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Abstract
In recent years, technologies in the scope of Internet of Things (IoT) have been em-
ployed as strategical approaches for decentralized decision making through the con-
nection of the digital and physical worlds. Smart Healthcare is an IoT application,
which aims at the improvement of the everyday quality of life in the end-user com-
munity. Sensor devices are employed to collect medical data and vital signs from pa-
tients to monitor diagnose conditions, track progress and indicate anomalies. More-
over, the combination of IoT and Artificial Intelligence (AI) algorithms in the health-
care sector has a higher potential of making intelligent decisions in real-time for
patient medical records.

The miniaturization and advancements of flexible sensors have boosted the de-
velopment of wearable technologies to track health-related parameters or to extract
practical features from multi-modal sensors on the wearable device. There are pop-
ular wearable devices in the market, such as inertial sensors embedded in elastic
bands, smart watches and instrumented insoles, for movement and posture analy-
sis, physiological parameters monitoring and pressure plantar detection. However,
simultaneous monitoring of different health-related parameters requires the use of
several individual devices, which lead to issues related to devices’ connection and
synchronization, in addition to discomfort related to long-term use of these wearable
devices. Sensors integration with clothing, so-called smart textiles, are attractive so-
lutions to overcome these drawbacks. The smart textiles present the advantages
regarding to sensors compactness and higher transparency between the sensor and
the user, which leads to the monitoring of the natural activity without inhibiting
the user’s movement. Furthermore, smart textiles are easily handled, with simple
installation and removal, which represents an advantage in terms of usability.

Optical fiber sensors (OFS) have attractive features for smart textile technology,
including compactness, lightweight and multiplexing capabilities. In addition, OFS
are not susceptible to electrical discharges and they are immune to electromagnetic
interference. The polymer optical fiber (POF) sensors have additional advantages
since they present high flexibility and biocompatibility. This PhD Thesis presents
a promising remote healthcare monitoring solution based on the combination of
different optical fiber sensors approaches with AI algorithms and the integration
of such systems in textiles and clothing accessories. Such approach leads to inno-
vative optical fiber-based solutions capable of accurately identify activities, assess
movement-related parameters, including physiological and gait parameters. The ap-
proaches proposed in this work includes the multiplexed intensity variation-based
sensors, fiber Bragg gratings (FBGs) and transmission-reflection analysis (TRA) sys-
tems for distributed and quasi-distributed sensors systems. These approaches are
applied in different protocols and applications, including balance assessment, move-
ment analysis and classification. In addition, this PhD Thesis also presents the de-
velopment of a Smart Environment based on Heterogeneous OFS Network for re-
mote healthcare monitoring. This leads to the improvement of the communication
between patients and clinicians leading to a high potential of making intelligent real-
time decisions in a homecare assessment, which not only indicate an important im-
provement in Healthcare 4.0 systems, but also lead to the possibility of developing
innovative multifunctional devices for healthcare applications.

Keywords: Photonic Textiles, Optical Fiber Sensors, Remote Healthcare Monitoring,
Machine Learning
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Resumo
Nos últimos anos, tecnologias no âmbito da Internet das Coisas (IoT) têm sido

empregadas como abordagens estratégicas para a tomada de decisão descentral-
izada por meio da conexão dos mundos digital e físico. Smart Healthcare é uma das
aplicações de IoT, que visa a melhoria da qualidade de vida cotidiana na comu-
nidade dos usuários finais. Sensores são empregados para coletar dados médicos e
sinais vitais de pacientes para monitorar condições de diagnóstico, acompanhar o
progresso e indicar anomalias. Além disso, a combinação de IoT e Inteligência Arti-
ficial (AI) no setor de saúde aumenta o potencial na tomada de decisões inteligentes
em tempo real para casos clínicos de pacientes.

A miniaturização e os avanços dos sensores flexíveis impulsionaram o desen-
volvimento de tecnologias vestíveis para rastrear parâmetros relacionados à saúde
ou extrair atributos dos sensores multimodais. Existem dispositivos vestíveis pop-
ulares no mercado, como sensores inerciais, relógios inteligentes e palmilhas instru-
mentadas, para análise de movimento e postura, monitoramento de parâmetros fi-
siológicos e detecção de pressão plantar. No entanto, o monitoramento simultâneo
de diferentes parâmetros relacionados à saúde exige o uso de vários dispositivos
individuais, o que leva a problemas relacionados à conexão e sincronização dos dis-
positivos, além do desconforto relacionado ao uso prolongado desses dispositivos
vestíveis. A integração de sensores com roupas (ou tecidos inteligentes) são soluções
atraentes para solucionar essas desvantagens. Os tecidos inteligentes apresentam
compacidade dos sensores e maior transparência entre o sensor e o usuário, o que
leva ao monitoramento da atividade natural sem inibir o movimento do usuário.
Além disso, os tecidos inteligentes são facilmente manuseados, com instalação sim-
ples, o que representa uma vantagem em termos de usabilidade.

Os sensores em fibra óptica (OFS) têm recursos atraentes para a tecnologia de
tecidos inteligentes, incluindo compacidade, leveza e a capacidade de multiplex-
ação. Além disso, os OFS não possuem descargas elétricas e são imunes a interfer-
ências eletromagnéticas. Os sensores em fibra óptica polimérica (POF) apresentam
vantagens adicionais por apresentarem alta flexibilidade e biocompatibilidade. Esta
Tese apresenta uma solução promissora de monitoramento remoto de saúde baseada
na combinação de diferentes sensores em fibra óptica com algoritmos de AI e a in-
tegração de tais sistemas em tecidos e acessórios flexíveis. Essa abordagem leva a
soluções inovadoras baseadas em fibra óptica capazes de identificar atividades com
precisão, avaliar parâmetros relacionados ao movimento, incluindo parâmetros fisi-
ológicos e de marcha. As abordagens propostas neste trabalho incluem os sensores
multiplexados baseados em variação de intensidade, sensores em grades de Bragg
(FBGs) e sistemas baseados na análise de transmissão-reflexão (TRA) para sistemas
de sensores distribuídos e quase-distribuídos. Essas abordagens são aplicadas em
diferentes protocolos e aplicações, incluindo avaliação do equilíbrio, análise e classi-
ficação do movimento. Além disso, esta Tese também apresenta o desenvolvimento
de um Ambiente Inteligente baseado em Rede Heterogênea de OFS para monitora-
mento remoto de saúde. Isso leva à melhoria da comunicação entre pacientes e médi-
cos levando a um alto potencial de tomada de decisões inteligentes em tempo real
em uma avaliação de atendimento domiciliar, o que não apenas indica uma melho-
ria importante na tecnologia Healthcare 4.0, mas também leva ao desenvolvimento
de soluções inovadoras multifuncionais para aplicações de saúde.

Palavras-chave: Tecidos Fotônicos, Sensores em Fibra Óptica, Monitoramento Re-
moto de Saúde, Inteligência Artificial, Healthcare 4.0.
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Chapter 1

Introduction

1.1 Motivation

Life expectancy has continuously increased since the early days of human history,
which resulted in population aging. From 1950 to 2000, the elderly population (over
65 years) rose from 131 million in 1950 to 418 million in 2000, more than a threefold
increase in 50 years [1]. The longevity increase is the reflection of the society evo-
lution with advances on public health, medicine, economy and social development
[2]. All these advances contribute to the control of diseases, injuries prevention and
reduction of premature deaths. Therefore, many health conditions that were deadly
in the past nowadays are treatable or curable. According to United Nations (UN)
reports, there are four trends in the global population: (i) population growth, (ii)
urbanization, (iii) international migration and the (iv) population ageing [2].

The elderly population is defined as number of people over 65 years. The work-
ing ages are defined as the interval between 25 and 64 years. In addition, there are
the children (whose ages 0 to 14 years) and the youth population, ages between 15
and 24 years. Common metrics to set the scene of population ageing are the per-
centage composition of the population, considering all four groups, i.e., children,
youth, working-age adults, and older population. Therefore, common metrics that
defines population ageing are the percentage composition of the elderly population,
considering all population groups [2].

The demographic transition in world population sets new challenges in differ-
ent areas, in an economical and healthcare perspectives of the elderly population,
especially the ones who suffer from inherent conditions of normal ageing such as
immunosenescence, urologic and sensory changes [3]. Such conditions lead to vari-
ation in physical functions, including the reduction of walking speed, mobility dis-
ability, difficulty in activities of daily living and increase of fall risk [3]. The degra-
dation of physical functions in conjunction with the cognitive reduction can also
lead to psychological and social issues [3]. The population ageing also results in
increase of clinical conditions that affect the human health the so-called chronic age-
related diseases and geriatric syndromes [4]. These conditions include osteoarthri-
tis, rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease and weakness of
the skeletal muscles. All these conditions lead to degradation of physical and/or
cognitive functions [4]. It is worth noting that strokes, spinal cord injuries and mus-
culoskeletal injuries can also lead to major locomotor impairments [5].

In this way, wearable sensors can be used on healthcare applications [6], where
the health condition assessment is not limited to clinical environments [7]. Thus, it is
also possible to monitor different physiological parameters for patients at home, es-
pecially for the elderly population and people with locomotor disabilities [8]. These
parameters can be divided in kinect (or dynamic) and kinematic parameters for a
biomechanics perspective to acquire the angle/displacement and torques/forces in
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the human movement. In addition, the gait, as a key human movement, involves
many parameters such as ground reaction forces (i.e. forces applied in the ground),
spatio-temporal parameters (which is related to length and times related to the gait)
and plantar pressure mapping (i.e. pressure distribution on the feet during gait)
[8]. Important parameters for health assessment also include the physiological ones,
which are related to the health indicators of the patient. Such parameters include the
pulse oximetry, breath rate, arterial pressure and heart rate, disturbances or abnor-
malities in these parameters can indicate different diseases [9]. Although there are
also biomarkers and hormones detections approaches, the biomechanics and physi-
ological parameters are the ones addressed in this PhD Thesis.

This background in conjunction with new developments in data transmission,
signal processing and sensors’ technologies lead to the development of human-friendly
and integrated technologies for patients monitoring. The possibility of monitoring
parameters of movement as well as physiological parameters for human health en-
ables novel developments in healthcare in which it is possible to assess the patient’s
condition for the continuous monitoring of health conditions as well as the possi-
bility of anticipating some diseases and/or disorders. Furthermore, the dynamic
evaluation of kinetic and kinematic parameters of human gait can also aid clinicians
on the gait related pathologies diagnosis [10]. The measurement and analysis of
joint angles can also provide benefits for clinicians and therapists. It is used on the
evaluation and quantification of surgical interventions and rehabilitation exercises
[11].

Among many important physiological parameters, abnormalities on the heart
rate (HR) and breathing rate (BR) are also important indicators of some cardiovas-
cular diseases [9], fatigue [12], apnea [12] and respiratory abnormalities [13]. These
new advances in healthcare technology provide important information for therapeu-
tics in rehabilitation field, where a widespread of wearable technologies has been
observed in the last years [14]. From the user perspective, methods for increasing
the patient engagement on the use of such technologies are also proposed [15]. Fur-
thermore, challenges related to the technology sustainability, failure rates, privacy
and security have been addressed [16]. The widespread of wearable assistive tech-
nologies in conjunction with the increase on the patient engagement result in a con-
tinuous increase on the market of wearable healthcare devices [17]. Figure 1.1 shows
a market overview on healthcare wearable devices, in which it is possible to observe
a large increase on the market with the forecast of even higher increase in the next
years. In addition, Figure 1.1 also shows that almost a half (42%) of the wearable
devices are focused on healthcare applications and this value can be even higher if
we consider that other healthcare applications are related to monitoring and sensing
(16% of all applications).

Thus, the continuous ageing of the population as well as the increase on chronic
diseases and physical impairments in the world population encourage the develop-
ment of new smart devices for human assistance and health condition assessment.

1.2 Research Objectives

The main goal of this Doctoral Thesis is the development and application of novel
photonic smart textiles systems based on embedded optical fiber sensors (OFS).
The sensors are developed using different sensing approaches for quasi-distributed
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FIGURE 1.1: Market overview of wearable devices in healthcare ap-
plications [17].

and distributed systems. Such approaches include multiplexed intensity variation-
based sensors, fiber Bragg gratings (FBGs) and transmission-reflection analysis (us-
ing nanoparticle-doped optical fibers), where all systems enable the development
of sensors arrays for multiparameter sensing. The proposed systems include smart
textiles used as clothing accessories, carpets and smart devices (such as tables and
beds) using the aforementioned OFS approaches. Such heterogeneous OFS systems
are integrated in smart environments.

In order to achieve these objectives, the investigation of the sensors performance
under bending angles and forces are performed to evaluate the sensors responses
for kinematic and kinetic parameters, which also include the analysis of different
nanoparticle-doped optical fibers with respect to their performance in transmission-
reflection analysis systems. In addition, the optical fiber integration in different tex-
tiles and flexible materials for angle and force assessment are developed with the use
of machine learning and deep learning algorithms for feature extraction and activi-
ties recognition. These lead to the specific objectives of this Thesis listed as follows:

1. Characterization of polymer optical fibers sensors for kinetic and kinematic
parameters;

2. Analysis and comparison of different compounds of nanoparticle-doped opti-
cal fibers;

3. Integration of multiplexed intensity variation-based sensors in textiles: cloth-
ing accessories and carpets;

4. Integration of FBGs in rubber carpets;

5. Embedment of nanoparticle-doped optical fibers in smart structures and tex-
tiles;

6. Development of machine learning and deep learning algorithms for feature
extraction and activities recognition of the photonic smart textiles;
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7. Development of human-machine interfaces and data transmission;

8. Definition of a framework for the integration of the heterogeneous optical fiber
sensor system.

1.3 Justification

The continuous population ageing and the evolution as well as the widespread of
the technology in general, but mostly in sensors technologies have enable the de-
velopment of wearable sensors technologies. Such new advances lead to increasing
demands on the sensors technologies, especially in terms of wireless connectivity,
portability and autonomy. Moreover, there are also increasing demands for new
(and high performance) sensors for parameters monitoring in wearable applications
for healthcare. These parameters include the biomechanical and physiological pa-
rameters.

The biomechanical parameters can be subdivided into kinematics and kinet-
ics. These parameters provide important information regarding the human physical
condition and can be related to the efficiency on the daily activity performance and
the locomotion [18]. The biomechanics of human movement is defined as the study
of the human movement using methods of mechanical engineering [19]. The human
movement analysis includes gait analysis, which comprises the systematic study of
human walking, performed by collecting kinematic and kinetic data [20]. The kine-
matics studies the description of motion of the body without considering the causes
of motion [20]. The kinematic parameters include joint angles, center of mass (CoM)
displacement velocity, and spatiotemporal gait parameters such as cadence, stride
and step length, among others as discussed in [18]. The spatio-temporal gait param-
eters describe the gait relating the foot placement, gait events timing and velocity
variables [18], and their measurement forms the basis of any gait analysis as it com-
plements the angular and displacement data in gait. In contrast, kinetics studies the
forces and torques that initiate the motion. It considers the forces generated inter-
nally in the body that result in human movement [20]. In general, kinetics param-
eters include ground reaction forces (GRF), plantar pressure distribution and joint
momentum [21].

The kinematic parameters assessment are applied on rehabilitation, training ath-
letes and diagnosis of neurological disorders that affects the movement [22]. Camera-
based motion capture systems are capable of providing reliable measurements in
three dimensions of body joint positions and estimate spatio-temporal gait parame-
ters and joint angles. However, it is a costly and time-consuming technique. As it is
limited to laboratory or clinical environment, it cannot be applied on the continuous
monitoring of human movement, especially in remote (or in-home) [22]. Therefore,
for gait analysis, the motion capture and kinematic measurement are limited to few
gait cycles. To address these limitations, another line of research is the development
of wearable technologies for joint assessment, which include electrogoniometers and
potentiometers for joint angle assessment in a single axis. However, these technolo-
gies present the important drawback of large dimensions and weight that not only
limit natural patterns of movement, but also are sensitive to misalignments that
commonly occur in polycentric joints [23]. Flexible goniometers, generally based
on strain gauges, provide better adaptation to body parts and they are not sensitive
to misalignments in the polycentric joints’ movement. Moreover, digital goniometer
using encoders is developed to measure joint angles in sagittal plane as an attempt to
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make a contactless sensor. However, its high sensitivity to misalignment and limita-
tions in speed range discourages its application. Inertial measurement units (IMUs)
have experienced a widespread due to advances in MEMS. The combination of a tri-
axial magnetometer with tri-axial accelerometer and tri-axial gyroscope is an IMU,
which are attached onto the surface of the human body, collecting the linear accel-
eration and angular velocities, in addition to the magnetic field response, allowing
the combination of these data to estimate the joint angles and spatio-temporal gait
parameters, commonly performed using sensor fusion algorithms. Despite the wide
range of applications of IMUs and their advantages, they present high sensitivity
to magnetic field interferences and frequent recalibrations are required [22]. The
measurement of joint kinematics results in a system capable of recognizing the daily
activities performed by the user, such as walk, sit, run and so on.

In contrast, kinetic parameters include ground reaction forces (GRF), plantar
pressure distribution and joint momentum [21]. The plantar pressure and ground
reaction forces (GRFs) are assessed using three major monitoring techniques, which
include imaging technologies [24], force/pressure distribution platforms [25] and
instrumented insoles [26]. The imaging technologies generally use expensive equip-
ment and complex signal processing [27]. Moreover, when the analysis is performed
in computed tomography machines, the inability of performing dynamic analysis
of plantar pressure during gait or other dynamic movements are additional issues
in the gait assessment [24]. To overcome the drawback of inability in performing
dynamic analysis, and as a lower cost alternative, force platforms are used on the
plantar pressure assessment. These platforms generally have a matrix of pressure
sensing elements arranged in a rigid and flat platform [27]. They provide measure-
ments of the foot plantar pressure and 3D dynamics, however they also lack in porta-
bility, restricting the tests to laboratory or clinical environments, with a limitation on
the number of steps per trial. This drawback inhibits the application on remote and
home health monitoring, which is a trend on healthcare applications with the ad-
vances in wireless sensor and communication technologies [28]. Another drawback
of force platforms is the change of the natural gait pattern when the users try to cor-
rectly place the foot on the platform, which leads to inaccuracies on the analysis [29].
Consequently, it leads to the necessity of hidden the platform on the ground, and the
test need to be repeated until a natural gait pattern is obtained with the foot placed
within the platform boundaries [25].

The instrumented insoles are a feasible option to the force platforms. The porta-
bility allowing its use outside the laboratory environment during daily activities
with the natural gait pattern of the users is an important advantage of the instru-
mented insoles, since it enables remote health monitoring and wearable robotics ap-
plications [27]. Such insoles can present instability on the measurement (with false
positives and false negatives) and lack of resistance to the impact loads that com-
monly occurs in the gait cycle, especially insoles based on capacitive and resistive
technologies [30]. The number of sensors per insole can also be regarded as an ad-
ditional drawback in the instrumented insole technology, since the small number of
sensor results in a low spatial resolution for the plantar pressure analysis [27]. Ac-
cording to [26], the human foot has 15 critical pressure areas that support most of the
body weight, and for this reason, an ideal sensor system for complete monitoring of
the plantar pressure needs, at least, 15 sensors positioned these predefined points.
A higher number of sensors can lead to higher spatial resolution as well as the ac-
curacy in the plantar pressure mapping, and it can be achieved with custom fab-
rics with flexible capacitive sensors. However, they generally present performance
limitations due to material features such as low repeatability, hysteresis, creep and



Chapter 1. Introduction 6

nonlinearities [27].

1.3.1 Optical Fiber Sensors

Optical fiber sensors present the intrinsic advantages of lightweight, compactness,
chemical stability, immunity to electromagnetic field and multiplexing capabilities
[31], which enable their application in different fields. They are employed for in-
dustrial [32], medical [33] and structural health monitoring [34] applications, also
including immunosensors [35], biochemical detection [36] and environmental mon-
itoring [37]. The OFS are already employed for the measurement of the aforemen-
tioned kinematics, kinetics and physiological parameters, such as in the measure-
ment of angle [38], refractive index [39], temperature [40], humidity [41], accelera-
tion [42], pressure [43], breathing rate [44] and oxygen saturation [45]. Moreover, the
geometric and material features of optical fibers enable their embedment in differ-
ent structures, from metals and concrete to fabrics and textiles, which can be used
for sensing applications [44], [46]. In this way, there is also the creation of optical
fiber-based textiles, the so-called photonics textiles [45], which represents a clothing
accessory or signaling devices in their first reports [47]. Recently, different applica-
tion using the photonics textiles are reported, such as the body temperature sensing
[48], breath and heart rates [49]. Smart textile approaches offer the advantages of
higher transparency between the sensor and the user, in addition to not influence
or inhibit the user’s natural movements [50]. Thus, sensor’s compactness and flexi-
bility allow easy installation and removal, which facilitate the system’s usability [8].
The features of OFS in smart textile also enable the development of new platforms
for force assessment that can be embedded in carpets for remote monitoring with
the mitigation of the targeting effect.

Optical fiber sensors are also compatible with the requirements of the internet
of things (IoT) technology [51], which mainly relies on the wireless connectivity of
devices with their miniaturization as well as low energy consumption. This new
paradigm is related to the remote healthcare applications [52], which has its widespread
motivated by the population ageing scenario. Such sensor systems allow the contin-
uous monitoring of patients activities, resulting in remote assistive services, includ-
ing diagnosis, early detection of health issues and their transport in case of emer-
gencies [53]. It is worth noting that the patient health monitoring at home instead of
hospitals or clinical facilities is a positive component (emotional and psychological)
due to the possibility of performing their daily activities and the sense of indepen-
dent growth in the community [54].

1.4 Contributions

The contributions of this Thesis include the development of OFS and their integra-
tion in smart textiles, used as clothing accessories and smart devices, to monitor
biomedical parameters without influencing or inhibiting the user’s natural move-
ments. In addition, a Smart Environment using heterogeneous OFS network is pro-
posed to improve the quality of the remote healthcare monitoring at home. This
Thesis also includes the combination of proposed sensors with AI algorithms to in-
crease the potential of making intelligent decisions in real-time. These developments
improve the communication between patients and clinicians without face-to-face
medical consultation.
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1.4.1 Publications

In the time frame of the Thesis, about 19 journal papers (J), 4 conference works (C)
and 2 book chapters (B) were either published, accepted or under review. These
works also include the collaboration with other researchers and international groups.
The works are divided into the ones used in the Thesis and the ones from collabora-
tions and parallel researches. In addition, there are also 4 patent applications under
consideration on the university. The publications resulting from this Thesis are listed
bellow:

1. Journal - L. Avellar, A.G. Leal-Junior, C.A.R. Diaz, C. Marques and A. Frizera,
“POF Smart Carpet: A Multiplexed Polymer Optical Fiber-Embedded Smart
Carpet for Gait Analysis”, Sensors, vol. 19, no. 15, p. 3356, 2019.

2. Journal - L. Avellar, A. Leal-Junior, C. Marques and A. Frizera, “Performance
Analysis of a Lower Limb Multi Joint Angle Sensor Using CYTOP Fiber: Influ-
ence of Light Source Wavelength and Angular Velocity Compensation”, Sen-
sors, vol. 20, no. 2, p. 326, 2020.

3. Journal - L. Avellar, G. Delgado, E. Rocon, C. Marques, A. Frizera and A. Leal-
Junior, “Polymer Optical Fiber-Embedded Force Sensor System for Assistive
Devices With Dynamic Compensation”, IEEE Sensors Journal, vol. 21, no. 12,
pp. 13255-13262, 2021.

4. Journal - L. Avellar, G. Delgado, C. Marques, A. Frizera, A. Leal-Junior and E.
Rocon, “Polymer Optical Fiber-Based Smart Garment for Impact Identification
and Balance Assessment”, IEEE Sensors Journal, vol. 21, no. 18, pp. 20078-
20085, 2021.

5. Journal - L. Avellar, A. Frizera, E. Rocon and A. Leal-Junior, “Characterization
and analysis of a POF sensor embedded in different materials: Towards wear-
able systems for stiffness estimation”, Optics and Laser Technology, vol. 145,
2022.

6. Journal - A. Leal-Junior, L. Avellar, A. Frizera and C. Marques, “Smart textiles
for multimodal wearable sensing using highly stretchable multiplexed optical
fiber system”, Scientific Reports, vol. 10, no. 1, p. 13867, 2020.

7. Journal - C. Bayón, G. Delgado-Oleas, L. Avellar, F. Bentivoglio, F. Di Tom-
maso , N.L. Tagliamonte, E. Rocon, E.H.F. van Asseldonk, “Development and
Evaluation of BenchBalance: A System for Benchmarking Balance Capabilities
of Wearable Robots and Their Users”, Sensors, vol. 22, no. 1, p. 119, 2022.

8. Journal - L. Avellar, M. Silveira, C.A.R. Diaz, C. Marques, A. Frizera, W. Blanc
and A. Leal-Junior, “Performance Analysis of a Transmission-Reflection Anal-
ysis (TRA)-based Distributed Sensing using Different Oxide Nanoparticle-doped
High Scattering Fibers”, Photonic Technology Letters, (Under Review).

9. Journal - L. Avellar, C.S. Filho, G. Delgado, G. Castellano, A. Frizera, E. Ro-
con and A. Leal-Junior, “Photonic Smart Garment: an optical fiber-integrated
and AI-enabled clothing for biomedical analysis”, Scientific Reports, (Under Re-
view).

10. Conference – L. Avellar, A. Leal-Junior, A. Frizera, “Polymer Optical Fiber
Sensors for Treadmill Instrumentation”, in Proceedings IMOC, Aveiro, Portugal,
2019.



Chapter 1. Introduction 8

11. Conference – L. Avellar, A. Leal-Junior, C. Marques, E. Rocon and A. Frizera,
“Proof-of-Concept of POF-Based Pressure Sensors Embedded in a Smart Gar-
ment for Impact Detection in Perturbation Assessment”, in Converging Clinical
and Engineering Research on Neurorehabilitation IV, ICNR, Biosystems & Biorobotics,
vol 28. Springer, 2020.

12. Conference – A. Leal-Junior, L. Avellar, M.J. Pontes, C.A.R. Diaz, C. Marques
and A. Frizera, “Proof-of-concept of a carpet-embedded heterogeneous optical
fiber sensor system for gait analysis”, in Proceedings SPIE, Limassol, Chipre,
2019.

In addition, the publications which include works from collaborations and par-
allel researches during the development of this Thesis are listed as follows:

1. Journal - C.A.R. Diaz, A. Leal-Junior, L. Avellar, P.F.C. Antunes, M.J. Pontes,
C. Marques, A. Frizera and M.R.N. Ribeiro, “Perrogator: A Portable Energy-
Efficient Interrogator for Dynamic Monitoring of Wavelength-Based Sensors in
Wearable Applications”, Sensors, vol. 19, no. 13, p. 2962, 2019.

2. Journal - A. Leal-Junior, C.A.R. Diaz, L. Avellar, M.J. Pontes, C. Marques and
A. Frizera, “Polymer optical fiber sensors in healthcare applications: A com-
prehensive review”, Sensors, vol. 19, no. 14, pp. 1-30, 2019.

3. Journal - A. Leal-Junior, L. Avellar, C.A.R. Diaz, A. Frizera, C. Marques and
M.J. Pontes, “Fabry–Perot Curvature Sensor With Cavities Based on UV-Curable
Resins: Design, Analysis, and Data Integration Approach”, IEEE Sensors Jour-
nal, vol. 19, no. 21, pp. 9798-9805, 2019.

4. Journal - A. Leal-Junior, L. Avellar, J. Jaimes, C.A.R. Diaz, W. Santos, A.A.G.
Siqueira, M.J. Pontes, C. Marques and A. Frizera, “Polymer Optical Fiber-
Based Integrated Instrumentation in a Robot-Assisted Rehabilitation Smart En-
vironment: A Proof of Concept”, Sensors, vol. 20, no. 11, p. 3199, 2020.

5. Journal - A. Leal-Junior, L. Avellar, C.A.R. Diaz, M.J. Pontes and A. Frizera,
“Polymer Optical Fiber Sensor System for Multi Plane Bending Angle Assess-
ment”, IEEE Sensors Journal, vol. 20, no. 5, pp. 2518-2525, 2020.

6. Journal - A. Leal-Junior, A. Theodosiou, C.A.R. Diaz, L. Avellar, K. Kalli, C.
Marques and A. Frizera, “FPI-POFBG Angular Movement Sensor Inscribed in
CYTOP Fibers With Dynamic Angle Compensator”, IEEE Sensors Journal, vol.
20, no. 11, pp. 5962-5969, 2020.

7. Journal - A. Leal-Junior, L. Avellar, A. Frizera, P. Antunes, C. Marques, and
C. Leitão, “Polymer optical fibers for mechanical wave monitoring”, Optics
Letters, vol. 45, no. 18, pp. 5057-5060, 2020.

8. Journal - A. Leal-Junior, D. Ribeiro, L. Avellar, M. Silveira, C.A.R. Diaz, A.
Frizera, W. Blanc, E. Rocon and C. Marques, “Wearable and Fully-Portable
Smart Garment for Mechanical Perturbation Detection With Nanoparticles Op-
tical Fibers”, IEEE Sensors Journal, vol. 21, no. 3, pp. 2995-3003, 2021.

