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Abstract

This thesis consists of a comprehensive study of beyond-ΛCDM cosmologies, in particular I
investigate possible consequences of scalar-tensor theories of gravity on the Large Scale Structure
of the Universe. Within the Standard Model of Cosmology, General Relativity is assumed to
be the theory that describes gravity in all scales and this is supported by the highly accurate
Astrophysical and Solar System tests. Notwithstanding, at cosmological scales, we still lack
gravity tests with the same constraining power. Therefore, in addition to the motivation from
the well-known conceptual problems of the Cosmological Constant, it is reasonable to investigate
if General Relativity is the correct gravity theory at the largest scales of the Universe.
In order to increase the accuracy of our cosmological tests of gravity, I develop numerical

tools based on the linear and nonlinear regimes of cosmological perturbation theories, as well
as a non-perturbative approach using quasi N-body simulations. I also present different ways
of testing the large freedom introduced by modified theories of gravity in the parameter space.
Indeed, modified gravity models cannot avoid introducing extra parameters besides the usual six
cosmological parameters of the ΛCDM model.
The main results of the thesis have been published in four papers cited along the text and I

have tried to condensate them mainly in Chapters 3, 4 and 6. In chapter 3 I discuss the impact
of modified gravity on cosmological observables such as the modifications Horndeski theories
introduce in the growth and light propagation equations of motion. In particular, I perform a
detailed analysis of the No Slip Gravity at the linear regime of structure formation. Then, I
discuss how early modified gravity theories change the matter power spectrum at large and small
scales.
In Chapter 4, I start by analyzing the matter power spectrum at linear scales, namely how it

is defined within ΛCDM and how massive neutrinos introduce a scale dependent on the growth
function. Then, I introduce the formulation of the N-Body gauge, a specific coordinate system
that facilitates the interpretation of Newtonian simulations within a relativistic framework, by
consistently introducing the effects coming from photons, neutrinos and dark energy. As stage-IV
LSS surveys will probe the Universe at increasingly large scales; it is imperative to include these
species in our analysis inasmuch at large scales their imprint can be above the 1% threshold.
I also present new cosmological tests of gravity by combining this framework with relativistic
N-Body simulations. At the end I show how to correctly combine modified gravity effects and
Newtonian simulations.
In Chapter 5, I outline all the nonlinear mathematical tools have I have studied and developed

during this project and on Chapter 6 I present the results of how we can construct computationally
fast new numerical tools using all the new developments I have done in modified gravity, from
linear to nonlinear scales. Chapter 7 ends the thesis with some conclusions and three future
avenues I plan to pursue in the next few years.



Resumo

Esta tese consiste num estudo amplo sobre cosmologias além-ΛCDM, em particular as posśıveis
consequências de teorias de gravidade escalares-tensoriais na estrutura em grande escala do Uni-
verso foram estudadas. Dentro do Modelo Padrão da Cosmologia, a Relatividade Geral é tomada
como a teoria que descreve a gravidade em todas as escalas, fato este que possui suporte em
testes Astrof́ısicos e do Sistema Solar. Entretanto, em escalas cosmológicas, testes gravitacionais
ainda não possuem o mesmo poder de v́ınculo. Desta maneira, o estudo em teorias alternativas de
gravidade, além da usual motivação de explicar problemas conceituais da Constante Cosmológica,
ainda se faz extremamente necessário.
Para aumentar o poder de precisão em testes de gravidade em escalas cosmológicas, eu desen-

volvi ferramentas numéricas baseadas em teoria de perturbação cosmológica, em ordem linear e
não-linear, assim como um tratamento não-perturbativo usando simulações de quasi N-corpos.
Eu também exponho diferentes caminhos para testarmos a grande liberdade que temos no espaço
de parâmetros introduzidos por teorias de gravidade modificada. De fato, ao trabalharmos com
tais modelos, a introdução de parâmetros extra, além dos seis parâmetros cosmológicos do modelo
ΛCDM, é inevitável.
Os principais resultados desta tese foram publicados em quatro artigos, citados ao longo do

texto, e seus conteúdos foram condensados nos Captulos 3, 4 e 6. No Caṕıtulo 3, o impacto que
teorias de gravidade alternativa possuem em observáveis cosmológicos é discutido. Em particular
eu apresento uma análise, a ńıvel linear, detalhada do modelo de gravidade No Slip, e como essa
teoria impacta a formação de estruturas e a propagação da luz. Além disso, no mesmo caṕıtulo,
eu brevemente discuto como teorias de gravidade primitivas modificam o espectro de potência
em largas e pequenas escalas.
No Caṕıtulo 4, eu começo analisando o espectro de potência da matéria em escalas lineares, es-

pecificamente como ele é definido no modelo ΛCDM, e como neutrinos massivos introduzed uma
dependência de escala na função de crescimento. Após, eu introduzo a formulação do calibre
de N-corpos, um sistema de coordenadas espećıfico que facilitam a interpretalção de simulações
Newtonianas num contexto relativ́ıstico. Isso é posśıvel através da introdução, de maneira consis-
tente com o tratamento Newtoniano, de espécies relativ́ısticas, como fótons, neutrinos e energia
escura. Como os levantamentos cosmológicos de estágio-IV vão o Universo em escalas cada vez
maiores; é imperativo que possamos incluir tais espécies em nossas análises, já que seu efeito em
grandes escalas pode ir além do limite de 1% quando comparadas a um Universo com somente
matéria escura. Ao final do caṕıtulo eu apresento como podemos combinar gravitação modificada
com simulações Newtonianas.
No Caṕıtulo 5, eu exponho todo o ferramental matemático a ńıvel não-linear que eu estudei e

desenvolvi ao longo desta tese. E, no Caṕıtulo 6, eu apresento os resultados de como podemos
construir ferramentas rápidas computacionalmente usando todo o ferramental que eu desenvolvi
em gravidade modificada, indo de escalas lineartes para não-linears. O Caṕıtulo 7 fecha a presente
teste com algumas conclusões, e posśıveis linhas de pesquisa futuras que eu almejo desenvolver.
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de agosto de 1904 fundaram a minha maior paixão, o Botafogo de Futebol e Regatas, o Glorioso.
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CHAPTER 1.

Introduction

1.1. Standard Model of Cosmology

The success of the standard model of cosmology, ΛCDM, is widely regarded as the greatest
achievement of modern cosmology. It is a parametrization of our Universe that relies on three
fundamental ingredients: a cosmological constant, described by the Greek letter Λ; an exotic
and unknown species called cold dark matter (CDM); and ordinary baryonic matter. The status
of “standard description” of our Universe is due to the ability of this model in describing in a
reasonably good account the following observations:

• The existence of the cosmic microwave background (CMB);

• The large scale structure (LSS) distribution in our Universe;

• The observed abundances of hydrogen (including deuterium), helium, and lithium, pro-
duced during the Big Bang Nucleosynthesis (BBN);

• The current accelerated expansion of the Universe, caused by dark energy.

The fundamental description of the concordance model also relies on a simple and direct
assumption, the Cosmological Principle. It states that our Universe is homogeneous and isotropic
at large scales. That is, we have no privileged point in spacetime in which the Universe should
be preferably observed. This has been the subject of much dispute throughout history, and it
has been (and continues) to be tested and put to proof in different scenarios. One last ingredient
in the ΛCDM model is the assumption of General Relativity [1] as the fundamental description
of gravity in all scales.
With these assumptions for our cosmological model, the dynamical system governing the evo-

lution of the Universe is given by Einstein’s field equations:

Gµν + Λgµν =
8πG

c4
Tµν , (1.1)

where Gµν is the Einstein tensor, c is the speed of light, GN is Newton’s gravitational constant and
Tµν the energy-momentum tensor of matter species. This is a complicated and highly complex set
of partial differential equations of up to second order in the metric gµν . It determines the structure
of space-time in a covariant and coordinate independent fashion. However, the standard model
assumes the Cosmological Principle is valid, and, therefore, it will enforce spatial symmetries on
our system of Equations. These symmetries are captured by the so-called Friedmann-Leamı̂tre-
Robertson-Walker (FLRW) metric:

ds2 = gµνdx
µdxν = −c2dt2 + a2(t)

[
dr2

1−Kr2 + r2
(
dθ2 + sin2 θdφ2

)]
. (1.2)

1



Introduction Section 1.1

Where K = −1,+1, 0 represents the spatial metric topology: negatively curved, positively curved
and flat, respectively. a(t) is the scale factor characterizing the expansion/contraction of the
Universe. The set of spatial coordinates (r, θ, φ) are comoving coordinates, as they expand or
contract alongside with the Universe. Going a bit deeper in the structure of this line element,
we are able to define important quantities in cosmology as well. One of these quantities is the
notion of redshift, z. Since photons travel in null geodesics we have that:

dt = ± a(t)√
1−Kr2

dr. (1.3)

If we integrate the above equation from a time of emission te to a time observed to, we arrive at:

∫ to

te

dt

a(t)
=

∫ r1

0

1√
1−Kr2dr = f(r1), (1.4)

where r1 is the comoving radial coordinate at the time of emission, and

f(r1) =





sin−1 r1 K = +1;
r1 K = 0;
sinh−1 r1 K = −1.

(1.5)

By performing the same computation for a subsequent photon emitted at te + δte and observed
at to + δto, we arrive to an integral similar to (1.4):

∫ to+δto

te+δte

dt

a(t)
=

∫ r1

0

1√
1−Kr2dr = f(r1), (1.6)

then we have that ∫ to

te

dt

a(t)
=

∫ to+δto

te+δte

dt

a(t)
, (1.7)

and in the limit where the frequency of the photon ν ≪ to − te, we take δt = ν−1, which leads to
a(te)νe = a(to)νo. Since λν = c we obtain

a(te)

a(to)
=

1

1 + z
, (1.8)

where I have defined implicitly z = λ(to)−λ(te)
λ(te)

. This is a fundamental relation, as it relates the
scale factor to an observable quantity, z.
While the choice of line element to describe the geometry of the Universe fixes the left hand

side of Einstein’s field Equations (1.1), we have yet to specify the description of the matter
components in the Universe. This is captured in the RHS of Equations (1.1), in the Tµν term,
which for a perfect fluid [2] is written as:

Tµν =

(
ρ(t) +

p(t)

c2

)
uµuν + p(t)gµν , (1.9)

where ρ(t) is the energy density of the fluid, p(t) the pressure and uµ the 4-velocity. From now
on I’m going to set c = 1.

By plugging Equations (1.2) and (1.9) into (1.1), we arrive at the Friedmann Equations:

2
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H(t) =
ȧ

a
=

8πG

3
ρ(t)− K

a2
+

Λ

3
(1.10)

ä

a
= −4πG

3
(ρ(t) + 3p(t)) +

Λ

3
, (1.11)

with H(t) being the physical Hubble factor. Equation (1.10) is called the Hamiltonian constraint,
while Equation (1.11) is a dynamical equation that involves the second derivative of the scale
factor, or the first derivative of the Hubble factor. I will now focus on the RHS of the Hamiltonian
equation, where are the different ingredients in our Universe.
The first term on the RHS of Equation (1.10) represents the sum of all matter species in the

Universe. These are: cold dark matter, photons, neutrinos (massless or massive) and baryons.
If we assume that the energy-momentum tensor is conserved for each species, the quantities
describing these fluids are subjected to a governing conservation equation:

ρ̇i = −3H (ρi + pi) , (1.12)

where the subscript i refers to one of the aforementioned species, i = c, γ, ν, b, CDM, photons,
neutrinos and baryons respectively. Equation (1.12) tells us then that if we have a relation
between the two quantities of a perfect fluid, ρ and p, we can determine its time evolution.
The relation between these two quantities is given by a dimensionless parameter w = p

ρ , called
equation of state parameter, and, depending of the fluid in question, can be time dependent.
However, for simple species such as CDM and photons, this parameter is constant, being equal
to 0 and 1/3 respectively. Massless neutrinos are essentially photons, as they have no rest mass
they never become non-relativistic. The other two cases, baryons and massive neutrinos are a
bit more complex, but at background level of the expansion of the Universe in the largest scales
their equation of state parameter can be set to 0.
Therefore, with these simple statements we are able to find the evolution for non-relativistic

matter and relativistic matter in our universe as a function of the scale factor:

ρ = ρ0,i ×
{
a−3 for non-relativistic;
a−4 for relativistic.

(1.13)

Where ρ0,i is some initial density constant.
The second term of the RHS in Equation (1.10) is known as the curvature term. It is related to

the shape of our Universe, and depending on its values, (−1,+1, 0), the topology of the cosmos
is considered closed, open or flat, respectively.
Figure 1.1 shows the scale factor as a function of time for different Universes with different

matter and curvature compositions. We can see that in the closed case our Universe would
eventually reach a turning point where, H = 0, and then recollapse in the future. This feature is
not present for the other two cases.
The third term of the RHS of (1.10) is the Cosmological Constant. This term has a lengthy

history in Cosmology, and I will now do a brief recap of its timeline:

• In 1915 Einstein publishes his equations of General Relativity, without a cosmological
constant Λ;

• In 1917 [3] Einstein adds the parameter Λ to force his Universe model to remain static and
eternal (Einstein static universe), which he will later call ”the greatest stupidity of his life”;

3
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Figure 1.1. Evolution of the scale factor as a function of cosmic time, t, The different colors refer to
different cosmic topologies.

• In 1922 [4] the Russian physicist Alexander Friedmann mathematically shows that Ein-
stein’s equations (whatever Λ) remain valid in a dynamic universe.

• In 1927 [5] the Belgian astrophysicist Georges Lemâıtre shows that the Universe is in
expansion by combining General Relativity with some astronomical observations, those of
Hubble in particular.

• In 1931 Einstein finally accepts the theory of an expanding universe and proposed, in
1932 with the Dutch physicist and astronomer Willem de Sitter, a model of a continuously
expanding Universe with zero cosmological constant (Einstein-de Sitter space-time).

• In 1998 two teams of astrophysicists, one led by Saul Perlmutter [6], the other led by
Brian Schmidt and Adam Riess [7], carried out measurements on distant supernovae and
show that the speed of galaxies recession in relation to the Milky Way increases over time.
The universe is in an accelerated expansion, which requires having a strictly positive Λ.
The universe would contain a mysterious dark energy producing a repulsive force that
counterbalances the gravitational braking produced by the matter contained in the universe.

As we can see, the necessity to introduce Λ in Einstein’s field equations stem for the need to
explain the current accelerated expansion of our Universe. As we will see in this thesis, however,
this is not the only solution to generate a late time accelarated expansion, but, it is the simplest
known. In the same way we have an equation of state parameter for the other matter species, we
can also find one for the case of the Cosmological Constant. By substituting p = wρ in Equation
(1.12), we find a general solution for the energy density of a given species as a function of the
scale factor:

ρ(a) =
ρ0

a3(1+w)
. (1.14)

Therefore, if we inspect Equation (1.10), we see that the Cosmological constant has no scale
factor dependence, it is as the name says constant. From Equation (1.14) if we set w = −1,
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Introduction Section 1.1

we have that ρ = const., thence another feature that makes the Cosmological Constant such a
mysterious and exotic component, is the fact that it is a fluid with a negative pressure p = −ρ.

Now that we have discussed the components of the Universe, I will inspect a bit closer the
nuances of Equations (1.10-1.11). Present day energy densities in the Universe are measured in
terms of the critical density, ρc. This is the value in which the Hamiltonian constraint Equation
gets saturated in today’s values, e.g.

H2
0 =

8πG

3
ρc (1.15)

which implies

ρc =
3H2

0

8πG
. (1.16)

Where H0 is the value of the Hubble parameter today. What this actually means is that we can
then define adimensional fractional energy densities for a given species i:

Ωi,0 =
ρi,0
ρc

=
8πGρi,0
3H2

0

, (1.17)

and the sum of all species in the Universe is therefore 1:

∑

i

Ωi = 1. (1.18)

Similarly one can define a time evolving fractional energy density via

Ωi(a) =
8πGρi(a)

3H2(a)
. (1.19)

As we know, the observable Universe began with a small physical size, and from equation (1.13)
we can see that since the scale factor dependence of radiation dominates for smaller values of
the scale factor, the universe had different epochs. That is, in the beginning it had an era of
radiation domination, then it moved to an era where non-relativistic matter dominated, and then
shifted to the phase we are currently in, an epoch in which Λ dominates.
We can see from Figure 1.2 the adimensional evolution of the different species in our Universe

as dictated by the ΛCDM model. The two scale factors where lines intersect correspond to the
era of radiation-matter equality and the matter-Λ equality.
One important aspect I have not yet discussed is with respect to the notion of cosmological

distances. The starting point of this discussion lies in the definition of a comoving distance, which
is related to the propagation of a light ray from an emitted time to an observed time:

χ(t) = c

∫ t0

t

dt′

a(t′)
= c

∫ 1

a(t)

da′

a′2H(a′
) = c

∫ z

0

dz′

H(z′)
. (1.20)

Where we can see that since,

H(z) =

√∑

i

Ωi(z), (1.21)

with Ωi(z) a power law function, check Equations (1.14) and (1.8), for small redshifts (z ≪ 1),
χ ≈ cz/H0. Therefore, since z is an adimensional quantity, the comoving distance has units of
inverse Hubble factor. The dimensions of H0 which are commonly used are:

H0 = 100h km/s/Mpc (1.22)
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Figure 1.2. Evolution of the fractional energy density as a function of the scale factor within ΛCDM
cosmology for: non-relativistic matter (solid blue), radiation (solid orange) and Cosmological Constant
(solid green)

where h is the reduced Hubble constant value measured today, and its value is between 0 < h < 1.
The precise value of this constant is a matter of great dispute nowadays, since there is a big
discrepancy on its value coming from local measurements [8, 9, 10, 11] and the inferred one from
the CMB [12, 13, 14]. The former gives a number around 0.73, while the latter 0.67. As we can
see the units H0 is time−1, and as we have a speed of light c there, χ is a distance. A classical
way that astronomers define distance is to compute the angle θ subtended by an object of known
physical size “standard ruler” l:

dA =
l

θ
. (1.23)

To compute the same thing in cosmology we need to remember that we are in a comoving frame,
and the comoving size of the object is then l/a, and the angle subtended will be just θ = l/a/χ(a).
Then, substituting this in Equation (1.23) we are left with:

dA = aχ =
χ

1 + z
. (1.24)

This relation, however, holds only for a flat Universe, and in the case of a non-vanishing K, this
should be corrected to:

dA =
a

H0

√
ΩK

×
{

sinh
[√

ΩKH0χ
]

ΩK > 0;
sin
[√

ΩKH0χ
]

ΩK < 0.
(1.25)

Another way of inferring distances in astronomy is via the luminosity of an object, known as
”standard candle”. The observed flux in a spherical shell at a distance d is given by:

F =
L

4πd2
, (1.26)
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Introduction Section 1.2

where L is the known luminosity of the object. Once again, since we live in a comoving grid of
coordinates, in an expanding Universe this result is generalized to:

F =
La2

4πχ2(a)
. (1.27)

Where the a2 factor in the numerator compensates to the fact that with the expansion of the
Universe the comoving shell in which the luminosity is observed must account for the fact that
the energy per unit of time passing through will be a factor of a2 smaller than when it was
emitted by the source. The luminosity distance is then defined as:

dL =
χ(a)

a
, (1.28)

and this relation is valid for all values of K. Comparing Equations (1.25) and (1.28), we are left
with the so-called Distance Duality Relation:

(1 + z)2 dA
dL

= 1. (1.29)

This relation has been tested in many different cosmological contexts, as it is a direct test of two
basic pillars in Cosmology:

• Riemannian geometry;

• Photon number conservation.

The first item is a geometrical statement about how we define distances, angles and derivatives
in our gravitation theory. The second is a statement about how electromagnetism and gravity
come together, that is, in the Standard Model of fundamental interactions, gravity and electro-
magnetism are minimally coupled.

1.2. Perturbations

In the last section I focused the discussion on the general properties and dynamics in the largest
scales of our Universe. The discussion revolved around describing Cosmology in a isotropic and
homogeneous way. However, by just looking at the sky we can see that the Universe is not
homogeneous as a whole. That is, we observe different and very complex structures, such as
galaxies, clusters of galaxies, stars, etc. How can we then describe the growth of structure in our
Universe? By perturbing the FLRW metric and the matter content.
This process is done by linearizing [15, 16, 17, 18] the Einstein field equations (1.1):

gµν(x, t) = ḡµν(t) + δgµν(x, t), (1.30)

Tµν(x, t) = T̄µν(t) + δTµν(x, t), (1.31)

where the barred quantities refer to the homogeneous and isotropic background given by Equa-
tions (1.2) and (1.9), while the other quantities are small perturbations on top of these background
ones. Also, much of the equations and consequences of the perturbed equations are easier to in-
terpret using the notion of conformal time. This is a redefinition of the cosmic time coordinate
t:

dτ =
dt

a
. (1.32)
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This variable has the nice property that photons obey now the relation dr = dτ , in an unperturbed
flat FLRW Universe. Hence, conformal time is a measure of time based on the comoving distance
travelled by a photon (this also holds for a non-flat Universe). Another important notion that
needs to be introduced is the notion of the Hubble radius, RH = 1/H, where H is the Hubble
factor. This is a scale of interest when we move to presenting equations in Fourier space, as the
scale in which a given Fourier mode k crosses the Hubble radius is:

2π

k
a =

1

H
⇔ k ∼ aH =

ȧ

a
(1.33)

where the dot refers to derivative with respect to conformal time. Therefore, we usually refer to
the quantity kH = aH as the cosmological horizon, and modes with k < kH are called super-
horizon, and modes with k > kH sub-horizon.
The most general scalar linearly perturbed metric, is written as [19]:

g00 = −a2 (1 + 2A) , (1.34)

g0i = a2 ik̂iB , (1.35)

gij = a2
[
δij (1 + 2HL) + 2

(
δij/3− k̂ik̂j

)
HT

]
, (1.36)

where, A is the perturbation of the lapse function, B is a scalar perturbation in the shift, and HL

and HT are respectively the trace and trace-free scalar perturbations of the spatial metric. For
simplicity we consider a single Fourier mode with comoving wave-vector, k, wave-number k ≡ |k|
and direction k̂i ≡ ki/k.

The energy-momentum tensor of all particle species is given by

T 0
0 = −ρ− δρ = −ρ(1 + δ) , (1.37)

T 0
i = (ρ+ p)(vi −Bi) , (1.38)

T i
0 = (ρ+ p)vi , (1.39)

T i
j = (p+ δp)δij + pΠi

j , (1.40)

where δρ is the density perturbation, δp pressure perturbation, vi velocity perturbation and Πi
j

the anisotropic pressure tensor, ρ and p are the background density and pressure respectively.
Einstein equations do not specify a closed system of equations, and require the addition of sup-

plemental conditions provided by microphysics, in order to fix the dynamical degrees of freedom.
The simplest example of such relations is the equation of state parameter, relating background
energy density to the background pressure of a given species. In the inhomogeneous Universe
the Einstein tensor Gµν is constructed out of nonlinear metric fluctuations combinations. These
fluctuations are known to remain small even in the presence of big matter perturbations. Thence,
we linearize the LHS of (1.1) to obtain a set of partial differential equations that are linear in
the variables. As our focus is now on linear order perturbations, this set of equations may be
linearly decoupled in order to form a set of ordinary equations of motion. This decomposition is
achieved by using normal modes, that are invariant under translations and rotations, and admit
a decomposition into: scalars, vectors and tensors. The eigenmodes of the Laplacian operator
form a complete set:

∇2Q(0) = −k2Q(0) (scalar), (1.41)

∇2Q
(±1)
i = −k2Q(±1)

i (vector), (1.42)

∇2Q
(±2)
ij = −k2Q(±2)

ij (tensor). (1.43)
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In a spatially flat Universe K = 0 these are plane waves:

Q(0) = exp(ik · x) (1.44)

Q
(±1)
i = − i√

2
(e1 ± ie2)i exp(ik · x) (1.45)

Q
(±2)
ij = −

√
3

8
(e1 ± ie2)i (e1 ± ie2)j exp(ik · x), (1.46)

where e1 and e2 are unit vectors spanning the plane transverse to k. Additionally, in this
decomposition, vector modes are divergence free (vorticity), while tensor modes transverse and
trace free (gravitational waves):

∇iQ
(±1)
i = 0, ∇iQ

(±2)
ij = 0, γijQ

(±2)
ij = 0, (1.47)

where γij is the spatial metric. This leads to the fact that curl free vectors and the longitudinal
components of tensors are represented by covariant derivatives of scalar and vector modes:

Q
(0)
i = −k−1∇iQ

(0), (1.48)

Q
(0)
ij =

(
k−2∇i∇j +

1

3
γij

)
Q(0), (1.49)

Q
(±1)
ij = − 1

2k

[
∇iQ

(±1)
j +∇iQ

(±1)
j

]
. (1.50)

The kth eigenmode of each of the scalar field flctuations is then:

A(x) = A(k)Q(0), δρ(x) = δρ(k)Q(0), (1.51)

HL(x) = HL(k)Q
(0), δp(x) = δp(k)Q(0). (1.52)

For the vector ones:

Bi(x) =
m=+1∑

m=−1

B(k)Q(m)i, v(x) =
m=+1∑

m=−1

vi(k)Q
(m)
i , (1.53)

and for the tensor:

HT,ij =

m=+2∑

m=−2

H
(m)
T (k)Q

(m)
ij , Πij =

m=+2∑

m=−2

Π(m)(k)Q
(m)
ij . (1.54)

An arbitrary set of spatial perturbations can be formed through a superposition of the eigen-
modes given their completeness. This decomposition is well known in the literature, there are
different notations and conventions, but they all share the same concept and core:

• Linearize metric and energy-momentum tensor;

• Move to Fourier space, decoupled set of ordinary differential equations;

• Expand the fluctuations in eigenmodes of the Laplacian operator.
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I will now present the equations of motion for the scalar sector:

4πGa2
[
ρ̄δ + 3H (ρ̄+ p̄) k−1 (v −B)

]
= k2Φ , (1.55)

k2
(
A+HL +

1

3
HT

)
− [∂τ + 2H]

(
ḢT − kB

)
= −8πGa2p̄Π , (1.56)

4πGa2 (ρ̄+ p̄) k−1 (v −B) = HA− ḢL − 1

3
ḢT , (1.57)

(∂τ + 4H) (ρ̄+ p̄) k−1 (v −B) = δp− 2

3
p̄Π+ (ρ̄+ p̄)A , (1.58)

where a dot now represents differentiation with respect to conformal time, τ , and the gauge-
invariant Bardeen potential are:

Ψ ≡ A+Hk−1
(
B − k−1ḢT

)
+ k−1

(
Ḃ − k−1ḦT

)
, (1.59)

Φ ≡ HL +
1

3
HT +Hk−1

(
B − k−1ḢT

)
. (1.60)

The conservation equations become the continuity and Euler equations:

[
d

dτ
+ 3

ȧ

a

]
δρ+ 3

ȧ

a
δp = −(ρ+ p)(kv + 3ḢL) , (1.61)

[
d

dτ
+ 4

ȧ

a

]
(ρ+ p)

v −B

k
= δp− 2

3
pΠ+ (ρ+ p)A . (1.62)

Equations (1.55-1.62) are not independent due to the Bianchi identities. In order to find numer-
ical solutions for these equations it suffices to use two equations from (1.55-1.58), and the two
conservation equations. The equations of motion for the vector modes are:

(kB(±1) − Ḣ
(±1)
T ) = 16πGa2(ρ+ p)v(±1) − B(±1)

k
,

[
d

dτ
+ 2

ȧ

a

]
(kB(±1) − Ḣ

(±1)
T ) = −8πGa2pΠ(±1) , (1.63)

and the conservation equations become

[
d

dτ
+ 4

ȧ

a

]
(ρ+ p)

v(±1) −B(±1)

k
= −1

2
pΠ(±1) . (1.64)

Since gravity does not generate any vorticity, any intitial vector perturbation will simply decay
with time. The equations of motion for the tensor modes are:

[
d2

dτ2
+ 2

ȧ

a

d

dτ
+ k2

]
Ḣ

(±2)
T = 8πGa2pΠ(±2) . (1.65)

When no anisotropic stresses and spatial curvature is present, the tensor equation becomes a
simple source-free gravitational wave propagation equation

Ḧ
(±2)
T + 2

ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 0 , (1.66)
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which has solutions

H
(±2)
T (kτ) = C1H1(kτ) + C2H2(kτ) , (1.67)

H1(x) ∝ x−mjm(x) ,

H2(x) ∝ x−mnm(x) ,

where H1(x) and H2(x) are the Hankel functions of the first and second kind respectively, and
m = (1− 3w)/(1 + 3w). If:

• w > −1/3: The gravitational wave amplitude is constant above the horizon (x ≪ 1) and
then oescillates and damp.

• w < −1/3: The graviational wave oscillates and freeze into some value.

Even though I presented the linear order perturbed equations of motion for the 3 different
types of fluctuations: scalar, vector and tensor, I will only focus on the scalar part. This is
because for the formation observed in the Universe, this is the only type of perturbations that is
relevant throughout all the scales and expansion history.
With that said, I will now discuss briefly the problem of gauge choice in cosmology. The

covariant perturbed equations presented before are cast in a gauge invariant way, that is, they
possess spurious propagating modes.However, in the same way as Maxwell’s Electromagnetic
Theory can be presented in a wide variety of coordinate systems, without having their physical
consequences modified, we also have this same property in Cosmological Perturbation Theory.
Depending on the type of observable, moment in the expansion history or even scale, a preferred
coordinate system may be chosen in order to solve Equations (1.55-1.58). I will first present the
coordinate freedom generator these equations have, and then will present some classes of gauges
that are commonly used in the literature. First let’s define a gauge transformation as:

τ = τ̃ + T , (1.68)

xi = x̃i + Li ,

where T and L are the temporal and spatial gauge generators respectively, and tilded quantities
are from the original coordinate system. Under a coordinate transformation, the scalar metric
fluctuations transform as:

A = Ã− Ṫ − ȧ

a
T ,

B = B̃ + L̇+ kT ,

HL = H̃L − k

3
L− ȧ

a
T ,

HT = H̃T + kL , (1.69)

and the matter fluctuations:

δρα = δρ̃α − ρ̇αT,

δpα = δp̃α − ṗαT,

vα = ṽα + L̇, (1.70)

where the index α represents the species in question, baryon, cold dark matter, photon or neu-
trino, and dots refer to time derivatives with respect to conformal time, τ . A gauge is said to have
been chosen if we have a mapping between the pair (T,L) and any of the functions in Equations
(1.69) and/or (1.70). I will now present 3 gauges commonly used in the literature.

11



Introduction Section 1.2

1.2.1. Newtonian Gauge

This gauge is very popular in the literature, since well within the horizon, the Poisson Equation
has the same form as its Newtonian gravity counterpart. It is also called longitudinal gauge. The
line element in this gauge is diagonal, and its fluctuations are defined as:

B = HT = 0 ,

Ψ ≡ A (Newtonian potential) ,

Φ ≡ HL (Newtonian curvature) , (1.71)

These specifications completely fix the gauge, rendering the following form for the gauge gener-
ators:

L = −H̃T

k
,

T = −B
k

+
1

k2
d

dτ
H̃T . (1.72)

The Einstein field equations are now given by:

k2Φ = 4πGa2
[
δρ+ 3

ȧ

a
(ρ+ p)

v

k

]
,

k2(Ψ + Φ) = −8πGa2pΠ . (1.73)

As already said, for scales well within the Hubble radius, k(ȧ/a)−1 ≫ 1, the Poisson equation has
the same form as its Newtonian gravity counterpart. Also, if the anisotropic stress is negligible,
as it is the case of non-realtivistic matter, Ψ = −Φ. The conservation laws for the αth non-
interacting subsystem becomes

[
d

dτ
+ 3

ȧ

a

]
δρα + 3

ȧ

a
δpα = −(ρα + pα)(kvα + 3Φ̇) , (1.74)

[
d

dτ
+ 4

ȧ

a

]
(ρα + pα)

vα
k

= δpα − 2

3
pαΠα + (ρα + pα)Ψ . (1.75)

As we can see, the presence of the 3Φ̇ violates the Newtonian notion of conserving the matter
perturbations It is a relativistic correction coming from the expansion of space-time. Since Φ is a
perturbation in the scale factor a, its origin represents the perturbation to the redshifting energy
density in our Universe.

1.2.2. Comoving Gauge

Another very popular gauge is the comoving gauge, defined by:

B = v (T 0
i = 0) ,

HT = 0 ,

ξ = A ,

ζ = HL (comoving curvature) , (1.76)
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which completely fixes the gauge generators to:

T = (ṽ − B̃)/k ,

L = −H̃T/k . (1.77)

The Einstein equations become simply:

ζ̇ − ȧ

a
ξ = 0 , (1.78)

v̇ + 2
ȧ

a
v + k(ζ + ξ) = −8πGa2pΠ , (1.79)

and the conservation laws become
[
d

dτ
+ 3

ȧ

a

]
δρα + 3

ȧ

a
δpα = −(ρα + pα)(kvα + 3ζ̇) , (1.80)

[
d

dτ
+ 4

ȧ

a

]
(ρα + pα)

vα − v

k
= δpα − 2

3
pαΠα + (ρα + pα)ξ . (1.81)

In particular the momentum conservation equation for the total matter becomes an algebraic
relation between total stress fluctuations and the potential

(ρ+ p)ξ = −δp+ 2

3
pΠ (1.82)

so that these equations are a complete set. If we substitute (1.82) into (1.78) we have an equation
for the comoving curvature:

ζ̇ =
ȧ

a

[
− δp

ρ+ p
+

2

3

p

ρ+ p
Π

]
. (1.83)

This is the fundamental equation in the comoving gauge, and it is the most appealing reason to
use this gauge. It tells us that the evolution of the comoving curvature responds only to pressure
gradients and anisotropic stresses. From this relation we can also check why the comoving
curvature is constant during the matter domination in the Universe, since non-relativistic matter
has no pressure perturbations and no anisotropic stress.

1.2.3. Synchronous Gauge

The synchronous gauge metric perturbations is given by the following choice:

A = B = 0 ,

η ≡ −1

3
HT −HL ,

h = 6HL ,

T = a−1

∫
dηaÃ+ c1a

−1 ,

L = −
∫
dη(B̃ + kT ) + c2 . (1.84)

As is well known, this does not fully fixes the gauge and we need to further supplement the
values of (c1, c2). Commonly, this is performed by defining c1 in a way that the initial velocity of
dark matter perturbations is set to zero, and c2 is set through the initial curvature perturbation.
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The variables η and h comprise a stable system for numerical solutions, and this is why the
synchronous gauge has been widely used in a number of cosmology numerical codes.
The Einstein equations give

η̇ − (ḣ+ 6η̇) = 4πGa2(ρ+ p)
v

k
, (1.85)

ḧ+
ȧ

a
ḣ = −8πGa2(δρ+ 3δp) , (1.86)

while the conservation equations give

[
d

dτ
+ 3

ȧ

a

]
δρα + 3

ȧ

a
δpα = −(ρα + pα)(kvα +

1

2
ḣ) , (1.87)

[
d

dτ
+ 4

ȧ

a

]
(ρα + pα)

vα
k

= δpα − 2

3
pαΠα . (1.88)

We can see from the Euler equation in the Synchronous gauge, (1.88), that if a species has zero
velocity initially it will always be zero, if it has no pressure nor anisotropic stress perturbations,
such as cold dark matter.

