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RESUMO 

Neste trabalho, apresentamos um sistema de localização global visual baseado em Redes 

Neurais Profundas (DNNs) para carros autônomos, denominado DeepVGL (Deep Visual 

Global Localization), que recebe imagens em tempo real de uma câmera frontal instalada no 

teto do carro e infere sua posição correspondente em coordenadas globais. Para tanto, o 

DeepVGL é treinado com pares de coordenadas e imagens associadas pertencentes a conjuntos 

de dados de veículos autônomos construídos com dados de sensores alinhados no tempo e no 

espaço por meio de um processo de Localização e Mapeamento Simultâneo (SLAM). Para 

avaliar o desempenho do DeepVGL, realizamos experimentos usando conjuntos de dados 

compostos por imagens de câmeras coletadas por diferentes carros autônomos em viagens feitas 

em longos intervalos de tempo (mais de 4 anos), incluindo mudanças significativas no 

ambiente, volume de tráfego e condições climáticas, bem como diferentes horas do dia e 

estações do ano. Também comparamos o DeepVGL com um sistema de localização global de 

última geração baseado em Redes Neurais Sem Peso (WNN). Por fim, executamos 

experimentos usando conjuntos de dados compostos por imagens da faixa LIDAR obtidas por 

um caminhão autônomo em viagens feitas em intervalos de tempo razoáveis (mais de 3 meses). 

Os resultados experimentais mostram que o DeepVGL pode estimar corretamente a localização 

global do carro autônomo em até 75% do tempo para uma precisão de 0,2 me até 96% do tempo 

para uma precisão de 5 m. Os resultados também mostram que o DeepVGL supera a WNN, que 

pode localizar corretamente o carro autônomo em até 76% do tempo para precisão de 0,2 m, 

mas apenas até 89% do tempo para precisão de 5 m. Por fim, os resultados mostram que o 

DeepVGL funciona melhor com imagens de alcance LIDAR do que com imagens de câmera, 

localizando o caminhão autônomo em até 95% do tempo para precisão de 0,2 m e 98% do 

tempo para precisão de 5 m. 

 



 

 

ABSTRACT 

In this work, we present a visual global localization system based on Deep Neural Networks 

(DNNs) for self-driving cars, called DeepVGL (Deep Visual Global Localization), which 

receives real-time images from a forward-facing camera installed on car’s roof and infers their 

corresponding position in global coordinates. To this end, DeepVGL is trained with pairs of 

coordinates and associated images belonging to datasets of autonomous vehicles built with 

sensor data aligned in time and space through a process of Simultaneous Localization And 

Mapping (SLAM). To assess the performance of DeepVGL, we carried out experiments using 

datasets composed of camera images collected by different self-driving cars on trips made over 

long time spans (over 4 years), thus including significant changes in the environment, traffic 

volume and weather conditions, as well as different times of the day and seasons of the year. 

We also compared DeepVGL with a state-of-the-art global localization system based on 

Weightless Neural Networks (WNN). Finally, we executed experiments using datasets 

composed of LIDAR range images obtained by a self-driving truck on trips made over 

reasonable time spans (over 3 months). The experimental results show that DeepVGL can 

correctly estimate the global localization of the self-driving car up to 75% of the time for an 

accuracy of 0.2 m and up to 96% of the time for an accuracy of 5 m. The results also show that 

DeepVGL outperforms WNN, which can correctly locate the self-driving car up to 76% of the 

time for 0.2 m accuracy, but only up to 89% of the time for 5 m accuracy. Finally, the results 

show that DeepVGL works better with LIDAR range images than camera images, locating the 

autonomous truck up to 95% of the time for 0.2 m accuracy and 98% of the time for 5 m 

accuracy.  
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1 INTRODUCTION 

Self-driving cars based on precise localization [1] operate in environments where, with 

properly constructed maps, they are able to carry on missions that involve travels between their 

current position to some specified goal position. For that, they require precise maps of the 

operating environment, with centimeter accuracy. In this context, it is essential that such self-

driving cars can solve the problems of position tracking, global localization and kidnapped 

robot [2].   

The position tracking problem is that of inferring to where the car has moved in the vicinity 

after the control commands are applied to the car during a short interval of time (typically a few 

milliseconds), considering that its current position is known to some degree of certainty (in the 

probabilistic sense). Currently, the position tracking problem is solved, for the most self-driving 

car systems, using probabilistic robotics algorithms, such as Kalman filters, particle filters, etc. 

[2] [3].  

The global localization problem is that of inferring where the car is, considering the whole 

map. Since, in this case, the car can be anywhere in the map, this problem is significantly harder 

than that of position tracking. However, it can be simplified using, for example, Global 

Navigation Satellite System (GNSS) systems. Currently available hardware, firmware and 

software allow GNSS global localization with centimeter accuracy, which makes them a 

possible solution to the global localization problem (or even all localization problems). 

However, to work properly, the GNSS system must “see” a significant part of its satellite 

constellation. This is not possible in several relevant situations, such as inside tunnels, within 

urban canyons (roads surrounded by tall buildings), or in regions where trees or other elements 

of geography prevent the reception of signals from a sufficiently high number of satellites to 

allow precise localization. This makes GNSS systems an incomplete solution to the global 

localization problem.  

The kidnapped robot problem is that of inferring where the car is on the entire map, after 

a global localization failure. The kidnapped robot problem is even more difficult than the global 

localization problem, as the self-driving car system may believe it knows where the car is, while 

it does not. 

In this work, we present a visual global localization system, based on Deep Neural 

Networks (DNNs), for self-driving cars, named DeepVGL (Deep Visual Global Localization). 
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We examined the performance of DeepVGL in the Intelligent Autonomous Robotic 

Automobile (IARA, Figure 1), a self-driving car whose autonomy system is based on precise 

localization [1] – in IARA’s autonomous system DeepVGL is new part of the Localizer 

subsystem (see Figure 1). 

 

Figure 1. Intelligent Autonomous Robotic Automobile (IARA) and its autonomy system. In blue, perception 

subsystems, including DeepVGL (as a new part of the Localizer), the focus of this work. In orange, decision 

making subsystems. TSD denotes Traffic Signalization Detection and MOT, Moving Objects Tracking. Red 

arrows show the State of IARA, produced by its Localizer subsystem, and shared with most subsystems; 

blue arrows show IARA’s internal representation of the environment, jointly produced by several 

perception subsystems and shared with most decision-making subsystems. 

IARA is a research self-driving car based on a Ford Escape Hybrid adapted with a variety 

of sensors and processing units. Its autonomy system is composed of many subsystems, which 

include a Localizer [3], a Mapper [4], a Moving Obstacle Tracker [5], a Traffic Signalization 

Detector [6] [7], a Route Planner, a Path Planner, a Behavior Selector, a Motion Planner [8], an 

Obstacle Avoider [9], and a Controller [10], among other subsystems. For more details on 

IARA autonomy system, readers are referred to Badue et al. [1]. 

We also examined the performance of DeepVGL in the Autonomous Robotic Truck (ART, 

Figure 2), a research self-driving truck based on a Mercedes-Benz Atego 2430 retrofitted with 

sensors and computers. Its autonomy system is the same as the IARA system. 

The approach presented here tries and solves the global localization problem building a 

neural map of images and associated coordinates. For that, during the process of building the 

Occupancy Grid Map (OGM) [2] [4] [11] [12] , we save images and their associated coordinates 

computed with respect to the map. After the mapping process, we build datasets of images and 

associated coordinates arranged to have these pairs (of coordinates and associated images) 

separated by a small offset (a few meters) and yet allow global localization with a precision that 

is within the capacity of the position tracking localization subsystem to later correct to the 

necessary level of accuracy (a few centimeters). DeepVGL, then, is trained with these datasets 
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in order to be able to, given an image of the operating environment, infer the coordinates where 

the car was when the image was captured.  