9. Journal - V. Biazi, L. Avellar, A. Frizera, and A. Leal-Junior “Influence of
Two-Plane Position and Stress on Intensity-Variation-Based Sensors: Towards
Shape Sensing in Polymer Optical Fibers” Sensors, vol. 21, no. 23, p. 7848,
2021.
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10. Journal - Leal-Junior, A.; Avellar, L. ; Biazi, V. ; Soares, M. S. ; Frizera, A. ; Mar-
ques, C. "Multifunctional Flexible Optical Waveguide Sensor: on the Bioinspi-
ration for Ultrasensitive Sensors Development", Opto-Electronic Advances, 2021,
(Accepted).

11. Book Chapter - L. Avellar; Leal-Junior, A.; Frizera, A. ; "Optical fiber sensing
technologies", in Optical Fiber Sensors for the Next Generation of Rehabilitation
Robotics, Elsevier, 2021.

12. Book Chapter - L. Avellar; Leal-Junior, A.; Frizera, A. ; "Smart structures and
textiles for gait analysis", in Optical Fiber Sensors for the Next Generation of Reha-
bilitation Robotics, Elsevier, 2021.

13. Conference - A. Leal, L. Avellar, M. J. Pontes, C. A. Díaz, C. Marques, and A.
Frizera Neto, “Proof-of-concept of a carpet-embedded heterogeneous optical
fiber sensor system for gait analysis,” in Seventh European Workshop on Optical
Fibre Sensors, p. 130, 2019.

1.4.2 Patents

1. “Smart Garment based on optical fiber sensors for monitoring of biomedical
parameters”, L. Avellar, E. Rocon, A. Frizera and A. Leal-Junior, Under Consid-
eration, (Process: 23068.001955/2022-19).

2. “Smart Pants based on optical fiber sensors for monitoring of gait parame-
ters”, L. Avellar, A. Frizera and A. Leal-Junior, Under Consideration, (Process:
23068.001962/2022-11).

3. “Multifunctional intelligent structure with built-in optical sensors for human-
robot and human-environment interfaces”, L. Avellar, A. Frizera and A. Leal-
Junior, Under Consideration, (Process: 23068.001961/2022-76).

4. “Smart Carpet based on optical fiber sensors for gait analysis”, L. Avellar, A.
Frizera and A. Leal-Junior, Under Consideration, (Process: 23068.001963/2022-
65).

1.5 Organization of the Thesis

This Ph.D. Thesis is divided into eight chapters separated in four main parts as fol-
lows: Introduction and Background, which comprises Chapter 1 and Chapter 2;
Sensors Development and Performance Analysis, which comprises Chapter 3 and
Chapter 4; Protocols and Applications, which comprises Chapters 5, 6 and 7; and
Final Remarks and Future Works, which comprises Chapter 8.

1. Part 1: Introduction and Background

Chapter 1 presents the motivation, justification, the objectives and the contri-
butions of this Thesis.

Chapter 2 provides the theoretical background of this work. Some knowl-
edge prior to the understanding of following chapters, such as optical fiber
overview, materials, optical fiber sensing techniques and biomedical concepts
are presented in this chapter.
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2. Part 2: Sensors Development and Performance Analysis

In Chapter 3, the development and the performance analysis of different OFS
under kinetic and kinematic parameters are performed. Different performance
factors are evaluated in this Chapter, such as sensitivity, hysteresis and linear-
ity.

Thereafter, in Chapter 4, OFS are developed and integrated in textiles and flex-
ible structures for performance analysis. Different sensing techniques are em-
ployed and different parameters are evaluated.

3. Part 3: Protocols and Applications

Chapter 5 presents a development of different OFS systems for a balance as-
sessment protocol.

In Chapter 6, photonic textiles are developed and applied in different protocols
for monitoring several biomedical parameters.

Chapter 7 presents an heterogeneous sensor network based on sensors with
different OFS techniques applied in the Smart Healthcare.

4. Part 4: Final Remarks and Future Works

Finally, the main conclusions, as well as the future works and new research
topics, are presented in Chapter 8.

All these chapters comprise important parts of this Thesis, as presented in the
flowchart of Figure 1.2.

Chapter 3: Kinetic and
Kinematic parameters

Chapter 1:  
Introduction

Chapter 2:
Theoretical
Background

Chapter 4:  
Textiles and flexible structures

integration

Sensors Development and
Performance Analysis:

Protocols and Applications:

Chapter 5:  
Balance Assessment

Chapter 6:  
Remote Healthcare

Monitoring

Chapter 7:  
Smart Environment

Introduction
and Background:

Final Remarks and Future
Works:

Chapter 8: Conclusions and
Future Works

FIGURE 1.2: Schematic representation of the Thesis outline.
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Chapter 2

Theoretical Background

Measurement is a process of collecting information from a physical world, per-
formed by instruments designed and manufactured for specific tasks or parameters
[55]. Sensors are used as the primary elements to provide information of the phys-
ical, chemical or biological measurand of interest and converting it into a form of
energy (e.g. electrical or optical signal), which can be processed and correlated to
the measurand of interest [56]. In ideal cases, the sensors measurements should be
consistent without any errors, drift, or hysteresis. However, there are several sources
of error when measuring parameters in the physical world, such as changes in com-
ponent performances (e.g., gain shift, changes in chemistry, aging, and offsets drifts),
external and ambient influences such temperature, pressure and humidity. Thus, it
is important to identify these sources to select or design the sensor for a particular
application [56].

Optical Fiber Sensing (OFS) technology is based on the interaction of a measur-
and with the light guided in the optical fiber, which leads to variations in optical
signal related to the parameter of interest. The advantages of OFS over traditional
electronic sensors include compactness, lightweight, flexibility, immunity to elec-
tromagnetic interference, chemical stability and multiplexing capabilities. Since the
early studies of OFS in the 70s, there are a growing number of research groups dedi-
cated to the exploration of this technology [57]. Decades of research led to the devel-
opment of accurate optical fiber sensing, including several application fields: health-
care, robotics, structural health monitoring, environmental monitoring, medicine
and many industrial technologies [56].

In this chapter, fundamentals and key concepts on the study of OFSs will be ad-
dressed. This Chapter presents the optical fiber overview, sensing techniques that
will be employed in this Ph.D. Thesis. In addition, an overview and fundaments of
biomechanics and machine learning are discussed, since they are the main applica-
tion field in this Ph.D. Thesis.

2.1 Optical Fiber Overview

An optical fiber is defined as a cylindric dielectric waveguide, made of glass (silica
fibers) or plastic materials (Polymer Optical Fiber, POF), which is composed of two
parts: a core, a cladding with a coating to increase the waveguide robustness [58], as
shown in Figure 2.1. The core is where the light is transmitted, whereas the cladding
is a layer which reduces the optical losses from the core to the environment (gener-
ally air) and reduces scattering loss at the surface of the core. The coating is a layer
used to protect the optical fiber from physical damage and contaminants. Fibers can
be produced in different geometries, dimensions and materials.
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FIGURE 2.1: Optical Fiber overview.

The light transmission in optical fibers is based on the principle of total internal
reflection, which is related to a light beam incident on the boundary between two
materials with different refractive indices. When light is incident from a medium
with a higher index (ncore) to one with a lower index (ncladding), the transmitted beam
emerges at an angle higher than the incident angle. If the incident angle increases,
it will reach a point at which the refracted angle is 90◦; at this point, the value of
the incident angle is known as the critical angle. If the incident angle is higher than
the critical angle, there is no refraction of the light, and all of the rays become totally
internally reflected in the material with higher refractive index (core). Figure 2.2
presents an illustration of the principle of total internal reflection in the optical fiber.
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FIGURE 2.2: Principle of the total internal reflection in the optical
fiber.

The critical angle can be calculated using the Equation 2.1:

ϕc = sin−1
(

ncladding

ncore

)
(2.1)

In addition, only the light rays with angles lower than the acceptance angle are
propagated inside the optical fiber. The acceptance angle (ϕmax) is a function of the
core refractive index (ncore), external refractive index (next) and the critical angle (ϕc),
as presented in Equation 2.2.

sin(ϕmax)

sin(ϕc)
=

ncore

next
(2.2)
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2.1.1 Numerical Aperture

As previously presented, the acceptance angle (ϕmax) is the maximum incident ray
angle that can be propagated [58]. The fiber numerical aperture (NA) represents the
angles of the incident light beam accepted by the fiber core through the acceptance
cone (as shown in Equation 2.3) and the full aperture angle is given by 2ϕmax.

NA = sin(ϕmax) =
√

n2
core − n2

cladding (2.3)

Thus, the value of NA is dependent on the difference between the refractive
indices of the core and cladding material. Compared with other optical fibers, mul-
timode POFs (with 1 mm core diameter) has the highest NA, which leads to lower
cost of the connectors that are commonly made of simple plastic structures with fab-
rication tolerances orders of magnitude higher than the ones for silica fibers [58].
Figure 2.3 shows a representation of the NA in a silica fiber and in a POF.

Silica fiber

10/125 μmm

Polymer fiber

980/1000 μmm

FIGURE 2.3: Representation of the NA of silica and polymer fibers.

2.1.2 Modes in Optical Fibers

In the theory of the principle of total internal reflection, all the rays with incident an-
gle higher than the critical angle (ϕ > ϕc) are transmitted through the optical fiber.
However, to obtain a complete description of the wave guiding phenomenon, the
wave properties of light are also be considered, which means that not all guided
waveforms, so-called modes in which ϕ < ϕmax can propagate [58]. Each mode rep-
resents one particular solution of the Maxwell equation. The classification regarding
the number of propagation modes inside the fiber can be divided into single-mode
and multimode fibers. Single-mode fibers only support one waveform (mode), whereas
in multimode fibers hundreds to thousands of modes are supported. The number of
modes (Nm) in a step index fiber can be defined as presented in Equation 2.4:

Nm =
V2

2
, (2.4)

where V represents the normalized frequency. The normalized frequency of an
optical fiber is defined in Equation 2.5, in which a represents the core radius, λ rep-
resents the wavelength and NA is the numerical aperture.

V =
2πa

λ
NA (2.5)

In this way, if V > 2.405 the optical fiber is multimode, otherwise the optical
fiber is a single-mode waveguide.
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2.1.3 Refractive Index Profiles

The core can present different refractive index profiles, and the two major types are:
(i) step index (SI) and graded index (GI) profiles. In a SI fiber, the core is homoge-
neous and the refractive index is constant across the cross section of the core. Thus,
the light rays propagate along straight lines in the core and are completely reflected
at the core/cladding interface [58]. Figure 2.4 presents the principle of a fiber with
a SI profile and the light rays traveling through the fiber at different angles of inci-
dence, where n1 represents the core refractive index and n2 represents the cladding
refractive index.

r

Cladding

Core

n(r)

n1
n2

1

FIGURE 2.4: SI profile fiber.

In a GI fiber, the core has a radius-dependent refractive index with a gradient
distribution, in which the refractive index is higher at the core center and lower at
the extremities [58]. The rays propagating in the center travel a shorter distance.
However, due to the higher refractive index at the center, these rays travel at a lower
speed. On the other hand, the smaller refractive index (near the core extremities)
causes the rays traveling with higher velocity in a longer distance. This refractive
index gradient distribution in GI profiles results in a non-straight ray propagation,
as shown in Figure 2.5.

Cladding
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n1(r)
n2

1

FIGURE 2.5: GI profile fiber.



Chapter 2. Theoretical Background 15

2.1.4 Optical Fiber Losses

In an optical fiber, the power decreases exponentially with the distance z. Equation
2.6 shows the calculation of the attenuation in an optical fiber, in which α is called at-
tenuation coefficient of the optical fiber and it represents the value of the attenuation
as a function of the fiber length [59].

P(z) = P(0)10−α·z/10 (2.6)

The expression of the attenuation in decibels is presented in Equation 2.7.

α =
10
z
· log

(
P(0)
P(z)

)
[dB/km] (2.7)

The attenuation depends on the material, dimensions and geometry of the optical
fiber. Improvements in optical fiber materials and fabrication process with reduction
of impurities led to attenuation as low as 0.15 dB/km (at 1550 nm wavelength) in
silica optical fibers [60]. Polymer materials are less efficient for light transmission,
with lowest attenuation of 125 dB/km (at 650 nm wavelength) [57], and it is related
to the lower transparency of the materials. Also, the attenuation is dependent on the
spectral width and on the NA of the light source employed [58]. There are regions of
the spectrum where the attenuation is minimum, so-called transmission windows.
In silica fibers the window is centered at 1550 nm, whereas in POF, the window is
centered at 650 nm.

The attenuation can be classified into two main groups: intrinsic and extrinsic.
The intrinsic losses are related to the composition of the optical fiber. Absorption
and the Rayleigh scattering are examples of intrinsic losses. They are caused by the
molecular vibrational absorption within the molecular bonds and by the scattering
from composition, orientation and density fluctuations [61]. The extrinsic losses are
regarding external influences in the fiber, such as the absorption caused by organic
pollutants and the dispersion provoked by dust particles, microfractures, bubbles,
and other structural imperfections in the fiber. Moreover, another extrinsic loss is
related to radiation losses, originated by perturbations in the fiber geometry (mi-
crobends or macrobends). Figure 2.6 presents a diagram including the intrinsic and
extrinsic losses.

Absorption Fluctuations

Input Output

Imperfection Microbend
Macrobend

Absorption
losses

Scattering
losses

Radiation
losses

FIGURE 2.6: Optical fiber losses.
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2.1.5 Optical Fiber Materials

In general, the optical fiber materials are divided into silica and polymers. Due to
their lower attenuation, silica fibers are the preferred material for telecommunica-
tions and remote sensing applications, since they guarantee an optical signal trans-
mission in long distances (~km). However, POFs are attractive for sensors applica-
tions due to their material’s properties, including mechanical and thermal proper-
ties. In terms of temperature, conventional silica fibers have high glass transition
temperature (Tg) which leads to the silica fibers as the best option for application at
higher temperatures, in applications with temperatures higher than 300ºC [60]. On
the other hand, silica fibers present a small strain limit of below 5%, which makes
these fibers fragile and applicable only to small strains, whereas commercial POFs
present strain limits as high as 10%. Furthermore, the elastic modulus of POFs are
at least ten times lower than silica fibers, indicating higher mechanical flexibility of
the POFs and enabling their application in high bending conditions.

There are different POF materials and, among them, the polymethyl methacry-
late (PMMA) is the most employed in POF applications. The PMMA presents some
aspects in the sensing applications which can be improved with the use of other
polymers, which will be discussed below. Additional fabrication methods for POFs
enable the fabrication of POFs with higher flexibility, where there are reports of POFs
with elastic modulus in the range MPa [40] and even kPa [35]. As an example, there
are fibers which are created through the light polymerization spinning (LPS) process,
where a mixture of monomers are polymerized with UV light, resulting in a higher
degree of customization for the so-called LPS-POF. The LPS-POFs have elastic mod-
ulus more than 100 times lower than PMMA, which is even lower than the elastic
modulus of cotton and other textile materials [62]. Moreover, LPS-POF presents
strain limits higher than 200% [40]. PMMA also presents low Tg and high attenu-
ation when compared with other polymers, such as polycarbonate (PC) and cyclic
transparent optical polymer (CYTOPs), respectively. The CYTOPs offer advantages
due to their lower attenuation, particularly in the 1550 nm wavelength region. This
advantage enables the employment of commercially available optical components,
which are generally designed to work within the 1550 nm wavelength region. An-
other issue regarding the PMMA is the higher moisture absorption capability, which
can harm its application in temperature or strain sensing where a humidity cross-
sensitivity is undesirable [63]. POFs made of cyclic olefin copolymers (COC) present
a humidity sensitivity at least 30 times lower than the one of PMMA, which enable
the use of COC fibers to mitigate the humidity cross-sensitivity.

In addition to the POF advantages previously mentioned, silica optical fibers
have attractive features for sensing applications, since glass has high chemical sta-
bility, mechanical strength and high transparency [64]. Recent advances in glass
science show that the incorporation of nanoparticles can significantly change certain
properties of this material [65]. The enhancement of some spectroscopic character-
istics of silica optical fibers, such as broaden emission spectra and higher energy
transfer, can be achieved by incorporating rare-earth (RE)-ions within dielectric (ox-
ide) nanoparticles (DNP) in the fiber’s core[66], [67].

The presence of DNPs in the core of silica fibers leads to higher optical losses due
to the Rayleigh scattering in comparison with the losses found on single-mode fibers
[68]. This higher backscattering motivates the implementation of DNP-doped fibers
in Rayleigh scattering-based distributed sensing system applications [69], such as
temperature monitoring during laser ablation of the porcine liver phantom [70], 3D
shape sensing [69] or optical backscatter reflectometer (OBR)-based refractive index
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sensor [71]. Another technique for these fibers is the Transmission-Reflection Anal-
ysis (TRA), where the Rayleigh backscattering is used for determining the position
of a disturbance event along the length of a silica fiber [72]. Therefore, DNP-doped
high scattering fibers are an attractive solution to enhance the spatial resolution of
TRA-based systems such as presented in [73].

As a general description of the fiber fabrication (detailed description can be found
in [74], [75], there is the preparation of the silica preform with nanoparticles with
their formation triggered by the use of magnesium (Mg) or other components (de-
pending on the fiber composition), an alkaline earth element, in conjunction with
erbium ions dispersed in an ethanol solution to obtain the doping solution [74]. In
the first step, a germanium-doped silica porous layer is obtained in Modified Chem-
ical Vapor Deposition process. Then, it is immersed in the solution and dried at high
temperature (1000 ◦C), represented in Figure 2.7 as step 2.

FIGURE 2.7: Schematic representation of the steps followed in the
fiber fabrication.

After thermal treatments, the porous layer is densified and resulted in a preform
with 10 mm diameter with 1 mm core [74], in step 3. Following this procedure, there
is an immiscible system, which results in one phase with silica predominance in the
core of preform and one phase majorly composed by the Mg-based nanoparticles
[74]. Finally, in step 4, the optical fiber takes its final shape using a draw tower with
2200 ◦C, resulting in a total diameter of 125 µm of the fiber. As a final step in the
fiber fabrication, a polymer coating is applied to increase the mechanical robustness
of the optical fiber, especially against bending and impact, which is important for
the proposed application, where the fiber is subjected to sequential mechanical per-
turbations. It is worth noting that the nanoparticle composition depends on its size,
also resulting in a refractive index change on the particles [74]. The size of nanopar-
ticles ranges from few nanometers to 160 nm with variations in shape as well. These
unique characteristics of the optical fiber points to the necessity of a mechanical per-
turbations characterizations at different positions in the optical fiber prior to the
sensor’s application in perturbation assessment during gait. The fabrication process
is summarized in Figure 2.7, where the fabricated fiber represented by this method
has an attenuation of 2.6 dB/m and a scattering gain of 2.0 dB, which make it suit-
able for the transmission of optical signals in the order of 10 mW for a few meters.
It is also worth noting that there are different compositions of the optical fibers with
different performances, as discussed in Section 4.3. For example, comparing with



Chapter 2. Theoretical Background 18

the MgO-based nanoparticle fibers previously reported [76], [77], in this case, the
fiber has an outer ring with the MgO-based nanoparticles, which resulted in smaller
optical attenuation than the ones with MgO-based nanoparticles inside the fiber’s
core [77].

2.2 Sensing Techniques

The optical fiber-based sensing technology aims to convert a physical parameter to
an optical output. An important key of this technology is the transducer, i.e. the de-
vice which converts one form of energy associated with the physical parameter into
another form of energy (optical output). Different types of sensors can be achieved
depending on the transducer employed in the OFS detection system. Thus, OFS
can be classified based on different categories based on working principle, spatial
positioning and measurement parameters.

The working principle depends on the light property which is modified accord-
ing to the change in the measurand to be evaluated. The sensors can be classi-
fied into: intensity-modulated sensors, detection through the light power; phase-
modulated sensors, detection using the phase of the light beam; polarimetric sen-
sors, detection of changes in the state of polarization of the light; or spectrometric
sensors, detection of changes in the wavelength change of the light. Furthermore,
the OFS can be classified based on the spatial positioning, in which the sensors can
measure punctually or along the fiber. This classification is divided into punctual,
quasi-distributed or distributed sensors. The punctual sensors provide the value of
the physical parameter of interest locally, whereas distributed sensors provide the
value of the physical parameter over a distance and as a function of the position
along the fiber. In the quasi-distributed sensors, the variable is measured at discrete
points along the fiber. Finally, the sensors can be classified based on the measure-
ment parameters, i.e. physical sensors such as temperature, strain and pressure;
chemical sensors, such as pH and gas sensors; and biosensors, such as DNA, blood
flow and glucose sensors.

There are several techniques with different classifications used for optical fiber
sensing. In this chapter, the techniques employed in the development of this Ph.D.
Thesis will be addressed.

2.2.1 Intensity Variation-based Sensors

The intensity variation technique is one of the simplest sensing techniques employed
in the OFS development. In the intensity variation approach, the optical signal is
transmitted from a light source through optical fibers and a transducer converts the
optical power in electrical power related to the variation of the medium through the
light is transmitted. Thus, the sensitivity is related to the sensor alignment. Fig-
ure 2.8 shows the intensity variation technique approach, where a physical varia-
tion in the optical fiber provokes a power variation in the output, in addition to the
fiber attenuation, which is present even in a straight fiber. The main advantages
of intensity-variation sensors are the ease of fabrication, simple detection system,
simplicity in signal processing and the low-cost performance.

A typical intensity-variation-based POF sensor generally consists of a POF with
a lateral section. The lateral section is made by removing the cladding and part of
the fiber core, and it creates a sensitive zone, which increases the sensor sensitivity
and linearity of the signal attenuation when the fiber is under a bending. The light
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FIGURE 2.8: Intensity variation technique approach: a straight fiber
with an attenuation in the output, and a bending in the fiber with a
high power variation in the output provoked by the physical varia-

tion.

losses are due to absorption and frustrated total internal reflection when in contact
with the surface [57]. When the bending occurs, the incident angle increases and
creates a variation on the transmitted signal. When the sensitive zone of the fiber
is bending, there are higher losses due to this POF region that has no cladding, in-
creasing the radiation losses. Another source of loss is the surface scattering caused
by the coupling between higher and lower guided modes [78]. Figure 2.9 presents
the description of a fiber geometry considered in the POF sensor modeling. The sen-
sitive zone is represented by the section length given by c and the section depth of
removed material on the fiber core denoted by p. The optical fiber length in Figure
2.9 is given by L, meanwhile the optical fiber diameter is d, and the curvature radius
is R.

d
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R

Coating
Cladding

Core
a

FIGURE 2.9: Schematic representation of the sensitive zone.

The setup of the Figure 2.8 represents a punctual sensor, since the whole fiber
comprises an unique measurement point and it is not possible to identify where the
physical variation was performed. With the creation of the sensitive zone, the sensor
consists of this lateral section, and it also represents a punctual sensor. However, it
is possible to achieve a quasi-distributed sensor using a multiplexing technique in
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intensity variation-based sensors [79]. The multiplexing technique consists of later-
ally coupling light sources, i.e. light emitting diodes (LEDs), to lateral sections, and
photodetectors at the fiber ends. An aluminum foil can be placed on the end facet of
the fiber to increase the reflectivity, and hence increase the optical power in the pho-
totransistor. Each LED side-coupled to the respective lateral section represents one
sensor, which leads to discrete points along the fiber, i.e. a quasi-distributed system.
The LEDs activation is time multiplexed, thus each LED is activated at time and its
response is acquired by the photodetector, and in the end all the sensors’ responses
are sent to a microcontroller. In this way, it is possible to identify the physical varia-
tion applied to all these points (sensors) in the fiber. Figure 2.10 presents the setup of
the intensity variation-based quasi-distributed sensors using the multiplexing tech-
nique.
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FIGURE 2.10: Multiplexing technique for intensity variation-based
sensors.

One limitation of the technique is the maximum number of sensors that can be
multiplexed. Since there is a power attenuation at each sensor’s lateral section, when
the fiber presents a high number of sensors, the output power decreases and may be
too low to be detected. The initial power attenuation due to lateral section and sen-
sor sensitivity depends on the lateral section parameters (c and p) of each optical
fiber sensor [30], [80]. Since the sensors work with the power attenuation principle,
the sensors sensitivities and dynamic range are factors which need to be consid-
ered in the POF output power estimation. Taking these parameters into account, the
power attenuation with respect to all aforementioned effects is estimated as follows:

P0

Pin
=

(Sc − NS0)

Sc
− αL − ∑ sensiri (2.8)

In the Equation 2.8, N is the number of sensors, L is the fiber’s length, α is the
attenuation coefficient, sensi and ri are the sensitivity and dynamic range of each
sensor, respectively. Since the two first terms of the Equation 2.8 are constant, only
the last term is considered in the output power estimation. Therefore, Equation 2.9
presents the simulation of the sensors responses, where i is the sensor (i = 1, 2, 3 in
this case) and j is the photodetector (j = 1, 2) [60].
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Equation 2.9 shows the response calculation of each sensor based on the sum of
the previous sensors, i.e., the power of Sensor 3 consists of the sum of the responses
of Sensors 1, 2, and 3, whereas Sensor 2 is the sum of 1 and 2. Therefore in order
to obtain the response of a single sensor without the influence of other sensors, it
is necessary to compensate the response of the other sensors. In this case, Equation
2.9 is rewritten as Equation 2.10. Thus it is noticeable the need of characterization of
each sensor individually, prior to their applications for simultaneous measurements
[60],

ri =
Pi − Pi−1

sensi
(2.10)

2.2.2 Fiber Bragg Gratings Sensors

The Fiber Bragg Gratings (FBGs) are spectrometric (wavelength-based) sensors, i.e.
when the fiber is interacted by an external perturbation the sensor exhibits a change
in the propagating optical wavelength. The FBGs are created by periodic modu-
lations of the fiber core’s refractive index. Among several methods, the modula-
tion can be achieved with the interference of two laser beams [81], where there is a
photo-degradation of the silica when the grating is inscribed [82], and this photo-
degradation is related to the wavelength intensity of the light source employed [83].
The periodic index–modulated structure leads to the reflection of a specific wave-
length (the Bragg wavelength). Figure 2.11 presents a schematic representation of
FBGs working principle.
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FIGURE 2.11: Working principle of an FBG.

In the fabrication of an FBG, the Bragg wavelength (λB) depends on the material
effective refractive index (ne f f ) and modulation period (Λ), as shown in Equation
2.11.

λB = 2ne f f Λ (2.11)

The Bragg wavelength of FBG sensor strongly depends on applied strain to the
FBG and local temperature surrounding it. The shift in the Bragg wavelength due to
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the strain and temperature is given by Equation 2.12. For this sensibility to strain and
temperature, the Bragg wavelength is sensitive to a range of physical parameters,
and thus, an FBG can be used as a sensor in a variety of applications [60].

∆λB

λB
= (1 − Pe)ϵ + (αT + ξ)∆T, (2.12)

where ∆λB is the Bragg wavelength shift, λB is the Bragg wavelength, Pe is the
photoelastic constant, αT is the thermal expansion coefficient of the fiber, ξ is the
thermooptic coefficient, ∆T is the temperature variation, and ϵ is the strain [60].

2.2.3 Transmission-Reflection Analysis for Distributed Sensors

In detection systems along an optical fiber sensor, the distributed [84] and quasi-
distributed [85] approaches are employed for disturbances location assessment in a
kilometer range. Distributed optical fiber sensors are mainly based on optical time-
domain reflectometry (OTDR) and optical frequency-domain reflectometry (OFDR)
with spatial resolution on the ranging from centimeters to meters [84]. Although
such spatial resolution is proportionally high when sensing lengths in the order of
kilometers are considered, such spatial resolution in order of meters is regarded as
a low spatial resolution in systems with sensing lengths as small as 8 meters, for
example. In addition, such approaches have a complex interrogation system with
bulk and costly components such as modulated light sources and, in some cases,
microwave photonic circuits [84]. Such systems can also present acquisition rate of
a few samples per second, which inhibit their application in dynamic events assess-
ment.

As an alternative approach for distributed optical fiber sensors, the transmission-
reflection analysis (TRA) has been proposed [86]. In this case, the transmitted and
reflected optical powers are measured and correlated with the location and ampli-
tude of mechanical perturbations on the optical fiber [87]. Therefore, a distributed
sensor system is obtained with portable and low cost components, which is suitable
for mechanical perturbation detection in different (including wearable) applications.
Although there are many reports of TRA-based distributed sensors for parameters
such as leak localization (through the mechanical disturbances in the optical fiber
due to polymer swelling) [88], intrusion detection [89] and strain sensing [87], most
of the reports are dated back to the early 2000s. The reason for this more than 10
years’ gap can be related to the poor spatial resolution of the sensor (in the order of
meters). Such low spatial resolution is due to the low Rayleigh scattering coefficient
of standard single mode fibers (SMFs), which result in a low backscattered optical
signal. However, a novel optical fiber was recently proposed [74] in which the fiber
core is composed of silica and sub-200 nm oxide nanoparticles. In this optical fiber,
there is an increase of the Rayleigh scattering (when compared with standard SMFs),
which results in a higher backscattered optical power, leading to an increase in the
spatial resolution of TRA-based systems [73].