1.3. Boltzmann Equations

In the last subsection I discussed how inhomogeneities are described in our Universe. In this
section I will present the set of equations which combine gravity and matter in a single and
unique manner [20]. This set is called the Einstein-Boltzmann equations, where the first name
of it has been already discussed, while the second one will be developed now. A collection of
particles is fully described by the their respective position and momentum set {xi,pi}, which
are called generalized coordinates in the phase space. This space is a 3N , with N the number of
particles, dimensional space. The distribution function of this collective of particles is defines in
terms of the number of particles at a given time t and phase space volume:

N(x,p, t) = f(x,p, t)(∆x)3N
(∆p)3N

h3Np (2π)3N
. (1.89)

In the limit where the number of particles is big enough, f(xi, pi, t) becomes a continuous function.
If the number of particles is conserved, we have that:

df

dt
= 0, where

d

dt
=

∂

∂t
+ ẋ · ∇x + ṗ · ∇p (1.90)

However, we know that in the Universe particles move in and out of the phase space freely, which
means that they have self-interacting terms, also called collision terms. This is characterized by
adding a source term to the RHS of Equation (1.90):

df

dt
= C[f ], (1.91)

where the interaction is usually taken to occur at the same position x. I will not derive the
different interaction terms that this function will have for the species in the Universe. I will
rather jump ahead and discuss the components of the energy-momentum tensor in terms of the
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distribution function in an expanding Universe. The zeroth-order distribution function is the
Fermi-Dirac or the Bose-Einstein distributions, for fermions(+) and bosons(-) respectively:

f0(xi, pi, t) =
gs
h3p

1

eϵ/kBT0 ± 1
(1.92)

where ϵ = a
√
p2 +m2 =

√
P 2 + a2m2, T0 = aT , gs the degree of degeneracy of the spin particle,

kB Boltzmann and hp Planck’s constant. In an expanding Universe the conjugate momenta is
defined as:

Pj =

{
a(δij +

1
2hij)p

j synchronous gauge;
a(1− ϕ)pi Newtonian gauge,

(1.93)

where hij is the Synchronous gauge spatial metric, and pi is the proper momenta. Even though
in a perturbed space-time xi and Pi remain conjugate to each other, it is common practice to
replace Pi by qi = api instead, since in a unperturbed space-time, due to Hamilton’s equations,
pi redshifts as a−1, and in this way qi would be constant. It is worth stressing that this is not
a canonical transformation, as qi is not the conjugate of xi, but it is rather a transformation of
variables, and I will write the 3-vector q as its magnitude times its direction vector, qi = qni.
The energy-momentum tensor in terms of the distribution function is then:

Tµν =

∫
dP1dP2dP3

√−gPµPν

P 0
f(xi, Pj , τ). (1.94)

Since we are considering small perturbation of Tµν , we can then expand f as:

f(xi, Pj , τ) = f0(q)
[
1 + Ψ(xi, q, ni, τ)

]
. (1.95)

The components of Equation (1.94) are then:

T 0
0 = −a−4

∫
q2dqdΩ

√
q2 +m2a2f0(q) (1 + Ψ) , (1.96)

T 0
i = a−4

∫
q2dqdΩqnif0(q)Ψ, (1.97)

T i
j = a−4

∫
q2ddΩ

q2ninj√
q2 +m2a2

f0(q) (1 + Ψ) . (1.98)

These equations have no dependence on the metric fluctuations due to the redefinition of Pi by q
and ni. Therefore the determinant of the metric appearing in (1.94) disappears. Also, the above
expressions have the same form in both gauges: Synchronous and Newtonian. This, however, do
not mean that they are gauge invariant, as their values will differ in the gauge in which they are
computed in. The fact that they share the same expressions are just due to the redefinition of
the conjugate momenta.
The phase space distribution evolves following Equation (1.91), which in terms of the variables

xi, q and ni becomes:

∂f

∂τ
+

dxi

dτ

∂f

∂xi
+

dq

dτ

∂f

∂q
+

dni

dτ

∂f

∂ni
=

(
∂f

∂τ

)

C

, (1.99)

where the RHS is the collision term depending on the type of the interaction between particles.
The geodesic equation gives us:

P 0dP
µ

dτ
+ Γµ

αβP
αP β = 0 (1.100)
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which is easy to compute dq/dτ :

dq

dτ
=

{
−1

2qḣijn
inj synchronous gauge;

qϕ̇− ϵ(q, τ)ni∇iψ Newtonian gauge.
(1.101)

The term df/dni is order one in perturbation theory, and so is dni/dτ , which makes it second
order, therefore, they can be safely neglected. Equation (1.99) then becomes:

∂Ψ

∂τ
+ i

q

ϵ
(k · n̂)Ψ +

d ln f0
dq

[
η̇ − ḣ+ 6η̇

2
(k · n̂)2

]
=

1

f0

(
∂f

∂τ

)

C

(1.102)

in the Synchronous gauge, and

∂Ψ

∂τ
+ i

q

ϵ
(k · n̂)Ψ +

d ln f0
dq

[
ϕ̇− i

ϵ

q
(k · n̂)ψ

]
=

1

f0

(
∂f

∂τ

)

C

(1.103)

in the Newtonian gauge.
I will now show the Einstein-Boltzmann equations for the fundamental species in our Universe:

cold dark matter, photons, massless neutrinos and massive neutrinos.
I will begin with the simplest of the fluids we have in our Universe, cold dark matter (CDM).

The lack of self and inter particles interactions, makes CDM to be fully described in terms of its
density contrast and velocity dispersion, and we can derive the evolution equations straight from
the energy-momentum tensor conservation, ∇µT

µν = 0, which implies:

δ̇ = − (1 + w)

(
θ +

ḣ

2

)
− 3

ȧ

a

(
δP

δρ
− w

)
δ, (1.104)

θ̇ = − ȧ
a
(1− 3w) θ − ẇ

1 + w
θ +

δP/δρ

1 + w
k2δ − k2σ, (1.105)

in the Synchronous gauge, and

δ̇ = − (1 + w)
(
θ − 3ϕ̇

)
− ȧ

a

(
δP

δρ
− w

)
δ, (1.106)

θ̇ = − ȧ
a
(1− 3w) θ − ẇ

1 + w
θ +

δP/δρ

1 + w
k2δ − k2σ + k2ψ, (1.107)

in the Newtonian gauge. In the above equations I have performed a change of definition with
respect to the anisotropic stress, now using the Greek letter σ to describe it. The former definition
in Equation (1.40) is related to σ in the following way:

σ =
2pΠ

3 (ρ+ p)
. (1.108)

This new definition of the anisotropic stress is the one used in the public Einstein-Boltzmann
solver class [21], and therefore I will slowly adopt its definitions and conventions in order to
connect this introductory chapter with the rest of my thesis. Another new quantity introduced
in (1.104-1.107) is the fluid sound speed in its rest frame:

c2s =
δP

δρ
. (1.109)
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This is a perturbative quantity, and as the name suggests it is the speed in which the fluid
propagates as sound waves.

For cold dark matter we have to set w = δp = σ = 0 in these equations, and we arrive at:

δ̇ = −1

2
ḣ, (1.110)

in the Synchronous gauge, which is the gauge where I will present the equations of motion from
now on. Moving to massless neutrinos, we know that these have non-zero equations of state
parameter, which makes its energy density and pressure perturbations related by ρur = 3pur =
−T 0

0 = T i
i, where the subscript “ur” will be denoting these species. Therefore, its perturbations

will also be related by δp = δρ/3. From Equations (1.96-1.98) we have:

ρ̄ur = 3p̄ur = a−4

∫
q2dqdΩqf0(q), (1.111)

for its background quantities. And its perturbed quantities are defined as:

δρur = 3δPur = a−4

∫
q2dqdΩqf0(q)Ψ, (1.112)

δT 0
i,ur = a−4

∫
q2dqdΩqnif0(q)Ψ, (1.113)

Σi
j,ur = T i

j,ur − Purδ
i
j = a−4

∫
q2dqdΩq

(
ninj −

1

3
δij

)
f0(q)Ψ. (1.114)

The massless neutrino distribution function is actually pretty simple, as it is just the Fermi-Dirac
distribution with ϵ = q. And then we can easily intergrate out the momenta in Equations (1.112-
1.114), and expand the angular dependence appearing in ni in terms of Legendre polynomials:

Fur(k, n, τ) =

∫
q2dqqf0(q)Ψ∫
q2dqqf0(q)

=

∞∑

i=0

(−i)ℓ(2ℓ+ 1)Fur,ℓ(k, τ)Pℓ(k̂ · n̂). (1.115)

As we have seen scalar perturbations are decomposed as plane waves, therefore, Fν(k,n, τ) are
plane waves, e−ik·n, where x = rn̂, and expansion coefficients Fur,ℓ = jℓ(kr), given by spherical
Bessel functions. Plugging (1.115) into Equations (1.112-1.114) we are left with:

δur =
1

4π

∫
dΩFur(k,n, τ) = Fur,0, (1.116)

θur =
3i

16π

∫
dΩ(k · n)Fur(k,n, τ) =

3

4
kFur,1, (1.117)

σur = − 3

16π

∫
dΩ

[
(k̂ · n̂)2 − 1

3

]
Fur(k,n, τ) = Fur,2. (1.118)

If we integrate Equation (1.102) in momenta and divide by the energy density, the Boltzmann
equations for massless neutrinos becomes:

∂Fur

∂τ
+ ikµFur = −2

3
ḣ− 4

3
(ḣ+ 6η̇)P2(µ), (1.119)
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where µ = k̂ · n̂ and P2(µ) =
1
2

(
3µ2 − 1

)
. Substituting (1.116-1.118) in the above equation and

using the recursion relations between the Legendre polynomials we finally arrive at the equations
of motion for the moments of the massless neutrinos phase-space distribution:

δ̇ur = −4

3
θur −

2

3
ḣ, (1.120)

θ̇ur = k2
(
1

4
θur − σur

)
, (1.121)

2σ̇ur =
8

15
θur −

3

5
Fur,3 +

4

15

(
ḣ+ 6η̇

)
, (1.122)

Ḟur,ℓ =
k

2ℓ+ 1

[
ℓFur,(ℓ−1) − (ℓ+ 1)Fur,(ℓ+1)

]
, ℓ ≥ 3. (1.123)

We can see that a given moment ℓ of the massless neutrinos distributions is coupled with the
other moments ℓ−1 and ℓ+1. We can also go further into the necessity of writing the Boltzmann
equation (1.119), instead of just using the conservation equations (1.104-1.105) to describe the
fluid, as the conservation equation and the Euler equation are just the first two moments of the
Boltzmann equation. For a non-relativistic fluid at linear order and at large scales, such as the
case of cold dark matter, the first two moments suffice to fully describe the evolution of the
particles, however, in more general fluids we need higher moments. Another important aspect
of Equations (1.120-1.123) is that this is an infinite hierarchy, that is, in principle it is a set of
infinite equations of motion. However, what is commonly done in the literature is to truncate
the hierarchy at a given moment ℓmax. Since one needs to know Fur,3 to close the equations
of motion for the massless neutrinos in a minimal way, in the literature many approximation
schemes have been proposed to tackle this problem [20, 21, 22, 23]. All of these methods rely on
the asymptotic behavior of the coefficients Fur that are spherical Bessel functions, which have
well known asymptotic behavior for its different kinds, e.g., higher values of ℓ in jℓ(kr). I will
not be discussing the subtleties of these different schemes, and instead I refer the reader to the
previous references. These approximations have all been validated between each other and as
well with the full solution given by directly integrating equations (1.120-1.123) for a given big
value of ℓmax.
We know, however, that neutrinos have masses, after observing flavour oscillations. Therefore,

we must be able to define the same background and perturbed quantities for massive neutrinos
as well. The evolution of the distribution function for these species is more complicated than its
massless counterpart. From equations (1.96-1.98), the background density and pressure are:

ρ̄ν = a−4

∫
q2dqdΩϵf0(q), p̄ν =

1

3
a−4

∫
q2dqdΩ

q2

ϵ
f0(q), (1.124)

with ϵ =
√
q2 + a2m2

ν , and the perturbations:

δρν = a−4

∫
q2dqdΩϵf0(q)Ψ, (1.125)

δpν =
1

3
a−4

∫
q2dqdΩ

q2

ϵ
f0(q)Ψ, (1.126)

δT 0
i = a−4

∫
q2dqdΩqnif0(q)Ψ, (1.127)

Σi
j = a−4

∫
q2dqdΩ

q2

ϵ

(
ninj −

1

3
δij

)
f0(q)Ψ. (1.128)
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Expanding the perturbation Ψ in a Legendre series:

Ψ(k, n̂, q, τ) =
∞∑

ℓ=0

(−i)ℓ(2ℓ+ 1)Ψℓ(k, q, τ)Pℓ(k̂ · n̂), (1.129)

then the perturbations take the form:

δρν = 4πa−4

∫
q2dqϵf0(q)Ψ0, (1.130)

δpν =
4π

3
a−4

∫
q2dq

q2

ϵ
f0(q)Ψ0, (1.131)

(ρν + pν)Θν = 4πka−4

∫
q2dqqf0(q)Ψ1, (1.132)

(ρν + pν)σν =
8π

3
a−4

∫
q2dq

q2

ϵ
f0(q)Ψ2. (1.133)

The evolution of the perturbations Ψℓ is governed by the Boltzmann equations, and leads to the
following set of equations:

Ψ̇0 = −qk
ϵ
Ψ1 +

ḣ

6

d ln f0
d ln q

, (1.134)

Ψ̇1 =
qk

3ϵ
(Ψ0 − 2Ψ2) , (1.135)

Ψ̇2 =
qk

5ϵ
(2Ψ1 − 3Ψ3)−

(
ḣ

15
+

2η̇

5

)
d ln f0
d ln q

, (1.136)

Ψ̇ℓ≥3 =
qk

(2ℓ+ 1) ϵ
(ℓΨℓ−1 − (ℓ+ 1)Ψℓ+1) . (1.137)

Due to the dependence on the internal momenta q, the numerical integration takes more compu-
tational time than in the other cases so far. This integration has been fully implemented in the
Einstein-Boltzmann solvers, with different numerical integration techniques, each of them vali-
dated and proved to agree below 0.1% [21]. In the same way we need to truncate the hierarchy,
and [20] found that the truncation scheme:

Ψℓmax+1 ≈
(2ℓ+ 1) ϵ

qκτ
Ψℓmax −Ψℓmax−1, (1.138)

works pretty well. Since massive neutrinos decay rapidly once they become non-relativistic, it is
possible to choose a smaller maximum multipole than in the massless neutrinos case.
Now we will discuss photons, which play an important role in the physics evolution of the

early-Universe. Before recombination photons and baryons were tightly coupled in the primor-
dial plasma. After recombination the Universe slowly becomes transparent, and photons travel
more freely, while still interacting with matter and transferring energy and momentum. Even
though there are many processes occurring between photons and baryons before recombination,
the main interaction is Thomson scattering, the elastic scattering of electromagnetic radiation
by free charged particles. Therefore, the modifications that will happen with respect to the
Boltzmann equations for massless neutrinos are the collision terms in the RHS of Equation
(1.99). Additionally, photons are linearly polarized, thus having two polarizations in which they
can propagate, and, therefore, we will need two Legendre-expanded averaged functions to de-
scribe the two polarizations. When scattering off with the electron density perturbations with
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wavenumber k in the medium, photons with direction n̂ get linearly polarized with respect to
the plane perpendicular to its direction. This allow us to track both the sum and difference of
the phase-space density. The former is denoted by Fγ(k, n̂, τ), and the latter Gγ(k, n̂, τ). The
linear collisional operators for both are:

(
∂Fγ

∂τ

)

C

= aneσT

[
− Fγ + Fγ0 + 4n̂ · ve −

1

2
(Fγ2 +Gγ0 +Gγ2)P2

]
, (1.139)

(
∂Gγ

∂τ

)

C

= aneσT

[
−Gγ +

1

2
(Fγ2 +Gγ0 +Gγ2) (1− P2)

]
, (1.140)

where ve and ne are the velocity and mean density of electrons. P2 is a term that appears due
to the Thomson scattering dependence on polarization, its averaging gives in the end a term
depending on 1+cos2 θ in the cross section even for unpolarized photons. Expanding Fγ and Gγ

in Lengendre polynomials, and making the following identifications:

n̂ · ve = − iθb
k
P1(k̂ · ve), (1.141)

Fγ1 =
4θγ
3k

, (1.142)

Fγ2 = 2σγ , (1.143)

we rewrite Equations (1.139-1.140) as:

(
∂Fγ

∂τ

)

C

= aneσT

[
4i

k
(θγ − θb)P1 +

(
9σγ −

1

2
Gγ0 −

1

2
Gγ2

)
P2 (1.144)

−
∞∑

ℓ≥3

(−i)ℓ (2ℓ+ 1)FγℓPℓ

]
, (1.145)

(
∂Gγ

∂τ

)

C

= aneσT

[
1

2
(Fγ2 +Gγ0 +Gγ2) (1− P2)−

∞∑

ℓ≥3

(i)−ℓ (2ℓ+ 1)GγℓPℓ

]
. (1.146)

And the Boltzmann equation for photons are:

δ̇γ = −4

3
θγ −

2

3
ḣ, (1.147)

θ̇γ = k2
(
1

4
δγ − σγ

)
+ aneσT (θb − θγ) , (1.148)

2σ̇γ =
8

15
θγ −

3

15
kFγ3 +

4

15
ḣ+

8

5
η̇ − 9

5
aneσTσγ +

1

10
aneσT (Gγ0Gγ2) , (1.149)

Ḟγ =
k

2ℓ+ 1

[
ℓFγ(ℓ−1) − (ℓ+ 1)Fγ(ℓ+1)

]
− aneσT , ℓ ≥ 3, (1.150)

Ġγ =
k

2ℓ+ 1

[
ℓGγ(ℓ−1) − (ℓ+ 1)Gγ(ℓ+1)

]
(1.151)

+ aneσT

[
−Gγℓ +

1

2
(Fγ2 +Gγ0Gγ2)

(
δℓ0 +

δℓ2
5

)]
. (1.152)

Finally, the previous hierarchical equations are truncated at some ℓ = ℓmax:

Ḟγℓ = kFγ(ℓ−1) −
ℓ+ 1

τ
Fγℓ − aneσTFγℓ, (1.153)
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the same truncation is done for Gγℓ. This is the same scheme as the one for massless neutrinos,
apart from the opacity Thomson term.
We now move to baryons, the last species we are yet to discuss in this section. For all scales

of interest in cosmology, baryons are non-relativistic, therefore, they have no anisotropic stress,
σ = 0, and their equation of state and sound speed are much less than unity. In Equations
(1.104-1.107) we can safely neglect the terms that involve δp/δρ, with the exception to the one
multiplied by c2sk

2δ, which is important at high k values. As we have seen, baryons and photons
exchange momentum when they are tightly coupled, and due to momentum conservation we must
add a aneσT (θb − θγ) term in the first moment of the Boltzmann equations for baryons. We are
left with:

δ̇b = −θb −
1

2
ḣ, (1.154)

θ̇b = − ȧ
a
θb + c2sk

2δb +
4ργ
3ρb

aneσT (θb − θγ), (1.155)

where the square of the sound speed is given by:

c2s =
ṗb
ρ̇b

=
kBT

Mmol.

[
1− 1

3

d lnTb
d ln a

]
. (1.156)

with Mmol. the mean molecular weight.
Prior recombination, we have the tight coupling era, and the main problem associated to this

period, is that the dynamical equations become stiff, and usual numerical integrators end up
introducing large errors when compared to the full solution. Peebles and Yu [24] introduced an
approximation to solve these equations to avoid these stability issues. It is based on an expansion
in the interaction rate τc = (aneσT )

−1 (Thomson Opacity), which is large prior recombination.
This approximation is called the Tight-Coupling Approximation (TCA), and it is used during
early times to help solve the Boltzmann equations. There are different schemes for the TCA
approximation, each varying on the order of the expansion in τc, as well as the time dependence
on this term. I will not go into details on this approximation, since it falls outside the scope of
this thesis, and I refer the reader to the works [25, 20].
Recombination physics is a lengthy and detailed derivation, which I will not cover here as well.

The basic idea behind it is that there is a time in the early Universe in which is thermodynamically
favourable for ions (protons and He2+) and electrons to combine and form neutral atoms. With
the rapid decrease of free electrons, the photons scattering rate falls below the expansion rate,
H. This puts a halt on the interaction between photons and baryons in the primordial plasma,
allowing the photons to free-stream, making the Universe transparent to radiation. This is known
as photon decoupling, and it is the farthest we can go back in time, and actually observe the
Universe. Since baryons and photons are now decoupled they will evolve differently, and are not
bound to have the same temperature. The detailed calculation of this process can be found in
many textbooks [26, 27].
In this Section I presented an overview on the mathematical aspects of cosmological linear

perturbation theory. This framework, combined with the discussion of the homogeneous and
isotropic discussion presented in the last section, form the fundamental pillars that the ΛCDM
model is built on. I will now move to discuss the observational data that has allowed us to jointly
probe the Universe using a rather simple machinery.
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1.4. Cornerstone Observations

1.4.1. CMB

The Cosmic Microwave Background is one of the most precise and powerful probes we have in
cosmology. Its origin is connected to the primordial plasma when the Universe was much younger,
before the formation of stars and planets, when it was filled with an opaque cloud of hydrogen
plasma. As the expansion occured, the temperature of this plasma decreased, and the radiation
in the Universe expanded to longer wavelengths, until photons and electrons combined to form
neutral hydrogen atoms. Unlike the primordial plasma, these new atoms could not scatter the
thermal radiation by Thomson scattering, and the Universe became transparent. This epoch
in the Universe history is referred to as recombination, and, the subsequent period is referred
as photon decoupling, as the photons that once formed the plasma and were tightly coupled to
baryons, began to travel freely in the Universe. The CMB was discovered by Penzias and Wilson
in 1964, who observed the CMB as an almost uniform temperature across the whole sky. This
observation was followed three decades later by first the Russian experiment RELIKT-1 [28] in
1983, and then the COBE satellite [29] in 1989, which discovered small temperature anisotropies
in the CMB. More precise measurements of which have been made by BOOMERanG [30], MAX-
IMA [31], WMAP [32] and most recently, Planck [13]. Defining the temperature perturbations
as:

Θ(x, τ) =
δT

T
, (1.157)

where τ is conformal time, x the position and T is the average CMB temperature, which is
measured at T = 2.725K. As we observe the CMB in the whole sphere of the sky, is useful to
expand the temperature perturbations in terms of spherical harmonics:

Θ(x, τ) =
∞∑

ℓ=1

ℓ∑

m=−ℓ

aℓm(x, τ)Yℓm, (1.158)

where ℓ and m are conjugate to a real space unit vector n̂ representing the direction of incoming
photons, and the spherical harmonics Yℓm satisfy the normalization condition:

∫
dΩYℓm(n̂)Yℓ′m′(n̂)∗ = δℓℓ′δmm′ . (1.159)

The coefficients aℓm of Equation (1.158) have mean zero, while its variance is defined by:

Cℓ = ⟨|aℓm|2⟩, (1.160)

and it can also be expressed in terms of the power spectrum of the temperature perturbations in
Fourier space:

Cℓ =
2

π

∫ ∞

0
dkk2|Θ(k, τ)|2. (1.161)

So far I have discussed only the CMB temperature angular power spectrum. However, from
the CMB we have a total of six angular power spectra that give us information about the photons
that travelled from the last scattering surface to us. They are: the temperature CTT

ℓ , the E-mode
polatization CEE

ℓ and the B-mode polarization CBB
ℓ auto correlations power spectra, and three

cross-correlations ones: TE CTE
ℓ , TB CTB

ℓ and EB CEB
ℓ . The E and B modes from the CMB

appear due to the fact that the cosmic microwave background is weakly polarized. Polarization is
generated by Thomson scattering, and thus it is generated at the last scattering surface (z = 1090)
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and during the epoch of reionization (z < 15). This E and B polarization decomposition follows
the reasoning of decomposing a polarization pattern in the sky into “electric” (E) and “magnetic”
(B) components, as shown in Figure 1.3. Polarization describes the orientation of the light

Figure 1.3. Decomposition of the polarization patter into “eletric” and “magnetic” components. As seen
in the orange lines, the E modes are invariant under parity transformations, whilst B modes are not.

perpendicular to the direction of propagation. The dominant contribution to CMB polarization
anisotropies is from density (or scalar) perturbations in the early universe. However, since scalar
perturbations are parity-even, they can only generate polarizations of a specific mode, the E
modes. B mode polarizations appears if there is a production of primordial gravitational waves
during inflation, and they are always present in the lensed spectra of the CMB. The former
depends on the inflationary model of the Early Universe, and it constitutes one of the most
important topics of research in early Universe physics. The latter, arises from the fact that
photon trajectory from the last scattering surface to us is distorted due to the inohomegeinites
present in our Universe. This ultimately modifies the original polarization vector, which is
detected by us and corresponds to a production of B modes, even if no primordial gravitational
waves were generated. One of the greatest efforts of future CMB experiments is to further explore
the polarization information coming from the CMB, and in order to do so we need to come up
with very sophisticated methods to separate B modes produced by the lensing of the photons, to
the ones that can be possibly generated by different early Universe model. In Figure 1.4 I show
the temperature angular power spectrum from the last Planck collaboration data release, where
we can see the excellent agreement the ΛCDM model has with the data points.

1.4.2. Supernovae Ia

Supernovae are the byproduct of the violent end of the life of a star, and are one of the brightest
objects in our Universe, often outshining their host galaxies at the peak of their brightness curve.
There are four types of supernovae based on their emission spectra:

• SN II: these supernovae show Hydrogen (H) lines in their spectra;

• SN Ib: these do not have Hydrogen lines, but they do have have Helium (He);

• SN Ia: no H/He lines, but with Si+ 6150Å feature;

• SN Ic: no H/He lines (or very weak He), no Si+.

The Type Ia supernovae (SN Ia) are the most popular standard candle in cosmology today, and
their biggest advantages are:
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Figure 1.4. The CMB temperature power spectrum from [Planck2018]. The theoretical prediction is
given by the blue line and the binned observational data is shown by the red points. The quantity in the
y-axis is defined as Dℓ = ℓ (ℓ+ 1)Cℓ/2π.

• They can be seen at cosmologically significant distances, z ∼ 1.8;

• They have small dispersion in intrinsic luminosity;

• They are frequent, transient events – can always observe more.

One of the biggest breakthroughs in cosmology happened in 1993, when Philips [33] showed
that type IA Supernova, are standardizable candles, from which we can use the peak of their
brightness to measure their luminosity, and from which we can get the distance of these objects
from the luminosity relation:

m(z)−MB = 5 log10 dL(z)− 5, (1.162)

where m(z) is the apparent luminosity of the Supernova, MB is their absolute luminosity and dL
is the luminosity distance to the supernova in parsecs. The redshift of the supernova can be found
by observing the wavelength of its light and the shift of various absorption lines in its spectra, and
with a sufficient number of supernova observations the dependence of the observed luminosity on
redshift can be found. For large supernova surveys, such as the Pantheon, this is then compared
to the flat ΛCDM theoretical prediction, and the values of cosmological parameters, such as Ωm

and ΩΛ are inferred from it. This was the procedure taken by the two independent teams that
in 1998 found that the Universe was in an accelerated expansion phase:

• High-z Supernova Search: Riess et al. 1998 (AJ 116, 1009) [7].

• Supernova Cosmology Project: Perlmutter et al. 1999 (ApJ 517, 565) [6].

In Figure 1.5 I show the plot taken from Reference [6] showing the effective apparent magni-
tudes, mB, measured by two independent teams, as a function of redshift.
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Figure 1.5. The effective apparent luminosity mB versus the redshift z for 42 high-redshift SN Ia from
the SCP [6] and 18 low-redshift SN Ia from the Calan/Tololo Supernova Survey [34]

1.4.3. BAO

Before recombination, photons and baryons were tightly coupled, and, in this way, the plasma
which they formed had a non-zero sound speed. This effectively implies the baryonic perturba-
tions in our Universe also have an oscillatory feature imprinted by this period of tight coupling
with photons. This can be seen in the temperature fluctuations of the CMB. Also, since after the
photon decoupling, baryons started falling inside the gravitational wells formed by the cold dark
matter component of the Universe, we are also able to see these oscillations in the Large Scale
Structure of our Universe, seen in Figure 1.6. This baryonic acoustic oscillation, or BAO for

Figure 1.6. Figure taken from [35], representing the large scale structure of Universe with data coming
from different galaxy surveys.

short, was first detected in 2005 [36] at ∼ 100 Mpc/h. From the location of this BAO peak, we
are also able to add another evidence for a dark energy component responsible to the accelerated
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expansion of our Universe. The time at which photons were freed from the Compton scattering
with baryons is known as the drag epoch, and the sound horizon at that time, τdrag, can be
computed as:

rs (zdrag) =

∫ τdrag

0
dτcs(τ), (1.163)

where cs(τ) is the sound speed of the photon-baryons plasma given by:

c2s =
δpγ

δργ + δρb
, (1.164)

where γ refers to photons and b to baryons. When performing observations of galaxies in the
sky, what we actually measure is the angular and redshift distributions of galaxies as a power
spectrum P (k⊥, k∥) in redshift space, where k⊥ and k∥ are the wave-numbers perpendicular and
parallel to the line of sight respectively. From the power spectrum in redshift space it is possible
to measure two quantities [37]:

θs =
rs(zdrag)

(1 + z) dA(z)
, (1.165)

δzs =
rs(zdrag)H(z)

c
, (1.166)

where θs corresponds to observations orthogonal to the line of sight, while δzs is instead measured
by identifying in the fluctuation spectrum the oscillations along the line of sight. The current
BAO data is insufficient to measure these two distances separately, but a combined distance scale
can be obtained from the spherically averaged power spectrum

[
θ2BAOδzBAO

]1/3
=

rs(zdrag)[
(1 + z)2 d2A(z)c/H(z)

]1/3 , (1.167)

or as a related effective distance:

dV(z) =

[
(1 + z)2 d2A(z)

cz

H(z)

]1/3
. (1.168)

We can thus compare predictions for the distance scale dV(z) to observational data, finding
once again that a dark energy dominated Universe is favoured over a matter dominated one,
see [38, 39].

1.4.4. Redshift-space distortions

Galaxies are biased tracers of the underlying matter density field, that is, they are discrete probes
of the large scale structure of the Universe. Their radial position can be estimated through their
redshift, which is measured, for example, from the shift in their emission spectra. However, due
to the presence of density perturbations, galaxies have non-zero radial peculiar velocities, which
alter their measured redshift through an additional Doppler effect. This distortion is correlated
with the real density perturbation, and therefore changes the statistics of the observed matter
distribution. This effect was first modelled by N. Kaiser in the famous paper [40] and has come
to be widely known as the Kaiser effect.
When we map out objects like galaxies in 3-dimensional space, the radial (comoving) distance

to the object is determined by its measured redshift, zobs. However, we should remember that
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there are always two contributions to this quantity: Hubble flow r(zcos) =
∫ z cos
0 cdz/H(z) and

the peculiar velocity of the object:

1 + zobs = (1 + zcos)

(
1−

v∥(r)

c

)−1

, (1.169)

s = r+
(1 + zcos) v∥(r)

H(zcos)
r̂, (1.170)

where zcos is the cosmological redshift due to the expansion of the Universe and v∥ denotes the
line-of-sight (LOS) component of the peculiar velocity. As an example, for a flat-ΛCDM Universe
with Ωm = 0.3, r(zcos) ≈ 1.32 Gpc/h, while the second term is:

(1 + zcos) v∥(r)

H(zcos)

∣∣∣∣∣
zcos=0.5

∼ 1.18
v∥

100 km/s
[Mpc/h], (1.171)

which typically is of the order of O(1 Mpc/h). For clustering statistics the second term has a

Figure 1.7. Diagram showing how real space structures (top row) get distorted in redshift space (bottom
row). Figure taken from [41].

non-negligible contribution for the matter density field:

δm(x) =
ρm(x)

ρ̄
− 1. (1.172)

The Fourier transform of the 2-pt correlation function of this field is simply:

⟨δm(x)δm(x′)⟩ = (2π)3 δD(k+ k′)Pm(k), (1.173)

which reduces to just a function of the wave-number modulus k, Pm(k) due to the Universe being
homogeneous and isotropic at large scales. However, in redshift space, the observed matter power
spectrum will not be isotropic anymore, with the peculiar velocity term breaking the rotational
invariance and introducing an anisotropic term. This term is the precisely the one that Kaiser
computed in his original paper, and the linear matter power spectrum in redshfit space is written
as:

Ps =
(
1 + βµ2k

)
Pr,k, (1.174)
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Figure 1.8. fσ8 data points from different galaxy surveys. The plot also shows the curves for different
cosmological models. Figure taken from [42].

with β = f/b and µk = k·n̂z/k is the cosine angle between the wave-number vector k and the line
of sight direction n̂z. In the expression of β, f is the logarithmic derivative of the matter density
field with respect to the logarithm of the scale factor, and b is the linear bias term, that connects
the observed galaxy density field with the underlying distribution of the matter density field.
Physically, the Kaiser effect is translated as: At large scales, objects tend to coherently infall
into high density region and the density field becomes squashed, hence the clustering amplitude
becomes stronger along LOS, Figure 1.7 shows this effect schematically. If we only consider the
linear scales and the galaxy number density, we can further rewrite Equation (1.174) as:

P s,L
g (k) = P s,L

g (k, µ) = b2
(
1 + βµ2

)2
PL
m(k), β =

f

b
(1.175)

and since the linear matter power spectrum can be parametrized in terms of the amplitude
of the matter fluctuations at a given scale R = 8 Mpc/h, redshift space distortions are usually
parametrized by the combination fσ8. In Figure 1.8, I show some measurements of this quantities
for different surveys and gravity theories.

1.4.5. Gravitational lensing

The inhomogeneities in the Universe formed by the clustering of matter affect the path photons
emitted in a given redshift take until they reach us. This is known as gravitational lensing, and
it was the first observational test of General Relativity, in 1919, Eddington led a voyage to the
Southern Hemisphere to observe the deflection of starlight during a solar eclipse. The magnitude
of this effect [43] was in good agreement with Einstein’s new theory. The power of lensing resides
on the fact that it responds to all the mass distribution in the Universe, contrary to the galaxy
power spectrum observed in spectroscopic surveys, which is a biased version of the cold dark
matter plus baryons power spectrum.
Lensing can be divided into two categories: strong and weak. Observations of the former

rely on constraining the quantity ∆tH0, where ∆t is the time delay, and it depends only on
the mass profile of the lens and the relative redshift between the source and lens. The latter,
however, as the name suggests, is a much more subtle effect, as it involves the lensing of very
distant background galaxies by foreground galaxy clusters. Individually speaking this effect is
insignificant, but when we average over the whole distribution of galaxies in a given redshift the
apparent distortions of the lensed image becomes a very powerful probe. This weak lensing signal
can be combined with cluster abundances to constrain structure growth, as done by the Dark
Energy Survey, which recently reported [44] a measure of S8 = 0.776± 0.017. This S8 parameter
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allows us to constraint the amplitude of matter perturbations in a sphere of radius R = 8 Mpc/h,
σ8, in combination with the total matter energy density, Ωm.
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CHAPTER 2.

Modified Gravity

2.1. Introduction

Einstein’s theory of gravity stands in the corner of the Standard Model of Cosmology. General
Relativity is assumed to describe gravitational interactions from the smallest scales of our Univer-
sity to the largest distances known. It has passed many tests, from millimetre scales laboratory
experiments, passing through Solar System tests and culminating in the now well known and
well established gravitational waves cosmology. The many successes GR has, however, does not
mean that the effort of looking for alternative theories of gravity should be halted.
When in 1998 astronomers showed for the first time that our Universe on a period of accelerated

expansion, the addition of the cosmological constant, Λ, to explain this feature became our
standard paradigm for the nature of dark energy. However, due to the poor constraints we have
on modified gravity theories when using cosmological data, and due to theoretical problems the
cosmological constant faces, modified gravity theories that naturally explain the expansion of our
Universe remain one of the most active fields in modern cosmology. However, not only General
Relativity has successfully passed many different tests, it is also the simplest theory that is able
to describe a massless spin-2 field propagating in a curved space-time. Therefore, to propose new
theories of gravity we need to be consistent throughout our approach.

