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Abstract
Conclusions in the field of multi-label learning are often drawn from experiments using real
benchmark datasets, which is a good practice for comparing results. However, it hardly
proves or clearly shows how dependencies among class labels impact on the performance
and behaviour of multi-label algorithms. A reasonable approach to tackle this issue consists
of adopting a mathematical or statistical formulation of the problem and using it to
elaborate theoretical proofs. Another approach consists of elaborating experiments in a
well-controlled environment where the dependence among labels can be easier controlled
and analyzed, which is the case for many works based on artificial datasets. Both approaches
are adopted in this thesis to understand the role of label dependence in multi-label learning.

The work done in this thesis is composed of several contributions regarding the analysis of
multi-label algorithms from a statistical perspective. One contribution is that calibrated
label ranking is an algorithm that can perform extremely poor in particular scenarios where
label dependence is present, due to the way that pairwise comparison of labels is done by
the algorithm. Another contribution is that the label dependence present in multi-label
learning makes the optimization of the expected coverage a NP-hard problem, even at
restricted conditions. Finally, a proposal is presented on how to build an experimental
environment where the label dependence can conveniently be controlled for comparing
performance among multi-label learning algorithms.





Resumo
Conclusões em aprendizado multirrótulo geralmente são tiradas através de experimentos
usando conjuntos de dados reais de referência, o que é uma boa prática ao comparar
resultados. No entanto, dificilmente demonstra ou mostra claramente como a dependência
entre rótulos afeta o desempenho e o comportamento de algoritmos multirrótulo. Uma abor-
dagem razoável para resolver tal problema consiste em adotar uma formulação matemática
ou estatística do problema e usá-lo para elaborar provas teóricas. Outra abordagem consiste
em elaborar experimentos em um ambiente controlado, onde a dependência entre rótulos
pode ser mais facilmente controlada e analisada, o que é o caso de muitos trabalhos
baseados em conjuntos de dados artificiais. Ambas abordagens são adotadas nesta tese
para entender o papel da dependência de rótulos na aprendizagem multirrótulo. O trabalho
realizado nesta tese é composto de várias contribuições à análise de algoritmos multirrótulo
em uma perspectiva estatística. Uma contribuição é que o método calibrated label ranking
é um algoritmo que pode ter um desempenho extremamente baixo quando empregado em
um cenário muito particular em que a dependência entre rótulos está presente, devido à
maneira como a comparação em pares de rótulos é feita pelo algoritmo. Outra contribuição
é que a dependência entre rótulos a otimização de coverage esperado é um problema
NP-difícil. Por final, é apresentada uma forma de criar um ambiente experimental em
que a dependência entre rótulos possa ser convenientemente controlada com o objetivo de
comparar o desempenho entre os métodos de aprendizado multirrótulo.
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1 Introduction

This chapter presents an overview of this thesis. It provides an introduction to
the main issues studied in Multi-label Learning (MLL), an important machine learning
scenario where objects are associated with multiple class labels simultaneously. MLL has
attracted attention from many fields, such as text classification, functional genomics, image
annotation and music categorization. The study of the MLL, although present for more
than 20 years (MCCALLUM, 1999), only recently has gained focus on the dependence
among labels.

In Section 1.1, the motivation of the thesis is presented as well as the context in
which it is inserted. Section 1.2 is dedicated to show the bibliography produced during the
doctorate. The chapter ends with Section 1.3, summarizing the structure of the rest of
this thesis.

1.1 Context and Motivation

According to Michalski, Bratko e Bratko (1998) machine learning is a field of
artificial intelligence whose objective is the development of algorithms related to learning
as also the development of systems capable of automatically acquiring knowledge. One of
its sub-fields is supervised learning where algorithms seek to learn a concept based on a
dataset composed of known objects. The concept being learned is the relation between
the features of an object and its classes or categories. Take as an example the problem of
discriminating the type of flower based on the length and width of its petals and sepals.
Here, the flower is the object of the problem, the length and width of its petals and sepals
are its main features and the type of flower is the class. As it can be seen, the objects being
studied (also called instances) in this field are usually represented by a set of features
(relevant aspects of an object) and by a set of classes. To learn the desired concepts, the
algorithm uses training examples whose classes are already known. The class, also called
label, plays a decisive role in supervised learning. In many situations, the instance can only
be associated to a single label. In many other situations, the instance can be associated
within multiple labels simultaneously. This thesis works with the latter case where the
problem is formally defined as Multi-Label Learning (MLL) (TSOUMAKAS; KATAKIS;
VLAHAVAS, 2010). MLL is well-known for the extensive number of label combinations
a single object can have, which is exponential with respect to the number of possible
labels. MLL problems appear in many fields, relevant works are found in bioinformatics,
medical diagnosis, image recognition and specially in text categorization (TSOUMAKAS;
KATAKIS, 2007; CARVALHO; FREITAS, 2009).
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One of the main issues in MLL is the analysis of the impacts of dependencies
among labels (DEMBCZYŃSKI et al., 2012; DEMBCZYŃSKI et al., 2013). Although
theoretical observations about the impacts are desired, they are present in just a few
studies due to the high difficulty that comes from the large number of variables to be
considered (DEMBCZYŃSKI; CHENG; HÜLLERMEIER, 2010; DEMBCZYŃSKI et
al., 2012; WAEGEMAN et al., 2014; MELLO et al., 2019). In order to proceed with
a theoretical analysis in MLL, a mathematical formulation of the problem it is highly
desired, such that it enables researches to easily apply mathematical tools of proofing.
For this purpose, Dembczyński, Cheng e Hüllermeier (2010) elaborated a probabilistic
framework in which concepts in MLL are mathematically formulated. Several concepts
and variables in MLL are abstracted, supporting the elaboration of analyses and formal
tests, without loss of generalization. Therefore, this framework is adopted in this thesis as
a base formulation of MLL. Even so, finding mathematical proofs are still a challenging
task and useful in this field. This motivates Chapter 3 and Chapter 4.

When focusing on the impacts of the dependence among labels, if no mathematical
proof is presented, studies usually present conclusions based on experiments on artificial
datasets instead (TOMÁS et al., 2014; NOH; SONG; PARK, 2004). Generally, the analysis
consists of testing several multi-label algorithms in two different types of artificially
generated databases, one with a high dependency between labels and the other with a low
dependency. Based on the results of the performance of the algorithms, several conclusions
are drawn. This work highlights one problem with these analyses: the absence of a metric
for quantifying the intensity of the dependence among labels. Without this measure, it is
not easy to compare methods and results from distinct authors since it is hard to know
whether a dataset created by an author has the same level of dependence among labels
as in a dataset of another author. This motivates this work for defining a measure that
quantifies the level of dependence among labels of a probability distribution, alongside
with a framework for using it to understand the impacts of label dependence on multi-label
algorithms. The details of this work are found in Chapter 5.

1.2 Bibliographic production

This section lists papers produced for journals and conferences during the doctoral
period. From a total of four works produced, one was published in an international journal,
one was published in an international conference, and two are in the process of revision in
international journals. References to the papers are listed below.

• MELLO, L. H. S. et al. NP-hardness of minimum expected coverage. Pattern
Recognition Letters, v. 117, p. 45 – 51, 2019. (MELLO et al., 2019)
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• MELLO, L. H. S. et al. Metric learning for electrical submersible pump fault diagnosis.
In:International Joint Conference on Neural Networks 2020. 2020. (MELLO et al.,
2020)

• MELLO, L. H. S.; VAREJÃO, F. M.; RODRIGUES, A. L. An experimental frame-
work for evaluating loss minimization in multi-label classification via stochastic
process. Knowledge-Based Systems journal. submetido à publicação.

• MELLO, L. H. S.; VAREJÃO, F. M.; RODRIGUES, A. L. A worst case analysis
of calibrated label ranking multi-label classification method. Journal of Machine
Learning. submetido à publicação.

1.3 Structure
The content of this thesis starts with a literature review of multi-label learning

(MLL) in Chapter 2, where a formal definition and a statistical perspective of MLL are
given. The contributions of this thesis are divided in Chapters 3, 4 and 5. Each chapter
presents a distinct way of tackling the problem of analysing the impacts of label dependence
in MLL, and, in the end, draws its own conclusions about its results.

Chapter 3 shows that the presence of label dependence makes an optimization
of a specific MLL problem NP-hard, even in a restricted scenario. Chapter 4 presents
mathematical proofs with respect to the performance of two very related multi-label
methods, calibrated label ranking and ranking by pairwise comparison, in the worst case
scenarios with high and low label dependence. In Chapter 5 an experimental framework
based on a stochastic process with the main purpose of measuring quantitatively the effects
of label dependence on the performance of various multi-label algorithms is shown. After
conclusions are drawn at the end of each chapter, the final chapter (Chapter 6) presents
overview conclusions with respect to the thesis as a whole.
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2 Multi-label Learning

This chapter presents the concepts and literature review about multi-label learning
that are useful for understanding the thesis. When referring to Multi-Label Learning
(MLL), authors often refer to a field that contains Multi-Label Classification (MLC) and
label ranking (TSOUMAKAS; KATAKIS; VLAHAVAS, 2010). In MLC the objective is to
predict the labels that an object belongs to while in Label Ranking, the objective is to
produce a ranking of all labels. Note that label ranking produces a preference among all
labels while MLC produces a bipartition where preferences are made only from one group
to another. They are also different in the number of possible solutions: In label ranking,
there are n! possible rankings, while in MLC, there are 2n.

This chapter includes material from MLC, MLR, loss minimization, multi-label
metrics and multi-label algorithms. It starts with a formal definition and a statistical
perspective of MLL and then proceeds to describe all common multi-label methods, in
Section 2.1, and all common multi-label metrics, in Section 2.2. And finally, Section 2.3
consists of information on the optimization of multi-label metrics.

Let X denote a feature space and L = {`1, `2, `3, ...`n} be a set of labels with
n = |L|. An instance is defined as a pair of two vectors (x,y) where x ∈ X and y is a
labelling (combination of labels) represented by binary vector y = (y1, y2, ..., yn) such that
yi = 1 only if the respective instance is associated to label `i. Let Y = {0, 1}n denote the
set of all possible labellings of n labels.

It is assumed that labellings are distributed according to a conditional probability
distribution P(Y|X) where X is a random vector defined in X and Y is a random vector
defined on Y. This means that for a specific feature vector x ∈ X , each labelling y ∈ Y
occurs with a probability of P(Y = y|X = x) 1. For simplification, the given feature vector
will be omitted. Therefore, in the rest of the work, assume x is always given. Also let P(i),
for an arbitrary distribution P of Y, be defined as the marginal distribution of label i,
that is,

P(i) =
∑

y∈Y:yi=1
P(Y = y).

The label cardinality of a multi-label problem (or dataset) is the average number
of relevant labels per object/instance, i.e, ∑n

i=1 P(i), while the label density is the label
cardinality divided by n: 1

n

∑n
i=1 P(i).

The risk of a multi-label method h and feature vector x ∈ X is defined as the

1 P(Y = y|X = x) stands for the conditional probability that an instance has labelling y, given its
feature vector x.
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conditional expected loss given by

RL(h,X) = EY|XL(Y,h(X))

=
∑
y∈Y

L(y,h(X)) ·P(Y = y|X), (2.1)

where P(Y = y|X) represents the conditional probability of Y given a feature vector X
and L(·) is a loss function on multi-label predictions.

The regret of a multi-label method h with respect to a loss function L is defined
as

rL(h,x) = RL(h,x)−RL(h∗,x), (2.2)

where h∗ is a Bayes-optimal method that yields the minimum loss for L. The feature
vector will be omitted in the rest of this thesis. In regret, it is common the idea of h
making mistakes with respect to h∗. The idea of comparing h to h∗ and associating the
differences among them as mistakes, is a useful concept for the regret analysis. If it is
a MLC problem, then a mistake would be hi 6= h∗i . Analogously, if it is a label ranking
problem, then let be defined the misorder of a rank z on a pair of labels (i, j) with respect
to an optimal rank z∗ when zi > zj and z∗i < z∗j .

In most practical cases, the distribution P is unknown. However, sometimes,
especially in theoretical analysis, the distribution of labels P is assumed to be known and
given. In these cases, the risk at (2.1) can be redefined to

RL(h,x) =
∑
y∈Y

L(y,h(P)) ·P(Y = y|X = x), (2.3)

where h is a function that predicts a labelling based on the distribution of labels. In
this scenario, multi-label method h from (2.1) and multi-label method h from (2.3) are
essentially different, but can share similar ideas or computations. This difference and
similarities are discussed in the next section.

2.1 Multi-label methods
A multi-label method h can be a multi-label classifier or a multi-label ranker. A

multi-label classifier predicts a labelling, in which h : X → Y, and for a given instance
x ∈ X it returns a vector h(x) = (h1(x), h2(x), ..., hn(x)), where hi represents the pres-
ence/absence of label i. A multi-label ranker h predicts a ranking, in which h : X → Sn,
where Sn, representing the set of all possible rankings, is the set of all permutations of
{1, ..., n}. In this case, hi(x) denotes the rank of label i for a given instance x ∈ X .

A binary classifier is usually defined as a function that predicts positive/negative
classes given an observation f : X 7→ {0, 1}. However, some binary classifiers can also
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predict an estimate of the probability distribution of the target label. They are called prob-
abilistic classifiers and usually they estimate the conditional probability P(Y = 1|X = x)
for some fixed label Y . Consequently, they can be written as a function from the feature
space to a probability value: g : X 7→ [0, 1]. For these classifiers, the final prediction can be
rewritten as a function of the estimated conditional probability: h : [0, 1] 7→ {0, 1}, so that,
f(x) = h(g(x)). For instance, g can be a trained logistic regression classifier of the form

g(x) = 1
1 + e−θ·x

,

where θ ∈ Rn are trained parameters, and h can be a threshold function of the form

h(P) =

1, if P(Y = 1|X = x) > λ

0, otherwise,

where λ ∈ [0, 1] is a desired threshold value (usually 1/2) that can also be estimated. Note
that g(x) is an estimate of the conditional probability and, therefore, can propagate errors
to the prediction of the label presence/absence, even if h is a perfect optimized function.

Analogously, one can define a probabilistic multi-class classifier as h(g(x)) where
g : X 7→ [0, 1]n represents a mapping to n probability values P(Yi = 1|x), one for each
label, and h : [0, 1]n 7→ L represents the prediction of a label in L. Also, one can define a
probabilistic multi-label classifier as h(g(x)) where g : X 7→ [0, 1]2n represents a mapping
to 2n probability values P(Y = y|x), one for each combination of labels y ∈ Y, and
h : [0, 1]2n 7→ Y represents the actual prediction of a labelling in Y. This is illustrated
in Figure 1, where an induced model first produces an estimate of the label probability
distribution, and then a predicted labelling is made. For instance, one can use the Label
Powerset strategy (TSOUMAKAS; KATAKIS; VLAHAVAS, 2010; ZHANG; ZHOU, 2013):
transform a multi-label problem of n labels into a multi-class problem of 2n classes, where
each class represents a combination of labels in Y , and then using any probabilistic multi-
class classifier g to estimate the whole joint probability distribution. Function h can then
be the mode of the estimated probability distribution:

h(P) = argmax
y∈Y

P(Y = y|X = x).

In practice, many probabilistic multi-label classifiers do not use the whole probability
distribution P(Y|X = x) of 2n values, so they only estimate part of it. Details and
algorithms about estimating the whole label distribution are presented by Dembczyński,
Cheng e Hüllermeier (2010), Geng (2016), Jia et al. (2018), Wang e Geng (2019), Sun e
Kudo (2018), where authors present and evaluate algorithms for learning label distributions.

In the present thesis, only the second part (function h) is taken into consideration
when analysing a specific multi-label method. The rest of this section defines the second
part (function h) of five multi-label classifiers: Binary Relevance (BR)(TSOUMAKAS;
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Training 
Dataset

Testing example

Induced Model Estimated 
Probability Distribution

Predicted Labelling

Training phase

Y2 Y3

Prediction phase

Figure 1 – Illustration of a multi-label probabilistic classifier. The training phase is respon-
sible for building an induced model based on a given training dataset, while
the prediction phase is responsible for predicting a labelling based on a label
probability distribution of a giving testing example.

KATAKIS, 2007), Classifier Chains (CC)(READ et al., 2009), Dependent Binary Relevance
(DBR)(MONTAÑES et al., 2014), Probabilistic Classifier Chains (PCC)(DEMBCZYŃSKI;
CHENG; HÜLLERMEIER, 2010) and Calibrated Label Ranking (CLR) (FÜRNKRANZ
et al., 2008).

2.1.1 Binary Relevance

A widely used transformation method is the Binary Relevance (BR) approach
(TSOUMAKAS; KATAKIS; VLAHAVAS, 2010), in which a binary classifier is trained for
each label independently. It transforms the original problem into n binary classification
problems where the positive label in the i-th problem is the label i while all other labels
are viewed as negative. At the end, BR predicts a label as positive if its corresponding
binary classifier gives a positive output. Therefore, from a probabilistic perspective, the
prediction done by BR for label yi, call it yBR

i , is given by:

yBR
i = argmax

`∈{0,1}
P(Yi = `). (2.4)

2.1.2 Dependent Binary Relevance

Other well-known transformation method is The Dependent Binary Relevance
(DBR) (MONTAÑES et al., 2014) extends BR to consider label dependencies. It first
predicts a labelling in the same way as BR, then it uses n new binary classifiers, one for
each label, to predict a new labelling based on the labelling given by BR. The i-th binary
classifier assumes that all labels given by BR are all correct, except for the label i which
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may be changed given the new information (all other labels). Hence, the prediction done
by DBR is given by

yDBR
i = argmax

`∈{0,1}
P(Yi = `|

∧
1≤j≤m:j 6=i

Yj = yBR
j ).

2.1.3 Classifier Chains

Inspired by the simplicity and computational efficiency of the BR method, The
Classifier Chains (CC) method also transforms the original problem into n binary clas-
sification problems, each one with its corresponding binary classifier. Unlike BR, the
binary classifiers composing CC do not predict independently. These binary classifiers are
organized in a chain (randomly defined) such that the i-th binary classifier assumes the
output prediction of all its previous classifiers are correct and uses them to make its own
prediction. Hence, the prediction done by CC is given by

yCC
1 =yBR

1

yCC
i = argmax

`∈{0,1}
P(Yi = `|

∧
1≤j<i

yj = yCC
j ), i ≥ 2.

The purpose of chaining classifiers and their output is to consider label dependencies in
order to achieve better performance, while maintaining the simplicity and computational
cost of BR.

2.1.4 Probabilistic Classifier Chains

The method Probabilistic Classifier Chains (PCC) (DEMBCZYŃSKI; CHENG;
HÜLLERMEIER, 2010) is an expansion of the CC. Instead of using only the joint
probability of a single labelling y as CC, PCC uses the probability of all 2n possible
labellings and then predicts the most probable. Therefore, the prediction done by PCC is
given by the mode of the label distribution:

yPCC = argmax
y∈Y

P(Y = y).

The PCC method estimates the label distribution by using the product rule of probability
and an augmented input feature space:

Px(Y = y) = Px(Y1 = y1) ·
n∏
i=2

Px(Yi = yi|Y1, ..., Yi−1),

≈ g1(x) ·
n∏
i=2

gi(x, y1, ..., yi−1),

where gi : X × {0, 1}i−1 is the augmented input feature space and it takes y1, ..., yi−1 as
additional features.
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2.1.5 Label Powerset

Like PCC, the Label Powerset method (TSOUMAKAS; KATAKIS; VLAHAVAS,
2010) also predicts the mode of the label distribution, since it predicts the combination
of labels with the highest probability. Both these algorithms computes their prediction
in exponential time O(2n). The difference between them lies on how they estimate the
label distribution. While PCC uses an augmented input feature space, Label Powerset
transforms each combination of labels into a distinct class and then uses a probabilistic
multi-class classifier.

2.1.6 RAKEL

RAKEL (TSOUMAKAS; KATAKIS; VLAHAVAS, 2010) is a multi-label method
inspired in the Label Powerset method. Defining RAKEL is easier when using the set
definition of a labelling (` ⊆ L) than using the binary vector definition (y ∈ Y). Given an
integer k divisor of n as parameter2, RAKEL defines a random partition of n/k subsets
L1 ∪ ... ∪ Ln/k = L such that |Li| = k for all i. Then the prediction of RAKEL, given the
probability distribution of labels, is

Lrakel = argmax
`⊆L1

P(L = `|X = x) ∪ argmax
`⊆L2

P(L = `|X = x) ∪ ...

