0, ξθ = −Λ(t, r)
1

sin θ
∂φY

m
` ,

ξr = 0, ξφ = Λ(t, r) sin θ∂θY
m
` .

(2.30)

With the gauge-freedom explicit in Λ(t, r), we can suitably choose this function to annul K(t, r)
in the metric (2.28). This choice is known as Regge-Wheeler gauge.

Since we are looking after wave solutions with frequency ω, to further simplify the equations we
choose the temporal coordinate to behave as e−iωt. Applying these simplifications, and relabelling
some functions, we are left with the following axial -parity metric

haµν =


0 0 −h0(r) 1

sin θ∂φ h0(r) sin θ∂θ
sym 0 −h1(r) 1

sin θ∂φ h1(r) sin θ∂θ
sym sym 0 0
sym sym sym 0

 e−iωtY m
` . (2.31)

A last simplification may be performed realizing that it is not necessary to work for a general
value of m. GR is a covariant theory, therefore we can choose any value of m and the radial
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equations must still be the same. With this we set m = 0, which makes any dependence of the
φ coordinate to vanish without any loss of generality. Employing this choice we obtain

haµν =


0 0 0 h0(r)

sym 0 0 h1(r)
sym sym 0 0
sym sym sym 0

 e−iωt sin θ∂θP`. (2.32)

This is what Regge-Wheeler called as the “canonical form of axial waves”.
With all these simplifications we were able to eliminate one variable from our set of equations

and the spherical harmonics Y m
` lost their φ dependence reducing to the Legendre polynomial.

2.2.2.2. Polar-parity

We closely follow the procedure performed for the axial parity section to obtain the polar de-
composition. Since the scalar part transforms as (−1)(`+1), it will have a contribution of the type
Y m
` (θ, φ).
Through the use of equation (2.21) we can decompose the vector part into

Y m
`θ = ∂θY

m
` ,

Y m
`φ = ∂φY

m
` .

(2.33)

Similarly, using the tensor polar -parity decomposition in equation (2.24) we get

Y m
`θθ = ∂2

θY
m
` ,

Y m
`φφ = (∂2

φ + sin θ cos θ∂θ)Y
m
` ,

Y m
`θφ = (∂θ∂φ − cot θ∂φ)Y m

` .

(2.34)

As we just did for the metric with the other parity, we define the arbitrary functions with
the radial and time coordinate dependence as h0(t, r), h1(t, r), H0(t, r), H1(t, r), G(t, r) and
K(t, r). We may use this back into (2.20) to obtain the most general metric for the polar -parity
decomposition

hpµν =


H0(t, r)Y m

` H1(t, r)Y m
` h0(t, r)∂θY

m
` h0(t, r)∂φY

m
`

sym H2(t, r)Y m
` h1(t, r)∂θY

m
` h1(t, r)∂φY

m
`

sym sym [K(t, r) +G(t, r)∂2
θ ]Y m

` G(t, r)(∂θ∂φ − cot θ∂φ)Y m
`

sym sym sym [K(t, r) sin2(θ) +G(t, r)(∂2
φ + sin θ cos θ∂θ)]Y

m
`

 .

(2.35)
To better simplify these rather cumbersome quantities, we use the gauge-freedom in GR,

equation (2.29), with the polar decomposition to obtain

ξt = M0(t, r)Y m
` , ξθ = M(t, r)∂θY

m
` ,

ξr = M1(t, r)Y m
` , ξφ = M(t, r)∂φY

m
` .

(2.36)

Since now we have three different variables originating from the gauge-freedom equation, we can
choose a suitable M0(t, r), M1(t, r) and M(t, r) to cancel out G(t, r), h0(t, r) and h1(t, r). Once
again we choose a wave solution with frequency ω, setting the time dependence as e−iωt and we
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may choose m = 0, without any loss of generality. With all these simplifications we are left with
the polar -parity metric

hpµν =


H0(r) H1(r) 0 0
sym H2(r) 0 0
sym sym K(r) 0
sym sym sym K(r) sin2(θ)

 e−iωtP`. (2.37)

In Regge-Wheeler’s paper, this is known as the “cannonical form of the polar waves” in the
Regge-Wheeler gauge. With all these steps we were able to reduce the set of variables from seven
to only four.

After obtaining both parities metrics, (2.32) and (2.37), we can use them back in the perturbed
EFE, equation (2.16), after setting an appropriate perturbed SET. Each of these set of equations
may be assembled to obtain a a Schroödinger-lie equation that rules the radial perturbation

d2ψ(r)

dr2
∗

+ (ω2 − V (r))ψ(r) = 0, (2.38)

where r∗ is defined as the tortoise coordinate dr
dr∗

= f(r). This equation is known as the master
equation and its effective potential, V (r), depends on the characteristics of the given BH solution
and on the type of the perturbation.

2.2.3. Perturbation types

Taking Schwarzschild BH as example, if we set the perturbed SET to be equal to zero we obtain
the gravitational perturbation. Since the metric is a tensor, we could borrow the quantum-field
theory terminology and interpret it as a perturbation of a spin-2 test-field.

It is also possible to check how the metric would behave due to different test-fields. To find
the perturbation caused by an electromagnetic field, we must perform the perturbation of the
electromagnetic quadri-potential as

A′µ(xλ) = Aµ(xλ) + δAµ(xλ), (2.39)

which must also obey the sourceless Maxwell’s equations

∇µFµν = 0, ∇[αFµν] = 0, (2.40)

where Fµν = ∂µAν − ∂νAµ is the Faraday tensor. Closely following the procedure of the previous
section, we can expand the Aµ quadri-vector using the axial parity

δAt = 0, δAθ = −a0(t, r)
1

sin θ
∂φY

m
` ,

δAr = 0, δAφ = a0(t, r) sin θ∂θY
m
` .

(2.41)

and the polar decomposition

δAt = a1(t, r)Y m
` , δAθ = a2(t, r)∂θY

m
` ,

δAr = a3(t, r)Y m
` , δAφ = a3(t, r)∂φY

m
` .

(2.42)

This perturbation will be of the electromagnetic type and this may also be recognized as the
perturbation of a spin-1 test-field.
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Similarly, we can inspect the perturbation of a spin-0 test-field, that is, a scalar field. This
field must obey the Klein-Gordon equation given as3

�φ(r) = 0, (2.43)

in the given background curved space-time. This case is particularly interesting because for any
(electro-) vacuum space-time described by equation (2.1), its effective potential is given by the
following general formula

V s(r) = f(r)

[
`(`+ 1)

r2
+
f ′(r)

r

]
, (2.44)

where the prime denotes a derivative in respect to the radial coordinate r.
One of the main results in BH perturbation theory, is that any spherically-symmetric metric4,

in the context of GR, for any perturbed test-field, is ruled by the same master equation (2.38).
The intrinsic characteristics of the BH are embedded within the effective potential V (r). Due to
this, the study of perturbed BHs turns out to be a problem of analysing their respective effective
potential.

2.3. Singular and Regular Black Holes

In this section we first analyse the singular BHs solutions, Schwarzschild, Reissner-Nordström
and Schwarzschild de-Sitter, and then we move on to the regular ones, Bardeen and Hayward.
For both cases we discuss the general traits of the solutions and show the effective potentials for
various cases.

2.3.1. Singular Solutions

2.3.1.1. Schwarzschild

The simplest BH solution is described by the Schwarzschild space-time. The lapse function f(r)
is

fSch(r) = 1− 2M

r
. (2.45)

Schwarzschild’s BH is a simple example of what usually is encountered in BHs solutions: there is
a region where after an observer crosses it, any possible future-light cone will be pointed towards
its centre and, therefore, nothing can return from it. This region is called event horizon, and
for this case it is located at r = 2M . Within it, there is a point that is geodesic incomplete, at
r = 0, meaning that no geodesic can cross through it. Due to this behavior, these points are
called singularities, and they are an unavoidable structure of GR under some certain reasonable
conditions of the manifold (it must be globally hyperbolic) and the correspondent SET (it must
satisfy the weak-energy condition). These results are well enclosed on the singularity theorems
developed by Hawking and Penrose [29].

Mathematically, there is no issue in setting a negative value for the mass, but physically it will
not recover the Newtonian limit at spatial infinity, therefore it is more appropriate to refer to it
as the mass parameter. Doing so, the radius of the event horizon becomes negative, nonexistent.
With this we are stripping-off the event horizon, making the singularity in its centre apparent

3In this thesis we assume massless spin-zero particles.
4For Kerr(-Newman) solution, the method must be changed. The radial equation obtained is in the form of a

Teukolsky equation, first introduced in [28].
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for any observer. As a result, space-times like this are called naked singularities and due to their
eccentric nature, Penrose postulated in the cosmic censorship conjecture that they should not
physically exist [30].

For this solution, the effective potential ruling the radial perturbations may be enclosed in a
single equation

VSch(r) = fSch

[
`(`+ 1)

r2
+ 2

βM

r3

]
. (2.46)

The parameter β is related to the spin of the field through β = 1−S2, also called the field’s spin
weight [20]. Thus, when we set S = 0 (β = 1), S = 1 (β = 0) and S = 2 (β = −3), we acquire
the scalar, electromagnetic and the axial gravitational perturbation, respectively. The latter was
the potential first obtained by Regge-Wheeler in reference [16] and is widely recognized as the
Regge-Wheeler potential.

Lastly, the effective potential for the polar gravitational perturbations, known as Zerilli poten-
tial [17], is given as

V p
Sch(r) =

fSch
r3(ηr + 3M)2

[2η2(η + 1)r3 + 6η2Mr2 + 18ηM2r + 18M3], (2.47)

with 2η = (`− 1)(`+ 2).
Chandrasekhar [31] has shown that the two potentials for the gravitational perturbations,

described by equations (2.46) (setting S = 2), and (2.47), are related by

V
a
p
Sch(r) = ±αdW

dr∗
+ α2W 2 + κW, (2.48)

with

W = fSch
1

2r3(`r + 3M)
, α = 6M, κ = 4η(η + 1). (2.49)

This relationship between the potentials is called the super-partner potentials, which is a typical
term in the context of supersymmetric theories [32]. Such feature arises from the fact that these
potentials possess the same amplitudes for both the transmitted and reflected waves [33]. This
property is known as the isospectral relation, since they have the same quasi-normal spectrum
and this structure imply a relation between the wave-functions ψa and ψp of the type

ψ
a
p =

1

α− ω2

(
∓W +

d

dr∗

)
ψ
p
a, (2.50)

hence, after obtaining the wave-function for one potential, the other can be easily derived [20].

2.3.1.2. Reissner-Nordström

The line element describing a charged BH with charge Q is known as the Reissner-Nordström
space-time. The event horizons are situated at r± = M ±

√
M2 −Q2, and thus three different

cases are possible: i) M > Q gives a BH where the outer horizon is an event horizon and the
inner one a Cauchy horizon; ii) M = Q has both horizons coinciding and is called the extremal
solution; iii) Q > M admits no horizons and a charged naked singularity space-time is described.
The line element for this space-time is described by

fRN (r) = 1− 2M

r
+
Q2

r2
. (2.51)
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The polar gravitational effective potential is given by

V p
j(RN) =

fRN
r3

[
`(`+ 1)r − qi +

4Q2

r

]
, i, j = 1, 2 for i 6= j, (2.52)

with the following definitions

q1 = 3M +
√

9M2 + 4(`− 1)(`+ 1)Q2,

q2 = 3M −
√

9M2 + 4(`− 1)(`+ 1)Q2.
(2.53)

The correspondent axial perturbation effective potential is

V a
j(RN) =

fRN
r3

[
U ± 1

2
(q1 − q2)J

]
, (2.54)

with

ω̄ = ηr + 3M − 2
Q2

r
,

J = fRN
r

ω̄

2
(2ηr + 3M) +

ηr +M

ω̄
,

U = (2ηr + 3M)J + (ω̄ − ηr −M)− 2ηr2

ω̄
fRN .

(2.55)

As for the Schwarzschild solution, both gravitational effective potentials are correlated via

V p
j = V a

j + 2qi
d

dr∗

[
fRN

r[(`− 1)(`+ 2)r + qi]

]
. (2.56)

Using relation (2.44), the effective potential for a scalar perturbation is given by

V s
RN (r) = fRN

[
`(`+ 1)

r2
+ 2

M

r2
− 2

Q2

r3

]
. (2.57)

We see that if we choose Q = 0, we re-obtain the scalar perturbation for the Schwarzschild
effective potential, defined in (2.46) for S = 0 (i.e. β = 1).

From equations (2.52) and (2.54), it is clear that differently from the uncharged solution, each
perturbation type has two different potentials instead of a single one. This stems from the fact
that the perturbation of Einstein’s and Maxwell’s equations cannot be fully disentangled. Due to
this there is no purely electromagnetic, nor gravitational, modes of oscillation; there will be an
emission of both electromagnetic and gravitational radiation for all kinds of perturbation [34].

Realistic BHs must either contain no charge at all, or a small value when compared to its mass,
satisfying the condition Q�M . In this case we may ignore the coupling of the electromagnetic
field and the metric to obtain a distinct potential for the gravitational and the electromagnetic
effective potentials. This procedure is known as freezing Reissner-Nordström and more details
may be found in reference [35].

2.3.1.3. Schwarzschild de-Sitter

BHs may also be investigated when immersed within a contracting/expanding universe with
a cosmological constant Λ. This solution may have either a positive or negative value for Λ
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[36]. Despite it being Kotler’s discovery, the solution is more commonly known as Schwarzschild
de-Sitter (positive Λ) or anti de-Sitter (negative Λ). This space-time is described by

fSdS(r) = 1− 2M

r
− Λ

3
r2. (2.58)

The presence of a mass parameter is associated with the existence of event horizons. Therefore,
we expect to have at least one horizon for positive mass, while its absence implies a case of naked
singularity. On the other hand, the parameter Λ is associated with the cosmological expansion,
or contraction, of the universe, which is intrinsically associated with a cosmological horizon.

For the Schwarzschild anti-de Sitter case (negative Λ), if the mass parameter is positive, only
one horizon solution is possible, which is an event horizon. This space-time describes an observer
outside of a BH in an contracting universe, a crucial element for the AdS/CFT5 correspondence
[37]. However, if the mass parameter is negative we are left with a horizonless case, describing a
naked singularity space-time.

A much richer set of solutions is possible for the Schwarzschild de Sitter (positive Λ) case. The
horizons may be localized via the following relations [38]

r1 =
2√
Λ

sin(ψ),

r2 =

√
3

Λ
cos(ψ)− 1√

Λ
sin(ψ),

r3 = −
√

3

Λ
cos(ψ)− 1√

Λ
sin(ψ),

(2.59)

with
sin(3ψ) = 3

√
ΛM. (2.60)

For a negative mass parameter only a cosmological horizon is present, then the observer would
be found between the naked singularity and the expanding cosmological horizon. However, if the
mass parameter is positive, three different possibilities are available: i) in the range 0 < 9ΛM2 < 1
an observer is bounded between the cosmological and event horizons, that is, they are in the
region between a BH and an expanding universe; ii) when 9ΛM2 = 1, both horizons coincide
and an extremal BH is created, this equality is also known as the Nairiai limit [39]; iii) lastly,
if 9ΛM2 > 1, no horizons are formed, and this can be interpreted as if the event horizon has
grown larger than the cosmological one, making it effectively disappear and its singularity is not
screened [38]. We summarize the horizons structure in table 2.1.

0 horizon 1 horizon 2 horizons

M > 0 and Λ > 0 9ΛM2 > 1 1 = 9ΛM2 0 < 9ΛM2 < 1

M > 0 and Λ < 0 Never Always Never

M < 0 and Λ > 0 Never Always Never

M < 0 and Λ < 0 Always Never Never

Table 2.1.: The different number of horizons are displayed for different values of the cosmological
constant, Λ, and mass, M , for the Schwarzschild (anti) de-Sitter solution.

Perturbation theory was first applied to the Schwarzschild de-Sitter solution by Guven and
Núñez [40], but we refer the reader to [41], where the whole set of effective potentials is summa-

5Anti de Sitter/Conformal Field Theory.
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rized. For this case, the effective potential of the axial gravitational perturbation is

V a
SdS(r) = fSdS

[
`(`+ 1)

r2
+ 2

βM

r3

]
, S = 1, 2 (2.61)

where, once again, β = 1−S2, but opposed to Schwarzschild case, this potential is only valid for
spins-1 and 2. The gravitational perturbation of the polar type is then

V p
SdS(r) =

fSdS
r3(ηr + 3M)2

[2η2(η + 1)r3 + 6η2Mr2 + 3M2(3ηr − Λr3) + 18M3], (2.62)

followed by the definition η = `(`+1)
2 − 1. The same structure encountered in Schwarzschild

relating both potentials, i.e. equations (2.48) and (2.50), also holds true for Schwarzschild de-
Sitter. The adjusted definitions of the function W and the constant β can be found in reference
[41].

The perturbation for a test scalar-field, S = 0, may be obtained using formula (2.44) and is
given by

V s
SdS(r) = fSdS

[
`(`+ 1)

r2
+ 2

M

r3
− 2

3
Λ

]
. (2.63)

It is clear from the previous equations that when setting Λ = 0 the results for Schwarzschild are
re-obtained.

2.3.2. Regular Black Holes

Different from the solutions presented in section 2.3.1, singular BHs curvature scalar does not
diverge at its center. To avoid these singularities, these BHs are sourced by exotic matter,
usually in the form of a particular case of non-linear electrodynamics. In this section we discuss
two regular solutions, with their main properties and effective potentials.

2.3.2.1. Bardeen

The first non-singular BH solution was proposed by Bardeen [42]. Its metric is given by

fB(r) = 1− 2Mr2

(r2 + q2)3/2
. (2.64)

It is clear by direct inspection of the line element that as r → 0 the metric becomes regular at
the centre. The same occurs to its curvature scalars

lim
r→0

R = −24M

q3
,

lim
r→0

RµνR
µν =

144M2

q6
,

lim
r→0

RαµβνR
αµβν =

96M2

q6
.