 

Figure 2. Autonomous Robotic Truck (ART)  

The approach presented here solves the problem of the kidnapped robot as well. The 

position tracking subsystem is able to detect when the tracking has been lost. In such cases, 

DeepVGL is invoked and, after global localization, the position tracking resumes. 

In summary, DeepVGL (Figure 3) is a system that allows training a DNN with datasets of 

images and associated coordinates, captured during mapping, and using this DNN to infer the 

coordinates as an output, given an image of the operating environment not present in the dataset. 

These inferred coordinates should be close enough to the place where the image was captured 

to allow the self-driving car’s position tracking localization subsystem to start tracking the self-

driving car position with the precision necessary to allow an accurate localization. 

We used Volta-da-UFES and Apollo-DaoxiangLake datasets, among others, to evaluate 

the performance of DeepVGL. The Volta-da-UFES datasets contain 75,014 images and 

associated poses collected in 10 trips made over a period of 4 years along the 3.5 km of the ring 

road of the main campus of Universidade Federal do Espírito Santo (UFES), in Vitória, Brazil. 

The Apollo-DaoxiangLake datasets are composed of 143,636 images and associated poses 

collected in 8 trips made over a period of 14 weeks along the 11.8 km of the road adjacent to 

the Daoxiang Lake Park, in Beijing, China. The Volta-da-UFES includes significant changes 
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in the campus infrastructure, traffic volume and weather conditions, while the Apollo-

DaoxiangLake includes different times of the day, for example, noon, afternoon, sunset, as-

well-as season changes (e.g., sunny and snowy days). Our experimental results show that 

DeepVGL obtained consistent results in both datasets, being able to correctly perform global 

localization of the self-driving car 75% of the time, if we consider an accuracy of 0.2 m, and 

96% of the time, considering an accuracy of 5 m (5 m is well within the capabilities of the 

position tracking system to get to a centimeter-precision localization) for Volta-da-UFES, and 

70% and 93% of the time, respectively, for Apollo-DaoxiangLake. 

 

Figure 3. Overview of Deep Visual Global Localization (DeepVGL) 

We also compared DeepVGL with a state-of-the-art global localization system based on 

Weightless Neural Networks (WNN) [13]. Our experimental results show that DeepVGL 

surpasses WNN, which can correctly locate the self-driving car 76% of the time for 0.2 m 

accuracy, but only 89% of the time for 5 m accuracy with the Volta-da-UFES, and 60% and 

66% of the time, respectively, with the Apollo-DaoxiangLake.  

Finally, we evaluated the performance of DeepVGL with two new datasets built from 

sensor data collected using ART, namely LCAD-ART-CAMERA and LCAD-ART-LIDAR. 

Both datasets were collected in 4 trips made over a period of 3 months along the 3.5 km of the 

ring road of the main campus of UFES. The LCAD-ART-CAMERA dataset is composed of 

36,825 camera images and associated poses, and the LCAD-ART-LIDAR dataset contains 

44,231 LIDAR range images. Our experimental results show that DeepVGL obtained 
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consistently better results with the LCAD-ART-LIDAR dataset (LIDAR range images) than 

with the LCAD-ART-CAMERA dataset (camera images), being able to correctly locate the 

self-driving truck 78% of the time for 0.2 m accuracy and 93% of the time for 5 m accuracy 

with the LCAD-ART-CAMERA, and 95% and 98% of the time, respectively, with the LCAD-

ART-LIDAR. 

Please see the video available at https://github.com/LCAD-UFES/DeepVGL to better 

visualize DeepVGL operation and performance in real world scenarios. 

1.1 Motivation 

This work is part of the research on self-driving cars carried out by the High-Performance 

Computing Laboratory (Laboratório de Computação de Alto Desempenho - LCAD) of the 

Informatics Department (Departamento de Informática - DI) of the Federal University of 

Espírito Santo (Universidade Federal do Espírito Santo - UFES). LCAD developed the IARA 

(Intelligent Autonomous Robotic Automobile) and the ART (Autonomous Robotic Truck), 

self-driving vehicles that have been used as research platforms in several projects.  

To navigate autonomously, IARA and ART need to know their position in the world with 

centimeter accuracy, a task that is currently performed using a Real-Time Kinematic (RTK) 

Global Navigation Satellite System (GNSS). However, on many occasions, the use of GNSSs 

is limited, as the signal reception can suffer interference due to urban canyons, treetops and 

other elements of the environment. Under these conditions, the correct functioning of the self-

driving vehicle is impaired. In this context, the main motivation of this work is to provide a 

reliable visual global localization system, even in GNSS-denied environments, that tries and 

solves the three main localization problems: global localization, position tracking and 

kidnapped robot. 

In the context of self-driving cars, the most successful visual global location systems 

presented in the literature use 2D and 3D features extracted from camera images and LIDAR 

data to provide state-of-the-art performance [16][17][18][19][20][21]. Nevertheless, these 

systems fail on large datasets or do not provide the same performance when considering 

accuracies smaller than 5 m. The system proposed by Forechi et al. [13],  based on WNNs, uses 

only camera images, but outperforms these approaches with large datasets and small accuracies.  

The system proposed in this work, based on DNNs and camera images, is equivalent to the one 

https://github.com/LCAD-UFES/DeepVGL
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presented by Forechi et al. [13] if we consider smaller accuracies (up to 0.2 m), but surpasses 

it considering larger accuracies (up to 5 m). 

1.2 Objectives 

The objective of this work is to propose a reliable visual global localization system based 

on DNNs, which is compatible with IARA’s autonomy system and operates in real-time. It is 

also an objective of this work to evaluate the performance of the proposed system through tests 

in real world scenarios.  

1.3 Contribution 

The main contributions of this work are: 

1) Proposal of a reliable visual global localization system based on DNNs, named 

DeepVGL, which is compatible with IARA’s autonomy system and operates in real-

time; 

2) Development of DeepVGL and its integration to the IARA’s autonomy system; 

3) Construction of two new datasets from camera and LIDAR range images collected 

from real-world self-driving vehicles;  

4) Evaluation of the performance of DeepVGL through a series of experiments using 

sensor data collected from real-world autonomous vehicles.  

The results mentioned above were presented in the following scientific paper:  

T. G. Cavalcante, A. Forechi, T. Oliveira-Santos, A. F. De Souza, C. Badue, “Visual 

Global Localization Based on Deep Neural Netwoks for Self-Driving Cars”, 2021 

International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1-7. 
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1.4 Organization 

The text of this dissertation is organized as follows. After this introduction, in Chapter 2, 

we present related works. In Chapter 3, we detail DeepVGL. In Chapter 4, we present the 

experimental methodology used to evaluate DeepVGL and, in Chapter 5, the experimental 

results. Finally, in Chapter 6,  we present our conclusions and directions for future work. 
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2 RELATED WORK 

The visual global localization problem for self-driving cars is addressed in the literature as 

a classification task [16] [17], which uses discrete locations as labels, or as a regression task 

[18] [19] [20], which regresses the relative distance vector between two or more images, or 

both as a classification and a regression task [13]. 

2.1 Localization as a Classification Task 

Oertel et al. [17] employed a Siamese-like network architecture. They used an image as 

input on one branch and a voxel grid (3D input) derived from the structure-from-motion point 

cloud on the other. Their network outperformed state-of-the-art descriptors by up to 90%, 

especially at low descriptor dimensionalities. However, the maximum permitted error is still 

high (from 5 to 20 m) compared to our results (up to 5 m). 

