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ABSTRACT 

This study estimates exposure and inhaled dose to air pollutants of children residing in a tropical 

coastal-urban area, namely the Metropolitan Region of Vitória (MRV), highly influenced by 

industrial and urban emissions, located in Southeast Brazil. The air pollutant concentration data 

were provided by the chemistry and transport Community Multiscale Air Quality (CMAQ) 

model together with the Integrated Source Apportionment Method (ISAM) tool. The 

simulations were performed over three months (November/2019, December/2019, and 

February/2020) using a local inventory, which was processed by the Sparse Matrix Operator 

Kernel Emission (SMOKE). The meteorological fields were provided by the Weather Research 

and Forecasting (WRF-Urban) model while the boundary (BCON) and initial (ICON) 

conditions were performed by the global atmospheric chemistry model GEOS-Chem. 

Sensitivity analyses were conducted to investigate the relationship between air pollutant 

concentrations and the configuration of the lowest model level height (z = 4 m, z = 10 m, z = 

20 m) using the multi-layer urban canopy model BEP (Building Effect Parameterisation), 

totalizing nine simulations for each model. Once the air pollutant concentrations were predicted 

by the numerical modelling system, the personal exposure was calculated using information 

from the time-activities diaries of the children, and I/O ratios were also employed to consider 

the amount of time they spent indoors. In total, eight exposure scenarios were assessed, one 

was using data from the fixed monitoring station nearby children’s residences, and three used 

the CMAQ model. In addition, each one considered two approaches (i) assuming no indoor 

correction and (ii) using I/O values to represent differences between indoor and outdoor 

concentrations. The scenarios were compared with NO2 personal monitors (12.3±5.1 µg/m3) 

worn by twenty-one children and revealed that the use of I/O correction benefitted exposure 

results using the monitoring station (9.3±2.7 µg/m3). On the other hand, it has not benefitted 

exposure results using the CMAQ model, in which the most suitable performance was found 

with the configuration z = 20 m without I/O adjustment (15.9±2.0 µg/m3). The exposures to O3, 

PM10, PM2.5, and PM1 were qualitatively estimated since there were no personal observations. 

Nevertheless, the results were presented comparing both indirect methods (monitoring station 

and model). The dose assessment considered two approaches for PM2.5 and PM1, namely the 

average daily potential dose (ADDpot) and the respiratory deposition dose (RDD). The inhaled 

dose intake by boys tended to be higher than girls because boys usually breathe faster than girls. 

However, the results showed how this assessment is highly influenced by personal data (e.g. 

age, gender, respiratory parameters, and physical activities). Finally, the source apportionment 
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assessment revealed that the greatest contributors to children’s exposure were the boundary 

conditions, the vehicular exhausts, the industrial point sources, the shipping sector, and the road 

dust resuspension, suggesting that emissions control policies have to integrate different levels 

of government. In conclusion, the exposure of children to air pollutants estimated by the 

numerical model in this work was comparable to other studies found in the literature, showing 

one of the advantages of using the modelling approach since some air pollutants are poorly 

spatially represented and/or are not routinely monitored by environmental agencies in many 

regions. Additionally, the ISAM showed to be a powerful tool that could aid local, state, and 

federal authorities to make decisions. 

 

Keywords: children, personal exposure, NO2, fine particles, source apportionment; air quality 

modelling. 
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1. INTRODUCTION 

Air pollution has been considered one of the main environmental risks over the past decades 

because it can cause harmful effects on human health, particularly cardiovascular and 

pulmonary diseases, affecting populations’ life expectancy and causing premature deaths (Pope 

et al., 2002; Pope and Dockery, 2006; Crouse et al., 2012; Lim et al., 2012; Cesaroni et al., 

2013; Han et al., 2016; Prüss-Ustün et al., 2016; Miller and Newby, 2020). Children, pregnant 

women, the elderly, and those with pre-existing health conditions are most sensitive to the 

health impacts of air pollution because of their physiological characteristics (EEA, 2019). 

With respect to children, they are affected by air pollution as they are still developing their 

immune systems (Kim et al., 2013; WHO, 2018), and due to their heights. As children are 

shorter than adults, they are closer to the ground and, therefore, they can be more exposed to 

higher levels of pollution, such as from vehicle exhaust (Schwartz, 2004; Nakashima et al., 

2014; Kumar and Goel, 2016; Kumar et al., 2017; Mudway et al., 2019; Palazzi et al., 2019; 

Sharma and Kumar, 2020). In addition, children have faster respiratory rates than adults, and 

thus, children inhale a higher volume of air per body weight, suggesting a higher intake of 

biological and chemical contaminants (Foos et al., 2008; Brochu et al., 2011; Brochu et al., 

2014). Epidemiological studies have indicated that either short- and long-term exposure to air 

pollution can negatively affect lung function, brain development and induce cardiorespiratory, 

allergic, and depressive disorders diseases in children and adolescents (Brunekreef et al., 1997; 

Gauderman et al., 2004; Guarnieri and Balmes, 2014; Schultz et al., 2017; Sharma and Kumar, 

2018; Zou et al., 2018; Herting et al., 2019; Huang et al., 2019; Xu et al., 2020).  

Nitrogen dioxide (NO2), ground-level ozone (O3), and particulate matter (PM) are some of the 

air pollutants capable of harming human health (EEA, 2019). In addition, these air pollutants 

also have economic consequences because they affect agricultural crop yields, influence the 

visibility and the efficiency of solar photovoltaic panels, and directly affect Earth’s climate by 

scattering and absorbing solar and terrestrial radiation, as well as indirectly through cloud 

formation (Boucher et al., 2013; Zhao et al., 2013; Zhou et al., 2018; Maji et al., 2019; Feng et 

al., 2019; Nascimento et al., 2020).  

NO2 is formed by combustion processes that occur in automobile engines, power plants, and 

domestic and industrial activities. A fact that was well-pictured in the first semester of 2020, 

during the COVID-19 crisis, when NO2 levels were directly impacted because of the restricted 
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movements measures, decreasing NO2 concentrations between 30% and 60% when compared 

to previous periods (Baldasano, 2020; Dantas et al., 2020; Salma et al., 2020; Jephcote et al., 

2021). Exposure to NO2 has been associated with irritation of the eyes, nose, and throat, 

triggering of asthma, and reduced lung function (Koenig, 1999; Jerrett et al., 2008; Hernández-

Cadena et al., 2009; Hesterberg et al., 2009; Schultz et al., 2012; Kim et al., 2013). O3 is formed 

by chemical reactions triggered by solar radiation which involve hydrocarbons, nitrogen oxides 

(NOx), and volatile organic compounds (VOCs). Exposure to ground-level ozone can provoke 

oxidative stress and inflammatory responses in the lungs and airways (Kreit et al., 1989; 

Arjomandi et al., 2015; Huang et al., 2019; Bruyn and Vries, 2020; Hu et al., 2020). PM is a 

complex mixture of solid and liquid particles suspended in the air, directly emitted into the 

atmosphere, or formed through gas-to-particle conversion processes (Seinfeld and Pandis, 

2006; Heal et al., 2012; Kumar et al., 2014). Different particulates are commonly classified by 

their size: PM10 (mass concentrations of particles smaller than 10 µm), PM2.5 (fine particles), 

and PM0.1 (ultrafine particles). Fine and ultrafine particles have been widely investigated 

because of their characteristics to be inhalable, which can reach the lungs and cause adverse 

health effects (Schultz et al., 2017; Habre et al., 2018; Hou et al., 2020; Xu et al., 2020). It also 

caught great attention during the COVID-19 pandemic because suspended air particles exhaled 

by infected people can be an important route in the mechanism of SARS-CoV-2 transmission 

(Kumar and Morawska, 2019). 

When considering the adverse health effects due to air pollution, a key point of these studies 

relies heavily on knowledge of the concentrations of these air pollutants. The traditional 

approach uses average concentrations of the nearest monitoring station as a surrogate of 

personal exposure, assuming homogeneity among air pollution concentrations within the area 

surrounding the monitoring station, or even within the whole city (Horie and Stern, 1976; Ott, 

1982; Dockery et al., 1993). However, substantial challenges persist in obtaining good quality 

data for air quality indicators given the often-limited resource availability (Andries et al., 2019). 

In South America, the deficiency or scarcity of information about emission data and 

measurement campaigns is usually faced by researchers and decision-makers (Alonso et al., 

2010; Andrade et al., 2017). For instance, Brazil which occupies almost half of the South 

American continent has only 1.7% of the cities covered by air monitoring networks fixed at 

ground level (ISS, 2019), which mostly do not include PM2.5 and are located only in some cities 

in the Southeast of Brazil (Peláez et al., 2020). It is worth mentioning that PM2.5 was included 

as a criteria pollutant in Brazil only in 2018, and its standard was divided into four stages, but 
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the deadlines for its implementation are not yet defined and the initial standard is still 

permissive compared to the World Health Organization (WHO) guidelines (Andreão and 

Albuquerque, 2021). In addition, ultrafine particles are not yet subject to monitoring. In this 

context, the air monitoring network poorly realistically represents the air quality status in Brazil. 

This lack of knowledge of temporal and spatial characteristics of the atmospheric parameters 

limits further studies that investigate potential air pollution control strategies and improvement 

of the risk assessments associated with air pollution exposure (Hu et al., 2016). 

To overcome this shortcoming, air pollutant concentration data have been derived by various 

approaches such as statistical methods, artificial intelligence algorithms, land use regression 

(LUR) models, satellite observations, atmospheric dispersion models, and chemical transport 

models (CTMs), or a combination of these methods. These approaches are very useful to areas 

that do not have monitoring station networks or have poorly spatial distribution. The choice of 

the approach will depend on the study design, but its performance is still compared to data that 

are measured at the ground-level station networks. LUR models, statistical and computational 

intelligence methods have relatively low costs and easy implementation, but they require a large 

amount of historical data. In addition, they cannot predict concentrations during periods of 

unusual emissions (e.g., the COVID-19 pandemic) and/or meteorological conditions that 

deviate significantly from the historical record (Baklanov and Zhang, 2020). Satellite remote-

sensing data can provide complete spatial coverage and a vertically integrated measure of 

atmospheric components, however, close to the ground, where human beings live, its accuracy 

can significantly vary, leading to erroneous analyses (Alvarado et al., 2019). In addition, 

satellite observations also have higher spatiotemporal resolution when compared to other 

approaches and can be highly affected by the presence of clouds, for instance. Dispersion 

models can provide a more detailed resolution of the spatial variations of air pollutant 

concentrations, however, they cannot properly treat photochemical transformations (Monticelli 

et al., 2021). CTMs require computational power and multiple information (e.g. emission 

inventories, initial and boundary conditions, parameterization schemes, meteorological fields, 

and others), making their use sometimes unfeasible. However, they are the ones that have the 

ability to consider the major processes affecting air pollution formation and dispersion, 

especially the chemical reactions in gaseous and aerosol phases. Critical air pollutants, such as 

PM secondary components, O3, and NO2, are identified as having a photochemical origin or 

being strongly affected by photochemical processes (Isakov et al., 2007). In addition, CTMs 

were designed for air quality regulation and management purposes, being able to do direct 
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linkages between emissions sources and resultant pollution (Appel et al., 2020; Baklanov and 

Zhang, 2020). 

One of the directives of air quality management is the abatement of pollution at its source. For 

that, extensive information is needed on the main pollution sources over a region as well as the 

environmental characteristics of this region to determine whether air pollution levels are due to 

the sources themselves, or natural factors such as climate conditions, or transboundary 

contributions, or a combination of these factors. Source apportionment methodologies aim at 

understanding the origin of the pollution and are generally used for the identification and 

quantification of the sources that contribute most to concentration levels. In addition, it also can 

inform on the efficiency of mitigation strategies, identify possible measures to be applied to a 

category of sources, and evaluate scenarios for future emissions (Thunis et al., 2019). 

Receptor-oriented models, commonly represented by the chemical mass balance (CMB) and 

positive matrix factorization (PMF), apportion the measured mass of an air pollutant at a given 

site to its emission sources by solving a mass balance equation (Mircea et al., 2020). These 

models can quantify the source contributions based on physical and chemical characteristics 

(fingerprints) measured at the sampling site, linking the pollutant emissions with specific 

sources, and do not depend on emission inventories, meteorological and chemical processors. 

However, their application needs the expertise of the user to interpret the source profiles, which 

can lead to misinterpretation due to inability or inexperience (Santos et al., 2017; Galvão et al., 

2019; Galvão et al., 2020).  

Source-oriented modelling techniques are usually based on the application of chemistry-

transport models (CTMs), which follow two main approaches. The first is the sensitivity 

analysis, also known as the brute force method (BFM) or the emission reduction impacts (ERI), 

which involves zeroing out emissions from a particular source category and determining its 

contribution by subtracting the zero-out run and the base run with all source categories. 

However, in this approach, the balance of chemical reactions can be altered due to the 

nonlinearity of pollutants, e.g. PM2.5 and O3. The second technique is the tagged species (or 

mass-transfer method), in which a tag is used to classify a category/sector/activity/geographical 

origin of the precursors and then follow their atmospheric fate. Examples of this approach are 

the Particle Source Apportionment Technology (PSAT) within the Comprehensive Air Quality 

Model with Extensions (CAMx), and the Integrated Source Apportionment Method (ISAM) 
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with Community Multiscale Air Quality Model (CMAQ) model. This approach is capable of 

apportioning source contributions from multiregional and multisectoral emissions 

simultaneously based on a single model run, whereas BFM requires a series of simulations to 

perform the same task (Burr and Zhang, 2011; Cohan and Sergey, 2011; Kwok et al., 2013; 

Kwok et al., 2015; Clappier et al., 2017; Collet et al., 2018; Han et al., 2018; Albuquerque et 

al., 2019; Thunis et al., 2019; Mircea et al., 2020; Maciel et al., 2021).  

Seeking a more strategic approach to managing the ambient concentrations in the Metropolitan 

Region of Vitória (MRV), state of Espírito Santo, Brazil, some works have treated the subject. 

Santos et al. (2017) used the CMB model to quantify the main source contributors of settleable 

particle (coarser particles with diameters greater than 10 μm), as a result of the annoyance of 

local dwellers and constant complaints to the local environmental agency (Machado et al., 

2015). Later, Galvão et al. (2019) used the PMF receptor model to perform the source 

apportionment analysis on PM10 and PM2.5. Both studies revealed industrial sources as the main 

contributors of particles in the MRV, mainly those related to the pelletizing and steel industries. 

Indeed, the MRV is a complex coastal urban and industrialized area in southeastern Brazil with 

significant problems of air pollution and public health. Epidemiological studies have shown a 

positive correlation between ambient air pollution and hospital admissions in Vitória city 

(Souza et al., 2014; Freitas et al., 2016; Nascimento et al., 2017; Souza et al., 2018; Nascimento 

et al., 2020). For instance, the increase of 8 μg/m3, 4 μg/m3, and 6 μg/m3 in the PM10, PM2.5, 

and SO2 concentrations were associated with a 14%, 6%, and 28% increase in the relative risk 

(RR) of hospital admission for respiratory diseases in children under 12 years old, respectively 

(Nascimento et al., 2017; 2020). In addition, the prevalence of asthma and rhinitis among 

children in Vitória is higher than the Brazilian national average (Serpa et al., 2014). However, 

a small number of avoided deaths and hospital admissions have been found for the MRV 

(Andreão et al., 2018; Fernandes et al., 2020). According to the authors, this was a result of not 

exceeding the air quality limits established by the WHO, but which was also related to the low 

number of air quality monitoring stations and/or lack of concentration data (for instance, PM2.5 

is monitored only in two sites in the MRV). Although the ambiguous results, these findings 

indicate that air pollution levels in the MRV may affect public health even in low 

concentrations. 

