
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

JOSIAS ALEXANDRE OLIVEIRA

Long-Term Map Maintenance in Complex Environments

Vitória,ES

Jun 6, 2021

Josias Alexandre Oliveira

Long-Term Map Maintenance in Complex Environments

Dissertação apresentada ao Programa de Pós-
Graduação em Informática da Universidade
Federal do Espírito Santo como requisito par-
cial para obtenção do título de Mestre em
Informática.

Supervisor: Claudine Badue
Co-supervisor: Alberto Ferreira De Souza

Vitória,ES
Jun 6, 2021

Acknowledgements

Agradeço a minha orientadora Profa. Doutora Claudine Badue, ao meu co-orientador
Prof. Alberto Ferreira De Souza, à CAPES e a todos do LCAD.

Resumo
Os veículos autônomos devem observar as mudanças no ambiente externo e refletir tais
mudanças em representações internas (por exemplo, mapas) afim de garantir um compor-
tamento adequado e segurança. Como as mudanças nos ambientes externos são inevitáveis,
é desejável um sistema de mapeamento para os robôs móveis que dependam de mapas e
que objetivam operação autônoma de longo prazo. Neste trabalho, propomos um novo
sistema de mapeamento em larga escala para o Intelligent Autonomous Robotic Automo-
bile (IARA). O novo sistema de mapeamento é baseado no algoritmo GraphSLAM, com
extensões para lidar com a calibração da odometria diretamente na otimização do grafo
e a mesclagem e manutenção de mapas a longo prazo. O sistema de mapeamento pode
usar dados de sensor de um ou vários robôs para construir e mesclar mapas de grade de
ocupação. O desempenho do sistema é avaliado em uma série de experimentos realizados
com dados capturados em cenários complexos do mundo real. Os resultados indicam que o
novo sistema de mapeamento pode fornecer mapas de grade de ocupação para navegação
e localização de veículos autônomos.

Palavras-chave: Mapeamento, SLAM, veículos autônomos

Abstract
Autonomous vehicles should capture the external environment changes into internal
representations (for example, maps) for proper behavior and safety. As changes in external
environments are inevitable, a lifelong mapping system is desirable for autonomous robots
that rely on maps and aim at long-term operation. In this work, we propose a new large-
scale mapping system for the Intelligent Autonomous Robotic Automobile (IARA) or any
other autonomous vehicle. The new mapping system is based on the GraphSLAM algorithm,
with extensions to deal with the calibration of odometry directly in the optimization of
the graph and to address map merging for long-term map maintenance. The mapping
system can use sensor data from one or more robots to build and merge different types of
occupancy grid maps. The system’s performance was evaluated in a series of experiments
carried out with data captured in complex real-world scenarios. The experimental results
indicate that the new large-scale mapping system can provide high-quality occupancy grid
maps for later navigation and localization of autonomous vehicles.

Keywords: Mapping, SLAM, Autonomous Vehicles

List of Figures

Figure 1 – Map merging. 10
Figure 2 – IARA . 11
Figure 3 – Pose Graph. 18
Figure 4 – Graph formation. 21
Figure 5 – Information matrix. 28
Figure 6 – The occupancy grid map. 29
Figure 7 – Mapping. 30
Figure 8 – System overview. 32
Figure 9 – GPS noise: the speed filtering. 32
Figure 10 – GPS lateral displacement error. 33
Figure 11 – Basic graph. 38
Figure 12 – The hypergraph. 38
Figure 13 – Point Cloud Registration . 39
Figure 14 – Sub-map technique. 43
Figure 15 – Obstacle evidence. 46
Figure 16 – UFES main campus beltway. 49
Figure 17 – Parking lot 1 (in yellow). 49
Figure 18 – Parking lot 2 (in blue). 49
Figure 19 – Parking lot 3 (in cyan). 50
Figure 20 – Route from UFES to Guarapari. 50
Figure 21 – Odometry calibration. 55
Figure 22 – AV poses optimization. 56
Figure 23 – Occupancy Grid Map - UB1 . 56
Figure 24 – Occupancy Grid Map - UB2 . 57
Figure 25 – Occupancy Grid Map - PL1 . 57
Figure 26 – Occupancy Grid Map - PL2 . 57
Figure 27 – Occupancy Grid Map - PL3 . 58
Figure 28 – Occupancy Grid Map - TRVL . 58
Figure 29 – Loop closure - Ablation experiments. 59
Figure 30 – Final Map. 60
Figure 31 – Comparing the log-odds update functions. 61

List of Tables

Table 1 – Main parameters of the proposed mapping system used in our experiments. 51
Table 2 – Odometry bias calibration using PSO and hypergraph optimization . . . 54
Table 3 – Mean absolute error between GPS and AV poses. 54

Contents

1 INTRODUCTION . 9
1.1 Motivation . 11
1.2 Objectives . 12
1.3 Contributions . 12
1.4 Organization . 12

2 RELATED WORK . 13
2.1 Multi-Robot Single-Session . 13
2.2 Single-Robot Multi-Session . 15

3 THEORETICAL BACKGROUND 17
3.1 The Simultaneous Localization and Mapping Problem 17
3.2 The GraphSLAM Algorithm . 17
3.2.1 GraphSLAM Overview . 18
3.2.2 Mathematical Derivation of GraphSLAM 20
3.3 Occupancy Grid Mapping . 29

4 LARGE-SCALE MAPPING SYSTEM 31
4.1 System Overview . 31
4.2 Pre-processing . 31
4.3 Hypergraph Building . 34
4.3.1 Odometry Edges . 34
4.3.2 GPS Edges . 35
4.3.3 Loop Closure Edges . 35
4.3.4 Odometry Calibration Edges . 36
4.3.5 Lidar Odometry Edges . 38
4.3.5.1 Simplified Semantic Segmentation . 40
4.4 Hypergraph Optimization . 42
4.5 Large-scale Environment Mapping . 43
4.6 Obstacle Detection . 45
4.7 Large-scale Map Merging . 47

5 EXPERIMENTAL METHODOLOGY 48
5.1 IARA . 48
5.2 Sensor Data Logs . 48
5.2.1 Parameters . 51

5.3 Metrics . 51
5.4 Experiments . 52
5.4.1 Odometry Bias Calibration . 52
5.4.2 Map Building . 52
5.4.3 Map Merging . 52

6 RESULTS AND DISCUSSIONS . 53
6.1 Odometry Bias Calibration . 53
6.2 Large-Scale Environmental Mapping 53
6.3 Map Merging . 55

7 CONCLUSIONS . 62

BIBLIOGRAPHY . 63

9

1 Introduction

Localization-based Autonomous Vehicles (AVs) typically use maps of the environ-
ment to localize themselves and to safely navigate in it. In this context, maps are internal
models that robots can use to represent the external world. Robots can use maps to
recover spatial models of the environment from their sensors. AVs can localize themselves
in relation to the map using their sensor measurements (localization problem). When
there is no map, they can create a new one also using their sensors. Vehicle poses can be
known when creating the map (mapping problem) or can be estimated as the map is built
(simultaneous localization and mapping - SLAM - problem [1]).

One of the requirements imposed on AVs is the ability to operate for a long period
of time without human intervention. Therefore, AVs must display a life-long mapping
feature that updates their internal maps whenever the environment changes. The changes
in the environment can be related to slightly dynamic objects (for example, parked vehicles
and traffic cones) and highly dynamic objects (for example, pedestrians and other vehicles).
In addition, the environment may undergo even slower modifications to the infrastructure
(for example, changes on the road and new buildings). Hence, AVs should also be able to
provide high quality maps with clear distinction between static and moving objects, highly
or slightly dynamic, or even maps containing only static objects, as in the case of maps
for later navigation and localization.

Maps can also change due to different viewpoints and occlusions. For example, a
change in the pose of a sensor can modify the way the AV perceives the environment. These
issues, altogether, pose the life-long mapping problem, which usually requires merging the
current map already built with the new ones from another surveying mission with a single
robot or multiple robots at the same time. Since merging maps is a difficult task, it is
often called a map merging problem, which consists of combining two or more individual
maps without a common frame of reference into a larger global map.

One of the main challenges in the map merging problem is illustrated in Fig. 1,
where red and green pixels represent obstacles reached by a LiDAR sensor and projected
in the ground. Red pixels represent obstacles in a map while green pixels represent
obstacles in another. Considering the final map after improper merging, there is prominent
misalignment between the two individual maps.

We have developed an AV, named Intelligent Autonomous Robotic Automobile
(IARA, Fig. 2), whose autonomy system follows the typical architecture of self-driving
cars [2]. IARA is based on a Ford Escape Hybrid adapted with a variety of sensors and
processing units. Its autonomy system is composed of many subsystems, which includes

Chapter 1. Introduction 10

Figure 1 – Map merging.
Example of erroneous map merging. The lack of loop closure between the sessions results

in misalignment between the two individual maps.

a Mapper [3], a Localizer [4], a Moving Obstacle Tracker [5], a Traffic Signalization
Detector [6,7], a Route Planner, a Path Planner, a Behavior Selector, a Motion Planner [8],
an Obstacle Avoider [9] and a Controller [10], among others.

The previous mapping system of IARA was not capable of merging maps from
multiple sessions without some manual work. In some cases, the proper merging was not
even possible, specially in the presence of GPS signal degradation. In this work, we propose
a new mapping system based on the GraphSLAM algorithm for solving the map merging
problem in extremely large outdoor environments for IARA or any other autonomous
vehicle. The proposed mapping system aims to provide high quality occupancy grid maps
for autonomous driving. It is also able to calibrate the vehicle odometry using a new
method applied in the graph optimization. The system receives as input one or more log
files containing the data from various sensors collected by surveying missions (or sessions)
from a single or multiple vehicles, and it outputs the AVs’ poses in a global coordinate
frame, the parameters of the odometry calibration for each vehicle and different types of
grid maps.

We evaluated the performance of the proposed mapping system on logs containing
high and slight dynamics in real-world scenarios. The logs were collected using IARA over

Chapter 1. Introduction 11

Figure 2 – IARA
The Intelligent Autonomous Robotic Automobile (IARA).

a period of two years. The new calibration method was compared against another approach
based on Particle Swarm Optimization (PSO) that is available in IARA’s autonomy system.
The results indicate that the new method provides better calibration values in all logs. The
new mapping features were also analyzed through mapping and map merging experiments.
The results show that the proposed system is able to correctly estimate the AV poses in a
global reference frame, and to correctly merge local maps without drifts and misalignment
for all logs.

1.1 Motivation
This work is connected to a research project of the Laboratório de Computação de

Alto Desempenho (High Performance Computing Laboratory - LCAD) of the Departamento
de Informática (Department of Informatics - DI) at the Universidade Federal do Espírito
Santo (Federal University of Espírito Santo - UFES). The project started due to need
of improvements in the previous mapping system used by IARA. The previous system
presented some limitations that should be addressed in this work. The previous system
was not able to handle some scenarios and it lacked the map merging capabilities that we
present in this project.

Alongside the internal motivation, the authors also considered to publicize a long-
term map maintenance pipeline for AVs. In our case, the main output of the system is an

Chapter 1. Introduction 12

occupancy grid map with significant resolution for later navigation and localization. Most
similar works are related to internal environments, drones and other kind of robots.

1.2 Objectives
The main objective of this project is to improve the previous IARA’s mapping

system. The new system should be able to perform long-term map maintenance and to
handle more complex and even larger scenarios. This project should also contribute to
other research projects that depends on the resulting mapping system.

1.3 Contributions
The main contribution of this work is a new mapping system that is capable

of building and merging occupancy grid maps with high quality for later navigation
and localization. When compared to the previous mapping system, one can observe the
following improvements: no need to synchronize the sensors, map merging capabilities,
additional LiDAR odometry edges are present in the hypergraph, a new method for
odometry calibration that showed better results and a pre-processing step to remove errors
and undesired measurements

Other minor contribution is a custom LiDAR odometry (LO) method that executes
a simplified semantic segmentation. The new LO method accumulates the previous point
clouds to enhance the point cloud registration and it employs a 3D grid filter to reduce
the size of the accumulated cloud to avoid memory issues.

1.4 Organization
The remaining are organized as follows. In Chapter 2, we present related work.

In Chapter 3, we present the theory behind the simultaneous localization and mapping
problem, the GraphSLAM algorithm and the occupancy grid maps. In Chapter 4, we detail
the proposed mapping system. In Chapter 5, we describe the experimental methodology
and, in Section 6, we discuss experimental results. Finally, in Chapter 7, we close with our
conclusions and directions for future work.