(2.65)

An observer at infinity would not be able to distinguish Bardeen’s solution from a Schwarzschild
BH since

fB ≈ 1− 2M

r
+O

(
1

r

)3

, r →∞. (2.66)
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However, it is already clear that the charge q does not have the same interpretation as in Reissner-
Nordström BH because

fB(r) ≈ 1− 2Mr2

q3
+O(r)4, r → 0, (2.67)

that is, it does not decrease with 1/r2 as Reissner-Nordström BH, it shows a de-Sitter behavior
instead.

The parameter q was first interpreted as the charge of a monopole magnetic field. This is
described by a nonlinear electrodynamics generated by the following lagrangian-density [43]

LB(F ) =
3M

q3

( √
2q2F

1 +
√

2q2F

)5/2

. (2.68)

Sometime later, Bronnikov [44] discovered that a spherically-symmetric spacetime, sourced by a
magnetic monopole, may be recast in a purely electric counterpart. This relationship between
the two fields is known as the FP duality, and Bardeen’s BH may be re-interpreted as a solution
in the presence of a purely electric source. Even so, despite the fact that the lagrangian-density
cannot be written in a closed and analytic form, it was shown that at infinity the field decays
with 1/r3, that is, it behaves as a non-coulombian electric field [45].

A different way to formulate this regular BH with no need to add magnetic monopoles, is to
interpret the parameter q as a scale defining the mass distribution. Setting the density of the BH
as

ρ(r) =
3Mq2

4π(r2 + q2)5/2
, (2.69)

this solution is obtained with neither the necessity of exotic matter, nor through any modification
of Einstein equations [46].

As usual in BHs solutions, Bardeen space-time structure depends on the parameters of the
metric, in this case both the charge q and the mass M . The zeroes of the function fB(r)
determines the amount and/or the existence of horizons of this solution. If the condition M >
3
√

3
4 q is satisfied, this is a BH hole solution with two horizons: an outer event horizon and an

inner Cauchy horizon. When M = 3
√

3
4 q we have an extremal solution, where the two horizons

coincide. When none of these conditions are satisfied, no horizons appear and we are left with a
spacetime with no singularity.

Although this regular solution was proposed back in 1968, it was not until recently that the
first effective potential, in this case for a massless scalar-field, was evaluated [47]. Using equation
(2.44), the correspondent effective potential for a scalar perturbation is

V s(r) = fB

[
`(`+ 1)

r2
+ 2M

(r2 − 2q2)

(r2 + q2)5/2

]
. (2.70)

The correspondent axial-gravitational perturbation effective potential is given by [48]

V a(r) = f

[
`(`+ 1) + 2(f − 1)

r2
+
f ′

r
+ f ′′ + 2kL

]
, (2.71)

where this closed form works out for both regular solutions, Bardeen and Hayward. Using
equations, (2.64) and (2.68), back into equation (2.71) we obtain

V a
B(r) = fB

[
`(`+ 1)

r2
− 6M

(q4 − 3q2r2 + r4)

(r2 + q2)7/2

]
. (2.72)
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Gravitational and electromagnetic perturbations were also obtained for a Bardeen BH embed-
ded in an universe with a cosmological constant Λ. Much similar to the Schwarzschild (anti)
de-Sitter solution, such solution was coined as Bardeen de-Sitter BH and its structure can be
found in reference [49], but are out of scope for this work.

2.3.2.2. Hayward

Despite not being the first regular solution proposed, Hayward obtained the simplest regular BH,
which is a variation of Bardeen’s [50], but with a different motivation behind it. BH evaporation
happen when ingoing radiation with negative energy flux draws energy from the BH itself. For
static black holes this energy is absorbed in form of mass, and since its event horizon radius
is directly proportional to its mass, the BH shrinks until, eventually, it disappears completely.
To take this into account, the dynamic region of Hayward’s spacetime behaves as a Vaidya-like
solution with either ingoing or outgoing radiation [51]. With this, the Hayward lapse-function
that satisfies the previous conditions is

fH(r) = 1− 2Mr2

r3 + 2Ml2
, (2.73)

where l2 is a convenient encoding of the central energy density, assumed to be positive. This space-
time is particularly attractive because an observer at infinity would not be able to distinguish it
from a Schwarzschild BH since

fH(r) ≈ 1− 2M

r
+O

(
1

r

)4

, r →∞, (2.74)

while near the center it becomes de-Sitter space-time as given by

fH(r) ≈ 1− r2

l2
+O(r)4, r → 0. (2.75)

Analyzing its curvatures scalars as r → 0, it becomes apparent that this spacetime is both regular
at its centre and that it manifests constant curvature, as the de Sitter spacetime requires

lim
r→0

R = −12

l2
,

lim
r→0

RµνR
µν =

36

l4
,

lim
r→0

RαµβνR
αµβν =

24

l4
.

(2.76)

The lagrangian density that sources this BH may be written in terms of the magnetic charge
g as

LH(F ) =
12M

g3

(2g2F )3/2

(1 + (2g2F )3/4)2
. (2.77)

The constant g relates to l via g3 = 2Ml2 [52]. Similar to Bardeen BH, the Hayward metric may
be reinterpreted through the energy distribution

ρ(r) =
3M2g2

2π(r3 + 2Mg2)2
, (2.78)

where g is interpreted as a scale parameter [46].
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Likewise for the other solutions, Hayward solution represents different spacetimes according

to the specific range of parameters. For 3
√

3
4 l < M , we have a BH solution with two horizons;

for 3
√

3
4 l = M it represents a single horizon, extremal, BH; and a horizonless case if otherwise,

characterizing a regular de Sitter spacetime, represented by the constant curvature in (2.76).
The effective potential for a scalar perturbation, through equation (2.44) is

V s
H(r) = fH

[
`(`+ 1)

r2
+ 2M

(r3 − 4Ml2)

(r3 + 2Ml2)2

]
, (2.79)

and the respective axial gravitational perturbation is given by equation (2.71), yielding

V a
H(r) = fH

[`(`+ 1)

r2
+

6M

r2(r3 + 2M`2)3
(32`6M3 + 24`4M2r3 + 14`2Mr6 − r9)

]
. (2.80)

2.4. Pöschl–Teller Potential

As we have discussed in the previous section, the quasi-normal frequencies usually cannot be
retrieved analytically due to the rather complicated potentials involved. But with a simplification
of the effective potential, the frequencies can be obtained analytically.

In 1933, Pöschl and Teller jointly proposed a potential to obtain the energy eigenvalues of a
quantum-mechanical problem [53]. The general potential is given by

VPT (x) = −µ(µ+ 1)

2
sech2(x)− µ(µ+ 1)

2
csch2(x). (2.81)

Besides the analytical eigenvalues property, it allows to compute the scattering data exactly as
well, which may be shown to be reflectionless [54]. The reader may check reference [55] for a
introductory view about this particular potential.

The precursors to apply this potential in the context of BHs were Ferrari and Mashoon in the
early 80s [56]. Instead of using the whole relation stated in equation (2.81), they have used the
effective potential as

V (r∗) =
V0

cosh2[α(r∗ − r∗0)]
, (2.82)

where r∗ is the usual tortoise coordinate, r∗0 corresponds to the maximum of the potential and
the constants V0 and α are defined as

V0 = V (r∗0), and α2 = − 1

2V0

d2V

dr2
∗

∣∣∣∣
r∗0

. (2.83)

In figure 2.1, we show how the Schwarzschild potential, equation (2.46) for S = 2, and the
approximate potential, equation (2.82), relates to each other.

With this, the exact frequencies are given by

ω = iα(n+ 1/2)± α
√

1

4
− V0

α2
, n ∈ N. (2.84)

Since this is an approximation, it is not expected to fully replicate the results. Nonetheless, the
frequencies obtained by this method are a good approximation within the eikonal limit, that is, in
the regime of high multipole number `. In addition, the analytical quasi-normal frequencies has
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Exact potential

Pöschl–Teller potential

-20 20 40
r*(r)

0.05

0.10

0.15

V(r*)

Figure 2.1.: The axial gravitational Schwarschild potential, curve in blue, and the Pöschl-Teller
potential, curve in orange. We set M = 1 and ` = 2.

been obtained using the generalized potential (2.81). As expected, the result is a generalization
of the equation (2.84) [57].

Mashhoon’s method is a good approximation for Schwarzschild, Reissner-Nordström and Kerr
(after some modification) BHs. Surprisingly, it is an exact solution for the first two cases when
embedded in a cosmological constant Λ, namely Schwarzschild de-Sitter and Reissner-Nordström
de Sitter BHs in the near extremal cases [58]. The same method was further generalized by
Molina [59] to d dimensional solutions of these cases.

2.5. The WKB method

The WKB method (named after the physicists Gregor Wentzel, Hendrik Kramers and Léon
Brillouin) is an approximate method to solve linear differential equations. The most important
and recognizable usage of this method is to solve the time-independent Schrödinger equation [60]

~2

2M

d2Ψ(x)

dx2
+ (E − V (x))Ψ(x) = 0. (2.85)

Due to the resemblance of equation (2.85) with the master equation (2.38), the idea to employ
the same method for BH perturbation theory is evident.

Formally, the WKB method consists of an approximation in a single exponential power series
of the type

ψ(r) ≈ exp

[
1

ε

∞∑
n=0

εnSn(r)

]
, ε→ 0, (2.86)

in this case, the differential equation to be analysed has the following general form

d2ψ(r)

dr2
= Q(r)ψ(r), Q(r) 6= 0. (2.87)

The main difference between a quantum mechanical problem, in which you may have different
numbers of returning points for the effective potential6, is that in the BH perturbation theory the
function Q(r) contains two turning points, necessarily. For this reason, the matching procedure
must be altered, as was developed in reference [61].
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-∞
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∞

Figure 2.2.: A sketch of a general potential V (r) with two turning points, r
(1)
∗ and r

(2)
∗ .

The main peculiarity in a quasi-normal mode problem is that specific boundary conditions
must be set. Since waves cannot emerge from the Minkowskian spatial infinity, a purely outgoing
waves boundary condition must be chosen

ψ(r) = Zoutψ(r)out, r∗ →∞, (2.88)

while at the event horizon, since waves cannot arise from within the BH, only incoming waves
are permitted, then

ψ(r) = Zinψ(r)in, r∗ → −∞. (2.89)

With these boundary conditions it is clear that the BH itself is losing energy in the form of
gravitational waves. This happens either by waves going into the event horizon or by dissipating
themselves into the spatial infinity. Using these appropriate boundary conditions, the WKB
matching condition throughout the three regions leads to

Q0√
2Q′′0

= i(n+ 1/2), n ∈ N, (2.90)

where the subscript 0 represents the function Q(r) evaluated at its maximum and will be omitted
from now on in order to simplify the notation.

The factor n is known as the overtone number, which is a discrete quantity. To have a better
intuition of this quantity, in acoustic physics we can denote the fundamental vibration frequency
of any standing wave as f . Integer multiples of this fundamental frequency, 2f , 3f , 4f , are called
the first, second and third overtone, respectively. Therefore, for n = 0 we have the fundamental
frequency (first harmonic), then for n = 1 the first overtone (second harmonic) and so on7.

Until this point, the method is fully general for any differential equation that obeys equation
(2.87), for any given two turning point function Q(r), with Q′′(r) 6= 0, where the latter implies
that a maximum must exist.

For BHs physics, the method was first used by Mashhoon [63], where he indentified Q(r) =
V (r)− ω2, and found the real and imaginary frequencies of the oscillations to be described as

ω2 = V − i(n+ 1/2)
√
−2V (2), (2.91)

with the derivatives of the potentials given by

V (m) =
dmV

drm∗
= f(r)

d

dr
V m−1, (2.92)

which must be evaluated at the potential’s maximum.

6Usually a single one
7In general, the overtone is any frequency above the fundamental one, then it may not match exactly the

correspondent harmonic. This relationship is dependable on the shape of the instrument. The simplest example
of this is a string with one free end and the other one fixed where only the odd harmonics exists [62].
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Figure 2.3.: In this plot we evaluate the real part of (ωPT − ωWKB)/ωWKB in percentage. That
is, the percentile difference between both methods as the multipole number increases.
For ` = 2 the difference is of 1.37% and it quickly decreases as the multipole number
increases. For ` = 4 the difference is already less than 0.3%, showing that both
methods agree for the eikonal limit.

The easiness of the WKB method is well stated in equation (2.91): instead of solving a rather
difficult differential equation numerically, the frequencies are obtained by solving a much simpler
algebraic one. Furthermore, it can easily be expanded to further orders of approximation by
directly adding more terms to the condition above. This method has been first expanded to the
third-order by Iyer and Will in reference [64]. Subsequently, a succession of papers arose studying
every classical BH solution: Schwarzschild [65], Reissner-Nordström [34] and Kerr [66]. There-
after, it has been even further developed to the sixth-order for an N−dimensional Schwarzschild
BH [67].

In the third-order approximation, the condition given in equation (2.91) changes in the following
manner

ω2 = [V +
√

(−2V (2))Γ]− i
√
α(−2V (2))(1 + Ω), (2.93)

whereas the cumbersome quantities Γ and Ω are

Γ =
1√
−2V (2)

[
1

8

(
V (4)

V (2)

)(
1

4
+ α

)
− 1

288

(
V (3)

V (2)

)2

(7 + 60α)

]
, (2.94)

Ω = − 1

2V (2)

[
5

6912

(
V (3)

V (2)

)4

(77 + 188α)− 1

384

(V (3))2V (4)

(V (2))3
(51 + 100α)+

1

2304

(
V (4)

V (2)

)2

(67 + 68α) +
1

288

(
V (3)V (5)

(V (2))2

)
(19 + 28α)− 1

288

(
V (6)

V (2)

)
(5 + 4α)

]
,

(2.95)

with α = (n+ 1/2)2.
In section 2.6, we chose to carry out our analysis using the third-order expansion instead of

the sixth-order. The reasoning behind this is that apart from the computational constraints
induced by the sixth-order method, this may also obscure the semi-analytical discussion that
we implement. Thus, we limit ourselves to the third-order expansion, which is enough for our
porpuse.
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2.5.1. Stability condition

Throughout the whole mathematical development, we assumed the wave function Ψ(t, r, θ, φ), to
have a time functional form of the type

Ψ(t, r, θ, φ) ≈ eiωt, (2.96)

which describes an oscillation in time. However, when analysing equation (2.93), we see that the
general frequency also has an imaginary component

Ψ(t, r, θ, φ) ≈ e(iωr+ωi)t. (2.97)

We stress that the real and imaginary part of ω has been decomposed using a different sign
convention ω = ωr − iωi.

The real part of the frequency represents the real oscillation of the BH, which is positive
definite. Conversely, the imaginary part of the frequency may be either positive or negative.
If ωi > 0, the exponential term diverges as time evolves, and it follows that the oscillation of
the BH will always grow, thus describing an unstable solution. On the other hand, for ωi < 0,
we have a damped oscillation, since the whole exponential term decreases to zero as the time
coordinate infinitely increases and, therefore, the BH ceases its oscillation; this describes a stable
solution. Finally, ωi = 0 describes a normal mode, with a BH infinitely vibrating. We must stress
that this method does not conceal any formal proof of any stability or instability. Due to the
approximative nature of the WKB method, it is, at most, an indication of the general behavior
of the solution.

Hence, we can define a quasi-normal mode as a general oscillation which possess an exponential
damping factor. Note that this is only true when ωi < 0.

2.6. Discussion

In this section, we discuss the results we obtained using the WKB method up to the third-order
of the first few overtone numbers, n, and multipole values, `. We find that most of the plots
follow the same general behaviour and, as such, we only present a fraction of them. We believe
that the plots displayed summarize well the main results that we obtained.

We use the following convention in all plots to follow: the graphs on the left side are plotted
for n = 0 and ` = [2, 3, 4], while the ones on the right side are for n = [0, 1, 2] and ` = 2. The
continuous lines represent the real frequencies and the dashed ones are the respective negative
imaginary frequencies. When not explicitly stated in the figures, we adopted the following values
for the constants: M = 1, Q = 0.5, Λ = 10−1, q = 0.5 and l = 0.5.

2.6.1. Schwarzschild

The plots in figure 2.4 are the results that we obtained for the perturbation of the Schwarzschild
solution, using the formalism explained in subsection 2.3.1.1. We can see that for a fixed overtone
number, the imaginary frequencies remain almost unchanged. On the other hand, as it increases
and ` remains fixed, both real and imaginary frequencies are altered. As the value of n grows
the frequency decreases, as does the damping factor. It is also clear that, as the mass of the BH
increases, its vibration is reduced and the damping effect becomes less pronounced.

We conclude that the stability condition as defined in 2.5.1 is satisfied and, therefore, the BH
is stable.
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Figure 2.4.: We show the axial gravitational perturbation in Schwarzschild space-time for a vary-
ing mass. The continuous lines represent the real frequencies and the dashed ones
are the respective imaginary frequencies. The plot on the left maintains n = 0 con-
stant while ` varies through 2 to 4. We see that as ` increases the real frequencies
also grow, however the imaginary frequencies seem insensible to such changes. The
plot on the right maintains ` = 2 constant while n varies through 0 to 2. We can
identify that the real frequencies decrease as n increases, while the opposite occurs to
the imaginary frequencies. As the mass increases, it damps the oscillation frequency
while this effect becomes less evident.

2.6.2. Reissner-Nordström

In what follows, we discuss how the frequencies behaves for the Reissner-Nordström BH, as
displayed in figures 2.5 and 2.6.

In figure 2.5, we display an axial gravitational/electromagnetic perturbation for the V1 potential,
as defined in equation (2.52), for a fixed charge Q = 1 and for a variable mass parameter. Note
that the plot starts at M = 1, where the condition for existence of a BH is satisfied. Although the
value of the frequencies are strictly different from Schwarzschild’s, the mass damps the frequencies
as well and the same analysis described in the previous subsection applies. We can also see that
in the plot on the right side, where the parameter ` is kept constant, the real frequencies slightly
decreases with the increase of the overtone number.

