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Abstract

Albeit ΛCDM’s fame as the concordance model, there are many interesting myster-

ies worth exploring, such as the nature of dark energy. Here, we test the viability

of several classes of scenarios of the dark sector with linear and non-linear inter-

acting terms. To do so, we use a Bayesian model selection with data from type Ia

supernovae, cosmic chronometers, cosmic microwave background and two sets of

baryon acoustic oscillations measurements: 2-dimensional angular measurements

(BAO2), and 3-dimensional angle-averaged measurements (BAO3). On the other

hand, we consider covariance matrices, which are important tools for parameter es-

timation. We explore ways of compressing them by analysing their eigenvalues and

signal-to-noise ratio, by employing a tomographic compression and, lastly, with the

Massively Optimized Parameter Estimation and Data compression (MOPED). We

find that MOPED is a powerful tool in the comparison of covariance matrices and,

towards that end, we build a python code that uses a fast Monte Carlo simulation

to obtain comprehensible values for differences between two covariance matrices.

This method thus eliminates the need for a full cosmological analysis as we relate

its output to the corresponding parameter constraints.



Resumo

Apesar da fama do ΛCDM como o modelo de concordância, existem muitos mistérios

interessantes que merecem ser explorados, tais como a natureza da energia escura.

Aqui, nós testamos a viabilidade de várias classes de cenários do setor escuro com

termos de interação lineares e não-lineares. Para este fim, nós usamos o modelo

de seleção Bayesiana com dados de supernovas do tipo Ia, relógios cósmicos, ra-

diação cósmica de fundo de micro-ondas e dois conjuntos de medidas de oscilações

acústicas bariônicas: medidas angulares bidimensionais (BAO2) e medidas tridi-

mensionais de média angular (BAO3). Em contrapartida, nós consideramos ma-

trizes de covariância, as quais são ferramentas importantes para estimativas de

parâmetros. Nós exploramos diferentes formas de comprimi-las analisando seus

autovalores, a razão sinal-rúıdo, empregando a compressão tomográfica e, final-

mente, utilizando o Massively Optimized Parameter Estimation and Data com-

pression (MOPED). Nós encontramos que MOPED é uma ferramenta poderosa de

compressão de matrizes de covariância e, para este fim, nós constrúımos um código

em python que utiliza uma simulação rápida de Monte Carlo para obter valores

compreenśıveis relacionados à diferença entre duas matrizes de covariância. Este

método, então, elimina a necessidade da análise cosmológica completa, pois rela-

cionamos seus resultados aos obtidos a diferença em suas restrinções de parâmetros.



Acknowledgements

I wish to thank my superb advisors Valerio Marra and Scott Dodelson for helping

me through this journey and providing invaluable knowledge not only in cosmology,

but, most importantly, on how to be a competent researcher and collaborator. I

also thank my collaborators Antonella Cid, Beethoven Santos, Cassio Pigozzo,

Hung-jin Huang, Jailson Alcaniz, Niyani Chen, Sukhdeep Singh and Tianqing

Zhang.

I thank the support from my husband, Edison Santos, for all aspects regarding

this thesis and for being a supportive partner in all situations. I am very thankful
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CHAPTER 1

Introduction

Space: the final frontier.

Star Trek

The standard cosmological model has been able to account for a myriad of cos-

mological observations and given us a rich and informative picture of the universe.

Nonetheless, ΛCDM faces problems both observationally and theoretically. Some

of these are the inconsistencies at small scales [1, 2] and the tensions between

datasets, such as the famous H0 crisis from local observations and the Cosmic

Microwave Background (CMB) [3]; and, most recently, the disagreement on the

value of S8 between the Kilo-Degree Survey-1000 (KiDS-1000) and Planck exper-

iments [4]. A review of the derivation and framework of the standard model is

done in Chapter 2.

The momentum generated by these discoveries has been paving the way for a

broader and more extensive study of the dark sector. A class of interacting models

that alleviates some of the shortcomings of ΛCDM is presented in Chapter 3. We

will see that some of these models are indistinguishable from the standard model,

where model selection is concerned, for a combined analysis with a number of


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observables.

The coming era of cosmological surveys will shed light to many paradigms, with

an unprecedented amount of data yielding high-precision tests. As the datasets

increase, however, so does the need for sophisticated statistical inference. In cos-

mology, the popular approach is to use Bayesian probability theory, where informa-

tion is the key concept and data can be interpreted in the context of a theoretical

model. Cosmological parameter inference is done by employing Bayesian statis-

tics to produce posterior probability distributions (or likelihoods). This requires

constructing a pipeline which can use Monte Carlo Markov Chains (MCMC), or

Nested Sampling (NS), for example, to explore the parameter space. These meth-

ods rely on results from tens of thousands of model evaluations; with the current

tools, analysing data from the upcoming Stage IV experiments could take several

years [5].

One way of addressing this issue is to use data compression. In Chapter 4 we

introduce cosmic shear statistics, which is the observable we use for examining four

such methods to reduce the size of the covariance matrix, as described in Chap-

ter 5. Since covariance matrices are one of the most challenging components of

cosmological analyses, we seek to isolate its most essential parts to parameter esti-

mation. The compression schemes are presented in increasing order of complexity,

starting with the removal of 200 modes associated with the lowest eigenvalues,

moving on to the 200 modes with the lowest signal-to-noise, then to compression

at the tomographic level and, finally, with the Massively Optimized Parameter

Estimation and Data compression (MOPED). We show that compression schemes

are an important tool for comparing covariance matrices, thus laying down the

groundwork for building an effective method of covariance matrix comparison.

Chapter 6 deals with the problem of comparing covariance matrices. The com-

pressed covariance matrices are fed to a python code that produces results in terms


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of the difference in their diagonal elements, and of the elements of their correlation

matrices. These results are in good agreement with the interpretation derived from

considering the differences in their parameter constraints. This indicates that the

algorithm is capable of replacing a full cosmological analysis, in favour of a faster,

and computationally cheaper alternative.

Finally, this thesis is concluded in Chapter 7, where the main results are sum-

marised.





CHAPTER 2

Introduction to cosmology

To boldly go where no one has gone before.

Star Trek

2.1 Geometry and distances in the universe

2.1.1 The Cosmological Principle

The cosmological principle can be interpreted as a generalised form of the Coper-

nican Principle, which states that the earth is not in any particularly privileged

position in the universe [6]. The cosmological principle states that, for sufficiently

large scales, the universe can be considered spatially homogeneous and isotropic.

Homogeneity implies that the geometry of the universe looks the same in any point

in space; isotropy, on the other hand, means that the universe is identical in all

directions. This is a very strong hypothesis, and it is the base for all modern

cosmology.

In order to better understand this principle, we introduce the concept of funda-

mental observers for each point in space, who see the universe as being isotropic.





Introduction to cosmology Section 2.1

This is important because two observers at the same given point, each with their

own distinct velocities, cannot both see isotropy in the universe. To say that the

universe is homogeneous, it is only necessary that all fundamental observers see

isotropic angular distances for redshifts of up to third order, in agreement with the

Copernican principle. Similarly, for the universe to be isotropic, these observers

need to see an isotropic Cosmic Microwave Background (CMB) radiation for up to

the octupole [7]. There are a multitude of observations which support the cosmo-

logical principle, like, for example, photons from the CMB travelling from different

regions of the universe have similar temperatures. Other observations like the dis-

tribution of galaxies in the universe, and weak lensing, also provide evidence for

this principle. The universe, however, is not homogeneous on small scales, and

these inhomogeneities can be considered to be small perturbations evolving in the

homogeneous background that is the universe. We will be discussing this impor-

tant aspect later in this chapter.

2.1.2 The Friedmann–Lemâıtre–Robertson–Walker metric

As we just saw, the universe is homogeneous and isotropic in space, which implies

that it has the maximum possible number of Killing vectors. We represent our

spacetime with R×Σ, where R is the time direction and Σ is a three-dimensional

manifold. The line element of our metric is,

ds2 = gµνdx
µdxν = −dt2 + a2(t)dσ2 . (2.1)

where, throughout the text, the Greek indices are [0,3] and the Latin indices

are [1,3], and c = 1. The term gµν is the metric tensor, the function a(t) is

the cosmological scale factor, which describes how distances increase with time

and, finally, dσ2 = γijdx
idxj, where γij is the three-dimensional spatial metric.


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The coordinates of dσ2 are known as the comoving coordinates and can be

used to define the comoving distance, χ(r), as well as to describe fundamental

observers [8].

To obtain information about the curvature of the universe, we need to calculate

the Riemann tensor, or the curvature tensor, which, for maximally symmetric

metrics, is given by [9]

Rijkl = K (γikγjl − γilγjk) . (2.2)

Its contraction, the Ricci tensor, is then

γikRijkl = K
(
γikγikγjl − γikγilγjk

)
,

Rjl = K (3γjl − γjl) ,

Rjl = 2Kγjl ,

(2.3)

and we can obtain the constant K by contracting both sides once more,

K =
R
6
, (2.4)

where R is the Ricci scalar. Substituting this result, gives

Rjl =
Rγjl

3
. (2.5)

Next, we take the most general metric for a static, spherically symmetric spacetime,

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2(dθ2 + sin2 θdφ2) , (2.6)

with r being the radial coordinate. Since we only want the spherical part, we set


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α = 0. To solve for β(r), we evaluate the Christoffel symbols [9],

Γµνλ =
1

2
gµα(gαν,λ + gαλ,ν − gνλ,α) , (2.7)

which yield,

Γrrr = ∂rβ , Γrθθ = −re−2β , Γrφφ = −re−2β sin2 θ ,

Γθφφ = − sin θ cos θ , Γφθφ =
cos θ

sin θ
, Γθrθ = Γφrφ =

1

r
,

(2.8)

for the non-zero components. We can then calculate the Ricci tensor via,

Rµν = Γαµν,α − Γαµα,ν + ΓαµνΓ
β
αβ − ΓαµβΓβαν . (2.9)

Plugging in the values, we have

Rrr =
2

r
∂rβ ,

Rθθ = e−2β (r∂rβ − 1) + 1 ,

Rφφ =
[
e−2β (r∂rβ − 1) + 1

]
sin2 θ .

(2.10)

Finally, we can use Eq. (2.5) to find

β = −1

2
ln(1−Kr2) , (2.11)

that we use to write Eq. (2.1) as

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (2.12)

This equation is known as the Friedmann–Lemâıtre–Robertson–Walker met-


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ric (FLRW). The constant K can take the values +1, 0,−1 for an open, flat, and

closed universe, respectively. In the case of a closed geometry, the universe is

described by a three-sphere; for the flat case it is a quadridimensional pseudo-

Euclidean space; and the open geometry is represented more simply by a saddle.

2.1.3 Cosmological redshift

Since most of the cosmological observations are obtained via electromagnetic waves,

it is essential to understand how photons propagate in a homogeneous and isotropic

universe.

Consider the comoving coordinate

χ(r) =



sin−1 r (K = +1) ,

r (K = 0) ,

sinh−1 r (K = −1) ,

(2.13)

and the conformal time

τ(t) = −
∫ t

0

dt′

a(t′)
. (2.14)

We can then rewrite the metric in terms of χ and τ ,

ds2 = a2(τ)
[
dτ 2 − dχ2 − f 2

K(χ)(dθ2 + sin2 θdφ2)
]
, (2.15)

where,

fK(χ) =



sinχ (K = +1) ,

χ (K = 0) ,

sinhχ (K = −1) ,

(2.16)


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Since photons move along a null geodesic, with ds = 0, their trajectories can be

described by

dτ(t) = dχ(r) . (2.17)

As such, when a pulse is emitted by a source at r = re in the instant te, it will

reach the observer at r = 0 in t0, where

dτ(t0)− dτ(te) = dχ(re) . (2.18)

For a successive pulse we then have

dτ(t0 + δt0)− dτ(te + δte) = dχ(re) . (2.19)

Since δte � te and δt0 � t0, we can write

dτ(t0)

a(t0)
≈ dτ(te)

a(te)
, (2.20)

and so its period, as well as its wavelength, increase proportionally to the scale

factor. We thus define the redshift as the fractional change in wavelength,

z =
λ0 − λe
λe

, (2.21)

which, if we rewrite a(t0) = a0 and a(te) = a, can also be expressed as

1 + z =
a0

a
. (2.22)

The cosmological redshift was discovered by Edwin Hubble when analysing the

spectral lines emitted by nearby galaxies which, in great part, were moving away

from us [10]. Due to the expansion of the universe, the further an object is,


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the faster it will be moving away from us. If we take, for example, the Big

Bang model, which describes how the universe began, larger redshifts will then

correspond to a younger universe. This is useful because it allows us to measure

how far into the past we are probing, thus enabling a study of the dynamics of the

universe at different epochs, and to test our different hypotheses.

On the other hand, for nearby objects, such as those in our Local Group1, we

observe a blueshift, which indicates that they are moving towards us. This occurs

mostly due to gravitational effects, which attract nearby galaxies in such a way

that the expansion of the universe is subdominant. The blueshift can also be used

to determine the direction of the rotation of binary systems in the universe.

2.1.4 The Friedmann equations

Before presenting the Friedmannn equations, we start with a brief overview of

the Einstein equations, which relate the geometry of spacetime to the matter and

energy content of the universe. In Einstein’s General Relativity (GR), gravity is a

manifestation of the curvature of spacetime; this is well illustrated in Einstein’s

equation,

Gµν = Rµν −
1

2
gµνR = 8πGTµν , (2.23)

where Gµν is called the Einstein tensor, G is the gravitational constant and

Tµν is the energy-momentum tensor. The lhs of Eq. (2.23) characterises the

geometry of the universe, while the rhs describes the energy and the momentum of

1It is the group of galaxies that the Milky Way belongs to; its diameter is approximately 3
Mpc [11]


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its components [12]. We use Eq. (2.7) to obtain the non-zero Christoffel symbols,

Γtrr =
a2H

1−Kr2
, Γrrr =

Kr

1−Kr2
, Γθφφ = − sin θ cos θ ,

Γtθθ = a2Hr2 , Γrθθ = −r(1−Kr2) , Γθφθ = cot θ ,

Γtφφ = a2Hr2 sin2 θ , Γrφφ = −r(1−Kr2) sin2 θ , Γθrθ = Γφrφ =
1

r
,

Γrtr = Γθtθ = Γφtφ = H ,

(2.24)

where we’ve defined the Hubble parameter, H = ȧ
a
. We can then obtain the

Ricci tensor

R00 = −3
ä

a
,

Rij =

[
ä

a
+ 2

(
ȧ

a

)2

+ 2
K

a2

]
gij ,

(2.25)

which leads to

R = 6

[
ä

a
+

(
ȧ

a

)2

+
K

a2

]
. (2.26)

We have thus worked out the lhs of Einstein’s equation, our next step is to tackle

the rhs. The energy-momentum tensor of a perfect, isotropic fluid, is

Tµν =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (2.27)

where ρ is the density and p is the pressure of the fluid. To obtain the evolution

of the scale factor, we need only take the time-time component of Eq. (2.23),

R00 −
1

2
g00R = 8πGT00 , (2.28)
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which yields

H2 =
8πG

3
ρ+

K

a2
. (2.29)

And, for the spatial components

(
ä

a
+H2 +

K

a2

)
gij = −8πGTij . (2.30)

If we substitute Eq. (2.29) in Eq. (2.30), and take its trace, we have

ä

a
= −4πG

3
(ρ+ 3p) . (2.31)

We have thus derived the Friedmann equations, which correspond to Eqs. 2.29

and 2.31.

You will notice that I have not included the Λ term up till this point, and if this

makes you anxious, worry not. The reason for this is that I am interpreting Λ as

being a fluid, and it is thus contained in the rhs of Einstein’s equation, i.e. in the

Tµν . Λ will be properly introduced when we come to the section which deals with

the components of the universe.

2.1.5 Measuring distances in the universe

2.1.5.1 Proper distance

We can define the proper distance, dp, as the spatial geodesic for two points in

the universe at a given value for a(t). For two observables at (0, θ, φ) and (r, θ, φ)

, we have

dp = a(t)

∫ r

0

dr′√
1−Kr′2

= a(t)χ(r) , (2.32)
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where χ(r) depends on the value of K, as described by Eq. (2.13). In the absence

of a peculiar velocity, the relative velocity of an object is then

ḋp = Hdp , (2.33)

or, alternatively, H0dp if we take the value of the Hubble constant evaluated today.

The above expression is known as the Hubble-Lemâıtre law. It states that,

for small enough redshifts, the observed recession velocity increases linearly with

the distance. In 1929, when Hubble first discovered it, he measured H0 ≈ 500

km s−1 Mpc−1 [10]. The current value today stands at 73.2±1.3 km s−1 Mpc−1 [13],

or 69.6 ± 0.8 km s−1 Mpc−1 [14], or 67.4 ± 0.5 km s−1 Mpc−1 [15]. The large

discrepancy between Hubble’s value and today’s was due to an incorrect calibration

of the Cepheid stars used, which yield distances that were underestimated by a

factor ∼ 7; the correct value would thus have been H0 ≈ 71.4 km s−1 Mpc−1 [16].

2.1.5.2 Luminosity distance

Consider a luminous object at a distance dL, in flat space, its flux, over the lumi-

nosity is inversely proportional to the area of a sphere centred around the object

F
Ls

=
1

4πd2
L

. (2.34)

In an expanding universe, however, this is slightly different. Since the flux is

diluted, its absolute luminosity, Ls, at the source, is not the same as the observed

luminosity, L0. The flux is then

F =
L0

4πfK(χ)2
, (2.35)
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and the luminosity distance becomes

d2
L = fK(χ)2Ls

L0

. (2.36)

To find the ratio between the luminosities, we have two factors to consider: the

energy of the photon and the time it takes to reach us. The wavelength of the

photon is inversely proportional to its energy, therefore ∆Es/∆E0 = 1 + z. The

interval of time, ∆t between the emission of one photon and the next is also dilated,

such that it is measured at (1 + z)∆t apart. Combining these, we have

dL = (1 + z)fK(χ) . (2.37)

We can derive a final expression by taking Eqs 2.16 and 2.17, such that

χ =

∫ 0

t

dt′

a(t′)
, (2.38)

where we can change the integration variable t→ a,

χ =

∫ 1

a

da′

a′2H(a′)
, (2.39)

and, if we change the integration variable a second time, a→ z,

χ =

∫ z

0

dz′

H(z′)
. (2.40)

We can finally rewrite Eq. (2.37),

dL =
1 + z√
−K sinh

(√
−K

∫ z

0

dz′

H(z′)

)
, (2.41)
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or

dL = (1 + z)

∫ z

0

dz′

H(z′)
, (2.42)

for a flat universe.

2.1.5.3 Angular diameter distance

The angular diameter distance is more commonly employed when dealing with

larger objects such as galaxies and galaxy clusters, since it takes into consideration

the angle θ that subtends the proper size of the object, R. The angular diameter

distance is defined as

dA =
R

θ
,

=
fK(χ)

(1 + z)
,

(2.43)

which conveniently reduces to

dA =
dL

(1 + z)2
, (2.44)

which is known as Etherington’s reciprocity theorem. Despite its name, this equa-

tion was first derived by Richard Tolman, in 1930 [17], and was later revisited by

Ivor Etherington in 1933 [18], where he critic ised Tolman’s different definition of

brightness. In his paper, Etherington’s equation lacks the square factor, but he

concluded by claiming that both his and Tolman’s results are in agreement.

2.2 Contents of the universe

The Friedmann equations introduced in the previous section include terms de-

scribing the pressure and the energy density of the components of the universe.

In this section we discuss what these components are and how the composition of
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the universe has evolved through time.

2.2.1 The conservation of energy and the equation of state

We have previously shown the energy-momentum tensor, Tµν , in its matrix form

in Eq. (2.27). Its covariant conservation is

∇µT
µν = ∂µT

µν + ΓµµλT
λν + ΓνµλT

µλ = 0 . (2.45)

For ν = 0, we have

ρ̇ = −3
ȧ

a
(ρ+ p) , (2.46)

and, for ν = i,

∂ip = 0 . (2.47)

The conservation equation then amounts to Eq. (2.46). We consider equations

of state of the form

p = ωρ . (2.48)

If we plug this in Eq. (2.46),

ρ ∝ a−3(1+ω) , (2.49)

which relates the evolution of the energy density to the scale factor, a, and the

equation of state, ω.

2.2.2 Components of the universe

The three types of perfect fluids which have equations of state as presented in

Eq. (2.48), and make up the universe we live in, are: dust, relativistic particles,

and vacuum energy. In this section, we give a brief overview of each.

We start with dust, which is taken to be any kind of matter that is non-
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relativistic, such as baryonic matter, which makes up everything that we see,

from trees to planets, to stars, and dark matter, that will be discussed in the next

subsection. Dust is pressureless, thus p = 0 and ρm ∝ a−3. The next component

are the relativistic particles, that can be approximated to an ultra-relativistic ra-

diation fluid. In their case, ω = 1/3, and so ρr ∝ a−4, which is expected, since the

energy per photon scales as a−1 and the number density of photons as a−3.

Finally, we have the vacuum energy, also referred to as the zero-point energy,

which is a well-known quantity in Quantum Field Theory. Consider the Hamilto-

nian of a quantum harmonic oscillator [19],

H = ~ω
(
a†a+

1

2

)
, (2.50)

where, ω is the frequency, and the ladder operators obey the commutation relation[
a, a†

]
= 1. If we apply the vacuum state,

H |0〉 =
1

2
~ω |0〉 , (2.51)

then, the zero-point energy, 1
2
~ω, is an eigenvalue of H. Since the laws of physics

are universal, this energy should also exist in a cosmological context. It does, in

fact, we have included it in the rhs of Eq. (2.23). We can write it now explicitly

Rµν −
1

2
gµνR = 8πG

(
T (m)
µν + T (vac)

µν

)
, (2.52)

where the (m) and the (vac) indices represent matter and vacuum, respectively.