∪ argmax
`⊆Ln/k

P(L = `|X = x)

Note that for k = 1 RAKEL is identical to BR, and for k = n it is identical to Label
Powerset.

2.1.7 F-measure optimizer

An efficient exact algorithm for optimizing F-measure is given by Dembczyński et
al. (2013), where n2 parameters of the probability label distribution are used. Let pik, for
1 ≤ i ≤ n and 1 ≤ k ≤ n, be defined as

pik =
n∑
s=1

P(Yi = 1|S = s)
s+ k

,

where S = ∑n
i=1 Yi, i.e, the number of positive labels. P(Yi = 1|S = s) can be read as the

probability of having the i-th label, giving that there are s positive labels. Sort labels such
that p11 ≥ p21 ≥ p31 ≥ · · · ≥ pn1. The number of positive labels in the prediction of the
optimizer is given by k∗:

k∗ = argmax
k∈{0..n}

pk, (2.5)

2 For simplicity, parameter k was assumed to be a divisor of n. The equation regarding RAKEL can be
easily generalized to any integer 1 ≤ k ≤ n.
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where

pk =


∑k
i=1 pik, if k ≥ 1,

P(Y = 0), if k = 0.

Finally, the prediction of the optimizer is given by making the first k∗ labels positive (after
the sort above) and the others negative.

2.1.8 Ranking by pairwise comparison

Ranking by pairwise comparison (RPC) is a multi-label method composed of n(n−1)
2

binary classifiers, with the purpose of building a ranking for a given instance. The ranking
is built by first giving a score si for each label i. The score is computed by a pairwise
preference scheme where there exists a binary classifier for each distinct pair of labels (say
i and j) whose task is to distinguish the occurrence of label i and label j when assuming
that only one of both occurs. Therefore, each classifier outputs its preference towards one
of the two labels. A pseudo code for training RPC is presented in Algorithm 1 and the
computation of the score of a single label is presented in Algorithm 2.

Data : Training data set of m samples D = {(x1,y1), · · · , (xm,ym)}
Result : Trained binary classifiers cij for 1 ≤ i ≤ n, 1 ≤ j ≤ n and i 6= j.

1 for each pair of labels i, j do
2 D′ := {(x,y) ∈ D : yi = 1 and yj = 0}
3 D′ := {(x, 1) : (x,y) ∈ D′} // replace all labellings with a 1,

representing the positive class.
4

5 D′′ := {(x,y) ∈ D : yi = 0 and yj = 1}
6 D′′ := {(x, 0) : (x,y) ∈ D′′} // replace all labellings with a 0,

representing the negative class

7 cij := train_binary_classifier(D′ ∪D′′) // Binary classification
problem.

8 end
Algorithm 1 : Algorithm for training RPC.

Input :Trained binary classifiers cij for all j 6= i.
Result : Score s ∈ N

1 s := 0
2 for each label j different of i do
3 ` = predict_label(cij, x) // Function predict_label returns

1 if i is predicted positive,
otherwise 0.

4 s := s+ ` // +1 if i is predicted positive by cij.
5 end

Algorithm 2 : Scoring a single label i in RPC.
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Given this definition, let RPC be defined as a ranking method that prefers label i
to label j if si > sj, where si is computed by

si =
∑
k 6=i

[[P(Yi = 1, Yk = 0|Yi = 1⊕ Yk = 1) > 0.5]],

where (Yi = 1 ⊕ Yk = 1) means Yi = 1 or Yk = 1 exclusively and [[e]] is the Iverson
brackets, which evaluates to 1 if expression e is true, 0 otherwise. The probability is
conditioned on Yi = 1 ⊕ Yk = 1, because in Algorithm 1, the binary classifier cij is
trained on D′ ∪D′′ (Line 7), which is equivalent to {(x,y) ∈ D : yi = 1 ⊕ yj = 1}, but
replacing all labellings y with a 1 when yi = 1, and with a 0 when yj = 1. Therefore, the
value [[P(Yi = 1, Yk = 0|Yi = 1 ⊕ Yk = 1) > 0.5]] corresponds to the vote given by the
binary classifier responsible for distinguishing the presence of label pair (i, k). It is worth
mentioning that P(Yi = 1, Yk = 0|Yi = 1⊕ Yk = 1) can be rewritten as:

P(Yi = 1, Yk = 0|Yi = 1⊕ Yk = 1) = P(Yi = 1, Yk = 0)
P(Yi = 1, Yk = 0) + P(Yi = 0, Yk = 1) ,

which is sometimes a more convenient form for calculating this conditional probability.

There may exist cases in which Yi = 1 ⊕ Yk = 1 never occurs. In practice, this
would mean that the binary classifier responsible for distinguishing label i from k would
be trained on an empty dataset. In this case, usually a value from {0, 1

2 , 1} (
1
2 is the most

frequent choice) is arbitrarily adopted for [[P(Yi = 1, Yk = 0|Yi = 1 ⊕ Yk = 1) > 0.5]].
Whatever the choice, as long as,

P(Yi = 1, Yk = 0|Yi = 1⊕ Yk = 1) + P(Yi = 0, Yk = 1|Yi = 1⊕ Yk = 1) = 1,

is satisfied, which is already true for P(Yi = 1⊕ Yk = 1) 6= 0, the proofs in this thesis are
valid.

2.1.9 Calibrated Label ranking

Calibrated label ranking (CLR) is an adaptation of RPC for MLC. It adds an
artificial label for constructing a bi-partition (a.k.a classification). The score of the artificial
label is given by n binary classifiers that are identical to the n binary classifiers of BR
method, as pointed out by Fürnkranz et al. (2008). The artificial label represents the
“negative label” inside the one-against-all strategy of BR. A label is said to be positive or
relevant if the score si, as defined above, is greater than the score of the artificial label.
Note that now the score si should also include the artificial label. Therefore, CLR is a
classifier that predicts label i as positive only if

∑
k 6=i

[[P(Yi = 1, Yk = 0|Yi = 1⊕Yk = 1) > 0.5]] + [[P(Yi = 1) > 0.5]] >
n∑
k=1

[[P(Yk = 0) > 0.5]].
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The summation on the right-hand side of the inequality counts the number of votes
in favor of the calibrated/artificial label and [[P(Yi = 1) > 0.5]] corresponds to the vote
given by a one-against-all classifier (see the BR method). Observe that, although CLR
is trained on Yi = 1⊕ Yk = 1, the algorithm can output multiple positive labels. It will
usually output multiple positive labels if ∑n

k=1[[P(Yk = 0) > 0.5]] is low, i.e, if the label
cardinality is high.

Although the name CLR is often used in the literature to describe its ranking and/or
classification components, in this document the name RPC will be used to emphasize the
ranking component while CLR to emphasize its multi-label classification component. For
the sake of simplicity, define function f(P, i, j) as

f(P, i, j) =

P(Yi = 1, Yj = 0|Yi = 1⊕ Yj = 1), if i 6= j

0, if i = j,

so that, the CLR prediction of label i can be redefined as:
n∑
j=1

[[f(P, i, j) > 0.5]] + [[P(Yi = 1) > 0.5]] >
n∑
j=1

[[P(Yj = 0) > 0.5]],

and the RPC preference of i over j can be redefined as:
n∑
k=1

[[f(P, i, k) > 0.5]] >
n∑
k=1

[[f(P, j, k) > 0.5]].

The versions where both CLR and RPC use the probability values as weights for voting
are respectively expressed as

n∑
j=1

f(P, i, j) + P(Yi = 1) >
n∑
j=1

P(Yj = 0), (2.6)

and
n∑
k=1

f(P, i, k) >
n∑
k=1

f(P, j, k). (2.7)

Note that the scores given by RPC and CLR to label i are respectively defined as

si =
n∑
k=1

f(P, i, k), (2.8)

and
si =

n∑
j=1

f(P, i, j) + P(Yi = 1). (2.9)

2.2 Multi-label metrics
Multi-label metrics are used to quantify the quality of predictions or the cost for

inaccuracy of predictions. When a metric quantifies the error, it is called a loss function,
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otherwise it is called a utility function. In multi-label learning, a loss function is a function
L(·) of the target labelling y, which is the correct labelling, and the predicted output of a
multi-label method h. The loss function L(·) associates a cost to the prediction. As defined
in Section 2.1, the predicted output of a multi-label method can be a labelling, denoted by
ŷ = (ŷ1, ŷ2, ..., ŷn), or it can be a ranking, denoted by z = (z1, z2, ..., zn), where zi is the
ranking of label i. Therefore, a classification based loss function is defined as a mapping
L : Y × Y → R+ for classification and ranked based loss function L : Y ×S→ R+, where
S is the set of all permutations of {1, ..., n}. The metric Hamming loss is a function of
a classification which is defined as the fraction of labels whose presence is incorrectly
predicted:

LH(y, ŷ) = 1
n

n∑
i=1

[[yi 6= ŷi]]

where [[e]] is the Iverson brackets, evaluating to 1 if expression e is true, 0 otherwise. Other
common loss function is the subset 0/1 loss, which detects a strict coincidence of the
actual and estimated labels as

Ls(y, ŷ) = [[y 6= ŷ]].

More elaborate loss functions are the loss version of the F-measure and the Jaccard
distance given respectively by

Lf (y, ŷ) = 1− 2∑n
i=1 yiŷi∑n

i=1 (yi + ŷi)

and
Lj(y, ŷ) = 1−

∑n
i=1 yiŷi∑n

i=1 (yi + ŷi)−
∑n
i=1 yiŷi

.

Note that the formula for both F-measure loss and Jaccard distance are quite similar.
Indeed, both metrics share a close relation as one can be obtained from the other:

Lj(y, ŷ) = 2 Lf (y, ŷ)
1 + Lf (y, ŷ) .

Since Lf (y, ŷ) ≤ 1, it follows that

Lj(y, ŷ) ≥ Lf (y, ŷ), ∀y, ŷ ∈ Y . (2.10)

A simple metric that takes into account a rank is the rank loss, which is defined as

Lr(y, ẑ) =
∑

(i,j):yi>yj

[[ẑi < ẑj]].

The normalized rank loss is defined as

Lr̂(y, ẑ) = Lr(y, ẑ)
sy(n− sy) ,
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where sy = ∑n
i=1 yi.

These metrics are the most common in the multi-label scenario, and they will be
used to analyze the performance of CLR. Two metrics from the preference learning field
are the squared rank distance

Lsrd(z, ẑ) =
n∑
i

(zi − ẑi)2

and the Spearman rank correlation3 (Hüllermeier; Furnkranz, 2004). The Spearman rank
correlation is defined as the Pearson correlation between the ranked values of two variables.
In the context of preference learning, the Spearman rank correlation can be obtained by
the following formula

1− 6Lsrd(z, ẑ)
n(n2 − 1) .

The Spearman rank correlation can be interpreted as a linear normalization of the squared
rank distance to the interval [−1, 1].

The loss function named coverage (SCHAPIRE; SINGER, 2000) is another that
takes a rank and a labelling into account, and we define as the rank of the last relevant
label in the ranked list, i.e the rank of the label with the highest rank that is relevant:

Lc(y, z) = max
i:yi=1

(zi). (2.11)

The special case in which there is no relevant label (i.e y = 0n), coverage evaluates to 0.
Usually, coverage is defined as our above definition, but 1 subtracted, i.e Lc(y, z)− 1. The
reason behind the minus 1 is that they assume labellings with all zeroes (i.e, no relevant
label) do not occur and then subtract 1 so that the minimum possible coverage is zero.
The search length (CHEN; KARGER, 2006) is similar to coverage, and it is defined as the
rank of the first (instead of the last) relevant label in the ranked list. Despite the fact that
it is commonly used for document ranking (COOPER, 1968; CHEN; KARGER, 2006), it
can also be used for multi-label learning. It is formally defined as

L`(y, z) = min
i:yi=1

(zi). (2.12)

The special case in which there is no relevant label (i.e y = 0n), search length evaluates to
0.

2.3 Optimal Risk and Regret
This section presents a brief review and definitions on optimal solutions for the

risk minimization and the regret of some metrics defined in Section 2.2. These definitions
will be quite useful for Chapter 4 and Chapter 5.
3 Spearman rank correlation in the preference learning and multi-label ranking field is a utility function.

The higher, the better.
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The task of risk minimization is finding a model f∗ that minimizes function R for
Equation (2.1):

f∗ = argmin
f

RL(f ,x).

The argminf is not “friendly”, since it consider the universe of all functions of x mapping
to a labelling. If the probability distribution P is given, as assumed in Equation 2.3, then
the optimal solution y∗ is much simpler:

y∗ = argmin
y∈Y

RL(y,x).

Hence, the optimal solution can clearly can be achieved by an exhaustive search, which
is testing all 2n possible labellings for classification, or testing all n! rankings for label
ranking, but the minimum should be obtained efficiently (in polynomial time, if possible).
In general, this is NP-hard as it contains a particular instance of risk minimization of the
Jaccard distance, proved to be NP-complete (CHIERICHETTI et al., 2010). Therefore,
efficient algorithms are only designed for specific metrics where specific properties can be
exploited, which is the case of Hamming loss, F-measure and rank loss (DEMBCZYŃSKI
et al., 2012).

The authors Cheng, Hüllermeier e Dembczyński (2010) the authors proved that
the optimal labelling y∗ for the risk of a Hamming loss can be obtained by just looking at
the marginal distribution of labels, and it is given by

y∗i =

1, if P(i) > 1
2 ,

0, if P(i) ≤ 1
2 .

(2.13)

The authors Dembczyński et al. (2012) have shown that one optimal labelling y∗

for the risk of subset 0/1 loss is given by the mode of the distribution:

y∗ = argmax
y

P(y).

Interestingly, they showed that the optimal expected Hamming loss may give the worst
case regret of 1/2 in subset 0/1 loss. Furthermore, the optimal expected subset 0/1 loss
solution may give a regret as closely as possible to 1, with respect to Hamming loss.

The same authors Dembczyński et al. (2012) have also shown that to achieve
optimal ranking z∗ in rank loss, it is sufficient to order the labels with respect to their
marginal distribution:

z∗i < z∗j ⇐⇒ P(i) > P(j).

Interestingly, the regret of rank loss can be obtained by just summing the difference
P(i) − P(j) of all pairs (i, j) with misorder (DEMBCZYŃSKI; KOTŁOWSKI; HÜLLER-
MEIER, 2012):

rr(z) =
∑

(i,j):z∗i <z
∗
j

[[zi > zj]]
(
P(i) −P(j)

)
. (2.14)
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Regarding the normalized rank loss, let smax be defined as

smax = max
y:P(y)>0

sy(n− sy),

it is easy to see that
Rr̂(z) ≥ Rr(z)

smax
(2.15)

The authors Hüllermeier e Furnkranz (2004) proved that the ranking constructed by
RPC is optimal for squared rank distance and, consequently, for Spearman rank correlation.
Part of the pairwise approach adopted by RPC is essentially learning the preference of
one label over another, which may be one of the reasons why this approach is optimal for
Spearman rank correlation.
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3 Optimal Risk of Coverage

It is convenient to known how to obtain the optimal solution for specific metrics to
advance in the analysis of label dependencies in multi-label learning. To this end, an analysis
was conducted to determine how to obtain the optimal solution for the expected value of
coverage, the only metric among the chosen ones whose properties on the optimal solution
are unknown. Since coverage focus on covering all relevant labels, it may be an important
measure for applications requiring a low false negative value (SOROWER, 2010). For
instance, coverage can be important in active learning (SETTLES, 2009), where unlabelled
objects are ranked according to their relevance for being analyzed/labelled by a human
specialist. For simplicity, lets say the human specialist analyze the unlabelled objects in a
certain order given by an algorithm until he finds all relevant objects. If all relevant objects
are ranked first, it reduces the human work by removing irrelevant objects from its analysis.
Coverage is also usually used as a measure for comparing algorithms (MADJAROV et
al., 2012; SCHAPIRE; SINGER, 2000; ZHANG; ZHANG, 2010). Therefore, finding an
efficient and exact algorithm for minimizing coverage or proving that such an algorithm is
too hard to find (NP-hard) is a topic of scientific interest.

A simple exact algorithm, but not quite efficient, for minimizing the expected
coverage is testing all possible n! rankings. Unless n is pretty small, this is not tractable
by a modern computer. The main concern here is to discover an algorithm capable
of always computing the optimal ranking for coverage efficiently, ideally in polynomial
time. Unfortunately, this is a challenging task and such algorithms were only found for
specific loss functions in specific cases, such as F-measure, Hamming loss and rank loss
(DEMBCZYŃSKI; CHENG; HÜLLERMEIER, 2010; DEMBCZYŃSKI et al., 2013). On
the other hand, for some loss functions, it has been proved that such an algorithm does
not exist unless P=NP, even for very specific cases. An example is a particular instance of
risk minimization of the Jaccard distance, proved to be NP-complete (CHIERICHETTI
et al., 2010).

In this present chapter a proof that optimizing the risk of coverage (a.k.a minimum
expected coverage) is NP-hard, is shown. Moreover, it shows that even assuming a
very particular case where all instances have exactly two labels, computing the minimum
expected coverage is still NP-hard. Having exactly two labels is a special case of extreme
multi-label classification (JASINSKA-KOBUS et al., 2020), so the results in this chapter are
valuable for this field. The NP-hardness remains even in a scenario where labels have a low
level of dependence. Closely related problems to the proof of NP-completeness shown
in this chapter are the Document Ranking (CHEN; KARGER, 2006; ZHAI; COHEN;
LAFFERTY, 2003) and the Balanced minimum sum-of-squares clustering (ARTEM;
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ALOISE; MLADENOVIĆ, 2017). Both were proved to be NP-complete. Related works
in the same field of MLL can be found by Dembczyński et al. (2012), where risk minimization
in MLL is deeply studied, and specially by Dembczyński et al. (2013), where a polynomial
algorithm is found for solving the risk minimization of a specific loss function denominated
as the F-measure.

The rest of the chapter is organized in the following manner. In Section 3.1, coverage
and search length are discussed and the equivalence of the maximum expected search
length and the minimum expected coverage is shown. In Section 3.2, a specific case where
instances have exactly two labels is proved to be NP-complete. In Section 3.3, it is given
a mathematical definition of what is a scenario of a low level of dependence among labels
and proved the NP-completeness of the optimal expected coverage in this scenario.

3.1 Relationship between Search Length and Coverage
In this section, the close relationship between the risk optimization of search length

(CHEN; KARGER, 2006) and coverage (SCHAPIRE; SINGER, 2000) is shown. For the
sake of making some operations and equations a little easier to follow and understand,
in this section and also in Section 3.2, we will use a ranking from 0 to n− 1 instead of
1 to n. This is equivalent to using the version of coverage and search length, but with a
one subtracted (see the discussion below Equation (2.11)). This does interfere in nothing
about the NP-hardness of the problem since subtracting an objective function by a
constant does not make the function any harder/easier to optimize. A transformation
composed of only simple arithmetic operations can be done on the rankings such that risk
minimization of coverage becomes identical to the risk maximization of search length and
vice-versa. The following propositions reveal this transformation.

Proposition 3.1. For any ranking z and any distribution of Y given x, the expected
coverage is related to the expected search length by

EY|XLc(Y, z) = n− 1− EY|XL`(Y, z̄).

where z̄ is the opposite ranking of z, i.e, z̄i = n− 1− zi, 1 ≤ i ≤ n.

Proof.

Considering the definition of coverage (2.11), it can be shown that

Lc(Y, z) = max
i:yi=1

(zi)

= max
i:yi=1

(n− 1− z̄i)

= n− 1− min
i:yi=1

(z̄i),
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and so, from the definition of search length (2.12),

Lc(Y, z) = n− 1− min
i:yi=1

(z̄i)

= n− 1− L`(Y, z̄i).

As a corollary of Proposition 3.1, for any distribution of Y given x, the minimum
expected coverage is related to the maximum expected search length by

min
z

EY|XLc(Y, z) = n− 1−max
z

EY|XL`(Y, z).

Proof.

Proposition 3.1 implies that the minimum expected coverage is given by

min
z

EY|XLc(Y, z) = min
z

(
n− 1− EY|XL`(Y, z)

)
= n− 1 + min

z

(
−EY|XL`(Y, z)

)
= n− 1−max

z
EY|XL`(Y, z).

In general, it is not desired to maximize the risk, but it is shown that both the risk
minimizer and maximizer are closely related in the following proposition.

