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Break a vase, and the love that reassembles the fragments is stronger
than that love which took its symmetry for granted when it was whole.

The glue that fits the pieces is the sealing of its original shape.

— Derek Walcott
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Therefore, all we have are fragments,
gathered in several bundles,

whose final form we can only imagine.

— Os Guiness, on Pensées of Blaise Pascal



R E S U M O

A reconstrução de documentos fragmentados é uma tarefa importante em diversas situ-
ações, tais como na investigação forense e na reconstrução de fatos históricos. Como al-
ternativa ao processo manual, pesquisadores têm desenvolvido métodos para reconstruir
documentos (semi-)automaticamente no domínio digital. Apesar dos diversos trabalhos
na área, tratar adequadamente dados reais obtidos com uso de máquinas fragmentado-
ras é um problema crítico na literatura. Neste contexto, duas direções de pesquisa foram
abordadas nesta tese: a avaliação robusta de compatibilidade entre os fragmentos, que é
o foco do nosso trabalho, e a interação homem-máquina no processo de reconstrução.

Com respeito à avaliação de compatibilidade, verificou-se que as técnicas tradicionais
baseadas em análise de pixel não são robustas à fragmentação real, enquanto técnicas
mais sofisticadas comprometem significativamente a eficiência (tempo de processamento).
Esta tese propõe duas abordagens baseadas em deep learning para cenários mais com-
plexos/realísticos envolvendo, além da fragmentação mecânica, a mistura de fragmen-
tos provenientes de diversas páginas de documentos (multi-page reconstruction ou multi-
reconstruction). A primeira abordagem modela a avaliação de compatibilidade como um
problema de reconhecimento de padrões envolvendo duas classes (válida e inválida). A
segunda abordagem, baseada no paradigma deep metric learning, propõe separar as etapas
de extração de características e avaliação de compatibilidade para melhor eficiência na
reconstrução de maiores instâncias de reconstrução.

A interação humana é explorada num segundo momento para se obter maior acurácia
comparada aos métodos automáticos. Em relação a este tema, um fator crítico é que os
métodos propostos na literatura não escalam eficientemente com o aumento do número
de fragmentos (cenário mais realístico). Isso se deve ao fato do usuário ser totalmente
responsável pela organização dos fragmentos, e/ou porque ele precisa visualizar todo
o documento reconstruído para designar fragmentos a serem analisados. Diante deste
desafio, propusemos um framework que explora a interação homem-máquina e que auto-
maticamente seleciona potenciais erros na solução (pareamentos incorretos) para serem
analisados pelo usuário.

Palavras-chave: Deep Learning; Metric Learning; Reconstrução de Documentos Frag-
mentados; Avaliação de Compatibilidade; Problema de Quebra Cabeça; Otimização Com-
binatorial.
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A B S T R A C T

The reconstruction of shredded documents is a relevant task in various domains, such as
forensic investigation and history reconstruction. As an alternative for the manual recon-
struction, researchers have been investigating ways to perform (semi-)automatic digital
reconstruction. Despite the several works on this topic, dealing with real-shredded data
is a very sensitive issue in the current literature. Two research directions are addressed in
this thesis to face this scenario: properly evaluating the fitting of shreds (the bulk of this
work) and integrating the human into the reconstruction process.

Regarding the fitting (compatibility) evaluation, it was verified that traditional pixel-
based approaches are not robust to real shredding, while more sophisticated techniques
compromise significantly time performance. This thesis presents two deep learning self-
supervised approaches that have achieved state-of-the-art accuracy in more realistic/com-
plex scenarios involving several real-shredded documents where the shreds are mixed
(multi-page reconstruction or multi-reconstruction). The first approach models the com-
patibility evaluation as a two-class (valid or invalid) pattern recognition problem. The
second approach, based on deep metric learning, proposes decoupling feature extraction
from compatibility evaluation to improve scalability (time performance) for large recon-
struction instances.

Human interaction is explored to improve the accuracy of automatic methods. A crit-
ical issue regarding this topic is that the proposed methods do not scale well for large
instances (real scenario), either because the user has the entire responsibility of arranging
the shreds, or because he/she has to visualize the reconstruction and designate the shreds
to be analyzed. In face of this challenge, we propose a human-in-the-loop framework that
automatically selects potential mistakes (wrong pairings) in the solution for user analysis.

Keywords: Deep Learning; Metric Learning; Reconstruction of Shredded Documents;
Compatibility Evaluation; Jigsaw Puzzle Solving; Combinatorial Optimization.

x



C O N T E N T S

1 introduction 1

1.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Other Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 theoretical background 7

2.1 Document Reconstruction: A Jigsaw Puzzle Problem . . . . . . . . . . . . . 7

2.2 Reconstruction of Strip-shredded Text Documents . . . . . . . . . . . . . . . 9

2.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Compatibility Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 An Optimal Reconstruction Formulation . . . . . . . . . . . . . . . . 14

2.2.4 Semi-automatic Reconstruction . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 deep reconstruction : a classification-based approach 17

3.1 The Reconstruction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Learning from Simulated-shredded Documents . . . . . . . . . . . . 18

3.1.2 Reconstruction of Mixed Shredded Documents . . . . . . . . . . . . 21

3.2 Experimental Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Training Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Experiment 1: Default Configuration . . . . . . . . . . . . . . . . . . 27

3.3.2 Experiment 2: Ablation Study . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Experiment 3: Comparative Evaluation . . . . . . . . . . . . . . . . . 31

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 deep reconstruction : an asymmetric metric-learning approach 35

4.1 The Reconstruction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Learning Projection Models . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 Pairwise Compatibility Evaluation . . . . . . . . . . . . . . . . . . . . 38

4.2 Experimental Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.3 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Experiment 1: Single-page Reconstruction . . . . . . . . . . . . . . . 42

xi



contents xii

4.3.2 Experiment 2: Multi-page Reconstruction . . . . . . . . . . . . . . . . 44

4.3.3 Experiment 3: Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . 45

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 a human-in-the-loop reconstruction framework 47

5.1 HIL Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Optimality-based Strategies . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.2 Uncertainty-based Strategies . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Experimental Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2 Implementation Details. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.3 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.1 Experiment 1: Workload Experiment . . . . . . . . . . . . . . . . . . 53

5.3.2 Experiment 2: Multi-iteration Experiment . . . . . . . . . . . . . . . . 54

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 concluding remarks and future work 56

i appendix 58

a appendix : an assymetric metric-learning approach 59

a.1 Local Samples Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . 59

a.2 Reconstruction of S-Isri-OCR . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

a.3 Embedding Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

a.3.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

a.3.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

a.3.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

a.3.4 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

a.4 Sensitivity analysis w.r.t. sample size . . . . . . . . . . . . . . . . . . . . . . . 63

a.5 Statistical test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

b appendix : other publications 65

bibliography 67



L I S T O F F I G U R E S

Figure 1 Manual reconstruction (1979 Iran Hostage Crisis). . . . . . . . . . . 1

Figure 2 Classical approach for automatic document reconstruction. . . . . . 2

Figure 3 Shredding type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 4 Document sample of our local dataset. . . . . . . . . . . . . . . . . . 3

Figure 5 Jigsaw solving-related problems. . . . . . . . . . . . . . . . . . . . . 8

Figure 6 Tiles panel reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 7 Document shreds spliced onto a yellow background. . . . . . . . . 9

Figure 8 DARPA Shredder Challenge instances. . . . . . . . . . . . . . . . . . 10

Figure 9 Overview of the proposed system. . . . . . . . . . . . . . . . . . . . 18

Figure 10 Simulated shredding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 11 Association image extraction. . . . . . . . . . . . . . . . . . . . . . . 21

Figure 12 Compatibility computation as a sliding window operation. . . . . . 22

Figure 13 Samples of the shredded datasets. . . . . . . . . . . . . . . . . . . . 24

Figure 14 Multi-reconstruction accuracy across datasets. . . . . . . . . . . . . 27

Figure 15 Reconstruction of a test instance. . . . . . . . . . . . . . . . . . . . . 28

Figure 16 Reconstruction accuracy for S-Cdip across categories. . . . . . . . . 28

Figure 17 Challenging reconstruction instances. . . . . . . . . . . . . . . . . . 29

Figure 18 Accuracy sensitivity w.r.t. the parameter ρblack. . . . . . . . . . . . 30

Figure 19 Accuracy sensitivity w.r.t. the size of training samples. . . . . . . . 30

Figure 20 Visual ambiguity between “wo” and “vo”. . . . . . . . . . . . . . . 31

Figure 21 Accuracy sensitivity w.r.t. the parameter vshift. . . . . . . . . . . . 31

Figure 22 Comparative accuracy performance. . . . . . . . . . . . . . . . . . . 32

Figure 23 Comparative time performance. . . . . . . . . . . . . . . . . . . . . . 33

Figure 24 Metric learning approach for shreds’ compatibility evaluation. . . . 36

Figure 25 Self-supervised learning of the models. . . . . . . . . . . . . . . . . 37

Figure 26 Learning projection models for shreds’ compatibility evaluation. . 38

Figure 27 Compatibility evaluation of a pair of shreds. . . . . . . . . . . . . . 38

Figure 28 Accuracy distribution for single-page reconstruction. . . . . . . . . 43

Figure 29 Time performance for single-page reconstruction. . . . . . . . . . . 43

Figure 30 Local samples nearest neighbors. . . . . . . . . . . . . . . . . . . . . 44

Figure 31 Time performance for multi-page reconstruction. . . . . . . . . . . . 45

Figure 32 Sensitivity analysis w.r.t. embeddings dimension. . . . . . . . . . . 46

Figure 33 Overview of the proposed HIL reconstruction framework. . . . . . 48

Figure 34 Reconstruction accuracy w.r.t. workload (Deeprec-CL). . . . . . . . 53

Figure 35 Reconstruction accuracy w.r.t. workload (Deeprec-ML). . . . . . . . 53

xiii



List of Figures xiv

Figure 36 Reconstruction accuracy w.r.t. the number of iterations (Deeprec-
ML, Opt-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 37 Querying xl samples by fixing xr. . . . . . . . . . . . . . . . . . . . 59

Figure 38 Local samples nearest neighbors (appendix). . . . . . . . . . . . . . 59

Figure 39 Reconstruction of S-Isri-OCR. The generated image was split into
4 parts for better visualization. . . . . . . . . . . . . . . . . . . . . . 60

Figure 40 Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 41 Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 42 Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 43 Case 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 44 Reconstruction accuracy w.r.t. to the sample height (sy). . . . . . . 64



L I S T O F TA B L E S

Table 1 Single-page reconstruction performance . . . . . . . . . . . . . . . . 42

Table 2 Multi-page reconstruction performance. . . . . . . . . . . . . . . . . 52

Table 3 Accuracy improvement w.r.t. the query strategies (Deeprec-ML,
αload = 0.25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 4 Accuracy improvement w.r.t. the number of iterations (Deeprec-
ML, αload = 0.25, Opt-R). . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 5 Page-wise paired t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xv



A C R O N Y M S

AL Active Learning

ATSP Asymmetric Traveling Salesman Problem

CNN Convolutional Neural Network

DARPA Defense Advanced Research Projects Agency

DL Deep Learning

FDE Forensic Document Examiner

FCNN Fully Convolutional Neural Network

HIL human-in-the-loop

LCAD High Performance Computing Laboratory

MCHPP Minimum-Cost Hamiltonian Path Problem

OCR Optical Character Recognition

RSSTD Reconstruction of Strip-shredded Text Documents

RCCTD Reconstruction of Cross-cut Text Documents

SGD Stochastic Gradient Descent

SMD Standardized Mean Difference

TSP Travelling Salesman Problem

xvi



1
I N T R O D U C T I O N

The paper shredder machine was invented in the early 1900s [51] to physically destroy
waste paper making its content unintelligible. This kind of device is still commonly seen
today in different organizational environments, where huge amounts of documents must
be constantly disposed preventing the disclosure of sensitive information. Besides, paper
shredders have become popular for personal use due to the decrease in prices, which
allows people to manage personal files more safely.

Historically, shredding is also associated with the destruction of espionage content,
as in the Iran hostage crisis [25]1 or in the case of the documents left behind by the
official state security service of former East Germany (Stasi) after the fall of the Berlin Wall
[50]. Additionally, shredding may be illicitly motivated when the objective is to destroy
evidence of fraud and other sorts of crimes. In this context, revealing the original content
of shredded papers is of great relevance for forensic investigation, which can be achieved
by first joining coherently the paper shreds as in a jigsaw puzzle. For instance, the manual
reconstruction of shredded documents (e. g., bills, letters, messages) (Figure 1) conducted
by free-lance reporters helped to reveal an influence-peddling scheme involving South
Korean figures and U.S. congressmen, which became known as the Koreagate scandal [8,
56]. Manual reconstruction is also portrayed in the Netflix production The Mechanism2,
where criminal evidence was exposed after a police chief has manually spliced dozens of
paper shreds.

Figure 1: Manual reconstruction of the shredded material during the 1979 Iran hostage crisis.
Source: http://lewisperdue.com/archives/4052.

1 The Iran hostage crisis – including the reassembling of the shredded documents – is portrayed in the movie
“Argo”.

2 A fictional series inspired by the Carwash operation, the largest anti-corruption operation ongoing in Brazil.
Official trailer (accessed on 2020-04-07): https://www.youtube.com/watch?v=13OtvUxOcUU.

1
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1.1 motivation and scope 2

Regardless of its importance, the manual reconstruction is potentially damaging to the
paper due to the continuous direct contact with the documents’ shreds, besides being
a slow and tedious process for humans. Those facts motivated the development of the
digital and automatic reconstruction process [96]. There is commercial software, such as
Unshredder3, that could assist people and corporations to recover destroyed (whether in-
tentionally or not) paper documents, or that could be leveraged by Forensic Document
Examiners (FDEs) in criminal investigations. On the other hand, such technology enables
the use of disposed or robbed documents (e. g., industrial espionage) for invasion of pri-
vacy and illicit use of sensitive data. Therefore, as with hacker intrusion, the reconstruc-
tion technology can be used to assess the safety level of shredding and disposal services
provided by specialized companies, such as ShredIt4.

This thesis aims to advance the state-of-the-art on reconstruction of shredded docu-
ments in two main directions. First, it proposes two approaches for automatic reconstruc-
tion that leverages the Deep Learning (DL) revolution for high accuracy performance in
realistic scenarios. Second, it proposes a reconstruction framework that benefits from hu-
man interaction to overcome the accuracy limitation of fully automatic methods.

1.1 motivation and scope

Digital reconstruction of shredded documents has emerged in the past decade mainly
motivated by historical and forensics needs [15, 37, 96]. The laborious manual effort is
alleviated by algorithms capable of assessing the fitting (compatibility) of the shreds and
grouping them by optimizing the overall compatibility. Therefore, fragments are manipu-
lated only during the preliminary acquisition procedure, and the human participation is
restricted to specific interventions (semi-automatic reconstruction [15, 72, 103]), or even
not required at all (automatic reconstruction).

Permutation 
Search

Compatibility
Evaluation

Input shreds

Reconstruction

negativepositive

Figure 2: Classical approach for automatic document reconstruction. Shreds’ compatibility is eval-
uated pairwise and then an optimization search process is conducted (based on the
compatibility values) in order to find the shreds’ permutation that best represents the
original document [65].

Typically, compatibility evaluation and optimization are treated separately, as depicted
in Figure 2. Evaluating compatibility is an image-based problem that aims to quantify

3 https://www.unshredder.com.
4 https://www.shredit.com.

https://www.unshredder.com
https://www.shredit.com


1.1 motivation and scope 3

how fitting two shreds are, i. e., the probability of two shreds being adjacent (in the cor-
rect order). The optimization process is modeled as a combinatorial problem whose goal
is to find a coherent arrangement of the shreds guided by the compatibility values. In
the example, the document was cut only in the longitudinal direction (strip-shredding),
therefore the reconstruction is a permutation of shreds. A harder problem, however, is the
reconstruction of cross-cut documents, i. e., documents shredded both in the longitudinal
and transverse directions (Figure 3).

a

(a)

a
is

(b)

Figure 3: Shredding type. (a) Strip-shredding; (b) Cross-cut shredding.

The literature on reconstruction of shredded documents has mostly focused on im-
proving the optimization search process, relegating the image-based problem of verifying
shreds’ compatibility to the background. Most works are restricted to the reconstruction
of simulated-shredded documents [30, 45, 57, 70, 76, 84, 91], and, in this situation, the
criticalness of the compatibility evaluation step in the reconstruction pipeline is masked,
giving rise to potentially misleading conclusions. For those addressing real-shredded data
(e. g., [47, 48]), the main issue is the assessment with few test instances (⩽ 3 documents)
that also yields biased conclusions. Literature also lacks studies on the impact of mixing
shreds from different documents on reconstruction accuracy.

Figure 4: Document sample of our local dataset. Note that shreds can be curved, and how the
borders are trimmed.