13

2 Related Work

Progress on the SLAM problem can be measured in terms of a wide variety of
algorithms, techniques and theoretical frameworks that have been developed in last decades
and still remain unresolved questions, such as robustness and outlier rejection for long-term
operations [1].

The map merging problem addresses theses open issues in different context appli-
cation, either with multiple robots running synchronously in collaborative single surveying
mission or with only one robot gathering sensory data during multiple surveying mis-
sions. While the first is focused in collaborative strategies to accomplish efficient mapping
missions, the latter is oriented to long-term mapping and merging strategies in order to
accommodate infrastructural changes along time. Both are facets of the same problem but
the long-life merging approach can be seen as a more general approach and could also be
applied for multi-robot mapping under some assumptions. Both share the same main goal
which is to produce a final aggregated map alongside the robot trajectories for all running
robots and surveying sessions.

Although some may consider single-robot SLAM in 2D environments as a largely
solved problem, research on multi-robot SLAM methods in 3D outdoor mapping is still
ongoing, as surveyed by Saeedi et al. [11] four years ago and also more recently, as shown in
Section 2.1. SLAM systems are of paramount importance for self-driving cars. As surveyed
by Bresson et al. [12], autonomous driving requires that SLAM solutions handle many
miles of sensory data without drifting so as the car can navigate in dynamic environments
and different weather conditions. The authors also listed some criteria that should be
attended by any SLAM system in the context of autonomous driving. Among these, the
system’s availability criterion does not apply to our work since our system, as a full SLAM
method, is run offline in order to create accurate maps for navigation and localization
purposes. All other criteria are covered in some extent in our work. In Section 2.2, a more
detailed comparisson of our method with the state-of-the-art is presented for single-robot
multi-session.

2.1 Multi-Robot Single-Session
The common approach in multi-robot scenarios is to fetch all maps using map-

matching to find the relative map transformations and make the merge. Given the computed
transformations, display the final map and the trajectory of each robot in that map. Some
assumptions are required for this to work, such as knowing the initial positions of robots
and a static environment.

Chapter 2. Related Work 14

A system for real-time multi-robot collaborative SLAM is presented in Deutsch
et al. [13]. The distributed robots use their own SLAM system to build local maps, but
they also share information (features from images) with a central system, which builds a
global pose graph including information from all robots. After the graph optimization is
finished, the central system sends the results to all robots, so they keep a consistent local
position and map estimates. In contrast, our mapping solution is designed for a posteriori
autonomous navigation within maps that are larger than usually found for indoor robots.
Ours can handle any map size as it depends only in the available storage.

Differently, Sun et al. [14] convert the map merging into an image registration
problem. When two already built grid maps contains overlapping areas, their approach
tries to find the best transformation which aligns the maps. In the first step, the algorithm
extract features from both maps using the Harris corner detector and it uses the selected
features to calculate a initial transformation matrix. In the second step, it applies an
iterative algorithm to refine the transformation matrix in order to improve the map
merging. In contrast, our method finds the common reference frame through the graph
optimization by making usage of GPS and LiDARs sensors, hence the proper alignments
are achieved before the map construction.

A system for collaborative Visual-SLAM is presented in [15]. In their system, each
robot uses the Extended Kalman Filter (EKF) algorithm for real-time SLAM using cameras
and IMU sensors. In parallel, each robot also runs a graph SLAM for global localization
improvements. The robots build and share their own local 3D submaps with any team
mate in the vicinity. The submaps are merged through an Iterative Closest Point (ICP)
using proper 3D feature descriptors. Their system is able to run on low-end processing
boards and is meant for robots operating in smaller-size environments when compared
to our work. Another difference is the employment of the map matching in the already
built 3D map. Our method finds the correct global reference frame before the 2D maps
are built as described before.

Similar to [15], the method described in Lazaro et al. [16] relies on sharing data
between the robots in the same environment. The authors propose an efficient commu-
nication method between the robots in order to share minimal data. The robots share
a condensed version of their own graphs to allow for the merging of maps coming from
different robots. In the current iteration, our method is meant for a posteriori navigation
in high definition maps so we can make usage of all available information in multiple
sessions.

Kim et al. [17] provided an extension to the Incremental Smoothing And Mapping
(iSAM) algorithm in order to allow multiple-robot mapping. As in our current work, each
robot or session generates a separated pose graph, but their proposal maintains the pose
graphs in their own local coordinate frame. The relative pose graphs are optimized together

Chapter 2. Related Work 15

using a special anchor node which connects pairs of pose graphs. These special anchor
nodes contains the actual transformations of each pose in the related pose graph into a
global coordinate frame. The anchor nodes are created when the robots face each other or
when two robots perceive the same feature in the environment. The authors evaluate their
system with small wheeled robots and drones in an indoor environment.

The work in Mangelson et al. [18] uses the same concept of anchor nodes as in [17].
Their system shows the same multi-robot SLAM capabilities and the authors provide a new
algorithm for robust selection of loop closures between pairs of robots. The authors defined
a metric to determine the largest subset of measurements that are pairwise consistent.
The consistency between pairs of measurements rejects potential outliers and outperforms
equivalent selection methods like Dynamic Covariance Scaling (DCS) [19], Single-Cluster
Spectral Graph Partitioning (SCGP) [20] and RANSAC. After finding the largest set, the
selected inter-map loop closures are inserted in the graph and the full map is generated.

2.2 Single-Robot Multi-Session
A SLAM system using Normal Distribution Transform (NDT) maps is presented

in Einhorn and Gross [21]. The NDT maps are independent from the sensor types and
also allows the system to deal with different dimensions in the generated submaps. The
authors propose a modification in the NDT mapping to handle free-space measurements
which makes them better suited for SLAM. The map merging is achieved by the alignment
of the NDT maps through proper registration techniques which are closely related to
ICP. The registration algorithm defines a minimization problem which can be solved by
Levenberg-Marquardt (LM) and PSO methods in different levels of the NDT maps.

Bonanni et al. [22] present a SLAM method that considers the map as a graph of
point clouds. In order to merge two maps, the method visits each node in the first graph
and tries to find the best candidate in the second graph. The Normal Iterative Closest
Point (NICP) [23] is used to find the registration between the point clouds. The method
is similar to our solution as the point clouds are used to provide the correct relationship
between the sessions. We use the GPS sensor and a nearest neighbor algorithm to find the
best candidates in the second graph.

In Lazaro et al. [24], the authors propose a SLAM system focused on the man-
agement of long-term situations. The system is capable of handling both highly dynamic
environments and map updates between the sessions. The local maps are represented
by nodes in an sparse graph and the spatial relations between adjacent local maps are
embedded in the edges of the graph. They use the NICP algorithm to align newer point
clouds into the local maps. As the process evolves and more resources are required, some
submaps are combined in a new node and the outdated nodes containing the previous

Chapter 2. Related Work 16

maps are removed. Although the system was evaluated in datasets containing long periods
of operation (10 hours), these datasets contain only small indoor environments.

Tanaka [25] proposes a map matching approach with main novelties. Firstly, a
retrieval stage uses a visual place recognition (VPR) algorithm to find the loop closures
between the sessions. The VPR uses discriminative deep convolutional network (DNCC)
features from a specific layer of the neural network. The retrieval stage also estimates
a good initial set of map alignment hypotheses. After the initial hypotheses, a second
re-ranking stage jointly deforms the maps in order to minimize the differences in shape
between them.

Jiang et al. [26] propose a fast map matching method using scan-to-map techniques
to improve the odometry. The robot executes a local 2D SLAM using laser scans. Each
input scan is matched against a local map using Correlative Scan Matching (CSM) and
Point-to-Line Iterative Closest Point (PL-ICP). To merge the submaps their system treats
the submaps as images and then uses Shi-Tommasi corner points to build the so-called
triangle features. After collecting a set of triangle features, the system poses the problem
of finding the rigid body transform between the submaps as a least-squares estimation.

The work of Ding et al. [27] is meant for large scale outdoor environments, as ours,
and use 3D LiDAR for loop closure whilst we use GPS. Their system is capable of building
maps using multi-session data as ours. Their system splits the map into submaps and
makes usage of an efficient method for loop closure using feature vectors and a loop closure
database using the kd-tree algorithm. Their method also takes care of loop closure outliers
and actively detects changes in the environment (high and low dynamics).

17

3 Theoretical Background

This chapter presents the main concepts and algorithms related to this project.

3.1 The Simultaneous Localization and Mapping Problem
The simultaneous localization and mapping problem consists of building or merging

a map m of an unknown environment while performing the robot’s localization in order to
estimate the poses x1:t that describe the robot’s path. To accomplish this task, the robot
has only the measurements z1:t and the commands u1:t. Using a probabilistic approach, one
can solve the SLAM on two main forms. The problem can be considered as the posterior
over the current pose along with the map:

p(xt,m|z1:t, u1:t) (3.1)

where xt is the pose at time t.

The first form is known as the online SLAM problem. The goal of the online
SLAM is to obtain the current robot location, therefore, the past locations are ignored or
discarded. Since this approach discards the previous poses, it does not take advantage of
loop closures to estimate the current pose. A loop closure occurs when the robot visits the
same place multiple times.

The second form is known and the full SLAM, meaning that the entire path should
be estimated in the posterior:

p(x1:t,m|z1:t, u1:t) (3.2)

where x1:t is the entire path.

This second method is able to revisit previous poses and handle loop closures but
calculating the posterior 3.2 is usually hard, so the practical SLAM algorithms rely on
approximations [28]. The GraphSLAM algorithm is one of the possible solutions for the
SLAM problem and it is the base of our project.

3.2 The GraphSLAM Algorithm
The GraphSLAM algorithm solves the full SLAM problem in an offline method.

The SLAM problem is reduced to a maximum likelihood estimation where the robot poses
and the map are the main variables to be estimated. The algorithm uses a graph-based

Chapter 3. Theoretical Background 18

Figure 3 – Pose Graph.
Graph containing nodes to represent the robot’s poses and features.

approach, where the robot poses that were sampled along a given trajectory and the
features extracted from the environment are represented as nodes. The edges in the graph
are built from the control, and also by connecting the poses of the features present in
the environment to the poses of the robot at the exact moment when that feature was
captured by a given sensor.

3.2.1 GraphSLAM Overview

Let x = x1:t = [x1, x2, x3, · · · , xt]T be the robot’s pose along it’s trajectory, where
xt ∈ x is the robot’s pose at time t. Let zs = zs1:t = [zs1, zs2, zs3, · · · , zst] be the set of
measurements from a given sensor s, where zst is the measurement at time t from the
sensor s. Let u = u1:t = [u1, u2, u3, · · · , ut] be the set of commands applied to the robot,
where ut ∈ u is the command applied at time t. Let cs = cs1:t = [cs1, cs2, cs3, · · · , cst ,] be the
set of all correspondences between the measurements zs and the features present in the
map m, and j = cst is the correspondence that links zst and a feature mj on the map m.

For each measurement zt, the algorithm creates a new node Ni in the graph to
represent the robot’s pose xt at time t. In the same way, for each feature mj related to
one or more measurements, a new node is created to represent the pose of mj on the
map. Each command ut aims to lead the vehicle from xt−1 to xt, in this way, ut imposes
a constraint between these two subsequent poses. Finally, each measurement zt that are
related to a given feature mj also generates a constraint between xt and mj , consequently,
a new edge is added to connect the nodes related to xt and mj.

Fig. 3 shows the typical graph used by the GraphSLAM algorithm. x0:4 are the
robot’s poses and m1:4 are features extracted from the environment. The edges that connect
the robot’s poses are created from the commands u1:3. The dashed edges are links between
the poses and the features. Section 4 explains how to build an extended version of this
graph.

The GraphSLAM algorithm aims to find the best values for all nodes in such a way
that it minimizes the sum of all constraints imposed by the edges. These constraints are

Chapter 3. Theoretical Background 19

modeled as non-linear quadratic functions, therefore the minimization problem is solved
as a non-linear least squares. However, the algorithm uses some procedures to reduce the
complexity of the problem and solve it more efficiently.

Considering only the movement of the robot, a command ut imposes a relative
displacement between the poses xt−1 and xt. This information can be used to define the
following error function:

eot (x,u) = xt −K(ut, xt−1) (3.3)

Where K(·) is a kinematic function used as the robot’s motion model. This function
receives the previous pose xt−1 and the command ut as inputs and then it outputs a new
estimated pose x′t. This error function is used to compose the sum of all related edges:

Jo (x,u) =
n∑
i

(eoi (x,u))ᵀΩ̂o
i (eoi (x,u)) (3.4)

where Ω̂o
i is the odometry information matrix at node Ni projected through the non-linear

function K(.) via the unscented transformation [29].