Proposition 3.2. For any distribution of Y given x and any loss function L such that∑
y∈Y L(y, ŷ) = c,∀ŷ ∈ Y, and c is only dependent on the number of labels, the minimum

risk is given by

min
z

RL(z,x) = c −max
z

∑
y∈Y

L(y, z) · (1−Px(y)) .

Proof.

min
z

RL(z,x) = c− c −max
z

∑
y∈Y

L(y, z) · (−Px(y))

= c−
∑
y∈Y

L(y, z∗) −max
z

∑
y∈Y

L(y, z) · (−Px(y))

= c −max
z

∑
y∈Y

L(y, z) · (1−Px(y))

Proposition 3.2 is only applicable to coverage if ∑y∈Y Lc(y, z) is a function of n
only for any ranking z. This can be easily verified by just noting that any swap of two
ranks will result into the same value.
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3.2 NP-Completeness of Maximum 2-Search Length
In this section a special case of the decision version of the maximization of the

expected search length is proved to be NP-complete. Consequently, the same special
case for the decision version of the expected coverage is also NP-complete, as shown
in Corollary 3.1. The simplification relies on assuming all instances have exactly two
labels which implies that Px(Y) has at most

(
n
2

)
non-null values. This special case is

denominated as Max 2-SL. We assume that all values of Px(Y) are given. It is important
to remind that ranking goes from 0 to n− 1 in this chapter, instead of 1 to n, as discussed
in Section 3.1.

For the sake of simplicity, the Max 2-SL problem is reformulated as follows. Consider
a weighted complete simple graph G = (V,E,w) with no self-loops, where V is the set of
vertices with n = |V |, E is the set of edges and w is the symmetric weighting function of
the edges such that:

0 ≤ w(u, v) ≤ 1,∀{u, v} ∈ E and
∑

{u,v}∈E
w(u, v) = 1. (3.1)

Each vertex of G represents a label and, for any {u, v} ∈ E, w(u, v) represents the
probability of co-occurrence of the labels represented by u and v. Also, consider a bijective
function φ : V → {0, 1, ..., n − 1} (representing a ranking function) and an objective
function f defined as

fφ(V,w) =
∑

{u,v}∈E
min {φ(u), φ(v)} · w(u, v), (3.2)

with w(v, v) = 0, ∀v ∈ V . The Max 2-SL problem with a weighted complete graph G can
be stated as finding a bijective function φ∗ : V → {0, 1, ..., n− 1} maximizing f :

fφ∗(V,w) = max
φ

fφ(V,w).

Note that function f is composed of only O(n2) sums and each sum is composed of basic
operations: a multiplication, a minimal of two values and a direct access to a value of φ.

The more general case of Max 2-SL where constraints in (3.1) are not imposed is
proved to be easily reducible to the original Max 2-SL in Proposition 3.3. For this reason,
the constraints in (3.1) are not adopted in the rest of this section.

Proposition 3.3. A modified version of the Max 2-SL in which constraints in (3.1) are
not imposed, can be easily reduced to the original Max 2-SL, that is, an algorithm to solve
the original Max 2-SL can be used to solve the Max 2-SL with no constraints in the weights.

Proof.

Consider the Max 2-SL problem with graph G = (V,E,w). Define a new graph G′ = (V,w′)
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with a new weighting function w′ as

w′(u, v) = a · (w(u, v)− b)

where b = min
{x,y}∈E

w(x, y) and a =
∑

{x,y}∈E
(w(x, y)− b) .

It follows that
max
φ

fφ(V,w′) = a ·max
φ

fφ(V,w) − b

(
n

2

)
.

An important form of expressing the function f in (3.2) for a ranking function φ is
by first defining a set R for each integer 0 ≤ x < n and a real value W for each v ∈ V

Rφ(x) ={u ∈ V | φ(u) ≥ x}

Wφ(v) =
∑

u∈Rφ(φ(v))
w(u, v),

and rewriting f as
fφ(V,w) =

∑
v∈V

φ(v)Wφ(v). (3.3)

Lemma 3.1. Let m = |Rφ(x)|. For any arbitrary integer 0 ≤ x < n and for any constant
value c ∈ R, if w′ is a weighting function where

w′(u, v) = c, ∀u, v ∈ Rφ(x),

then
fφ(Rφ(x), w′) = c

(
m

3

)
+ cx

(
m− 1

2

)
. (3.4)

Proof.

See Appendix A.1.

As a corollary of Lemma 3.1, if the maximum weight value b is positive and the
minimum weight value a is negative, then

an3

6 ≤ fφ(U,w) ≤ bn3

6 , for any U ⊆ V. (3.5)

Proof.

Define w′ and w′′ as two weighting functions where

w′(u, v) = a, w′′(u, v) = b, ∀u, v ∈ V.
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For an arbitrary subset U ⊆ V we have that fφ(V,w′) ≤ fφ(U,w) ≤ fφ(V,w′′), which is
equivalent to: fφ(Rφ(0), w′) ≤ fφ(U,w) ≤ fφ(Rφ(0), w′′). Therefore, from Lemma 3.1, it
can be shown that

an3

6 ≤ fφ(U,w) ≤ bn3

6 .

For the rest of this section, consider the following definitions.

Definition 3.1. T is defined as a mapping that transforms any non-weighted graph
G = (V,E), to a weighted graph T (G) = G′ = (V ′, w) such that V ′ = V ∪ Q, where
Q = {q1, q2, ..., qr}, r = 2n4, n = |V |, Q ∩ V = ∅ and

w(u, v) =


1, if {u, v} ∈ E

−n, if u, v ∈ V and {u, v} /∈ E

0, otherwise.

Note that all vertices of Q have edges of zero weight.

Definition 3.2. Pφ(V,Q) is defined, for any two disjoint sets of vertices V and Q and any
bijective function φ : V ∪Q→ {x ∈ N0 | x < |V ∪Q|}, as the partition of V = Aφ∪Bφ∪Cφ
such that

Aφ ={v ∈ V | φ(v) < φ(q),∀q ∈ Q},

Bφ ={v ∈ V | φ(v) > φ(q),∀q ∈ Q},

Cφ =V − (Aφ ∪Bφ).

Therefore (Aφ, Bφ, Cφ) = Pφ(V,Q). Note that Pφ(V,Q) 6= Pφ(Q, V ).

The proof of Max 2-SL belonging to NP-hard relies on reducing the maximum
clique problem, proved to belonging to NP-hard by Karp (1972), into Max 2-SL. The
maximum clique problem consists of finding a complete subgraph of a given graph with
the highest number of vertices. First, some important lemmas are presented:

Lemma 3.2. Given a non-weighted graph G = (V,E), let G′ = T (G) = (V ′, w) and define
Q as the set of vertices such that V ′ = V ∪Q and V ∩Q = ∅. For an arbitrary solution
(ranking) φ of Max 2-SL consider the partition (Aφ, Bφ, Cφ) = Pφ(V,Q). If there exists a
vertex v ∈ Cφ in which ({u, v} ∈ E, ∀u ∈ Bφ), then there exists a solution π in which
Bπ = Bφ ∪ {v}, Cπ = Cφ − {v} and fπ(V,w) ≥ fφ(V,w).

Proof.

See Appendix A.2.
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Lemma 3.3. Given a non-weighted graph G = (V,E), let G′ = T (G) = (V ′, w) and define
Q as the set of vertices such that V ′ = V ∪Q and V ∩Q = ∅. For an arbitrary solution
(ranking) φ of Max 2-SL consider the partition (Aφ, Bφ, Cφ) = Pφ(V,Q). If there exists a
vertex v ∈ (Bφ ∪ Cφ) in which ({u, v} /∈ E, ∃u ∈ Bφ), then there exists a solution π in
which Aπ = Aφ ∪ {v}, Cπ = Cφ − {v}, Bπ = Bφ − {v} and fπ(V,w) ≥ fφ(V,w).

Proof.

See Appendix A.3.

Lemma 3.4. Given a non-weighted graph G = (V,E), let G′ = T (G) = (V ′, w), and
define Q as the set of vertices such that V ′ = V ∪ Q and V ∩ Q = ∅. For an arbitrary
solution (ranking) φ of Max 2-SL consider the partition (Aφ, Bφ, Cφ) = Pφ(V,Q). There
exists a ranking π in which fπ(V,w) ≥ fφ(V,w), Cπ = ∅ and Bπ is a clique in G.

Proof.

See Appendix A.4.

Theorem 3.1. Maximum clique is reducible to maximum 2-Search Length

Proof.

Given a graph G = (V,E) and a positive integer k (this integer comes from the decision
version) as input for the maximum clique problem, let n = |V |. Consider only the cases
where n ≥ 2 and k ≥ 2. The decision version of maximum clique problem is: Is there at
least one clique of size k in G?

Now, let be defined the decision version for the maximum 2-search length. It consists
of a weighted complete graph G′ = (V ′, w), n = |V ′| and a positive integer Z (this integer
comes from the decision version) defined as

Z = n4k(k − 1)− n4.

A bijective function φ∗ is called a satisfying solution of Max 2-SL if fφ∗(V ′, w) ≥ Z.
The decision version of maximum 2-search length is: Is there at least one satisfying
solution in G′?

What it needs to be shown is that one problem can be solved by the other (efficiently).
The transformation from one to another is given by G′ = T (G). Before proceeding, consider
the following definitions. Let r be defined as r = 2n4. Define Q as the set of vertices such
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that V ′ = V ∪Q, V ∩Q = ∅. Consider the partition (Aφ, Bφ, Cφ) = Pφ(V,Q). Note that,
from (3.3), fφ(V ′, w) can be reformulated as

fφ(V ′, w) =
∑
v∈Aφ

φ(v)Wφ(v) +
∑
v∈Bφ

φ(v)Wφ(v)

+
∑
v∈Cφ

φ(v)Wφ(v).
(3.6)

Let us first suppose there exists a satisfying solution φ and let l = |Q|+ |Aφ| = 2n4 + |Aφ|
and x = |Bφ|. To show that there exists a clique of size of at least k, assume, from
Lemma 3.4, that Cφ = ∅ and w(u, v) = 1 for all u, v ∈ Bφ, so, from (3.6), it follows that

fφ(V ′, w) = fφ(Aφ, w) + fφ(Bφ, w).

Considering that Bφ = Rφ(l) and from Lemma 3.1, it can be concluded that:

fφ(V ′, w) = fφ(Aφ, w) +
(
x

3

)
+ l

(
x

2

)
.

By using the inequality (3.5) it can be concluded that

n4k(k − 1)− n4 ≤ fφ(V ′, w)

= fφ(Aφ, w) +
(
x

3

)
+ (2n4 + |Aφ|)

(
x

2

)

≤ n3

6 +
(
x

3

)
+ (2n4 + n)

(
x

2

)

≤ n3

6 + n3

6 + 2n4
(
x

2

)
+ n3

2

= n3
(
nx(x− 1) + 5

6

)
≤ n4

(
x(x− 1) + 5

6

)
.

By dividing both sides by n4, it can be concluded that

k(k − 1)− 1 ≤ x(x− 1) + 5
6 .

The above inequality does not hold for x ≤ k − 1. Therefore, x ≥ k. This implies that Bφ

is a clique in G with |Bφ| ≥ k.

Now, suppose there exists a clique C ⊆ V , with C = {c1, c2, ..., c|C|} where |C| ≥ k

and let C̄ = {c̄1, c̄2, ..., c̄|C̄|} be C̄ = V −C. To prove that there exists a satisfying solution
of Max 2-SL for graph G′, define φ : V ′ → N as follows:

φ(c̄i) =i− 1, 1 ≤ i ≤ |C̄|;

φ(qi) =i− 1 + |C̄|, 1 ≤ i ≤ |Q|;

φ(ci) =i− 1 + |C̄|+ |Q|, 1 ≤ i ≤ |C|.
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Let d be defined as

d = fφ(V ′, w)− Z = fφ(C̄, w) + fφ(C,w)− Z.

Let l = |C̄|+ |Q|. Considering that C = Rφ(l) and from Lemma 3.1, it can be concluded
that:

fφ(C,w) =
(
k

3

)
+ l

(
k

2

)
≥ n4k(k − 1). (3.7)

The integer d is shown to be positive by taking (3.5) and (3.7), so

d = fφ(C̄, w) + fφ(C,w)− n4k(k − 1) + n4

≥ fφ(C̄, w) + n4k(k − 1)− n4k(k − 1) + n4

≥ −n
4

6 + n4.

This completes the proof of the theorem.

3.3 Two correlated Coverage
In the previous section, it has been proved that the optimal expected coverage is

NP-hard even for a label cardinality of 2 for all instances. In this section, it will be shown
that the optimal expected coverage is still NP-hard even when assuming low level of
label dependencies. Therefore, it is crucial to define what is a low level of label dependency.
Before that, consider the following definitions:

Definition 3.3. For any labelling Y = (Y1, . . . , Yn) of size n and for any subset A ⊆ {1..n},
let YA be defined as the “sub-labelling” of labels in set A. Example: for A = {1, 3}, it has
that YA = (Y1, Y3). Since a set does not have a specific order, we consider that the vector
YA is always in order, i.e, Y{4,2} = (Y2, Y4).

Definition 3.4. For any labelling Y = (Y1, . . . , Yn) and for any ranking z of n labels,
let Y (z)

i , for 1 ≤ i ≤ n, be defined as the label ranked at i-th position by z. This means
that Y (z)

1 is the first ranked label and Y (z)
n is the last ranked label. For instance, for

z = (2, 3, 1, 4), it has that Y (z)
1 = Y3 and Y (z)

2 = Y1.

Definition 3.5. For any ranking z, let T z
k be defined as the set of all label indices ranked

by z with a rank greater than or equal to k.

For defining the level of dependence of labels, consider the parametrization given
by Teugels (1990), where any arbitrary multivariate Bernoulli distribution of n variables
Y = (Y1, ..., Yn) can be represented by these 2n − 1 parameters:

pi = 1− qi = E [Yi] = P(Yi = 1), The marginal distribution,
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and all first-order central moments of all combinations of variables:

δij =E [(Yi − pi)(Yj − pj)] , for all distinct pairs (Yi, Yj),

δijk =E [(Yi − pi)(Yj − pj)(Yk − pk)] , for all distinct (Yi, Yj, Yk),

· · ·

δ1..n =E [(Y1 − p1)(Y2 − p3) · · · (Yn − pn)] .

Then, P(Y) can be represented as a polynomial of these 2n − 1 parameters. An example
for n = 3 and Y = (1, 1, 1):

P(1, 1, 1) = p1p2p3 + p3δ12 + p2δ13 + p1δ23 + δ123.

The δij represents the two-way dependence among Yi and Yj, while δijk represents the
three-way dependence among Yi,Yj and Yk. It is important to note that δij is the covariance
of Yi and Yj, and the covariance of two Bernoulli variables are zero if and only if they
are independent of each other. For three or more variable, δ is only zero iff at least one
of the variables is independent of all others. In this sense, the δs are called dependence
parameters.

Since we like to study the optimal expected coverage when there are only low
dependencies among labels, its seems reasonable to adopt the scenario where the δ for
three or more variables are all zero. Consequently, the joint distribution can be represented
with only a quadratic number of parameters, instead of 2n − 1. We call this scenario as
two-correlated MultiVariate Bernoulli distribution (2-MVB). Let

M(y) =
n∏
k=1

pykk q
1−yk
k ,

then the general form of P(Y = y) for 2-MVB becomes (TEUGELS, 1990):

P(Y = y) = M(y) +
∑

(i,j):j>i

−1yi+yj · δij
M(y)

pyii q
1−yi
i p

yj
j q

1−yj
j

 , (3.8)

where pi = 1 − qi. A particular case of interest is when a subset of variables/labels are
zeroes (why this case is interesting is shown at Proposition 3.4): Let A ⊆ {1..n} be this
arbitrary subset of variables indices, then

P(YA = 0|A|) =
∏
i∈A

qi +
∑

(i,j)∈A:j>i
δij

∏
i∈A qi
qiqj

, See Definition 3.3 (3.9)

where 0|A| is the vector of |A| zeroes. Example for A = {1, 2, 3}:

P(Y{1,2,3} = (0, 0, 0)) = q1q2q3 + q3δ12 + q2δ13 + q1δ23.

Equation (3.9) can be further simplified, because the findings presented in this section
assume that p1 = p2 = · · · = pn = p = 1− q:

P(YA = 0|A|) = q|A| + q|A|−2 ∑
(i,j)∈A:j>i

δij. (3.10)
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Now, it will be shown in Proposition 3.4 that the expected coverage can be easily calculated
for a particular ranking z using only n parameters of the label distribution. Also, it will be
shown why P(YA = 0|A|) (Equation 3.10) is important for analysing the expected coverage.

Proposition 3.4. For any distribution P of Y, and for any ranking z of n labels, and
considering Definition 3.3 and 3.4, it has that

EY [Lc(Y, z)] = n−P(Y (z)
n = 0)−P(Y (z)

n = 0, Y (z)
n−1 = 0)−P(Y (z)

n = 0, Y (z)
n−1, Y

(z)
n−2 = 0)− . . .

= n−
n∑
i=1

P(Y(z)
{i..n} = 0).

Proof.

This comes easily as a consequence of the relationship between the expected value of a
random variable and its cumulative density function:

E [Lc] =
n−1∑
i=0

(1−P(Lc ≤ i)) = n−
n−1∑
i=0

P(Lc ≤ i),

where the loss Lc is considered a random variable, since it depends on Y. Keep in mind
that coverage can only have values in {0, 1, ..., n}. To answer when Lc ≤ i occurs, it is
easier to answer when Lc > i not occurs, although they are equivalent statements, i.e
P(Lc ≤ i) = 1−P(Lc > i). By definition of coverage, Lc > i does not occur if and only if
all last ranked labels until rank i+ 1 are zeroes, i.e, Y (z)

i+1 = Y
(z)
i+2 = · · · = Y (z)

n = 0. Hence,
P(Lc ≤ i) = P(Y(z)

{i+1,...,n} = 0), and consequently

E [Lc] = n−
n−1∑
i=0

P(Y(z)
{i+1,...,n} = 0).

Finally, it will be proved that 2-MVB problem is NP-hard.

Theorem 3.2. Optimal 2-MVB is NP-hard, by a reduction of the maximum clique
problem.

Proof.

Given a graph G = (V,E) for the maximum clique problem, the corresponding input for
maximum two correlated expected coverage is a multi-label problem of n = |V | labels with
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the probability distribution P of Y = (Y1, ..., Yn) where

P(Y1 = 1) = P(Y2 = 1) = · · · = p = 1− q = 1
n3 ,

Cov [Yi, Yj] = δij =

0, if {i, j} /∈ E,

n−8, if {i, j} ∈ E,

∀A ⊆ {1..n}, such that |A| ≥ 3,we have that E
[∏
i∈A

(Yi − p)
]

= 0.

(3.11)

Note that, each label represents a vertex. It will be proved that such a distribution actually
exists, i.e, P(Y = y) ≥ 0 for all labelling y.

P(Y = y)
M(y) = 1 +

∑
i,j:j>i

−1yi+yj︸ ︷︷ ︸
≥−1

·δij
1

pyiq1−yipyjq1−yj

 From (3.8)

≥ 1−
∑
i,j:j>i

δij︸︷︷︸
≤n−8

1
pyiq1−yipyjq1−yj

≥ 1−
∑
i,j:j>i

n−8

q2 = 1−
∑
i,j:j>i

n−8

n−6

= 1−
∑
i,j:j>i

n−2 = 1−
(
n

2

)
· n−2

≥ 1− 1
2 > 0.

It will be proved that if there exists a clique of size c in G, then the c lowest ranked
labels of the optimal ranking for coverage will represent a clique (the transformation has a
one-to-one relation of labels and vertices). From Proposition 3.4, it has that

E [Lc] =
n−1∑
i=0

(1−P(Lc ≤ i))− n = −
n∑
i=1

P(Y(z)
{i..n} = 0)

= −P(Y (z)
n = 0)︸ ︷︷ ︸
q

−
n∑
i=2

P(Y(z)
{i..n} = 0)

= −q −
 n∑
i=2

qi + qi−2 ∑
j,k∈T z

i :k>j
δjk

 From (3.10) and Definition 3.5

= −
n∑
i=1

qi −

 n∑
i=2

qi−2 ∑
j,k∈T z

i :k>j
δjk

 ,
where j, k ∈ T z

i : k > j means all distinct pairs of label indices ranked with a rank equal
or above i. For the sake of simplicity, let δjj = 0 for any j and let us use the fact that
δjk = δkj:

−
n∑
i=1

qi −

 n∑
i=2

qi−2 ∑
j,k∈T z

i :k>j
δjk

 = −
n∑
i=1

qi −

 n∑
i=2

qi−2

2
∑

j,k∈T z
i

δjk


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As we are studying the optimization and the NP-hardness of this above equation/problem,
the constant term −∑n

i=1 q
i is negligible and does not affect the solution/hardness of the

problem. Hence, the objective function will be changed to remove the constant term and
multiplied by −2 to simplify equations:

argmin
z

E [Lc] = argmax
z
−2 E [Lc]

= argmax
z

 n∑
i=2

qi−2 ∑
j,k∈T z

i

δjk

 .
Note that at each succession of iteration of i, the sum of deltas ∑j,k δjk contributes less to
the total sum, since it is multiplied by qi−1 instead of qi−2. The idea of choosing a very
low value for q is to make the sum qi−1∑

j,k∈T z
i+1
δjk irrelevant compared to qi−2∑

j,k∈T z
i
δjk.