Thus, in distributed sensors using TRA, there is an increase on the backscattered
optical power without high transmission losses. It is well known that mechanical
disturbances, such as bending, lead to variations on the transmitted optical power
and such variations are proportional to the bending angle or momentum [90]. Such
mechanical disturbances also influence the backscattered optical power, which is
commonly used in distributed sensing for estimating the disturbance location [86].
For the mechanical disturbance localization using TRA, the ratio between transmit-
ted and reflected optical powers are employed and their unique relation at each
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disturbance location and amplitude result in the disturbance location estimation. In
this case, the disturbance location along the fiber can be achieved with unmodulated
light source, which reduces the system cost, when compared with the reflectometry-
based distributed systems [87].

In TRA, the transmitted optical power is affected by the amplitude of the dis-
placement in the fiber and has relative insensitivity to the location of such distur-
bance as commonly occurs in intensity variation-based sensors [91], whereas the
reflected (backscattered) is mainly affected by the location where the perturbation is
applied in the fiber [73]. If the perturbation occurs close to the light source, there will
be a lower backscattered power. In contrast, higher backscattered power is obtained
as the distance between source and perturbation location increases. Thus, mechan-
ical perturbation and its localization can be estimated by the analysis of both trans-
mission and reflection optical signals, where unique relations of transmission and
reflection are obtained for each location and amplitude of the mechanical perturba-
tion [73].

As any intensity variation-based system, the TRA system is not immune to light
source power fluctuations. Thus, the light source power is monitored, where the
transmission and reflection optical powers are normalized as a function of the light
source in order to obtain a self-compensation for optical power fluctuations [57].

2.3 Biomechanics of Human Movement

The biomechanics of human movement can be defined as the interdiscipline that
describes, analyzes, and assesses human movement. A wide variety of physical
movements are involved, from the gait of the physically handicapped to the per-
formance of an athlete. The physical and biological principles that apply are the
same in all cases, excepting the specific movement tasks and the level of detail that
is being assessed the performance of each movement for each application [92]. The
human movement analysis mainly includes gait analysis, posture and trunk move-
ment analysis, and upper limb movement analysis [20].

2.3.1 Human gait

The human gait can be defined as a complex and cyclical process, characterized by
periods of loading and unloading of the limbs [18]. It requires the synergy of mus-
cles, bones, and nervous system, mainly aimed at supporting the upright position
and maintaining balance during static and dynamic conditions [93]. The gait cy-
cle is defined as the time interval between two successive occurrences of the same
event of walking [94]. Such gait events have different classifications in the litera-
ture. However for all classifications the cycle is divided in two phases: stance and
swing. The stance phase is a term used to designated the period when the foot is on
the ground [94]. This phase begins with the first contact of one foot and ends with
the next contact of the same (ipsilateral) foot, which will be the initial contact of the
next cycle [18]. The stance phase can be divided in five subphases, according to the
classification of [95]:

1. Heel strike, initiates the gait cycle and represents the point at which the body’s
center of gravity is at its lowest position.

2. Foot-flat, is the time when the plantar surface of the foot touches the ground.
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3. Midstance, occurs when the swinging (contralateral) foot passes the stance foot
and the body’s center of gravity is at its highest position.

4. Heel off, occurs as the heel loses contact with the ground and pushoff is initi-
ated.

5. Toe off, terminates the stance phase as the foot leaves the ground.

The swing phase corresponds to the moment when the foot is oscillation, without
contact with the ground. This phase begins when the foot leaves the ground. The
swing phase can be divided in three subphases, according to the classification of [95]:

1. Acceleration, begins as soon as the foot leaves the ground and the subject acti-
vates the hip flexor muscles to accelerate the leg forward.

2. Midswing, occurs when the foot passes directly beneath the body, coincidental
with midstance for the other foot.

3. Deceleration, describes the action of the muscles as they slow the leg and stabi-
lize the foot in preparation for the next heel strike.

Figure 2.12 shows the gait cycle divided in phases and subphases, according to a
traditional nomenclature [95].

Heel Strike Foot-Flat Midstance Heel off Toe off Acceleration Midswing Deceleration 

Stance phase (60%) Swing phase (40%) 

FIGURE 2.12: The traditional nomenclature for describing events of
the normal human gait.

2.3.2 Spatio-temporal Gait Parameters

There are several gait parameters used as indicators for gait assessment. [96] men-
tions many interesting spatio-temporal gait parameters, and some of these ones are
presented in Table 2.1. Figure 2.13 shows some spatio-temporal gait parameters cited
on Table 2.1 through the foot placement on the ground.

The step duration is the temporal difference between the moment of each hell con-
tact, meanwhile the cycle time is the temporal difference between the hell contact of
the same foot. The division of step length by step duration resulted in step velocity.
The walking speed is the division of the performed distance by the time taken to com-
plete the trajectory. Moreover, the cadence is the number of steps taken in a given
time, the usual units being steps per minute [94].

2.3.3 Human Balance during Gait

Center of mass (CoM) is a point equivalent of the total body mass in the global
reference system and is the weighed average of the CoM of each body segment in
3D space. It is a passive variable controlled by the balance control system. The
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Spatio-temporal gait parameters

Length
Step length
Step width

Stride length

Time

Step duration
Stance time
Swing time
Cycle time

Velocity
Step velocity

Walking speed
Cadence

TABLE 2.1: Spatio-temporal gait parameters used for Clinical Gait
Assessment.

FIGURE 2.13: Terms used to describe foot placement on the ground.

Source: Adapted from [94]
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vertical projection of the CoM onto the ground is often called the centre of gravity
(CoG). Its units are metres (m) [97].

Stable gait is achieved as a function of the CoM position and velocity at the mo-
ment of foot placement [98]. The condition for human stability is the confinement
of the CoM in static situations or extrapolated center of mass (XCoM) in dynamic
situations within the base of support (BoS). The CoM–BoS interaction is indicative
of both static and dynamic balance control ability [99], and there is more noticeable
deviations in balance control in elderly people [98].

Margin of dynamic stability (MDS) is determined by CoM or XCoM position rel-
ative to BoS boundaries [99], as shown in Figure 2.14, and was used as a measure
of balance [98]. MDS reflects the CoM-BoS interaction, and is influenced by volun-
tary changes in two gait parameters (step width and length) and can be increased
by longer steps (larger anterior-posterior BoS) and wider steps (larger medial-lateral
BoS) [99].

FIGURE 2.14: Margin of Dynamic Stability.

The investigation on human balance during gait has been a research interest for
many years, where center of mass and center of pressure investigations under dif-
ferent standing and gait conditions are reported [97]. In this context, the gait anal-
ysis under mechanical perturbations provides important insight on human balance
control, including the spatiotemporal parameters and dynamic stability in gait [100].
The neuromuscular activity on forward and backward perturbations during gait was
also measured, where the magnitude and location of the perturbation can lead to dif-
ferent muscular responses [101]. Thus, the detection of the location and amplitude
of the perturbation provide additional information regarding the natural strategies
of balance control in humans.

The widespread of wearable robots for gait assistance [5] points towards the
development of bioinspired devices from the design with approaches such as the
human-in-the-loop design [102] to the device control [103], including bioinspired
actuation [104]. The investigation of the human balance control can lead to the de-
velopment of novel robust control strategies for wearable robots with disturbance
rejection [105]. In addition, experimental protocols for mechanical disturbances dur-
ing exoskeleton-assisted gait provide quantitative and qualitative data regarding the
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exoskeleton control robustness, which also indicates the importance of a wearable
impact detection system in biomechanical and health monitoring applications.

For impact detection systems, electronic sensors based on capacitive and resis-
tive technologies are commonly used [106]. Recently, the developments of conduc-
tive polymers also resulted in pressure sensors embedded in textiles [107]. However,
the electromagnetic field sensitivity, lack of multiplexing capabilities as well as the
sensor wiring are significant drawbacks in these systems especially when their use
with wearable robots is proposed [108]. To that extent, optical fiber sensors have
been proposed through the years, since they rely on advantages such electromag-
netic field immunity, chemical stability, galvanic isolation as well as compactness
and multiplexing capabilities [109], as discussed in Section 2.2.

2.4 Artificial Intelligence in Sensors Technology

Artificial Intelligence, so-called AI, is one area of computer science that focuses on
the creation of intelligent machines that normally requires human intelligence [110],
[111]. It includes adaptations, learning processes, planning and even problem solv-
ing. AI algorithms are designed to make artificial machines capture, store and an-
alyze massive amounts of data. This actionable intelligence allows for a more real-
time decision-making process based on a situation that is as human as possible [110].

Machine Learning (ML) is a core part of AI that deals with the simulation of
intelligent behaviour in computers. ML is a branch of data science that enables com-
puters to learn from existing “training” data without explicit programming to make
predictions about new data points. The another approach Deep learning (DL) is a
subset of ML based on neural networks, containing a large number of layers, made
possible due to recent computational advances [111]. Figure 2.15 presents the dia-
gram of the AI overview subdivided into Machine Learning and Deep Learning.

Artificial Intelligence

Machine Learning

Deep Learning

- Techniques which enables computers to
mimic human behavior

- Subset of AI techniques: algorithms with the ability
to learn without being explicitly programmed

- Subset of ML techniques: artificial neural networks
adapt and learn from vast amounts of data

FIGURE 2.15: Artificial Intelligence overview: Machine Learning and
Deep Learning.

Source: Adapted from [111]



Chapter 2. Theoretical Background 28

2.4.1 Machine Learning

Machine Learning, or ML, works by finding and learning a pattern from multiple
inputs, and then the machine can perform classification or regression to determine
suitable outputs. In this context, ML focuses on using the data to establish corre-
lations and make predictions. When providing sufficient examples of the different
classes, algorithms “learn” how to classify novel data.

The learning technologies (ML and DL) can be categorized into unsupervised
learning and supervised learning. Unsupervised learning is defined as output which
is not supervised, which results in a set of unexplained variables due to unstruc-
tured and unlabeled data. A typical example of ML-unsupervised algorithm is the
k-means clustering, which can generate novel groupings or categories from com-
plex and unlabeled data sets [111]. In contrast, the supervised learning can be de-
fined as a statistical model that will predict and estimate outputs based on one or
more labeled inputs [110]. ML-supervised learning include different types of algo-
rithms, including probabilistic classification models, such as Naive Bayes classifier;
or distance-based algorithms, such as k-Nearest Neighbor (kNN). Moreover, ML al-
gorithms also include support vector machines, random forests and decision trees.
This Ph.D. Thesis focuses on using the kNN algorithm due to its simple implemen-
tation and significant classification performance for sensors applications [112], and,
for this reason, the theory behind this technique is addressed below.

k-Nearest Neighbor (kNN) algorithm

The KNN classification is based on a similarity measure, usually a distance func-
tion, to the already stored available data. Before understanding the kNN method,
it is essential to present the Nearest Neighbor (NN) algorithm. The NN algorithm
involves the data partition into training and testing and stores the training data to
classify new data (testing). Each sample from the testing data (v) is associated with
the nearest sample from the training data (xi), and this testing sample is labeled ac-
cording to the label (yk) of sample xi, as presented in Equation 2.13. The classification
performance is evaluated by comparing the estimated labels with the actual labels.

{v, yk} → k = argmin
i

[dist(v, xi)] (2.13)

The kNN is an extension of the NN algorithm, since kNN considers not only the
nearest neighbor, but the k nearest neighbors. Figure 2.16 presents the classification
principle of NN and kNN methods. The value k is a parameter that need to be
optimized and can be selected by associating with the best classification accuracy in
a predefined range. The use of k nearest neighbors may improve the classification
efficiency, since it is a more reliable way to classify new data, such presented in
Figure 2.16(b), in which the use of the NN method would result in a misclassified
output due to the outlier in the training data, but the use of the kNN method resulted
in a correct classification of the new data.

2.4.2 Deep Learning

Deep Learning, or DL, involves the adaption and learning of artificial neural net-
works from a great amount of data. A DL architecture includes a multilayer stack of
simple modules, which are subject to learning, and compute non-linear input–output
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FIGURE 2.16: Classification principle. (a) NN. (b) kNN.

mappings [110], [113]. For classification tasks, multiple non-linear layers of repre-
sentation amplify aspects of the input that present more influence in the discrimina-
tion and suppress irrelevant variations [113]. The key aspect of deep learning is that
the layers of features are learned from data using a learning procedure. Thus, the
system creates a decision-making function.

The DL process works as follows: (i) during training, the machine produces an
output in the form of a vector of scores, one for each category; (ii) an objective func-
tion that measures the error (or distance) between the output scores and the desired
pattern of scores is computed; (iii) the machine then modifies its internal adjustable
parameters to reduce this error. These adjustable parameters, often called weights,
are real numbers that define the input–output function of the machine [113].

Many applications of deep learning use feedforward neural network (FFNN) ar-
chitectures, which learn to map a fixed-size input to a fixed-size output with only
one way from input to output, without feedback loops [114]. The convolutional neu-
ral network (CNN) is one particular type of deep, that is easier to train and better
than networks with full connectivity between adjacent layers. CNNs are designed to
process data in the form of multiple arrays, such as a colour image composed of three
2D arrays containing pixel intensities in the three colour channels. Typically, CNNs,
a class of FFNN, have been used for image-based problems. Another type of deep
network is the recurrent neural networks (RNNs). RNNs process an input sequence
one element at a time, maintaining in their hidden units a ‘state vector’ that contains
information about the history of the past elements of the sequence [113]. Although
their main purpose is to learn long-term dependencies, theoretical and empirical ev-
idence shows the difficulty of storing information for very long. To overcome this
difficulty, one idea is to augment the network with an explicit memory, and one pro-
posal is the long short-term memory (LSTM) networks that use special hidden units,
called the memory cell, to remember inputs for a long time [115].

Among various deep learning algorithms, different applications require specific
neural network types. In the applications of this Ph.D. Thesis, the data did not have
a dependency on past samples. For this reason, the use of neural networks with
memory (RNN or LSTM) was not the most adequate. Furthermore, the data were not
in the multi-array format, such as the cases in which CNN is designed. Therefore,
the traditional FFNN is the only model applied in this Ph.D. Thesis, and the theory
is discussed as follows.
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Feed-Forward Neural Network

As previously discussed, the FFNN is a simple type of neural network commonly
employed in several applications. The FFNNs have three main layers: input layer,
hidden layer, and output layer, as shown in Figure 2.17. The input layer is connected
to the hidden layer (or layers), which is (are) connected to the output layer. The raw
data comprise the input layer. There are weights on the connections between the in-
put and hidden layers, and these weights combined with the input layer determine
the activities of the hidden units. Similarly, there are weights on the connections be-
tween the hidden layers and output layer, and these weights combined with the hid-
den layers determine the activities of the output layer. The advantage of the FFNN
architecture is the ability of the hidden layers in choosing their representations of
the inputs by suitably modifying these weights [113].
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Output layer
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FIGURE 2.17: FFNN architecture.

After training, the network learns to recognize certain inputs and returns the cor-
rect outputs. Therefore, the objective of the network training algorithm is to build
a mapping between the input-outputs samples to form the relationship. This map-
ping could be a classifier (in classification problems) or a regression function (in
approximation problems). For a single training example, the loss error is computed
to measure the performance of this sample. The average of the loss function of the
entire training set is called cost function [116]. A cost function is introduced to mea-
sure the performance of the neural network. The commonly used cost function is
the mean squared error (MSE), defined in Equation 2.14,

E =
1
L

L

∑
i=1

∥yi − ŷi∥2, (2.14)

where L is the number of training samples, and yi and ŷi represent the desired
and actual outputs corresponding to the input of the ith sample. Different types of
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loss function are used in the literature, such as root mean squared error (RMSE) loss
or mean absolute error (MAE) loss, for regression loss functions, and binary cross-
entropy or categorical cross-entropy, for classification loss functions.

Cross-entropy is the outstanding part of the category of probability-based loss
functions [117]. For binary classification, the binary cross-entropy loss function mea-
sures how distant from the true value (which is either 0 or 1) the prediction is for
each of the classes and then averages these class errors to obtain the final loss [116].
The standard binary cross-entropy (BCE) function is defined in Equation 2.15 [116],
where N is the number of training samples, yn is the target label for sample n, xn is
the input for sample n and hθ is the model with neural network weights θ.

BCE = − 1
N

N

∑
n=1

[yn · log(hθ(xn)) + (1 − yn) · log(1 − hθ(xn))] (2.15)

For multi-class classification, the categorical cross-entropy loss function is ap-
plied when the output can be classified as categorical classes. A technique called
one-hot encoding is employed in multi-class classification to convert the categori-
cal class to binary format, and the distribution of the predicted and true labels are
compared [116]. The standard categorical cross-entropy (CCE) function is defined
in Equation 2.16, where N is the number of training samples, K is the number of
classes, yk

n is the target label for sample n for class k, xn is the input for sample n and
hθ is the model with neural network weights θ [116].

CCE = − 1
N

K

∑
k=1

N

∑
n=1

yk
n · log(hθ(xn,k)) (2.16)

2.4.3 Data Dimensionality Reduction

In general, the traditional supervised approaches need feature reduction, also called
data dimensionality reduction. It is necessary to reduce model complexity and avoid
overfitting, i.e., memorizing the training sample cases rather than learning the rele-
vant pattern [111]. Different data dimensionality reduction techniques are employed
in the literature. Principal Component Analysis (PCA) is a statistical procedure
which uses an orthogonal transformation, i.e., PCA converts a group of correlated
variables to a group of uncorrelated variables. Another popular dimensionality re-
duction approach is the Linear Discriminant Analysis (LDA), which aims to project a
dataset with high number of features onto a less-dimensional space with good class-
separability [118]. Different from PCA, the LDA is a supervised linear mapping. As
well as PCA, the Independent Component Analysis (ICA) is an unsupervised lin-
ear dimensionality reduction technique. ICA is a process of extracting independent
components from linear transformations of the original data. Different from PCA,
the ICA components do not have to be orthogonal. Moreover, PCA tries to maximize
the variance of the input signal along with the principal components, whereas ICA
minimizes mutual information in found components. Thus, the features obtained in
the PCA are sorted from most significant to least significant, and it is possible to dis-
card some of the features to reduce the dimension, whereas components obtained
in ICA are fundamentally unordered and equivalent and can not be sorted [119].
For this reason, PCA is the technique employed in this Ph.D. Thesis, and the theory
behind the technique is addressed below.
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Principal Component Analysis (PCA)

PCA is not an attribute selection technique, but a technique from the field of lin-
ear algebra which converts an attribute set to a new dataset linearly uncorrelated,
obtained from the linear combination of the original attributes, so-called principal
components. As the principal components have a sample-like pattern with a weight
for each attribute, we can use the weights to visualize the influence of each attribute
on the dataset [120].

Considering the matrix XnxD, in which the rows represent the samples and the
columns represent the attributes, each sample is normalized by subtracting the at-
tribute mean (µj) and dividing by the attribute standard deviation (σj), as shown in
Equation 2.17.

x̂i,j =
xi,j − µj

σj
, j = 1,2,...,d i=1,...,N (2.17)

With the new matrix X (with mean 0), the correlation matrix C is calculated by
using the Equation 2.18. From this matrix, the eigenvalues (λ) and eigenvectors (V)
are obtained.

C =
1

(N − 1)
X̂TX̂ (2.18)

For the dimensionality reduction, the k eigenvectors associated to the largest
eigenvalues are selected to compose the new dataset (Ωx), calculated by the Equa-
tion 2.19. The k eigenvectors are defined by analyzing the variance explained by
each principal component, in which the variance might be higher than 99%, and the
number of attributes is reduced.

ΩT
X = X · VNxk (2.19)

The variance explained can be checked by analyzing the pareto chart, which
presents the accumulative variance explained according to the principal compo-
nents, as shown in Figure 2.18.
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FIGURE 2.18: Pareto chart for the PCA technique.

In this way, by using the PCA technique it is possible to reduce the computa-
tional costs by maintaining similar classification performance, which is interesting
for online applications or cases which include a great amount of data.
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Chapter 3

Development and Performance
Analysis of Optical Fiber Sensors
for Kinetic and Kinematic
Monitoring

The biomechanical parameters in human movement depend on kinetic and kine-
matic parameters, where the forces/torques and angle/displacements in human
movement need to be assessed. For this reason, the performance analysis of opti-
cal fiber sensors under forces and angles can indicate the feasibility of using optical
fiber sensors in biomechanical applications. This chapter presents the development
and the performance analysis of optical fiber sensors (using the intensity variation
approach) for the analysis of kinetic and kinematic parameters employed in biome-
chanical applications (displacements and forces). First, an intensity variation-based
curvature sensor using POF is evaluated under different conditions to analyze the
influence of light source wavelengths and angular velocities in angle measurement
performance. Second, an intensity variation-based force sensor is developed and
evaluated embedded in different materials. The objective is to characterize the sen-
sor response and to analyze the ability of estimating the stiffness and the force sen-
sitivity of these optical fibers at different stiffness conditions commonly obtained
along the body. It can be employed in several biomedical applications, such as in
human-robot interaction, in which the human stiffness feedback is not only valuable
for the system control, but it is also a security issue for the robot user. In this context,
the analysis presented in this Chapter can provide the data regarding the sensors
responses under the kinetic and kinematic conditions of movement analysis.

3.1 Kinematic Parameters (Angle and Angular Velocity) In-
fluence in OFS Responses

Curvature sensors are widely employed in joint angle assessment and they present
important information in the human motion analysis [22]. Generally, human joints
have large range of movement in the order of tens degrees, e.g. hip, knee, shoul-
der and elbow with different ranges of angular velocities. For this reason, a POF
was used in this analysis due to its higher strain limits and flexibilities, which make
them compatible with the large range of movement in human joints. The use of
POFs lead to the possibility of using optical fiber sensors for the analysis of different
joint movements. Furthermore, the intensity variation principle leads to a portable,
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compact and low cost system for movement analysis due to the use of low cost com-
ponents, i.e., LEDs and photodetectors.

3.1.1 Materials and Methods

The POF was made of a commercial gradient index multimode CYTOP fiber (Chromis
Fiberoptics Inc, USA) with a core diameter of 120 µm, a cladding thickness of 20 µm
and a polycarbonate overcladding. The light sources were five light emitting diodes
(LEDs) with different central wavelengths (λ): 430 nm, 530 nm, 660 nm, 870 nm
and 950 nm (IF-E92A, IF-E93, IF-E97, IF-E91D and IF-E91A, respectively, Industrial
Fiber Optics, USA). The selected LEDs correspond to different central wavelength
of visible light region (blue - 430 nm, green - 530 nm and red - 660 nm) and differ-
ent central wavelength of infrared region (870 nm and 950 nm). The optical power
was converted into an electrical signal using a phototransistor IF-D92 (Industrial
Fiber Optics, USA) and the acquisition was made through a microcontroller FRMD-
KL25Z (NXP Semiconductors, Netherlands), at a sampling rate of 100 Hz. The data
was filtered through the moving average filter with span of 5%, in order to eliminate
the outliers observed in the measurements. The angle and the angular velocity were
controlled using a servo motor to emulate the joints movement (although there is a
constant center of rotation). Figure 3.1 shows the experimental setup for evaluation
of the POF-based curvature sensing performance using CYTOP fiber.

Photodetector

Light source
Wavelengths:

- 430 nm
- 530 nm
- 660 nm

- 870 nm
- 950 nm

Angular range: 0° - 50°

Angular velocities:

- 0.70 rad/s
- 0.87 rad/s
- 1.16 rad/s 

- 1.75 rad/s
- 3.49 rad/s

Servomotor
CYTOP fiber

FIGURE 3.1: Experimental setup for evaluating the curvature sensor
based on CYTOP fiber.

3.1.2 Experimental Procedures

The experimental protocol was divided into two parts to evaluate the performance
of the CYTOP fiber under curvature: (i) influence of different light source central
wavelengths and (ii) influence of different angular velocities due to the frequency
dependency of the viscoelastic materials, resulting velocity-dependent performance.
Both approaches consisted of curvature tests with angular range from 0 to 50 degrees
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and steps of 10 degrees, where the angular velocity and angles are applied on the
fiber through the servo motor shown in Figure 3.1. This range was defined accord-
ing to lower limb joints angles during gait and limited at 50 degrees to ensure the
possibility of using higher angular velocities due to the servo motor angular range
and velocity limitations. However, it is important to mention that such range is suffi-
cient to analyze the sensors’ performance as a function of the kinematic parameters.
The analysis of the opposite bending (−50 to 0 degrees) can be performed through
lateral sections made in the fiber to create a sensitive zone. In the case of concave
bending, there is an increase in reflections on the convex side of the curvature and a
decrease on the concave side. Thus, if the lateral section is made in the concave side,
the output power is higher for concave bending and lower for convex bending, and
it is possible to identify the bending direction [30].

In the analysis of light source influence in angle responses, curvature tests with
angular velocity of 0.87 rad/s were performed to ensure a constant velocity through-
out the light source tests. In addition, LEDs with different central wavelengths were
employed to compare the responses related to wavelength. Sensitivity, hysteresis
and R2 were analyzed, and through these factors, the figure of merit (FoM) was cal-
culated, as shown in Equation (3.1) in order to characterize the wavelength which
results in the higher FoM, consequently the best sensor performance. In Equation
(3.1), S is the sensitivity, h is the hysteresis, R2 is the determination coefficient, and α,
β, θ are coefficients which define the weight of each performance factor defined con-
sidering the possibility of hysteresis compensation and requirements of low errors
and resolution. It is important to mention that different weights can be attributed
for each parameter considering the sensor application. Thus, these parameters were
chosen to provide a first analysis of the sensor and can be changed or even optimized
for specific applications.

FoM = α · S − β · h + θ · R2 (3.1)

Thereafter, tests with different angular velocities (0.70 rad/s, 0.87 rad/s, 1.16 rad/s,
1.75 rad/s and 3.49 rad/s), which were chosen considering the viscoelastic response
of the material at different frequencies [60] and the light source central wavelength
previously defined by FoM were conducted to evaluate the influence of velocity in
the curvature sensor performance (sensitivity, hysteresis and R2).

Based on these tests, an angular velocity compensation technique was proposed
to reduce the root-mean-square error (RMSE) in different angular velocities (see sec-
tion 3.1.3). In both approaches, 10 tests were performed.

3.1.3 Statistical analysis and angular velocity compensation

A Shapiro-Wilk test was used to verify the data normality. Since the data are nor-
mal, one-way ANOVA (analysis of variance) was applied to determine if significant
differences in sensitivity, hysteresis and angular error existed among different an-
gular velocities with a significance level of 0.05, and the significant angular velocity
groups were defined through this analysis.

In order to reduce the RMSE of angle measurements, compensation models were
developed for each angular velocity group. Figure 3.2 shows the state machine dia-
gram describing the proposed angular velocity compensation, in which “QS” block
comprises the model obtained on a quasi-static test, i.e. calibration curve with the
lowest influence of the sensor angular velocity, and Ci comprises the compensation
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models for respective angular velocity range. The models were obtained by using
the Least Squares Method.

Angular variation d dt/

ω ≤ ω1

ω > ωn 

Optical
power

variation
QS

C1

Cn

Quasi-static model
Discrete

derivative
block

Compensation model 1

Compensation model n

C2 Compensation model 2ω1< ω ≤ ω2

.

.

.

Cn-1 Compensation model n-1ωn-1 < ω ≤ ωn 

FIGURE 3.2: State machine diagram of the angular velocity compen-
sation.

Since the CYTOP is a viscoelastic material, its strain response depends on the
time and the polymer relaxation can lead to the sensor hysteresis and possible vari-
ations on its linearity. In order to obtain a response close to the ideal (servo motor
input), i.e. linear response, the compensation models were based on a sum of ex-
ponential with order 2 (since the fiber has a combination of two materials: perflu-
orinated polymer in the core/cladding and polycarbonate in the overcladding) as
shown in Equation (3.2), where an are the model coefficients, α is the compensated
angle (◦) and P is the sensor power variation (ADC unit).

α = a1 · ea2·P + a3 · ea4·P (3.2)

The analysis of POF curvature sensor in CYTOP fiber is based on three perfor-
mance factors: sensitivity, hysteresis and R2. Figure 3.3(a) shows the concept of
sensitivity and hysteresis applied in one result, where R2 corresponds to the deter-
mination coefficient with a exponential regression, as shown in Figure 3.3(b). The
sensitivity is defined as the variation of the optical signal as a function of the mea-
surand variation, which is acquired as the slope in the characterization curve, as
also shown in Equation (3.3). The hysteresis is the differences between loading and
unloading curves, where the relative difference between these curves is considered
and can be calculated with Equation (3.4).

Sensitivity =
∆y
∆x

(3.3)

Hysteresis(%) =
100 · (yem − y f m)

∆y
(3.4)
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FIGURE 3.3: (a) Flexion and extension applied on CYTOP fiber show-
ing the sensitivity and hysteresis concept. (b) Exponential regression

of one curvature test showing the determination coefficient R2.
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3.1.4 Results and Discussion

Analysis of different light source central wavelengths

Figure 3.4(a) presents the sensors’ responses to the curvature applied to the CYTOP
fiber (angular range from 0 to 50 degrees and constant angular velocity of 0.87 rad/s)
for different central wavelengths (λ), in which the markers represent the measured
output and the dashed lines represent the sensors fit. The sensors’ responses pre-
sented exponential behavior with R2 higher than 0.99 in all characterization tests.
It is possible to observe the normal distribution of sensitivities in Figure 3.4(b), in
which the light source central wavelength of 950 nm provide the highest sensitivity
(32.63 ADC unit/deg) of the sensor, whereas the light source central wavelength of
870 nm provide the lowest sensitivity (0.94 ADC unit/deg). This may occur due to
the some reasons, such as the decreasing optical attenuation curve of CYTOP fiber
that presents higher attenuation for λ = 430 nm and lower optical attenuation for
λ = 950 nm [31]. In addition, the photodetector as a function of the wavelength
presents higher responsivity for 800 nm < λ < 950 nm.