In figure 2.6, we have an axial gravitational/electromagnetic perturbation of the potential V1,
as defined in equation (2.52). We allow the charge to vary until its extremal value, Q = 1, for a
fixed mass. We were able to check that the imaginary frequencies are weakly dependent on the
BH charge, as was first identified in reference [68]. Lastly, we see that the real frequencies of the
BH increase as the charges grows, that is, its charge does not act as a damping factor, as the
mass does, but as a driving parameter.

As we have established for the Schwarzschild solution, the imaginary frequencies seem to be
sensible only to the variation of n. This characteristic may be observed while keeping either the
mass or the charge fixed, as displayed in both graphs set.

Briefly, the Reissner-Nordström solution is a stable BH in which the mass damps its vibra-
tion. On the other hand, its charge slowly increases its vibration, while keeping the imaginary
frequencies unaffected.
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Figure 2.5.: Axial gravitational/electromagnetic perturbation of potential V1 in Reissner-
Norström BH for a fixed mass M = 1. The continuous lines represent the real
frequencies and the dashed ones are the respective imaginary frequencies. The plot
on the left maintains n = 0 constant while ` varies through 2 to 4. We see that as
` increases the real frequencies also grow, however the imaginary frequencies seems
insensible to such change, exactly as in the Schwarzschild case. The plot on the right
maintains ` = 2 constant while n varies through 0 to 2. We can identify that the
real frequencies lower their value as n increases, while the opposite occurs to the
imaginary frequencies. We see that the mass behave similar to the Schwarzschild
BH.
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Figure 2.6.: Axial gravitational/electromagnetic perturbation of potential V1 in Reissner-
Norström BH for a fixed mass M = 1. The continuous lines represent the real
frequencies and the dashed ones are the respective imaginary frequencies. The plot
on the left maintains n = 0 constant while ` varies through 2 to 4. We see that as
` increases the real frequencies also grow, however the imaginary frequencies seems
insensible to such change, exactly as in the Schwarzschild case. The plot on the right
maintains ` = 2 constant while n varies through 0 to 2. We can identify that the real
frequencies lower their value as n increases, while the opposite occurs to the imagi-
nary frequencies. In both plots it is clear that the frequencies are barely sensitive to
the charge variation, while the charge increases the real vibration of the BH.
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2.6.3. Schwarzschild de-Sitter

Now we discuss the frequencies of the Schwarzschild de-Sitter BH in figures 2.7, for fixed mass,
and 2.8, for fixed Λ.

In figure 2.7 we show the perturbation keeping the cosmological constant Λ constant while

varying the mass from M = 0 to M =
√

10
3 ≈ 1.05, within the BH parameter range. We see that

the general behavior of the frequencies closely follow Schwarzschild’s. However, as we approach
the Nairiai limit, both the real and imaginary frequencies rapidly reaches zero. This is compatible
with a well-known result that extremal BHs do not emit quasi-normal modes waves.

A different behavior occurs when the mass of the BH is fixed, while Λ varies from Λ = 0 to
Λ = 1/9, as figure 2.8 shows. For Λ = 0 the frequencies match the value of Schwarzschild BH, as
expected. However, the frequencies possess a general decreasing linear behavior, until reaching
next to its extremal value where the frequencies abruptly goes to zero, as it is expected for an
extremal BH. Similar to the Reissner-Nordström BH, the plot on the left side shows that the
imaginary frequencies are insensible to the variation of the value of the cosmological constant
for a fixed multipole-parameter, however the plot on the right side shows that this is not true
through the variation of n.

Both the ` and n behaves similarly, in both cases. We can also conclude that both parameters
of the BH, Λ and M act as a damping parameter, forcing the real frequencies to decrease as it
reaches the extremal limit.
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Figure 2.7.: Axial gravitational/electromagnetic perturbation Schwarzschild de-Sitter BH for a
fixed cosmological constant Λ = 10−1. The continuous lines represent the real fre-
quencies and the dashed ones are the respective imaginary frequencies. The plot on
the left maintains n = 0 constant while ` varies through 2 to 4. We see that as
` increases the real frequencies also grow, however the imaginary frequencies seems
insensible to such change, exactly as in the Schwarzschild case. The plot on the right
maintains ` = 2 constant while n varies through 0 to 2. As usual, the mass damps
the real oscillation frequencies, while making the imaginary ones less pronounced,
however they both quickly go to zero as it reaches closer to the extremal condition.

2.6.4. Bardeen

In figures 2.9 and 2.10 we check how the frequencies behave for the axial perturbation through
the variation of its mass and charge.
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Figure 2.8.: Axial gravitational/electromagnetic perturbation Schwarzschild de-Sitter BH for a
fixed mass M = 1. The continuous lines represent the real frequencies and the
dashed ones are the respective imaginary frequencies. The plot on the left maintains
n = 0 constant while ` varies through 2 to 4. We see that as ` increases the real
frequencies also grow, however the imaginary frequencies seems insensible to such
change, exactly as in the Schwarzschild case. The plot on the right maintains ` = 2
constant while n varies through 0 to 2. Particular to this case, the general behavior
of the frequencies is almost linear, until reaching close to its extremal limit where the
frequencies quickly reach zero. Besides this, it is possible to see that the imaginary
frequency is almost not sensible to the variation of Λ through the variation of the
parameter `.

First, in figure 2.9, we maintain the mass fixed at M = 1 and we vary the charge, obeying
the BH condition, from q = 0 to q = 4

3
√

3
≈ 0.7698. This set of graphs are similar to figure 2.6,

with the value of the frequencies being a bit lower than the Reissner-Nordström’s counterpart,
but the increase in the real oscillation frequency occurs a bit more smoothly. It may also been
seen in the figure in the right side that as n increases the imaginary frequencies drops sooner as
the charge reaches the extremal limit.

For a fixed value of the magnetic charge, q = 1/2 in figure 2.10, the usual behavior can be
seen: the mass damps the real frequencies and increase the imaginary ones; for a fixed n both
frequencies are unchanged through the variation of the multipole number; as ` increases, the real
frequencies does as well; and as n increases both the real and imaginary frequencies decreases.

In both cases, we check a similar behavior to Reissner-Nordström ’s BH, and it shows that it
is stable for both parameter variation.

2.6.5. Hayward

We show how the axial frequencies change with the BHs parameters mass and l in figures 2.11
and 2.12 for Hayward BH.

From both plots sets, 2.11 and 2.12, we see that the same analysis employed for Bardeen
solution holds true. The most noticeable difference is that for ` constant, the real frequencies are
higher while the imaginary ones lower, when compared to Bardeen BH.

We see that the BH is consistent with being stable for the whole range of the allowed parameters
in both cases.
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Figure 2.9.: Axial gravitational/electromagnetic perturbation of the Bardeen BH for a fixed mass
M = 1. The continuous lines represent the real frequencies and the dashed ones are
the respective imaginary frequencies. The plot on the left maintains n = 0 constant
while ` varies through 2 to 4. We see that the very same analysis performed for
Reissner-Nordström BH, when the mass is fixed, holds true. The main difference is
that the real oscillation increases more smoothly and the imaginary frequencies start
to go to zero quicker as n increases.

ℓ=2 ℓ=3 ℓ=4

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

Mass

F
re
qu
en
cy

n=0 n=1 n=2

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

Mass

F
re
qu
en
cy

Figure 2.10.: Axial gravitational/electromagnetic perturbation of the Bardeen BH for a fixed mag-
netic charge q = 1/2. The continuous lines represent the real frequencies and the
dashed ones are the respective imaginary frequencies. The plot on the left maintains
n = 0 constant while ` varies through 2 to 4. The usual damping effect due to the
increase of the mass may be seen in both plots.

2.7. The ringdown gravitational wave

The first idea of the gravitational force being propagated through a wave was by Henri Poincaré
[69], ten years prior to Einstein’s conception of GR. Due to the intrinsic complexities of the
GR theory, such as it being inherently non-linear and its ambiguous definition of energy [70], to
cite some major concerns, it was deeply debated whether the gravitational waves would carry
energy themselves. This discussion came up to a conclusion with a thought experiment given by
Feynman in the late 1950s, with what is now known as the “bead argument” [71].

It was settled. Gravitational waves do carry energy. The follow up question seems rather
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Figure 2.11.: Axial gravitational/electromagnetic perturbation of the Hayward BH for a fixed
mass M = 1. The continuous lines represent the real frequencies and the dashed
ones are the respective imaginary frequencies. The plot on the left maintains n = 0
constant while ` varies through 2 to 4. To this particular case we set ` = 3 on the
plot on the right side to better visualize it. Once again we recover similar results
obtained for Reissner-Nordström solution.
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Figure 2.12.: Axial gravitational/electromagnetic perturbation of the Hayward BH with l = 1/2.
The continuous lines represent the real frequencies and the dashed ones are the
respective imaginary frequencies. The plot on the left side maintains n = 0 constant
while ` varies through 2 to 4. We see the same general behavior as Bardeen BH,
but with slightly difference in the frequencies value for the plot on the right.

obvious then: how do we measure it?
The first generation of experiments that attempted to detect them were based on a huge metal

cylinder, working as a kind of “antenna”, which would vibrate due to the gravitational wave
passing through. Several years were spent trying to improve the apparatus, which culminated in
a claimed detection in 1970 [72].

Despite the dubious claim, the search for gravitational waves kept moving forward. Based on
the interferometric setup of the Michelson-Morley experiment, the two observatories of the Laser
Interferometer Gravitational-Wave Observatory (LIGO) were successfully built in 1997, in the
USA, while the Virgo observatory was completed in 2003, in Italy. It was not until 2007 that
both observatories agreed to join in a collaborative search for gravitational waves, thus creating
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the LIGO-Virgo Science Collaboration (LVSC)8

Later, in 2016, the LVSC announced the detection of gravitational waves due to the merger of
two BHs [3]. This marked the first direct measurement of gravitational waves and the first BH
observation. The LVSC just concluded Observation run 3 (O3). O1 and O2 together detected
eleven mergers (seven BHs and one neutron star merger) [73], and with the first part of O3, we
have fifty mergers in total [74]9.

One way to test fundamental physics hidden in the gravitational waves, is to look at the
remnant, single, BH. The first two phases of the coalescence modeling, the inspiral and the
merger, may depend on the environment, accretion disk and the spin direction. While the
ringdown phase, the quasi-normal modes are affected solely by the mass (M) and the BH spin
parameter (a), fully described by GR10.

Up to now, the merger phase has only been described using numerical relativity. Thus, the
whole coalescence waveform culminated with the Simulating eXtreme Spacetimes (SXS) Col-
laboration catalog of numerical simulations for merging black holes [75, 76] with thousands of
waveforms, for a whole range of parameters, readily available. Despite the numerical success,
finding an analytical solution to the whole waveform would enlighten us on the intrinsic details
of gravitational wave theory, while opening the possibility to unravel some new details of GR as
well.

In light of this, in this section we start by developing an exponential decaying toy model for
the ringdown phase, and we show that this recovers the BH’s intrinsic parameters. Next, we
present a novel analytical model that relies on the remnant BH. It does so by tracing back the
light rays to the merger stage.

2.7.1. A toy model

In the ringdown regime, the late-time behavior of the time dependent waves are well described by
an exponential tail [77, 78, 79]. That is, the gravitational wave strain h(t) may be approximated
to an exponential decaying term with a sine/cosine oscillating function of the type

h(t) = Ae−ωit cos(ωrt+ φ), (2.98)

where we defined a decaying wave with damping factor ωi (for ωi > 0), oscillation frequency ωr,
amplitude A and phase-shift φ. In figure 2.7.1 we plot the general behavior of this function.

To understand how we can recover the BH parameters through the analysis of a signal, we
simulate a ringdown signal by drawing random samples from a gaussian distribution following
model (2.98). Then, we run a Markov Chain Monte Carlo (MCMC) code in Python, using
the Metropolis–Hastings algorithm [80, 81], in order to estimate the four free parameters of the
model. We show the Probability Density Function (PDF) obtained in figure 2.7.1.

For instance, assuming a Schwarzschild BH, we can match the real and imaginary frequencies to
a given mass. Despite the waveform being a superposition of the oscillation modes, the ringdown
is mostly dominated by the fundamental one, which corresponds to the least damped [82].

Before moving on to a more accurate model, we must stress the importance of setting where the
ringdown regime starts. In other words, at what point in time the transition from the non-linear
regime becomes a linear superposition of the damped waves [83].

We have already discussed that the merger is the most energetic phase of the whole process,
it is therefore associated with the highest peak of h. On the other hand, several different peaks

8With the japanese observatory Kagra joining the collaboration in 2019.
9O3 was divided into two different parts, with the second half of the catalog yet to be released.

10From now on we are going to assume astrophysical BHs only, that is, they are well described by Kerr solution.
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Figure 2.13.: This plot represents a sketch of the general behavior of a damped wave. The blue
line is given by equation (2.98), within the orange exponential envelope.

may be used to define the start of the ringdown regime: the strain amplitude and the luminosity
peak, both of which are related to the quadrupole moment tensor [84]; and two different peaks
related to ψ4

11, which are its own peak and the luminosity peak.
Since the Signal-to-Noise Ratio (SNR) in the ringdown is low, compared to all the previous

stages of the coalescence, this choice leads to vastly different results for the real and imaginary
frequencies of the coalescence. This will directly influence the estimation of the mass and the spin
parameter of the remnant BH. For example, in GW150914 of figure 2.7.1, the x-axis represents
the real frequency and the y-axis the imaginary one. Four different choices for the start of
the ringdown are chosen, t0 = tM + 1, 3, 5, 6.5 ms, and we can see that the constrain on both
frequencies change according to that choice, which potentially leads to different estimations of
the mass and spin of this BH.

2.7.2. A merger-ringdown analytical model

In order to obtain the full waveform of all coalescence stages of a binary system we simply glue
smaller waves together. The usual approach, to obtain the late dynamical evolution of a two-body
problem, in GR is done by mapping their relative motion onto the dynamics of one particle with
a reduced mass moving in an effective metric. This method is known as the Effective One-Body
(EOB) formalism [87, 88], and is used in the data analysis of the gravitational waves detected by
the LVSC.

Instead of trying to evolve the two-body spacetime into the remnant’s single body by the
end of the merger, we use a novel method that starts from the final perturbative spacetime
and retroactively recreate the post-Innermost Stable Circular Orbit (ISCO). This approach is
referred to as the Backwards One-Body (BOB) method [89]. This model relies on the fact that
the null geodesics on unstable circular orbits, at the BH’s light ring, describe the gravitational
wave emission of a single perturbed BH. That is, there is a direct correspondence between the
quasi normal modes’ frequencies, after the merger, and the null rays at the light ring, before the

11One of the Newman-Penrose scalars [85], which is associated to the outgoing transverse radiation term [86]
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Figure 2.14.: Corner plot showing the parameter constraint on the amplitude, real and imagi-
nary frequencies, and the phase-shift for model in equation (2.7.1) given a gaussian
random distribution.

merger.
The exponentially decaying waveform can be found by evaluating how the bundle of null

geodesics (null congruence) has diverged from the light ring [90]. It is then possible to trace back
the null congruence to the point where the bundle converges, which is expected to be associated
with the peak of the strain’s amplitude, thus allowing us to predict how the amplitude behaved
at earlier times. With the evolution of the amplitude in hand, BOB uses a general relationship
between the strain amplitude to compute the frequency, as described in reference [91]. Finally,
the phase evolution is acquired through the direct integration of the frequency.

In a nutshell, BOB is a first-principle model that describes the evolution of the amplitude,
frequency and phase-shift, of a system in the ”merger-ringdown” phase, which englobes the part
of the waveform occurring at and after the time of peak amplitude for the waveform strain h. To
show that this model is compatible, with the available observed data, would imply in the first
analytical model that does not rely on a fit using numerical relativity [89].

In a more straightforward manner, BOB takes the final dimensionless spin af , and the final
mass Mf , of the merged remnant as its main input, and computes the complex strain h(t) =
h+(t) + ih×(t) to be used in equation (2.98).

We test this model using two different gravitational waves, for the data available at the Grav-
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Figure 2.15.: Plot relating the real and imaginary frequencies for different starting points for the
ringdown regime: t = tM + 1, 3, 5, 6.5 ms. Figure taken from reference [1].

itational Wave Open Science Center (GWOSC) [92].

2.7.2.1. Some preliminary results

The GW150914 signal was originated by a binary BH system with masses 35.8+5.3±0.9
−3.9±0.1M� and

29.1+3.8±0.1
−4.3±0.7M�. The published results for the mass and spin of the remnant BH are 62.0+4.1±0.7

−3.7±0.6M�
and 0.67+0.05±0.01

−0.07±0.02, respectively [93]. In figure 2.7.2.1 we show the PDF for these two parame-
ters using BOB. While the final mass found is substantially higher than the accepted result,
71.92+2.31

−2.91M�, their final spin, 0.74+0.04
−0.06, is compatible within the 68% Contour Levels.

The coalescence signal GW170104 was caused by a primary BH with mass 31.1+8.4
−6.0M� and

a secondary one with 19.4+5.3
−5.9M�. We present the PDF for the mass and spin of the final

BH using BOB in figure 2.7.2.1. We estimate the mass to be 64.13+5.96
−6.37M�, respective spin

0.71+0.12
−0.17. Similar to the previous case, the final mass value is fairly higher than the one published,

50.7+5.9
−5.0M�, while the spin parameter is within the expected value of 0.64+0.09

−0.20 [94].

BOB is a fairly new model trying to evolve GR’s equation through the merger phase of a
binary coalescence. It still needs to be further investigated, both theoretically12, and against
some more data. Being conservative about these preliminary results, we can say that the method
is compatible when obtaining the mass of the final BH, but the higher results obtained for the
mass must be further investigated.

12Still waiting for a more detailed paper Sean!
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Figure 2.16.: Posterior distribution of the spin parameter af and mass Mf for GW150914 using
BOB model.
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Figure 2.17.: Posterior distribution of the spin parameter af and mass Mf for the for GW170104
using BOB model.
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CHAPTER 3.