The aforementioned limitations have motivated this work, mainly the problem of eval-
uation shreds’ compatibility, which we consider the major research gap in the reconstruc-
tion literature. To provide a robust solution for real-shredded data (see Figure 4), we
leveraged DL, more specifically with the use of Convolutional Neural Networks (CNNs)



1.1 motivation and scope 4

[28, 42, 43], an architecture type that have been enabling state-of-the-art performance for
several image-based problems [4, 31, 40, 49, 78]. The experimental assessment considered
several realistic scenarios, including multi-page reconstruction.

As an additional contribution, this thesis also investigated the benefit of user inputs to
overcome the accuracy limitation of fully automatic methods. Unlike most of the hybrid
methods [15, 22, 32, 87], where the user is inherently part of the reconstruction process,
we propose a framework where the user interaction is optional and provides feedback on
the obtained solutions. This is closely related to the work of Prandtstetter and Raidl [76],
where the user role is to confirm whether pairs of adjacent shreds in the solution are also
adjacent in the original document. In comparison to [76], our approach relieves the user
from the burden of identifying relevant pairs for annotation, being this task relegated to
a recommender module designed to identify potential mistakes (wrong pairs). This makes
user participation more feasible for reconstruction instances with several shreds.

The scope of our work assumes:

• Strip-shredded documents: the cuts are restricted to the vertical direction;

• Correctly-oriented shreds: the shreds are set upwards (possibly slightly skewed);

• Single-sided shreds: the documents’ content is only in one of the paper faces;

• Black-and-white appearance: the target of this thesis is text documents, which, in
general, are low-color images (e. g., forms, legal documents, and business letters.

• Shreds with nearly the same dimensions: the popular paper shreds produce nearly
the same number of shreds, therefore it is safe to assume that the shreds have nearly
the same height and width.

Although there are works addressing more complex scenarios from the optimization per-
spective (e. g., cross-cut documents), the current solutions are not robust for real shred-
ded data, which is a more complex scenario from the image analysis perspective. There-
fore, we believe that the first step for solving cross-cutting is a robust approach for
strip-shredding (i. e., vertical cuts). Our focus is precisely on the compatibility evalua-
tion between shreds, an essential step to solve the reconstruction problem for which little
progress has been observed in the literature.

From the application perspective, it is important that the reconstruction solutions not
only manage real-shredded data, but that they can generalize for different shredder ma-
chines, which implies dealing with shreds in different damage levels. Despite the out-
standing results with our DL approaches, this investigation was not feasible due to the
lack of public datasets and equipment limitation (only one shredded was available to
assemble our collection).
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1.2 contributions and publications

The development of this thesis has contributed to the literature in significant ways. In
terms of methods for compatibility evaluation, there are a few consolidated contributions
reported in four articles (enumerated according to the chronological development):

1. T. M. Paixão, M. C. S. Boeres, C. O. A. Freitas, and T. Oliveira-Santos. “Exploring
Character Shapes for Unsupervised Reconstruction of Strip-shredded Text Docu-
ments.” In: IEEE Trans. Inf. Forensics Secur. 14.7 (2019), pp. 1744–1754. issn: 1556-6013

— An unsupervised approach based on character shapes published as a journal ar-
ticle [61] (qualis A2);

2. T. M. Paixão, R. F. Berriel, M. C. S. Boeres, C. Badue, A. F. De Souza, and T. Oliveira-
Santos. “A deep learning-based compatibility score for reconstruction of strip-shred-
ded text documents.” In: Conf. on Graph., Patterns and Images. 2018, pp. 87–94 — A
preliminary investigation on reconstruction based on DL published as a conference
article [62] (qualis B1)

3. T. M. Paixão, R. F. Berriel, M. C. S. Boeres, A. L. Koerich, C. Badue, A. F. De
Souza, and T. Oliveira-Santos. “Self-supervised deep reconstruction of mixed strip-
shredded text documents.” In: Pattern Recognit. 107 (2020), p. 107535 — Extension of
[62] addressing the reconstruction of several mixed shredded documents published
as a journal article [63] (qualis A1);

4. T. M. Paixão, R. F. Berriel, M. C. S. Boeres, A. L. Koerich, C. Badue, A. F. D. Souza,
and T. Oliveira-Santos. “Fast(er) Reconstruction of Shredded Text Documents via
Self-Supervised Deep Asymmetric Metric Learning.” In: IEEE/CVF Conf. on Comp.
Vision and Pattern Recognit. 2020, pp. 14343–14351 — A deep metric learning ap-
proach published as an international conference article [65] (qualis A1).

Although this thesis focuses on the DL approaches (items 2 and 3), the first work [61],
which relies on traditional computer vision techniques, brought relevant findings and
methodology that enabled further progress. First, it showed, through extensive experi-
mentation, that the state-of-the-art methods fail when dealing with real mechanically-
shredded documents. Also, it settled the ground for the experimental methodology used
in the more recent works, which includes metrics, a new dataset (with 20 shredded docu-
ments), and the exact formulation of the optimization problem for comparative purposes.

Concerning the DL methods, Chapter 3 covers in detail the classification-based ap-
proach, including other relevant contributions, such as a comprehensive investigation on
the reconstruction of mixed shredded documents (i. e., multi-page reconstruction) and the
release of a new dataset with 100 real strip-shredded documents (totaling 2,292 shreds).
In this context, multi-page reconstruction denotes the reassembly of individual pages,
which means that the reconstruction is not concerned in grouping the pages of a same
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document. Together with the 20 instances released in [61], we have made available the
largest collection of shredded documents, totaling 120 instances with ground-order anno-
tation. Chapter 4 presents the deep metric-learning approach, an alternative way to use
neural networks that significantly improves the time scalability when processing larger
instances.

The contributions related to the interactive (human-in-the-loop) reconstruction frame-
work were compiled into an article currently under review for a journal.

1. T. M. Paixão, R. F. Berriel, M. C. S. Boeres, A. L. Koerich, C. Badue, A. F. De Souza,
and T. Oliveira-Santos. “A human-in-the-loop recommendation-based framework
for reconstruction of mechanically shredded documents.” In: Pattern Recognit. Letters
(under review) (qualis A1).

Chapter 5 introduces the reconstruction framework and four different strategies the
recommender module employs to query the user for annotation. The chapter also covers
a novel methodology to assess the human impact on the quality improvement of the
solutions.

1.2.1 Other Publications

The development of this thesis has resulted in several publications (listed in Appendix B)
in the field of machine learning with members of the High Performance Computing Lab-
oratory (LCAD). These collaborations contributed in many ways to develop skills in the
machine learning theory, as well as in scientific methodology (i. e., experimental design,
results analysis, critical literature review, etc.). These skills were of great value for the
construction of this thesis.

1.3 outline

The remainder to the text is organized as follows:

• Chapter 2 describes the theoretical background and related work;

• Chapter 3 introduces the classification-based approach and discusses relevant re-
sults on multi-page reconstruction;

• Chapter 4 describes the deep metric-learning approach and discusses, through ex-
periments, how it improves the time scalability of deep models in the reconstruction
application;

• Chapter 5 discusses the interactive reconstruction framework, and how the user
feedback can improve the reconstruction accuracy;

• Finally, Chapter 6 presents the concluding remarks and future work.



2
T H E O R E T I C A L B A C K G R O U N D

This chapter presents the theoretical aspects concerning the problem of reconstructing
shredded documents. The purpose is to situate the reader with relevant literature on the
topic, and formally introduce the optimization model for the reconstruction problem.

The text is divided into three main sections. The first section introduces document re-
construction as a jigsaw puzzle problem. Then, the discussion moves on to the automatic
reconstruction of strip-shredded documents, addressing the reconstruction problem defi-
nition, the compatibility evaluation sub-problem, and an optimal reconstruction formula-
tion (solver). In our approach, the compatibility evaluation is decoupled from the solver,
thus different strategies to compute compatibilities can be compared under a common
ground. Finally, we review the literature on semi-automatic reconstruction, paving the
way to discuss the human in the reconstruction loop (Chapter 5).

2.1 document reconstruction : a jigsaw puzzle problem

An interesting analogy for the document reconstruction problem is the jigsaw puzzle
solving. In both, the goal is to fit the pieces to compose the full image following the clues
provided by the appearance and shape of the pieces. In fact, the literature relates the
computational problem of reconstructing documents to the classical problem of solving
jigsaw puzzles automatically [15, 37, 76].

Originally, “apictorial” jigsaw puzzles were addressed, thus the solution was based
solely on the uniqueness of the pieces’ shape fitness [27]. Three decades later, the pictorial
information started to be explored under the assumption that neighbor pieces tend to be
similar in appearance (color and texture), more specifically in the areas around the contact
edges [39]. The combined use of shape and appearance enabled the solution of several
real problems, such as the reconstruction of ancient artifacts (Figure 5a) and hand-torn
documents (Figure 5b).

In a more recent version of the problem, Nielsen, Drewsen, and Hansen [59] addressed
the assembling of jigsaw puzzles with equal-size rectangular pieces. They argue that this
puzzle can be solved by leveraging only appearance features (e. g., color and texture). Such
features can be also useful even when the pieces are not exactly regular, but their shapes
present some ambiguity. In this domain, there is the interesting application of tiles panels
reconstruction (Figure 6), which is of great historical and artistic value.

Despite sharing some similarity with this more recent version of the jigsaw puzzle
problem, the reconstruction of documents start to demand more customized approaches
to deal with the edge of the shreds, damaged by the machine during the shredding pro-

7
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(a) (b)

Figure 5: Jigsaw solving-related problems. (a) Reconstruction of pottery from the Apollonia-Arsuf
archeological site in Israel [99]; (b) Reconstruction of a receipt document [37].

Figure 6: Reconstruction of an ancient Portuguese tiles panel: potential application for the jigsaw
puzzle solving with equal-size pieces [2].

cess (Figure 7), and to deal with the shape of the shreds, since the modern paper shred-
ders – despite the rectangular cut pattern – usually produce irregular (i. e., wrinkled,
torn, curved) fragments. In this regard, it is worthy to mention the DARPA Shredder Chal-
lenge [23], a competition promoted in 2011 by the DARPA, a research agency of the U.S.
Department of Defense. The challenge included five problems, each one involving the
reconstruction of a cross-cut document. The fragments have edges remarkably irregular
and their content is very diverse, comprising, for instance, manuscript text, hand-made
drawings, color, and colorful pictures Figure 8).

Historically, the challenge was a milestone that fostered research on the particular appli-
cation of shredded documents, including the fact the organizers released a public dataset.
Butler, Chakraborty, and Ramakrishan [15], for instance, used the Puzzle 1 to validate their
interactive document reconstruction system (Deshredder). The proposed system explores
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Figure 7: Document shreds spliced onto a yellow background.

color and the very irregular fragments’ shapes in feature representation. The same puzzle
was used by Zhang, Lai, and Bächer [103] in a similar context of assisted reconstruction.
Their tool (Hallucination) requires the user to sketch scribbles that serve as a clue to deter-
mine neighbor fragments. According to the authors, evaluating the compatibility between
the fragments is the core challenge in the reconstruction problem.

The dataset assembled for the challenge resembles that produced by Saboia and Gold-
enstein [81]. However, text documents (the target of our research) usually depict low
color and texture information, being the primary content typewritten text (usually black)
onto a paper substrate (usually white). Additionally, the use of modern shredders (as as-
sumed in this project) yields shreds with edges significantly less irregular. This context
coupled with the privacy requirements of documents used in real investigation forces the
researchers to produce their own collections by using paper shredders (real shredding) or
by simulating cuts in documents (artificial/virtual shredding).

2.2 reconstruction of strip-shredded text documents

In the scope of mechanically-shredded text documents, the literature poses two main
variations of the reconstruction problem [76]: (i) Reconstruction of Strip-shredded Text
Documents (RSSTD) and (ii) Reconstruction of Cross-cut Text Documents (RCCTD). The
RSSTD can be viewed as a particular case of RCCTD where the puzzle has one only row of
shreds. The RCCTD is, therefore, a more complex problem mainly from the optimization
perspective. Since our focus is on the compatibility evaluation of the shreds rather than
on the optimization process, the scope of the discussion here is on the strip-shredding
version of the problem. Nonetheless, it is important to notice that part of the related
works also addresses cross-cut documents and that the findings of our thesis can help to
improve the reconstruction of cross-cut documents.

The discussion in this section starts with a reconstruction optimization model that is
based on a pairwise cost (or, alternatively, compatibility) function that measures the fit-
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(a) Puzzle 1. (b) Puzzle 2.

(c) Puzzle 3.

Figure 8: Defense Advanced Research Projects Agency (DARPA) Shredder Challenge instances [23].

ting between shreds. Then, a thorough review of compatibility evaluation strategies is
presented, which includes, among other things, the design/choice of features, algorithms,
and (dis)similarity measures. Subsequently, we comment on the challenges to establish
the state-of-the-art for this problem. The section ends with a presentation of the optimal
reconstruction formulation adopted in our research that has enabled us to better compare
the different compatibility evaluation methods.

2.2.1 Problem Definition

For simplicity of explanation, let us first consider the scenario where all shreds belong to
the same page: single-page reconstruction of strip-shredded documents. Let S = {si}

n
i=1

denote the set of n shreds resulting from longitudinally shredding (strip-cut) a single
page. Assume that the indices determine the ground-truth order of the shreds: s1 is the
leftmost shred, s2 is the right neighbor of s1, and so on. A pair (si, sj) – meaning sj placed
right after si – is said to be “positive” if j = i+ 1, otherwise it is “negative”. A solution of



2.2 reconstruction of strip-shredded text documents 11

the reconstruction problem can be represented as a permutation πS = (sπi
)ni=1. A perfect

reconstruction is that for which πi = i, for all i = 1, 2, . . . ,n.
Automatic reconstruction is classically formulated as an optimization problem [57, 76]

whose objective function derives from pairwise compatibilities (Figure 2). Compatibility –
or cost, depending on the perspective – is given by a function ϕ : S2 → R+ that quantifies
the (un)fitting of two shreds when placed side-by-side (order matters). Assuming a cost
interpretation, ϕ(si, sj), i ̸= j, denotes the cost of placing sj to the right of si. In theory,
ϕ(si, sj) should be low when j = i+ 1 (positive pair), and high for other cases (negative
pairs). Typically, ϕ(si, sj) ̸= ϕ(sj, si) due to the asymmetric nature of the reconstruction
problem. For computational purposes, it is useful to represent such graph as an adjacency
cost matrix Φ = (Φi,j)n×n, where Φi,j = ϕ(si, sj).

The cost values are the inputs for a search procedure that aims to find the optimal
permutation π∗

S, which is the arrangement of the shreds that best resembles the original
document. The objective function Objϕ to be minimized is the accumulated pairwise cost
computed only for consecutive shreds in the solution:

Objϕ(πS) =

n−1∑
i=1

ϕ(sπi
, sπi+1

). (1)

The same optimization model can be applied in the reconstruction of several shredded
pages from one or more documents (multi-page reconstruction). In a stricter formulation,
a perfect solution in this scenario can be represented by a sequence of shreds that respects
the ground-truth order on each page, as well as the expected order (if any) of the pages
themselves. If page order is not relevant (or does not apply), the definition of a positive
pair of shreds can be relaxed, such that a pair (si, sj) is also positive if si and sj are,
respectively, the last and first shreds of different pages, even for j ̸= i+ 1. Based on this
definition, Equation (2) quantifies the quality (accuracy) of a solution πS as the proportion
of positive pairs of shreds in a solution [3, 61, 63, 65]:

acc =
1

n− 1

n−1∑
i=1

[(sπi
, sπi+1

) is positive], (2)

where [·] is the Iverson Bracket notation, i. e., [P] = 1 if P is True, and [P] = 0, other-
wise. Note that accuracy ranges in the interval [0, 1], where 0 implies a fully disordered
reconstruction, and 1 is achieved only by a perfect reconstruction.

The optimization problem of minimizing Equation (1) has been extensively investigated
in literature, mainly using genetic algorithms [12, 29, 30, 102] and other metaheuristics
[9, 75, 84]. The focus of this thesis is, nevertheless, on the compatibility evaluation be-
tween shreds (i. e., the function ϕ), which is critical to lead the search towards accurate
reconstructions.
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2.2.2 Compatibility Evaluation

The literature on reconstruction of shredded documents has mostly focused on improv-
ing the optimization search process, relegating the image-based problem of verifying
shreds’ compatibility to the background. Most works are restricted to the reconstruction
of simulated-shredded documents [30, 57, 70, 76, 91], and, in this situation, the criticalness
of the compatibility evaluation step in the reconstruction pipeline is masked, giving rise
to potentially misleading conclusions on the accuracy of the methods for real-shredded
documents. Therefore, this review focuses on different approaches to assess compatibility
between shreds, which is the main contribution of this work.