The aforementioned studies performed in the MRV were determined through air quality direct 

measurements. Although they are undoubtedly valuable, they are also limited to a location and 
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require intensive sampling and analysis. That is why numerous studies have based their results 

on the use of computational and numerical methods because they can be extrapolated in time 

and space. Both approaches are useful to estimate people’s exposure to air pollution, however, 

these methods provide information of the pollutant concentrations in the ambient air, aiding as 

an indicator of local pollution and may represent a minimum value that would be found in a 

region (Andreão et al., 2018). Meantime, each individual has a unique air pollution exposure 

profile, meaning that these approaches cannot replace, in terms of accuracy and 

representativeness, instrumental personal exposure measures that would be directly carried out 

according to the daily activities of each individual. Measurements with personal monitors can 

differ greatly from estimates using fixed monitoring stations and/or numerical models because 

they consider that individuals spend their time exclusively in the outdoor ambient, which is an 

erroneous assumption since people usually spend the majority of their time in indoor 

environments, such as at home, schools, offices, transit routes, among others (Ott, 1982; 

Kornartit et al., 2010; Hannam et al., 2013; Demirel et al., 2014; Smith et al., 2016; Rivas et 

al., 2017; Almeida et al., 2018; Niu et al., 2018; Brand et al., 2019; Tran et al., 2020; Lei et al., 

2020; Lung et al., 2020). For instance, in household air pollution, people are exposed to the 

same pollutant but from different sources. Indoor sources are related to daily human activities 

such as cooking, walking, cleaning, burning candles, smoking, the use of unpaved areas, 

building deterioration, among others (Viana et al., 2011; Amato et al., 2014; Rivas et al., 2014; 

Goel et al., 2015, 2021). In the absence of indoor sources, the indoor air pollution is a result of 

ventilation and airtightness of the spaces, people’ activities, and dust resuspension (Hänninen 

et al., 2011; Pallarés et al., 2019; Shrestha et al., 2019; Chen et al., 2020; Faria et al., 2020). 

Therefore, understanding personal exposure includes understanding both indoor and outdoor 

air pollution. 

Since there is no consensus on the best approach for estimating exposure, and results can vary 

significantly depending on the approach adopted, the model used, spatial and temporal 

resolution, air pollutants, study area, and health outcomes (Jerrett et al., 2005; Bravo et al., 

2012; Zhang et al., 2012; Baklanov and Zhang, 2020; Gariazzo et al., 2021), the present study 

aims to estimate the exposure and inhaled dose to ambient air pollution (PM10, PM2.5, PM1, 

NO2, and O3) of children living in the tropical coastal-urban area of Vitória, Espírito Santo, 

using a numerical modelling approach together with a source apportionment assessment. The 

modelling approach was compared with data collected from wearable passive samplers during 

experimental campaigns performed by the ‘ASMA-Vix’ study 
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(https://qualidadedoar.ufes.br/asmavix). The ‘ASMA-Vix’ project has been approved by the 

national ethics committee under the registration number CAAE: 09214519.1.0000.5071. This 

comparison allowed us to evaluate whether the predicted ambient concentrations could be used 

as a reliable surrogate of personal exposures in air pollution health effect studies in the study 

area. In addition, three different configurations with the modelling system were also conducted 

to assess the air pollutant concentrations at different heights because human beings, especially 

children, breathe in a zone close to the ground. To date, the present work is the first study using 

the state of the art of computational numerical modelling to investigate children’s exposure to 

air pollutants in Brazil. 

This Ph.D. thesis begins by giving a general introduction to the epidemiological studies designs 

used in the field of air pollution and how they have estimated people’s exposure to air 

pollutants. The review considers the aspects of air pollution exposure, especially concerning 

the space-time activities of children. Then, it is presented all the models used to estimate the air 

pollutant concentration together with the study area and the climatological and meteorological 

conditions of the region. Finally, the results of the models’ performance, source apportionment 

assessment, and the estimate of the personal exposure and inhaled dose to air pollutants of 

children using the modelling approach are presented, followed by the general and remarkable 

conclusions and suggestions/recommendations for future studies. Furthermore, the contents 

presented in this Ph.D. thesis have been already published in three papers (Kitagawa et al., 

2021, 2022a, 2022b), and one more paper is in formulation.  

 

 

  

https://qualidadedoar.ufes.br/asmavix
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2. OBJECTIVES 

The main objective of this study consists of using a specific chemical transport model coupled 

with a source apportionment tool to assess the exposure to ambient air pollutants of children 

living in a tropical coastal-urban area highly influenced by industrial and vehicular emissions. 

To achieve this main objective, the following specific objectives were drawn: 

• To use the state of the art in atmospheric modelling to emulate the dispersion of PM10, 

PM2.5, PM1, NO2, and O3 over MRV. 

• To validate modelled results with measurements at fixed meteorological and air quality 

monitoring stations. 

• To investigate the impacts of three different model heights on air pollutant concentrations. 

• To estimate the exposure and dose of children using modelled results and observed data at 

a fixed air quality station and compare the results with data collected from wearable passive 

samplers during experimental campaigns. 

• To perform a sensitivity test regarding the indoor and outdoor ratios to consider the amount 

of time that children spend indoors. 

• To identify and quantify the main contributors of air pollutant concentrations that contribute 

to children’s exposure. 

 

  



25 

 

3. REVIEW OF THE LITERATURE 

3.1 EPIDEMIOLOGICAL STUDIES DESIGNS 

Epidemiology is the study of the distribution (frequency and pattern) and determinants (causes 

and risk factors) of health-related states and events in specified populations, and the application 

of this study to the control of health problems. Frequency refers to the number of health events 

and the relationship of that number to the size of the population. The resulting rate is used to 

compare disease occurrence across different populations. Pattern refers to the occurrence of 

health-related events by time (annual, seasonal, weekly, daily, hourly, weekday versus 

weekend), place (geographic variation, urban/rural differences, and location of work sites or 

schools), and person (age, sex, marital status, socioeconomic status, behaviors, and 

environmental exposures). Determinants are the causes and other factors that influence the 

occurrence of a disease and other health-related events. An illness does not occur randomly in 

a population, it happens when the right accumulation of risk factors or determinants exists in 

an individual. To search for these determinants, epidemiologic studies are carried out to provide 

answers to such events (CDC, 2012). 

Environmental epidemiology focuses on determining whether a health outcome is a result of 

exposures arising from our daily environment (e.g. air, water, diet, soil). A subset of 

environmental epidemiology is air pollution epidemiology which is concerned with health 

effects related to exposure to air pollution and is typically divided into two major areas, short- 

and long-term studies. Short-term studies, also called time-series studies, examine health effects 

related to acute or short-duration exposures to air pollution, by studying whether variations in 

air pollution levels over hours, days, or weeks can trigger adverse health effects, such as cough, 

headache, irritation of the eyes, nose, and throat, allergic reactions, asthma symptom 

aggravation, wheezing, among others. Long-term studies examine whether exposure of months, 

years, decades, and lifetimes to air pollution explains the risk of developing a chronic disease, 

such as asthma, chronic obstructive pulmonary disease, cardiovascular disease, diabetes, stroke, 

cancers, and premature death. Long-term air pollution studies use cohort, case-control, and 

cross-sectional designs (Andersen, 2020).  

In traditional epidemiology, however, study designs fall into two other major categories, 

descriptive and analytical epidemiology studies (Figure 1). Descriptive epidemiology studies 

tend to use synonyms of the five W’s to characterize an epidemiologic event, that is definition 
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(what), person (who), place (where), time (when), and causes/risk factors/modes of 

transmission (why/how). From these observations, hypotheses are developed about the causes 

of these patterns and about the factors that increase the risk of a disease. The need for further 

investigation to search for causes and effects is performed by the analytic epidemiology, which 

quantifies the association between exposures and outcomes and tests hypotheses about causal 

relationships (Thomas, 2009; CDC, 2012). Note that cross-sectional studies may be either 

descriptive or analytical, in which descriptive studies, most aim to provide estimates of the 

prevalence of disease, whereas analytical studies aim to assess associations between different 

variables (Kesmodel, 2018).  

 

 
Figure 1. Environmental epidemiologic studies design based on CDC (2012) and 

Nieuwenhuijsen (2015). The classification with blue lines is based on Andersen (2020). 

 

When the investigator determines, through a controlled process, the exposure for an individual 

and tracks him over time to detect the effects of the exposure, the study is characterized as an 

experimental study. Experimental studies on human health effects of air pollutants usually are 

performed through clinical trials or in studies of occupationally exposed workers. Workers have 
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historically been exposed to much higher concentrations of air pollutants than the general 

population. Therefore, the elevated, long-term exposures experienced by workers can provide 

insight into the toxicity of air pollution components. Whereas clinical studies typically involve 

controlled experiments of human volunteers in exposure chambers (National Research Council, 

2002). The studies of Koenig et al. (1981), Kreit et al. (1989), and Barck et al. (2005) are 

examples of experimental studies. Koenig et al. (1981) estimated several pulmonary functions 

of eight adolescents with asthma being exposed to 1 ppm of sulfur dioxide (SO2) with 1 mg/m3 

of sodium chloride (NaCl) droplet aerosol (at 22° C and relative humidity ≥ 75%) after 30 min 

at rest and after 10 min of moderate exercise on a treadmill. No statistically significant 

functional changes were seen after 30 min exposure at rest, but the total respiratory resistance 

(RT), the maximal flow at 50 and 75% expired vital capacity (Vmax50 and Vmax75), and the forced 

expiratory volume in 1 second (FEV1) were reduced postexercise due to the increase of 

inspiratory flow rates which induced greater penetration of SO2. Kreit et al. (1989) also 

compared measurements of pulmonary functions before and after nine asthmatics and nine 

normal subjects (18–35 years old) being exposed to filtered and purified air and 0.4 ppm O3 

within a stainless steel chamber (at 22°C and 50% relative humidity) with alternating 15-min 

periods of rest and exercise on a cycle ergometer. The experimental study demonstrated that 

exposure to 0.4 ppm O3 was associated with a statistically significant decrease in forced vital 

capacity (FVC), FEV1, and forced expired flow at 25–75% FVC (FEF25-75) in both normal and 

asthmatic subjects. However, this decrease was greater in asthmatics, indicating that asthmatics 

developed greater airway obstruction, which was also supported by a significant increase in 

airway resistance only in asthmatics. In the same way, Barck et al. (2005) evaluated whether 

exposure to NO2 was associated with an increased inflammatory response to allergens in the 

airways. For that, eighteen subjects (23–48 years old) with mild allergic asthma were exposed, 

in randomized order, to purified air or 500 mg/m3 NO2 for 15 min on day 1, and twice for 15 

min on day 2. Birch or timothy pollen was inhaled 3–4 h after the NO2 exposures on both days. 

Exposure to NO2 enhanced the inflammatory response in sputum and blood that were induced 

by the allergens inhaled, despite symptoms and pulmonary function were equally affected by 

NO2+allergen or purified air+allergen. Experimental studies allow the exposure and the 

response to be assessed by detecting subclinical changes and determining whether an exposure 

has an effect. On the other hand, it usually includes a limited sample size, typically excluding 

children, elderly people, and those with relatively severe diseases. In addition, only acute 
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exposures are being assessed, it is difficult in replicating the entire mix of ambient pollutants, 

and needs approval from an ethics committee (National Research Council, 2002). 

More recently, natural experimental studies have been carried out, also referred to as crossover 

studies. An example includes 28 healthy volunteers (18–60 years) riding a bicycle on a busy 

highway and also in a market square without traffic in Barcelona, Spain, to investigate blood 

pressure in response to a 2 h traffic-related air pollution exposure in a real-world situation 

(Kubesch et al., 2015). The author reported that cycling at high air pollution exposure levels 

increased systolic and diastolic blood pressure more than at low air pollution levels. A similar 

experimental design asked participants (60 years and older) healthy (n = 40), with chronic 

obstructive pulmonary disease (COPD) (n = 40), and with ischaemic heart disease (n = 39) to 

do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park 

(Hyde Park) (Sinharay et al., 2018). Participants with COPD reported more cough, sputum, 

shortness of breath, and wheeze after walking down Oxford Street compared with Hyde Park. 

In addition, walking in Hyde Park led to an increase in lung function in all participants, 

irrespective of their disease status. 

Observational analytic epidemiology studies simply observe the exposure and disease status of 

each study participant without controlling the exposure process, that is the subjects are exposed 

under natural conditions. The main study designs are cohort and case-control studies. 

A cohort study is similar in concept to the experimental study because a cohort (group) of 

individuals with exposure to a substance and a cohort without exposure are followed over time 

to compare the occurrence of a disease. It differs from the experimental study because the 

investigator does not determine the exposure status of the participants. After some time, the 

disease rate in the exposed group is compared with the disease rate in the unexposed group 

(baseline). If the disease rate is substantively higher in the exposed group compared to the 

unexposed group, the exposure is said to be associated with illness (CDC, 2012). These studies 

are typically considered the gold standard in air pollution epidemiology because they are 

designed to account for other factors such as smoking, physical activity, body mass index, 

alcohol use, and diet, among others (rather than air pollution levels and mortality or morbidity) 

(Andersen, 2020). This study can be prospective (follow-up) in which cohorts are identified 

based on current exposures and followed into the future; or retrospective, in which the exposure 

and the outcomes have already occurred, and the cohorts are identified based on past exposure 
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conditions (data come from past records) and study follow-up proceeds forward in time. 

Examples of cohort studies are those carried out by Cerza et al. (2019), Olaniyan et al. (2020), 

Elten et al. (2020), and Silva et al. (2014). 

Cerza et al. (2019) evaluated the association between exposure to air pollution and 

hospitalization for dementia through a cohort study in Rome, Italy. For that, they selected 

350844 individuals (free of dementia) aged 65–100 years at inclusion (October/2001) and 

followed them until December 2013. The individuals who were hospitalized for the first time 

for dementia and its subtypes (7497 for vascular dementia, 7669 for Alzheimer’s disease, and 

7833 for senile dementia) were selected to have their exposure to be estimated at their residence 

location using LUR models for nitrogen oxides (NOx, NO2) and particulate matter (PM10, PM2.5, 

soot) and a CTM for O3. Their results showed a positive association between exposure to NOx 

and O3 and hospitalization for dementia. Exposure to NOx, NO2, PM10, and PM2.5 was positively 

associated with vascular dementia and negatively associated with Alzheimer’s disease, whereas 

hospitalization for senile dementia was positively associated with exposure to O3. 

Olaniyan et al. (2020) investigated the association between ambient air pollution and 

respiratory morbidities through a prospective cohort study among 590 primary school children 

(average age of 10 years) in the Western Cape, South Africa. The baseline testing was 

conducted between February and September 2015, and the school children were follow-up over 

twelve months (till September 2016). Lung function parameters (FEV1, FVC, FEV1/FVC, and 

FEF25-75) and airway inflammation measurements were considered only from participants free 

of disease at baseline. Annual NO2 and PM2.5 concentration levels were estimated for each 

child’s home using a LUR model. Despite the NO2 (16.62 μg/m3) levels being below the local 

standard guidelines, increases new cases of asthma-associated outcomes (which included 

ocular-nasal symptoms, wheezing, asthma symptom score, and airway inflammation) after 12 

months, independent of co-exposure to PM2.5 

Elten et al. (2020) conducted a retrospective cohort study in Ontario, Canada, between April 

1991 and March 2014 to investigate the association between inflammatory bowel disease and 

exposures to NO2 (from a LUR model), PM2.5 (from satellite data), O3 (from an interpolation 

technique), and redox-weighted oxidant capacity (Ox) (calculated as the weighted average of 

NO2 and O3 concentrations) during pregnancy and from birth until the age of 18. 2218789 

newborns were included in the study, of whom 2491 developed inflammatory bowel disease 
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during follow-up. Statistically significant positive associations were detected for Ox during the 

second trimester of pregnancy and childhood, suggesting an increase in the risk of being 

diagnosed with inflammatory bowel disease before 18 years of age. However, no association 

for any of the three individual pollutants investigated was found, suggesting the potential of 

pollutants to cause oxidative stress is more relevant to inflammatory bowel disease development 

than their individual concentrations. 

A retrospective cohort study was also carried out in the cities of Mato Grosso, Brazil, to 

investigate the association between biomass burning that usually occurs between July and 

October in Amazon and low birth weight (Silva et al., 2014). Concentrations of PM2.5 and 

carbon monoxide (CO) were estimated through the Coupled Aerosol and Trace Gas Transport 

Model to the Brazilian Developments of the Regional Atmospheric Modelling System (CATT-

BRAMS Model). A total of 6147 singleton live births were included between July 2004 and 

December 2005, of which 193 (3.1%) were low birth weight. The study concluded that maternal 

exposure to air pollution during the second and third trimesters of pregnancy was associated 

with low birth weight. 