This will be proved formally now, by contradiction: for any i if there exists j, k ∈ T z
i such

that δjk = n−8 (i.e there exists {j, k} ∈ E) then
n∑

`≥i+1
q`−2︸︷︷︸
≤qi−1

∑
j,k∈T z

`

δjk > qi−2 ∑
j,k∈T z

i

δjk (Assumption)

qi−1
n∑
`>i

∑
j,k∈T z

`

δjk > qi−2 ∑
j,k∈T z

i

δjk

q
n∑
`>i

∑
j,k∈T z

`

δjk︸︷︷︸
≤n−8

>
∑

j,k∈T z
i

δjk︸ ︷︷ ︸
≥n−8

q︸︷︷︸
n−3

n∑
`>i

∑
j,k∈T z

`

n−8

︸ ︷︷ ︸
less than n3 terms

> n−8

n−3 · n3 · n−8 > n−8. (Contradiction!)

Hence, it is true that for any {j, k} ∈ E and 1 ≤ i < n, then
n∑

`≥i+1
q`−2 ∑

j,k∈T z
`

δjk ≤ qi−2 ∑
j,k∈T z

i

δjk.

With this proved, it is clear that placing a clique in the best/lowest ranks is a necessary
condition for optimizing the 2-MVB problem.

To determine if the optimal two correlated coverage problem is in NP, we can look
at the equation in Proposition 3.4, which gives a way to calculate the expected coverage for
any particular ranking. Since each term of the sum ∑n

i=1 P(Y(z)
{i..n} = 0) can be calculated

in polynomial time using Equation 3.10, the optimal two correlated coverage is in NP.
Hence, the optimal two correlated coverage is NP-complete. If one is concerned with
the scenario where all labels are independent, coverage can be computed in O(n log n) by
just sorting labels according to their marginal probability.
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Chapter Conclusion
It was shown that computing the minimal minimum expected coverage is identical

with respect to the complexity of computing the maximal minimum expected search
length. It was also proved that a specific scenario of risk minimization of coverage and
search length belongs to the class NP-complete. Moreover, even assuming a low level of
dependence among labels, the optimal expected coverage is still in the classNP-complete.
Therefore, as expected, the general version belongs to the class NP-hard, which shows
how much the computation of the optimal solution in the general version is intractable
hard. This result suggests that algorithm designers should be stimulated to work on other
more promising research topics such as finding an approximate algorithm for the problem.
This leads to a clear new future work: finding efficient approximated algorithms for the
problem. Another interesting future work is analysing the sample complexity of learning
the coverage loss function, that is, the necessary number of training samples in order to
achieve a coverage below a desired value.
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4 Regret Analysis of Calibrated Label Rank-
ing

In this chapter, the predictions of ranking by pairwise classification and its extension
for classification, calibrated label ranking, are analyzed in terms of regret. In this sense,
mathematical proofs are given showing its performance on the worst case scenario for five
multi-label metrics.

Empirical evidence clearly shows RPC being good at optimizing metrics that
take rank into account, while also showing that CLR is not competitive against state-of-
the-art methods on example-based metrics such as F-measure (TROHIDIS et al., 2011;
ZHANG; SCHNEIDER, 2012a; ZHANG; SCHNEIDER, 2012b; WANG et al., 2014; TAHIR;
KITTLER; BOURIDANE, 2016; HUANG et al., 2019). Although these results show at
average where (i.e. which metric) does CLR is good/bad, they do not show why CLR or
RPC are good/bad and neither when (i.e. which type of dataset).

The main motivation for the work presented in this chapter comes from the problem
of not knowing exactly why and when both CLR and RPC is good/bad in specific situations
for specifics metrics. Such explanations help researchers choose and better understand
their multi-label methods. Therefore, the main objective in this chapter is provide an
explanation for the CLR and RPC performance.

This chapter presents interesting theoretical properties of CLR and RPC that
shows when it should not be used. It shows a major issue in the way they make its
pairwise comparison, resulting in poor performance for a very particular probability label
distribution type. As other authors already suggested, the issue lies mainly on how the
probability P(Yi = 1|Yi = 1 xor Yj = 1) is used inside the prediction. The results suggest
CLR should be taken with caution when P(Yi = 1 ⊕ Yj = 1) is close to zero for some
labels i and j.

Section 4.1 presents the worst case analysis for RPC and CLR on five multi-label
metrics on two scenarios: one general scenario with high label dependencies and a specific
scenario of low label dependencies. In Section 4.2, a note is made regarding the relationship
between the average case scenario and the worst case scenario. The chapter ends with
conclusions about the performance of RPC and CLR.
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4.1 Worst case analysis of Calibrated Label Ranking
In this section, some probability distributions are constructed to show the perfor-

mance of CLR and RPC in the worst case scenario. One of these special distributions
where is defined as following. Denote 0n as a vector of n zeroes, 1n as a vector of n ones
and y(i) as a n-dimensional vector of zeros apart from a one at the i-th position. Let P̂m

denote a special distribution of Y such that

P̂m(y) =



m+1
2(n+1) , if y = 1n
ε, if y = y(i) for any 1 ≤ i ≤ m

1− m+1
2(n+1) − ε ·m, if y = 0n

0, otherwise

where m is a positive integer such that 0 < m < n and ε is an arbitrary positive real
number that is assumed to be “really close” to 0. An example of P̂2 for n = 4:

P̂2(0, 0, 0, 0) = 70%− 2ε

P̂2(1, 1, 1, 1) = 30%

P̂2(1, 0, 0, 0) = P̂2(0, 1, 0, 0) = ε,

where null probabilities are omitted. The most important point to note about P̂m is the
high probability of occurrence of labelling 0n, specially when m is low. Also, note that P̂m

has exactly m + 2 non-null values. The purpose of ε is to avoid undefined values when
calculating f (e.g 0

0) and to conveniently manipulate the output of function f .

Proposition 4.1 shows an important property of this distribution.

Proposition 4.1. When considering distribution P̂m, CLR predicts ones for the first m
labels and zeroes for the other labels, i.e, ∑m

i=1 h
clr
i = ∑n

i=1 h
clr
i = m.

Proof.

See Appendix B.1.

This proposition shows how much CLR is sensible to conditional probabilities. Just
an arbitrarily small value ε in P̂m makes CLR predicts m labels incorrectly. Next, it will
be seen how much this impacts CLR performance where several theorems with respect to
the regret of CLR and RPC are presented. Following each theorem, relevant observations
are made.

Theorem 4.1. The following upper bound holds for the regret with respect to Hamming
loss:

sup
P∈Pn

(rH(hclr)) =


n

4(n+1) , if n is even
n−1
4n , if n is odd,
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where Pn denotes the set of all distributions over n labels such that P(i) ≤ 1
2 for all i.

Proof.

See Appendix B.2.

An interesting point to observe from Theorem 4.1 is that there exists at least one
distribution in the family Pn such that rH(hclr) ≤ 1

4 . Empirically, CLR and BR (a.k.a
one-against-all) has been shown to have a much closer performance on average with respect
to Hamming loss, according to experiments in the literature (FÜRNKRANZ et al., 2008;
TROHIDIS et al., 2011; ZHANG; SCHNEIDER, 2012a; ZHANG; SCHNEIDER, 2012b;
WANG et al., 2014).

A more interesting result is presented with respect to subset 0/1 loss in Theorem 4.2.

Theorem 4.2. The following lower bound holds for the regret with respect to subset 0/1 loss:

sup
P
rs(hclr) ≥ n

n+ 1 .

Proof.

Consider the regret rs(hclr) on distribution P̂m for m = 1. If ε is sufficiently small,
then the mode of P̂1 is 0n, and P̂1(0n) = 1 − 1

n+1 − ε. From Proposition 4.1, it has
that P̂1(hclr) = P̂1(y(1)) = ε. As the mode of distribution is an optimal labelling for
subset 0/1 loss, the regret on distribution P̂m can be written as

rs(hclr) = P̂1(0n)− P̂1(y(1))

= 1− 1
n+ 1 − 2ε

The value of ε can be arbitrarily small, so the supremum of rs(hclr) is at least 1− 1
n+1 =

n
n+1 .

Theorem 4.2 shows that when n tends to infinity, the supremum of regret rs(hclr)
tends to 1, which is the highest regret possible for subset 0/1 loss. A high regret is already
expected as seen in empirical evidence (TROHIDIS et al., 2011; ZHANG; SCHNEIDER,
2012a; ZHANG; SCHNEIDER, 2012b; WANG et al., 2014; TAHIR; KITTLER; BOURI-
DANE, 2016; HUANG et al., 2019; SUN; GE; KANG, 2019), but surely not of such
magnitude. It is important to note that even for a small number of labels, the worst case
regret is high, e.g. for n = 4 the highest regret is at least 0.8.

Theorem 4.3. The following lower bound holds for the regret with respect to Jaccard
distance:

sup
P
rJ(hclr) ≥ 1− 1

n
.
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Proof.

See Appendix B.3.

Note that if n → ∞, then rJ(hclr) tends to 1. Again, this is the highest regret
possible for Jaccard distance and the regret is also high even for small n, e.g. for n = 4
the highest regret is at least 0.75. A high regret was already expected, but not this high.
This is another metric researchers should be aware when considering the worst case.

Theorem 4.4. The following lower bound holds for the regret with respect to F-measure:

sup
P
rF (hclr) ≥ 1− n+ 3

(n+ 1)2 .

Proof.

See Appendix B.4.

Note that if n→∞, then rF (hclr) tends to 1, which is the highest possible regret
for F-measure. For small values of n, the highest regret is still high, e.g. for n = 4 the
highest regret is at least 0.72.

Another interesting result is shown for rank loss in Theorem 4.5, where RPC does
not achieve optimal regret.

Theorem 4.5. For any n divisible by 4, the following lower bound holds for the regret
with respect to normalized rank loss:

sup
P
rr̂(hrpc) ≥ 1

6 .

Proof.

See Appendix B.5.

Although Theorem 4.5 is not conclusive for stating that RPC performs poorly at
worst case scenarios, it suggests that RPC does not optimize rank loss for n ≥ 4, which is
not the expected behaviour. The non-optimal performance for RPC does not occur for the
same reason as the CLR: the function f can be 1 even when the label cardinality is very
low.

As it can be seen in the proofs, the poor performance of CLR in the worst case
scenario comes from giving too much importance to specific conditional probabilities:.
For instance, an arbitrarily small value ε is enough to change the conditional probability
at f from zero to one and consequently changing classification. The expected value of
multi-label metrics does not give such importance to conditional probabilities, as it can be
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seen in their formulas at equations (2.13), (2.14) and others presented by Dembczyński et
al. (2012).

It is natural to question how rare are the special distributions used in this work
in this section and if there are other distributions that yield similar results. Moreover,
it is already expected that CLR achieves a non-optimal performance on distributions
that yields more than pairwise dependencies, since CLR is specifically designed to exploit
dependencies among pairs of labels. Despite this, it will be shown that CLR can achieve a
poor performance on F-measure and subset 0/1 loss even when considering a distribution
with only pairwise dependencies. For this purpose, let us define a family of probability
distributions P of n labels such that for any P̄ ∈ P :

P̄(y) = P̄(y1, y2) · P̄(y3) · P̄(y4) · · · P̄(yn) = P̄(y1, y2) ·
n∏
i=3

P̄(yi),

where the probabilities P̄(y1, y2) and P̄(yi) are abbreviations of P̄(Y1 = y1, Y2 = y2) and
P̄(Yi = yi), respectively. Any P̄ ∈ P is constructed such that it can be written as a
function of only the joint distribution of two labels and the marginal distributions of the
other labels. It is “almost” a distribution of independent variables. Not all probability
distributions can be written in this form, because the joint distribution of three or more
labels cannot be decomposed generically to the joint probability of only one or two labels.
Readers are recommended to check the work of Teugels (1990), if interested in more details
about decomposing and understanding the joint probability of a multivariate Bernoulli
distribution. In order to show some properties of CLR, let a specific distribution P̄ ∈ P
be defined such that

P̄(y1, y2) =


3ε, if y1 = y2 = 0,

ε, if y1 = y2 = 1,
1
2 − 2ε, if y1 6= y2,

and P̄(Yi = 1) = φn for i ≥ 3, where φn is a function of n such that:

0 ≤ φn <
ε

3n and lim
n→∞

(1− φn)n = 1,

for all n ≥ 3. There are many functions satisfying these two conditions of φn, for instance,
φn = ε/n2. It is crucial to note that if ε ≈ 0, then φn ≈ 0 and, consequently, P̄ will have
only two labellings (y(1) and y(2)) being with significant probabilities. Indeed,

P̄(y(1)) + P̄(y(2)) = (1− 4ε) · (1− φn)(n−2),

which tends to 1 as ε goes to 0. Before stating about the regret of CLR on distribution P̄,
it is important to take a look at a property of P̄ stated in Proposition 4.2.

Proposition 4.2. For distribution P̄ of n labels, CLR will predict 0n.



50 Chapter 4. Regret Analysis of Calibrated Label Ranking

Proof.

See Appendix B.6.

Theorem 4.6 shows the regret of CLR with respect to subset 0/1 loss in P̄.

Theorem 4.6. The following expression holds for the regret with respect to subset 0/1 loss

rs(hclr) =
(1

2 − 5ε
)
· (1− φn)n−2 , for distribution P̄,

and, consequently
lim

n→∞,ε→0
rs(hclr) = 1

2 .

Proof.

See Appendix B.7.

One half is a much better regret than 1, but is surely high considering such a simple
distribution as P̄. This is further evidence that it is not enough to exploit dependencies to
improve performance, even considering only pairwise dependencies. The same argument
can be used for the regret with respect to Jaccard distance, as shown in Theorem 4.7.

Theorem 4.7. The following expression holds for the regret with respect to Jaccard distance

lim
ε→0

rJ(hclr) = 1
2 , for distribution P̄.

Proof.

See Appendix B.8.

Theorem 4.8 shows the regret of CLR with respect to F-measure in P̄.

Theorem 4.8. The following expression holds for the regret with respect to F-measure
loss

lim
ε→0

rJ(hclr) = 2
3 , for distribution P̄.

Proof.

See Appendix B.9.

Similar to Theorem 4.6, CLR achieves a poor performance in such a simple distri-
bution, therefore it is not enough to exploit dependencies to improve performance, since 2

3

is too much for a regret.
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Note the independence of both Y1 and Y2 with respect to all other variables P̄.
This means that even assuming a low level of dependency among labels, CLR may present
a poor performance. In fact, there is only a single dependence, which is between Y1 and Y2.

In addition to being a high regret distribution for CLR, P̄ is the worst case
distribution for the regret of the optimal solution for Hamming loss with respect to
subset 0/1 loss:

sup
P
rs(h∗H) = Rs(h∗H)−Rs(h∗S) = 1

2 , when ε→ 0

where h∗H is the optimal solution for Hamming loss on distribution P̄ and h∗s for sub-
set 0/1 loss (DEMBCZYŃSKI et al., 2012). Hence, P̄ simultaneously gives poor regret for
Hamming loss optimizer and hclr with respect to subset 0/1 loss.

4.2 A note about the average-case scenario
The studied worst-case scenarios (probability distributions) in which the RPC and

CLR were analyzed, may seem rare in an average-case scenario practice at first glance,
and not common in the average-case scenario however, defining precisely and objectively
what is the “average-case scenario” is not a simple task. Firstly, the average case in the
risk minimization of multi-label learning should define a probability distribution of label
probability distributions. Defining a distribution of distributions is such a complex task that
almost the whole Chapter 5 is concerned with succeeding in this task. Second, the average
scenario is something that may vary from application to application. For instance, there
exist researches that only concerned with multi-label problems of very low label density
(extreme multi-label classification) and others that are only concerned with multi-label
problems of high/low level of label dependence. If one tries to study multi-label learning in
a one broad general scenario, where each specific multi-label scenario is taken with equal
consideration without any a posteriori information, it should define a “Uniform distribution”
that considers each case “evenly”. Interestingly, the Uniform distribution that it is usually
defined and used for this purpose does not take into account the “complexity/simplicity”
associated with each possible sample/case/scenario. But why the simplicity of samples,
objects, scenarios or hypothesis should be taken into account? The Occam’s razor principle
tells to choose the simplest hypothesis among all hypotheses consistent with the facts.
Although not an irrefutable principle, it has been widely used in science and it is widely
accepted that the Bayesian inference incorporates the Occam’s razor into a more objective
procedure for inference (JEFFERYS; BERGER, 1992; BLANCHARD; LOMBROZO;
NICHOLS, 2018). The idea is that the simplest scenarios (probability distributions in our
case), are, a priori, more probable. Since the all distributions defined in this chapter are
simple (only a linear number of non-null values and these values can be easily computed),
it may be that these distributions are more relevant than one might think.
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There are theorems developed by Schöning e Pruim (2012) that support these claims,
in which it is used a probability distribution called Universal probability distribution,
a distribution that partly incorporates the idea of the Occam’s razor and the Bayesian
inference by quantifying the “randomness” (or the complexity) of an input object and using
it to weight the probability of occurrence of these objects. In the end, the authors Schöning
e Pruim (2012) have shown that the constructed Universal probability distribution gives an
average time complexity equal to the worst time complexity. Hence, the worst case scenario
is crucial when assuming a distribution such as the Universal probability distribution.

Chapter Conclusion
It has been revealed three factors highly impacting in a poor performance of

RPC and CLR in the worst case scenario: The label cardinality and/or the mode of the
distribution and the pairwise approach adopted by both. With this said, it is expected
that the results presented in this chapter help researchers to be aware of the consequences
of using the pairwise comparison approach done by RPC in multi-label problems of very
low label cardinality. The results take one step closer to understanding the factors causing
a good/bad performance on multi-label algorithms.

It is important to note that, despite all the “bad” results found towards RPC and
CLR, RPC was proved to be risk minimizer for a particular loss function called Spearman
rank correlation (Hüllermeier; Furnkranz, 2004). This loss function is for ranking problems,
where the function receives the target ranking and the predicted rank as parameters, while
Rank Loss receives the real labelling instead and the predicted ranking.

Further investigations can be done in order to improve the performance of CLR
in the worst-case regret where possible improvements are better choosing the calibration
threshold or changing the pairwise classifiers scope.
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5 An experimental framework for evaluating
loss minimization in multi-label classifica-
tion via stochastic process

One major challenge Multi-Label Classification (MLC) faces, are the conditions for
evaluating multi-label algorithms. Simplistic experimental setups based on artificial data
may not capture crucial situations for analyzing these algorithms. This chapter introduces
an experimental framework for evaluating multi-label algorithms by artificially generating
the probabilistic label distributions. Although studies about the impacts of the dependence
among labels based on experiments that artificially generate label distributions are also
present in the literature (DEMBCZYŃSKI et al., 2012; WAEGEMAN et al., 2014), there
are some important aspects that should be taken into account when generating artificial
data for MLL that are not considered in these studies. For instance, their experimental
setup does not allow to fully control the level of dependence among labels.

Following the Dembczyński et al. (2012) perspective and the idea probabilistic
multi-label classifiers (see Section 2.1), it was taken into consideration that the prediction
phase of some multi-label classifiers can be decomposed into two parts: the first part where
an estimate of the probability distribution of labels is made based on the feature vector,
and the second part where an actual labelling is predicted based only on the estimated
probability distribution of labels of the first part (see Figure 1 of Section 2.1). The first
part is responsible for finding out relations between the labels and the features of a given
observation. Therefore, it was considered that multi-label methods can output an estimate
of the probability distribution of labels, or part of it, alongside with a predicted labelling.