The connection between k-essence and Rastall
and their stability

3.1. Introduction

Finding similar structures in different contexts, is a recurrent work in both mathematics and
physics. One example is the Kaluza-Klein [95, 96] work on a five-dimensional theory of gravity.
Their theory naturally1 gives raise to the standard four-dimensional Einstein gravity and an
equation for the scalar field. But the surprising result is that it also gives rise to the classical
Maxwell’s electromagnetism. The investigation of this “coincidence” played an important role in
the evolution of string theory.

In this chapter we step out of BH quasi-normal modes study and investigate a “coincidence”
found in two different alternative theories of gravity. In one side we have a scalar-tensor theory,
where the source of gravity is not described only by a geometrical tensor, but also by a function
of a scalar field: k-essence. In the other side we have a rather exotic theory stating that the
conservation of energy and momentum depends on the curvature of spacetime: Rastall theory
(see reference [97] for a review in several different gravity theories proposals). If we add a scalar
field as a source for gravity for Rastall theory, some static spherically-symmetric solutions mimic
k-essence model in its geometric solution.

It is hard to argue that these occurrences happen by only chance, and one should be inclined
to further investigate what delves at the bottom of these incidences. This investigation should
lead to a deeper connection between these two theories, which may uncover some new intricate
relations for some, at first, disconnected models available.

This deepens when we check how the stability of these solutions work in both contexts. A näıve
thought would suggest that if one solution is stable/unstable in one context, the same should
apply for the other model. However, as we will show, while the k-essence solutions are proven to
be unstable, the Rastall counterpart are shown to be inconclusive.

Due to the peculiar nature of Rastall theory, we are prone to assume that this theory holds
an intrinsic oddidity that must be further investigated. But we hold this question for the next
chapter.

With this, we begin this chapter in, section 3.2, with a quick review of k-essence and Rastall
models, making note on the BH-like solutions that we are going to further examine. In the
follow-up section, 3.3, we explore under what conditions the two theories relate to each other
and how this duality works. We finalize this chapter tackling directly the stability of the BH
solutions in both theories, in section 3.4.

1Assuming that “naturally” stands for a particular choice of compactification, the cylinder condition hypothesis.
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3.2. Reviewing the two theories

3.2.1. K-essence theory

K-essence models [98] consider a general function of a scalar field φ. Its lagrangian density is
given by

L =
√
−g[R+ F (X,φ) + Lm], (3.1)

with X being the kinetic term, written as

X = η∂µφ∂
µφ, (3.2)

where η = ±1 is chosen to make X positive, F (X,φ) is a general function of the kinetic term and
the scalar field itself, and Lm is the lagrangian density for matter fields.

The general field equations for this theory are

Gµν = T φµν + Tmµν ,

T φµν = ηFX∂µφ∂νφ−
1

2
gµνF,

η∇λ(FX∂
λφ) =

1

2
Fφ,

(3.3)

where T φµν and Tmµν are the SET due to the scalar field and Lm respectively. We denote the
derivatives in respect to X and φ as FX = ∂XF and Fφ = ∂φF . We restrict ourselves for a
particular choice of the kinetic term as

F (X,φ) = εXn + 2V (φ), (3.4)

that is, a general nth power of the kinetic term X and an interacting potential V . With this
assumption, the metric and scalar field equations become

Gµν = ε

(
η∂µφ∂νφ−

1

2
gµν∂λφ∂

λφ

)
Xn−1 + V gµν ,

�φ+ 2(n− 1)
∇αφ∇βφ∇α∇βφ

∂λφ∂λφ
= − 1

n
Vφ.

(3.5)

Using this set of equations, some static spherically-symmetric solutions were found in reference
[2]. We summarize their main structure and properties:

• Solution 1: V = 0 and n = 1/3

The solution for the metric field is given by

ds2 =

(
B0

k2u
− k2u3

2

)
dt2 −

(
B0

k2u
− k2u3

2

)−1

du2 − 1

k2u
dΩ2. (3.6)

This solution has real singularities at u = ±∞ and u = 0, and a coordinate singularity at

u = (2B0)1/4

k . Further analysis of this solution is connected to the sign of the constant B0. For
B0 < 0 this solution represents a particular case of a homogeneous, but anisotropic, cosmological
solution known as Kantowski–Sachs universe [99]. For B0 > 0, this spacetime represents a BH
asymptotically singular and its Penrose diagram, figure 3.2.1, closely resembles the de Sitter space
time.
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Figure 3.1.: Penrose diagram for solution 1 for B0 > 0. The R and T correspond to static and
non-static regions, respectively. Figure taken from reference [2].

The scalar field function is given by

φ(u) ∝ − B0

k8u3
− u

k4
. (3.7)

For any choice of the sign of B0, φ is always decreasing for u > 0, while always increasing for
u < 0. However, for B0 > 0, the function φ(u) is always negative in the positive u axis, and
always positive in the negative u axis. Despite the sign change in the first term for B0 < 0, the
same general behavior holds true.

• Solution 2: V = cst and n =1/2

In this case, the solution for the metric is

ds2 =
(9β2 − x2)2

9
dt2 − 9

(9β2 − x2)2
dx2 − 3

9β2 − x2
dΩ2. (3.8)

This spacetime has horizons at x = ±3β, where β is a constant with null Hawking temperature
and infinite area, traits well observed in cold BHs in scalar-tensor solutions [100, 101]. This
spacetime better represents a wormhole connecting these two horizons, separating static and
non-static regions. We show the Penrose diagram for this solution in figure 3.2.1.

The function of the scalar field is given by

φ(x) =
4

3ε

(
2x− 9β

2
ln
∣∣∣3β + x

3β − x

∣∣∣)+ φ0. (3.9)

While this function is singular at the radial infinities and at the horizons, the kinetic term given
by X is finite at both horizons. That is, while this solution does not show any singularity in the
metric, its scalar field diverges in the same regions.
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Figure 3.2.: Penrose diagram for solution 2. The R and T correspond to static and non-static
regions, respectively, with the light-cones indicating the time direction. Figure taken
from reference [2].

3.2.2. Rastall theory

One way to generalize GR theory, is to relax the conservation condition, that is, to allow∇µTµν 6=
0. The simplest way to achieve this, while still recovering the usual result for a flat spacetime2,
is to set the divergence of the SET proportional to the gradient of the Ricci curvature scalar R,
that is

∇µTµν ∝ ∇νR. (3.10)

This proposal was first made by P. Rastall [102], and it may be interpreted as a phenomenological
implementation of some unknown quantum effect in curved space time.

The field equation that satisfies this condition is given by

Gµν = T̃µν , (3.11)

2A reasonable condition, given that quantum-field theory gives well tested predictions in the flat spacetime.
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with the new effective SET, T̃ , defined via

T̃µν = Tµν −
b− 1

2
gµνT, (3.12)

where b is the free parameter of the theory (for b = 1, GR is recovered). Through the use of
Bianchi identities, the SET conservation condition may be recast as

∇µTµν =
b− 1

2
∇νT. (3.13)

This model of gravity has been studied in various different contexts, from BHs solutions [103], to
the cosmological scale [104]. To our interest, we focus on spherically symmetric solutions with a
canonical self-interacting scalar field, that is

Tµν = ε

(
∂µφ∂νφ−

1

2
gµν∂λφ∂

λφ

)
+ gµνV (φ). (3.14)

And thus, the dynamical equation for the φ field is

�φ+ (b− 1)
∇αφ∇βφ∇α∇βφ

∂λφ∂λφ
= −ε(3− 2b)Vφ. (3.15)

The striking result obtained in reference [105], was the discovery that the metric of the two
spherically-symmetric solutions obtained for this model were exactly the same as in the k-essence
theory. We, once again, briefly discuss these two solutions, explicitly distinguishing its differences
for the scalar field.

• Solution 1: V = 0 and b = −1

The line element for this case is exactly the same as in equation (3.6). This may either describe a
homogeneous but anisotropic cosmological solution, or a BH where the spatial infinity is singular.

Despite its similarities, the scalar field behavior is different from equation (3.7). It reads

φ(u) =

√
3

2
ln(u) + φ0, (3.16)

a steadily increasing function, with a single divergence when u = 0.

• Solution 2: V = cst and b = 0

Alike to the k-essence case, the metric solution is given by (3.8), giving a cold-BH-like solution.
Once again, contrasting equation (3.9), this time the scalar field function reads

φ′(x) = ±β
√

2

√
3− 2

cosh2(βx)
. (3.17)

The integration of this equation is possible, but not simple. What we have to have in mind is
that its general behavior is either always increasing, choosing the positive sign, or decreasing,
choosing the negative sign.
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3.3. The duality between the two theories

K-essence theory and Rastall gravity comes from two very different frameworks: the former is a
generalization for scalar fields and the latter a non-conservative theory. Having obtained some
identical solutions begs the question: is there any deeper connection between these two theories?

Following reference [106], we change the notation setting as follows

1. F (X,φ) = F0X
n − 2V (φ),

2. φ = φ(u), where u may be either a spatial or the time coordinate,

3. The metric is given by
ds2 = ηe2α(u)du2 + hijdx

idxj , (3.18)

4. T , φ and V are the total SET, scalar field and the interacting potential for k-essence; T̃ , ψ
and W , the corresponding functions for Rastall.

We set i and k as the number of coordinates other than u, the determinant of hik may be written
as det(hik) = e2σ(u)h1(xi) and we have X = e−2α(u)(∂uφ)2.

With this, the k-essence equations in section 3.2.1, may be rewritten. Its SET components are
given by

T νµ (φ) = ηFX∂µφ∂
νφ− 1

2
δνµF, (3.19)

with the following components

T uu (φ) = (n− 1/2)F0X
n + V,

T ii (φ) = −1

2
F0X

n + V,
(3.20)

while the respective scalar field equation becomes

e−2nα∂uφ
2(n−1)[(2n− 1)∂u∂uφ+ σu∂uφ− (2n− 1)∂uα∂uφ] = − 1

nF0
Vφ. (3.21)

Similarly, the SET for Rastall gravity, section 3.2.2 may be written as

T̃ νµ (ψ) = ε(∂µψ∂
νψ − 1

2
∂λψ∂

λψ), (3.22)

with the following non-vanishing components

T̃ uu (ψ) =
ε

2
bηe−2α(∂uψ)2 + (3− 2a)W,

T̃ ii (ψ) =
ε

2
(b− 2)ηe−2α(∂uψ)2 + (3− 2a)W,

(3.23)

while the scalar field equation takes the form

e−2α[b∂u∂uψ + ∂uψ(∂uσ − b∂uα)] = −εη(3− 2b)Wψ, (3.24)

where Wψ = dW
dψ and η = sign(guu).
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3.3.1. Scalar-vacuum comparison

In sections 3.2.1 and 3.2.2, we established that the solutions for both theories coincide for the
scalar-vacuum case, that is, no other matter field besides the scalar field is present. The condition
to guarantee that both theories will have the same metric solution requires that both right-hand
sides of the effective EFE, to be the same. Thus we check that both interacting potentials in
equations (3.20) and (3.23) must obey the following condition

V (φ) = (3− 2b)W (ψ). (3.25)

Now we do the same for the kinetic part

(∂uψ)2 = εηnF0(∂uφ)2ne2(1−n)α. (3.26)

Lastly, we equate the ratios of both kinetic parts, equations (3.19) and (3.22), to find a relationship
between the free parameter of both theories

(2− b)n = 1. (3.27)

Given that equations (3.25), (3.26) and (3.27) are simultaneously satisfied, then Rastall and
k-essence models are identical. Some particular solutions will be discussed in section 3.3.4.

3.3.2. Cosmology with matter

This duality may also be observed in some cosmological solutions with matter fields. We restrict
ourselves to metrics of the type

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2), (3.28)

which is just a particular case of equation (3.18). We assume the matter content to be of a perfect
fluid, so that

T ν(m)
µ = diag(ρ,−p,−p,−p), (3.29)

with the usual definitions of ρ as the density and p the pressure. For this case, the total SET
will be composed of both the scalar and matter field, thus

T νµ = T ν(m)
µ + T ν(φ)

µ . (3.30)

The k-essence main equations are

3H2 =
1

2
(2n− 1)F0φ̇

2n + V + ρk,

3H2 + 2Ḣ = −1

2
F0φ̇

2n + V − pk,

φ̇2(n−1)[(2n− 1)φ̈+ 3Hφ̇] = − 1

nF0
Vφ,

(3.31)

where the subscript k denotes the density and pressure related to k-essence, and H = ȧ
a as the

Hubble parameter. The matter SET conservation, ∇νT ν(m)
µ = 0, yields

ρ̇k + 3H(ρk + pk) = 0. (3.32)





The connection between k-essence and Rastall and their stability Section 3.3

While the SET for T
ν(ψ)
µ is given by equation (3.14), and T

ν(m)
µ by equation (3.29), the T̃ νµ is

then the sum of T̃
ν(ψ)
µ given by equation (3.23), with its respective part of the matter content as

T̃
t(m)
t =

1

2
[(3− b)ρ+ 3(b− 1)p] ≡ ρ̃,

T̃
i(m)
i =

1

2
[(1− b)ρ+ (3b− 5)p] ≡ −p̃.

(3.33)

These two tilde components may be interpreted as the “effective” density and pressure in Rastall
theory. From these two equations, we notice that

ρ̃+ p̃ = ρ+ p,

ρ̃− p̃ = ρ− p =
1− b

2
(ρ− 3p).

(3.34)

With these relations, we can write the full set of Rastall equations as

3H2 =
1

2
εbψ̇2 + (3− 2b)W + ρ̃,

3H2 + 2Ḣ =
1

2
ε(b− 2)ψ̇2 + (3− 2b)W − p̃.

(3.35)

The continuity equation depends on how we assume the non-conservation of the full SET to
behave in respect to equation (3.13). We analyze two particular cases.

3.3.2.1. Case 1: No mixing of scalar field and matter

In this instance the SET of the scalar field, ψ, and the matter field obey the non-conservation
equation given in (3.13) separately. Hence

∇νT ν(ψ)
µ =

b− 1

2
∇µT (ψ),

∇νT ν(m)
µ =

b− 1

2
∇µT (m).

(3.36)

The first of these two conditions yields the following dynamic equation for the scalar field

bψ̈ + 3Hψ̇ = −ε(3− 2b)Wψ, (3.37)

while the second condition, for the matter field, the continuity equation reads

˙̃ρ+ 3H(ρ+ p) = 0. (3.38)

This model is fully described by equations (3.35, 3.37, 3.38).
The Null Energy Condition (NEC) is satisfied for ρ+ p > 0 [107]. From relation (3.34), we see

that if this condition is satisfied for both ρ and p, so does for the “effective” ρ̃ and p̃. However,
from the i component of equation (3.33), we see that the “effective” pressure of Rastall theory
may be either negative or positive, depending on the density and pressure of the k-essence model.

Equations (3.35) are identical to (3.31) if we set ρk = ρ̃ and pk = p̃ (transforming the variables φ
to ψ, the parameter n to b and the potentialW to V trough the use of equations (3.25, 3.26, 3.27)).
This identity may also been seen from both continuity equations in (3.32) and (3.38).

The equation relating both scalar fields is

(∂uψ)2 = εηnF0(∂uφ)2ne2(1−n)α, (3.39)

through the use of equation (3.26).
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3.3.2.2. Case 2: Conservative matter

While the non-conservation condition still holds for the scalar field, this is not the case for the
matter field

∇νT ν(ψ)
µ =

b− 1

2
∇µT (ψ),

∇νT ν(m)
µ = 0,

(3.40)

which may be rewritten as

∇νT ν(ψ)
µ =

b− 1

2
(∇µT (ψ) +∇µT (m)), (3.41)

and the resulting equation for the scalar field is

(bψ̈ + 3Hψ̇)ψ̇ = −ε(3− 2b)Wψψ̇ +
b− 1

2
ε(ρ̇− 3ṗ). (3.42)

It is important to notice that this equation mixes both SET contents, the scalar field ψ and the
matter components ρ and p, even though the fluid is conserved just like in GR. This model is
completely described by equations (3.32, 3.35, 3.42).

Once again, using V = (3 − 2b)W and comparing the Friedmann-like equations (3.35) with
their k-essence counterparts (3.31), we obtain

εψ̇2 = nF0φ̇
2n. (3.43)

Instead of a relationship between the constants as in equation (3.27) for the scalar-vacuum case,
now this connection is performed via

εψ̇2

(
b+

1− 2n

n

)
= (b− 1)(ρ− 3p), (3.44)

due to (3.34). The same algebraic relation between n and b is recovered only in the radiation
case, ρ = 3p.

If we change the ψ scalar field to φ, through relation (3.43), we get back to the scalar field
equation in k-essence case as in (3.31).

Equation (3.44) is connecting the temporal behavior of the scalar field ψ with the matter
content, ρ and p. Assuming a constant potential, we may use this equation back into (3.42) to
obtain

2ψ̈ψ̇ +
6n

2n− 1
Hψ̇2 = 0. (3.45)

This equation may be integrated once, leading to

ψ̇2 = ψ0a
− 6n

2n−1 , (3.46)

with ψ0 as an integration constant.
Assuming that both the pressure and density have an equation of state (EoS) related via

p = ωρ, we get
ρ = ρ0a

−3(1+ω), (3.47)

that is, the parameters ω and n are related by

ω =
1

2n− 1
, (3.48)
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while Rastall’s parameter b remains arbitrary.
For the same EoS, equation (3.44) reads as

εψ̇2 =

[
n(b− 1)(1− 3ω

bn− 2n+ 1

]
ρ. (3.49)

Plugging this back into the frist Friedmann-like equation from the Rastall framework, equation
(3.35), we obtain

3H2 = V +
ρ

2n− 1

[
2nb(b− 1)(n− 2)

bn− 2n+ 1
+ 2(2b− 3) + 2n(3− b)

]
,

3H2 = V +
ρ

2

[
b(b− 1)(1 + ω)(1− 3ω)

(b− 2)(1 + ω) + 2ω
+ (3− b) + 3ω(b− 1)

]
,

(3.50)

where the first equation is relating the parameters b and n, and the second one relating b and ω.
Since the right-hand side must be positive, setting a particular choice for either n and V , or ω

and V, it is possible to restrict the possible values on b. For example: i) If we choose V = 0 and
ω = 0 as well (cold matter), the parameter b is constrained by b < 3/2 or b > 2; ii)Now setting
V = cst and ω = 1 (stiff matter) we have H2 = V = cst > 0, that is, an expanding de Sitter
universe.