In the case-control studies, individuals with a disease (case) are compared with similar 

individuals without the disease (controls) to determine if there is an association of the disease 

with prior exposure to an agent. The control group provides an estimate of the baseline in 

population. If the amount of exposure among the case group is substantially higher than the 

control group, then illness is said to be associated with that exposure. In a cohort study, subjects 

are grouped based on their exposure, then they are followed to document the occurrence of a 

disease. Whereas in a case-control study, subjects are enrolled according to whether they have 

the disease or not, then they are tested to determine their prior exposure. As an example of case-

control studies, we can find those performed by Liu et al. (2021), Wang et al. (2020), Deygas 

et al. (2021), and Vinceti et al. (2016). 

Liu et al. (2021) performed a population-based case-control study in Liaoning province, China, 

to evaluate the association between maternal SO2 exposure and the risk of oral clefts. The study 

involved 3086 patients with oral clefts and 7950 controls from January 2010 to December 2015. 

SO2 concentration data were acquired from 77 air monitoring stations, and each pregnant 

woman was assigned to the mean of all air monitoring stations in her city. They found positive 

associations between maternal SO2 exposure during 3 months before conception and the first 
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and second months of pregnancy and oral clefts. Similarly, Wang et al. (2020) found significant 

associations between PM2.5 exposure and pediatric rheumatic diseases during pregnancy and 

infancy in Taiwan. The study consisted of infants born between 2004 and 2014 who were 

followed from conception to the end of 2015. There were 2363 cases of incident pediatric 

rheumatic diseases in children and 23 630 (10:1) children served as controls. A linear mixed-

effect model was used to incorporate 3-km satellite-based aerosol optical depth (AOD), 

meteorological variables, and land-use data to predict daily PM2.5 concentrations during each 

week of pregnancy (40 weeks) and after birth to one year (52 weeks) for each infant according 

to their maternal address in the postcode level.  

In France, another case-control study carried out from 1990 to 2011 significantly associated an 

increase in the risk of breast cancer and cumulative exposure to atmospheric polychlorinated 

biphenyls (Deygas et al., 2021). Each case was individually matched to one control, randomly 

selected by incidence density at the time of the case diagnosis, thus 5222 women with primary 

incident breast cancer cases were matched to 5222 controls (no previous diagnosis of any 

cancer). The annual exposures for each woman using their postal codes were estimated based 

on hourly polychlorinated biphenyl concentrations that were modelled by the air quality model 

CHIMERE. 

In another population-based case-control study carried out in Reggio Emilia, Northern Italy, 

from January 1998 to December 2006, 228 cases of birth defects and 228 referent newborns 

were under investigation whether maternal exposure to PM10 and benzene from vehicular traffic 

during early pregnancy would be associated with excess congenital anomalies risk (Vinceti et 

al., 2016). Both pollutants were modelled by a dispersion model, the CAlifornia LINE Source 

Dispersion Model, at the geocoded maternal residence at a height of 2 m. Results of this study 

show a tendency towards an overall higher risk of congenital anomalies among women exposed 

during pregnancy to higher levels of PM10, while no such association emerged for benzene. 

Cross-sectional studies have been mainly used to understand the prevalence of a disease in 

clinical research. Prevalence refers to the proportion of persons in a population who have a 

particular disease regardless of when they first developed the disease. It is important to 

distinguish prevalence from incidence, which the latter refers to the number of new cases that 

develop in a given period of time. Cross-sectional studies measure outcomes and exposures of 

the study subjects at a single point in time (do not follow individuals over time). Hence, there 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/congenital-anomaly
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is no time dimension as all data are collected and mostly refer to the time at or around the time 

of the data collection. Because of that, it is relatively difficult to establish causal relationships 

from a cross-sectional study. Even though, cross-sectional studies may be also used for 

analytical purposes whether the health outcome is assessed for potential associations with 

exposures or risk factors (Wang and Cheng, 2020). Furthermore, these studies can be examples 

of ecological studies because they produce risk estimates at the population level (when personal 

characteristics at an individual level are not used) (Andersen, 2020). Zheng et al. (2021), Bont 

et al. (2019), Tu et al. (2021), and Clifford et al. (2018) can be referred to as cross-sectional 

studies. 

Zheng et al. (2021) performed a cross-sectional analysis with children and adolescents (9–17 

years, n = 36456) between September and November 2019 in Jiangsu province, China, to 

examine the association between exposure to NO2, O3, PM10, and PM2.5 and obesity. A 

multivariate regression model was used to estimate the effects of three-year (2016–2018) 

average concentrations of air pollutants on obesity. The concentrations came from 124 ground 

monitoring stations and the exposure level was estimated by the nearest air monitoring station 

of the address of each selected school (between 0.3 and 5.6 km, with a median of 3.5 km). These 

monitoring stations were mandated to be away from traffic roads, industry sources, or 

residential sources of emissions, thus reflecting the background pollution concentration in the 

selected districts. Obesity measurements were taken using the children’s Body Mass Index 

(BMI) according to the WHO, which includes data of age, sex, weight, and height. The authors 

suggested that higher concentrations of PM2.5, NO2, and O3 were associated with a likelihood 

of obesity. 

The association between levels of NO2, PM10, PM2.5, elemental carbon (EC), and ultrafine 

particles (UFP) and overweight and obese in 2660 children (7-10 years) was also explored in 

Barcelona, Spain, through a cross-sectional study in 2012 (Bont et al., 2019). The air pollutant 

concentrations were estimated for the geocoded postal address of each participant using a LUR 

model together with measurements in schoolyards. Children were classified as normal, 

overweight, and obese also using the BMI for children. Children exposed to higher levels of 

UFP at schools were 30% more likely to be overweight or obese than those exposed to low 

levels. Exposure to medium levels of NO2, PM2.5, and EC at also schools was associated with 

an increase in the odds of being overweight or obese. 
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A national cross-sectional study with 2226 children, aged 7-11 years, from 12 cities in 

Australia, was also carried out to investigate aeroallergen sensitization due to exposure to NO2 

during 2007-2008 (Tu et al., 2021). Exposure to NO2 was estimated through a weighted mean, 

assuming children spend 75% of their time at home and 25% at school, using measurements 

from monitors near each school (within 2 km) and also with a validated satellite-based LUR 

model at geocoded residential and school addresses. The assessment of aeroallergen 

sensitization was performed through skin prick tests for aeroallergens of indoor (two types of 

house dust mites, cockroach, and cat allergen) and outdoor (Alternaria, Aspergillius, ryegrass, 

and a grass mixture) origin. The results showed that NO2 exposure was associated with greater 

odds of sensitization to house dust mites.  

Also in Australia, Clifford et al. (2018) evaluated the effects of exposure to ambient UFP on 

respiratory health and systemic inflammation among 655 children (8-11 years) from 25 primary 

schools in the Brisbane Metropolitan Area, between October 2010 and August 2012. Ultrafine 

particle number concentration was measured at each school and modelled at homes using a 

LUR model over one year. Health outcomes were respiratory symptoms and diagnoses, 

measured by questionnaire, spirometric lung function (FEV1, FVC, FEV1/FVC ratio), exhaled 

nitric oxide (FeNO), and serum C reactive protein (CRP). Ultrafine particle number 

concentration was positively associated with CRP and FeNO among atopic participants. It was 

reported that UFPs did not affect respiratory health outcomes in children, but did have systemic 

effects, detected in the form of a positive association with a biomarker for systemic 

inflammation. 

Most aforementioned studies (cohort, case-control, cross-sectional) are classified as long-term 

studies in air pollution epidemiology because they assess the cumulative effects of repeated 

exposure to typical levels of air pollution. In contrast, short-term studies exploit day-to-day 

variations in air pollution as determinants of day-to-day variations in health outcomes. These 

studies are also referred to as time-series studies because they use routinely collected time-

series data of air pollution levels and counts of a health outcome to make an association 

(Andersen, 2020). The modelling of this existing relationship between two variables was 

introduced in the early 1990s by (Schwartz and Marcus, 1990) when they examined the 

associations between mortality and levels of PM, SO2, and smoke during winters in London 

from 1958 to 1972 with the Poisson generalized additive model (GAM). Poisson distribution is 

commonly used because time-series data involve count variables (which can take any 
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nonnegative integer value, such as the number of cases of a disease in a population) (Thomas, 

2009). In addition, the assumption of a disease can occur independently in different people and 

in the same person at different points in time justifies the use of the Poisson distribution 

(Flanders and Kleinbaum, 1995). Thus, this model quickly became the standard tool because 

they are relatively cheap and feasible, leading to an exponential increase in studies of the short-

term effects of air pollution.  

Pu et al. (2021) explored the association between PM2.5, PM10, and their difference (PMC) and 

hospitalizations of children aged <18 years for pneumonia and bronchitis (lower respiratory 

infections) in 18 cities in southwestern China, from January 2015 to December 2016, using a 

quasi-Poisson GAM. Ambient air pollution data were obtained from monitoring stations for 

each city that had between three to six stations. To explore the immediate, delayed, and 

prolonged effects of the three types of size-specific PM on children’s hospitalizations, it was 

considered the single-day lags from the current day to six days before (lag0-lag6) and the multi-

day lags from the moving average of two days to seven days (lag01-lag06). The strongest effects 

of PM10 and PMC on hospital admissions for pneumonia and bronchitis were both on lag06, 

whereas the strongest effect of PM2.5 was on lag03, lag6, and lag02. PMC was the most 

significantly associated with lower respiratory infections probably due to PMC deposition in the 

upper respiratory tract of the lungs. Also using a quasi-Poisson GAM, Rodrigues et al. (2021) 

estimated the effects of PM10 concentrations on childhood (0–4 years, 5–9 years, and 10–14 

years) asthma admissions from 2009 to 2015 in the Lisbon Metropolitan Area, Portugal. PM10 

concentrations were obtained from the monitoring stations in the study area. They also 

considered the delay association between exposure and outcome in the relationship between 

hospital admissions and environmental variables. They found that an increase of 1 μg/m3 of 

PM10 was associated with an increased risk of asthma-related hospital admission on the order 

of 2%. Similarly, Baek et al. (2021) investigated the relationship between ambient air pollution 

(PM10, O3, NO2, CO, and SO2) and medical care visits for atopic dermatitis in children (aged 

<19 years) from January 2012 to December 2015 in Incheon, Republic of Korea. The study 

treated the daily number of medical care visits for atopic dermatitis with the Poisson GAM, 

which included air pollutant levels, ambient temperature, relative humidity, day of the week, 

national holidays, and seasons. Air pollutants data were obtained from monitoring stations. The 

results showed that higher PM10, O3, and SO2 were associated with a significantly increased 

risk of a medical care visit for atopic dermatitis on lag0, but NO2 and CO concentrations were 

not.  
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These and many other epidemiological studies have consistently reported the association 

between chronic and acute exposure to ambient air pollution and adverse health effects, 

becoming a valuable tool for mapping the health burden related to air pollution and for the 

development of air pollution control policies (Andersen, 2020). However, it also could be 

observed that there is heterogeneity between them in terms of measurement of 

exposure/outcome, study design, data sources, sample size, air pollutants of interest, time and 

spatial resolutions, population, area of study, among others. A summary of the characteristics 

of the air pollution epidemiology study designs is presented in Table 1. All the study designs 

require exposure estimates to be able to estimate the risk associated with the substance of 

interest (Figure 2). The methods to obtain exposure estimates are often classified as direct and 

indirect and the choice of a method depends on the aim of the study and, more often, on the 

financial resources available. Exposure estimates can consider ambient air pollution monitors 

in the area in which the subjects live, or models to predict the concentrations. In addition, 

questionnaires are useful to get information related to where and when people carry out their 

daily activities. Alternatively, a representative sample of the group can also be personally 

monitored. It is expected that the individual estimates provide the best exposure estimates, 

however, this may not be true because of the variability in exposure and the limited number of 

samplers (Nieuwenhuijsen, 2015). Some aspects involving exposure assessment to air pollution 

are discussed in the following sections. 

 

 
Figure 2. Relationship among health effects, exposure estimates, and air pollution. Based on 

Nieuwenhuijsen (2015). 
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Table 1. Study designs in environmental epidemiology. Based on WHO (1991). 

Study design Population Exposure Health effect Confounders Problems Advantages 

Experimental 

study 
special groups 

Controlled and 

already known 

To be 

measured 

during the 

study 

Can be controlled by 

randomisation of 

subjects 

Expensive; ethical 

considerations; 

study subjects 

compliance 

required 

Well accepted 

results; strong 

evidence for 

causality or efficacy 

of intervention 

Retrospective 

cohort study 

Special groups; 

workers, 

patients, insured 

persons 

Records of past 

measurement 

Records of 

past or current 

diagnosis 

Often difficult to 

measure because of 

its retrospective 

nature; depends on 

the availability of 

previously obtained 

data (e.g. past 

smoking habits) 

Need to rely on 

records that may 

not be accurate 

Less expensive and 

quicker than a 

prospective study; 

can be used to study 

exposures that no 

longer exist 

Prospective cohort 

study 

Community or 

special groups; 

exposed versus 

non-exposed 

Defined at 

outset of study 

(can change 

during the 

study) 

To be 

determined 

during the 

study 

Usually easy to 

measure 

Expensive and 

time consuming; 

exposure 

categories can 

change; high 

dropout rate 

possible 

Can estimate 

incidence and 

relative risk; can 

study many 

diseases in one 

study; can describe 

associations that 

suggest cause–

effect relationships 

Case-control study 

Usually small 

groups; diseased 

(cases) versus 

nondiseased 

(controls) 

Records or 

interview 

Known at start 

of the study 

If confounders can be 

identified and 

measured they may 

be addressed 

Difficult to 

generalise due to 

small study 

groups; some 

incorporate biases 

Relatively cheap 

and quick; 

particularly useful 

for studying rare 

diseases 
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Cross-sectional 

study 

Communities or 

special groups; 

exposed versus 

non-exposed 

Current Current 
Usually easy to 

measure 

Hard to establish 

cause relationship; 

current exposure 

may be irrelevant 

to current disease 

Can be done 

quickly; can use 

large populations; 

can estimate 

prevalence 

Time-series study 

Large 

community; 

susceptible 

groups 

Current (e.g. 

daily) changes 

in exposure 

Current (e.g. 

daily) 

variations in 

mortality 

Often difficult to sort 

out; e.g. effects of 

influenza 

Many confounding 

factors; often 

difficult to 

measure 

Useful for studies 

on acute effects 
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3.2 ASPECTS OF AIR POLLUTION EXPOSURE 

Air pollution is characterized by the presence of airborne substances (solids, liquids, or gases) 

that occur in concentrations high enough to threaten the health of people and animals, harm 

vegetation and structures, or toxify a given environment (Salvador, 2018). Air pollution affects 

agricultural crop yields, causes material damage, generates acid rain, influences visibility, 

changes the efficiency of solar photovoltaic panels, and directly affects Earth’s climate by 

scattering and absorbing solar and terrestrial radiation, as well as indirectly through cloud 

formation (Boucher et al., 2013; Zhao et al., 2013; Adrees et al., 2016; Grøntoft, 2018; Zhou 

et al., 2018; Maji et al., 2019; Z. Feng et al., 2019; Nascimento et al., 2020). Air pollution also 

has acute and chronic effects on human health, in particular, respiratory and cardiovascular 

diseases, which included irritation of the eyes, nose, and throat, acute respiratory infections, 

exacerbation of asthma, chronic bronchitis, lung cancer, lung function reduction, strokes, 

among others (Pope et al., 2002; Lim et al., 2012; Prüss-Ustün et al., 2016; EEA, 2019).  