Inspired by the jigsaw-puzzle solving problem, most literature on reconstruction ex-
plores low-level features for compatibility evaluation. The most naive approach in this
context is to apply distance metrics (e. g., Hamming, Euclidean, Canberra, Manhattan) on
the raw pixels of opposite boundaries of two shreds [16, 18, 24, 53, 90]. Some of these meth-
ods rely on the very edge [53, 90], being more sensitive to the corruption of the shreds’ ex-
tremities caused by the mechanical cut. To alleviate this, Marques and Freitas [53] suggest
removing some border pixels, which, in practice, results in limited improvement. Addi-
tionally, different color spaces have been investigated (RGB [24], HSV [53, 90], gray-scale
[16]) without great success for text documents due to their poor chromatic information.

More sophisticated compatibility measures were designed to solve image puzzles with
rectangular tiles, such as prediction-based [73] measure. In the context of document
shreds, Andaló, Taubin, and Goldenstein [3] proposed a modified version of the measure
proposed by Pomeranz, Shemesh, and Ben-Shahar [73], reaching near 100% of accuracy
for simulated shredding with documents from ISRI-Tk OCR dataset [58], a collection of
images commonly used to assess Optical Character Recognition (OCR) software. Never-
theless, our previous investigation [61] demonstrated that the accuracy of their method
decreases dramatically when dealing with real-shredded documents of the same image
collection.

Some authors designed compatibility measures focusing on text documents [11, 57, 77].
Balme [11] and Morandell [57] addressed the problem of vertical misalignment between
pixels around the cutting section, i. e., the area near the touching edges of two adjacent
shreds. Both of them adopt binary image representation given the black-and-white ap-
pearance of the text documents. Balme’s measure is used in several works [17, 30, 76],
and consists of a weighted pixel correlation intended to mitigate the misalignment issue,
whereas Morandell [57] quantifies the degree of misalignment between corresponding
text lines (“black” pixels) as a measure of compatibility. In an unsupervised approach,
Ranca [77] proposed learning the expected arrangement of pixels around the cutting sec-
tion using information from the pixels inside the shreds. The best results were achieved
with a simple probabilistic model, although they have also evaluated, unsuccessfully, feed-
forward neural networks. Their experiments were also limited, given that they were car-
ried out only on simulated-shredded data. Text-line detection was exploited in [48, 72,
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91], however, these methods struggle with ambiguities typically found in common text
documents.

At a higher level of abstraction, compatibility can be assessed by exploring the matching
degree of fragmented characters around the cutting section [61, 69, 70, 100, 101]. The
continuity of character strokes was used as a matching criterion in [70, 100]. In such
an approach, the reconstruction accuracy strongly relies on the vertical alignment of the
shreds and the image quality around the shreds’ boundaries.

Alternatively, learning-based matching has also been proposed in the literature [61, 69,
101]. Matching in [69] leverages OCR-based on keypoint features. OCR tends to work well
for general text recognition, but its application on corrupted characters is quite unstable,
which turns it into a drawback of this formulation. Instead of identifying symbols, Xing
and Zhang [101] proposed a learning model to identify valid combinations of symbols
(restricted to the Chinese language) based on structural features. The work of our group
Paixão et al. [61] (preliminary to our current deep-learning approaches) analyzes the types
of symbol combinations based on their shapes. Both [61, 101] depend on segmenting text
information from shreds, which is a challenging task given the condition of the shredded
documents.

In a recent and relevant work, Liang and Li [47] proposed the word path metric, which
combines pixel- and character-level information (low-level metrics) with word-level infor-
mation (high-level metric). A central procedure in their method is sampling candidate
sequences and applying OCR for word recognition to improve pair compatibility estima-
tion. Despite reporting accuracy comparable to our deep learning approach (preliminary
published in [62]), their validation relies on solely three real-shredded instances. For two
of them, those which are up to 39 shreds, their method achieved accuracy above 70%,
while the third instance, with 56 shreds, yielded 41.8% of accuracy. As mentioned by the
authors, scalability for larger instances (i. e., with more shreds) is still an issue firstly due to
the OCR working overhead and its accuracy degradation. Additionally, for better accuracy,
the number and size of candidate sequences have to be increased, which compromises the
run-time performance (it performed ≈ 6 times slower than [62] for a 60-shreds instance).

In the last years, deep learning started to be used in the context of jigsaw puzzle solving
with simulated-cut tiles. Le and Li [41] applied Convolutional Neural Networks (CNNs)
to verify potential matching pieces in order to reduce the search space for the posterior
optimization process. Paumard, Picard, and Tabia [67] solved small (3×3) 2D-tile puzzles
following the seminal ideas introduced in [26, 60], in which CNNs are trained in a self-
supervised way to predict the relative positions of patches cropped from a reference im-
age. More related to our work, Sholomon, David, and Netanyahu used a fully connected
network to measure pairwise compatibility between 2D-tile. Boundary pixels of two tiles
are fed to the network and the network’s output, i. e., the predicted adjacency probabil-
ity, is assigned as the pair compatibility. Although these works are promissory to solve
jigsaw-related problems, they only considered a non-realistic scenario with simulated-cut
pieces.
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To the best of our knowledge, by developing this project, we were the first to explore
deep learning in a realistic scenario that includes multi-page real-shredded documents.
The use of deep models aims to improve robustness in real shredding context, where the
damage to the shreds’ borders prevents the use of similarity evaluation at pixel-level or of
stroke continuity analysis. Additionally, our approach is able to cope with more heteroge-
neous content because the fitting of patterns is learned in a self-supervised fashion from
large-scale data without segmenting symbols, as will be discussed in the next chapters.

establishing the state-of-the-art. The investigation of the literature revealed
a challenge in properly establishing the state-of-the-art for the reconstruction of strip-
shredded text documents. This is due to the lack of public codes and datasets (with
real-shredded documents) to reproduce the performed experiments. In this direction, our
first contribution in this research field [61] was relevant not only for the achieved results
in comparison with other tested methods, but because it provided the audience with the
performance of the main methods in literature in a comparative way, besides the source
code and datasets to enable reproducibility of our work1.

With the publication of [61], the interested audience may have a picture of the main
methods in literature (those which were possible to test) and their performance. From
that point, we started to improve our reconstruction technique migrating from traditional
computer vision to deep learning techniques [62, 63, 65]. We started to be cited in litera-
ture with the work of Liang and Li [47], which used the preliminary model developed in
[62] for comparative analysis with their method. This enforces our compromise not only
in developing and evaluating software but helping to push further the research in this
area contributing in significant ways to the literature.

2.2.3 An Optimal Reconstruction Formulation

Since the main contribution of our reconstruction technique lies in the compatibility evalu-
ation, it is necessary to define an optimization formulation that will serve as a ground for
literature comparison. The adopted formulation was first addressed in our previous work
[61]. On that occasion, an optimal reconstruction formulation was presented by reduc-
ing the original reconstruction problem to the Travelling Salesman Problem (TSP), whose
solution can be obtained by 3-rd party software (e. g., Concorde TSP Solver [5]).

Optimality here should be understood as the ability of the optimization strategy in
providing an optimal solution given the previously computed costs, i. e., a minimum-
cost solution for the Equation (1). Notice, however, that this does not guarantee that the
correct solution/permutation of shreds will be found since the computed costs may not
reflect reality. As consequence, the expected permutation (ground-truth solution) may
not have the optimal (minimum) cost – from the optimization perspective –, or there may

1 https://github.com/thiagopx/docrec-tifs18.

https://github.com/thiagopx/docrec-tifs18
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be multiple optimal solutions and the expected solution is one of those. Despite that,
an optimal formulation is still desired because low-accuracy solutions can be directly
regarded as a failure in evaluating compatibilities.

Following a similar approach in [76], the original reconstruction problem is first re-
duced to the problem of finding the Minimum-Cost Hamiltonian Path Problem (MCHPP)
in a directed weighted graph G = (V,A,w). Here, the vertices in V are uniquely asso-
ciated to shreds, and w(a), given an arc a = (vi, vj) ∈ A, carries the cost ϕ(si, sj) as
weight. If vπ1

vπ2
. . . vπn is an optimal solution for the MCHPP on G, then the permutation

π∗
S = (sπi

)ni=1 is an optimal solution for the reconstruction problem given the Equation (1).
As in [76], MCHPP is reduced to the Asymmetric Traveling Salesman Problem (ATSP) by
adding a dummy vertex v ′ into the original graph, and also adding a set of zero-weight
arcs, A0, connecting v ′ to the previously existing vertices. More formally, an ATSP instance
G ′ = (V ′,A ′,w ′) arising from G = (V,A,w) is such that V ′ = V∪ {v ′}, A ′ = A∪A0, where
A0 =

⋃
v∈V {(v ′, v), (v, v ′)}), and, for all a ′ ∈ A ′,

w ′(a ′) =

w(a ′), if a ′ /∈ A0

0, otherwise.
(3)

Let the cycle vπ1
vπ2

vπ3
. . . vπnvπ1

be a solution for ATSP, and assume vπ1
is the aforemen-

tioned dummy vertex. A solution for MCHPP is obtained by removing vπ1
and its incident

arcs, which results in the simple path vπ2
vπ3

. . . vπn . ATSP is indirectly solved by refor-
mulating it as a TSP following the transformation proposed by Jonker and Volgenant [36],
and then invoking Concorde. To enable optimal solutions, Concorde can be configured
with the QSOpt Linear Programming Solver2.

2.2.4 Semi-automatic Reconstruction

The few works addressing semi-automatic reconstruction of shredded documents can be
categorized into active and passive paradigms. The active paradigm – which comprises
most of the literature [15, 22, 32, 87] – assumes that the user is an inherent part of the
reconstruction process. In the passive paradigm (ours), user intervention is optional since
a preliminary solution can be automatically obtained. In this case, the user inputs are
used to improve an initial/intermediate solution.

Following the active paradigm, Guo et al. [32] proposed a human mediation module
in the context of cross-cut documents where the user is occasionally asked to decide
whether shreds belong to the same row. This kind of decision is mostly based on text-line
alignment, a condition that is barely present in real-shredded data. In Deshredder [15], the
reconstruction process is predominantly manual, being the user responsible for moving
shreds, correcting their orientation, and deciding whether the shreds fit each other with

2 http://www.dii.uchile.cl/~daespino/QSoptExact_doc/main.html.

http://www.dii.uchile.cl/~daespino/QSoptExact_doc/main.html
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the assistance of GUI tools (e. g., zoom-in/out, drag-and-drop, and sliders for threshold
definition). The automated part of the system is restricted to show the most relevant
matching candidates for a query shred, yet based on thresholds defined by the user. Sim-
ilarly, Shang et al. [87] built visual interfaces to identify correct matches and to arrange
the shreds onto a canvas manually. Although visual tools [15, 87] may be intuitive and
helpful, the effort and time required from the user to reconstruct large instances (several
pages/documents to be reconstructed) are quite prohibitive. In [22], the correct matches
are automatically determined by an algorithm (oracle, as they call). User interaction is
restricted to a few operations: add missing shreds, adjust position, and correct rotation.
Although the oracle introduces a new level of automation, the user still has an active role
in the reconstruction process, which hinders scalability for larger instances.

In a different direction, Prandtstetter and Raidl [76] formulate the reconstruction of
mechanically strip-shredded documents as an optimization problem where solutions can
be obtained fully automatically. Optionally, the user can annotate pairs of adjacent shreds
in the solution (as many as the user wants) as correct/positive if its shreds are also ad-
jacent in the original document or as wrong/negative, otherwise. However, an issue in
their proposal is that the user has to visualize the reconstruction and select – without
any system recommendation – the pairs to be annotated. This can be tiresome and time-
consuming considering large instances with thousands of shreds (one of the datasets used
in this work has 2, 292 shreds). Moreover, positive and negative pairs are arbitrarily cho-
sen, which can slightly improve the solutions.

As will be discussed in Chapter 5, the proposed framework alleviates the user effort
since he/she can focus only on the pairs previously selected by the recommender module
of the reconstruction framework. In addition to this, the strategies for pairs selection
(query strategies) enable better solutions than arbitrary selection.

2.3 concluding remarks

This chapter covered the main aspects of the literature on reconstruction of shredded
documents, a particular case of the jigsaw puzzle solving problem. As discussed in Sec-
tion 2.2.2, little progress has been achieved in evaluating compatibility between shreds
for real-shredded documents. These methods explore different levels of features to ac-
complish this task: pixel-level similarity (or stroke continuity), shape-level matching, and
learning-based matching (e. g., Optical Character Recognition). To the best of our knowl-
edge, our work was the first to explore deep neural networks for robust compatibility
evaluation. The reconstruction combining the deep learning approaches with the opti-
mization formulation (Section 2.2.3) is discussed in the next two chapters. Finally, we
discussed in the scarcity of literature on interactive reconstruction. To address this prob-
lem, it was proposed a human-in-the-loop which is presented in Chapter 5.
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D E E P R E C O N S T R U C T I O N : A C L A S S I F I C AT I O N - B A S E D
A P P R O A C H

This chapter addresses the first deep learning approach to solve the reconstruction prob-
lem. The underlying ideas of this approach were first published as a conference paper
[62], and further extended and consolidated in a scientific journal [63]. The latter work is
a milestone of our research that, besides the reconstruction technique itself, brought the
following contributions to the literature:

• An investigation on the reconstruction of mixed shredded documents (i. e., multi-
page reconstruction): results have shown that our method is capable of reconstruct-
ing 100 mixed shredded documents (2,292 shreds) with accuracy superior to 90%,
which brings the state-of-the-art of the document reconstruction problem to another
level;

• The release of a new public dataset1 with 100 real strip-shredded documents (total-
ing 2,292 shreds). This addresses the lack of publicly available collections represent-
ing real scenarios.

The text is organized in four main sections addressing the (i) reconstruction method,
(ii) the experiments to assess the proposed method, (iii) the discussion of the obtained
results, and (iv) the concluding remarks of the conducted investigation.

3.1 the reconstruction method

The proposed classification-based approach (illustrated in Figure 9) is essentially divided
into training (off-line) and reconstruction (on-line) pipelines. The training (top flow) aims
to produce a model capable of quantifying the compatibility between shreds based solely
on the content around the cutting sections of digitally-cut documents. Small samples
(given the whole document) extracted from these documents are the patterns to be learned.
This local approach follows the intuition behind the manual reconstruction, where hu-
mans analyze the fitting of shreds based on local matching of fragmented patterns (mainly
at text line level). These samples should be categorized as positive if they are likely to ap-
pear on real documents, or negative otherwise. In practice, positive samples are cropped
from pairs of adjacent shreds, and negative from non-adjacent pairs. The learning process
is said to be self-supervised because the adjacency relationship is automatically inferred

1 Available at https://github.com/thiagopx/deeprec-pr20.
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Figure 9: Overview of the proposed system. The training pipeline (top flow) comprises the genera-
tion of training data from simulated-shredded documents followed by the training itself,
where the best-epoch model is chosen through validation. The reconstruction pipeline
(bottom flow) represents the system in operation. The input is a set of real shreds (from
one or more documents) and the output is a permutation of shreds (reconstructed docu-
ments). The trained model is used for shred’s pairwise compatibility evaluation, and the
resulting values are the inputs for a graph-based optimization procedure that searches
for the best reconstruction.

in simulated shredding. After sampling, the deep model – a Fully Convolutional Neu-
ral Network (FCNN) – is trained as a classification model to distinguish between positive
and negative samples, being the best model parameters determined through a validation
process also using simulated data.

For reconstruction (bottom flow), there is a mild assumption: the shreds of the docu-
ments to be reconstructed are already individualized in digital format, i. e., the documents
were previously shredded, scanned, and their shreds were segmented. The best model ob-
tained in the training stage is used for pairwise compatibility evaluation of the shreds. The
resulting values, arranged as a square matrix, are the input for the graph-based optimiza-
tion procedure (Section 2.2.3) that estimates a shreds’ permutation representing the final
reconstruction. The training and reconstruction pipelines are presented in the following
subsections alongside a more in-depth description of this reconstruction approach.

3.1.1 Learning from Simulated-shredded Documents

The training pipeline aims to produce a model capable of quantifying pairwise compati-
bility, which means the probability of two shreds being adjacent in a certain order (order
matters given the nature of the reconstruction problem). The input can be any collection
of digital documents from which all the training data is extracted through simulated
shredding. This is particularly beneficial since there is a lack of publicly available datasets
containing real-world textual shredded documents, and the generation of such a kind of
dataset is tedious, error-prone, and highly demanding because it requires printing, sub-
mitting the documents to a paper shredder, manually organizing and scanning the shreds,
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and, finally, post-processing them. The generation of training data and the training pro-
cess itself are discussed in the next sections.

3.1.1.1 Simulated Shredding

This process consists of longitudinally slicing digital documents into 30 rectangular re-
gions with the same dimensions, wherein the height of the regions is equal to that of the
input image, and the number of regions is an approximation of the number of shreds
produced by regular shredders for A4 paper sheets. Text documents in most available
public collections are binary or almost binary (e. g., the two collections in Section 3.2.2).
This motivated us to adopt a binary representation of the input documents – resulting
from applying Sauvola’s method [83] – before the simulated shredding.