Although more complex potentials and/or EoS are possible, turning the analysis much more
challenging, the constant ω value covers most of the interesting cases in cosmology.

3.3.3. Perturbations and the speed of sound considerations

The k-essence theory ruled by a power-law model with a vanishing interacting potential (V = 0)
is equivalent, in the cosmological framework, to a perfect fluid with an EoS of the type p = ωρ,
related via (3.48). The speed of sound for adiabatic perturbations of a fluid propagate via

v2
s =

dp

dρ
= ω. (3.51)

A well known result for scalar field perturbations of the type F (X,φ) [108], is that its sound
speed is given by

v2
s =

FX
FX + 2XFXX

, (3.52)

which is valid for a general potential V (φ). Given the power law, as in equation (3.4), the previous
equation becomes

v2
s =

1

2n− 1
, (3.53)

in full agreement with both equations (3.48) and (3.51). Thus, there is a complete equivalence
between a perfect fluid and k-essence without a potential, not only for a cosmological background
but even on the perturbative level, as far as adiabatic perturbations are concerned. For the par-
ticular case of ω < 0, that is n < 1/2, the speed of sound becomes imaginary and, therefore,
the model is perturbatively unstable. This stands true for both a perfect fluid and k-essence.
Although a general interaction potential alters the scalar field dynamics, its perturbative propa-
gation speed is still the same as with V = 0, coinciding with reference [109].

However, in the theory of Rastall this result may differ. As it is stated in references [110, 111],
the speed of sound for the scalar field is

v2
s =

2− b
b

. (3.54)
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We can see that the scalar-vacuum and Case 1, equations (3.53) and (3.54), are identical through
the use of (3.27). We must also emphasize that the fluid in these models obey different EoS,
conform ρk = ρ̃ and pk = p̃. However, since in Rastall the fluid is represented by its “effective”
components ρ̃ and ρ̃, the SET written in terms of these components are conservative, therefore

v2
s =

dp̃

dρ̃
=
dpk
dρk

. (3.55)

With this, we conclude that both theories in the scalar-vacuum and Case 1 framework, coincide
even at the adiabatic peturbative level.

On the other hand, for Case 2 where the matter content is conserved individually, the relation
between the parameters is more intricate, as it is possible to see through equation (3.44). Thus,
it is possible that a stable model in one theory may be unstable in the other, or vice versa;
since equation (3.27) does not hold true anymore, b is essentially independent of n up to some
possible restrictions on their range. In this case, non-adiabatic perturbations may appear due to
the coupling of matter with the scalar field.

3.3.4. Some special cases

In this section we explicitly discuss some particular cases for some choice of either the k-essence
parameter n or Rastall’s b.

3.3.4.1. Special case 1: n = 1/2

Through direct substitution, the k-essence scalar field equation becomes

3H = −2F−1
0 Vφ. (3.56)

Therefore, for a constant potential, the scalar factor vanishes, H = 0, hence the solution is a flat
spacetime. Although this condition may be obtained in Rastall theory as well, in the context
of the duality this is a trivial case. Even so, the remaining Friedmann equations, the first two
equations in (3.31), should still be taken into account. The Rastall dual solution for this case is
given by b = 0, V = 3W and

2εψ̇2 = F0φ̇. (3.57)

Assuming that the matter conserves, Case 2, the duality still holds true, even so with the
parameter b remaining arbitrary. We can confirm this result by substituting equation (3.57) back
into equation (3.42) (while using the Friedmann equations in (3.35)) to obtain back equation
(3.56).

This case main trait is that non-trivial solutions are obtained only for a variable potential V .

3.3.4.2. Special case 2: b = 3/2

For this exact value, Rastall’s potential leads to W = 0, then the potential also vanishes for
k-essence, that is, V = 0.

In the scalar-vacuum and Case 1, we have ρ̃ = 3p̃ from equation (3.33), consequently its dual
k-essence counterpart contains matter with ρk = 3pk. We may switch to the n parameter using
relation (3.27), which yields n = 2, so that the φ field also behaves as radiation.

As for Case 2, since equation (3.27) does not hold true anymore, the general description is
applicable.
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3.3.4.3. Special case 3: b = 2

Equations (3.48) and (3.54) give zero values of pressure and the speed of sound of a scalar field
in Rastall’s theory. For the k-essence theory this would correspond to n =∞, as we can see from
(3.53).

For Case 2, relation (3.27) is valid only, and only if, the conserved matter is pure radiation
obeying ρ = 3p, thence the speed of sound in the two theories are different for the scalar fields.
That is, despite the duality existing for the isotropic background, it is not valid in the perturbative
level.

3.3.4.4. Special case 4: b = 0

For the scalar-vacuum and Case 1, this instance is identical to the Special case 1, n = 1/2.
In Case 2 the scalar field equation for ψ is

3Hεψ̇2 = −3Ẇ − 1

2
(ρ̇− 3ṗ), (3.58)

which is not a dynamical equation, acting more as a constraint relation since it only contains
first-order derivative. Even so, the duality still works for this case: using equations, (3.39) and
(3.35) back into the previous equation, we obtain the scalar field equation as in (3.31), which is
a second-order equation unless n = 1/2.

3.3.5. Explicit examples

Let us now consider some specific examples of the equivalence, assuming a zero or constant
potential, and dust as a possible matter contribution.

3.3.5.1. Scalar-vacuum

We consider the scalar-vacuum model with zero potential. The k-essence equations yields

φ̇ = φ0a
− 3

2n−1 ,

H2 =
2n− 1

6
F0φ

2n
0 a−

6n
2n−1 ,

(3.59)

where we assumed φ0 as a constant. In terms of the cosmic time we obtain

a = a0t
2

3(1+ω) ,

φ̇ = φ1t
− 2ω

1+ω ,
(3.60)

where a0 is a constant and we merged some constants into φ1. To get to this result we assumed
that the k-essence perfect fluid has the EoS stated by p = ωρ, trough the use of equation (3.48).

While the geometric solution, a(t), is the same for the dual theories, the scalar field is given by

ψ̇ ∝ a−
3(1+ω)

2 = a−
3
b ∝ t−1, (3.61)

where we should identify, using equation (3.54),

ω =
2− b
b

. (3.62)
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We see that the k-essence scalar field φ depends on the EoS parameter ω, in contrast to this, the
Rastall counterpart does not, reading

ψ = ln(t) + cst. (3.63)

Adding a constant potential, which may be interpreted as a cosmological constant, keeps the
scalar field equations (3.59) and (3.61) unaltered in terms of a(t). But, in consequence of this,
the time dependence becomes more complex, and this situation will not be investigated here.

In the presence of matter the form of the duality depends on how matter couples to the scalar
field.

3.3.5.2. Dust and Rastall-Case 1 models

We assume that the k-essence theory contains a pressureless fluid, besides the scalar field φ, so
that

pk = 0, ρk = ρ1a
−3, (3.64)

with ρ1 as a constant. For the Case 1, where there is no mixing of the SETs, we have

1

2
[(3− b)ρ+ 3(b− 1)p] = ρ̃ = ρk,

1

2
[(b− 1)ρ+ (5− 3b)p] = p̃ = 0,

(3.65)

leading to

ρ =
5− 3b

2(3− 2b)
ρk,

p =
1− b
5− 3b

ρ =
1− b

2(3− 2b)
ρk,

(3.66)

with both parameters of the fluid evolving with a−3. That is, even with a pressureless fluid in
the k-essence model, the Rastall dual solution acquires pressure 3. The scalar fields φ and ψ both
satisfies the relation (3.27).

If we add a constant potential, with V and W related via relation (3.25), equations (3.64, 3.66)
remain unchanged. That is, this is a model with a dust matter field, a cosmological constant
due to the constant potential and a scalar field. For the dual part of this solution, Rastall model
have an “effective” pressure while still keeping ρk = 0.

In opposition to this case, we may introduce a pressureless fluid in Rastall-Case 1 model. With
this, the k-essence dual equations are

ρk = ρ̃ =
1

2
(3− b)ρ,

pk = p̃ =
1

2
(b− 1)ρ,

(3.67)

and we may solve equation (3.38) to obtain

ρk ∝ pk ∝ a−
6

3−b = a−3(1+ωk), (3.68)

where we defined the EoS parameter of the fluid in the k-essence theory as

ωk =
b− 1

3− b
=
n− 1

n+ 1
. (3.69)

Thus, we see that this model is quite different from the dust one introduced in k-essence theory.

3Except for the value that returns to GR, b = 1.
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3.3.5.3. Dust and Rastall-Case 2 models

Assuming, once again, a pressureless perfect fluid as in equation (3.64), but now under the Case
2 of Rastall theory, we get

εψ̇2

(
b− 2n− 1

n

)
= (b− 1)ρ ∝ a−3. (3.70)

In accordance to equation (3.43), for b 6= 1, we find

ψ̇ ∝ a−3/2,

φ̇ ∝ a−
3
2n .

(3.71)

Combining (3.31) with (3.43), setting Vφ = 0, we check that this corresponds to the case n→∞.
So, just like as in GR for pure dust model, we get a ∝ t2/3. Consequently, for scalar fields

φ ∝ t,
ψ̇ ∝ a−3/2 ∝ t−1.

(3.72)

We can arrive in a restriction for the parameter b using ψ̇ = ψ0/t, ρ = ρ0/t
2 into (3.70)

εψ2
0(b− 2) = (b− 1)ρ0. (3.73)

We conclude that Rastall parameter depends on the contribution of both the matter and scalar
field contents. Moreover, the speed of sound of the scalar field does not follow the adiabatic
relation as in Case 1.

A cosmological constant can be easily introduced in the form of V = (3 − b)W = cst. The
scalar field again follows the law (3.70), and the whole configuration reduces to the ΛCDM model
where Λ is given by the constant potential and the matter component consists of the scalar field
and ordinary matter. All background relations of the ΛCDM model are preserved in this case,
but the degeneracy between the scalar field and usual matter is broken at the perturbative level.
Due to the fact that the ΛCDM model is subject to problem at the perturbative level in the
non-linear regime (see references [112, 113]), such a more complex configuration in k-essence and
Rastall models may lead to interesting results to be studied in the future.

3.4. The stability of these two theories

With the structure of the solutions investigated in sections 3.2.1 and 3.2.2, then their duality
in section 3.3, we now investigate if the solutions obtained are stable, or not, under first-order
perturbation analysis. First we will work on the k-essence theory, closely following reference [114]
and [115]. After developing the method we turn ourselves to Rastall theory, where we then use
reference [116] as our main lead.

3.4.1. K-essence stability

3.4.1.1. Main equations

We first write the main equations for the stability problem. Some equations shall be simply
rewritten for the instances where some notation is changed, but I also hope to make the reader’s
life a bit easier, saving you the work of turning pages back and forth just to recall the equations.
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The k-essence Lagrangian is

L =
√
−g[R− F (X,φ)], X = η∂λφ∂

λφ, η = ±1, (3.74)

and we focus ourselves in a power-law of the type

F (X,φ) = F0X
n − 2V (φ), F0 = cst. (3.75)

The field-equations for this theory are

Gνµ = −T ν(φ)
µ , (3.76)

T ν(φ)
µ = ηFX∂µφ∂

νφ− 1

2
δνµF, (3.77)

η∇λ(FXφ
λ) =

1

2
Fφ. (3.78)

We write a general static spherically-symmetric metric as

ds2 = e2γdt2 − e2αdu2 − e2βdΩ2, (3.79)

where the background components depend solely on the radial coordinate, and the perturbations,
followed by a δ, of both u and t as

γ(u, t) = γ(u) + δγ(u, t),

α(u, t) = α(u) + δα(u, t),

β(u, t) = β(u) + δβ(u, t),

φ(u, t) = φ(u) + δφ(u, t).

(3.80)

From now on the dots represents derivatives in respect to the time coordinate t, and primes
the corresponding derivatives in respect to the radial coordinate u. To maintain X positive, we
set η = 1, therefore the kinetic term becomes

X = e−2αφ′2,

δX = 2e−2α(φ′δφ′ − φ′δα),
(3.81)

with the following corresponding non-zero SET components

T tt = T θθ = T φφ = −F
2
,

Ttu = −FX φ̇φ′,

T uu = −F
2

+XFX .

(3.82)

To further simplify the set of EFE and the Klein-Gordon-like equation, we impose a further
restriction into the function F (X,φ), fixing it as F (X) only.

With all of this, we can finally write down equations (3.76) and (3.78) as

−e2α−β + β′(β′ + 2γ′) =

(
F

2
−XFX

)
e2α, (3.83)

−e2(α−β) + 2β′′ + 3β′2 − 2α′β′ =
F

2
e2α, (3.84)

e2(α−β) + e2(α−γ)β̈ − β′′ − β′(γ′ − α′ + 2β′) = −e
2α

2
(F −XFX), (3.85)

β̇′ + β̇β′ − α̇β′ − β̇γ′ = Fx
2
φ̇φ′, (3.86)

FXe
α+2β−γφ̈−

(
FXe

−α+2β+γφ′
)′

= 0, (3.87)
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preserving only linear terms with respect to time derivatives.
So far, this set of equations was written in its most general form, without fixing any radial

coordinate (where u may depend on u = u(z), for example), and without fixing any perturbation
gauge for the “delta” functions as well. With this, we now choose the simplest gauge to deal with
perturbation in the context of spherically-symmetric solutions, δβ = 0, which greatly simplify
our equations.

If the radial function eβ has a minimum at some u, as it is the case for wormholes spacetimes,
this gauge imposes a physical restriction on the wormhole, forcing its throat to be at rest. This
leaves the throat radius invariable, while perturbations must in general admit a temporal depen-
dence [101]. However, we can safely choose this gauge for our case, since for other solutions (i.e.
BHs), these regions are usually critical points of the radial function u and they don’t present any
physical critical restriction [115].

Setting this gauge, equation (3.86) reads

δα = − n

2β′
Xn−1φ′δφ, (3.88)

and we can show that all the remaining Einstein equations hold as consequence of equations
(3.83, 3.85) and (3.89), leading to no further restriction with this gauge choice [115]. The per-
turbed equation for the scalar field, (3.83), yields

− e2(α−γ)δφ̈+ δφ′′ + φ′δσ′ + σ′δφ′ +
F ′X
FX

δφ′ + φ′δ

(
F ′X
FX

)
= 0, (3.89)

where we defined
σ = 2β + γ − α. (3.90)

As the solutions studied in section 3.2.1 were obtained with a constant potential only, we may
impose this condition directly into the function F (X), while interpreting it as a cosmological
constant. That is

F (X) = F0X
n − 2Λ. (3.91)

We may switch the variable δα to δφ using (3.89), and the same can be done for the other
variables with the remaining equations (3.83, 3.84, 3.85). As a result, we obtain the wave equation
for δφ as

− e2(α−γ)δφ̈+ (2n− 1)δφ′′ + δφ′[σ′ − 2(n− 1)α′]− n2

β′2
(e−2β − Λ)e4αF0X

nδφ = 0. (3.92)

Just like the previous case, the radial coordinate u is not yet fixed, then we pass on to the
“tortoise” coordinate z via

du

dz
= eγ−α. (3.93)

Since we are looking after wave equations, we define the time dependence as

δφ = Ψ(z)eiωt, (3.94)

followed by

Ψ(z) = f(z)ψ(z), f(z) = exp

[
−β + (1− n)γ

2n− 1

]
. (3.95)

Thus, we obtained the master equation ruling the perturbation for this theory

(2n− 1)
d2ψ(z)

dz2
+ [ω2 − V (z)]ψ(z) = 0, (3.96)





The connection between k-essence and Rastall and their stability Section 3.4

where V (z) is the effective potential4, which its full form is being omitted for now (due to its
rather complicated form), but we are going to explicitly write it down it for the solutions that
we are about to check.

3.4.1.2. Verifying the solution’s stability

Now we will use equation (3.96), with the two k-essence solutions (with some slightly notation
changes) obtained in section 3.2.1, to test their stability.

• Solution 1: V = 0 and n = 1/3

The first solution, equations (3.6) and (3.7), are

ds2 =
B(x)

k2x
dt2 − k2x

B(x)
dx2 − 1

k2x
dΩ2, B(x) = B0 −

1

2
k2x4, (3.97)

dφ

dx
= φ0

(
B0

x4
− k2

2

)
. (3.98)

Since we want to test the stability of the BH solution, we impose B0 > 0, with the radial

coordinate range going from x = 0 to its horizon at x = (2B0)1/4

k .
We change the radial coordinate to the tortoise coordinate, through equation (3.93), set its

time dependence, (3.94), and write everything in terms of ψ, (3.95), to finally use the master
equation (3.96). After all these transformations, we obtain

∂2
zψ(z)− [3ω2 + V (x)]ψ(z) = 0, (3.99)

with its effective potential given by

V (x) = −F1B(x) +
5B2

0

4k2x4
+

31B0

4k2
− 3x4

16
. (3.100)

At first sight, we see that the role of energy is given by −3ω2, therefore if the eigenvalues are
not restricted from above, they definitely are not from below. That is, this suggests that this
solution is unstable, and we have to verify this result formulating the boundary conditions for
the function ψ(z).