2.2. Lovelock Theorem

A first step to introduce modifications of gravity is to look at the action. Assuming that the only
field that mediates gravity is the metric tensor gµν , the action reads:

S =

∫
d4xL (gµν) . (2.1)

By extremizing this action we are able to find the equations of motion:

Eµν [L] = d

dxρ

[
∂L
∂gµν,ρ

− d

dxλ

(
∂L

∂gµν,ρλ

)]
− ∂L
∂gµν

, (2.2)

with Eµν [L] = 0. Lovelock’s theorem [45, 46] can then be stated as:

• The only possible second order Euler-Lagrangian operator, Eµν , built from the metric in a
four dimensional manifold and scalar density Lagrangian L is the following:

Eµν = α
√−g

[
Rµν − 1

2
gµνR

]
+ λ

√−ggµν , (2.3)

with α and λ constants, Rµν is the Ricci tensor, and R is the Ricci scalar.
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This means that if one tries to build another gravitational theory using only the metric tensor
in a four dimensional space-time with only second order equations of motion for the field, then
the result will be Einstein’s Equations with a possible cosmological constant. Therefore, this
theorem gives us the routes in which we can look for modifications to GR:

• Add extra fields besides the metric tensor;

• Ease the condition of only second order equations of motion;

• Go to higher dimensions in the manifold;

• Give up on the requirement of deriving the equations of motion from the variation of an
action principle;

• Assume non-local terms.

The first, second and third conditions are the most pursued paths in the literature. The fourth
can be seen as the most unconventional but has seen some research recently as well [47, 48, 49],
and the last has also seen some propositions [50]. In this thesis I will focus only on the first
condition.

2.3. Scalar-Tensor Theories

The most well established and tested alternative theories to General Relativity are Scalar-Tensor
(ST) theories. These theories add, on top of the metric tensor, an extra scalar field that mediates
gravity. The main reason these models are so simple when compared to others, is due to the fact
that scalar fields easily respect all the symmetries we have in our manifold. Even before Einstein
proposed GR, Nordstrom developed in 1912 a conformally flat theory of gravity that was based
purely of a scalar field. Today, however, the majority of ST theories introduce a time-dependent
coupling between gravity and matter. The idea of constants of nature being not constant, but
time-dependent, dates back to the works of Dirac in 1937 on large numbers hypothesis. Jordan,
then, further complemented this idea with a complete theory that pushed G to be time-dependent
as it assumed the role of a scalar field. Finally, Brans and Dicke reached full maturity with this
idea by proposing the now famous Jordan-Brans-Dicke (JBD) theory, one of the most well studied
gravity theory alternative to GR [51, 52]. The action of JBD can be written as:

S =
1

16π

∫
d4x

√−g [f(ϕ)R+ g(ϕ)∇µϕ∇µϕ− 2Λ(ϕ)] + Lm (Ψm, h(ϕ)gµν) , (2.4)

where Ψm are the matter fields. We can absorb the function h(ϕ) into the metric tensor:

h(ϕ)gµν → gµν . (2.5)

This choice picks out a conformal frame in which gravity and matter are minimally coupled,
therefore matter follows geodesics, but the scalar field and the metric tensor can be non-minimally
coupled. This reference frame is the so-called Jordan frame and the equivalence principle in its
weak form is satisfied. After this conformal choice of reference frame, other field redefinitions
can be made in (2.4), in order to write the action is a way that it resembles the original form of
JBD theory:

S =
1

16πGN

∫
d4x

√−g
[
ϕR− ω(ϕ)

ϕ
∇µϕ∇µϕ− 2Λ(ϕ)

]
+ L(Ψm, gµν), (2.6)
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where ω(ϕ) is called the coupling function and Λ(ϕ) is the field generalization of the Cosmological
Constant. The action written in this way also leads to an easy identification of the GR limit
inside the JBD theory [52, 53] e.g.:

ω → ∞, (2.7)

ω′/ω2 → 0 (2.8)

Λ(ϕ) → constant. (2.9)

The equations of motion in the Jordan frame are found by varying (2.6) w.r.t gµν and ϕ:

• δgµν :

ϕGµν +

[
2ϕ+

1

2

ω

ϕ
(∇ϕ)2 + Λ

]
gµν −∇µ∇νϕ− ω

ϕ
∇µϕ∇νϕ = 8πTµν . (2.10)

• δϕ:
(2ω + 3)2ϕ+ ω′ (∇ϕ)2 + 4Λ− 2ϕΛ′ = 8πT, (2.11)

where a prime represents differentiation with respect to the scalar field. We can see from Equation
(2.10) that Geff ∝ 1

ϕ .
These theories are conformally equivalent to General Relativity, in the sense that if we perform

a Weyl transformation (a class of a larger group of conformal transformations [54]) in the metric
tensor, we can “conformally land” in General Relativity. A Weyl transformation is defined as:

gµν → eΓ(x)ḡµν , (2.12)

where Γ(x) is a scalar function, and the line element of the two metrics are related as ds2 =
e2Γ(x)ds̄2. This transformation does not alter angles, as it merely rescales the line element, thus,
preserving the conformal structure of the space-time. The Ricci tensor in the new conformal
metric becomes:

Rµν = R̄µν − 2∇̄µ∇̄νΓ + 2∇̄µΓ∇̄νΓ−
(
2∇̄αΓ∇̄αΓ + 2̄Γ

)
ḡµν (2.13)

e2ΓR = R̄− 6∇̄µΓ∇̄µΓ− 62̄Γ, (2.14)

e2Γ2ϕ = 2̄ϕ+ 2∇̄αΓ∇αϕ. (2.15)

After some algebraic manipulations using Equations (2.13) and (2.6), we arrive at:

S =
1

16πGN

∫
d4x

√−ḡ
[
R̄− 1

2
∇µχ∇µχ+ V (χ)

]
+ Lm(Ψm, e

2Γḡµν), (2.16)

where χ is the new scalar field that is related to the original one. Therefore, we can see that
this new multiplying factor in the matter Lagrangian introduces a non-minimal coupling be-
tween matter and gravity. The action (2.16) is the JBD action in the conformal frame, which
is commonly referred as the Einstein frame, since the same action in the new metric describes
Einstein’s gravity plus a minimally coupled scalar field that is now non-minimally coupled to
matter. This new interaction between gravity and matter introduces the effects of a new force
in the movement of massive test-particles, i.e., there is an emergence of a fifth force. This is
directly seen in the non-conservation of the energy momentum tensor in the Einstein frame,
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∇̄µT̄
µν =

√
4π(2ω+3)T̄∇νχ. The geodesic motion for massive particles can be derived from the

conservation of the energy-momentum tensor, and can be written as:

d2xµ

dλ2
+ Γ̄µ

αβ

dxα

dλ

dxβ

dλ
=

√
4π

2ω + 3
∇̄µχ (2.17)

where Γ̄µ
αβ is the Christoffel symbol of the conformal metric and λ is an affine-parameter. The

universality of free-fall (Weak Equivalence Principle) is violated by the RHS of this equation.
Until now, we have considered only the so-called JBD theory, which was historically considered

the most general scalar-tensor theory of gravity. However, the most general scalar tensor theory,
with second order equations of motion, is not derived from Equation (2.6), but from the so-called
Horndeski action:

S[gµν , ϕ] =

∫
d4x

√−g
[

5∑

i=2

1

8πGN
Li[gµν , ϕ] + Lm[gµν , ψM]

]
, (2.18)

where the Li terms in the Lagrangian are:

L2 = G2(ϕ, X) , (2.19a)

L3 = −G3(ϕ, X)2ϕ , (2.19b)

L4 = G4(ϕ, X)R+G4X(ϕ, X)
[
(2ϕ)2 − ϕ;µνϕ

;µν
]
, (2.19c)

L5 = G5(ϕ, X)Gµνϕ
;µν − 1

6
G5X(ϕ, X)

[
(2ϕ)3

+ 2ϕ;µ
νϕ;ν

αϕ;α
µ − 3ϕ;µνϕ

;µν2ϕ
]
. (2.19d)

X = −1
2∂µϕ∂

µϕ is the kinetic term of the scalar field, and ψM represents matter fields minimally
coupled to gravity. This theory carries the name of its original proposer, Gregory Horndeski,
who introduced it in 1974 in his PhD thesis. However, the theory only gained attraction in the
community in 2011, when theorists [55, 56] were looking for generalizations of Galileon theories
(theories invariant under galilean transformations, constant coordinate shift). Galileons are the
most general scalar-tensor theories in a flat space-time, and Horndeski’s theory is its covariant
equivalent for a general space-time. To derive the cosmological background equations of motion
of (2.18) we vary the action with respect to the line element ds2 = −N(t)dt2 + a2(t)dx2:

• δN(t) Constraint Equation:

5∑

i=2

Ei = 0 (2.20)

with

E2 = 2XKX −K, (2.21)

E3 = 6Xϕ̇HG3X − 2XG3ϕ, (2.22)

E4 = −6H2G4 + 24H2X (G4X +XG4XX)− 12HXϕ̇G4ϕX − 6Hϕ̇G4ϕ, (2.23)

E5 = 2H3Xϕ̇ (5G5X + 2XG5XX)− 6H2X
(
3G5ϕ+2XG5ϕX

)
. (2.24)
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• δa(t) Evolution Equation:

5∑

i=2

Pi = 0 (2.25)

where

P2 = K, (2.26)

P3 = −2X
(
G3ϕ + ϕ̈G3X

)
, (2.27)

P4 = 2
(
3H2 + 2Ḣ

)
G4 − 12H12XG4X − 4HẊG4X − 8ḢXG4X − 8HXẊG4XX (2.28)

+ 2
(
ϕ̈+ 2Hϕ̇

)
G4ϕ + 4XG4ϕϕ + 4X

(
ϕ̈− 2Hϕ̇

)
G4ϕX , (2.29)

P5 = −2X
(
2H3ϕ̇+ 2HḢϕ̇+ 2HḢϕ̇+ 3H2ϕ̈

)
G5X − 4H2X2ϕ̈G5XX (2.30)

+ 4HX
(
Ẋ −HX

)
G5ϕX + 2

[
2
d

dt
(XH) + 3H2X

]
G5ϕ + 4HXϕ̇G5ϕϕ. (2.31)

Ei and Pi are presented in a way that they resemble the background energy density and isotropic
pressure. The background value of the scalar field is given by an equation of motion of its own:

d

dt

(
a3J

)
= Pϕ, (2.32)

with

J = ϕ̇KX + 6HXG3X − 2ϕ̇G3ϕ + 6H2ϕ̇ (G4X + 2XG4XX)− 12HXG4ϕX (2.33)

+ 2H3X (3G5X + 2XG5XX)− 6H2ϕ̇ (G5ϕ +XG5ϕX) , (2.34)

Pϕ = Kϕ − 2X
(
G3ϕϕ + ϕ̈G3ϕX

)
+ 6

(
2H2 + Ḣ

)
G4ϕ + 6H

(
Ẋ + 2HX

)
G4ϕX (2.35)

− 6H2XG5ϕϕ + 2H3Xϕ̇G5ϕX . (2.36)

J is a shift charge density which is covariantly conserved whenever the action is invariant under
constant shifts, e.g., ϕ → ϕ+ const.. This transformation is called shift symmetry and it means
that in the theory at hand the Horndeski Gi functions only depend on X, the kinetic term. In
summary, J is a Noether current, and in shift symmetric theories ∇µJ = 0. Pϕ is the partial
derivative w.r.t. to ϕ of the pressure (2.26).
So far I have shown the equations of motion that govern the background dynamics in scalar-

tensor theories of gravity. We still need, however, to discuss the dynamical evolution of the scalar
field, which can lead to an accelerated expansion at late times. There are two types of solutions
for the scalar field that will lead to a de-Sitter (or almost de-Sitter) phase at late-times:

i) Scaling solutions [57]: trajectories in which the scalar field energy density tracks the one of
the barotropic fluid (radiation or dust) that is dominant at the given era. In other terms:

Ωϕ

Ωm
= const. (2.37)

ii) Tracker solutions: trajectories that are insensitive to initial conditions that will eventually
lead to a phase of late-time acceleration [58]. The name tracker refers to the feature that
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the parameter of equation of state of the scalar field is almost constant during each phase
of expansion, and it is always less or equal to the background equation of state, e.g.,
during radiation domination wϕ ≤ 1/3 and during matter domination wϕ < 0. Why these
solutions are so attractive in the context of scalar-tensor theories? The answer is clear:
they naturally solve the coincidence problem. That is, the coincidence problem poses the
question of “why the Universe is expanding in an accelerated fashion now?”. Since many
different initial conditions for the scalar field eventually evolve to the tracker solution, we
are able to see that irrespective to these, we will eventually have the late-time accelerating
phase without any effort.

Prior the development of quick and accurate Einstein-Boltzmann solvers in modified gravity,
research in modified gravity heavily depended in performing a phase-space analysis of these
theories to investigate under which values and conditions of the extra parameters of the models
could describe the different stages of the evolution of the Universe, such as [59, 60]. With this, we
were able to begin the discussion of parameter constraints in alternative theories of gravity, that
eventually lead us to the point at we are now, where we perform Bayesian analysis inferences of
the data extracted from different cosmological probes, and compare them with the models we
have.

2.4. Linear Perturbation Theory

In the previous section we saw how the background cosmology is described and characterized
in modified gravity theories. We are now in position to move our discussion to understand the
inhomogeneities of our Universe using cosmological perturbation theory. Firstly we will consider
only linear expansion, and, therefore, the analysis is restricted to regimes in which gravitational
quantities are considerably smaller than unity.
As presented in Section 1.2, cosmological perturbation theory consists of perturbing the LHS

and the RHS of Einstein’s Equation, i.e., perturbing gravity and matter. In modified gravity
theories, the RHS of EE remain the same as in GR, that is, we can use all the formalism devised
in Section 1.2 for these models as well. The LHS, however, contains extra terms, as seen by
Horndeski’s action (2.18), and we will in the end have considerably more terms to perturb. I will
first present the linear order equations of motion in the conformal Newtonian gauge metric:

ds2 = a2(t)
[
−(1 + 2Ψ)dτ2 + (1− 2Φ)dx2)

]
. (2.38)

They read:

• Einstein (0,0)

k2Φ− 1

2
a2H2 (−6 + 6αB + αK)Ψ− 3

2
aH (−2 + αB) Φ

′

[
−k

2H

a
αB − aH3 (3αB + αK)− 9aH

ρm + pm
M2

∗
+ 3HH ′ (−2 + αB)

]
1

2
a2VX

− 1

2
a2H2 (3αB + αK)V

′
X = −3a2δρm

2M2
∗

(2.39)

35



Modified Gravity Section 2.4

• Einstein (0,i)

− 1

2
aH (−2 + αB)Ψ + Φ′ −

[
1

2
a2H2αB + aH ′ +

3a2 (ρm + pm)

2M2
∗

]
VX

− 1

2
aHαBV

′
X = − 3a2

2M2
∗k

2
(ρm + pm) θm (2.40)

• Einstein (i,j) trace

(αT − αM) aHVX − (1 + αT) Φ + Ψ =
9a2

2k2M2
∗
(ρm + pm)σm (2.41)

• Einstein (i,j) traceless

Ψ

[
−1

2
a2(αB − 2)(αM + 3)H2 − 3a2(ρm + pm)

2
− 1

2
a
(
(αB − 2)H ′ +Hα′

B

)]

− 1

2
a2αBHV

′′
X + V ′

X

[
− 1

2
a3αBH

2 − 1

2
a2αB(αM + 3)H2 − (ρm + pm)

2M2
∗

− 1

2
aαBH

′

− aH ′ − aHα′
B

2

]
+ VX

[
− 1

2
a4αBH

3 − 1

2
a3αB(αM + 3)H3 − 1

2
a2H2α′

B

− a3H
(
αBM

2
∗H

′ + 3αMpm + 3(ρm + pm)
)

2M2
∗

− a2H ′′ − 1

2
a2H(αB + 2αM + 8)H ′

+
3a2αMHpm

2M2
∗

− 9a2p′m
2M2

∗
+ a3HH ′

]
+ aHΨ′

(
1− αB

2

)

+ aHΦ′(αM + 2) + Φ′′ =
3a2δpm
M2

∗
(2.42)

Since Einstein-Boltzmann codes are implemented using the Synchronous gauge, whose line ele-
ment reads:

ds2 = a2
[
−dτ2 +

(
δij + h̃ij

)
dxidxj

]
, (2.43)

with

h̃ij (τ,k) = k̂ik̂jh+ 6

(
k̂ik̂j −

1

3
δij

)
η + hij , (2.44)

let’s write the same equations in this gauge as well:

• Einstein (0,0)

h′ =
4k2η

aH (2− αB)
+

6aδρm
HM2

∗ (2− αB)
− 2aH

(
αK + 3αB

2− αB

)
V ′
X

− 2

[
3aH ′ +

(
αK + 3αB

2− αB

)
a2H2 +

9a2

M2
∗

(
ρm + pm
2− αB

)
+

αBk
2

2− αB

]
VX . (2.45)

• Einstein (0,i)

η′ =
3a2θm
2k2M2

∗
+
aH

2
αBV

′
X +

[
aH ′ +

a2H2

2
αB +

3a2

2M2
∗
(ρm + pm)

]
VX . (2.46)

36



Modified Gravity Section 2.4

• Einstein (i,j) trace

Dh′′ =2λ1k
2η + 2aHλ3h

′ − 9a2αKδpm
M2

∗
+ 3a2H2λ4V

′
X + 2a3H3

[
3λ6 +

λ5k
2

a2H2

]
VX . (2.47)

• Einstein (i,j) traceless

ξ′ =(1 + αT) η − aH (2 + αM) ξ + aH (αM − αT)VX − 9a2σm
2M2

∗k
2
, (2.48)

• Scalar field

D (2− αB)V
′′
X + 8aHλ7V

′
X + 2a2H2

[
c2sNk

2

a2H2
− 4λ8

]
VX =

2c2sN
aH

k2η

+
3a

2HM2
∗
[2λ2δρm − 3αB (2− αB) δpm] , (2.49)

where H is the physical-time Hubble factor, related to the conformal one by H = aH, VX is the
scalar field perturbation in conformal time:

VX = a
δϕ

ϕ′
, (2.50)

and ξ = (h′ + 6η′)/2k2. The time-dependent functions αM, αB, αT and αK were first introduced
in [61], and they capture all the freedom we have in Horndeski theories at the linear level. They
are independent from each other, and have different physical meanings:

• αM: This function is the time variation of the Planck mass M2
∗ , which in certain Horndeski

theories can be time-dependent. It can be seen as the rate in which the cosmological
strength of gravity is evolving.

• αB: Braiding, it describes the different couplings between the scalar field and the metric
tensor. Whenever this term is non-zero dark energy can cluster, therefore, if this term is
found to be different than zero, we have a clear evidence that dark energy is evolving in
time, and its perturbations are allowed to cluster.

• αK: Kineticity, this functon captures the evolution of the kinetic energy of the scalar field
fluctuations. It is only relevant at scales near the cosmological horizon, and therefore, are
hard to be constrained by available LSS surveys.

• αT: Tensor excess, in certain Horndeski theories the speed in which gravitational waves
propagate, CT in these theories may be different than that of light, c. This functions
captures precisely the ammount in which the two differ: c2T = c2(1 + αT). After the
detection of gravitational waves followed by a gamma-ray burst from the coalscence of two
neutron stars, this function has been severely constrained to |αT| < 10−15. However, the
frequency in which LIGO/VIRGO detectors operate is considerably close to the frequency
in which scalar-tensor theories “break”. That is, modified gravity theories in which the
scalar field is supposed to describe dark energy can be seen only as effective theories, where
in a given frequency cut the theory would lose predictive power, and would need to be
further supplemented by an appropriate UV completion [62].
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The definition of these functions in terms of the Horndeski Gi’s is as follows:

M2
∗ ≡2

(
G4 − 2XG4X − Hϕ′XG5X

a
+XG5ϕ

)
(2.51)

αM ≡d lnM2
∗

d ln a
(2.52)

H2M2
∗αK ≡2X (G2X + 2XG2XX − 2G3ϕ − 2XG3ϕX)

+
12Hϕ′X

a
(G3X +XG3XX − 3G4ϕX − 2XG4ϕXX)

+ 12H2X
[
G4X −G5ϕ +X (8G4XX − 5G5ϕX) + 2X2 (2G4XXX −G5ϕXX)

]

+
4H3ϕ′X

a

(
3G5X + 7XG5XX + 2X2G5XXX

)
(2.53)

HM2
∗αB ≡2ϕ′

a
(XG3X −G4ϕ − 2XG4ϕX) + 8HX (G4X + 2XG4XX −G5ϕ −XG5ϕX) (2.54)

+
2H2ϕ′X

a
(3G5X + 2XG5XX)

M2
∗αT ≡4X (G4X −G5ϕ)−

2

a2
(
ϕ′′ − 2aHϕ′

)
XG5X . (2.55)

And the λi functions that also appear in the perturbed equations of motion are:

D =αK +
3

2
α2
B (2.56)

λ1 =αK (1 + αT)− 3αB (αM − αT) (2.57)

λ2 =− 3 (ρm + pm)

H2M2
∗

− (2− αB)
H ′

aH2
+
α′
B

aH
(2.58)

λ3 =− 1

2
(2 + αM)D − 3

4
αBλ2 (2.59)

λ4 =αKλ2 −
2αKα

′
B − αBα

′
K

aH
(2.60)

λ5 =
3

2
α2
B (1 + αT) + (D + 3αB) (αM − αT) +

3

2
αBλ2 (2.61)

λ6 =

(
1− 3αBH

′

αKaH2

)
αKλ2
2

− DH ′

aH2

[
2 + αM +

H ′′

aHH ′

]
− 2αKα

′
B − αBα

′
K

2aH
− 3αKp

′
m

2aH3M2
∗

(2.62)

λ7 =
D

8
(2− αB)

[
4 + αM +

2H ′

aH2
+

D′

aHD

]
+
D

8
λ2 (2.63)

λ8 =− λ2
8

(
D − 3λ2 +

3α′
B

aH

)
+

1

8
(2− αB)

[
(3λ2 −D)

H ′

aH2
− 9αBp

′
m

2aH3M2
∗

]
(2.64)

− D

8
(2− αB)

[
4 + αM +

2H ′

aH2
+

D′

aHD

]

c2sN =λ2 +
1

2
(2− αB) [αB (1 + αT) + 2 (αM − αT)] , (2.65)

where c2sN is the numerator of the sound speed squared of the scalar field

c2s =
c2sN
D

(2.66)

=
1

αK + 3
2α

2
B

[
(2− αB)

(
− H ′

aH2
+

1

2
αB (1 + αT) + αM − αT

)
− 3 (ρm + pm)

H2M2
∗

+
α′
B

aH

]
. (2.67)
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Horndeski theories are also plagued by different kinds of instabilities. These instabilities are
such that the wrong choice of parameters for the αi functions will lead to exponentially unstable
perturbations. The most important instabilities are:

i) Ghost instabilities: wrong choice for the kinetic energy term, resulting in negative energy
modes and a non-unitary evolution, rendering the whole theory incomplete.

ii) Gradient instabilities: occurs when c2s < 0. This will lead to an exponential instability that
grows with a rate that is related to the shortest scale mode. These instabilities can remain
unseen until this mode is effectively considered in the theory, thus, a seemingly stable linear
perturbation theory in a given range may seem healthy, while the whole theory is unhealthy
when looked at all scales (or via the inclusion of higher-order interactions).

iii) Tachyonic instabilities: happens when the square of the mass of the perturbations is nega-
tive. This leads to a power law instability at large scales (modes outside the horizon), that
once are inside the horizon they become under control. Since modes outside the horizon
are hard to probe, this instability has long been not thoroughly studied, until recent [63].

In summary, to make it simple for the reader to remember/understand where these instabilities
is affecting is worth pointing out that: (i) is a instability linked directly to the action of the
theory, (ii) resembles an UV instability as it becomes apparent only when we consider large
wave-numbers, and (iii) is an IR instability, where only small wave-numbers. Therefore, before
running the complete analysis using cosmological data from different surveys, one needs to check
which are the stable regions of which a given parameterization or model.
In the Effective Field Theory approach to Dark Energy [64, 65] one needs to further supplement

these four time-dependent equations with an expansion history, H(z).
I have chosen to exhibit the linear equations in the Newtonian and Synchronous gauges adopting

CLASS internal units and conventions, e.g.:

ρCLASS =
8πGN

3
ρstd., (2.68)

c = 1, (2.69)

where ρstd. is the standard physical energy density of a given quantity, and c is the speed of light.
This choice ensures that the internal dimensionful quantities have units of Mpc−1, therefore, the
Hubble factor H has units of Mpc−1, and distances Mpc. This is just a redefinition that will
make it easier to present the results found in this thesis when linear perturbation theory is used.
Unless otherwise stated, this choice of conventions will be the default one. We can do the same
to the background equations of motion, and set them to CLASS internal units:

H2 =
8πG

3

(∑

i

ρi + ρDE

)
(2.70)

H ′ = −4πGa

[∑

i

(ρi + pi) + ρDE + pDE

]
(2.71)
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where

8πG

3
ρDE ≡− 1

3
G2 +

2

3
X (G2X −G3ϕ)−

2H3ϕ′X

3a
(7G5X + 4XG5XX) (2.72)

+H2
[
1− (1− αB)M

2
∗ − 4X (G4X −G5ϕ)− 4X2 (2G4XX −G5ϕX)

]

8πG

3
pDE ≡1

3
G2 −

2

3
X (G3ϕ − 2G4ϕϕ) +

4Hϕ′

3a
(G4ϕ − 2XG4ϕX +XG5ϕϕ) (2.73)

− (ϕ′′ − aHϕ′)

3ϕ′a
HM2

∗αB − 4

3
H2X2G5ϕX −

(
H2 +

2H ′

3a

)(
1−M2

∗
)

+
2H3ϕ′XG5X

3a
,

with the dark energy background fluid quantities given by:

ρ′DE = −3H (ρDE + pDE) , (2.74)

wDE =
pDE

ρDE
. (2.75)

Solving these equations is a necessary task in the current stage of precision cosmology. There-
fore, standard Einstein-Boltzmann solvers have been devised in order to solve the modified gravity
and mattter equations of motion. One of these codes is the Horndeski in class, hi class [66, 67],
code. I will now give a brief description of the code.
The code builds upon the success of the class code, whose source code is written in C and

numerical routines are implemented using C++ libraries. The background equations of motion
are solved using standard fourth order Runge-Kutta (RK4) methods, while the perturbation
module may be solved using RK4 or a stiff equation solver called ndf5. The initial conditions
for the perturbations are given deep inside radiation domination era, and may be chosen from
the usual initial conditions set by inflation at super-horizon scales: adiabatic, isocurvature, etc.
The majority of modified gravity models that attempt to explain the late-time acceleration of the
Universe, are late dark energy models, i.e., they are built in a way that modified gravity will only
be relevant and non-negligible after matter domination era. Due to this, cosmological observables
are insensitive to the initial condition of the scalar field perturbation, VX . However, we know
that by choosing them properly we may avoid exploring the extra parameter space introduced by
the scalar field in MCMC analysis, thus, reducing the computational time performing this task.
Nevertheless, there are also Early Modified Gravity models in the literature [68, 69, 70, 71, 72],
that modify the energy budget of the Universe in an era pre-recombination, therefore, during
radiation domination, and are also able to explain the late-time acceleration of our Universe.
These models have been severely constrained after Planck 2015 data release, but in light of the
Hubble Tension, we have seen a surge of works on them. In these models the scalar field energy
density would exhibit a spike right before recombination, thus decreasing the value of the sound
horizon at decoupling r⋆. When dealing with models such as these, the initial conditions for the
scalar field perturbations will therefore heavily impact the CMB observables. The proper initial
condition for the Horndeski scalar field is described in [67], and I refer the reader to it.
Alternatively to the field description, we can instead use the approach called Effective Fluid for

the dark energy field. Since in Horndeski’s theories the Bianchi Identities hold, and the Energy
Momentum tensor of matter species is conserved, we may move the extra Horndeski terms in
Equations (2.45-2.49) to the RHS subtracting the contributions of the Einstein Tensor. The
equations then assume the following form:
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• Einstein (0,0)

k2η − 1

2
Hh′ = 4πGNa

2
∑

α

δρSα (2.76)

• Einstein (0,i)

k2η = 4πGNa
2
∑

α

(ρα + pα) θ
S
α (2.77)

• Einstein (i,j) trace

h′′ + 2Hh′ − 2k2η = 8πGNa
2
∑

α

δpSα (2.78)

• Einstein (i,j) traceless

h′′ + 6η′′ + 2H
(
h′ + 6η′

)
− 2k2η = −24πGNa

2
∑

α

(ρα + pα)σ
S
α. (2.79)

The dummy index α runs over all species, dark energy included. We define each dark energy
effective fluid quantity as follows:

• Density perturbation:

δρSDE = δρm

(
−1− 2

(αB − 2)M2
∗

)
− 2αB

3a2(αB − 2)
k2η

+
2HVX

3aM2
∗ (αB − 2)

[
a2
(
H2M2

∗ (3αB + αK) + 9(pm + ρm)
)

− 3a (αB − 2)M2
∗H

′ + αBk
2M2

∗

]
+

3αB + αK

αB − 2

2H2V ′
X

3
.

(2.80)

• Velocity divergence:

(ρDE + pDE) θ
S
DE =

[
2k2H ′

3a
+

1

3
αBH

2k2 +
k2(pm + ρm)

M2
∗

]
VX

+
αBHk

2

3a
V ′
X + θm

(
1

M2
∗
− 1

)
.

(2.81)

• Pressure perturbation:

δpSDE = δpm

(
αK

DM2
∗
− 1

)
− 2ηk2(λ1 −D)

9a2D

− 2VX
(
3a2H3λ6 +Hk2λ5

)

9aD
− 2H(D + λ3)h

′

9aD
− H2λ4V

′
X

3D
.

(2.82)

• Anisotropic stress:

(ρDE + pDE)σDE =
αMH

9a

(
6η′ + h′

)
− 2k2αT

9a2
η +

2Hk2(αT − αM)

9a
VX

− σm

(
1− 1

M2
∗

)
.

(2.83)
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The equations (2.45-2.49) describe the linear evolution of modified gravity in a cosmological
scenario. From the evolution of the matter density contrast, δm, the linear metric potentials and
the scalar field fluctuations VX , we can test the impact of modified gravity has on the different
cosmological observables. The Large Scale Structure of our Universe is probed by different types
of cosmology surveys, such as, spectroscopic galaxy surveys, photometric galaxy surveys, 21cm
intensity mapping, and others. I will focus on the first two surveys of this list.
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CHAPTER 3.

Linear tests of modified gravity

In this chapter I discuss the impact modified gravity has on cosmological observables, the results

of this chapter have been published in [73]. I start by discussing the modifications Horndeski

theories introduce in the growth and light propagation equations of motion. I then move to

discuss how a particular theory, called No Slip Gravity, impacts the structure formation of our

Universe at linear order. I finish this chapter by discussing how early modified gravity theories

impact the matter power spectrum at large and small scales.

3.1. Growth and light propagation in Horndeski gravity

The scales in which LSS surveys up until now have probed lie deep within the cosmological
horizon, i.e., on scales even bigger than the scale of radiation and matter equality, keq ∼ 10−2

Mpc−1. Inside this regime, the timescale of the scalar field evolution is much smaller than
the Hubble rate, i.e., wave-numbers where k ≫ aH. This statement is called the Quasi-Static
Approximation, and even though the name suggests that is only an approximation, we have
results in the literature [74, 75, 76], that show that the agreement between the full solution of the
scalar field fluctuation, and the QSA one inside the horizon agree to below at the level of 0.01%.
The QSA limit can be taken in a specific gauge, by disregarding certain time derivatives of the
metric potentials and the first and second time derivatives of the scalar field fluctuation. In the
Newtonian gauge, Equations (2.39-2.41), we can then maintain only the terms proportional to k2

and sourced by the matter density perturbations δρm. However, in the Synchronous gauge the
procedure is as follows:

• We neglect the following terms in the Einstein and scalar field equations: η′, η′′, V ′
X , V ′′

X ,
δpm, σm.

• We then have algebraic relations between the perturbations in the matter density, δρm, and
the remaining metric potentials and scalar field fluctuation.

• We next substitute these relations into Equations (2.80-2.83).

By doing so one can separate δρDE into two parts:

δρDE = δρQSA
DE + δρDE, rel., (3.1)

where δρQSA
DE is the QSA contribution to the dark energy density perturbation, and δρDE, rel.

encapsulates all the other terms that are not proportional to matter density perturbations. The
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same procedure must also be performed for σDE, as this quantity captures the amount in which
the Poisson gauge potentials differ from each other (in GR they are the same). Thus, we separate
the anisotropic stress as:

σDE = σQSA
DE + σDE, rel., (3.2)

where the quantities with the superscript QSA refer to the QSA contribution. Following the
scheme outlined above, we find:

δρQSA
DE =

(
αBλ2 − c2sN

[
2 +M2

∗ (αB − 2)
]

c2sNM
2
∗ (αB − 2)

)
δρm, (3.3)

(ρDE + pDE)σ
QSA
DE =

(
αM [αB + 2αM + αT (αB − 2)] + αTλ2

3c2sNM
2
∗

)
δρm. (3.4)

Figure 3.1 shows the behavior of the full dark energy density perturbations and anisotropic stress
at z = 0, and their QSA counterparts. We can see that the full perturbations and the QSA
contribution overlap when we move to larger k values, as expected.

Figure 3.1. Comparison of the full dark energy density perturbation (solid lines) and anisotropic stress
(dashed lines), and their QSA counterparts, as a function of scale at a fixed redshift, z = 0. On the
left plot we show the evolution for a small kineticity value, cK = 0.01, and on the right a larger value,
cK = 100. For cK = 0.01, the full and QSA contributions overlap at smaller values of k, while for cK = 100
this happens only at large values of k. This is due to the sound speed of the scalar field, which is larger
for cK = 0.01 than it is for cK = 100, which pushes the QSA regime of validity to smaller scales.