Lorem ipsum dolor sit 
amet, consectetur adipiscing elit, 
sed do eiusmod tempor incididunt 
ut labore et dolore magna aliqua. 

Justo nec ultrices dui 
sapien eget mi proin. Vel facilisis 
volutpat est velit egestas dui. 
Netus et malesuada fames ac 
turpis.

Sed faucibus turpis in eu 
mi bibendum neque.

Lorem ipsum dolor sit 
amet, consectetur adipiscing elit, 
sed do eiusmod tempor incididunt 
ut labore et dolore magna aliqua. 

Justo nec ultrices dui 
sapien eget mi proin. Vel facilisis 
volutpat est velit egestas dui. 
Netus et malesuada fames ac 
turpis.

Sed faucibus turpis in eu 
mi bibendum neque.

Lorem ipsum dolor sit 
amet, consectetur adipiscing elit, 
sed do eiusmod tempor incididunt 
ut labore et dolore magna aliqua. 

Justo nec ultrices dui 
sapien eget mi proin. Vel facilisis 
volutpat est velit egestas dui. 
Netus et malesuada fames ac 
turpis.

Sed faucibus turpis in eu 
mi bibendum neque.

(a) (b)

Figure 10: Simulated shredding. The document is digitally shredded into (a) longitudinal cuts (i. e.,
strip-cut shredding) and random noise is added (b) to the shreds’ borders to roughly
simulate the damage caused by paper shredders.

The simulated shreds, however, present clean edges, which is very unlikely in real-
world mechanical shredding. To cope with that, the original content of the two rightmost
and leftmost pixel columns of the shreds is replaced by a black-and-white pattern drawn
from the uniform binary distribution U(0, 1). An overview of the process is depicted in
Figure 10.

3.1.1.2 Sample Extraction

The input of this step is a document-wise set of digital shreds, and the output is a set of
samples to be used in the training of the deep learning model. Given an input document,
samples are extracted by pairing shreds and cropping small regions around the touching
borders: positive samples come from adjacent shreds (respecting the shreds’ ground-truth
order) and negatives from non-adjacent shreds (or adjacent shreds in swapped order). As
the shreds are automatically obtained, the samples can be self-annotated since the correct
sequence of shreds in the original document is known.

Positive and negative training samples were extracted following the same procedure:
given a pair of shreds, a sample is a rectangular region of 32× 32 pixels (32 rows of the 16

rightmost pixels of the left shred and 32 rows of the 16 leftmost pixels of the right shred).
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Such dimensions correspond to the minimum even-valued input size that the adopted
network architecture (described in the next section) can handle.

The shreds were sampled every two pixels along the vertical axis, and a limit of 1,000
positive samples per document was fixed. To produce balanced sets, the number of nega-
tive samples is limited to the number of positive samples collected in the same document.
It is important to mention that the document datasets are available in binary format, as
further discussed in Section 3.2.1. In this context, we define the level of information of
a sample as the percentage of its text (assumed as black) pixels. For effective training,
samples with an information level less than a threshold ρblack are discarded due to the
class ambiguity of such cases. This threshold was empirically set to 0.2 based on visual
inspection of a few samples: lower than this value, samples usually look like scanning
noise.

Before extraction, the pairs of shreds are firstly shuffled to ensure sampling in different
regions of the document since the number of samples per document is limited. Note
that the extraction procedure is applied to each fragmented document obtained with
simulated shredding, one document at a time, resulting in balanced sets of positive and
negative samples.

3.1.1.3 Model Training

At this point, two balanced sets (positive and negative) of shreds with 32 × 32 pixels
are available for training the deep learning model. The SqueezeNet [35] architecture pre-
trained on 227 × 227 × 3 (RGB) images2 of ImageNet was chosen because it has been
shown to be efficient for the classification task, i. e., it can achieve good performance with
considerable few parameters, and due to its fully convolutional structure, which is par-
ticularly interesting during the inference time, as further discussed in Section 3.1.2. More
specifically, the vanilla (i. e., no bypass connections) SqueezeNet v1.1 implementation was
adopted, which is a modification of the original SqueezeNet with similar accuracy in the
classification task, however, with 2.4 times less computation effort3.

Since SqueezeNet is fully convolutional, it can be fed with images whose dimensions
are different from the original input size. Therefore, training with 32× 32 samples does
not require any further architectural modifications. To leverage the ImageNet’s pre-train-
ing, the binary samples were replicated to the three channels of the network instead of
reducing the network’s input to a single channel. The number of filters in the last convolu-
tional layer was reduced from 1,000 (ImageNet’s number of classes) to two filters in order
to match the positive and negative classes, and the weights for this layer were initialized
under a zero-mean Gaussian distribution with a standard deviation of 0.01, as done in
the original SqueezeNet implementation.

2 The 224 × 224 × 3 size reported in [35] seems a typo since 227 × 227 × 3 is the size used in the official
implementation (https://github.com/forresti/SqueezeNet).

3 https://github.com/forresti/SqueezeNet/tree/master/SqueezeNet_v1.1.

https://github.com/forresti/SqueezeNet
https://github.com/forresti/SqueezeNet/tree/master/SqueezeNet_v1.1
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Figure 11: Association image extraction.

From the entire database, 90% of the documents (random selection) were designated
for training, and 10% for the validation of the model. Therefore, samples of the same
document are used exclusively either to train or validate the model. With the architecture
properly adjusted for the problem and the weights initialized, the training can begin. The
model was trained during 10 epochs in mini-batches of 256 images using the Adam opti-
mizer with default settings [38] and the categorical cross-entropy loss. The classification
accuracy was measured on the validation set at the end of each epoch, and the epoch that
yielded the highest accuracy was chosen to determine the “best” model, i. e., the model
deployed for compatibility evaluation.

3.1.2 Reconstruction of Mixed Shredded Documents

The reconstruction scheme in Figure 9 (bottom pipeline) assumes that the documents were
previously fragmented by a paper shredder and that the resulting shreds were scanned
and separated into image files at a disk (the semi-automatic segmentation process adopted
by our group is detailed in [61]). After loading data, the shreds are also binarized with
Sauvola’s algorithm [83] since the model was trained with binary samples. Subsequently,
as recommended in [76], the blank shreds (i. e., those without black pixels) are discarded
since they increase processing overhead without providing relevant information for the
forensic examiners. Then, the trained neural model is applied for pairwise compatibility
evaluation of the remaining (non-blank) shreds. These compatibility values (arranged as
a matrix) are the inputs for the optimization process that determines the reconstruction
problem solution: the permutation of shreds that (ideally) reassembles the original docu-
ments. As we have commented, the optimization search follows exactly that introduced
in Section 2.2.3. The pairwise compatibility evaluation, in its turn, is discussed in the next
section.

3.1.2.1 Pairwise Compatibility Evaluation

The goal of this stage is to estimate a compatibility value for every pair (si, sj) ∈ S2,
i ̸= j, where S = {si}

n
i=1 is the set of non-blank shreds resulting from mixing the shredded

documents to be reconstructed. The compatibility values are arranged in a square matrix
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Figure 12: Compatibility computation as a sliding window operation. Since the model was origi-
nally trained on 32× 32 images, applying it to 3000× 32 images is equivalent to sliding
vertically the 32× 32-size model with implicit stride of 16. In the example, the compati-
bility candidate value is 0.99, the positive softmax probability.

Γ = [Γi,j]n×n where each entry Γi,j matches the compatibility for (si, sj). In other words,
Γi,j quantifies how likely sj is the right neighbor of si in the original document. The
estimation of Γi,j is focused on regions around the edges of si and sj (see Figure 11a).
The 16 rightmost pixels of each row of si are joined (at left) with the 16 leftmost pixels
of sj, giving rise to a H× 32 rectified image, where H is the minimum height of both
shreds. The rectified image carries the information to be evaluated by the trained model.
To account for vertical misalignment, different images are derived from the rectified image
by vertically shifting its right part (blue area) s units in the range [−vshift, vshift]. Let each
of these images to be denoted by Is, the subscript s indicating the vertical shift. By default,
vshift is set to 10, thus 21 different images (i. e., 2vshift + 1) should be evaluated. Only
the 3,000 center rows are considered in computation, as illustrated in Figure 11b.

For faster inference, the derived images are bundled in a batch of size 21 and processed
by the deployed neural network. Since the SqueezeNet architecture is fully convolutional
and was trained with images of 32 × 32 pixels, the inference on a 3000 × 32 image is
equivalent to sliding vertically the 32× 32-size trained network across the input image
with an implicit stride of 16, as illustrated in Figure 12. Note that inference on 32× 32

pixels produces a pair of feature values (positive and negative). When applied to a 3000×
32 image, an inference produces a 187×2 feature map (187 = ⌊300016 ⌋). After global average
pooling, the map is reduced to a pair of positive/negative logits from which probabilities
are obtained via softmax. The compatibility is then set to the highest positive probability
in a total of 21 values. More formally,

Γi,j = maxs∈[−vshift,vshift] σ
+(y(Is)), (4)

where y(I) represents the network’s logits output given the image I, and σ+(y) the posi-
tive probability computed by the softmax function on y.
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3.1.2.2 Optimization Search

As stated in Section 2.2.1, the objective of the optimization search is to obtain a permu-
tation of shreds π∗

S that minimizes the objective function in Equation (1). Given that the
MCHPP is a minimization problem, a cost matrix Φ = [Φi,j]n×n is first derived from the
compatibility matrix by setting Φ = max (Γ) − Γ, where max (Γ) is the maximum value
(excluding the diagonal) of the compatibility matrix Γ. The cost matrix can be viewed as
a complete directed weighted graph G = (V,A,w) – instance for the MCHPP –, where a
vertex vi ∈ V maps to a shred si ∈ S, A is the set of arcs, and w : A → R is the weight
function defined such that w((vi, vj)) = ϕ(si, sj) = Φi,j. With the graph G, a permutation
of shreds can be obtained by following the steps described in Section 2.2.3.

3.2 experimental assessment

The general purpose of the experiments is to evaluate the reconstruction accuracy by
mixing different quantities of single-page shredded documents (hereafter referred to as
documents for simplicity) following an incremental strategy. Besides the two evaluation
datasets used in [61], a new collection (referred to as S-Cdip) with 100 documents was
assembled specifically for this investigation.

The experiments were divided into three main parts. First, the proposed method was
evaluated in its default configuration. Then, an ablation study was conducted to assess
the sensibility of our method concerning three key parameters. The last part is a compar-
ative evaluation with state-of-the-art methods available in the literature. The following
sections describe, respectively, the datasets used for quality assessment, the conducted
experiments, and the computational platform on which the experiments were carried out.

3.2.1 Training Datasets

As stated in Section 3.1.1.3, the training of the model for compatibility evaluation should
take, as input, any document collection. In fact, different training datasets should be
provided to enable cross-database evaluation. Here, two collections of scanned documents
were used (one at a time) to extract training samples: Isri-OCR and Cdip.

isri-ocr . This collection comprises a subset of the ISRI-Tk OCR collection [58] which
includes 800 binary documents (originally scanned at 300 dpi) labeled as reports, business
letters, or legal documents. The structure of these documents has a high degree of similarity,
generally focusing on running text at the expense of graphical elements (i. e., pictures,
tables, graphs).

cdip . This dataset comprises 100 documents from the RVL-CDIP collection [34], of
which there are 10 documents from each of the following classes: form, email, handwritten,
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(a) S-Marques. (b) S-Isri-OCR. (c) S-Cdip.

Figure 13: Samples (cropped view) of the shredded (denoted by the “S-” prefix) datasets.

news article, budget, invoice, questionnaire, resume, and memo. In summary, this dataset has a
more diverse collection of documents. The documents were chosen arbitrarily, except for
the restriction that they should present textual content at some level. Since the RVL-CDIP
is a subset of the IIT-CDIP Test Collection 1.0 [44] but in lower resolution, we decided
to use the corresponding 300 dpi images from the original IIT-CDIP dataset (the resolu-
tion matches that of the evaluation datasets). It is worthy to mention that the scanning
resolution is up to the user once the paper shreds are available.

3.2.2 Evaluation Datasets

Three datasets were used to evaluate the methods: S-Marques, S-Isri-OCR, and S-Cdip

(the last is a contribution of this work). The “S-” prefix stands for mechanically “shredded”
and was used to differentiate from the training datasets, which comprise the original
(unshredded) documents.

s-marques . This collection refers to the 60 text documents in Portuguese of the strip-
shredded dataset produced by Marques and Freitas [53]. To create this dataset, the authors
collected 60 paper documents (a digital backup is also available along with the dataset)
and shredded them using a Cadence FRG712 strip-cut machine. The resulting shreds were
scanned at 300 dpi and then separated into JPEG files (one for each shred). Compared to
the other datasets, as shown in Figure 13, S-Marques’ shreds have a more uniform shape,
and are less damaged by the shredder’s blades, i. e., they are less curved and their borders
are less corrupted (smooth serrated effect).

s-isri-ocr . This dataset was originally produced and used in previous work of our
research group [61] in the context of this project. It was assembled from a set of 20 business
letters and legal reports of the ISRI-Tk OCR collection, the same set used in [3] to assess
the reconstruction of simulated-shredded documents. The digital documents were printed
onto A4 paper and subsequently submitted to a Leadership 7348 strip-cut paper shredder.
To expedite the acquisition process, the shreds were spliced onto a high-contrast paper,
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and, after scanning (at 300 dpi), they were segmented and stored individually in JPEG
files. This process is more detailed in [61].

s-cdip . The S-Cdip dataset, which is a particular contribution of this work, is the
shredded version of the 100 digital documents in Cdip. The same methodology to create
S-Isri-OCR was also adopted for this dataset. As illustrated in Figure 13, the shreds of
S-Isri-OCR and S-Cdip depict a higher degree of vertical misalignment in view of S-
Marques, as well as more damage at their extremities.

3.2.3 Experiments

In the preliminary work [62], the experiments were not cross-database since the docu-
ments of S-Isri-OCR were reconstructed with a model trained on documents of the ISRI-
OCR Tk collection. In practice, such experiments assume the availability of training data
that share significant appearance and structural similarities with test data. For a more
realistic scenario, the experiments conducted here followed a cross-database protocol in
which testing on S-Cdip (the dataset produced in this work) leverages the model trained
on Isri-OCR, and testing on S-Isri-OCR and S-Marques uses the model trained on Cdip.

The evaluation is performed incrementally so that new shredded documents are grad-
ually introduced to the reconstruction instance. For the sake of notation, let k denote
the number of mixed documents of a particular instance. The main purpose of the incre-
mental approach is to evaluate whether the reconstruction accuracy degrades with the
increase of k. Due to the processing burden of this type of experiment, the ablation study
evaluates incrementally k = 1, 2, . . . , 5 documents at a time, while the other two experi-
ments also include k = 10, 15, 20, . . . ,ndocs, where ndocs denotes the size of the current
evaluation dataset (60, 20, or 100, as described in Section 3.2.2). For each k value, a set of
k-size instances (i. e., k mixed documents) should be sampled. Note that the size of the
sample space varies significantly over k. For example, there are

(
100
2

)
= 4,959 possible

ways of combining 2 S-Cdip’s documents, whereas for k = 3, this number rises to 161,700.
Instead of independently sampling combinations, the test instances are assembled in such
a way that the k-size instances are obtained by adding a single document to each instance
of size k− 1. We assume the documents are arbitrarily ordered and that k-size instances
(i. e., groups of k documents) are assembled by grouping consecutive documents.