2.2 Localization as a Regression Task 

Instead of using multiple inputs, T. Xie et al. [20] proposed a multi-task CNN for robot 

relocalization that can simultaneously perform pose regression and scene recognition. Despite 

outperforming PoseNet [21] in indoor and outdoor environments, it struggles in outdoor 

environments trying to distinguish very similar places. Finally, when comparing the size of the 

environments and the localization accuracy, the robustness achieved by our method in outdoor 

environments is far superior. 

Schonberger et al. [19] proposed a different multi-task CNN based on a joint 3D geometric 

and semantic understanding of the world. They employed a generative model for learning the 

descriptor, trained on semantic scene completion as an auxiliary task. During on-line operation, 

they used these learned descriptors to create matches between a query and a database map. The 

matches are then used to estimate an alignment between the two maps, which defines a pose 

estimate for the query. They demonstrated reliable localization on two large-scale localization 

datasets under extreme viewpoint, illumination, and geometry changes. Nevertheless, those 

datasets do not fit our requirements for a proper comparison. The KITTI dataset [22], for 
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instance, fails to enclose multiple trips of the same road. The NCLT dataset [23] does it, but, 

unfortunately, its images are not well aligned with 3D LIDAR scans, necessary to build the 

ground-truth. 

2.3 Localization as a Classification and Regression Task 

Forechi et al. [13] proposed a global localization system for self-driving cars composed of 

two components: a place recognition subsystem based on WNNs; and a visual localization 

subsystem based on Convolutional Neural Networks (CNNs). The place recognition component 

receives an online image and outputs the most similar (recollected) image learned in the training 

phase and the associated pose. The visual localization component receives the online image and 

the recollected image and returns the relative camera pose represented by these images. To 

estimate the relative camera pose between the recollected and the online images, the CNN is 

trained with the two images as input and a relative pose vector as output. Experimental results 

show that the proposed system correctly localizes a self-driving car 90% of the time with a 

mean error of 1.20 m. We compared DeepVGL with the place recognition component using the 

Volta-da-UFES datasets and verified that DeepVGL has a performance similar to this 

component, providing correct global localization 75% of the time for 0.2 m accuracy, while the 

component does that 76% of the time, but outperforms the component 96% of the time for 5 m 

accuracy, while the component achieves that only 89% of the time in this situation. In the 

Apollo-DaoxiangLake datasets, DeepVGL outperforms the place recognition component in all 

scenarios, achieving 70% global localization performance for 0.2 m, while the component 

achieves 60%, and 93% global localization performance for 5 m, while the component achieves 

only 66% in this scenario. 

2.4 Localization Based on Deep Neural Networks 

Self-driving cars usually require images to be captured sequentially, as part of their 

trajectory, either to identify a global or relative pose of the vehicle. In this context, several 

approaches similar to ours achieve state-of-the-art results, but fail to deal with large datasets 

[18] or in accuracy with spacing sampling less than 5m [16]. Our approach proved to be 

effective in both situations, obtaining good results on large datasets with competitive precision.  
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3 DEEP VISUAL GLOBAL LOCALIZATION (DEEPVGL) 

DeepVGL is part of the Localizer subsystem of IARA (see Figure 1). Before the addition 

of DeepVGL, IARA used only a Global Navigation Satellite System (GNSS) receiver for global 

localization. DeepVGL performs the same function of IARA’s GNSS, and it is automatically 

employed in cases where the GNSS signal is absent or has a too low precision for global 

localization. For convenience, we describe DeepVGL here in the context of the IARA’s 

autonomy system; however, DeepVGL can be used in any self-driving car. 

DeepVGL is composed of two parts, a Deep Neural Network and a table (Figure 4), and 

works in two modes, training mode and operating mode (Figure 3).  

 

Figure 4. Deep Visual Global Localization (DeepVGL) 

3.1 DeepVGL Training Mode 

In the training mode, the DNN of DeepVGL is trained with image-label pairs from datasets 

built during the process of construction of the Occupancy Grid Map (OGM). The occupancy 

grid mapping process is responsible for generating high-accuracy maps of the operating 

environment (in IARA’s case, map cells have 20 × 20 cm size), which are used for position 

tracking and other purposes. Figure 5 shows an example of such maps.  

DeepVGL

DNN Table
image

label

pose
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Figure 5. Occupancy Grid Map (OGM) 

OGMs for self-driving cars are typically computed using a process known as simultaneous 

localization and mapping (SLAM [2]). There are several algorithms for SLAM and, in this 

work, we use GraphSLAM [2] [4] [11]. In the data acquisition processes required for occupancy 

grid mapping, we save all sensors data in files we call logs. Our version of GraphSLAM 

produces as output a precise pose (x, y and yaw) for each data sample captured in the data 

acquisition processes of each one of the IARA’s sensors. In this way, we are able to build 

datasets of image-pose pairs of the operating environment. We use a unique integer as a label 

for each pose – the Table (Figure 4) of DeepVGL stores the label-pose pairs – and train the 

DNN of DeepVGL to output the labels of the images of the datasets. By training the DNN with 

several images for each relevant pose of the operating environment, we allow the DNN to 

generalize on the appearance (captured by the images) of each relevant pose of the environment 

and produce the correct label for never seen images of relevant positions of the operating 

environment. 

3.2 DeepVGL Operating Mode 

In the operating mode (Figure 3), the DNN of DeepVGL receives online images and 

outputs labels inferred from these images. The DNN also outputs its confidence in the 

association of the inferred label to the online image. DeepVGL uses the inferred label to get its 

unique pose from the Table – the Global Pose (Figure 3). The Global Pose and associated 

confidence are used by the IARA’s Localizer (Figure 1) for global localization when required. 

500 m
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3.3 DeepVGL’s DNN Architecture 

The DNN employed by DeepVGL to infer labels associated with environment poses is a 

Convolutional Neural Network (CNN). The CNN architecture adopted is a modified version of 

YOLOv2 [24], where the input size was modified to 448 × 448 pixels (Figure 6) or 512 × 384 

pixels, for camera and LIDAR range images, respectively, and the output size of the softmax 

layer was set according to the maximum number of unique poses in the datasets. The layers of 

YOLOv2 responsible for object detection were not used and, therefore, removed. YOLOv2’s 

softmax layer computes a probability associated with each possible output label, i.e., a 

probability (or confidence) associated with each possible pose in our case. 

Figure 6 shows the architecture of the DeepVGL DNN, used for camera images, with an 

input size of 448 × 448 pixels and an output of 658 classes. The total of classes is a direct 

relationship between the total distance of the analyzed path and the defined spacing (between 

key poses). This process is discussed in Section 8.1. For a path of 3290 meters and a spacing of 

5 meters between poses, 658 key poses are generated. 

 

Figure 6. DeepVGL DNN architecture with an input size of 𝟒𝟒𝟖 × 𝟒𝟒𝟖 pixels and an output of 𝟔𝟓𝟖 classes. 

All convolutional layers have stride 1. All maxpooling have stride 2 and size 𝟐 × 𝟐, which reduces the 

dimensions of the previous layer's output by half. The 1st convolutional layer has 32 filters, is 𝟑 × 𝟑 pixels 

in size, receives an image of 𝟒𝟒𝟖 × 𝟒𝟒𝟖 pixels and is followed by a 𝟐 × 𝟐 maxpooling, which reduces the 

output to 𝟐𝟐𝟒 × 𝟐𝟐𝟒 pixels. The 2nd convolutional layer has 64 filters and is 𝟑 × 𝟑 pixels in size. The 2nd 

maxpooling reduces the output to 𝟏𝟏𝟐 × 𝟏𝟏𝟐 pixels. Convolutional layers 3 and 5 has 128 filters and are 

𝟑 × 𝟑 pixels in size. Convolutional layer 4 has 64 filters and is 𝟏 × 𝟏 pixel in size. The 3rd maxpooling 

reduces the output to 𝟓𝟔 × 𝟓𝟔 pixels. Convolutional layers 6 and 8 have 256 filters and are 𝟑 × 𝟑 pixels in 

size. Convolutional layer 7 has 138 filters and is size 𝟏 × 𝟏 pixel in size. The 4th maxpooling reduces the 

output to 𝟐𝟖 × 𝟐𝟖 pixels. Convolutional layers 9, 11 and 13 have 512 filters and are size 𝟑 × 𝟑 pixels in size. 