The algorithm requires one node with a fixed pose. Usually, the first pose is defined
as x0 = (0, 0, 0)T and the information matrix is defined as the following diagonal matrix:

Ω̂o
0 =

∞ 0 0
0 ∞ 0
0 0 ∞

 (3.5)

The high values in the diagonal instruct the algorithm to not change the first node. Even
small changes in the first node will increase the error 3.3.

The sensor measurements also create constraints between the nodes in the graph.
Considering a sensor s and it’s measurement zst at time t, and the the robot’s pose xt, and
the correspondence j = cst and a map m, one can compare zst against the output of the
inverse sensor model hs(xt,mj). This function estimates a measurement from the sensor
s given xt, the map m and the correspondence cst . The measurement error is defined as
the difference between the actual measurement zst and the result from the inverse sensor
model:

est(x, z,m, c) = zst − hs(xt,m, cst) (3.6)

The error above can be defined for all sensors and all related constraints can be

Chapter 3. Theoretical Background 20

joined in the following term:

JS (x, z,m, c) =
∑
s∈S

∑
t

(est(x, z,m, c))ᵀΩs
t(est(x, z,m, c)) (3.7)

Where Ω̂s
t is the information matrix of the measurement noise from sensor s and S is the

set of all sensors.

Fig. 4 shows how the graph (at left) and the information matrix (at right) are
updated given new measurements and movements. Fig 4(a) shows the initial context,
where the robot is at the first pose x1 and it detects a feature m1. A new node containing
m1 is added to graph and the node is connected to the first node. The information matrix
is updated to include the covariance between x1 and m1. Fig 4(b) shows the movement
from x1 to x2. A new node is created in the graph and an new edge is created to connect x1

and x2. The information matrix contains now the covariance between x1 and x2. Fig. 4(c)
shows the final result after several steps. One may notice that there are no links or edges
between features

The global error function is defined as:

JGraphSLAM = xT0 Ωo
0x0

+
∑
t

(xt −K(ut, xt−1))T Ωo
t (xt −K(ut, xt−1)

+
∑
j

∑
s∈S

∑
t

(zst − hs(xt,mj))TΩs
t(zst − hs(xt,mj))

= xT0 Ωo
0x0

+
∑
t

(eot (x,u))ᵀΩo
t (eot (x,u))

+
∑
s∈S

∑
t

(est(x, z,m, c))ᵀΩs
t(est(x, z,m, c))

= xT0 Ωo
0x0 + Jo(x,u) + JS(x, z,m, c) (3.8)

The robot’s poses and the map are found by minimizing this global error function.

3.2.2 Mathematical Derivation of GraphSLAM

This section presents the mathematical derivation of the GraphSLAM algorithm
while using the notation adopted in this work. One can group the initial pose x0 = (0, 0, 0)T ,
the unknown poses x1:t, and the map m to compose the state vector y0:t:

y0:t =
(
x0 x1 · · · xt m

)T
and yt =

(
xt

m

)
(3.9)

Chapter 3. Theoretical Background 21

(a)

(b)

(c)

Figure 4 – Graph formation.
Graph formation. (a) A feature is observed by the robot. A new node and an edge are

added to the graph. (b) A node and an odometry edge are added to graph when the robot
moves from x1 to x2. (c) The graph and information matrix updates after several

measurements.

The algorithm assumes that the sensors noise and the errors in the robot’s movement
have a Gaussian distribution. Therefore, all properties of the Gaussian distribution can
be used to facilitate the mathematical derivation and to solve the problem. For example,
consider K(ut, xt−1) as the deterministic function that receives the command ut and the

Chapter 3. Theoretical Background 22

previous pose xt−1, and then estimates a new pose x′t. Let Rt be the covariance matrix of
the error in the robot’s movements. The related Gaussian distribution is defined as:

N (K(ut, xt), Rt) (3.10)

Similarly, considering hs(yt, cst) as a function that receives the pose xt and the
map m (both inside yt), and the correspondence j = cst as input and then it outputs the
expected measurement from the sensor s. Let Qt be the covariance matrix of the error in
the measurements of the sensor s. The related Gaussian distribution is defined as:

N (hs(yt, cst), Qt) (3.11)

The posterior probability of the full SLAM problem can be defined as:

p(y0:t|z1:t, u1:t, c1:t) (3.12)

The equation (3.12) can be read as the joint probability of all poses x0:t and the
map m given the the sensor measurements z1:t, the commands u1:t and the correspondences
c1:t. This equation can be manipulated through the Bayes rule to separate the probability
of the last measurement zt:

p(y0:t|z1:t, u1:t, c1:t) =

η p(zt|y0:t, z1:t−1, u1:t, c1:t) p(y0:t|z1:t−1, u1:t, c1:t) (3.13)

Where η is the usual constant found in the Gaussian distributions. One may notice that
each probability on the right side of (3.13) have conditional variables that do not interfere
in the resulting probabilities. The first probability does not depend on the commands u1:t

or the previous measurements z1:t−1. Instead, the probability depends on the last pose and
the map (both inside yt) and on the current correspondence ct. Consequently, the term
can be written as:

p(zt|y0:t, z1:t−1, u1:t, c1:t) = p(zt|yt, ct) (3.14)

The later probability on the right side of the equation (3.12) can factored by
separating the last pose from the previous ones:

Chapter 3. Theoretical Background 23

p(y0:t|z1:t−1, u1:t, c1:t)

= p(xt|y0:t−1, z1:t−1, u1:t, c1:t)p(y0:t−1|z1:t−1, u1:t, c1:t)

= p(xt|xn−1, ut)p(y0:t−1|z1:t−1, u1:t−1, c1:t−1) (3.15)

Applying (3.14) and (3.15) into (3.12), one can obtain the recursive definition of
the full SLAM problem:

p(y0:t|z1:t, u1:t, c1:t) =

η p(zt|yt, ct) p(xt|xn−1, ut) p(y0:t−1|z1:t−1, u1:t−1, c1:t−1) (3.16)

The recursion above can be seen as a recurrence relation and it can be solved by
known methods, such as generating functions. The solution of this recurrence relation
leads to the formula:

p(y0:t|z1:t, u1:t, c1:t) =

η p(x0)
∏
s∈S

(∏
t=1:n

p(zst |yt, cst)
)

(3.17)

Since the formula above contains multiplication of probabilities, the result tends
quickly to zero or one due to the limited precision. Hence, the full SLAM problem is
reduced to a dual optimization after applying the log function on both sides. The log
function transforms the multiplication on (3.17) into summation.

log p(y0:t|z1:t, u1:t, c1:t)

= const.+ log p(x0)

+
∑
t

[
log p(xt|xt−1, ut) +

∑
s∈S

log p(zst |yt, cst))
]

(3.18)

The initial pose x0 is fixed at x0 = (0, 0, 0)T , hence the probability p(x0) on (3.18)
can be defined by a Gaussian distribution:

p(x0) = η e−
1
2 ((x0)TR−1

0 x0 (3.19)

Where R0 is usually the covariance matrix of the error in the robot’s movements. As
indicated in (3.5), the final information matrix (inverse of the covariance matrix) is
conveniently set to a diagonal matrix with high values in its diagonal.

Chapter 3. Theoretical Background 24

The term p(xt|xt−1, ut) on (3.18) is the probability of the pose xt given the previous
pose xt−1 and the command ut applied to the robot. Assuming that this translation has a
Gaussian error, one can use (3.10) to build the following definition:

p(xt|xt−1, ut) = η e−
1
2((xt−K(ut,xt−1))TR−1

t (xt−K(ut,xt−1)))

= η e−
1
2((eo

t (x,u))TR−1
t (eo

t (x,u))) (3.20)

The term p(zst |yt, cst) on (3.18) is the probability of the measurement zst at time
t given the pose xt, the map m and the correspondence j = cst . Assuming the Gaussian
distribution to model the errors in the measurements, then the probability can be defined
in the form:

p(zst |yt, cst) = η e−
1
2 (zs

t−hs(yt,cs
t))TQ−1

t (zs
t−hs(yt,cs

t))

= η e−
1
2 (es

t (y,c))TQ−1
t (es

t (y,c)) (3.21)

Here we have the inverse sensor model with different parameters. One should remember
that (3.6) has defined the same function in this format hs(xt,m, cst). Since we can use
the y0:t vector, which contains the poses x and the map m, and the features mj can be
recovered from the map and the correspondences c, then we have a more compact notation:

est(x, z,m, c) = est(y, c) (3.22)

Applying (3.19), (3.20) and (3.21) into (3.18) results in:

log p(y0:t|z1:t, u1:t, c1:t)

= const.+ log
(
η e−

1
2 ((x0)TR−1

0 x0)
)

+
∑
t

[
log
(
η e−

1
2 (eo

t (x,u))ᵀR−1
t (eo

t (x,u))
)

+
∑
s∈S

log
(
η e−

1
2 (es

t (y,c))ᵀQ−1
t (es

t (y,c))
)]

(3.23)

The next procedure consists of taking advantage of the relations between the
logarithmic and the exponential and also multiplying both sides by −1, and finally
grouping the constant terms:

Chapter 3. Theoretical Background 25

−log p(y0:t|z1:t, u1:t, c1:t) = const.

+ 1
2

[
(x0)TR−1

0 +
∑
t

(eot (x,u))ᵀR−1
t (eot (x,u))

+
∑
s∈S

∑
t

(est(y, c))ᵀQ−1
t (est(y, c))

]
(3.24)

Beside the constants, one can see that the equation (3.24) is similar to (3.8).

All constraints defined so far are quadratic and they depend on the K(·) and
hs(·) functions. These two functions are non-linear, therefore, the next steps require
the linearization of these functions by expanding them through a Taylor series. The
linearization guarantees that the constraints will be directly dependent on the variables to
be estimated (x1:t and m). [30] presents the Taylor expansions up to the first derivative:

K(ut, xt−1) ∼= K(ut, µt−1) +K
′(ut, µt−1)︸ ︷︷ ︸

G

(xt−1 − µt−1) (3.25)

hs(yt, cst) ∼= hs(µt, cst) + hs
′(µt, cst)︸ ︷︷ ︸

H

(yt − µt) (3.26)

Where the term µt is the current estimate of the state vector yt. The term G is the Jacobian
obtained from the derivatives of the function K(·) with respect to yt−1 evaluated at ut
and µt−1. The term H is the derivative of hs(·) with respect to yt. Applying (3.25) to (3.3)
and also (3.26) to (3.6), on can obtain the following definitions:

eot (x,u) ∼= xt −K(ut, µt−1) +G(xt−1 − µt−1) (3.27)

est(y, c) ∼= zst − hs(µt, cst) +H(yt − µt) (3.28)

Now, one can use the results from (3.27) and (3.28) to update (3.24):

−log p(y0:t|z1:t, u1:t, c1:t) = const.

+ 1
2

[
(x0)TR−1

0 (x0)

+
∑
t

(xt −K(ut, µt−1) +G(xt−1 − µt−1))TR−1
t (xt −K(ut, µt−1)

+G(xt−1 − µt−1))

+
∑
s∈S

∑
t

(zst − hs(µt, cst) +H(yt − µt))TQ−1
t (zst − hs(µt, cst) +H(yt − µt))

]
(3.29)

Chapter 3. Theoretical Background 26

After the linearization, the terms became quadratic with respect to y0:t. The
equation above can be re-organized and some terms can be grouped for more clarity:

−log p(y0:t|z1:t, u1:t, c1:t) = const.

+ 1
2 (x0)TR−1

0 (x0)︸ ︷︷ ︸
quadratic on the first pose

+ 1
2
∑
t

(xt−1:t)T
(

1
−G

)
R−1
t (1−G)(xt−1:t)︸ ︷︷ ︸

quadratic on last two poses

+ (xt−1:t)T
(

1
−G

)
R−1
t [K(ut.µt−1) +Gµt−1]︸ ︷︷ ︸

linear on the last two poses

+ 1
2 (yt)THTQ−1

t H(yt)︸ ︷︷ ︸
quadratic on the state vector y

+ ((yt)THTQ−1
t [zst − hs(µt, cst)−Hµt])︸ ︷︷ ︸

linear on the state vector y

(3.30)

Now, all quadratic terms should be moved to a matrix Ω and all linear terms
should be placed in a vector ξ:

−log p(y0:t|z1:t, u1:t, c1:t) = const.+ 1
2(y0:t)TΩ(y0:t) + (y0:t)Tξ (3.31)

The next step multiplies (3.31) by −1 and applies the exponential function on both
sides:

p(y0:t|z1:t, u1:t, c1:t) = const.+ e
1
2 (y0:t)T Ω(y0:t)+(y0:t)T ξ (3.32)

The right side of the equation (3.32) represents a Gaussian distribution in its
information form, hence one can infer the following:

p(y0:t|z1:t, u1:t, c1:t) = N (Ω, ξ) (3.33)

The GraphSLAM algorithm can recover the path and the map from Ω and ξ:

Σ = Ω−1 (3.34)

µ = Σξ (3.35)

Where µ is the mean of the Gaussian distribution that describes the poses and the map.