This Quasi-Static Approximation is very important in the context of phenomenological tests of
modified gravity usually performed by collaborations in surveys. Early proposals to investigate
the effect modified gravity has on the growth of structure and propagation of light consisted in
investigating the equations which relates the two Newtonian gauge metric potentials, Equation
(2.38), and the matter and anisotropic stress perturbations:

k2Φ = −3

2
a2GΦ(k, a)δρm, (3.5)

Φ

Ψ
= γ(k, a). (3.6)

In GR Φ = Ψ at late times since neutrinos and radiation contribute very weakly during matter
and dark energy domination. However, in ST theories the two can be different, and this is
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modelled by the so-called gravitational slip function γ(k, a). GΦ is the gravitational coupling
between Φ and matter, however, Φ is the spatial curvature metric potential, which is then not
directly observable. Due to this, what is commonly done, is to model the growth of structure via
Ψ, the time-time component of the linearly perturbed Newtonian metric:

k2Ψ = −3a2GΨ(k, a)δρm
2

. (3.7)

Historically GΨ is defined by the Greek letter µ, but I chose to use GΨ and GΦ instead. It is
also known that gravitational lensing is sensible to the sum of both potentials, Ψ+Φ, also called
Weyl or Lensing Potential, and therefore we can also write:

k2(Φ + Ψ) = −3a2GΦ+Ψ(k, a)δρm
2

, (3.8)

where GΦ+Ψ is historically given by the Greek letter Σ. There are many different notations in the
literature for these parametric functions, but they all stem from the same physical consideration
of parametrizing the modified gravity freedom at the level of the equations of motion, and within
the QSA limit. The scale-dependence of these functions is also modelled phenomenologically,
and they follow the same explicit dependence and reasoning of the case of f(R) gravity described
by [77, 78]:

GΨ =
1 + β1λ

2
1k

2as

1 + λ21k
2as

, (3.9)

γ =
1 + β2λ

2
2k

2as

1 + λ22k
2as

, (3.10)

where λ1,2 have dimensions of length squared, β1,2 are dimensionless parameters and s is a
constant. These parameters were first introduced by [79], and they capture the transitions in
time and scale of f(R) gravity and some scalar-tensor theories. At early times modified gravity
theories restore to general relativity, then they’re equal to one. These theories transition to
different values at small scales like a Yukawa potential, in a way that we recover GR values
at small scales. The connection between Equations (3.9) and (3.10) and (2.52-2.55) is given
in [80]. This description, however, lacks a more fundamental view, as it is merely promoting
the gravitational couplings between metric potentials and matter quantities to time and scale
dependent functions. Nevertheless, they still act as an agnostic and model-independent (but
parametrization-dependent) test of gravity. For this reason, the approach given by the EFT of
DE has also gained significant attention in the literature in the past years, since it has the ability
of connecting Lagrangian terms to cosmological observables. For this reason I will show the
time-independent (taking the k → ∞ limit) expressions for the different gravitational couplings
and gravitational slip in Horndeski theories:

GΦ = 1 +
α2
B(1 + αT) + 2αB(αM − αT)

2c2sN
, (3.11)

η̄ =
Ψ

Ψ+Φ
= 1 +

2(β − c2s )(αM − αT) + βαBαT

2(β − c2s )(αM − αT) + β(2αB + αBαT)
(3.12)

where η̄ is a non-standard definition of the slip to reflect the fact that projected measurement
errors from Euclid are minimised for this combination, it is related to the usual slip via:

γ =
η̄

2− η̄
, (3.13)
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and

β = c2s − wm +
α2
B(1 + αT + 3wm) + 2(αM − αT)αB

2D
. (3.14)

As the QSA is typically performed during matter domination in the above expressions we can
take wm → 0. As has been suggested many times in the literature [81, 82], the gravitational
slip can be seen as a smoking gun test for the presence of modified gravity, as any detection of
γ ̸= 1 can only be due to the presence of modified gravity – or an imperfect dark energy model
(σDE ̸= 0) [83, 84].

3.2. Structure formation in No Slip gravity

There is a class of Horndeski theories in which we restore the GR value for the gravitational slip,
γ = 1, while it still modifies the growth of structure and light propagation. These theories are
called No Slip Gravity, first presented in [85] with a more careful study of the stability conditions,
structure formation and light propagation was carried out in [73]. In Figure 3.2 I show the ratio
Φ/Ψ for two different models, No Slip (left) and JBD-like (right), as a function of scale at 3
different redshifts. For No Slip it’s clear that at scales inside the dark energy sound horizon the
ratio goes to 1, while for the JBD-like case it does not.

Figure 3.2. Ratio between the two Newtonian potentials, Φ and Ψ as a function of scale, for two different
models of gravity: No Slip gravity (left) and JBD-like parametrization (right). The different colors of the
solid lines represent three different redshifts, z = 0 (solid blue), z = 0.3 (solid orange) and z = 2 (solid
green). The vertical dashed lines represent the dark energy sound horizon scale. We can see that for No
Slip gravity, when the perturbations are inside the horizon they the ratio between the potentials is the
same as in GR, 1, while for a different gravity model this is not the case.

We can see that if we set αT = 0, and αB = −2αM, Equation (3.12) becomes 1, while GΦ, as
well as GΨ, is different than unity:

Geff = GΨ = GΨ+Φ =
1

M2
∗
, (3.15)

that is, they become inversely proportional to the time-dependent Planck mass.
In order to construct observables and analyze the theory within the framework on the EFT of

DE, we need to first choose a parameterization for the α functions (2.52-2.55). The two most
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used parametrizations in the literature simply set these functions as being proportional to the
scale factor or the fractional energy density of dark energy:

αi = cia, (3.16)

αi = ciΩDE, (3.17)

respectively. Although simple and easy to get analytical expressions for the many different time-
dependent functions built from the αi’s, these two parametrization are known to not describe
correctly modifications of gravity. For example, the latter parametrization, has two different
regimes in time that differ by a lot from what one would expect from a modified theory of
gravity. At early times, the parametric functions are negligible, as they are proportional to the
dark energy density, which in turn depends on the evolution of the background cosmology, and for
the majority of modified theories of gravity describing dark energy, ΩDE is small at early times,
and is only relevant at late-times. Therefore, we run in different problems when using these
parametrizations to fit the CMB data. An even bigger problem is with respect to the kineticity
function, αK, which capture the kinetic energy density of the scalar field. If this function is too
small, it would lead to unphysical behaviors, such as a strong-coupling problem, which in turn
leads the whole physical theory to fail theoretically. With respect to the αi’s being proportional to
the scale factor, another problem emerges, as we know that the scale factor assume values between
the range [0, 1], at late times these functions can assume order unity values, and therefore over-
predict the modification of gravity introduced at the linear level. These problems are thoroughly
analyzed and discussed in reference [86].

To bypass this problem, and carefully investigate this theory, in the original paper of the No
Slip Gravity the author introduces a parametrization which respects the behavior one would
expect at early-times, that is, recovering GR, while not keeping the functions too small, and then
transitioning to a more physical behavior at late times:

αM = µ

(
1− tanh2

[(τ
2

)
ln

(
a

at

)])
=

4A (a/at)
τ

[(a/at)
τ + 1]

, (3.18)

where at and µ are parameters. For No Slip Gravity the condition c2s > 0, Equation (2.66), takes
the simple form:

1

H

d (αMH)

d ln a
≤ 3

2
ΩDE(a) [1 + w(a)] +

3

2

(
Ωm(a)− Ω̃m(a),

)
(3.19)

where Ω̃m = ρm/3H
2M2

∗ . Figure 3.3 shows the behavior of this parametrization for different
values of the parameters. When we allow the background to have an expansion history different
than ΛCDM. For the case of a dynamical dark energy assuming the form of w0 − wa, αM may
assume negative values in its evolution, and the parametrization given by (3.18) will not be able
to correctly capture the allowed freedom present in No Slip gravity. For this case, one can still
have a similar form for the running of the Planck mass, but that can now go to negative values.
This form is given by:

αM(a) = cM
tanh [(τ/2) ln(a/at)]

cosh2 [(τ/2) ln(a/at)]
(3.20)

=
4cM(a/at)

τ [−1 + (a/at)
τ ]

[1 + (a/at)τ ]
3 . (3.21)

Figure 3.4 shows the behavior of this parametrization for different values of the parameters.
Changing at affects the moment where αM crosses zero, i.e. the transition time between the hill
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Figure 3.3. Evolution of the Geff = GΦ = GΨ+Φ as a function of the scale factor in No Slip gravity,
Equation (3.15), and the running of the Planck Mass, αM, for No Slip gravity with a parametrization
given by Equation (3.18). Plot taken from [85].

and valley. Increasing τ steepens the transition, moving the minimum and maximum values of
αM closer to the zero crossing. The amplitude of αM is governed by cM, scaling linearly with
it. Inverting the sign of cM would change hills to valleys and vice versa. For Geff , we see that
indeed for cM < 0 gravity is weakened, where unity corresponds to the gravitational strength
being Newton’s constant. The maximum weakening occurs at at. Since Geff returns to unity for
scale factors a ≫ at, then smaller at means Geff deviates from general relativity for a shorter
time. Increasing τ again squeezes the transition, but also affects the maximum amplitude.
For illustrative purposes, the plots shown below will fix at = 0.5 and τ = 1 – values near the

edge of the eventual 68% confidence limit, from reference [73], joint posterior – to more clearly
show the effects of the modified gravity on observables.
Another interesting feature of this theory is that contrary to the majority of scalar-tensor

theories, in which the growth of structures is enhanced, No Slip gravity suppresses the growth
and light propagation, which can be seen in Figure 3.5, where the data points come from the
galaxy redshift surveys of 6dFGRS [87], GAMA [88], BOSS [38], WiggleZ [89], and VIPERS [90].
The left plot in this panel shows the observable fσ8 for General Relativity and No Slip Gravity,
while the right hand side plot the Weyl (Lensing) potential. In both cases the expansion history
is fixed to the mirage model [91], a dynamical model using w0 − wa but wa = −3.6 (1 + w0)
that nearly preserves the ΛCDM distance to CMB last scattering [91] and so indicates a level of
observational viability.
The sum of potentials generally decays in a universe with dark energy as matter domination

wanes. However, if gravity is strengthened then it could overcome this tendency and grow the
potentials. This not only gives a large integrated Sachs-Wolfe (ISW) effect (proportional to Φ̇+Ψ̇)
in the CMB but can cause an anticorrelation between the ISW and the density perturbations.
Such issues are discussed in detail in [92, 93, 94], and some cubic Horndeski gravity theories
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Figure 3.4. Evolution of the Geff = GΦ = GΨ+Φ as a function of the scale factor in No Slip gravity,
Equation (3.15), and the running of the Planck Mass, αM, for No Slip gravity with a parametrization
given by Equation (3.21). Plot taken from [73]

indeed have a negative crosscorrelation between CMB temperature perturbations and galaxy
density perturbations, CTg

ℓ . This conflicts with the prediction of ΛCDM, and data, and is a
strong indicator against such theories. Given the preservation of the characteristic of a decaying
lensing potential as in ΛCDM, we might expect a positive temperature-density crosscorrelation at
large angles (low multipoles l) where the ISW effect dominates. Following closely the procedure
outlined in [93], one can compute the cross correlation between the CMB temperature and a
galaxy survey. First we must calculate

CTg
l = 4π

∫
dk

k
∆ISW

l (k)∆g
l (k)PR(k) , (3.22)

where PR is the power spectrum of the primordial curvature perturbations (R(k)), and ∆ISW
l

and ∆g
l are the transfer functions for the ISW effect and for the galaxies. The first is given by

∆ISW
l =

∫ η0

η∗

dη (Φ′ +Ψ′)jl , (3.23)

where η∗ and η0 are the conformal time at recombination and today, respectively, and a prime
here denotes a derivative with respect to η. The transfer functions depend on the modified gravity
theory being considered and are calculated through the perturbation equations, which are solved
numerically by hi class.
For computations in which source number counts are present, the relevant transfer function is

given as
∆g

l ≈ ∆Deni
l + . . . , (3.24)

where the dots represent other contributions such as redshift-space distortions, lensing, polariza-
tion, and contributions suppressed by H/k in subhorizon scales [93]. The explicit form of ∆Deni

l
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Figure 3.5. Left: The redshift space distortion observable fσ8, basically the growth rate history, is
plotted for ΛCDM and for mirage dark energy with present equation of state parameter w0, in general
relativity (GR) and in No Slip Gravity with cM = −0.05, at = 0.5, τ = 1. All curves have fixed
Ωm,0 = 0.314 and the same initial conditions, and the derived values of σ8,0 are indicated in the legend.
Galaxy redshift survey data points are shown with their error bars. Note that No Slip Gravity suppresses
growth, unlike many modified gravity theories, bringing the theory into better agreement with this growth
data. Right: The Weyl lensing potential, in CLASS code units, is plotted for ΛCDM and for mirage dark
energy with present equation of state parameter w0, in general relativity (GR) and in No Slip Gravity
with cM = −0.05, at = 0.5, τ = 1. The weakened gravity in No Slip Gravity enhances the decay of the
potential, in contrast to, e.g., Galileon gravity.

is

∆Deni
l =

∫ η0

0
dηWibg(η)δ(η, k)jl , (3.25)

where δ(η, k) is the density perturbation at the Fourier mode k, jl = jl(k(η0 − η)) is a Bessel
function, and Wi is a window function, discussed below. To be consistent with hi class all
transfer functions are normalized to the value of the curvature perturbation at some time kηini ≪
1, e.g. δ(η, k) = δ(η,k)/R(ηini,k).
For a galaxy sample we can use the NVSS survey [96], which covers the sky north of 40 deg

declination in one band. This is a large area, fairly deep survey with good overlap with the CMB
ISW kernel. The selection function Wi is given by the observed number of sources per redshift,
dN/dz, and we use a constant bias factor for each redshift bin. The survey selection function is
given by [95] as [

bg(z)
dN

dz

]

NVSS

= beff
αα+1

zα+1
0 Γ(α)

zαe−αz/z0 , (3.26)

with beff = 1.98, z0 = 0.79, α = 1.18, and Γ the gamma function. Figure 3.6 shows the results.
We see that indeed No Slip Gravity gives a positive ISW cross-correlation, in agreement with
the ΛCDM case, and observational data. Still in the context of No Slip Gravity, there is another
work that studied the impact this model has on the CMB [97].
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Figure 3.6. The ISW-galaxy cross-correlation CTg
ℓ is plotted for ΛCDM and for mirage dark energy

with present equation of state parameter w0, in general relativity (GR) and in No Slip Gravity with
cM = −0.05, at = 0.5, τ = 1. The data points come from the NVSS survey, as extracted from [95]. We
see that, indeed, No Slip Gravity gives a positive cross-correlation.

3.3. Early modified gravity

As far as the CMB is concerned, however, there is not a lot information we can get to help
constrain modified theories of gravity. As the majority of the dark energy models describe the
modifications to GR that are only relevant at late times, the Universe around the recombination
era for the majority of these theories will be very similar to ΛCDM. Figure 3.7 shows the angular
temperature power spectrum (left) and the relative difference in percent between the modified
gravity models considered and ΛCDM (right).

Figure 3.7. Left: CTT
ℓ for ΛCDM, JBD and a modified gravity theories with only running, αM ̸= 0.

Right: Relative difference between the modified gravity models and ΛCDM. For these particular models
gravity only affects the temperature map at large scales, ℓ < 100.

From the residual plots we can clearly see that the only difference between modified gravity
and GR in the temperature map of the CMB is at large scales, ℓ < 100. The reason for this
is as mentioned above, in these models, dark energy is only relevant at late times, evidenced
by the proportionality between the α functions in these cases and the expansion history, which
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Figure 3.8. Left: Evolution of the equation of state parameter as a function of the scale factor for:
non-relativistic matter (solid blue line), radiation (solid orange line) and early dark energy (solid green
line). Right: Evolution of the background energy density as a function of the scale factor for the same
species.

follows ΛCDM. Therefore, the only expected signal of dark energy in the CMB is through the
Sachs Wolff effect, which is caused by the evolution of the Newtonian gauge metric potentials
from the time of recombination until today. As we already know, light propagation is affected
my the sum of the gravitational potentials, Φ +Ψ, and both terms of the Sachs Wolff effect, the
temperature (proportional to the pure Lensing Potential) and the integrated (proportional to
the time derivative of the Lensing Potential), are clearly affected by the propagation of photons
falling in and then climbing out of the gravitational potential wells [98]. The situation, however, is
different when we consider theories in which the dark energy component can be non-negligible at
early times, known as early dark energy (EDE) models or early modified gravity theories, which I
will also refer as EDE in this section. In this case, the equation of state parameter of dark energy
at early times follows the same value as radiation, which then affects the not only the location
of the acoustic peaks of the CMB, but also its amplitude. One of the first early dark energy
models is the Doran-Robbers model [68], which has already been well explored and constrained
in the literature. In this model the dark energy fractional energy density and equation of state
parameter are given by:

Ωede(a) =
Ωede,0 − ΩEDE

e

(
1− 3a−3w0

)

Ωede,0 +Ωm,0a3w0
+ΩEDE

e

(
1− a−3w0

)
, (3.27)

wDE(a) = − 1

3 [1− Ωede(a)]

d lnΩede(a)

d ln a
+

aeq
3 (a+ aeq)

. (3.28)

Figure 3.8 shows the evolution of the equation of state of the different species in the Universe in
the case of this EDE model and the evolution of the background density of the same species.
With respect to the CMB, the situation now is different than when we have a late-time dark

energy model. In order to see the features in the temperature map, I plot the temperature angular
power spectrum and the relative difference in percentage for two cases of α functions in Figure
3.9, as well as for General Relativity with the background fixed by Equations (3.27).
We can clearly come to the realization that not only the integrated Sachs Wolff effect imprints

dark energy in the CMB, but also at higher multipoles we have a clear difference with respect
to the standard model prediction. This big difference at smaller scales is what helped heavily
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Figure 3.9. Left: CTT
ℓ for GR, JBD and a modified gravity theories with only running, αM ̸= 0.

The background is fixed to the Doran-Robbers (3.27) with parameters: Ωm = 0.3, w0 = −0.98 and
ΩEDE

e = 0.003. Right: Relative difference between the modified gravity models and ΛCDM. For these
particular models gravity only affects the temperature map at large scales, ℓ < 100.

constrain models of EDE such as the one presented now. As they affect increasingly higher
multipoles, these features are severely constrained by measurements of the gravitational lensing
of the CMB. Therefore, the combination of polarization maps and lensing of the CMB is generally
used in combination to verify how these models can actually be realizable [99]. To wrap the
discussion on how EDE models affect the cosmological observables, I will finish by discussing the
impact these models have on the linear matter power spectrum.
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Figure 3.10. Left: Matter power spectrum at z = 0 for three different cases: General Relativity with
a ΛCDM backgroud (solid blue), modified gravity with a ΛCDM backgroud (orange blue) and modified
gravity plus early dark energy theory, Equation (3.27), with parameters: Ωm = 0.3, w0 = −0.98 and
ΩEDE

e = 0.003. Right: Relative difference in percentage between the ratio of matter power spectra of
modified gravity and GR, for two different background evolutions: ΛCDM (solid blue) and early dark
energy (solid orange).

Since at early times we have one extra species contributing to the radiation energy budget,
dark energy, the behavior at large values of k will be significantly affected by modified gravity,
as shown in Figure 3.10. In the relative difference plot (right plot) we can compare the effect
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late-time models of dark energy have on the matter power spectrum with respect to ΛCDM (blue
line), and the features added by early-time modified gravity with respect to ΛCDM (orange line).
With respect to the blue line, we can see an obvious effect at large scales where the matter power
spectrum differs than the one from GR + ΛCDM. This is not an unique feature for the MG +
ΛCDM, but rather a feature introduced by the scalar field that affects the power spectrum at
large scales, since at late-times in both expansion histories, EDE and ΛCDM, the scalar field will
behave as a cosmological constant in the background. At small scales, however, we see that the
only modification MG + ΛCDM will have on the matter power spectrum is a constant vertical
shift with respect to the 0% line, this effect will be discussed in the next section. However, the
MG + EDE case at small scales will also have a slight tilt with respect to the 0% line, on top
of the vertical offset. This happens since at early-times the scalar field will act like radiation,
and therefore the modes that are deep inside the horizon, which have crossed the horizon at
earlier times, will suffer from contributions coming from pressure perturbations of radiation and
neutrinos. This then makes the matter power spectrum for this case to have a slightly different
k-dependence than the MG + ΛCDM case. In summary, whenever we have a theory which
introduces extra species acting like radiation at early times, or that introduces couplings between
the dark energy and dark matter, the linear matter power spectrum at small scales will differ
considerably than GR + ΛCDM and MG + ΛCDM cases.
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CHAPTER 4.

Linear N-Body gauge

In this chapter I discuss the matter power spectrum at linear scales. I start by discussing how it

is defined within ΛCDM, and how massive neutrinos introduce a scale dependent growth. I then

move the discussion to the formulation of the N-Body gauge, a specific coordinate system that

facilitates the interpretation of Newtonian simulations within a relativistic framework, by con-

sistently introducing the effects coming from photons, neutrinos and dark energy. As stage-IV

LSS surveys will probe the Universe at increasingly large scales the introduction of such species

is imperative, as at large scales the imprint left from them can be above the 1% threshold. I

finish the discussion by showing how to correctly combine modified gravity effects and Newtonian

simulations. The results of this paper have been published in References [100, 101]

4.1. The Linear Matter Power Spectrum in MG Theories

As we have seen in the end of the last subsection, the linear matter power spectrum will change
in modified theories of gravity. To begin the study on the linear matter power spectrum, it’s
worth spending a little time understanding the evolution of the density contrast for the different
species in our Universe, in a modified gravity theory describing dark energy.
In Figure 4.1 I plot in the top left the evolution of density contrasts as a function of conformal

time for a fixed wave-number, k = 0.1 1/Mpc. At early times, before decoupling (solid black
vertical line), radiation and baryons are coupled together via many different processes, such
as: Coulomb scattering, Thomson scattering, etc. In this era they constitute the primordial
plasma, in which the baryons want to “fall” down the gravitational potentials created by cold
dark matter, but get scattered by the photons, creating therefore the well-known sound waves in
this plasma that are the baryon-acoustic oscillations, present in the matter power spectrum in
k-space as wiggles. After decoupling baryons and photons decouple, and the baryons eventually
fall down the gravitational wells, while radiation keeps oscillating until damped. Since CDM
is always non-relativistic, it has the same behavior throughout the expansion history, always
clustering and non-interacting with the other species besides gravitationally. Massive neutrinos
have two very distinct behaviors in its evolution: at early times they are relativistic and behave
like radiation, however, as time goes by, the massive neutrinos become non-relativistic. As we
know, massive neutrinos act to suppress the matter power spectrum, the reason for this is that
since they once were relativistic, they have a scale in which they are allowed to “free-stream”,
kfs. For modes smaller than this scale massive neutrinos cluster, but for scales bigger they travel
freely, thence, make the clustering of matter harder. We are now left with the last species in
the top left plot, dark energy, the solid magenta lines. As I’m plotting here a model in which
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Figure 4.1. Evolution of the N-Body gauge density contrast of different species: cdm (red), baryons
(green), photons (blue), massive neutrinos (yellow) and dark energy (purple). The top left plot shows the
evolution as a function of conformal time for one specific wave-number, k = 0.1 1/Mpc. The top right
plot shows the dependence of the density contrast as a function of scale at conformal time (τ = 14024
Mpc, bottom left at τ = 1108 Mpc and bottom right τ = 92 Mpc. The black vertical lines in the top left
plot represent the conformal time for the three eras: Radiation/Matter (solid), decoupling (dotted) and
Matter/Dark Energy (dashed). Dark energy in these plots is given by the modified gravity specified in
the title of each plot.

dark energy is only relevant at late-times, e.g., αB = ΩDE, the only moment it will become non-
negligible is around and after dark energy/matter equality (dashed black vertical line), and the
oscillatory behavior at very late times will be soon addressed.
The other three plots in the Figure show the behavior of the perturbations in Fourier space at

three different slices of conformal time, one around matter/dark energy equality (top right), one
around decoupling (bottom left), and one at radiation/matter equality (bottom right). We can
see that smaller modes of radiation grow, until they cross the horizon when they oscillate and
then get damped. The same behavior happens for massive neutrinos at early times when they are
mostly relativistic, but as time goes by we see that after horizon-crossing they get exponentially
damped. Baryons, before and around decoupling have the same behavior as photons, but after
decoupling will cluster with CDM, and in a specific range of wave-numbers will exhibit the well-
known BAO wiggles. Cold dark matter will always cluster. The last species is DE, where we can
see that they start well below all the other species, but at late times have contributions of the
same order as the others. A more detailed discussion concerning dark energy will soon follow.
One of the most important quantities in cosmology is the matter power spectrum. The vast

majority of LSS surveys observe biased tracers of the underlying CDM density field. That is,
what they actually observe is the galaxy power spectrum, which at linear order can be written
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as:
Pg(k, zi) = bi(zi)Pm(k, zi), (4.1)

where bi is called linear bias, and is a quantity that is computed by the survey collaboration
or using cosmological simulations, it’s generally related to the luminosity function of the galaxy
(or other tracer) being observed. During matter domination, we can write the matter density
perturbation as proportional to the Newtonian metric potential Φ:

δm(k, z) =
2

3

k2

a2H2
Φ(k, z) (4.2)

then, the two point function in Fourier space gives the matter power spectrum:

⟨δm(k, z)δ∗m(k′, z)⟩ = (2π)3 δ(k− k′)Pm(k, z). (4.3)

During matter domination, Φ is constant on super and sub horizon scales, and we can write it in
terms of the primordial curvature perturbations, ζ:

Φ =
3

5
ζ (4.4)

and the expression for Pm follows:

Pm(k, z) =
8π2k

25 (aH)4
AS

(
k

k∗

)ns−1

T 2(k)D2(z), (4.5)

where AS is the amplitude of the Primordial Power Spectrum, ns is the scalar tilt, D(z) is the
growth function solution of the matter density contrast equation during matter domination:

D′′ +HD′ − 4πGNρmD = 0, (4.6)

D(z) = δm(z)
δm(zini)

. Still in (4.5) there is one last scale-dependent function, T (k), which is the

BBKS transfer function [102]. This function relates the Φ potential on sub-horizon scales during
radiation era to its constant value during the whole matter era:

T (k) =
Φ(k, z)

Φprimordial
. (4.7)

At large scales the transfer function is normalized to unity, while at larger k it describes the
logarithmic-dependence of the transition to sub-horizon scales. Therefore, we separate in three
different parts the shape of the linear matter power spectrum:

i) Large scales, small k, it is proportional to kns ;

ii) Intermediate scales, it reaches its maximum at keq = aeqHeq, the scale of radiation/matter
equality, ∼ 0.01 1/Mpc;

iii) Small scales, large k, decays as ∝ (ln k)2

k3
.

Figure 4.2 shows the ΛCDM linear matter power spectrum, as well as the same quantity for a
model with massive neutrinos, at two different redshifts, z = 0 and z = 2. We can translate from
one matter power spectrum at a given redshift to the other by just using the growth function
D(z). Figure 4.3 shows the Planck 2018 paper plot of the linear matter power spectrum at
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Figure 4.2. Matter power spectrum (including non-linear corrections using Halofit) at redshifts 0 and 2,
predicted by the ΛCDM model with a single massive neutrino of 0.06 eV. Figure taken from [103]

redshift z = 0 with the data points analyzed using ΛCDM assumptions. As it is known, the
matter power spectrum is a gauge-dependent quantity, that is, it depends if we are solving the
Einstein-Boltzmann equations in a given gauge. However, for scales inside the cosmological
horizon, all the gauges must coincide, as the behavior of gravity when we move to smaller scales
is well described by Newtonian gravity. This can be seen from the component 0-0 of Einstein
Equations in the Newtonian gauge:

k2Φ = 4πGNa
2
[
δρm + 3H (ρ+ p)

vm
k

]
. (4.8)

The last term is only relevant when k ≪ 1, or in terms of the cosmological horizon k ∼ aH (at
z = 0, aH ∼ 10−3 1/Mpc). Therefore, inside the horizon, we have:

k2Φ = 4πGNa
2δρm, (4.9)

which matches the well-known Poisson equation in the Newtonian theory. To see that matter
will have the same Newtonian behavior in the Synchronous gauge, we can check that the matter
density in the Newtonian gauge and the Synchronous gauge are related via the transformation:

δρS = δρN − αρ̇, (4.10)

where

α =
ḣ+ 6η̇

2k2
, (4.11)

which is only relevant at large scales by the same arguments of the last term in Equation 4.8.
Therefore, as we can see from this discussion, the only difference we have between matter power
spectra computed in different gauges is at large scales [104, 105, 106].
Since most of the LSS surveys have focused only on scales that are deep inside the horizon,

these collaborations have relied on using tools such as higher order perturbation theory and
Newtonian N-Body simulations to compute matter power spectrum, at linear and non-linear
order. However, our Universe is inherently relativistic, and even though in a certain k-range
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Figure 4.3. Linear-theory matter power spectrum (at z = 0) inferred from different cosmological probes
(the dotted line shows the impact of non-linear clustering at z = 0). Figure taken from [103]

we can safely approximate it using Newtonian gravity, we still need to correctly account for the
relativistic corrections at large scales. This problem is more intricate in the context of N-Body
simulations, as the output of these codes only exists in Newtonian gravity which gives the wrong
result at large scales. One way to bypass this problem is then to look for a “natural” coordinate
system in which these simulations live in. In other words, we can look for a gauge which gives
the correct relativistic behavior at small k values, and transitions to Newtonian gravity at large
k. This specific gauge was developed by [107], and it is called the N-Body gauge.

4.2. N-body gauge

I start by describing the following scalar metric perturbations over a homogeneous and isotropic
Friedmann–Lemâıtre–Robertson–Walker background cosmology

g00 = −a2 (1 + 2A) , (4.12)

g0i = a2 ik̂iB , (4.13)

gij = a2
[
δij (1 + 2HL) + 2

(
δij/3− k̂ik̂j

)
HT

]
. (4.14)

Which is the same metric presented in Equation (1.34); A is the perturbation of the lapse function,
B is a scalar perturbation in the shift, and HL and HT are respectively the trace and trace-free
scalar perturbations of the spatial metric. For simplicity I consider a single Fourier mode with
comoving wave-vector, k, wave-number k ≡ |k| and direction k̂i ≡ ki/k.
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The energy-momentum tensor of all particle species is given by

T 0
0 = −

∑

α

(ρα + δρα) = −
∑

α

ρα (1 + δα) ≡ −ρ (1 + δ) , (4.15)

T i
0 =

∑

α

(ρα + pα) ik̂
ivα ≡ (ρ+ p) ik̂iv , (4.16)

T i
j =

∑

α

(pα + δpα)δ
i
j +

3

2
(ρα + pα)

(
δij/3− k̂ik̂j

)
σα (4.17)

≡ (p+ δp)δij +
3

2
(ρ+ p)

(
δij/3− k̂ik̂j

)
σ ,

where the dummy index α runs over all species, δ is the density contrast, σ is the anisotropic stress
following the convention of [20], ρ and p are the background density and pressure respectively.
Thus far the perturbation variables are in an arbitrary gauge. The definition of the N-body

gauge is such that:

(i) the temporal slicing is fixed by setting BNb = vNb, making the constant-time hypersurfaces
orthogonal to the 4–velocity of the total matter and radiation content;

(ii) the spatial threading is fixed by setting HNb
L = 0, so that the physical volume element of a

spatial 3–hypersurface coincides with the coordinate volume element, d3x, i.e., the physical
volume is not perturbed by metric deformations.

As pointed out in references [107, 108, 19, 109], the spatial gauge choice is equivalent to re-
quiring that the remaining spatial metric potential, HNb

T , is related to the comoving curvature
perturbation, ζ, as

HNb
T = 3ζ. (4.18)

More generally this condition (4.18) can be used to select the spatial threading, independently of
the temporal gauge choice. In particular the N-boisson gauge [110], combines the spatial gauge
condition (4.18) with an alternative time slicing, which coincides with that used in the Poisson
gauge1, kB = ḢT . At linear scales, the N-body and N-boisson gauge are connected by a temporal
gauge transformation and either of the gauges can be used.

The simplicity of the N-body gauge is that in the absence of relativistic species (photons and
neutrinos, or dark energy perturbations) both the matter density and the particle trajectories in
the N-body gauge coincide at linear order with those in Newtonian N-body simulations (it is a
Newtonian motion gauge [109]). Thus to track relativistic corrections to the matter density we
only need to solve for the relativistic components which we expect to be well described by linear
perturbation theory on sufficiently large scales.
As in Newtonian simulations, we treat baryons as pressureless matter at late times. For

gravitation, I use the Einstein equations, Gµν = 8πGTµν where Tµν includes the contribution
from Cold Dark Matter (CDM), baryons, photons, neutrinos and dark energy. I emphasise that
this does not mean GR is assumed, and we can include modified gravity effects as an effective
dark energy fluid, using Equations (2.80-2.83).
For pressureless matter, i.e. CDM plus baryons, the evolution equations are given by

δ′Nb
m + kvNb

m = 0, (4.19)

(∂τ +H)vNb
m = −k

(
Φ+ γNb

)
, (4.20)

1The Poisson gauge is such that its scalar perturbations part is the same as the well-known Newtonian gauge.
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where ′ is the derivative with respect to the conformal time τ , and γNb introduces relativistic
corrections to the Euler equation (4.20), which vanishes in the absence of relativistic species. As
shown in [111], γNb is given by:

k2γNb = −(∂τ +H)H ′Nb
T + 12πGa2 (ρ+ p)σ. (4.21)

In the N-body gauge, the Bardeen potential Φ satisfies the relativistic Poisson equation, but with
contributions coming from all species including relativistic species

k2Φ = 4πGa2
∑

α

δρNb
α , (4.22)

α = {cdm, b, γ, ν,DE}. Quantities with a superscript Nb are computed in the N-body gauge.
The (0i) component of the Einstein equations gives

H ′Nb
T = 3HANb. (4.23)

From the momentum conservation equation, the lapse function of the N-body gauge metric reads:

ANb =
1

ρ+ p

[
(ρ+ p)σ − δpNb

]
, (4.24)

with δpNb the total pressure perturbation in the N-body gauge.
When the relativistic species fluid quantities are negligible, δpNb = σ = 0 (for example, for

sufficiently late times), one has ANb = H ′Nb
T = 0, which implies γNb = 0. In this limit, equations

(4.19), (4.20) and (4.22) coincide with the Newtonian ones:

δ′Nm + kvNm = 0 , (4.25)

(∂τ +H) vNm = −kΦN , (4.26)

k2ΦN = 4πGa2ρmδ
N
m , (4.27)

where the superscript N denotes the perturbations in Newtonian theory. Combining equa-
tions (4.25)–(4.27) then yields the familiar second-order differential equation for the Newtonian
density perturbation

δ′′Nm +Hδ′Nm − 4πGa2ρmδ
N
m = 0, (4.28)

More generally, in the presence of relativistic species, combining equations (4.19)–(4.22), we
obtain the second-order differential equation for the density perturbation in the N-body gauge:

δ′′Nb
m +Hδ′Nb

m − 4πGa2ρmδ
Nb
m = 4πGa2δρGR, (4.29)

where
δρGR = δρNb

γ + δρNb
ν + δρNb

DE + δρNb
metric, (4.30)

and we define
k2γ = 4πGa2δρmetric . (4.31)

The homogeneous solution to (4.29) coincides with that of the Newtonian equation (4.28)
and can be obtained from Newtonian simulations. However the full solution to (4.29) includes
relativistic corrections sourced by the quantities δρNb

γ , δρNb
ν , δρNb

DE and δρNb
metric which must be

evaluated using a relativistic approach, such as linear Einstein-Boltzmann codes.
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To make contact with the quantities commonly evaluated in Einstein-Boltzmann codes, we can
write the N-body gauge density perturbations in terms of those in the Synchronous or Poisson
gauges using the linear gauge transformation

δρNb
α = δρS/Pα + 3H (1 + wα) ρα

θ
S/P
tot

k2
, (4.32)

with H being the conformal Hubble factor, H = a′/a, and θtot the total peculiar velocity diver-
gence of all species

(
θ = ikjvj

)
. δρNb

γ , δρNb
ν and δρNb

DE can thus all be evaluated using Equation
(4.32).
The computation of γNb, given by (4.21), requires H ′Nb

T and H ′′Nb
T . Using equations (4.24) and

(4.23), we obtain the equation for H ′Nb
T :

H ′Nb
T = 3

H
ρ+ p

[
(ρ+ p)σ − δpS/P + p′

θ
S/P
tot

k2

]
, (4.33)

and its derivative

H ′′Nb
T =

[H′

H − 1

(ρ+ p)

(
ρ′ + p′

)]
H ′Nb

T

+ 3
H

ρ+ p

[
(
ρ′ + p′

)
σ + (ρ+ p)σ′ − δp′ + p′′

θ
S/P
tot

k2
+ p′

θ
′S/P
tot

k2

]
,

(4.34)

where we used a linear gauge transformation to obtain the total pressure perturbation in the
N-body gauge

δpNb = δpS/P − p′
θ
S/P
tot

k2
. (4.35)

In this way, we can compute Equation (4.21) solely in terms of fluid quantities and their time
derivatives in the Synchronous or Poisson gauge.