Convolutional layers 10 and 12 have 256 filters and are 𝟏 × 𝟏 pixel in size. The 5th maxpooling reduces the 

output to 𝟏𝟒 × 𝟏𝟒 pixels. Convolutional layers 14, 16 and 18 have 1024 filters and are 𝟑 × 𝟑 pixels in size. 

Convolutional layers 15 and 17 have 512 filters and are size 𝟏 × 𝟏 pixels in size. Convolutional layer 19 must 

have the number of filters equal to the number of classes (in this case, 658), size of 𝟏 × 𝟏 pixel and output 

of 𝟏𝟒 × 𝟏𝟒 pixels. The penultimate layer is an average pool with output equal to the number of classes, 

followed by a softmax with 658 classes in this example. 
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The larger the number of distinct poses, the larger the size of the softmax layer of 

DeepVGL’s DNN. This somehow imposes a practical limit on the number of possible poses 

that DeepVGL can infer and, therefore, in the size of the operating environment in which it can 

be employed. Nevertheless, DeepVGL can be extended to operate in very large environments 

by using a technique commonly used for occupancy grid mapping called map tiling [4].  

In very large environments, the whole OGM is sliced into square tiles that are loaded when 

the self-driving car approaches the border of each tile. In such a scenario, the weights of the 

DNN and the table of DeepVGL associated with each map tile are loaded together with the 

OGM tile.
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4 EXPERIMENTAL METHODOLOGY 

In this chapter, we present the methodology used in the experiments conducted to evaluate 

the performance of the proposed visual global localization system. In Section 4.1, we describe 

the infrastructure of IARA and ART. In Section 4.2, we present the datasets. Finally, in Section 

4.3, we describe the metric used to evaluate the DeepVGL’s performance and, in Section 4.4, 

the robotics operating system (CARMEN).  

4.1 Autonomous Vehicle Platforms 

IARA is a self-driving car developed by the computational intelligence research group of 

LCAD at UFES, in Brazil. IARA is based on a Ford Escape Hybrid, which was modified to 

allow electronic control of steering, throttle, brakes, gears and several signalization items; and 

to provide the car odometry for the IARA’s autonomy system, and power supply for computers 

and sensors. Its main computer is a Dell Precision R5500 with two Xeon X5690 six-core 3.4 

GHz processors and one NVIDIA TITAN Xp. Its sensors include one Velodyne HDL 32-E 

LIDAR, one Trimble RTK GNSS, one Xsens MTi IMU and one Bumblebee XB3 stereo 

camera.  

ART is based on a Mercedes-Benz Atego 2430, which was also adapted to enable 

electronic vehicle control, and to provide the vehicle odometry for the ART’s autonomy system, 

which is basically the same as the IARA, and power for computers and sensors. Its main 

computer is a Dell XPS 8940 with an Intel Core i7-10700 octa-core 2.9 GHz to 4.8 GHz 

processor and on NVIDIA GeForce RTX 2060 Super. Its sensors include one Velodyne HDL 

32-E LIDAR, one Trimble RTK GNSS, one MPU-9250 Nine-Axis MEMS MotionTracking 

Device and one Intelbras VIP 1020 B G2 camera. 
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4.2 Datasets 

4.2.1 Volta-da-UFES Datasets 

IARA’s Bumblebee XB3 stereo camera captures stereo-image pairs at 16 frames per 

second (FPS), where each image of each pair has 640×480 pixel size. The closest-in-time pose 

(x, y, yaw) computed by IARA’s Localizer subsystem is associated to each stereo image. To 

compute these poses, the Localizer uses IARA’s odometry, IMU and LIDAR – please see 

details in Veronese et al. [3]. The accuracy of IARA’s Localizer subsystem with respect to the 

OGM, while performing position tracking, is 0.21 m, for maps with cells of 0.2 × 0.2 meter 

size [3]. We used a single reference map to build the Volta-da-UFES datasets. This reference 

map was produced using our implementation of the GraphSLAM algorithm [4] [11] while using 

a log not employed for building the datasets. 

The Volta-da-UFES datasets consist of 10 text files and images associated to each line of 

each one of the files, grouped in directories, one for each file. Each file line contains the name 

of the associated image file, its label, 6D pose (x, y, z, roll, pitch, and yaw) and timestamp. 

There can be several lines with the same label, since the labels correspond to 3D poses (x, y, 

yaw) 5 m apart from each other along the ring road on the reference map – images receive the 

label of the nearest position.  

Each file corresponds to a log associated with a trip along the whole ring road of UFES 

main campus (Figure 7), except datasets 4 and 6 (see Table 1). In each trip, IARA was driven 

at a maximum speed of 60 km/h. A complete trip is approximately 3.5 km long. Image and pose 

data were collected synchronously, producing approximately 75,000 image-pose pairs. Table 1 

summarizes the Volta-da-UFES datasets. 
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Figure 7. Ring road of UFES main campus of approximately 3.5 km long. Image taken from Google Maps. 

Table 1: Volta-da-UFES datasets 

Dataset Date (mm-dd-yyyy) 

Sampling Spacing 

< 1 m 1 m 5 m 

UFES-LAP-01 08-25-2016 7,165 2,742 651 

UFES-LAP-02 08-25-2016 6,939 2,599 651 

UFES-LAP-03 08-25-2016 6,404 2,538 651 

UFES-LAP-04 08-30-2016 1,706 723 169 

UFES-LAP-05 10-21-2016 9,404 2,853 651 

UFES-LAP-06 01-19-2017 1,804 701 171 

UFES-LAP-07 12-05-2017 17,911 5,703 651 

UFES-LAP-08 01-12-2018 8,220 2,828 651 

UFES-LAP-09 01-12-2018 7,714 2,843 645 

UFES-LAP-10 10-03-2019 7,747 2,868 651 

Total 75,014 26,398 5,542 
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Table 1 contains 5 columns. The first two are the dataset name and the date of the log from 

which it was built. It is important to note that the difference in time between the datasets reaches 

more than 3 years. This long-time span poses a challenge, as during such a long time period 

there were significant changes in the campus infrastructure. These changes include different 

traffic and weather conditions, time of the day, road and buildings maintenances, occlusions, 

and viewpoint entanglements. The last 3 columns of Table 1 show the number of images 

(spacing < 1 m) in each dataset, the number of images if they are taking at a spacing of about 1 

m and the number of images if taking at a spacing of 5 m. The Volta-da-UFES datasets are 

available at https://github.com/LCAD-UFES/DeepVGL.  

The Volta-da-UFES datasets were divided into training, validation and test sets: the 

training set consists of datasets 1, 2, 3, 5, 7, 8 and 9; the validation set of datasets 4 and 6; and 

the test set of dataset 10. The 1 m spacing was used for training, validation, and test. So, 

altogether, the training set has 44,212 images (we used both images of each stereo pair), the 

validation set has 2,848 images (we used both images of each stereo pair), and the test set has 

2,868 images (we used only the left image of each stereo pair). 