The energy-momentum tensor for vacuum is

T (vac)
µν = −ρvacgµν , (2.53)

which implies that the fluid has negative density. In other words, its internal
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energy increases as it expands. Before we continue our discussion of this strange

fluid, we conclude our derivation for the equation of state for the components of

the universe: we find that ω = −1 and ρvac ∝ a0.

If we replace ρvac with the famous cosmological constant, Λ, we can rearrange

Eq. (2.52),

Rµν −
1

2
gµνR+ Λgµν = 8πGTµν . (2.54)

Eqs. 2.52 and 2.54 may look similar, but they mean different things. The cosmo-

logical constant on the rhs tells the reader that we perceive it as a fluid, it is a

component of the universe just as radiation and matter are. When it is placed on

the lhs, however, then it is seen as a geometric property of spacetime.

The cosmological constant was first introduced by Albert Einstein, in 1917,

in his attempt to create a static cosmological model. This was done to explain

the cosmological observations of the time, which seemed to imply that the uni-

verse was static. Einstein removed the cosmological constant from his equations

a few years later, following Hubble’s discovery in 1929 that the universe was, in

fact, expanding [10]2. Einstein did not live long enough to see his cosmological

constant be invoked, once again, in 1998, as two independent groups discovered,

using data from type Ia supernovae, that the universe is in a state of accelerated

expansion [20, 21]. This acceleration was attributed to a dark energy, as conse-

quence of its equation of state, since ρ + 3p < 0 causes an accelerated expansion.

The cosmological constant is currently the best candidate for dark energy, since

it is capable of describing most of our cosmological observations. We call this the

Λ Cold Dark Matter model, or ΛCDM, and this is the cosmological model

adopted throughout this thesis, unless otherwise stated.

The equation describing the evolution of the components of ΛCDM model is a

2The author takes this opportunity to note here how dangerous it is to succumb to petty
pressure from one’s colleagues, as science is best done when one works with honesty, such
that their work is legitimate and open to constructive criticism.
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simple one, but before deriving it, we first introduce the density parameter,

Ω =
8πG

3H2
ρ =

ρ

ρcrit

, (2.55)

where ρcrit is the critical density. This allows us to write the Friedmann equation

in the form

H(z) = H0

[
Ωm0(1 + z)3 + Ωr0(1 + z)4 + ΩΛ0 + ΩK0(1 + z)2

]1/2
, (2.56)

by considering the contribution of the spatial curvature as an energy density,

ΩK = − K

H2a2
, (2.57)

and with the subscript 0 indicating that we are considering the value of the pa-

rameter evaluated today.

2.3 The ΛCDM model

As previously stated, the ΛCDM model, sometimes referred to as the concor-

dance, or the standard, model, has been able to account for and reproduce

most of our observations of the universe. Despite its success, many of its aspects

remain a mystery. The aforementioned dark energy, in particular, has only had

its effects observed, but we know nothing of its nature. Moreover, while vacuum

energy has proven to be an excellent candidate, there is yet the problem of its

observed value. The estimated value obtained from particle physics and the ob-

served value of dark energy differ by about 120 orders of magnitude [22]. If the

value from particle physics were to be believed, then we would not have had to

worry about defending a thesis, because the universe would have long been shred
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to pieces. There are a number of models which attempt to explain the acceleration

of the universe via other mechanisms. The quintessence model [23, 24, 25], for

example, associates dark energy to a scalar field with −1 < w < −1/3, allowing

both its density and equation of state to vary in time. Another alternative are the-

ories of modified gravity, like the Horndeski theories [26], which were very popular

until being largely constrained by observations of gravitational waves from black

hole mergers [27]. Finally, we can have a dynamic, or an interacting dark energy,

which will be discussed in the next chapter.

The second part of the standard model’s name: Cold Dark Matter, is yet an-

other large unknown. We talked about baryonic matter, which we can see, but only

makes up less than 5% of the composition of the universe, whereas dark matter

makes up about 25%. Dark matter is so called because it is not detectable via the

emission of electromagnetic radiation; its presence is inferred through its gravita-

tional interactions. Although dark matter was first proposed by Fritz Zwicky, in

1933 [28], when studying Coma cluster, solid evidence for its existence was only

found decades later, by Vera Rubin, in 1970, as she analysed the rotation curve of

the Andromeda galaxy [29]. Since then, there have been a number of evidences for

dark matter, such as from gravitational lensing [30], x-ray emission from cluster

collisions [31] and the formation of structures [32]. Due to this different kind of

matter, Ωm can sometimes be broken into Ωm = Ωb + Ωdm.

Finally, we introduce the cosmological parameters that will be relevant to

this thesis:

• the dimensionless Hubble parameter, h = H0/100 s Mpc km−1. We will be

interchanging between h and H0;

• the parameter combination S8 = σ8(Ωm/0.3)0.5, which is a convenient way

to break the degeneracy of the parameter space in the Ωm− σ8 plane, where

σ8 measures the amplitude of the power spectrum on the scale of 8h−1 Mpc;
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• the density parameter for matter, Ωm, as well as the ones for baryons and

dark matter, will, at times, be replaced by Ωmh
2 = Ωbh

2 + Ωch
2;

• the scalar spectral index (or tilt), ns, describes the scale-dependence of the

power spectrum;

• the density parameter of neutrinos, Ωνh
2 = Σmν

93.14eV
, where mν are the neu-

trino masses;

• the ionization optical depth, τ .

Throughout, we will assume a flat universe and, where relevant, we will be declar-

ing the fixed values for other relevant parameters.
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CHAPTER 3

Bayesian comparison of interacting

scenarios

Oft hope is born when all is forlorn.

The Return of the King

In this chapter I will detail the work I did in collaboration with Antonella Cid,

Beethoven Santos, Cassio Pigozzo and Jailson Alcaniz, in [33].

3.1 Motivation

One of the inconsistencies of the standard cosmological model is the large disagree-

ment between the predicted and the observed value of the cosmological constant.

In this chapter we deal with a class of models that have an interacting dark sector

(composed of dark energy and dark matter) that allows for a mechanism in which

dark energy decays into dark matter, thus alleviating the cosmological problem.

This approach has been explored in various contexts, such as for a modified Chap-

lygin gas, which introduces a varying equation of state for dark energy [34, 35], and
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the aforementioned quintessence model [23, 24, 25]. Another question raised by

the standard model is in regard to the observed values for the energy densities of

dark energy and matter, which are of the same order. This fortunate circumstance

is known as the coincidence problem and is yet unexplained by the standard

model. Most of the models studied in this chapter have been proposed in the lit-

erature as a way of obtaining a scaling solution for this problem, since they favour

a universe that progresses to a stationary stage where the ratio between these two

densities becomes a constant [36, 37, 38, 39, 40].

We test the viability of twenty-one such models by comparing them against the

standard model using a Bayesian analysis with data from Type Ia Supernovae,

Baryon Acoustic Oscillations, the CMB, and Cosmic Chronometers.

3.2 Interacting Cosmological Scenarios

The models presented here follow the same construction as ΛCDM, in the sense

that there is no modification to the Einstein equations, and that the conservation

of energy holds. This approach is purely phenomenological, and only applies to

the components of the dark sector, such that Eq. (3.2) is rewritten as

ρ̇dm + 3γdmHρdm = −Q ,

ρ̇x + 3γxHρx = Q ,

(3.1)

where Q is the function that describes the interaction between the two terms,

γi = 1 + ωi, and we replace the λ subscript with x, for dark energy. By changing

the derivation variable t→ 2 lna, and with the prime denoting the derivative with
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respect to this new variable, we have

ρ′dm + ρdm = −Γ ,

ρ′x + γxρx = Γ ,

(3.2)

with Γ = Q/3H. This allows for a two-way transfer between dark energy and dark

matter, only depending on the value of Γ: if positive, then dark matter decays to

dark energy and, if negative, the opposite occurs. The total energy density, and

its derivative, for the two-fluid model is [38]

ρ = ρdm + ρx ,

ρ′ = −ρdm − γxρx ,
(3.3)

which can be used to obtain

ρdm = −γxρ+ ρ′

1− γx
,

ρx =
ρ+ ρ′

1− γx
.

(3.4)

Differentiating either of the above equations, and substituting Eq. (3.2), gives us

a second order differential equation,

ρ′′ + (1 + γx)ρ
′ + γxρ = (1− γx)Γ . (3.5)

Table 3.1 shows the five types of interactions considered, which can be either linear,

or nonlinear. We now introduce two additional parameters, α and β, both of which

are varied in our cosmological analyses. By adopting the different forms for Γ, we
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can rewrite Eq. (3.5) in terms of the constants b1, b2 and b3,

ρ(ρ′′ + b1ρ
′ + b3ρ) + b2ρ

′2 = 0 . (3.6)

The evolution of the dark sector can be described by solving Eq. (3.5),

ρ(a) = 3H2
0 (C1a

3λ1 + C2a
3λ2)

1
1+b2 , (3.7)

where

C1 = (Ωdm0 + Ωx0)1+b2 − C2 ,

C2 =
(Ωdm0 + γxΩx0)(1 + b2) + λ1(Ωdm0 + Ωx0)

(Ωdm0 + Ωx0)−b2(λ1 − λ2)
,

λ1 =
1

2

(
−b1 −

√
b2

1 − 4b3(1 + b2)

)
,

λ2 =
1

2

(
−b1 +

√
b2

1 − 4b3(1 + b2)

)
.

(3.8)

Finally, the Hubble expansion can be obtained, in a flat universe, by including the

contribution of baryons and radiation in addition to that of the dark sector,

H(z) = H0

(
Ωr0(1 + z)4 + Ωb0(1 + z)3 +

[
C1(1 + z)−3λ1 + C2(1 + z)−3λ2

] 1
1+b2

)1/2

.

(3.9)

While an extensive study of the these classes of interacting models had not

yet been carried out, they are not particularly new. The Γa interaction was first

proposed by [25] and [39] in the form of a coupling between quintessence scalar

field and a pressureless cold dark matter field. The authors of [38] found that an

analytical solution for the dark sector and suggested that interaction Γb could, in

fact, alleviate the coincidence problem. Interaction Γc, on the other hand, was

first presented by [36] to solve this problem in terms of a non-canonical scaling

of the ratio of the energy densities of the components of the dark sector. Lastly,
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models Γd and Γe were analysed in [37] in the context of non-linear interactions.

Table 3.1: Definitions of the parameters b1, b2, b3 for interactions Γ(ρ, ρ′, ρ′′).

Interaction b1 b2 b3

Γa = αρdm + βρx 1 + γx + α− β 0 γx + αγx − β
Γb = αρ′dm + βρ′x (1 + γx + αγx − β)/(1 + α− β) 0 γx/(1 + α− β)
Γc = αρdmρx/ρ 1 + γx + α(1 + γx)/(1− γx) α/(1− γx) γx + αγx/(1− γx)
Γd = αρ2

dm/ρ 1 + γx − 2αγx/(1− γx) −α/(1− γx) γx − αγ2
x/(1− γx)

Γe = αρ2
x/ρ 1 + γx − 2α/(1− γx) −α/(1− γx) γx − α/(1− γx)

3.3 Data description

3.3.1 Baryon Acoustic Oscillations

The Baryon Acoustic Oscillations (BAO) have their origin at the time when

the universe was an ionised fluid composed of photons and baryons that were

coupled via Thomson scattering. The interactions between the larger pressure

exerted by photons, and the smaller gravitational forces in the perturbations of

the baryons, give rise to oscillations of the baryon-photon fluid. These oscillations

are similar to sound waves, and hence we refer to their velocities as the sound

speed, which can be calculated with

cs =
1√

3
[
1 + (3Ωb,0/4Ωγ,0)(1 + z)−1

] . (3.10)

During recombination, the universe becomes neutral, and the radiation pressure

dissipates. At this point, the baryonic configuration freezes, while the photons

start to propagate freely, forming a smooth distribution and giving rise to the

CMB. As baryons and dark matter interact gravitationally, baryonic matter be-

gins to accumulate at this scale, creating a spherical shell centred at the original
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perturbation. This, in turn, fuels the probability of a galaxy being formed close

to the remnants of the frozen baryonic wave [41, 42].

If a galaxy were to be formed at the centre of the initial perturbation, it would

lead to a bump in the two-point correlation function at the radius of the shell,

rs, which would characterise an increase in the probability of finding two galaxies

separated by rs. This scale is the maximum distance for which the sound wave

can travel in the photon-baryon fluid, from the fluid’s formation to the acoustic

horizon. We thus obtain

rs =

∫
cs(t)

a(t)
dt =

∫ ∞
zd

cs(z)

H(z)
dz , (3.11)

where rd = rs(zd), evaluated at the redshift of the baryon drag epoch, that is, at the

moment when the baryons break free from the Compton drag of the photons [43].

We can use BAOs to obtain the Statistical Standard Ruler (SSR), which

is based on the premise that galaxy clusters and other observables can have a

preferential scale, at which, when observed at different redshifts, can be used to

constrain the angular diameter distance [44]. In our analyses, we use two different

ways of obtaining information from BAOs, termed as BAO3 and BAO2.

3.3.1.1 BAO3

Since a change in the cosmological model should not affect rs significantly, we can

treat these variations as a singular dilation in scale. To calculate these, we combine

the line-of-sight and transverse dilations to find [45]

DV (z) =

[
(1 + z)2 dA(z)2 z

H(z)

]1/3

, (3.12)
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where dA(z) is the angular diameter distance defined in Eq. (2.44). The isotropic

BAO measurements are given by the dimensionless ratio,

dz(z) =
DV (z)

rs
. (3.13)

On the other hand, since BAO can be approximated to a linear phenomenon, we

can disregard its nonlinear effects, so that BAO can be employed as an absolute

Alcock-Paczynski test to obtain the product dA(z)×H(z) [41]. These two quanti-

ties are recovered independently with the Hubble parameter being related to the

characteristic scale, r‖(z) along the line-of-sight,

H(z) =
∆z

r‖(z)
, (3.14)

and the transverse direction, r⊥(z), providing the angular diameter distance

dA(z) =
r⊥(z)

∆θ(1 + z)
. (3.15)

These two quantities, which make up the anisotropic measurements, are corre-

lated and their corresponding covariance matrices are found in their respective

references for BOSS DR12 [46] and BOSS-Lyα [47]. The measurements used for

BAO3 are found in Table 3.2.

Before using sets of BAO measurements from different surveys, we have to con-

sider if they can be combined. This is a crucial decision when using different

datasets because we have to take into account their correlations. We found that

a joint analysis with SDDS-MGS [48], 6dFGS [49] and BOSS-LOWZ [50] (which

was updated in [46]) is possible due to the overlapping volumes of their galaxy

samples being small enough that any correlations can be ignored. We have further

reason to combine these, given that the Planck Collaboration [51], in 2015, used
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them in addition to BOSS-CMASS [50].

During the journal’s reviewing process, more updated BAO measurements were

made available. We decided to include these in one of our analyses to be as thor-

ough as possible. The revised set include 6dFGS, SDSS-MGS, BOSS DR12 [46],

eBOSS [52] and BOSS-Lyα [47].

Lastly, we highlight that in order to use BAO data from the references [47, 52,

53], a number of assumptions had to be made. Since these data were collected from

quasar Lyman α measurements, we assume universality of quasar continuum spec-

tra, modelling of metal-line and high-column-density neutral hydrogen absorbers,

as well as spatial fluctuations in the UV ionising flux [54].

Table 3.2: The BAO3 measurements used in this work. We have that DM =
(1 + z)dA and DH = 1/H(z). For BOSS DR12 and BOSS-Lyα, we used
the covariance matrices given in their references.

Survey zeff Reported Parameter Redshift Sample rfid
d [Mpc] Ref.

6dFGS 0.106 d−1
z = 0.3360± 0.0150 0 < z < 0.24 − [49]

SDSS MGS 0.150 dz = (664± 25)/rfid
d 0 < z < 0.20 148.69 [48]

BOSS DR12 0.380 DM
rfid
d

rd
= (1512.39± 24.99) 0.2 < z < 0.75 147.78 [46]

BOSS DR12 0.380 DH/rd = (81.21± 2.37)/rfid
d 0.2 < z < 0.75 147.78 [46]

BOSS DR12 0.510 DM
rfid
d

rd
= (1975.22± 30.10) 0.2 < z < 0.75 147.78 [46]

BOSS DR12 0.510 DH/rd = (90.90± 2.33)/rfid
d 0.2 < z < 0.75 147.78 [46]

BOSS DR12 0.610 DM
rfid
d

rd
= (2306.68± 37.08) 0.2 < z < 0.75 147.78 [46]

BOSS DR12 0.610 DH/rd = (98.96± 2.50)/rfid
d 0.2 < z < 0.75 147.78 [46]

BOSS Lyα 2.400 DM/rd = 36.6± 1.2 2 ≤ z ≤ 3.50 147.33 [47]
BOSS Lyα 2.400 DH/rd = 8.94± 0.22 2 ≤ z ≤ 3.50 147.33 [47]

eBOSS 1.520 dz = 26.47± 1.23 0.80 < z < 2.20 147.78 [52]

3.3.1.2 BAO2

Since we are testing cosmological models, there are a few extra precautions to take

since the fiducial model used to extract the BAO signal from galaxy catalogues is

usually ΛCDM [55]. Moreover, not only are the values chosen for the cosmological
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parameters arbitrary, but the formula for computing rfid
d can also differ (authors

may use Eq. (3.11) or CAMB [56] formulas), which could bias the results.

A more model independent way to obtain the BAO signature is to use the 2-point

angular correlation function (2PACF) analysis, which, if rd is known, provides

dA(z) almost model-independently. The signal is obtained from narrow redshift

bins, of order 0.01− 0.02, to ensure that there is no contamination from the radial

BAO signal [57]. We rearrange Eq. (3.15) to obtain

θBAO(z) =
rd

(1 + z)dA(z)
, (3.16)

where θBAO is our measurement of BAO2. The procedure for obtaining θBAO from

θFIT, which is a parametrization of the 2PACF, as a sum of a power law, a constant

and a Gaussian peak, is described in [58]. According to the authors, a correction

factor is needed, which takes into consideration the size of the redshift shell. To

calculate this factor, a fiducial cosmology is required but, as the authors argue,

the dependence on the model is minimal, as is confirmed by tests they performed

for various cosmologies.

The BAO2 data used in this work were obtained from analyses of the Sloan

Digital Sky Survey (SDSS) and are shown in Table 3.3. Since many of the data

used for BAO3 were also taken from SDSS, we do not combine these two datasets

in our analyses.

The size of the standard ruler, rd, and the sound horizon at the drag epoch co-

incide in the case of ΛCDM, but this is not necessarily true for other models [62].

In fact, the H0 tension, for example, between the value measured using CMB data

by Planck [15] and the one found with Cepheids [13], could indicate an incompati-

bility between the standard ruler for the acoustic scale and its value estimated in a

model independent way [63, 64]. We therefore take a more conservative approach
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Table 3.3: BAO2 measurements from angular separation of pairs of galaxies.

Survey z θBAO(z) [◦] Ref.
SDSS-DR7 0.235 9.06± 0.23 [59]
SDSS-DR7 0.365 6.33± 0.22 [59]
SDSS-DR10 0.450 4.77± 0.17 [58]
SDSS-DR10 0.470 5.02± 0.25 [58]
SDSS-DR10 0.490 4.99± 0.21 [58]
SDSS-DR10 0.510 4.81± 0.17 [58]
SDSS-DR10 0.530 4.29± 0.30 [58]
SDSS-DR10 0.550 4.25± 0.25 [58]
SDSS-DR11 0.570 4.59± 0.36 [60]
SDSS-DR11 0.590 4.39± 0.33 [60]
SDSS-DR11 0.610 3.85± 0.31 [60]
SDSS-DR11 0.630 3.90± 0.43 [60]
SDSS-DR11 0.650 3.55± 0.16 [60]

SDSS-DR12Q 2.225 1.85± 0.33 [61]

by considering two different scenarios: the first involves deriving rd from Eq. (3.11)

and taking zd = 1059.6, as reported by [51]; the second is to consider rdh a free

parameter, and to use the value found in [62] as a prior in our analyses.

3.3.2 Cosmic Microwave Background

The CMB is the earliest one can go when probing the evolution of the universe. It

is composed of photons from the time of the last scattering at z ∼ 1100. When it

was first detected by Penzias and Wilson [65] in 1963, and for almost three decades

afterwards, the CMB provided strong evidence for the cosmological principle, as

observers saw a smooth background distribution. It was only through data from

the COBE satellite in 1992 [66] that the temperature anisotropies of the CMB were

first detected, bringing about a new way to constrain cosmological parameters.

One of the relevant ways in which the CMB is used is through the 2-point

function of the temperature distribution, which is a 2-dimentional field measured
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in terms of its angular coordinates. This implies that we can benefit from an

expansion in spherical harmonics, such that the 2-point function is given in terms

of the multipole, `, instead of the wave number k from its Fourier transform, as is

commonly done in other cases (which we will see when discussing cosmic shear in

further chapters).

The CMB is an excellent laboratory for testing beyond ΛCDM models as, for ex-

ample, a dynamic dark sector can affect the expansion history of the universe and

hence modify the distance to the last scattering [67]; it can also modify the growth

of structure, resulting in a discrepancy between CMB-obtained values for the am-

plitude of the fluctuations As and the late-time measurements of σ8 [68]. Despite

this, we limit our analyses to the compressed likelihood, derived from Planck 2015

chains [69], which describe the observed power spectrum. This allows us to use

data from the early universe without the need for a perturbative analysis of the

interacting models, nor the adaptation of Boltzmann codes such as CAMB [56] or

CLASS1 to obtain their anisotropy power spectrum.