4.3. Modified gravity

As we saw in the previous section, with an Einstein-Boltzmann solver we can introduce relativistic
effects into Newtonian simulations. Within the framework of Modified Gravity, we need to keep
in mind the following three regimes that describe our Universe:

(a) Large-scales: gravity is relativistic and we can use the linear cosmological perturbation
theory to describe the evolution of perturbations.

(b) Intermediate-scales: gravity is “Newtonian” in the sense that we can take the QSA limit in
the equations of motion, and all modifications of gravity are encoded by the presence of a
fifth force that will modify the gravitational coupling between matter and the Newtonian
potential. In this regime we may also have the presence of a screening mechanism which
will make the transition to GR.

(c) Small-scales: the screening mechanism has already kicked in and modifications to GR due
to the fifth force are suppressed.
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Figure 4.4. Schematical desciption of the cosmological regimes modified gravity theories transition.

Figure 4.4 depicts in a schematic way the three regimes. Regime (a) is the one described by
the N-Body gauge. The other two, are more intricate, as they are connected through something
called screening mechanism. The idea behind these mechanisms is that they are able to shield the
fifth force introduced by Modified Gravity in small scales, thus recovering GR in dense regimes.
In the next chapter I will give a more in-depth understanding of such mechanisms, while in the
present chapter I will treat only of linear perturbations, even in the regime where they may not
be valid anymore.
As shown in the previous subsection, the Newtonian equation of motion for cold dark matter

and baryons (as far as we are concerned these two are indistinguishable from each other) are given
by the set of Equations (4.25-4.27), which combined give Equation (4.28). This set of equations is
also known as the Vlasov-Poisson equations, and they are equivalent to the Boltzmann equations
for a pressureless fluid. Newtonian N-Body codes solve the discrete phase-space equivalent of
these equations. To introduce modified gravity into these codes, what is usually done is to
promote the Newtonian gravitational constant to a space and time dependent function, called
Geff . This new function, in turn, is introduced by the presence of the extra degree of freedom,
which gives rise to a force term on the RHS of the geodesic equation for pressureless matter, (2.17).
However, our Universe is composed not only by CDM and baryons, we also have photons, massless
and massive neutrinos, and, possibly, a dark energy component different than the Cosmological
Constant. From Equations (2.80-2.83) we saw that we can treat modified gravity also as a fluid,
with effective fluid quantities given by these equations. Therefore, in this section I will show how
we can introduce the scalar field into Newtonian N-Body simulations using the N-Body gauge,
in both regimes, the small scale regime (remember that I will only focus on linear perturbations,
with this I can for now forget about screening mechanisms which will later on be discussed) where
modified gravity can be described by the effective gravitational constant, and large scales, where
we have the interplay of the scalar field and the metric tensor that combined describe gravity.
The Poisson equation modified gravity N-Body codes are solving is the following:

∇2ΦN = 4πa2Geffρmδ
N
m, (4.36)

63



Linear N-Body gauge Section 4.3

and the evolution equation is then

δ′′Nb
m +Hδ′Nb

m − 4πGeffa
2ρmδ

Nb
m = 0. (4.37)

The above equation is always valid in scales inside the horizon, which I have already stated that
we can use the QSA limit in the evolution equations for modified gravity. From Equation (4.29)
we see that dark energy enters in two ways on the RHS of that equation: via δρNb

DE and σDE in
the computation of the term δρNb

metric. Therefore, using the separations (3.1) and (3.2) we can
take the QSA limit, and separate what captures and models dark energy at small scales, the QSA
part, from what is only relevant at large scales, the relativistic terms. Thence, moving the QSA

Figure 4.5. Relative difference in percent of the ratio between the Newtonian matter power spectrum
(PN) with GN as the coupling between matter and the Poisson potential, and the Newtonian matter power
spectrum (PGeff

N with coupling given by the Geff function, with respect to the linear N-Body gauge matter
power spectrum.

terms (which are proportional to δρm) from the RHS to the LHS, and coupling these terms with
the term proportion to GN, we arrive at:

δ′′Nb
m +Hδ′Nb

m − 4πGeffa
2ρmδ

Nb
m = 4πGNa

2δρNb
GR, rel., (4.38)

with

δρNb
GR, rel. = δρNb

γ + δρNb
ν + δρNb

DE, rel. + δρNb
metric, rel., (4.39)

δρNb
DE, rel. = δρNb

DE − δρQSA
DE , (4.40)

k2γNb
rel. = 4πGδρNb

metric, rel., (4.41)

and the effective gravitational constant given by

Geff = 1 +
c2sN
(
2− 2M2

∗ + 2αT

)
+ (αB + 2αM − 2αT + αBαT)

2

2c2sNM
2
∗

. (4.42)

We are now left with a relativistic equation for the motion of cold dark matter and baryons
that correctly takes into account all the relativistic species. With this in hand we can then
understand what is the effect of general Horndeski theories in the matter power spectrum at
small, intermediate and large scales. The best way to understand these features is to compare
the Newtonian prediction for the matter power spectrum which I will call PN, built using the
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solution of Equation (4.28), the prediction of the modified gravity Newtonian limit PGeff
N , built

using solution of (4.37) and the matter power spectrum in the N-Body gauge, built using the
solution of (4.29), PNb. The first would correspond to a Newtonian simulation with only linear
perturbations, the second the same situation but with modified gravity, and the last one is the
fully relativistic analog.
Figure 4.5 shows the relative difference in percentage between these matter power spectra. The

left plot shows the difference at z = 1 between the Newtonian matter power spectra with and
without small scales effects of modified gravity, PN and PGeff

N respectively, with respect to the
N-Body gauge matter power spectrum. We can see that in the red curve we have not only the
deviation a small k values, introduced by relativistic species, but also the deviation at large k,
introduced by Geff , which corresponds to a vertical shift with respect to the 0% line. This vertical
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Figure 4.6. Individual contributions from the “force” potentials of each relativistic species, the sum
ΦGR and the relativistic correction potentials with and without dark energy perturbations, γNb

w, DE and

γNb
wo, DE respectively. The left plots are for massless neutrinos and the right massive neutrinos, each row

is at a given scale factor, a = 1 (top), a = 0.06 (middle) and a = 0.02 (bottom). The perturbations are
normalised so that ζ = −1 on super-horizon scales.

shift, however, is absent in the blue curve, since both spectra, PNb and PGeff
N , share the same

homogeneous solution. Therefore, in these plots we can check the consistency and validity of the
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N-Body gauge implementation, as we are able to recover the expected and already known effect
introduced by Geff . This also lets us separate and understand what are the relativistic deviations
the scalar field introduces in the matter power spectrum in all scales, as well as it lets us quantify
how big these deviations are. The plot on the right shows exactly the same quantity but at redshift
z = 3. Since we are dealing with late time modifications of gravity we know that the effects of
dark energy are bigger only towards the end of matter domination, and the biggest effects (prior
to this moment in the evolution of the Universe) come from other relativistic species, such as
photons and massless and massive neutrinos. As an example, to understand the impact DE has
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Figure 4.7. Relative difference in percent between the Newtonian matter power spectrum, PN
cdm+b, and

the full general relativistic N-Body gauge one, PGR
cdm+b. The different colors show the impact when we add

one relativistic specie at a time, i.e., photons (blue), neutrinos (orange) and dark energy (green). The
dashed lines correspond to relativistic corrections without the term coming from the metric perturbations,
Equation (4.31), while the solid ones correspond to corrections with γNb. In the left column I show the
contributions with only massless neutrinos, and in the right column with massive neutrinos. Dark energy
perturbations are computed within k-essence theory.

on large scales we can study the case of a k-essence model, which has Geff = 1. Figure 4.6 presents
the “force” potentials of the relativistic species, k2Φα = 4πGa2δρNb

α (α = {γ, ν,DE}), and the
γNb contributions. The contribution γNb

wo, DE refers to equation (4.21) computed without the dark
energy perturbations in it, that is, k-essence is present only in the background quantities. We can

66



Linear N-Body gauge Section 4.3

see that the density perturbations of dark energy are only relevant at late times, in the a = 1 (top
row) plots, in which the total general relativistic “force” potential, ΦGR = Φγ +Φν +ΦDE+ γNb,
gets most of its contribution from γNb

w, DE. The lack of oscillations for intermediate k values of

ΦDE and γNb
w, DE at redshift z = 0, stems from the nature of the clustering dark energy density

perturbations: the dark energy density grows and the potential ΦDE remains constant above
the sound horizon cs/H while it decays below the sound horizon. Thus ΦDE is non-zero only
for k < H/cs,DE. In contrast, at higher redshifts, since the dominant term in ΦGR comes from
γNb
wo, DE, the oscillatory and damped behavior of relativistic species appear. For the massive

neutrinos case (right column plots), Φν does not exhibit any oscillation as the neutrinos have
already become non-relativistic. Massive neutrinos become non-relativistic for

∑
mν = 0.1 eV

at

znr =

∑
mν

3.15T0,ν
− 1 ∼ 188,

with T0,ν ∼ 1.9K being the temperature of the neutrinos today. The massive neutrino density
perturbations under the horizon scale grow like dark matter after this epoch. The corresponding
relative difference in the matter power spectra, PNb and PN

2, is also shown in Figure 4.7, where
the k-essence scalar field will roughly account for a 1% increase in the suppression of the N-Body
matter power spectrum when compared to the Newtonian one at large scales.
As we can see from Figures 4.5 and 4.7, the effects modified gravity imprints in the matter

power spectrum depends on the theory, i.e. parametrization, we choose. Since we are working
with Horndeski theories it is instructive to consider different combinations of the αi functions,
Equations (2.54-2.55):

i) Only running: αM = ΩDE, αB = αT = 0;

ii) Only braiding: αB = ΩDE, αM = αT = 0;

iii) JBD-like: αB = −αM = ΩDE, αT = 0;

iv) Only tensor: αT = −ΩDE, αM = αB = 0.

I will also vary the kineticity function, αK, in three constant values: 0.01, 1 and 100, in each of
these models.
The results are presented in Figures 4.8 and 4.9. Each of the (i-iv) models above are presented

in a given row, the left column plots refer to the full range of Fourier modes, while the right ones
present a zoomed in version of the same interval. All curves are computed at z = 1. The plots
show that the signal is greater at small wavenumbers, reaching up to above 80% for the case with
just the braiding being non-zero (bottom row of Figure 4.8). The reason for this large amplitude
at these scales can be understood by analyzing the scalar field fluctuation equation, (2.49). The
dominant term at large scales in this equation is proportional to the synchronous gauge metric
potential η times the sound speed. Since η does not depend on the kineticity – Equation (2.46) is
independent of αK – it is the same for different values of cK (remember our background is fixed
for a ΛCDM background). As we have seen, c2s is inversely proportional to αK, Equation (2.66),
which increases considerably the amplitude of the scalar field fluctuations, as seen in Figure 4.10,
and consequentially affects the value at large scales of the relativistic correction.
The behavior at large scales seem to follow the same pattern in all models (i-iv), which indicates

that these is a common behavior in all of them. At intermediate scales, however, the situation
does vary for each theory. When there is only braiding (bottom row of Figure 4.8), at smaller

2Since Geff = GN in k-essence, we have that PGeff
N = PN.
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Figure 4.8. Relative difference between the linear Newtonian matter power spectrum PN, Equation
(4.28), and the matter power spectrum in N-body gauge in Horndeski gravity PNb

m , Equation (4.29). The
top row corresponds to a modified gravity model in which we only have the running of the Planck mass,
αM, and the bottom row corresponds to just braiding, αB. On the left hand side plots, we show the full
interval in k while on the right we show only the scales probed by future LSS stage IV surveys. In all
cases, we show three different kineticity functions, cK = 100, 1, 0.01. We also plot the 1% deviation region
(shaded blue). Our initial conditions for δNb

m are set at a = 0.01 (z = 99).

k there is also a dependence on the value of the sound speed, as for cK = 100, we have an
enhancement of the relativistic power spectrum PNb

m with respect to the linear Newtonian one.
For smaller values of the kineticity, however, after starting enhancing the power spectrum we
see that there is a shift to the opposite direction, towards suppressing the power spectrum at
intermediate to large scales.
This behavior is absent in the running-only case (top row of Figure 4.8), where the sign of the

relative difference at large scales is independent of the sound speed. For the mixed case, Jordan-
Brans-Dicke parametrization αM = −αB, the same independent of αK behavior is present. Unlike
the former cases, however, the model in which there are only modifications of gravity in the tensor
sector, αT ̸= 0, the bulk of the modified gravity signal is not at small k, but at intermediate scales,
where all the curves show a bump in the signal, and then show no enhancement or suppression at
large scales. Although not shown in this work, if the opposite sign of the cM, cB and cT constants
is chosen, the effect on the power spectrum becomes opposite.
The final range of wave-numbers is at small scales, e.g., k > 10−1 Mpc−1. In this range, in

all but the αT ̸= 0 case, there is a vertical shift with respect to the 0% line. This displacement
is caused by the gravitational constant, Geff . As we can see from (4.42), at linear order, this
function is scale-independent, and one can simply interpret it as a mere re-scaling of Newton’s
gravitational constant, and that’s why we only see this effect as a vertical shift. As mentioned
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Figure 4.9. Relative difference between the linear Newtonian matter power spectrum PN, Equation (4.28),
and the matter power spectrum in N-body gauge in Horndeski gravity PNb

m , Equation (4.29). The top row
corresponds to a modified gravity model with a Jordan-Brans-Dicke (JBD) parametrization, αM = −αB,
and the bottom row shows the case only with the tensor modification, αT. On the left hand side plots,
we show the full interval in k, and on the right we show the interval of scales probed by future LSS stage
IV surveys. In all cases we show three different kineticity functions, cK = 100, 1, 0.01. We also plot the
1% deviation region (shaded blue). Our initial conditions for δNb

m are set at a = 0.01 (z = 99).

before, in this chapter I’m focusing on linear effects, to be more precise, I’m describing how
linear densities affect the matter power spectrum. Of course, in the case of photons and massless
neutrinos, in the scales we are concerned they are always linear, and therefore the discussion
here presented is the final word about it. For massive neutrinos with masses of around 0.15 eV
neutrinos can be treated linearly, as their non-linear clustering should not affect much the dark
matter power spectrum. CDM and baryons are coupled, and we know that their density increases
as we move to smaller scales due to the clustering of matter, therefore they must have non-linear
corrections included. For dark energy, however, the situation is a bit trickier. Since we don’t
know much about it so far, we don’t know when (or even if) it becomes non-linear. For this
non-linearities will always depend on the specific theory of gravity, for instance, for quintessence,
c2s is always one, and therefore the scalar field never clusters. However, in general Horndeski
theories the sound speed is a function of time, and therefore it is allowed to cluster freely. The
scale until which dark energy clusters is given by the dark energy sound horizon:

kH =
aH

√
2− αB

cs
√
2

, (4.43)

if a given mode is below kH then the amplitude of the dark energy density contrast will grow,
however, once it crosses the horizon, the mode will eventually decay. There is one part of the
dark energy perturbations that will always have non-linear corrections added, and we already saw
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Figure 4.10. Scalar field fluctuation, VX , as a function of scale for two different gravity models: αK = cK
and αM = ΩDE, αK = cK and αB = ΩDE , at fixed redshift, z = 1. We vary the kineticity in three different
constant values, cK = 100, 1 and 0.01. We can see that at large scales, smaller values of cK have larger
amplitudes. This behavior causes the enhancing of the signal at small k seen in Figures 4.8 and 4.9.

which one. When we take the QSA limit, we see that there is a part of δρDE that is proportional
to the matter density perturbations, which become non-linear, and therefore must be correctly
modelled. The other part of the DE perturbations, δρDE,rel. can become non-linear, and then
we would need to solve the scalar field fluctuation equation of motion, 2.49, at second order to
correctly account for non-linearities. However, we will not focus on this topic now, as we are
interested only on linear densities.
As the N-Body gauge provides a way to introduce the linear relativistic effects from photons,

neutrinos and dark energy (described by a scalar field or not), we want a way to safely introduce
the corrections into Newtonian simulations, without spoiling the regime of validity of the N-Body
gauge formalism. In other words, we want to smoothly transition from the regime where linear
perturbation theory is valid, to the regime where Newtonian simulations accurately describe the
density fields, and therefore non-linearities can safely be included in the terms proportional to
the matter density perturbations. One way to that is to compare the ratio between the full dark
energy density perturbation with its QSA counterpart. As we have seen the QSA counterpart
is the one in which non-linear corrections of the matter density perturbations will be introduced
at small scales. The relativistic part, however, will only have to be treated non-linear if at small
scales it is non-negligible when compared to the QSA quantity.
Figure 4.11 shows the separation of these two effects and the impact of relativistic corrections in

two models at z = 1. The top panels show the relative difference in percentage between the linear
Newtonian matter power spectrum with and without Geff effects, PGeff

N (solution of 4.37) and
PN (solution of 4.28) respectively, and the N-body gauge matter power spectrum, in Horndeski
gravity, PNb

m (solution of 4.38). The bottom panels show the square of the sound speed of the
scalar field and the relative difference between the energy density perturbations of dark energy
and its QSA counterpart. As modified gravity Newtonian simulations use the QSA limit, a good
check to see if our formalism will have a smooth transition from linear perturbation theory to
Newtonian gravity is to quantify the agreement between the full and the QSA contribution to
dark energy density perturbations. We chose to present models that have a below 0.1% agreement
between δρNb

DE and δρQSA
DE , at scales k ⪆ 0.1 Mpc−1. This is roughly the scale at which linear theory

breaks, and where the Newtonian approximation is correctly describing gravity. The top right
plots of Figures 4.11 show the effects coming purely from relativistic effects of modified gravity.
The deviations between both spectra may be above the 1% level, the usual required accuracy in
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Figure 4.11. Impact of separating modified gravity effects on smalls scales in the matter power spectrum.
Top left: Relative difference between the linear Newtonian matter power spectrum described by Equation
(4.28), and the N-body gauge matter power spectrum in Horndeksi gravity at redshift z = 1. Top right:
Relative difference between the linear Newtonian matter power spectrum with Geff , P

Geff

N , described by
Equation (4.37), and the N-body gauge matter spectrum in Horndeski gravity at redshift z = 1. Bottom
left: Squared sound speed of the scalar field as a function of the scale factor. Bottom right: Relative
difference between the full dark energy density perturbation, Equation (2.80), and its QSA counterpart,
Equation (3.3). All plots are for the same gravity model, Jordan-Brans-Dicke parametrization, and we
only vary the values of the kineticity, cK = 100, 1, 0.01. The top right plot shows the 1% deviation region
(shaded blue) in which we can see that purely relativistic effects are not captured by Geff , and exceed the
percent-level deviation threshold at scales probed by future LSS stage IV surveys. In the bottom right
plot, we show the 0.1% deviation interval (shaded red), where the relativistic contribution decay when we
move to larger values of k, thus, ensuring a smooth transition to the regime of Newtonian gravity. This
exhibits the validity of our formalism to implement relativistic effects in Newtonian N-body simulations.
Our initial conditions for δNb

m are set at a = 0.01 (z = 99).

these simulations. This shows that in order to make consistent simulations in modified gravity
we must include the relativistic source term, δρGR, in simulations.

For completeness Figures 4.12 and 4.13 show the same plots as Figure 4.11, but for a smaller
proportionality constant and different parametrization, respectively. These plots are relevant to
show that as we move to stage IV LSS surveys, that will probe the Universe at higher redshifts
and larger scales, we clearly see that the relativistic deviations can account for more than 1%
difference when compared to the usual Newtonian spectra. The framework developed in this
thesis can be used to construct these number counts, from the relativistic output of N-body
simulations, using ray-tracing techniques. In Appendix A I discuss the consistency checks I have
performed in order to validate the implementation of the N-Body gauge in the hiclass code.
A last remark on the results presented in this subsection concerns the oscillatory feature present

in the relative difference between PNb and PN (and PGeff
N . We can see that in large and interme-
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Figure 4.12. Same as Figure 4.11 but with a different value for the proportionality constant, cB = −cM =
0.1.

diate scales, there is an emergence of wiggles at these scales. This feature is a purely relativistic
effect caused by the scalar field.
From the scales in which these oscillations appear, and allied with the fact that QSA contribu-

tions do not oscillate since dynamical equations become constraint equations in the QSA, we can
identify these features as purely relativistic effects of modified gravity, and they reveal directly
the dynamical nature of the additional degree of freedom. Figure 4.14 shows the matter power
spectrum in the N-body gauge on the left, and the lensing potential on the right. We can see
that oscillations are present in both of these observables, and therefore can be probed by future
LSS and 21cm intensity mapping surveys.
To understand the origin of these oscillations, we also plot the evolution of the ratios VX/V

QSA
X

and δNb
m /δSm as a function of wavenumber, k, and conformal time, τ , in Figure 4.15. VX/V

QSA
X

minimises the non-oscillatory contributions from the QSA, while δNb
m /δSm also allows us to high-

light these features in the matter density contrast in the N-body gauge, since at late times and
inside the horizon, the N-body gauge and the synchronous gauge are approximately the same.
This highlights that any difference in behavior between the two is a purely relativistic effect.
From the scalar field fluctuation equation, (2.49), the only way acoustic waves may appear is

when VX crosses the dark energy (DE) sound horizon, defined in Equation (4.43). When a given k
mode enters the sound horizon, pressure gradients from the scalar field act to counter balance the
gravitational attraction. Therefore, as we can see in Figure 4.15, when the scalar field fluctuation
of a specific Fourier mode crosses the sound horizon, gravity acoustic oscillations (GAOs) emerge.
These GAOs, however, are damped by two effects: the damping term multiplying V ′

X in Equation
(2.49), and when matter density perturbations start to dominate VX . The former is represented
by the blue lines in Figure 4.15, and we can see that modes must also be inside this scale to
oscillate.
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Figure 4.13. Same as Figure 4.11 but with a different parametrization, αB = −αM = 0.1 · a.

Figure 4.14. Oscillatory features in observable quantities. Left: N-body gauge matter power spectrum
at redshift z = 0.. Right: Lensing potential transfer function for the same model. Gravity acoustic
oscillations appear in the matter power spectrum only in the model with low values of cK at scales
below the scale of matter-radiation equality, keq. ∼ 10−2 Mpc−1. Since the parametrization is chosen to
be proportional to the fractional dark energy density, ΩDE, modified gravity effects will only affect the
matter power spectrum during the late stages of matter domination. Therefore these features do not
affect the BAO oscillations, where the QSA contribution is already dominating the dark energy density
perturbations, thus damping the GAOs. The same smooth behavior at small k values for lower values of
the kineticity is also present in the lensing potential transfer function. However, due to the presence of
anisotropic stress (gravitational slip in the Newtonian gauge potentials), for cK = 100, the oscillations are
also present at values of k bigger than keq. in the lensing potential.

Gravity acoustic oscillations are an intermediate-time effect, originating during matter domi-
nation. They are caused by the rapid evolution of the dark energy sound horizon, which at early
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Figure 4.15. Scale and time dependence of GAOs. Top row: Two-dimensional (k, τ) plot of the ratio

VX/V
QSA
X in Jordan-Brans-Dicke gravity, for three different values of kineticity, cK = 0.01, 1, 100. Bottom

row: Two-dimensional plot of the ratio δNb
m /δSm in the same theory, for three different values of kineticity,

αK = 0.001, 1, 100. The dark energy sound horizon (red curve) Equation (4.43), the damping term (blue
curve) in Equation (2.49) and the cosmological horizon (yellow curve) aH are also plotted. The oscillations
in the top row plots occur once a given k mode crosses the dark energy sound horizon and damping scale,
and, once inside this region, get slowly damped by the QSA contribution. These oscillations are seen in
the matter density contrast for cases in which the crossing happens at scales much larger than the QSA
regime at large k, as seen in the bottom left and center plots.

times may be orders of magnitude smaller than the Hubble horizon, (aH)−1. As we have seen
in Figure 4.11, the sound speed of the scalar field can start very small at early times, and then
goes to order one values at late times, driving the evolution of kH. This makes modes that were
outside the dark energy sound horizon cross inside the horizon, introducing pressure gradients
and hence oscillations in the gravity sector.
From the previous discussion, c2s depends on the choice of parametrization of the kineticity

function. In the present work we fixed this to be constant throughout the expansion of the
Universe. However, we know from other works in the literature that gravity acoustic waves were
not present if a different parametrization for αK was chosen. Specifically, if αK was proportional
to the fractional dark energy density, ΩDE, a common choice in the literature, we know that
the sound speed of the scalar field is always of the same order in time, apart from a very brief
interval at early times. Therefore, the dark energy sound horizon will exhibit a similar behavior
to the cosmological Hubble horizon for most of the expansion history. While this discussion
revolves around the use of parametrizations of Horndeski theories, in principle, we can find a
covariant theory in which the sound speed evolves by orders of magnitude, specifically during
matter domination, via an appropriate choice of the Horndeski functions Gi’s.
It is important to stress that GAOs do not affect the BAO peak in the matter power spectrum.

This is due to the fact that the BAO scale lies inside the regime where the QSA already holds.
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CHAPTER 5.

Non-Linear Universe

In this chapter I will lay down some of the mathematical tools to describe the non-linear

Universe. I will start by describing higher order perturbation theories in two different, but

corresponding, representations: Eulerian and Lagrangian. I will then move the discussion to

introduce the idea behind a fast approximate method to generate the non-linear matter density

field, the COmoving Lagrangian Approach (COLA) approach.

5.1. Large Scale Structure of the Universe

In the previous chapter we have seen the remarkable power cosmological perturbation theory
gives us to study modified gravity in our Universe. Linear theory has been a cornerstone of
modern cosmology, and has solidified its role as the fundamental framework to test gravity in
the past LSS surveys. However, as we move to the next stage LSS surveys, such as DESI and
Euclid, which will become online fairly soon, we are now in a critical point in the modified gravity
community. With the unprecedented precision new data will deliver to us, the theoretical side
is now pushed by community to act and move to non-linear scales, in order to fully explore the
potential stage IV LSS surveys will give. In the beginning of this century, gravitational instability
has finally assumed a fundamental role in giving rise to the intricate structure we see in our
Universe. What began in the 70s and 80s with Peebles and Yu [24] as well as Zel’dovich [112],
was fully understood by others in the next decades [113, 114, 115]. Higher order perturbation
theory in the Eulerian frame, also known as Standard Perturbation Theory (SPT), as well in
Lagrangian [116], was finally seen as a mature and solid framework to work with to better
understand structure formation in the quasi-linear scales of our Universe. Theoretical models were
tested with synthetic data generated by cosmological Newtonian simulations. This has ultimately
lead us to sophisticated methods of extracting information from the two-point correlation function
of our Universe, which then lead to powerful tools to do data analysis in the linear and quasi-
linear regime, opening the doors to the now well-established BAO data, and the first constraints
using RSD.
In this chapter I will give a brief description on the fundamentals of perturbation theory in

LCDM and modified gravity, as well as discuss some concepts and methods of N-Body codes.

5.2. Growth in LCDM

Galaxies, quasars and other structures act as biased tracers of the underlying invisible distribution
of CDM in the Universe. LSS surveys aim to map the position of galaxies in a portion of the sky
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by computing statistical measures of clustering in the sky using N-point functions. The simplest
clustering statistics is the 2 point correlation function (2PCF), given by:

ξ(x,y) = ⟨δ(x)δ(y)⟩, (5.1)

in real space. As we know, we have up until now no proof that the Copernican Principle has
been refuted, and thus we are left with homogeneity and isotropy. The former states that the
density field δ(a) is invariant under translations by a constant displacement l, δ(x) = δ(x − l).
The latter forces our density field to be the same by rotations, δ(R−1x) = δ(x). Both of these
symmetries then imply that ξ(x,y) is actually a mere function of the modulus of the distance,
r, between the two points in space (x,y):

ξ(x,y) = ξ(r). (5.2)

To better understand the 2PCF we can think as the following: suppose we have two small regions
of space δV1 and δV2 separated by a distance r. Then, the expected number of pairs of galaxy
to be found with one galaxy in δV1 and another in δV2 is:

⟨npair⟩ = n̄2 [1 + ξ(r)] δV1δV2, (5.3)

where n̄ is the mean number of galaxies per unit of volume. It is now easily seen that ξ measures
the excess of clustering given by a distance a r. If ξ = 0, the galaxies are not clustered, thus
are equally spaced. If we have ξ > 0 we have galaxies closer together, while ξ < 0 farther apart.
The same power spectrum we have seen in the last chapter built using the primordial curvature
perturbations, the growth function and the transfer function is just the Fourier transform of this
2PCF, and since we have homogeneity and isotropy:

P (k) =

∫
ξ(r)eik·rd3r, (5.4)

ξ(r) =

∫
P (k)(r)e−ik·r d3k

(2π)3
. (5.5)

5.2.1. SPT in LCDM

This section is developed following references [26, 117, 113]. Since CDM particles are non-
relativistic, at scales much smaller than the Hubble radius the equations of motion reduce es-
sentially to those of Newtonian gravity. From a set of CDM particles in an expanding Universe
at position r, its density is given by ρ(r), and the acceleration generated by this ensemble of
particles is then

dv

dt
= −dϕ

dr
, (5.6)

where v is the velocity field. Now, position r is just the position vector in spherical coordinates,
however, it would be a lot easier if we instead changed our spatial coordinates to a system where
it is comoving with our expanding Universe, therefore, we will instead use from now on the notion
of comoving coordinates, which follow the evolution of the Hubble flow:

r = ax. (5.7)

The derivative of this Equation gives us:

u(x, t) = v − aHx, (5.8)
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and the second derivative:

u̇(x, t) =
1

a

[
d

dτ
(aH)x+ aHẋ+ ẍ

]
= −1

a
∇ϕ, (5.9)

where in the last line I used Equation (5.6). The term proportional to the position is a peculiar
term, introduced by the Hubble flow, we can move it to the RHS of this equation and write:

ϕ =
1

2

d

dτ
(aH)x2 +Φ, (5.10)

which then rewrites the geodesic equation for position x as:

ẍ+ aHẋ = ∇Φ. (5.11)

We can also find the Poisson equation for the peculiar potential Φ if we take the Laplacian of
both sides of Equation (5.10):

∇2Φ(x, t) = a2∇2
rϕ(r, t) +

a2

2

[
−H

2Ωm

2
+

Λ

3

]
(5.12)

=
3

2
ΩmH

2a2δ(x, t). (5.13)

Since we are considering a large number of CDM particles, it is better to study the evolution
of this ensemble by considering their phase space distribution evolution, f(x,p, t), where p is the
peculiar momentum. As seen before, its evolution is governed by the Boltzmann equation (1.91),
however, as CDM particles are collisionless the RHS of that equation is identically zero:

df

dt
=
∂f

∂t
+

p

ma2
· ∇f −m∇Φ · ∂f

∂p
= 0. (5.14)

From Equation (1.94) we find the momentum moments of the phase space distribution:

∫
d3pf(x,p, t) = n(x, t), (5.15)

∫
d3p

p

am
f(x,p, t) = ρ(x, t)u(x, t), (5.16)

∫
d3p

pipj
a2m2

f(x,p, t) = ρ(x, t)ui(x, t)uj(x, t) + σij(x, t) (5.17)

where n(x, t) is the number density and σij(x, t) is the anisotropic stress of the distribution. This
last quantity tells us how much the CDM particles are deviating from its single stream trajectory.
During the early stages of the gravitational collapse this quantity is negligible, and, therefore, we
will discard it in the following. Taking the zeroth and first moments of Equation (5.14) and the
Poisson equation, we have the so called Vlasov-Poisson equations:

∂δ(x, t)

∂t
+

1

a(t)
∇ · [(1 + δ(x, t))u(x, t)] = 0, (5.18)

∂u(x, t)

∂t
+H(t)u(x, t) +

1

a(t)
u(x, t) · ∇u(x, t) = − 1

a(t)
∇Φ(x, t), (5.19)

∇2Φ =
3

2
ΩmH

2a2δ(x, t) (5.20)
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where ∇u(x, t) is the directional derivative of u(x, t) along the x direction. We can see that in
Equations (5.18-5.19) we have terms that go beyond linear order, and, if we stick to only first
order terms the Equations become:

∂δ(x, t)

∂t
+

1

a(t)
∇ · u(x, t) = 0, (5.21)

∂u(x, t)

∂t
+H(t)u(x, t) = − 1

a(t)
∇Φ(x, t). (5.22)

So far we have not made any assumptions on the nature of the peculiar velocity field, and,
therefore, we will decompose it using Helmholtz theorem so we can further understand it:

u(x, t) = −∇Θ(x, t) +w(x, t), (5.23)

with ∇Θ(x, t) and w = ∇× u(x, t) being respectively the curl and divergent free components of
u(x, t). I’ll go further and also define θ(x, t) = ∇ · ∇Θ(x, t). Taking respectively the divergent
and the curl of the linear Euler equation of (5.21), we find:

∂θ(x, t)

∂t
+H(t)θ(x, t) +

3

2
ΩmH

2(t)a(t)δ(x, t) = 0, (5.24)

∂w(x, t)

∂t
+H(t)w(x, t) = 0, (5.25)

where I used Equation (5.12) in the first line to remove the Poisson potential from the equation.
The solution of the Equation (5.25) gives us that the vorticity of the field decays as w(x, t) ∝
1/a(t), therefore, the initial velocity will always decays in an expanding Universe. The full
non-linear equation for w(x, t) is:

∂w(x, t)

∂t
+H(t)w(x, t)−∇× [u(x, t)×w(x, t)] = 0, (5.26)

where we can see that if we have zero initial vorticity, then this will remain so throughout the
evolution of the Universe. If w(x, ti) ̸= 0, then the last term of Equation (5.26) shows that
the vorticity can be amplified. The investigation of the impact of the vorticity in the growth
of structure has been studied with the code GRAMSES [118]. However, throughout this thesis,
I will remain considering zero initial vorticity, and with this the peculiar velocity is completely
defined by its curl-free component, θ(x, t). Note, however, that if we had not set σij ≈ 0 for our
ensemble of CDM particles, this term would be present as a source term in Equation (5.26), and
then we could have a growing solution of vorticity.