4.2.2 Apollo-DaoxiangLake Datasets 

To examine the performance of DeepVGL in different environment and weather 

conditions, we used datasets made available by Apollo-DaoxiangLake, which contain pairs of 

images and poses from 8 different dates collected throughout the year of 2019 [25]. The images-

pose pairs were collected along a course of approximately 11.8 km in the “Daoxianghu Natural 

Wetland Park” region (see Figure 8). 

https://github.com/LCAD-UFES/DeepVGL
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Figure 8. Daoxianghu Narutal Wetland Park, China, where the Apollo-DaoxiangLake datasets were 

collected. Image taken from Google Maps. 

The Apollo-DaoxiangLake datasets consist of 8 text files and images associated to each 

line of each one of the files, grouped in directories, one for each file. Each file line has the same 

format of the Volta-da-UFES datasets. Their system collected images from 3 cameras while 

running along the course in both directions, but we used images taking only from the front 

camera while running in the counterclockwise direction. Table 2 summarizes these datasets. 

BAIDU_1 to BAIDU_6 was used for training, and BAIDU_7 and BAIDU_8 for testing and 

validation, respectively. 
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Table 2: Apollo-DaoxiangLake datasets 

Dataset Date (mm-dd-yyyy) 

Sampling Spacing 

< 1 m Both 

Directions 

< 1 m Counter 

Clockwise 
1 m 5 m 

BAIDU_1 2019-09-18 14:33 26,850 7,636 5,377 1,990 

BAIDU_2 2019-09-24 12:48 39,975 21,000 13,809 1,990 

BAIDU_3 2019-10-14 14:25 22,955 11,000 7,807 1,990 

BAIDU_4 2019-10-21 16:21 25,308 13,000 8,900 1,990 

BAIDU_5 2019-10-25 10:47 23,515 12,000 8,248 1,990 

BAIDU_6 2019-11-30 11:28 50,301 35,000 22,201 1,990 

BAIDU_7 2019-12-16 12:33 41,189 21,000 13,552 1,990 

BAIDU_8 2019-12-25 15:36 42,705 23,000 14,851 1,990 

Total 245,948 143,636 94,745 15,920 

4.2.3 LCAD-ART-CAMERA Dataset 

ART's Intelbras VIP 1020 B G2 camera captures images at 16 FPS, where each image has 

640 × 480 pixel size. As in IARA, the closest-in-time pose (x, y, yaw) computed by ART’s 

Localizer subsystem [3] is associated to each image.  

The LCAD-ART-CAMERA datasets consist of 4 text files and images associated to each 

line of each of the files, grouped in directories, one for each file. Each file line contains the 

name of the associated image file, its label, 6D pose (x, y, z, roll, pitch and yaw) and timestamp. 

The labels correspond to positions (x, y, yaw) 3 m apart from each other along the ring road on 

the reference map and the images are labeled with the closest position.  

Each file corresponds to a log associated with a trip along the ring road of the main campus 

of UFES (Figure 7). In each trip, ART was driven at a maximum speed of 60 km/h. Image and 

pose data were collected synchronously, producing about 37,000 image-pose pairs. Table 3 

summarizes the Volta-da-UFES datasets.  
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Table 3: LCAD-ART-CAMERA datasets 

Dataset Date (yyyy-mm-dd) Number of Images Number of Images Used 

ART_1_C 2021-01-20 15,766 10,914 

ART_2_C 2021-01-31 9,067 7,315 

ART_3_C 2021-02-12 1,940 782 

ART_4_C 2021-03-05 10,052 6,893 

Total 36,825 25,904 

 

Table 3 contains 4 columns. The first two are the dataset name and the date of the log from 

which it was built. The last 2 columns of Table 3 show the number of images captured in each 

dataset and the number of images used. During the process of building the datasets, some 

images are discarded – please see details in Section 8.1. 

The LCAD-ART-CAMERA datasets were divided into training, validation and test sets: 

the datasets 1, 2 e 3 were merged and split into training and validation sets, and the dataset 4 

was used as the test set. The training set has 17,109 images, the validation set has 1,902 images 

and the test set has 6,893 images. 

4.2.4 LCAD-ART-LIDAR Dataset 

ART's Velodyne HDL 32-E LIDAR produces point clouds with 32 lines and 

approximately 1,084 columns at a rate of 20 Hz. As with the camera, the closest-in-time pose 

(x, y, yaw) computed by ART’s Localizer subsystem [3] is associated with each point cloud. 

The LIDAR range images are generated from the point clouds, where each image has 

640 × 480 pixel size.  

To generate LIDAR range images, LIDAR distance measurements are stored in a 32x1084 

matrix. The values are converted to a color scale and the matrix is then converted to an image. 

Each channel in the RBG image is related to a range measured by LIDAR, where R starts from 

0 to 25 m, G from 25 to 50 and B from 50 to 75 (limit of our scale). All readings above 75m 

produce white pixels and all readings equal to zero are treated the same. This produces an image 
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with pixels ranging from dark red, through orange and yellow, to white. In figure X, we see an 

example of the resulting LIDAR range image in contrast to the camera image associated with 

the same scene. For details on the process of generating images from point clouds, please see 

Section 8.2. 

 

Figure 9. Comparison between camera image and LIDAR range image. The color scale in the image on the 

right represents LIDAR distance measurements that range from values close to zero (dark red) to 75 m 

(white) which is the defined limit of the scale. 

The LCAD-ART-LIDAR datasets consist of 4 text files and LIDAR range images 

associated to each line of each one of the files. Each file line contains the name of the associated 

image file, its label, 6D pose (x, y, z, roll, pitch and yaw) and timestamp. The labels correspond 

to positions (x, y, yaw) 3 m apart from each other along the ring road on the reference map and 

the images are labeled with the closest position. 

The files correspond to logs associated with trips along the ring road of the main campus 

of UFES (Figure 7), the same trips used to collect the LCAD-ART-CAMERA datasets (Table 

3). LIDAR and pose data were collected synchronously, producing approximately 44,321 pairs 

of LIDAR range image and pose.  Table 4  summarizes the LCAD-ART-LIDAR datasets. This 

table has the same format of Table 3.  
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Table 4: LCAD-ART-LIDAR datasets 

Dataset Date (yyyy-mm-dd) 
Number of  

LIDAR Range Images 

Number of  

LIDAR Range Images Used 

ART_1_L 2021-01-20 15,794 11,289 

ART_2_L 2021-01-31 12,400 10,564 

ART_3_L 2021-02-12 2,599 1,438 

ART_4_L 2021-03-05 13,438 10,109 

Total 44,231 33,400 

 

The LCAD-ART-LIDAR datasets were divided into training, validation and test sets: the 

datasets 1, 2 e 3 were merged and split into training and validation sets, and the dataset 4 was 

used as the test set. The training set has 20,962 LIDAR range images, the validation set has 

2,329 range images and the test set has 10,109 range images. 

4.3 Evaluation Metrics 

To evaluate the performance of DeepVGL, we used two metrics: Accuracy and Maximum 

Allowed Error. The Accuracy metric is the percentage of times the DNN outputs the correct 

label when making inferences on the validation or test sets. The Maximum Allowed Error 

(MAE) refers to the number of poses one needs to go forward or backward in the sequence of 

poses to find the expected pose for a given DNN input image. 

4.4 Carmen 

The subsystems of the IARA autonomy system (Figure 1) are implemented as one or more 

software modules using the Carnegie Mellon Robot Navigation Toolkit (CARMEN). 

CARMEN is a modular collection of software for controlling mobile robot. It was designed to 

provide basic navigation primitives, and to support several robots and sensors. It was created 

by Carnegie Mellon University (http://carmen.sourceforge.net/).  

http://carmen.sourceforge.net/
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In CARMEN, communication between modules is done through the Inter Process 

Communication (IPC), where each module can publish messages and/or subscribe to messages 

of interest to the module and receive them. This exchange of messages can even happen 

between different computers using TCP/IP. The messages are sent through a publication to the 

Central server, which is responsible for receiving the messages and passing them on to the 

modules that signed the specific message. Modules that publish messages are called Publishers, 

while modules that receive messages are called Subscribers. A module can be both at the same 

time.  