Air pollutants differ by chemical composition, reactions, emissions, persistence in the 

environment, spatial and temporal scales, and impacts on human health and/or on the 

environment (Fino, 2018). It is important to note that air pollutants rarely occur alone in the 

atmosphere, suggesting that their effects may be associated with more than one pollutant or a 

mixture of pollutants. Environmental agencies around the world, such as those in the U.S., 

Canada, and European Union generally divide air pollutants into criteria pollutants and 

hazardous air pollutants. Both types are hazardous, but the criteria pollutants are those that are 

used to designate the ambient air quality of a region, based on common standards; whereas 

hazardous air pollutants are usually restricted spatially to hot spots, such as industrial and urban 

areas (Vallero, 2014c). They may be also categorized as either primary (air pollutants directly 

emitted to the atmosphere) or secondary (pollutants formed in the atmosphere from precursor 

gases). The so-called criteria pollutants are particulate matter (PM), O3, CO, SO2, NO2, and 

lead (Pb). Although air pollutants can usually be classified by their chemical composition, 

particles are categorized according to their physical properties. The WHO establishes air quality 

standards for the air pollutants in outdoor air because of its public health perspective. Table 2 

shows a comparison of the 2005 air quality guidelines (AQG) and the 2021 AQG levels for the 

criteria pollutants. The lowering of the air quality guidelines (except for SO2) was based on a 

systematic review of evidence on literature over past years which pointed out that exposure to 

these air pollutants, even at low levels, can cause adverse health effects. These reductions aim 
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to be translated to have a positive health impact. In addition, efforts to improve air quality can 

mitigate climate impacts (WHO, 2021). 

 

Table 2. Summary and comparison of recommended long- and short-term AQG levels. Source: 

WHO (2021). 

Pollutant Averaging time 
2005 AQG 

[µg/m3] 

2021 AQG 

[µg/m3] 

SO2 24-hour 20 40 

CO 24-hour - 4 

NO2 
Annual 40 10 

24-hour - 25 

O3 
peak season - 60 

8-hour 100 100 

PM2.5 
Annual 10 5 

24-hour 25 15 

PM10 
Annual 20 15 

24-hour 50 45 

ᵃ 99th percentile (i.e. 3–4 exceedance days per year). 

ᵇ Average of daily maximum 8-hour mean O3 concentration in the six consecutive months with 

the highest six-month running-average O3 concentration 

 

Sources of air pollutants can be categorized as natural and anthropogenic emissions, however, 

because the same chemical compounds from a natural source (e.g. a volcano) can cause the 

same adverse effects as when they are emitted by anthropogenic sources. Examples of 

anthropogenic sources include the energy production sector, fuel combustion (industrial, 

commercial, institutional, and residential), industrial processes and product use (cement, iron 

and steel production, construction and demolition, pulp and paper industry, etc), agriculture, 

landfill, shipping, aircraft, road traffic, nonroad sources (off-road vehicles and other machinery, 

e.g. gardening, railways), among others.  

SO2 is usually generated by the combustion of sulfur-containing fossil fuels (principally coal 

and heavy oils), whereas volcanoes and oceans are its major natural sources. CO comes from 

the incomplete combustion of fossil fuels and biomass burning. NO2 is formed by combustion 

processes of mobile and stationary sources, lightning, biomass burning, and from the oxidation 

of ammonia by photochemical processes in oceans and by some terrestrial plants. O3 is formed 
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by chemical reactions triggered by solar radiation which involve hydrocarbons, NOx, and 

VOCs. VOCs are emitted in the manufacture of paints, combustion activities, solvent use, 

cleaning products, extraction and distribution of fossil fuels, as well as natural biogenic 

emissions. PM is a complex mixture of small particles and liquid droplets that are suspended in 

the air, which vary in size (Figure 3) and composition and are produced by a wide variety of 

natural and anthropogenic sources such as fossil fuel combustion of industries, power plants, 

incinerators, motor vehicles, construction activity, sea spray, volcanic eruptions, wildfires, and 

natural windblown dust. Mineral dust (silicon, iron, aluminium, magnesium, calcium), biogenic 

organic particles (pollen, spores, plant fragments), and sea salt contribute more to the coarse 

fraction, whereas ammonium (NH4
+), sulfate (SO4

2-), nitrate (NO3
-), organic carbon (OC), and 

elemental carbon (EC, also called black carbon) contribute more to the fine fraction. OC can be 

directly emitted from sources or produced from atmospheric reactions involving gaseous 

organic precursors. EC can be produced only in a combustion process and is therefore solely 

primary. PM is also constituted of trace elements, such as lead, nickel, vanadium, chromium, 

and manganese (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 2006; Vallero, 2014a; 

Fino, 2018; Salvador, 2018).  

 

 
Figure 3. The relative size of particles. Source: Ang et al. (2020). 

 

After being released into the environment by a source, the pollutant undergoes the dispersion 

process that depends on meteorological dynamic and thermal factors (wind direction and speed 

and temperature) but also on the terrain features (whether it is on flat or mountainous land or in 
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a valley). Throughout the dispersion process is when people come into contact with the 

pollutants, referred to as exposure. Ott (1982) defined the concept of human exposure as “the 

event when a person comes into contact with a pollutant of a certain concentration during a 

certain period of time”. If the pollutant is uptake into the body, it is referred to as a dose. Furtaw 

(2001) defined the difference between these two terms by explaining the exposure process 

(Figure 4). “A pollutant is released into the environment from a source. Once the chemical is 

in the environment, it is transported through space and time into multiple media (air, water, 

soil, surfaces, and so forth). Various transformations may occur, such as degradation, chemical 

reaction, deposition, volatilization, and so forth. These transport and transformation processes 

will result in various concentrations of the chemical within environmental media as functions 

of time. Exposure then occurs when humans contact the pollutant-bearing media in the course 

of human activities. If the chemical of interest subsequently crosses the outer boundary and 

enters the human body, a dose occurs”. Exposure may result in a dose, but a dose cannot occur 

without exposure.  

 

 
Figure 4. The exposure process, defined by (Furtaw, 2001). 

 

Exposure assessment considers the first four steps in Figure 4 (from source to dose). The 

physical course a pollutant takes from the source to an individual is often referred to as exposure 

pathway, whereas the way the air pollutant enters the body is often referred to as exposure route 

(e.g., inhalation, ingestion, absorption). The exposure to air pollutants can depend upon the 

duration (e.g. in hours or days) or amount (kg/day ingested), the concentration (e.g. in µg/m3), 

and frequency (e.g. times per week). Any of these factors can be used as an exposure index in 

epidemiological studies, but they can also be combined to obtain a new exposure index, e.g. by 

multiplying duration and concentration to obtain an index of cumulative exposure 

(Nieuwenhuijsen, 2015). 

Estimation of exposure is also classified according to the length of exposure. Long-term 

exposure is associated with constant background concentrations, or persistent exposure in the 
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day-to-day work-transport-home environment, or from the accumulation of many short-term 

exposure episodes. The long-term analysis is related to chronic health effects, morbidity, and 

mortality of a population. From an air-pollution control perspective, the benefit of a long-term 

analysis is to understand long-term spatial and temporal trends, improve planning and perceive 

the need for action for mitigation strategies. Short-term episodes are related to natural disasters 

or severe pollution episodes and acute health effects. Short-term studies of air pollution 

episodes lead to a better understanding of the source-receptor relationship, and transformation 

and transport of air pollutants. Moreover, it can improve short-term air quality forecasting and 

signal imminent disaster response capabilities (Sorek-Hamer et al., 2020). 

For exposure assessments by the inhalation route, it is necessary to take into account the 

breathing characteristics of the individual and the chemical and physical characteristics of the 

pollutant. The respiratory system from the head airways (nose, mouth, pharynx, and larynx) 

through the tracheobronchial region (from the trachea to the terminal bronchioles) is covered 

with a layer of mucus that is in continuous motion and aims to protect the alveolar region of the 

lungs (Figure 5). Thus, if particles settle on the mucus, are moved up, and are ultimately 

swallowed. Larger particles are generally removed by these ciliated surfaces, whereas fine and 

ultrafine particles are more likely to reach the alveolar region where gas exchange occurs (and 

also reach the bloodstream) than coarse particles because of their particle size. Because the 

alveolar region is not coated with a protective mucus layer, the clearance time for deposited 

particles is much greater than in the upper respiratory tract; hence the potential for health effects 

is much greater (Hinds, 1999; Finlayson-Pitts and Pitts, 2000).  
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Figure 5. The respiratory system. Source: Guarnieri and Balmes (2014) 

 

The deposition of particles on the human tract not only depends on particle size but also on the 

gender, age, breathing rates (frequency), and tidal volume (the amount of air breathed in with 

each normal breath) of the individual. Figure 6 shows the deposition of particles in various 

regions of the respiratory tract and the total deposition as a function of particle diameter. Total 

deposition reflects deposition in two or more regions. Deposition in any region is affected by 

deposition in the preceding regions. Thus, only particles that are inhaled can be deposited in the 

head airways, and only particles passing beyond the head airway region can be deposited in the 

tracheobronchial region, and so on. The deposition fraction of PM10 in the head airway region 

can be quite large, so it is not surprising that health effects could be associated with these 

particles (Hinds, 1999; Finlayson-Pitts and Pitts, 2000). 
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Figure 6. Predicted total and regional deposition for adults in light exercise. Alv (alveolar) and 

TB (tracheobronchial). Source: Hinds (1999) 

 

Together with the definition of human exposure, Ott (1982) also introduced the concept of 

microenvironment which is the location or classes of locations in which a person is spatially 

homogeneous exposed to a pollutant concentration. This concept was also presented to explain 

that it would be necessary to have knowledge of the air pollutant concentrations in all locations 

that a person attends throughout the day since either air pollution and people are not static in 

time and space, making the exposure assessment more complex the greater the number of 

factors to be considered. So, understanding the daily time-activity pattern of individuals is 

important in exposure assessments. An example of this is shown in Figure 7, in which an 

individual (shown as the dotted line and black arrows) spends an amount of time in one location 

and then moves to another location throughout the day. The total exposure of this person will 

therefore depend on the time spent in each location (microenvironment) and the concentrations 

during the time spent in this location. Examples of microenvironments are home, bedroom, 

kitchen, living room, schools, classroom, playground, travel routes and modes, bus, car, 

subway, workplaces, offices, etc.  
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Figure 7. Hourly variation of NO2 concentrations at four microenvironments and its effect on 

spatiotemporal variation on personal exposure. Source: Mölter (2012). 

 

People spend most of their time indoors, which the amount of time can vary by whether the 

person is employed or not, in what type of job, how far is the job from its house, gender, the 

season of the year, whether they live alone or have children (Klepeis et al., 2001; Kousa et al., 

2002). In the case of children, they also spend most of their time indoors such as at home, 

bedroom, living room, school, classrooms (Mölter et al., 2012; Smith et al., 2016; Pañella et 

al., 2017; Cunha-Lopes et al., 2019; Tu et al., 2021). Indoor sources are related to daily human 

activities such as cooking, walking, cleaning, burning candles, natural and mechanical 

ventilation use, smoking, the use of unpaved or leisure areas, building deterioration, among 

others (Viana et al., 2011; Amato et al., 2014; Rivas et al., 2014; Goel et al., 2015, 2021). In 

the absence of indoor sources, indoor air pollution is a result of ventilation and airtightness of 

spaces, people’ activities, and dust resuspension (Figure 8) (Hänninen et al., 2011; Pallarés et 

al., 2019; Shrestha et al., 2019; Chen et al., 2020; Faria et al., 2020). Infiltration of air pollutants 

from the outdoor environment to the indoor air is also subject of study and usually is expressed 

in terms of indoor/outdoor (I/O) ratios. That is the concentrations inside a place are divided by 

the concentrations outside of the place’s location. Not considering this variability may cause 

substantial exposure misclassification. Indoor air pollutants concentrations can be also 

enhanced due to complex urban landscapes, the distance of pollutant sources, and 

meteorological conditions (Milner et al., 2005).  
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Figure 8. Schematic diagram of the key factor influencing indoor air pollution and the home as 

a microenvironment. Source: Vallero (2014b). 

 

One crucial factor in determining people’s exposure to air pollution is to know the 

concentrations of air pollutants they are exposed to. Various methods of estimating 

concentrations have been applied and the most often used has been measurements from fixed 

air quality stations. However, measurements at a station at a fixed site generally do not 

realistically represent the pollutant concentrations people are in reality exposed to. In addition, 

many areas do not have monitoring station networks or they are poorly spatial distributed, such 

as the case of several regions in South America (Peláez et al., 2020). In Brazil, only 1.7% of 

Brazilian municipalities have air quality monitoring stations (ISS, 2019). In this sense, several 

computational approaches were developed in order to estimate air pollutants concentrations, 

and then, have a better representation of the exposure indices. These approaches are further 

discussed in the coming section. 
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3.3 METHODS TO EVALUATE AIR POLLUTANT CONCENTRATIONS 

The methods of estimating air pollutants concentrations have significantly improved over time 

since computational costs decreased and science and technology advanced. Generally, air 

pollutants concentrations can be directly measured through air quality stations/monitors or 

estimated indirectly by computational techniques. A summary of these methods is shown in 

Table 3 and was built based on the review papers of Jerrett et al. (2005) and Hoek (2017). Note 

that all approaches presented in Table 3 are indirect methods to estimate the exposure indices 

to air pollution (Figure 2). Direct methods of measuring exposure include portable monitoring 

equipment, which can be classified as passive or active. Active portable monitoring equipment 

is costly and leads to altered behaviour while individuals must carry relatively little robust and 

expensive equipment. Passive equipment is more robust but gives a cumulative concentration 

that does not allow measuring peak values or other exposure over a short time period (Clench-

Aas et al., 1999). 
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Table 3. Summary of the methods used to assess air pollutant concentrations. Based on Jerrett et al. (2005) and Hoek (2017). 

Methods Principle Strengths Weaknesses 

Air quality 

monitors 

Measured values that are usually from 

surface-monitoring stations 

A routine monitoring network 

includes low cost, consistency of 

monitoring methods, and often a long 

period of monitoring. 

Lack of characterization of intra-urban 

contrasts related to traffic emissions 

and other local sources, because 

networks are typically not spatially 

dense enough. 

It usually measures regulated pollutants 

and generally does not measure 

ultrafine particles and black carbon, for 

example. 

Surface monitoring may be affected by 

differences in monitoring methods 

among regions/countries and the 

selection of monitoring sites. 

Interpolation 

It uses data from multiple stations and 

assigns more weight to stations that are at a 

shorter distance from the receptor point (e.g. 

residential address), using nearest 

neighbour, kriging, inverse distance 

weighting (IDW), or other geostatistical 

methods. 

It provides a spatially more resolved 

pattern than a simple average. It can 

be a useful option for areas with 

relatively few local sources, such as 

rural areas. However, the assumed 

smooth spatial change of 

concentration may be too simple in 

urban areas. 

It is relatively easy to apply the 

method. 

Low input data demand compared to 

other methods 

It depends on the existence of multiple 

stations in the area of interest.  

This approach might be too simplistic 

for urban areas that are characterized by 

high spatial variability of air pollutants. 
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Satellite 

monitoring 

Monitoring methods are based on the 

absorption and scattering of specific 

wavelengths of sunlight. 

Satellite monitoring of aerosol optical depth 

(AOD) contributed significantly to 

observations of NO2 and fine particles that 

are measured by the ozone-monitoring 

instrument (OMI). Despite satellite 

observations of ozone are less useful, 

because of the high concentrations in the 

stratosphere, limiting the reliability of 

assessing surface concentrations from total 

column concentrations. 

Data can be available globally, in 

contrast to surface-monitoring data 

that are available in a more limited 

number of countries and often 

concentrated in urban areas. 

It can provide a vertically integrated 

measure of atmospheric components. 

The concentrations are assigned to the 

entire population of the grid cells (at 

least 0.1° x 0.1° ≈ 123 km2), and thus, 

smaller-scale variation is lost. 

Coarser spatial and temporal resolution, 

interference by clouds, and the 

characterization of a single time of the 

day (satellites pass each location of the 

earth at the same time). 

Land use 

regression 

modelling 

It is derived by combining air quality 

monitors and collection of variables related 

to geographic information systems (GIS), 

which can potentially predict the measured 

spatial variation (e.g. land use, altitude, 

meteorology, traffic, roads data) 

It provides spatially more resolved 

predictions. 

It has a relatively low cost and easy 

implementation. 

It also needs a dense air quality 

monitoring network. 

LUR is an empirical approach in 

contrast to dispersion/chemical 

transport models which are based upon 

physical principles and actual emission 

data. This explains the difficulty to 

transfer LUR models from one study 

area to another. 