The compressed likelihood is composed by {R, `a,Ωb0h
2, ns}, where

R =
√

ΩmH2
0dA(z∗) , (3.17)

is the shift parameter [70] and

`a =
π

θ∗
=
π(1 + z∗)dA(z∗)

rs(z∗)
, (3.18)

is the angular scale of the sound horizon at last scattering when z = z∗. In our

analyses, we fix Ωb0h
2 = 0.0226, in accordance with [71], and we do not include

ns since it does not appear explicitly in our models. Moreover, since the shift

parameter R is sensitive to changes in the matter epoch, fixing it would risk

1lesgourg.github.io/class_public/class.html
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biasing our results, hence we disconsider this parameter in our analyses2. The

only information from the CMB that we use is then `a = 301.63 ± 0.15 [69]. To

calculate z∗, we employ the fitting formula found in [72],

z∗ = 1048
[
1 + 0.00124(Ωb0h

2)−0.738
] [

(1 + g1(Ωm0h
2)g2
]
, (3.19)

with

g1 =
0.0783(Ωb0h

2)−0.238

1 + 39.5(Ωb0h2)0.763
and g2 =

0.560

1 + 21.1(Ωb0h2)1.81
. (3.20)

We find that the expression for Eq. (3.19) is only weakly dependent on Ωm0, as

the discrepancy is less than 1% for 0.1 < Ωdm0 < 0.4 and 0.6 < h < 0.8 when

compared to z∗ = 1089.9, given in [51]. We study the impact of fixing z∗ to the

aforementioned value, by comparing with the results obtained when computing it

with Eq. (3.19).

3.3.3 Cosmic Chronometers

One of the concerns in cosmology is that there is no direct way to obtain the value

of the Hubble parameter. For that to be possible, we would have to determine the

rate of expansion of the universe in an independent way, then apply the obtained

value to test cosmological models.

A proposed way of deriving this rate is through the differential age method [73,

74]. This approach uses Cosmic Chronometers (CC) to probe the variation of

the age of the universe with respect to the redshift. This is done by calculating

the relative age of a galaxy, ∆t, separated by redshift ∆z, then taking derivative

2Given the nature of the dark energy models used here, in [69] we are cautioned against using
their compressed likelihood. I therefore ask that the results shown in this chapter be taken
with a grain of salt.
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dz/dt to find

H(z) = − 1

1 + z

dz

dt
. (3.21)

This method is different from most others because it deals with the study of cosmic

time through the propagation of light. It is worth mentioning that, while this is a

cosmology-independent way of probing the expansion history of the universe, it is

not without faults [75]. One of the challenges is first finding a good distribution of

galaxies, which we can use to follow the evolution of the age of the universe in a

homogeneous way. We also have to trust our galaxy models, since different models

can give discrepant ages for the same galaxy.

The data used here is given in Table 3.4, where the majority of the values were

taken from the BC03 catalogue [76]. While more data is available in the literature,

we limit ourselves to redshift < 1.2, since in [77] the authors raise the issue that

higher redshifts bring us closer to the redshift at which these galaxies were formed,

thus requiring a more detailed stellar formation history, stellar population model,

and the inclusion of the progenitor-bias. Furthermore, it was also found in [75]

that the expansion of the universe is smooth within this range.

3.3.4 Type Ia Supernova

Supernova is the term used to describe the collapse of a star, which usually

happens towards the end of its life. This phenomenon can be classified into two

groups, depending on the presence of hydrogen lines in their spectrum: type I does

not contain hydrogen; type II contains hydrogen. By analysing their spectra, we

can further divide type I into three groups,

(a) its spectra are dominated by massive elements like calcium, sulphur, silicon,

and iron, but is devoid of helium;

(b) there is an abundance of helium;
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Table 3.4: Estimated values of H(z) obtained using the differential age method.

z H [km/s/Mpc] Ref.
0.0700 69.0± 19.6 [78]
0.0900 69.0± 12.0 [79]
0.1200 68.6± 26.2 [78]
0.1700 83.0± 8.0 [79]
0.1790 75.0± 4.0 [77]
0.1990 75.0± 5.0 [77]
0.2000 72.9± 29.6 [78]
0.2700 77.0± 14.0 [79]
0.2800 88.8± 36.6 [78]
0.3520 83.0± 14.0 [77]
0.3802 83.0± 13.5 [80]
0.4000 95.0± 17.0 [79]
0.4004 77.0± 10.2 [80]
0.4247 87.1± 11.2 [80]
0.4497 92.8± 12.9 [80]
0.4783 80.9± 9.0 [80]
0.4800 97.0± 62.0 [81]
0.5930 104± 13.0 [77]
0.6800 92.0± 8.0 [77]
0.7810 105± 12.0 [77]
0.8750 125± 17.0 [77]
0.8800 90± 40.0 [81]
0.9000 117± 23.0 [79]
1.0370 154± 20.0 [77]

(c) it has no helium.

Supernovae of the type Ib, Ic and II are common in massive stars, with M >

M�
3. As its nuclear fuel burns out, the force of gravity starts to dominate, and

its centre begins to collapse. After the explosion, these supernovae usually form

either black holes, or neutron stars. For type Ia supernovae (SNeIa), on the other

hand, the explosion occurs in binary systems composed of a white dwarf and a

companion star, which could be either another white dwarf, or a more massive

3M� and L� correspond to the solar mass and luminosity, respectively.
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star. The carbon-oxygen white dwarf accretes mass from its companion, until it

reaches the Chandrasekhar limit, ∼ 1, 4M�, which is the maximum amount of

mass it can have before it starts to collapse. This gives rise to a process known as

carbon detonation, which is the violent ignition of a thermonuclear fusion inside

the star [82]. The explosion that follows is so powerful that its luminosity can

reach up to L = 4× 109L� [83].

In the universe, to refer to an object as a standard candle, it is necessary to

know its luminosity, how it evolves, and its dependence on age and/or position. In

short, the object needs to be standardisable. Another vital characteristic is that

its luminosity has to be high, such that it can be detected over large distances,

thus allowing us to probe the universe at a younger age. Our interest in SNeIa is

because it checks all of these requirements.

To use SNeIa in our analyses, we need to obtain the distance modulus, which

measures the difference between the apparent magnitude, m and the absolute

magnitude, M . We have

m = −2.5 log10(f/fx) , (3.22)

where fx = 2, 53 × 10−8W m−2, and f is the flux of the source. The absolute

magnitude, on the other hand, is the apparent magnitude that would have been

observed if the source were at 10 parsecs from the observer. For a source with

luminosity L

M = −2.5 log10(L/Lx) , (3.23)

with Lx = 78, 7L�, which is the luminosity for an object with flux 2, 53×10−8W m−2 [83].

We can now obtain the distance modulus,

µ = m−M = 5 log10

(
dL

1Mpc

)
+ 25 . (3.24)

For SNeIa data, the magnitudes are taken at the peak of the B band.
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3.3.4.1 Joint Light-curve Analysis

One of the SNeIa datasets used here is the Joint Light-curve Analysis (JLA) [84],

which is compilation of 740 SNeIa with redshift up to 1.3.

Obtaining the theoretical value of µ is slightly more complicated than Eq. (3.24)

would lead us to believe. This is because we have to consider nuisance parameters,

including those from the light curve fitter. JLA uses the second version of the

Spectral Adaptive Light curve Template (SALT2) [85], which adopts a modified

version of the Tripp formula [86] to convert the fit parameters into distances. We

thus calculate

µ = mB −MB − αSNx1 + βSNc , (3.25)

where the nuisance parameters MB, αSN βSN, are the absolute magnitude of a

fiducial supernova with x1 = 0 and c = 0, and the coefficients of the luminosity—

stretch and luminosity—colour relations, respectively. The values c, the colour,

and x1, the light-curve shape, are given by the light-curve fit for each supernova.

The covariance matrix is

C = Dstat + Csys . (3.26)

Csys contains all the systematic errors, like coherent flow corrections and host

galaxy extinction, and Dstat is a diagonal matrix associated with the uncertainty

in the redshifts,

Dstat =

(
5σz

zlog10

)2

+ σ2
lens + σ2

coh . (3.27)

The first term in the above equation is related to the peculiar velocities, the second

to the variation of magnitudes due to gravitational lensing, and the third accounts

for the all the intrinsic variation of magnitudes not already described by the other

two terms.
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3.3.4.2 Pantheon sample

The Pantheon sample [87] consists of 1048 SNeIa ranging from 0.01 < z < 2.3,

where they combine 279 SNeIa discovered by the Pan-STARRS1 (PS1) Medium

Deep Survey, with data from: CfA1-CfA4 [88, 89, 90, 91, 92], CSP [93, 94, 95],

SNLS [96, 97], SDSS [98, 99], SCP [100], GOODS [101] and CANDELS/CLASH [102,

103, 104]. The data calibration and information about each survey can be found

in the cited references.

Similarly to JLA, Pantheon also uses the SALT2 and has a slightly different

expression for µ,

µ = mB −MB − αSNx1 + βSNc−∆M + ∆B , (3.28)

where MB, αSN, βSN, c, and x1 are the usual parameters, and ∆M and ∆B are dis-

tance corrections based on the host-galaxy mass of the supernova and on predicted

biases from simulations, respectively.

The data is calibrated using the BEAMS4 with Bias Correction (BBC) method,

which uses simulations to predict the correct SALT2 fit parameters αSN and βSN,

such that they are not included in our analyses [106]. Its covariance matrix is

similar to Eq. (3.26), where the distance error for each supernova is

Dstat = σ2
N + σ2

Mass + σ2
µ−z + σ2

lens + σ2
int + σ2

Bias , (3.29)

where σ2
N is the photometric error associated with the distance of the supernova,

σ2
Mass is the distance uncertainty resulting from the mass step correction, σ2

µ−z is

related to the uncertainty of the peculiar velocity and of the redshift measurement

in quadrature, σ2
lens = (0.055z)2 is the error from the stochastic gravitational

lensing, σ2
int is the intrinsic scatter, and, lastly, σ2

Bias is the uncertainty from the

4BEAMS: Bayesian Estimation Applied to Multiple Species [105]
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distance bias correction.

3.3.5 Joint analyses

We adopt a multivariate Gaussian likelihood for BAO2, BAO3, CC, CMB and

SNeIa, with the χ2 function,

χ2
f (Θ) =

∑
i

(
f(zi)− f(zi,Θ)

σfi

)2

, (3.30)

where f(zi) is the measured value for f at redshift zi. The function f(zi,Θ) is the

theoretical value, assuming a model with parameters Θ for θBAO(z), dz(z), H(z),

`a(z∗) and µ(z) for BAO2, BAO3, CC, CMB and SNeIa data, respectively. The

summation i is over the chosen datasets for the corresponding observable.

The joint likelihood is given by

Ljoint = Lµ(z) × LBAO × LH(z) × L`a(z∗) , (3.31)

with the subscript BAO implying θBAO(z) or dz(z), depending on the analysis.

3.4 Methodology

3.4.1 Bayesian inference and model selection

In cosmology, the most common way of obtaining information about the parame-

ters Θ of our model M is to use Bayesian inference, which is a statistical method

that employs a subjective probability.

Our first step is to choose an a priori probability distribution or, more simply,

a prior, which can be either informative or objective. All the knowledge and

uncertainties we have regarding the parameters, before analysing them, are con-
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tained in the informative prior. On the hand, an objective, or noninformative,

prior has minimal influence over the a posteriori probability distribution, which is

more commonly known as the posterior.

Next, we want to obtain the likelihood function, which is the joint probability

function of the data; this holds the information obtained from the data. Finally, we

need the posterior, which contains the important statistical quantities, such as the

values of the parameters, the uncertainties, as well as the correlations [107, 108].

Consider the dataset D, which we use to introduce Bayes theorem,

P (Θ|D,M) =
P (D|Θ,M) P (Θ|M)

P (D|M)
, (3.32)

where P (Θ|D,M) = P(Θ|D) is the posterior, P (D|Θ,M) = L(Θ) is the likelihood

and P (Θ|M) = π(Θ) is the prior. The Bayesian evidence is P (D|M) = E ,

which is a normalising constant,

E =

∫
L(Θ)π(Θ)dΘ , (3.33)

that can be used to compare models. For such, we define the Bayes factor,

Bij =
Ei
Ej

, (3.34)

that compares modelsMi andMj. We interpret the value of lnBij with Jeffreys’

scale [109] that provides an empirical measure of the strength of the evidence of

each model. Negative values of lnBij favour the reference model, in the denomi-

nator, which we take to be the ΛCDM model. We adopt the scale defined in [110],

and shown in Table 3.5, where the values 1, 2.5 and 5 provide weak, moderate,

and strong evidence, and correspond to odds of about 3 : 1, 12 : 1 and 150 : 1,

respectively.
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Table 3.5: The Jeffreys’ scale as presented in [110]. In the left column, we show the
threshold for the logarithm of the Bayes factor, while the right column
explains its interpretation.

|lnBij| Interpretation
< 1 inconclusive

1.0− 2.5 weak
2.5− 5.0 moderate
> 5 strong

To explore the parameter space, we use PyMultiNest, which implements the

MultiNest [111, 112, 113] algorithm in python and uses nested sampling. As a

convergence criterion, we set the global log-evidence tolerance to 0.01; to improve

the accuracy in the estimation of the evidence, we use 1000 live points. These

settings generated about O(104) samples for all posterior distributions.

3.4.2 Priors and parameter choices

One of our goals in this work was to assess the impact of different priors and the

considered free parameters. This is relevant because we are considering interacting

models, whereas most of the fitting formulas and calibration was done for ΛCDM.

Hence, some considerations might lead to biases in our results by favouring the

standard model.

As a first approach, we took the redshift at the drag epoch to be z∗ = 1089.90 and

compute rd from Eq. (3.11) for zd = 1059.60 [51]. We also used the dimensionless

Hubble parameter, h, with a uniform prior ten times the size of the error of the

value reported in [114]. Our second approach involved a Gaussian prior for rdh

and h, and the calculation of z∗ using Eq. (3.19). For rdh, we used the prior given

in [62], and in the case of h, we took the value found in [114] (which is equivalent
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to using it as data). We summarise these as,

Gaussian prior for {γx, α, β}; rd obtained from Eq. (3.11); z∗, zd fixed(3.35)

Gaussian prior for {h, γx, α, β, rdh}; z∗ obtained from Eq. (3.19) (3.36)

The priors for the aforementioned parameters are shown in Table 3.6, where we

chose a conservative uniform prior for Ωm0. For the interacting models, we used

a Gaussian prior for γx, corresponding to the 1σ value in [51], while for α and β

the Gaussian prior is centred at a negative value (see reference [115]), such that

the models Γa, Γc − Γe of Table 3.1 favoured a scenario where dark energy decays

into dark matter when ρdm and ρx are positive defined. This choice was motivated

by thermodynamical arguments that predict this behaviour for some interacting

models [116].

Finally, since we expected the interacting models to only influence the dynamics

of the dark sector more recently, and not the physics of the primordial universe,

we fixed the quantities Ωb0h
2 = 0.0226 [71], Ωγ0h

2 = 2.469 × 10−5 [117], Ωr0 =

Ωγ0

(
1 + 7

8

(
4
11

) 4
3 Neff

)
, Neff = 3.046 [118].

Table 3.6: Priors used for the free parameters of the studied models. U denotes
flat in the given range and G is Gaussian with mean equal to its first
argument and dispersion equal to its second.

Parameter Status Prior Ref.
Ωdm0 Global Parameter U(0, 1) -
h Global Parameter U(0.5584, 0.9064) [114]

G(0.7324, 0.0174) [114]
γx Variable state parameter G(−0.006, 0.002) [69]
α Interacting models G(−0.001, 0.01) [115]
β Interacting models G(−0.001, 0.01) [115]
rdh Global Parameter G(102.3, 1.6) [62]
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3.5 Analysis and Results

We considered the following choices for the models described in Table 3.1: 0, 1, 2,

3, 4 meaning γx = 0, β = 0, α = 0, α = β, α 6= β, respectively. If we choose γx = 0

and β = 0 for model Γa, for example, we refer to it as Γa01; for α 6= β and γx free,

for model Γb, we have Γb4. We do not show the results for Γb02 since it reduces to

the ΛCDM scenario. Tables 3.7-3.13 show the constraints for h,Ωdm0, α, β and γx,

in addition to the logarithm of the Bayes’ factor and its interpretation, where a

value lnB < 1 favours the ΛCDM model.

A comprehensive plot for the evidences is shown in Figure 3.1, where we found

that BAO3 data seem to favour ΛCDM more than BAO2 data do. The contour

plots as well as the Probability Density Functions (PDFs) for the models Γa02

and Γa2, can be seen in Figure 3.2 for (3.35) and in Figure 3.3 for (3.36). In the

former, we found a tension in the parameters h, Ωdm0 and β, which is only very

slightly alleviated when introducing the barotropic index γx to the analyses. In the

latter, while there is a tension for rdh , it is less pronounced in the aforementioned

parameters. This tendency is present in all the other models, hence we do not

show them for brevity.

3.5.1 Scenario 1

Here we summarise the results using the priors described by 3.35.

There are several important findings to highlight from Table 3.7 and Table 3.8.

The first is regarding the strength with which the interacting models are dis-

favoured against ΛCDM. The only difference between the two tables is that Ta-

ble 3.7 uses BAO2 data while Table 3.8 uses BAO3. The models which were

weakly disfavoured with BAO2, become moderately so, when considering BAO3.

This shows a clear preference for ΛCDM by BAO3 data.
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Figure 3.1: Summary of Bayesian comparison between interacting models and ΛCDM.

We show the classification in terms of the Jeffreys’ scale, where lnB < −1

favours the ΛCDM scenario. The coloured intervals represent the 1σ region

in the estimation of the Bayes’ factor. Intervals in black and red consider

as priors scenario (3.35) and those in blue and magenta consider as prior

scenario (3.36).
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The second result we note is in regard to models Γa02, Γc0, Γe0, Γa2, Γb2, Γc

and Γe, with inconclusive evidence, which is consistent for both BAO2 and BAO3

data. In the analyses shown in Table 3.9 where we replaced the JLA dataset with

the Pantheon sample, for BAO2, the results are similar, with the evidence against

some of the interacting models increasing from weak to moderate. These models

correspond to Γ ∝ ρx or Γ ∝ ρ′x, with an energy transfer from dark energy to dark

matter. Furthermore, Γa10, Γa20, Γc0, Γd0 and Γe0 were analysed in [119], where

the authors used the full CMB temperature anisotropy spectrum, JLA and BAO3,

where they found that models with Γ ∝ ρm were virtually discarded. This was not

necessarily true, however, for Γ ∝ ρx.

The constraints for h seem to suggest that BAO data may be a useful ingredient

to the H0 tension [120], since we found higher values of h for BAO2 when compared

to BAO3. Finally, the values of the fitted barotropic index and the interacting

parameters are about an order of magnitude higher for BAO2, which is another

hint of the preference for ΛCDM by BAO3 data.

3.5.2 Scenario 2

Here we summarise the results using the priors described by 3.36.

The conclusions drawn from model comparison are the same as in the previous

sections, with inconclusive evidence for the models Γa02, Γc0, Γe0, Γa2, Γb2, Γc

and Γe. When considering the analyses with BAO2, in Table 3.10, the disfavoured

models are only weakly so, but they do not all become moderately disfavoured with

BAO3 data, seen in Table 3.11, as was the case in Scenario 1. While this is still

true for most cases, it is not as evident that BAO3 is biasing the results to ΛCDM;

the results using the Pantheon sample with BAO3 data, shown in Table 3.12, are

analogous to these.

As expected, the values for h and rdh closely follow their prior. We did not
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note any particular trends for the values of α, β or γx regarding the choice of

observables and different scenarios.

Finally, in Table 3.13, we show the results for the joint analyses with the Pan-

theon compilation, CC, CMB and the updated set of BAO3 data. The parameter

constraints are compatible with those in Table 3.12, however, the weak evidence in

support of ΛCDM becomes moderate, which is similar to what we observe for the

comparison between the evidences in Table 3.7 and Table 3.7. These results seem

to suggest that the model dependency of BAO3 could be related to the calculation

of rd from Eq. (3.11).

3.5.3 Remarks regarding external analyses

Some of the models we have studied here were also analysed and compared against

ΛCDM in [115]. The authors performed a joint analysis with Union2.1 + BAO3

+ H(z) + CMB, and compared the models using the Akaike and Bayesian in-

formation criteria (AIC and BIC, respectively). They reported that the strong

evidence against some of the interacting models became moderate when swapping

the Union2.1 sample for binned JLA data.

The Γa01 model was considered in the work done in [121], for a joint analysis

with JLA data and a slightly different BAO3 measurements. While we found

moderate evidence against this model, in comparison with ΛCDM, their results

showed a moderate evidence in favour of Γa01. One of the major differences between

our analyses and theirs is that we considered CMB data and more up-to-date

measurements of BAO2 and BAO3 with higher redshift. Moreover, they included

data from WiggleZ, which was not used in our work. Finally, they used Eisenstein’s

approximation for computing the redshift at the drag epoch, whereas our Scenario

1 uses the Planck 2015 value, and Scenario 2 has rdh as a free parameter.
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3.5.4 Final remarks

One of our goals in this work was to use cosmological data to explore the viability

of different classes of interacting models. We proposed twenty-one different models,

six of which corresponded to a nonlinear interaction and fifteen to a linear one.

The data seemed to prefer the nonlinear scenarios, as only two of them were

rejected with weak or moderate evidence, as compared to twelve models with a

linear interaction, which were discarded with weak or moderate evidence.