Since 2011, CARMEN has been extended and maintained by LCAD at UFES, and made 

available to the public at https://github.com/LCAD-UFES/carmen_lcad. CARMEN-LCAD can 

be integrated into any type of vehicle platform. For that, it is necessary to adapt the platform to 

enable electronic vehicle control; provide the vehicle odometry to the autonomy system, and 

power for computers and sensors; and install sensors, e.g., LIDAR, RTK GNSS, IMU and 

cameras. CARMEN-LCAD has now been tested in cars, electric pods, trucks and even in 

planes. For those tests, sensors were encapsulated in a box (called the sensor box) that was fixed 

to the roof of the vehicles. 

https://github.com/LCAD-UFES/carmen_lcad
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5 EXPERIMENTAL RESULTS 

In this chapter, we present the results of the experiments we carried out to evaluate the 

DeepVGL performance. In Section 5.1, we present the functions and parameters used for 

training the DeepVGL DNN. In Section 5.2, we present the results obtained with Volta-da-

UFES and Apollo-DaoxiangLake datasets. Finally, in Section 5.3, we present the results 

obtained with the LCAD-ART-CAMERA and LCAD-ART-LIDAR datasets. 

5.1 DNN Training Functions and Parameters 

For Volta-da-UFES and Apollo-DaoxiangLake datasets, we trained the DeepVGL DNN 

using the original Darknet YOLOv2. For LCAD-ART-CAMERA and LCAD-ART-LIDAR 

datasets, we trained the DeepVGL DNN as in the original Darknet YOLOv2, but using the 

Python implementation [26], which provides more options for loss function and data 

augmentation – instead of the Multi-Part Loss [27] employed by the original Darknet YOLOv2, 

we used the Cross-Entropy Loss as the loss function. 

We employed an initial learning rate of 0.001 and used three distinct hyperparameter 

configurations: poly, steps and sgdr [27]. The remaining YOLOv2 training hyperparameters 

have not been modified. The DNN was pre-trained with the ImageNet dataset [28]. 

All experiments with camera images were performed on a workstation with 64 GB of RAM 

and an Nvidia Titan V GPU with 12 GB of video memory. It took 120 epochs to complete a 

training and the average time was around 48h. The experiments in python using images from 

the LIDAR line were performed on a personal computer with 16 GB of RAM and an NVIDIA 

GeForce GTX 1050 Ti GPU. Generally, it took 4 to 12 seasons for training and the average 

time was around 12 hours. In both configurations, tests can be run in real time. 
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5.2 Results with Volta-da-UFES and Apollo-DaoxiangLake 

Datasets 

5.2.1 DNN Accuracy 

We trained the DNN of DeepVGL for 130 epochs with Volta-da-UFES training set using 

the 3 different optimization methods. Figure 10  presents the results for Volta-da-UFES 

validation set. As Figure 10 shows, the choice of the optimization method does not affect the 

DNN Accuracy much (step show a small advantage). The highest achieved Accuracy was 

~76%. 

 

Figure 10. Accuracy of DeepVGL for the Volta-da-UFES validation set 

We trained the DNN of DeepVGL for 230 epochs with Apollo-DaoxiangLake training set 

using the step optimization method. 0 presents the results for the Apollo-DaoxiangLake 

validation set. As 0 shows, highest achieved Accuracy was ~81%. 
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Figure 11. Accuracy of DeepVGL for the Apollo-DaoxiangLake validation set 

5.2.2 DeepVGL MAE Performance  

DeepVGL performance for different MAE levels in the Volta-da-UFES validation and test 

sets are shown in Table 5. In this table, the first column presents the MAE (number of sequential 

poses one is allowed to move forward or backward to find the correct pose of an input image), 

while the second and third columns, the Accuracy considering the MAE for the validation and 

test sets. As Table 5 shows, the Accuracy increases significantly as MAE goes from 0 to 2. In 

our tests, the IARA’s Localizer was always able to start proper position tracking after a correct 

label inference for a MAE of up to 2. Note that the Accuracies for the validation and test sets 

are similar. 
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Table 5: DeepVGL Volta-da-UFES Accuracy considering MAE, given by the number of sequential poses, 

or labels, one is allowed to move forward or backward to find the correct label of an input image 

MAE 

Accuracy for each MAE (%) 

Volta-da-UFES Validation Set Volta-da-UFES Test Set 

0 73 75 

1 96 95 

2 99 97 

 

Table 6 presents the Accuracy of DeepVGL for different MAE levels considering the 

Apollo-DaoxiangLake validation and test sets. It has the same format of Table 6. As Table 7 

shows, the results for Apollo-DaoxiangLake are similar to the results of Volta-da-UFES, 

although somewhat worse. This is to be expected, since the number images per label of the 

Apollo-DaoxiangLake datasets (33 images/label) is smaller than the Volta-da-UFES datasets 

(67 images/label). 

Table 6: DeepVGL Apollo-DaoxiangLake accuracy considering MAE 

MAE 

Accuracy (%) 

Apollo-DaoxiangLake 

Validation Set 

Apollo-DaoxiangLake 

Test Set 

0 81 71 

1 97 90 

2 97 93 

5.2.3 Comparison with a WNN 

We compared our results with that of Forechi et al. [13], who employed a Weightless 

Neural Network (WNN) approach to solve the same global localization problem. To our 

knowledge, this is the best previous result for this problem in the context of self-driving cars. 

Figure 12 presents the result of this comparison. 
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Figure 12. Accuracy of DeepVGL and WNN for 5 values of Maximum Allowed Error (MAE) in frames with 

Volta-da-UFES datasets 

In Figure 12, the curve in orange represents the results of the WNN approach and the curve 

in blue the results of DeepVGL. To produce the results of this figure, we trained and tested the 

WNN system with the same Volta-da-UFES datasets presented in this work. As Figure 12 

shows, DeepVGL presents a performance significantly higher than the WNN approach in the 

Volta-da-UFES datasets.  

Figure 13 has the same format of Figure 12 and presents the results of WNN and DeepVGL 

for the Apollo-DaoxiangLake datasets. Again, as Figure 13, DeepVGL shows a performance 

significantly higher than the WNN approach. 
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Figure 13. Accuracy of DeepVGL and WNN for 5 values of Maximum Allowed Error (MAE) in frames with 

Apollo-DaoxiangLake datasets 

5.3 Results with the LCAD-ART-CAMERA and LCAD-ART-

LIDAR Datasets 

Table 7 shows the DeepVGL performance for two MAE levels in the LCAD-ART-

CAMERA validation and test sets. As Table 7 shows, the results for LCAD-ART-CAMERA 

are similar to the results of Volta-da-UFES (Table 5). However, the Accuracies for the test set 

are worse than the Accuracies for the validation set. This is to be expected, as the number 

images per label of the for LCAD-ART-CAMERA datasets (39 images/label) is smaller than 

the Volta-da-UFES datasets (67 images/label). 

Table 7: DeepVGL LCAD-ART-CAMERA accuracy considering MAE 

MAE 

Accuracy (%) 

LCAD-ART-CAMERA 

Validation Set 

LCAD-ART-CAMERA 

Test Set 

0 88 78 

1 98 93 
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Table 8 presents the DeepVGL performance for two MAE levels in the LCAD-ART-

LIDAR validation and test sets. As Table 8 shows, the results for LCAD-ART-LIDAR are 

significantly better than the results of LCAD-ART-CAMERA. For a MAE level of 0 (zero), the 

Accuracy for the LCAD-ART-LIDAR test set is 95 (Table 8, line 2, column 3), while for the 

LCAD-CAMERA-LIDAR test set is 78 (Table 7, line 2, column 3), i.e., approximately 20% 

higher; and, for a MAE level of 1 (one), the Accuracy for the LCAD-ART-LIDAR test set is 

98 (Table 8, line 3, column 3), while for the LCAD-CAMERA-LIDAR test set is 93 (Table 7, 

line 3, column 3), i.e., about 5% higher. 