Formally, let {Si}
ndocs

i=1 be the collection of shredded documents (the order is arbitrary) to
be reconstructed, and Sa:b = {Si}

b
i=a a subset of this collection. Then, the test instances for

a particular k include the sets S1:k, S2:(k+1), . . ., S(ndocs−k+1):ndocs
. Note that this yields

overlapping of test instances for the same k, as well as across k values.

experiment 1 : default configuration. In the first experiment, the incremental
procedure was used to assess the robustness of the proposed method in its default param-
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eters’ configuration: ρblack = 0.2 and samples size of 32× 32 (defined in Section 3.1.1.2),
and vshift = 10 (defined in Section 3.1.2.1).

experiment 2 : ablation study. For the second experiment, an ablation study was
carried out to evaluate the sensitivity of the system with respect to the aforementioned
parameters, one at a time. The parameters’ domain for ρblack, sample size, and vshift

were set to {0.1, 0.2, 0.3}, {32× 32, 32× 64, 64× 32, 64× 64}, and {0, 5, 10, 20}, respectively.
The investigation of ρblack aims to verify the system’s robustness with respect to the
amount of information contained in the samples, which can vary for different font types
and sizes. The desirable behavior is that the average accuracy holds for the widest possible
range of ρblack. The motivation behind the analysis of the sample sizes is to confirm
whether the locality assumption holds or not. Notice that training with 64-width samples
requires adjusting the input window to 3000× 64 in the pairwise compatibility evaluation
stage (Section 3.1.2.1). The analysis of vshift evaluates the need for (vertically) aligning
the shreds at test time since no image processing was previously applied to this intent.

experiment 3 : comparative evaluation. The final experiment aims at compar-
ing our method – referred to as Deeprec-CL (Deep reconstruction based on classificaton)
– against three relevant methods of literature, here designated with the name of the first
author. The first is referred to as Paixão, our preliminary method based on shape matching
of characters’ fragments. [61]. The original implementation, intended for single-document
reconstruction, uses caching of shape dissimilarities to improve time efficiency, which, on
the other hand, compromises memory scalability for multi-page reconstruction. Therefore,
reconstruction with this method was limited to k = 5 documents. The second method is
the one proposed by Liang and Li [47], which is referred to as Liang. Due to time restric-
tions of the provided implementation4, the multi-reconstruction experiment was run only
for the datasets S-Marques and S-Isri-OCR limited to k = 3 documents. We adopted the
parameters for the real-shredded instances 1 and 2 (a total of 3) of the original work. For
the matter of consistency, we configured the OCR software on which the Liang method
relies to the Portuguese language when testing on S-Marques. The last method, referred
to as Marques [53], relies on edge pixel dissimilarity for compatibility evaluation and was
chosen due to its superior performance compared to other methods of literature, as can be
seen in [61, 62]. While Paixão and Deeprec-CL share the same optimization formulation,
Marques uses a simple greedy nearest-neighbor approach. Thus, for a fairer comparison,
our system was also evaluated with Marques’ optimization model to emphasize the role
of compatibility evaluation in producing accurate reconstructions. The modified method
is referred to as Deeprec-CL-NN.

4 https://github.com/xmlyqing00/DocReassembly.

https://github.com/xmlyqing00/DocReassembly
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3.2.4 Experimental Platform

The experiments were carried out on two machines: (M1) an Amazon AWS instance with
8 vCPUs (2.3GHz), 60GB RAM, and a GPU NVIDIA Tesla V100 (16GB); (M2) an Intel
Xeon E7-4850 v4 (2.10GHz) with 128 vCPUs, 252GB RAM. The ablation study was fully
performed on M1. The methods Liang, Paixão, and Marques, which do not require GPU
processing, were conducted on M2. As Liang leverages OpenMP5 directives to improve ef-
ficiency, we used 240 threads (120 vCPUs) in the experiments. For Deeprec-CL/Deeprec-
CL-NN, the compatibility evaluation in experiments 1 and 3 was carried out on M1, while
the optimization process was performed in M2 due to the large memory resources. The
proposed system was implemented in Python with TensorFlow for training and inference,
and with OpenCV for image processing. The code, pre-trained models, and datasets are
publicly available at https://github.com/thiagopx/deeprec-pr20.

3.3 results and discussion

3.3.1 Experiment 1: Default Configuration

1 5 10 20 30 40 50 60 70 80 90 100
k

90

95

100

ac
cu

ra
cy

(%
) dataset

S-Marques
S-Isri-OCR
S-Cdip

Figure 14: Multi-reconstruction accuracy across datasets (k is the number of mixed documents).
The square markers represent the mean values w.r.t. the documents instances, and the
shadowed areas represent the 95% confidence interval.

Figure 14 shows the multi-reconstruction accuracy (mean and 95% confidence interval)
obtained with the proposed method (default parameters) for three evaluation datasets.
Overall, the proposed method performed above 90% for the three datasets, and, compar-
atively, S-Cdip was verified, as expected, the most challenging test collection (an example
of reconstruction is shown in Figure 15). The confidence interval tends to be wider as
fewer documents are available, which is the case of S-Isri-OCR. Furthermore, the accu-
racy tends to stabilize for large k, which means that the insertion of new documents into
the reconstruction instance does not degrade accuracy, even though it increases consider-
ably the complexity of the problem.

Breaking down the performance on the S-Cdip dataset, Figure 16 shows accuracy box-
plots for single-reconstruction (k = 1) across the dataset categories. From the 100 docu-

5 www.openmp.org.

https://github.com/thiagopx/deeprec-pr20
www.openmp.org
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Figure 15: Reconstruction of a test instance comprising shreds from k = 5 documents of
S-Cdip with accuracy of 82.93%. The shreds were placed side-by-side without
any rotation correction. Each new inserted shred was vertically shifted according
to the optimal s value in Equation (4). The full reconstruction (k = 100) can
be viewed at https://htmlpreview.github.io/?https://github.com/thiagopx/docs/
blob/master/results_s-cdip.html.
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Figure 16: Reconstruction accuracy for S-Cdip across categories (k = 1).

ments, 32 were perfectly reconstructed, and only 5 had accuracy lower than 70%. Remark-
ably, the reconstruction of handwritten documents achieved high accuracy (8 in 10 were
superior to 90%) although no handwritten document was used to train the compatibility
evaluation model. For documents of the type form, all reconstructions achieved accuracy
higher than 90%, being 5 of them perfect. The results for the handwritten and form cat-
egories show that learning is not restricted to the symbolic level, and that lower-level
features (e. g., strokes and horizontal lines) can also be learned by the model.

As seen in Figure 16, the letter category has a larger variability in comparison to the
others. In this category, there are three documents with very small fonts and whose shreds
have degraded borders beyond the regular corruption found in most shreds. Although the
accuracy for these three documents is low (< 75%), such values are not low enough to be
considered outliers, which explains the elongated aspect of the letter’s boxplot. The poor
outlier performance, more evident in the budget and email categories, is mainly caused by
three factors that may occur in combination or separately: (i) low quality of text symbols
(i. e., low resolution, corrupted data), large flat areas (i. e., low amount of information), or
(iii) large areas covered by patterns not learned by trained model.

https://htmlpreview.github.io/?https://github.com/thiagopx/docs/blob/master/results_s-cdip.html
https://htmlpreview.github.io/?https://github.com/thiagopx/docs/blob/master/results_s-cdip.html
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(a)

Top 800 rows

(b)

Figure 17: Challenging reconstruction instances (shreds are placed on the ground-truth order).
Positive (green) and negative (red) activation maps for the adjacent shreds were super-
imposed onto the shreds. (a) Email with large blank areas and corrupted characters for
which the reconstruction accuracy was 52%; (b) Budget document with a large grid pat-
tern. The vertical lines of the grid induce negative activation (red) when they get close
to the cut section (center of the network visual field). By cropping the top 800 rows of
the shreds (roughly indicated by the orange area), the accuracy rises from 45.83 to 75%.

These challenging factors are illustrated in Figure 17. The shreds were placed side-by-
side in the ground-truth order and the activation maps from SqueezeNet’s last convolu-
tional layer were adjusted and superimposed on the shreds’ boundary zones. Green areas
represent a high degree of compatibility, while red ones represent the opposite. Neutral
zones are usually gray, indicating a balance between the positive and negative classes.
Nonetheless, it can be noticed in Figure 17a reddish areas for neutral zones due to bias,
or caused by noise (small black regions) in the highlighted areas close to the borders.

In the first case (Figure 17a), an email document with large blank areas and corrupted
characters was reconstructed with 52% of accuracy. Due to the low amount of information,
the compatibility evaluation and, as a consequence, the reconstruction accuracy is more
sensitive to corrupted data. The second document (Figure 17b) is a budget with a large
area covered by a grid pattern, and for which the obtained accuracy was 45.83%. Unlike
the horizontal lines, which are captured by the model, the vertical lines lead to erroneous
evaluations by the model. This is justified by the scarcity of such patterns in the training
set, which comprises images from Isri-OCR. By restricting the shreds to their first 800

rows (orange highlighted region in Figure 17b), the reconstruction accuracy increases to
75%. Although the aforementioned cases yielded low-accuracy reconstructions, it does
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Figure 18: Investigation of the accuracy sensitivity w.r.t. the parameter ρblack.
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Figure 19: Investigation of the accuracy sensitivity w.r.t. the size of training samples.

not mean that the same behavior will invariably be observed for documents with similar
layout/features. The reconstruction quality also depends on where the cuts take place. In
S-Cdip, for example, there are an email and a budget document visually similar to those
in Figure 17a for which the accuracy was 80 and 84%, respectively.

3.3.2 Experiment 2: Ablation Study

The results for the three investigated parameters are summarized in Figures 18, 19, and
21. Figure 18 shows the accuracy sensitivity with respect to the parameter ρblack. Ideally,
the system is expected to be robust to changes in this parameter. From the results, it can
be observed a wider variation range for k = 1. The performance difference becomes less
noticeable as k increases, which represents a more realistic scenario for the reconstruction
application.

Figure 19 shows the impact of the size of training samples on the final reconstruction
performance. In general, the system generalizes better across the datasets for samples with
reduced width, i. e., 32× 32 and 64× 32. By keeping the samples narrower, visual ambigu-
ity (illustrated in Figure 20) can be explored in compatibility evaluation of scarce/unseen
patterns in the training data. For instance, the model can perceive a “wo” association
as valid (as in “world”) if samples with “vo” (as in “voxel”, “volume”, and “reservoir”)
were observed during the training. The results for 64× 64 samples were competitive in
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vo wo
(a)

vo wo
(b)

Figure 20: The visual ambiguity between “wo” and “vo” is illustrated in (a) for a 32× 32 input
window highlighted in red. Such ambiguity is not seen (b) after increasing the width of
the input window (highlighted in blue).
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Figure 21: Investigation of the accuracy sensitivity w.r.t. the parameter vshift.

terms of accuracy on the S-Isri-OCR, where the documents have primarily textual content.
However, the performance dropped significantly for documents with a higher density of
graphical elements (e. g., forms and budgets) present in S-Marques and S-Cdip.

Finally, Figure 21 shows the influence of the vertical shift range parameter (vshift) on
the reconstruction performance. In practice, no sensitivity to this parameter was observed
for S-Marques since the shreds for this collection are (practically) vertically aligned, as
exemplified in Figure 13a. In contrast, the results on the S-Isri-OCR and S-Cdip datasets,
which better depict real-world conditions, show the relevance of properly treating the mis-
alignment between shreds. The misalignment degree is higher for S-Cdip, which explains
the consistent accuracy improvement with the increase of vshift.

3.3.3 Experiment 3: Comparative Evaluation

Figure 22 shows the comparative performance with the literature. The average accuracy
of the proposed method using Concorde (Deeprec-CL) was consistently superior to the
compared methods. Additionally, it demonstrated greater robustness, which is mainly
evidenced by the stability of the accuracy curve with the increase of k.

Unlike the proposed method, the modified version (Deeprec-CL-NN) – intended for
comparison with Marques – presented a decay in accuracy with the increase of k. Nev-
ertheless, it greatly outperformed Marques, which also uses the same optimization ap-
proach, and Paixão, which leverages Concorde. In fact, Marques struggles with black-
white documents since it is based on color features. Moreover, it is very sensitive to the
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Figure 22: Comparative accuracy performance: the proposed approach achieved the highest accu-
racy for all three test sets.

damage on the shreds’ borders caused by the mechanical fragmenting process, and to
the vertical misalignment of the shreds. Both issues are accentuated in the S-Isri-OCR
and S-Cdip datasets, resulting in a significant drop in performance when compared to
S-Marques. It can also be observed that the accuracy of Paixão degrades more sharply
for S-Cdip, which is explained by the large presence of pictorial elements (as depicted
in Figure 17b), and also by a greater diversity of symbols in different font types, sizes,
and styles (including handwritten characters). When mixing documents, such diversity
becomes a critical factor since Paixão assumes a fixed-size alphabet in which each symbol
has a unique representative. For single-reconstruction (k = 1), Liang was capable of recon-
structing 7 pages of S-Marques (in a total of 60) with 100% of accuracy. These instances
have a great concentration of text and no pictorial content. Nonetheless, the average accu-
racy considering all the 60 pages was under 50% with a sharp decay as k increases. The
observed decay corroborates the scalability issue raised by the authors and mentioned in
Section 2.2.2. Like Marques, the accuracy was dramatically worse for S-Isri-OCR than for
S-Marques. This is because Liang strongly relies on the OCR capability of recognizing
full words on composition of shreds (visually similar to Figure 15), and such capability is
substantially affected by geometric distortion between shreds.
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Figure 23: Comparative time performance (measured on S-Marques and S-Isri-OCR). The dif-
ference between Marques and the proposed method is better noticed in (b). Despite
Marques is very efficient, it does not deliver accurate solutions. The proposed approach
is a feasible alternative since it reaches accurate solutions and is significantly more scal-
able than Paixão and Liang.

Besides reaching better accuracy, the proposed approach is also remarkably more scal-
able in terms of time performance than Paixão and Liang, as seen in Figure 23. Time
scalability is a critical issue in real scenarios because it is expected much more than 5

shredded pages to be reconstructed. Note, in particular, that the time performance of
Liang was the worst even leveraging heavy parallelism (240 threads). This is due to the
overhead introduced by successive calls to the OCR software, which is the core of their
method. Conversely, Marques is very time efficient, but, as shown in Figure 22, it deliv-
ered low accuracy reconstruction. Nonetheless, Marques’ time performance will serve as
the lower bound of efficiency for future optimizations of the proposed method.

3.4 concluding remarks

This chapter addressed the classification-based approach for reconstruction of mixed
text documents focusing on the central problem of evaluating the compatibility between
shreds. The proposed segmentation-free deep learning approach has enabled faster and
more robust reconstruction of strip-shredded documents in more realistic scenarios and it
also has the benefit of self-supervised learning, which facilitates scaling the training data.

To enable a better and more extensive evaluation, we introduced a dataset compris-
ing 100 mechanically-shredded documents (2,292 shreds) with diverse layout. Despite the
challenging scenarios, real-world cross-database experiments showed that our method
achieved average accuracy superior to 90% for different quantities of mixed documents.
Nevertheless, the absence or scarcity of some patterns may hamper the proper reconstruc-
tion of the documents. A possible way to solve this problem is fine-tuning the model with
samples from the inner region of the shreds belonging to the test documents themselves.
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The ablation study evidenced that small and local samples are more effective for learn-
ing the compatibility between shreds. It is important, though, to consider this result in
view of the limited diversity of the training data produced from relatively – in the con-
text of deep learning – few documents. Additionally, the study showed the relevance of
treating the misalignment between shreds at test time. An alternative approach for this
issue is augmenting training data by simulating vertical misalignment. This would save
processing time during the online reconstruction stage but could increase the complexity
of the problem.

Comparative experiments showed that the accuracy of the proposed method (even in
the modified version) was superior to the current state-of-the-art. When compared to
Paixão [61], for instance, our method generalized better for documents with a more di-
verse layout and appearance, and also scaled more time-efficiently for the multi-page
scenario. Furthermore, the time savings obtained by Marques [53] (based on the naive dis-
similarity between edge pixels) were shown at the price of low reconstruction accuracy.
Finally, the recently published Liang method [47] performed significantly worse than the
proposed method in terms of accuracy, in addition to a limited time-scalability to real-
world scenarios comprising several documents.

In addition to the mentioned directions, there is an important issue to be addressed: the
time performance when scaling up to larger instances, i. e., when there are more shreds to
be analyzed. This motivated us to develop a novel deep learning approach that can still
benefit from the self-supervised learning paradigm, however with significant effort reduc-
tion in processing the pairwise compatibilities, therefore improving the time performance
of the overall pipeline. This novel approach is presented in the following chapter.
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D E E P R E C O N S T R U C T I O N : A N A S Y M M E T R I C M E T R I C - L E A R N I N G
A P P R O A C H

The critical issue for the time performance of the classification-based approach is the need
for inference whenever each pair of shreds is evaluated. In other words, considering a net-
work inference as the time unit cost, we can say that such an approach scales quadratically
with the number of shreds.

To deal with this issue, we discuss in this chapter an approach in which the number of
inferences scales linearly with the number of shreds, rather than quadratically. For that,
the raw content of each shred is projected onto a space in which the distance metric is
proportional to the compatibility. The projection is performed by a deep model trained
using a metric learning approach. The goal of metric learning is to learn a distance func-
tion for a particular task. It has been used in several domains, ranging from the seminal
work of the Siamese networks [14] in signature verification, to an application of the triplet
loss [98] in face verification [85], to cite a few. Unlike most of these works, however, the
proposed method does not employ the same model for semantically different samples.
In our case, right and left shreds are (asymmetrically) projected by two different models
onto a common space so that the measured distance between them are interpreted as cost
in the optimal reconstruction framework.

The following contributions are covered in this chapter:

1. A compatibility evaluation method leveraging metric learning and the asymmetric
nature of the problem;

2. As the classification-based approach, the proposed method does not require manual
labels (trained in a self-supervised way) nor real data (the model is trained with
artificial data);

3. Our proposal scales the inference linearly rather than quadratically as in the current
state-of-the-art, achieving a speed-up of ≈ 22 times for 505 shreds, and even more
for a higher number of shreds.