Chapter 3. Theoretical Background 27

The solution for the system of equations above can be easy when there are no loop
closures. In this case Ω would be a band matrix with efficient inversion. The solution
would be in linear time [30]. However, the typical cases are those with loop closures. The
robots usually pass by the same places multiple times and then the same feature can be
detected twice or more. The algorithm adopts a procedure to remove all edges that are
related to features. In other words, the algorithm removes all nodes that represent the
poses of the features in the map.

When a feature is linked to a single pose, then the edge is removed without any
additional procedure. When a feature is linked to multiple poses, then the algorithm
creates a new edge connecting each pair of poses that are linked to the same feature. This
approach translates all information between poses and features to information between
poses. Therefore, the problem is restricted to only find the path of the robot. One can
consider that if a feature mj has a certain distance from a pose xi and a distance to a
pose xj, then one can infer the distance between xi and xj if the angles are known.

This procedure can be better understood through a clear mathematical description.
The first step is to separate the probabilities of the poses and the map on equation (3.12):

p(y0:t|z1:t, u1:t, c1:t) =

η p(x0:t|z1:t, u1:t, c1:t)p(m|x0, z1:t, u1:t, c1:t) (3.36)

The first part of the algorithm tries to find only the poses given the measurements,
commands and the correspondences between features and measurements. The first prob-
ability on the right side of (3.36) still have a Gaussian distribution, so the following is
valid:

p(x0:t|z1:t, u1:t, c1:t) ∼= N (Ω̃, ξ̃) (3.37)

Ω̃ and ξ̃ can be found from Ω and ξ by first executing the partitioning below:

Ω =
(

Ωx0:t,x0:t Ωx0:t,m

Ωm,x0:t Ωm,m

)
(3.38)

ξ =
(
ξx0:t

ξm

)
(3.39)

Fig. 5 shows the information matrix Ω and the resulting partition. The part related
to Ωm,m is a block diagonal matrix since there are no feature-feature relations.

Chapter 3. Theoretical Background 28

From the marginalization lemma [28], Ω̃ and ξ̃ can be found by the formulas below:

Ω̃ = Ωx0:t,x0:t − Ωx0:t,mΩ−1
m,mΩm,x0:t (3.40)

ξ̃ = ξx0:t − Ωx0:t,mΩ−1
m,mξm (3.41)

Apparently, the inversion of Ωm,m should be a hard task but there are efficient
solution for block diagonal matrices. Once Ω̃ and ξ̃ are found, one can obtain µ̃ through
the system below:

Σ̃ = Ω̃−1 (3.42)

µ̃ = Σ̃ξ̃ (3.43)

Where µ̃ is the mean of a Gaussian distribution that describes the poses of the robot.

After finding the poses along the entire trajectory, the algorithm needs to solve
the probability p(m|x0:t, u1:t, c1:t) on the equation (3.36). The conditioning lemma [28] is
used in (3.38) and (3.39) to demonstrate that the probability of the map still follows a
Gaussian distribution. The parameters of the Gaussian distribution that describes the
map are obtained by the following formulas:

Σm = Ω−1
m,m (3.44)

Figure 5 – Information matrix.
The information matrix is partitioned in four matrices.

Chapter 3. Theoretical Background 29

Figure 6 – The occupancy grid map.
In this example, white cells have a low probability of being occupied, black cells have a

high probability of being occupied and gray cells are unknown.

µm = Σm(ξm + Ωm,x0:t ξ̃) (3.45)

Where µm is the mean of the Gaussian distribution that describes the map. This value
depends on ξ̃ computed in the previous step. Once ξ̃ and µm are found, the full SLAM
problem is completely solved.

3.3 Occupancy Grid Mapping
The occupancy grid map (OGM) is a representation of the environment through a

grid of cells with the same dimensions. Fig. 6 exhibits the basic schemed adopted by the
OGM. One may notice that this representation is discrete and with finite resolution. Each
cell contains a probability P of being occupied given the current pose xt and the current
measurement zt. This probability P is also known as the inverse model p(mi|xt, zt).

P is always a value between 0 and 1, hence the OGM uses some threshold values to
decide the cell’s state. For example, one may consider that cells containing values greater
than 0.75 are occupied, and cells containing values lesser than 0.25 are empty, and cells
with any value between 0.25 and 0.75 have an uncertain state. This probability is also
known as the inverse model.

The OGMs are built by measuring the environment and projecting the measure-
ments to the grid map. This projection requires the correct pose of the sensor at each
measurement. Initially, all cells are set to an uncertain state (e.g. P = 0.5). The OGM
iteratively updates the probabilities at each cell that is reached by the current measurement.

Chapter 3. Theoretical Background 30

Figure 7 – Mapping.

Fig. 7 shows the update of some cells that are reached by the sensor. If the sensor detects
an obstacle, the projection of this obstacle to the grid map increases the probability of the
related cells. On the other hand, the space between the sensor and the obstacle decreases
the probability of the related cells.

The OGM uses the log-odds representation to avoid numerical instabilities and
to facilitate the update of the probabilities on each cell. So, instead of storing the raw
probabilities, each cell contains:

L = log

(
P

1− P

)
= inverse_sensor_model(mi, xt, zt) (3.46)

The inverse_sensor_model(·) is a function that calculates the inverse model
p(mi|xt, zt) in it’s log-odds format.

When needed, the probability P can be recovered from the log-odds:

P = 1− 1
1 + eL

(3.47)

Let l0,mi
be the log-odds of cell mi in the map m at time t = 0. The update of the

mi is done by:

lt,mi
= lt,mi−1 + inverse_sensor_model(mi, xt, zt)− l0,mi

(3.48)

31

4 Large-scale Mapping System

In this section, we describe the proposed full SLAM-based mapping system, includ-
ing details about its front-end and back-end. The front-end consists of the Pre-processing
and the Hypergraph Builder modules, and it is responsible for handling the low level infor-
mation coming from the sensors, converting between data formats, filtering and building
the hypergraph for optimization. The back-end consists of the Hypergraph Optimizer and
the Mapper modules, and it is responsible for estimating the AV poses along the multiple
sessions, calibrating the odometry bias and building and merging the local grid maps. In
the remaining of the text, we refer directly to these modules.

The proposed mapping system is capable of building many types of grid maps,
such as the occupancy grid maps (OGM), remission maps (RM) and likelihood field maps
(LFM). However, the AV for which it was designed uses mainly occupancy grid maps for
navigation and localization. Therefore, the OGM will be focused in the next sections.

4.1 System Overview
Fig. 8 shows the architecture of the proposed mapping system. The AV is first

driven by a human through the environment while sensors data are recorded in log files.
The sensor measurements are saved as they arrive in the logging tool. The Pre-processing
module reads the input logs, converts the raw sensor messages to appropriate formats, and
applies a filtering scheme to remove noisy and needless information. Then, the Hypergraph
Builder module creates a graph containing nodes to represent the unknown AV poses,
nodes to represent the odometry bias and many types of edges to represent the constraints
between the nodes. The constraints are defined by the sensor data and each sensor type
generates different types of edges or constraints. After that, the Hypergraph Optimizer
module finds the most likely AV poses and odometry bias calibration given all restrictions
imposed by the edges in the hypergraph. Finally, the Mapper module takes the final AV
poses and the input logs to create and merge the grid maps.

4.2 Pre-processing
Sensors data come from parallel processes running in one or more computers. Hence,

they may be stored in an order different from that observed during capture. In the first step,
the Pre-Processing module sorts all measurements by their timestamps. In the second step,
it discards some sensor measurements when the AV is below a minimum speed MinSpeed.
Some sensor measurements do not contribute positively for the mapping process when the

Chapter 4. Large-scale Mapping System 32

Figure 8 – System overview.

(a)

(b)

Figure 9 – GPS noise: the speed filtering.
(a) GPS noise at low speed. (b) GPS noise removal after filtering.

AV is stopped or at very low speeds. Instead, they tend to incur errors. Fig. 9(a) shows
noisy GPS readings when the vehicle is stopped and Fig. 9(b) illustrates the result after
speed filtering.

In the case of laser scans, in an ideal world with a perfect LiDAR sensor and an
environment with only static objects, the resulting point clouds at zero speed should
always present the same points, so that the redundant point clouds can be safely discarded
as they do not provide any extra information. However, in the real world, the LiDAR
sensor has inevitable noise and the environment may have moving objects, but we still

Chapter 4. Large-scale Mapping System 33

(a) (b)

(c) (d)

Figure 10 – GPS lateral displacement error.
(a) GPS lateral displacement error. (b) Increasing the GPS error variance from left to
right. (c) Undesired side effects in the estimated AV poses after increasing the variance of
GPS error. (d) Estimated AV poses after clustering the GPS measurements and removing

small groups.

can discard point clouds given moving objects are undesired and static objects will be
eventually seen by the LiDAR sensor when the AV moves again.

In the final step, the Pre-Processing module removes GPS lateral displacement
errors. GPS may suffer a lateral displacement error, as illustrated in Fig. 10(a). The
probabilistic treatment to this error [28] would require a lower confidence in the GPS
measurement; in other words, assuming a normal distribution to model the GPS error we
should increase its variance parameter. Fig. 10(b) shows a sequence of increasing GPS
error variances and the resulting effects in the AV poses. Although the displacement error
in the AV poses decreases in that particular spot, the estimated path moves away from the
GPS measurements in other areas. Fig. 10(c) illustrates undesired side effects in another
region with better GPS measurements.

Our solution to the GPS lateral displacement error considers that other sensors
provide good local positioning and we discard the GPS data in the critical areas. The
GPS measurements are clustered based on the distance between immediate neighbors
NeighborDistance. A divisive hierarchical clustering can be applied to properly separate
unwanted groups. Initially, all measurements can be considered as a single cluster and, for
any pair of immediate neighbors, zGPSi and zGPSi+1 , if the distance between the neighbors is
greater than NeighborDistance, then we can split the initial cluster and recursively apply
the method in the new smaller clusters. After clustering, the method removes all groups

Chapter 4. Large-scale Mapping System 34

containing fewer elements than a desired quantity NeighborQuantity. Fig. 10(d) presents
the final AV poses after removing the error.

4.3 Hypergraph Building
After the pre-processing, we consider the resulting sensor data as valid and we use

them to build the hypergraph. The nodes in the hypergraph represent the unknown AV
poses and the odometry biases. Edges represent constraints between the nodes.

A pose node Ni is added to the hypergraph for each sensor measurement zi. Ni

refers to an unknown pose xi:

Ni = xi = (xi, yi, θi) (4.1)

where (xi, yi) is the position of the vehicle in the ground plane and θi is its heading.

One may notice that we changed the subscript t to i. This is done to accommodate
nodes that are not related to the poses. The calibration nodes are not related to time.

4.3.1 Odometry Edges

For each log, the Hypergraph Builder traverse the nodes in the associated hyper-
graph considering each node pair Ni and Ni+1 to build the odometry edges. The last
known odometry measurement is used to create an edge connecting the two nodes. More
precisely, the last odometry measurement contains the ego vehicle velocity vi and steering
angle ϕi used to define the current command ui alongside ∆t, which is the time difference
between the two nodes. The odometry edge indicates a constraint between Ni and Ni+1

through the error function eo(xi,ui).

We simplify the notation by encoding the involved quantities in the indices of the
error function [31]:

eo(xi,ui)
def.= eoi (x,u) (4.2)

The odometry constraint between each node pair is defined as:

eoi (x,u) = (xi+1 	 xi)	K(ui,∆t) (4.3)

where 	 is the inverse of the motion composition operator ⊕ as defined in [32], ∆t is the
time difference between the poses xi and xi+1 and K(.) is a forward kinematic function
that returns a relative movement given ui and ∆t. The function K(.) uses the Ackerman

Chapter 4. Large-scale Mapping System 35

steering geometry with understeer corrections [33]. All odometry edges are combined in
the total odometry error:

Jo (x,u) =
n∑
i

(eoi (x,uᵀ))ᵀΩ̂o
i (eoi (x,uᵀ)) (4.4)

where Ω̂o
i is the odometry information matrix at node Ni projected through the non-linear

function K(.) via the unscented transformation [29].