First we have to check how the coordinates act within the radial coordinate range. The general
behavior near x→ 0 is

z ∝ x2, V ≈ 5B0

4k2x4
≈ z−2, (3.101)

while near the horizon, x→ (2B0)1/4

k ,

z →∞, V → cst. (3.102)

By definition of perturbation theory, we cannot allow the perturbative term, δφ, to grow faster
than the background function, φ, itself. According to equation (3.98) δφ may grow as x−3 when

x → 0, and it must be finite as it approaches the horizon, that is, as x → (2B0)1/4

k . Switching
back to the tortoise coordinate z, relation (3.93), the δφ term reads

ψ ≈ z−1/4, (3.103)

4Not to be confused with the interaction potential in the scalar field lagrangian.
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as z → 0, and
ψ ≈ ez, (3.104)

as z → ∞. Thus, the eigenfrequencies are neither restricted from below nor above, |ω2| can be
arbitrarily large. We conclude that this BH solution is unstable in the region between x = 0 and
its horizon.

• Solution 2: V = cst and n = 1/2

Now we focus our attention to the second solution, equations (3.8) and (3.9), are

ds2 =
(9β2 − x2)2

9β4
dt2 − 9β4

(9β2 − x2)2
dx2 − 3β4

9β2 − x2
dΩ2, (3.105)

φ(x) = ± 4

3F0β4

(
−2x+

9β

2
ln
∣∣∣3β + x

x− 3β

∣∣∣)+ φ0, (3.106)

since the potential is constant, we interpret it as the cosmological constant and define it as
Λ = 3/β2. The BH solution is between two horizons, set by −3β < x < 3β.

This time the procedure is much simpler than the previous case, the wave equation, as in
(3.92), yields

δφ̈ = h(u)δφ, (3.107)

with the definition for the function h(u) as

h(u) =
27

b4 cosh2(bu)
[1 + 2 tanh2(bu)], (3.108)

which we must stress that is positive definite.
We integrate equation (3.107) once

δφ̇2 = h(u)δφ2 + C0(u), (3.109)

and setting C0(u) = 0 we integrate it once again

δφ(t, u) = e±
√
h(u)+C1(u). (3.110)

It is clear that due to the arbitrariness of C1(u) this function will always grow with time. Thus,
we conclude that this solution is unstable as well.

3.4.2. Rastall stability

3.4.2.1. Main equations

As we did in the section prior to this one, we quickly review the main equations of the model,
while extending them to the perturbation analysis.

The general field equations, for both the geometric part and the scalar field, are

Rµν = ε

(
∂µφ∂νφ+

1− b
2

gµν∂λφ∂
λφ

)
− gµνW (φ), (3.111)

�φ+ (b− 1)
∂αφ∂βφ∂α∂βφ

∂λφ∂λφ
= −Wφ. (3.112)
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where, for simplicity, we defined W (φ) = (3−2b)V (φ). Keeping the same notation for the metric
as in (3.79), we have the following perturbed equations

−e2(α−γ)(δα̈+ 2δβ̈) + δγ′′ + δγ′(γ′ − α′ + 2β′) + γ′(δγ′ − δα′ + 2δβ′) =

−ε(1− b)φ′δφ′ − e2α(2Wδα+Wφδφ), (3.113)

−e2(α−γ)δα̈+ δγ′′ + 2δβ′′ − δα′(γ′ + 2β′)− α′(δγ′ + 2δβ′) + 2γ′δγ′ + 4β′δβ′ =

−ε(3− b)φ′δφ′ − e2α(2Wδα+Wφδφ), (3.114)

−e2(α−γ)δβ̈ + δβ′′ + δβ′(γ′ − α′ + 2β′) + β′(δγ′ − δα′ + 2δβ′)− 2e2(α−β)(δα− δβ) =

−ε(1− b)φ′δφ′ − e2α(2Wδα+Wφδφ), (3.115)

δβ̇′ + (β′ − γ′)δβ̇ − β′δα̇ = − ε
2
φ′δφ̇, (3.116)

−e2(α−γ)δφ̈+ bδφ′′ + (γ′ − bα′ + 2β′)δφ′ + φ′(δγ′ − bδα′ + 2δβ′) =

εe2α(2Wφδα+Wφφδφ), (3.117)

since we are dealing with first-order perturbation theory, we kept only the linear terms for each
perturbed variable.

3.4.2.2. Master equation and a discrepancy

Following the same reasoning as before, we keep our arbitrary radial coordinate u and set the
perturbation gauge δβ = 0. Therefore, the field equations become

−eα−γδα̈+ δγ′′ + δγ′(2γ′ − α′ + 2β′)− γ′δα′ = −ε(1− b)φ′δφ′ − e2α(2Wδα+Wφδφ),

(3.118)

−eα−γδα̈+ δγ′′ − δα′(γ′ + 2β′)− (α′ − 2γ′)δγ′ = −ε(3− b)φ′δφ′ − e2α(2Wδα+Wφδφ),
(3.119)

β′(δγ′ − δα′)− 2e2(α−β)δα = −ε(1− b)φ′δφ′ − e2α(2Wδα+Wφδφ),
(3.120)

−β′δα̇ = − ε
2
φ′δφ̇,

(3.121)

bδφ′′ + (γ′ − bα′ + 2β′)δφ′ + (δγ′ − bδα′)φ′ − e2(α−γ)δφ̈ = εe2α(2Wφδα+Wφφδφ).
(3.122)

The easiness on using this particular gauge can be seen through equation (4.21). We can integrate
it to acquire

δα = η(u)δφ+ ξ(u),

η =
εφ′

2β′
.

(3.123)

We solve for δγ′ by subtracting equation (3.118) from (3.119). We get

δγ′ = ηδφ′ − η′δφ. (3.124)

However, we acquire a relation for δγ′ using equation (3.120) as well, which gives

2β′δγ′ = εbφ′δφ′ + e2α
[
2(e−2β −W )δα−Wφδφ

]
. (3.125)
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In order to attain the master equation, we use relations (3.123) and (3.124) back into the
equation that contains the dynamical equation for the perturbed scalar field, equation (3.122).
Thence

−e2(α−γ)δφ̈+bδφ′′+[2β′+γ′−bα′+η(1−b)φ′]δφ′−[(1+b)η′φ′+εe2α(2ηWφ+Wφφ)]δφ = 0. (3.126)

This equation plays the same role as in the k-essence model, equation (3.92): it should lead to
the result concerning the stability of the solutions of the model.

3.4.2.3. Verifying the solution’s stability

Using the same framework as before, we develop the stability condition for both solutions in
Rastall theory.

• Solution 1: V = 0 and b = −1

The geometric and scalar field equations, with some notation changes, are given by

ds2 = A(x)dt2 − dx2

A(x)
−
√

3

2C2

dΩ2

x
, A(x) =

K

x
− C√

6
x3, (3.127)

φ(x) =

√
3

2
ln(x) + φ0, (3.128)

given that φ0, C and K are all constants.
Then, we plug these background quantities into the wave equation for the perturbation, equa-

tion (3.126), yielding

e−4γδφ̈+ δφ′′ +
2

x
δφ′ = 0. (3.129)

We may use both relations that we obtained for δγ′ to obtain

δγ′ =

√
3

2
δφ′,

= −
(

3

2
δφ′ +

√
6e2(α−β)δφ

)
,

(3.130)

using a variable separation of the type δφ(t, x) = F (t)ψ(x), the last equality in equation (3.130)
may be integrated to obtain

− F̈

F
=
ψ′′

ψ
+

2

x

ψ′

ψ
= cst, (3.131)

where we have defined

ψ(x) =

(
K − C√

6x4

)−1/2

. (3.132)

However, solving the differential equation for ψ(x) using (4.35), we get

ψ(x) ∝ e−x + ex

x
, (3.133)

which is vastly different from the definition of (3.132). Thus we arrived into an inconsistency.

• Solution 2: V = cst and b = 0
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Moving onward to the second solution, already setting V = cst = Λ = β2, we have

ds2 =
9β4

cosh4(bu)
dt2 − du2 − cosh2(bu)

3β2
dΩ2, (3.134)

φ′(u) = ±β
√

6− 4

cosh2(bu)
. (3.135)

The master equation, equation (3.122), reads

e−2γδφ̈− φ′δγ = 0. (3.136)

And from this point we can already see an odd behavior: while we have a second time derivative
term, there is no evolution term for the radial coordinate u. Even so, from one of the expressions
for δγ′, equation (3.125), we have

δγ′ =
3

2
φ′δφ, (3.137)

then we use the other expression for the same variable, equation (3.124), which gives

ηδφ′ − η′δφ =
3

2
φ′δφ. (3.138)

This equation is integrable, obtaining

δφ(t, u) = F (t)
φ′

β′
e−3β, (3.139)

for an arbitrary function F (t). With δφ written in terms of the background functions, we use it
back into the master equation (3.136), which reads

2

3

F̈

F
= φ′2e−4β = cst. (3.140)

Finally, using the background solutions, (3.134) and (3.135), we check that this does not hold
true. Thus, once again we arrive into an inconsistency.

In this section we were able to prove that while the background solutions are stable in the
k-essence context, we arrive in an inconsistency when analyzing them for Rastall theory. We
cannot conclude, through this analysis, if the solutions are stable or not. We further investigate
Rastall theory in the next chapter, tackling one of its main issues.
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CHAPTER 4.

Seeking out a Lagrangian for Rastall theory

4.1. Introduction

In the previous chapter we made a quick review of two, at first vastly different, theories of gravity
in section 3.2, where each of them possess different assumptions and motivations to be considered
and, even so, we arrived in the same (geometrical) solution for some particular cases. Taking
“coincidences” as a hint on where to further investigate, we compared both theories directly to
unveil some new connection between them, we checked under which conditions they behave alike
in section 3.3.

With some more clarity of how these theories are intertwined, we verified that both BHs
solutions found are unstable in k-essence. Following the same general framework, we showed in
section 3.4 that linear time-dependent spherically-symmetric perturbations simply do not exist
for Rastall theory. We arrived in inconsistencies in the method applied.

Of course, the first question that we may ask ourselves about such issue is: why? However, up
to this point, we have been hiding an important peculiarity of Rastall theory, we induced the field
equations, it was not derived from a Lagrangian formalism. Simply because it does not exist1.
We take this as a possibility on the inconsistencies found in the previous chapter, therefore, we
are motivated to try to find a Lagrangian that reproduces Rastall field equations.

With that in mind, we investigate the proposals for a Lagrangian formalism in Rastall theory
and their consequences.

4.2. Seeking out a Lagrangian for Rastall theory

Rastall field equations are

Gµν = Tµν −
b− 1

2
gµνT, (4.1)

∇µTµν =
b− 1

2
∇νT. (4.2)

We already stated that Rastall is an exotic theory due to its non-conservative nature, and now
it seems a good time to address its main issues. Visser [118] argues that Rastall’s theory could
be always recast as standard GR, a point argued against in reference [119]. In some sense, this
controversy does not touch the fundamental original approach by Rastall, stated as a modification
of the conservation laws due to space-time curvature which is, in our opinion, the more appealing

1One could take a step further and even argue if a Lagrangian is really necessary to a fundamental theory of
gravity [117].
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and physically sound aspect of Rastall gravity. It is also not evident how Visser’s argument
applies to multi-fields models, since the redefinition in the SET are less evident in this case. We
remember, concerning this point, that our universe contains many different components which
can only approximately be represented by a single fluid approach.

However, the main argument against Rastall theory is that (4.1) was not deduced following a
Lagrangian formalism. We just inferred the field equations that satisfy the conditions desired.
The first proposal for finding a Lagrangian for this model was given in reference [120], where the
author himself realized that Lagrangian function found was not a scalar density.

More recently, motivated by several different modifications of the Einstein-Hilbert Lagrangian,
theories of the type f(R,Lm) [121] and f(R, T ) [122], where Lm is the usual matter Lagrangian
and T is the trace of the SET, were shown to inherently possess ∇µTµν different from zero. This
led some authors [123, 124, 125] to attempt to find a connection between Rastall theory and the
aforementioned models. In these references, the authors propose a similar Rastall Lagrangian of
the type f(R, T ) = R+αT , however, it was not throughly investigated how the addition of matter
affetcs the relationship with Rastall’s proposal. Specifically in reference [123], it is also claimed
that Rastall gravity may be recast using the following prescription f(R,Lm) = αR + G(Lm),
where G(Lm) is a general function of Lm.

In light of all of this, in the next pages we will analyze the f(R,Lm) model and show how
it cannot recover Rastall gravity. Then, we explicitly calculate how f(R, T ) gravity behaves for
several different choices of SETs, and demonstrate that it is possible to obtain a similar structure
as that given by Rastall gravity but only for perfect fluids. This chapter follows reference [126].

4.2.1. Rastall theory as a f(R,Lm) theory

As an extension of f(R) models [127], a specific non-minimal coupling of the matter Lagrangian
was proposed as a way to investigate non-geodesic motion of massive test particles [128]. The
complete generalization of this model, now perceived as an f(R,Lm) theory, possesses the fol-
lowing Lagrangian formulation

L =
√
−gf(R,Lm) +

√
−gLm. (4.3)

The correspondent field equations for the metric field is given by

fRRµν + (gµν�−∇µ∇ν)fR −
1

2
[f(R,Lm)− f(Lm)Lm]gµν = f(Lm)Tµν , (4.4)

where we define fR = ∂f
∂R , f(Lm) = ∂f

∂Lm and adopt the usual definition of the SET as

Tµν = − 2√
−g

δ(
√
−gLm)

δgµν
,

= gµνLm − 2
δLm
δgµν

.

(4.5)

In reference [123] it is claimed that choosing f(R,Lm) = αR+G(Lm), where G(Lm) is a general
function of the matter Lagrangian, Rastall gravity is recovered for any choice of G. The field
equations for this case are

Gµν =
1

α
[G′Tµν + (G − G′Lm)gµν ], (4.6)

and using the Bianchi identities, the conservation equations read

∇µTµν =
∇ν(G′Lm − G)− Tµν∇µG′

G′
, (4.7)
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where the prime in G denotes the derivative with respect to Lm.
Through inspection of equation (4.6), one sees that the only way to recover a structure similar

to equation (4.1), is to set the function multiplying Tµν to a constant, that is, G′ = cst. With
thiI see ps choice we are left with

G = c1Lm + c2 (4.8)

where c1,2 are integration constants, which recovers GR. Non-linear dependences of G on Lm lead
to strong departures from GR but also from Rastall’s gravity.

We check that a general choice of G(Lm) cannot recover Rastall gravity. For instance, consid-
ering scalar fields such that Lm = ∂λφ∂

λφ reduces the above formulation to the k-essence class
of theories [129] instead of Rastall’s theory.

4.2.2. Rastall theory as a f(R, T ) theory

Another way to generalize GR is to assume that the cosmological constant Λ, at first a constant
in the EFEs, might be a dynamical term (see reference [130] for a review in several different
proposals). One possible formulation to that idea is to assume that the cosmological parameter
may depend on the trace of the SET, T . This is known as Λ(T ) gravity [131], which is now
recognized as a particular case of f(R, T ) theory.

Despite this dependence on T , that might be motivated due to some exotic fluid, there is a
misleading cyclical definition: in the Lagrangian they use T , which is defined by a variational
principle of the very same lagrangian. A possible solution to this issue, as it was done in reference
[124], is to assume that the trace of T comes from a general and arbitrary tensor contraction, not
related to the SET. To recover a Rastall-like field equations, it is necessary to identify T as the
usual trace of the SET, which is the standard approach in f(R, T ) theories. In what follows we
ignore this (very important) conceptual aspect and we focus only on its consequences.

The general Lagrangian for these theories is given by

L =
√
−gf(R,Lm) +

√
−gLm. (4.9)

Using the same definition for the SET as in equation (4.5), the field equations are

fRRµν + (gµν�−∇µ∇ν)fR −
1

2
[f(R,Lm)− f(Lm)Lm]gµν = f(Lm)Tµν , (4.10)

where

Θµν = gαβ
δTαβ
δgµν

. (4.11)

If we restrict ourselves to the particular case

f(R, T ) = αR+ βT, (4.12)

where both α and β are constants of the model, the field equations are

Gµν =
1− β
α

Tµν +
β

2α
(Tgµν − 2Θµν), (4.13)

with its respective conservation equation

∇µTµν =
β

2(β − 1)
(∇νT − 2∇µΘµν). (4.14)
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In reference [123], it was assumed Θµν = 0 and the free parameters were set as

α = 1− β,

β =
b− 1

b− 2
,

(4.15)

where they claimed that this was Rastall theory. However, as we are going to show, assuming
that Θµν vanishes has several theoretical consequences.

Now we evaluate Θµν for some SETs, where we use the following relations

δgαβ

gµν
= δαµδ

β
ν ,

δgαβ
gµν

= −gαλgβγδλµδγν = −gαµgβν .
(4.16)

4.2.2.1. Electromagnetic case

As in reference [121], the standard Lagrangian for the electromagnetism in vacuum is

Lm = −FµνFµν , (4.17)

then equation (4.11) yields
Θµν = −Tµν . (4.18)

The correspondent EFE, equation (4.13) becomes

Gµν =
1

α
Tµν , (4.19)

thus
∇µTµν = 0, (4.20)

which is GR with a trivial redefinition of the electromagnetic field. We should have expected this
result since the electromagnetic SET is traceless.

So far, we did not obtain any unexpected result, since Rastall recovers GR for this case as well.

4.2.2.2. Perfect-fluid case

We use the SET of the perfect fluid as

Tµν = (ρ+ p)uµuν − pgµν , (4.21)

which gives
Θµν = −2Tµν − pgµν . (4.22)

Therefore, the respective field equation (4.13) is

Gµν =
1 + β

α
Tµν +

β

2α
gµν(T + 2p). (4.23)

For the special case β = −1, the metric field and conservation equations are

Gµν = − 1

2α
[gµν(T + 2p)],

∇νT = −2∇νp.
(4.24)
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From the last equation, it gives us the EoS

p = ρ+ Λ, (4.25)

with Λ being an integration constant. This EoS represents stiff matter with a cosmological
constant for Λ 6= 0, or without it for Λ = 0. In general, for an arbitrary β, the modified EFEs
are not equivalently to either GR nor Rastall theory. This set of equations will be necessary for
the hydrodinamical correspondence in the sections to come.