The following sections cover, respectively, (i) the reconstruction method, (ii) the experi-
mental assessment, (iii) the discussion of the results, and (iv) the final remarks.

4.1 the reconstruction method

The novelty in the proposed reconstruction method is the metric-learning approach for
compatibility evaluation whose general intuition is illustrated in Figure 24 (real embed-

35
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dings are shown in Appendix A.3). The underlying assumption is that two side-by-side
shreds are globally compatible if they locally fit each other along the touching boundaries.
The local approach relies on small samples (denoted by x) cropped from the boundary
regions. Instead of comparing pixels directly, the samples are first converted to an inter-
mediary representation (denoted by e) by projecting them onto a common embedding
space Rd. Projection is accomplished by two models (CNNs): fleft and fright, f• : x 7→ e,
specialized on the left and right boundaries, respectively.

Figure 24: Metric learning approach for shreds’ compatibility evaluation. Embeddings generated
from compatible regions are expected to be closer in the embedding space, whereas
those from non-fitting regions are expected to be mapped far from each other.

Assuming that these models are properly trained, boundary samples (indicated by the
orange and blue regions in Figure 24) are then projected, so that embeddings generated
from compatible regions (mostly found on positive pairings) are expected to be closer in
this metric space, whereas those from non-fitting regions should be farther apart. There-
fore, the global compatibility of a pair of shreds is measured in function of the distances
between corresponding embeddings. More formally, the cost function in Equation (1) is
such that:

ϕ(si, sj) ∝ dist(ei,ej), (5)

where e• represents the embeddings associated with the shred s•, and dist is a distance
metric (e. g., Euclidean).

The interesting property of this evaluation process is that the projection step (network
inference) can be decoupled from the distance computation. In other words, the process
scales linearly since each shred is processed once by each model, and pairwise evaluation
can be performed with the embeddings produced. Before diving into the details of the
evaluation, we first describe the self-supervised learning of these models. Then, a more
in-depth view of the evaluation will be presented, including the formal definition of a
cost function that composes the global objective function (Equation (1)).
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4.1.1 Learning Projection Models

For producing the shreds’ embeddings, the models fleft and fright are trained simul-
taneously with small s× s samples. The two models have the same fully convolutional
architecture: a base network for feature extraction appended with a convolutional layer.
The added layer is intended to work as a fully connected layer when the base network is
fed with s× s samples. Nonetheless, weight sharing is disabled since models specialize on
different sides of the shreds, hence deep asymmetric metric learning. The base network
comprises the first three convolutional blocks of SqueezeNet [35] architecture (i. e., until
the fire3 block).

SqueezeNet has been effectively used in distinguishing between valid and invalid sym-
bol patterns in the context of compatibility evaluation [62, 63], as discussed in the previ-
ous chapter. Nevertheless, preliminary evaluations have shown that the metric learning
approach is more effective with shallower models, which explains the use of only the first
three blocks. For projection onto Rd space, a convolutional layer with d filters of dimen-
sions s/4× s/4 (base network’s dimensions when fed with s× s samples) and sigmoid
activation was added to the base network.

Documents

positive

... ...

negative

Training
Samples
Extraction

... ...

Virtual
Shredding

Trained models

Figure 25: Self-supervised learning of the models with samples extracted from digital documents.

Figure 25 outlines the self-supervised learning of the models with samples extracted
from digital documents. First, the shredding process is simulated so that the digital docu-
ments are cut into equally shaped rectangular “virtual” shreds. Next, shreds of the same
page are paired side-by-side and sample pairs are extracted top-down along the touch-
ing edge: one sample from the s rightmost pixels of the left shred (r-sample), and the
other from the s leftmost pixels of the right shred (l-sample). Since shreds adjacency re-
lationship is provided for free with virtual shredding, sample pairs can be automatically
labeled as “positive” (green boxes) or “negative” (red boxes). Self-supervision comes ex-
actly from the fact that labels are automatically acquired by exploiting intrinsic properties
of the data.

Training data comprise tuples (xr, xl,y), where xr and xl denote, respectively, the r-
and l-samples of a sample pair, and y is the associated ground-truth label: y = 1 if the
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Figure 26: Learning projection models for shreds’ compatibility evaluation. The models are jointly
trained with sample pairs guided by the contrastive loss function. The input vectors for
the loss function are encoded as 1× 1× d tensors.
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Figure 27: Compatibility evaluation of a pair of shreds. Local embeddings, represented by the
h ′ × 1× d tensors L and R, are extracted along the boundary regions. Compatibility is
a real value given by the squared Euclidean distance between L and R (computed over
the flattened tensors).

sample pair is positive, and y = 0, otherwise. Training is driven by the contrastive loss
function [19]:

L(fleft, fright, xl, xr,y) =
1

2
{y · dist2 + (1− y) · [max(0,m− dist)]2}, (6)

where dist =
∥∥fleft(xl) − fright(xr)

∥∥
2

, and m is the margin parameter. For better under-
standing, an illustration is provided in Figure 26. The models handle a positive sample
pair that, together, composes the pattern “word”. Since it is positive (y = 1), the loss value
would be low if the resulting embeddings are close in Rd, otherwise, it would be high.
Note that weight-sharing would result in the same loss value for the swapped samples
(pattern “rdwo”), which is undesirable for the reconstruction application. Implementation
details of the sample extraction and training procedure are described in Section 4.2.

4.1.2 Pairwise Compatibility Evaluation

For compatibility evaluation, shreds’ embedding and distance computation are two de-
coupled steps. Figure 27 presents a joint view of these two steps for a better understand-
ing of the model’s operation. Strided sliding window is implicitly performed by the fully
convolutional models. To accomplish this, two vertically centered h× s regions of inter-
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est are cropped from the shreds’ boundaries (s is the sample size): Xr, comprising the s

rightmost pixels of the left shred, and Xl, comprising the s leftmost pixels of the right
shred. Inference on the models produces h ′ × 1× d feature volumes represented by the
tensors L = fleft(Xl) (l-embeddings) and R = fright(Xr) (r-embeddings). The h ′ rows
from the top to the bottom of the tensors represent exactly the top-down sequence of
d-dimensional local embeddings illustrated in Figure 24.

If it is assumed that vertical misalignment among shreds is not significant, compatibility
could be obtained by simply computing ∥R− L∥2. For a more robust definition, shreds
can be vertically “shifted” in the image domain to account for misalignment [62, 63].
Alternatively, we propose to shift the tensor L “up” and “down” δ units (limited to δmax)
in order to determine the best-fitting pairing, i. e., that which yields the lowest cost. This
formulation helps to save time since it does not require new inferences on the models.
Given a tensor T = (Ti,j,k)h ′×1×d, let Ta:b = (Ti,j,k)a⩽i⩽b, j=1, 1⩽k⩽d denote a vertical
slice from row a to b. Let R(i) and L(j) represent, respectively, the r- and l-embeddings
for a pair of shreds (si, sj). When shifts are restricted to the upward direction, the pairing
cost is defined by

ϕ↑(si, sj) = min
0⩽δ⩽δmax

∥∥∥R(i)
1:1+nrows

− L
(j)
1+δ:1+nrows+δ

∥∥∥
2

, (7)

where nrows = h ′−δmax is the number of rows effectively used for distance computation.
Analogously, for the downward direction,

ϕ↓(si, sj) = min
0⩽δ⩽δmax

∥∥∥R(i)
1+δ:1+nrows+δ − L

(j)
1:1+nrows

∥∥∥
2

. (8)

Finally, the proposed cost function is a straightforward combination of Equations (7)
and (8):

ϕ(si, sj) = min(ϕ↑(si, sj),ϕ↓(si, sj)). (9)

Note that, if δmax is set to 0 (i. e., no shifts), then nrows = h ′, therefore

ϕ(si, sjj) = ϕ↑(si, sj) = ϕ↓(si, sj) =
∥∥∥R(i) − L(j)

∥∥∥
2

. (10)

4.2 experimental assessment

The experiments aim to evaluate the accuracy and time performance of the proposed
metric learning approach – referred to as Deeprec-ML (Deep reconstruction based on
metric learning) –, as well as to compare with the literature in document reconstruction
focusing on the classification-based approach method presented in the previous section
[62, 63] (referred to as Deeprec-CL). For this purpose, we followed the basic protocol
proposed in [61] in which the methods are coupled to an exact optimizer (as described
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in Section 2.2.3) and tested on two datasets: S-Marques and S-Isri-OCR (introduced in
Section 3.2.2). Two different scenarios are considered here: single- and multi-page recon-
struction. The accuracy measure in Equation (2) is applied to evaluate the quality of the
reconstructions.

4.2.1 Implementation Details

sample extraction. Training data consist of 32 × 32 samples extracted from 100

binary documents (forms, emails, memos, etc.) scanned at 300 dpi of the IIT-CDIP Test
Collection 1.0 [44], i. e., the same documents comprising Cdip (Section 3.2.1). For sam-
pling, the pages are split longitudinally into 30 virtual shreds (estimated from usual A4

paper shredders). Next, the shreds are individually thresholded with Sauvola’s algorithm
[83] to cope with small fluctuations in pixel values of the original images. Sample pairs
are extracted page-wise, which means that the samples in a pair come from the same
document. The extraction process starts with adjacent shreds to collect positive sample
pairs (limited to 1,000 pairs per document). Negative pairs are collected subsequently, but
limited to the number of positive pairs. During extraction, the shreds are scanned from
top to bottom, cropping samples every two pixels. Pairs with more than 80% blank pixels
are considered ambiguous, and then they are discarded for future training. Finally, the
damage caused by mechanical shredding is roughly simulated with the application of
salt-and-pepper random noise on the two rightmost pixels of the r-samples, and the two
leftmost pixels of the l-samples.

training . The training stage leverages the sample pairs extracted from the collection
of 100 digital documents. From the entire collection, the sample pairs of 10 randomly
picked documents are reserved for validation where the best-epoch model should be se-
lected. By default, the embeddings dimension d is set to 128. The models are trained from
scratch (i. e., the weights are randomly initialized) for 100 epochs using the Stochastic Gra-
dient Descent (SGD) with a learning rate of 10−1 and mini-batches of size 256. After each
epoch, the models’ state is stored, and the training data are shuffled for the new epoch (if
any). The best-epoch model selection is based on the ability to project positive pairs closer
in the embedding space, and negative pairs far. This is quantified via the Standardized
Mean Difference (SMD) measure [20] as follows: for a given epoch, the respective fleft

and fright models are fed with the validation sample pairs and the distances among the
corresponding embeddings are measured. Then, the distance values are separated into
two sets: dist+, comprising distances calculated for positive pairs, and dist−, for neg-
ative ones. Ideally, the difference between the mean values of the two sets should be
high, while the standard deviations within the sets should be low. Since these assump-
tions are addressed in SMD, the best fleft and fright are taken as those which maximize
SMD(dist+,dist−).
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deeprec-cl . The classification-based approach (Deeprec-CL) was published in two
works – [62, 63] – with slight changes in the experimental setup. By the time the exper-
iments described in this chapter were performed, only [62] was available, being [63] a
work in progress. Therefore, the experiments with Deeprec-CL reflect majorly the imple-
mentation described in [62], however, we incorporated some features introduced in the
consolidated approach described in the previous chapter [63] to enhance comparison: (i)
the samples’ size was set to 32× 32; (ii) the optimization formulation was set to the opti-
mal one described in Section 2.2.3; and, finally, (iii) the training dataset was changed to
Cdip’s documents to enable cross-database experiments.

4.2.2 Experiments

The experiments rely on the trained models fleft and fright, as well as on the Deeprec-
CL’s model. As aforementioned, the latter was retrained on the Cdip’s documents to avoid
training and testing with documents of the same collection (ISRI OCR-Tk). In practice, no
significant change was observed in the reconstruction accuracy with this procedure.

The shreds of the evaluation datasets were also binarized [83] to keep consistency with
training samples. The default parameters of Deeprec-ML includes d = 128 and δmax = 3.
Non-default assignments are considered in two of the three conducted experiments, as
better described in the following.

experiment 1 : single-page reconstruction. This experiment aims to show
whether the proposed method is able to individually reconstruct pages with accuracy
similar to Deeprec-CL, and how the time performance of both methods is affected when
the vertical shift functionality is enabled since it increases the number of pairwise evalua-
tions. To this intent, the shredded pages of S-Marques and S-Isri-OCR were individually
reconstructed with Deeprec-ML and Deeprec-CL methods, first using their default con-
figuration, and after disabling the vertical shifts (in Deeprec-ML, it is equivalent to set
δmax = 0). Time and accuracy were measured for each run. For a more detailed analysis,
time was measured for each reconstruction stage: projection (pro) – applicable only for
Deeprec-ML–, pairwise compatibility evaluation (pw), and optimization process (opt).

experiment 2 : multi-page reconstruction. This experiment focuses on scala-
bility with respect to time while increasing the number of shreds in multi-page reconstruc-
tion. In addition to the time performance, it is essential to confirm whether the accuracy
of both methods remains comparable. Rather than individual pages, there are two large
reconstruction instances in this experiment: the 1,370 mixed shreds of S-Marques and
the 505 mixed shreds of S-Isri-OCR. Each instance was reconstructed with Deeprec-ML
and Deeprec-CL methods, but now only with their default configuration (i. e., vertical
shifts enabled). Accuracy and time (segmented by stage) were measured. Additionally,



4.3 results and discussion 42

time processing was estimated for different instance sizes based on the average elapsed
time observed for S-Isri-OCR.

experiment 3 : sensitivity analysis . The last experiment assesses how Deeprec-
ML is affected (time and accuracy) by testing with different embedding dimensions:
d = 2, 4, 8, . . . , 512. Note that this experiment demands the retraining of fleft and fright

for each d. After training, the S-Marques and S-Isri-OCR instances were individually
reconstructed, and then accuracy and time processing were measured.

4.2.3 Experimental Platform

The experiments were carried out in an Intel Core i7-4770 CPU @ 3.40GHz with 16GB
of RAM running Linux Ubuntu 16.04, and equipped with a TITAN X (Pascal) GPU with
12GB of memory. Implementation was written in Python 3.5 using Tensorflow for training
and inference, and OpenCV for basic image manipulation. The code, pre-trained models,
and datasets are publicly available at https://github.com/thiagopx/deeprec-cvpr20.

4.3 results and discussion

4.3.1 Experiment 1: Single-page Reconstruction

Method S-Marques ∪ S-Isri-OCR S-Marques S-Isri-OCR

Deeprec-ML 93.71± 11.60 93.14± 12.93 95.39± 6.02
Deeprec-CL [62, 63] 96.28± 5.15 96.78± 4.44 94.78± 6.78
Paixão et al. [61] 74.85± 22.50 71.85± 23.14 83.83± 18.12
Marques and Freitas [53] 23.90± 17.95 29.18± 17.43 8.05± 6.60

Table 1: Single-page reconstruction performance: average accuracy ± standard deviation (%). The
highest average value in each column is highlighted in bold.

A comparison with the literature on single-page reconstruction of strip-shredded doc-
uments is summarized in the Table 1. Given the clear improvement in the performance,
the following discussions will focus on the comparison with Deeprec-CL. The box-plots
in Figure 28 show the accuracy distribution obtained with Deeprec-ML and Deeprec-CL
for single-page reconstruction. Likewise Deeprec-CL, we also observe for Deeprec-ML
that vertical shifts affect only the S-Isri-OCR’s accuracy since the shreds in S-Marques

are practically aligned (vertical direction). The methods did not present a significant dif-
ference in accuracy for the dataset S-Isri-OCR. For S-Marques, however, Deeprec-CL
slightly outperformed Deeprec-ML: the latter – in its default configuration (vertical shift
“on”) – yielded accuracy of 93.14± 12.88% (arithmetic mean ± standard deviation), while
Deeprec-CL achieved 96.78± 4.44%. The higher variability in Deeprec-ML is mainly ex-

https://github.com/thiagopx/deeprec-cvpr20
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Figure 28: Accuracy distribution for single-page reconstruction with the proposed and Deeprec-
CL methods. Accuracies are calculated document-wise and the average values are rep-
resented by the red dashed lines.
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Figure 29: Time performance for single-page reconstruction. The stacked bars represent the aver-
age elapsed time for each reconstruction stage: projection (pro), pairwise compatibility
evaluation (pw), and optimization process (opt).

plained by the presence of documents with large areas covered by filled graphic elements,
such as photos and colorful diagrams (which were not present in the training). By disre-
garding these cases (12 in a total of 60 samples), the accuracy of our method increases to
95.88%, and the standard deviation drops to 3.84%.