Inspired by Waegeman et al. (2014) and Jiang et al. (2014), the experimental
framework proposed in this chapter deals with simulated probability distributions. Its
objective is to assist studies about the relation between the average performance of
multi-label methods and the level of dependence among labels. Indeed, the experimental
framework can be used to simulate a dataset distribution with a specified expected level
of dependence among labels, so researchers can produce multiple dataset distributions,
each one with a different level of dependence, and compare the average performance of
multiple multi-label methods. The framework provides a better control of the dependence
among labels than other experimental setups in the literature by making fewer assumptions
in the simulation. It also takes into account another important aspect, the difficulty of
the problem, which is related to how difficulty is to make a prediction and has a close
relationship with entropy. The difficulty of the problem represents the amount of valuable
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information available for predicting or the randomness of the labels. Some studies try
to incorporate this aspect by applying noise to the dataset features. The dependency
among labels is widely analyzed in literature (WAEGEMAN et al., 2014; DEMBCZYŃSKI;
CHENG; HÜLLERMEIER, 2010; DEMBCZYŃSKI et al., 2012), while the difficulty of
the problem is much less investigated (SENGE; COZ; HÜLLERMEIER, 2013; TOMÁS et
al., 2014).

Therefore, the contribution in chapter is proposing an experimental framework for
evaluating MLC methods based on generating artificial label distributions which allows to:

• Generate a wider variety of probability label distributions than previous works by
making fewer assumptions with respect to the simulated labels.

• Control the level of dependence among labels.

• Control the difficulty of the problem.

The framework incorporates these three aspects simultaneously, allowing studying
multi-label algorithms inside the probabilistic framework of Dembczyński et al. (2012). As
far as it is concerned, no other work has addressed them simultaneously yet.

Using this experimental framework, an experimental case study was conducted and
some interesting relations among the tested methods were revealed, which are listed:

• F-measure and Jaccard distance optimizers: An algorithm designed to maxi-
mize F-measure is a good approximation to optimize Jaccard distance;

• Calibrated label ranking by pairwise comparison and binary relevance:
Both methods have equal performance when the difficulty level is high or the level
of label dependence is very low.

• Classifier Chains and Probabilistic Classifier Chains: Both have a similar
performance in all tested metrics. In addition, they are the best in subset 0/1 loss.

The remainder of this chapter is organized as follows. Section 5.1 reviews and
compares related experimental setups in works that used synthetic data for evaluating
multi-label methods. In Section 5.2 is described the proposed experimental framework
itself and discussed the use of the beta distribution to simulate data for loss minimization
problems. Section 5.3 discusses results of an experimental case study conducted. The
chapter ends with our findings and final observations about this framework.
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5.1 Multi-label experimental setups
The performance of MLC methods is occasionally evaluated by experimental studies

on synthetic datasets. Evaluation on synthetic datasets is usually done by generating
instances whose features are random variables and labels are non-deterministic functions
of the features (DEMBCZYŃSKI et al., 2012; ZHANG; PEÑA; ROBLES, 2009; TOMÁS
et al., 2014). A simple example consists of generating each feature of an instance (x,y)
according to the normal distribution and randomly associating labels with a probability
defined by the logistic function:

P(yi = 1|x) = 1
1 + e−w·x ,

where w is a vector of real constant values with the same size of x and w · x represents
the inner product between w and x. In practice, even knowing that the whole probability
distribution of n labels takes 2n − 1 independent values (each combination of labels can
independently have its own probability value), experiments are performed using a linear
number (much smaller than 2n − 1) to generate synthetic labels (TOMÁS et al., 2014;
ZHANG; PEÑA; ROBLES, 2009; DEMBCZYŃSKI et al., 2012). For example, Zhang,
Peña e Robles (2009) and Dembczyński et al. (2012) apply their methodology on artificially
generated datasets, where the vector of features is uniformly random distributed in a
hypersphere and uses one rule for each label to generate all 2n − 1 combinations of labels.
When using only these specific n rules, the simulation is limited to a linear number of
variables.

Artificial multi-label datasets are generated in the work of Noh, Song e Park (2004)
with the purpose of testing feature selection embedded in multi-label methods. First, the
combinations of labels are evenly generated and then features are created as a function of
the given combination of labels. For example, in one of the datasets a real-valued feature
x follows a normal distribution. Assuming labels y1 and y2 are given, the parameters of
the distribution vary according to the following rule:

x ∼


N(0, 1) if y1 = y2 = 1,

N(0.5, 1) if y1 = y2 = 0,

N(1, 1) if y1 6= y2.

Using the Bayes’ formulae and knowing that combinations of labels are distributed
evenly, it can be shown that this particular experiment suffers from correlated variables.
The probability Px(y1 = 1, y2 = 1) =

√
e√

e+e3/8+x/2+2ex while Px(y1 = 0, y2 = 1) =
ex√

e+e3/8+x/2+2ex , which are clearly dependent on each other, limiting the number of possible
probability distributions. A simulation of 1 million values for feature x reveals that these
two probability values have a Pearson correlation of approximately −0.98. Although this
experiment can be extended to more labels and the means of the used normal distributions
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varied, it is hard to see what happens with the properties of the label distribution, such as
the level of label dependence. This is a limitation of the experiment that is not imposed in
the work proposed framework, or at least not as strong as imposed in the work by Noh,
Song e Park (2004).

In the work of Ye et al. (2012) an artificial dataset is generated by first assuming
that the conditional distribution of the feature vector given a single label follows a
mixture of Gaussian distributions and then randomly generating instances according to
this distribution. They test a set of algorithms in multiple datasets varying the number
of instances, number of features and the average distance between positive and negative
instances. They focus on binary classifications, consequently label dependencies are not
considered explicitly, although multi-label datasets with a possible correlation among
labels can be generated from the same artificial data. The possibility of changing the
average distance between positive and negative instances is an interesting aspect of their
approach because it allows to somehow control the difficulty of the classification problem.

The authors Pereira et al. (2018) analyze 16 distinct multi-label evaluation measures
in order to aid researchers when choosing a subset of evaluation measures. The authors
consider multi-label evaluation measures as random variables and then estimate the Pearson
Correlation between each pair of multi-label measures. For this purpose, they performed
experiments of 16 multi-label methods on 11 multi-label datasets. The analysis showed
which measures have strong correlation with each other, e.g Example-Based Accuracy has
a strong correlation with Example-Based F-measure. Interestingly, the analysis presented
in this chapter is very consistent with the analysis of Pereira et al. (2018), although the
purpose here is not only to analyze measures, but also, and mainly, multi-label methods.

The authors of Dembczyński et al. (2012) undertook an experimental study to
analyze the behavior of methods when label dependence changes. Three types of experi-
ments are performed, each one exploring a different type of label dependence, the marginal
independence, the conditional independence and the conditional dependence, as named
by the authors. Even though the proposed experimental framework focuses only on the
conditional dependencies among labels, it allows a much deeper and generic experimental
analysis of this type of dependence than the work of Dembczyński et al. (2012).

A simulation on the scores given by base binary classifiers used by a multi-label
method is conducted by Jiang et al. (2014). They assume that scores of binary classifiers
are distributed according to a Beta distribution and directly generate data from the
marginal distributions of the labels not focusing on the label correlation, which is a strong
limitation when studying multi-label algorithms in general. The beta distribution was
chosen because it is bounded by 0 and 1, the mean can be defined at any value in (0, 1)
and the variance can be fully controlled as desired (0 to 1/4). It also includes common
distributions as special cases, like the uniform distribution and the Bernoulli distribution.
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Contrasting to the work of Jiang et al. (2014), the framework proposed in this chapter
addresses the main limitation of their study by considering all nodes of probability trees
to take into account label dependencies to better evaluate multi-label methods in loss
minimization.

Waegeman et al. (2014) conducted two classes of experiments to empirically compare
four multi-label methods. The first class assumed independence of labels, while the second
class assumed a model with strong label dependencies. Instead of artificially generating
observations with features and then assigning labels based on the features, the authors
directly generated labels from a predefined distribution of labels P(y). In the second class,
the authors assume a model that the following restriction holds

P(yi|y1, ..., yi−1) = 1
1 + exp(−∑i−1

j=1 2wij(yj − 1
2)− wi0)

, (5.1)

where all wij ∼ N(1, 3) and wi0 ∼ N(1, 3). The labellings are generated by the chain rule
of probability

P(y) =
m∏
i=1

P(yi|y1, ..., yi−1).

In the experiments the number of labels was set to 25 and the number of observations
varied from 5, 10, 20, 30, 40, 50, 75, 100, 200, 500, 1000, 2000, 5000, 10000. For each
one, the experiments were repeated for 30 different values of wi. Their experimental setup
differs from the one proposed in this chapter mainly in the level of label dependence which
is better controlled in this framework. Using a metric for calculating the level of label
dependence, defined later in Equation (5.3) at the next section, a 12 label problem following
the distribution presented in Equation (5.1) shows an average value of 0.398. Using the
framework defined in this chapter, it is possible to choose a level of label dependence up
to 0.5.

5.2 The Experimental Framework
The experimental framework simulates several P(Y|X = x) distributions and gives

them to the multi-label classifiers. Consequently, no model needs to be induced from
the training dataset, and no estimate of P needs to be made, making the feature vector
unnecessary in the prediction process. Hence, the framework does not evaluate the training
process of a multi-label method, but only the final part of the prediction process, where a
multi-label classifier predicts a labelling based only on the given distribution of labels.

A probability tree diagram can be used to explain the framework. A probability
tree is a weighted binary tree representing a sequence of conditional events, in this
case, a labelling. Each level of the tree represents a label and each node represents the
occurrence (or absence) of the respective label given the previous nodes (labels). An
example considering only two labels (C and D) is shown in Figure 2.
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Figure 2 – An example of a probability tree with events C and D

Note that a path from the root to a leaf node represents the joint event with
probability equals to the product of the path weights. For example, the probability of
occurrence of event C is written as P(C) = 0.6. The probability that D occurs given C is
written as P(D|C) = 0.3 and, therefore, the probability of such instance being associated
with labels C and D is 0.18.

For each level i ∈ (1, n) of the tree there are 2i edges corresponding to the
probabilities of occurrence (or absence) of label i given all possible combinations of the
previous labels. Note, however, that half of the edges are determined by complementary
probability, since the probability of absence can be given as a function of the probability of
occurrence. Therefore, from now on, only the probabilities with respect of the occurrence
of events are considered and discussed. For each j ∈ (1, r), where r = 2i−1, let Bij be the
value of the j-th node of the i-th level and let each level represent a label. In the example
of Figure 2, this means that B11 = P(Yi = 1) = 0.6 and B22 = P(Y2 = 1|Y1 = 0) = 0.2.
Given two vectors of constants µ = (µ1, ..., µn) ∈ [0, 1]n and θ = (θ1, ..., θn) ∈ [0, 1]n, it is
assumed that each variable Bij is a random variable that is independently distributed from
a probability density function of mean µi and variance µi(1− µi)θi. Each µi from vector µ

is a random variable that is i.i.d from a distribution of an arbitrary mean µ̂ and variance
µ̂(1− µ̂)θ̂. Analogously, each θi is a random variable that is i.i.d from a distribution of an
arbitrary mean µ̄ and variance µ̄(1− µ̄)θ̄.

Note that not all labels follow the same distribution. For example, B21B11 +B22(1−
B11), which corresponds to the marginal distribution of label 2, in general, is not the same
distribution as B11, which corresponds to the marginal distribution of label 1. However,
some properties remain the same for all labels, for instance, the expected density of each
label:

Px(yi = 1) = µ̂, for all 1 ≤ i ≤ n (proof in Appendix C.1). (5.2)
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In order to evaluate a multi-label method in this experimental framework, the
method must be expressed as a function of the distribution of labels. Examples are found
in Section 2.1 where the prediction of multi-label classifiers are expressed as functions of
the distribution of the labels. Although only transformation based methods are presented,
a few specific algorithm adaptation methods can also be expressed as a function of the
distribution of labels, for instance, according to Cheng e Hüllermeier (2009), Younes et al.
(2011), Zhang e Zhou (2013), ML-KNN (Min-Ling Zhang; Zhi-Hua Zhou, 2005) has the
same predictions as BR whose binary classifiers are a modified KNN algorithm. In the
words of Cheng e Hüllermeier (2009), “ML-KNN is a binary relevance learner, i.e., it learns
a single classifier for each label. However, instead of using the standard k-nearest neighbor
classifier as a base learner, it implements the single classifier by means of a combination of
KNN and Bayesian inference.”. Also, as claimed by Decubber et al. (2019), a multi-layer
neural network whose output layer contains one neuron for each label and each output
neuron uses a logistic activation function, is the equivalent of the BR method. In this case,
the ith output neuron is an estimate of P(Yi|x) and hidden layers act as feature extractors
of x. Note that the predictions of these two methods are only expressed as a function
of the distribution of labels because they can be actually viewed as a transformation
method. It is possible that any multi-label adaptation method can be somehow viewed as
a transformation based method. This is not commonly believed in the literature, but it is
hard to prove whether it is true or false.

The experimental procedure of the framework is presented in Algorithm 3 with
four parameters, φ, γ, µ̂, and θ̄:

• The parameter γ is used as a measure of dependence between labels;

• φ is used as a measure of difficulty of the problem;

• µ̂ is the average label cardinality. A high value means that simulations will in average
produce probability distributions where is expected that labellings have a number of
positive labels (i.e ∑i P(Yi = 1) is high);

• θ̄ is a parameter related to the variability among the variance of tree levels. A low
value means that nodes of the same tree level vary equally (same variance).
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input :A multi-label method M;
Number of labels n;
Number of iterations k;
Loss function L;
Real values µ̂ and θ̄ such that 0 < µ̂ < 1, 0 < θ̄ < 1;
Real values φ and γ such that φ2 + γ2 < µ̂(1− µ̂).

output :Estimated Expected loss of M for the given loss function.
1 Consider a probability tree T of n events in which Bij ∈ T, for any 1 ≤ i ≤ n and

1 ≤ j ≤ 2i−1, represents the conditional probability of occurrence of label i given
a particular combination j of labels in {1, 2, ..., i− 1};

2 r ← 0;
3 µ̄← γ2

γ2+φ2 ;
4 θ̂ ← 1− γ2+φ2

µ̂(1−µ̂) ;
5 repeat k times
6 µ1, ..., µn ← Random(µ̂,θ̂);
7 θ1, ..., θn ← Random(µ̄,θ̄);
8 foreach Bij ∈ T do Bij ← Random(µi,θi);
9 ŷ← M(T);

10 foreach y ∈ Y do
11 r ← r + L(y,ŷ) · JointProb(y,T);
12 end
13 end
14 return r/k

Algorithm 3 : Process for evaluating a multi-label method by simulating the
distribution of labels. Function Random(µ,θ) returns a random value in [0, 1] from an
arbitrary distribution of mean µ and variance µ(1−µ)θ. Function JointProb(y,T)
returns the joint probability of labelling y ∈ Y in the distribution of labels T.

An example of a random density distribution for each node Bij (function Random(·,·)
in Algorithm 3) can be the Beta distribution. Three examples of Beta distributions are
given in Figure 3.

The value of γ2 is defined as the mean of the expected value of the average quadratic
difference between each pair of nodes of a specific level:

γ2 =E

 1
n− 1

n∑
i=2

1(
2i−1

2

) ∑
(j,k):j 6=k

(Bij −Bik)2


=Eµ,θ

 1
n− 1

n∑
i=2

1(
2i−1

2

) ∑
(j,k):j 6=k

E
[
(Bij −Bik)2|µ,θ

]
.

 (5.3)

To calculate the right-hand side of the equation, it is necessary to calculate E [(Bij −Bik)2|µi, θi].
The formula for calculating the variance of an arbitrary random variable X gives us a way
to calculate it:

Var [X] = E
[
X2
]
− E [X]2 . (5.4)
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Figure 3 – Four examples of different parameters (mean and standard deviation) for
the Beta distribution. Note that for a specific pair of parameters, the Beta
distribution becomes the uniform distribution.

From (5.4) we have that

E
[
X2
]

= Var [X] + E [X]2 .

IfX is substituted byBij−Bik when conditioned in µi and θi, then E [X2] = E [(Bij −Bik)2|µi, θi]
is given by:

Var [Bij −Bik|µi, θi] + E [Bij −Bik|µi, θi]2

= Var [Bij −Bik|µi, θi] + (µi − µi)2

= Var [Bij −Bik|µi, θi].

Since Bij −Bik are independent given µi and θi, therefore

E
[
(Bij −Bik)2|µi, θi

]
=Var [Bij|µi, θi] + Var [Bik|µi, θi]

=µi(1− µi)θi + µi(1− µi)θi
=2µi(1− µi)θi.

(5.5)
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Substituting (5.5) in (5.3), it can be shown that

γ2 =Eµ,θ

 1
n− 1

n∑
i=2

1(
2i−1

2

) ∑
(j,k):j 6=k

2µi(1− µi)θi


=Eµ,θ

 1
n− 1

n∑
i=2

2µi(1− µi)θi(
2i−1

2

) (
2i−1

2

)
= 2
n− 1

n∑
i=2

Eµi,θi [µi(1− µi)θi]

= 2
n− 1

n∑
i=2

µ̂(1− µ̂)(1− θ̂)µ̄

=2µ̂(1− µ̂)(1− θ̂)µ̄

(5.6)

The difficulty of the problem φ is related to the randomness of the labels, and have a
close relation to the entropy of a distribution. For instance, if the probability of presence of
each label falls very close to 0 or 1, then the problem is said to have low difficulty, because
its has a low risk when saying that a label is (not) present. Let B̄i = 1

2i−1
∑2i−1
j=1 Bij(1−Bij)

for any i. The value of φ2 is defined as the expected value of the geometric mean over
B̄1, ..., B̄n:

(φ2)n = E
[
n∏
i=1

B̄i

]

= Eµ,θ

[
n∏
i=1

E[B̄i|µi, θi]
] (5.7)

The expected value of Bij(1−Bij) for any i, j when given µi and θi is

E [Bij(1−Bij)|µi, θi] = µi − µi2 − Var [Bij|µi, θi]

= µi(1− µi)− µi(1− µi)θi
= µi(1− µi)(1− θi)

(5.8)

From equations (5.7) and (5.8), one may have that

(φ2)n = Eµ,θ

[
n∏
i=1

µi(1− µi)(1− θi)
]

=
n∏
i=1

µ̂(1− µ̂)(1− θ̂)(1− µ̄),

from which it is concluded that:

φ2 = µ̂(1− µ̂)(1− θ̂)(1− µ̄). (5.9)

One may express µ̄ and θ̂ in terms of φ and γ by solving equations (5.6) and (5.9):

µ̄ = γ2

γ2 + φ2 (5.10a)
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θ̂ = 1− γ2 + φ2

µ̂(1− µ̂) (5.10b)

In algorithm 3, one can use the beta distribution as a base for generating random
values. The usual parameters of the beta distribution, say α and β, can be written in
terms of the mean and variance, say µ and σ2, as following (SULAIMAN et al., 1999):

α =
(
µ(1− µ)

σ2 − 1
)
µ

β =
(
µ(1− µ)

σ2 − 1
)

(1− µ)

for 0 < µ < 1 and σ2 < µ(1− µ)

Through such parametrization one can analyze the effects of the dependence among
labels and the difficulty of the problem. The major benefits of the described evaluation
method are listed below:

• Lesser assumptions with respect to label distributions than previous works (see
Section 5.1), in such a way that nodes are generated independently of each other.
By using an independent random variable for each probability node of the tree, it is
guaranteed that any possible distribution of labels can be generated and nodes are
independent of each other.

• Two important factors of MLC problems are controlled. In this way, it is easy to
verify if a multi-label method is sensible to dependence among labels and makes
it possible to analyze the behavior of multi-label methods by simulating different
configurations of datasets.

Given a probability tree T of n labels, the computational cost of a single simulation
in Algorithm 3 is T (n) +M(T) +R(T), where T (n) is the cost of generating a probability
tree of n labels, M(T) is the cost of multi-label method M making a prediction, and R(T)
is the cost of calculating the risk for a single prediction. In general, it is possible to say
that:

• T (n) = Ω(2n), since 2n real values need to be generated from a random distribution;

• R(T) = Ω(2n), since it is a sum of 2n values;

• If one uses the brute force algorithm (testing all 2n labellings), M(T) = 2nR(T) =
Ω(22n).