It cannot predict concentrations during 

periods of unusual emissions (e.g., the 

COVID-19 pandemic) and/or 

meteorological conditions that deviate 

significantly from the historical record 
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Dispersion 

modelling 

Modelling of dispersion of emission from 

source to receptors using deterministic 

models 

Fine spatial scale compare to CTMs 

It is helpful for air quality 

management purposes. 

Do not treat chemical processes and 

reactions.  

Validation with monitoring data is an 

important requirement for its 

application. 

It requires multiple information as well 

as CTMs. 

Chemical 

transport 

modelling 

Modelling the dynamics of atmospheric 

pollutants considering dispersion plus 

chemical transport.  

It can consider the reactivity of the 

chemicals in the atmosphere, such as 

the formation of O3 and PM. 

Useful to prognosticate air 

contaminants that are not routinely 

monitored by environmental agencies 

because they are not regulated yet. 

It is helpful for air quality 

management purposes. 

It requires higher computational power 

and multiple information (emission 

inventories, initial and boundary 

conditions, parameterization schemes, 

meteorological fields, and others), 

making its use sometimes unfeasible. 
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Previous studies characterized exposure to air pollution by assigning the average concentration 

measured at one or a few central sites within a city. For example, one of the most highly cited 

research articles, Dockery et al. (1993) positively correlated mortality rates and outdoor air 

pollution of people living in six American cities using six monitoring sites. Similarly, numerous 

other studies used fixed monitoring stations as a surrogate of exposure (Horie and Stern, 1976; 

Spix et al., 1998; Lee et al., 2014; Baek et al., 2021; Liu et al., 2021; Pu et al., 2021; Rodrigues 

et al., 2021; Zheng et al., 2021).  

However, to characterize intra-urban contrasts and/or to cover a broader spatial area, 

approaches beyond air monitoring stations were developed, including interpolation methods, 

satellite remote sensing, LUR models, computational algorithms, dispersion models, and 

CTMs. They are usually classified into deterministic models (i.e. physical) and stochastic 

models (i.e. statistical), despite, nowadays, it is common to refer to the latter as “traditional” 

statistical method due to arising of the artificial intelligence methods, considered as a third 

category. Stochastic models describe the statistical relationships among variables and have been 

developed from traditional multiple linear regression methods. Whereas, artificial intelligence 

methods have emerged in recent years and include machine learning methods such as artificial 

neural networks (ANNs) and deep learning. Deterministic models describe the relationship 

between variables mathematically based on knowledge of the physical, chemical, and biological 

mechanisms (Liao et al., 2021). 

The interpolation models in general estimate the value at an unmeasured location as a weighted 

average of the measurements at surrounding monitoring stations. They are either deterministic 

(such as inverse distance weighting (IDW), polynomial interpolations, splines) or stochastic 

geostatistical techniques (e.g. kriging and its many iterations) (Jerrett et al., 2005; Xie et al., 

2017). For example, Deng et al. (2016) applied the IDW method to estimate the concentrations 

of SO2, NO2, and PM10 using measurements obtained from ambient air quality monitoring 

stations in Changsha, China. Their study suggested an association between maternal exposure 

to traffic-related pollutant NO2 during pregnancy and childhood asthma, allergic rhinitis, and 

eczema. Similarly, Guo et al. (2021) investigated the influence of individual exposure to NO2, 

SO2, PM10, and PM2.5 on children’s health in Wuhan, China. They assessed the daily exposure 

over 2013-2014 at the kindergarten locations also using the IDW method and data of five 

monitoring sites. They showed that NO2, PM10, and PM2.5 were significantly associated with 

childhood allergic diseases. In comparison, Michael et al. (2018) analyzed temporal trends and 
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spatial patterns of O3 concentrations over Houston, Texas, by comparing the results from the 

IDW and kriging methods based on O3 observations and meteorological measurements from 

monitoring sites. They stated that kriging methods tend to smooth the true spatial process, 

consequently, they may not be able to resolve small scale spatial trends, such as titration of O3 

near NOx sources. In addition, its results depend on the representativeness of the sampling data 

for the region of interest, thus, a sparse network may limit the accuracy of the results. 

Nevertheless, the kriging methods performed better, showing greater consistency in the 

generated surfaces, fewer interpolation errors, and lower biases (Michael et al., 2018). 

Satellite observations provide better spatial coverage, but currently at the price of low temporal 

coverage and rather crude spatial resolution – especially if used for estimating personal 

exposure and to refer to variability among individuals that live in the same vicinity (Sorek-

Hamer et al., 2020). Satellite-based monitoring cannot directly measure ground-level PM2.5 

concentration. Instead, it can provide aerosol optical depth (AOD) products that together with 

observation- and simulation-based methods produce surface PM2.5 concentrations (Andreão and 

Albuquerque, 2021). Alvarado et al. (2019) have estimated daily-average PM2.5 concentrations 

for cities in low- and middle-income countries and reported that the uncertainties tended to be 

very large (21–77% for the statistical methods, and 48–85% for the CTM-based methods). 

Despite its known limitations, satellite observations have been employed extensively for 

assessing PM concentrations in different temporal and spatial study designs (Sorek-Hamer et 

al., 2020). For instance, Anderson et al. (2012) used satellite-based observations by combining 

AOD obtained from spectroradiometers on the satellite Terra and aerosol vertical profiles 

obtained from the global CTM GEOS-Chem to estimate PM2.5 and NO2 concentrations and, 

thus, investigate the effects of ambient air pollution on childhood asthma prevalence, but they 

found no strong association. They suggested that the association between childhood asthma 

prevalence with air pollution may be local-dependent. In contrast, Wang et al. (2020) positive 

associated exposure to PM2.5 during pregnancy (11–40 weeks) and infancy (1–14 weeks after 

birth) with pediatric rheumatic diseases using 3-km satellite-based AOD retrievals also from 

the Terra and Aqua satellites combined with the meteorological variables from reanalysis data, 

land-use variables, and a linear mixed effect model to predict daily PM2.5 concentrations in 

Taiwan.  

Statistical techniques do not consider physical and chemical processes and use historical 

monitoring data to predict air pollutant concentrations. LUR models are empirical models that 
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have been widely used, especially in community health studies for capturing the smaller-scale 

variability. They are based on the principle that pollutant concentrations at any location depend 

on the environmental characteristics of the surrounding area. The models are developed through 

the construction of multiple regression equations describing the relationship between the 

pollutant measurements at the monitoring stations or at sampling locations (the dependant 

variable) and the predictor variables (independent variables) that are usually obtained through 

Geographic Information Systems (GIS), such as traffic intensity, road length, distance to the 

major road, road type, population density, land cover, wind speed, among other variables that 

can be judged to be relevant (Hoek et al., 2008; Xie et al., 2017). 

LUR models have generally been applied in European and North American cities. For example, 

Boniardi et al. (2019a) used several LUR models to investigate the spatial distribution of black 

carbon (BC) in the catchment area of an elementary school in Milan, Italy. The models were 

built using data from 35 monitoring sites that were selected based on the proximity to/intensity 

of traffic sources and the school. They used more than 100 variables (road and traffic variables, 

population variables, land-use variables) to develop the LUR models that had different 

configurations to explain the BC distribution variability for warm and cold seasons as well as 

during the morning rush hours (from 7 am to 9 am). The LUR models showed that BC 

variability is well resolved only by traffic variables and the use of variables from 2011 may not 

properly take into account the urban transformations that happened in the last few years. In 

addition, during the cold season, there was a lack of explanatory variables that properly account 

for the contribution of heating systems to BC concentrations. Later, Boniardi et al. (2019b) used 

the same LUR model (for morning rush hours in the cold season) to assess its reliability in 

estimating BC exposure during home-to-school commuting (between 7:30 am and 8:30 am) of 

43 children (aged 6 to 11) from January 14 to February 19, 2019. The children had to wear a 

shoulder bag equipped with a personal BC monitor in the breathing zone together with a GPS 

device, and they also filled an activity diary. On average, the LUR model (6365 ± 3676 ng/m3) 

underestimated (29% less) the measured personal exposure (9003 ± 4864 ng/m3); however, the 

correlation between the two methods was high (r = 0.74). Despite the good agreement, the 

authors highlighted that the exposure BC estimates were based on the LUR model developed 

using data measured by fixed monitoring sites from the previous study. In addition, the traffic 

variables that they used to develop the model were only available as annual estimates. Hence, 

daily traffic conditions were not represented. 
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Marcon et al. (2021) compared the performance of the LUR model developed for Western 

Europe within the ELAPSE study (Effects of Low-Level Air Pollution: A study in Europe) and 

the kriging method to model concentrations of NO2 and formaldehyde using measurements 

obtained from passive sampling collected at 25 sites during 10 weeks (2017– 2018) in the 

municipality of Viadana, Italy. Dependent variables were the routine air quality data for NO2 

and PM2.5 and monitoring data for BC, whereas predictor variables (independent variables) 

included satellite data, dispersion model estimates, land cover, and traffic indicators. They 

suggested that despite the differences in methodology (kriging vs LUR), both results indicated 

that children living closer to the chipboard industry (< 1.7 km) were more exposed than the 

children living farther away (> 3.5 km). 

Hannam et al. (2013) compared estimates of personal NOx and NO2 exposure of 85 pregnant 

women from Manchester and Blackpool, England, with exposure estimates derived from ten 

different techniques: (i) nearest stationary monitor to home, (ii) average of the closest monitor 

to home and workplace, (iii) DEFRA model, (iv) IDW, (v) ordinary kriging, and (vi) a LUR 

model. In addition, modelling techniques were adjusted to provide monthly and daily values. 

The use of different methods aimed to examine if the techniques had different performances in 

both geographic areas. The personal exposure was measured with the Ogawa passive samplers 

over 48 hours period. The geometric mean levels of personal exposure were 17.3±16.4 µ/m3 

for NO2 and 52.2±54.6 µ/m3 for NOx, being exposure higher in Manchester. The techniques 

most correlated with personal exposure were monthly adjusted DEFRA (rNO2 = 0.61, rNOx = 

0.60), which estimated personal exposure as 18.85 µ/m3 for NO2 and 28.38 µ/m3 for NOx. 

Ordinary kriging and IDW also had a good agreement (rNO2 = 0.60, rNOx = 0.62) with the Ogawa 

samplers. 

Hoek et al. (2008) reviewed 25 LUR studies evaluating the differences among them with 

respect to the number and distribution of monitoring sites, the use of routine versus purpose-

designed networks, temporal resolution, the predictor variables (traffic variables, population or 

address density, land use, altitude, and topography, meteorology, and location), and the 

performance of the LUR models for different pollutants (NO2, NOx, PM2.5, and VOCs). The 

study suggested that most applications have been to NO2 because of the ease of monitoring of 

this pollutant. In addition, the authors pointed out that the performance of the method in urban 

areas is typically better or equivalent to geostatistical methods such as kriging and conventional 

dispersion models. Besides, compared to dispersion models, the LUR method requires less 
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detailed input data at the expense of the need to obtain monitoring data for a sufficiently large 

number of sites. 

The statistical approach takes advantage of the spatial and temporal correlations that are present 

in the air pollution concentration time series. However, statistical linear methods may not show 

satisfactory performance because of the nonlinear nature of air pollutants, which require a more 

sophisticated non-linear mathematical approach. Machine Learning (ML) methods can be 

employed to overcome this limitation. The most common learning algorithms are Random 

Forest, Gradient Boosting Machine, Artificial Neural Networks, Support Vector Regression, 

Cubist Regression, Kernel-Based Regularized Least-Squares, and Ensemble Approaches 

(Géron, 2019; Ren et al., 2020). Alimissis et al. (2018) evaluated the performance of both non-

linear (ANNs) and linear (multiple linear regression – MLR) approaches to model 

concentrations of NO2, NO, O3, CO, and SO2 using data from air quality monitoring stations 

located in the greater area of Athens, Greece. The results showed that the ANN models had 

higher predictive ability than the MLR schemes, especially where the air quality network 

density was sparse, leading to a decreased degree of spatial correlations among the monitoring 

sites. Ren et al. (2020) also compared the performance of several ML algorithms, among linear 

and nonlinear models, to estimate daily maxima of 8-hour averages of ambient O3 across the 

US. Overall, nonlinear ML methods achieved higher prediction accuracy than linear models 

(nearly 10%-40% decrease of predicted RMSE). For example, random forest (RMSE = 7.33 

ppb and R2= 0.71) and extreme gradient boosting (XGBoost; RMSE = 7.74 ppb and R2= 0.67) 

were the two best performing ML models, and LASSO (RMSE = 8.68 ppb and R2= 0.59) was 

one of the best performing among linear models. 

Wong et al. (2021) integrated LUR models and ML algorithms, such as Deep Neural Network, 

Random Forest, and XGBoost, for improving the accuracy of NO2 variation predictions. They 

used daily average NO2 data from 2000 to 2016 collected through 70 fixed air quality 

monitoring stations in Taiwan. The LUR model was developed using several geospatial and 

land-use data. XGBoost was the most efficient algorithm and yielded the best model 

performance (R2=0.84, RMSE = 3.95 ppb, MSE = 15.6 ppb) compared to Deep Neural Network 

(R2=0.81, RMSE = 4.3 ppb, MSE = 18.4 ppb), Random Forest (R2=0.78, RMSE = 4.7 ppb, 

MSE = 21.8 ppb), and LUR alone (R2=0.65, RMSE = 5.9 ppb, MSE = 34.4 ppb). ML algorithms 

were also used to improve numerical simulations of PM2.5 and its chemical components (OC, 

EC, NO3
−, NH4

+, and SO4
2−) over the Beijing-Tianjin-Hebei region, China. To improve the 
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prediction accuracy of the WRF-CAMx model, the MLR model, random forest, and support 

vector regression (SVR) model were assessed. The prediction accuracy of the MLR optimized 

model was slightly better than that of the WRF-CAMx model. However, there were substantial 

discrepancies between the observed and predicted data. Random forest and SVR models 

exhibited better prediction performance, with r values of 0.71–0.82, and error indices 17–79% 

lower than that of the WRF-CAMx model (Lv et al., 2021). 

In contrast to statistical methods, dispersion and chemical transport models (CTMs) simulate 

the physical and chemical processes of the dispersion and transformation of atmospheric 

pollutants to predict the pollutant concentrations associated with emission sources, topography, 

meteorology, as well as their spatial and temporal variations. CTMs numerically solve the 

physical and chemical equations and can be time-consuming due to the computationally 

expensive chemical mechanisms. The core of a CTM is the propagator consisting of all 

subroutines that are needed to update the current concentrations for a one-time step ahead. For 

each time step, it uses actual weather conditions, concentrations, and emissions as inputs, until 

it reaches the desired model prediction time. The predictability of CTMs suffers from 

uncertainties in characterizing the chemical mechanisms, emissions data, and meteorological 

processes (Vlasenko et al., 2021). 

The representative deterministic models are the Community Multiscale Air Quality modelling 

system (CMAQ), the California Puff Model (CALPUFF), the Atmospheric Dispersion 

Modelling System (ADMS) model, and the Weather Research and Forecasting model coupled 

with Chemistry (WRF-Chem) model. For instance, Isakov et al. (2009) combined CMAQ and 

AERMOD results with population exposure models, namely the Hazardous Air Pollutant 

Exposure Model (HAPEM) and the Stochastic Human Exposure and Dose Simulation 

(SHEDS) model to estimate benzene and PM2.5 concentrations, respectively. HAPEM and 

SHEDS use census demographic data to simulate a representative population and combine air 

pollutant concentrations with human activity pattern data to estimate population exposures. The 

average hourly concentrations from the CMAQ model (12 km horizontal resolution) were added 

to the hourly concentrations calculated by the AERMOD local plume model at 318 receptors in 

the modelling domain. Modelled exposures based on the hybrid approach (CMAQ+AERMOD) 

were much higher and had a wider variability when compared to CMAQ results only, which 

the former may enhance the spatiotemporal analysis of exposures within a community. 
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Monticelli et al. (2021) applied CALPUFF to model NO2 concentrations near homes and 

schools of children living in the MRV, Brazil. Modelled and observed concentrations were used 

to estimate children’s exposure to NO2 and the results were compared with passive samplers 

wore by the children. In terms of mean, the monitoring station provided results closer to the 

passive samplers, however, the spatial-temporal variability, as well as the minimum and 

maximum values, was best captured with CALPUFF. Khreis et al. (2018) used the ADMS-

Urban atmospheric dispersion model to estimate NOx and NO2 concentrations and thus, 

correlated them with the annual number of childhood asthma cases in Bradford, UK. The 

ADMS results were compared to estimates derived from the LUR model based on passive 

samplers placed at 41 sites over 14 days. Using the ADMS model, they estimated that an 

average of 18% of all childhood asthma cases in Bradford are attributable to NO2, and 24% 

using the LUR model. Andreão et al. (2020) used the WRF-Chem to quantify daily and annual 

PM10 and PM2.5 concentrations in 102 Brazilian cities because the monitoring network in Brazil 

is sparse. Then, they computed how many deaths and hospitalizations would be avoided due to 

respiratory and circular system diseases. 