The photodetector presents the maximum photosensitivity at 870 nm, and higher
than 90% of the normalized photosensitivity in a range from 800 nm up to 950 n.
The λ = 870 nm should present the second highest sensitivity. However, the cur-
rent of the tests is lower than the forward current presented in the light source
datasheet [121]. Since the currents used in all tests has the same value and the
λ = 870 nm need a higher current value, the optical power is relatively lower, as
the sensitivity when compared with others light source central wavelengths. In ad-
dition, the λ = 660 nm presented the lower sensitivity among the visible spectrum
(λ = 430 nm, 530 nm, 660 nm) due to the lowest full-spectral bandwidth of the light
source, resulting in a lower output power, since the photodetector acquires the in-
tegral of the light source spectrum, and, consequently, lower sensitivity. For these
reasons, the best sensor performance is using the LED with central wavelength of
λ = 950 nm.

Based on these performance factors, a FoM was applied to calculate the weighted
sum of the factors and to select the central wavelength that results the higher FoM.
For this analysis, the weighted coefficients for FoM calculation were defined as
α = 0.5, β = 0.2, θ = 0.3, since the sensitivity is a important factor which signif-
icantly decreases as the angular velocity increases, and hysteresis can be smoothed
through some compensation technique [38]. The definition of these factors were
made considering previous works in the literature and can be adjusted or optimized
for each case or application [122]. Table 3.1 presents the results of each FoM, in which
the light source central wavelength of 950 nm provides the higher FoM, being the
best option for following applications. Although this configuration presented higher
hysteresis than other ones, such undesirable parameter is compensated through the
proposed hysteresis compensation technique.

TABLE 3.1: FoM of sensor performance for each central wavelength.

λ Sensitivity Hysteresis (%) R2 FoM

430 nm 13.03 1.78 0.997 6.81
530 nm 18.93 1.66 0.998 9.76
660 nm 8.56 1.44 0.998 4.58
870 nm 0.94 2.60 0.996 0.77
950 nm 32.63 2.73 0.993 16.58
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Analysis of different angular velocities

After the first set of tests to select the light source central wavelength, tests with the
angular range from 0 to 50 degrees and different angular velocities are performed, as
shown in Figure 3.1. Figure 3.5 shows the results of measurements without data
treatment for the different angular velocities with the light source central wave-
length selected in the previous analysis. All graphs show curvature cycles per-
formed during the same time variation at different angular velocities. It is noticeable
that the sensor responses present low noise. However, the moving average filter is
used to eliminate the outliers observed in the measurements. The filter has order 1
and did not resulted in significant delays in the signal. The three performance fac-
tors (sensitivity, hysteresis and R2) are analyzed, and Table 3.2 shows the mean and
the standard deviation (SD) of sensitivity (ADC unit/◦), hysteresis (%) and angular
error (◦) of tests for each angular velocity.
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FIGURE 3.5: Raw measurements for each angular velocity.

TABLE 3.2: Mean(SD) of sensor performance factors for each angular
velocity.

Angular velocity Sensitivity Hysteresis (%) Angular error (◦)

3.49 rad/s 12.85(2.14) 3.12(2.82) 25.25(2.00)
1.75 rad/s 33.01(0.48) 2.37(2.14) 1.31(0.77)
1.16 rad/s 33.33(0.38) 1.17(0.89) 0.82(0.55)
0.87 rad/s 32.63(0.39) 2.73(2.48) 1.16(0.63)
0.70 rad/s 33.33(0.36) 1.72(1.13) 0.78(0.58)

According to Table 3.2, it is noticeable that w = 3.49 rad/s presented worst
performance compared with others velocities, with lower sensitivity, equivalent to
approximately 40% of the others, error of 25.25◦(±2.00◦), corresponding to 50%



Chapter 3. Development and Performance Analysis of Optical Fiber Sensors for
Kinetic and Kinematic Monitoring

41

of error and highest hysteresis of 3.12%(±2.82%). Excluding this angular velocity
(w = 3.49 rad/s), all data are normal and the one-way ANOVA test showed that
the sensitivities did not showed significant difference (p = 0.1831), as well the hys-
teresis (p = 0.1042) and the angular error (p = 0.1841). In addition, the maximum
angular error was of 1.31◦(±0.77◦), which corresponds to 2.62% of error, and the
minimum angular error was of 0.78◦(±0.58◦), which corresponds to 1.56% of er-
ror. These results show that the sensor is repeatable and presents similar responses
for this angular velocity range (0.70 to 1.75 rad/s) and as the velocity increases, the
sensor performance decline. All angular velocities presented R2 higher than 0.99.
The mean of the cycles at each angle for all tested angular velocities presented low
hysteresis, as shown in Figure 3.6, in which h is the hysteresis and ω is the angular
velocity.

In addition to angular errors, the sensor responses presented high RMSE with
maximum mean of 12.41◦(±1.49◦) and minimum of 6.45◦(±0.43◦). For this reason,
the angular velocity compensation technique was applied in order to decrease the
RMSE of angle measurements according to the angular velocity. Since the angular
velocity range from 0.70 to 1.75 rad/s did not present significant differences, the an-
gular velocity compensation technique was fitted for two groups: first group (angu-
lar velocities lower than or equal to 1.75 rad/s) and second group (angular velocities
higher than 1.75 rad/s). The C1 and C2 blocks comprise the compensation models
for two angular velocity groups. Equations (3.5), (3.6) and (3.7) show the compensa-
tion models QS, C1 and C2 (see Figure 3.2) relating the optical power variation (P)
with angle, respectively.

QS(P) = 16.43 · e−0.0007·P − 16.40 · e−0.0061·P (3.5)

C1(P) = 8.93 · e0.0010·P − 9.75 · e−0.0080·P (3.6)

C2(P) = 12.53 · e0.0025·P − 12.84 · e−0.0091·P (3.7)

Figure 3.7 shows the angle curves of characterized sensors responses in a quasi-
static tests (uncompensated) and with the angular velocity compensation (compen-
sated) compared to the servo motor input (reference) in one test, and Table 3.3 shows
the RMSE of angle measurements for uncompensated and compensated response in
each angular velocity.

TABLE 3.3: Mean(SD) RMSE of angle measurements for each an-
gular velocity with uncompensated and compensated responses.

∗Excluding outliers.

Angular velocity Uncompensated Compensated

3.49 rad/s 12.41◦(1.49◦) 3.62◦(1.32◦)∗

1.75 rad/s 6.93◦(1.30◦) 1.94◦(0.97◦)
1.16 rad/s 6.45◦(0.43◦) 1.67◦(0.27◦)
0.87 rad/s 6.90◦(1.07◦) 2.03◦(0.63◦)
0.70 rad/s 7.97◦(1.27◦) 2.33◦(0.72◦)

The compensated responses presented a RMSE decrease up to 74% (w = 1.16 rad/s),
with minimum error of 1.67◦(±0.27◦) for angular velocity of w = 1.16 rad/s. The
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FIGURE 3.7: Angle curves with and without angular velocity com-
pensation compared with the reference of one test.

higher angular velocity (w = 3.49 rad/s) presented two cycles with major differ-
ences from the others, resulting in RMSE 6.85◦(±5.23◦). However, excluding these
two cycles the RMSE was 3.62◦(±1.32◦). Although the responses demonstrate worst
performance in this angular velocity, the two different cycles may be related to servo
motor performance at high velocities, presenting errors up to three times higher than
the mean, which can be considered outliers.

3.2 Force assessment using Intensity Variation-based OFS

After the analysis of the optical fiber sensor performance under kinematic parame-
ters, the POF was analyzed in force application conditions in which it is possible to
infer the sensor responses under kinetic parameters. Such analysis enable the evalu-
ation of the proposed sensor in the dynamic conditions of the disturbances protocols
as well as in the ground reaction forces and plantar pressure sensors.

3.2.1 Materials and Methods

The POF was made of a commercial gradient index multimode CYTOP fiber with a
core diameter of 120 µm, a cladding thickness of 20 µm and a polycarbonate over-
cladding, resulting in a diameter of 0.5 mm. The sensor consists of a light source
laterally coupled to the fiber in order to transmit the light to the fiber core (see Fig-
ure 3.8). The light source used is a LED flexible lamp belt. To increase the light
transmission to the core and, hence, increase the sensor sensitivity, a lateral section
is made on the fiber, following the guidelines presented in [30].

The transmitted optical power was converted into an electrical signal using a
phototransistor IF-D92 (Industrial Fiber Optics, USA) positioned at the fiber end
facet, and the acquisition was made through a microcontroller FRMD KL25Z, at a
sampling rate of 100 Hz and a 16-bit ADC resolution. A reference for the applied
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force was acquired by a load cell LCM201 (Omega, USA). The proposed force sensor
not only can measure the force applied directly on the LED coupled region of the
sensor, but also can detect the impact along the fiber. In this analysis, the tests were
made with only one sensor. However, this setup enables the addition of more multi-
plexed sensors, since each sensor can have it own light source. Thus, the analysis of
the laterally coupled light source is performed, which also leads to higher sensitiv-
ity, since minor variations on the LED positioning as a function of the fiber position
also results in optical power variations.

P1
P2
P3
P4
P5
P6

Micrometer head
positions:

Micrometer head

Load Cell

POF-CYTOP

LED Flexible
lamp belt

Support

Flexible Rigid

Force characterization on
different support materials 

d1 d2 d3 d4 d5 Impact location detection
protocol

Lateral section

Test 1:

Test 2:

I II

FIGURE 3.8: Experimental setup for evaluating the force sensor using
CYTOP fiber.

3.2.2 Experimental procedures

The experimental setup consists of a micrometer head vertically positioned in a
structure to control the millimeter position of this structure, where such structure
also contains a load cell for the force acquisition. The whole structure is positioned
on supports of different rigid and flexible materials. Two different tests were per-
formed in this work: the force characterization on different support materials (Test
1) and impact localization detection protocol (Test 2), as shown in Figure 3.8. First,
the force characterization on different support materials consisted of turning the mi-
crometer head in six different millimeter positions (P1=1 mm up to P6=6 mm, with
1mm steps) applying vertical force on the top of the sensor positioned on supports
with two different stiffness (flexible and rigid). Support I (flexible) is a polyurethane
foam, with elastic modulus of 18.6 MPa and support II (rigid) is a 3D structure man-
ufacture made of acrylonitrile butadiene styrene (ABS) using a 3D printer Sethi3D
s3 (Sethi, Campinas, SP, Brazil), with elastic modulus of 1.6 GPa.

The goal of this protocol is to relate the optical power variation to the force on
the fiber for each support stiffness, since different regions in human body present
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different stiffnes characteristics that should be considered in the sensors analysis.
The impact location detection protocol consisted of turning the micrometer head
in six different millimeter positions (P1-P6) applying vertical force along the fiber
(outside the sensor sensitive zone) on five positions along the fiber (d1-d5) which
correspond to distances of 1 cm-5 cm with steps of 1 cm.

3.2.3 Results and Discussion

Force characterization on different support materials

In this characterization, the CYTOP was positioned on two different supports and six
different forces were applied on the sensor based on the micrometer head positions.
First, the CYTOP was positioned on the support I, which is the most flexible (elastic
modulus of 18.6MPa). Three tests were made and the results are shown in Figure
3.9. The markers and the vertical bars represent the mean and the standard deviation
(SD) of the measured force (in N) in three trials, respectively, and the continuous line
represent the fitted curve obtained from the mean of the measured values.

FIGURE 3.9: Results of the CYTOP response under six different forces
on the support I.

The POF force sensor response presented an exponential behavior with order 2
(R2 = 0.9980), as shown in Figure 3.9 and it is noticeable that the optical power vari-
ation increases as the force increases. Using a setup containing a fiber, a LED and a
photodetector (one at each fiber end), the sensor present a linear decreasing behavior
when the force increases, as presented in [123]. This is due to the attenuation of the
transmitted optical signal power caused by fiber bending as well as the variation on
the refractive index due to the stress-optical effect. Since the current setup is using
a LED side-coupled to a lateral section, there is the coupling influence in addition to
the attenuation of the transmitted optical power. The force applied on the POF by
the micrometer head decrease the displacement between the LED flexible lamp belt
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and the fiber lateral section, which increase the light coupling of the flexible lamp
belt. Since the support is flexible, the applied force is not high enough result in a
significant stress in the fiber due to the force damping caused by the flexible mate-
rial. It means that this force range provoke higher light coupling (which increase the
optical power) than the stress in the fiber (which decrease the optical power). For
this reason, there is an increase of the optical power variation. In addition, there
is a saturation tendency on the optical power variation due to displacement reduc-
tion between the LED and POF as the forces increase, resembling the stress-strain
curve of the materials, where there is a linear region, followed by another region
with smaller slope as the stress (or force) continues to increase.

Thereafter, the CYTOP was positioned on the support II, which is the most rigid
among the ones tested (elastic modulus of 1.6 GPa) and the micrometer head was
put in the same six positions (P1-P6) presented in Figure 3.8. Figure 3.10 shows
the results of the sensor response of three trials. The markers and the vertical bars
represent the mean and the standard deviation of the measured force (in N) in three
tests, respectively. The continuous line represent the fitted curve obtained from the
mean of the measured values.

FIGURE 3.10: Results of the CYTOP response under six different
forces on the support II.

The force sensor response presented a determination coefficient of 0.9877 with
a second degree exponential, as shown in Figure 3.10. The response presented a
small increase in the optical power in forces lower than 40 N, followed by a decrease
of the optical power in higher forces. The results show a different behavior when
compared with the results using support I, which only presented an increase of the
optical power. As the support has a higher Young Modulus, the strain on the support
due to the applied load is smaller, leading to only a minor increase in the optical
power. As the force continues to increase, there is a higher stress concentrated in
the fiber (since there is no significant strain in the rigid support), which results in a
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transmitted optical power attenuation due to the stress-optical effect.
In order to compare the behavior of both rigid and flexible supports, Table 3.4

shows the sensor performance using the two different supports in these experimen-
tal protocol.

On the flexible support the sensor presented sensitivity of 15.78 ADC unit/N in
a force range of 0-67 N, whereas on a rigid support the sensitivity was 10.98 ADC
unit/N in a force range of 0-80 N. These results were obtained under the same
micrometer head positions, which show that on a more flexible support there is a
greater force damping due to the smaller Young modulus of such material. Thus, the
stress-strain curve has a smaller slope, which indicates that larger strain is obtained
with smaller force when compared with the rigid support with a Young modulus
two orders of magnitude higher. This is also the reason of the higher sensitivity of
the sensor in the flexible support when compared with the one in the rigid support.
Moreover, the exponential regression presents lower determination coefficient in the
rigid support due to the duality in the optical power variation behavior, where there
is an increase on the optical power in lower forces, followed by a decrease as the
forces increase due to the strain in the optical power.

Therefore, the comparison between both structures shows not only the possibil-
ity of measuring forces using the proposed sensor (previously characterized for each
structure), but also the possibility of estimating the structural stiffness through the
feature extraction of the sensors responses, e.g. sensitivity and determination coeffi-
cient analyses. The latter possibility plays an important role in the stiffness mapping
of the user in wearable sensors applications, where it is possible to estimate the re-
covery of a patient by analyzing the stiffness evolution of affected regions, such as
presented in [124], as well as on the development of customized assistive devices. In
addition, it also has influence on the design of flexible (and rigid) wearable robots
and their control, where the possibility of obtaining the contact stiffness between
robot and user can lead to a natural control of the robot with variable stiffness where
its stiffness mimics the one of the users [125], as well as presented in [126] in which
an interface is designed for a more natural interaction between human and robot.

TABLE 3.4: Sensor performance using two different supports.

Flexible Rigid

OPV (ADC units) 1059 885
Fitted curve Exp. order 2 Exp. order 2

R2 0.9980 0.9877
Force range (N) 67 80

Impact location detection protocol

In practical applications, the force may not be directly applied in the sensor region.
In order to verify the sensor behavior under different forces along the fiber, the POF
was placed on support II and the micrometer head was positioned in the same posi-
tions of the previous characterization (P1-P6) along the fiber (d = 1, 2, 3, 4 and 5 cm),
in which d is the distance between the applied force caused by the micrometer head
and the lateral section. Figure 3.11 shows the sensor responses for each d, presenting
the measured values and the fitted curves (exponential order 2) with their respective
determination coefficients. In this case, there is not the influence of the displacement
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between the LED flexible lamp belt and the sensor, i.e. the influence of the light cou-
pling in the sensor responses, since the micrometer head was not pressured on the
top of the sensor. For this reason, the sensor responses were entirely influenced by
the fiber strain and did not present an increase in the optical power, as showed in
the previous test with support II (see Figure 3.10).

FIGURE 3.11: Results of the vertical forces applied along the fiber
(d=1,2,3,4 and 5cm to the sensor).

Figure 3.11 shows the sensor responses for all distances d in a smaller force range.
As the force increases, it is possible to identify differences in the sensor responses,
e.g., for an applied force of 80 N, approximately, it is possible to identify 3 clusters
(C1: d = 1 cm, C2: d = 2 − 3 cm and C3: d = 4 − 5 cm). It shows that the impact
location detection is more evident under higher forces with spatial resolution of 2 cm.
However, it is worth noting that each distance presents its own correlation curve,
where all cases show a strong correlation (R2 > 0.98) with an exponential curve.

Table 3.5 shows the comparison of the optical signal variation and determination
coefficient for each case at 80 N. As expected, the smaller distances result in higher
signal variation, since it is closer to the light source, whereas the higher distances
lead to lower signal variations. Considering the system’s resolution, it is possible
to infer that the sensor is able of tracking changes as far as 10 cm of the lateral sec-
tion. These results indicate the possibility of a real-time assessment of mechanical
disturbances localization using a multiplexed system able of tracking simultaneous
perturbations such as the one presented in [62]. The use of the proposed system may
enable to pinpoint the disturbance along the fiber and not only on the sensors, using
the response of the multiplexed sensors, increasing the spatial resolution of the sys-
tem. Furthermore, the analysis of each sensor also results in the assessment of the
stiffness in the region at which the sensor was pressed with important implications
on rehabilitation and wearable robots control, where an application of optical fiber
sensors in the stiffness assessment can be proposed.
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TABLE 3.5: Sensor performance for force applied along the fiber.

d1 d2 d3 d4 d5

OPV (ADC units) 800 428 386 305 284
Fitted curve Exp. 2

R2 0.997 0.983 0.989 0.990 0.994
Force range (N) 80

3.3 Final Remarks

This Chapter presented the development and performance analysis of intensity vari-
ation based sensors using CYTOP fiber for monitoring kinetic and kinematic param-
eters. First, a curvature sensor is proposed, and tests under different conditions are
performed for evaluating the influence of angular velocity and the central wave-
length of the light source. Curvature tests with an angular range from 0 to 50 degrees
using five light sources with different central wavelengths were performed. Three
factors were analyzed to achieve the best sensor performance: sensitivity, hystere-
sis and R2. After this, tests with the same angular range were performed under
five different angular velocities using the light source with the central wavelength
which obtained the best performance in the first tests. A compensation model was
designed to reduce angular errors. These analyses result in an enhanced sensor for
application in the joint assessment during the gait.

Second, a force sensor is proposed, and two tests were performed: force charac-
terization on different support materials and impact location detection. Both tests
consisted of applying a strain in the fiber using a micrometer head. The first test
aimed to characterize the sensor response embedded in materials with different stiff-
ness since the human body presents a variety of stiffness characteristics throughout
the body that should be considered in the analysis of wearable sensors. The second
test aimed to evaluate the sensor response with force application outside the sensor
sensitive zone and the ability to identify the impact.
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Chapter 4

Optical Fiber Sensors Integration
in Textiles and Flexible Structures

This Chapter presents works developed for the integration of optical fiber sensors
in different textiles and flexible structures. In the first analysis, a preliminary study
of a POF-integrated textile is presented, where the force, temperature and bending
analyses of the multiplexed intensity variation-based sensors are analyzed for each
condition. FBG sensors inscribed in silica fibers incorporated in a rubber blanket
are evaluated for application as an intelligent carpet for gait analysis. The rubber
blanket is characterized by force and space using neural network. Moreover, for
TRA-based sensors integration in smart structures, a preliminary analysis of a TRA-
based distributed sensor using different oxide DNP-doped fibers as well as a com-
parison of these fibers according to the distributed sensor performance to define the
suitable DNP-doped optical fiber for the biomechanical applications. Finally, a deep
learning-based analysis of multiple simultaneous disturbances applied on a TRA-
based distributed sensor using an oxide DNP-doped fiber is performed to address
one of the major problems in the TRA-based approach, i.e., the ability of detecting
simultaneous perturbations along the optical fiber.

4.1 POF Smart Textile: Preliminary Study

Before the development of textile applications, a preliminary study using a textile
model is performed. A light polarization spinning (LPS) POF was used in the pre-
liminary tests due to its promising mechanical features and properties for mechani-
cal sensing with the possibility of embedding on textiles without changing the textile
stiffness [40], which makes it suitable for multiparameter sensing in smart textiles.

4.1.1 Materials and Methods

The LPS-POF has a diameter of 580 µm ± 30 µm with a core refractive index of 1.54,
whereas the fiber cladding (with 20 µm thickness) has a refractive index of 1.45.
For the multiparameter sensing, the technique proposed by [79] is used, which is
based on light source lateral coupling and temporal multiplexing. The light source is
activated at a time and the correspondent optical power is acquired. The light source
is a LED in flexible substrate to ensure a high flexibility to the system embedded
in the textile fabric, and the optical power is acquired by a photodetector IF-D92
(Industrial Fiber Optics, USA). The sensor system (comprised of the LPS-POF and
the flexible LEDs) is sewed between two layers of a neoprene textile fabric, as shown
in Figure 4.1. The LEDs activation control as well as the optical power acquisition are
performed by a microcontroller FRMD-KL25Z (NXP Semiconductors, Netherlands).
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FIGURE 4.1: Smart Textile overview: picture and schematic represen-
tation of the proposed smart textile system.

4.1.2 Experimental procedures

In order to characterize the sensors, different tests are performed. In the temperature
tests, Sensors 1, 2 and 3 were positioned in a thermoelectric Peltier plate TEC-12706
(Heibei IT, China) with closed loop temperature control TED 200C (Thorlabs, USA).
The temperature range was 20–40 ◦C in 5 ◦C steps, where the isothermal period
was 5 min to ensure a constant temperature at each sensor. For the temperature
profile tests, a temperature-controlled hot air blower 858D (QWERTOUY, USA) was
employed and positioned at different regions of the smart textile.

For the force characterization, calibrated weights with a known mass were posi-
tioned on the top of each sensor for about 10 s. All the sensors were tested in a range
of 0–150 N. However, Sensors 1 and 3 have different forces due to the dimensions
of the weights, which can apply a force on Sensor 2 due to the proximity of such
sensors. In addition, the force map characterization was performed by position a
weight with larger dimensions in the center of the smart textile, leading to a force
distribution in the sensors.

The angular displacement tests were performed by manually bending the textile
with the aid of a goniometer at the different planes, where the goniometer was pre-
viously aligned with the bending plane and the angular displacements in the range
of 0◦ to 90◦ for bending and 0◦ to 180◦ for torsion were performed.

4.1.3 Results and Discussion

The POF-embedded smart textile was tested in different conditions in order to verify
its suitability for measuring multiple parameters, where the multiplexing technique
based on the LEDs modulation enables the simultaneous measurement of multiple
parameters in multiple points on the POF. In this case, the tests were performed in
the textile with three measurement points. Figure 4.2 presents the temperature re-
sponse of each sensor, where the tests were performed in a range of 20-40 ◦C due
to both the intended application (room temperature monitoring and on-body appli-
cations). The temperature characterization of each sensor, in Figure 4.2(a), shows a
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linear behavior of all sensors in the mean and standard deviations of five tests, where
the sensor 1 presented the highest temperature sensitivity. The temperature increase
in the LPS-POF leads to refractive index variation due to the thermo-optic effect,
which results in variations in the transmitted optical power, the differences in the
sensitivities can be related to anisotropy in the fiber material [127]. From the linear
regressions obtained in the sensors characterizations in Figure 4.2(a), it is possible to
estimate a temperature distribution in the textile, as shown in Figure 4.2(b). In this
case, a thermal blower is positioned in different locations along the fiber, leading to
both distributed and concentrated temperature increase in different regions.

(a)

(b)

FIGURE 4.2: Temperature analysis of the LPS-POF embedded textile.
(a) Temperature characterizations. (b) Temperature responses of each

sensor for different heat spots.

The capability of sensing the temperature distribution in the textile was demon-
strated, where the sensors also presented low cross-sensitivity between them, demon-
strating the feasibility of the proposed multiplexing technique. Regarding the tem-
perature responses, the solid lines are the responses of the sensors applying the lin-
ear regressions, whereas the shaded lines are the temperature uncertainty of the sen-
sors, considering the standard deviations on the characterizations shown in Figure
4.2(a). The positions and temperatures of the heating spots on the optical fiber are
also presented in Figure 4.2(b), where it can be seen a temperature increase starting
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in the Sensor 3 and ending in Sensor 1. Thus, the proposed sensor system can be
used for body temperature monitoring and can be applied in the interface between
the user and an assistive device for microclimate assessment.

Thereafter, different forces are applied at each sensor to obtain their responses at
transverse force conditions, which can be correlated to the applied pressure by con-
sidering the area of each sensor. In order to show the low crosstalk between sensors,
Figure 4.3(a) shows the sensors responses as a function of time for a force of 100 N
applied at one sensor at a time (starting from Sensor 1). It is possible to observe the
low cross-sensitivity between sensors, i.e., when the force is applied directly on one
sensor, there is no significant signal variation in the others, showing the feasibility of
the proposed LED modulation multiplexing technique for intensity-based sensors.
In Figure 4.3(b), the force characterization is presented, where high linearity of all
sensors and low standard deviation between tests is shown. By applying the linear
regression in the sensors responses, it is possible to obtain a pressure/force map of
the interaction between the sensor and the user (or environment), as shown in Figure
4.3(c). In this case, a rectangular object (resembling a chair support) is positioned on
the textile and the force map is presented in Figure 4.3(c), which indicates the pos-
sibility of using the proposed smart textile with a mesh of sensors to evaluate the
interaction pressure between the user and the environment, such as chairs and beds.
Such evaluation is important to provide a remote monitoring of the user’s activities
and prevent pressure ulcers.

The smart textile sensors responses under displacements applied at different
planes are presented in Figure 4.4. Bending at different planes and torsions were
applied with controlled angles. For the bending, the angles were 0◦ to 90◦ and 0◦ to
-90◦, whereas, in the torsion assessment, angular displacements ranging from 0◦ to
180◦ were applied, as depicted in Figure 4.4 inset. Comparing the responses of each
sensor, which are obtained at the angular displacements in different planes, it is pos-
sible to observe differences in the sensors behavior, which can be used for the classifi-
cation of each movement in multiple planes. It is also noteworthy that Sensors 1 and
2 presented the highest bending sensitivity, related to the region where the bending
was applied (see Figure 4.4 inset), resulting in a higher stress in Sensors 1 and 2. In
the torsion case, the highest optical power variation was also obtained in Sensor 1,
whereas, once again, the Sensor 3 presented the lowest signal variation. However,
the differences in the sensors sensitivities obtained in each case can be used for the
estimation of the multiplane displacements applied on the textile, using techniques
such as transfer matrix for 3D plane displacements assessment [128], where a system
of equations obtained in the sensors characterizations are used for the angle assess-
ment of each plane. It enables the remote human movement analysis using wearable
sensors that do not inhibit the natural pattern of the user’s movements.

As shown in Figure 4.2, the sensors are also sensitive to temperature variations.
Thus, temperature variations interfere on the bending and force assessment. Al-
though the results presented in Figures 4.3 and 4.4 were obtained in constant temper-
ature conditions, temperature variations can occur in practical applications. In or-
der to mitigate the temperature influence on the sensors’ responses, two approaches
are considered. The first approach is based on the difference between sensors re-
sponses for temperature and strain-related parameters (as previously validated in
temperature-compensated systems [129]), considering their previously character-
ized sensitivities with respect to temperature, angle and force, in this case. Fur-
thermore, the use of the smart textile in dynamic movement applications leads to an
additional possibility of temperature compensation. In practical applications of the
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(a)

(b)

(c)

FIGURE 4.3: Force analysis of the LPS-POF embedded textile. (a)
Transmitted optical power attenuation as function of time for forces
applied at different sensors. (b) Force characterizations. (c) Force map

from the sensors responses with a force applied on the textile.
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FIGURE 4.4: Sensors responses with angular displacement on differ-
ent planes.

proposed textile, the temperature variation rate is lower than the one of the strain-
related parameters (such as force and angle). This behavior leads to differences in the
frequency components of the temperature and strain, where the lower frequencies
are related to the temperature. Therefore, the temperature influence on the strain
response is mitigated by filtering the low frequencies components on the sensor re-
sponses, as demonstrated in previous works [130].