4.3.2 GPS Edges

Each nodeNi created by a GPS measurement zGPSi receives a unary edge containing
the error:

eGPSi (x) = xi 	 zGPSi (4.5)

All GPS edges constraints are combined in the total GPS error:

JGPS (x) =
∑
i

(eGPSi (x))ᵀΩGPS
i (eGPSi (x)) (4.6)

where ΩGPS
i is the inverse of the GPS covariance matrix at node Ni.

4.3.3 Loop Closure Edges

We use LiDAR and GPS sensors data to compute loop closures in the same log
(intra-session) and also loop closures between different logs (inter-session). Let NL be
the subset of all nodes generated by the LiDAR sensor and NGPS the subset of all nodes
generated by the GPS sensor. Given a node Ni ∈ NL, we search for the nearest node
Nj ∈NL with time difference ∆t greater than a desired threshold InterLoopT ime (e.g., 1
minute) and also distance less than another threshold value LoopDistance (e.g., 5 meters).
We use the GPS measurements to estimate the distances between Ni and the other nodes
in NL. Let Nk ∈NGPS be the node with the closest timestamp to Ni and Nl ∈NGPS

the node with the closest timestamp to Nj . We assume that the distance between Ni and
Nj is equal to the distance between Nk and Nl.

For every pair of poses Ni and Nj that meet both conditions (minimum time and
maximum distance thresholds), we add a new loop closure edge. This method is applied
to find inter-session and intra-session loop closures. It is important to mention that the
inter-session loop closures are vital to connect the different logs in the global hypergraph.

Chapter 4. Large-scale Mapping System 36

The inter-session loop closure edges provide required relationships between AV poses in
multiple logs. A loop closure edge computes the following error as defined in [31]:

eLi,j(x) = (xj ⊕ sL)	 (xi ⊕ sL)	 ICPL
i,j (4.7)

where xi and xj are the AV poses represented by the nodes Ni and Nj, sL is the pose of
the LiDAR sensor in the AV reference frame and ICPL

i,j is a linear transform that aligns
the point cloud zLi with the point cloud zLj . We use the Generalized Iterative Closest Point
(GICP) [34] algorithm to find the transform. The error below combines the constraints of
all loop closure edges:

JL (x) =
∑
i

(eLi,j(x))ᵀΩL
i,j(eLi,j(x)) (4.8)

where ΩL
i is the inverse of the GICP covariance matrix.

4.3.4 Odometry Calibration Edges

Mutz et al. [3] showed that odometry measurements are subject to biases in the
velocity v and steering wheel angle ϕ, which introduce even more error in dead reckoning.
They then proposed an odometry bias calibration method before optimizing the graph,
which makes odometry measurements more reliable and allows the odometry variance
parameter to be decreased in a pose graph SLAM algorithm. The odometry bias calibration
is approximated by the following linear functions:

v
′

i = vib
v
mult (4.9)

ϕ
′

i = ϕib
ϕ
mult + bϕadd (4.10)

where bvmult is the velocity multiplicative bias, bϕmult is the steering wheel angle multi-
plicative bias and bϕadd is the wheel angle additive bias. The authors employed a PSO-
based optimization method using a fitness function that computes the difference between
GPS and dead reckoning poses. Each particle contains the odometry bias parameters,
B = (bvmult, b

ϕ
mult, b

ϕ
add), and the best parameters are used to update all odometry measure-

ments before the AV poses optimization.

We propose a new iterative method to calibrate the odometry bias. The odometry
calibration is is executed directly in the hypergraph optimization.

Chapter 4. Large-scale Mapping System 37

An odometry bias calibration node, NB
j:k, contains the parameters of the Eqs. 4.9

and 4.10:

NB
j:k = (bvmult, b

ϕ
mult, b

ϕ
add)j:k (4.11)

The range subscript j:k indicates that a single bias calibration node NB
j:k can be

related to any subgroup of AV poses xj:k containing all consecutive poses from j to k.
Considering n as the total number of nodes in the hypergraph, a single bias calibration
node NB

1:n is connected to all poses, meaning that the system applies the same calibration
parameters to all odometry measurements. Otherwise, a pair of nodes NB

1:n/2 and NB
n/2:n

can separate the odometry measurements in two different parts of equal sizes and find
different biases along the same log or session. As each session generates its own hypergraph
and each hypergraph have at least one bias calibration node, the system also handle the
bias changes between sessions.

Each pair (Ni,Ni+1) of nodes generated by the sensor measurements is linked to a
calibration node NB

j:k by an odometry bias calibration edge. This special edge connects
three nodes and by definition it is a hyperedge. In order to calibrate the odometry bias we
use the following error:

ei,j:k (x,B,u) = (xi+1 	 xi)	K(Bj:k,ui,∆t) (4.12)

whereK(.) is a function that takes the bias parametersBj:k atNB
j:k to update the command

ui through Eqs. 4.9 and 4.10 then calls K(.) to estimate a new relative movement. Note
that the range j:k must include i and i+1. In section 4.4 we indicate how and when this
error is evaluated. All errors computed by the odometry bias calibration edges define the
total odometry bias calibration error:

JB(x,B,u) =∑
j:k

k−1∑
i=j

ei,j:k (x,B,u)ᵀ Ω̂B
i ei,j:k (x,B,u) (4.13)

where Ω̂B
i is the odometry information matrix at node Ni projected through the non-linear

function K(.) via the unscented transformation. In this case, the projection must be
updated when the bias changes substantially.

The resulting hypergraph contains all pose nodes, the odometry bias calibration
nodes and all required edges to impose the constraints defined in Eqs. 4.4, 4.6, 4.8 and 4.13.
Fig. 11 illustrates the relationships between the elements in the hypergraph, including
some pose nodes, some odometry edges, a GPS edge and a loop closure edge. Fig. 12

Chapter 4. Large-scale Mapping System 38

x0

x3

x4

x1 x2

x4

x5

Figure 11 – Basic graph.
Graph containing edges from odometry, GPS and loop closure.

x4

Figure 12 – The hypergraph.
Odometry bias calibration node and hyperedges.

displays an odometry bias calibration node and some calibration hyperedges represented
by regions with different colors for better visualization.

4.3.5 Lidar Odometry Edges

Lidar odometry (LO) is usually treated as a registration problem between two
point clouds. The registration problem consists of finding a linear transform that aligns
two point clouds. Fig. 13 shows two clouds with different colors. Initially, the blue and
green point clouds are in the sensor coordinate frame, then a registration algorithm is
used to find the linear transform that align them. After the alignment, one can estimate
the sensor movement using the transform between the two clouds. This works better when
the environment contains only static objects since moving objects can deteriorate or even
forbid a good estimate of the sensor movement. We propose a new method to estimate the
LO in the presence of moving objects. The method estimates the movement of the LiDAR
sensor and then it adds LO edges to the graph. A LO edge connects two pose nodes that

Chapter 4. Large-scale Mapping System 39

Figure 13 – Point Cloud Registration

were generated by LiDAR measurements.

The method starts by taking an initial point cloud zLiDARi and then selecting the
next point cloud zLiDARj using the same approach described in [35]. As in [35], we consider
the frequency of the LiDAR sensor and the vehicle velocity to compute the index of the
next point cloud. Any point cloud between the selected ones is discarded. After loading
the target point clouds, the method uses the simplified semantic segmentation described
on [36] to remove most of the moving objects and increase the quality of the point cloud
registration. After the segmentation, we estimate an initial guess for the movement of the
LiDAR sensor by taking the odometry measurements between zLiDARi and zLiDARj and
computing the vehicle movement. The two point clouds and the initial guess are used
as inputs to the GICP algorithm. The output of the GICP is a linear transform that is
used to build a new LO edge connecting the nodes related to zLiDARi and zLiDARj . After
adding the current LO edge, the method combines zLiDARi and zLiDARj into a single point
cloud zLiDARi∪j and use the new cloud in the next iteration. The next iteration repeats the
process by considering zLiDARi∪j as reference and selecting the next point cloud zLiDARk .
Note that zLiDARi∪j and zLiDARk will be combined into zLiDARi∪j∪k later, therefore, the density
of the combined point clouds must be reduced from time to time to avoid memory issues.
For that, the method uses a voxel grid filter while also removing all points that are too far
away from the center of the last point cloud.

This new LO method is able to estimate the vehicle poses with higher accuracy
than that obtained solely by the calibrated odometry. The LO edges have the same error
defined in 4.7 and they are all combined in the global LO error:

JLO (x) =
∑
i

(eLOi,j (x))ᵀΩLO
i,j (eLOi,j (x)) (4.14)

where ΩLO
i is the inverse of the GICP covariance matrix.

Chapter 4. Large-scale Mapping System 40

The moving objects in the environment may induce wrong results in a naive LO
algorithm. For example, the AV may be stopped but the moving objects around the AV
can be seen by the LiDAR sensor and their corresponding point clouds would indicate
some unreal movement of the sensor. Therefore, a typical LO method would benefit from
a 3D point cloud semantic segmentation that eventually can classify and remove moving
objects from the point clouds. Section 4.3.5.1 presents a simplified semantic segmentation
that was implemented in this project.

4.3.5.1 Simplified Semantic Segmentation

The proposed system implements part of the approach on virtual city reconstruction
proposed by [36]. Their method is able to create 4D spatio-temporal models or large dynamic
urban scenes. One of their objectives was to reconstruct urban environments including only
the ground and tall structures. The authors proposed a point cloud segmentation method
to remove undesired objects and improve the point cloud registration. Their segmentation
method was replicated in this project to enhance our custom LiDAR odometry algorithm.
The segmentation assign each point to one of the following classes: (i) clutter, (ii) ground,
(iii) tall structure objects and (iv) short street objects. They also handle vegetation in a
separate method that was not replicated in this project.

The clutter class identifies isolated points that are too distant from their nearest
neighbor. The ground class aggregates points that belong to the road, sidewalks or traffic
islands. The tall structure objects class aims to separate objects that are usually static as
buildings, walls, roofs, lamps posts and traffic lights. The short street objects class is used
to identify most moving objects as vehicles and pedestrians.

A grid based approach is employed to achieve the point cloud segmentation. For
each point cloud P , the method fits a 2D grid G onto the z = 0 plane. The grid size is set
to a width between 50cm and 80cm. Smaller cell sizes produce many empty space or cells
containing few points and no statistical relevance. Larger cell sizes can result on several
falsely classified points, given that different objects can be projected to the same cell. The
dimension of the grid is obtained from the point cloud P .

Each point p ∈ P is projected to a given cell cp ∈ G. Let Pc ∈ P : c = cp

denote the point set projected to cell c. The functions hmax(c), hmin(c) and havg(c) return
respectively the maximum, minimum and average of the elevation values within Pc.

After projecting all points to the grid, the method tries to find the points that
belongs to the clutter class. For each cell c, the method calculates the local density by
summing the total number of points projected to c and its 8 surrounding cells. If the
quantity is below a threshold value τ , then the points are classified as clutter and they are

Chapter 4. Large-scale Mapping System 41

discarded. The following expression indicates how to classify points in the clutter class:

τ > pcount(c) +
∑
r∈Nn

c

pcount(r)→ pclutter (4.15)

where Nn
c is the n neighbor cells, in this project we used n = 8. The function pcount(·)

returns how many points were projected to a given cell.

By visiting the cells around c, the method handles larger objects that may have
many points on several cells but just few points projected to c.

The next step tries to classify all points that belong to the ground class. First, the
method finds the maximum difference between the lowest and the highest point from a
point set Pc:

∆h = hmax(c)− hmin(c) (4.16)

If the difference ∆h is lesser than a threshold value τgr, then it may indicate that
the points projected to c belongs to the ground class. The threshold value τgr means the
max allowed ∆h to consider a cell as ground candidate. In our project, we used τgr = 0.25m.
However, this condition is not sufficient given that other structures may have similar
∆h (e.g. flat car roof and engine hood). This initial test is used to classify the ground
candidates:

1G(c) = 1 if∆h < τgr

1G(c) = 0 otherwise
(4.17)

where 1G(c) = 1 is a ground candidate and 1G(c) = 0 is an undefined region.

The final classification is done by removing the outliers using a spatial filtering.
Their algorithm assumes that the outliers, such as a flat car roof, will be projected to a
few cells and, on the other hand, the ground will be projected to many cells on G.