Table 8: DeepVGL LCAD-ART-LIDAR accuracy considering MAE 

MAE 

Accuracy (%) 

LCAD-ART-LIDAR 

Validation Set 

LCAD-ART-LIDAR 

Test Set 

0 98 95 

1 99 98 

 

The reason for these results is that camera images provide visual information about the 

characteristics of objects that make up the environment around the car; colors, shapes and how 

they relate can be easily seen. However, range images extracted from LIDAR data incorporate 

distance information of objects around the car, which is invariant to changes in lighting and 

lateral displacement, for example. (In our experiments, we did not evaluate changes in the 

lateral displacement of objects, but only changes in lighting.) In addition, LIDAR range images 

also incorporate a wider field of view. Therefore, LIDAR range images aggregate information 

that compensates for their low resolution compared to camera images and provide better results 

in estimating global localization. 
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6 CONCLUSIONS AND FUTURE WORK 

In this chapter, we present the conclusions and directions for future work. In Section 6.1, 

we present the conclusions based on the experimental results of this research work. In Section 

6.2, we present directions for future work. 

6.1 Conclusions 

In this work, we presented DeepVGL, a robust and efficient solution for the global 

localization problem using images. DeepVGL provides a relevant alternative to situations 

where GNSS receivers cannot work due to satellite occlusion (within tunnels, urban canyons, 

garages, etc.). This makes it highly applicable in the context of self-driving cars.  

We evaluated the performance of DeepVGL using datasets composed of tens of thousands 

of camera images and associated poses, which were obtained with experimental self-driving 

cars. The datasets include significant changes in building infrastructure, traffic volume and 

weather conditions, as well as different times of the day and season of the year. Our results 

showed that DeepVGL can correctly estimate the global localization of the self-driving car up 

to 75% of the time with an accuracy of 0.2 m and up to 96% of the time with an accuracy of 5 

m, which is well within the capabilities of the position tracking system to get to a centimeter-

precision localization.  

We also compared DeepVGL with a state-of-the-art global localization system based on 

WNN [13]. Our results showed that DeepVGL outperforms WNN, which can correctly locate 

the self-driving car up to 76% of the time for 0.2 m accuracy, but only up to 89% of the time 

for 5 m accuracy. 

Finally, we tested the performance of DeepVGL with datasets composed of tens of 

thousands of LIDAR range images and associated poses, which were obtained with an 

experimental self-driving truck. Our results showed that DeepVGL obtained consistently better 

results with LIDAR range images than with camera images, being able to correctly locate the 

self-driving truck up to 95% of the time for 0.2 m accuracy and 98% of the time for 5 m 

accuracy. These results showed that LIDAR range images – which incorporate distance 

information from objects around the car and a wider field of view – provide superior results 
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than camera images – which incorporate colors and shapes – on the global localization of self-

driving cars.  

6.2 Future Work 

As directions for future works, we plan to enlarge the input of the DeepVGL DNN and 

reexamine its performance considering this change when using camera images. Another 

direction for future research is to increase the number of convolutional layers of the DNN 

architecture. Synthetic data augmentation through the random insertion of black or white 

blocks, and mosaics with images of movable objects common to the road environment, is also 

a promising alternative for investigation in the direction of improving accuracy and 

generalization. Moreover, we intend to extend the results obtained with LIDAR images and 

apply ICP registration algorithm between learned and live point clouds to increase the 

subsystem accuracy and prediction frequency. Furthermore, we plan to analyze the performance 

of DeepVGL DNN in a self-driving car using weights learned from another car and evaluate 

the possibility of eliminating the need to collect sensor data whenever the vehicle platform 

changes. Finally, we intend to compare DeepVGL with some other approaches that solve the 

problem of visual global localization in the context of self-driving cars.  
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8 APPENDIX: DATASET BUILDING PROCESS 

In this chapter, we present the process of building the datasets used in this work. In Section 

8.1, we explain the generation of key poses and image clusters, which explains how to label or 

discard images. In Section 6.2, we describe the generation of images from point clouds. 

8.1 Generation of Key Poses and Image Clusters 

The datasets used in this work consist of text files and images associated with the lines of 

the files. The images are grouped in directories, one directory for each file. Each file line 

contains the name of the associated image file, its label, 6D pose (x, y, z, roll, pitch, and yaw) 

and timestamp. The timestamps correspond to the times when the images were captured by the 

camera. The 6D poses correspond to the closest-in-time poses computed by the autonomous 

vehicle Localizer subsystem; to compute these poses, the Localizer uses the vehicle odometry, 

IMU and LIDAR – please see details in Veronese et al. [3]. The labels correspond to 3D poses 

(x, y, yaw), fixed sampling space in meters apart from each other along the path on the reference 

map, named key poses; the images receive the label of the closest key pose, which produces 

clusters of images around key poses (i.e., centroids of the clusters). Note that if the distance 

between the image pose and the closest key pose is greater than half of the sampling space, the 

image is discarded. 

Figure 14 shows the distribution of clusters of images along the path, according to Python 

scripts for building datasets provided by Forechi et al. [13]. In this figure, each circle denotes 

the region of an image cluster, and images whose distance to the closest key pose is greater than 

the circle's radius are discarded. Note that depending on how images are distributed along the 

path, some images may be very similar, but associated with different key poses, especially those 

in the border regions of the clusters. This could generate ambiguous images and decrease the 

classification accuracy. Figure 15 shows the distribution of images and key poses from a dataset 

along the path, according to scripts by Forechi et al. [13]. Note that it is difficult to distinguish 

when images are no longer associated with a key pose, but with another one, before or after, 

along the path. 
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Figure 14. Distribution of clusters of images along the path. The black circles denote the regions of image 

clusters, the blue line denotes the path on the reference log and the green lines denote the key poses.  

 

Figure 15. Distribution of images and key poses from a dataset along the path. The green dots denote the 

key poses and the red dots denote the images. 
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To avoid the problem of very similar images associated with different key poses, in this 

work, we reduced the radius of the circles that define the image clusters and kept the sampling 

space between key poses. 

Figure 16 shows the new distribution of clusters of images along the path, according to our 

modified version of the Python scripts for building datasets provided by Forechi et al. [13]. This 

figure has the same format of Figure 14, except for smaller black circles and new red circles, 

which denote the border regions of the old image clusters that are now disregarded. Note that 

no matter how the images are distributed along the path, there are always gaps between the 

image clusters, which avoids ambiguous images that negatively affect classification accuracy. 

 

Figure 16. New distribution of clusters of images along the path. The black circles denote the regions of 

image clusters (images outside the black circles are discarded), the blue line denotes the path on the 

reference log, the green lines denote the key poses and the red circles denote the border regions of the old 

image clusters that are now disregarded.  

Figure 17 shows the new distribution of images from a dataset along the path, according 

to our Python scripts. Note that there is no doubt on which images belong to each cluster. In 

other words, there is no question about where each image cluster starts and ends. 
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Figure 17. New distribution of images from a dataset along the path. The green dots denote the key poses 

and the red dots denote the images. 