It is also worth noting that the smart textile characterization with respect to tem-
perature and force show a high repeatability of the sensors with low standard devi-
ation (0.004 a.u.) in the temperature assessment after 3 sequential tests (see the error
bars in Figure 4.2(a)). Moreover, the error bars are not visible in Figure 4.3(b) due
to its low standard deviation (0.005 a.u.). As another indicator of the sensors’ con-
sistency, the bending tests, whose results are shown in Figure 4.4, show the sensor
reversibility, since the sensors responses returned to their initial condition without
significant residual strains after the bending is performed. The maximum reversibil-
ity error (obtained by the comparison between the sensors responses before and after
the bending) is 0.03 a.u., considering all three sensors.

4.2 Spatial Characterization of a Rubber Blanket-embedded
FBG Matrix

In order to develop a OFS-based system incorporated in a flexible structure for gait
analysis, the rubber blanket-embedded FBG matrix is proposed. The use of FBG sen-
sors in this work is mainly related to the heterogeneity of the systems proposed in
this PhD Thesis and to the evaluation of the ability to integrate different systems in
the same application, as presented in the Chapter 7. This Section aims to characterize
each sensor (force) and the whole system (disturbance location) to evaluate the abil-
ity of measuring kinetic and kinematic gait parameters. A deep learning technique
is proposed to provide an accurate identification of disturbance location which are
useful for gait applications in smart environments, as presented in the Chapter 7.



Chapter 4. Optical Fiber Sensors Integration in Textiles and Flexible Structures 56

4.2.1 Materials and Methods

In this setup, 10 FBGs inscribed in 2 silica fibers (5 FBGs in each fiber, separated
by 20 cm) are used embedded in a rubber blanket. The FBGs were inscribed in a
photosensitive single mode fiber GF1B (ThorLabs, Newton, NJ, EUA) using a 248
nm KrF pulsed laser through the phase mask technique [131]. Figure 4.5 presents
the FBGs spectra of each fiber.
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FIGURE 4.5: FBGs spectra. Top spectra: fiber 1. Bottom spectra: fiber
2.

The rubber blanket is made of nitrile rubber with dimensions of 200 cm (length),
60 cm (width), and 1.5 mm (height). Since the system consists of the silica fibers
between two layers of the rubber blanket, the total height of the system is 3 mm.

4.2.2 Experimental procedures

Two tests are performed to evaluate the system: the force and spatial characteriza-
tions. The force characterization aims to estimate the sensitivity and the linearity of
each FBG, in addition to normalize all the sensors. The force characterization of the
FBGs is performed (at a constant temperature) by positioning predefined weights
(5-10 kg with steps of 1 kg) on the top of each FBG. The spatial characterization aims
to identify the disturbance location based on a neural network model. It consists of
applying the same force on 23 predefined points and relate the sensors responses
with these points to design a neural network model for classification of the distur-
bance location in the rubber blanket. This classification model is evaluated using
accuracy and loss metrics. The setup of each characterization, as well as the FBGs
incorporated in the rubber blanket are shown in Figure 4.6.

A feed-forward neural network (FFNN), presented in the Section 2.4.2, is de-
signed to perform a multi-label classification of simultaneous disturbances location
on the rubber blanket. The FFNN comprises of an input layer with 10 nodes (FBG
responses), two hidden layers with 600 and 300 neurons and an output layer (23 bi-
nary values). Moreover, the data are divided into training (80%) and testing (20%),
and randomly permuted. The batch size is 50 and 40 epochs are used in the FFNN.
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4.2.3 Results and Discussion

Figure 4.8 presents the results of the FBGs in the force characterization. The tests
were performed at constant temperature (22°C). All sensors presented a linear rela-
tion between wavelength shift and force, with determination coefficient (R2) higher
than 0.98. The sensors’ sensitivities are different, as presented in Figure 4.8, where
it is possible to observe the differences in the sensors sensitivities, obtained by the
slope of the characterization curves. The FBG 8 presented the highest sensitivity
(4.12 pm/N) among the tested ones, which is similar to FBG 2 sensitivity (3.87
pm/N), whereas the lowest sensitivities are obtained in FBGs 5 and 6 with sensi-
tivities of 0.49 pm/N and 0.79 pm/N, respectively. The reason for this behavior is
related to the positioning of the FBGs in the rubber carpet, where there are some
deviations on the rubber carpet thickness (1.6 ± 0.2mm). The higher thickness of the
carpet leads to lower force sensitivity of the sensors, whereas the lower thickness
results in higher force sensitivity. Thus, the variation on the carpet thickness leads
to such differences in the sensitivities of each FBG.

Since the FBGs presented different sensitivities, all the sensors are normalized
by their sensitivities prior to the application in the FFNN. The results of the FFNN
classification model are presented in Figure 4.9, which shows the high accuracy of
the proposed approach, where there is the classification of the foot position based
on 23 predefined positions, as shown in Figure 4.6. The accuracy value converged to
99.58% and the loss value to 0.0115. Thus, the results show the feasibility of impact
detection on the FBG-embedded rubber carpet, where it is possible to estimate the
spatio-temporal parameters of the gait and the ground reaction forces of the users in
the FBG-embedded carpet.
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4.3 TRA-based Sensor using Different DNP Fibers

This Section presents an experimental characterization of a TRA-based sensor sys-
tem using five different DNP-doped fibers with the same length. An disturbance
location protocol is proposed to evaluate the influence of different DNPs (with vari-
ous compositions and sizes) on the sensing performance. The sensors’ performance
is evaluated and related to the fiber fabrication and the DNPs presented in the fiber
core. These analyses enable the selection of the DNP-doped fiber with the best per-
formance for biomedical applications, such as in wearable sensors or smart environ-
ments (as presented in Chapter 7).

4.3.1 Materials and Methods

The materials used in this setup are divided into three parts: the light source, the
acquisition system and the optical fibers. The super-luminescent diode centered at
1550 nm with a bandwidth of 60 nm (SLED, DL-BP1-1501A, Ibsen Photonics, Farum,
Denmark) was employed as the light source. The acquisition system consists of
two photodetectors (PD, GT322D, Go4fiber, China), two transimpedance amplifiers
(TIA, TLV3541, Texas Instruments, USA), a microcontroller unit (MCU, Kinetis K64F,
NXP Semiconductors, Eindhoven, Netherlands) and a computer. A optical circulator
(OC) is employed to connect the reflected optical power to one PD, whereas the
another PD is directly connected at the optical fiber to acquire the transmitted optical
power. Each PD is coupled to the TIAs and the signal acquisition is performed by
the microcontroller and transmitted to the computer for data processing.

Regarding the optical fibers, five different DNP-doped fibers were used in the ex-
periments. The Fibers A, B and C are fabricated following the guidelines presented
in [66]. The standard solution doping technique is employed to incorporate RE ions
within DNPs in silica-based optical fibres. Fiber A contains SrO oxide in its compo-
sition, whereas Fiber B and Fiber C contain CaO and MgO oxides, respectively. In
these optical fibers (A, B and C), erbium ions are incorporated into the DNP to broad
the emission spectrum. In addition, germanium (1.85 mol%) and small amounts of
phosphorus (0.8 mol%) were added to raise the core refractive index and ease the
fabrication of these fibers. It is important to mention that no particle bigger than
100 nm was observed in the Fiber C, which is different from fibers A and B.

Fiber D (La2O3-doped fiber) is fabricated using the gradual time doping tech-
nique [132], which is used to prepare fibers with longitudinally varying character-
istics (concentration, refractive index, core diameter) along the fiber. The preform
core contains Ge. Two doping solutions are used, Solution I: [LaCl3] = 0.01 mol/l,
[ErCl3] = 0.01 mol/l; Solution II: [LaCl3] = 0.7 mol/l, [ErCl3] = 0.01 mol/l). The entire
preform is soaked with the Solution I for more than one hour to reach the station-
ary concentration. Solution I is removed and the Solution II is injected up to the
middle of the preform, in which the rising time is around one minute. The Solution
II is slowly drained until the 1/3 of the preform. The draining time is about 20-30
minutes. The lower part of the preform is soaked for more than one hour with the
Solution II in order to reach the complete equilibrium in this part. Finally, the Solu-
tion II is removed and the process is completed. Using this process, [132] reported a
variation of the fiber characteristics over 100 to 500 meters. However, it is important
to mention that the length of the optical fiber under test is 150-cm in this work, since
this size is compatible with wearable applications.
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Fiber E was fabricated using a non-conventional solution doping method to dope
the preform fiber with ZnGa2O4 DNPs: the doping solution was injected in the hor-
izontally rotating tube and then dried at room temperature by an oxygen gas flow.
The solution was sonicated before being introduced in the tube. However, ultra-
sonic waves only broke the micrometric clusters and slightly reduce the diameter of
the smaller clusters down to about 150 nm [67]. The Fiber E presented an optical
attenuation of 275 dB/m.

4.3.2 Experimental procedures

A disturbance location characterization is performed to evaluate the transmitted and
reflected optical power as a disturbance is applied along the fiber. The purpose of
this protocol is to evaluate the performance of each fiber to localize the disturbance
by using the transmission-reflection analysis. The setup of the disturbance location
characterization is presented in Figure 4.10. This characterization consists of apply-
ing the same force in different points in the fiber, in a range of 15 cm up to 150 cm,
with steps of 15 cm, i.e., the first point is 15 cm distant from the fiber end near to the
optical source, whereas the last point is 150 cm from the start.
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FIGURE 4.10: Experimental procedure. (a) Setup using the
transmission-reflection analysis for disturbance location characteriza-

tion. (b) Disturbance location characterization inset.

Two different parameters are calculated to evaluate the performance of the dis-
tributed sensor during the disturbance location characterization: Signal-to-Noise
Ratio (SNR) and Spatial Resolution (SR). The SNR comprises the relation between
the desired signal and the noise, and it is estimated by dividing the normalized re-
flected optical power under strain (Rnorm) by the standard deviation of the normal-
ized noise (σnoise), as shown in Equation 4.1.

SNR =
1 − Rnorm

σnoise
(4.1)
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Moreover, the SR represents the smallest distance that can be detected by the
sensor, and it is estimated by the Equation 4.2:

SR =
∆L · δnmax

∆Rnorm
, (4.2)

where ∆L represents the distance variation between adjacent disturbance locations,
δnmax represents the maximum noise amplitude and ∆Rnorm is the difference be-
tween the normalized reflected optical powers associated with adjacent disturbance
locations.

4.3.3 Results and Discussion

The results of the disturbance location characterization using Fiber A are presented
in Figure 4.11(a). The Fiber A presented a perceptible variation in the transmitted
optical power (~0.05 a.u.) when comparing the unstrained fiber to the strained fiber
(when a disturbance is applied). From the distance of 15 cm up to 45 cm the nor-
malized reflected power variation is 0.3518 a.u., as observed in Figure 4.11(a). On
the other hand, the reflected optical power presents low variation between the dis-
turbances on 45 cm up to 150 cm (0.0033 a.u.). It may be related to the high at-
tenuation of the Fiber A (~40 dB/m) attributed to the presence of the bigger sized
particles (~100 nm) [64], which leads to a reflected power variation only closer to the
reflection-related PD. Moreover, in this fiber region (15-45 cm), the worst case pre-
sented SR of 0.1 cm with SNR of 31 dB, whereas the best case presented SR of 0.07 cm
with SNR of 27 dB. Thus, It is recommended for this protocol the use of smaller
lengths of the Fiber A, since the Rayleigh backscattering loss is high, leading to high
spatial resolution in TRA-based sensors systems.

Fiber B presented a different behavior when compared to the Fiber A. In Figure
4.11(b) it is possible to note that the Fiber B presented a negligible variation in the
transmitted optical power under strain (~0.0035 a.u.), approximately 15 times lower
than the transmitted power variation using the Fiber A. Both fibers (Fiber A and
Fiber B) have bigger DNPs (mean size around 100 nm and bigger particles were
observed) in the optical fiber core when compared to Fiber C. The large particles
influence the Rayleigh backscattering along the fiber and increase the attenuation
[66]. In the case of Fiber B, the high attenuation (~55 dB/m) is observed in all fiber,
with maximum normalized reflected power variation of 0.01 a.u. (from 15 cm up to
150 cm), different from Fiber A, which the reflected power variation increases for
disturbances applied on the last 30 cm of the fiber. Due to the higher attenuation of
Fiber B when compared with the Fiber A, it is necessary smaller length of Fiber B for
its application in this protocol.

Figure 4.12 presents the results of the disturbance location characterization us-
ing Fiber C. Figure 4.12(a) shows the relation between the normalized reflected and
transmitted optical powers as the disturbance location increased and Figure 4.12(b)
shows the exponential behavior (order 2) of the relation between the reflected optical
power and the disturbance location in the fiber, with determination coefficient (R2)
of 0.9956. This result is in agreement with the previous work [73], which used the
Fiber C. Such optical fiber has smaller particles (mean size of ~40 nm) incorporated
in its core when compared with the Fibers A and B, which may be cause of lower
attenuation in Fiber C. There is a reflected power variation in all 150 cm-along fiber,
different from the Fiber A that presented optical power variation only at 30 cm close
to the reflection-related PD. Moreover, the SNR and SR by using the Fiber C are es-
timated by following the Equation 4.1 and Equation 4.2, respectively, presented in
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(a)

(b)

FIGURE 4.11: Relationship between the normalized reflected and
transmitted optical powers at different disturbance locations. (a)

Fiber A. (b) Fiber B.
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Figure 4.13. The distributed sensor using the Fiber C presented the following results:
SR (worst case: 0.8 cm and best case: 0.2 cm) and SNR (worst case: 23 dB and best
case: 32 dB).

(a)

(b)

FIGURE 4.12: Results of disturbance location characterization using
the Fiber C. (a) Relationship between the normalized reflected and
transmitted optical powers at different disturbance locations. (b) Be-
havior of the normalized reflected optical power related to the distur-

bance location.

The Fibers D and E presented similar behavior in their responses: both presented
negligible variation in the transmitted and reflected optical powers. Thus, the re-
flected power could not be related to the disturbances along the fiber. Figure 4.14
shows the relation between the normalized reflected and transmitted optical pow-
ers with respect to the disturbance location. Regarding the Fiber E, a attenuation of
275 dB/m was reported in [67]. This may be related to the higher particles’ diameter
in contrast to the size of the paticle found in fibers A, B and C. Results using the
Fiber E presented low reflected power variation at different disturbances locations
(∆r ≈ 0.0011 a.u.).

In summary, this section presented an experimental characterization of a TRA-
based sensor using five different DNP-doped fibers applied on a disturbance loca-
tion protocol. The performance of each sensor is evaluated according to the compo-
sition of the nanoparticles incorporated to the fiber core, as presented in Tab. 4.1. The
mean size of the nanoparticles incorporated in the Fiber D was not reported (NR∗).
Also, Tab. 4.1 presented the attenuation (α) of each fiber, based on measurements
or previous works. Fibers with big particles presented high attenuation, demanding
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tion characterization using the Fiber C.

the use of short fibers. On the other hand, fibers containing small nanoparticles in
its core presented a high sensitivity, with exponential relation between the Rayleigh
backscattering and the disturbance location. In addition to a good SR (worst case:
0.8 cm and best case: 0.2 cm) and SNR (worst case: 23 dB and best case: 32 dB), which
presents better results when compared to single-mode fibers [133]–[135]. The results
shown that Fiber A and C are good candidates for TRA-based wearable sensors,
whereas fibers B, D and E are not compatible with this method, since they presented
negligible changes in the reflected optical power.

TABLE 4.1: Comparison of different DNP fibers employed in this
work.

Fiber A B C D E

DNP SrO CaO MgO La2O3 ZnGa2O4
NP size (nm) 100 100 40 NR∗ 150

α (dB/m) ~40 ~55 0.4 [136] >1000 275 [67]
SR (cm) 0.1/0.07 - 0.2/0.8 - -

SNR (dB) 31/27 - 32/23 - -
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4.4 TRA-based Distributed Sensor using a DNP-doped Fiber:
Multiple Simultaneous Disturbances Analysis

4.4.1 Materials and Methods

The materials used in this setup are the same as to the one used in the Section 4.3.
The optical fiber used in this setup is the Fiber C, as presented in the Section 4.3,
which contains MgO oxide in its composition in addition to erbium ions incorpo-
rated into the DNP to broad the emission spectrum, germanium (1.85 mol%) and
small amounts of phosphorus (0.8 mol%) to raise the core refractive index and ease
the fabrication of these fibers.

4.4.2 Experimental procedures

Multiple simultaneous disturbances characterization is performed to evaluate the
transmitted and reflected optical power when disturbances are applied on differ-
ent points along the fiber, simultaneously. The characterization consists of different
combinations of disturbances using the same force, including single and multiple si-
multaneous disturbances. Six points of disturbances are defined, separated by 15 cm.
The goal of this characterization is to identify the disturbance points by analyzing
the transmitted and reflected optical powers. Figure 4.15 presents the experimental
setup of this characterization. The disturbances combination is presented in Table
4.2, where 1 represents a disturbance at the respective point (Px, 1 ≤ x ≤ 6) and 0
represents no disturbance at the point.
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FIGURE 4.15: Experimental setup of the multiple simultaneous dis-
turbances characterization.

An FFNN is designed to classify the disturbance event at 6 predefined points
(output) by analyzing the transmitted and reflected powers (input). Two hidden
layers, Hidden Layer 1 and Hidden Layer 2, are included with 600 and 300 neu-
rons, respectively. The activation function used in the hidden layers is the rectified
linear activation function (ReLU), whereas the activation function used in the out-
put layer is the sigmoid, since it is a multilabel classification. The data is divided
into training (80%) and testing (20%), and randomly permuted. Also, the input
data are normalized between −1 and 1. The batch size is 50 and 40 epochs were
defined to this model, and the adaptive moment estimation (adam) optimization
algorithm was employed. The loss and the accuracy are used as the classification
metrics. Moreover, confusion matrices are calculated for different trials (10) with
the data randomly permuted. Figure 4.16 presents the FFNN model applied in this
experiment.
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TABLE 4.2: Combination of the multiple simultaneous disturbances.

Combination P1 P2 P3 P4 P5 P6

1 1 0 0 0 0 0

2 0 1 0 0 0 0

3 0 0 1 0 0 0

4 0 0 0 1 0 0

5 0 0 0 0 1 0

6 0 0 0 0 0 1

7 1 1 0 0 0 0

8 1 0 1 0 0 0

9 1 0 0 1 0 0

10 1 0 0 0 1 0

11 1 0 0 0 0 1

12 0 1 1 0 0 0

13 0 1 0 1 0 0

14 0 1 0 0 1 0

15 0 1 0 0 0 1

16 0 0 1 1 0 0

17 0 0 1 0 1 0

18 0 0 1 0 0 1

19 0 0 0 1 1 0

20 0 0 0 1 0 1

21 0 0 0 0 1 1

22 1 1 1 0 0 0

23 0 1 1 1 0 0

24 0 0 1 1 1 0

25 0 0 0 1 1 1
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FIGURE 4.16: Feed-forward neural network (FFNN) model.

4.4.3 Results and Discussion

The normalized transmitted and reflected optical powers are the inputs to the FFNN
model as shown in Figure 4.16, which pass through two hidden layers and, then,
results in the outputs, i.e., the classification among the 6 possible positions. This ap-
proach addresses a critical drawback in TRA-based systems, i.e., the issue of assess-
ing simultaneous perturbations along the fiber. Conventionally, TRA-based systems
use the transmission and reflection data to estimate the position of a mechanical
perturbation in the fiber, the use of this approach in conjunction with deep learn-
ing enables the detection of multiple perturbation (3 simultaneous perturbations, in
this case) along the optical fiber. Furthermore, the spatial resolution of 15 cm is ob-
tained, which is the distance between 2 consecutive classification regions. Figure
4.17 shows the transmission and reflection optical powers for 3 cases: (i) single point
perturbation, (ii) 2-points perturbation and (iii) 3-points perturbation.

The results in Figure 4.17 shows that both reflected and transmitted optical pow-
ers varied with the position and number of perturbations along the fiber. Thus, the
use of FFNN classification model enables the correct classification of each pertur-
bation even when multiple perturbations are applied in the DNP optical fiber. The
results of the FFNN classification model are presented in Figure 4.18. The accuracy
value converged to 99.43% and the loss value to 0.0144. Such results indicate the
suitability of the proposed approach for multiple impact classification, where the
high accuracy indicates negligible errors in the perturbation detection. In order to
verify the classification at each position, Figure 4.19 shows the confusion matrices
(for each label/position) for the single and multiple perturbation detection using
deep learning/TRA-based systems. Therefore, these results in conjunction with the
centimeter-scale spatial resolution make this approach suitable for the smart envi-
ronment application presented in the Chapter 7, where the DNP-doped fiber is em-
bedded at different textiles/objects to the development of a smart environment that
enables the detection of the user position inside the environment.
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FIGURE 4.17: Transmitted and reflected optical powers under three
conditions. (a) Single point perturbation. (b) 2-points perturbation.

(c) 3-points perturbation.

0 10 20 30 40

Epoch

0

0.02

0.04

0.06

0.08

0.1

0.12

L
o

ss

Training

Testing

(a)

0 10 20 30 40

Epoch

0.94

0.95

0.96

0.97

0.98

0.99

1

A
cc

u
ra

cy

Training

Testing

(b)

FIGURE 4.18: Metrics of the designed model for 40 epochs. (a) Loss.
(b) Accuracy



Chapter 4. Optical Fiber Sensors Integration in Textiles and Flexible Structures 72

P1 P2 P3

P4 P5 P6

0

1

0

1

0

1

0 1

0 1

Tr
ue

 la
be

l

Predicted label

99.6%

0.4% 96.6%

3.4%

100%

100%

0 1

100%

100%

0

1

0 1

100%

100%

0

1

0 1

98.9%

1.1% 99.4%

0.6%

0

1

0 1

99.6%

0.4% 98.1%

1.9%
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tiple perturbation detection using FFNN model.

4.5 Final Remarks

This Chapter presented the development of optical fiber sensors integrated into tex-
tiles or flexible structures for different applications. Moreover, the performance anal-
ysis of each proposed sensor is performed. First, intensity variation-based multi-
plexed sensors using a highly stretchable fiber were integrated into textile and char-
acterized under different temperatures, forces, and angles. These first analyses con-
sisted of a preliminary study using a smart textile for future applications.

Second, 10 FBGs inscribed in 2 silica fibers (5 FBGs in each fiber) were embedded
in a rubber blanket. The force characterization was performed by applying different
weights on the top of each FBG. The sensors were normalized by their sensitivities.
Also, the spatial characterization was performed by applying the same force at the
predefined points and associating the sensors’ responses with the respective loca-
tion. A neural network model was designed using the training data to classify new
data. The classification presented an accuracy of 99.58%, which confirms the feasi-
bility of identifying the location of the disturbance applied on the rubber blanket.

Finally, this Chapter presented a TRA-based sensor which was evaluated un-
der two scenarios: (i) using different DNP-doped fibers to evaluate the sensors’ re-
sponses under single disturbances along the fiber, and (ii) using the DNP-doped
fiber which presented the best performance under simultaneous perturbations. The
SNR and SR were used to evaluate the sensor’s performance using five DNP-doped
fibers. The DNP-doped fiber with the best performance was selected to the second
scenario. Single, 2-points and 3-points disturbances were performed in six different
fiber locations. A neural network model was developed to classify the disturbance
locations. These results make this approach suitable for textile and smart environ-
ment applications.



73

Chapter 5

Optical Fiber Sensors in a Balance
Assessment Protocol

This Chapter presents different POF-based systems for a balance assessment proto-
col. This protocol consists of disturbances on the back, front, right side and left side
of a human body with different magnitudes in order to destabilize the volunteer
during gait and to analyze the balance responses under perturbations on different
regions and with different forces. The systems are divided into two key elements: (1)
a portable smart perturbator, which can provide pushes to the human upper body
and quantify the force applied on each push; and (2) a smart garment, which de-
termines the location of the generated disturbance in relation to the human. In this
Chapter, the balance assessment protocol is presented as well as the development,
characterization and validation of both systems.

5.1 Balance assessment protocol

The balance assessment protocol is related to the BenchBalance project, developed
for the EUROBENCH consortium1. The BenchBalance project is a benchmarking
solution proposed to conduct reproducible assessments of balance in various condi-
tions, mainly focused on wearable robots. The main goal of this testbed is to improve
the current methods of balance assessment and stabilization capability of wearable
exoskeletons designed for assistance of people with motor disorders. Figure 5.1
presents the balance assessment overview. In this context, the use of optical fiber
sensors is beneficial, since they can be embedded in the textiles, clothing accessories
and objects. Moreover, the multiplexing capabilities of optical fiber sensors enable
the development of portable and transparent smart textiles that do not inhibit the
user’s natural movement. Similarly, the small dimensions of the optical fibers enable
their embedment in different objects without leading to weight increase in the object.
For this reason, the textiles and objects in the protocol are instrumented with the op-
tical fiber sensors, and based on the preliminary studies presented in the Chapters 3
and 4.

The following sections present the development, characterization and validation
of the perturbator system and the smart garment used in the aforementioned proto-
col.

1European project EUROBENCH2020, grant number n779963.
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Smart Garment
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Perturbation magnitude
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FIGURE 5.1: Balance assessment overview.

5.2 Perturbator System based on POF-embedded Force Sen-
sor

5.2.1 Materials and Methods

The force sensor is comprised of a LPS-POF encapsulated in a flexible material, poly-
dimethylsiloxane (PDMS), and positioned in a 3D printed support made of ABS
plastic (see Figure 5.2(a)). The LPS-POF has a diameter of 580 µm ± 30 µm with
a core refractive index of 1.54 and a cladding, with 20 µm thickness and a refrac-
tive index of 1.45. An annealing treatment was performed to reduce the internal
stress created in the fiber manufacturing process, and hence decrease the sensors’
hysteresis to physical parameters [137]. The sensing approach is based on intensity
variation and is comprised by a light source and a photodetector. The light source
is a LED IF-E97 (Industrial Fiber Optics, USA) with central wavelength at 660 nm
and the optical power variation is acquired by the phototransistor IF-D92 (Indus-
trial Fiber Optics, USA). The signal acquisition is performed by a microcontroller
FRMD-KL25Z (NXP Semiconductors, Netherlands) at 100 Hz.

Reference system

Light source
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λ=660nmnm
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FIGURE 5.2: LPS-POF force sensor. (a) System description. (b) Char-
acterization setup.
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5.2.2 Experimental procedures

The evaluation of the POF force sensor was divided in two parts: force characteri-
zation and sensor response time analysis. A 3-axis force sensor K3D60a ±500N/VA
(ME Systeme, Germany) was used to characterize the POF force sensor, relating its
output force to the output voltage variation in the phototransistor connected to the
optical fiber. Tests with vertical forces were performed, as shown in Figure 5.2(b).

The analysis of the sensor response time was performed to characterize the phase
delay under an applied force. As the sensor is composed of viscoelastic materi-
als, its response presents a time-varying relationship of stress and strain [138]. The
creep/recovery test is employed to characterize the viscoelastic parameters and vis-
coelastic materials present exponential decay of the strain response with time, as
shown in Figure 5.3.
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FIGURE 5.3: Viscoelastic transient pattern: creep and recovery.

Due to the non-constant POF response with stress or strain, dynamic tests are im-
portant to understand and evaluate the viscoelastic properties of POFs under differ-
ent conditions, which can involve short or long-term analysis [139]. In this context,
different force application frequencies in dynamic tests can change the sensors’ re-
sponse, e.g., hysteresis and relaxation time [140], [141]. In addition, techniques such
as pre-straining method can decrease the hysteresis and provide an improvement of
the sensor response on a real-time monitoring under strain application [139].

The viscoelastic response can be modeled with the Maxwell’s viscoelastic model
[138]. As the POF force sensor includes two viscoelastic materials (LPS-POF and
PDMS), the sensor response present a exponential decay with degree 2 leading to a
phase delay, hysteresis and errors. Equation 5.1 present the relation between tran-
sient (σ) and static (σ0, σ1) components for each material, which can be obtained in
creep/recovery tests such as the one presented in [142]. In addition, t is the time
and, τ0 and τ1 are the time constant of polymers LPS-POF and PDMS, respectively.

σ(t) = σ0 · e
(
−t
τ0

)
+ σ1 · e

(
−t
τ1

)
(5.1)
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Therefore, to overcome these drawbacks and to improve the sensor performance,
a compensation model was proposed in this work based on the viscoelastic model
presented in the Equation 5.1. The compensation model comprises in decreasing the
phase delay which the LPS-POF force sensor presents in the recovery phase after a
load application and annulling the stationary errors, as shown in Figure 5.4, where
the solid lines represent the viscoelastic response, whereas the dashed lines show
the desired response, i.e., without the viscoelastic effects.

FIGURE 5.4: Viscoelasticity compensation model to improve the sen-
sor recovery response.

After the characterization of the POF force sensor, it was used as a gait pertur-
bation system in a balance assessment protocol, as presented in Figure 5.5. This
application aims to analyze the ability of the system to identify the impact and to
measure its magnitude.

FIGURE 5.5: Perturbator system using the LPS-POF force sensor.

5.2.3 Results and Discussion

The POF force sensor characterization was performed with a reference system and
the sensor voltage variation was related to the measured force of the reference sys-
tem. The POF force sensor presented a linear behavior (R2 = 0.9974, RMSE =
0.7223N), as shown in Figure 5.6. In addition, it presented a sensitivity of 40N/V,
approximately.