I define the following Fourier transform conventions:

f(x) =

∫
d3k

(2π)3
f̃(k)eik·x, (5.27)

f̃(k) =

∫
d3xf(x)e−ik·x, (5.28)

I’ll also rewrite Equations (5.18-5.19) using conformal time, and taking the divergence of Equation
(5.19):

∂δ(x, τ)

∂τ
+ θ(x, τ) = −δ(x, τ)θ(x, τ)− uj(x, τ)∂iδ(x, τ), (5.29)

∂θ(x, τ)

∂τ
+ aHθ(x, τ) +∇2Φ = −uj(x, τ)∂jθ(x, τ)− ∂ku

j(x, τ)∂ju
k(x, τ) (5.30)
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where I decided to explicitly show the component of the quantities. Let’s recall the linear solution,
which at sufficiently large scales linear theory is an accurate description of the Universe, and
Equations (5.29-5.30) become:

∂δ(x, τ)

∂τ
+ θ(x, τ) = 0, (5.31)

∂θ(x, τ)

∂τ
+ aHθ(x, τ) +∇2Φ = 0. (5.32)

Taking the time derivative of the first equation and using the second, we get the usual second
order differential growth equation for the linear density field:

δ̈m + aHδ̇m − 4πGρmδm = 0. (5.33)

If we divide this whole equation by the linear density today, we get:

D̈ + aHḊ − 4πGρmD = 0, (5.34)

where D is called the linear growth factor. This ODE has two solutions:

D(τ) = D+(τ) +D−(τ), (5.35)

a growing and a decaying solution, respectively. The linear density field can then be written as:

δ(k, τ) = D+(τ)δ0(k) +D−δ0(k), (5.36)

where δ0(x, τini) is the initial density field at a given reference epoch. As we are interested in the
growth of structure, we will from now on refer to as the linear growth factor the solution D+(τ).
At linear level, we have a one-to-one correspondence between the matter density field and its
velocity divergence (Euler’s equation):

θ(1)(x, τini) = −aHfδ(1)(x, τ), (5.37)

with f = d lnD+/d ln a being the growth rate.
Now, considering beyond leading order terms, we can write Equations (5.29-5.30) in Fourier

space as:

δ′(k, τ) + θ(k, τ) =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
(2π)3 δ

(3)
D (k− k1 − k2)

×α(k1,k2)δ(k1, τ)θ(k2, τ), (5.38)

θ′(k, τ) + aHθ(k, τ)− k2Φ(k, τ) = −
∫

d3k1

(2π)3

∫
d3k2

(2π)3
(2π)3 δ

(3)
D (k− k1 − k2)

×β(k1,k2)θ(k1, τ)θ(k2, τ). (5.39)

where a prime refers to differentiation with respect to conformal time, and the functions α(k1,k2)
and β(k1,k2) are the mode coupling functions, which encode the non-linear nature of the iterative
solutions, and read:

α(k1,k2) = 1 +
k1 · k2

k21
, (5.40)

β(k1,k2) =
k1 + k2

k21
+

(k1 + k2)
2

k21k
2
2

. (5.41)
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And the Poisson equation

Φ(k, τ) = −3

2
Ωm

a2H2

k2
δ(k, τ), (5.42)

close the Vlasov-Poisson system in Fourier space.
By inspecting Equations (5.38) and (5.39) we can see that we can find solutions for these equa-

tions iteratively. That is, since we know that at sufficiently large scales linear theory accurately
describes our Universe, we can expand the densiy contrast and the total divergence as:

δ(k, τ) = δ(1)(k, τ) + δ(2)(k, τ) + · · ·+ δ(n)(k, τ), (5.43)

θ(k, τ) = θ(1)(k, τ) + θ(2)(k, τ) + · · ·+ θ(n)(k, τ). (5.44)

Plugging these in (5.38) and (5.39), we can find closed recursive solutions as:

δn(k, τ) =

∫
d3k1 . . . d

3knδ
(n) (k− k1...n)Fn (k1, . . . ,kn, τ) δ0(k1) . . . δ0(kn) (5.45)

θn(k, τ) =

∫
d3k1 . . . d

3knδ
(n) (k− k1...n)Gn (k1, . . . ,kn, τ) δ0(k1) . . . δ0(kn), (5.46)

where, k1...n = k1 + · · · + kn, Fn and Gn are called n-th order kernels and δ0(k) is the initial
density field. Inserting (5.45) and (5.46) in (5.43) we find the system:

T̂

[
Fn (k1, . . . ,kn, τ)
Gn (k1, . . . ,kn, τ)

]
=

n−1∑

j=1

[
−α (k1...j ,kj+1...n)Gj (k1, . . . ,kj)Fn−j (kj+1, . . . , kn)
−1

2β (k1...j ,kj+1...n)Gj (k1, . . . ,kj)Gn−j (kj+1, . . . , kn)

]
(5.47)

where

T̂ =

[
d
dτ 1

3
2Ωma

2H2 d
dτ + aH

]
. (5.48)

When solved consistently this system will give us the explicit time-dependence of the standard
perturbation theory kernels, Fn and Gn. One can easily see that at linear order the RHS of
Equation (5.47) is zero, and one will find F1(k, τ) = D+(τ), and G1 can be found from Euler’s
equation.
Using this SPT formalism we can write the power spectrum as:

Pδδ⟨δ (k, τ)) δ
(
k′, τ

)
⟩ =

n+l even∑

n,l=1,2,...

⟨δ(n) (k, τ) δ(l)
(
k′, τ)

)
⟩, (5.49)

where the only non-zero contributions to the power spectrum are those with n+ l even. This is a
property inherited from the original quantum fluctuations in the early Universe, that grew into
the structures that we now see due to the gravitational instability. Following Wick’s theorem, the
expected value of any n−point correlation function, where n is odd, of a given Gaussian random
field vanishes. As we are writing any order of the density field in terms of its initial density, δ0,
then, the power spectrum receives only contributions where the sum of the orders of each field is
even. Therefore, at leading order we have the usual linear matter power spectrum PL, and the
next-to-leading order solution is the one-loop corrected power spectrum P 1−loop(k):

P 1−loop
δδ (k) = PL(k) + P 13

δδ (k) + P 22
δδ (k) (5.50)
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with

⟨δ(2)(k, τ)δ(2)(k′, τ)⟩ = (2π)3 δ
(3)
D P 22

δδ (k) (5.51)

⟨δ(1)(k, τ)δ(3)(k′, τ) + δ(3)(k, τ)δ(1)(k′, τ)⟩ = (2π)3 δ
(3)
D P 13

δδ (k). (5.52)

Working out the details with previous equations, one can explicitly calculate the form of P 13
δδ and

P 22
δδ :

P 22
δδ (k, τ) =

∫
d3p

(2π)3
[F2 (p,k− p)]2 PL

δδ(p, τ)P
L
δδ(|k− p|, τ) (5.53)

P 13
δδ (k, τ) = 3PL(k, τ)

∫
d3p

(2π)3
F3 (p,−p,k)PL (p, τ) . (5.54)

Figure 5.1. The top plot shows the linear matter power spectrum, PL(k) (black solid, and the linear plus
next-to-leading order correction of the power spectrum, PL(k)+PNLO

m (k) (dashed green), at two different
redshifts, z = 0 and z = 1. The bottom plot shows the ratio between the two, where we can see that from
k = 0.1 h/Mpc non-linear corrections need to be included. Plot taken from [26].

Figure 5.1 shows us the absolute power spectrum of leading and next-to-leading order correc-
tions, linear and 1-loop power spectrum respectively. This concludes our discussion about SPT
in LCDM.

5.2.2. Lagrangian Perturbation Theory

In 1970 Zel’dovich introduced an alternative to the Eulerian description of perturbation theory,
where the primary quantity of the analysis is the trajectory of the particle, and not its density
contrast. The given CDM particle is indexed in the Lagrangian picture by its initial displacement
q, and the Eulerian coordinate position at conformal time τ is then given by:

x(τ) = q+Ψ(q, τ). (5.55)

Zel’dovich’s original idea was to relate the displacement vector field Ψ at a later time directly
from its initial displacement:

Ψ(q, τ) = g(τ)Ψ(q). (5.56)
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In fact, this relation is exact at linear order, as g(τ) ∝ D+, however, it has obvious shortcomings
as it does not incorporate gravitational acceleration. At linear order, any particle will move
in a straight line (in comoving coordinates) in the direction given by their initial velocity, the
movement is simply inertial. The connection between the Eulerian density contrast description
to the one where the displacement of particles is evolved rises from a simple argument of mass
conservation:

[1 + δ(x, τ)] d3x = d3q, (5.57)

where the volume distortion is captured by the Jacobian:

J =

∣∣∣∣
d3x

d3q

∣∣∣∣ = det

[
δ
(K)
ij +

∂Ψ

∂q

]
= det

[
δ
(K)
ij +Ψi,j

]
(5.58)

where a comma refers to derivative with respect to the initial Lagrangian position. We then have:

δ =
1

J − 1 (5.59)

which at linear order is simply:

δ1(x, τ) = −J(1) = −Ψ
(1)
i,i (5.60)

which is equivalent to Zel’dovich’s approximation (ZA), as expected. Going back now to the
geodesic equation for particle’s position, Equation (5.11), and taking its divergence we find:

J∇x

[
d2x

dτ2
+ aH

dx

dτ

]
=

3

2
a2H2Ωm(a) (J − 1) , (5.61)

remembering that ∇xi =
(
δ
(K)
ij +Ψi,j

)
∇qi . Expanding the displacement field into a perturbative

series:
Ψ = Ψ(1) +Ψ(2) +Ψ(3) + . . . , (5.62)

the jacobian can be similarly expanded, as it is merely a function of this field:

J = J (1) + J (2) + J (3) + . . . , (5.63)

and we can just plug these relations into the volume distortion relation, Equation (5.58), and get
closed forms for each perturbative Jacobian in terms of the displacement field expansion:

J (1) = L(1) =
∑

i

Ψ
(1)
i,i , (5.64)

J (2) = L(2) +K(2) =
∑

i

Ψ
(2)
i,i +

1

2

∑

i ̸=j

[
Ψ

(1)
i,i Ψ

(1)
j,j −Ψ

(1)
i,j Ψ

(1)
j,i

]
, (5.65)

J (3) = L(3) +K(2) +M(3) =
∑

i

Ψ
(3)
i,i +

1

2

∑

i ̸=j

[
Ψ

(2)
i,i Ψ

(1)
j,j −Ψ

(2)
i,j Ψ

(1)
j,i + detΨ

(1)
i,j

]
. (5.66)

From the Jacobian expansion we can find the corresponding orders of the density contrast up to
second order:

δ(1)(x, τ) = −
∑

i

Ψ
(1)
i,i (q, τ), (5.67)

δ(2)(x, τ) = −
∑

i

Ψ
(2)
i,i (q, τ) +

1

2

∑

i ̸=j

[
Ψ

(1)
i,i (q, τ)Ψ

(1)
j,j (q, τ)−Ψ

(1)
i,j (q, τ)Ψ

(1)
j,i (q, τ)

]
, (5.68)
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where the minus sign in front of the first term on the RHS of the second equation comes from
the fact:

det [I +A] = 1 + tr(A) +
1

2

[
tr2(A) + tr(A2)

]
, (5.69)

det

[
1

I +A

]
= 1− tr(A) +

1

2

[
tr2(A) + tr(A2)

]
, (5.70)

where I is the identity matrix. To find an expression for the power spectrum in LPT, we begin
by integrating both sides of Equation (5.57), where we find:

1 + δ(x) =

∫
d3q δD (x− q−Ψ) , (5.71)

where I have omitted the time dependence to make the computation clearer. Taking the Fourier
transform of Equation (5.71):

δD(k) + δ(k) =

∫
d3qeik·q exp (ik ·Ψ) , (5.72)

then we can find the power spectrum by simply computing (2π)3 Pδδ = ⟨δ (k) δ (k′)⟩:

(2π)3 δ(3) (k) + P (k) =

∫
d3q exp (−iq · k) ⟨exp [−ik ·∆Ψ]− 1⟩, (5.73)

where q = q1 − q2 and ∆Ψ = Ψ(q1) − Ψ(q2). We still need, however, to find the appropriate
solutions for the displacement field Ψ. This is done also perturbatively, and our starting point is
Equation (5.61), that we can write it as:

1

δ
(K)
ij +Ψi,j

∇j
q

d2Ψi(q, T )

dT 2
= −∇2

xΦ(x, T ), (5.74)

where T is a new time variable called super comoving time, defined as dT = dτ/a. Approximating

the denominator of this Equations as
(
δ
(K)
ij +Ψi,j

)−1
≈ δ

(K)
ij −Ψi,j , and expanding Ψ up to second

order we rewrite the previous equation as:
(
∂

∂qi
− ϵ

∂Ψ(1)(q, T )

∂qi
∂

∂qj
− ϵ2

∂Ψ(2)(q, T )

∂qi
∂

∂qj

)[
ϵ
d2Ψ(1)(q, T )

dT 2
+ ϵ2

d2Ψ(2)(q, T )

dT 2

]
= −∇2

xΦ(x, T )

(5.75)
where ϵ is a small parameter used just to keep track of the order of the expansion. The first and
second order equations of motion for the displacement field are then:

d2Ψi,i(q, T )

dT 2
= ∇2

xΦ(x, T ) (5.76)

and
d2Ψ

(2)
i,i (q, T )

dT 2
−Ψ

(1)
i,i (q, T )

d1Ψ
(1)
i,i (q, T )

dT 2
= ∇2

xΦ(x, T ). (5.77)

Taking the Fourier transform with respect to q in both sides of these equations leads us to:

Fq

[
d2Ψ

(1)
i,i

dT 2

]
(k) = Fq

[
∇2

xΦ(x, T )
]
(k), (5.78)

Fq

[
d2Ψ

(2)
i,i

dT 2
−Ψ

(1)
i,i

d2Ψ
(1)
i,i

dT 2

]
(k) = Fq

[
∇2

xΦ(x, T )
]
(k). (5.79)
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In the same way taking the Fourier transform of Equations (5.67) we have:

δ̃(1)(k, T ) = Fq

[
δ(1)(x, T )

]
= Fq

[
Ψ

(1)
i,i (q, T )

]
(5.80)

δ̃(2)(k, T ) = Fq

[
δ(2)(x, T )

]
= Fq

[
−Ψ

(2)
i,i +

1

2

(
Ψ

(1)
i,i Ψ

(1)
j,j −Ψ

(1)
i,j Ψ

(1)
j,i

)]
. (5.81)

Before moving on to solve Equations (5.78-5.79), note that the displacement field up to second
order is an irrotational field, hence, can be written in terms of the gradient of a scalar field, ϕ
(not to be confused with the gravitational potential, which will always be referred as Φ):

Fq [Ψi(q, T )] = ikiϕ(k, T ). (5.82)

From the Poisson Equation in Fourier space, we can relate the Φ potential with the density
contrast:

Fq

[
∇2Φ(x, T )

]
(k) = κδ̃(k, T ) = κ

(
δ̃(1) + δ̃(2) + . . .

)
(5.83)

with κ = 4πGNρa
4 = 3

2Ωm(a)H
2
0a. Then, if we insert this in Equation (5.78) we get:

Fq

[
d2Ψ

(1)
i,i

dT 2

]
(k) = −κδ̃(1) = κFq

[
Ψ

(1)
i,i

]
, (5.84)

which after using Equation (5.82) becomes:

− k2
d2ϕ(k, T )

dT 2
= −k2κϕ(k, T ) (5.85)

In ΛCDM cosmology the growth of matter density perturbations is scale-independent at linear
order, therefore, we can write:

ϕ(1)(k, T ) = D1(T )ϕ
(1)(k, Tini), (5.86)

where D1 is the first order growth function, and ϕ
(1)
ini = δ(1)(k, T )/k2 is the initial state of the

scalar field. Following these statements, we rewrite Equation (5.85) as:

[
d2

dT 2
− κ

]
D1(T ) = 0 (5.87)

which can be solved analytically as long as we have the initial conditionsD1(Tini) and dD(1)/dT |ini.
Deep inside matter domination era, the initial conditions are given by Einstein-de Sitter initial
conditions:

D1(Tini) = 1,

(
dD1

dT

)

ini

=

(
1

a

da

dT

)

ini

. (5.88)

Once we have D(1), we then know how to express Ψ(1)(k, T ):

Ψ(1)(k, T ) = iki
D1(T )δ̃

(1)(k, Tini)

k2
, (5.89)

and the real space solution is found by taking the inverse Fourier transform:

Ψ(1)(q, T ) = D1(T )

∫
d3k exp (ik · q) δ̃

(1)(k, Tini)

k2
. (5.90)
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For the second order solution we proceed in an analogous way:

Fq

[
d2Ψ

(2)
i,i

dT 2
−Ψ

(1)
i,i

d1Ψ
(1)
i,i

dT 2

]
(k) = κFq

[
−Ψ

(2)
i,i +

1

2

(
Ψ

(1)
i,i Ψ

(1)
j,j −Ψ

(1)
i,j Ψ

(1)
j,i

)]
(k) (5.91)

and substitute the solution of Ψ(1)(k, T ):

Fq

[
d2Ψ

(2)
i,i

dT 2
− κΨ

(1)
j,i Ψ

(1)
i,j

]
(k) = κFq

[
−Ψ

(2)
i,i +

1

2

(
Ψ

(1)
i,i Ψ

(1)
j,j −Ψ

(1)
i,j Ψ

(1)
j,i

)]
(k) (5.92)

which rewritten becomes:
[
d2

dT 2
− κ

]
Fq

[
Ψ

(2)
i,i (q, T )

]
= −κ

2
Fq

[
Ψ

(1)
i,i Ψ

(1)
j,j −Ψ

(1)
i,j Ψ

(1)
j,i

]
. (5.93)

The convolutions in these Equations are computed as follows:

Ψ
(1)
l,mΨ

(1)
m,l = D2

1(T )

∫
d3k1
(2π)3

d3k2
(2π)3

ikm1 e
ik1·q ik1,l

k21
ikl2e

ik2·q ik2,m
k22

δ̃(k1, T )δ̃(k2, T )

= D2
1(T )

∫
d3k1
(2π)3

d3k2
(2π)3

i4e(k1+k2)·qk
m
1 k1,lk

l
2k2,m

k21k
2
2

δ̃(k1, T )δ̃(k2, T )

= D(1),2(T )

∫
d3k1
(2π)3

d3k2
(2π)3

e(k1+k2)·q (k1 · k2)
2

k21k
2
2

δ̃(k1, Tini)δ̃(k2, Tini), (5.94)

where we now have the wave-numbers k1 and k2 appearing in the integrals due to the derivative
in the displacement fields, and the other convolution is:

Ψ
(1)
l,l Ψ

(1)
m,m = D(1),2(T )

∫
d3k1
(2π)3

d3k2
(2π)3

e(k1+k2)·qδ̃(k1, Tini)δ̃(k2, Tini). (5.95)

Then we have:

Ψ
(1)
l,mΨ

(1)
m,l −Ψ

(1)
l,l Ψ

(1)
m,m = (5.96)

D2
1(T )

∫
d3k1
(2π)3

d3k2
(2π)3

e(k1+k2)·q

(
1− (k1 · k2)

2

k21k
2
2

)
δ̃(k1, Tini)δ̃(k2, Tini), (5.97)

which when we take the Fourier transform:

F
[
Ψ

(1)
l,mΨ

(1)
m,l −Ψ

(1)
l,l Ψ

(1)
m,m

]
= (5.98)

D2
1(T )

∫
d3k1
(2π)3

d3k2
(2π)3

δ
(3)
D (k− k12)

(
1− (k1 · k2)

2

k21k
2
2

)
δ̃(k1, Tini)δ̃(k2, Tini), (5.99)

with k12 = k1 + k2. Since we have that:

Fq [Ψi,i(q, T )] (k) = −k2ϕ(k, T ) (5.100)

we can combine this equation with (5.98) and write:

−k2
(

d2

dT 2
− κ

)
ϕ(2)(k, T ) = −κ

2
D2

1(T )

∫
d3k1
(2π)3

d3k2
(2π)3

δ
(3)
D (k− k12) (5.101)

×
(
1− (k1 · k2)

2

k21k
2
2

)
δ̃(k1, Tini)δ̃(k2, Tini). (5.102)
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Defining then:

ϕ(2)(k, T ) =
D2(T )

2k2

∫
d3k1
(2π)3

d3k2
(2π)3

δ
(3)
D (k− k12)δ̃(k1, Tini)δ̃(k2, Tini), (5.103)

(5.101) is recast as:

(
d2

dT 2
− κ

)
D2(T ) = κ

(
1− (k1 · k2)

2

k21k
2
2

)
D2

1(T ). (5.104)

This equation can once again be solved provided we get appropriate initial conditions. In ΛCDM,
during matter domination era, the physically relevant solutions for an EdS universe have D2 =
−3

7D
2
1, and we can then set:

D2,ini = −3

7
,

(
dD2

dT

)

ini

= −6

7

(
1

a

da

dT

)

ini

. (5.105)

The real-space second order displacemente field is then written as:

Ψ(2)(q, T ) =
D2(T )

2

∫
d3k

(2π)3
eik·q

iki
k2

(5.106)

×
∫

d3k1
(2π)3

d3k2
(2π)3

δ
(3)
D (k− k12)δ̃(k1, Tini)δ̃(k2, Tini). (5.107)

5.3. SPT in Modified Gravity

In this section I will go over the details of how to incorporate modified gravity effects in Standard
Perturbation Theory. I will focus only on scalar tensor theories, which is the main topic of this
thesis. The interplay between the scalar field and the tensor field at non-linear order is more
intricate than at linear. At first order we had already seen that the growth of structure becomes
scale-dependent, which spoils the separability between time and scale we have in LCDM. For this
reason, we have to make a simplifying assumption before going into the details, which is to work
under the quasi-static approximation. I will also work in the Newtonian gauge, i.e.:

ds2 = − (1 + 2Φ) + a2(t) (1− 2Ψ) δijdx
idxj , (5.108)

where t is the cosmic time. I will also start by rewriting Equations (5.38) and (5.39) as:

a
∂δ(k, a)

∂a
+ θ(k, a) =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
(2π)3 δ

(3)
D (k− k1 − k2)

×α(k1,k2)δ(k1, a)θ(k2, a), (5.109)

a
∂θ(k, a)

∂a
+

(
2 +

aH ′

H

)
θ(k, a)− k2

a2H2
Φ(k, a) = −

∫
d3k1

(2π)3

∫
d3k2

(2π)3
(2π)3 δ

(3)
D (k− k1 − k2)

×β(k1,k2)θ(k1, a)θ(k2, a).
(5.110)

Where from now on I’ll omit the time-dependence to simplify the notation, and will refer to a
prime as a derivative with respect to the scale factor. Under the Quasi-static approximation,
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where the time derivatives of the scalar field fluctuations are smaller than the Hubble rate, the
time-time component of the equations of motion simplify considerably, and can be written as:

− k2

a2H2
Φ(k) =

3Ωm(a)

2
Geff(k, a)δ(k, a) + S(k), (5.111)

up to third order in perturbation theory, where the modifications introduced by the scalar field
are encoded in the Poisson equation. In this equation Geff(k, a) is a function that characterizes
the relation between the scalar field and the Poisson equation, and S(k) is the source term that
represents all the interaction vertices we have:

S(k) =

∫
d3k1d

3k2

(2π)3
δ
(3)
D (k− k12)γ2(k,k1,k2; a)δ0(k1)δ0(k2)

+

∫
d3k1d

3k2d
3k3

(2π)3
δ
(3)
D (k− k123) γ3(k,k1,k2,k3; a)δ0(k1)δ0(k2)δ0(k3). (5.112)

The γ2 and γ3 are symmetric under exchange of wave-number. While the effective Newton’s
constant Geff(k, a) is responsible for introducing the scale-dependence in the growth of structure
at the linear level, at the non-linear level the theory will also include the information from
the screening mechanism a certain theory is endowed with. At small scales and high density
environments these mechanisms are able to restore GR, and at leading order in perturbation
theory the terms γ2 and γ3 fully describe the description of screening in perturbation theory. A
full description of these functions for different theories falls out of the scope of this thesis, but
the reader can find their form in References [117, 119].
Proceeding in the same way as we did for LCDM, we can also find the n-th order solution of the

density contrast and velocity divergence, by plugging Equations (5.45) and (5.46), in Equations
(5.109)-(5.111):

T̂

[
Fn (k1, . . . ,kn, τ)
Gn (k1, . . . ,kn, τ)

]
=

n−1∑

j=1

[
−α (k1...j ,kj+1...n)Gj (k1, . . . ,kj)Fn−j (kj+1, . . . , kn)

−1
2β (k1...j ,kj+1...n)Gj (k1, . . . ,kj)Gn−j (kj+1, . . . , kn)−Nn (k,k1, . . . ,kn)

]
(5.113)

where

T̂ =

[
a d
da 1

3
2Ωm(a)Geff(k, a) a d

da +
(
2 + aH′

H

)
]

(5.114)

and

N2 = γ2(k,k1,k2)F1(k1)F2(k2) (5.115)

N3 = γ2(k,k1,k23,k3) + γ2(k,k12,k3)F2(k1,k2)F1(k3)

+ γ3(k,k1,k2,k3)F1(k1)F1(k2)F1(k3). (5.116)

The corrections to the power spectrum then are:

P 22
δδ (k) = 2

∫
d3k′F2(k− k′,k′)P0(|k− k′|)P0(k

′), (5.117)

P 13
δδ (k) = 6

∫
d3k′F3(k,k

′,−k′)P0(k
′)F1(k)P0(k). (5.118)
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In order to solve these equations we need to have working expressions for the Fi and Gi kernels.
The specific form of each depends on the model of gravity via the γi functions, however, we
still need to specify their time-dependence. The explicit derivation of this dependence also falls
out of the scope of this thesis, and the exact derivation of these solutions can be found in the
review [113]. And a numerical algorithm that finds the solutions for these kernels for general
modified gravity, assuming EdS initial conditions, is presented in [117, 119].

5.4. 2LPT in Modified Gravity

I will now discuss how we can introduce modified gravity at second order using Lagrangian
Perturbation Theory. In order to do so, I will follow References [120, 121]. Once again I will use
the super-comoving time dT = dt/a2, and set κ = 4πGNρa

4 = 3
2ΩmH

2
0a. I will start describing

the modified gravity effects only via the function Geff(k, T ), but later on I will describe how we
can include other effects. Once again we start by taking the Fourier transform of the Poisson
equation up to second order:

Fx[∇2
xΦ(x, T )](k, T ) = κGeff(k, T )δ

E(k, T )

+a4H2

∫
d3k1d

3k2
(2π)3

δ(1)(k1, T )δ
(1)(k2, T )γ

E
2 (k,k1,k2, T ), (5.119)

where δE(k, T ) = Fx[δ(x, T )]. However, we know that LPT is written in terms of the Lagrangian
coordinate q, therefore we need the Fourier transform of the above equation with respect to the
same quantity:

Fq[∇2
xΦ(x, T )](k, T ) = κGeff(k, T )δ(k, T ) + a4H2

∫
d3k1d

3k2
(2π)3

δ(1)(k1, T )δ
(1)(k2, T )

×
[
γE2 (k,k1,k2, T ) +

3

2
Ωm(T ) (Geff(k, T )−Geff(k1, T ))

k1 · k2

k22

]
,

= κGeff(k, T )δ(k, T ) + a4H2

∫
d3k1d

3k2
(2π)3

δ(1)(k1, T )δ
(1)(k2, T )γ2(k,k1,k2, T ), (5.120)

with γ2 = γE2 + 3
2Ωm(T ) [Geff(k, T )−Geff(k1, T )]

k1·k2

k22
. It is interesting to note that, if we have

a scale-independent coupling between gravity and Φ, i.e. Geff(k, T ) = Geff(T ), then the second
term in γ2 vanishes, like in DGP gravity. At first order, we can rewrite Equation (5.87) as:

(
d2

dT 2
− κGeff(k, T )

)
ϕ(1)(k, T ) = 0 (5.121)

where I have already used the fact that we can write Ψ in terms of a gradient field ϕ, as at first
and second order Ψ is irrotational. Contrary to what we have in LCDM, in most modified gravity
models, we cannot separate the scale and time evolution, however, we can still separate the time
evolution for each k mode as ϕ(1)(k, T ) = D1(k, T )ϕ

(1)(k, Tini) and arrive at

d2D1

dT 2
− κGeff(k, T )D1 = 0 (5.122)

which can be solved using the previous EdS initial conditions as in the LCDM case:

D(1)(Tini) = 1,

(
dD(1)

dT

)

ini

=

(
1

a

da

dT

)

ini

. (5.123)
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With Ψ(1)(k, T ) = ikiϕ
(1)(k, Tini) = ikiD1(k, T )δ

(1)(k, T )/k2. The first order displacement field
in real space is then:

Ψ(1)(q, T ) =

∫
d3k1
(2π)3

eiq·k
iki
k2
D1(k, T )δ̃

(1)(k, Tini). (5.124)

Moving now to the second order solution, we can expand ϕ(2)as:

ϕ(2)(k, T ) = − 1

2k2

∫
d3k1d

3k2
(2π)3

δ
(3)
D (k− k12)δ

(1)(k1, Tini)δ
(1)(k2, Tini)D2(k,k1,k2, T ) (5.125)

Written in this way, Equation (5.93) becomes:

d2D2

dT 2
− κGeff(k, T )D2 = κGeff(k, T )D1(k1, T )D1(k2, T )

×
[
1−

(
2Geff(k1, T )−Geff(k, T )

Geff(k, T )

)
(k1 · k2)

2

k21k
2
2

+
2a4H2

κGeff(k, T )
γ2(k,k1,k2, T )

]
(5.126)

with initial conditions given by:

D2,ini = −3

7

(
1− (k1 · k2)

2

k21k
2
2

)
, (5.127)

(
dD2

dT

)

ini

= −6

7

(
1− (k1 · k2)

2

k21k
2
2

)(
1

a

da

dT

)

ini

. (5.128)

In most cases γ2 is a function of the absolute value of each wave-number and the dot product
k1 ·k2, while the conservation of momentum enforced by the 3-dimensional Dirac delta forces that
k2 = k−k1, which makes solving Equation (5.126) a 3-dimensional problem for all configurations
of k, k1 and cos θ = k1·k2

k21k
2
2
. The second order displacement field is then:

Ψ
(2)
i (q, T ) =

1

2

∫
d3k

(2π)3
eik·q

iki
k2

∫
d3k1d

3k2
(2π)3

δ
(3)
D (k− k12)

×D2(k,k1,k2, T )δ
(1)(k1, T )δ

(1)(k2, T ). (5.129)

An approximation for COLA (a quasi-N body code that will be described in Section 5.5): As
we are interested in the displacement fields when using COLA, we can see that for each time-step
taken in the simulation, we would need to solve the double integral for k1 and k2. The problem is,
however, that we will not be able to use the method of Fast Fourier Transform (FFT) to solve it
numerically, as only the integral outside of Equation (5.129) can be performed using this method.
Therefore, Reference [120], introduced an approximation that substitutes the dependence of D2

on k1 and k2, setting it to only a function of k. This is done as follows:

ϕ(2)(k, T ) = −D2(k, T )

2k2

∫
d3k1d

3k2
(2π)3

δ
(3)
D (k− k12)

×
(
1− (k1 · k2)

2

k21k
2
2

)
δ(1)(k1, T )δ

(1)(k2, T ), (5.130)

so the displacement field becomes:

Ψ
(2)
i (q, T ) =

1

2

∫
d3k

(2π)3
eik·q

iki
k2
D2(k, T )

∫
d3k1d

3k2
(2π)3

δ
(3)
D (k− k12)

×
(
1− (k1 · k2)

2

k21k
2
2

)
δ(1)(k1, T )δ

(1)(k2, T ), (5.131)
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and the evolution equation for D2 is now:

[
d2

dT 2
− κGeff(k, T )

](
1− (k1 · k2)

2

k21k
2
2

)
D2(k, T ) =

[
κGeff(k, T )

(
1− (k1 · k2)

2

k21k
2
2

)
+ 2a4H2γE2 (k,k1,k2, T )

]
D1(k1, T )D1(k2, T ). (5.132)

We can do one final approximation:

γE2 (k,k1,k2, T )(
1− (k1·k2)2

k21k
2
2

) ≈ γE2 (k,k/
√
2,k/

√
2, T ), (5.133)

this choice of triangle configuration is such that it maximizes the weight of the possible choices
in Equation (5.125), this last approximation then implies that the equation for the second order
growth factor is simply:

[
d2

dT 2
− κGeff(k, T )

]
D2(k, T ) =

[
κGeff(k, T ) + 2a4H2γE2 (k,k/

√
2,k/

√
2, T )

]
D1(k1, T )D1(k2, T ), (5.134)

which alongside with (5.131) is considerably faster to solve due to the use of FFT methods. In
Figure 5.2, taken from [120], I show the validity of this approximation, at z = 0, when compared to
the full solution of D2 for two models of f(R) gravity, F5 = |fR0| = 10−5 and F6 = |fR0| = 10−6,
which is characterized by the strength of the f(R) parameter, fR0 corresponding to the derivative
of the f(R) function. We can see that for equilateral configurations (k = k1 = k2) we have
below percent deviations between the two solutions, while for Orthogonal (k = k1 = k/

√
2)

and Squeezed (k = k1, k2 ≈ 0) we have deviations that exceed the percent threshold from
k ≥ 0.1 h/Mpc. While this can be seen as problematic, I will soon show that these approximations
were developed in order to combine the 2LPT approach with a PM algorithm, which is also known
as the COLA approach. Within this method, the LPT part of the code is only dominating the
particle trajectories at large scales, while at quasi-linear to non-linear scales the PM part of the
code dominates. Therefore, while we still make errors in D2, this solution will not be affecting
the output of our COLA simulations.
I will now discuss the implementation of the formalism discussed in the previous chapter, of

relativistic effects. This implementation is inspired by the introduction of linear massive neutrinos
in 2LPT, but it can be extend to more general linear density fields. The Poisson Equation with
GR corrections in the N-Body gauge can be written as:

k2ΦGR = 4πGNa
2ρm

(
δ(1)m + δ(2)m

)

= 4πGNa
2
[
ρcbδ

(1)
cb + ρGRδ

(1)
GR + ρcbδ

(2)
cb

]

= 4πGNa
2ρm

[
fcb

(
δ
(1)
cb + δ

(2)
cb

)
+ fGRδ

(1)
GR

]
. (5.135)

where,

δGR =
δρGR

ρGR
, ρGR = ρν + ργ + ρur, fcb =

ρcb
ρm

, fGR =
ρGR

ρm
, (5.136)
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Figure 5.2. Ratio between the full solution for the second order growth factor D2 (k, k1, k2, cos θ, a = 1)

and the approximate solution Dapprox
2 (k, a = 1) (1− cos θ)

2
, for three triangle configurations: equilateral

k = k1 = k2, orthogonal: k1 = k2 = k/
√
2 and squeezed: k = k1 and k2 ≈ 0. F5 and F6 in the plots refer

to two different models of the f(R) “Hu-Sawicki” theory, with n = 1 and |f(R0)| = 10−5
(
10−6

)
being the

parameters of these theories. Figure taken from [120]

δcb is the density contrast of baryons and cold dark matter, and ρcb, ρν , ργ and ρur are the
background energy density of baryons and cold dark matter, massive neutrinos, photons and
massless neutrinos, respectively. All perturbative quantities are computed in the N-Body gauge,
and the linear density field accounting for relativistic corrections is given by:

δρGR = δρNb
γ + δρur + δρNb

ν + δρNb
DE + δρNb

metric, (5.137)
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where the quantity δρNb
metric is given in Equation (4.31). Before moving to the modified gravity

case, I’ll discuss some details of how the scale-dependent growth of cosmologies with massive
neutrinos is done at linear order. From the last line of (5.135), we can manipulate a bit more the
terms as:

ρm

(
δ(1)m + δ(2)m

)
= ρcbδ

(1)
cb + ρGRδ

(1)
GR + ρcbδ

(2)
cb =

(
ρcb
ρm

+
ρGR

ρm

δGR

δcb

)
ρmδ

(1)
cb +

ρcb
ρm

ρmδ
(2)
cb

=

(
fcb + fGR

DGR,1(k, T )

Dcb,1(k, T )

)
ρmδ

(1)
cb + fcbρmδ

(2)
cb

=

(
fcb + fGR

TGR(k, T )

Tcb(k, T )

)
ρmδ

(1)
cb + fcbρmδ

(2)
cb

= ρm

(
µGR(k, T )δ

(1)
cb + fcbρmδ

(2)
cb

)
, (5.138)

with

µGR(k, T ) = fcb + fGR
TGR(k, T )

Tcb(k, T )
(5.139)

where Ti(k, T ) are the linear transfer functions computed using an Einstein-Boltzmann solver. It
turns out that in order to make our lives easier, we can compute these in the N-Body gauge. We
can see that the function µGR has the same impact as the modified gravity function Geff(k, T )
as discussed in the previous paragraphs. Another fact is that, in the absence of modified gravity,
the only relativistic species that will have an impact at small scales, and therefore introduce
a scale-dependent growth even in ΛCDM cosmologies, are massive neutrinos, therefore, I will
rename µGR as µν , in the absence of modified gravity. This is done in order to keep track with
the historic development of massive neutrinos in 2LPT theory, and in N-Body simulations.
The Fourier transform of Equation (5.138) is then:

Fx[∇2
xΦ(x, T )](k) = κ

(
µν(k, T )δ

(1)
cb + fcbδ

(2)
cb

)
, (5.140)

and the Fourier transform with respect to q is:

Fq[∇2
xΦ(x, T )](k) = κµν(k, T )δ

(1)
cb (k, T ) + κfcbδ

(2)
cb (k, T )

+κ

∫
d3k1d

3k2
(2π)3

δ
(3)
D (k− k12) [Geff(k, T )−Geff(k1, T )]

×k1 · k2

k22
δ
(1)
cb (k1, T )δ

(1)
cb (k2, T ), (5.141)

and the first order growth factor equation is then:

(
d2

dT 2
− κµν(k, T )

)
Dcb,1 = 0. (5.142)

In order to solve this equation we need to set proper initial conditions accounting for massive
neutrinos, we can then proceed in two ways: we use a fitting formula given by [23] or we set
them to EdS initial conditions again but compute µν by taking the ratio of the massive neutrinos
transfer function, Tν , with respect to the cold dark matter plus baryons one, Tcb, where both can
be computed using an Einstein-Boltzmann solver. The difference between the two approaches is
negligible, as shown in Figure 5.3, which makes the use of the latter approach easier as Boltzmann
solvers are computationally fast.
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Figure 5.3. Ratio between the cold dark matter plus baryons first order growth factor, D1,cb, computed
at two redshifts, z = 0 and z = 1, and for three different values of the sum of the masses of neutrinos:
0.2 eV, 0.4 eV and 0.6 eV. The solid lines are the calculated from the Einstein-Boltzmann solver CAMB,
and the dotted calculated using the fitting formula of [122]. We can see that for smaller masses the two
lines have a better agreement as the lower the mass of neutrinos, the more linear they are. Figure taken
from [121].