8.1.1 Algorithms 

 

 

Algorithm 1 shows the pseudocode for generating the list of key poses. It receives as input 

(i) the list of poses from the reference log, “Poses”, and (ii) the sampling space, “Spacing”.  In 

line 1, we initialize key_pose to an empty array. On line 2, we initialize the "pose_distance" 

variable to zero. In line 3, we initialize the "next_key_pose" variable to null. On line 4, we 

iterate over the "Poses" list, received as an argument of the function. In line 5, we validate if 

it's the first time in the loop, and if so, we set the value of "next_key_pose" to the value of 

"pose" (line 6). In line 8, we set the value of the variable "distance" with the Euclidean distance 

between "pose" and "next_key_pose". In line 9, we check if the calculated distance is greater 

than zero and less than "Spacing", and if so, in line 10 we set the value of "next_key_pose" with 

the value of "pose". In line 11, we append the value from "pose" to the "key_poses" array.  

Finally, in line 14, the algorithm returns the list of key poses. 
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Algorithm 1. Pseudocode for generating the list of key poses 

GET_KEY_POSES (Poses,Spacing) 

1.  INIT key_poses as empty array 

2.  SET pose_distance to 0 

3.  SET next_key_pose to NULL 

4.  FOR each pose on Poses do  

5.           IF next_key_pose is null THEN 

6.             SET next_key_pose to pose  

7.        ENDIF 

8.       SET distance to euclidian distance between pose and next_key_pose 

9.        IF distance > 0 and distance < Spacing THEN 

10.              SET next_key_pose to pose 

11.              CALL appendTo with pose, key_poses 

12.        ENDIF 

13.  ENDFOR 

14.  RETURN key_poses 

 

Algorithm 2 shows the pseudocode for labeling an image by the closest key pose. It 

receives as input (i) the pose of the image, “imgpos”, (ii) the list of key poses and (iii) the 

maximum distance allowed between the image pose and the closet key pose, “Radius”. In line 

1, we initialize "closest_pose" to null. In line 2, we set the value of "min_dist" to zero. In line 

3, we iterate over the "key_poses" list received as the function's argument. In line 4, we define 

the value of the variable "distance" with the Euclidean distance between "pose" and "imgpos" 

(taken as an argument of the function). In line 5, we check if the calculated distance is greater 

than zero, less than "Radius" and less than "min_dist", if yes, we set the value of "closest_pose" 

with the value of "pose" (in line 6). Finally, in line 8, the algorithm returns the key pose closest 

to the input image. 
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Algorithm 2. Pseudocode for labeling an image by the closest key pose 

FIND_CLOSEST_KEYPOSE (imgpos, KEY_POSES, Radius ) 

1.  SET closest_pose to null 

2.  SET min_dist to 0 

3.  FOR each pose on KEY_POSES do  

4.      SET distance to euclidian distance between pose and imgpos 

5.      IF distance > 0 and distance < Radius and distance < min_dist then 

6.          SET closest_pose to pose 

7.  ENDFOR 

8.  RETURN closest_pose 

 

Finally, Algorithm 3 shows the pseudocode for clustering the images around the closest 

key poses. It receives as input (i) a list of all image-pose pairs, "pairs_of_images_and_poses" 

and (ii) the list of key poses, key_poses. In line 1, we initialize the “closest_pose” variable to 

the null value. In line 2, we iterate through the list of "pose and image" pairs. In line 3, we call 

the function that finds the keypose closest to the pose of the iterated image. In line 4, we check 

if no pose was found (null value). Finally, in line 5, if a valid pose was found, the algorithm 

returns the closest key pose of the image-pose pair. 

Algorithm 3. Pseudocode for clustering the images around the closest key poses 

GROUP_IMAGES (pairs_of_images_and_poses,key_poses) 

1. d SET closest_pose to NULL 

2.  FOR each image_pose on pairs_of_images_and_poses do  

3.      CALL find_closest_keypose with image_pose, key_poses RETURNING closest_pose 

4.      IF closest_pose is not NULL then  

5.          OUTPUT closest_pose and image_pose 

6.      ENDIF 

7.  ENDFOR 
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8.2 Generation of Images from LIDAR Measurements 

ART's Velodyne HDL 32-E LIDAR emits 32 vertical laser beams and rotates horizontally 

360 degrees at a rate of about 20 Hz, collecting 32 readings associated with the vertical field of 

view (VFOV) and 1,084 columns associated with the horizontal field of view (HFOV). The 

Velodyne LIDAR readings correspond to distance measurements up to about 75 m.  

In this work, the LIDAR distance measurements are stored in a 32 × 1084 matrix that was 

converted into a LIDAR range image of 640 × 480 pixels. For this, we firstly defined a new 

depth scale that ranges from 0 to 765 and corresponds to LIDAR distance measurements from 

0 to 75 m.  

Subsequently, we split the depth scale range into 3 sections, which are associated with the 

three channels of the RGB color scheme, and filled the channels for each image pixel according 

to Equation 1: 

𝐵 = {
(𝑟 − 510),                      𝑟 > 510
0,                                       𝑟 ≤ 510
255,                                      𝑟 = 0

 

𝐺 = {
(𝑟 − 𝐵 − 255),             𝑟 > 255
0,                                     𝑟 ≤ 255
255,                                     𝑟 = 0

 

𝑅 = {
(𝑟 − 𝐺 − 𝐵),                     𝑟 > 0
255,                                     𝑟 = 0

 

Equation 1 

where 𝑟 is the LIDAR distance measurement (from 0 to 75 m) converted to the new depth scale 

(from 0 to 765), and 𝑅, 𝐺 and 𝐵 are the channels of an image pixel, which are stored in a vector. 

For example, let the LIDAR distance measurement be 𝑟 =  600. As 𝑟 >  510, then blue 

channel, 𝐵, will be filled with 𝐵 =  𝑟 −  510 =  90, the green channel, 𝐺, with be filled with 

𝐺 =  𝑟 −  𝐵 −  255 =  𝑟 −  90 −  255 =  255 and the red channel, 𝑅, with  𝑅 = 𝑟 −  𝐺 −

 𝐵 =  𝑟 −  255 −  90 =  255. Note that LIDAR distance measurements that ranges from 1 to 

255 will fill the R channel only, measurements from 256 to 510 will fill both the R and G 

channels and the measurements from 511 to 765 the R, G and B channels. Note also that pixels 

approaching dark red represent measurements of objects closer to the self-driving car and pixels 

approaching white represent objects further away from the car. Finally, note that the LIDAR 

distance measurement is a float, but we converted it to an integer in the new depth scale.  
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Specifically, in the case of ART, the part of the LIDAR range image that depicts only the 

rear of the truck was discarded, which produced an image of 32 × 813 pixels that represents 

270 degrees of the LIDAR, from -135 degrees to +135 degrees, taking the front as 0 degree. 

Finally, we scaled the LIDAR range image to 640 × 480 pixels. 

Figure 18  shows an example of an image generated from LIDAR distance measurements.  

 

Figure 18. Example of an image generated from LIDAR distance measurements. Pixels approaching dark 

red represent measurements of objects closer to the autonomous vehicle, while pixels approaching white 

represent objects further away from the vehicle. 

In this work, the LIDAR HFOV (360o) is much larger than the camera HFOV (66o). In 

addition, LIDAR provides distance measurements. However, while the camera VFOV is 

slightly larger and much denser (50o and 480 rows) than the LIDAR VFOV (40o and 32 rows), 

these camera advantages does not outweigh the LIDAR advantage of having a higher HFOV 

and providing depth information via distance measurements. 

Figure 19 shows the difference between the camera FOV and LIDAR FOV. In this figure, 

we observe that the LIDAR image covers a wider view, which helps DeepVGL in the task of 

distinguishing very similar scenes considering all their surroundings. 
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Figure 19. Difference between camera FOV and LIDAR FOV. The image at the bottom denotes the LIDAR 

range image and the image at the top denotes the camera image. The scene represented by the bounding 

box in the LIDAR range image corresponds to the scene represented by the bounding box in the camera 

image.  

 

 