We also investigated the impact of using the usual BAO3 measurements as

compared to the almost model independent BAO2 data. We discovered that the

strength of the evidence disfavouring the interacting models is lessened when em-

ploying BAO2. This was anticipated since BAO3 data use ΛCDM as fiducial

model. Our findings with regard to scenarios (3.35) and (3.36) seem to indicate

that this model-dependency is partially embedded in the computation of rd.
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Table 3.7: Best fit parameters for the joint analysis JLA + BAO2 + CC + CMB. The last two columns show the
Bayes factor (lnB) and the interpretation of the strength of the evidence. Note that lnB < −1 favours
the ΛCDM model. These results consider as priors scenario (3.35).

Model h Ωdm0 α β γx lnB Interpretation

ΛCDM 0.720± 0.008 0.2127+0.0078
−0.0088 - - - -

Γa01 0.693± 0.020 0.2166+0.0084
−0.0094 −0.0077+0.0065

−0.0045 - - −2.178± 0.063 Weak

Γa02 0.710± 0.011 0.262+0.041
−0.034 - −0.069+0.047

−0.057 - 0.549± 0.160 Inconclusive

Γa03 0.691± 0.021 0.222+0.010
−0.012 −0.0079+0.0064

−0.0047 −0.0079+0.0064
−0.0047 - −1.445± 0.290 Weak

Γa04 0.687± 0.020 0.259+0.042
−0.034 −0.0065+0.0061

−0.0041 −0.060+0.048
−0.058 - −1.843± 0.135 Weak

Γb01 0.692± 0.021 0.2167+0.0084
−0.0096 0.0079+0.0047

−0.0068 - - −1.953± 0.259 Weak

Γb03 0.693± 0.021 0.2165+0.0085
−0.0098 0.0078+0.0046

−0.0065 0.0078+0.0046
−0.0065 - −2.089± 0.081 Weak

Γb04 0.693± 0.021 0.2165+0.0086
−0.0096 0.0078+0.0046

−0.0071 −0.012± 0.097 - −2.208± 0.107 Weak

Γc0 0.7134± 0.0099 0.237± 0.024 −0.075+0.057
−0.079 - - 0.375± 0.029 Inconclusive

Γd0 0.694± 0.021 0.2142+0.0081
−0.0091 −0.0076+0.0068

−0.0047 - - −1.897± 0.224 Weak

Γe0 0.7173± 0.0086 0.232+0.033
−0.024 −0.048+0.059

−0.075 - - 0.330± 0.184 Inconclusive

Γa1 0.690± 0.021 0.2159+0.0084
−0.0094 −0.0076+0.0066

−0.0046 - 0.023+0.039
−0.032 −1.994± 0.171 Weak

Γa2 0.710± 0.011 0.255+0.045
−0.032 - −0.059+0.044

−0.062 0.011+0.040
−0.036 0.263± 0.057 Inconclusive

Γa3 0.689± 0.021 0.2214+0.0098
−0.012 −0.0075+0.0063

−0.0046 −0.0075+0.0063
−0.0046 0.020+0.038

−0.031 −1.996± 0.150 Weak

Γa4 0.688± 0.020 0.252+0.045
−0.038 −0.0064+0.0060

−0.0042 −0.051+0.053
−0.061 0.011± 0.039 −2.178± 0.037 Weak

Γb1 0.691± 0.021 0.2159± 0.0090 0.0074+0.0046
−0.0066 - 0.024+0.039

−0.033 −2.103± 0.047 Weak

Γb2 0.7164± 0.0089 0.2124± 0.0085 - 0.000± 0.095 0.025+0.037
−0.029 −0.039± 0.021 Inconclusive

Γb3 0.691± 0.021 0.2160+0.0084
−0.0097 0.0074+0.0047

−0.0064 0.0074+0.0047
−0.0064 0.023+0.039

−0.031 −2.113± 0.050 Weak

Γb4 0.690± 0.020 0.2159± 0.0093 0.0075+0.0045
−0.0065 −0.007± 0.094 0.024+0.038

−0.032 −2.291± 0.040 Weak

Γc 0.711± 0.010 0.233+0.026
−0.023 −0.065+0.057

−0.082 - 0.019+0.038
−0.032 0.261± 0.023 Inconclusive

Γd 0.692± 0.020 0.2134+0.0080
−0.0089 −0.0073+0.0065

−0.0046 - 0.024+0.038
−0.031 −2.196± 0.044 Weak

Γe 0.7143± 0.0094 0.227+0.034
−0.023 −0.036+0.056

−0.076 - 0.024+0.039
−0.031 0.108± 0.103 Inconclusive





B
ayesian

com
p
arison

of
in
teractin

g
scen

arios
S
ection

3.5

Table 3.8: Best fit parameters for the joint analysis JLA + BAO3 + CC + CMB. The last two columns show the
Bayes factor (lnB) and the interpretation of the strength of the evidence. Note that lnB < −1 favours
the ΛCDM model. These results consider as priors scenario (3.35).

Model h Ωdm0 α β γx lnB Interpretation

ΛCDM 0.6853± 0.0061 0.2537± 0.0080 - - - -

Γa01 0.684± 0.020 0.2543± 0.0088 −0.0005+0.0044
−0.0035 - - −3.263± 0.114 Moderate

Γa02 0.684± 0.010 0.259± 0.038 - −0.008± 0.052 - −0.488± 0.114 Inconclusive

Γa03 0.684± 0.020 0.255± 0.010 −0.0005+0.0044
−0.0035 −0.0005+0.0044

−0.0035 - −3.050± 0.150 Moderate

Γa04 0.683± 0.020 0.256± 0.039 −0.0006+0.0045
−0.0034 −0.003± 0.053 - −3.662± 0.194 Moderate

Γb01 0.684± 0.020 0.2543± 0.0090 0.0006+0.0035
−0.0045 - - −3.138± 0.157 Moderate

Γb03 0.684± 0.019 0.2542+0.0083
−0.0094 0.0005+0.0034

−0.0043 0.0005+0.0034
−0.0043 - −3.333± 0.048 Moderate

Γb04 0.684± 0.019 0.2542± 0.0087 0.0005+0.0034
−0.0043 −0.011± 0.098 - −3.240± 0.120 Moderate

Γc0 0.6839± 0.0091 0.258± 0.025 −0.011± 0.068 - - −0.157± 0.194 Inconclusive

Γd0 0.684± 0.020 0.2542± 0.0086 −0.0007+0.0046
−0.0035 - - −3.260± 0.058 Moderate

Γe0 0.6852± 0.0075 0.254+0.032
−0.027 −0.002± 0.072 - - −0.091± 0.078 Inconclusive

Γa1 0.684± 0.020 0.2544± 0.0088 −0.0006+0.0044
−0.0035 - 0.000± 0.035 −3.504± 0.131 Moderate

Γa2 0.684± 0.010 0.261± 0.041 - −0.011± 0.056 −0.004± 0.037 −0.730± 0.087 Inconclusive

Γa3 0.684± 0.020 0.2547+0.0095
−0.011 −0.0005+0.0044

−0.0034 −0.0005+0.0044
−0.0034 0.001± 0.036 −2.608± 0.642 Moderate

Γa4 0.683± 0.020 0.256+0.044
−0.039 −0.0006+0.0045

−0.0033 −0.004± 0.057 −0.002± 0.038 −3.952± 0.039 Moderate

Γb1 0.683± 0.020 0.2545± 0.0088 0.0006+0.0034
−0.0045 - 0.001± 0.035 −3.556± 0.055 Moderate

Γb2 0.6853± 0.0080 0.2539± 0.0082 - −0.005± 0.093 −0.001± 0.034 −0.243± 0.030 Inconclusive

Γb3 0.684± 0.020 0.2542± 0.0089 0.0005+0.0034
−0.0044 0.0005+0.0034

−0.0044 0.000± 0.036 −3.463± 0.093 Moderate

Γb4 0.684± 0.020 0.2543± 0.0092 0.0007+0.0035
−0.0045 −0.016± 0.094 0.000± 0.036 −3.607± 0.030 Moderate

Γc 0.6844± 0.0097 0.258± 0.026 −0.011± 0.072 - −0.002± 0.036 −0.236± 0.208 Inconclusive

Γd 0.684± 0.020 0.2543± 0.0084 −0.0006+0.0045
−0.0035 - 0.000± 0.036 −3.375± 0.184 Moderate

Γe 0.6851± 0.0086 0.254+0.031
−0.026 −0.004± 0.069 - 0.000± 0.035 −0.353± 0.070 Inconclusive
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Table 3.9: Best fit parameters for the joint analysis Pantheon + BAO2 + CC + CMB. The last two columns show
the Bayes factor (lnB) and the interpretation of the strength of the evidence. Note that lnB < −1
favours the ΛCDM model. These results consider as priors scenario (3.35).

Model h Ωdm0 rdh [Mpc] α β γx lnB Interpretation

ΛCDM 0.6991+0.0091
−0.011 0.238± 0.012 105.6± 1.1 - - - -

Γa01 0.710+0.010
−0.013 0.257± 0.018 105.3± 1.0 0.0046+0.0037

−0.0020 - - −2.469± 0.226 Weak

Γa02 0.7055+0.0077
−0.011 0.264+0.031

−0.026 105.4± 1.0 - −0.057+0.050
−0.057 - −0.284± 0.227 Inconclusive

Γa03 0.710± 0.012 0.261+0.013
−0.026 105.2± 1.1 −0.0069+0.016

−0.0089 −0.0079+0.0064
−0.0047 - −2.141± 0.228 Weak

Γa04 0.7105+0.0091
−0.012 0.256± 0.030 105.3± 1.0 0.00297+0.0060

−0.00054 0.006+0.069
−0.078 - −2.625± 0.229 Moderate

Γb01 0.7116+0.0092
−0.012 0.257± 0.018 105.3± 1.1 −0.0052+0.0024

−0.0031 - - −2.379± 0.241 Weak

Γb03 0.711+0.010
−0.012 0.258± 0.018 105.3± 1.1 −0.0001+0.0026

−0.0083 −0.0001+0.0026
−0.0083 - −2.365± 0.233 Weak

Γb04 0.7110+0.0094
−0.012 0.256+0.016

−0.018 105.3± 1.1 −0.0052± 0.0029 −0.012± 0.092 - −1.471± 0.651 Weak

Γc0 0.7032+0.0066
−0.010 0.246± 0.017 105.5± 1.0 −0.055+0.061

−0.081 - - −0.118± 0.284 Inconclusive

Γd0 0.7112+0.0094
−0.012 0.257± 0.018 105.3± 1.0 0.0051+0.0031

−0.0024 - - −2.418± 0.230 Weak

Γe0 0.7024+0.0074
−0.011 0.251+0.026

−0.022 105.5± 1.0 −0.049+0.070
−0.079 - - −0.272± 0.228 Inconclusive

Γa1 0.7116+0.0093
−0.012 0.257± 0.022 105.2± 1.0 0.00320+0.0053

−0.00040 - −0.003± 0.039 −2.518± 0.231 Moderate

Γa2 0.7044+0.0085
−0.011 0.262+0.035

−0.029 105.4± 1.0 - −0.055+0.049
−0.059 0.005+0.040

−0.036 −0.399± 0.228 Inconclusive

Γa3 0.710+0.010
−0.012 0.258+0.021

−0.025 105.3± 1.0 0.0001+0.0084
−0.0024 0.0001+0.0084

−0.0024 −0.003± 0.041 −2.283± 0.254 Weak

Γa4 0.7113+0.0095
−0.012 0.256± 0.033 105.3± 1.0 0.0055+0.0037

−0.0029 0.008± 0.070 −0.004± 0.040 −2.511± 0.267 Moderate

Γb1 0.7116+0.0090
−0.012 0.257± 0.022 105.3± 1.0 −0.0053+0.0024

−0.0032 - −0.002± 0.039 −2.579± 0.226 Moderate

Γb2 0.7017+0.0074
−0.010 0.232+0.015

−0.013 105.57± 0.99 - 0.000± 0.092 0.016± 0.034 −0.420± 0.228 Inconclusive

Γb3 0.7103+0.0090
−0.012 0.257± 0.022 105.3± 1.0 −0.0050+0.0025

−0.0033 −0.0050+0.0025
−0.0033 −0.004± 0.040 −2.428± 0.262 Weak

Γb4 0.7124+0.0075
−0.012 0.257± 0.022 105.3± 1.0 −0.0054+0.0026

−0.0030 −0.016± 0.093 −0.003± 0.038 −2.723± 0.226 Moderate

Γc 0.7038+0.0071
−0.0098 0.241± 0.020 105.5± 1.0 −0.049+0.066

−0.079 - 0.015+0.040
−0.035 −0.259± 0.256 Inconclusive

Γd 0.7112+0.0088
−0.012 0.257± 0.023 105.3± 1.1 0.0050+0.0032

−0.0023 - −0.003± 0.042 −2.510± 0.235 Moderate

Γe 0.7034+0.0072
−0.010 0.243+0.030

−0.021 105.6± 1.0 −0.038+0.058
−0.077 - 0.013+0.041

−0.036 −0.483± 0.228 Inconclusive
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Table 3.10: Best fit parameters for the joint analysis JLA + BAO2 + CC + CMB. The last two columns show the
Bayes factor (lnB) and the interpretation of the strength of the evidence. Note that lnB < −1 favours
the ΛCDM model. These results consider as priors scenario (3.36).

Model h Ωdm0 rdh [Mpc] α β γx lnB Interpretation

ΛCDM 0.7054+0.0072
−0.012 0.231+0.014

−0.0092 105.73± 0.98 - - - -

Γa01 0.7104+0.0094
−0.013 0.258± 0.024 105.2± 1.1 0.0051+0.0038

−0.0026 - - −2.222± 0.087 Weak

Γa02 0.7079+0.0079
−0.012 0.265+0.034

−0.025 105.4± 1.0 - −0.064+0.041
−0.059 - 0.074± 0.070 Inconclusive

Γa03 0.7091+0.0096
−0.012 0.286± 0.042 105.1± 1.1 −0.052+0.063

−0.091 −0.052+0.063
−0.091 - −1.123± 0.317 Weak

Γa04 0.709+0.011
−0.013 0.266± 0.034 105.1± 1.1 0.0030+0.0061

−0.0016 −0.015+0.066
−0.084 - −1.927± 0.184 Weak

Γb01 0.709+0.010
−0.013 0.259± 0.023 105.2± 1.1 −0.0050+0.0025

−0.0037 - - −2.217± 0.065 Weak

Γb03 0.7103+0.0092
−0.013 0.258± 0.023 105.2± 1.1 −0.0051+0.0026

−0.0038 −0.0051+0.0026
−0.0038 - −2.208± 0.066 Weak

Γb04 0.7102+0.0090
−0.013 0.260± 0.022 105.2± 1.1 −0.0053+0.0027

−0.0035 −0.012± 0.095 - −2.294± 0.078 Weak

Γc0 0.7065+0.0074
−0.011 0.242± 0.019 105.59± 0.99 −0.054+0.062

−0.083 - - −0.013± 0.093 Inconclusive

Γd0 0.7104+0.0095
−0.013 0.259± 0.024 105.2± 1.1 0.0051+0.0035

−0.0026 - - −2.328± 0.060 Weak

Γe0 0.7066+0.0078
−0.011 0.248+0.028

−0.021 105.57± 0.98 −0.055+0.055
−0.078 - - 0.134± 0.197 Inconclusive

Γa1 0.7097+0.0099
−0.012 0.258± 0.027 105.2± 1.1 0.0050+0.0038

−0.0026 - 0.004± 0.040 −2.368± 0.067 Weak

Γa2 0.7077+0.0085
−0.011 0.264+0.039

−0.029 105.3± 1.0 - −0.065+0.046
−0.060 0.0096± 0.038 0.262± 0.220 Inconclusive

Γa3 0.709+0.010
−0.012 0.273+0.028

−0.045 105.1± 1.0 −0.034+0.045
−0.032 −0.034+0.045

−0.032 0.005± 0.040 −1.947± 0.055 Weak

Γa4 0.709+0.010
−0.012 0.264± 0.037 105.1± 1.0 0.0041+0.0050

−0.0029 −0.014+0.068
−0.082 0.003± 0.041 −2.376± 0.073 Weak

Γb1 0.7099+0.0098
−0.013 0.257± 0.028 105.2± 1.0 −0.0049+0.0025

−0.0041 - 0.004± 0.042 −2.479± 0.049 Weak

Γb2 0.7064+0.0074
−0.011 0.226+0.014

−0.011 105.62± 0.98 - −0.001± 0.092 0.020+0.038
−0.030 −0.194± 0.145 Weak

Γb3 0.7092+0.0099
−0.013 0.258± 0.028 105.2± 1.0 −0.0046+0.0023

−0.0043 −0.0046+0.0023
−0.0043 0.003± 0.042 −1.347± 0.585 Weak

Γb4 0.7091+0.0099
−0.013 0.259± 0.026 105.2± 1.1 −0.0051+0.0026

−0.0036 −0.012± 0.095 0.003± 0.041 −2.434± 0.127 Weak

Γc 0.7061+0.0076
−0.011 0.238+0.023

−0.021 105.47± 0.99 −0.051+0.062
−0.085 - 0.017± 0.037 −0.083± 0.113 Inconclusive

Γd 0.7089+0.0098
−0.013 0.259± 0.028 105.2± 1.0 0.0048+0.0040

−0.0025 - 0.004± 0.040 −2.291± 0.131 Weak

Γe 0.7069+0.0080
−0.011 0.240+0.030

−0.021 105.5± 1.0 −0.044+0.053
−0.074 - 0.018+0.040

−0.035 −0.242± 0.076 Inconclusive
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Table 3.11: Best fit parameters for the joint analysis JLA + BAO3 + CC + CMB. The last two columns show the
Bayes factor (lnB) and the interpretation of the strength of the evidence. Note that lnB < −1 favours
the ΛCDM model. These results consider as priors scenario (3.36).

Model h Ωdm0 rdh [Mpc] α β γx lnB Interpretation

ΛCDM 0.7100+0.0077
−0.011 0.225+0.012

−0.0095 102.45± 0.88 - - - -

Γa01 0.713+0.010
−0.012 0.239± 0.019 101.9± 1.0 0.00090+0.0060

−0.00092 - - −2.909± 0.148 Moderate

Γa02 0.7100+0.0079
−0.011 0.235+0.036

−0.031 102.26± 0.96 - −0.017+0.054
−0.062 - −0.448± 0.140 Inconclusive

Γa03 0.713+0.010
−0.013 0.242+0.015

−0.025 101.9± 1.1 −0.0065+0.014
−0.0059 −0.0065+0.014

−0.0059 - −2.802± 0.141 Moderate

Γa04 0.713+0.011
−0.013 0.232± 0.034 101.9± 1.1 0.0030+0.0051

−0.0029 0.020± 0.073 - −2.937± 0.175 Moderate

Γb01 0.7136+0.0099
−0.013 0.238± 0.019 102.0± 1.1 −0.0026+0.0027

−0.0044 - - −2.610± 0.330 Moderate

Γb03 0.713+0.010
−0.013 0.239± 0.018 101.9± 1.0 −0.00063+0.00055

−0.0063 −0.00063+0.00055
−0.0063 - −3.030± 0.124 Moderate

Γb04 0.714+0.010
−0.013 0.238± 0.019 102.0± 1.0 −0.0028+0.0029

−0.0040 −0.013± 0.098 - −3.114± 0.128 Moderate

Γc0 0.7100+0.0081
−0.011 0.230± 0.019 102.32± 0.91 −0.021+0.069

−0.082 - - −0.256± 0.122 Inconclusive

Γd0 0.7139+0.0099
−0.013 0.238± 0.019 101.9± 1.0 0.0028+0.0040

−0.0028 - - −2.844± 0.248 Moderate

Γe0 0.7095+0.0078
−0.011 0.230+0.029

−0.025 102.33± 0.92 −0.014+0.067
−0.076 - - −0.317± 0.130 Inconclusive

Γa1 0.713+0.010
−0.013 0.240± 0.023 101.9± 1.1 0.0027+0.0043

−0.0027 - −0.006± 0.041 −1.945± 0.132 Weak

Γa2 0.7096+0.0083
−0.011 0.236+0.039

−0.032 102.24± 0.98 - −0.018+0.053
−0.062 −0.003± 0.039 −0.221± 0.168 Inconclusive

Γa3 0.713+0.010
−0.013 0.243+0.020

−0.028 101.9± 1.0 −0.0045+0.012
−0.0042 −0.0045+0.012

−0.0042 −0.006± 0.041 −1.167± 0.784 Weak

Γa4 0.713+0.011
−0.013 0.235± 0.037 101.9± 1.1 0.0026+0.0054

−0.0025 0.017± 0.072 −0.008± 0.041 −2.123± 0.213 Weak

Γb1 0.713+0.010
−0.013 0.240± 0.023 101.9± 1.0 −0.0027+0.0028

−0.0042 - −0.006± 0.041 −3.009± 0.201 Moderate

Γb2 0.7095+0.0079
−0.011 0.226+0.015

−0.013 102.40± 0.90 - −0.005± 0.093 0.000± 0.035 −0.421± 0.116 Inconclusive

Γb3 0.7134+0.0098
−0.013 0.240± 0.023 101.9± 1.1 −0.0027+0.0027

−0.0042 −0.0027+0.0027
−0.0042 −0.006± 0.040 −3.216± 0.118 Moderate

Γb4 0.7136+0.0099
−0.013 0.240± 0.023 101.9± 1.0 −0.0029+0.0027

−0.0040 −0.010± 0.096 −0.007± 0.040 −3.242± 0.120 Moderate

Γc 0.7097+0.0081
−0.011 0.231± 0.021 102.33± 0.90 −0.021+0.070

−0.086 - −0.002± 0.037 −0.419± 0.119 Inconclusive

Γd 0.7141+0.0098
−0.013 0.241± 0.023 101.9± 1.0 0.0029+0.0040

−0.0027 - −0.007± 0.041 −2.458± 0.540 Weak

Γe 0.7089+0.0087
−0.011 0.230+0.032

−0.026 102.30± 0.92 −0.011+0.066
−0.076 - −0.001± 0.038 −0.32± 0.185 Inconclusive
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Table 3.12: Best fit parameters for the joint analysis Pantheon + BAO3 + CC + CMB. The last two columns show
the Bayes factor (lnB) and the interpretation of the strength of the evidence. Note that lnB < −1
favours the ΛCDM model. These results consider as priors scenario (3.36).