Hence, Algorithm 3 has a very high computational cost of at least Ω(22n) when the brute
force algorithm is used, making it unfeasible for high values of n. This can be highly
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reduced at specific combinations of multi-label classifier and multi-label metric. Consider
the evaluation of CC in terms of subset 0/1 loss. Since subset 0/1 loss is only zero when
both predicted and target labellings are equal, and 1 otherwise, the risk of an arbitrary
labelling ŷ with respect to subset 0/1 loss can be easily calculated by 1 − P(Y = ŷ|x),
which is much faster computed than a sum of 2n values. To compute the CC prediction,
only n values of the probability tree needs to be generated: {P(Y1 = 1), P(Y2 = 1|Y1 =
yCC

1 ), . . . , P(Yn = 1|Y1 = yCC
1 , . . . , Yn−1 = yCC

n−1)}, removing the need of generating all 2n

values of the probability tree.

5.3 An Application of the Experimental Framework
To demonstrate the effectiveness of the experimental framework, a case study is

carried out. To this end, the expected losses, considering the four loss functions presented
in Section 2.2, were estimated for five multi-label algorithms: BR, DBR, CLR, CC and
PCC. 1

For comparison reasons, an optimal classifier for Jaccard distance is obtained by
exhaustive search. Note that it is only possible because the number of labels is not very
high, otherwise, it would be impracticable due to the exponential growth of possible
labellings. In order to determine the values of µ̄ and θ̂ by equations (5.10a) and (5.10b),
an arbitrary value from 0 to 1 must be chosen for µ̂. In these experiments, µ̂ is fixed
to 1

2 . The methods were tested with 9 distinct values for φ ∈ {0.05, 0.1, ..., 0.45}. From
equation (5.10b), the inequality γ2 < 1

4 − φ
2 must be true, therefore the tested values for

γ were defined as a function of φ:

γ = λ

√
1
4 − φ

2, for λ ∈ {0.1, 0.2, ..., 0.9} ∪ {0.025, 0.05, 0.99}.

This gives a total of 108 distinct configurations for (γ, φ). For each combination of the
parameter pairs, method and loss function, the expected losses were estimated over 10000
simulations based on probability trees composed of 12 labels. The case study is restricted
to 12 labels only due to the high computational cost of computing the optimal solution
for the Jaccard distance, which is usually not feasible in practice. Therefore, for a large
number of labels, the exhaustive methods should be avoided and the experiments conducted
exclusively on the feasible methods.

Instead of presenting the expected losses on their absolute value, they are normalized
by dividing them by the Bayes error (the best solution value). Thus, the normalized values
can be interpreted as how far the classification is from the global minimum loss. The
multi-label method that optimizes the F-measure or the Jaccard distance are named Bayes
F-measure and Bayes Jaccard distance, respectively.
1 The source code in Python programming language is available at <https://github.com/Lucashsmello/

mll-framework>

https://github.com/Lucashsmello/mll-framework
https://github.com/Lucashsmello/mll-framework
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First, a summary of the results is presented on Table 1 and then some details
are discussed. The summary is an average ranking of all classifiers for each metric. The
ranking is done for each one of the 108 configurations, that is, for each tested (γ, φ) the
rank 1 was given to classifier with lowest estimated risk and 7 for the highest. When a tie
occur, the average rank is given to all classifiers involved in the tie.

To optimize Hamming loss it is enough to only consider the marginal distributions
as shown in Dembczyński, Cheng e Hüllermeier (2010), which is done by BR.

Table 1 – Average rank of all tested Multi-label methods over 108 experiments.

Hamming loss Subset 0/1 loss F-measure J. distance
BR 1.00 4.16 3.12 3.06

DBR 6.55 3.82 6.99 6.99
CC 4.72 2.07 5.50 5.50

PCC 4.54 1.00 5.40 5.12
Bayes JD 3.90 4.40 2.00 1.00
Bayes FM 4.95 6.48 1.00 2.00

CLR 2.31 6.04 3.87 4.31

Clearly the results in Table 1 show that CC is not designed to optimize Hamming
loss, Jaccard distance and neither F-measure, opposed to some works that suggests that CC
optimizes Hamming loss (DOPPA et al., 2014; ZHANG; ZHOU, 2013). This may happen
because CC achieves a good Hamming loss in some special cases, but in average, it does
not. Note that the F-measure optimizer achieves a great performance on Jaccard distance.
While no efficient optimizer is known for Jaccard distance, the F-measure optimizer, which
runs in polynomial time (DEMBCZYŃSKI et al., 2013), can be used as an approximation.

Some results are presented in the form of pairs of graphs in figures from 4 to 7.
Each pair represents the extremes with respect to difficulty: the left shows the relative
expected loss for multiple values of γ and φ = 0.05, while the right shows the same but
with φ = 0.45. The extreme values for φ were chosen to be shown and discussed here,
because they can be used to represent all other experiments, since the intermediate values
present results that are almost an weighted average of the extreme values. Nevertheless,
the results for all values of φ are included in Appendix C.2, C.3, C.4 and C.5.

From the results, two interesting observations are made regarding subset 0/1 loss:

• CC is a good approximation for optimizing subset 0/1 loss. It needs only n parameters
of the conditional joint distribution over labels and in all experiments it was the best
one behind PCC, which needs 2n parameters for the same distribution. Clearly this
happens due to the fact that CC is a greedy heuristic for finding the labelling with
the highest probability, as discussed by Dembczyński, Cheng e Hüllermeier (2010).
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Figure 4 – Graphs of estimated expected subset 0/1 loss for all methods divided by the
best one (PCC) when φ = 0.05 (left) and φ = 0.45 (right). The value of γ is
presented on the horizontal axis. In the right figure, all classifiers, except for
CC, resulted in almost the same performance, hence all of them collapsed to
the same line.
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Figure 5 – Graphs of estimated expected Hamming loss for all methods divided by the
best one (BR) when φ = 0.05 (left) and φ = 0.45 (right). The value of γ is
presented on the horizontal axis. The results from BR method corresponds to
value 1.

• The optimal algorithm for F-measure is the worst among the tested ones. Even
considering the correlation between labels, this algorithm does not achieve a better
expected loss than BR. Indeed, Subset-loss, a very strict measure, seems more related
to Jaccard distance than to F-measure loss by the fact that Jaccard distance is
stricter than F-measure loss, i.e, always gives a higher or equal loss for the same
prediction except when the prediction is fully correct or fully incorrect (see equation
2.10).

Note that exploiting dependence among labels does not imply better performance (e.g, CC
has a higher expected loss in F-measure than BR, even when the level of label dependence
is high). In all results, note that CC and PCC had a very similar performance, reinforcing
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Figure 6 – Graphs of estimated expected F-measure loss for all methods divided by the
best one (Bayes F-measure) when φ = 0.05 (left) and φ = 0.45 (right). The
value of γ is presented on the horizontal axis. The results from F-measure
optimizer method corresponds to value 1.

0.0 0.1 0.2 0.3 0.4 0.5
Label Dependence level

1.0

1.1

1.2

1.3

1.4

Re
la

tiv
e 

Ja
cc

ar
d 

di
st

an
ce

CLR
Bayes F-loss
DBR
CC
BR
PCC

0.00 0.05 0.10 0.15 0.20
Label Dependence level

1.0

1.1

1.2

1.3

1.4

Re
la

tiv
e 

Ja
cc

ar
d 

di
st

an
ce

CLR
Bayes F-loss
DBR
CC
BR
PCC

Figure 7 – Graphs of estimated expected Jaccard distance for all methods divided by the
best one (Bayes Jaccard distance) when φ = 0.05 (left) and φ = 0.45 (right).
The value of γ is presented on the horizontal axis. The results from Jaccard
distance optimizer method corresponds to value 1.

the idea that CC is an approximation algorithm of PCC. The expected F-measure loss was
proved that it can be optimized efficiently using only O(n2) parameters of the joint label
distribution (DEMBCZYŃSKI et al., 2013) whereas no efficient algorithm for optimizing
Jaccard distance is known.

The results in Figures 6 and 7 show a very strong relation between F-measure
and Jaccard distance optimizers. Note that the estimated values of the expected losses
for both optimizers are almost indistinguishable on the graphs of Figures 6 and 7. The
results suggest that F-measure optimizer, which has a known efficient algorithm, can be
used as an approximation algorithm for optimizing Jaccard distance, for which no efficient
optimizer is known. Pereira et al. (2018) conclude that F-measure and Jaccard distance
(a.k.a, the complement of Example based accuracy) have a strong correlation. The results
in this chapter show that along with the strong correlation, the optimal solutions for both
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measures are similar.

Note that CLR had always a higher expected loss than BR. This occurs in all
experiments conducted in this section, which one can infer that CLR is not a good choice
for any measure tested, but may be for other measures not used here.

From the graphs of subset 0/1 loss, F-measure and Jaccard distance, there are clear
evidences that DBR exploits a type of dependency among labels that is not beneficial for
optimizing none of these metrics: The performance greatly becomes relatively worse when
label dependence level is increased. Moreover, DBR is the method with the most cases
at the highest average loss. There is no evidence from the results to suggest the usage of
DBR in any case, if one is concerned with optimizing one of the four multi-label metrics
considered. Again, it is possible that DBR optimizes a multi-label metric that was not
considered in experimental study. Furthermore, it may be possible that the major strength
of DBR relies on being tolerant to estimation errors. As its creators (MONTAÑES et al.,
2014) suggested, the redundancy introduced by DBR may improve performance in practice,
as shown in many branches of machine learning, such as in ensemble of classifiers. As
probability distributions of labels are assumed to be perfectly known in the framework, the
supposed tolerance against errors in estimating the distribution is not taken into account.

The level of label dependence is not the only relevant variable for MLC. In figures
5, 6 and 7 one may see that a high level of difficulty makes some methods further from
the optimal, even when there is no dependency among labels. This is interesting because
with no label dependence, BR is not the best method for F-measure and Jaccard distance.
Also, CLR becomes very similar to BR at high levels of difficulty in all measures. This
occurs in special when φ is sufficiently high because, for all 1 ≤ i ≤ m, the probability
P(Yi = 1) approximates to 1

2 . For any 1 ≤ i ≤ m, if P(Yi) = P(Yj), ∀j, then CLR
prediction at (2.6) becomes equal to BR prediction at (2.4). In order to prove that, assume
that P(Yi) = P(Yj), ∀j for some label i. Therefore, P(Yi = 1, Yj = 0) = P(Yi = 0, Yj = 1).
From (2.6), it can be concluded that the prediction of CLR is defined by the expression

∑
j 6=i

P(Yi = 1, Yj = 0)
2 ·P(Yi = 1, Yj = 0) + P(Yi = 1) >

n∑
j=1

P(Yj = 0),

which is equivalent to

∑
j 6=i

1
2 + P(Yi = 1) > n(1−P(Yi = 1)),

and finally

P(Yi = 1) > 1
2 .
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Chapter Conclusion

In the face of discussions and results presented in this chapter, one may conclude
that our proposed method can aid in elaborating and testing new heuristics for optimizing
predictions in multi-label classification. This is only successfully achieved because the
proposed experimental framework has accomplished two crucial aspects of experimental
setups of this kind in the context of loss minimization in MLC (DEMBCZYŃSKI et al.,
2012):

• Low number of assumptions with respect to the simulation of the label distribution.

• Two important parameters can be easily controlled, the label dependence level and
the difficulty of the problem.

To the best of our knowledge, no work has accomplished them simultaneously in its
experimental setup.

The experimental study in Section 5.3 was carried out mainly to show the potential
of using the proposed framework. Despite its simplicity, the study showed to be consistent
with current works in multi-label classification, especially within Pereira et al. (2018), where
authors draw similar conclusions with respect to which multi-label evaluation measures
have strong relationships among each other.

More importantly, it was highlighted as useful as it was discovered that Jaccard
distance optimizer and F-measure optimizer are both very related and the latter can
be used as an approximation to the former. However, there is still no proof that CC
is an approximation for optimizing subset 0/1 loss, the results in Section 5.2 reinforces
existent arguments and shows a strong evidence towards the veracity of this statement.
Moreover, it show that some methods have a strong correlation with each other, BR
with CLR, Jaccard distance optimizer with F-measure optimizer, and CC with PCC.
This is an important conclusion that may help researchers when comparing methods.
Additionally, it was shown that label dependence is not the only relevant variable in
multi-label classification problems. As the experiments have highlighted, the difficulty of
the problem can either make multi-label methods better or worse than others.

Future works may address other practical usage of the framework, like investigating
the impacts of changing the number of labels and/or the number of simulations. Further-
more, investigating if the framework may be used to detect the cases in which a multi-label
classifier optimizes a metric. If so, further investigate if it can be done in a feasible time
or it does require an extremely high number of simulations to obtain the solution. The
framework can also be used to study the effects of changing the parameters of multi-label
methods, such as the k in RAKEL, and the chain order of CC. And finally, a future work



70
Chapter 5. An experimental framework for evaluating loss minimization in multi-label classification via

stochastic process

may consider the effectiveness of evaluating the multi-label method based on a stacking
behaviour (like DBR) inside the framework.

This evaluation proposal is clearly not perfect and comes with some limitations.
One obvious limitation is the assumption of a Beta distribution that generates parameters
for other Beta distributions and then finally generates the probability tree. This is much
better than assuming that all nodes representing the marginal distribution of a label
follows identically the same Beta distribution (SULAIMAN et al., 1999).

Another limitation is the maximum number of labels to be considered, which
cannot be larger than 20 labels in practice due to the exponential growth of the number of
possible labellings. This maximum could be significantly increased if special characteristics
for specific metrics and multi-label classifiers are exploited in such a way that the expected
loss does not need to be computed for each one of the 2m values of the joint distribution.
In this case, not all values of the joint distribution need to be generated. The simplest
example in which this occurs is evaluating CC with respect to subset 0/1 loss, in which
only n nodes of the probability tree needs to be used in order to evaluate the risk (see the
end of Section 5.2).

Additionally, in order to include a multi-label method in the framework, one need
to express its prediction by a function (or algorithm) of the joint probability distribution of
the labels (ex: Equation (2.4)). It is not known if any adaptation-based multi-label method
can be evaluated in the framework. One may conjecture that any multi-label adaptation
method can be viewed as a transformation-based method. If this is true, the framework
may be used. However, this is an open question hard to prove. Finally, the most relevant
limitation is probably the assumption of no estimation errors and no systematic bias in
the given joint label distribution. Future work may address these limitations.
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6 Conclusions

This thesis presented three studies that tackle the subject of dependency among
labels in distinct ways. In Chapter 3 it was shown that the dependence among labels makes
the problem of optimizing the expected coverage a NP-hard problem, even when assuming
a restricted scenario where all instances have exactly two labels or even when assuming a
pairwise low level of dependence among labels. It is concluded therefore that optimizing
the expected coverage is not tractable for problems with large number of labels, unless
some strong assumptions are made such as label independence. In Chapter 4 it was proven
that CLR can have a poor performance on multiple metrics in particular families of label
probability distributions, even when considering a very low level of dependency among
labels. This only occurs due to the way CLR exploits dependencies among labels. This
certainly shows that just exploiting dependencies among labels does not make a multi-label
method good, in fact, it can make it worse in some scenarios. In Chapter 5 an experimental
study was conducted where multi-label algorithms were compared against each other in a
scenario where the label dependence is quantified and conveniently controlled. With respect
to the label dependence, results suggest that the label dependence is the most relevant
factor that makes predictions far from the optimal prediction. Each chapter has presented
its own conclusions regarding the details on how the label dependence impacts multi-label
methods, showing it is critical to give attention to label dependence when using/designing
algorithms. With this said, it can finally be concluded that this thesis achieved its objective
in presenting valuable information on the analysis of the dependencies among labels in the
field of multi-label learning.
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APPENDIX A – Appendices for Chapter 3

A.1 Proof of Lemma 3.1

Lemma 3.1. Let m = |Rφ(x)|. For any arbitrary integer 0 ≤ x < n and for any constant
value c ∈ R, if w′ is a weighting function where

w′(u, v) = c, ∀u, v ∈ Rφ(x),

then

fφ(Rφ(x), w′) = c

(
m

3

)
+ cx

(
m− 1

2

)
. (3.4)

See Appendix A.1.

Proof Rewrite f as

fφ(Rφ(x), w) =
n−2∑
i=x

i Wφ(φ−1(i)),

where φ−1 is the inverse function of φ, that is, φ−1(i) returns the vertex at rank i. Note
that m = n− x. Therefore

fφ(Rφ(x), w′) =
n−2∑
i=x

ic(n− i− 1)

=c
n−2−x∑
i=0

(i+ x)(n− i− x− 1)

=c
m−2∑
i=0

i(m− i− 1) + c
m−2∑
i=0

x(m− i− 1)

=c
(
m

3

)
+ cx

(
m

2

)
.

A.2 Proof of Lemma 3.2

Lemma 3.2. Given a non-weighted graph G = (V,E), let G′ = T (G) = (V ′, w) and define
Q as the set of vertices such that V ′ = V ∪Q and V ∩Q = ∅. For an arbitrary solution
(ranking) φ of Max 2-SL consider the partition (Aφ, Bφ, Cφ) = Pφ(V,Q). If there exists a
vertex v ∈ Cφ in which ({u, v} ∈ E, ∀u ∈ Bφ), then there exists a solution π in which
Bπ = Bφ ∪ {v}, Cπ = Cφ − {v} and fπ(V,w) ≥ fφ(V,w).
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Proof By assumption there exists a non-empty set Sφ such that

Sφ = {v ∈ Cφ | {v, u} ∈ E, ∀u ∈ Bφ}. (A.1)

Define x as the vertex in Sφ with the highest rank:

φ(x) ≥ φ(v), ∀v ∈ Sφ.

If there exists a vertex v ∈ Cφ in which φ(v) > φ(x), then swap their ranks. This increases
the objective function because v is connected to a vertex of Bφ via an edge with negative
weight. Let Q′ = {v ∈ Q | φ(v) > φ(x)}. By defining a new ranking function π as

π(v) =


φ(x) + |Q′|, if v = x

φ(v)− 1, if v ∈ Q′

φ(v), otherwise,

it can be shown that fπ(V ′, w) ≥ fφ(V ′, w). Note that π(v) = φ(v) for all v ∈ V , except
when v = x. Also note that Wπ(v) = Wφ(v) for all v ∈ V . Therefore, the difference
fπ(V ′, w)− fφ(V ′, w) according to (3.3) can easily be calculated as follows

fπ(V ′, w)− fφ(V ′, w) =π(x)Wφ(x) − φ(x)Wφ(x)

= (π(x)− φ(x))Wφ(x)

=|Q′| Wφ(x).

By assumption (A.1), x is connected to all vertices in Bφ, meaning that ∀v(v ∈ Bφ →
w(x, v) = 1), therefore Wφ(x) = |Bφ|. Consequently,

fπ(V ′, w)− fφ(V ′, w) = |Q′| Wφ(x) ≥ 0.

Note that |Cπ| < |Cφ|.

A.3 Proof of Lemma 3.3
Lemma 3.3. Given a non-weighted graph G = (V,E), let G′ = T (G) = (V ′, w) and define
Q as the set of vertices such that V ′ = V ∪Q and V ∩Q = ∅. For an arbitrary solution
(ranking) φ of Max 2-SL consider the partition (Aφ, Bφ, Cφ) = Pφ(V,Q). If there exists a
vertex v ∈ (Bφ ∪ Cφ) in which ({u, v} /∈ E, ∃u ∈ Bφ), then there exists a solution π in
which Aπ = Aφ ∪ {v}, Cπ = Cφ − {v}, Bπ = Bφ − {v} and fπ(V,w) ≥ fφ(V,w).

Proof The solution φ is decomposed into two cases:

1. When there exists v ∈ Cφ in which ({u, v} /∈ E, ∃u ∈ Bφ);
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2. When there exists v ∈ Bφ in which ({u, v} /∈ E, ∃u ∈ Bφ);

For the first case, the proof is analogous to the proof of Lemma 3.2. Define a set Sφ =
{v ∈ Cφ : {v, u} /∈ E, ∃u ∈ Bφ}, denoting x as the vertex in Sφ with the lowest rank and
define the new ranking function π as:

π(v) =


φ(x)− |Q′|, if v = x

φ(v) + 1, if v ∈ Q′

φ(v), otherwise,

where Q′ = {v ∈ Q : φ(v) < φ(x)}. The difference fπ(V ′, w)− fφ(V ′, w) according to (3.3)
can easily be calculated as follows

fπ(V ′, w)− fφ(V ′, w) =π(x)Wφ(x) − φ(x)Wφ(x)

= (π(x)− φ(x))Wφ(x)

=− |Q′| Wφ(x).