To find the second order growth factor equation, we can substitute Equation (5.141) in Equation
(5.93), already removing the first order terms, and arrive at:

k2
d2ϕ

(2)
cb

dT 2
+ Fq

[
Ψ

(1)
cb j,i

d2Ψ
(1)
i,j

dT 2

]
= κfcbδcb(k, T )

+ κ

∫
d3k1d

3k2
(2π)3

δD(k− k12) [µν(k, T )− µν(k1, T )]

× k1 · k2

k22
δ
(1)
cb (k1, T )δ

(1)
cb (k2, T ). (5.143)

We can use:

δ
(2)
cb = −Ψ

(2)
cb i,i +

1

2

[(
Ψ

(2)
cb i,i

)2
+
(
Ψ

(2)
cb i,j

)]
(5.144)

and rewrite (5.143) as:

k2
(

d2

dT 2
− κfcb

)
ϕ
(2)
cb (k, T ) =

1

2
κfcbF

[
Ψ

(1)
cb i,iΨ

(1)
cb j,j +Ψ

(2)
cb i,jΨ

(2)
cb, j,i

]

−Fq


Ψ(1)

cb j,i

d2Ψ
(1)
cb i,j

dT 2


+ κ

∫
d3k1d

3k2
(2π)3

δD(k− k12) [µν(k, T )− µν(k1, T )]

×k1 · k2

k22
δ
(1)
cb (k1, T )δ

(1)
cb (k2, T ). (5.145)

If we write the second order gradient field expansion of the displacement field as in Equation
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(5.125), we have:
(

d2

dT 2
− κfcb

)
D2,cb(k,k1,k2, T ) = κD1(k1, T )D1(k2, T )

×
{
[2µν(k1, T )− fcb]

(k1 · k2)
2

k21k
2
2

−fcb + [µν(k, T )− µν(k1, T )]
k1 · k2

k22
.

}
(5.146)

This equation is then the consistent implementation of massive neutrinos in 2LPT. However, in
the same way as in the modified gravity case, the integral (5.125) cannot be solved directly using
FFT, therefore, we can once more write an approximate version of that integral as in Equation
(5.130) alongside with taking µν(k, T ) → fcb (this was first used in [123] for SPT calculations
with massive neutrinos), and then the second order equation of motion of the growth factor is
recast as:

(
d2

dT 2
− κfcb

)
Dcb,2(k, T ) = fcbD

2
cb,1(k, T ) (5.147)

where if fcb → 1 we recover the usual 2LPT equation for cosmologies without massive neutrinos.
In a matter dominated Universe and at scales below the free streaming scale kfs [124] given by:

kfs =

√
2

3

H(t)a(t)

vth(t)
, where vth ≈ 150(1 + z)

[
1 eV∑
ν mν

]
km/s (5.148)

with vth being the thermal velocity of massive neutrinos, the initial conditions for Dcb,2 are given
by:

D2,cb ∼ − 3fcb
3fcb + 4(1− pcb)2

D1,cb (5.149)

with pcb given by Equation (11) of[122]. Besides using the integral approximation, which has
already compared with its full results in Figures 5.2, we also need to show how taking µν(k, T ) →
fcb works out. In Figure 5.4, taken from [121] we can see that this approximation works at below
1% level from scales of 0.1 h/Mpc for the lowest value of the neutrino mass, and it becomes
worse as the mass increases. This is expected, as the larger the mass of the neutrinos, the worse
will be our implementation of linear massive neutrinos. At the same time, we get errors of
1.5%, 3.0% and 4.5% for each value of the neutrino mass at large scales. While this points to
us that the D2,cb solution will be failing when compared to its full solution, at this scales the
evolution of the CDM particles is known to be dominated by linear theory, i.e. D1,cb, and each
higher order term is suppressed the smaller the wave-numbers. How can we then investigate
what is the impact of this trade-off of losing accuracy in D2,cb but still getting D1,cb correct? We
need to investigate the matter power spectrum, and see what will be the observed impact! In
the next section I’ll combine the massive neutrinos approach with the modified gravity approach
and show the comparison of the implementation of 2LPT in the COLA approach and check if
this is consistent with simulated results.

5.5. COLA

In this section I will introduce the concepts behind the COLA [125, 126] approach to N-Body
simulations. The COmoving Lagrangian Approach (COLA) is a quasi N-body method that is used
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Figure 5.4. The value of µν as a function of scale, computed using Equation (5.139) for two different
gravity theories GR (solid lines) and f(R) “Hu-Sawicki” (dotted lines) and the same values of the mass
of neutrinos as in Figure 5.3. The horizontal dashed lines are the limiting value fcb at small scales, this
approximation was used in Equation (5.146) in order to use Fast Fourier Transform algorithms to solve
it. Figure taken from [121].

to generate fast realizations of the non-linear cold dark matter density field. This method relies on
the use of cosmological Lagrangian Perturbation Theory (LPT) and a Particle-Mesh [127] (PM)
N-Body algorithm. It takes advantage of the fact that at large scales, perturbation theory is an
accurate description of the Universe while at large wave-numbers N-Body simulations correctly
describe the particles trajectories. In this way, the evolution of the cold dark matter (CDM)
particles is broken into two pieces: one that is valid at small wave-numbers, where the equations
of motion can be solved analytically using second-order LPT, and one that is valid at large wave-
numbers, which is able to introduce the fully non-linear behavior of matter by solving the Poisson
equation on a PM grid using Fast Fourier Transforms.
As mentioned, the N-Body part of COLA is the implementation of a Particle-Mesh algorithm.

To this end, I will briefly summarize the equations being solved by PM codes. As expected, we
begin from the canonical equations for a dark matter particle’s position and momenta:

dx

da
=

p

a′a
=

p

ȧa2
,

dp

da
= −a

′

a
∇Φ = −1

ȧ
∇Φ,

∇2Φ = 4πGN
ρm
a
δm =

3

2

Ωm,0

a
δm. (5.150)

Equivalently, we can write these equations as:

dx

da
= D(a)p,

dp

da
= K(a)∇

[(
∇2
)−1

δm

]
(5.151)

where
(
∇2
)−1

is the inverse of the Laplacian operator, D(a) is called the “Drift” pre-factor [128],
K(a) is the “Kick” pre-factor and I’ll further define a function f(a) = a/a′ = H−1(a) as the
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inverse of the conformal Hubble factor, in this way:

D(a) =
f(a)

a2
, (5.152)

K(a) = −3

2

Ωm,0f(a)

a
. (5.153)

If one wants to implement the COLAmethod, however, we need to adapt the previous equations
to the ones described in [125]. I start by recalling that in the Lagrangian description the particle’s
position is described by:

xLPT(a) = q−D1(a)Ψ1 +D2Ψ2 (5.154)

up to second order. We can also decompose the true dark matter position x(a) as a 2LPT
evolution plus a residual part, which will encode the full non-linear mode coupled (MC) evolution:

x(a) = xLPT(a) + xMC(a), (5.155)

which time derivative with respect to the scale factor gives us:

dx

da
=

dxLPT

da
+

dxMC

da
, (5.156)

dxLPT

da
= −dD1

da
Ψ1 +

dD2

da
Ψ2 = D(a)pLPT. (5.157)

Equivalently we can define:

dxMC

da
= D(a)pMC. (5.158)

The LPT momenta is defined as:

dpLPT

da
=

d

da

(
1

D(a)

dxLPT

da

)
= −K(a)V [xLPT] (a), (5.159)

where the operator V[·] is written as:

V[X](a) = − 1

K(a)

d

da

(
1

D(a)

dX

da

)
. (5.160)

With these notations and definitions the evolution of the full momenta is:

dp(a)

da
=

dpLPT

da
+

dpMC

da
= −K(a)V [xLPT] (a) +

dpMC

da
= K(a)∇

[(
∇2
)−1

δm

]
. (5.161)

By comparing this equation with Equation (5.154), we find:

V [xLPT] (a) = −V [D1] (a)Ψ1 + V [D2] (a)Ψ2. (5.162)

As mentioned before, the key point in the COLA approach is that we can compute the fictitious
LPT force, V [xLPT] (a) acting on the particles analytically. The computation of V [D1] (a) and
V [D2] (a) uses the differential equations for the first and second order growth factors in LPT
and the second Friedmann equation. In summary, in the COLA framework the natural variables
being solved are x and pMC:

dx

da
= D(a)pMC − dD1

da
(a)Ψ1 +

dD2

da
(a)Ψ2, (5.163)

dpMC

da
= K(a)

[
∇
(
(∇2)−1δm

)
− V [D1] (a)Ψ1 + V [D2] (a)Ψ2

]
. (5.164)
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Figure 5.5. Snapshots at z = 0 of three different methods, 2LPT, COLA and Gadget (full N-Body code).
We can see that with the COLA method we are able to increase the resolution at small scales with only
10 time-steps, when compared to 2LPT. Figure taken from [125].

Figure 5.5 shows the comparison of three snapshots taken at z = 0. We can see that while 2LPT
allows us to reach linear to quasi-linear scales, using the COLA method we are able to increase
our resolution at small scales due to the Particle-Mesh N-Body algorithm.
When we generate the initial conditions using LPT, we have that p = pLPT, therefore, initially,

pMC vanishes. As we always have pLPT from solving the LPT equations of motion, at the end
of the simulation we add pLPT to pMC to obtain the full momentum of particles. The greatest
advantadge of the COLA approach is precisely the fact that we can compute 2LPT corrections
analytically, by simply integrating the equations of motion. This effectively reduces the total
number of time-steps a simple N-Body simulation would require, while getting the correct be-
havior at large scales, where perturbations theory is known to be the accurate description of
the Universe. When we move to smaller scales, the Particle-Mesh algorithm embedded in the
COLA approach starts dominating the evolution of dark matter particles, and all the evolution
is characterized by it.
In order to connect the physics of the early Universe with the late-time non-linear evolution of

the Universe, we need to properly set the initial conditions. I will discuss two types of methods
used in the literature to do so:

1) Backscaling:

Historically the most used approach of setting initial conditions, as well as the simplest. It
begins by computing the linear matter power spectrum at a given redshift, ztarget, using
an Einstein-Boltzmann solver. After this, we rescale the matter distribution to the initial
redshift of the simulation, zini, using the linear growth factor:

δm(k, zini) =
D1(k, zini)

D1(k, ztarget)
δEB(k, ztarget), (5.165)

where δEB is the linear relativistic matter density perturbation computed by the Einstein-
Boltzmann solver, and δm is the matter density perturbation backscaled using the linear
growth factor D1 computed in an Einstein-de-Sitter Universe. The main advantage of this
approach is that at the target redshift and its vicinity, the linear theory power spectrum
computed in the simulation will match the one from the Einstein-Boltzmann solver. This is
one way of introducing relativistic species, such as photons and neutrinos, in the simulation
without having to modify the N-Body code. However, at redshifts far from ztarget the linear
prediction between simulation and the E-B solver will be different.
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2) Forward approach:

In this approach the linear density fields relevant for the evolution of the late-time Universe
are pre-computed using an Einstein-Boltzmann solver, and are fed to the N-Body code at
each time-step of the simulation. As shown in [129] the output of any Newtonian simu-
lation can always be interpreted in a relativistic framework by simply making coordinate
transformations in the final particle’s position and velocities. However, it is desirable to use
a gauge in which the output can be easily interpreted in a relativistic way. One such gauge
is the N-Body gauge presented in Section 4. In this gauge we can correctly understand
the relativistic linear theory scales with it, while smoothly transitioning to the Newtonian
description at small scales.

Schematically, in both approaches discussed above, we compute the two perturbation theory
quantities that are important for us, δEBm and θEBm , in Fourier space from an Einstein-Boltzmann
solver, and then Fourier transform them to real space, at a initial position q. These two fields
can be consistently mapped into Lagrangian quantities:

x(q, zini) = q−∇
[(
∇2
)−1

δEBm (q, zini)
]
, v(q, zini) = ∇

[(
∇2
)−1

θEBm (q, zini)
]
, (5.166)

this effectively corresponds to setting the initial conditions using the Zel’dovich approximation
(ZA). After the important contributions from [114], it was noted that linear initial conditions (IC)
suffered from transients - significant truncation errors between the linear IC’s and the true non-
linear evolution - and it was not able to fully capture higher-order moments of the distribution,
such as the skewness and the kurtosis. Therefore, it is common nowadays to not set the IC’s
using the well-know ZA approach, Equation (5.80), but to set them using 2LPT theory, Equation
(5.81). As we can see, the main difference between the two representations, ZA and 2LPT, is
that as it was previously discussed, in first-order Lagrangian perturbation theory, the movement
of dark matter particles contains no information coming from the acceleration, it is an inertial
evolution. While at 2LPT we have information directly from the tidal tensor, seen in the bracket
terms of Equation (5.81).
As it was already discussed, the COLA method is advantadgeous due to the reduced number of

time-steps it takes to generate non-linear realisations of the density field. While one can always
increase the number of time-steps, it is interesting to have about 40-50 time-steps for a high
resolution simulations. Therefore, we can expect that COLA simulations will be dependent on
how these time-steps are distributed in time, and at which redshift we have started our simulation.
In Reference [130], the authors have done a detailed investigation of different COLA simulations
with different values of zini, the total number of time-steps and their temporal distribution.
In Figure 5.6 I show the main plots of reference [130] regarding the variation of the previous

simulation parameters and the accuracy of COLA simulations. Starting with the top left plot,
we can directly conclude that by increasing the number of time-steps we will have a better
agreement at small scales when compared to full N-Body simulations. This is understandable, as
when we increase the number of time-steps the COLA method becomes a simple Particle-Mesh
algorithm. The top right plot shows us the dependence of COLA with the initial redshift of the
simulation, which shows that starting at higher redshifts will impact in the power resolution at
small scales. This effect must be understood while having in mind that with the COLA method
we are always considering fewer time-steps than when compared with a full N-Body simulation.
By starting at increasingly higher redshifts will end up causing the code to waste a lot of time-
steps at earlier times and reduce the resolution at late-times, where the bulk of the clustering of
matter is happening. Nevertheless, starting at higher redshifts is always more desirable, as the
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Figure 5.6. Top left: Ratio between the dark matter power spectrum computed using COLA simulations
with different numbers of time-steps with respect to the same quantity computed with full N-Body simu-
lations. Top right: Ratio between the dark matter power spectrum computed using COLA simulations
with different initial redshifts with respect to the same quantity computed with full N-Body simulations.
Bottom: Ratio between the dark matter power spectrum computed using COLA simulations with differ-
ent spacing between time-steps with respect to the same quantity computed with full N-Body simulations.
Figure taken from [130].

Universe is more linear, this is highlighted in the right bottom plot, where we can see the effect of
starting at lower redshifts not capturing enough non-linearities. The bottom plot compares the
temporal distribution of the time-steps in the simulation. It compares distributing 40 time-steps
from zini = 39 onto z = 0 using different spacing: linear (solid blue), ∝ a0.8 (dashed green) and
logarithmic (dotted red). While the general conclusion points to us that by choosing either linear
or ∝ a0.8 have similar behaviors, a more important conclusion is to realize that we must have a
sufficient number of time-steps from z = 1 to z = 0, where we can see that using a logarithmic
spacing fails considerably.
The implementation of modified gravity into COLA is done by introducing modified gravity

in 2LPT, as seen in Section 5.4, and by modifying the Particle-Mesh part of the code. I start by
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rewriting Equations (5.150) as:

dx

da
=

p

a′a
=

p

ȧa2
,

dp

da
= −a

′

a
∇Φ = −1

ȧ
∇Φ,

∇2Φ = 4πGN
ρm
a
δm +

1

2
∇2δϕ, (5.167)

where δϕ is the scalar field perturbation. As we know, scalar-tensor theories introduces one
extra degree of freedom, a scalar field, which has its own equation of motion. In the majority
of modified gravity codes, the equation of motion for the scalar field perturbations is written by
taking the QSA limit, and can be written in a condensed way as:

L [δϕ] = S [δϕ, δρm] , (5.168)

where L is a spatial differential operator acting on the scalar field perturbations, and S is the
source term, which is only a function of fluctuations of the scalar field and the matter density
perturbations. The goal of these codes is to find a solution for δϕ, so we can substitute it in the
Poisson Equation in (5.167). In this way, the geodesic equation that CDM particles follow will
experience an extra force, introduced by the scalar field, as seen in the RHS of Equation (2.17).
In order to solve Equation (5.168) we must use very complicated and time-consuming non-linear
Gauss-Seidel relaxation methods. This ends up increasing the time these simulations take to
finish. In the next section I will discuss a method to bypass this problem, by using the N-Body
gauge approach combined with the QSA limit.
As I have previously mentioned, in order to shield the presence of this extra force in the motion

of non-relativistic particles, modified theories of gravity are endowed with screening mechanisms,
which help us restore GR in dense environments. Looking back at action (2.6), and rewriting it
as:

S =
1

16πGN

∫
d4x

√−g
(
ϕR− ω(ϕ)

ϕ
∇µϕ∇µϕ+K

[
(∇ϕ)2 ,∇2ϕ

]
− 2Λ(ϕ)

)
+ Sm [gµν , ] (5.169)

whereK
[
(∇ϕ)2 ,∇2ϕ

]
is a function of the first and second derivatives of the scalar field, screening

mechanisms can be classified formally depending on which non-linear function appearing in this
action [131, 132].

1) Chameleon Screening :

In this mechanism we introduce a potential Λ(ϕ). The scalar field ϕ will then assume
a background value, ϕ0, and the potential introduces a mass term for the scalar field
perturbation around this background value:

(3 + 2ωBD)∇2δϕ+m (ϕ0) δϕ = −8πGNρ, (5.170)

where I’ve used Jordan-Brans-Dicke theory as an example, thus ωBD appearing in the
equation, and the mass term depends on the background value of the field. If we trace
a parallel with Yukawa’s theory for the description of the strong interactions of particle
physics, we know that the field will not propagate beyond a certain wavelength, called
Compton wavelength, inversely proportional to the mass term, λC = m−1, as the solution
for the scalar field perturbation decays as e−mr, where r is the distance from the source.
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As the mass depends on the background values of the scalar field, it is possible to realise
a situation where the mass is large in dense environments like the Solar System, while it
remains small in cosmological regimes. I will not go into the details of showing a specific
form for the potential Λ(ϕ) that allows us to modify gravity non-trivially, however, one can
find in References [131, 132] examples of such choices.

2) Dilaton and Symmetron Screening :

In this screening mechanism the coupling between matter and scalar field is given in terms
of the function ω(ϕ), and its value is determined by the background value of the scalar field,
ϕ0, thus depending as well on the background density. Therefore, it is also possible to choose
a functional form for ω(ϕ) which is large for dense environments, satisfying conditions (2.7),
and then transitions to values of ω ∼ O(1) in cosmological scales.

3) K-mouflage and Vainshtein screening :

In both of these cases the screening is realised by using the non-linear kinetic termK
[
(∇ϕ)2 ,∇2ϕ

]
.

In the K-mouflage case we effectively suppress the coupling between matter and scalar field
by using the first derivative of the scalar field, while for the Vainshtein case the second
derivative.

To conclude the discussion regarding screening mechanisms, there is one other way of bypassing
the stringent constraints coming from dense environments, such as the Solar System. These
constraints come by observations made of baryonic objects, and, in this way, if we state that the
scalar field couples only to dark matter we are able to evade all small scale and dense environments
constraints we have in the literature. These models are known as interacting dark energy models
in the Einstein frame where the scalar field is coupled only to matter, and with them we can
modify gravity significantly in cosmological scales. By making this assumption, however, we
break the Equivalence Principle, as now gravity will not be minimally coupled to matter. If we
want to keep this principle, then we need to use the non-linearity of the scalar field driven by the
non-linear matter density contrast to change the behaviour of the field from cosmology to the
Solar System, using one of the models discussed above.
In this chapter I have summarized some of the methods available in the literature to describe

the non-linear Universe. These were the tools I have learned and developed during my PhD. In
the next section I will present some results of my publications using the formalism outlined in
this section.
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CHAPTER 6.

Enabling power spectrum emulation in
beyond-LCDM cosmologies with COLA

In this chapter I will discuss the non-linear matter power spectra in beyond-ΛCDM cosmologies

computed using the COLA approach. The results presented here are published in Reference [133],

and they follow mainly the methodology described in Sections 5.2.2, 5.4 and 5.5.

6.1. Introduction

One of the main efforts in Large Scale Structure (LSS) studies is to answer how initial small and
Gaussian density perturbations in the very early Universe evolved to the highly non-Gaussian
and non-linear matter distribution we see in our Universe today. In the next years we will have
the first data release of the first Stage-IV LSS survey, DESI [134], as well as the launch of the
Euclid satellite [135]. The bulk of the investigation in recent years is focused on the exploration
of the matter two point correlation function in Fourier space, the matter power spectrum. In
order to get fast predictions of this statistics, emulation techniques have gained much attraction
in cosmology, and they are now seen as viable alternatives for extracting parameter constraints
using the data from upcoming surveys.
Emulators are numerical interpolations that are trained using accurate N-body simulation

outputs based on machine learning algorithms to quickly predict the matter power spectrum
from linear to non-linear scales in the vast cosmological parameter space. Among the emulators
already available in the literature, we will focus on two that have been considered as highly
effective and validated, the Euclid Emulator 21 [136] (EE2) and Bacco2 [137] in this paper, and
use them to check the accuracy of predicting non-linear matter power spectra. Both have an
accuracy of about 1% on small scales for ΛCDM cosmologies, and around 3% for dynamical dark
energy and massive neutrinos cosmology in predicting the non-linear power spectrum.
The process of training these emulators heavily relies on the use of computationally expensive

and time-consuming full N-body simulations. To overcome these limitations, there are several well
established methods that allow us to quickly generate approximate non-linear realizations of the
matter density field, such as, the COLA (COmoving Lagrangian Acceleration) approach [125, 126,
138], EZMOCKS [139], PATCHY [140], FastPM [141], GLAM [142], to name a few. Specifically,
in our work, we will consider the first of these examples, the COLA approach. This method
has been well-validated, and is known to give a good agreement on quasi non-linear scales in

1https://github.com/miknab/EuclidEmulator2
2https://baccoemu.readthedocs.io/en/latest/
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ΛCDM and beyond-ΛCDM cosmologies when comparing its prediction for the matter power
spectrum to the ones from full N-body simulations [130, 143, 120, 121, 144]. Additionally, a new
avenue using the COLA method was presented in [145], where it was shown that the mapping
from displacements in COLA simulations and those in full N-body simulations can be trained
on simulations with a fixed value of the cosmological parameters, and this model can be used
to correct the output of COLA simulations with different values of cosmological parameters
including different masses of massive neutrinos with very high accuracy: the power spectrum and
the cross-correlation coefficients are within 1% down to k = 1 h/Mpc.

This indicates that the inaccuracy in COLA’s predictions is fairly cosmological parameter
independent, and this can be corrected by a cosmological parameter independent model. Our
work shows that COLA is capable of describing the non-linear response of the matter power
spectrum to the change of cosmological parameters down to k = 1 h/Mpc with high accuracy.
This is because the inaccuracy of COLA is largely cancelled by taking the ratio of power spectra in
two different cosmologies. The accurate and fast computation of this response function is of great
importance when building emulators, as it allows us to obtain quickly the expected non-linear
prediction when parameters are varied with respect to a fixed pre-defined reference cosmology.
Given the prediction of non-linear power spectra in a few sparsely sampled reference cosmologies
by full N-body simulations, we can provide the prediction of the matter spectrum in a wide
parameter space. This can be used to further extend the reach of the already accurate ΛCDM
emulators to beyond-ΛCDM cosmologies, for example, where running full N-body simulations
are very expensive.
Within many different alternatives to the standard cosmology model, we will focus on studying

the non-linear response function in scalar-tensor theories of gravity. These theories are possible
explanations for the current accelerated expansion of our Universe. The simplest solution in
General Relativity (GR) is the addition of the Cosmological Constant, Λ, to the Einstein’s field
equations. Modified gravity is an alternative to the addition of this constant, where the scalar
field would naturally act as the driver of the late-time accelerated expansion. Therefore, creating
new emulators, or extending current ones, to be able to quickly predict the small scale behavior
of the matter power spectrum in these theories is of great importance for the upcoming LSS
surveys. Examples of modified gravity emulators in the literature are [146, 147] where in both
papers the emulators are built for one specific fully covariant model, f(R).
In this chapter I will use the model-independent approach of the Effective Field Theory of

Dark Energy [64, 65] (EFT of DE). Within this formalism, we can fully characterize the linear
perturbation of Horndeski theories, using four time dependent functions. Under the quasi-static
approximation [131], the modification to the matter power spectrum is characterised by a mod-
ified Newton constant called Geff , which is a function of these four functions. In this work, to
maintain the model-independent approach, we will assume small scale modifications are always
characterised by this function in the modified Poisson equation. On large scales, we use the
N-body gauge approach developed in [100, 101] to turn our simulations fully relativistic so that
the linear power spectrum in COLA simulations agrees with that predicted by the Boltzmann
code. The advantage of this approach is that relativistic corrections can be included in the same
way as massive neutrinos and there is no additional cost in including EFT of DE in COLA simu-
lations compared with simulations with massive neutrinos in ΛCDM models. I will avoid, for the
moment, to discuss screening mechanisms, as these can be included separately, and are highly
model dependent. However, I will revisit this issue at the end with some specific considerations.
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6.2. Methodology

6.2.1. COLA

For the COLA part of this project, I used the COLA-FML implementation 3. This is a C++
parallelized version of the COLA method, good to be used for greater resolution COLA simula-
tions.
For these COLA simulations, the initial conditions were set using 2LPT, and I have used a “for-

ward” approach to initiate our simulations, that is, I have introduced the N-body gauge formalism,
described in Chapter 4, in the COLA-FML code. The linear density field encoding relativistic
corrections, was computed using a modified version of the publicly available Einstein-Boltzmann
solver hi class [66, 67], and it was added at each time-step of the simulation. Therefore, instead
of using the back-scaling method, where the linear matter power spectrum is given at z = 0
and then back-scaled to the initial redshift, zini, of the simulation, we provide transfer functions
as external data files from zini onto z = 0. I have used the same approach developed by [121]
to introduce relativistic corrections, but have made the modifications to accommodate N-body
gauge quantities.
In this work, I have considered simulations with GR as the gravity theory, and simulations

with modified gravity. The Poisson equation the COLA code is solving for the GR simulations
is given in Equation (5.135), while for the modified gravity ones:

k2ΦGR = 4πGeffa
2ρm

[
fcb

(
δ
(1)
cb + δ

(2)
cb

)]
+ 4πGNa

2ρmfGRδ
(1)
GR, rel, (6.1)

where the function Geff is the function that describes the coupling between matter and gravity
in modified theories of gravity, Equation (5.119), and δGR, rel is given in Equation (4.39). The
geodesic equation of dark matter particles being solved is then:

ẍ+ 2Hẋ = −∇ΦGR, (6.2)

where for GR simulations ΦGR is given by Equation (5.135), and for modified gravity ones ΦGR

is given in Equation (6.1). The COLA simulations have all the same specifications, shown in

Parameter Value

Volume (Mpc3/h3) 10243

Number of particles 10243

Number of PM grids 20483

Initial redshift 19

Table 6.1. COLA simulation specifications.

Table 6.1. Other specifications of COLA simulations used in this chapter are show in Appendix B.

6.2.2. Emulators

In sight of Stage-IV LSS surveys, the efforts have been made towards producing fast and accu-
rate theoretical predictions of summary statistics by means of emulators. Emulation methods
interpolate the results of cosmological simulations in a broad range of models and cosmological
parameters using machine learning techniques [148, 149]. Among the various emulators produced

3https://github.com/HAWinther/FML
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so far, the Bacco emulator and EE2 are setting the standards in terms of the accuracy and pa-
rameters space coverage. The Bacco emulator takes advantage of Principal Components Analysis

Parameter Min. Max.

h 0.6 0.8

Ωb 0.04 0.06

Ωcdm+b 0.23 0.40

ns 0.92 1.01

σ8 0.73 0.9∑
ν mν 0.0 eV 0.4 eV

w0 −1.15 −0.85

wa −0.3 0.3

Table 6.2. Bacco training set cosmological parameter space.

(PCA) to reduce the dimensionality of the interpolation problem and applies Gaussian Process
Regression to emulate each of the dimensions selected in the PCA. It has been trained on a set
of 16000 power spectra spanning the parameter space schematised in Table 6.2. These power
spectra have been obtained using the Cosmology Rescaling algorithm [150], on a small suite of
only 6 ΛCDM simulations obtained with L-Gadget3 [151, 152]. The Cosmology Rescaling al-
gorithm enables a much faster production of the training set at the expenses of a modest loss
of accuracy. It has been proven to be 1% accurate in ΛCDM and 3% accurate for dynamical
dark energy (w0 −wa) and massive neutrinos implementations. The emulator intrinsic accuracy
is ∼ 2% up to scales of 5 h/Mpc, so the overall accuracy is ∼ 2% in ΛCDM and ∼ 3% in the
DE and massive neutrino cases. Similarly to the Bacco emulator, EE2 performs dimensionality
reduction using PCA, but, then relies on a Polynomial Chaos Expansion to emulate the resulting
components. The power spectra are measured at 100 time-steps between z = 10 and z = 0 in
a suite of 108 pair-fixed simulations [153] performed with PKDGRAV3 [154]. The cosmological
parameters space spanned of EE2 is illustrated in Table 6.3.
While both emulators share some similarities in their emulation techniques, the treatment of

massive neutrinos in their respective simulations is different. In the PKDGRAV3 simulations,
dark energy and massive neutrinos are introduced in the same way as we have implemented in
our COLA code. That is, they are introduced inside the general relativistic source term, δρNb

GR, as
a linear density field on a Particle-Mesh (PM) grid. For the L-Gadget3 simulations of the Bacco
project, they have used a cosmology rescaling algorithm [155] to mimic the effects of massive
neutrinos. This procedure is found to be 1% accurate up to scales of 2 h/Mpc [155], and 3%
accurate up to scales of 5 h/Mpc [137]. However, in [156], L-Gadget3 simulations with massive
neutrinos were performed using a hybrid approach, where they split massive neutrinos into “fast”
and “slow” components. This allows one to combine the linear treatment of neutrinos on a PM
grid, with the more accurate description of massive neutrinos as low-mass collisionless particles
with large thermal velocities following CDM trajectories, which is able to incorporate in the sim-
ulations back-reaction effects of neutrinos that reduce the suppression introduced by them [124].
This hybrid approach, however, agrees at below the 0.1% level in the matter power spectrum
with the PM method. The only major difference between these different implementations can be
seen in the massive neutrinos power spectrum. Therefore, for the purposes of this work, all three
methods used here, EE2, Bacco and the COLA implementation are well in agreement with each
other with respect to massive neutrinos.
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The non-linear boost factors for the training and test sets are computed by taking the ratio of
the simulations power spectra with the linear power spectra from class [21]. The EE2 provides
∼ 1% accuracy up to k = 10 h/Mpc in the ellipsoid centered on the reference cosmology and
extending to the edges of the interpolation range.

Parameter Min. Max. Center

h 0.61 0.73 0.67

Ωb 0.04 0.06 0.05

Ωm 0.24 0.40 0.32

ns 0.92 1.0 0.96

As 1.7× 10−9 2.5× 10−9 2.1× 10−9
∑

ν mν 0.0 eV 0.15 eV 0.075 eV

w0 −1.3 −0.7 −1.0

wa −0.7 0.7 0.0

Table 6.3. EE2 parameters.

In this chapter all EE2 non-linear matter power spectra shown, were computed from the linear
matter power spectrum in the N-body gauge using our own version of the Einstein-Boltzmann
solver hiclass, and then multiplied by the boost factor coming from EE2. As EE2 has been trained
using relativistic simulations with N-body gauge linear transfer functions, our choice is therefore
equivalent to theirs, and for this reason in the Figures shown below the agreement at large scales
between COLA and EE2 is well below 0.1% where linear theory is valid. For the Bacco non-linear
power spectra, however, I have used their own non-linear matter power spectrum prediction, that
is, the linear matter power spectrum is computed inside the emulator, and the non-linear power
spectra is just the Bacco boost factor multiplied by their linear prediction. This introduces a
slight deviation between COLA and EE2 with Bacco at linear scales. These disagreements are
expected since Bacco is not trained with relativistic simulations, nor uses the N-body gauge to
compute its linear spectra.

6.2.3. Boost and response function

The focus of this work is to study the impact of the non-linear prescriptions by comparing different
combinations of the cosmological parameters with different models of modified gravity theory and
GR. Since COLA is an approximate fast method, it is not capable of predicting the non-linear
power spectrum at large wave-numbers accurately. However, as I will show, COLA is capable of
describing the response of the matter power spectrum with respect to the change of cosmological
parameters up to k ∼ 1 h/Mpc as long as the change of the matter power spectrum is not too
large. Note that COLA’s accuracy depends on a number of settings, such as the number of time
steps and the number of grids for the PM part, and it is always a trade-off between accuracy and
speed. In Appendix B, I detail the specifications of COLA used for the simulations used in this
chapter. I emphasize that all the comparisons and results using our COLA simulations shown in
this work can be further improved by changing these specifications at the cost of speed.