Model h Ωdm0 rdh [Mpc] α β γx lnB Interpretation

ΛCDM 0.7038+0.0081
−0.010 0.232+0.012

−0.010 102.13± 0.89 - - - -

Γa01 0.713+0.011
−0.013 0.244± 0.016 101.70± 0.97 0.0033+0.0038

−0.0023 - - −2.390± 0.316 Weak

Γa02 0.7051+0.0085
−0.011 0.240+0.032

−0.029 102.01± 0.92 - −0.016+0.054
−0.061 - −0.138± 0.152 Inconclusive

Γa03 0.712+0.010
−0.013 0.244± 0.017 101.67± 0.95 0.0019+0.0054

−0.0010 0.0019+0.0054
−0.0010 - −2.622± 0.078 Moderate

Γa04 0.712+0.010
−0.013 0.231± 0.030 101.70± 0.94 0.0047+0.0039

−0.0029 0.040± 0.070 - −2.893± 0.034 Moderate

Γb01 0.713+0.011
−0.013 0.244± 0.016 101.70± 0.96 −0.0037+0.0026

−0.0035 - - −2.641± 0.049 Moderate

Γb03 0.713+0.010
−0.013 0.245± 0.016 101.69± 0.96 −0.0033+0.0021

−0.0039 −0.0033+0.0021
−0.0039 - −2.192± 0.330 Weak

Γb04 0.7137+0.0093
−0.012 0.244± 0.016 101.74± 0.96 −0.0038+0.0027

−0.0032 −0.012± 0.096 - −2.814± 0.046 Moderate

Γc0 0.7043+0.0083
−0.011 0.237± 0.017 102.06± 0.88 −0.019± 0.075 - - −0.057± 0.084 Inconclusive

Γd0 0.7133+0.0098
−0.013 0.248± 0.020 101.69± 0.98 0.0038+0.0033

−0.0026 - - −2.769± 0.035 Moderate

Γe0 0.7041+0.0082
−0.010 0.234+0.026

−0.023 102.07± 0.88 −0.007± 0.071 - - −0.193± 0.047 Inconclusive

Γa1 0.7133+0.0098
−0.012 0.248± 0.020 101.70± 0.94 0.0031+0.0043

−0.0017 - −0.012± 0.039 −2.813± 0.032 Moderate

Γa2 0.7059+0.0079
−0.010 0.242± 0.033 102.04± 0.91 - −0.021± 0.054 −0.004± 0.038 −0.558± 0.064 Inconclusive

Γa3 0.713+0.010
−0.012 0.248± 0.020 101.70± 0.94 0.0033+0.0043

−0.0018 0.0033+0.0043
−0.0018 −0.014± 0.040 −2.412± 0.256 Weak

Γa4 0.714+0.010
−0.012 0.235± 0.034 101.74± 0.91 0.0048+0.0039

−0.0026 0.035± 0.068 −0.013± 0.039 −2.698± 0.141 Moderate

Γb1 0.7135+0.0094
−0.012 0.249± 0.020 101.70± 0.94 −0.0041+0.0024

−0.0033 - −0.015± 0.039 −2.522± 0.239 Moderate

Γb2 0.7050+0.0078
−0.010 0.231+0.015

−0.012 102.14± 0.87 - −0.005± 0.094 0.002± 0.035 −0.123± 0.054 Inconclusive

Γb3 0.713+0.011
−0.012 0.249± 0.020 101.73± 0.94 −0.0039+0.0024

−0.0034 −0.0039+0.0024
−0.0034 −0.015± 0.040 −2.854± 0.029 Moderate

Γb4 0.7145+0.0089
−0.012 0.248± 0.020 101.75± 0.92 −0.0043+0.0026

−0.0031 −0.014± 0.091 −0.015± 0.038 −2.876± 0.068 Moderate

Γc 0.7049+0.0079
−0.010 0.236± 0.020 102.06± 0.91 −0.019+0.070

−0.082 - −0.002± 0.036 −0.215± 0.074 Inconclusive

Γd 0.713+0.010
−0.012 0.248± 0.020 101.70± 0.95 0.0038+0.0034

−0.0025 - −0.013± 0.040 −2.685± 0.077 Moderate

Γe 0.7040+0.0083
−0.010 0.236+0.030

−0.024 102.08+0.84
−0.94 −0.011± 0.069 - −0.002± 0.038 −0.322± 0.048 Inconclusive
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Table 3.13: Best fit parameters for the joint analysis Pantheon + BAO + CC + CMB. The last three columns
show the Bayesian evidence (ln E), the Bayes factor (lnB) and the interpretation of the strength of the
evidence. Note that lnB < −1 favours the ΛCDM model. These results consider as priors scenario
(3.36) and an updated version of BAO data.

Model h Ωdm0 rdh [Mpc] α β γx lnB Interpretation

ΛCDM 0.7010± 0.0076 0.2358± 0.0092 102.14± 0.8 - - - -

Γa01 0.711+0.011
−0.013 0.242± 0.011 101.82± 0.88 0.0031+0.0030

−0.0026 - - −3.005± 0.156 Moderate

Γa02 0.7012+0.0064
−0.0079 0.248+0.030

−0.026 101.99± 0.88 - −0.022± 0.047 - −0.850± 0.145 Inconclusive

Γa03 0.713+0.010
−0.013 0.240± 0.011 101.87± 0.91 0.0036+0.0029

−0.0026 0.0036+0.0029
−0.0026 - −2.819± 0.211 Moderate

Γa04 0.712+0.010
−0.013 0.248± 0.028 101.77± 0.93 0.0032+0.0029

−0.0026 −0.011± 0.049 - −3.602± 0.155 Moderate

Γb01 0.712+0.011
−0.013 0.242± 0.011 101.85± 0.90 −0.0032+0.0026

−0.0030 - - −3.046± 0.159 Moderate

Γb03 0.711+0.011
−0.013 0.242± 0.011 101.83± 0.89 −0.0031+0.0026

−0.0030 −0.0031+0.0026
−0.0030 - −2.746± 0.258 Moderate

Γb04 0.7119+0.0096
−0.012 0.242± 0.011 101.85± 0.89 −0.0033± 0.0027 −0.013± 0.096 - −3.061± 0.157 Moderate

Γc0 0.7013+0.0066
−0.0078 0.244± 0.018 102.04± 0.85 −0.035± 0.067 - - −0.226± 0.211 Inconclusive

Γd0 0.7130+0.0097
−0.012 0.242± 0.011 101.83± 0.90 0.0035+0.0027

−0.0024 - - −3.060± 0.146 Moderate

Γe0 0.7014+0.0063
−0.0078 0.239+0.027

−0.022 102.10± 0.85 −0.014± 0.068 - - −0.384± 0.157 Inconclusive

Γa1 0.712+0.010
−0.012 0.241± 0.013 101.81± 0.92 0.0034+0.0029

−0.0025 - 0.005+0.038
−0.033 −3.286± 0.147 Moderate

Γa2 0.7019+0.0060
−0.0074 0.248+0.035

−0.031 102.05± 0.86 - −0.024± 0.051 −0.004± 0.036 −0.821± 0.167 Inconclusive

Γa3 0.712+0.010
−0.013 0.239± 0.012 101.78± 0.89 0.0033± 0.0027 0.0033± 0.0027 0.006± 0.035 −3.088± 0.200 Moderate

Γa4 0.7127+0.0095
−0.012 0.249+0.037

−0.032 101.75± 0.90 0.0035± 0.0026 −0.013± 0.054 −0.002± 0.039 −3.822± 0.146 Moderate

Γb1 0.7128+0.0095
−0.013 0.240± 0.012 101.82± 0.90 −0.0034± 0.0026 - 0.004± 0.034 −3.314± 0.148 Moderate

Γb2 0.7016+0.0061
−0.0074 0.234± 0.010 102.16+0.78

−0.87 - −0.0095± 0.096 0.004+0.036
−0.032 −0.390± 0.160 Inconclusive

Γb3 0.7130+0.0099
−0.012 0.241+0.012

−0.013 101.83± 0.90 −0.0035± 0.0027 −0.0035± 0.0027 0.004± 0.035 −3.198± 0.159 Moderate

Γb4 0.7132+0.0093
−0.012 0.241± 0.012 101.79± 0.88 −0.0036± 0.0026 −0.015± 0.092 0.006± 0.033 −3.136± 0.250 Moderate

Γc 0.7014+0.0063
−0.0075 0.243± 0.020 102.06± 0.85 −0.033+0.063

−0.075 - −0.001+0.038
−0.034 −0.372± 0.158 Inconclusive

Γd 0.7126+0.0095
−0.012 0.242± 0.013 101.79± 0.89 0.0035± 0.0026 - 0.004± 0.034 −3.328± 0.146 Moderate

Γe 0.7012+0.0065
−0.0077 0.236+0.030

−0.023 102.12+0.80
−0.90 −0.007± 0.065 - 0.003± 0.035 −0.605± 0.165 Inconclusive
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CHAPTER 4

Cosmic shear

What is essential is invisible to the eye.

The Little Prince

The discovery of gravitational lensing dates back to over a century, in 1919,

during a solar eclipse observed by two simultaneous expeditions, one in Sobral,

Brazil and the other in the island of Principe, both lead by Arthur Eddington,

which set out to test predictions from general relativity. Their findings confirmed

Einstein’s predicted deflection by the Sun, of light from stars of the Hyades cluster,

and thus GR became the official theory of gravity. Consecutive detections were

only made over half a century later in 1979, of the doubly imaged quasar [122],

and the lensing distortions in 1987 [123], which reignited the interest in this field.

Since then, gravitational lensing has become one of the most important tools for

probing cosmology.

The following two chapters will be focused on weak lensing, and thus we

introduce the reader to its formalism in this chapter. Weak lensing deals with

the distortion of light from distant galaxies due to the tidal gravitational field of

the density fluctuations at large scales [124]. This effect causes the images to be
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Cosmic shear Section 4.1

sheared, i.e. we observe a change in their ellipticity, known as cosmic shear.

The information obtained from the lensed images is unique because it probes

the underlying matter distribution and hence delivers information on the power

spectrum of matter overdensity perturbations which, in turn sheds light on dark

energy [125].

In this chapter we closely follow the discussion and demonstrations presented

in [126].

4.1 Light propagation and the lens equation

We begin by introducing the perturbed metric to first order,

gµν = g(0)
µν + δgµν , (4.1)

under the condition that ∣∣∣∣∣δgµν(xλ)g
(0)
µν (xλ)

∣∣∣∣∣� 1 . (4.2)

Rotating δgµν with respect to the spatial components we get

δgµν = a2(t)

−2Φ(t, xν) ωi(t, x
ν)

ωi(t, x
ν) 2Ψ(t, xν)δij + hij(t, x

ν)

 , δijhij = 0 , (4.3)

where we have decomposed δgµν into its tensor, hij, vector, ωi and scalar, Φ and

Ψ, components [127]. Now the tensor and vector components have scalar parts

of their own, but if we choose the Newtonian gauge, we set these to zero, such

that our only scalar components are Φ and Ψ, which are known as the Bardeen

gravitational potentials. This is useful because the density perturbation is also
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scalar, and hence decouple from the other components. We can then write

ds2 =

(
1 +

2Φ

c2

)
dt2 − a2(t)

(
1− 2Ψ

c2

)
dσ2 , (4.4)

where we are briefly reinserting c for clarity. In GR, when dealing with large scale

structures the anisotropic stress vanishes, which implies that Ψ = Φ, and we call

Φ the Newtonian gravitational potential [12].

4.1.1 Deflection angle

For a weak gravitational field, we can use ds = 0 to find the effective light speed,

c′ =

∣∣∣∣dσdt
∣∣∣∣ = c

(
1 +

2Φ

c2

)
, (4.5)

where Φ/c2 � 1 is used in a first-order Taylor expansion. The next steps taken

are the same as conventionally done for light travelling through different mediums.

We use c′ to obtain the effective index of refraction,

n =
c

c′
= 1− 2Φ

c2
. (4.6)

We can then calculate the travel time of the light ray,

t =
1

c

∫ b

a

(
1− 2Φ

c2

)
dr , (4.7)

and thus apply Fermat’s principle to look for a path σ(r), for which

δ

∫ b

a

n [(σ(r)] dr = 0 . (4.8)
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If we treat this is as a standard variational problem, it can be written as

dr =

∣∣∣∣dσdλ
∣∣∣∣ dλ , (4.9)

where λ is an arbitrary curve parameter. Substituting in Eq. (4.8),

δ

∫ λb

λa

n [(σ(λ)]

∣∣∣∣dσdλ
∣∣∣∣ dλ = 0 , (4.10)

we write the Langrangian,

n [(σ(λ)]

∣∣∣∣dσdλ
∣∣∣∣ ≡ L (σ̇, σ, λ) , (4.11)

with the derivative being taken with respect to λ. We can now use the Euler-

Lagrange equations,
d

dλ

∂L

∂σ̇
− ∂L

∂σ
= 0 , (4.12)

where we compute

∂L

∂σ
= |σ̇|∂n

∂σ
= (∇n) |σ̇| and

∂L

∂σ̇
=

∂σ̇

∂|σ̇| . (4.13)

If we assume that the tangent vector to the light path is |σ̇|= 1, for a convenient

choice for λ and, for simplicity, substitute x ≡ σ̇,

d

dλ
(nx)−∇n = 0 ,

nẋ = ∇n− x (∇n · x) .

(4.14)
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Since the second term on the rhs is simply the gradient of n along the line of sight,

we can use ∇n = ∇⊥n+ ∇‖n to write

ẋ =
1

n
∇⊥n ,

ẋ = ∇⊥ln(n) .

(4.15)

Plugging in n = 1− 2Φ/c2 and Φ/c2 � 1, ln(n) ≈ −2Φ/c2,

ẋ ≈ − 2

c2
∇⊥Φ , (4.16)

we find the deflection angle to be,

α̂ =
2

c2

∫ λb

λa

∇⊥Φdλ . (4.17)

4.1.2 Lensing potential

We illustrate the schematics for the trajectory of the light path from the source,

passing through the lens and converging to the observer in Figure 4.1. The angles

shown are exaggerated for clarity but, in reality, they are small enough that we can

use tanθ ≈ θ. Consider the comoving transverse distance between the source, at

distance χ from the observer, and the optical axis, x0(χ) = fK(χ)θ. The apparent

separation will be greater, due to the deflection of the light ray by the potential

Φ, which is at χ′ from the observer. The induced change will be given by

dx = fK(χ− χ′)dα̂ , (4.18)

where

dα̂ =
2

c2
∇⊥Φ(x, χ)dχ′ . (4.19)
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Figure 4.1: The trajectory of a light ray (continuous yellow curve) from the source

galaxy on the right (in pink), passing by the lens galaxy (in purple), to the

observer represented by the red telescope on the left. The distance from the

observer to the source is χ, and from the observer to the lens is χ′. The

dashed orange curve shows the apparent direction, subtended by the angle

θ, and the dotted white curve is the unperturbed geodesic, which converges

on the observer under the angle β. Finally, dα̂ is the deflection angle, x(χ)

is the distance from the source to the optical axis, and dx is the distance

between the apparent and true location of the source.

Substituting Eq. (4.19) in Eq. (4.18) and integrating along the path,

x = fK(χ)θ − 2

c2

∫ χ

0

dχ′fK(χ− χ′) [∇⊥Φ(x, χ′)] , (4.20)

which is the total transverse separation. Looking at Figure 4.1, we can obtain the

lens equation,

β = θ −α , (4.21)
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where β = x(χ)/fK(χ), which gives

α =
2

c2

∫ χ

0

dχ′
fK(χ− χ′)
fK(χ)

∇⊥Φ(x, χ′) . (4.22)

Up until now, we have been defining our variables in terms of the transverse

distance, x, it is, however, more convenient to do so in terms of the angular

position on the celestial sphere, θ, which can be readily measured for an observer.

We therefore swap the gradient ∇⊥ for,

∇θ =
∇⊥
χ′

. (4.23)

Finally, we introduce the lensing potential,

ψ(θ, χ) =
2

c2

∫ χ

0

dχ′
fK(χ− χ′)
fK(χ)fK(χ′)

Φ(fK(χ′)θ, χ′) , (4.24)

we can write the deflection angle as the gradient of this potential,

α = ∇θψ , (4.25)

where we have used the Born approximation such that the integral is taken along

a fiducial straight line, rather than the photon geodesic, and x(χ) = fK(χ)θ.

4.2 Convergence and shear

We have already established how the trajectories of the light rays change due to

gravitational potential Φ. We now explore other effects, like the magnification

and distortion of the source, as illustrated in Figure 4.2. These distortions can be
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convergence shear + convergence

Figure 4.2: Figure showing the effects of the convergence and shear. The leftmost object

is the true galaxy shape. The middle one shows the convergence, which is

the isotropic change in size, while maintaining a constant surface brightness.

Finally, the rightmost object shows the effects of both convergence and

shear, where the shear is the anisotropic stretch in a given direction.

summarised by the Jacobian matrix,

Aij ≡
∂βi
∂θj

,

= δij −
∂αi
∂θj

,

= δij −
∂2ψ

∂θi∂θj
.

(4.26)

A is the amplification matrix describing the linear mapping from lensed coordi-

nates θ to unlensed coordinates β, or, alternatively, its inverse is the magnification

matrix, which maps the source onto the image coordinates. We can decompose A
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into two parts,(
A− 1

2
trA · 1

)
ij

= δij − ψij −
1

2
(1− ψ11 + 1− ψ22) δij ,

= −ψij +
1

2
(ψ11 + ψ22) δij ,

=

−1
2

(ψ11 − ψ22) −ψ12

−ψ12
1
2

(ψ11 − ψ22)

 ,

(4.27)

and
1

2
trA =

[
1− 1

2
(ψ11 + ψ22)

]
δij , (4.28)

where we use ψij = ∂2ψ
∂θi∂θj

for brevity. Eq. (4.27) is the shear matrix, it is trace-

free and characterises the anisotropic stretching of the source image by quantifying

the projection of the gravitational tidal field. We can further simplify this matrix

by defining the two-component spin-two shear, γ, with a tangential and a cross

component, γt and γ×, respectively, where

γt =
1

2
(ψ11 − ψ22) ,

γ× = ψ12 ,

(4.29)

such that the shear matrix can be rewritten asγt γ×

γ× −γt

 = γ

cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ

 , (4.30)

with ϕ being the polar angle between the two components of the shear. It is also

convenient to write γ = γt + iγ× = |γ| e2iϕ. Eq. (4.28), on the other hand, is

an isotropic distortion, known as the convergence, κ = 1
2

(ψ11 + ψ22), describing

the change in size, while maintaining a constant surface brightness. In practice,
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sources are only weakly lensed by the large scale structures of the universe, and

so κ and γ are usually much smaller than unity. Before moving on, we present A

in terms of these new quantities,

A =

1− κ− γt −γ×
−γ× 1− κ+ γt

 . (4.31)

Since weak lensing mostly deals with the shape, rather than the size, our observable

is, in fact, the reduced shear,

g =
γ

1− κ , (4.32)

which has the same properties as the shear. Furthermore, as we have established

that κ is often � 1, such that the shear is a good approximation of the reduced

shear.

We now turn back to the convergence, which has some interesting properties to

be explored. We find

κ(θ, χ) =
1

2

(
∂2ψ

∂2θ1

+
∂2ψ

∂2θ2

)
,

= ∇2
θψ ,

=
1

c2
∇2

θ

∫ χ

0

dχ′
fK(χ− χ′)
fK(χ)fK(χ′)

Φ(fK(χ′)θ, χ′) ,

=
1

c2

∫ χ

0

dχ′
fK(χ− χ′)fK(χ)

fK(χ′)
∇2
⊥Φ(fK(χ′)θ, χ′) ,

(4.33)

where we used Eq. (4.23). Take Poisson’s equation,

∇2Φ =
4πGa2ρ̄δ

c2
, (4.34)
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where

δ =
ρ− ρ̄
ρ̄

(4.35)

is the density contrast, with ρ being the density and ρ̄ the mean density. Since we

want to probe the matter distribution we can use ρ̄→ ρ̄m, such that

ρ̄m =
Ωmρcrit

a3
,

=
3H2

0 Ωmc
2

8πGa3
.