By assumption, there exists y ∈ XR in which w(x, y) = −n, which implies that Wφ(x) is
negative. Consequently,

fπ(V ′, w)− fφ(V ′, w) = −|Q′| Wφ(x) ≥ 0.

Now, suppose the second case is true and let S = {v ∈ Bφ : {v, u} /∈ E, ∃u ∈ Bφ}.
By assumption, S is a non-empty set. Name x as the vertex in S with the lowest rank,
that is:

φ(x) ≤ φ(v), ∀v ∈ S.

Let XL be {v ∈ Bφ : φ(v) < φ(x)} and XR = {v ∈ Bφ : φ(v) > φ(x)}. By defining a new
ranking function π as

π(v) =


φ(x)− |XL| − |Q|, if v = x

φ(v) + 1, if v ∈ XL or v ∈ Q

φ(v), otherwise,

it can be shown that fπ(V ′, w) ≥ fφ(V ′, w). It is true that

w(x, v) = 1, ∀v ∈ XL.

Otherwise, there would be a vertex v ∈ S with a lower rank than x. Note that the following
statements are true:

π(v) = φ(v) and Wπ(v) = Wφ(v), ∀v ∈ (Aφ ∪XR).

Wπ(v) = Wφ(v)− 1, ∀v ∈ XL.

Wπ(x) = Wφ(x) + |XL|.
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Having the above notes in mind, the difference fπ(V ′, w)− fφ(V ′, w) is calculated as

fπ(V ′, w)− fφ(V ′, w)

=
π(x)Wπ(x) +

∑
v∈XL

π(v)Wπ(v)


−

φ(x)Wφ(x) +
∑
v∈XL

φ(v)Wφ(v)


=
π(x)Wφ(x) + π(x)|XL|+

∑
v∈XL

(φ(v) + 1) (Wφ(v)− 1)


−

φ(x)Wφ(x) +
∑
v∈XL

φ(v)Wφ(v)


= (π(x)− φ(x))Wφ(x) + π(x)|XL|

+
∑
v∈XL

(−φ(v) +Wφ(v)− 1)

=− (|XL|+ |Q|)Wφ(x) + π(x)|XL|

+
∑
v∈XL

(−φ(v) +Wφ(v)− 1) .

By assumption, there exists y ∈ XR in which w(x, y) = −n, which implies that

Wφ(x) =
∑
v∈XR

w(x, v) =
∑

v∈XR:v 6=y
w(x, v) − n

≤ |XR| − 1− n ≤ −|XL| − 1.

Therefore,

fπ(V ′, w)− fφ(V ′, w)

≥ (|XL|+ |Q|)(|XL|+ 1) + π(x)|XL| −
∑
v∈XL

(φ(v) + 1)

≥ (|XL|+ |Q|)(|XL|+ 1) + (φ(x)− |XL|+ |Q|)|XL|

− φ(x)|XL|

= (|XL|+ |Q|)(|XL|+ 1)− (|XL|+ |Q|)|XL|

= |XL|+ |Q|.

A.4 Proof of Lemma 3.4
Lemma 3.4. Given a non-weighted graph G = (V,E), let G′ = T (G) = (V ′, w), and
define Q as the set of vertices such that V ′ = V ∪ Q and V ∩ Q = ∅. For an arbitrary
solution (ranking) φ of Max 2-SL consider the partition (Aφ, Bφ, Cφ) = Pφ(V,Q). There
exists a ranking π in which fπ(V,w) ≥ fφ(V,w), Cπ = ∅ and Bπ is a clique in G.



A.4. Proof of Lemma 3.4 77

Proof Suppose that Cφ 6= ∅ or Bφ is not a clique in G. Solution φ satisfies at
least one of the following conditions:

• There exists a vertex v ∈ Cφ in which ({u, v} ∈ E, ∀u ∈ Bφ);

• There exists a vertex v ∈ (Bφ ∪ Cφ) in which ({u, v} /∈ E, ∃u ∈ Bφ).

In either of the above conditions, we can show by using Lemma 3.2 and Lemma 3.3 that
there exists a new solution π such that |Bπ ∪ Cπ| < |Bφ ∪ Cφ| and fπ(V,w) ≥ fφ(V,w). If
Cπ 6= ∅ or Bπ is not a clique, we can recursively use the same argument used for φ to find
new solutions until finally obtaining solution π∗ such that Cπ∗ = ∅ and Bπ∗ is a clique in
G.
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B.1 Proof of Proposition 4.1
Proposition 4.1. When considering distribution P̂m, CLR predicts ones for the first m
labels and zeroes for the other labels, i.e, ∑m

i=1 h
clr
i = ∑n

i=1 h
clr
i = m.

It will be shown that hclr satisfies Inequality (2.6) for 1 ≤ i ≤ m on distribution
P̂m if and only if 1 ≤ i ≤ m. Firstly, it will be shown that (2.6) is not satisfied for i > m,
that is

n∑
j=1

f(P̂m, i, j) + P̂(i)
m <

n∑
j=1

(
1− P̂(j)

m

)
, for all i > m. (B.1)

Knowing that

P̂(i)
m =

P̂m(1n) + P̂m(y(i)) = m+1
2(n+1) + ε, for i ≤ m,

P̂m(1n) = m+1
2(n+1) , for i > m,

(B.2)

the right-hand side of (B.1) is equivalent to:
n∑
j=1

(
1− P̂(j)

m

)
= n− n · m+ 1

2(n+ 1) −mε. (B.3)

For the left-hand side of (B.1), and for 1 ≤ j ≤ m < i ≤ n, it can be observed that

f(P̂m, i, j) = P̂m(Yi = 1, Yj = 0)
P̂m(Yi = 1, Yj = 0) + P̂m(Yi = 0, Yj = 1)

= 0
0 + P̂m(y(j))

= 0
ε

= 0, for j ≤ m < i.

(B.4)

Using (B.4) and (B.3), (B.1) is equivalent to
n∑

j=m+1
f(P̂m, i, j) + P̂(i)

m < n− n · m+ 1
2(n+ 1) −mε, for all i > m.

The last inequality is always satisfied, even if the left-hand side assumes an upper bound
of ∑n

j=m+1 f(P̂m, i, j) ≤
∑n
j=m+1:j 6=i 1 = n−m− 1:

n−m− 1 + m+ 1
2(n+ 1) < n− n m+ 1

2(n+ 1) −mε ⇐⇒ −m− 1 < −(n+ 1) m+ 1
2(n+ 1) −mε

⇐⇒ 2m+ 2 > m+ 1 + 2mε

⇐⇒ m+ 1 > 2mε.

The last inequality is satisfied for a sufficiently small ε. This concludes the proof for i > m.
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Now consider i ≤ m. Let us show that
n∑
j=1

f(P̂m, i, j) + P̂(i)
m >

n∑
j=1

(
1− P̂(i)

m

)
. (B.5)

Firstly, note that, for if 1 ≤ i ≤ m < j ≤ n −→ f(P̂m, i, j) = P̂m(y(i))
P̂m(y(i))+P̂m(y(j)) = ε

ε+0 = 1.
Moreover, note that f(P̂m, i, j) = 1

2 for any 1 ≤ i ≤ m, 1 ≤ j ≤ m and i 6= j. Therefore,
Inequality (B.5) is equivalent to

m∑
j=1:j 6=i

1
2 +

n∑
j=m+1

1 + P̂(i)
m >

n∑
j=1

(
1− P̂(i)

m

)
,

and then
m− 1

2 + (n−m) + P̂(i)
m >

n∑
j=1

(
1− P̂(i)

m

)
.

From (B.2), it has that P̂(i)
m = m+1

2(n+1) + ε for all i ≤ m, so the above inequality is equivalent
to

m− 1
2 + n−m+ m+ 1

2(n+ 1) + ε >
n∑
j=1

(
1− m+ 1

2(n+ 1)

)
,

and then simplifying

2n−m− 1 + m+ 1
n+ 1 + ε > 2n− n · m+ 1

n+ 1 ,

and again
−m− 1 + (n+ 1) m+ 1

(n+ 1) + ε > 0,

and finally
ε > 0,

which is, by definition, always true.

B.2 Proof of Theorem 4.1
Theorem 4.1. The following upper bound holds for the regret with respect to Hamming
loss:

sup
P∈Pn

(rH(hclr)) =


n

4(n+1) , if n is even
n−1
4n , if n is odd,

where Pn denotes the set of all distributions over n labels such that P(i) ≤ 1
2 for all i. See

Appendix B.2.

For an arbitrary distribution P of Y, denote y∗ as the optimal expected Hamming
loss for P. The risk of an arbitrary labelling ŷ with respect to Hamming loss can be written
as

RH(ŷ) = 1
n

n∑
i=1

(1−P(Yi = ŷi)), (B.6)



B.2. Proof of Theorem 4.1 81

which can be derived from the definition:

RH(ŷ) =
∑
y∈Y

LH(y, ŷ) ·P(Y = y)

=
∑
y∈Y

(
1
n

n∑
i=1

[[yi 6= ŷi]]
)
·P(Y = y)

= 1
n

n∑
i=1

∑
y∈Y

[[yi 6= ŷi]] ·P(Y = y)

= 1
n

n∑
i=1

∑
y∈Y:yi 6=ŷi

P(Y = y)

= 1
n

n∑
i=1

P(Yi 6= ŷi) = 1
n

n∑
i=1

(1−P(Yi = ŷi)).

The regret with respect to Hamming loss can be expressed as

rH(ŷ) = 1
n

n∑
i=1

(ŷi − y∗i )(1− 2P(i)), (B.7)

by using the definition of regret and (B.6):

rH(ŷ) = RH(ŷ)−RH(y∗)

= 1
n

n∑
i=1

(1−P(Yi = ŷi))−
1
n

n∑
i=1

(1−P(Yi = y∗i ))

= 1
n

n∑
i=1

(P(Yi = y∗i )−P(Yi = ŷi)).

Note that

P(Yi = y∗i )−P(Yi = ŷi) =


0, if y∗i = ŷi,

P(Yi = 0)−P(Yi = 1), if y∗i = 1 and ŷi = 0,

P(Yi = 1)−P(Yi = 0), if y∗i = 0 and ŷi = 1.

Therefore

rH(ŷ) = 1
n

n∑
i=1

(ŷi − y∗i )(P(Yi = 0)−P(Yi = 1))

= 1
n

n∑
i=1

(ŷi − y∗i )(1− 2P(i)).

Said that, define A = {i : y∗i = 0 ∧ hclr
i = 1}, i.e the set of all false positive labels,

and a = |A|. From Equation (2.13), it is easy to see that y∗ = 0n for all distributions in
Pn, so

rH(hclr) = 1
n

n∑
i=1

hclr
i (1− 2P(i))

= 1
n

(
a− 2

∑
i∈A

P(i)
) (B.8)
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The regret with respect to hamming loss rH(hclr) can be expressed as following

rH(hclr) = 1
n

n∑
i=1

(hclr
i − y∗i )(1− 2P(i))

= 1
n

(
a− b+ 2

∑
i∈B

P(i) − 2
∑
i∈A

P(i)
)
.

It is easy to see that y∗ = 0n for all distributions in Pn, so B = ∅ which leads to

rH(hclr) = 1
n

(
a− 2

∑
i∈A

P(i)
)

In the next steps, we will find a lower bound for ∑i∈A P(i), consequently giving an
upper bound for rH(hclr). Summing the scores ∑i∈A si, defined in (2.9), results in:

∑
i∈A

si =
∑
i∈A

n∑
j=1

f(P, i, j) +
∑
i∈A

P(i)

=
∑
i∈A

∑
j∈A

f(P, i, j) +
∑
i∈A

∑
j /∈A

f(P, i, j) +
∑
i∈A

P(i)

Knowing that f(P, i, j) + f(P, j, i) = 1 for any i 6= j, we have that ∑i∈A
∑
j∈A f(P, i, j) =

a(a−1)
2 , therefore ∑

i∈A
si = a(a− 1)

2 +
∑
i∈A

∑
j /∈A

f(P, i, j) +
∑
i∈A

P(i). (B.9)

Using the upper bound f(P, i, j) ≤ 1−P(Yi = 0, Yj = 1) for any i and j, it can be shown
that ∑

i∈A

∑
j /∈A

f(P, i, j) ≤
∑
i∈A

∑
j /∈A

(1−P(Yi = 0, Yj = 1))

=
∑
i∈A

∑
j /∈A

(1 + P(Yi = 1, Yj = 1)−P(j))

≤
∑
i∈A

∑
j /∈A

(1 + P(i) −P(j))

= a(n− a) +
∑
i∈A

∑
j /∈A

(P(i) −P(j))

= a(n− a) + (n− a)
∑
i∈A

P(i) − a
∑
j /∈A

P(j).

(B.10)

Using the upper bound at (B.10) on Equation (B.9):

∑
i∈A

si ≤
a(a− 1)

2 + a(n− a) + (n− a)
∑
i∈A

P(i) − a
∑
j /∈A

P(j) +
∑
i∈A

P(i)

= a(a− 1)
2 + a(n− a) + (n− a+ 1)

∑
i∈A

P(i) − a
∑
j /∈A

P(j)

= −a(a+ 1)
2 + an+ (n− a+ 1)

∑
i∈A

P(i) − a
∑
j /∈A

P(j).

(B.11)
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By definition of CLR, it is true that ∑i∈A si ≥ a
(
n−∑n

j=1 P(j)
)
, when summing which is

the sum of all conditions associated to false positive labels. Applying the upper bound in
(B.11) on it:

−a(a+ 1)
2 + an+ (n− a+ 1)

∑
i∈A

P(i) − a
∑
j /∈A

P(j) ≥ a

n− n∑
j=1

P(j)

 .
Note that an is present on both sides, so it can be simplified to

−a(a+ 1)
2 + (n− a+ 1)

∑
i∈A

P(i) − a
∑
j /∈A

P(j) ≥ −a
n∑
j=1

P(j).

Also note that ∑n
j=1 P(j) = ∑n

j∈A P(j) +∑n
j /∈A P(j), so the inequality is again simplified to

−a(a+ 1)
2 + (n− a+ 1)

∑
i∈A

P(i) ≥ −a
n∑
j∈A

P(j),

which is equivalent to
(n+ 1)

∑
i∈A

P(i) ≥ a(a+ 1)
2 ,

and finally ∑
i∈A

P(i) ≥ a(a+ 1)
2(n+ 1) .

Using this last lower bound for ∑i∈A P(i) at Inequality (B.8), it can be derived an upper
bound for rH(hclr):

rH(hclr) ≤ 1
n

(
a− 2

∑
i∈A

P(i)
)

≤ 1
n

(
a− 2a(a+ 1)

2(n+ 1)

)

= a

n

(
1− a+ 1

n+ 1

)
= a

n

(
n− 1 + a+ 1

n+ 1

)
= a(n− a)
n(n+ 1) ,

which is a quadratic polynomial with respect to a that clearly has a maximum when a = n
2 ,

if n is even. Therefore
rH(hclr) ≤ n

4(n+ 1) .

If n is odd, the maximum is given when a = n−1
2 or a = n+1

2 .

To show that this bound is tight, it just needs to be shown the existence of a
distribution that yields a regret arbitrarily as close to the value above. Distribution P̂m

for m = n
2 satisfies this condition. Given that P̂(i)

n/2 = n+2
4(n+1) + ε < 1

2 for any i, the optimal
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labelling for Hamming loss is 0n. Therefore, the value of rH(hclr) on distribution P̂n/2 is
given by

rH(hclr) = 1
n

∑
i∈A

(
1− 2P̂(i)

n/2

)

= 1
n

∑
i∈A

(
1− n+ 2

2(n+ 1) − ε
)
,

and then, using Proposition 4.1,

rH(hclr) = n

2n

(
1− n+ 2

2(n+ 1) − ε
)

=1
2

(
2n+ 2− n− 2

2(n+ 1) − ε
)

= n

4(n+ 1) −
ε

2 .

B.3 Proof of Theorem 4.3

Theorem 4.3. The following lower bound holds for the regret with respect to Jaccard
distance:

sup
P
rJ(hclr) ≥ 1− 1

n
.

Consider distribution P̂1 and note that there are only three labellings with a
non-null probability: 0n, 1n and y(1). From Proposition 4.1, it has that hclr = y(1) for
distribution P̂1. Given that the loss LJ(1n,hclr) can be calculated as the following

LJ(1n,hclr) = LJ(1n,y(1)) = 1−
∑n
i=1 h

clr
i

n+∑n
i=1 h

clr
i −

∑n
i=1 h

clr
i

= 1− 1
n
,

the risk of CLR is

RJ(hclr) = RJ(y(1)) =
∑

y∈{0n,1n,y(1)}
LJ(y,y(1))P̂1(y)

= LJ(0n,y(1))︸ ︷︷ ︸
1

P̂1(0n)︸ ︷︷ ︸
1−1/(n+1)−ε

+LJ(1n,y(1))︸ ︷︷ ︸
1−1/n

P̂1(1n)︸ ︷︷ ︸
1/(n+1)

+LJ(y(1),y(1))︸ ︷︷ ︸
0

P̂1(y(1))

= 1− 1
n+ 1 − ε+ 1

n+ 1 −
1

n(n+ 1)

= 1− ε− 1
n(n+ 1) .
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The risk of the optimal solution y∗ is upper bounded by

RJ(y∗) ≤ RJ(0n) =
∑

y∈{0n,1n,y(1)}
LJ(y, 0n)P̂1(y)

= LJ(0n, 0n)︸ ︷︷ ︸
0

P̂1(0n) + LJ(1n, 0n)︸ ︷︷ ︸
1

P̂1(1n)︸ ︷︷ ︸
1/(n+1)

+LJ(y(1), 0n)︸ ︷︷ ︸
≤1

P̂1(y(1))︸ ︷︷ ︸
ε

≤ 1
n+ 1 + ε.

The regret is lower bounded by

rJ(hclr) ≥

RJ (hclr)︷ ︸︸ ︷
1− ε− 1

n(n+ 1) −

RJ (0n)︷ ︸︸ ︷( 1
n+ 1 + ε

)
= 1− 2ε− n+ 1

n(n+ 1)

= 1− 2ε− 1
n
.

The value of ε can be made arbitrarily small, so

sup rJ(hclr) ≥ 1− 1
n
.

B.4 Proof of Theorem 4.4
Theorem 4.4. The following lower bound holds for the regret with respect to F-measure:

sup
P
rF (hclr) ≥ 1− n+ 3

(n+ 1)2 .

Consider distribution P̂1 and note that there are only three labellings with a
non-null probability: 0n, 1n and y(1). This proof is very similar to Theorem 4.3. From
Proposition 4.1, it has that hclr = y(1) for distribution P̂1. Given that the loss LF (1n,hclr)
can be calculated as the following

LF (1n,hclr) = LF (1n,y(1)) = 1− 2∑n
i=1 h

clr
i

n+∑n
i=1 h

clr
i

= 1− 2
n+ 1 .

the risk of CLR is

RF (hclr) = RF (y(1)) =
∑

y∈{0n,1n,y(1)}
LF (y,y(1))P̂1(y)

= LF (0n,y(1))︸ ︷︷ ︸
1

P̂1(0n)︸ ︷︷ ︸
1−1/(n+1)−ε

+LF (1n,y(1))︸ ︷︷ ︸
1−2/(n+1)

P̂1(1n)︸ ︷︷ ︸
1/(n+1)

+LF (y(1),y(1))︸ ︷︷ ︸
0

P̂1(y(1))

= 1− 1
n+ 1 − ε+ 1

n+ 1 −
2

(n+ 1)2

= 1− ε− 2
(n+ 1)2 .
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The risk of the optimal solution y∗ is upper bounded by

RF (y∗) ≤ RF (0n) =
∑

y∈{0n,1n,y(1)}
LF (y, 0n)P̂1(y)

= LF (0n, 0n)︸ ︷︷ ︸
0

P̂1(0n) + LF (1n, 0n)︸ ︷︷ ︸
1

P̂1(1n)︸ ︷︷ ︸
1/(n+1)

+LF (y(1), 0n)︸ ︷︷ ︸
≤1

P̂1(y(1))︸ ︷︷ ︸
ε

≤ 1
n+ 1 + ε.

The regret is lower bounded by

rF (hclr) ≥

RF (hclr)︷ ︸︸ ︷
1− ε− 2

(n+ 1)2 −

RF (0n)︷ ︸︸ ︷( 1
n+ 1 + ε

)
= 1− 2ε− n+ 3

(n+ 1)2

= 1− 2ε− n+ 3
(n+ 1)2 .