Other studies applied alternative deterministic models but which have the same purpose. 

Klompmaker et al. (2021) evaluated associations between mortality rates and air pollution 

levels based on two stochastic models (Dutch LUR and European-wide hybrid), and a 

deterministic Dutch dispersion model. All these models showed positive associations of air 

pollutants with mortality due to natural causes, cardiovascular disease, respiratory disease, and 

lung cancer, but the strength of the associations differed between the three models. The hybrid 

and the dispersion models were generally more strongly associated with all mortality outcomes, 

whereas air pollutants modelled with LUR were only significantly associated with lung cancer 

mortality. The spatial variability of PM2.5 and BC exposure was smaller for LUR compared to 

hybrid and dispersion models. NO2 exposure variability was similar for the three methods. The 

study concluded the choice of the model may contribute to heterogeneity in effect estimates 

from cohort studies of long-term exposure to outdoor air pollution and mortality. 

Similarly, Gariazzo et al. (2021) used three different approaches to estimate population long-

term exposure to NO2 and PM10 and associated with mortality rates of natural-cause, 

cardiovascular, and respiratory diseases in Rome, Italy. Their study aimed to investigate if the 

results would have significant differences among the different models and resolutions. Air 

pollutant concentrations were estimated at different resolutions at 4 m, 200 m, and 1 km through 
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the micro-scale dispersion model PMSS (Parallel Micro-Swift-Spray), Random Forest, and the 

CTM Flexible Air quality Regional Model (FARM), respectively. There were significant 

differences when exposure was estimated and expressed per interquartile ranges. However, the 

differences in terms of hazard ratios (HRs) values for non-accidental and cardiovascular 

mortalities due to either NO2 or PM10 exposures were not statistically significant. These results 

imply that computational efforts required to estimate exposure at very fine resolution, using 

sophisticated model techniques like PMSS, do not provide significant differences in HRs of 

long-term health effects assessment with respect to simpler and less resolved computational 

modelling approaches, like CTM or machine learning methods.  

Although all approaches presented in this section have their limitations, researchers in most 

cases are doing the best work that technology, available data, or indeed time or known methods 

allowed them to do. In addition, the use of more sophisticated model techniques does not 

necessarily provide significant differences or improvements in the results (Gariazzo et al., 

2021). However, as mentioned, each individual has a unique air pollution exposure profile, 

meaning that these approaches cannot replace, in terms of accuracy and representativeness, 

instrumental personal exposure measures that would be directly carried out according to the 

daily activities of each individual. Measurements with personal monitors can differ greatly from 

estimates using fixed monitoring stations or numerical models because both consider that 

individuals spend their time exclusively in the outdoor ambient, which is an erroneous 

assumption since people usually spend the majority of their time in indoor environments, such 

as at home, schools, offices, transit routes, among others. For this reason, the next section was 

dedicated to a literature review of studies that evaluated the personal exposure of children to air 

pollutants.  

 

3.4 CHILDREN PERSONAL EXPOSURE TO AIR POLLUTION 

In a series of papers, Buonanno et al. (2012, 2013a; 2013b) reported the personal exposure and 

dose of children (8–11 years old) living in Cassino, Italy, to ultrafine particles (UFP, <0.1 µm) 

and BC. The portable apparatus wore by children was composed of a BC monitor (microAeth® 

AE51, Magee Scientific), a GPS tracking device, and three hand-held UFP counters 

(NanoTracer, Philips), which the latter measured (i) particle number concentration (PNC, up to 

1×106 part/cm3 in the diameter range of 10–300 nm), (ii) nanoparticle surface area (µg2/cm3), 
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and (iii) mean diameter of the particle number size distribution. Activity diaries were also used 

to track children’s activities throughout the day. The daily average PNC measured on a personal 

scale was equal to 58×103 part/cm3, and for BC was equal to 5.1 µg/m3. As interpreted by 

Buonanno et al. (2013), the average personal UFP exposure experienced by children was very 

high and was comparable to concentrations measured in street canyons and roadsides, as 

reported by Morawska et al. (2008), which determined mean concentrations for several 

environments, such as clean background, rural, urban background, urban, street canyon, 

roadside, on-road, and tunnel environments as 2.6, 4.8, 7.3, 10.8, 42.8, 48.2, 71.5, 167.7 ×103 

part/cm3, respectively. With regard to dose, the mean daily inhaled dose of particle number and 

BC concentrations were 3.35×1011 part/day and 39.2 µg/day, respectively. For all children, the 

lowest PNC values were registered during sleeping time and the highest occurred during eating 

time. Furthermore, the sleeping time presented a higher mode diameter range (84–136 nm) 

compared to the eating time (67–84 nm) because of the presence of more aged particles. 

Children were also exposed to high PNC during their time spent on transport, with an average 

ranging from 55×103±24×103 part/cm3 to 68×103±28×103 part/cm3 in the urban area, and 

21×103±82×103 part/cm3 in the rural site. 

Mazaheri et al. (2014) carried out similar experiments with schoolchildren (8–11 years old) 

living in the Brisbane Metropolitan Area, Australia. A similar device to Buonanno et al. (2012, 

2013a; 2013b) was used, the Philips Nanotracers, to measure PNC and it was carried by children 

around the waist using a dedicated belt. A diary survey was developed for recording children’s 

daily activities. The mean and standard error of exposure to PNC in each of the four 

environments were: 10.5×103±58.8 part/cm3 (home), 8.53×103±0.13×103 part/cm3 (school), 

13.7×103±0.30×103 part/cm3 (commuting), and 8.66×103±0.28×103 part/cm3 (other). An 

important feature described in the study design was all classrooms used natural ventilation all 

year round and no heating systems were used during winter or on cooler days, which is a similar 

assumption for classrooms in Brazil. The authors concluded that inhaled alveolar surface area 

doses in the Italian schools were approximately 1.5−5 times higher than in Brisbane, Australia. 

Later, Mazaheri et al. (2019) evaluated UFP concentrations (with the same equipment) over 

24 h for 24 children (9–13 years old) in the city of Heshan, the Pearl River Delta region, 

southern China. Natural ventilation was used in all the indoor microenvironments, which made 

the infiltration of outdoor particles indoors a natural process. However, the authors highlighted 

the impact of adults’ smoking and the use of mosquito repellent incense at home on children’s 

exposure because the highest average exposure (12.6 ×103 part/cm3) was found to occur at 
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home, especially during sleeping hours, based on the collected questionnaire data. The results 

also showed significant differences between the concurrently measured PNC using fixed-site 

and personal monitors, hourly average personal PNC was lower than ambient PNC by 

51.8×103 part/cm3 (65%), which demonstrated that fixed-site monitoring does not provide a 

realistic estimate for personal exposures. 

Mölter et al. (2012) carried out personal monitoring campaigns with children from a secondary 

school (12–13 years) in Greater Manchester, England. Participating children were asked to wear 

a passive sampler (Ogawa & Co., USA) on their school blazers for two consecutive weekdays, 

with the sampler being exchanged after the first day. In addition to wearing the personal 

monitors, the children were asked to complete a time-activity diary for the same time period. 

Because only four urban monitoring stations within the Greater Manchester area were available 

at the time of the campaign, a LUR model specifically developed for the Greater Manchester 

area was employed to provide outdoor NO2 concentrations. I/O ratios were also used for schools 

(I/O = 0.5), went on walking/cycling (I/O = 1.0), went by car/bus (I/O = 2.0), and a model 

parameterised for the UK was adopted for I/O at homes. With the data collected, the authors 

formulated a ‘microenvironmental exposure model’ which consisted of three main 

environments (home, school, journey) which are further subdivided into indoor or outdoor, and 

in the case of the home into kitchen, living room, and child’s bedroom. The mean exposure 

estimated by their microenvironmental exposure model (19.6±4.7 µ/m3) was the most similar 

to the mean personal exposure measured by Ogawa samplers (20.4±7.9 µ/m3). Meanwhile, the 

personal exposure would be overestimated if it was used only the nearest urban monitor 

(28.6±15.0 µ/m3) or modelled LUR data (31.2±5.4 µ/m3). In this sense, the study demonstrated 

that modelling based on time spent in microenvironments provides a better estimate of personal 

exposure than an outdoor model or the nearest urban monitor. 

Rivas et al. (2016) evaluated personal BC exposure of 45 schoolchildren (7–10 years old) living 

in Barcelona, Spain, using a portable MicroAeth AE51 (AethLabs, USA) over 48 h. Children 

carried the instrument in a belt bag, with the inlet tube always exposed and placed in the 

breathing zone. Children filled a time-activity diary reporting every time they changed location 

and activity. Children spent 6% of their time commuting but received 12% of their daily BC 

exposure (mean of 3.3 µg/m3), due to cooccurrence with road traffic rush hours and the 

proximity to the source. Children received 33% of their daily-integrated BC exposure at school 

(1.5 µg/m3 in the classroom and 1.4 µg/m3 in the school playground) where they spent 31% of 
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their time. Home (58% of their time, 1.3 µg/m3) and others (6% of their time, 1.4 µg/m3) were 

responsible for the 50% and 6% BC dose, respectively. Beyond that personal BC concentrations 

were 20% higher than in fixed stations at schools, but in the warm season, the fixed stations 

agreed better with personal measurements than during the cold season. 

Paunescu et al. (2017) reported daily (24 h) personal BC and UFP individual exposure of 96 

children (9±0.2 years old) living in Paris, France. Time spent in each microenvironment came 

from space-time-activity questionnaires filled by the families, and Google Maps was used to 

geocode all addresses. The parameters were measured by portable devices microAeth® AE51 

(Aethlabs, San Francisco, CA, USA) and DiSCmini® (Matter -aerosol; Wohlen, Switzerland) 

located inside a backpack with the inlet in the breathing zone. The total BC (UFP) exposure 

during school, home, transportation, and extra-curricular activities were 53% (65%), 33% 

(23%), 12% (10%), and 2% (2%). The results also showed that BC exposure concentration was 

higher during trips, principally subway/train (BC= 3.75±1.77 µg/m3; UFP= 29.1±16.6 ×103 

part/cm3) and bus (BC= 3.32±1.25 µg/m3; UFP= 32.6±14.9 ×103 part/cm3). On the other hand, 

UFP exposure concentration was higher during indoor activities, mainly during eating at 

restaurants (BC= 2.40±1.19 µg/m3; UFP= 98.2±175.8 ×103 part/cm3) and on trips (BC= 

1.97±1.29 µg/m3; UFP= 34.3±33.1 ×103 part/cm3), but the most significant UFP peaks occurred 

during cooking at home.  

Pañella et al. (2017) also assessed daily (24 h) personal BC and UFP individual exposure of 

asthmatic (n=50) and non-asthmatic children (n=50) (9±0.7 years old) in Catalonia, Spain. Time 

spent in each microenvironment was derived by the geolocation provided by the smartphone 

together with the portable devices microAeth® AE51 (Aethlabs, San Francisco, CA, USA) and 

DiSCmini® (Matter -aerosol; Wohlen, Switzerland) located inside a backpack with the inlet in 

the breathing zone. Asthmatics and non-asthmatics essentially spent the same amount of time 

at home (BC=1.54 µg/m3; UFP=10 ×103 part/cm3), at school (BC=1.65 µg/m3; UFP=10.2 ×103 

part/cm3), on transportation (BC=3.34 µg/m3; UFP=19.1 ×103 part/cm3), and in other 

microenvironments (BC=2.20 µg/m3; UFP=14.2 ×103 part/cm3). The highest concentrations 

were attributed to transportation, despite it was the microenvironment where the children spent 

the least time over a day. In conclusion, the authors suggested that interventions should be 

tailored to the general population rather than to subgroups defined by a disease.  
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Karakatsani et al. (2017) followed 188 children, between 10 to 11 years old, for 5 weeks in the 

two major cities of Greece, namely Athens and Thessaloniki, to assess O3 weekly exposure. 

The personal exposure was measured with Ogawa samplers (Ogawa & Co. USA Inc., Pompano 

Beach, FL) which wore by children continuously on their chests. In high (low)-ozone areas, O3 

personal measurements were 10.8±7.8 µg/m3 (8.2±6.7 µg/m3) and 5.9±6.6 µg/m3 (4.7±4.8 

µg/m3) in Athens and Thessaloniki, respectively. O3 personal measurements were much lower 

than outdoor measurements at schools (range of 35.2±20.7 µg/m3– 64.3±20.1 µg/m3) or fixed 

sites (24.6±13.8 µg/m3– 63.8±16.4 µg/m3), reflecting the amount of time spent indoors, where 

ozone concentrations are lower. 

Zhang et al. (2018) performed a PM2.5 exposure assessment with 57 children (aged 8–12 years) 

in Shanghai, China. Like the other studies, they conducted a questionnaire survey to collect 

information about the children’s lifestyles. PM2.5 concentrations at school were measured in 

several microenvironments (e.g. classrooms, main corridors, and the playgrounds) from 8 a.m. 

to 4 p.m. with TSI DUSTTRAKTM DRX (Model 8533, TSI Inc. Paul, MN, USA) device. 

During the off-campus period (from 4 p.m. to 6 a.m. the next day), PM2.5 concentrations were 

measured by a set of real-time laser diode photometers (SidePakTM AM510, TSI Inc, USA), 

which were placed in small bags. A sampling air inlet was fixed in the vicinity of the students’ 

breath zone. The median of the PM2.5 exposure levels in the different microenvironments and 

corresponding fractional time of all students was 3014.13 (μg.h)/m3, with an average of 

155.74±72.73 μg/m3. They concluded that PM2.5 concentrations in the schools greatly exceeded 

the daily standard of PM2.5 Ambient Air Quality Standards of China (75 μg/ m3). 

Personal exposure assessment to UFP was also carried out by Nyarku et al. (2019) with 61 

schoolchildren (11–16 years old) from Accra, Ghana. The researchers also used the Three 

Aerasense NanoTracers (NT Model PNT1000; Philips, The Netherlands) to conduct the 

measurements. The mean UFP concentration and the mean (median) daily exposure were 53.30 

×103 part/cm3 and 44.67 ×103 (41.0 ×103) part/cm3 per hour per day. The highest mean exposure 

was received at home because the open burning of trash is a common practice in the study area. 

In addition, many households burn mosquito coils at night as a means of keeping mosquitos out 

of their bedrooms. 

Cunha-Lopes et al. (2019) quantified daily exposure to BC (with the MicroAeth AE51 

(AethLabs, USA)) and sized-fractioned PM2.5 (SKC five-stage Sioutas Cascade Impactor (SKC 
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Inc., USA)) of nine children (7–10 years old) residing in Lisbon, Portugal. Each child carried a 

trolley with three portable monitoring devices with the air inlet tube placed in the breathing 

zone. The equipment was carried for three days and recorded the time spent in their activities 

and respective microenvironments. The average exposure to PM2.5 (19 μg/m3) was higher than 

that registered by the nearest fixed urban background station (11 μg/m3), evidencing the 

importance of assessing the personal daily exposure. The average exposure to PM1, PM0.5, and 

PM0.25 was 14 μg/m3, 11 μg/m3, and 7.7 μg/m3, respectively. Although the lowest BC 

concentrations were measured at home (0.89 μg/m3), it was influenced by indoor sources (e.g. 

cooking and candles) and by infiltration from outdoor sources. The highest BC concentrations 

were registered while commuting (5.1 μg/m3 by car and 2.5 μg/m3 on foot). The daily average 

BC exposure and dose were 1.3 μg/m3 and 15 μg/day, which was similar to the BC background 

concentrations of European cities. 