(4.36)

If we substitute ρ̄m in Eq. (4.34),

∇2Φ =
3H2

0 Ωmδ

2a
, (4.37)

which we can then use in Eq. (4.33),

κ(θ, χ) =
3H2

0 Ωm

2ac2

∫ χ

0

dχ′
fK(χ− χ′)fK(χ)

fK(χ′)
δ(fK(χ′)θ, χ′) ,

=

∫ χ

0

dχ′W(χ, χ′)δ(fK(χ′)θ, χ′) ,

(4.38)

where

W(χ, χ′) =
3H2

0 Ωm

2ac2

fK(χ− χ′)fK(χ)

fK(χ′)
, (4.39)

is the function that weighing function along the line of sight. Finally, when dealing

with a population of source galaxies, we take the mean convergence,

κ(θ) =

∫
dχ n(χ)κ(θ, χ) , (4.40)

which is weighted by the galaxy probability distribution, n(χ)dχ = n(z)dz, that

can be obtained using photometric redshifts.
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4.3 Lensing power spectrum

Since we do not know the underlying matter distribution of large scale structures,

we cannot predict the expected lensing effects; we hence turn to correlations be-

tween the sources. Take a measured quantity on the sky, g(ϑ), and its angular

two point correlation function, ξgg(θ) = 〈g(ϑ)g∗(ϑ+ θ)〉. Its angular power

spectrum is its Fourier transform,

〈ĝ(k)ĝ∗(k′)〉 =

∫
d3ϑ eiϑ·k

∫
d3ϑ′ e−iϑ

′·k′ 〈g(ϑ)g∗(ϑ′)〉 , (4.41)

substituting ϑ′ = ϑ+ θ,

〈ĝ(k)ĝ∗(k′)〉 =

∫
d3ϑ eiϑ·k

∫
d3θ e−i(ϑ+θ)·k′ 〈g(ϑ)g∗(ϑ+ θ)〉 ,

= (2π)3δ
(3)
D (k − k′)

∫
d3θ e−iθ·k

′ 〈g(ϑ)g∗(ϑ+ θ)〉 ,

= (2π)3δ
(3)
D (k − k′)Pg(k) ,

(4.42)

where

Pg(k) ≡
∫
d3θ e−ik·θξgg(θ) , (4.43)

is the power spectrum, and δ
(3)
D is the Dirac delta function in 3 dimensions. In

cosmology, we often use the Limber approximation, which ensures that a two

dimensional quantity such as the convergence,

κ(θ) =

∫
dχ′ q(χ′)δ(fK(χ′)θ, χ′) , (4.44)
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can be expressed as a projection of a three dimensional one, δ(fK(χ′)θ, χ′). For

simplicity, we write

q(χ′) =
3H2

0 Ωm

2ac2

fK(χ− χ′)fK(χ)

fK(χ′)
. (4.45)

Before we proceed to calculate the power spectrum of the convergence, we look

for its correlation function,

ξκκ = 〈κ(θ)κ(θ′)〉 ,

=

∫
q(χ)dχ

∫
q(χ′)dχ′ 〈δ(fK(χ)θ, χ)δ(fK(χ′)θ, χ′)〉 ,

=

∫
q(χ)dχ

∫
q(χ′)dχ′

∫
d3k

(2π)3

∫
d3k′

(2π)3
〈δ(k)δ∗(k′)〉

e−ifk(χ)θ·k⊥ e−ifk(χ′)θ′·k′⊥ e−ik‖χ e−ik
′
‖χ
′
,

(4.46)

where we have taken the Fourier transform of δ and separated the wave vector

k into its perpendicular, k⊥, and parallel, k‖ parts. We can further replace the

power spectrum of δ,

ξκκ =

∫
q(χ)dχ

∫
q(χ′)dχ′

∫
d3k

(2π)3
2πδD(k‖)Pδ(k) e−i(fk(χ)θ−fk(χ′)θ′)·k⊥ ,

=

∫
q2(χ)dχ

∫
d2k⊥
(2π)2

Pδ(|k⊥|)eifk(χ)(θ−θ′)·k⊥ ,

=

∫
q2(χ)dχ

∫
d2k

(2π)2
Pδ(k)eifk(χ)k·ϑ .

(4.47)

To derive the above result, we defined ϑ = |θ − θ′| and used the isotropy of the
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universe to replace k‖ → k. Finally, the power spectrum of the convergence is

Pκ(`) =

∫
d2ϑ ξκκ(ϑ) ei`·ϑ ,

=

∫
q2(χ)dχ

∫
d2k

(2π)2
Pδ(k)ei(`−fk(χ)k)·ϑ ,

=

∫
dχ

q2(χ)

f 2
k (χ)

Pδ

(
`

fk(χ)

)
.

(4.48)

4.4 Shear correlation function

Recall the tangential and cross components of the shear defined earlier, γt and

γ×, and the lensing potential ψ. We let the separation vector φ between two

arbitrary points have a polar angle α. We start with the correlation function of

the tangential component of the shear,

〈γtγ′t〉 =

∫
d2`

(2π)2
Pγt(`)e

−i`·φ , (4.49)

and its Fourier transform,

γ̂t =
k2

2

(
cos2 α− sin2 α

)
ψ̂ . (4.50)

We find its power spectrum,

Pγt =
k4

4

(
cos2 α− sin2 α

)2
Pψ . (4.51)

We can relate Pψ to the power spectrum of the convergence,

Pκ =
k4

4
Pψ , (4.52)
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and thus,

Pγt =
(
cos2 α− sin2 α

)2
Pκ ,

=
1

2
(1 + cos 4α)2 Pκ .

(4.53)

Plugging this result back in Eq. (4.50),

〈γtγ′t〉 =

∫
d2`

(2π)2

(
cos2 α− sin2 α

)2
Pκ(`)e

−i`·φ ,

=

∫
`d`

2(2π)2
Pκ(`)

∫
dα e−i`φ cosα (1 + cos 4α) ,

=

∫
`d`

2(2π)2
Pκ(`)

[∫
dα e−i`φ cosα +

∫
dα e−i`φ cosα cos 4α

]
,

=

∫
`d`

4π
Pκ(`) [J0(`φ) + J4(`φ)] ,

(4.54)

where J0 and J4 are Bessel functions of the first kind [128]. Similarly, for the cross

component we have its power spectrum,

Pγ× =
1

2
(1− cos 4α)2 Pκ , (4.55)

from which its autocorrelation can be found,

〈γ×γ′×〉 =

∫
`d`

4π
Pκ(`) [J0(`φ)− J4(`φ)] . (4.56)

We omit the calculation of the mixed correlations between γ× and γt since they

are equal to zero. Finally, we define the shear correlation functions ξ± = 〈γtγ′t〉 ±
〈γ×γ′×〉, so that we can write

ξ+ =

∫
`d`

2π
Pκ(`)J0(`φ) (4.57)
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and

ξ− =

∫
`d`

2π
Pκ(`)J4(`φ) . (4.58)

There two quantities will be essential for the work presented in the next two

sections.
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CHAPTER 5

Data compression and covariance

matrix inspection: Cosmic shear

Truth suffers from too much analysis.

Dune Chapterhouse

In this chapter I detail the work I did in collaboration with Tianqing Zhang,

Niyani Chen and Scott Dodelson, in [129], for the Vera Rubin Observatory Legacy

Survey of Space and Time, Dark Energy Science Collaboration.1

5.1 Motivation

As we have seen in the previous chapter, cosmic shear is a weak lensing effect

caused by the large-scale structure of the universe and is an important tool for

constraining cosmology. For a cosmological analysis, it is common to assume

that the two-point functions follow a Gaussian distribution, and thus require a

covariance matrix. If the data vector has length n, then it has a symmetric n× n

1https://lsstdesc.org/
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covariance matrix with n× (n+1)/2 individual elements that capture its auto and

cross-correlation. The number of elements of the covariance matrix thus increases

quadratically, such that, the larger the data vector, the harder it is to analyse the

covariance matrix.

One of the common ways to reduce the dimensionality of the dataset and its

corresponding covariance matrix is to employ compression schemes. The most

powerful ones, as we will see, are capable of shrinking the number of elements of

the data vector down to the number of free parameters of the analysis. In this

chapter, we explore different compression methods to help identify the parts of the

covariance matrix which are most crucial to parameter estimation. These are then

evaluated based on how well they reproduce the original parameter constraints.

Next, we show that compression can be an effective tool for comparing covariance

matrices. Finally, we perform a tolerance test on the elements of the compressed

covariance matrix. This is done by investigating the change in the parameter

constraints due the noise added separately to elements and eigenvalues of the

covariance matrix.

5.2 Methods

5.2.1 DES Cosmic Shear: Data and Analysis

To test the compression schemes, we use cosmic shear statistics from the Dark

Energy Survey Year 1 (DESY1) [130, 131]. The data were taken over an area of

1321 deg2 of the southern sky and are divided into four tomographic redshift bins

ranging from 0.20 < z < 1.30 [132], according to the posterior of the photometric

redshift as estimated from griz2 flux measurements [133]. Each bin then yields 10

bin-pair combinations, with each one containing 20 angular bins between 2.5 and

2g: green; r: red; i and z: near-infrared.
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250 arcmin, resulting in 200 data points per statistic.

Not all angular bins are used, however, since smaller scales are more sensi-

tive to baryonic feedback from supernovae, gas cooling, and active galactic nuclei

(AGN) [134]. To establish which scales should be removed, DESY1 modelled these

effects as a rescaling of the nonlinear matter power spectrum. The scales from the

ξ± dataset with a fractional contamination from baryonic effects superior to 2%

at any physical scales are removed. This results in 167 points for ξ+(θ) and 60 for

ξ−(θ), totalling 227 points.

For the analyses, we assume a flat ΛCDM model, with six free parameters, {As,
Ωm, Ωb,Ωνh

2, H0, ns}. We fix the equation of state for the dark energy component,

w = −1, and τ = 0.08. Since we do not consider baryonic effects, the astrophysical

systematics are mostly dominated by intrinsic alignment (IA), which describes the

coherent orientation of galaxies due to overdense regions. We vary the amplitude of

the nonlinear alignment model, AIA0, and its redshift evolution, ηIA. We also have

the shear multiplicative bias, mi, which varies with each tomographic bin. Lastly,

we vary the photo-z bias, ∆zi, on the distribution of galaxies in each redshift bin.

The priors for these 16 parameters are given in Table 5.1. Since cosmic shear

is not sensitive to most of these, their constraints are largely dependent on the

priors used. As such, throughout, we will mostly only be showing constraints on

three parameters: the matter density parameter, Ωm, the amplitude of matter

fluctuations, S8 ≡ σ8(Ωm/0.3)0.5, and the amplitude of the intrinsic alignment,

AIA.

The cosmological parameter inference is performed with the CosmoSIS [135, 136,

137, 138, 139, 140, 141, 142] pipeline, while employing the MultiNest [112] sampler

to explore the parameter space, with 1000 livepoints, efficiency set to 0.05,

tolerance to 0.1 and constant efficiency set to True.

We use the aforementioned dataset alongside two different covariance matrices.
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Table 5.1: List of the priors used in the analysis for parameter constraints using
DESY1 data. U denotes flat in the given range and G is Gaussian with
mean equal to its first argument and dispersion equal to its second.

Parameter Prior
Cosmological

Ωm U(0.1, 0.9)
logAs U(3.0, 3.1)
H0 (km s−1Mpc−1) U(55, 91)
Ωb U(0.03, 0.07)
Ωνh

2 U(0.0005, 0.01)
ns U(0.87, 1.07)

Astrophysical

AIA U(−5, 5)
ηIA U(−5, 5)

Systematic

mi G(0.012, 0.023)
∆z1 G(−0.001, 0.016)
∆z2 G(−0.019, 0.013)
∆z3 G(0.009, 0.011)
∆z4 G(−0.018, 0.022)

The covariance matrix that we will refer to as the Full Covariance Matrix (FCM)

is the one originally used in the DESY1 cosmic shear analysis in [131]. It was

analytically obtained with CosmoLike [143] and is mainly dominated by the shape-

noise and Gaussian components of the covariance, with a halo model framework

being used to include the non-Gaussian parts.

The one that we will call the Gaussian Covariance Matrix (GCM) was computed

with the code used for the KiDS-450 and KiDS-1000 surveys [144, 145]. Similarly

to the FCM, it is analytical, and was obtained following the procedure in [146]

for obtaining second-order cosmic shear measurements under the assumption that

density field is Gaussian, the galaxies are uniformly distributed, and the survey

has a straightforward geometry. Contrary to the FCM, however, it was produced
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only considering the Gaussian contributions to shape-noise, sample variance and

the mixed noise-sample variance term. The non-Gaussian components and the

super-sample covariance were not included, so that the differences are accentuated

in the two covariance matrices and in the parameter constraints. These ensuing

discrepancies help us assess various validation techniques. Where not otherwise

stated, the analysis and constraints are performed on the FCM.

Figure 5.1 shows the cosmological constraints for the FCM and the GCM, while

Figure 5.2 shows the constraints for the systematic parameters. The 68% confi-

dence level (CL) constraints are as follows, for the three parameters of interest: for

the FCM: Ωm = 0.306+0.018
−0.023, S8 = 0.784+0.054

−0.06 and AIA = 0.852+0.359
−0.233; and for the

GCM: Ωm = 0.309+0.017
−0.023, S8 = 0.787+0.051

−0.058 and AIA = 0.948+0.329
−0.22 . This shows that

the variations we introduced to the calculation of the two matrices are measurable

in the parameter constraints.

5.2.2 Eigenvalues

One of the simplest ways of analysing the covariance matrix is to probe its eigen-

values. Each eigenvalue is associated with a linear combination of the data vector,

or a mode. The smallest eigenvalues are usually attributed to numerical noise and,

therefore, are the least relevant to parameter estimation. The largest eigenvalues,

on the other hand, have the largest variance and are thus considered to be the

most significant ones [147].

To shrink the covariance matrix based on this information, we first diagonalise

the covariance matrix to obtain its eigenvalues, and then sort them in increasing

order. One of the ways to remove the effective contribution of the lowest eigenval-

ues, would be to set them to zero. This would, however, result in a non-positive

definite (NPD) matrix. Since we do not want to alter this characteristic of the

covariance matrix, we resort to replacing these smaller eigenvalues with values nine
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Figure 5.1: Constraints on cosmological parameters for two covariance matrices pro-

duced for cosmic shear. The purple curve is for the FCM while the blue

is for the GCM. In the 16–dimensional parameter space, the volume of the

posterior is about 22% larger for the former.
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Figure 5.2: Constraints on systematic parameters for two covariance matrices produced

for cosmic shear. The purple curve is for the FCM while the blue is for the

GCM.

orders of magnitude lower. The new set of eigenvalues are then used, along with

the eigenvectors, to obtain a modified covariance matrix.

We use this procedure to discard 200 such modes, and thus “reduce” the co-

variance matrix to about 10% of its original size. The results for the cosmological

analysis with this new covariance matrix are shown in Figure 5.3. The loss in
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constraining power for two of the three parameters in the plots is consistent when

considering that 90% of the information held in the covariance matrix was re-

moved. In fact, constraints on S8 for the FCM are 0.779+0.044
−0.46 , whereas, for the

new covariance matrix, we obtain 0.725+0.076
−0.083, showing an increase in the errors of

almost 77%. This shows that, for a 90% compression, this method is unsuited to

reproduce the original parameter constraints.
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Figure 5.3: Constraints on cosmological parameters Ωm, S8 and the intrinsic alignment

parameter AIA for the original covariance matrix (in purple) and for the two

new covariance matrices obtained in §5.2.2 (in blue) and §5.2.3 (in magenta).
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5.2.3 Signal-to-noise ratio

This next method is more sophisticated than the previous one because instead

of concentrating on the “noise” – or the eigenvalues of the covariance matrix –

we assess the relevance of each mode by considering the signal as well. We can

evaluate the signal-to-noise ratio (SNR) as

(
S

N

)2

= TiC
−1
ij Tj , (5.1)

where Ti is the predicted theoretical signal for the ith data point, given a fiducial

cosmology, and C is the covariance matrix. The repeated indices are summed in

all cases throughout this chapter. Just as in the previous method, the first step is

to diagonalise C. The SNR can then be written as a linear combination of the Tis,(
S

N

)2

=
v2
i

λi
, (5.2)

where λi are the eigenvalues of the covariance matrix, which is diagonalised with

the unitary matrix U , and the eigenvectors are

vi ≡ U t
ijTj , (5.3)

with the superscript t denoting the transpose. Our goal, for this case, is to discard

the modes vi for which (v2/λ)i is small. To do so while retaining a positive definite

matrix, we increase the noise (or, alternatively, decrease the signal) of the 200

lowest modes by replacing them with values seven orders of magnitude lower.

Next, we use these modified SNR values to obtain a new covariance matrix. We

report the parameter constraints for this procedure in Figure 5.3, where we find

that the results are similar to those obtained in §5.2.2. We see that, while the

constraints for Ωm fared slightly better for cuts in the SNR, as compared to cuts on
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the eigenvalues, there was still considerable loss for the other two parameters. This

therefore suggests that the modes removed did indeed carry significant information

for these two parameters.

To understand the reason for the failure of our assumption, we consider what

was meant by the “signal” for these modes. In our procedure, we only examined

the amplitude of the data points, and not their shape, which are also relevant. We

can see this more clearly when taking the SNR per parameter pα,

(
∂S/∂pα
N

)2

=
(∂vi/∂pα)2

λi
. (5.4)

Figure 5.4 further illustrates this by showing the normalised SNR per mode on

the abscissa and the SNR for Ωm, S8 and AIA on the ordinate. The 200 excluded

modes are shown in the shaded region. From the figure we can see that for S8 and

more particularly for AIA, many of the modes with high SNR were removed with

our cuts, which was not the case for Ωm. This makes it clear that simply cutting on

raw SNR can potentially result in a loss constraining power for parameters which

are sensitive to lower SNR modes.

The authors in [148] found that, due to the skewness of the two-point functions,

if we were to use Gaussian likelihoods to analyse them (as is usually the case),

we would be likely to find lower amplitudes for the cosmic shear. This occurs due

to the Gaussian being unable to accurately estimate the frequency at which the

data takes values below their mean. This bias is often strongest in the modes with

the highest SNR and, hence, if one wishes to continue using Gaussian likelihoods,

one way to correct this effect is to remove these modes. Following their findings,

we performed an analysis where we removed, instead of the lowest SNR modes,

the 200 highest ones by replacing them with values several orders of magnitude

lower. This modification yielded weaker constrains not only for S8 and AIA, but
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also for Ωm. We believe that this divergence was due to the large quantity of

modes removed for our analysis and does not, in any way, invalidate the findings

of the aforementioned work.
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Figure 5.4: Scatter plot for the relation between the signal to noise (SNR) for each pa-

rameter (y-axis) against that for the full set of parameters (x-axis). The

derivatives are shown with respect to Ωm (blue circle), for S8 (orange x)

and for the intrinsic alignment parameter AIA (green triangle). The pur-

ple rectangle spreads until the two hundred lowest values of SNR, which

corresponds to the values that are modified for parameter constraints.

5.2.4 Tomographic Compression

The tomographic compression method of this section is based on a Karhunen-

Loéve (KL) decomposition for the shear power spectrum suggested by [149] and

later applied to real space two-point function in [150] for the CFHTLens survey.

It finds the eigenmode, or, in our case, the linear combination of the convergence

in different tomographic bins, with the highest SNR contribution to the power

spectrum, then transforms its two-point function into real space. Since this method

is dependent on the multipole `, it is not the most general compression scheme for

two-point functions in real space. Nevertheless, the authors of [150] have shown

that it is also valid for real space data.
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We identify a mode as b`m = riκ
i
`m, where ri is the weight factor on the ith

tomographic bins. To find the linear transformation that captures as much in-

formation as possible in that mode, we start with the total power spectrum C`.
We can decompose it into its signal and noise, C` = S` + N`, and use a general

eigenvalue problem to find the KL-modes for each `,

Cep = λpNep , (5.5)

where we have refrained from using the subscript. The index p in ep corresponds

to the pth KL-mode of C. Applying the Cholesky decomposition for N = LLt,

Cep = λpLL
tep , (5.6)

and multiplying both sides by L−1 from the left,

L−1Cep = L−1λpLL
tep ,

= λpL
tep .

(5.7)

Using LtL−t on the left-hand side,

(
L−1C L−t

) (
Ltep

)
= λp

(
Ltep

)
, (5.8)

which we recognise as a standard eigenvalue problem. We can further simplify by

defining ẽp ≡ Ltep: (
L−1C L−t

)
ẽp = λpẽp . (5.9)

Solving for ẽp, we can compute the transformed data vector as bp = ẽtpL
−1κ. We

also find that E` = [e1, e2, · · · ]t is a transformation of basis so that the shear signal

is diagonalised. The transformed power spectrum D` can be calculated for the new
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uncorrelated observable b`m,

D` = 〈b`mbt`m〉 ,

= Et
`LL

−1 C` L−tLtE` ,

= Λ` ,

(5.10)

where Λ` = diag[λ1, λ2, · · · ]. If we denote E`N
−1 as R` and further write U ij

` =

Ri
`R

j
` , where i and j are the indices for the tomographic bin-pairs, we have the

compression in terms of one simple linear combination,

D` = Ri
` Cij` Rj

` ,

= U ij
` Cij` ,

(5.11)

with U ij
` being the weight we will use to compress the two-point functions. We

note that these KL-modes bp`m are uncorrelated, so that their power spectrum Dpp′`

is a diagonal matrix whose entries are 1+SNR of the corresponding eigenmodes.

This allows us to compress ten tomographic bin-pairs to one, or two, by taking

only the modes with the highest SNR.

We want, however, to eventually compress the two-point function data vector of

DESY1, which is measured in the real space tomographic bin pair i, j and related

to the angular power spectrum C` via

ξij+(θ) =

∫
`d`

2π
J0(`θ)Cij(`) ,

ξij−(θ) =

∫
`d`

2π
J4(`θ)Cij(`) .