Time performance is shown in Figure 29. The stacked bars represent the average elapsed
time in seconds (s) for each reconstruction stage: projection (pro), pairwise compatibility
evaluation (pw), and optimization process (opt). With vertical shift disabled (left chart),
Deeprec-ML spent much more time producing the embeddings (1.075s) than in pairwise
evaluation (0.063s) and optimization (0.092s). Although Deeprec-CL does not have the
cost of embedding projection, pairwise evaluation took 1.481s, about 23 times the time
elapsed in the same stage for Deeprec-ML. This difference becomes more significant (in
absolute values) when the number of pairwise evaluations increases, as can be seen with
the enabling of vertical shifts (right chart). In this scenario, pairwise evaluation took 0.389s
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Figure 30: Local samples nearest neighbors. In the top row, the largest square is the “query” sam-
ple (before binarization) followed, below, by its binary version and its three nearest
neighbors side-by-side (with the closest in the top row). The blue and orange samples
were projected by fright and fleft, respectively. The bottom row shows some examples
in which the “query” is projected by the fleft instead.

in our method, against the 10.197s spent in Deeprec-CL (≈ 26 times slower). Including
the execution time of the projection stage, our approach yielded a speed-up of almost
7 times for compatibility evaluation. Note that, without vertical shifts, the accuracy of
Deeprec-CL would drop from 94.77 to 86.74% in S-Isri-OCR.

Finally, we provide an insight into what the embedding space using Deeprec-ML might
look like by showing a local sample and its three nearest neighbors. As shown in Figure 30,
the models tend to form pairs that resemble something realistic. It is worth noting that
the samples are very well aligned vertically, even in cases where the sample is shifted
slightly to the top or bottom and the letters are appearing only in half (see more samples
in Appendix A).

4.3.2 Experiment 2: Multi-page Reconstruction

For multi-page reconstruction, Deeprec-ML achieved 94.81 and 97.22% of accuracy for S-
Marques and S-Isri-OCR, respectively, whereas Deeprec-CL achieved 97.08 and 95.24%.
Overall, both methods yielded high-quality reconstructions with a low difference in ac-
curacy (approx. ±2 p.p.), which is an indication that their accuracy is not affected by the
increase of instances.

Concerning time efficiency, however, the methods behave notably differently, as evi-
denced in Figure 31. The left chart shows the average elapsed time of each stage to process
the 505 shreds of S-Isri-OCR. In this context, with a larger number of shreds, the optimiza-
tion cost became negligible when compared to the time required for pairwise evaluation.
Remarkably, Deeprec-CL demanded more than 80 minutes to complete the evaluation
stage, whereas our method took less than 4 minutes (speed-up of ≈ 22 times). Based on
the average time for the projection and the pairwise evaluation, estimation curves were
plotted (right chart) indicating the predicted processing time in function of the number
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Figure 31: Time performance for multi-page reconstruction. Left: the time demanded in each stage
to reconstruct S-Isri-OCR entirely (n = 505 shreds). Right: predicted processing time in
function of the number of shreds.

of shreds (n). The last n value was 30K, which corresponds nearly to 100 pages. Viewed
comparatively, the growth of the proposed method’s curve (in blue) seems to be linear,
although pairwise evaluation time (not the number inferences) grows quadratically with
n.

Equation 11 describes the machine-independent speed-up ratio between Deeprec-ML
and Deeprec-CL:

speed-ratio =
n(n− 1)tinf

2n · tinf +n(n− 1)tdist

=
1

2/(n− 1) + tdist/tinf
,

(11)

where tinf and tdist stand for, respectively, inference time and distance computation
time (used to compute Deeprec-ML). The assumption of our method is that tinf ≫ tdist,
i. e., tinf/tdist ≫ 1. For n values such that tdist/tinf ≪ 2/(n− 1), the speed-up can be
approximated by (n− 1)/2 = O(n). For n → +∞, in its turn, the speed-ratio tends to the
constant tinf/tdist, which sets a theoretical limit. In practice, the greater the number of
shreds are, the higher the speed-up ratio is.

4.3.3 Experiment 3: Sensitivity Analysis

Figure 32 shows, for single-page reconstruction, how accuracy and time processing (mean
values over pages) are affected by the embedding dimension (d). Remarkably, projecting
onto 2-D space (d = 2) is sufficient to achieve average accuracy superior to 90%. The
highest accuracies were observed for d = 8: 94.57 and 97.27% for S-Marques and S-
Isri-OCR, respectively. Also, the average reconstruction time for d = 8 was 1.224s, which
represents a reduction of nearly 23% when compared to the default value (128). For higher
dimensions, accuracy tends to decay slowly (except for d = 256). Overall, the results
suggest that there is space for improvement in accuracy and processing time by focusing
on small values of d, which will be better investigated in future work.
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Figure 32: Sensitivity analysis w.r.t. embeddings dimension (d). The best accuracy was observed
for d = 8: 94.57 and 97.27% for S-Marques and S-Isri-OCR, respectively. This reduced
embedded size yielded a reduction of 23% on processing time.

4.4 concluding remarks

This chapter addressed the improvement of scalability (time performance) for reconstruc-
tion of shredded text documents. The core of the proposal is the metric learning-based
approach for shreds’ compatibility evaluation in which the number of inferences scales
linearly rather than quadratically [62, 63] with the number of shreds of the reconstruction
instance. As the alternative deep learning method, this new method is trained with artifi-
cially generated data (i. e., does not require real-world data) in a self-supervised way (i. e.,
does not require manual annotation).

Comparative experiments for single-page reconstruction showed that the proposed
method can achieve accuracy comparable to the state-of-the-art with a speed-up of ≈ 7

times on compatibility evaluation. Experiments were also conducted in a more realistic
scenario: multi-page multi-document reconstruction. In this scenario, the benefit of the
proposed approach is even greater: our evaluation compatibility method takes less than 4

minutes for a set of 20 pages, compared to the approximate time of 1 hour and 20 minutes
(80 minutes) of Deeprec-CL (i. e., a speed-up of ≈ 22 times), while preserving a high accu-
racy (97.22%). Additionally, we show that the embedding dimension is not critical to the
performance of our method, although a more careful tuning can lead to better accuracy
and time performance.

Despite the achieved results, we showed that the current metric learning loses accuracy
when dealing with pictorial content instead of text. Therefore, future work will investigate
how to explore more rich graphic content in a self-supervised way to enhance the training
of the models.



5
A H U M A N - I N - T H E - L O O P R E C O N S T R U C T I O N F R A M E W O R K

The previous chapters discussed the two deep learning approaches for automatic recon-
struction developed in the context of this thesis. Despite the remarkable results, it should
be considered that the proposed models may fail in coherently measuring the fitness of
the shreds, limiting the reconstruction accuracy. A particular way to obtain better solu-
tions is to introduce active human supervision (semi-automatic reconstruction). Inspired
by the active learning literature [21, 80, 86], the reconstruction process can be modeled
as a loop where, in each iteration, the human is queried to provide inputs, and a new
solution is attained.

This chapter discusses our human-in-the-loop (HIL) framework for reconstruction of
mechanically strip-shredded documents. The core of the framework is the recommender
module, which is responsible for selecting pairs of adjacent shreds of a solution for anno-
tation. The conducted experiments considered different workloads (number of pairs to be
annotated) and different numbers of loop iterations.

In summary, the main contributions covered in this chapter are:

• A human-in-the-loop recommendation-based framework (or simply HIL framework)
for the reconstruction of strip-shredded documents;

• Four query strategies for recommending pairs of shreds to be annotated;

• A novel experimental methodology that assesses the impact of human labor on the
quality of the reconstructions: results have shown that a user workload of 25% can
lead to more than 4 p.p. of accuracy improvement (> 40% of error reduction) on the
deep learning methods.

The chapter is organized into four main sections addressing the (i) HIL framework, (ii)
the experimental assessment, (iii) the discussion of the results, and (iii) the concluding
remarks.

5.1 hil framework

The proposed HIL reconstruction framework works iteratively, as illustrated in Figure 33

(the superscript k ⩾ 0 indicates the current iteration). The automatic part of the framework
(above the dashed line) comprises three elements: a cost matrix Φ(k), an optimization
solver that computes a solution π

(k)
S , and the recommender module, which determines

a query set Q(k) comprising the pairs of adjacent shreds of π
(k)
S to be analyzed. The

human role represented below the dashed line is to split the query into positive (Q(k)
+ )

47
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Figure 33: Overview of the proposed HIL reconstruction framework. The automatic part locates
above the dashed line. A reconstruction loop works as follows. First, the cost function
Φ(k) is computed/edited. Then an optimization solver produces a solution π

(k)
S based

on such costs. Next, the recommender module determines a query set comprising pairs
of shreds for annotation (positive or negative). Finally, these labels are used to edit the
cost matrix. The process repeats until a predefined number of iterations is reached.

and negative (Q(k)
− ) pairs. The positive pairs are those to be grouped (locked), and the

negatives are those to be set apart (forbidden). Initially, when k = 0, the costs Φ(0) are
fully defined by a third-party procedure, usually the cost computation module of the
reconstruction algorithms. From this perspective, π(0)

S represents the solution obtained
without interaction with the user. For the next iteration, the cost matrix is edited to reflect
the human intervention according to Equation (12):

Φ
(k+1)
i,j =



−∞, if (si, sj) ∈ Q
(k)
+

+∞, if (si, sj) ∈ Q
(k)
−

+∞, if ∃j ′[(si, sj ′) ∈ Q
(k)
+ ]

+∞, if ∃i ′[(si ′ , sj) ∈ Q
(k)
+ ]

Φ
(k)
i,j , otherwise.

(12)

The first case represents the “lock” operation, while the following three cases represent
the “forbid” operation. Cases three and four check whether there exists a shred out of
the pair that should be locked to si or sj, implying that (si, sj) is negative. If none of the
above situations is met, nothing can be said about the pair. Therefore, the cost remains
unaltered for the next iteration.

Ideally, the annotation effort (workload) for improving a solution should be minimal,
making the query strategy a critical element of the framework. We conjecture that it is
more relevant to repel the negative pairs than lock the positives. Therefore, the devel-
oped strategies focus on finding potentially wrong pairs to compose the queries. These
strategies are described in the rest of this section. For simplicity of notation, the iteration
superscript k will be omitted.
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5.1.1 Optimality-based Strategies

The base (deterministic) algorithm for the optimality-based query strategies (Opt-R and
Opt-RL) is presented as follows. Let PS = {(sπ1

, sπ2
), (sπ2

, sπ3
), . . . , (sπn−1

, sπn)} denote
the consecutive pairs of a solution πS:

1. Predict (using some criteria) each pair (sπi
, sπi+1

) ∈ PS as positive or negative fol-
lowing strictly the left-to-right order (i = 1, 2, . . . ,n− 1);

2. If the current pair was predicted negative, insert it into the beginning of a list L;

3. If positive, append it onto the end of L;

4. Finally, select the first nquery pairs of L for user annotation (i. e., verify whether
each pair is in fact negative).

In this algorithm, the prediction step relies on two desirable properties of a well-designed
cost function:

• Right-shred optimality: ϕ(si, si+1) < ϕ(si, sj ′), for all j ′ ̸= i+ 1;

• Left-shred optimality: ϕ(sj−1, sj) < ϕ(si ′ , sj), for all i ′ ̸= j− 1.

Right-shred optimality states that, given a shred si, the correct right shred (si+1) should
yield the lowest cost when compared to any other possible matches on the right side.
Similarly, in left-shred optimality, given a shred sj, the correct left neighbor (sj−1) should
be the minimum-cost candidate. Two query strategies are derived from incorporating
these properties into the base algorithm. The first, Opt-R, predicts a pair as positive iff it
fulfills the right-shred optimality property. The second, Opt-RL, is more restrictive since
it assumes that a pair is positive iff both left- and right-shred optimality properties are
met.

5.1.2 Uncertainty-based Strategies

The two proposed query uncertainty-based strategies (Unc-R and Unc-RL) correlate po-
tentially negative pairs with a high degree of uncertainty, which, in this paper, relies on
the entropy measure [88]. The (deterministic) algorithm that implements both strategies
consists in sorting the pairs of the solution by decreasing order of uncertainty and select-
ing the first nquery pairs for user annotation.

In our framework, the entropy measure quantifies the uncertainty degree in predicting
the true neighbor of a shred based on the relative costs to the other shreds. The more uni-
form the relative costs are (high entropy), the less certain the true neighbor prediction is.
Two probability distributions are considered for entropy calculations. The first, Prr(sj | si),
defines the probability for a right-shred sj conditioned on a left-shred si as left shred.
Analogously, fixing a right shred sj, Prl(si | sj) defines the probabilities for candidate
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left shreds si. The distributions rely on the softmax function, as seen in Equations (13)
and (14):

Prr(sj | si) =
exp (−Φ ′

i,j)∑n
j ′=1 exp (−Φ ′

i,j ′)
(13)

Prl(si | sj) =
exp (−Φ ′

i,j)∑n
i ′=1 exp (−Φ ′

i ′,j)
, (14)

where

Φ′ = λ
Φ

max∞̃ (Φ)
. (15)

The denominator of Equation (15) is defined as the maximum non-infinity (max∞̃) cost
value of Φ, therefore, Φ ′

i,j 7→ [0, λ] for non-infinite values. This is convenient to establish
a common input range for the softmax function since it yields different values for scaled
inputs.

Based on these distributions, the entropies Er(si) and El(sj) are calculated by Equa-
tions (16) and (17), which denote the uncertainty of which shred is the right neighbor of
si, and of which shred is the left neighbor of sj, respectively.

Er(si) = −

n∑
j ′=1

Prr(sj ′ | si) log Prr(sj ′ | si) (16)

El(sj) = −

n∑
i ′=1

Prl(si ′ | sj) log Prl(si ′ | sj) (17)

Finally, for the first strategy (Unc-R), the uncertainty for the pair (si, sj) considers only the
entropy Er(si), while for the second (Unc-RL), the uncertainty is calculated as Er(si) +

El(sj).

5.2 experimental assessment

Two experiments were conducted to assess the impact of incorporating human interaction
in the reconstruction process. The workload experiment investigates, for a single iteration
(until k = 1), the effect of increasing the workload (i. e., the number of pairs of shreds
queried to the user) upon the accuracy of the solution. The multi-iteration experiment inves-
tigates how splitting the workload into iterations can affect the accuracy of the solutions.

Initial costs (Φ(0)) and solution (π(0)
S ) are obtained according to the the deep learning

methods here named as Deeprec-ML in [65] and Deeprec-CL [63]. Following the eval-
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uation protocol in [63], the models are trained1 on the document collections Isri-OCR
(a subset of the ISRI-Tk OCR collection [58]) and Cdip (subset of RVL-CDIP [34]), and
evaluated on the shredded datasets S-Marques [53], S-Isri-OCR [61], and S-Cdip [63]. To
reflect a more realistic scenario, we also adopted a cross-database approach where the
models trained on Isri-OCR are used to reconstruct S-Cdip, while Cdip is used to recon-
struct both S-Marques and S-Isri-OCR. Furthermore, the experiments address only the
multi-page reconstruction scenario given that, in a real-world context, shreds of differ-
ent pages/documents are mixed and the system is not aware of which page each shred
belongs to. The particularities of the experiments are detailed next.

5.2.1 Experiments

experiment 1 : workload experiment. The intuition behind this experiment is
that accuracy should improve as the user is demanded to analyze more pairs of shreds,
and that, ideally, significant improvement should be achieved with low human effort.
From the n− 1 pairs of a solution, the human effort is quantified by number of pairs to
be annotated nquery = αload (n− 1) , where the factor αload denotes the workload. That
been said, this experiment consisted of running a single iteration of the framework for
each αload = 0.1, 0.15, 0.2, and 0.25 and for each one of the query strategies defined in
Section 5.1: Opt-R, Opt-RL , Unc-R , and Unc-RL. Deeprec-ML and Deeprec-CL were
used to compute initial costs and solutions. In addition to the proposed query strategies,
a baseline strategy that randomly selects pairs for human annotation was evaluated. Note
that this is equivalent (in terms of performance) to the manual selection in [76] (discussed
in the introduction) since there are no criteria guiding the selection. Since the training of
the deep models (which plays the role of cost functions) is non-deterministic, the experi-
ment was run with five different models generated for each reconstruction method, thus
enabling a more robust analysis.

experiment 2 : multi-iteration experiment. This experiment hypothesizes that
splitting the workload into a few iterations may yield a faster improvement rate. This
analysis focused on the state-of-the-art reconstruction method Deeprec-ML– considering
both accuracy and time performance – and on the query strategy Opt-R, which achieved
the most consistent performance for Deeprec-ML in the workload experiment, as seen
in Figure 36 (discussed in the next section). The performance was evaluated for niter =

1, 2, and 3 iterations, being nquery/niter pairs analyzed in each iteration, nquery =

αload (n− 1). Again, we tested with αload = 0.1, 0.15, 0.2, and 0.25. The analysis focus on
the metric learning-based reconstruction algorithm in [65]. As in the workload experiment,
we report the average performance of five runs in each framework configuration.

1 For implementation details of each deep learning method (samples extraction, architectures, training param-
eters, etc.), the reader is referred to the respective works.
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5.2.2 Implementation Details.