Figure 5.7 shows the sensor responses of both systems. In this characterization
test, the force was applied in a short time (approximately 1s). For this reason, the
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FIGURE 5.6: LPS-POF force sensor characterization.

creep phase is similar to the reference system. However, it is noticeable that the
sensor presented a high phase delay in the recovery phase and a stationary error.

  

Stationary error

Creep

Unload time

Phase delay
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FIGURE 5.7: Viscoelastic behavior of the POF force sensor.

The compensation model was designed based on POF and PDMS materials and
this model was applied in the sensor response to decrease the sensor phase delay,
hysteresis and measurement errors. Figure 5.8 shows the uncompensated and com-
pensated responses with respect to the reference system. The result shows that the
compensated response has a smaller RMSE of 2.03 N, more than a twofold reduction
when compared with the uncompensated RMSE (5.75 N), and a smaller phase delay
with a reduction of 0.6 s in the unloading time.
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FIGURE 5.8: Uncompensated and compensated responses of LPS-
POF force sensor compared to reference system.

The results of using the embedded POF force sensor as a gait perturbation system
are presented in the Figure 5.9. The solid circles represent the maximum applied
force during the perturbation on the subject. The viscoelastic behavior is noticeable
in the recovery phase, which exhibits a delay to return to initial value, also shown
in Figure 5.7. In addition, occasionally the sensor value does not return to the zero
value, due to the viscoelastic behavior, and another load is applied, which generates
accumulated errors.
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FIGURE 5.9: Results of the LPS-POF force sensor used as gait pertur-
bation system without compensation.

The sensor has no significant phase delay in responding to load application, since
the responses of the sensor and the reference system are similar in the creep phase.
However, the sensor delay in the recovery phase can be a problem in this application,
if perturbations are repeatedly performed at short intervals, it can lead to accumu-
lated errors which are reflected in the numerical integration calculation. Therefore,
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the numerical integration of the uncompensated and compensated responses were
used as performance parameter to compare accumulated errors.

Figure 5.10 shows the results of the perturbation test with and without the pro-
posed viscoelasticity compensation. The most significant difference is the correc-
tion of offset error and, consequently, the reduction of the delay in the recovery
response. This is reflected in the calculation of the numerical integration of both re-
sponses, which is Iuncomp = 900.09 N.s for the uncompensated response and Icomp =
464.63 N.s for the compensated response.
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FIGURE 5.10: Results of the perturbation test with uncompensated
and compensated responses.

5.3 POF Smart Garment for Impact Identification

5.3.1 Development of the POF Smart Garment

The Smart Garment structure is based on four POFs embedded in a vest with 30 sen-
sors arranged as shown in Figure 5.11. Four photodetectors IF-D92 (Industrial Fiber
Optics, USA) are used to acquire the optical power variation. The light source used
was a light-emitting diode, LED (λ = 615 − 630 nm / 590 mcd / 20 mA) positioned
on the side cuts. A 3D-printed facet with an aluminum foil is placed to increase the
reflectivity on the end facet of each POF, increasing the luminous flux, and the opti-
cal power in the phototransistor. In addition, the system is composed of an Inertial
Measurement Unit (IMU) MTi-3 (Xsens Technologies B.V., NL) located on the mid-
dle of the back to monitor the trunk 3D motion. A Micro SD card module was added
in the electronic system to enable the data storage during the tests for offline data
processing. Also, a battery and a battery gauge are added to power the system and
monitor the battery level, respectively. The signal acquisition and the LEDs control
are performed by the microcontroller FRMD-KL25Z (NXP Semiconductors, NL).

Sensors’ design

The POF is made of polymethyl methacrylate, PMMA (HFBR-EUS100Z, Broadcom
Limited) with a core diameter of 980 µm, a cladding of fluorinated polymer with
20 µm thickness and a polyethylene coating that results on a total diameter of 2.2 mm.
As shown in Figure 5.12, the sensors fabrication process is divided into 3 stages: (i)
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FIGURE 5.11: Smart Garment overview: Sensors arrangement in the
Smart Garment.

lateral section creation by removing part of the fiber material (see Figure 5.12(a)),
(ii) LED coupling to the sensitive zone (see Figure 5.12(b)) and (iii) sensor encapsu-
lation using clear urethane rubber mixture in a 3D printed part (see Figure 5.12(c)).
The fiber lateral section is created through a curved razor blade and afterwards, the
optical fiber is attached to the 3D printed part (diameter = 30 mm / height = 7 mm)
with the lateral section pointed towards the LED, which is already attached to the
3D part base. With the fiber lateral section coupled to the LED, the clear urethane
rubber mixture is spilled into the part and reserved for 24h at room temperature to
be cured. Figure 5.12(d) presents the encapsulated sensor when the clear urethane
rubber is cured and Figure 5.12(e) shows the sensor incorporated in the textile. The
stages (i), (ii) and (iii) can result in sensor-to-sensor differences. The lateral section
parameters, the coupling distance and the clear urethane rubber mixture might be
different for each sensor, and for this reason, a normalization is necessary.

Data processing and analysis

The multiplexing technique proposed by [79] comprises of a sequential activation of
each LED with a predefined frequency and activation sequence. In this case, pre-
defined LEDs are activated at a time and a microcontroller controls the activation
frequency and sequence. The acquisition sequence is from the first LED to the last
LED of each fiber with a sample time of 2 ms for each activation, as discussed in
2.2.1. In addition, the microcontroller is responsible for the acquisition of the op-
tical power measured by each photodetector when each LED is active, resulting in
four matrices, one for each Px, as shown in Figure 5.13, in which the columns rep-
resent the optical power acquired by the photodetectors when a predefined LED is



Chapter 5. Optical Fiber Sensors in a Balance Assessment Protocol 81

FIGURE 5.12: Sensors fabrication process. (a) Removal of part of the
fiber material creating a lateral section. (b) LED coupling to the fiber
lateral section in a 3D printed part. (c) Sensor encapsulation using
clear urethane rubber mixture. (d) Encapsulated sensor. (e) Sensor

incorporated in the garment.

active, and the row represents the temporal acquisition, resulting in a matrix with 30
columns and n rows (samples).

FIGURE 5.13: POF pressure sensors operating setup.

Based on the sensors’ responses, the following technique is proposed to identify
impacts. Since the smart garment consists of intensity variation-based sensors, when
a sensor is pressed during a short time interval, the optical power varies during this
time and then returns to the initial value. Thus, when the derivative of the sensors’
optical power is analyzed, there are outliers in the data which corresponds to the
impact on the respective sensor. Figure 5.14 shows the plots of the optical power
and of the optical power derivative of the sensor 18, which are used to identify an
impact. The body natural movement also causes a signal variation. However, the
variation at the impact moment is higher and its sample is considered an outlier in
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the sensors’ data. Therefore, the Grubbs’s test, which is introduced by [143] and has
been widely applied for the detecting of outliers in the data, is used in the derivative
of the sensors’ optical power data to identify impacts on the sensors.

FIGURE 5.14: Proposed technique to identify impacts on the sensors
by using outliers identification algorithm in the derivative of the sen-

sors’ optical power: example using the sensor 18.

5.3.2 Experimental procedures

In order to characterize the optical fiber sensors, two tests are performed: (i) force
characterization and (ii) impact location identification characterization, see Figure
5.15. First, the force characterization aims to characterize the force of each POF pres-
sure sensor. A load cell K3D60a (ME Systeme, Germany) is used as reference force
sensor, and the characterization consists of applying the vertical force of the refer-
ence force sensor on the top of each sensor on the range of 20 N to 120 N with steps
of 20 N. The transmitted optical power is correlated with the force applied on each
sensor.

Then, the impact location identification characterization aims to validate the pro-
posed technique using the sensors’ responses to identify the impact location on the
body, as previously mentioned in the Section 5.3.1. This characterization consists
of several perturbations on known areas of the body and the use of the proposed
technique to identify these areas. Finally, a perturbation protocol was proposed to
evaluate the balance under a instability condition. The perturbation protocol con-
sists of impacts on the back, front, right side and left side of a human body with dif-
ferent magnitudes in order to destabilize the volunteer and to analyze the balance
responses under perturbations on different regions and with different forces. The
system which perform the perturbations consists of the load cell K3D60a, also used
in the force characterization of the smart garment’ sensors, and the normal force is
analyzed. Using this system, it is possible achieve the force magnitude feedback
during the tests. In this protocol, the mediolateral, anteroposterior and longitudinal
angles of the volunteer are acquired by the IMU, since the analysis of these angles
improves the evaluation of the balance responses during the perturbation protocol.
Figure 5.15 presents the experimental setup, including the three proposed tests.

As shown in Figure 5.15(c), the perturbation protocol is divided in four main re-
gions of the human body: back, front, right and left. Each main region is subdivided
into upper and lower part. The upper part represents the upper half of the trunk,
whereas the lower part represents the lower half one. For this reason, the prede-
fined sub-regions are lower back (B1), upper back (B2), lower front (F1), upper front
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FIGURE 5.15: Experimental setup. (a) Force characterization and sen-
sitivity calculation based on the optical power variation and reference
system. (b) Impact location identification with a sample of the sen-
sors responses. (c) Perturbation protocol with the back, front, right
and left perturbations in the volunteer. All sub-regions are also pre-

sented.
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(F2), lower right (R1), upper right (R2), lower left (L1) and upper left (L2). Each sub-
region corresponds to sensors groups, and by the variation of the sensor’ responses,
using the proposed technique mentioned in the Section 5.3.1, it is possible to identify
which region is perturbed. In addition, perturbations are applied on each sub-region
with two different magnitudes, so-called small and large perturbations, in order to
analyze the influence of the force magnitude on the balance response.

5.3.3 Results and Discussion

Sensors’ characterization

The analysis of the sensor’s responses was based on the intensity variation. Fig-
ure 5.14 shows the analysis method of one sensor (sensor 18), since it is close to the
chest region, where the impact is applied. The top graphic represents the sensor
temporal response and the down graphic presents the sensor’s derivative. In this
analysis, it is important to observe that the body natural movement provokes a sig-
nal variation. However, the variation at the impact moment is higher and its sample
is considered an outlier of the sensor’s data. As presented in the Figure 5.14, the
shaded region represents the body movement range and the marker represents the
impact moment. Thus, this method used to detect the outlier comprises the impact
identification technique.

Figure 5.16 shows the responses derivative of the 10 sensors (left axis) under
forces applied by a reference system (right axis, red curve). The reason of using 10
sensors is to provide better visualization of the curve. However, the actual sensors
responses include 30 sensors. The sensors are manufactured and for this reason they
present physical differences. Thus, each sensor has a different response under simi-
lar applied forces, resulting in different sensitivities. Due to this difference between
the sensors, they were normalized by their sensitivities, to achieve similar responses
by each sensor.
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FIGURE 5.16: Force characterization of 10 sensors, where the right
axis shows the force measured in the reference system and left axis
shows the derivative normalized optical power for 10 sensors, which
indicates the signal variation of the active sensors during the impacts.
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The sensor’s sensitivities are defined as the angular coefficient of the linear re-
gression obtained by the relation between the sensor’s output (Volts) and the applied
forces (Newtons) during the force characterization. Table 5.1 shows the sensitivi-
ties of each sensor used for the sensor’s normalization. Sensors present sensitivities
from 0.11 up to 15.40 and it may be related to the sensor’s fabrication, since some
sensitive zone geometries and the clear urethane rubber mixture which encapsulate
the sensitive zone and the LED may favor the increase of the transmitted lumens
to the core under a force application. The different sensors sensitivities are not an
issue for the impact identification and the balance assessment, since it is possible
to acquire the individual sensors’ responses using the multiplexing technique and
even when a small force is applied between two sensors with different sensitivities,
both responses present variation at the same time. A sensor with higher sensitivity
presents a higher variation under the same applied force. However, by normalizing
the sensors, the responses are balanced and the highest resultant response represents
an impact closer to the respective sensor.

TABLE 5.1: Sensor’s sensitivities of all 30 sensors in the smart gar-
ment.

Sensor Sensitivity (mV/N) Sensor Sensitivity (mV/N)
1 11.95 16 8.15
2 0.15 17 9.19
3 0.11 18 0.14
4 0.99 19 0.39
5 1.74 20 5.51
6 0.25 21 4.27
7 2.25 22 0.15
8 1.65 23 2.33
9 1.43 24 0.19

10 8.64 25 9.92
11 0.44 26 7.83
12 8.05 27 15.40
13 9.44 28 6.67
14 0.23 29 5.05
15 0.14 30 7.02

Experimental protocol validation

In the impact location identification characterization, four impacts were performed
to analyze the sensor responses and to validate the impact location identification
technique. Figure 5.17 shows the results of impacts on 4 different body regions. The
red area consists of the impacts on the sensor 10 and the blue area consists of the im-
pacts on the sensor 11. The selected body region 1 corresponds to a region between
the sensors 10 and 11, and the body region 2 corresponds to the top of the sensor 11.
The shaded regions represent the impact peaks, and since the sensor’s responses are
normalized, a higher magnitude means a closer impact, i.e., the response magnitude
of the sensor 11 is lower than the sensor 10, and it demonstrates that the impact is
closer to the sensor 10 (3 cm distance) than the sensor 11 (7 cm distance). The yellow
and orange curves consist of the response of the sensors 5 and 6, whereas the violet
and green curves consist of the response of the sensor 25 and 26. The impact on the
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body region 3 is similar to the impact on the body region 1, since both regions in-
clude two sensors. As the magnitude of the sensor 6 is higher than the one of sensor
5 after the normalization, it indicates that the impact was closer to the sensor 6. The
impact on the region 4 is similar to the impact on the body region 2, since it is per-
formed only on one sensor (sensor 26). However, this sensor presents a higher force
magnitude.

FIGURE 5.17: Impacts on different body regions.

The results presented in Figure 5.17 show the ability to distinguish not only
which sensor was activated, such as the body region 2 and 4, but also if the impact
was performed between two sensors, such as the body region 1 and 3. It enables
the identification of regions where perturbations were applied on the top of a sensor
and also the perturbations applied between consecutive sensors, increasing the spa-
tial resolution of the system. Based on the sensor with the lowest sensitivity (sensor
3) and the smaller force applied on sensor 3 (20 N in the force characterization), and
considering the sensor noise, the estimated spatial resolution is 1.7 cm, which was
estimated from the signal-to-noise ratio and the sensors sensitivities.

The distance between the applied force to the activated sensor can be estimated
based on a continuous beam model, in which the adjacent sensors correspond to
the supports and the fiber correspond to the beam, as presented in [144] for similar
application. The optical power response for the force applied along the fiber in the
region between these adjacent sensors is inversely proportional to the distance of
this force to the sensor, i.e., as the distance increases the optical power decreases,
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when compared to the case in which the force is applied on the top of the sensor,
which is the maximum optical power response.

Another important issue to be discussed is the sensor positioning and its influ-
ence on the sensors’ responses. The human body has regions with different stiffness
and an impact on a more flexible region leads to a higher fiber bending when com-
pared to a more rigid region (e.g. the back region), under a same applied force.
It means that the sensors positioned on flexible regions can identify impact with
smaller forces or have higher deflections for the same force. However, the proposed
technique was able to identify impacts even on the sensors positioned on rigid re-
gions, within the force range (20 N to 120 N) applied in this work. Thus, the stiffness
issue of the body regions do not alter the impact identification. In fact, if a known
force is applied, it is possible to estimate the stiffness of each body region with pre-
viously calibrated sensors.

Finally, the results of the perturbation protocol are presented in the Figure 5.18,
Figure 5.19, Figure 5.20 and Figure 5.21. Each figure is divided into 3 parts: (a) the
garment with the description of the impact sub-regions and the sensors related to
these sub-regions, (b) two synchronized graphics showing the activated sensors of
the sub-regions and the vertical forces (force z) applied by the reference force sensor
during the perturbation protocol, and (c) the IMU results, presenting the mediolat-
eral, anteroposterior and longitudinal angles during the protocol. The shaded re-
gions represent the different force magnitudes, in which the clearest one is the small
perturbation and the darkest one is the large perturbation.

FIGURE 5.18: Results of the perturbation protocol to impacts on vol-
unteer’s back. (a) Smart Garment overview with description of the
back sub-regions and the sensors related to these sub-regions. (b) Re-
sults of the activated sensors, the applied vertical forces (force z) for
each sub-region and the volunteer’ trunk angles (mediolateral, an-

teroposterior and longitudinal).

In the results of impacts applied on the back sub-regions, the sensors with high-
est activation were 30 (B1) and 28, 29 (B2), which implies a left-facing perturbation,
as shown in Figure 5.18. Since the impact was not centralized, it leads to a user’s



Chapter 5. Optical Fiber Sensors in a Balance Assessment Protocol 88

balance response not only in the anteroposterior direction, but also in the mediolat-
eral and longitudinal directions. It is noticeable when the large perturbations are
applied, leading to a higher angles of the balance response.

FIGURE 5.19: Results of the perturbation protocol to impacts on vol-
unteer’s front. (a) Smart Garment overview with description of the
front sub-regions and the sensors related to these sub-regions. (b) Re-
sults of the activated sensors, the applied vertical forces (force z) for
each sub-region and the volunteer’ trunk angles (mediolateral, an-

teroposterior and longitudinal).

The results of impacts applied on the front sub-regions were different between
each other. In the sub-region F1, sensors 10 and 11 are more activated, whereas in
the sub-region F2 the sensors 13 and 18 are more activated. It means a left-facing
perturbation on the lower front and a central perturbation on the upper front, which
is reflected in the results of the mediolateral angles, since for the perturbations that
are applied on the center of the body front. The angles of the balance response have
lower influence in the mediolateral and longitudinal directions. Results of impacts
on the back presented mediolateral angle variations up to 33.12◦ and mean of 19.21◦

for large perturbations. On the other hand, results of impacts on the front showed
mediolateral angle variations up to 26.59◦ and mean of 10.90◦. In addition, the an-
teroposterior angles of the balance response under perturbations on the user’s front
were lower than on the user’s back. It is due to the influence of the human’s sensory
system when the user see and expect the perturbation (front), and can anticipate the
balance response, opposed to a perturbation on the back in which the user does not
see and anticipate.

The results of impacts applied on the right sub-regions showed a low influence
on the anteroposterior direction. The predefined sensors of the sub-region R1 are 7,
8 and 9, as shown in Figure 5.20(a). However, the sensor 10 was also activated in
some perturbations, as presented in the first graphic of the Figure 5.20(b). It led to
a variation of the longitudinal angles in addition to the mediolateral angles, since
the perturbation also rotated the user’s body in the longitudinal direction, due to
the location of the sensor 10 (right-front of the body). It is also possible to observe
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FIGURE 5.20: Results of the perturbation protocol to impacts on vol-
unteer’s right. (a) Smart Garment overview with description of the
right sub-regions and the sensors related to these sub-regions. (b) Re-
sults of the activated sensors, the applied vertical forces (force z) for
each sub-region and the volunteer’ trunk angles (mediolateral, an-

teroposterior and longitudinal).

FIGURE 5.21: Results of the perturbation protocol to impacts on vol-
unteer’s left. (a) Smart Garment overview with description of the left
sub-regions and the sensors related to these sub-regions. (b) Results
of the activated sensors, the applied vertical forces (force z) for each
sub-region and the volunteer’ trunk angles (mediolateral, anteropos-

terior and longitudinal).
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that the perturbations on the mediolateral direction present angle magnitudes much
lower than in perturbations on the anteroposterior direction. It is due to the base
of support is more stable in the mediolateral direction than on the anteroposterior
direction.

The results of impacts applied on the left sub-regions presented similar responses
to the previous results (on the right side of the body). The predefined sensors of the
sub-region L1 are 22, 23 and 24. However, the sensor 21 was activated, which also led
to a angle variation in the longitudinal direction, mainly under large perturbations,
whereas the sensors 25 and 26 are activated during the impacts on the sub-region L2,
as the predefined sensors, which reflects in the highest influence in the mediolateral
direction. In addition, it is possible to observe the difference between the angles
during impacts on the lower sub-region (L1) and the upper sub-region (L2), in which
the angles provoked by the impacts on L2 were lower than the angles provoked
by the impacts on L1, and almost negligible. It means that the impacts on lower
sub-region were more destabilizing than on the upper sub-region. This result was
different for the other regions, which presented similar responses to the impacts on
lower and upper sub-regions, and it can be related to the volunteer’s capability to
recover to these impacts on the upper left side.

5.4 Final Remarks

This Chapter presented the development of two devices based on optical fiber sen-
sors for a balance assessment application. The balance assessment protocol consisted
of applying perturbations on predefined areas of the human trunk to destabilize the
volunteer and analyze the balance responses under perturbations on different re-
gions and with different forces.

The first proposed device was a perturbator system with a force intensity variation-
based sensor using LPS-POF fiber. The force characterization is performed and, due
to the high flexibility and the viscoelastic response, a compensation model is de-
signed to decrease the recovery phase (unload time) and reduce errors. Compen-
sated response presented lower hysteresis, leading to a decrease of the RMSE and
numerical integration of approximately 65% and 48%, respectively.

The second proposed device was a smart garment with 30 multiplexed intensity
variation-based sensors using PMMA fiber. The sensors were arranged to cover
all the regions of the human trunk. Each sensor was characterized under different
forces and normalized by their sensitivities. After, several perturbations on known
areas of the body were performed and a technique was proposed to identify the
impact location on the body. Finally, a balance assessment protocol was performed
and the results showed the feasibility of the proposed smart garment to identify the
impact region on the body and improve the information during a balance assessment
under instability condition.
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Chapter 6

Smart Textile for Remote
Healthcare Monitoring

This Chapter presents different solutions of photonic textiles (wearable and non-
wearable), based on the preliminary studies of Chapters 3 and 4, for application in
remote healthcare monitoring. A smart carpet is proposed for acquisition of kine-
matic and kinetic parameters for gait analysis. By using intensity variation-based
POF sensors, it is possible to estimate the ground reaction force as well as the spatio-
temporal gait parameters, such as step/stride length, cadence and stance duration.
In addition, in a wearable approach, a smart garment is proposed, also using mul-
tiplexed intensity variation-based POF sensors. Machine learning algorithms are
used to identify different daily activities and to evaluate the demand of the number
of sensors employed in the garment fabrication. Different biomedical parameters
(biomechanical and physiological) are also estimated when an user is wearing the
smart garment. Finally, in the same context a fully portable smart pants is proposed.
Gait analysis and activities recognition using deep learning algorithms are presented
in this Section. Figure 6.1 summarizes the applications approached in this Chapter.

POF Smart Pants

POF Smart Garment

POF Smart Carpet

FIGURE 6.1: Chapter 6 overview: Smart Textiles applications.
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6.1 POF Smart Garment: Human Activity Classification

6.1.1 POF Smart Garment

The POF smart garment comprises of 30 multiplexed intensity variation-based POF
sensors incorporated in a vest, as presented in the Section 5.3. In addition, an IMU
MTi-3 (Xsens Technologies B.V., NL) is positioned on the upper region of the smart
garment back to estimate the trunk angles. To increase the transmitted optical power,
four 3D facets with aluminum foil are positioned at the other end of each fiber, in
which the light reflects in the aluminum foil towards the photodetector direction.

6.1.2 Experimental procedures

Human activity recognition protocol

The human activity recognition protocol consists of 4 healthy volunteers wearing
the smart garment and performing six different daily activities: standing, sitting,
squatting, up-and-down arms, walking and running. This protocol aims to monitor
common daily movements and use the smart garment to identify each activity in
addition to extract different movement-related parameters during the tests.

Standing represents the activity in which the volunteer is in upright position,
whereas the sitting activity involves the volunteer sitting on a chair. The squatting
activity is divided into 5 stages (states and transitions): (i) upright position (state),
(ii) squatting down (transition between upright to squatting), (iii) squatting (state),
(iv) squatting up (transition between squatting to upright) and (v) upright position
(state), and these stages are cyclically repeated. The up-and-down arms activity is
divided into 4 stages (states and transitions): (i) moving up the right arm (shoulder
flexion of 90°), (ii) moving down the right arm (shoulder extension of 90°, back to
neutral position), (iii) moving up the left arm (shoulder flexion of 90°) and (iv) mov-
ing down the left arm (shoulder extension of 90°, back to neutral position), and they
are cyclically repeated. Finally, the walking and running activities were performed
on a treadmill to control the velocities and achieve a movement pattern. The walk-
ing speed is 0.5 m/s and the running speed is 2.0 m/s. All activities were performed
for 2 minutes.

Data processing and Machine Learning training model

The multiplexing technique proposed by [79] consists of a sequential activation of
the LEDs and the optical power acquisition in a short time interval. After the activa-
tion and optical power acquisition of the last LED, the optical power of all sensors
is transmitted to the microcontroller and this process is cyclically repeated. The sen-
sors’ signal results in a matrix with 30 columns (corresponding to the 30 sensors)
and n rows (corresponding to the n samples).

For the activity classification, the kNN classifier, previously presented in the Sec-
tion 2.4.1, was employed. The kNN classifier is a popular method with simple imple-
mentation and significant classification performance [112]. Furthermore, the kNN is
a supervised method of the machine learning field which does not assume a linear
class boundary, since the kNN method determines the class based on the k-nearest
neighbor training points. For this reason, it has the advantage of producing clas-
sification fits that adapt to any boundary [145]. The kNN input data comprise 30
attributes (response of the 30 sensors), six classes (activities) and each sample is la-
beled according to the respective activity. The classes are divided into: standing (c1),
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sitting (c2), squatting (c3), up-and-down arms (c4), walking (c5) and running (c6).
Thus, all data are randomly permuted and divided into training (70%) and testing
(30%). The classification processing is repeated for 10 times. Accuracy, recall, preci-
sion and confusion matrix are used as model evaluation metrics, comparing the real
labels with the labels estimated by the kNN model. Furthermore, by analyzing the
eigenvectors matrix (V) from the PCA technique, it is possible to obtain the negligi-
ble values associated to the original attributes (sensors) in the calculation of the new
attributes [120], and the possibility of reducing the number of sensors while main-
taining the algorithm classification performance, resulting in an optimized photonic
sensor system.

Human movement-related parameters extraction

In addition to the ability of classifying the human activities, several movement-
related parameters can be extracted by analyzing the sensors’ responses of the smart
garment. During the walking and running activities, the responses of the smart gar-
ment sensors and the IMU data (reference) were analyzed. The fast Fourier trans-
form (FFT) of the sensors’ temporal response is applied for the cadence estimation.
In the up-and-down arms activity, by analyzing the arms movement it is possible
to monitor the flexion and extension of each shoulder and evaluate the similarity
or not between both sides. An outlier detection algorithm based on z-score calcu-
lation [146] is applied on the derivative of the sensors’ temporal responses and the
identified outliers represent the moment of flexion and extension of each shoulder.
During the standing activity, which does not involve movement and the breathing
is uniform, the breathing rate was estimated using the FFT of the sensors’ temporal
response of IMU data (reference) and the POF Smart Garment sensors.

6.1.3 Results and Discussion

Sensors’ characterization

The proposed system comprises of the POF Smart Garment using sensors compos-
ite structures based on OFS technology. The 30 sensors arranged in the garment are
presented in Figure 6.2. The sensors are characterized by applying different forces
on each one and all sensors presented similar behavior. Figure 6.2 (figure inset) illus-
trates the response of one sensor (sensor 10) while forces are loaded and unloaded.
The sensor response during the loading and unloading presents a determination co-
efficient (R2) of 0.9941 and 0.9865, which indicates high linearity. Based on the sensor
noise power and the signal power, the SNR is estimated as 22 dB. The data commu-
nication is performed by Bluetooth and all the system electronics is powered by a
battery, resulting in a fully portable system.

The sensors presented physical differences resulting from the manufacturing
process (as mentioned in the Section 5.3), and as a result, they do not present the
same sensitivity. To address this issue, the sensors’ responses are normalized by
their sensitivities, which leads to similar responses on each sensor. The multiplex-
ing capability of the sensors is confirmed by sequentially applying the same force
on adjacent sensors (27, 28, 29 and 30). Figure 6.3 shows a significant difference be-
tween the response of the sensor in which the force was applied, and the responses
of the adjacent sensors that indicate a negligible crosstalk considering the low optical
power variations of the other sensors.
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FIGURE 6.2: POF Smart Garment overview and the sensor response
when a force is applied on the top of the sensor 10.



Chapter 6. Smart Textile for Remote Healthcare Monitoring 95

Sensor 27 Sensor 28 Sensor 30Sensor 29

FIGURE 6.3: Response of sensors 27-30 when a predefined loading is
applied to each sensor.

Human activities classification

Figure 6.4 shows the responses of 3 sensors (1, 26 and 29) positioned on different
places of the body divided into 6 classes (activities). Differences between some
classes, such as the c1 (standing) and c2 (sitting), are highly perceptible. These
classes are completely separated from the other ones by using only these 3 sensors’
responses. Standing is a stationary activity, with no movement, which does not in-
volve pressure on any sensor. Sitting is also a stationary activity, however it involves
the hip flexion and the activation of the back sensors, due to the chair back support.
Since Figure 4 presents the sensors’ responses of two sensors located on the back (1
and 29), the variation of these sensors leads to a separation of the data related to the
c2 (sitting).