(5.12)

To use linear combinations of all the tomographic bins, we need to ensure that

the combination is `-independent, that is, the transformed two-point correlation
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function, ξ̃±(θ), can be directly computed from other two-point functions. In fact,

Figure 5.6 shows that the U ij(`) are generally `-independent, except for low `s

which can be attributed to the existence of cosmic variance. Therefore, we have

ξ̃±(θ) =

∫
`d`

2π
J0/4(`θ)D(`) ,

=

∫
`d`

2π
J0/4(`θ)U ij

` Cij(`) ,

= Ū ijξij±(θ) ,

(5.13)

where Ū ij is the average U ij
` given by

Ū ij =

∫ `max

`min
d` (2`+ 1)U ij

`∫ `max

`min
d` (2`+ 1)

. (5.14)

For the purposes of exploring the KL-transform, we make a more conservative

angular cut than the one discussed in [131], making sure that both ξ±(θ) are

uniform in regard to tomographic combinations. We consider an angular scale for

ξ+ from 7.195′ to 250.0′, and for ξ− from 90.579′ to 250.0′. Therefore, the raw data

vector has a length of 190. By shrinking 10 tomographic combinations for each

angle into 1 KL-mode, the data vector is reduced to length 19, and so the number

of elements in the covariance matrices has a compression of 99%. With CosmoSIS,

we calculate the shear angular power spectrum C` of the convergence κi, where

i = [1, 4] for the 4 tomographic bins probed by DESY1 with a fiducial cosmology

at the best-fit parameters. We thus have 4× 5/2 = 10 pairs of bins for which we

can compute spectra.

The left plot in Figure 5.5 shows the diagonal elements of the signal part, S`, and

of the noise part, N`, of the spectrum. The right-hand panel shows the SNR for the

KL-transformed eigenmodes, that we call D`, ranging from ` = 10 to ` = 2500.
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Figure 5.5: Left: Shear power spectrum of the FCM. Solid lines are diagonal elements

of the signal matrix S`, and dashed lines are the diagonal elements of noise

matrix N`. Right: Signal-to-noise ratio matrix D` of the first to fourth

KL-modes of the power spectrum on the left.

We can see from the figure that the first KL mode contains most of the SNR

contribution to the power spectrum, as expected. To recover more information,

we would need to include the second and the cross mode between the first and

second KL-mode.

In Figure 5.6, we plot the normalised KL-eigenmode ep`N
− 1

2 and its correspond-

ing weight, U ij
` . Modes with increasing ` are plotted in increasing opacity of the

colour. The KL-modes are found to be only weakly sensitive to ` and, as it in-

creases, they converge to their weighted average, which are represented by the

dashed black lines. For the first KL-mode, the tomographic bins with higher red-

shift contribute more to the SNR than those with low redshift. This is also true in

the right panel, as seen for the tomographic combination of bins 3 and 4. This is

consistent with the fact that low-redshift galaxies are less affected by lensing than

high-redshift galaxies, as indicated in the left panel of Figure 5.5.
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Figure 5.6: Left: Column vectors of the matrix R`, or ep`N
− 1

2 , for compressing the shear

power spectrum C`. Right: Transformation on tomographic bin combina-

tion Uij constructed from the KL-eigenmodes. For both plots, the dashed

black lines are the weighted average of each mode. The lightest shade rep-

resents ` = 10 and the increment is ∆` = 10 for each darker shade.

We ran the likelihood analysis as detailed in §5.2.1 with the first KL-mode and

the first two KL-modes with their cross-correlation mode, which correspond to a

10-to-1 and 10-to-3 compression, respectively, and show the parameter constraints

on the Ωm−S8−AIA plane in Figure 5.7. We do not include the third and fourth

KL mode because they contain considerably less SNR. We can see that the first

KL-mode is generally not sufficient to recover the information in the data vector.

Since the first two modes contain most of the SNR contribution at a map level, we

were able to recover the Ωm constraints. However, information about the S8−AIA

combination is clearly lost. This could be due to the fact that the SNR-prioritised

modes are not the sensitive direction for these parameters, as was also the case in

Figure 5.4. Indeed, the S8 − AIA plane shows a strong correlation between these

two parameters. This likely explains why the constraints for S8 widened: the KL-

modes fail to break the degeneracy on AIA, which is mostly present in the modes

that are insensitive to cosmic shear and are discarded in the compression process.
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Figure 5.7: Cosmological constraints marginalised over all 16 parameters for the 190×
190 the FCM and that compressed using the first KL-mode and the first

two KL-modes.

5.2.5 Applying MOPED

We use the Massively Optimised Parameter Estimation and Data compression

(MOPED) [151] to shrink the data vector at the two-point level by using linear

combinations of the many two-point functions. MOPED has been shown to work

remarkably well in the case of Gaussian data, where only the mean depends on the

parameters. When these circumstances are met, the method is said to be lossless

in the sense that there is no loss of precision in the parameter constraints [152].

This compression scheme has been used in literature for a variety of applications,

for example, CMB data [153], the redshift-space galaxy power spectrum and bis-
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pectrum [154], parameter-dependent covariance matrices [155], compression of the

Planck 2015 temperature likelihood [156], weak lensing and galaxy clustering [157]

and has been paired with a Gaussian Process emulator to analyse weak lensing

data [158].

In principle, we only require Np linear combinations of the two-point functions,

where Np is the number of free parameters, and each mode, or linear combination,

contains all the information necessary about the parameter of interest.

We begin with a dataset represented by the vector D = (D1, D2, ..., Dn) with

probability distribution L(D; p), where p = (p1, p2, ..., pN) is a vector of the model

parameters. The logarithm of the probability distribution, L = lnL; its first

derivative, L,i, known as the score function, tells how sensitive the model is with

respect to the parameters. Its second derivative, the Hessian matrix,

Hij = L,ij , (5.15)

describes the correlation of the estimated values of pi and pj. The expectation

value of the negative of the Hessian, Fij = −
〈
Hij

〉
, gives us the Fisher information

matrix. To obtain a compression scheme capable of retaining the highest amount of

information, we seek to maximise Fij; to do so, we take the log-likelihood function

for a Gaussian probability distribution,3

2L = ln detC + (D − T )tC−1(D − T ) , (5.16)

with both the covariance matrix, C = 〈(D − T )(D − T )t〉, and T = 〈D〉 dependent

of the model parameters p. We also define the data matrix as

x ≡ (D − T )(D − T )t . (5.17)

3We have dropped the additive constant nln(2π).
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Combining this definition with ln detC = Tr [lnC], we can express Eq. (5.16) in a

simpler form,

2L = Tr
[
lnC + C−1x

]
. (5.18)

Derivating for pi and pj, we find the quantity we wish to maximise:

〈
L,ij
〉

=
1

2
Tr
[
C−1C,iC

−1C,j + C−1Mij

]
, (5.19)

where Mij = T,iT
t
,j + T,jT

t
,i.

There are three ways one can proceed from here, with respect to the dependence

on the model parameters: 1) the more general case, where both the mean and

the covariance depend on the model parameters; 2) only the covariance has a

dependence, in which case the second term vanishes; and 3) only the mean is

dependent, and the first term vanishes. The general case has been tackled by [159],

where they use the score function to derive n compressed statistics of the data. The

second case often reduces to the tomographic compression described in the previous

subsection. Finally, the third case is the basis for MOPED [160, 151], which uses

linear compression to radically reduce the dataset and covariance matrix. Here,

we will only be working with the latter, such that Eq. (5.19) reduces to

Fij =
〈
L,ij
〉

=
1

2
Tr
[
C−1Mij

]
. (5.20)

For the simplest case of only one parameter, we have

F11 = T t,1C
−1T,1 . (5.21)

If we apply a compression of the type y = U tD, we can follow these same steps to
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obtain the compressed Fisher matrix,

F comp
11 =

U tM11U

U tCU
. (5.22)

To find an extremum such that U tCU = 1, we apply a Lagrange multiplier,

M11U = λCU . (5.23)

If we use a Cholesky decomposition for C = LLt, then

(
L−1M11L

−t) (LtU) = λ
(
LtU

)
,

2
(
L−1T,1

) (
T t,1U

)
= λ

(
LtU

)
.

(5.24)

Since the lhs always points in the direction of (L−1T,1), then the only non-trivial

solution is,

U = C−1T,1 . (5.25)

Plugging this back in Eq. (5.22), we find

F comp
11 = T t,1C

−1T,1 = F11 , (5.26)

which shows that the Fisher matrix is unchanged.

This can be further extended to multiple parameters, such that,

Uαi ≡
∂Tj
∂pα

C−1
ji (5.27)

and

yα = UαiDi , (5.28)

for each parameter pα. The now much smaller data set {yα}, which contains Np
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data points, carries its own Np × Np covariance matrix, from which χ2 can be

computed for each point in parameter space. Propagating through shows that this

covariance matrix is related to the original Cij via

Cαβ = UαiCijUjβ . (5.29)

An illustration of the matrix U is shown in Figure 5.8, showing the weighting

vector for parameters Ωm, S8 and AIA.

ξ+ ξ−

AIA

S8

Ωm
10−1

10−3

0

−10−3

−10−1

Figure 5.8: An illustration of the 227 values of the weights corresponding to Ωm, S8 and

AIA used for compressing the covariance matrices. Note the similarity of the

weighting vectors for S8 and AIA, and that the largest values correspond to

the last 60 elements, i.e. those that we will use to compress the part of the

covariance matrix that holds information for ξ−.

This compression was first suggested by [152] for a single parameter only. The

non-trivial extension to multiple parameters, where the full Fisher matrix is repro-

duced with the compressed data, is the MOPED algorithm [151]. One difference

here is that our weighing vector given by Eq. (5.27) does not carry the normalising

factor of Eq. (11) of [151]. In our case, the covariance matrix is 227×227, while the

number of parameters needed to specify the model is only 16, so Cαβ is a 16× 16

matrix. We have apparently captured from the initial set of (227×228)/2 = 25, 878

independent elements of the covariance matrix a small subset (only 136) of linear

combinations of these 26k elements that really matter. If two covariance matrices

give the same set of Cαβ, it should not matter whether any of the other thousands





Data compression and covariance matrix inspection: Cosmic shear Section 5.2

of elements differ from one another.

To use MOPED as described here, we have assumed a Gaussian likelihood and

that the fiducial value at which the derivatives are taken are those at the maximum

likelihood point. If one does not have prior knowledge of this value, then one

could iterate to find it but, as [151] have found, this is often unnecessary. We also

trust that the cosmological model we have chosen is the correct one; deviations

from a baseline cosmological model can be accounted for by introducing additional

weighing vectors, as described in [161].
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Figure 5.9: Constraints on cosmological parameters Ωm and S8 and for the intrinsic

alignment parameter AIA for the original covariance matrix, FCM, (in pur-

ple) and for the compressed one (in blue).

Figure 5.9 compares the constraints obtained for the compressed covariance ma-

trix and data set with results from the full one. The two curves agree extremely
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well for the three parameters shown. This is also true for all the other cosmo-

logical and intrinsic alignment parameters, where their mean values agree at the

1σ confidence level. While the volume of the whole constrained parameter space

does increase by about 13%, the constraints for most parameters are less than 4%

broader, which shows that the information loss is negligible.

5.3 Comparison of Covariance Matrices

Since the data vector and all the analyses settings are the same, it must follow

that the parts of the covariance that are relevant to parameter constraints be

similar to each other. Establishing which regions of the covariance matrix are

most informative is the first step towards building a tool for comparing these

matrices without the need for a full cosmological analysis.

In the previous section, we have seen that, out of the four compression schemes

analysed here, MOPED was the only one capable of retaining the required infor-

mation about the parameters in a compressed covariance matrix. Our compressed

covariance matrix comparison therefore uses the MOPED algorithm.

5.3.1 Element-by-element Comparison

We begin by performing an element-by-element comparison between the two co-

variance matrices, the GCM and the FCM, described in §5.2.1. If there were only

a single data point, then the covariance matrix would be one number and com-

paring them to try to understand why they give different constraints would be as

simple as evaluating these two numbers. The simplest generalization is then to

do an element-by-element comparison. We make a scatter plot of the elements of

the two matrices in the bottom panel of Figure 5.10, where we can see that the

elements of the FCM are, in general, larger than the GCM’s, with many of the
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off-diagonal elements differing by 2 orders of magnitude or more. In some ways,

this is useful and reassuring, as it aligns with what we see in the parameter con-

straints, in Figures 5.1 and 5.2: larger elements in the covariance matrix translates

to less constraining power.

The limitation of this method is that it remains unclear which of the differences

are responsible for the final discrepancies in parameter constraints. This difficulty

is an outgrowth of the increasing size of the data sets and hence the growing number

of elements of the covariance matrix that any two codes are likely to disagree on.

This element-by-element comparison, however, would prove much more practical

if we had fewer elements to compare. Towards that end, we turn to compressed

covariance matrices.

5.3.2 Compressed Matrices Comparison

We compress both covariance matrices using the same Uα,i (we also tried using

different U ’s for each and obtained similar results).

Figure 5.11 shows a one-to-one scatter plot of the compressed elements, which,

as expected, exhibits a similar behaviour to that observed in Figure 5.10, with the

elements of the FCM being larger than those of the GCM. Here, however, the ratio

of the diagonal elements is closer to 1, with a fractional difference of up to 17%, as

compared to 26% with the original matrices. Perhaps even more importantly, there

are much fewer points on this plot, since MOPED reduces the number of elements

that need to be compared. These figures provide a greater insight into the relevant

elements for parameter estimation: the dispersion is largely damped, and most of

the elements are within 25% of each other, which explains what we see in the

parameter constraints. Figure 5.12 shows the correlation matrix for the GCM and

the FCM, and the difference between the normalised off-diagonal elements. The

small differences suggest that the root of the slightly looser constraints obtained
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with the GCM is the larger diagonal elements of the MOPED-reduced covariance

matrix. Hence, a problem that initially required inspecting hundreds of thousands

of elements is reduced to involving only 16 of them.

5.4 Tolerance of the Compressed Matrices

Now that we have shown that we are indeed able to compress the covariance matrix

into a much simpler and considerably smaller one, our next step is to analyse the

amount of error the elements can tolerate while reproducing compatible parameter

constraints.

In the next two sections we test two different ways of perturbing the covariance

matrix: first we consider an error to the elements themselves, then we follow a

similar procedure to study the effects of introducing an error to the eigenvalues of

the compressed covariance matrix. In both cases the perturbation is drawn in the

following manner: consider that we want to test the impact of an error x%, this

can either be an increase or a decrease in the original element (or eigenvalue), as

what we care about most is not whether the parameter constraints will be larger,

but rather how different they are. For this error to be random, but centred at our

desired percentage, we draw a δ, for each new element/eigenvalue, from a Gaussian

distribution, G(0, x
100

) and calculate the new value to be

Cnew
αβ = (1 + δ)Cold

αβ , (5.30)

where, for the eigenvalue, we replace Cαβ with λi. This analysis is done only for the

FCM, with errors ranging from 5− 45%, and for 50 realizations of the perturbed

matrices.

One of the concerns that arises when modifying the covariance matrix is that the

resulting one has to be positive definite (PD). For this reason, in each section we
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also describe the steps taken to ensure this. Another intelligent way of guaranteeing

that the matrix is PD would be to perturb the log of the covariance matrix. The

issue, however, is how to introduce an error to the log matrix that would be similar

to what we expect to see in the original covariance matrix. In

Cnew
αβ = e(1+δ)(log Cold)αβ , (5.31)

the value of Cnew
αβ is not necessarily within δ% of Cold

αβ . Introducing a 10% error, for

example, in such a matrix, results in a perturbed covariance matrix with some of

its elements differing by several orders of magnitude from the original one. A safer

procedure would then be to perturb the log of its eigenvalues, but, since we have a

section dedicated to perturbations to the eigenvalues themselves, we deemed this

would be repetitive.

5.4.1 Modifying the elements

Once we generate new values for each independent element, following Eq. (5.30),

we check for positive definiteness. Since the resulting matrix is, more often than

not, non-PD, we correct this by identifying the smallest negative eigenvalue and

adding it to the diagonal [162]. We check that, although doing this largely increases

the values of the diagonal elements, less than 40% have a standard deviation of

more than twice the original perturbation.

The constraints for Ωm, S8 andAIA are shown in Figure 5.13, in purple, where the

blue rectangle spans over the constraints for the unchanged compressed covariance

matrix. The relative change in size for the 68% CL interval is mostly > 10%

for the cosmological parameters. On the other hand, for the intrinsic alignment

parameter A, the mean values are more than 1σ away from the original one and

the loss in constraining power goes up to ∼ 30%.
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5.4.2 Modifying the eigenvalues

Another way of introducing error to the covariance matrix is to perturb its eigen-

values. For a symmetric matrix, we have

C = QΛQ−1 , (5.32)

where Λ = λI, with λ being the eigenvalues and I the identity matrix; and Q

is a square matrix whose columns are composed of the eigenvectors of Cαβ. The

eigenvalues are then perturbed as described in Eq. (5.30), and the error, δ is drawn

from G(0, x
100

), with the requirement that |δ| < 1. We then have λnew > 0, and

thus the perturbed covariance matrix associated with these new eigenvalues is PD.

The results for this method are also plotted in Figure 5.13, in green. Despite

the results following the same tendency as those of the last section, we find that

about 80% of the elements of the perturbed covariance matrices are within 10%

of their original value.

5.5 Conclusion

In this work, we set out to explore different ways of compressing, comparing and

analysing covariance matrices, while giving particular emphasis to the MOPED

compression scheme. We started by looking at the parameter constraints of two

227 × 227 covariance matrices, the FCM and the GCM, generated for DESY1

cosmic shear measurements, and saw that, although some of their elements differed

by several orders of magnitude, they generated similar constraints. It was clear,

then, that not all elements contribute equally to the parameter constraints, and

we needed to employ increasingly complicated methods to try and locate the most

relevant parts of the covariance matrix.





Data compression and covariance matrix inspection: Cosmic shear Section 5.5

The first step was then to analyse the eigenvalues. We began with the hypothesis

that modes associated with the highest eigenvalues carry most information, as such,

those with the lowest eigenvalues would contribute less to parameter estimation.

Using this notion to compress the covariance matrix we “removed” the lowest 200

eigenvalues, by setting them to several orders of magnitude lower. While the loss in

constraining power for Ωm was only around 20%, we saw a loss of about 77% in the

size of the constraints for S8, and more than 100% for AIA. Next, we moved on to

the SNR, and, using a similar procedure adopted for the eigenvalues, we “removed”

the modes with the lowest SNR. The results were similar to those obtained with

the eigenvalue cuts and showed us that these modes did not contribute significantly

to constraining some cosmological parameters, like Ωm, however constraints on the

IA parameters, and even S8 were more affected. This is consistent with the fact

that the IA parameters are more sensitive to low SNR scales in cosmic shear, and

it shows us that we need to look at the SNR per parameter before making any

cuts, so that we do not lose important information for the parameters that we

want to constrain.

The next step was to shrink the covariance matrix by applying a tomographic

compression, where we decompose the shear angular power spectrum into KL

modes, then we look for modes with the highest SNR and compress the shear data

vector with these modes. We thus go from ten tomographic bin combinations to

only one or two. The resulting covariance matrix, for one mode, is then reduced

from 190× 190 to 19× 19 or 59× 59, showing a reduction of about 99% or 91%,

respectively. We show, however, that one mode is not sufficient for constraining

the parameters of our model, with the results being similar to our previous tests

involving SNR: the constraints for Ωm, for example, are reproduced with the first

and second KL-mode, but this is not the case for the IA parameters. Since essential

information of IA parameters is contained in low SNR KL-mode, the high KL-
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modes failed to break the degeneracy of AIA − S8 correlation, resulting in wider

S8 constraints.

Finally, we applied MOPED, which uses linear combinations of the data vector.

By transforming the data vector and covariance matrix with a weighting vector

that is parameter dependent, we were able to reduce the 227 × 227 matrix to a

16×16 matrix. We show that the cosmological analysis using this compressed ma-

trix reproduced similar constraints to the DESY1 analysis, for an uncompressed

covariance matrix. We also performed a comparison of the elements of the com-

pressed covariance matrix for the FCM and the GCM and found that the new

elements show reasonable agreement, with their correlation matrices being very

similar, and the diagonal elements showing a percentage difference of less than

15%.

Given these results, we successfully show that MOPED is the only compression

scheme, out of the ones considered in this work, capable of capturing all the rel-

evant information required to reproduce reliable parameter constraints for the 16

parameters of interest. It is worth noting here that compression does not auto-

matically speed up the computation for parameter inference if the projection to

form the MOPED coefficients is done at each sampled point. For speed gains, a

way to compute the theoretical MOPED coefficients rapidly needs to be used, for

e.g. by using Gaussian Processes to generate the compressed theory [158].

When looking at the one-to-one element comparison of the FCM and the GCM,

in Figure 5.10, the region of large variance suggests that there could be considerable

differences in the parameter constraints. We see, however, in Figures 5.1 and 5.2,

that this is not the case. This becomes clearer when comparing the elements of the

compressed covariance matrices, where, while they do follow the same tendency

as the full comparison, only a smaller portion of the elements display a greater

dispersion. In this sense, one of our most important results is in the ability of
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using MOPED to compare different matrices.

One last step was taken to analyse the error tolerance of the compressed FCM.