4.2.2.3. Scalar field case

The general Lagrangian of a self-interacting scalar field φ is

Lm = −1

2
∇λφ∇λφ+ V (φ). (4.26)

The respective function for Θµν
2 yields

Θµν = −2Tµν +
1

2
gµνT − gµνV. (4.27)

The modified EFEs are then given by

Gµν =
1

α
[(1 + β)Tµν − βgµνT + βgµνV ]. (4.28)

Setting β = −1, both the EFE and the conservation equation reads

Gµν =
(T − V )

α
gµν ,

∇µV = 0.
(4.29)

That is, for this particular case the field φ is not dynamical and, from the SET conservation
equation, we check that the potential is constant

V = Λ. (4.30)

We rewrite these two equations in terms of the scalar field φ in order to better visualize the
differences with respect to GR

Gµν =
1 + β

α

(
∇µφ∇νφ−

1

2
gµν∇λφ∇λφ+ gµνV

)
,

�φ = −1 + 2β

1 + β
Vφ,

(4.31)

keeping the usual notation of Vφ = dV
dφ . We once again recover GR through a trivial redefinition

of V and φ via √
1 + β

α
φ→ φ′,

1 + 2β

α
V → V ′.

(4.32)

We remark that depending on the sign of 1+β
α , the scalar field can be either normal or phantom,

and the potential may be attractive or repulsive. Nonetheless, the general structure of these
equations does not correspond to Rastall gravity.

2In reference [121], there is a factor 2 missing, probably a typo.
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4.2.2.4. Self-interacting scalar field and fluid correspondence

In reference [132], a direct correspondence between the scalar field and perfect fluid was studied.
We first outline the procedure, and then use it to our case.

For a lagrangian of the type
L =

√
−gL(X,φ),

X =
1

2
∇λφ∇λφ,

(4.33)

we can make a correspondence with thermodynamic quantities. Assuming L(X,φ) = X − V (φ)
its pressure, density and four-velocity of a fluid, are respectively related to the scalar field as

p = L,
ρ = 2XLX − L,

uµ = ∇µ
(

φ√
2X

)
.

(4.34)

With this, we can directly induce the following relations

ρ = X + V,

p = X − V.
(4.35)

To distinguish both terms, we use ”f” for the fluid components and ”φ” for the scalar fluid ones.
With equation (4.35), both SETs are related via

T fµν = (ρ+ p)uµuν − pgµν ,

= ∇µφ∇νφ−
1

2
gµν∇λφ∇λφ+ gµνV (φ) = T φµν .

(4.36)

Similarly, the function Θµν of the fluid may be recast in terms of the scalar field SET as

Θf
µν = −T fµν − pgµν = −2T φµν − (X − V )gµν ,

= −T fµν +
1

2
gµνT

φ − gµνV.
(4.37)

Using the hydrodynamical representation, the modified EFEs become

Gµν =
1 + α

1− α
Tµν +

α(ρ− p)
2(1− α)

gµν . (4.38)

Using the fluid/scalar field correspondence, we see that equation (4.38) is the standard scalar
field equation. In particular, a rather simple case is obtained when setting ρ = p, which can be
seen from relations (4.35) that it represents a free scalar field.

We recognize that there seems to be non-trivial situations in the fluid representation (besides
the scalar field one) when ρ 6= p. Likewise, we think that this correspondence may be further
investigated when the potential is exponential, which coincide to a fluid with p = ωρ, with ω
constant. However, we will not investigate such cases here.

4.2.3. ΛCDM

Through the previous sections, we were able to see that we could not recover Rastall using any of
the proposed frameworks. We side-track a bit in the next section to recover an important result
using the scalar field/fluid correspondence. We show how the f(R, T ) model recovers ΛCDM
model, as in reference [104].
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4.2.3.1. Background evolution

First we rewrite equations (4.24) while setting α = 1 + β. That is, the modified EFEs, and the
respective conservation equations, are

Gµν = Tµν +
β

2(1 + β)
gµν(T + 2p),

∇µTµν = − β

2(1 + β)
∇ν(T + 2p).

(4.39)

To obtain a cosmological solution, we assume a metric of the type

ds2 = dt2 − a(t)2δijdx
idxj , (4.40)

where the matter content assumed to be of a perfect fluid, with its SET given by (4.24), and
both the pressure and density depending on the time coordinate t as

ρ = ρ(t),

p = p(t).
(4.41)

The resulting equations are

3H2 =
2 + 3β

2(1 + β)
ρ− β

2(1 + β)
p,[

2 + 3β

2(1 + β)

]
ρ̇− ρ

2(1 + β)
ṗ+ 3H(ρ+ p) = 0.

(4.42)

For the next step, we can decompose the fluid into two different components

ρ = ρm + ρΛ,

p = pm + pΛ = −ρΛ,
(4.43)

that is, pressureless matter (denoted by the subscript m, pm = 0) and a cosmological term
(denoted by the standard notation Λ, pΛ = −ρΛ). We are able to write equations (4.42) as

3H2 =
2 + 3β

2(1 + β)
ρm +

1 + 2β

1 + β
ρΛ,

2 + 3β

2(1 + β)
ρ̇m +

1 + 2β

1 + β
ρ̇Λ + 3Hρm = 0.

(4.44)

To allow structures to be formed in the late-universe, we impose that the matter component
conserves separately3. That is, the continuity equation for this fluid reads

ρ̇m + 3Hρm = 0, (4.45)

which may be integrated to obtain its evolution in time

ρm =
ρm0

a3
, (4.46)

where ρm0 is the integration constant defined as the matter density at present time.

3Something really similar to what we have done in section 3.3.2.2 for Case 2 in the Rastall/k-essence duality.
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Thus, equations (4.44) become

3H2 =
2 + 3β

2(1 + β)
ρm +

1 + 2β

1 + β
ρΛ,[

β

2(1 + β)

]
ρ̇m +

1 + 2β

1 + β
ρ̇Λ = 0.

(4.47)

The second equation of this pair can be integrated, yielding

ρΛ = − β

2(1 + 2β)
ρm + ρΛ0, (4.48)

where ρΛ0 is the integration constant defined as the cosmological constant density at present
time. Ultimately, we get to

3H2 = ρm + ρ̄Λ0,

ρ̄Λ0 =
1 + 2β

1 + β
ρΛ0.

(4.49)

Hence, the ΛCDM model re-appears. All the background tests are thus equally satisfied, as
explained in reference [104].

In this section we were able to show that from a intrinsically non-conservative modified theory
of gravity, f(R, T ), the ΛCDM model was re-obtained. On the other hand, the cosmological
constant does not behave as in GR, since the non-conservation of this component changes its
evolution.

4.2.3.2. Evolution of matter perturbation

We have shown that ΛCDM model is recovered in the background equations. Now we take a
step further showing that this is also the case in the perturbative level. We recast the two main
equations in a more suitable way

Rµν = Tµν −
1 + 2β

2(1 + β)
gµνT −

β

1 + β
gµνp,

∇µTµν = − β

2(1 + β)
∇ν(T + 2p).

(4.50)

These equations are written in its covariant form, thus we are free to choose the syncronous
gauge, defined by hµt = 0 [133]. We choose the standard linearly perturbed FLRW metric
as well, keeping the same notation from chapter 2, where the perturbed metric quantities are
denoted as hµν . We may simplify the equations introducing the following definition

h =
hkk
a2

. (4.51)

Just like as we did in equations (4.43), we divide the SET into two different fluids

Tµν = Tµνm + TµνΛ , (4.52)

with
Tµνm = ρmu

µuν ,

TµνΛ = ρΛg
µν .

(4.53)
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Following the same reasoning as before, we assume that the matter SET conserves

∇µTµνm = 0, (4.54)

and the conservation equation (4.50) yields

∇µTµνΛ = − β

2(1 + β)
∇ν(Tt + 2pt), (4.55)

where the subscript t stands for the total contribution.
As we have showed, the background solutions works out just as in reference [104], therefore we

can follow the same steps for the perturbative part as well. With this, the perturbed equations
are

ḧ

2
+Hḣ =

1

2(1 + β)
δρm −

1 + 2β

1 + β
δρΛ,

δρm
ρm

=
ḣ

2
,

δρ̇Λ = − β

2(1 + 2β)
δρ̇m.

(4.56)

Using the standard definition of the density contrast as

δm =
δρm
ρm

, (4.57)

we can merge equations (4.56) together to obtain

δ̈m + 2Hδ̇m −
1

2
ρmδm = 0. (4.58)

Therefore, the evolution of small matter fluctuations in the model under consideration is also
identical to the one in the ΛCDM model of GR. Despite the similarities, an important difference
is that the cosmological constant introduced in the f(R, T ) theory is not really a constant, but
has an evolution dictated by the non-conservative character of the theory. This feature is the
same as it was found in reference [104] for the standard Rastall gravity.
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CHAPTER 5.

Charged BH and radiating solutions in
entangled relativity

5.1. Introduction

Entangled relativity [134, 135, 136, 137] is a theory of relativity that fulfills Einstein’s original idea
that “there can be no G-field [space-time] without matter” [138], while at the same time it recovers
many predictions of general relativity—without any novel field, see [135] and references therein.
Einstein originally thought that general relativity augmented with a cosmological constant Λ
would possess the wanted property that “physical qualities of space are completely determined
by matter alone” [139]; whereas it was obviously not the case with general relativity without a
cosmological constant since a flat space-time is obviously solution of vacuum in that case [138].
Indeed, the existence of space-time without matter means that inertia can be defined relative
to space only, whereas Einstein had in mind that inertia—and, of course, angular momentum—
could only be defined relatively to surrounding matter [140, 141, 142]. One has to keep in mind
that in 1918, according to Einstein, the impossibility of the existence of space-time (hence gravity
and inertia) without matter—that follows from his interpretation of some of the ideas of Mach
[140, 143, 141, 142], which he named Mach’s principle [138]—was one of the three requirements
of a satisfying general theory of relativity, together with the need of covariant equations—which
follow from the principle of relativity—and the fact that the metric tensor determines the metric
properties of space, the inertial behavior of bodies in this space, as well as the gravitational
effects—which follow from the principle of equivalence [138]. Hence, de Sitter’s solution [144]
of GR with a cosmological constant—but in vacuum otherwise—was quite unsatisfactory to
Einstein, as it meant that “the Λ-term does not fulfill the purpose [he] intended [...] that no
gµν-field must exist without matter that generates it” [139]. In other words, Einstein believed in
the relativity of inertia [141, 142] that, despite his initial hopes, turned out not to be valid (at
least in general) in the framework of GR [141, 142]. This is arguably a very serious ontological
issue of GR [142, 145].

Nevertheless, BH solutions in vacuum of GR—such as the Schwarzschild and the Kerr metrics—
play an important role in explaining many different phenomena, from the observations of the
Event Horizon Telescope [146, 147] to the detection of gravitational waves [15, 73]. Therefore, it
is important to check whether or not the usual vacuum solutions of GR—which are good math-
ematical idealization of astrophysical BHs—are also good approximations of BHs in entangled
relativity.

While vacuum solutions should not exist in entangled relativity, nothing prevents the density
of matter field outside the event horizon to be arbitrarily small—notably recovering some usual
astrophysical conditions. In what follows, we shall name such a condition a near vacuum situation.
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In the present chapter, we shall present an exact spherical solution of entangled relativity that
can be approximated by the Schwarzschild metric in a near vacuum situation. We shall then argue
that this result could actually come from a general property that makes that vacuum solutions of
GR good approximations of near vacuum solutions of entangled relativity. It is therefore argued
that astrophysical BHs of entangled relativity are likely indistinguishable from the ones of GR in
many cases. This chapter closely follows reference [148].

5.2. Action and field equation

The action of entangled relativity is given by [135]

S = − ξ

2c

∫
d4x
√
−gL

2
m

R
, (5.1)

where the constant ξ has the dimension of the usual coupling constant of GR κ ≡ 8πG/c4—where
G is the Newtonian constant and c the speed of light. R is the usual Ricci scalar constructed
upon the space-time metric gαβ, with determinant g; while Lm is a scalar Lagrangian representing
the matter fields. ξ defines a novel fundamental scale that is relevant at the quantum level only,
and therefore is notably not related to the size of BHs; whereas the Planck scale—defined from
κ and which is related to the size of BHs—no longer is fundamental, nor constant, in entangled
relativity [135]. 1 The impossible existence of gravity without matter, and vice versa, is obvious
from the action. It comes from the fact that one has replaced the usual additive coupling between
matter and geometry by a pure multiplicative coupling. For Lm 6= 0, the metric field equation
reads

Rµν −
1

2
gµνR = − R

Lm
Tµν +

R2

L2
m

(∇µ∇ν − gµν�)
L2
m

R2
, (5.2)

with

Tµν ≡ −
2√
−g

δ (
√
−gLm)

δgµν
. (5.3)

Note that the trace of Eq. (5.2) reads

3
R2

L2
m

�
L2
m

R2
= − R

Lm
(T − Lm) . (5.4)

Also note that the stress-energy tensor is no longer conserved in general, as one has

∇σ
(
Lm
R
Tασ

)
= Lm∇α

(
Lm
R

)
. (5.5)

But entangled relativity is more easily understood in its dilaton equivalent2 form that reads
[134, 135]

S =
1

c

ξ

κ̃

∫
d4x
√
−g
[
φR

2κ̃
+
√
φLm

]
, (5.6)

1As also discussed in [137, 149], this might be a way out of the ontological paradox of conventional quantum gravity
that, in Freeman Dyson’s words [150], “nature conspires to forbid any measurement [through the creation of
BHs] of distance with error smaller than the Planck length”, because the effective Planck scale [135]—which
fixes the size of a BH’s event horizon for a given mass—depends on the field equations in entangled relativity.

2This dilaton theory is equivalent, at least at the classical level, as long as Lm/R < 0. Notably, it seems that
one must always consider cases such that (R,Lm) 6= 0 when one uses the dilaton form of entangled relativity,
although R and Lm can be arbitrarily small in principle. We shall come back on this point in the later on.
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where κ̃ is a positive effective coupling constant between matter and geometry, with the dimension
of κ. κ̃ takes its value from the asymptotic behavior of the effective scalar degree of freedom in
Eq. (5.1) [134, 135], as well as the considered normalisation of φ. κ̃/

√
φ, which defines an effective

Planck scale, notably fixes the size of BHs with a given mass. The equivalence between the two
actions is similar to the equivalence between f(R) theories and the corresponding specific scalar-
tensor theories [151]. From this alternative action, one can easily see why entangled relativity
reduces to GR when the variation of the scalar-field degree of freedom vanishes. The dilaton field
equations read

Gαβ = κ̃
Tαβ√
φ

+
1

φ
[∇α∇β − gαβ�]φ, (5.7)√

φ = −κ̃Lm/R, (5.8)

where Gαβ is the Einstein tensor and the conservation equation reads

∇σ
(√

φTασ
)

= Lm∇α
√
φ, (5.9)

The trace of the metric field equation can therefore be rewritten as follows

3

φ
�φ =

κ̃√
φ

(T − Lm) . (5.10)

The equivalence between Eqs. (5.7-5.10) and (5.2-5.5) is pretty straightforward to check. This
simply means that, indeed, the action (5.1) possesses an additional gravitational scalar degree of
freedom with respect to GR.

The good thing with this extra degree of freedom is that it is not excited in all situations where
Lm ∼ T . This leads to a phenomenology that closely resembles the one of GR [152, 135, 153, 154,
137]; whereas it is expected to differ from the one of GR in all other situations—see e.g. [136] or
[149]. As a consequence, the theory seems to be viable from an observational perspective, while
at the same time it offers potential interesting new avenues—as we will see, notably in Sec. 5.3.1.
The electromagnetic field being the easiest (and perhaps the only) matter field with infinite range
to consider, we will only study the case of the electromagnetic Lagrangian Lm = −F 2/(2µ0) in
what follows, where µ0 is the magnetic permeability.3 With this Lagrangian, the electromagnetic
field equation reads

∇σ
(√

φFµσ
)

= ∇σ
(
Lm
R

Fµσ
)

= 0. (5.11)

Let us note that the equivalence of the original action of entangled relativity in Eq. (5.1)
with an Einstein-Maxwell-dilaton theory—see Eqs. (5.6) and (5.12)—seems to indicate that
the theory is well-behaved with respect to various aspects, such as the Ostrogradsky instabily
[156, 157] or the well-posedness of the initial value problem [158, 159, 160, 161]. Indeed, Einstein-
Maxwell-dilaton theories are second-order theories that are notably known to have a well-posed
initial-value problem [162, 163]. This is similar to what happens with fourth-order f(R) theories
[159, 160, 156].