The classes c3 (squatting) and c4 (up-and-down arms), as well as c5 (walking)
and c6 (running), present similar clusters when the responses of these 3 sensors are
evaluated. The activities of the classes c3 (squatting) and c4 (up-and-down arms) are
not similar. Class c3 (squatting) represents the squatting activity, which involves a
knee flexion/extension and a hip flexion/extension. On the other hand, class c4 (up-
and-down arms) represents the up-and-down arms, which involves a great shoulder
flexion/extension and a short longitudinal rotation. However, since there are no sig-
nificant variation in the trunk movement, the responses of the two selected sensors
(1 and 29) located on the back are similar for both movements. On the other hand,
the response of the sensor 26 (located on the left arm) presents a bigger movement
range for c4 (up-and-down arms). The activities that represent classes c5 (walking)
and c6 (running) comprise gait-related movements, yielding similar movement pat-
tern of the limbs (hip, trunk and arms) which influence the smart garment sensors.
The significant differences consist of the speed and the intensity level of the move-
ment.

This 3-dimensional evaluation is limited by the analysis of 3 sensors’ responses to
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FIGURE 6.4: Clustering of six classes (activities) using the response of
3 sensors.
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illustrate a graphical result, which may lead to a weak classification performance if
only these 3 sensors are used, since visually some classes contain overlapping data.
However, in the classification process, the responses of the 30 sensors are initially
employed until the minimal number of sensors is identified. The kNN dataset was
randomly permuted and divided into training (70%) and testing (30%). The training
data were the base data to classify the testing data, i.e., each new sample was com-
pared with all training data. Thus, the predominant label of the k nearest samples
was defined as the label of this new sample, and this was applied to all testing data.
The euclidean distance was used as distance metric.

The model evaluation metrics were divided into accuracy, recall and precision.
Furthermore, the confusion matrix of each trial was analyzed. Accuracy refers to the
percentage of samples correctly classified. Recall represents the percentage of sam-
ples of a class correctly classified with respect to all samples of that class, whereas
precision represents the percentage of samples of a class correctly classified with
respect to all samples predicted for that class. The results of the classifications for
each volunteer are presented in Table 6.1. The accuracies of 10 random trials for all
the volunteers dataset are higher than 90%. The different classification accuracies
in different volunteers is related to the movements performed by each volunteer
during the activities of the protocol, since each person perform the movements in a
particular way. This means that volunteer 1 performs well-defined movements for
each activity which facilitates the classification, whereas volunteer 3 presents errors
in the classification activities, mainly involving the walking and running activities
which are the movements most similar to each other of this protocol. In addition,
the recall and precision results are presented in Table 6.1. It is possible to observe
that some classes present better performance in the classification than others. For
all volunteers, the classes c1 (standing) and c2 (sitting) present higher differences
when compared with the other classes. This also confirms the previous analysis
in which only three sensors (1, 26 and 29) were analyzed. Differently, the data re-
garding classes c3 (squatting) and c4 (up-and-down arms), and the data regarding c5
(walking) and c6 (running) are different for each volunteer, which is related to the
individual movement of each person.

Volunteer 1 2 3 4
Accuracy (%) 99.96 (0.04) 92.04 (0.45) 91.34 (0.36) 94.86 (0.25)

Recall (%)

c1 100 (0.00) 98.31 (0.36) 99.50 (0.18) 99.91 (0.03)
c2 100 (0.00) 99.56 (0.19) 100 (0.00) 100 (0.00)
c3 100 (0.00) 89.69 (0.77) 94.25 (0.62) 89.77 (1.17)
c4 100 (0.00) 89.93 (1.40) 99.98 (0.04) 92.98 (0.75)
c5 99.87 (0.00) 93.94 (0.69) 82.62 (1.98) 94.50 (0.66)
c6 99.87 (0.00) 78.69 (1.73) 64.91 (1.61) 91.46 (1.22)

Precision (%)

c1 100 (0.00) 96.02 (0.71) 94.92 (0.60) 98.34 (0.46)
c2 100 (0.00) 96.56 (0.66) 100 (0.00) 100 (0.00)
c3 100 (0.00) 92.08 (1.01) 98.97 (0.20) 91.56 (1.04)
c4 100 (0.00) 91.67 (0.63) 100 (0.00) 93.48 (0.84)
c5 99.87 (0.00) 82.50 (1.21) 69.48 (1.15) 91.77 (1.03)
c6 99.87 (0.00) 92.44 (0.72) 79.53 (1.91) 93.19 (0.44)

TABLE 6.1: Classification results for each volunteer.

By analyzing the volunteer 1, who presented the best classification results, it is
possible to notice that the walking (c5) and running (c6) classes presented higher



Chapter 6. Smart Textile for Remote Healthcare Monitoring 98

classification errors, which resulted in a recall and precision of 99.87 (0.00)%, for
both classes. Gait speeds for walking and running activities are different, and hence
the intensity level of the movement changes, resulting in a different variation of the
sensors’ responses. However, the gait cycles for walking and running activities are
similar, thereby the sensors’ responses present a similar pattern and, for this reason,
some samples are misclassified. Similarly, the squatting (c3) and up-and-down arms
(c4) activities are related to similar upper limbs movements and presented misclas-
sified samples.

Data from each volunteer are combined into a single dataset to analyze over-
all system classification performance, yielding an average accuracy (across partici-
pants) of 94.00 (0.14)%. Moreover, by analyzing the confusion matrix, it is possible
to observe the influence and classification success of each class. Figure 6.5 shows the
confusion matrix of the kNN classification for the whole dataset, including all vol-
unteers. On the diagonal of each matrix are the percentage of the samples correctly
classified.
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FIGURE 6.5: Confusion matrix regarding 10 trials including the
dataset of all volunteers in the kNN classification.

Data dimensionality reduction

Depending on the activity, some sensors are not activated, i.e., they do not present
a significant optical power variation when compared to the sensors’ response in the
standing activity. The activation of different sensors for each activity occurs due to
the fact that the activities consist of the movement combination of different body
regions. Figure 6.6 presents the sensors activation for each activity.

In the sitting activity there are variations in the response of sensors located on
the back and lower region of the trunk (sensors 21 and 10), close to the user’s hip,
since this activity involves the hip flexion of approximately 90° and the contact of
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the user’s back to a chair (sensors 1 and 30), as shown in Figure 6.6(a). Figure
6.6(b) shows the temporal response of the most activated sensors during the squat-
ting (sensors 26 and 21) and up-and-down arms (sensors 5 and 26). In sitting and
squatting activities the sensor positioned on the hip region (sensor 21) is activated
and this is due to the high hip flexion during both activities. In the same way, the
sensor positioned close to the shoulder (sensor 26) is activated during the squatting,
since the volunteers used the arms to achieve the balance of the body. During the
up-and-down arms activity the sensors positioned on the right and left shoulders
(sensors 5 and 26) presented the highest normalized optical power variation and
this is due to the flexion and extension of each arm which leads to a high bending in
the fiber. The walking and running activities comprise the intercalated legs move-
ment, which involves the cyclic hip rotation, and hence, a higher optical variation
in the response of sensors located on the lateral and close to the hip. Figure 6.6(c)
presents the percentage of the optical power variation of each sensor during walking
and running.

In order to analyze the demand of the sensors’ amount in the activities classi-
fication, the attributes are reduced and the classification performance is calculated.
By applying the PCA technique to the volunteer 1 dataset, the attributes were re-
duced to 10 new attributes, obtained by the linear combination of the 30 sensors’
response, and presented a variance explained of 99.84%. The mean of the classifi-
cation accuracy for 10 trials using the new 10 attributes was 99.02 (0.16)%, which
demonstrates that a dataset linearly uncorrelated and 3 times smaller (with better
processing performance) still presents a high accuracy (approximately 99%). By an-
alyzing the eigenvectors matrix (V) used by the PCA technique, which represents
the coefficients of the linear combination of the original attributes to compose this
new dataset (10 attributes) and hence represents the weight of each attribute (sen-
sor), and considering the most significant coefficients, the original attributes were
arranged in descending order. By selecting the most significant 14 attributes, the ac-
curacy is 99.71 (0.08)% in 10 trials. By selecting the most significant 12 attributes, the
accuracy is 99.46 (0.17)% in 10 trials. Finally, when the most significant 10 attributes
are selected the accuracy decreases to 98.14 (0.31)% in 10 trials. It means that the
reduction of the smart garment to 10 sensors still provides an accuracy close to 99%,
since the 10 sensors cover the body regions which move effectively in these activities
for this volunteer in particular. The selected sensors were: 3, 5, 8, 11, 14, 17, 20, 23, 26
and 28. In this way, it is possible to optimize the number of smart garment sensors
according to each volunteer, by analyzing their results in a predefined activity, since
each person performs the movement differently.

Human movement-related parameters extraction

For the cadence estimation, the sensors’ responses during the walking and running
activities were analyzed. An inertial measurement unit (IMU) was incorporated in
the upper back of the garment, and the yaw data obtained from the IMU were com-
pared with the POF Smart Garment (sensor 8, since this sensor is located on the
lateral of the body and presents a great variation in the response during walking
and running). By applying the FFT to the temporal response of the yaw data and
the one of sensor 8 (positioned on the lower right side of the body), both results
presented frequency peaks of 35.98 cycles/min and 71.97 cycles/min, as shown in
Figure 6.7. These frequencies correspond to cycles of stride per minute, which leads
to a double value of cycles of steps per minute, since a stride consists of two steps.
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Thus, by analyzing the FFT results, the estimated cadence is 71.96 steps/min (walk-
ing) and 143.94 steps/min (running), presenting no error between the results of POF
Smart Garment sensors and the IMU.

Sensor 8

IMUSensor 8

35.98

Sensor 8 IMU

35.98
71.97

71.97

Sensor 8

cycles/min cycles/min
cycles/min

cycles/min

FIGURE 6.7: Results of walking and running tests of the volunteer 1
for cadence estimation: temporal response and FFT of the IMU data

(yaw) and the response of sensor 8.

To estimate the breathing rate, the sensors’ responses during the standing test
were analyzed. The volunteer was in upright position and performed no movement
to reduce the influence of artifacts. A 0.3 - 0.7 Hz bandpass filter was applied to
attenuate external noises. The pitch data obtained by the IMU were compared with
the smart garment (sensor 17, since this sensor is positioned on the middle of the
body and presents a high variation during the breathing task). By applying the FFT
on the temporal response of sensor 17 and pitch data, results presented peaks of
13.20 and 13.19 cycles/min, respectively, which lead to the estimated breathing rates
of 26.40 and 26.38 cycles in 2 minutes, as presented in Figure 6.8.

13.20

13.19

Sensor 17

IMU

cycles/min

cycles/min

Sensor 17

Standing

FIGURE 6.8: FFT of the IMU data (pitch) and the response of sensor
17 during standing activity of the volunteer 1 for breathing rate esti-

mation.
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The estimated breathing rates from IMU and POF Smart Garment data present
high correlation (0.08% relative error). Table 6.2 shows the estimated cadence and
breathing rate for all volunteers. The errors between the parameters estimated by
the POF Smart Garment sensors and by the IMU occur due to the cross sensitivity
of the POF sensors, whereas the IMU is a 3D sensor and the parameters extraction
involves data from only one dimension, which reduces the interference of the data
from another axes, decreasing the noise in the FFT analysis.

Volunteer

Cadence
(steps/min)

BR
(cycles/min)

Walking Running Standing

IMU

1 71.96 143.94 13.19
2 79.14 155.92 13.79
3 68.36 125.94 13.79
4 73.16 146.34 14.39

POF Smart Garment

1 71.96 143.94 13.20
2 77.38 156.54 13.9
3 68.60 126.64 14.04
4 72.12 145.98 14.6

Errors (%)

1 0 0 0.08
2 2.22 0.40 0.80
3 0.35 0.56 1.81
4 1.42 0.27 1.46

TABLE 6.2: Estimated parameters from IMU (reference) and POF
Smart Garment sensors: errors between the measurements obtained

from the two systems.

The assessment of the arms movement was based on the temporal analysis of
sensors 5 (right arm) and 26 (left arm), since these sensors are located close to the
shoulders and they present a high optical power variation during the up-and-down
arms. The responses of both sensors were normalized and can be observed in Figure
6.9. The first curves represent the flexion and extension of each arm. In order to
identify the moment of the shoulder flexion and extension, an outlier detection al-
gorithm was employed on the derivative of the sensors’ temporal responses (5 and
26); results of the outlier detection are presented in the bottom graphics of Figure
6.9. The shaded areas limited by the dotted lines represent the natural movement
range based on the z-score calculation (mean ± 3 · standard deviation) [146], whereas
the markers located outside the areas represent the moment of flexion and extension
of the shoulders (outliers).
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FIGURE 6.9: Results of the up-and-down arms test of the volunteer 1:
temporal response of sensors 5 (right arm) and 26 (left arm) and iden-
tification of the shoulder flexion and extension by outliers detection

using the temporal response derivative.

6.2 POF Smart Pants: Gait Analysis and Movement Recogni-
tion

6.2.1 Materials and Methods

The POF Smart Pants comprises an instrumented pants with 2 POFs incorporated in
the back parts of the pants (right and left sides) with a total of 60 intensity variation-
based multiplexed POF sensors (30 for each leg) encapsulated by a clear urethane
rubber mixture. Each sensor is fabricated by laterally coupling a light source to a
lateral section, which is made by removing the cladding and part of the fiber core.
The light source employed is the addressable RGB LED Strip (1 m, 60 LEDs), which
allows controlling which LED turn on and the color by 1 communication bus. It
leads to a more compact system using a high number of sensors. The LEDs are acti-
vated sequentially and they are controlled by a microcontroller FRMD-KL25Z (NXP
Semiconductors, Netherlands). Four photodetectors IF-D92 (Industrial Fiber Op-
tics, USA) are attached in each fiber end to convert the optical power into electrical
power. Figure 6.10 presents the POF Smart Pants overview, including the sensors
schematic (6.10(a)) and the sensors system incorporated in the pants 6.10(b).

6.2.2 Experimental procedures

A curvature characterization is performed to normalize the sensors according to
their sensitivities. The curvature characterization setup, presented in Figure 6.11,
consists of applying different curvatures in the sensitive region controlled by the
vertical displacement between 1 mm and 5 mm. The sensors responses are related to
the different curvatures and the sensors are normalized.
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FIGURE 6.10: Smart Pants overview. (a) Sensors system schematic.
(b) Sensors system incorporated in the pants.
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FIGURE 6.11: Curvature characterization setup.
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Moreover, 7 different activities involving the lower limbs are performed to eval-
uate the ability of the smart pants in the identification of different movements, as
shown in Figure 6.12. The activities consists of: (i) walking slow, (ii) walking fast,
(iii) squatting, (iv) sitting on a chair, (v) sitting on the floor, (vi) front kick and (vii)
back kick. A feed-forward neural network (FFNN) is designed to perform the clas-
sification of the 7 activities using the 60 sensors (30 for each leg) as input data. In
addition, a PCA technique is used to select the most significant sensors and to reduce
the number of sensors in the system.

Walking slow

Walking fast Squatting

Sitting on a chair

Sitting on the floor

Front kick

Back kick

Activities
classification 

FIGURE 6.12: Activities recognition protocol.

6.2.3 Results and Discussion

Results of the curvature characterization showed different sensors sensitivities. This
difference is related to the manufacturing process which eventually presents minor
differences between sensors, since lateral section parameters (length and depth) as
well as the distance between the LED and the optical fiber’s lateral section may have
small differences for each sensor, as mentioned in the Section 5.3. All the sensors
responses in the characterization are linear fitted (R2 > 0.9). Tables 6.3 and 6.4
present the sensitivities (mV/mm) of the sensors positioned in the both sides of the
pants. It is possible to observe the huge differences between the sensors sensitivities.
Fabrication stages such as the sensitive zone creation and the encapsulation of clear
urethane rubber mixture can lead to differences between sensors, due to the low
precision to achieve the same lateral section parameters and the same coupling of
the sensitive zones to their respective LEDs during the encapsulation. However, the
differences between sensors can be solved with the sensors normalization.
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Sensor Sensitivity (mV/mm) Sensor Sensitivity (mV/mm)

1 568.09 16 1.43
2 34.07 17 1.88
3 25.67 18 2.25
4 9.22 19 2.28
5 15.64 20 2.15
6 13.70 21 31.68
7 11.80 22 27.19
8 7.32 23 18.33
9 20.36 24 173.24
10 127.30 25 160.93
11 34.39 26 200.21
12 16.01 27 52.11
13 14.99 28 22.50
14 7.31 29 54.63
15 4.22 30 61.98

TABLE 6.3: Sensitivities of sensors in the fiber 1.

Sensor Sensitivity (mV/mm) Sensor Sensitivity (mV/mm)

1 19.42 16 4.23
2 334.59 17 13.10
3 52.97 18 152.73
4 15.42 19 366.77
5 68.48 20 509.77
6 21.14 21 400.92
7 305.07 22 513.21
8 200.43 23 370.50
9 29.33 24 9.62
10 224.49 25 42.31
11 283.82 26 26.45
12 239.28 27 7.91
13 388.83 28 19.84
14 106.35 29 2.77
15 24.96 30 4.17

TABLE 6.4: Sensitivities of sensors in the fiber 2.
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The results of the FFNN classification are presented in Figure 6.13. The accuracy
and the loss in 40 epochs are 100% and 0, respectively, which demonstrates that
all testing data were correctly classified using the input data from 60 sensors. This
shows that the number of sensors can be overestimated, since high accuracy can be
achieved with lower number of sensors, which leads to an easier system fabrication.
Moreover, excessive number of features in the classification introduces additional
computational complexity, which can be solved by reducing the data dimensionality
maintaining the high classification performance.
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FIGURE 6.13: Metrics of the FFNN model with 40 epochs for activities
classification. (a) Loss. (b) Accuracy

By applying the PCA technique to reduce the dimensionality of the classification
input data, the results showed that the reduction to 20 principal components led to
variance explained of 99.16%, i.e., a third of the number of new features (principal
components) represents more than 99% of the data variance in the classification, as
presented in Figure 6.14.

Due to the high accuracy of 100% and the high variance explained using only
20 principal components, a selection of the most significant weights (resulted from
the PCA) is performed. This selection indicates the most significant sensors without
significantly decreasing the classification performance. The selected most significant
sensors of the fiber 1, as well as the fiber 2, are: 7, 8, 10, 14, 17, 18, 19, 22, 26, 28 and 29.
These 11 indices are related to LED’s numbering on the addressable LED strip (top
to bottom), as showed in the Figure 6.15, with a total of 22 sensors. This selection
illustrates the sensors which present more variability in their responses during the
activities performed in this Section.
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FIGURE 6.14: Pareto chart for the PCA technique.
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FIGURE 6.15: Selected sensors by analyzing the principal compo-
nents weights resulted from the PCA technique.
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After the sensors selection, the FFNN-based classification process is repeated
with 30 epochs, since the preliminary classification process using 40 epochs quickly
stabilized and it was not necessary to use so many epochs. The accuracy using 22
sensors converged to 99%, approximately, whereas the loss converged to 0.075, as
shown in Figure 6.16. These results showed the possibility of decreasing the num-
ber of the sensors, facilitating the manufacturing process and decreasing the data
processing cost, providing a similar classification performance.
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FIGURE 6.16: Metrics of the FFNN model with 30 epochs for activities
classification after the sensors selection. (a) Loss. (b) Accuracy

Regarding the gait analysis, Figure 6.17 presents the response of two sensors
located at the same position correspondent to each leg in a gait performance. This
result shows the ability to identify the steps (left and right) during a gait using only
two sensors. Moreover, these sensors responses allow the estimation of the cadence
and other spatio-temporal gait parameters, such as the stance and swing phases, and
the double support.
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FIGURE 6.17: Selected sensors during the gait performance: left and
right legs.

6.3 POF Smart Carpet: Gait Analysis

This Section presents the development of a smart carpet with multiplexed POF sen-
sors for kinematic and kinetic analysis of human gait. The proposed smart carpet can
measure the plantar pressure along the device and to estimate the spatio-temporal
gait parameters using the sensors distributed throughout carpet. The proposed POF
Smart Carpet is an interesting low-cost alternative with high scalability for gait anal-
ysis.

6.3.1 Development of the POF Smart Carpet

The POF Smart Carpet structure is based on one POF arranged parallel to the walk-
ing direction in between two polyethylene layers, 60 cm wide and 2-m long (see
Figure 6.18). The POF was made of PMMA (HFBR-EUS100Z, Broadcom Limited)
with a core diameter of 980 µm, a cladding of fluorinated polymer with 20 µm thick-
ness and a polyethylene coating that results on a total diameter of 2.2 mm for the
fiber considering its coating. The light source used is a light-emitting diode (LED)
flexible lamp belt, horizontally arranged, and the sensors responses, i.e., the opti-
cal power variation, were acquired by the photodetectors IF-D92 (Industrial Fiber
Optics, USA). The signal acquisition and the LEDs control are performed by the mi-
crocontroller FRMD-KL25Z (NXP Semiconductors, Netherlands).



Chapter 6. Smart Textile for Remote Healthcare Monitoring 111

FIGURE 6.18: POF Smart Carpet overview.

To enable the side-coupling of the light source and, at the same time, increase the
sensor sensitivity, a lateral section is made on the fiber, where the cladding and part
of the core are removed, creating the sensitive zones demonstrated in Figure 6.18
inset. The lateral section length, depth and surface roughness were made through
abrasive removal of material following the guidelines presented in [30]. The sensi-
tive zone is created using a sandpaper connected to a rotary tool.

In this case, 20 lateral sections were produced on the fiber with 20 cm separation
from each other. Then, the fiber was turned in 180◦ (as shown in Figure 6.18), which
results in 2 rows with 10 sensors each, where there is a 15 cm horizontal separation
between the rows. In addition, the LED flexible lamp belts are positioned on each
lateral section. When the pressure is applied on each lateral section, there is an
optical power variation, which is acquired by P1 and P2.

Two photodetectors were employed, one at each end of the fiber, to acquire the
optical power variation of all 20 sensors RLEDn. Thus, the responses of 10 sen-
sors (RP1) are acquired by P1 and the other 10 sensors (RP2) are acquired by P2,
as schematically demonstrated in Figure 6.18.

The multiplexing technique comprises of a sequential activation of each LED
with a predefined frequency and activation sequence (as discussed in Section 2.2.1.
In this case, one LED flexible lamp belt is activated at a time, illuminating two sen-
sors n simultaneously (right and left), where a microcontroller controls the activa-
tion frequency and sequence. The acquisition sequence is from LED 1 to 10 with
an activation frequency of 30 Hz for each LED. In addition, the microcontroller is
responsible for the acquisition of the optical power measured by each photodetector
when each LED is active, resulting in two matrices, one for the P1 and the other for
P2, as shown in Figure 6.18. In this case, each matrix has 10 columns, where the
columns represent the optical power acquired by P1 and P2 when a predefined LED
is active, and each row represents the temporal acquisition.
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6.3.2 Experimental procedures

To perform the force and the spatial characterization of the carpet, two experimen-
tal protocols were applied. The first protocol is the force characterization, based on
positioning of calibrated weights on top of each sensor on the range of 0 N to 50 N
with steps of 10 N. The sensors responses are acquired by the photodetectors. Figure
6.19(a) shows the setup for force characterization. The second protocol is the spatial
characterization, which is based on positioning of the foot on markers with prede-
fined distances along the carpet. This protocol was performed by two volunteers.
The goal of this protocol is to correlate the optical power with the distance along the
carpet. This characterization is related to the force characterization, since it is nec-
essary to obtain the sensor response with predefined weights exactly on top of the
sensor. Figure 6.19(b) shows the spatial characterization setup.

  

Force range: 10 N - 50 N

  

10 cm

130 cm

50 cm

90 cm

170 cm
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n

n
20 cm

(a) (b)

FIGURE 6.19: Characterizations protocols setup: (a) Force characteri-
zation. (b) Spatial characterization.

The spatial characterization was based on continuous beam model [147], as shown
in Figure 6.19(b), in which the LED flexible lamp belts correspond to the supports
and the fiber correspond to the beam. The optical power response for the force ap-
plied along the fiber in the region between two consecutive LED flexible lamp belts is
inversely proportional to the distance of this force to LED flexible lamp belt. As the
distance increases the optical power decreases, when compared to the case where
the force is applied on the LED flexible lamp belt, which is the maximum optical
power response (as shown in Figure 6.19(a)). Thus, we consider a linear variation
of the force along the fiber with the maximum optical power variation when the
force is applied in the region of the fiber on the lamp belt and the minimum optical
power variation occurs on the region at the middle of two consecutive LED belts as
presented in Figure 6.19(b). The relationship between the optical power attenuation
and the distance to the sensor was calculated by Equation (6.1), where F0 is the force
applied on top of the sensors, Fn is the force applied along the fiber between the
LED flexible lamp belts, n is the distance of F1 to F0 and l is the distance between the
LEDs, equivalent to 20 cm.

n =
Fn · l

F0
(6.1)

The third experimental protocol consisted of three walking tests, in which the
volunteers started the tests with right foot. The goal of this protocol is to validate
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the previous characterizations and to estimate the GRF and spatio-temporal gait pa-
rameters during walks.

The spatio-temporal gait parameters analyzed in this work consist of the step
and stride lengths, cadence, and stance time. Each heel strike is detected by the
optical power variation of the sensors and the signals are analyzed in pairs with
adjacent sensors. This method allows identification of the heel strike position based
on the optical power variation of each sensor. Thus, the distance between the heel
strike and the sensors (n) can be calculated by Equation (6.1). The distance of heel
strike to carpet start position is the sum of the n with the position of LED flexible
lamp belt related to the first stressed sensor in the walking direction. With each heel
strike defined, it is possible to calculate the step length through the spatial difference
between adjacent heel strikes. Furthermore, the sum of two steps results in the stride
length. The cadence is equivalent to number of steps per minute. The time of each
test is obtained by ratio between the total samples and activation frequency, while
the number of steps is known through step length evaluation. Therefore, the stance
time consists of the ratio between optical power variation time and activation time,
since the sensor optical power variation only exist when the foot is on the ground
pressing the fiber.

6.3.3 Results and Discussion

POF Smart Carpet Characterizations

Figure 6.20 presents the sensors response to the loads applied to 20 sensors (10 for
each photodetector) in the force characterization, showing the determination coef-
ficient (R2) and the relative errors, in which the markers represent the measured
output and the continuous lines represent the sensors fit. It is noticeable in Figures
6.20(c) and 6.20(d) the exponential behavior of the curves obtained by P1 and P2,
with a linear region from the application of the weights and a saturation tendency
for higher weights. Figures 6.20(a) and 6.20(b) show the response of the sensors with
higher sensitivity than the other ones. The sensitivity and the linearity are related to
the fabrication of each sensor, and for this reason the more sensitive sensors are dif-
ferent for each photodetector. The sensors 1 acquired by each photodetector present
polynomial behavior, exceptionally.

Figures 6.21(a) and 6.21(b) present the sensors’ sensitivities as a function of the
sensor positions. It is possible to observe that generally, the sensitivity decreases
as the distance between the sensors and the photodetectors increases. The reason
for this behavior is the optical power attenuation at each lateral section leading to a
lower detected optical power by the photodetector. This results in a lower sensitivity
for the sensor with higher distance from the photodetectors. However, it is impor-
tant to mention that the lateral section length and depth also influence the sensor
sensitivity [30], which can explain the higher sensitivity of the sensor 3 acquired by
P2 when compared with sensor 2 acquired by the same photodetector (P2).
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FIGURE 6.20: Sensor’s response in the force characterization with fit-
ted curves: (a) Right sensors 1 and 2 using photodetector P1. (b) Left
sensors 1 and 3 using photodetector P2. (c) Right sensors 3-10 using
photodetector P1. (d) Left sensors 2 and 4-10 using photodetector P2.
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FIGURE 6.21: Sensitivity as a function of the sensor position: (a) Right
sensors using photodetector P1. (b) Left sensors using photodetector

P2.

Figure 6.22 shows a significant difference between the response of sensor 3, where
the force was applied, and the responses of the adjacent sensors (sensors 1, 2, 4, and
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5). Considering the low power variation of the other sensors, the crosstalk between
sensors is negligible. The cross-sensitivity between both photodetectors is only ob-
served in sensor 10 due to the proximity of this sensor to photodetectors P1 and
P2. However, human gait comprises of sequential contralateral steps [18], in which
the foot will be placed in one fiber at a time. For this reason, we can identify if the
sensor 10 variation was caused by the left or right region of the fiber by analyzing
the previous steps. It is noticeable that the power variation decreases as the weight
increases. This is due to the exponential behavior of the sensor with saturation ten-
dency, showed in Figure 6.20.
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FIGURE 6.22: Response of sensors 1–5 when a loading is applied to
sensor 3. The applied forces are of 10 N to 50 N, respectively, with

steps of 10 N.

Two volunteers were asked to place their foot on predefined points of the carpet,
which are defined in Figure 6.19(b). Figure 6.23 shows the results of spatial charac-
terization, where the maximum error of 6.7 cm was obtained in the marker 1 during
the first test. The errors can be related to low sensitivity and/or nonlinearities of
the sensors at the region of the first marker (sensors 9–10). On the other hand, the
lowest error obtained was 1.5 cm, which occurred in the marker 3. The mean er-
ror on this characterization was 4.6 ± 1.7 cm, which, considering the whole range of
spatial characterization (160 cm), represents a relative error of 2.9%. The differences
between tests 1 and 2 can be related not only to the sensor repeatability, but also to
the minor differences on the foot positioning of the volunteers during the tests.
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FIGURE 6.23: Results of spatial characterization in the two tests.