The value of ε can be made arbitrarily small, so

sup rF (hclr) ≥ 1− n+ 3
(n+ 1)2 .

B.5 Proof of Theorem 4.5

Theorem 4.5. For any n divisible by 4, the following lower bound holds for the regret
with respect to normalized rank loss:

sup
P
rr̂(hrpc) ≥ 1

6 .

The proof is given by showing that a specific probability label distribution P̃ gives
a regret of exactly 1

6 for any n divisible by 4. Before defining P̃, let three disjoint sets of
labels, A, B and C be defined as following (note that we are using integers to represent
labels):

A = {i ∈ Z | 1 ≤ i ≤ n

4},

B = {i ∈ Z | n4 < i ≤ n

2},

C = {i ∈ Z | n2 < i ≤ n}.
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Distribution P̃ is defined as

P̃(y) =



3
4 − n · ε, if all labels in A are positive and all other labels are negative,
1
4 , if all labels in A are negative and all other labels are positive,

2ε, if exactly one label in A is positive and all other labels are negative

2ε, if exactly one label in B is positive and all other labels are negative

0, otherwise

where ε is an arbitrary positive real number that is assumed to be “really close” to 0. The
purpose of ε in P̃ is identical to the purpose of ε in distribution P̂m, which is to avoid
undefined value for f(P, i, j) when the numerator and denominator are both null and to
make f(P, i, j) be convenient values such as 1 or 1

2 .

It will be shown that RPC prefers any label in B to any label in A while the
optimizer for rank loss prefers labels in A to labels in B. Consider an arbitrary pair of
labels (i, j) where i ∈ A and j ∈ B. Let’s check that RPC prefers label j to i by checking
which score si or sj is higher:

n∑
k=1

f(P̃, j, k)−
n∑
k=1

f(P̃, i, k) > 0 ? (B.12)

If the difference above (sj-si) is positive, then RPC prefers label j to label i. The distribution
P̃ has so few non-null values that it is easy to check, for all i ∈ A, that:

f(P̃, i, k) =


3/4−nε+2ε
1−(n−4)ε , if k ∈ B,

3/4−nε+2ε
1−(n−2)ε , if k ∈ C,

1
2 , if k ∈ A ∧ k 6= i.

For all j ∈ B, it can be also checked that

f(P̃, j, k) =


1
2 , if k ∈ B ∧ k 6= j,

1, if k ∈ C,
2ε+1/4

1−(n−4)ε , if k ∈ A

Therefore, the score si is rewritten as:

si =
n∑
k=1

f(P̃, i, k) = |A| − 1
2 + |B|3/4− nε+ 2ε

1− (n− 4)ε + |C|3/4− nε+ 2ε
1− (n− 2)ε

Analogously, the score sj is rewritten as:

sj =
n∑
k=1

f(P̃, j, k) = |A| 2ε+ 1/4
1− (n− 4)ε + |B| − 1

2 + |C|.

Note that |A| = |B| so |B|−1
2 cancels out with |A|−1

2 on the difference sj − si. Therefore the
difference can be simplified to:

sj − si =
(
|A| 2ε+ 1/4

1− (n− 4)ε + |C|
)
−
(
|B|3/4− nε+ 2ε

1− (n− 4)ε + |C|3/4− nε+ 2ε
1− (n− 2)ε

)
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It will be used the fact Given that 3/4−nε+2ε
1−(n−2)ε ≤

3
4 and 2ε+1/4

1−(n−4)ε ≥ 2ε+ 1
4 , a lower bound for

sj − si can be found: to decrease the difference sj − si.

sj − si ≥ |A|
(

2ε+ 1
4

)
+ |C| −

(
3|B|

4 + 3|C|
4

)
.

It will be shown that this lower bound is positive. It will be seen later that this difference
remains positive. Given that 2|A| = |C| = 2|B|, it follows that

sj − si ≥ |A|
(

2ε+ 1
4

)
+ 2|A| − 3

4 · 3|A|

= |A| · 2ε.

The value |A| ·2ε is always positive since ε > 0 by definition. Therefore, it can be concluded
that RPC prefers any label j ∈ B to any label i ∈ A.

Instead of calculating the regret of the prediction of RPC (hrpc) on distribution
P̃, let us calculate the regret of the same prediction hrpc, but on a new distribution P̃0,
which is defined in the same way as P̃, but with ε being zero. It will be shown that
|rr̂(hrpc, P̃0) − rr̂(hrpc, P̃)| ≤ nε2n+1, where we are now using the notation where the
probability distribution is an explicit parameter of the regret to avoid any confusion later.
Although this upper bound seems a bit high, it is a multiple of ε, which can be arbitrarily
made small. So when ε tends to zero, this difference also tends to zero. Note that we do
not use P̃0 from the beginning, because RPC prediction on P̃0 is undefined. Observe that
these two distributions slightly differ: |P̃0(y) − P̃(y)| ≤ nε for all y. For any arbitrary
ranking z,

Rr̂(z, P̃0)−Rr̂(z, P̃) =
∑

y
Lr̂(y, z) (P̃0(y)− P̃(y))︸ ︷︷ ︸

≤nε

≤ nε
∑

y
Lr̂(y, z) = nε2n.

The difference |rr̂(hrpc, P̃0) − rr̂(hrpc, P̃)| can not differ by twice of the above amount,
since the regret is the difference of two risks.

rr̂(hrpc, P̃0)− rr̂(hrpc, P̃) = Rr̂(hrpc, P̃0)−Rr̂(z∗0, P̃0)−
(
Rr̂(hrpc, P̃)−Rr̂(z∗, P̃)

)
≤ Rr̂(hrpc, P̃0)−Rr̂(z∗0, P̃0)−

(
Rr̂(hrpc, P̃)−Rr̂(z∗0, P̃)

)
= Rr̂(hrpc, P̃0)−Rr̂(hrpc, P̃)︸ ︷︷ ︸

≤nε2n

+Rr̂(hrpc, P̃)−Rr̂(z∗0, P̃0)︸ ︷︷ ︸
≤nε2n

≤ nε2n+1.

This can be done similarly with rr̂(hrpc, P̃)− rr̂(hrpc, P̃0), so

|rr̂(hrpc, P̃0)− rr̂(hrpc, P̃)| ≤ nε2n+1. (B.13)
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To calculate the regret, it necessary to know what is the optimal solution for P̃0.
Observe that

sy(n− sy) = n

4 ·
3n
4 = 3n2

16 , (B.14)

where sy = ∑
yi, for all y such that P̃0(y) > 0. Hence, the optimal solution for normalized

rank loss in this distribution is exactly the same of rank loss, as observed in Equation (2.15).
To show the optimizer for rank loss prefers labels in A to labels in B, it just has to be
shown that P̃(Yi = 1)− P̃(Yj = 1) > 0, for all i ∈ A and all j ∈ B:

P̃0(Yi = 1)− P̃0(Yj = 1) =3
4 −

1
4 = 1

2 .
(B.15)

Hence, it can be concluded that the optimizer for rank loss prefers labels from A.

So RPC makes at least |A| · |B| = n2

16 misorder. The regret given by each of these
mistakes, as defined in Equation (2.14), are all equal and given by P̃0(Yi = 1)− P̃0(Yj = 1)
for i ∈ A and j ∈ B. From Equation (B.15), we have that P̃0(Yi = 1)− P̃0(Yj = 1) = 1

2 .
From Equation (2.14), the regret rR̂(hRPC) on P̃0 is given by multiplying the number of
misorder (n2

16 ) by
1
2 and dividing by the constant normalization factor of Equation (B.14):

rr̂(hrpc, P̃0) =n
2

16 ·
1
2 ·

16
3n2 = 1

6 .

From the equation above and from (B.13), the regret rr̂(hrpc, P̃) differs from 1/6 only by
a multiple of ε. Since ε can be arbitrarily small, the supreme of rr̂(hrpc, P̃) is at least 1

6 .

B.6 Proof of Proposition 4.2
Proposition 4.2. For distribution P̄ of n labels, CLR will predict 0n.

It will be shown that s1 = s2 <
∑
i(1− P̄(i)) and s3 = s4 = ... = sn <

∑
i(1− P̄(i))

(see (2.9)). Firstly, calculate ∑i(1− P̄(i)). Knowing that

P̄(1) = P̄(Y1 = 1, Y2 = 0)︸ ︷︷ ︸
1/2−2ε

+ P̄(Y1 = 1, Y2 = 1)︸ ︷︷ ︸
ε

= 1
2 − ε

P̄(2) = P̄(Y1 = 0, Y2 = 1)︸ ︷︷ ︸
1/2−2ε

+ P̄(Y1 = 1, Y2 = 1)︸ ︷︷ ︸
ε

= 1
2 − ε,

it has that
n∑
i=1

(1− P̄(i)) = n− P̄(1)︸︷︷︸
1/2−ε

− P̄(2)︸︷︷︸
1/2−ε

−
n∑
i=3

P̄(i)︸︷︷︸
φn

= n− 1 + 2ε− (n− 2)φn.
(B.16)
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Now, it will be shown that s1 ≤ n − 1 − ε <
∑
i(1 − P̄(i)). Before that, note

that P̄(Y1 = 1, Y2 = 0) = P̄(Y1 = 0, Y2 = 1), implying that f(P̄, 1, 2) = f(P̄, 2, 1) = 1/2.
Analogously, for any pair of labels i, j ≥ 3 and i 6= j, it has that f(P̄, i, j) = f(P̄, j, i) = 1/2.
Said that, an upper bound for s1 is

s1 = f(P̄, 1, 2) + P̄(1)︸︷︷︸
1/2−ε

+
n∑
j=3

f(P̄, 1, j)

= 1
2 + 1

2 − ε+
n∑
j=3

f(P̄, 1, j)︸ ︷︷ ︸
≤1

≤ 1− ε+ n− 2 = n− 1− ε,

and n− 1− ε is lesser than ∑i(1− P̄(i)), because their difference is negative:

(n− 1− ε)−
∑
i

(1− P̄(i)) = (n− 1− ε)− (n− 1 + 2ε− (n− 2)φn) From Equation (B.16)

= −3ε+ (n− 2)φn < 0. By definition φn <
ε

n
.

It will be shown that s3 = s4 = ... = sn ≤
∑
i(1− P̄(i)). An upper bound for s3 is

given by

s3 = f(P̄, 3, 1) + f(P̄, 3, 2) + P̄(3)︸︷︷︸
φn

+
n∑
j=4

f(P̄, 3, j)︸ ︷︷ ︸
1/2

= f(P̄, 3, 1) + f(P̄, 3, 2) + φn + n− 3
2

≤ 2 + φn + n− 3
2 = φn + n+ 1

2 .

It is easy to see that s3 ≤ φn + n+1
2 ≤ n − 1 + 2ε − (n − 2)φn, for a sufficiently large n

(n ≥ 3).

B.7 Proof of Theorem 4.6
Theorem 4.6. The following expression holds for the regret with respect to subset 0/1 loss

rs(hclr) =
(1

2 − 5ε
)
· (1− φn)n−2 , for distribution P̄,

and, consequently
lim

n→∞,ε→0
rs(hclr) = 1

2 .

Clearly, the mode of P̄ is either y(1) or y(2). In both cases, the risk is the same:

Rs(y(1)) = 1− P̄(y(1)) = 1− P̄(1, 0) ·
(
1− P̄(3)

)n−2

= 1−
(1

2 − 2ε
)
· (1− φn)n−2 .
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The risk of CLR is given by

Rs(hclr) = Rs(0n) = 1− P̄(0, 0) ·
(
1− P̄(3)

)n−2
From Proposition 4.2

= 1− 3ε · (1− φn)n−2.

And finally, the regret is

rs(hclr) = Rs(hclr)−Rs(y(1))

=
(1

2 − 2ε
)
· (1− φn)n−2 − 3ε · (1− φn)n−2

=
(1

2 − 5ε
)
· (1− φn)n−2 .

By definition, limn→∞(1− φn)n−2 = 1, so

lim
n→∞,ε→0

rs(hclr) = 1
2 .

B.8 Proof of Theorem 4.7
Theorem 4.7. The following expression holds for the regret with respect to Jaccard distance

lim
ε→0

rJ(hclr) = 1
2 , for distribution P̄.

Let A be a set of labellings of n labels defined as A = {0n,y(1),y(2),y(1,2)}, and
A′ = Y\A its complement of labellings of n labels. Let the risk be expressed as the
following

RL(ŷ) =
∑
y∈Y

L(y, ŷ)P̄(y) =
∑
y∈A

L(y, ŷ)P̄(y) +
∑

y∈A′
L(y, ŷ)P̄(y).

It will be shown that ∑y∈A′ LJ(y, ŷ)P̄(y) ≤ ε/2:∑
y∈A′

LJ(y, ŷ)P̄(y) ≤
∑

y∈A′
P̄(y) = 1−

∑
y∈A

P̄(y)

= 1−
(
P̄(0n) + P̄(y(1)) + P̄(y(2)) + P̄(y(1,2))

)
= 1−

P̄(0, 0) + P̄(1, 0) + P̄(0, 1) + P̄(1, 1)︸ ︷︷ ︸
1

 · P̄(Y3 = 0) · · · P̄(Yn = 0)︸ ︷︷ ︸
(1−φn)n−2

= 1− (1− φn)n−2 ≤ (n− 2)φn,

where the last inequality comes from the Bernoulli inequality. By definition of φn it has
that (n− 2)φn < ε/2, which can be made arbitrarily small. Therefore,∑

y∈A
LJ(y, ŷ)P̄(y) ≤ RJ(ŷ) ≤ ε+

∑
y∈A

LJ(y, ŷ)P̄(y),
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which implies that
lim
ε→0

RJ(ŷ) =
∑
y∈A

LJ(y, ŷ)P̄(y). (B.17)

Our objective is to calculate limε→0 rJ(hclr) = limε→0RJ(hclr) − limε→0RJ(y∗). When ε
tends to zero, φn tends to zero and P̄ will have only 2 non-null probabilities, y(1) and y(2).
Thus, calculating the limε→0 rJ(hclr) is easy since there will be only 2 non-null probabilities
to sum up. Hence, Equation (B.17) can be reduced to

lim
ε→0

RJ(ŷ) = LJ(y(1), ŷ)P̄(y(1)) + LJ(y(2), ŷ)P̄(y(2)). (B.18)

Firstly, let us determine the optimal risk. An optimal solution for Jaccard distance on P̄
is clearly either y(1),y(2) or y(1,2). This can be easily solved by checking all three values.

lim
ε→0

RJ(y(1)) = LJ(y(1),y(1))︸ ︷︷ ︸
0

P̄(y(1)) + LJ(y(2),y(1))︸ ︷︷ ︸
1

· P̄(y(2))︸ ︷︷ ︸
1/2

From (B.18)

= 1
2 .

(B.19)

lim
ε→0

RJ(y(1,2)) = LJ(y(1),y(1,2))︸ ︷︷ ︸
1/2

· P̄(y(1))︸ ︷︷ ︸
1/2

+LJ(y(2),y(1,2))︸ ︷︷ ︸
1/2

· P̄(y(2))︸ ︷︷ ︸
1/2

From (B.18)

= 1
2 .

The optimal risk is 1
2 , when ε→ 0. The risk of hclr is given by

lim
ε→0

RJ(hclr) = lim
ε→0

RJ(0n) From Proposition 4.2

= LJ(y(1), 0n)︸ ︷︷ ︸
1

·P̄(y(1)) + LJ(y(2), 0n)︸ ︷︷ ︸
1

·P̄(y(2)) (B.20)

= 1.

The regret is given by:

lim
ε→0

rJ(hclr) = lim
ε→0

RJ(hclr)− lim
ε→0

RJ(y∗)

=1
2 From (B.19) and (B.20)

B.9 Proof of Theorem 4.8
Theorem 4.8. The following expression holds for the regret with respect to F-measure
loss

lim
ε→0

rJ(hclr) = 2
3 , for distribution P̄.
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This proof is similar to the proof of Theorem 4.7. Let A be a set of labellings of n
labels defined as A = {0n,y(1),y(2),y(1,2)}. Like in Theorem 4.7, the risk on distribution
P̄ can be expressed as (see Equation (B.18)):

lim
ε→0

RF (ŷ) = LF (y(1), ŷ)P(y(1)) + LF (y(2), ŷ)P(y(2)).

An optimal solution for F-measure on P̄ is clearly either y(1),y(2) or y(1,2). This can be
easily solved by checking all three values:

lim
ε→0

RF (y(1)) =LF (y(1),y(1))︸ ︷︷ ︸
0

·P̄(y(1)) + LF (y(2),y(1))︸ ︷︷ ︸
1

· P̄(y(2))︸ ︷︷ ︸
1/2

=1
2 .

(B.21)

RF (y(1,2)) =LF (y(1),y(1,2))︸ ︷︷ ︸
1/3

· P̄(y(1))︸ ︷︷ ︸
1/2

+LF (y(2),y(1,2))︸ ︷︷ ︸
1/3

· P̄(y(2))︸ ︷︷ ︸
1/2

=1
3 .

The risk of hclr is given by

lim
ε→0

RF (hclr) = lim
ε→0

RJ(0n) From Proposition 4.2

= LF (y(1), 0n)︸ ︷︷ ︸
1

·P̄(y(1)) + LJ(y(2), 0n)︸ ︷︷ ︸
1

·P̄(y(2))

= 1. (B.22)

The regret is given by:

lim
ε→0

rF (hclr) = lim
ε→0

RF (hclr)− lim
ε→0

RF (y∗)︸ ︷︷ ︸
1/3

=2
3 From (B.21) and (B.22)
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APPENDIX C – Appendices for Chapter 5

C.1 Proof of Equation 5.2
Theorem C.1. For the simulation process described at Algorithm 3, the expected density
of each label equals to µ̂:

P(Yi = 1) = µ̂, 1 ≤ i ≤ n

For any natural number m, let Y(m) be the vector (Y1, ..., Ym). The marginal
distribution can be defined as:

∑
y∈{0,1}(i−1)

P(Yi = 1|Y(i−1) = y) ·P(Y(i−1) = y). (C.1)

For any 1 ≤ i ≤ n let Bi· denote the corresponding node for the probability P(Yi =
1|Y(i−1) = y). The value P(Yi = 1|Y(i−1) = y) can be calculated as:∫ 1

0
P(Yi = 1|Y(i−1) = y, Bi· = x) ·P(Bi· = x)dx

=
∫ 1

0
x ·P(Bi· = x)dx,

which is by definition the expected value of Bi·, therefore

P(Yi = 1|Y(i−1) = y) = E [Bij]

= Eµi [E[Bij|µi]]

= Eµi [µi]

= µ̂.

(C.2)

From (C.1) and (C.2):

P(Yi = 1) =
∑

y∈{0,1}(i−1)

µ̂ ·P(Y(i−1) = y)

= µ̂ ·
∑

y∈{0,1}(i−1)

P(Y(i−1) = y)

= µ̂.
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C.2 Additional Graphs for subset 0/1 loss
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(f) φ = 0.3

Figure 8 – Graphs of estimated expected subset 0/1 loss for all methods divided by the
best one (PCC). The value of γ is presented on the horizontal axis.
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Figure 9 – Graphs of estimated expected subset 0/1 loss for all methods divided by the
best one (PCC). The value of γ is presented on the horizontal axis.
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C.3 Additional Graphs for Hamming loss
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(f) φ = 0.3

Figure 10 – Graphs of estimated expected Hamming loss for all methods divided by the
best one (BR). The value of γ is presented on the horizontal axis.
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Figure 11 – Graphs of estimated expected Hamming loss for all methods divided by the
best one (BR). The value of γ is presented on the horizontal axis.
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C.4 Additional Graphs for Jaccard distance
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(f) φ = 0.3

Figure 12 – Graphs of estimated expected Jaccard distance for all methods divided by the
best one (Bayes J. distance). The value of γ is presented on the horizontal
axis.
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Figure 13 – Graphs of estimated expected Jaccard distance for all methods divided by the
best one (Bayes J. distance). The value of γ is presented on the horizontal
axis.
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C.5 Additional Graphs for F-measure
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(f) φ = 0.3

Figure 14 – Graphs of estimated expected F-measure for all methods divided by the best
one (Bayes F-loss). The value of γ is presented on the horizontal axis.
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Figure 15 – Graphs of estimated expected F-measure for all methods divided by the best
one (Bayes F-loss). The value of γ is presented on the horizontal axis.
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