3In natural units, we consider Lm = −F 2/2 instead of Lm = −F 2/4, in order to follow the definition used
in the literature [155]. In particular, it means that the electromagnetic stress-energy tensor reads Tµν =
2
(
FµαF να − 1

4
gµνFαβF

αβ
)

in natural units.
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5.3. Charged BH

In its scalar-tensor form (5.6), entangled relativity is just a specific case of a dilaton theory, for
which the solution for charged BH has been investigated by many authors during the first su-
perstring revolution [164, 165]. Indeed, defining the Einstein frame metric by g̃αβ = e−2ϕ/

√
3gαβ,

with φ = e−2ϕ/
√

3, the action in the Einstein frame reads

S =
1

c

ξ

κ

∫
d4x
√
−g̃

[
1

2κ

(
R̃− 2g̃αβ∂αϕ∂βϕ

)
− e−ϕ/

√
3 F̃

2

2µ0

]
, (5.12)

where F̃ 2 = g̃ασ g̃βεF̃σεF̃αβ, where F̃αβ := Fαβ. One has used the conformal invariance of the
electromagnetic action. From now on, in order to follow the literature, we use natural units. This
action corresponds exactly to the one considered in [155, 166, 167, 168] with a = (2

√
3)−1. The

spherical solution therefore reads

ds̃2 = −λ̃2dt2 + λ̃−2dr2 + ρ̃2
(
dθ2 + sin2 θdψ2

)
, (5.13)

with

λ̃2 =
(

1− r+

r

)(
1− r−

r

)(1−a2)/(1+a2)
, (5.14)

and

ρ̃2 = r2
(

1− r−
r

)2a2/(1+a2)
, (5.15)

whereas the field solutions read

F̃ = −Qe
2aϕ

ρ̃2
dt ∧ dr = −Q

r2
dt ∧ dr, (5.16)

for an electric charge, and

e2aϕ =
(

1− r−
r

)2a2/(1+a2)
, (5.17)

where we normalized the scalar-field such that its background value ϕ0 corresponds ϕ0 = 0. r+

is an event horizon, whereas r− is a curvature singularity for a 6= 0. They are related to the mass
and charge, M and Q, by

2M = r+ +

(
1− a2

1 + a2

)
r−, (5.18)

and
Q2 =

r−r+

1 + a2
. (5.19)

Performing the inverse conformal transformation
gαβ = e2ϕ/

√
3g̃αβ in order to have the solution of the action Eq. (5.6), one gets

ds2 = −λ2
0dt2 + λ−2

r dr2 + ρ2
(
dθ2 + sin2 θdϕ2

)
, (5.20)

with

λ2
0 =

(
1− r+

r

)(
1− r−

r

)15/13
, (5.21)

λ2
r =

(
1− r+

r

)(
1− r−

r

)7/13
, (5.22)

ρ2 = r2
(

1− r−
r

)6/13
. (5.23)
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The scalar-field solution on the other hands reads

φ =
(

1− r−
r

)−4/13
. (5.24)

The solution (5.20-5.24) has been verified via Mathematica, the code is accessible on GitHub
[169]. It is therefore the first known BH solution of entangled relativity.
r− → 0 corresponds to a near vacuum situation described in the introduction. In this limit,

the scalar-field tends to a constant field and the metric in Eq. (5.20) tends to the Schwarzschild
solution in a near vacuum situation.

This represents the first example for which an exact solution of entangled relativity is shown to
be well approximated in a near vacuum situation by the usual Schwarzschild solution in vacuum.
This is an indication that the outside metric of the Schwarzschild solution can be an accurate
mathematical idealisation of a non-rotating astrophysical BH in entangled relativity.

5.3.1. Discussion on the validity of the solution beyond the event horizon

While the solution (5.20-5.24) seems perfectly well behaved within the event horizon at a math-
ematical level, we would like to argue that this region might not correspond to the solution after
the collapse of an astrophysical object, therefore only the region outside the event horizon might
be relevant at the physical level. The reason being that nothing guarantees that singularities
occur after the collapse of compact objects in entangled relativity.

Indeed, the effective coupling 8πGeff/c
4 := −R/Lm between matter and curvature in the

metric field equation (5.2) is not necessarily positive everywhere since it notably depends on
the on-shell value of matter fields Lm. As a consequence, gravity is potentially not attractive
everywhere in entangled relativity, but also repulsive in some places. In particular, if one assumes
that Lm = K − V , where K and V are the kinetic and potential energy densities, it seems
plausible that Lm flips its sign at high enough energy, when kinetic energy should dominate
matter dynamics. It may not mean that the effective coupling between matter and curvature in
the metric field equation becomes negative. But if it does—such that gravity can indeed become
repulsive at a given high energy threshold—one can genuinely assume that the solution will not
look like (5.20-5.24) within the event horizon. Unfortunately, investigating this issue seems to
require an accurate description of matter fields at (arbitrarily) high energy; while it is believed
that the standard model of particles is not accurate at (arbitrarily) high energy.

The transition between the attractive and repulsive cases seems to be singular, or at least
ambiguous, in the metric field equation (5.2), since one has to go through Lm = 0. However, this
is likely not the case for the following reason. One can see that the metric field equation that
derives from the action (5.1) actually originally reads for all Lm,

L2
m

R2

(
Rµν −

1

2
gµνR

)
= −Lm

R
Tµν + (∇µ∇ν − gµν�)

L2
m

R2
, (5.25)

instead of Eq. (5.2), as it usually appears in the literature for its resemblance with the usual
form of the equation of Einstein. Therefore, one can see that any metric that leads to a non-null
Ricci scalar is likely consistent with Lm = 0 on-shell. As a consequence, the transition between
Lm < 0 and Lm > 0 is likely not singular if one has R 6= 0 at the transition. If that happens, not
only the transition would be regular, but it would also correspond to a transition from attractive
to repulsive gravity—that is, from Lm/R < 0 to Lm/R > 0 in Eq. (5.2)—given that the effective
coupling between matter and curvature can be written as 8πGeff/c

4 := −R/Lm. This very
interesting topic is left for further studies.
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5.4. Pure electromagnetic radiation

The case of pure electromagnetic radiation is of interest because radiating solutions of GR seems
to satisfy entangled relativity as well, despite an apparent ambiguity in the field equations.

Indeed, from the trace of Einstein’s equation of GR, and from the conformal invariance of
electromagnetism, one deduces that any purely radiative solution of GR must be such that
R = T = 0. Also, even though one has Tµν 6= 0, the electromagnetic Lagrangian Lm = B2 − E2

vanishes on-shell in entangled relativity as well, since E2 = B2 for pure radiation. Therefore,
assuming any purely radiative solution of GR, one has Lm = R = T = 0.

Nevertheless, φ = κ̃2L2
m/R

2 = φ0, where φ0 is a constant, is consistent with all the field
equations of entangled relativity, because in that case, they reduce exactly to the one of the
Einstein-Maxwell theory. Hence, any purely radiative solution of GR seems likely to be solution
in entangled relativity as well. The division L2

m/R
2, however, is ambiguous, despite it being a

constant.
At this stage, we do not conclude that purely radiative solutions of GR are also solutions of

entangled relativity, but that it seems that it might very well be. In any case, these solutions,
such as Vaidya’s radiating Schwarzschild solution [170, 171], may be used in order to study the
behavior of entangled relativity in the limit (Lm, T,R) → 0. Another possibility to study such
cases might be achieved by analysing a solution that is both charged and radiating, and then
taking the limit when its charge goes to zero. This issue is left for further studies.

Nevertheless, note that even if it turns out that a pure radiative field cannot be solution in
entangled relativity (5.1), this might not be a fundamental issue for the theory, as the quantum
trace anomaly of self-interacting fields in a curved background should induce small, but non-null,
values of the Ricci scalar, the trace of the stress-energy tensor and the Lagrangian that appears
in the field equations [172, 137]. Quantum trace anomalies may therefore imply that the theory
is well behaved everywhere. Investigation of this aspect is left for further studies.

5.5. Discussion

Now we argue that, in general, vacuum solutions of GR can be good approximations of some near
vacuum BH solutions of entangled relativity. Indeed, in a near vacuum situation—that is Tµν ∼
0—the scalar-field in Eq. (5.10) can be approximated as being sourceless. As a consequence, a
constant scalar-field is a good approximation as well, and the metric field equation becomes itself
well approximated by the one of GR without a cosmological constant.4

This means that while BHs in entangled relativity are not entirely the same as in GR, their
differences might be insignificant in situations that correspond to a scalar-field which equation is
mostly sourceless. In particular, this argument seems to indicate that an astrophysical rotating
BH in entangled relativity could be well approximated by the external Kerr metric of GR.

Otherwise, it is known that BHs might grow some hair due to a variation (either temporal or
spatial) of the background value of the scalar-field in scalar-tensor theories [?]. Let us note that,
whether or not this may be true in entangled relativity as well, the scalar-field is not expected
to vary significantly neither temporally nor spatially. Indeed, with respect to the former, the
scalar-field is attracted toward a constant in entangled relativity during the expansion of the
universe [153, 154, 137]; whereas, because the scalar-field is also not sourced by pressure-less

4Given the small value of the inferred cosmological constant in GR from the apparent acceleration of the expansion
of the universe, BH solutions of GR with and without a cosmological constant are alike on scales well below
the Hubble scale. Hence, we will not enter into such details.
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matter fields in the weak field regime [152], one does not expect a significant spatial variation of
the scalar-field either. Both cases follow from the intrinsic decoupling of the scalar-field at the
level of the scalar-field equation for Lm ∼ T [152, 153, 154, 173, 137].

Before concluding, we would like to stress again that one should not take seriously the exact
solutions beyond the event horizon. Indeed, in order to describe any compact object inside the
BH in this model, one must have a high energy description of matter fields in order to tell
what happens there in entangled relativity. The reason being that gravity becomes repulsive in
entangled relativity for matter fields that are such that Lm/R > 0 [149],5 and one cannot exclude
the possibility that this situation could happen after a phase transition of matter fields at high
energy. In particular, this may be a way to avoid BH singularities [174] without the absolute
need of a quantum field description of gravity [149].

5See the first term of the right hand side of Eq. (5.2).
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CHAPTER 6.

Conclusions

We conclude this thesis summarizing the main result achieved in each part.
In chapter 2 we first investigated the theory behind the last stage of the coalescence of two BHs,

quasi-normal modes oscillation. In section 2.2, we detailed how perturbation theory is applied in
this context. We developed the first-order perturbation of the Einstein tensor; then, we showed
how the invariance under rotation of the two-dimensional sub-space splits the perturbations in
either one of the two categories: axial or polar parity; we classified these components using the
SVT decomposition, and related each component to a spin-weighted spherical harmonic.

We attained our attention to some specific solutions in the context of GR, in section 2.3. First,
singular BHs: Schwarzschild, Reissner-Nordström and Schwarzschild de-Sitter; then regular BHs:
Bardeen and Hayward. For each case we discussed the BH’s main properties like, horizons,
singularities and how the parameters change the solutions. We showed the effective potential
for the gravitational, electromagnetic and scalar test-fields for each one and discussed its main
properties.

Then we focused our attention into obtaining the quasi-normal frequencies given by these
potentials. In section 2.4 we quickly reviewed the analytical method of the Pöschl-Teller potential.
This method is well suited for frequencies in the eikonal limit, while also being an exact case for
some particular BHs solutions.

Thereafter, in section 2.5, we developed the WKB method, a well refined scheme where the
quasi-normal frequencies are a good approximation to the numerical result. In section 2.6 we
used the third-order WKB method to fully investigate how each of the solutions behave under the
variation of the parameters. The general results that we obtained were: all the BHs investigated
are expected to be stable; the mass always decrease the real frequency of oscillation, while it
becomes less damped; the solutions which possess a charge are barely sensible to the variation
of ` and in all cases, the real frequency decreases as the overtone number increases, the opposite
occurs to the imaginary frequency.

We finish this chapter with 2.7 where we delve ourselves into the observational part of the
ringdown phase of the coalescence. First we analyse a model-independent strain, constructed
from a damped sinusoidal wave, and we show how we can use this to obtain the final intrinsic
parameter of the remnant BH. Next, we choose a different wave strain h(t) using a first-principles
model. BOB recovers the information from the system in its binary stage, from the ISCO position,
up to the final BH. The whole model relies on tracing back the null bundle of light rays from the
remnant BH to the unstable orbit.

We close this chapter by showing some results using BOB. We show that for both GW150914
and GW170104 the spin parameter a agrees with the previous published results. However, the
value that we obtained for the mass is reasonably higher.

In chapter 3 onward, we move on to a more theoretical part of this thesis. First we investigate
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how two seemingly different theories, k-essence, a model with an arbitrary function of the kinetic
term for the scalar field, and Rastall, a non-conservative theory of gravity, have similarities for
some particular BH-like cases. We take our time in section 3.2 to review these two models,
detailing their main structure and motivations first, and then stating the spherically-symmetric
solutions obtained. We make note that the geometric solutions are the same in both cases, while
the scalar field solution differ from each other.

Given this “coincidence”, we analyze how deep this relationship between these two models go
in section 3.4. For the scalar-vacuum case, this duality occurs with simple relations between
the potentials, scalar fields and the free parameter of the theories. For a FLRW metric, given a
perfect fluid, the two types that we investigate are: Case 1 - No mixing of the scalar field and the
matter field, where both SETs obey Rastall non-conservative condition; Case 2 - Conservative
matter, where only the matter SET obeys the conservation equation.

The duality has been established for Case 1 of Rastall’s theory with an arbitrary EoS of matter.
It has been found that the EoS of matter is different in the mutually dual k-essence and Rastall
models; however, it is argued that the respective speeds of sound are the same. Since the speeds
of sound characterizing the scalar fields (φ in k-essence theory and ψ in Rastall’s) also coincide,
we conclude that the duality is maintained not only for the cosmological backgrounds but also
for adiabatic perturbations.

For Case 2 of Rastall’s theory, it has been found that the duality exists only with fluids having
the EoS p = ωρ, which is the same for k-essence and Rastall models. Moreover, in the k-essence
model, the scalar field obeys the same effective EoS. However, on the perturbative level the
mutually dual models behave, in general, differently.

Some special cases have been discussed, showing how there emerge some restrictions on the
free parameters of each theory.

An example has been considered in which a cosmological model completely equivalent to the
ΛCDM model of GR is obtained at the background level, but different features must appear at
the perturbative level.

Established some conditions for both theories to behave alike each other, we move on onto
checking if the BHs solutions are stable in both formalisms in section 3.4. After showing the
whole first-order formalism for k-essence, we show that the two BHs are unstable. However, such
stability analysis in the Rastall case is inconsistent: linear time-dependent spherically symmetric
perturbations simply do not exist.

In chapter, 4, we focus in Rastall’s theory and tackle some theoretical issues that it possess.
In section 4.2, we look after the proposals for a lagrangian for Rastall theory. First, we showed
that theories of type f(R,Lm) cannot reproduce Rastall gravity. Even assuming f(R,Lm) =
αR+ G(Lm), this structure either recovers GR, or strongly deviates from Rastall gravity.

We demonstrated that despite the structural similarities with Rastall, the only way to cast this
theory in the framework of f(R, T ), was through the hydrodynamical representation of a scalar
field.

In a cosmological setting, the latter model, is able to reproduce one of the most intriguing
results of Rastall theory: the recent cosmic history of the ΛCDM model is reproduced, but with
the extra feature of having a clustering of dark energy.

We end this thesis with chapter 5 where we discuss some BH solutions in a novel theory of
gravity, entangled relativity. BHs in this model are somewhat more complex to study than in
GR, as we explored in section 5.2, given that vacuum does not seem to be allowed by the theory.
Therefore one has to study solutions that involve matter fields, before contingently taking the
limit toward vacuum in order to have a more realistic representation of astrophysical BHs—which
are usually thought to evolve in a near vacuum environment. Using previous results developed in
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the framework of string theory, we presented an exact spherically charged solution of entangled
relativity in section 5.3. The solution tends to the Schwarzschild’s solution in a near vacuum
limit—that is, when the charge of the BH goes to zero.

Additionally, in section 5.4, we argued that any solution of pure radiation in GR, such as
Vaidya’s solution, might also be solution of entangled relativity, although more careful analyses
are required to pin the argument on a more firm mathematical ground.

In any case, both Vaidya’s and the charged BG solutions are well approximated by the external
solution of the Schwarzschild metric in a near vacuum situation, providing evidence that an
astrophysical spherical black hole in entangled relativity can be approximated by a Schwarzschild
BH.

Otherwise, we have argued that this result is likely generic in near vacuum situations, such
that an astrophysical rotating BH in entangled relativity can also likely be approximated by a
Kerr BH, as we concluded in section 5.5.





APPENDIX A.

Spherical Harmonics

The goal of this appendix is to settle the foundation for the equations in section 2.2. The main
reference in this section is from [25], however we are using the notation from Regge and Wheeler
[16].

First we define the metric of a sphere in two-dimensions as

Ωij(θ, φ) =

(
1 0
0 sin θ

)
. (A.1)

With this we can write the Laplace equation of two a dimensional space in a sphere via

�Y m
l (θ, φ) = 0,

Ωij∇i∂jY m
l (θ, φ) = 0,

(A.2)

with Y m
l (θ, φ) denoting the spherical harmonics.

With the metric of the 2-sphere in equation (A.1), we can develop the D’Alembertian operator
as follows

� =
1

sin θ
∂θ(sin θ∂θ) +

1

sin2 θ
∂2
φ. (A.3)

Then we can set up the eigenvalue problem as

�Y m
` = λY m

` , (A.4)

which, by the usual separation of variables given as

Y m
` (θ, φ) = Θ(θ)Φ(φ), (A.5)

leads to

sin θ∂θ(sin θ∂θΘ) + `(`+ 1) sin2 θΘ = m2Θ, (A.6)

∂2
φΦ +m2Φ = 0. (A.7)

The solution for Θ and Φ, respectively, are

Θ(θ) = Pm` (cos θ), Φ(φ) = e±imφ, (A.8)

where Pm` is the usual definition of the associated Legendre polynomial.
Hence, the full solution is given by the spherical harmonics defined as

Y m
` (θ, φ) = Am` P

m
` (cos θ)eimφ, (A.9)
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where we have defined the normalization constant Aml as

Am` =

√
(2`+ 1)(`−m)!

4π(`+m)!
, (A.10)

to satisfy the following orthonormality condition∫ π

θ=0

∫ 2π

φ=0
Y m
` Y m′∗

`′ dΩ = δ``′δmm′ . (A.11)
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[36] F. Kottler. Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie.
Annalen der Physik 361 401 (1918). URL: https://onlinelibrary.wiley.com/doi/

abs/10.1002/andp.19183611402. [Cited on page 14.]

[37] J. M. Maldacena. The Large N limit of superconformal field theories and supergravity. Int.
J. Theor. Phys. 38 1113 (1999). [Cited on page 14.]

[38] V. Faraoni. Embedding black holes and other inhomogeneities in the universe in various
theories of gravity: a short review. Universe 4 109 (2018). [Cited on page 14.]

[39] N. Hidekazu. On a new cosmological solution of Einstein’s field equations of gravitation.
Sci.˜Rep.˜Tohoku Univ.˜Eighth Ser. 35 (1951). [Cited on page 14.]
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