Considering N v
c as the v × v neighborhood of c, and γG(c) =

∑
r∈Nv

c
1G(c), they

define a terrain model of the scene:

hgr(c) =

 1
γG(c) ·

∑
r∈Nv

c
havg(c) · 1G(c), if γG(c) > 0

undefined, otherwise
(4.18)

The authors used a neighborhood size v equals to 17. A cell c is considered as
ground cell if it is a ground candidate and the difference between havg(c) and hgr(c) is

Chapter 4. Large-scale Mapping System 42

lesser 0.2m:

1G(c) = 1 ∧ havg(c)− hgr(c) < 0.2m→ cground (4.19)

The tall structure objects class requires a simpler analysis:

1.4m < hmax(c) ∨ hmax(c)− hmin(c) > 3.10m→ ctall (4.20)

The expression means that a cell is tall structure object if the maximal observed
elevation is larger than 1.4m or if the difference between the maximal and minimal
elevations on c is larger than 3.10m. The second criteria is useful when there are objects
standing on a lower point when compared to the ground.

After classifying the points on clutter, ground or tall structure objects, the remaining
cells are considered as short street objects and all points projected to these cells are removed
from the point cloud. Although this method does not classify small objects as static and
moving objects, it is able to remove most moving objects from the scene while keeping the
ground and the tall objects.

4.4 Hypergraph Optimization
The hypergraph optimization is an iterative process which is repeated for a pre-

defined number of iterations. The optimization is separated in two main steps. In the
first step, the optimization considers the sum of the errors related only to the AV poses.
In other words, only the nodes regarding the AV poses are updated while all the nodes
related to the odometry bias remains fixed. This step maximize the likelihood of the AV
poses by combining Eqs. 4.4, 4.6, 4.8 and 4.14 and excluding the error defined in Eq. 4.13:

J1 (x,u) = Jo (x,u) + JGPS (x) + JL (x) + JLO (x) (4.21)

The inter-session loops are included in Eq. 4.21, however the system also optimizes
each subgraph with their related intra-session loops in a separated manner. After the
optimization of the subgraphs, the system unifies all subgraphs into a single global graph
using the inter-session loops and proceeds to the global optimization.

When the first step reaches a defined number of iterations, the optimization process
swaps the error functions. The second step keeps all nodes related to the AV pose fixed
while only the odometry bias calibration nodes are updated. All errors computed by
Eq. 4.21 are excluded and the global error now considers only Eq. 4.13:

J2 = JB(x,Bj:k,u) (4.22)

Chapter 4. Large-scale Mapping System 43

When the second step reaches a defined number of iterations, the new odometry
biases can be used to update all corresponding commands u using Eqs. 4.9 and 4.10. All
the odometry edges related to Eq. 4.7 can be updated with the new commands and the
optimization process can restart from the first step.

After repeating the two steps of optimization for a number of iterations and
assuming convergence, the optimization process returns for each log the AVs poses and
odometry calibration biases. The mapper module receives the AVs poses to create a new
map or update an existing one.

4.5 Large-scale Environment Mapping
The mapper system must handle high memory usage by virtue of the small grid

sizes, the large-scale environments and also the simultaneous output of grid maps of many
types. Thus, we split the grid maps in blocks of 75 x 75 meters and for each grid map we
keep only nine blocks in memory. Fig. 14 shows the sub-map approach. We use a sub-map
manager to always maintain the AV in the central block. When the AV crosses the central
block boundaries the sub-map manager loads the proper neighbor blocks from the hard
disk (HD) and saves the unused blocks to HD and frees memory. This sub-map technique
guarantees a constant map of at least 225 x 225 meters and smooth map transitions.

The occupancy grid map (OGM) estimates the posterior probability of the map

(a) (b) (c)

Figure 14 – Sub-map technique.
(a) 225 x 225 meters map in main memory. The robot is in the central block 4. (b) The
robot moves to block 7 and some new block are loaded from disk. (c) At this moment, the

upper blocks are saved in the disk and removed from the main memory

Chapter 4. Large-scale Mapping System 44

given all AV poses and sensor measurements:

p (m|x, z) (4.23)

Let mc be the grid cell with index c and let p (mc) be the probability that a grid
cell is occupied. A threshold value is used to to consider if a cell is an obstacle, a free space
or unknown. If p (mc) is greater than a desired threshold (e.g., 0.5) then we assume mc is
an obstacle. If p (mc) is less than the threshold value then mc is considered a free space.
Finally, we assume that the state of a grid cell mc is unknown if it was never observed.

As it is defined in Eq. 4.23, estimating the posterior probability of a single map
becomes intractable when map size and resolution increases. Our OGM contains 140625
grid cells in each block, therefore we would need to compute the posterior probability
of 2140625 grid maps for each block. We follow the standard of assuming that the cells
probabilities are independent from each other in order to estimate the map in a collection
of separated problems [37]. The map posterior is then approximated by the product of its
marginals:

p (m|x, z) =
∏
c

p (mc|x, z) (4.24)

The map is represented in the log-odds format in order to avoid numerical instabil-
ities due to near to zero or near to one probability [30]. The log-odds of a given given cell
mc is defined as:

lc = log p (mc|x, z)
1− p (mc|x, z) (4.25)

The probability ofmc being occupied can be recovered through the inverse function:

p (mc|x, z) = 1− 1
1 + exp li,c

(4.26)

The algorithm computes the occupancy grid map in an iterative way. Initially, all
grid cells are set to an invalid state (e.g. -1.0) and, at each time step, if a cell mc is in the
LiDAR perceptual field then it’s current log-odds is updated:

li,c = li−1,c + ISM
(
mc,xi, z

L
i

)
− l0 (4.27)

where li−1,c is the previous log-odds of the cell mc, l0 is the map prior probability
and ISM(.) is the inverse sensor model function which returns the probability of the
measurement zLi in the log-odds format, given the current AV pose xi and cellmc. Usually,
ISM(.) is an expensive function, thus many different ad-hoc or heuristic methods are

Chapter 4. Large-scale Mapping System 45

applied instead [19]. We describe next our custom ad-hoc method to compute the obstacle
evidence (OE) using LiDAR rays.

4.6 Obstacle Detection
The Mapper module uses LiDAR sensors to compute the probabilities in the OGM.

Our main LiDAR is a Velodyne HDL-32E placed above the AV. This sensor contains
32 vertical lasers across a 40o field of view. The Velodyne rotates around itself and it
provides point clouds with with 360o horizontal field of view. Considering the point clouds
in spherical coordinates, bi,jn represents the ith beam range of the jth vertical set of readings
in the nth point cloud. For each pair of beams bi,jn and bi+1,j

n , the Mapper estimates the
obstacle evidence (OE) of the ray bi+1,j

n using the following definition:

OE(bi,jn) =
ED

(
bi,jn , b̂

i+1,j
n

)
−MD (bi,jn , bi+1,j

n)

ED
(
bi,jn , b̂

i+1,j
n

) (4.28)

where b̂i+1,j
n is an estimation of beam of bi+1,j

n in an obstacle free environment, ED(.) is
the expected absolute difference between the projections of bi,jn and bi+1,j

n on the ground
and MD(.) is the absolute difference of the actual sensor measurements bi,jn and bi+1,j

n

projected on the ground. Fig. 15 shows the projections and the relationships between
ED(.) and MD(.).

The MD(.) value is obtained from:

MD
(
bi,jn , b

i+1,j
n

)
=
∣∣proj (bi+1,j

n

)
− proj

(
bi,jn
)∣∣ (4.29)

where proj(.) is a function that returns the length of the projection on the ground. The
ED(.) function is computed through LiDAR sensor height from the ground h, the measured
length r of bi,jn and the vertical angle ω between bi,jn and bi+1,j

n . First, the method recovers
the vertical angle of bi,jn :

α = arccos
(
h

r

)
(4.30)

Then, the projection of bi,jn on the ground is computed by:

proj
(
bi,jn
)

= r × sin (α) (4.31)

Chapter 4. Large-scale Mapping System 46

Figure 15 – Obstacle evidence.
Illustration of the obstacle evidence approach. Two LiDAR rays are projected in the

ground and the difference between the projections length is the actual measured distance
MD(.). The expected distance ED(.) is estimated by subtracting the length of bi,jn in the

ground from the expected length of bi+1,j
n in the ground.

Then, we estimate the projection of b̂i+1,j
n on the ground in an obstacle free

environment:

proj
(
b̂i+1,j
n

)
= sin (α + ω)

sin
(
π
2 + α + ω

) (4.32)

Finally, we obtain the ED(.) value using Eqs. 4.31 and 4.32:

ED
(
bi,jn , b̂

i+1,j
n

)
=
∣∣∣proj (b̂i+1,j

n

)
− proj

(
bi,jn
)∣∣∣ (4.33)

As in [3] we compute the obstacle evidence OE(.) defined in Eq. 4.28 using Eqs. 4.30
and 4.33 in order to obtain the probability:

PO = 1√
2πσ2

OD

exp
(
− (1−OE (bi+1,j

n))2

2σ2
OD

)
(4.34)

where σOD is the obstacle detection standard deviation found empirically in [3]. The last
step converts the probability value computed by Eq. 4.34 to the log-odds format and
updates the grid maps cells in the LiDAR sensor field of view.

Chapter 4. Large-scale Mapping System 47

4.7 Large-scale Map Merging
The Mapper module merges the grids maps in an incremental approach. A first

map is created using any of the resulting output files from the hypergraph optimization.
A good practice is to start the mapping process using the session recorded in the best
conditions (i.e few moving objects). The sessions can be sorted by the moving objects
quantity and organized in a queue where the session with less moving objects are consumed
first.

While the mapping process evolves, the system conveniently saves how many times
each grid map cell mc is reached by the LiDAR rays in the current session. After the first
map is complete, the system changes the rule defined in Eq. 4.27 and then only the cells
with the hit counter below a threshold value K are updated:

li,c =

lt−1,i + ISM
(
mc,xi, z

L
i

)
− l0, hits (mc) < K

lt−1,i, otherwise
(4.35)

where K is any integer value greater than zero. We assume that the LiDAR sensor is
reliable and after enough hits the system can safely freeze the resulting log-odds. For
example, the cells containing static obstacles will quickly converge to high probabilities
in the occupancy grid maps and so we can trust in those probabilities after K hits.
Therefore, we don’t update the cells which were very observed in the previous sessions.
This procedure can unintentionally keep the low dynamics fixed in a previous map, but
the system can easily return to the original update rule defined in Eq. 4.27 if the difference
in time between the sessions are greater than a desired threshold InterSessionT imeDiff .
Assuming that the main changes in the environment infrastructure takes a time greater than
InterSessionT imeDiff , then the system can update the current map while discarding
most of the undesired changes in the incoming maps.

48

5 Experimental Methodology

5.1 IARA
The proposed mapping system was designed to the Intelligent Autonomous Robotics

Automobile (IARA, 2). IARA is an AV developed by the computational intelligence research
group of the Laboratório de Computação de Alto Desempenho - LCAD (High Performance
Computing Laboratory, http://www.lcad.inf.ufes.br) at the Universidade Federal do
Espírito Santo - UFES (Federal University of Espírito Santo, http://www.ufes.br), in
Vitória, Brazil. IARA is based on a Ford Escape Hybrid, which was modified to allow
electronic control of steering, throttle, brakes, gears and several signalization items; and
to provide the car odometry for the IARA’s autonomy system, and power supply for
computers and sensors. Its main computer is a Dell Precision R5500 with two Xeon
X5690 six-core 3.4 GHz processors and one NVIDIA TITAN Xp. Its sensors include
one Velodyne HDL 32-E LIDAR, one Trimble RTK GPS, one Xsens MTi IMU and
one Bumblebee XB3 stereo camera. The IARA’s autonomy system follows the typical
architecture of self-driving cars [2]. It is based on the Carnegie Mellon Robot Navigation
Toolkit (CARMEN [38]), which is a modular open source software collection for mobile
robot control. We have significantly extended and currently maintain a version of CARMEN,
available at https://github.com/LCAD-UFES/carmen_lcad. For details on the IARA’s
autonomy system, readers are referred to Badue et al. [2].

5.2 Sensor Data Logs
To evaluate the performance of the proposed mapping system, we built several

sensor data logs. We collected data from all IARA’s sensors while IARA was being
conducted by a human driver along the beltway of the UFES main campus, with about
3.7 km of extension, and within parking lots in the vicinity of the UFES campus beltway.
The sensor data acquired on travels in the UFES campus were saved in several logs, which
were used to assess the map merging capabilities of the proposed mapping system. We
also captured IARA’s sensor data while IARA was driven along a route from the UFES
campus in the city of Vitória to the city of Guarapari, with about 72 km of extension. The
sensor data acquired on the travel to Guarapari were saved in a single log, which was used
to analyse the proposed mapping system in large-scale environments.