The human interaction in the experiments was simulated by using the ground-truth order
available for the test datasets. We assume a “perfect” annotator/oracle, which means that
the pairs of shreds are always correctly labeled. To enable the solver execution, infinite
costs (Equation (12)) were replaced by real values following the implementation in [33].
For experiments with Deeprec-CL, we convert the initial compatibilities into costs by
doing Φ = max (Γ) − Γ, where max (Γ) is the maximum value (excluding the diagonal) of
the compatibility matrix Γ [63]. Finally, the λ normalization factor in Equation (15) was set
to 100. Preliminary empirical investigation showed that λ ∈ [50, 150] results in reasonable
error detection.

5.2.3 Experimental Platform

The experiments were conducted in an Intel Core i7-4770 CPU @ 3.40GHz with 16GB of
RAM running Linux Ubuntu 18.04. A Nvidia TITAN Xp GPU (12GB) was used for fast
deep learning training/inference. The software was implemented in Python 3.6, being
Tensorflow 2.6 used for training/inference of the models, and OpenCV leveraged for
basic image processing2.

Deeprec-ML Deeprec-CL

Dataset Avg. Med. Avg. Med.

S-Marques 93.51± 0.49 93.50 96.74± 0.50 97.08
S-Isri-OCR 96.04± 1.69 96.83 95.76± 0.86 96.24
S-Cdip 90.39± 0.74 90.18 81.29± 11.73 88.26

Table 2: Multi-page reconstruction performance: average accuracy ± standard deviation (%) and
median for five executions. The highest average/median value in each row is highlighted
in bold.

5.3 results and discussion

The results for the multi-page reconstruction without human intervention for five exe-
cutions are shown in Table 2. Comparatively, Deeprec-CL performed better only for the
dataset S-Marques, which represents a less realistic scenario compared to the other two
datasets [63]. The most significant performance discrepancy, considering the average ac-
curacy, was observed for S-Cdip, although the median difference is less than 2 p.p.. The
lowest accuracies not only reinforce that S-Cdip is the most challenging dataset but also
inform us that it has the most significant margin for improvement. The following subsec-
tions discuss the impact of our HIL framework in producing better reconstructions for
the three datasets.

2 The code, pre-trained models, and datasets will soon be publicly available.
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Figure 34: Reconstruction accuracy w.r.t. workload (Deeprec-CL). Each curve is associated with a
distinct query strategy.
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Figure 35: Reconstruction accuracy w.r.t. workload (Deeprec-ML). Each curve is associated with a
distinct query strategy.

5.3.1 Experiment 1: Workload Experiment

The results for the workload experiment are shown in Figures 34 and 35. As expected, the
accuracy increases roughly linearly with the human workload, even for the random base-
line. Nonetheless, it is noticeable that the proposed query strategies outperform the base-
line [76], which means that our simple selection criteria yield better results than random
selection. Moreover, the results show very similar performance for the uncertainty-based
strategies (Unc-R and Unc-RL): the maximum accuracy difference was nearly 0.22 p.p.
(on average).

Dataset Opt-R Opt-RL Unc-R Unc-RL

S-Marques 1.64± 0.28 1.64± 0.34 1.01± 0.35 1.18± 0.22
S-Isri-OCR 2.26± 1.54 2.81± 1.25 2.42± 0.90 2.42± 0.90
S-Cdip 3.80± 0.53 3.54± 0.55 1.79± 0.51 1.99± 0.18

Table 3: Accuracy improvement w.r.t. the query strategies (Deeprec-ML, αload = 0.25): average
accuracy difference ± standard deviation (p.p.). The highest value in each row is high-
lighted in bold. Opt-R yielded an increase of ≈ 3.80 p.p for S-Cdip (≈ 39.50% of error
reduction)

Particularly for the Deeprec-ML reconstruction method, the uncertainty-based strate-
gies achieved competitive performance with the optimality-based strategies for the dataset
S-Isri-OCR (20 documents), while for larger datasets – S-Marques (60 documents) and
S-Cdip (100 documents) – Opt-R/Opt-RL significantly outperforms Unc-R/Unc-RL. This
can be seen in Table 3, which displays the accuracy improvement for each dataset (αload =

0.25). The performance difference becomes more noticeable with the increase of the work-
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Figure 36: Reconstruction accuracy w.r.t. the number of iterations (Deeprec-ML, Opt-R). Each
curve represents a different workload (αload).

Dataset 1 2 3

S-Marques 1.64± 0.28 1.84± 0.43 1.91± 0.24
S-Isri-OCR 2.26± 1.54 3.13± 1.50 2.81± 1.64
S-Cdip 3.80± 0.53 4.43± 0.88 4.50± 0.91

Table 4: Accuracy improvement w.r.t. the number of iterations (Deeprec-ML, αload = 0.25, Opt-
R): average accuracy difference ± standard deviation (p.p.). The highest value in each
row is highlighted in bold. Two iterations yielded an increase of ≈ 4.43 p.p for S-Cdip

(≈ 46.10% of error reduction).

load, which suggests that the optimality-based strategies are more effective for Deeprec-
ML. Opt-R and Opt-RL performed similarly to each other, being the maximum accuracy
difference (on average) between them of ≈ 0.5 p.p.. Remarkably, Opt-R was able to in-
crease the original solution accuracy of the S-Cdip dataset on ≈ 3.80 p.p. for αload = 0.25:
87 pairs were corrected from a total of 220 mistakes (≈ 39.50% of error reduction).

For Deeprec-CL, the uncertainty- and optimality-based strategies give closer perfor-
mance compared to the results for Deeprec-ML. We verified that Deeprec-ML yielded
more uniform values for the measures Er(si) and El(sj) (Equations (16) and (17)) which
implies an uncertainty in discriminate potentially negative pairs. This fact serves to em-
phasize a relationship between the performance of the strategies and the cost functions.

5.3.2 Experiment 2: Multi-iteration Experiment

The results for the multi-iteration experiment where the user workload (effort) is split
into iterations are shown in Figure 36. As commented in the previous section, this experi-
ment focused on the state-of-the-art method Deeprec-ML with the query strategy Opt-R
given its superior performance in the previous experiments Deeprec-ML. At first glance,
the most consistent improvement was obtained by increasing the number of iterations
(niter) from one to two. Nonetheless, it can be observed that adopting niter ⩾ 2 is in-
teresting when compared to a single iteration for higher workload values. The results for
αload = 0.25 (the red curves in Figure 36) is presented in Table 4. When comparing the
top accuracies (highlighted in the table) with those obtained for niter = 1, we see that the
maximum improvement is 0.70 p.p.. This value drops to 0.08 p.p. when niter is increased
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from two to three. This reinforces the decision of not running more than two iterations,
including the fact that the higher the number of iterations, the higher the computation
burden of multiple solver runs is (a single run can take ≈ 3 minutes for S-Cdip). Com-
pared to Table 2, the accuracy on S-Cdip for two iterations increased around 4.43 p.p.
(≈ 46.10% of error reduction).

5.4 concluding remarks

This chapter investigated the impact on the performance of introducing a human user
in the process of reconstructing shredded documents. We proposed a human-in-the-loop
reconstruction framework where the user is queried to verify whether every two adjacent
shreds in the solution are, in fact, adjacent in the original document. Four query strate-
gies were proposed for the recommender module to select pairs of shreds for human
verification.

The workload experiment showed that our framework consistently improves solutions
as the user takes more part in the process and that the accuracy increases roughly linearly
with the human workload. Furthermore, the proposed query strategies outperformed the
baseline strategy [76], and, among the proposed strategies, those based on optimality
criteria yielded the most consistent performance. This can be due to the cost assignment
that results in high uncertainty when the correct pair meets the optimality criteria (e. g., it
is assigned the lowest cost). Alternatively, low uncertainty may arise in scenarios where
the pairs are wrong. In particular, the Opt-R strategy increased by nearly 3.80 p.p. the
accuracy for the S-Cdip dataset (≈ 39.50% of error reduction).

We also investigated whether the solutions could be improved by splitting the workload
into iterations. The general conclusion is that the increase in iterations is effective for
higher workloads. Furthermore, considering the evaluated scenarios, we concluded that
two iterations are reasonable for the framework. For such a value, the Opt-R yielded an
increase of nearly 4.43 p.p. in the accuracy on S-Cdip (≈ 46.10% of error reduction).

Future work could investigate using an ensemble of query strategies to provide more
relevant queries to the user. Also, the framework could be adapted for cross-cut docu-
ments. However, it requires the availability of realistic datasets as there are available for
strip-shredded documents. Finally, new query strategies driven to our problem should be
investigated/adapted with a more in-depth review of literature in active learning.
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C O N C L U D I N G R E M A R K S A N D F U T U R E W O R K

This thesis presented a corpus of contributions for (semi-)automatic reconstruction of
mechanically-shredded documents. Besides the relevance of the topic, this research was
motivated by the need of the literature for methods capable to deal with real shredded
data. Our effort was initially towards robust compatibility evaluation between shreds for
fully automatic reconstruction (Chapters 3 and 4), so that the optimization process might
yield improved reconstructions. Once the reconstructed documents were available, they
could then be analyzed – by document examiners, for example – as they seek relevan-
t/sensitive information. In a second moment, it was investigated the introduction of the
human as part of the reconstruction process (Chapter 5).

Chapter 3 described our deep learning approach based on classification (Deeprec-CL)
and its application on multi-page reconstruction. Results have shown accuracy superior to
90% for S-Cdip, the most challenging dataset comprising 2,292 shreds. In Chapter 4, it was
presented a metric learning reconstruction approach (Deeprec-ML) where the number of
network inferences linearly rather than quadratically as in Deeprec-CL. The theoretical
result in Section 4.3.2 shows that the speed-up can grow linearly with the number of input
shreds. For the tested scenarios, it can be highlighted a speed-up of ≈ 22 times for the 505

shreds of S-Isri-OCR.
Later, in Chapter 5, it was proposed an interactive reconstruction framework (HIL frame-

work) inspired in the field of Active Learning (AL) that takes valuable human feedback
to improve solutions. The focus of our contribution was on the recommender module re-
sponsible for automatically selecting data to be analyzed by the user. Results have shown
that > 40% of error reduction can be achieved in certain cases given a user workload of
25%, i. e., by looking at nearly 1/4 of the (pairs of) shreds providing positive/negative
labels for them. Although the tests were performed with the deep learning methods, the
framework is generic and can be used with different cost functions and solvers.

Additional contributions include:

• An experimental methodology for multi-page reconstruction;

• A novel experimental methodology that assesses the impact of human labor on the
quality of the reconstructions;

• A dataset comprising 120 shredded documents, totalling 2, 797 shreds.

In future work, it would be helpful to extend the proposed methodologies to cross-cut
documents. This is not straightforward since it adds complexity to the compatibility eval-
uation and to the optimization process. For compatibility evaluation, it requires models

56
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that perform well with less useful content given the reduced dimensions of the shreds
and that is fast enough to couple with the increase in the number of shreds, which also
affects the time performance of the optimizer. Concerning human-assisted reconstruction,
a promising direction is the development/adaptation of query strategies to the recon-
struction application, including the use of ensemble of strategies for more valuable user
feedback. Finally, from a generalization perspective, there are correlated problems that
should benefit from our findings. Currently, in the literature, it could be highlighted the
generic problem of solving jigsaw puzzles with eroded borders [13, 46, 68, 79] and the
application of reassembling fragments of ancient papyrus [1, 71].
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a.1 local samples nearest neighbors
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Figure 37: Querying xl samples by fixing xr.

An interesting way to verify how the models are pairing complementary patterns is by
fixing 32× 32 samples (query samples) from one of the boundaries and recovering sam-
ples of the complementary side. As illustrated in Figure 37, one can select xr as a query
sample and try to recover the top-1 xl’s, i. e., that the sample of the left boundary which
minimizes the distance to the anchor in the embedding space. Figure 30 (in Chapter 4)
shown some queries for both xr and xl restricted to one shredded document of the test
collection. Here, we mixed samples from 3 documents and, similarly, show 28 query sam-
ples and their respective top-3 complementary samples (distance increasing from top to
bottom).

Figure 38: Local samples nearest neighbors. In the top row, the largest square is the “query” sam-
ple (before binarization) followed, below, by its binary version and its 3 nearest neigh-
bors side-by-side (with the closest in the top row). The blue and orange samples were
projected by fright and fleft, respectively. The bottom row shows some examples in
which the “query” is projected by the fleft instead.
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a.2 reconstruction of s-isri-ocr

The dataset S-Isri-OCR comprises 20 single-page documents, totaling 505 shreds. Fig-
ure 39 shows the reconstruction of the entire S-Isri-OCR dataset, i. e., after mixing all
shreds. The shreds were placed side-by-side according to the solution (permutation) com-
puted with the proposed metric learning-based method which achieved the accuracy of
97.22%. The pairwise compatibility evaluation took less than 4 minutes.

Figure 39: Reconstruction of S-Isri-OCR. The generated image was split into 4 parts for better
visualization.
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a.3 embedding space

Figure 24 (in Chapter 4) illustrates the embedding space onto which the local samples
are projected. For a more concrete view of this space, four charts (Figures 40 to 43) were
plotted showing local embeddings produced from a real-shredded document (25 shreds).

For each chart, there is a single anchor embedding (in blue), which was produced
from an anchor sample xr randomly cropped from the right boundary of an arbitrary
shred. The other points (embeddings) in the chart (in orange) corresponds to the samples
from the other 24 shreds vertically aligned with the anchor sample, i. e., those which
are candidates to match the anchor sample. Notice that the embeddings are numbered
according to the shred they belong to, being 0, 1, 2, . . . , 24 the ground-truth order of the
document. Therefore, the anchor (blue point) indicated by s should match the embedding
(orange point) indicated by s+ 1 (a dashed line linking the respective points was made in
each chart).

For 2-D visualization, embeddings in the original space (R128) were projected to the
plane by using t-SNE [52, 97]. It is worthy to mention that we analyzed the produced
charts to ensure that pairwise distances in R2 are roughly consistent with those in the
original space. Also, no vertical alignment between shreds was performed.

a.3.1 Case 1

6 7

86

56

6 18

96

06

Figure 40: Case 1.

In Figure 40, samples from two clusters ({5, 7, 8} and {0, 9, 18}) were shown at the right
side of the 2-D chart. Although the pairing (6, 8) looks incompatible based on the knowl-
edge of the Latin alphabet, we noticed that the vertical alignment and the emerging hor-
izontal were essential for their close positioning. For the cluster {0, 9, 18}, it is interesting
to note that the information (black pixels) in the xl samples is concentrated in the last
columns.
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a.3.2 Case 2
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Figure 41: Case 2.

In Figure 41, two clusters were illustrated. As in the previous case, the vertical align-
ment plays an import role in the positioning of the embeddings. From the cluster {1, 2, 3, 19,
20, 22, 23}, it can be observed that the xl samples are similarly shifted up compared to the
baseline of the anchor. Finally, although the unrealistic pairing (9, 12) yields a distance
superior to (9, 10), they are kept close due to the vertical alignment and the emerging
connections (three horizontal lines).

a.3.3 Case 3
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Figure 42: Case 3.

The third case, illustrated in Figure 42, depicts a situation where a couple of matchings
are better evaluated than the corrected one: (13, 14). In addition to the realistic appearance
of the competitors (pairings formed with samples in {10, 12, 16, 21}), we noticed that the
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low number of blacks in xl (and analogously in xr) leads to some instability in the projec-
tion. This issue may occur in very particular situations where the cut happens almost in
the blank area following a symbol and either there are no symbols in the sequence or the
blank area is large enough so that xl is practically blank.

a.3.4 Case 4
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Figure 43: Case 4.

The last selected case, Figure 43, emphasizes the relevance of the vertical alignment
stage of the metric-learning approach (Section 3.1.2.1). By observing the correct pairing
(17, 18), it is noticeable vertical misalignment between the shreds. The samples 22 and 23

are very similar, and therefore they are mapped closely in the embedding space. Also,
these samples are good competitors because of the alignment with the anchor’s baseline.
Finally, it can be observed (as in Case 2) the clustering induced by the displaced content
of xl.

a.4 sensitivity analysis w.r .t. sample size

As in classification-based approach, this method use small samples (32× 32) to explore
features at text line (local) level since we assume weak feature correlation across text lines.
In [63], we observed that the reconstruction accuracy decreases for larger samples. This
is also verified in the proposed metric learning approach when the sample height (sy) is
increased, as seen in Figure 44.
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Figure 44: Reconstruction accuracy w.r.t. to the sample height (sy).

a.5 statistical test

Considering a threshold of 5%, the proposed method was statistically equivalent to Deeprec-
CL in S-Isri-OCR and superior to Paixão et al. [61] in both datasets. Table 5 shows the
p-values of the page-wise paired t-test.

S-Marques ∪ S-Isri-OCR S-Marques S-Isri-OCR

Deeprec-ML vs. Deeprec-CL 1.6% 0.7% 52.2%
Deeprec-ML vs. Paixão et al. [61] 0% 0% 0.4%

Table 5: Page-wise paired t-test.
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