POF Smart Carpet Validation in Walking Test

To validate the POF Smart Carpet, three walking tests were performed by three vol-
unteers (two males and one female), age of 26.3 ± 2.1 years. The weight of each
voluntary did not influence the results, since the sensor response was normalized
for each weight and the purpose of this work is a qualitative analysis. The results
of walking tests were divided into GRF data and spatio-temporal gait parameters,
including step and stride lengths, cadence and stance duration, in % related to total
walking duration. Figure 6.24(a) shows the normalized GRF curves of right and left
foot and Figure 6.24(b) shows the foot placement including step lengths during one
walking test. The GRF curves present similarity with normal M-shaped GRF pattern
[18] and is possible to identify the gait events on the stance phase. It is noticeable
that the curve pattern changes along the walking and can also be related to the type
of foot strike, which can be neutral, pronated, or supinated. Furthermore, these de-
viations can also be related with lateral misplacement of the foot on the fiber leading
to a variation on the stress transmission to the fiber resulting in different responses
of the sensors, may distort the M-shaped. Nevertheless, it is still possible to identify
the stance and swing phases, distinguishing the gait events on the stance phase, as
well as the double support period in all analyzed cases.

Table 6.5 presents the results of spatio-temporal gait parameters. The volun-
teers were asked to perform four steps on each walking test. Since the tests were
performed by young adults, the step and stride lengths were shorter than the ones
commonly obtained in other gait experiments [94]. For walking tests applied to kids
or older people, the step and stride lengths would be naturally shorter than the ob-
tained results and can be analyzed with the same system due to the system modular
configuration and high spatial resolution. The version of the POF Smart Carpet has
180 cm, which presumably results in a mean of step length of about 45 cm. It is
worth noting that the step lengths presented in Table 6.5 generally are close to 45
cm, with a few deviations from this mean value due to the intrinsic variability of
the gait [148]. The cadence variability can be related to self-selected pace, which re-
sults in a different velocity patterns for each test. However, it is possible to observe
similarities on the cadence if the tests of each volunteers are analyzed (see Table 6.5).
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FIGURE 6.24: Results of one walking test: (a) Normalized GRF
curves. (b) Foot placement including the step lengths.

Regarding to the stance duration, a mean and standard deviation of 63% ± 5%
was obtained considering the total walking duration in all performed tests. It is im-
portant to mention that the normal stance duration during the gait is 60% according
to the literature [18].

TABLE 6.5: Spatio-temporal gait parameters in three walking tests.

Voluntary 1 Voluntary 2 Voluntary 3

T1 T2 T3 T1 T2 T3 T1 T2 T3

Step
length (cm)

Step 1 26.4 42.9 16.5 46.5 35.2 30.3 56.5 39.5 38
Step 2 40.3 31.9 56.9 35.5 35.6 51.1 31.0 35.2 31.1
Step 3 33.5 42.1 48.1 27.0 39.0 34.7 40.6 55.0 56.4
Step 4 39.3 37.1 27.2 35.7 34.8 27.8 31.7 10.7 14.9

Stride
length (cm)

Stride 1 66.7 74.9 73.5 82.0 70.8 81.4 87.5 74.7 69.1
Stride 2 73.8 74.1 105.0 62.5 74.6 85.8 71.6 90.2 87.5
Stride 3 72.9 79.3 75.3 62.7 73.8 62.6 72.3 65.7 71.3

Cadence
(steps/min)

- 81.8 62.5 63.4 44.3 44.8 46.9 59.6 60.0 65.7

Stance
duration (%)

- 60.9 69.4 58.0 54.3 60.2 65.4 65.8 68.5 64.9

6.4 Final Remarks

This Chapter presented three systems (wearable and non-wearable) based on pho-
tonic textiles for monitoring different movement-related parameters in healthcare
applications. The systems consisted of a garment, a pair of pants, and a carpet in-
strumented with intensity variation-based POF sensors.
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The POF Smart Garment (presented in Section 5.3) was employed in a human
activity recognition protocol to evaluate the ability to identify human activities by
analyzing the sensors’ responses. A kNN model was designed to classify the ac-
tivities of 4 volunteers, and an average accuracy of 94% was obtained. The PCA
technique was employed for 1 volunteer to evaluate the demand of the number of
sensors. Results showed that the reduction from 30 to 10 sensors led to a reduction
of 1.82% in the accuracy, i.e. using 30 sensors the accuracy was 99.96% and using
one third of the sensors the accuracy was 98.14%, which still provides an accuracy
close to 99%. In addition, two movement-related parameters were estimated using
the sensors’ responses and compared to a reference system (IMU). Minimum error
of 0% and maximum error of 2.22% were obtained.

The POF Smart Pants was developed using 60 sensors (30 for each leg), and it is
also applied to identify activities, however, the activities are more related to lower
limbs movements. A neural network is designed to classify the activities resulting in
an accuracy of 100%. The PCA technique was also employed to reduce the number
of sensors, resulting in a total of 22 sensors (11 for each leg), and an accuracy of
99%. Results of the POF Smart Pants also allows the estimation of the cadence and
other spatio-temporal gait parameters, such as the stance and swing phases, and the
double support.

Finally, the POF Smart Carpet was developed for kinetic and kinematic analy-
sis through the monitoring of GRF and spatio-temporal gait parameters. The car-
pet comprises of low-cost intensity variation-based POF sensors with multiplexing
technique and can be an alternative to the high cost systems commonly used for gait
analysis. Other advantage of the proposed system is the carpet length, which en-
ables a gait analysis with more steps, with additional possibility of scalability, i.e.,
a longer carpet can be designed according to the necessities of the user. Results
showed that GRF curves are similar with literature, making it possible to identify
gait events, stance duration, and double support periods. In addition, it was possi-
ble to estimate the step and stride lengths as well as the cadence.
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Chapter 7

Heterogeneous OFS Network for
Smart Environment

This Chapter presents the integration of optical fiber sensors based on three different
approaches for remote healthcare monitoring at home, namely TRA-based systems,
FBGs and multiplexed intensity variation sensors. A 6m x 6m room, simulating a
small house, is instrumented with a DNP-doped fiber and the TRA system setup
(as presented in Section 4.3) is used. Moreover, an FBG-based instrumented carpet
(as presented in Section 4.2) is included in this room for gait analysis with the mea-
surement of spatial-temporal parameters and ground reaction forces. Furthermore,
the person is wearing the POF Smart Pants, presented in Section 6.2, as a wearable
approach for biomechanics analysis and remote activity monitoring. Therefore, the
proposed heterogeneous optical fiber sensors system is a flexible and integrated ap-
proach for the development of smart environments in Healthcare 4.0. Figure 7.1
summarizes the Smart Environment approach proposed in this Chapter.
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FIGURE 7.1: Chapter 7 overview: heterogeneous OFS network for
smart environment.
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A graphical interface was developed to perform the synchronization of the sys-
tems by the button control to start and stop the acquisition. The graphical interface
allows online data visualization in addition to the option to save data and send for
offline analysis.

The combination of these three sensors and deep learning algorithms increases
the potential of making intelligent decisions in real-time, which enhances the qual-
ity of remote healthcare monitoring. It enables collecting medical data, tracking
progress, and indicating anomalies, improving the communication between patients
and clinicians, and leading to a better everyday quality of life in the end-user com-
munity.

7.1 Smart Environment using a TRA-based Sensor

Home is an uncontrolled environment, since it is not usually an instrumented place
and there is no health professionals to monitor the subjects who live in such place.
The instrumentation of the patient’s home is the first stage of remote health moni-
toring, which allows identifying the place in the house at which the patient is in and
presuming which activity he/she is performing. Since more than one person may
live in the house, the environment instrumentation must be able to identify multiple
people performing simultaneous movements.

As previously presented in the Section 4.4, it is possible to identify multiple si-
multaneous disturbances in a TRA-based sensor using deep learning techniques.
Notable advantages in using this technique include the lower cost by comparing to
other distributed systems and the simple acquisition system.

7.1.1 Experimental procedures

Thus, the Smart Environment comprises six principal places: entrance carpet, chair,
bathroom handrail, bedroom carpet, bed and, desktop. The DNP-doped fiber is in-
corporated in all these places. In the TRA setup (presented in the Section 4.3), the
transmitted and reflected optical powers indicate the position of the person in the en-
vironment, since previous results showed the ability in identifying the disturbance
location in the fiber. In this way, the Smart Environment protocol is divided into
two parts. The first part consists of one person accessing all the predefined places
sorted in ascending order (1 to 6) while the transmitted and reflected optical pow-
ers are acquired. The second part consists of two persons accessing different places
randomly.

An FFNN model is designed to identify the places in the house where the person
(or persons) accessed by using the transmitted and reflected optical powers as input
data. The data are divided into training (80%) and testing (20%), and they are asso-
ciated with their respective classes (places). The input data is normalized between
-1 to 1. The FFNN model is evaluated by the accuracy and loss. With the designed
model, it is possible to perform the online classification of new data.

7.1.2 Results and Discussion

Figure 7.2 presents the results of the transmitted and reflected optical powers dur-
ing the Smart Environment protocol. The data are normalized by the results of the
unstrained fiber. It is possible to identify the events that the volunteer accesses the
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places ordered in the Figure 7.1, previously presented in the beginning of this Chap-
ter. The first place (1, entrance carpet) is the nearest point to the reflection photode-
tector, whereas the last place (6, desktop) is the farthest one. It leads to a higher
reflected optical power variation for places closer to this photodetector, as presented
in Figure 7.2.

FIGURE 7.2: Results of transmitted and reflected optical power using
the TRA setup for place identification in the smart environment.

The transmitted optical power is related to the force applied on the optical fiber
whereas the reflected optical power is related to the location of this force. The dis-
turbance points of each place require different forces, i.e., on the carpets, the force
applied on the fiber is proportional to the volunteer’s weight, whereas, on the bath-
room handrail, the force can vary with the need of the user to control his/her bal-
ance. For this reason, the transmitted optical power variation does not present a
pattern. On the other hand, the reflected optical power variation decreases as the
distance from the reflection photodetector increases. It is possible to observe that the
reflected optical power variation is lower when compared with the results of Section
4.3. This is because the fiber length is longer, which leads to a weaker reflected signal
than when using shorter fiber lengths.

The results of the FFNN model are presented in Figure 7.3. The accuracy and the
loss converged to approximately 100% and 0.01, respectively. The convergence of the
model to an accuracy of 100% represents the ability to identify the places where the
person (or two persons) accessed. This identification can be processed online, and it
allows remote monitoring by clinicians located in hospitals with high accuracy.
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FIGURE 7.3: Metrics of the FFNN model with 70 epochs for the iden-
tification of the accessed places in the house. (a) Loss. (b) Accuracy

Based on the results of the classification metrics, the FFNN model can be used
as the classifier of new data and identify the places accessed. Figure 7.4 presents
an example of the result of the new data classification using the designed FFNN
model. The input data is normalized between -1 to 1, as previously mentioned,
and the first value corresponds to the transmitted optical power, whereas the last
value corresponds to the reflected optical power. The real output consists of binary
numbers in which 1 represents when a place is accessed and 0 when no place is
accessed. The predicted output is the result of the FFNN model based on an input
sample and corresponds to the probabilities of each class. These probabilities are
rounded for accuracy estimation.
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7.2 Instrumented Carpet based on FBG Matrix for Gait Anal-
ysis

The Instrumented Carpet is a valuable approach incorporated in the Smart Envi-
ronment since it enables the remote monitoring of gait parameters and provides an
objective evaluation of the volunteer’s gait, leading to a more accurate and quick
response for the clinicians. The evaluation of gait in patients after interventions or
elderly with risk of fall are examples of the application of the instrumented carpet
at home. Remote gait monitoring facilitates communication between patients and
clinicians without the need for face-to-face medical consultation.

7.2.1 Materials and Methods

As shown in Section 4.2, 2 silica fibers with 5 FBGs inscribed in each fiber are em-
bedded in a rubber blanket. Each fiber is positioned in one side (right or left) and
the rubber blanket is used as a carpet for gait analysis. In the system setup of this
Section, the FBG interrogator (HYPERION si255, Micron Optics) is connected to a
router to allow wireless acquisition of FBG data that increases the portability of the
proposed system through a wireless connection with the computer which manages
all data, as shown in Figure 7.5.

FBG 1 FBG 3
FBG 5 FBG 7

FBG 9

FBG 2 FBG 4 FBG 6 FBG 8 FBG 10

Router

FBG interrogator

Computer

FIGURE 7.5: System setup for the FBG-based Instrumented Carpet in
the Heterogeneous OFS network protocol.

7.2.2 Experimental procedures

As presented in Section 4.2, 23 locations of the rubber blanket were characterized for
one volunteer by using an FFNN model. With new data, it is possible to identify
the points pressed by the volunteer during his/her locomotion in the smart envi-
ronment. With the foot location identification, it is possible to estimate some spatio-
temporal gait parameters, such as step and stride length. Moreover, kinetic parame-
ters of the gait can be estimated by the response of the FBG sensors matrix. The GRF
can be obtained by the analysis of the FBG sensors responses, which are converted
to force (see the force characterization curves in Section 4.2), and represent the GRF
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during the gait. In addition, by analyzing the GRF of each foot it is possible to esti-
mate single and double support duration. In this Section, a gait is performed on the
instrumented carpet. The FFNN model designed in Section 4.2 is applied on new
data to classify the foot locations during the gait. Thus, some parameters previously
mentioned (step and stride length, double support and stance phase duration, GRF)
are estimated by the results of the FFNN classification and the FBGs raw data.

7.2.3 Results and Discussion

As presented in Section 4.2, the sensors presented different sensitivities in the force
characterization. Table 7.1 shows the estimated sensitivity to force of each FBG sen-
sor. Differences between sensitivities are related to the FBG positioning in the carpet,
which has minor differences in its thickness, leading to variations in sensors sensi-
tivities depending on their positions in the rubber carpet. This can be solved by
normalizing the sensors’ sensitivity.

FBG Sensitivity (pm/N) FBG Sensitivity (pm/N)

1 2.12 6 0.79
2 3.87 7 2.46
3 2.45 8 4.12
4 3.06 9 0.88
5 0.49 10 2.43

TABLE 7.1: FBGs sensors’ sensitivities.

After the sensors normalization, the GRF during the gait performance was ana-
lyzed. The temporal response of each sensor is presented in Figure 7.6. The GRF data
indicate the single and double support periods since there are samples in which only
one sensor is pressed and samples in which two sensors are simultaneously pressed.
It also leads to the evaluation of stance and swing phases of each foot.

0 500 1000 1500 2000

-100
0

100
200

0 500 1000 1500 2000
-500

0

500

0 500 1000 1500 2000
-50

0

50

100

F
o
rc

e
 (

N
)

0 500 1000 1500 2000

0

100

200

0 500 1000 1500 2000

Samples

0

500

1000

0 500 1000 1500 2000
-100

0

100

200

0 500 1000 1500 2000

0

100

200

0 500 1000 1500 2000

0

50

100

F
o
rc

e
 (

N
)

0 500 1000 1500 2000
-500

0

500

0 500 1000 1500 2000

Samples

0

100

200

FBG 1

FBG 2

FBG 3

FBG 4

FBG 5

FBG 6

FBG 7

FBG 8

FBG 9

FBG 10

FIGURE 7.6: Sensors responses after normalization during a gait per-
formance.



Chapter 7. Heterogeneous OFS Network for Smart Environment 126

Figure 7.7 presents the temporal responses of these sensors relating them to the
support moments (single or double) of two steps (left and right) during the gait.
The responses were presented using FBGs 4 and 5 as an example due to their posi-
tioning in the middle region of the carpet. It is possible to observe that the sensors
responses during the transition of the foot in the gait presents characteristics that
enable the identification of the gait phases. Each FBG curve consists of two differ-
ent peaks. This behavior corresponds to the body load transition during the gait,
i.e., the first single support (left foot) initiates with a heel strike in which the body
weight is concentrated on the heel and finishes when the right foot goes to the floor
and divides the body weight with the left foot. Thereafter, the double support is
initiated with heel strike of the right foot while the left foot is finishing the stance
phase with toe-off, and for this reason, the second peak of the left foot is lower than
the first one. The double support finishes when the left foot leaves the ground, and
the single support of the right foot initiates.

FIGURE 7.7: Sensors responses of FBG 4 and FBG 5, and the estima-
tion of support periods (single and double) of two consecutive con-

tralateral steps during the gait.

By analyzing consecutive contralateral steps, as presented in Figure 7.7, it is pos-
sible to estimate the percentage of double support during the stance phase, com-
monly used in scientific literature to identify gait anomalies. The double support
period indicates bilateral floor contact, but not equal load sharing [149]. In the same
context, in the analysis of consecutive ipsilateral steps, it is possible to estimate the
percentage of stance and swing phases duration, also commonly used for gait as-
sessment, as presented in Figure 7.8.

FIGURE 7.8: Sensors responses of FBG 7 and FBG 9 and the estimation
of stance and swing phase duration during a gait cycle.
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By using the FFNN model previously designed for this application, the locations
in the instrumented carpet during a new gait performance were classified using new
input data. Figure 7.9 presents the classification results in three different moments
in the gait along the carpet (beggining, middle and end of the carpet) with the real
output and the output predicted by the designed FFNN model. The FFNN output
presents the probabilities of each class (location). Even if the probabilities are not 1,
they can indicate the correct classification by using a threshold, since the locations
that are not pressed always present probabilities equal to 0.

L1 L2 L3 L4 L5 L6 L7 L8 L9

L10 L11 L12 L13 L14

L15 L16 L17 L18 L19 L20 L21 L22 L23

1  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23Location (L)

Real Output

FFNN Output 0.99  0  0  0  0  0  0  0  0  0  0  0  0  0 0.4 0  0  0  0  0  0  0  0
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Real Output

FFNN Output 0  0  0  0  0.96  0  0  0  0  0  0  0  0  0  0  0  0  0  0.73  0  0  0  0
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FIGURE 7.9: Examples of the classification of locations pressed by
the volunteer during a gait performance using the designed FFNN
model: comparison between the real output and the FFNN output,
which presents the probabilities of each class. (a) Double support at
locations L1 and L15. (b) Double support at locations L5 and L19. (c)

Single support at location L23.
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7.3 Heterogeneous OFS Network based on FBG, Intensity
Variation and TRA techniques

Each system included in the Smart Environment provides valuable information to
the healthcare assessment. The results of each technology were presented in the
previous sections. Therefore, this Section presents the integration of the systems in
the Smart Environment with the simultaneous operation of the whole system. This
Section aims to develop an integrated system with a heterogeneous OFS network
that can provide different information about a subject (such as a patient) in real-time
and remotely communicates with a clinician avoiding face-to-face consultations.

7.3.1 Materials and Methods

The three systems are synchronized and the data acquisition are managed by a
graphical interface developed for this protocol. This interface enables online and
offline acquisition. FBGs data are transmitted via Wifi, the POF Smart Pants data are
transmitted via Bluetooth and the TRA-based Smart Environment data are transmit-
ted via serial communication. All data are received at same global time and operate
at different clocks. The interface works with three threads that process the data from
each system simultaneously at their respective clocks.

7.3.2 Experimental procedures

The protocol performed using the three systems is similar to the Smart Environ-
ment protocol, previously presented in Section 7.1. The difference is the use of the
POF Smart Pants and the walking on the Instrumented Carpet before accessing the
places of the Smart Environment. During the protocol, the data from all systems are
acquired and showed in the graphical interface.

7.3.3 Results and Discussion

The graphical interface developed for the Smart Environment protocol using the
three systems (FBG, Intensity-variation and TRA) is presented in Figure 7.10. The
left part of the interface is used to connect devices and control the data acquisi-
tion (start, stop or save file for offline analysis). The central part of the interface
is used for online visualization. The interface was implemented using Python and
JavaScript/HTML.

Figure 7.11 presents the results of the three systems during a protocol perfor-
mance. As mentioned, each system provide an important information. Figure 7.11(a)
shows the responses of the activated FBGs of the Intrumented Carpet during the
protocol. Since only FBG1, FBG2, FBG3 and FBG6 presented significant variation
correspondent the GRF, this result indicates the path performed by the volunteer
during the protocol. Figure 7.11(b) shows the sensors’ responses of the POF Smart
Pants. This result led to the identification of the user’s activities during the protocol.
Also, Figure 7.11(c) shows the transmitted and reflected optical powers, indicating
the places accessed by the volunteer.
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FIGURE 7.10: Graphical interface for data management and acquisi-
tion control.

7.4 Final Remarks

This Chapter presented the integration of three sensors using different OFS tech-
niques for simulation of the remote healthcare monitoring at home. The three sys-
tems provide different information acquired with the different sensors systems: iden-
tification of the place where the volunteer is in the house; analysis of the user’s
movements, and identification of the activities; assessment of the volunteer’s gait
during daily activities. The TRA-based system enable the identification of the user’s
position in the smart environment, whereas the results from the smart pants indi-
cate which activity the user is performing. Furthermore, the FBG-embedded rubber
carpet is in a region of the smart environment at which the GRF and spatio-temporal
parameters of user’s gait are acquired. Thus, the FBG-embedded carpet in the smart
environment is a region at which the gait of the user is analyzed and excludes the
necessity of patient transportation to clinical environment for this end. The com-
bination of these data provides a higher level of health monitoring at home when
compared with isolated systems. This can be useful for clinicians to acquire more in-
formation about patients’ health, be able to diagnose the correct treatment and even
anticipate health issues (specially the gait-related ones).



Chapter 7. Heterogeneous OFS Network for Smart Environment 130

(a)

(b)

(c)

FBG 1

FBG 2

FBG 3

FBG 6

Locomotion on the 
Instrumented Carpet

1 2 3 4 5 6

Locomotion Sitting Lying down

FIGURE 7.11: Result of the Smart Environment protocol using the
synchronized systems. (a) FBG-based Instrumented Carpet. (b) POF

Smart Pants. (c) TRA-based Smart Environment.
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Chapter 8

Conclusions and Future Works

8.1 Summary and Final Remarks

This PhD Thesis presented novel instrumentation approaches for integration of OFS
with textiles and flexible structures for healthcare applications. In addition, the com-
bination of different sensors with AI technology resulted in the increase of real-time
decisions (such as on the activities classification) and enhancement of the sensors
performances. The motivation of this work is the limitations of conventional elec-
tronic sensors, which include electromagnetic sensitivity, high hysteresis, high costs
and the inability of being embedded or positioned in flexible structures, in most
cases. These disadvantages are undesirable for wearable systems, developed in this
Thesis and specially undesirable for applications at home, which compact and lower
costs are required. Thus, sensors using different sensing techniques for measure-
ment of several physical parameters are developed and analyzed under kinematic
and kinetic conditions. In this way, after the performance analysis of the proposed
sensors, this PhD Thesis presented the integration of these sensors in smart textiles
for wearable or non-wearable applications, such as the POF Smart Garment for ac-
tivities identification or the FBG-based Instrumented Carpet for gait analysis, re-
spectively. In addition, the DNP optical fiber integration in smart textiles/objects
and the use of TRA-based systems for simultaneous multiple detection of mechan-
ical perturbation was also presented. Furthermore, AI techniques covering from
Machine Learning to Deep Learning for data classification are employed in different
scenarios to improve the sensors performances and classify the activities.

To achieve the mentioned goals, first, a theoretical background and state of the
art review of different sensing approaches are presented in Chapter 2. In addition,
the fundamentals and overview of optical fibers are also depicted in this Chapter.
Then, the biomechanics and their concepts are described. Also, AI concepts and the
theory behind the techniques addressed in this Thesis are presented. Thus, Chapter
2 provides the knowledge required for the developments proposed in the following
chapters.

Thereafter, Chapters 3 and 4 present the evaluation of proposed sensors for mea-
surement of different parameters. In Chapter 3, sensors are developed for mea-
surement of kinematic (angle) and kinetic (force) parameters are described. These
sensors are developed using CYTOP fiber and they are based on intensity-variation
technique. The curvature sensor for angle measurement is evaluated under differ-
ent conditions (angular velocities and source light wavelengths) to evaluate perfor-
mance factors (sensitivity, hysteresis, linearity). On the other hand, the force sensor
is proposed to estimate stiffness for wearable applications. Chapter 4 presents the
preliminary studies of sensors integrated in textiles or flexible structures. This Chap-
ter includes 3 different sensing techniques: intensity-variation, FBG and TRA. The
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intensity variation-based textile is a preliminary study for user’s activities classifi-
cation. The textile is evaluated under different temperature, force and angular con-
ditions. The FBG-based system is a preliminary study for gait analysis using neural
network. Ten (10) FBG sensors are incorporated into two layers of rubber blanket.
The sensors are characterized by force and a neural network model is designed to
identify predefined locations pressed by the volunteer. Finally, a TRA-based sys-
tem is evaluated under two conditions: using different DNP-doped fibers to select a
suitable DNP fiber composition for the analysis and, applying simultaneous multi-
ple disturbance on a fiber.

In Chapter 5, two devices based on intensity variation POF sensors are devel-
oped for a balance assessment protocol. The first device is a perturbator system
fabricated using LPS-POF to perform disturbances on a volunteer in order to desta-
bilize him/her. The second system is a smart garment capable of identifying the
disturbance points performed by the perturbator system. The goal of this Chapter
is to relate the disturbance force (perturbator system) and the disturbance location
(smart garment) to assess the human balance.

Chapter 6 presents Smart Textiles for remote healthcare monitoring including
the POF Smart Garment, the POF Smart Pants and the POF Smart Carpet. All these
systems are developed using multiplexed POF sensors and each sensor has a differ-
ent proposal during the health monitoring. The POF Smart Garment and the POF
Smart Pants are wearable systems developed to evaluate the human movement and
to identify different activities related to the upper or lower limbs. On the other hand,
the POF Smart Carpet is developed to evaluate different gait parameters, including
kinetic (GRF) and kinematic (step and stride length, stance and double support du-
ration) parameters.

Finally, Chapter 7 presents the integration of three different type of sensors in
a home for creation of a Smart Environment. The systems consist of: TRA-based
Smart Environment, FBG-based Instrumented Carpet and the POF Smart Pants. A
graphical interface is developed to perform the systems’ synchronization, manage
the data acquisition and visualize data online. Data are acquired simultaneously
and different healthcare information is provided online or offline.

In summary, this Thesis aimed to develop, analyze and apply different OFS inte-
grated into textiles and flexible structures combined with AI techniques to achieve
interesting solutions for remote healthcare monitoring. Therefore, this Thesis is
aligned with Healthcare 4.0 technology, which includes smart sensors network, wire-
less communication, AI technology, resulting in intelligent decision-making.

8.2 Future Works

This Thesis paved the way for a multitude of applications in healthcare and wear-
able instrumentation. For these reasons, many research fields and future works are
available on each of the 3 main themes of this PhD Thesis (new sensors approaches,
textiles integration and heterogeneous sensors networks).

The future works perspectives for development and analysis of new sensors
(Chapter 3 and 4) are listed as follows:

1. Development and performance analysis of wavelength multiplexed sensors:
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The improvement of the multiplexing technique in intensity variation-based
sensors includes the wavelength multiplexing using light sources with differ-
ent wavelengths in addition to the temporal multiplexing (presented in differ-
ent works in this Thesis) in order to enable the addition of more sensors in a
unique fiber.

2. Development of new multiplexing techniques using light source modula-
tion:

In addition to the temporal multiplexing technique, new light source modula-
tions will be developed to improve the system architecture and enables higher
number of sensors.

3. Development of biosensors for biomarkers and hormone detection:

The monitoring of biomechanical and physiological parameters is presented
in this Thesis using different technologies. However, the monitoring of new
parameters (such as stress hormone and fatigue) is valuable for healthcare ap-
plications since it increases the complexity of the protocols and enables the
hormonal feedback of the subjects.

The future works involving integration of new sensors in textiles for measure-
ment of new biomedical parameters in different protocols (Chapter 5 and 6) are listed
below:

1. Integration of sensors in textiles for vital signs monitoring:

In addition to breathing rate parameter (presented in the Section 6.1), other vi-
tal signs are interesting parameters to monitor, such as heart rate, blood pres-
sure and oximetry.

2. Development of spatial-temporal 3D Human Pose Reconstruction using OFS
data and AI techniques:

Another interesting approach is to use OFS combined with AI techniques for
3D human pose reconstruction, which can be relevant in the biomedical field
for monitoring patients’ posture or lower limb shape reconstruction during the
human gait to assist in rehabilitation.

3. Novel textile applications in healthcare devices:

This Thesis presented the development and application of different textiles.
Moreover, future work involves the development of new smart textiles for dif-
ferent applications, including clinical assessment.

4. Applications in soft robotics and intelligent multifunctional structures:

Based on the works presented in this Thesis, the development of intelligent
multifunctional structures for application in soft robotics is an attractive ap-
proach to increase the feedback information through OFS sensors and improve
the human-robot interface.

Finally, regarding perspectives of future works using OFS in Healthcare 4.0:

1. Development of cloud storage and computing to store and manage data on
Internet application:

Future work includes cloud services development to compute and store a large
amount of data from OFS combined with AI techniques in real-time, to im-
prove data management and enable internet applications.
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2. Integration of optical fiber sensors network in Smartphones:

Finally, future work involves the integration of OFS networks with smart-
phones. In this case, the smartphone will act as an interrogation unit, which
decreases the system complexity and the costs, and increases the portability
and the simplicity of the data acquisition. Also, this approach will enable in-
ternet applications.
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