The logs were collected in different traffic conditions and contains a significant
diversity of road infrastructure (e.g., bridges, buildings, highways, crossings, etc). They
were also captured at different times - in the UFES campus, over a month, and on the

http://www.lcad.inf.ufes.br
http://www.ufes.br
https://github.com/LCAD-UFES/carmen_lcad

Chapter 5. Experimental Methodology 49

Figure 16 – UFES main campus beltway.
Satellite view of the main campus (in red).

Figure 17 – Parking lot 1 (in yellow).

Figure 18 – Parking lot 2 (in blue).

travel to Guarapari, two years before.

Figures. 16, 17, 18, 19 and 20 show satellite views of the environments from

Chapter 5. Experimental Methodology 50

Figure 19 – Parking lot 3 (in cyan).

Figure 20 – Route from UFES to Guarapari.

which the logs were collected. Fig. 16 shows the UFES campus beltway (in red), which
is surrounded by trees in all its extension. The logs UB1 and UB2 were recorded while
the driver conducted IARA along the beltway; the log UB1 was acquired at night, in the
clockwise direction and without moving obstacles, while the log UB2 in the morning, in
counterclockwise direction and with moving objects (pedestrians, cars, bicycles, etc.) and
many vehicles parked. It is important to note that the logs UB1 and UB2 present inter-log
loop closures along the entire path.

Fig. 17 shows the parking lot 1 (in yellow), Fig. 18 the parking lot 2 (in dark blue)
and Fig. 19 the parking lot 3 (in cyan), which are also surrounded by trees and impose
significantly higher quantity of errors in GPS measurements when compared to the beltway.
The logs PL1, PL2 and PL3 were recorded while the driver conducted IARA within the
parking lots 1, 2 and 3, respectively.

Finally, Fig. 20 shows the route from the UFES campus in the city of Vitória to
the city of Guarapari (in light blue), which contains many different environments as the
AV crosses different cities, highways, rural and urban streets, and a bridge of about 3.3
km of extension. The log TRVL was recorded while the driver conducted IARA along the

Chapter 5. Experimental Methodology 51

route from Vitória to Guarapari.

We use the proposed mapping system to create grid maps and merge them using
the logs collected along the courses in the UFES campus and the route from Vitória to
Guarapari. Although the logs were captured in a wide time range, the proposed mapping
system was able to create an accurate global map using them, which allowed IARA to
navigate and self-locate in the mapped environments during later travels.

5.2.1 Parameters

Table 1 shows the main parameters of the proposed mapping system used in our
experiments.

5.3 Metrics
We used the mean absolute error (MAE) to compare two paths and verify how

close they are from each other. We usually consider the GPS as the ground truth path to
be compared with paths computed from any other sensor or method.

We illustrate the same obstacles viewed in different visits to the same region with
different colors to qualitatively evaluate the drifts and misalignment in the resulting grid
maps. This coloring scheme also facilitates the verification of the contribution of loop
closures and allows the visualization of the impact of the new update rule of a grid map
cell defined in Eq. 4.35 to the quality of the resulting grid maps.

Table 1 – Main parameters of the proposed mapping system used in our experiments.

Name Value Description
MinSpeed 0.01ms Minimum AV speed used in the speed filtering

NeighborDistance 1.2m Distance threshold in the GPS clustering. Higher
distances means disconectivity

NeighborQuantity 40 Quantity threshold in the GPS clustering. Clus-
ters with fewer elements are removed

LoopDistance 5.0m Maximum required distance between point
clouds for loop closure candidate

InterLoopT ime 60sec Minimum required time between point clouds
for inter-log loop closure candidate

K 64 Cell hits threshold for 4.35
InterSessionT imeDiff 1month Time distance between sessions for low dynamics

consideration
σOD 0.8 Obstacle detection standard deviation

Chapter 5. Experimental Methodology 52

5.4 Experiments
We carried out a series of experiments to evaluate the odometry calibration, the

map building and the map merging proposed methods. Each experimental evaluation is
detailed below.

5.4.1 Odometry Bias Calibration

In this experiment, we compare the PSO-based optimization [3] and the proposed
hypergraph optimization methods for calibrating odometry bias. We use the MAE metric
to indirectly compare the paths obtained by both odometry calibration methods against
the GPS measurements. A better odometry calibration should produce lower MAE values
as well the resulting path should better approximate the GPS measurements.

5.4.2 Map Building

In this experiment, for each log, we compare the estimated AV poses with the GPS
measurements using the MAE metric. Although the GPS sensor does not provide an ideal
ground truth, the GPS error is bounded and our current model uses RTK (Real Time
Kinematics) corrections, so we can use it to verify if the estimated AV poses stay inside
the GPS error. The quality of the grid maps is also visually verified using the coloring
scheme.

The experiment also shows an ablation to demonstrate the impact of disabling the
intra-session loop closures in the quality of the resulting grid maps.

5.4.3 Map Merging

In this experiment, we constructed a single map using the logs UB1, UB2, PLT1,
PLT2 and PLT3, to verify the merging capabilities of the proposed mapping system.

The experiment also shows an ablation to demonstrate the effects of disabling
either the inter-session loop closures or the new update rule of a grid map cell defined in
Eq. 4.35 in the quality of the resulting grid map.

53

6 Results and Discussions

The results of each experiment are discussed in details in the following sections.

6.1 Odometry Bias Calibration
Table 2 describes the results of the odometry bias calibration using the PSO-based

optimization [3] and the proposed hypergraph optimization methods.

Usually, both methods find relatively close values with an exception of the bϕmult in
the TRVL dataset. The TRVL experiment exposes the impact of the sensor synchronization
in the PSO as defined in the LEMS system. The LEMS approach finds the best odometry
bias and also computes the dead reckoning considering only the odometer readings that
are close in time to the LiDAR point clouds. This synchronization discards any additional
odometry data between the point clouds that would be useful for computing the statistics.
Differently, the new hypergraph approach obtains a path which is closer to the GPS when
all relevant odometer readings are used.

Although the calibration values are relatively close in the remaining datasets, the
corresponding paths are significantly different. This difference indicates how the dead
reckoning is sensitive to the odometry bias. In all cases the hypergraph based approach
have found better parameters since the recovered paths are closer to the GPS as indicated
by the lower mean absolute errors (MAE).

Fig. 21 compares the GPS, the raw odometry and the odometry bias calibration
in each dataset. The odometry calibration did not provide a substantial improvement in
the parking lots (PL1, PL2 and PL3) but the paths recovered with the values from the
hypergraph optimization are closer to the GPS than both raw odometry and PSO in all
experiments.

We may note that the calibration methods use a linear model that do not consider
the time variable. Therefore, it is not possible to handle any changes in the odometry bias
in the TRVL dataset using a single node in the hypergraph.

6.2 Large-Scale Environmental Mapping
Table 3 shows the mean absolute errors (MAE) between the GPS and the estimated

AV poses in each dataset. The lower MAE values indicate that the estimated AV poses
stay close to the GPS. We have not found any AV poses outside the GPS limits in any
experiment.

Chapter 6. Results and Discussions 54

Table 2 – Odometry bias calibration using PSO and hypergraph optimization

LOG Method bvmult bϕmult bϕadd MAE

UB1 PSO 1.03011 0.97289 −1.412×10−3 113.30952
Graph 0.99663 1.02816 −1.530×10−3 38.00164

UB2 PSO 0.99286 0.92143 0.499×10−3 198.21247
Graph 0.99647 1.00497 0.591×10−3 49.84211

PL1 PSO 0.99091 0.98748 0.447×10−3 5.61165
Graph 0.99990 0.99752 0.747×10−3 2.35632

PL2 PSO 1.00082 0.98382 0.354×10−3 3.47713
Graph 0.99675 0.99318 0.285×10−3 1.76424

PL3 PSO 0.98799 0.98748 0.542×10−3 2.08321
Graph 0.99350 1.00022 0.562×10−3 1.77525

TRVL PSO 0.97999 0.55000 −0.304×10−2 2.708×104

Graph 1.00059 0.98049 −0.305×10−3 3.809×103

Table 3 – Mean absolute error between GPS and AV poses.

LOG MAE
UB1 0.250718
UB2 0.349465
PL1 0.326562
PL2 0.177750
PL3 0.318511
TRVL 0.123439

Fig. 22(a) and Fig. 22(b) exemplify the AV poses obtained by the hypergraph
optimization in the UB1 log. The solid red line represents the GPS trajectory, the blue
dashed line represents the final AV poses and the black solid line represents the GPS error
limits. The results in the remaining datasets are very similar.

Fig. 23, Fig. 24, Fig. 25, Fig. 26, Fig. 26 and Fig. 28 present the occupancy grid
maps of each dataset. Since the size of the map generated by the TRVL dataset does
not allow a proper exhibition in small images, we decided to illustrate in Fig. 28 only a
zoomed region in the beginning of the travel.

Given that our new system exploits all relevant sensor data, additional filtering
strategies and LiDAR odometry, it was capable of handling the TRVL dataset and providing
the required grid maps to the Guarapari project.

Fig. 22(c) illustrates the effects of disabling the intra-log loop closures in UB1
dataset. The estimated AV poses contains undesired mismatches in the loop closure region
as these errors generate drifts in the grid maps. Fig. 29(a) illustrates the related drift and
misalignment errors in occupancy grid map of UB1 and Fig. 29(b) displays the final grid
map after activating the loop closures. The red color in the map indicates the first time
the AV has detected an obstacle and the green color indicates the detection of the same

Chapter 6. Results and Discussions 55

(a) (b)

(c) (d)

(e)
(f)

Figure 21 – Odometry calibration.
GPS, raw odometry and odometry calibration using PSO and the hypergraph

optimization. (a) UB1. (b) UB2. (c) PL1. (d) PL2. (e) PL3. (f) TRVL.

obstacle later in the same log. The misalignment almost disappears after activating the
intra-loop closures, this results demonstrate that the loop closures was crucial in the UB1
dataset. Fig. 29 also compares same effects in the remaining datasets. The TRVL dataset
does not contain any loop closure since it was a direct path from the university to another
city without revisited places.

6.3 Map Merging
We first illustrate the merging of the maps from Fig. 23 (UB1) and Fig. 24 (UB2)

without the external loops while also using 4.35. Fig. 30(a) illustrates the lack of a precise
common reference frame while merging the two maps. The red pixels are the obstacles

Chapter 6. Results and Discussions 56

(a) (b)

(c) (d)

Figure 22 – AV poses optimization.
AV poses optimization. (a) UB1 - GPS and AV poses. (b) Loop closure region. (c)

Toggling the intra-log loop closures (d) Final poses using all datasets.

Figure 23 – Occupancy Grid Map - UB1

found in the UB1 log and the green pixels are the obstacles in UB2. We can see the drift
between the logs through the curbs and buildings misalignment. The GPS measurements
already moved the grid maps to the same region but the accuracy of our GPS sensor
is not enough to provide the proper alignment. Similar errors occur when we merge the
remaining parking lots into the university beltway without the loop closures. Fig. 30(b)
illustrates the complete removal of the misalignment errors after activating the inter-log
loop closures between UB1 and UB2. Fig. 30(c) presents the final merged map including
all parking lots. Fig. 22(d) plots in the same reference frame all the optimized AV poses

Chapter 6. Results and Discussions 57

Figure 24 – Occupancy Grid Map - UB2

Figure 25 – Occupancy Grid Map - PL1

Figure 26 – Occupancy Grid Map - PL2

used to build the map in Fig. 30(c).

Fig. 31 compares the old and the new log-odds update functions in the mapping
process. The left image merges the two beltway logs with the usual update function 4.27
and the right image uses 4.35. The red and the green colors represents the obstacles found
respectively in the UB1 and UB2 logs. First, UB1 was used to build an intermediate map

Chapter 6. Results and Discussions 58

Figure 27 – Occupancy Grid Map - PL3

Figure 28 – Occupancy Grid Map - TRVL

which was later updated using the UB2 log. We can see the benefits of the new update
function in this particular case. The most noticeable error in Fig. 31(a) and absent in
Fig. 31(b) is a false positive obstacle trace generated by another vehicle in the UB2 log.
UB2 also contains many parked vehicles which are only visible Fig. 31(a). This difference
indicates that the new update function can help in the posterior map cleaning process.

Chapter 6. Results and Discussions 59

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 29 – Loop closure - Ablation experiments.
(a) UB1 without loop closure. (b) UB1 with loop closure. (c) UB2 without loop closure.
(d) UB2 with loop closure. (e) PL1 without loop closure. (f) PL1 with loop closure. (g)
PL2 without loop closure. (h) PL2 with loop closure. (i) PL3 without loop closure. (j)

PL3 with loop closure.