George et al. (2020) conducted experiments with 46 children (aged 10–12 years), which carried 

the aethalometer (microAeth® model AE51, AETHLABS, San Francisco, USA) for a 24 h 

period on a typical school day in Singapore to measure BC concentrations. The aethalometer 

was placed in a shoulder bag, with the hose of the monitor affixed to the strap of the bag such 

that its tip was at the child’s shoulder level. The mean BC exposure on a typical school day was 

3.34±174.4 μg/m3/min. The highest BC exposure occurred during commuting to and from 

school (5.08 μg/m3/min), compared to that when at home (2.94 μg/m3/min), at school (3.37 

μg/m3/min), and during other activities (2.76 μg/m3/min). 

In Milan, Italy, Boniardi et al. (2021) asked children (8–9 years old) to complete a time-activity 

diary and to wear a GPS and a shoulder bag equipped with the microAeth® AE51 (Aethlabs, 

San Francisco, CA, USA) to measure personal exposure to BC concentrations. They found that 

the personal exposure in the cold season was 3.9±3.3 μg/m3, a 3-fold higher than in the warm 

season (1.3±1.5 μg/m3), while exposure to BC concentrations was 2.8 μg/m3 (range: 0.2–11.9 

μg/m3) when considering overall data. Regardless of seasonality, transportation was the 

microenvironment linked with the highest mean and maximum personal BC concentrations. 

Jung et al. (2021) considered children between 9 and 14 years old with current asthma status 

living in New York City, USA. Children wore BC monitors for two 24-h periods over six days 

sampling period. The BC concentrations were measured with the MicroAeth (Model AE51; 

Magee Scientific) monitor and a survey asking children if he/she went to school that day. The 
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levels of hourly personal BC during school hours (between 08:30 and 14:30 hours) ranged 

between 1.26 and 1.66 μg/m3. There were higher mean personal BC concentrations before (7–

8 a.m.) and after school hours (3–4 p.m.), whereas the highest concentrations were observed 

between 7 and 9 p.m. 

In Brazil, no studies involving personal exposure of children to air pollutants have been 

reported, however, some studies carried out with adults could be found. For example, Santos et 

al. (2016) evaluated the 24-hour personal exposure to PM2.5 of 101 non-smoking workers (taxi 

drivers, traffic controllers, and forest rangers) in São Paulo. The personal sampler was designed 

by the Harvard School of Public Health and installed in a shoulder bag to be carried all day and 

kept nearby during sleeping or bathing periods to record real 24-hour environmental exposure. 

The median (mean) personal exposure was 42.26 μg/m3 (38.42±14.72 μg/m3) for taxi drivers, 

23.24 μg/m3 (20.75±6.49 μg/m3) for traffic controllers, and 36.72 μg/m3 (31.83±17.17 μg/m3) 

for forest rangers. More recently, also in São Paulo, the Health District of Butantan School 

recruited 131 pregnant women to assess individual exposure to NO2 and O3 with passive 

devices, that were delivered to each patient by a community health agent 7 to 18 days before 

her ultrasonography. The study found a median (mean) personal exposure of 40.29 μg/m3 

(40.27±16.9 μg/m3) to NO2 and 8.12 μg/m3 (8.30±1.09 μg/m3) to O3 (Hettfleisch et al., 2021). 

Because O3 is consumed by nitrogen oxides in the photochemical cycle, the pollutants were 

inversely correlated, and thus, their results encountered that primary pollutants (represented by 

NO2 as a proxy variable of fresh automotive emissions) are more important in promoting 

adverse effects in placental tissue than secondary pollutants, in this case, represented by O3. 

In Londrina, Paraná, Carvalho et al. (2018) determined the personal exposure and dose of six 

couples with different working routines over 48 h based on mobile BC measurements with a 

hand-held aethalometer (models AE51, AethLabs, USA). In their study, the volunteers spent 

on average 67% of their time at home, 23% at work, 7% in transport, and 3% conducting other 

activities (shopping, gym, visiting friends, and family, etc.). The highest levels and variability 

were found to occur in transport (mean of 4.01±5.35 μg/m3). Conversely, mean concentrations 

at work were lower and showed less variability (mean of 1.42±1.45 μg/m3). The authors 

reinforced that data from fixed monitoring sites could not capture the variability of BC 

concentrations, especially within transport microenvironments, where the spikes occurred. 

Moreover, concentrations measured at fixed sites were not correlated with the personal 

monitoring during the day, since BC featured a large spatial variability. Also in Londrina, 
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Almeida et al. (2018) assessed the personal exposure of 30 individuals from five occupational 

categories to PNC for size ranges (PM1; PM2.5; PM4; PM10). The personal sampling occurred 

during workdays, starting from the moment they left their homes to go to work. The devices 

were placed in a small backpack, with the inlets externally attached to the strap near the 

volunteer’s airways. The equipment consisted of a GPS, a particle counter monitor (Met One 

Instruments, Model 804, Grants Pass, U.S.A) to measure the PNC, and a mass particle monitor 

(Met One Instruments, Model Aerocet 831, Grants Pass, U.S.A.) to measure the PM 

concentrations. The personal exposure to PNC was on average higher in lower ranges (PNC0.3–

0.5=93.9±55.4 part/cm3) when compared to other size intervals (PNC2.5–10=0.2±0.1 part/cm3). 

Volunteers in the ‘education’ category experienced the lowest exposure to PM (e.g. 

PM1=7.4±3.3 μg/m3 and PM2.5=11.1±4.1 μg/m3), as opposed to those involved in ‘commercial’ 

and ‘transport’ activities with the highest exposure for PM1 (15.5±8.5 μg/m3) and PM2.5 

(22.6±13.1 μg/m3), respectively.  

Pacitto et al. (2021) performed a comparison among airborne particle concentrations, at a 

personal scale using a handheld particle counter, in different cities around the world (Cairo, 

Accra, Florianopolis, and Nur-Sultan). Exposure data characteristics of these populations 

revealed significant differences with respect to the high-income western countries. For 

example, the exposure during the cooking/eating activities was the most critical for western 

countries, however, for these low- and middle-income countries, it was lower or similar to those 

measured in other microenvironments. Several reasons could explain this finding, such as type 

of food, cooking activity, fuel and stoves used, and climatic conditions. An exception was 

Florianopolis, which according to the authors, socioeconomic conditions would explain this 

divergence compared to the other cities since no site-specific air quality issues typical of the 

other low- and middle-income countries were reported. Nevertheless, for Brazil, it was found 

that the median exposure to PNC values were 9.83×103 part/cm3 (Sleeping & Resting), 

12.1×103 part/cm3 (indoor day), 13.1×103 part/cm3 (outdoor day), 13.3×103 part/cm3 

(transport), 11.8×103 part/cm3 (working), and 19.4×103 part/cm3 (cooking/eating). The authors 

also concluded that low- and middle-income populations spend less time indoors due to climate 

conditions, resulting in different contributions of the microenvironments to the daily exposure 

and dose. 

Because the objective of the present study is to investigate whether the modelled ambient 

concentrations could be used as a reliable surrogate of personal exposures in the study area, a 
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literature review was devoted to finding studies that used a dispersion and/or CTM model to 

assess individual exposure. For that, keywords beginning with ‘personal exposure’, followed 

by the terms: ‘CTM’, ‘dispersion model’, ‘AERMOD’, ‘CALPUFF’, ‘ADMS’, ‘CMAQ’, 

‘WRF-Chem’, and ‘CAMx’, separately, were entered into the SCOPUS and Web of Science 

databases, filtered by the fields ‘title’, ‘abstract’, and ‘keywords’ and considering research 

articles in English. Although the literature was limited, some studies are presented hereafter. 

Wang et al. (2009) applied two atmospheric dispersion models (ISCST3 and AERMOD) to 

estimate the 24-h average ambient concentrations of benzene and toluene and to compare the 

results with stationary sites and personal measurements from 108 participants living in Camden, 

New Jersey, USA. The levels of benzene and toluene concentrations predicted by ISCST3 and 

AERMOD were comparable to the measurements collected at the fixed sites, in which both 

models had similar performances but underestimated the measurement concentrations. 

Nevertheless, the values from fixed monitors generally showed better agreement with the 

personal measurements than those based on atmospheric models. The authors suggested that 

the dispersion modelling results for benzene and toluene might not be adequate for exposure 

modelling and further improvement would be needed. 

Fulk et al. (2016) also used AERMOD to investigate if the dispersion model could be used as 

an approach to estimate ambient air manganese exposure concentrations for 19 children (7–9 

years) living near a ferromanganese refinery in Marietta, Ohio, USA. For that, the authors used 

personal exposure values from the study of Haynes et al. (2012) that carried out the experiments 

through a backpack equipped with a tube connected to an air sampling pump and a modular 

impactor capable of sampling PM2.5 for 48 h. The results indicated that modelled monthly and 

yearly manganese concentrations were in close agreement with the manganese measured in the 

PM2.5 obtained from a stationary monitor placed at the refinery. However, the mean modelled 

values (27.9±46.8 (median=8.8) ng/m3) were overestimated when compared to personal data 

(11.1±13.3 (median=6.5) ng/m3), despite the median values being close. Nevertheless, the level 

of modelled manganese was found to be positively associated with the level of personal Mn, 

which explained more than 40% of the variability in personal exposures (R2=0.42). 

Similarly, Physick et al. (2011) estimated personal exposure to NO2 of 24 adults in Melbourne, 

Australia. The participants wore two passive samplers simultaneously attached to chest 

clothing, which one was worn throughout a 48-hour period and the second sampler depended 
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on which microenvironment (home, work, transit, or other) was being experienced. Additional 

pairs of samplers were placed outside of the participant’s home and workplace and opened only 

while the volunteer was in that environment. In this way, ratios of indoor to outdoor 

concentrations were obtained, which homes with gas cooking adopted I/O = 0.67, and those 

without gas cooking used 0.47. For workplaces, it was used I/O = 0.74. Sampler measurements 

were compared to hourly-averaged data from fixed network monitors and an air quality model 

(TAPM-CTM), which used a horizontal resolution of 9, 3, and 1 km. In the vertical, model 

levels are at 10, 25, 50, 100, 150, and 200 m above the ground, with layer spacing gradually 

increasing up to the top of the model domain (which extended to 8000 m). According to the 

authors, the decision to use a CTM relied on an ozone case study episode in the Northern 

Georgia Region, USA (Bell, 2006), which showed that the MM5/CMAQ provided better 

estimates of exposure than fixed-network monitoring alone by increasing the spatial and 

temporal resolution and by providing estimates for pollutants that are not measured. In this 

sense, when compared to the passive samplers placed at home, the simulations predicted 

reasonable results, underestimating the mean NO2 exposure by only 11%. However, TAPM-

CTM did not perform well for the work microenvironment because of an underestimation of 

vehicle emissions inventory. Despite both methods underestimating the personal exposure 

values, the statistics for the nearest monitor approach were generally better than for the 

simulation approach. Thus, the authors recommended the use of values from the network 

monitor nearest to a person’s microenvironment for calculating the personal exposure, but their 

findings could only be related to NO2 and cities with monitoring networks of similar density to 

Melbourne. Conversely, Dimakopoulou et al. (2020) observed that personal exposure of 

children living in Athens and Thessaloniki to O3 was better correlated using estimates from the 

Eulerian chemical transport model (MARS-aero) than fixed-site monitors.  

As we could see throughout the literature review, there are several ways to perform the exposure 

assessment to air pollution, which can be based on the different modelling and measurement 

techniques, evaluate different population subgroups, consider space-time-activity information 

or/and ratios of indoor to outdoor concentrations. The current study is interested in investigating 

the exposure of children to air pollution in a coastal-urban area, located in the Southeast of 

Brazil, which has a peculiar arrangement and air pollution is not mostly exclusively emitted by 

vehicular sources, as occurs in most of the urban centres worldwide. The local emission 

inventory pointed out that the major contributor of air pollutant emissions is the industrial 

sources, especially those related to the pelletizing-siderurgy activities, which are located 
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together in the same port complex and relatively near the children’s residences. Thus, by using 

a modelling approach together with source apportionment and sensitivity analysis, the present 

doctoral thesis aims not only to quantify but also address the responsibility of air quality over 

the region. 
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4. METHODOLOGY 

4.1 THE ASMA-VIX PROJECT  

The ASMA-Vix study was a multidisciplinary project, aimed at assessing the relationship 

between air pollution and children’s health in the Metropolitan Region of Vitória (MRV), 

Espírito Santo, Southeast Brazil (Figure 9). The MRV region is a coastal, tropical, and urban-

industrial area, that is composed of seven municipalities, namely: Fundão, Serra, Cariacica, 

Viana, Vila Velha, Guarapari, and Vitória, being Vitória the capital of the state of Espírito 

Santo. The MRV has a peculiar arrangement because the industrial complex (chemical, 

petrochemical, and mining-steel industries, landfills, civil construction, airports) are located 

into the urban/residential zone, where about over 2 million people live. The MRV population 

represents more than half of the total population of the Espírito Santo state (IBGE, 2020). 

Source apportionment studies in the MRV region have identified that the major emission 

sources are from industrial sites related to pelletizing, steel and port activities, and road traffic 

(Santos et al., 2017; Galvão et al., 2018, 2019). These anthropogenic emissions result in a 

mixing of air pollutants that annoy the population (Machado et al., 2015). In addition, the 

prevalence of asthma and rhinitis among children in Vitória is higher than the Brazilian national 

average (Serpa et al., 2014). In this context, the ASMA-Vix study was designed to investigate 

the respiratory function in children and adolescents with mild to moderate asthma residing in 

the city of Vitória in order to determine whether, and to what extent, air pollution affects asthma 

symptoms. For that, the selected children and adolescents have to wear passive samplers 

(Ogawa & Co., USA) to evaluate the levels of exposure to air pollution, which nitrogen dioxide 

(NO2) was chosen to be the object of monitoring. These passive samplers were wearable by 

twenty-one children (eight girls and thirteen boys with ages varying between 8 and 14 years 

old) through three monitoring campaigns (Table 4). The limited number of participants included 

in this pilot study in Brazil was because the ASMA-Vix project considered only children with 

asthma symptoms, which can be pointed out as a limitation of the study. Studies that only focus 

on children with asthma have small sample sizes and the extrapolation of the results could be 

impaired (Xu et al., 2020). More detailed information about the ASMA-Vix study can be found 

at https://qualidadedoar.ufes.br/asmavix. 

 

https://qualidadedoar.ufes.br/asmavix
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Figure 9. Location of Espírito Santo State in Brazil (upper left) and the location of the 

Metropolitan Region of Vitória in Espírito Santo State (lower left). The location of the air 

quality stations (AQS) used to evaluate the performance of the WRF-Urban and CMAQ-ISAM 

models. 

 

The monitoring campaigns were performed with children living in neighbourhoods of Vitória 

city, namely: Andorinhas district (‘Campaign 1’ – C1 between November 2-17, 2019), Maruípe 

district (‘Campaign 2’– C2 between December 4-19, 2019), and Itararé district (‘Campaign 3’– 

C3 between February 12-19, 2020) (Table 4 and 5). In C1 and C2, the filters were changed 

every 5 days over three weeks, thus, each sample represented a cumulative personal exposure 

of 5 days to NO2. In C3, children used the personal passive samplers over one single week (7 

days). The change from 5 to 7 days in the third campaign was made so that, logistically, it would 

be easier to change filters. In other words, the exchange of filters would occur once a week 
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instead of twice, aiming at the entry of more children into the project and performing more 

experimental campaigns. However, the 7-day model was not continued because of the 

interruption of all activities due to the COVID-19 pandemic. In addition, experimental data of 

particulate matter (PM2.5 and PM10) were obtained in schools and homes (indoor measurements) 

of the children related to the project. The location of the neighbourhoods, schools, and 

children’s residences are shown in Figure 10. 