Therefore, I will compare the ratio between the linear and non-linear matter power spectrum in
different cosmologies with respect to a pre-defined reference cosmology, which in our case will be
ΛCDM with the cosmological parameters shown in Table 6.4. I define the linear and non-linear
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Parameter Value

h 0.67

Ωb 0.049

Ωm 0.319

ns 0.96

As 2.1× 10−9
∑
mν 0.058 eV

Table 6.4. Reference parameters.

response functions as

Rlin(k, z) =
P case
lin (k, z)

P ref
lin (k, z)

, Rnon(k, z) =
P case
non (k, z)

P ref
non(k, z)

(6.3)

respectively, where the superscript “case” refers to a given case cosmology being investigated,
and the superscript “ref” always refers to predictions of GR with parameters from Table 6.4. I
will also define the non-linear boost as the function that maps the linear matter power spectrum
to the non-linear one

P case/ref
non (k, z) = Bcase/ref(k, z)× P

case/ref
lin (k, z), (6.4)

and then I can get the non-linear boost in a different cosmology from the reference boost and
the ratio of the response functions:

Bcase(k, z) = Bref(k, z)× Rcase
non (k, z)

Rcase
lin (k, z)

. (6.5)

In the following sections, I will check the validity of using COLA to computeRcase
non (k, z)/R

case
lin (k, z)

against emulators in ΛCDM and then compute them in modified gravity models.

6.3. LCDM Analyses

6.3.1. Variation of cosmology parameters

In this section I compare COLA simulations with massless neutrinos with EE2 in terms of the
response function defined by Equation (6.3), by varying cosmological parameters one at a time.
Throughout this work I fixed the dark energy equation of state to that of a cosmological constant,
i.e., w0 = −1 and wa = 0, as well as the Hubble constant and baryon energy density to their
reference values, h = 0.67 and Ωb = 0.049. In this section, the reference cosmology is defined by
Table 6.4 but with

∑
ν mν = 0.

After making these choices we are left with only three cosmological parameters, Ωm, ns and As

, which when varied independently alongside the fixed choices of parameters, impact differently
the matter power spectrum. That is, increasing (reducing) the value of the amplitude of the
primordial scalar perturbations, As, leads to a re-scaling of the matter power spectrum amplitude
up (down), while the variation of the spectral index, ns, enhances or suppresses power at small
scales. Augmenting the total amount of matter in the Universe, while keeping the baryon densities
fixed, leads to increasing the value of the dark matter density. This imprints the matter power
spectrum by first changing the scale of equality between matter and radiation era, keq, and by
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tilting the spectrum at small scales, i.e., if we have a bigger Ωcdm we will have steeper gravitational
potentials, leading to more matter clustering at small scales, while a smaller value for Ωcdm gives
you the opposite. To get a better perspective of these features, Figure 6.1 shows the linear
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Figure 6.1. Non-linear and linear response functions for each variation of the cosmological parameters
with respect to the reference cosmology. Blue solid lines are computed from COLA simulations, orange
dashed lines are obtained from EE2, and dash-dotted green lines are the linear predictions computed using
hi class.

response and non-linear response from COLA simulations and EE2 for massless neutrinos at
z = 0. At large scales (small k values), all curves agree with each other, while at higher k values
we see non-linear corrections in the solid blue and dashed orange curves.
In our COLA simulations, cosmological parameters were varied in the range shown in Table 6.5.

However, in this section, I present the results and comparisons only for the cases which I will
refer as “large” variations, that is, the minimum and maximum values shown in the same Table.

Parameter Min. Max.

Ωm 0.28 0.36

ns 0.92 1.0

As 1.7× 10−9 2.5× 10−9

Table 6.5. “Large” variation of parameters.
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Figure 6.2. Ratio between the non-linear and linear response functions computed from COLA simulations.
I show this quantity for five different redshifts: z = 0 (solid blue), z = 0.5 (dotted orange), z = 1 (dashed
green), z = 2 (dash-dotted red) and z = 3 (solid-squared purple). I use the same convention in all other
figures when I show the results at these five redshifts.

The difference between linear and non-linear predictions for P case/P ref in Figure 6.1 is charac-
terised by Rnon/Rlin, which needs to be computed by simulations. Figure 6.2 show the predictions
for this function by COLA at different redshifts. In our COLA implementation, the linear pre-
diction from COLA and the one from hi class have a 0.1% agreement with each other. For
the change of Ωm, we see oscillations on quasi non-linear scales, which describe the smoothing of
BAO oscillations in P case/P ref by non-linearity. For the change of ns and As, the non-linearity
gives a scale-dependent enhancement or suppression at large k.

To investigate how well COLA fairs with EE2 in predicting Rnon/Rlin , in Figure 6.3 we plot
the ratio between the non-linear response from COLA with respect to that of EE2 for the same
massless neutrinos case. We can see that we get 2% agreements up to k ∼ 1 h/Mpc when
varying Ωm. When we vary ns we get 1% agreements, and for As we obtain 2% agreements at
higher redshifts, while at z ≤ 1, they become 1% up to k ∼ 1 h/Mpc. In Appendix B, I show a
comparison between EE2 and Bacco. Note that Bacco does not cover the largest Ωm and As used
in this analysis. At k < 1 h/Mpc, the agreement between EE2 and Bacco is comparable to that
between EE2 and COLA although the agreement is much better at k > 1 h/Mpc as expected.
In the above studies, I consider the cases where the matter power spectrum changes up to 30%

compared with the reference cosmology as shown in Figure 6.1. The future surveys have the
ability to constrain the power spectrum at 1% level. In Appendix C I show the results for small
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Figure 6.3. Ratio between the non-linear response function computed using COLA and the EE2 for the
massless neutrinos case.

variations of the cosmological parameters, where there are 1% variations in the matter power
spectrum. In this case, COLA is able to reproduce the same results for Rnon/Rlin as EE2 and
Bacco with excellent precision (< 0.1%) up to k ∼ 1 h/Mpc.
This shows that COLA can predict the boost factor defined in Equation (6.5) up to k ∼

1 h/Mpc as long as the deviations of the matter power spectrum from the reference cosmology
are not too large. This means that COLA can be used to emulate the matter power spectrum with
given Bref(k, z) in a few chosen reference cosmologies where we require full N-body simulations
to obtain the non-linear boost.

6.3.2. Inclusion of massive neutrinos

The observation of the flavour oscillations of neutrinos confirmed that the sum of neutrino masses
is not zero. While its exact value is not yet known, massive neutrinos play an important role
in cosmology. The matter power spectrum is affected by the variation of the sum of neutrino
masses in two different ways. Firstly massive neutrinos introduce relativistic corrections at small
k values, where the bigger the value of their mass, the larger the deviation from a simulation
where these species are not correctly introduced [111]. The other imprint massive neutrinos leave
in the power spectrum is the suppression of the growth of structure at small scales, which makes
the growth scale-dependent. At a specific scale, called the free-streaming scale, neutrinos travel
freely out of the gravitational potentials generated by cold dark matter. At the linear level, the
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suppression present in the dark matter power spectrum is found to be proportional to the ratio
between the neutrinos and total matter energy densities [157], fν = Ων/Ωm, therefore, the larger
the mass the greater the suppression. Since the two effects have their intensities related to the
sum of the masses of neutrinos, this highlights the importance that neutrinos have for the next
generation LSS surveys.
As both emulators used in this work have been trained assuming three degenerate massive

neutrinos, I ran COLA simulations accordingly for two different values of the sum of the masses,
0.058 eV and 0.15 eV, and I also compare both of these cases with the massless case.
With the output of our simulations we then computed the quantity

Rratio,COLA
non =

Pmνi
non

P
mνj
non

, (6.6)

which is the non-linear response function between two different neutrino masses, where i, j refers
to one of the three masses considered:

∑
ν mν = 0.0 eV, 0.058 eV and 0.15 eV. As I am interested

in the comparison of COLA and emulators, I evaluated the same quantity for EE2 and Bacco as
well. The result is plotted in Figure 6.4, which shows the ratio of the non-linear response function
(6.6) for each method. The curves shown in Figure 6.4 show us how the non-linear suppression
between different prescriptions of the matter power spectrum are in agreement with each other.
From Figure 6.4, at z = 1 we can see that COLA and EE2 have a below 0.1% agreement with
each other in almost the full range of scales, i.e., from small scales to beyond 1 h/Mpc. While at
z = 0 the agreement slightly degrades at k > 1 h/Mpc due to the fact that EE2 is more accurate
than COLA simulations at smaller scales. We find a similar agreement between Bacco and EE2
at k < 1 h/Mpc. Therefore, modulo deviations smaller than 0.5% up until k = 1 h/Mpc, the
three methods are in excellent agreement, and the implementation of massive neutrinos in COLA
does not introduce any biases when compared to the well validated emulators.

6.4. Modified Gravity

In this section I will study how modified gravity affects the growth of structure. I will use the
model-independent formalism of the EFT of DE to introduce non-linear corrections sourced by
the scalar field. That is, I ran COLA simulations following Equation (6.1), where the Geff function
is given by

Geff = 1 +
c2sN
(
2− 2M2

∗ + 2αT

)
+ (αB + 2αM − 2αT + αBαT)

2

2c2sNM
2
∗

, (6.7)

and αi, M
2
∗ and c2sN functions are given in 2.4. The common approach of modified gravity

N-body codes compute Geff by solving the scalar field fluctuation equation under the Quasi-
static approximation (QSA), and then substitute the solution into the Poisson equation. In
this approach, however, we are able to bypass this by splitting the dark energy perturbations
into two parts: one that is purely relativistic (dynamical) and another that is sourced by matter
density perturbations (QSA). In this way we are able to model the scale-dependence of the growth
function present in modified gravity theories at large scales by δGR, rel (Equation 4.39) , while
allowing non-linearities in matter perturbations using Geff .
Note that there is no additional cost to include δGR, rel (Equation 4.39) in our simulations

compared with simulations with massive neutrinos. We just need to use δGR, rel including both
massive neutrinos and modified gravity effects.
Although not discussed in this work, there is one last step that is necessary to complete the

description of modified gravity simulations, i.e. the introduction of screening mechanisms. In the
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Figure 6.4. Ratio of non-linear response function, Equation (6.6), between COLA and EE2 (left column
plots) and between Bacco and EE2 (right column plots) for two redshifts, z = 0 (top row plots) and z = 1
(bottom row plots). Solid blue lines compare the ratio

∑
ν mν = 0.0 eV /

∑
ν mν = 0.058 eV, orange

dashed lines compare the ratio
∑

ν mν = 0.15 eV /
∑

ν mν = 0.058 eV, and dotted green lines compare
the ratio

∑
ν mν = 0.15 eV /

∑
ν mν = 0.058 eV.

FML implementation of COLA 4, screening mechanisms can be included either using screening
approximations or solving the exact scalar field equation using a multi-grid solver. However,
screening mechanisms are model-dependent, and, therefore, we need to first choose a modified
gravity theory, and then investigate which screening mechanism will be realised in this theory.
This spoils the model-independent approach I want to discuss in this work. For this reason, I
chose not to model the shielding of the fifth-force at small scales. However, this has been well
studied in the literature [158], and can be easily introduced in our formalism.
Continuing our model-independent approach, we need to select a parametrization for the time-

dependent αi functions [61]. For the sake of generality and familiarity with previous works, I will
use the following parametrization:

αi = ci × a, i = M, B, K, T, (6.8)

where the ci’s are constants and a is the scale factor. I will fix the kineticity function, αK = 10×a,
and I will focus on only two sets of Horndeski theories [159], one where we have αB ̸= 0 and αM =
αT = 0, i.e., only-brading case, and the Jordan-Brans-Dicke [51] like case, αB = −αM ̸= 0 and
αT = 0. Additionally, following the EFT of DE approach, besides fixing the αi functions, we are
still left to choose one more function that fully characterizes the evolution of dark energy models
in a model-independent framework, the background evolution history, H(a). For simplicity, and
due to the multiple constraints one can get on the expansion of our Universe, I choose to fix it
to an ΛCDM evolution with the energy fractional densities given by Table 6.4 or Table 6.5. I
emphasize that these functions have been chosen for illustrations of our approach and any other
functions can be used in the simulations.
4https://github.com/HAWinther/FML
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Figure 6.5. Left: Evolution of the Geff function in the “only-braiding” gravity model i.e. αB = cB×a and
αT = αM = 0, for cB = 0.05 (solid blue), 0.15(dashed orange), 0.25 (dotted green) and 0.45 (dash-dotted
red). Right: Evolution of the Geff function in the “JBD-like” gravity model, i.e. αB = −αM = cM × a
and αT = 0, for cM = 0.05 (solid blue), 0.15 (dashed orange), 0.25 (dotted green) and 0.45 (dash-dotted
red). In both cases αK = 10× a.

I show in Figure 6.5 the evolution of Geff for the two models for different values of the pro-
portionality constants. As shown in [100, 101], the kineticity function affects the matter power
spectrum only at sufficiently large scales, k ∼ 10−3 h/Mpc, and due to the size of our simulations,
shown in Table 6.1, the specific value and functional form for αK is not relevant for the exposition
of our results, which is the reason to have kept it fixed. As discussed in Section 6.2, our COLA
simulations incorporate the relativistic effects of photons, neutrinos and dark energy using the
N-body gauge approach, following the same approach used by EE2. In all COLA simulations in
this modified gravity section I fix the sum of neutrinos masses to 0.058 eV.

6.4.1. Fixed cosmology

To investigate the interplay between modified gravity (MG) and the cosmological parameters I
will first compare the linear and non-linear response, RMG

lin and RMG
non , for the modified gravity

cases mentioned above, while keeping the cosmological parameters fixed to their reference values
shown in Table 6.4.
From Figures 6.6 and 6.7 we can see that non-linear effects are stronger for larger values of the

constant of proportionality, in accordance with the plots shown in Figure 6.5. More interestingly,
from the top left plot of Figure 6.6, the lowest value of cB, we see almost no non-linear corrections
in the response function up to k ∼ 1 h/Mpc. In the “only-braiding” gravity model, non-linearity
introduces an enhancement, while in the “JBD-like” model, non-linearity gives an additional
suppression at large k. At small k, linear and COLA predictions are in excellent agreement
due to the correct implementation of the relativistic effects in COLA simulations described in
Section 6.2.
The impact of non-linear corrections in the matter power spectrum for each model discussed

is shown in Figures 6.8 and 6.9. I plot the ratio between the matter power spectrum in modified
gravity with respect to the one computed using GR with the same cosmological parameters. If
we use the quasi-static approximation and linear approximations, we see a constant off-set caused
by Geff .

The deviation from the constant offset at small k arises from relativistic corrections that
are computed by the Boltzmann code. We see that at small k values, the non-linear (solid
lines) and linear curves (dashed lines) have the same behavior, as expected, since in the COLA
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Figure 6.6. Ratio between non-linear and linear response functions in modified gravity (MG) “only-
braiding” models with different proportionality constants cB.

implementation we have consistently introduced relativistic corrections.
At large wave-numbers, the deviations from the constant off-set arise from non-linear effects,

which are more prominent at smaller redshifts and for larger values of the modified gravity
parameters, cB (only-braiding) and cM (JBD) as expected as non-linearity is stronger. We see
that non-linearity gives an additional enhancement at large k in the “only-braiding” case while
it gives an additional suppression in the “JBD” model. As shown in the previous section, COLA
should be able to capture these non-linear corrections accurately up to k ∼ 1 h/Mpc.

6.4.2. Varying cosmology

I now move to the next discussion where I will vary the cosmological parameters As, ns and
Ωm as shown in Table 6.5. Our main goal in this section is to investigate the dependence
of modified gravity effects on these parameters. Since the effect of the Horndeski scalar field
seen in Figures 6.6 and 6.7 is very similar in different models modulo the difference between
enhancing/suppressing the growth, I chose to select only one case of modified gravity, i.e. the
only-braiding case with cB = 0.45. This value is of particular interest as the non-linear response
with respect to the linear one is roughly 10% at z = 0, and I will refer to this value as “cB10”.
Note that the effect on the matter power spectrum is around 30% on linear scales at z = 0.

In the left hand side of Figure 6.10, I plot Bcase/Bref in the reference cosmology and the model
with “cB10”. The superscript “case” refers to one of the 6 cases of “large” values in Table 6.5.
The right hand side of the plot shows the ratio:

RcB10,GR =
Bcase

cB10

Bref
cB10

×
(
Bcase

GR

Bref
GR

)−1

(6.9)

We can see that all cases where the variation of the cosmological parameters decreased their
values from the reference ones, the ratio Bcase/Bref increase in the “cB10” model compared with
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Figure 6.7. Ratio between non-linear and linear response functions in modified gravity “JBD-like” models
with different proportionality constants cM.

the reference cosmology in GR. Note that in these cases, the effect of changing these cosmological
parameters is to decrease the amplitude of the power spectrum on small scales while the effect
of the modified gravity considered here is to enhance the amplitude. The increase in the ratio
Bcase/Bref is more prominent in the cases of the parameters Ωm and As, as these two are related
to changes in the overall amplitude of the power spectrum, while it is milder in the case of the
spectral index reaching at most an increase of 2%. When the cosmological parameters increase,
we see an opposite effect. Overall, compared with Bcase/Bref in the reference cosmology, the
effect of modified gravity is fairly weak at k < 1 h/Mpc except for Ωm.
The ratio RcB10,GR can be rewritten as

RcB10,GR =
Rcase

non,cB10

Rcase
lin,cB10

×
(
Rref

non,cB10

Rref
lin,cB10

)−1

(6.10)

where

Rcase
non,cB10 =

P case
non,cB10

P ref
non,GR

, Rref
non,cB10 =

P ref
non,cB10

P ref
non,GR

, (6.11)

Rcase
lin,cB10 =

P case
lin,cB10

P ref
lin,GR

, Rref
lin,cB10 =

P ref
lin,cB10

P ref
lin,GR

(6.12)

which is accordance with our previous definitions in Equations (6.3), where the reference non-
linear and linear matter power spectra are always computed with cosmological parameters in
Table 6.4 and GR as the gravity theory. Thus RcB10,GR can be interpreted in two ways: how
modified gravity changes the cosmological parameter dependence of the boost factor as discussed
above, and how cosmological parameters affect the response of the matter power spectrum to mod-
ified gravity parameters. As we have seen, the cosmological parameter dependence of RcB10,GR
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Figure 6.8. Ratio between modified gravity and GR power spectra in the “only-braiding” model. The
solid lines refer to the non-linear prediction, while the dashed ones to the linear one.

is fairly weak at k < 1 h/Mpc except for Ωm. This property is useful when creating emulators for
the response functions for modified gravity parameters. This is consistent with what was found
in f(R) gravity in [160].
It is worth stressing how general our results are in view to the large freedom we have to

choose the parametrization for the αi functions. For late-time dark energy models, the choice of
parametrization is such that, as the Universe evolves, the impact of dark energy on the matter
power spectrum also increases. In this work, I have chosen to the αi functions proportional to
the scale factor, in order to highlight the new features introduced by the scalar field. Indeed,
making the αi functions linearly proportional to the scale factor allows them to impact at an
earlier period of time than the case where we have αi ∝ ΩDE, another common choice in the
literature. The latter parametrization forces the scalar field density perturbations to be relevant
only at redshifts during dark energy domination era, z ≲ 0.7. However, the same analysis and
conclusions of this thesis are still be valid.

6.5. Closing remarks

In this work, I have validated COLA simulations with two existing emulators in the literature,
the EE2 and the Bacco emulator. In order to do so, I have made use of the non-linear response
function, defined in Equation (6.3), where the reference cosmology is given in Table 6.4. In each
case we varied the cosmology by changing one of the following cosmological parameters: the total
matter energy density, spectral index and amplitude of the primordial fluctuations, within the
range detailed in Table 6.5. All COLA simulations followed the same specifications presented in
Table 6.1 and Appendix C. The performance of COLA can be improved further at the cost of
computational time and complexity.
In Section 6.3.1 I have analysed how the ratio between the non-linear and linear response
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Figure 6.9. Ratio between modified gravity and GR power spectra in the “JBD-like” model. The solid
lines refer to the non-linear prediction, while the dashed ones to the linear.

functions, computed using COLA, is affected by varying the cosmological parameters to large
deviation values, i.e. the boundaries of the ranges shown in Table 6.5 as displayed in Figure 6.2.
To investigate the agreement between COLA and EE2, in Figure 6.3 I showed the ratio between
the non-linear response function computed using each method, and we can conclude that both
predictions agree at the 2% level up until k = 1 h/Mpc. For small variations of the cosmological
parameters (0.5% variations), the agreement is even better, being well below the 0.1% level as
shown in Appendix C, which also includes the validation with the Bacco emulator.
To test the implementation of massive neutrinos in COLA, in Section 6.3.2, I computed the

non-linear suppression computed by each non-linear prescription, i.e. Equation (6.6), at z = 0
and z = 1. I used three different values of the sum of the neutrino masses, 0.0 eV, 0.058 eV
and 0.15 eV, in our COLA simulations. In Figure 6.4, I plotted the ratio of the non-linear
suppression between the different cases of neutrino masses evaluated by each method, COLA,
EE2 and Bacco. I found that all three were in agreement at below 0.5% level at both redshifts
down to k = 1 h/Mpc, showing that the treatment of massive neutrinos in COLA does not
introduce any biases, and the non-linear response function computed using COLA simulations
can be used to extend existing emulators in the literature, as well as to train new ones.
In Section 6.4 I introduced the implementation of scalar-tensor theories of gravity in COLA via

the model-independent approach of the EFT of DE. In order to do so, all non-linearities arising
from the scalar field fluctuations are encoded in theGeff function, Equation (6.7), which functional
form is found by assuming that non-linear corrections of modified gravity are sourced only by
matter density perturbations (QSA limit). At the same time, I also implemented relativistic
corrections from the scalar field perturbations via the N-body gauge approach developed in [100,
101].
In Figures 6.6 and 6.7 I showed how non-linearities affect the response function in two different

models, the only-braiding model and the JBD-like one. The main effect corresponds to a rescaling
of the amplitude of the matter power spectrum by either enhancing the power at small scales
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Figure 6.10. In the left panel, I show the ratio between the boost factor in each “large” cosmological
parameter variation case and that in the reference cosmology. The solid lines show this quantity in the
modified gravity “only-braiding” case (cB10) while dotted ones show this in GR. In the right panel, I
show the ratio of this ratio between modified gravity and GR. Top, middle and bottom row plots show
variations with respect Ωm, the spectral index ns and the amplitude of the primordial perturbations As,
respectively.

in the only-braiding case, or suppressing the growth of structure at these scales in the JBD-like
model as shown in Figures 6.8 and 6.9. These figures showed also that our COLA simulations
included dynamical effects of relativistic species including the scalar field on large scales as well as
non-linear clustering of dark energy driven by non-linear matter perturbations on smaller scales.
Based on this analysis, in Section 6.4.2, I have then chosen a specific case of the only-braiding

gravity, “cB10”, to investigate how modified gravity impacts the variation of cosmological pa-
rameters. This was done by running new COLA simulations for large variation values of Ωm, As

and ns, but with the gravity theory being described by “cB10”. As showed in Figure 6.10, our
results showed that the dependence of the response function with respect to the change of the
modified gravity parameter on As and ns is fairly weak up to k = 1 h/Mpc. For Ωm, we saw a
stronger dependence, which was also found in reference [160].
With the results of our investigations, we can state that COLA simulations can be used to

extend emulators already available in the literature, as well as to train new ones, via the use
of the response functions computed from these simulations. This method is able to push the
regime of validity of COLA down to k = 1 h/Mpc with accuracy below 1% if the deviations from
the reference cosmology are small enough. For beyond-ΛCDM cosmologies this is particularly
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important, as running COLA simulations are much faster than full N-body ones. Also, since the
dependence on cosmological parameters is fairly mild in the response function with respect to
modified gravity parameters, we can use cosmology-independent methods to include new theories
of gravity into emulators, which is a very desirable feature for the upcoming LSS surveys.
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CHAPTER 7.

Conclusions and Future Avenues

7.1. Conclusion

Modified theories of gravity continue to attract a lot of attention in the community, as they offer
a natural explanation for the late-time acceleration of the Universe. However, we have reached
a turning point on the investigation of these models. As we prepare for the first data release of
the upcoming stage-IV LSS surveys, such as DESI, there is an unprecedented need to increase
the performance and accuracy of the theoretical tools developed in beyond-ΛCDM models.
This thesis focused on the study of effects of modified gravity in the Large Scale Structure

of our Universe. We have seen that at linear order we are able to perform tests either in a
model-dependent or a model-independent way, by parameterizing the equations of motion for
the growth of structure and light propagation in the Universe. When we move to the non-linear
Universe, much of the model independent formalism is lost, as we need to introduce screening
mechanisms, which depend on which modified theory of gravity we are working with. Neverthe-
less, in Chapter 6, I presented a way to extend the model independent framework of the Effective
Field Theory of Dark Energy into COLA simulations. This was done by combining the N-Body
gauge approach to introduce relativistic effects into Newtonian simulations, with the Quasi-static
approximation, which allows us to capture all the effects introduced by the scalar field fluctu-
ations that are sourced by matter perturbations. In this way, we can absorb the QSA part of
the dark energy perturbations into an effective Newton’s constant, Geff , while still introducing
relativistic (dynamical) perturbations of the scalar field at linear order with the N-Body gauge.
The results shown in Chapter 6 are in line with other results in the literature that compare full
N-Body simulations of modified gravity theories, such as [160].
In view of stage-IV LSS surveys that will soon release their much awaited data, this imple-

mentation of beyond-ΛCDM models in the COLA method is a very desirable feature, as it allows
us to generate fast approximate realizations of the non-linear matter density field models, which
when ran using full N-Body codes are very costly.
The results I have presented in this thesis are shown in the bibliography section, and they

refer to references [73, 100, 101, 133]. In the following section, I will discuss some possible
continuations of the works I have done in my PhD, with also some motivations as to why I deem
them important.
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7.2. Future

7.2.1. Relativistic simulations

Future LSS surveys will deliver data from larger scales of the Universe. To robustly interpret
the data, we will need to measure the correlation function at these bigger distances, where we
must take into account relativistic projection effects that come from the perturbation of our past
light-cone due to the clustering of matter. Besides this effect, the position of galaxies is measured
in terms of angles and redshifts, and we need to model the proper motion of galaxies as well
as lensing effects that affect these measurements. This has already been well-studied and incor-
porated within linear theory, however, at lower redshifts and smaller scales the matter density
perturbations become non-linear, and linear theory stops being valid, we then need to compute
the relativistic corrections of galaxy positions using of relativistic simulations. In order to calcu-
late with increasing accuracy the relativistic corrections to galaxy positions in our Universe, the
introduction of relativistic effects into N-Body codes was developed [161]. With the output of
relativistic simulations we can generate relativistic mock galaxy catalogs, that are important for
the estimation of covariance matrices, which help increase the robustness of cosmological param-
eters inference, and are useful to model signals including non-linearity on small scales as well. I
am interested in performing these analysis with the relativistic simulations I have developed in
my PhD. Combined with this, I can also perform ray-tracing techniques to investigate different
effects that will be central for future LSS surveys, such as lensing magnification [162] and the
ISW effect [161, 163].

7.2.2. Emulators in Horndeski Gravity

There have been many advances in modified gravity non-linear modelling. These range from fast
approximate methods such as COLA, fitting formulae for the small scale matter power spectrum,
to semi-analytical methods, such as higher-order perturbation theory and halo model predictions.
A recently proposed way is to use emulation as a path to quickly sample the parameter space
of modified gravity models [146, 147, 160]. So far these emulators have focused on archetypal
theories of which we already have complete N-Body simulations. Therefore, I am interested
in using emulation methods already developed in the literature in combination with relativistic
Horndeski simulations.

7.2.3. Extracting Modified Gravity from LSS data

Many modified gravity models exhibit environmental-dependent behaviors, such as accentuated
deviations from GR in under-dense regions. Due to the presence of screening mechanisms in
modified theories of gravity, it has been often proposed in the literature to consider density
transformations [164] that up-weights the regions with lower density, and therefore unscreened,
as a way to enhance modified gravity features [165, 166, 167]. One of these is the “marked”
density transformation [168] that up-weight low densities.

I am interested in using these transformations to test still viable Horndeski models, as most of
the studies so far have relied on studying very specific theories that have already been constrained
by multiple tests. In order to test modified gravity in highlighted unscreened regions, we must
rely as well on modified gravity simulations. Therefore, I will use the implementation presented
in Section 6, to test Horndeski’s gravity with density estimators. As these are enhancing the
signal in low-density regions, this reduces the need to add non-linear corrections, reducing the
computational complexity in N-Body simulations.
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APPENDIX A.

hiclass specifications N-body gauge

In this appendix I will show some consistency checks I have performed to see if the implemen-
tation of the N-Body gauge in hiclass is consistent. To this end, I plot the ratio between the
solution of the second order differential equation for the matter density contrast in the N-Body
gauge, Equation (4.29), computed inside hiclass, with respect to the gauge transformed quantity,
Equation (4.32). In order to perform these tests I have used the precision parameters given in
Table A.1.
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Figure A.1. ratio between the solution of the second order differential equation for the matter density
contrast in the N-Body gauge, Equation (4.29), computed inside hiclass, with respect to the gauge trans-
formed quantity, Equation (4.32), for three different modified gravity theories and for four redshifts. The
k-essence model shown here is the same one shown discussed in Figure 4.6.

The precision parameters in Table A.1 that have in their names the “approximation” refer
to the usual CLASS approximation schemes, described in [21]. For these runs I have turned
off these approximations schemes, as for late times we get a better accuracy by integrating
the Boltzmann hierarchy in its generality, instead of resorting to these approximations schemes,
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Parameter Assigned value

radiation streaming approximation 3

evolver 0

ur fluid approximation 2

k per decade for pk 40

k per decade for bao 80

P k max h/Mpc 1.0

back integration stepsize 1.0e-4

ncdm fluid approximation 3

Table A.1. Precision parameters.

which were developed to increase speed and accuracy for the computation of the Cℓ’s in the
CMB. The evolver flag sets the numerical integrator for the Einstein-Boltzmann equations to
the usual fourth-order Runge Kutta integrator. I have also decided to decrease the stepsize for
the integration steps taken in the background module of the code by changing the parameter
back integration stepsize to 1e-4. This was done after checking that the default setting
was not accurate enough. The other precision parameters in the Table were modified just to
increase the number of k modes per decade and to set the maximmum value of the matter power
spectrum. In Figure A.1, I show the ratio between the two matter density contrasts computed
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Figure A.2. Evolution of the sound speed of the scalar field fluctuations for the three gravity models
shown in Figure A.1.

using hiclass. δGT
m is the quantity calculated using the usual gauge transformation rule shown in

Equation (4.32). While δhcm is the full solution of Equation (4.29) computed inside hiclass from
the initial redshift zini = 99. We can see that for the four redshifts shown, we have a below 0.1%
agreement between the two quantities, which is more than satisfactory for all the purposes we
have discussed in this thesis, except for one case at z = 0 and a modified theory of gravity with
αB = 0.6× ΩDE and αK = 0.01× ΩDE. This is not an unexpected result, nor it represents that
our implementation is failing.
As discussed in the main text the kineticity function is inversely proportional to the sound

speed in which the scalar field perturbations propagate, therefore, the smaller αK bigger c2s . For
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all physically relevant theories, a sound speed greater than one, which represents the speed of
light, are not physically sound, and require some further investigations as a quantum level this
field would be breaking causality. To get a better perspective of the orders of magnitude of the
sound speed between the three cases shown in Figure A.1, I plot in Figure A.2. We can see
in the plot that while the only-braiding modified theory of gravity with a smaller value for the
kineticity function and for the k-essence model, we have sound speeds of the order of O(10−2),
while for the only-brading theory with αK = 0.01×ΩDE we have c2s ∼ O(102), roughly four order
of magnitude of difference. Therefore, our implementation shows an excellent agreement for all
physically relevant cases, and care should be taken when considering different cases of modified
gravity theories in the N-Body gauge using our implementation.

124



APPENDIX B.

COLA specifications

COLA is a quasi N-body code, that is, it is an approximate method that allows us to reduce
the number of time-steps that usual full N-body simulations require getting faster realizations of
the non-linear density field. Therefore, if we want to get more accurate descriptions of clustering
on small scales, we can just increase the number of time-steps in our COLA simulations to make
it closer to full N-body codes. However, there is an obvious setback to this, as we increase
time-steps we increase the time our simulations take to finish. Also, the initial redshift of these

Redshift Number of time-steps

19 → 3 12

3 → 2 5

2 → 1 8

1 → 0.5 9

0.5 → 0 17

Table B.1. Number of time-steps intervals.

simulations impacts the large k behavior as well, since the higher the redshift we choose, the more
time-steps between zini to smaller redshifts we will need. Another parameter COLA is sensitive
to, is the number of cell grids in its PM algorithm. As COLA solves the Poisson equation using
inverse and normal FFTs, by increasing the number of cells we will be making our mesh finer
and increasing the force resolution.
These specifications used in this work follow closely the discussion presented in [130] where

detailed analyses were performed to find the best specifications for COLA simulations. All our
simulations use the box size of 1024 h/Mpc with N3

p = 10243 particles. In Table 6.1 I chose to
use 50 time-steps for our COLA simulations starting at zini = 19, with the time-steps subdivided
as shown in Table B.1.
These time steps are linearly distributed in the scale factor. As we can see from this table that

the COLA method generally uses a very sparse time-stepping at higher redshifts, which can be a
problem if we have a very low force resolution. In order to not have a loss of power at small scales
in our simulations, I then chose to use a force mesh grid number of N3

mesh = (2Np)
3 = 20483 as

it was shown that increasing this to (3Np)
3 has ∼ 1% effects on the matter power spectrum at

k < 1 h/Mpc. In Figure B.1 I show the ratio between the absolute non-linear power spectrum
measured from our COLA simulation using the reference values of Table 6.4, and the EE2 non-
linear matter power spectrum. I use the paired-fixed simulations to reduce the cosmic variance.
We see that the ratio between the two is highly oscillatory when we go to large k values, due to the
residual sample variance effects of our COLA simulation. The time steps are chosen to reproduce
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Figure B.1. Ratio between the absolute non-linear dark matter power spectrum computed using COLA
and EE2 for the reference cosmology.

the matter spectrum better at z ≤ 1. At z ≤ 3, the non-linear power spectrum from COLA
agrees with EE2 at 1% level at k ≤ 0.5 h/Mpc. As shown in this paper, COLA gives a better
accuracy up to higher k in predicting reactions of the matter power spectrum to the change of
cosmological parameters as well as massive neutrino mass. Also since the reaction is defined as a
ratio of the power spectrum, using the same initial seed, we can suppress the sample variance and
obtain much smoother predictions. To compute the reaction, I used fixed amplitude simulations
and the same initial seed for all the simulations. I emphasize that all the comparisons and results
using our COLA simulations shown in this work can be even further improved by increasing the
temporal resolution of our simulations, i.e., increasing the total number of time-steps, the force
resolution, i.e., increasing the the number of cell grids in our PM algorithm, and the particle
number. Finally, in the main text, I only showed comparisons between COLA and EE2 for the
prediction of the reaction. Here, for completeness, I show a comparison between EE2 and Bacco
in Figure B.2. As noted in the main text, Bacco do not cover the largest values of Ωm and As

used in our analysis. In the plot, I used Ωm = 0.355 and As = 2.45× 10−9 instead. We get below
2% agreements in all cases.
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Figure B.2. Ratio between the non-linear response function computed using Bacco and the EE2 for the
massless neutrinos case.
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APPENDIX C.

Small variations of cosmological parameters

In this Section, I show the results for small variations of cosmological parameters between
COLA and EE2. Our choice of small variations represent increasing and decreasing 0.5% of the
reference value of Ωm, As and ns. This small change in the parameters has smaller effects on the
linear and non-linear response functions, as opposed to the large variation cases considered in
Figure 6.1. Their impact on the matter power spectrum is shown in Figure B.3. It is important
to check that COLA can reproduce the response function with much better accuracy in the case.
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Figure C.1. The same ratio as in Figure B.2, but for small variations of the cosmological parameters.

In Figures B.4 and C.1 I show the impact on the ratio of the non-linear response of this change
for COLA and EE2, and for Bacco and EE2, respectively. We see that in all cases COLA agrees
with these emulators well within the 0.1% threshold for up until k = 1 h/Mpc.
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