Chapter 6. Results and Discussions 60

(a)

(b)

(c)

Figure 30 – Final Map.
(a) Errors in the occupancy grid map when the inter-log loop closures are disabled (UB1
and UB2). (b) The errors are drastically reduced after enabling the inter-log loop closures

again (UB1 and UB2). (c) Complete map including all parking lots.

Chapter 6. Results and Discussions 61

(a) (b)

Figure 31 – Comparing the log-odds update functions.

62

7 Conclusions

In this work, we presented a new pose graph SLAM-based mapping system for
long-term map maintenance. The system uses multi-session data with the purpose of
building and updating grid maps for posterior autonomous navigation and localization.
The system deals with different types of sensors and can handle typical errors found in
noisy sensor data. A Pre-processing module removes undesired sensor measurements from
all input logs and a Hypergraph Builder module creates a hypergraph including appropriate
intra-session and inter-session loop closures. A Hypergraph Optimizer module receives the
hypergraph and applies several methods to estimate the AV poses from all sessions in a
global coordinate frame. Along with the poses estimation, the system also makes usage of
a new odometry bias calibration method in order to turn the odometry more reliable. The
optimized AV poses are consumed by the Mapper module which builds the final global
map. The mapper uses a custom method to temporary freeze highly observed cells in the
grid maps and so block high and low dynamics in the map merging process.

We evaluated the main features of the new system using datasets collected in the
vicinity of the university campus and in a specific travel to another city. The experiments
indicate that the new odometry bias calibration method surpass a previous PSO-based
odometry calibration available in the IARA platform. In the experiments, the system was
able to jointly maximize the likelihood of the AV poses from multiple sessions in a global
coordinate frame while also able to keep the estimated poses inside the GPS error limits.
In a series o ablation studies, we show that the system can build the local grid maps
without drifts by the virtue of the intra-session loop closures and can merge the submaps
into a global map using the inter-session loop closures. The ablation also indicates that
the new cell update rule applied in the map merging process can avoid undesired updates
in the current map and help in posterior map cleaning process.

While defining the error in Eq. 4.7, Kümmerle et al. [31] also generate a special
node N s in the hypergraph to represent the sensor pose s and hyperedges connecting N s

to the robot poses at Ni and Nj. The purpose of the new node and the new edges is to
find the 2D pose of the sensor in the robot coordinate frame directly in the hypergraph
optimization and the authors demonstrated good results for some laser scanner models in
real world experiments. We did not obtain same quality results for the Velodyne HDL-32E
in our AV, therefore we do not consider our system capable of calibrating the sensor
extrinsic. In a future work, we can investigate proper methods to calibrate the extrinsic of
our LiDAR and cameras.

63

Bibliography

[1] Cadena, Cesar, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, Jose
Neira, Ian Reid, and John J. Leonard: Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age. IEEE Transactions on
Robotics, 32(6):1309–1332, 2016.

[2] Badue, Claudine, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo,
Vinicius Brito Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago Paixão,
Filipe Mutz, Lucas Veronese, Thiago Oliveira-Santos, and Alberto Ferreira De Souza:
Self-Driving Cars: A Survey. arXiv e-prints, page arXiv:1901.04407, January 2019.

[3] Mutz, Filipe, Lucas Veronese, Thiago Oliveira-Santos, Edilson Aguiar, Fernando
[Auat Cheein], and Alberto De Souza: Large-scale mapping in complex field scenarios
using an autonomous car. Expert Systems with Applications, 46:439–462, March
2016.

[4] De Paula Veronese, L., J. Guivant, F. A. Auat Cheein, T. Oliveira-Santos, F. Mutz,
E. de Aguiar, C. Badue, and A. F. De Souza: A light-weight yet accurate localization
system for autonomous cars in large-scale and complex environments. In 2016 IEEE
19th International Conference on Intelligent Transportation Systems (ITSC), pages
520–525, 2016.

[5] Sarcinelli, Renan, Rânik Guidolini, Vinicius B. Cardoso, Thiago M. Paixão, Rodrigo
Ferreira Berriel, Pedro Azevedo, Alberto Ferreira de Souza, Claudine Badue, and
Thiago Oliveira-Santos: Handling pedestrians in self-driving cars using image tracking
and alternative path generation with frenét frames. Comput. Graph., 84:173–184,
2019.

[6] Possatti, Lucas, Ranik Guidolini, Vinicius Cardoso, Rodrigo Berriel, Thiago Paixão,
Claudine Badue, Alberto De Souza, and Thiago Oliveira-Santos: Traffic light recog-
nition using deep learning and prior maps for autonomous cars. pages 1–8, July
2019.

[7] Tabelini Torres, Lucas, Thiago Paixão, Rodrigo Berriel, Alberto De Souza, Claudine
Badue, Nicu Sebe, and Thiago Oliveira-Santos: Effortless deep training for traffic
sign detection using templates and arbitrary natural images. 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–7, July 2019.

[8] Cardoso, V., J. Oliveira, T. Teixeira, C. Badue, F. Mutz, T. Oliveira-Santos, L.
Veronese, and A. F. De Souza: A model-predictive motion planner for the iara au-

Bibliography 64

tonomous car. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 225–230, 2017.

[9] Guidolini, R., C. Badue, M. Berger, L. d. P. Veronese, and A. F. De Souza: A
simple yet effective obstacle avoider for the iara autonomous car. In 2016 IEEE
19th International Conference on Intelligent Transportation Systems (ITSC), pages
1914–1919, 2016.

[10] Guidolini, R., A. F. De Souza, F. Mutz, and C. Badue: Neural-based model predictive
control for tackling steering delays of autonomous cars. In 2017 International Joint
Conference on Neural Networks (IJCNN), pages 4324–4331, 2017.

[11] Multiple-Robot Simultaneous Localization and Mapping: A Review. Journal of Field
Robotics, 33(1):3–46, jan 2016.

[12] Bresson, Guillaume, Zayed Alsayed, Li Yu, and Sebastien Glaser: Simultaneous
Localization and Mapping: A Survey of Current Trends in Autonomous Driving. IEEE
Transactions on Intelligent Vehicles, 2(3):194–220, 2017.

[13] Deutsch, Isaac, Ming Liu, and Roland Siegwart: A framework for multi-robot pose
graph SLAM. 2016 IEEE International Conference on Real-Time Computing and
Robotics, RCAR 2016, pages 567–572, 2016.

[14] Sun, Yong, Rongchuan Sun, Shumei Yu, and Yan Peng: A Grid Map Fusion Algorithm
Based on Maximum Common Subgraph. In 2018 13th World Congress on Intelligent
Control and Automation (WCICA), volume 2018-July, pages 58–63. IEEE, jul 2018.

[15] Schuster, Martin J., Christoph Brand, Heiko Hirschmuller, Michael Suppa, and Michael
Beetz: Multi-robot 6D graph SLAM connecting decoupled local reference filters. IEEE
International Conference on Intelligent Robots and Systems, 2015-Decem(Iros):5093–
5100, 2015.

[16] Lazaro, M. T., L. M. Paz, P. Pinies, J. A. Castellanos, and G. Grisetti: Multi-robot
SLAM using condensed measurements. IEEE International Conference on Intelligent
Robots and Systems, pages 1069–1076, 2013.

[17] Kim, Been, Michael Kaess, Luke Fletcher, John Leonard, Abraham Bachrach, Nicholas
Roy, and Seth Teller: Multiple relative pose graphs for robust cooperative mapping.
Proceedings - IEEE International Conference on Robotics and Automation, pages
3185–3192, 2010.

[18] Mangelson, Joshua G., Derrick Dominic, Ryan M. Eustice, and Ram Vasudevan:
Pairwise Consistent Measurement Set Maximization for Robust Multi-Robot Map
Merging. Proceedings - IEEE International Conference on Robotics and Automation,
pages 2916–2923, 2018.

Bibliography 65

[19] Agarwal, P., G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard: Robust map
optimization using dynamic covariance scaling. In 2013 IEEE International Conference
on Robotics and Automation, pages 62–69, 2013.

[20] Olson, E, MWalter, S Teller, and J J Leonard: Single-cluster spectral graph partitioning
for robotics applications. In Proceedings of Robotics: Science and Systems, Cambridge,
USA, jun 2005.

[21] Einhorn, Erik and Horst Michael Gross: Generic NDT mapping in dynamic environ-
ments and its application for lifelong SLAM. Robotics and Autonomous Systems,
69:28–39, 2015.

[22] Bonanni, Taigo Maria, Bartolomeo Della Corte, and Giorgio Grisetti: 3-D Map
Merging on Pose Graphs. IEEE Robotics and Automation Letters, 2(2):1031–1038,
2017.

[23] Serafin, J. and G. Grisetti: Nicp: Dense normal based point cloud registration. In
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 742–749, 2015.

[24] Lázaro, María T., Roberto Capobianco, and Giorgio Grisetti: Efficient Long-term
Mapping in Dynamic Environments. IEEE International Conference on Intelligent
Robots and Systems, pages 153–160, 2018.

[25] Tanaka, Kanji: Deformable Map Matching to Handle Uncertain Loop-Less Maps.
Journal of Advanced Computational Intelligence and Intelligent Informatics, 22(6):915–
923, oct 2018.

[26] Jiang, Binqian, Yilong Zhu, and Ming Liu: A triangle feature based map-to-map
matching and loop closure for 2D graph SLAM. IEEE International Conference on
Robotics and Biomimetics, ROBIO 2019, pages 2719–2725, December 2019.

[27] Ding, Xiaqing, Yue Wang, Huan Yin, Li Tang, and Rong Xiong: Multi-session map
construction in outdoor dynamic environment. 2018 IEEE International Conference
on Real-Time Computing and Robotics, RCAR 2018, pages 384–389, 2019.

[28] Thrun, Sebastian and Michael Montemerlo: The graph SLAM algorithm with applica-
tions to large-scale mapping of urban structures. International Journal of Robotics
Research, 25(5-6):403–429, may 2006.

[29] Uhlman, Jeffrey: Dynamic map building and localization for autonomous vehicles.
PhD thesis, University of Oxford, 1994.

[30] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox: Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

Bibliography 66

[31] Kümmerle, Rainer, Giorgio Grisetti, and Wolfram Burgard: Simultaneous parameter
calibration, localization, and mapping. Advanced Robotics, 26(17):2021–2041, 2012.

[32] Smith, Randall, Matthew Self, and Peter Cheeseman: Estimating uncertain spatial
relationships in robotics. In Cox I.J., Wilfong G.T. (eds) Autonomous Robot Vehicles,
volume 1, pages 167–193. Springer-Verlag, July 1990.

[33] Bergman, Walter: The basic nature of vehicle understeer-oversteer. SAE Transactions,
74:387–422, 1966.

[34] Segal, Aleksandr, Dirk Hähnel, and Sebastian Thrun: Generalized-icp. June 2009.

[35] Almeida, J. and V. M. Santos: Real time egomotion of a nonholonomic vehicle using
lidar measurements. J. Field Robotics, 30(1):129–141, 2013.

[36] Józsa, O., A. Börcs, and Csaba Benedek: Towards 4d virtual city reconstruction from
lidar point cloud sequences. ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences, II-3/W1:15–20, May 2013.

[37] Thrun, Sebastian and John J. Leonard: Simultaneous Localization and Mapping, pages
871–889. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[38] Montemerlo, M., N. Roy, and S. Thrun: Perspectives on standardization in mobile
robot programming: the carnegie mellon navigation (carmen) toolkit. In Proceedings
2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2003) (Cat. No.03CH37453), volume 3, pages 2436–2441, 2003.

	Title page
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Objectives
	Contributions
	Organization

	Related Work
	Multi-Robot Single-Session
	Single-Robot Multi-Session

	Theoretical Background
	The Simultaneous Localization and Mapping Problem
	The GraphSLAM Algorithm
	GraphSLAM Overview
	Mathematical Derivation of GraphSLAM

	Occupancy Grid Mapping

	Large-scale Mapping System
	System Overview
	Pre-processing
	Hypergraph Building
	Odometry Edges
	GPS Edges
	Loop Closure Edges
	Odometry Calibration Edges
	Lidar Odometry Edges
	Simplified Semantic Segmentation

	Hypergraph Optimization
	Large-scale Environment Mapping
	Obstacle Detection
	Large-scale Map Merging

	Experimental Methodology
	IARA
	Sensor Data Logs
	Parameters

	Metrics
	Experiments
	Odometry Bias Calibration
	Map Building
	Map Merging

	Results and Discussions
	Odometry Bias Calibration
	Large-Scale Environmental Mapping
	Map Merging

	Conclusions
	Bibliography