We adopted two ways of doing this, by introducing error taken from a Gaussian

distribution for 5 − 45% of the original 1) element and 2) eigenvalue of the com-

pressed covariance matrix. For the latter, we checked that only about 20% of

elements of the resulting, perturbed, covariance matrix showed errors within the

expected value, while the vast majority had only about a 10% error. In both cases,

however, the results were similar: for the cosmological parameters Ωm and S8, the

2σ constraints changed by about 7%, on average, while for the IA parameter AIA,

the constraints were up to 30% larger. Finally, we highlight the increasing shift,

in the mean values of AIA, to about 32% smaller than those obtained with the

uncompressed FCM; while for the cosmological parameters this was only about

5%, in general.
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Figure 5.10: In both plots, the red points refer to the diagonal elements, and the color

bar varies according to the number of elements in one hexagonal bin, where

the darkest blue color corresponds to only one element, and the brightest

yellow shade to 2000. Top: Scatter plot of the ratio of the elements of

the GCM and the FCM vs the FCM value. For illustrative purposes, we

draw a black, horizontal line at GCM/FCM = 1. Bottom: Density of the

scatter plot of the positive elements of the GCM and the FCM, with the

black line showing FCM = GCM.
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Figure 5.11: Results for the covariance matrices compressed following the procedure

described in §5.2.5, with the red points corresponding to the diagonal ele-
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and the FCM, over elements of the FCM. The black horizontal line is drawn

at GCM/FCM = 1. Bottom: One-to-one scatter of the elements of the

compressed matrices, with the black line describing FCM = GCM.
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CHAPTER 6

A fast and reliable method for the

comparison of covariance matrices

How are you holding up? Because I’m a

potato.

Portal 2

In this chapter I will detail the work I did in collaboration with Valerio Marra,

in [163].

6.1 Motivation

This is an exciting time for cosmology, as modern technological developments

enable us to build telescopes capable of exploring almost the entire observable

universe with unprecedented accuracy. As we brace ourselves for the large amount

of data that will be made available in upcoming surveys like J-PAS,1 LSST,2

1www.j-pas.org
2www.lsst.org
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Euclid3 and SKA,4 we must prepare novel ways to process and extract as much

information as possible from the data. This brings us to the issue of software

development and validation (see, e.g., [164, 165]).

In the previous chapter we have discussed the issue of comparing covariance

matrices, which, to this author’s knowledge, is a problem yet unresolved. The

most certain and forward way of comparing covariance matrices is in terms of their

ability to reproduce cosmology, that is, by performing a full Bayesian analysis. This

approach, however, can be very time consuming and computationally demanding.

We build upon the exciting results found in Chapter 5 to create a reliable

method of comparison by using the compressed covariance matrices obtained with

MOPED. Another aspect that will be discussed here is how to obtain the full co-

variance matrix from a compressed one. Since compressed covariance matrices are

potentially faster to obtain analytically, we propose an invertible transformation

capable of reproducing the full sized covariance matrix.

6.2 Compression Scheme

We use the compressed scheme described in §5.2.5. In this chapter, however, we

change the notation to,

Covariance matrix : C → C ,

Compression scheme : U → b .
(6.1)

6.2.1 Invertible Compression

We investigate an invertible “compression” scheme that, given a compressed co-

variance matrix, is capable of recreating a covariance matrix with the same length

3www.euclid-ec.org
4www.skatelescope.org
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as the desired data vector. We also require that the recreated and compressed

covariance matrices yield similar parameter constraints. For the transformation to

be invertible, we do not reduce the size of the covariance matrix, but rather the

number of relevant elements. We thus start with Eq. (5.25), and expand it to an

invertible, n× n transformation matrix,

B = (b U) , (6.2)

where U has dimension (n−N)×n, and b is the usual N×n compression scheme,

where n is the length of the data vector andN is the number of free parameters. We

want to find U such that the transformed covariance matrix, partitioned blockwise,

is

Ctrans = BtCB =

btCb 0

0 UCU t

 , (6.3)

which implies that

btCU = 0 . (6.4)

For the above to be true, the rows of U must be composed of vectors which form

the nullspace of btC. To simplify notation, we write

Ctrans =

C1 0

0 C3

 . (6.5)

At first glance, it seems that we have produced a matrix C3 with (n−N)×(n−N)/2

more relevant elements than the compressed one. As we will see in the next section,

however, this is not the case. In fact, C3 is completely irrelevant to parameter

constraints.
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6.2.2 Toy example

Let us take a toy example to further illustrate the invertible transformation and

how C3 influences C. Consider the Gaussian data described by:

{ti, xi}withi = 1, 2, 3 ,

C = σ2I3 ,

(6.6)

where I3 is the 3-d identity matrix, ti is the independent variable associated to xi,

and σ is the error associated to xi. Next, we propose the following model,

µ(t) = θ1 + θ2t , (6.7)

for which we can obtain the likelihood as

2L = (xi − µ(ti))C
−1
ij (xj − µ(tj)) ,

=
∑
i=1,2,3

(xi − µ(ti))
2

σ2
.

(6.8)

The next step is then to obtain an explicit expression for b, U , C1 and C3 as a

function of ti, xi, σ and θi. We start with

b =
1

σ2

1 1 1

t1 t2 t3

 (6.9)

and

U =
(
t2−t3
t1−t2

t3−t1
t1−t2 1

)
, (6.10)
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which we can use to find,

Ctrans =


3
σ2

t1+t2+t3
σ2 0

t1+t2+t3
σ2

t21+t22+t23
σ2 0

0 0 C3

 , (6.11)

where

C3 = 2σ2 t
2
1 + t22 + t23 − t2t3 − t1 (t2 + t3)

(t1 − t2)2 . (6.12)

Plugging our values in Eq. (5.20), we get,

F trans
ij =

1

σ2

 3 t1 + t2 + t3

t1 + t2 + t3 t21 + t22 + t23

 = C1 . (6.13)

Making C3 = C3, we can revert back the transformation to find C ′. If we substi-

tute C ′ in Eq. (5.20), we find that F ′ = F , which shows that the Fisher matrix of

the modified covariance matrix does not depend on C3.

6.2.3 Cosmic shear example

6.2.3.1 The DESY1 data

We use the cosmic shear measurements from DESY1 detailed in §5.2.1. The cos-

mological parameter inference is also performed with CosmoSIS, with the same

settings as the analyses of the previous chapter.

6.2.3.2 The KiDS-1000 data

The measurements for the Kilo-Degree Survey 1000 (KiDS-1000, [4]) contain 1006

deg2 of images, with the primary images taken in the r-band, but with the final
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set having photometry in ugriZY JHKs
5 [166], after being combined with infrared

data from the VISTA Kilo-degree INfrared Galaxy survey (VIKING, [167]). The

data is divided into five tomographic bins, based on their best-fitting photometric

redshifts and ranging from 0.1 < z < 1.2.

There are nine angular bins between 0.5 and 500 arcmin, resulting in a data

vector of length 270. The angular cuts are applied to ξ−(θ), removing scales with

θ < 4 arcmin [168], which leaves 135 data points for ξ+(θ) and 90 for ξ−(θ). The

final dataset has length 225, with a 225× 225 covariance matrix.

The analyses assume a flat ΛCDM model, with w = −1, and five free cosmo-

logical parameters, {S8,Ωch
2,Ωbh

2, h, ns}. There are two astrophysical nuisance

parameters: the baryon feedback parameter, Abary and AIA, where, for analyses

with this dataset, the latter does not carry a redshift dependence. The mean of the

five redshift distributions also varies and are correlated through their covariance

matrix. Finally, for ξ+(θ), we have,

δc = ±
√
c2

1 + c2
2 , (6.14)

to account for the uncertainty of the additive ellipticity bias terms, c1 and c2,

assuming that they are constants. Table 6.1 shows the free parameters along with

their priors.

For parameter constraints, we use the MultiNest sampler within CosmoSIS, with

the same settings described in the previous section, but with the KiDS Cosmology

Analysis Pipeline, KCAP [4]. We use a modified likelihood to account for the

transformed and compressed covariance matrices and data vectors.

5u: ultraviolet; g: green; r: red; i, Z, Y, J,H and Ks: different bands in the near-infrared.
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Table 6.1: List of the priors used in the analysis for parameter constraints using
the dataset described in §6.2.3.2.

Parameter Prior
Cosmological

S8 U(0.1, 1.3)
Ωch

2 U(0.051, 0.255)
Ωbh

2 U(0.019, 0.026)
h U(0.64, 0.82)
ns U(0.84, 1.1)

Astrophysical

AIA U(−6, 6)
Abary U(2.0, 3.13)

Systematic

δ1
z G(0, 1.0)
δ2
z G(−0.181, 1.0)
δ3
z G(−1.110, 1.0)
δ4
z G(−1.395, 1.0)
δ5
z G(1.265, 1.0)
δc G(0, 2.3× 10−4)

6.2.3.3 The covariance matrices

There are three distinct covariance matrices used in this work, which will be de-

scribed in this section. What we refer to as the DES Covariance Matrix (DCM),

throughout the text is the DESY1 cosmic shear covariance matrix of §5.2.1 (previ-

ously referred to as FCM). The second one, which we label the Gaussian Covari-

ance Matrix (GCM), is the same as described in §5.2.1.

Finally, the KiDS Covariance Matrix (KCM) is used here for testing our invert-

ible transformation as well as for some of the tests with C3. It is the same covari-

ance matrix employed in the KiDS-1000 survey analysis with cosmic shear [144,

145], and it has two additional terms, as compared to GCM. One of them is respon-

sible for the non-Gaussianity of the field, which generates higher-order correlations
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between different modes. The other term is related to the super-sample covariance,

which accounts for the correlations between modes in the survey and those that

are larger than the survey scale.

6.2.3.4 Perturbing C3

To assess the relevance of C3 for the parameter constraints, we perturb it in several

ways. We start by replacing C3 = 1, which is a dramatic change to the elements

of C3. Since the elements of C3, as found here, are of order . 1−10 (similarly to

the elements of the original and compressed covariance matrices), this increases its

diagonal elements by a large amount, while completely removing any information

the off-diagonal elements might potentially carry. Figure 6.1 shows the results for

this modification to the transformed KCM. We see that the constraints are, in

fact, consistent with the unmodified covariance matrix. This new configuration is

thus irrelevant for the parameter constraints.

Next, we follow the procedure outlined in §5.4 for the elements of the covariance

matrix, on the elements of the C3 block of DCM. We introduce errors of 5%, 10%

and 50%. As expected, the size of the 2σ constraints of Ωm and S8 are essentially

identical to those obtained with the unperturbed, transformed covariance matrix,

see Figure 6.2 (top panel).

We have so far demonstrated that the original parameter constraints are recov-

ered for the modified transformed covariance matrix. For completeness, we verify

the consequences to a “retransformed” covariance matrix. We start by perturbing

the elements of C3 in a similar fashion, as described above, choosing errors of

5%, 10% and 50%. Then, we apply B−1 to revert the transformation of basis, such

that the cosmological analyses are then performed with the original data vector.

The bottom panel of Figure 6.2 shows the contour plots for Ωm and S8, which also

confirm that C3 has no influence on the parameter constraints.
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Figure 6.1: KiDS-1000 parameter constraints for the original and transformed covari-

ance matrix for the cosmological parameters Ωm and S8. The darker curve,

in blue, is for the original covariance matrix and the lighter curve, in orange,

is for when the block C3 of KCM is replaced by the identity matrix.

Finally, in Figure 6.3 (left for DCM and right for KCM) we show the ratio be-

tween the elements of the perturbed covariance matrices and the original one for a

5% (top) and 50% perturbation (bottom), and highlight the diagonal elements in

red. A clear trend can be seen: the smallest elements display a greater disagree-

ment, and this decreases as their values increase. Since these large differences

between the elements have no impact in the parameter constraints, we conclude

that metrics to compare covariance matrices based solely on the elements them-

selves do not produce decisive results. As such, our best choice is to concentrate

on C1, as originally proposed.
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Figure 6.2: Top: DESY1 constraints on Ωm and S8 for the transformed covariance ma-

trix (green) and for a 5% (blue), 10% (pink) and 50% (orange) perturbation

applied to the C3 block of DCM. Bottom: DESY1 constraints for the orig-

inal covariance matrix (green) and for three covariance matrices produced

by applying the inverse transformation to those with 5% (blue), 10% (pink)

and 50% (orange) perturbation applied to the C3 block of the transformed

DCM.
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Figure 6.3: Scatter plots of the ratio of the elements of the perturbed covariance matrix

and those of the original one against the latter. The top panels show the

ratio for a 5% perturbation, the bottom ones for a 50% perturbation, the

ones on the left are relative to DESY1, and the ones on the right to KiDS-

1000. The red dots represent the ratio between the diagonal elements of the

two matrices.
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6.3 Comparing Covariance Matrices

Our results thus far have shown that all the relevant information for parameter

constraints is contained in C1. This is fortunate for comparing matrices because

we need to examine a significantly smaller number of elements (as opposed to

large covariance matrices). In this section we explain the method we developed

for obtaining a reliable metric of comparison that discards the need for a full

cosmological analysis and is consequently able to deliver results in a considerably

shorter amount of time.

Consider two covariance matrices that we want to compare: Cbase, and Ctest. We

use MOPED to obtain their compressed covariance matrices, or the C1 blocks. The

comparison is then divided into two parts: n–dimensional vector D containing

the diagonal elements, which are related to the variance of the data and; the

n(n − 1)/2–dimensional vector C composed of the independent elements of the

correlation matrix.

The python code developed to carry out this comparison can be accessed in

github.com/t-ferreira/Covariance comparison. Here, we detail its construction and

functionality. The steps are as follows:

1. create a mock sample {Dδ,i} by perturbing, with a given error percentage δ,

the vector Dbase (or Cbase);

2. produce the sample covariance matrix Sδ from the generated mocks:

Sδ =
1

m− 1

m∑
i=1

(
Dδ,i −Dδ

) (
Dδ,i −Dδ

)t
,

where m is the size of the mock sample;


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3. obtain the fiducial χ2–distribution using:

χ2
δ,i = (Dδ,i −Dbase)S

−1
δ (Dδ,i −Dbase)

t ;

4. calculate χ2
test = (Dtest −Dbase) S−1

δ (Dtest −Dbase)
t ;

5. find δDtest such that χ2
test is the maximum of the χ2–distribution above;

6. find σδ = (δ+ − δ−)/2, where δ+ is the value that makes χ2
test fall at the

right-hand border of the 68% probability interval of the χ2–distribution, and

similarly for δ−.

The value of δDtest ± σδ found by this method estimates the distance between the

two C1 matrices, Cbase and Ctest, as far as the uncertainties or correlations in the

parameters are concerned.

The perturbed Dδ,i is simply obtained by drawing ED from a multivariate Gaus-

sian distribution G[0n, δ
2In], such that,

Dδ,i = (1 + ED)Dbase . (6.15)

For the correlation matrix, on the other hand, we adopt a more complicated

approach to ensure that the perturbed values follow a smooth distribution. Simply

taking the same method used for the diagonal elements and imposing a hard cut

in the range [−1, 1], could result in biased results not cohesive with our chosen

δ. Instead, we work with the hyperbolic tangent function and correct it for the

Jacobian,

zi = tanh−1 (Cbase) ,

δzi = EC
[
cosh

(
zi +

1

2
EC
)]2

,

(6.16)





A fast and reliable method for the comparison of covariance matrices Section 6.3

where EC is drawn similarly to ED. Our perturbed vector then becomes,

Cδ,i = tanh (zi + δzi) . (6.17)

Figure 6.4 illustrates how smoothly the error on zi translates to Cδ,i.
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Figure 6.4: Illustration of how the error applied to δz relates to the final value of Cδ.
The blue curve is the function tanh−1 (Cbase)

For steps (v-vi), we use lmfit’s minimize function and define the default to

use Powell’s method. For the mocks, we take the sample size m to be 1000. This

returns a value of δtest in a few minutes, but, for robustness, we recommend setting

this to > 5000.
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Figure 6.5: χ2–distributions that are used to determine δtest for the diagonal elements

of the covariance matrix (left) and for the elements of the correlation matrix

(right). The method finds the δtest value such that χ2
test (red dashed line)

falls at the maximum of the distribution.

6.3.1 Cosmic shear covariance matrices

The next steps are then to apply our methodology to the covariance matrices we

wish to compare, Cbase = DCM and Ctest = GCM. We have shown the parameter

constraints for these two covariance matrices, given the same data vector, in Fig-

ure 5.1 for the cosmological parameters, and in Figure 5.2 for the systematic ones.

Recall that, in this chapter, we refer to the FCM as DCM. In terms of constraints

for individual parameters, the percentage differences for the cosmological parame-

ters are up to 1.2%, with the interval shifts for the 68% contour levels of 2.4%, with

larger differences for the nuisance parameters (of 6.2% and 24%, respectively).

Figure 6.5 shows the χ2–distributions used by our method: the values of δtest

are such that the χ2
test values fall at the maximum of the distributions. We find

that the diagonal elements of the C1 block of GCM differ by

δDtest = 2.6± 0.2% , (6.18)





A fast and reliable method for the comparison of covariance matrices Section 6.4

while the correlations differ by

δCtest = 7.8± 0.1% . (6.19)

While our results were not able to reproduce the exact differences in the parameter

constraints, they set an upper bound on the error for the interval shifts. The larger

disagreement between our values and the contour levels for the nuisance parameter

remains to be examined.

Finally, our algorithm took roughly 0.5 CPUh (2020 laptop) to generate the

desired output, while a full cosmological analysis takes roughly 100 times more.

6.4 Conclusion

The complexity and the considerable size of covariance matrices make them in-

creasingly difficult to analyse. Because of the vast range of values, with its own

elements often differing by several orders of magnitude, it is customary to identify

the largest elements and the diagonal ones. Should these be similar, then it is

likely that the parameter constraints are also compatible; we show here that this

is a perilous assumption. Using an invertible transformation, we showed that it

is possible to generate very distinct covariance matrices capable of generating the

same cosmology, given the same data vector.

On the other hand, we also see that MOPED is capable of reducing the size

of the covariance matrix while retaining the necessary information for parameter

constraints. We use the compressed matrix formalism to develop a fast and reliable

method for the comparison of covariance matrices that only considers the portion

of the covariance matrix that is relevant for the parameter constraints.

Using our method, we show that the DCM and the GCM, which produce com-

patible cosmological constraints, feature a difference of 7.8% for the elements of
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the correlation matrix and only 2.6% for the diagonal elements of the covariance

matrix, in qualitative agreement with the full cosmological analysis.

While our approximate method cannot replace a full Bayesian analysis, it may

be useful during the development and validation of codes that estimate covariance

matrices. Lastly, we find a remarkable gain in terms of runtime, with our method

taking roughly 100 times less CPUh than a full cosmological analysis.
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CHAPTER 7

Conclusion

Mischief managed.

Harry Potter and the Prisoner of Azkaban

In this thesis, we presented two topics of agitated discussion in the cosmology

community: alternatives to the standard model and how to tackle the dimension-

ality of covariance matrices in light of future Stage IV cosmological surveys. In

this final chapter, I summarize the main takeaways from the works presented here.

In the realm of dark energy models, in Chapter 3, we introduced models with

a phenomenological interaction in the dark sector, and compared their viability,

against the standard cosmological model, by performing a Bayesian model selec-

tion. We show in Figure 3.1 a joint analysis with JLA + BAO + CC + CMB data,

where we found disfavourable evidence for twelve, out of the fifteen, models with

a linear interaction, and for two, of the six, models with a non-linear interaction.

The remaining models were not discarded due to inconclusive evidence neither for

nor against them, given the interpretation with Jeffreys scale. As the analyses were

made with two sets of BAO measurements, as well as two different prior choices,

we attribute interesting conclusions to each. In regard to the BAO measurements,
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Figure 3.1 shows that the evidence against the interacting models is weaker for

BAO2 than BAO3. This is expected since BAO2 is claimed to be more model

independent [58]. On the other hand, when considering the prior scenarios 3.35

and 3.36, we see that the model-dependency of BAO3 appears to be partly related

to the estimation of rd as the sound horizon at the drag epoch.

We then moved on to analysing the covariance matrices of cosmic shear statistics,

with the intent of identifying the most relevant parts for parameter estimation.

Towards that goal, we used data from the Dark Energy Survey Year 1 [131] to

examine four compression schemes. The first method was to find the eigenvalues

of the covariance matrix, which involved setting the 200 lowest eigenvalues to

several orders of magnitude lower. The next analysis followed a similar procedure,

where the eigenvalues were replaced with the signal-to-noise ratio of the modes of

the covariance matrix. These two methods yielded similar results, showing good

constraining power (as compared to the original constraints) for Ωm, and less so

for S8 and AIA. These results were analogous to those obtained with the third

approach, which employed a tomographic compression. The compression with

one and two KL-modes produced a reduction of 99% or 91%, respectively, for a

190 × 190 covariance matrix. The resulting constraints are consistent with the

IA parameters being more sensitive to low SNR scales in cosmic shear, and we

see that the high KL-modes fail to break the degeneracy of AIA − S8 correlation,

resulting in larger S8 constraints. Finally, we showed that MOPED was not only

the compression scheme with the highest reduction, going from a 227×227 matrix

to a 16×16 matrix, but it was also capable of reproducing the parameter constraints

obtained with the full covariance matrix.

The covariance comparison was done in terms of the elements of the full covari-

ance matrix and in terms of the elements of their compressed ones. We showed

that the one-to-one comparison between the compressed FCM and the GCM, in
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Figure 5.11, are more consistent with the direct comparison of their parameter

constraints. In this sense, one of our most important results of the chapter is the

ability to use MOPED to compare different matrices. Finally, we tested the error

tolerance of the compressed the FCM by introducing error taken from a Gaussian

distribution for 5 − 45% of the original elements and of the eigenvalues of the

compressed covariance matrix. For both cases, the means and 2σ constraints for

AIA were more pronounced than for Ωm and S8.

Finally, we extended MOPED to a reversible transformation and generated mock

227 × 227 covariance matrices with the same compressed one (C1), and showed

that, although their elements greatly diverged, the parameter constraints were

largely similar. This motivated the construction of a python algorithm to com-

pare compressed covariance matrices in terms of their diagonal elements and the

independent elements of their correlation matrix. We then demonstrated its per-

formance by comparing the FCM and the GCM, yielding results about 100 times

faster, that were in close agreement with a comparison of their parameter con-

straints.
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