The description of the sampling procedures, the equipment set-up, the routine collection, and 

the children’s profiles and their daily activities are described in Velasco (2020), Monticelli 

(2020), and Monticelli et al. (2021). Children have a highly predictable and less varied daily 

routine compared to adults. The selected children spent 75% and 15% of their time at home and 

school, respectively, totalling 90% of their time in indoor environments, and 10% outdoor 

including the transit routes. In addition, the majority of participants used ceiling fans and open 

windows throughout the day, including the sleeping hours. Sixteen children (out of 21) were 

walking to school and took on an average of 7 minutes in their routes for a mean distance of 

444±298 m. Three children went to school using private vehicles, one using a personal vehicle 

that took 10 minutes to arrive at school for a distance of 2900 m, and two children using a 

school minibus that took 40 minutes in transit routes for a distance of 1600 m and 2700 m. Two 

children used the public buses to go to school for a distance of 1100 m and 2100 m, despite the 

close distance the latter took 40 minutes in its transit route because of a combination of walking 

to the bus stop, waiting, and taking the bus (Table 4). 

Table 4 presents detailed information about the ASMA-Vix campaigns, informing children’s 

characteristics and behaviours, such as their gender, age, the transport modes used by the 

children to go to school, the average time that they spent on commuting, the distance estimated 

by Google Maps, the school time they attended school, and the personal exposure of NO2 

(cumulative) for each child in each week. Table 5 summarized these contents by campaigns. 
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Table 4. A detailed description of the experimental campaigns of the ASMA-Vix project. 

Campaign 
Children’s 

code 
Sex 

Age 

(years) 

Mode 

transport 

home-school 

Time spent 

during 

commuting 

home-school 

(min) 

Distance 

home-school 

(m) (from 

GoogleMaps) 

School time Week 

NO2 data (cumulative) 

measured with the passive 

samplers [µg/m3] 

Campaign 1 

(C1) 

 

W1: 

November 2-

7, 2019 

 

W2: 

November 7-

12, 2019 

 

W3: 

November 

12-17, 2019 

AN.CR.01 F 11 Walking 5 300 
part-time 

(morning) 

W1 17.69 

W2 12.18 

W3 15.27 

AN.CR.02 F 10 Walking 2 170 
part-time 

(morning) 

W1 8.69 

W2 6.66 

W3 - 

AN.CR.03 F 11 Walking 2 130 full-time 

W1 21.09 

W2 12.75 

W3 22.45 

AN.CR.04 F 10 Walking 10 450 
part-time 

(afternoon) 

W1 12.31 

W2 7.44 

W3 8.65 

AN.CR.05 M 11 Walking 10 450 
part-time 

(afternoon) 

W1 11.30 

W2 13.99 

W3 20.19 

AN.CR.06 M 13 Walking 3 190 
part-time 

(afternoon) 

W1 9.08 

W2 12.18 

W3 8.55 

Campaign 2 

(C2) 

 

W1: 

December 4-

9, 2019 

 

W2: 

December 9-

14, 2019 

 

MA.CR.01 M 11 Walking 15 850 
part-time 

(afternoon) 

W1 10.62 

W2 10.19 

W3 7.75 

MA.CR.02 F 9 Walking 15 1000 
part-time 

(afternoon) 

W1 6.05 

W2 4.63 

W3 4.61 

MA.CR.03 F 12 
Vehicle 

(Minibus) 
40 1600 

part-time 

(afternoon) 

W1 7.13 

W2 9.49 

W3 7.84 

MA.CR.04 M 13 Walking 12 900 
part-time 

(morning) 

W1 14.31 

W2 - 

W3 - 

MA.CR.05 M 11 Walking 10 750 W1 15.44 
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W3: 

December 

14-19, 2019 

part-time 

(morning) 

W2 10.42 

W3 30.46 

MA.CR.06 F 8 Walking 5 400 
part-time 

(morning) 

W1 13.40 

W2 6.15 

W3 13.57 

Campaign 3 

(C3) 

 

W1: 

February 12-

19,2020 

IT.CR.01 M 9 Walking 1 120 
part-time 

(afternoon) 
W1 12.69 

IT.CR.02 M 8 Private vehicle 10 2900 
part-time 

(morning) 
W1 12.90 

IT.CR.03 M 9 
Vehicle 

(Minibus) 
40 2700 

part-time 

(afternoon) 
W1 14.61 

IT.CR.04 M 9 Walking 3 290 
part-time 

(morning) 
W1 14.34 

IT.CR.05 M 14 Walking 5 350 
part-time 

(afternoon) 
W1 18.69 

IT.CR.06 M 12 Bus 15 1100 
part-time 

(morning) 
W1 12.80 

IT.CR.07 M 13 Bus 40 2100 full-time W1 10.08 

IT.CR.08 M 9 Walking 1 110 
part-time 

(morning) 
W1 15.08 

IT.CR.09 F 12 Walking 10 650 
part-time 

(morning) 
W1 11.69 
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Table 5. Summary of the experimental campaigns of the ASMA-Vix project.  
Campaign 1 Campaign 2 Campaign 3 

Sample size (n) 6 (2 boys, 4 girls) 6 (3 boys, 3 girls) 9 (8 boys, 1 girl) 

District Andorinhas Maruípe Itararé 

Sampling period November 2-17, 

2019 

December 4-19, 

2019 

February 12-19, 

2020 

Filters change 

every 

5 days 5 days 7 days 

Mean weight 

[kg ± (SD)] 

42.0±10.4 43.0±16.4 42.8±16.8 

Passive samplers 

NO2 [µg/m3] 

   

Mean 13.0 10.8 13.7 

SD 4.7 6.1 2.3 

Min 6.7 4.6 10.2 

Median 12.2 9.8 12.9 

Máx 22.5 30.5 18.8 

 

 
Figure 10. Location of the selected children of the ASMA-Vix project and the location of their 

schools, main roads, and industries in the city of Vitória. 
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4.2 THE CLIMATOLOGICAL AND METEOROLOGICAL DESCRIPTION OF 

THE STUDY AREA 

As mentioned, the MRV region is located in a coastal area, making the region continuously 

affected by sea breezes that usually penetrate the inland regions (Salvador et al., 2016). The 

well-defined atmospheric circulation over the MRV is also influenced by the South Atlantic 

Subtropical High (SASH) over the Atlantic Ocean, because of which the winds predominantly 

flow from the north and northeast during part of the dry season (August and September) and 

during the wet season (October to March). The climatological dry season corresponds to the 

months between April and September, whereas the wet season is usually between October and 

March. From April to July, because of the autumn and winter seasons, the availability of solar 

radiation decreases over the Southern Hemisphere; also, the displacement of SASH closer to 

the continent, favours the south-southwest winds in the MRV (Cavalcanti et al., 2009, Salvador 

et al., 2016). Moreover, the observed wind speed is higher when the wind is flowing from the 

north and northeast, with an annual average of 4.2 m/s according to the climatological normal 

of the Brazilian Institute of Meteorology (INMET CN 1981–2010, corresponding to the INMET 

station in Figure 9). The location of all meteorological and air quality monitoring stations used 

in this study is displayed in Figure 9. The geographic coordinates and the amount of paired data 

points used to compare observed and simulated data are presented in Table 5. The 

climatological normals also indicate that the average temperature varies between 23 °C and 28 

°C, with a maximum of 32 °C during summer (Dec-Jan-Feb) and a minimum of 20°C during 

winter (Jun-Jul-Aug). The relative humidity remains almost constant over the year, varying 

between 70-80%, and the rainfall season occurs during the spring and summer times due to the 

effect of the South Atlantic Convergence Zone (SACZ) that brings humidity from the Amazon 

region. The lowest rainfall values are recorded during winter (June-July-August (INMET CN 

1981–2010), and according to Köppen-Geiger’s climate classification, the RMV is classified as 

coastal tropical climate (Af). 
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Table 6. The location of the meteorological and air quality station in the MRV. The amount of paired data points used to compare observed and 

simulated data is also presented. M1 and M2 are exclusively meteorological stations. 

ST  
Station 

name 
City 

Latitude 

(°) 

Longitude 

(°) 

Altitude 

(m) 

T2 

(°C) 

RH 

(%) 

WS10 

(m/s) 

WD10 

(°) 

PREC 

(mm) 
PM10 PM2.5 NO2 SO2 O3 CO 

01 Laranjeiras 

Serra 

-20.196 -40.245 27.0 - - - - - - - 
2160 

(100%) 

1638 

(75.8%) 

1375 

(63.7%) 

2160 

(100%) 

02 Carapina -20.232 -40.255 23.0 
2154 

(99.7%) 
2154 

(99.7%) 
2154 

(99.7%) 
2153 

(99.7%) 
2148 

(99.4%) 
2154 

(99.7%) 
- - - - - 

03 Jardim Camburi (JC) 

Vitória 

-20.255 -40.270 5.0 - - - - - 
1943 

(90%) 
- 

1119 

(51.8%) 

1400 

(64.8%) 
- - 

04 Enseada -20.313 -40.291 3.0 - - 
2160 

(100%) 
2160 

(100%) 
- 

1754 
(81.2%) 

2100 
(97.2%) 

2093 
(96.9%) 

2011 
(93.1%) 

1473 
(68.2%) 

2160 
(100%) 

05 Centro-Vix -20.321 -40.333 2.0 - - - - - 
2160 

(100%) 
- 

1927 

(89.2%) 

1177 

(54.5%) 
- 

2160 

(100%) 

 ASMA-Vix -20.288 -40.308 11.0 
2103 

(97.4%) 
2103 

(97.4%) 
2103 

(97.4%) 
2099 

(97.2%) 
- 

2027 
(93.8%) 

1981 
(91.7%) 

2101 
(97.3%) 

2100 
(97.2%) 

2096 
(97%) 

- 

M1 INMET-Vix -20.271 -40.306 1.0 
2119 

(98.1%) 

2119 

(98.1%) 

2119 

(98.1%) 

2085 

(96.5%) 

2087 

(96.6%) 
- - - - - - 

M2 Airport -20.251 -40.285 3.0 
2135 

(98.8%) 
- 

2131 
(98.7%) 

2096 
(97%) 

- - - - - - - 

06 IBES 

Vila Velha 

-20.349 -40.317 5.0 - - 
2095 

(97%) 

2094 

(96.9%) 
- 

2151 

(99.6%) 
- 

2093 

(96.9%) 

1939 

(89.8%) 

1439 

(66.6%) 

2160 

(100%) 

07 Centro-VV -20.337 -40.290 6.0 - - - - - 
2128 

(98.5%) 
- - - - - 

08 Cariacica Cariacica -20.342 -40.402 18.0 
2160 

(100%) 

2112 

(97.8%) 

2160 

(100%) 

2159 

(100%) 

1078 

(49.9%) 
- - 

2097 

(97.1%) 

2087 

(96.6%) 

1399 

(64.8%) 

2160 

(100%) 

*The geographical coordinates were extracted from the Google Earth program.  
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The present study was performed in November and December 2019 and February 2020, and 

according to the observations across the meteorological stations located in the MRV, the wind 

direction predominantly flowed from the north, northeast, and east sectors over these three 

months, agreeing with the climatological data, except for the INMET station where winds from 

the south and northwest were also registered in November and February (Table 7).  

 

Table 7. Observed wind roses at meteorological stations in the MRV. 

Station November 2019 December 2019 February 2020 

ST02 

Carapina 

   

ST04 

Enseada 

   

ASMA-

Vix 

   

INMET 
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Airport 

   

ST06 

IBES 

   

ST08 

Cariacica 

   

 

The hourly wind speed at 10 meters (WS10) observed at the surface meteorological stations 

over the period under analysis in the MRV is shown in Figure 11 as well as the boxplots in 

Figure 12. The Airport station recorded the highest values of WS10 (maximum of 10.81 m/s), 

with a mean (median) of 3.97 (3.60) ± 2.22 m/s. The second-highest wind speed values were 

registered at the ST06 (IBES station) with a mean (median) of 2.57 (2.41) ± 1.24 m/s. The other 

stations in the MRV registered an average wind speed lower than 2 m/s, which varied between 

1.16 (0.75) ± 1.07 m/s at the ASMA-Vix station and 1.86 (1.78) ± 0.88 m/s at ST08 (Cariacica 

station). These differences seen in observed WS10 data were due to the fact that the Airport is 

the only station located at an open site and it is not highly influenced by the presence of 

buildings and vegetation; or any other obstacle, that can slow down the wind speed. 
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Figure 11. Hourly time series of observed WS10 in November/December 2019 and February 

2020 at the surface meteorological stations in the MRV. 

 

 
Figure 12. Boxplots of observed WS10 in November/December 2019 and February 2020 at the 

surface meteorological stations in the MRV. The diamonds represent the outliers, the bars 

represent the minimum and maximum values, and the lines represent the mean values. 

 

In contrast to WS10, the observed temperature (Figure 13), relative humidity (Figure 14), and 

precipitation (Figure 15) had much more similar behaviour among the surface monitoring 

stations in the MRV. Over the study time period, the lowest and highest temperatures occurred 

both in November 2019, with minima between 14.77 °C (at ST02 – Carapina station) and 19.44 

ºC (at ASMA-Vix station) and maxima between 34.41 °C (at ST02 – Carapina station) and 

40.56 ºC (at ST07 – Cariacica station). Considering the INMET station, where the 

climatological normals (CN 1981–2010) are registered, the mean (minimum-maximum) 

temperature in November 2019 was 24.77 (16.9–37.2) ºC, 25.90 (20.2–34.9) ºC in December 

2019, and 26.73 (22.0–35.4) ºC in February 2020. The observations in 2019/2020 indicated that 

the monthly extreme temperatures were higher (lower) compared with the CN 1981–2010, in 
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which the CN 1981–2010 maxima were 28.5 ºC, 30.0 ºC, and 31.7 ºC and the CN 1981–2010 

minima were 24.1 ºC, 22.1 ºC, and 23.10 ºC in November, December and February, 

respectively. Similarly to temperature, relative humidity was similar among the monitoring 

stations, with the mean (median) varying between 74.04 (77.56) ± 14.27 % at ST08 (Cariacica 

station) and 80.84 (83.81) ± 13.11 % at ST02 (Carapina station). The mean monthly observed 

relative humidity at the INMET station (78.9%, 76.8%, and 77.5%) were almost identical to the 

CN 1981–2010 (79.2%, 78.4%, and 75.8%). 

 

 
Figure 13. Hourly temperature comparing the observations among the stations in the MRV. 

 

 
Figure 14. Hourly relative humidity comparing the observations among the stations in the 

MRV. 
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With respect to the rainfall, November 2019 was the second wettest November in Vitória since 

1992, in which about 200 mm of rain was registered in one single day (November 13, 2019) 

(Figure 15). According to the synoptic weather charts of CPTEC/INPE, humidity in the lower 

atmosphere was transported from the ocean to the coastline of Espírito Santo (represented by the 

yellow line in Figure 16) together with a frontal system (represented by the blue-red lines also in 

Fig. 16) were responsible for the heavy rainfall in the MRV on this day. The total monthly rainfall 

recorded at the INMET station in November 2019 was 552.2 mm, which was more than double 

when compared to the CN 1981–2010/1991-2020 (219.9/233.6 mm). In December 2019 (181.2 

mm), the monthly accumulated observations were lower than the CN 1981–2010/1991-2020 

(199.7/201 mm), but in February 2020 (128 mm) they were higher than the CN 1981–

2010/1991-2020 (79.4/79.4 mm), despite the differences were not excessive as in November 

2019. 
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Figure 15. Observed accumulated daily precipitation at ST02 (Carapina) and INMET stations. 

 

 
Figure 16. The synoptic weather charts of CPTEC/INPE on November 13, 2019. 
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4.3 MODELLING APPROACH 

The numerical modelling approach consists of a combination of various models and tools, 

which mainly includes the Weather Research and Forecasting (WRF-Urban) model 

(Skamarock et al., 2008, 2021; Powers et al., 2017), the GEOS-Chem global chemical transport 

model (Bey et al., 2001), and the Community Multiscale Air Quality (CMAQ) model (Byun 

and Schere, 2006; Appel et al., 2020), among others (Figure 17). The air pollutant 

concentrations at the home and school postcodes of the selected children and adolescents of the 

ASMA-Vix study are provided by the CMAQ model version 5.3.2. The choice of this advanced 

chemistry-transport model is made because it has been successfully used in previous studies in 

the study area (Pedruzzi et al., 2019). To run the CMAQ model, it is necessary to provide 

information such as initial conditions (ICON) and boundary conditions (BCON), 

meteorological fields, and emissions rates of natural and anthropogenic sources. The CMAQ 

model adopts spatial and temporal configurations that were set up in the simulations using the 

WRF-Urban model. 

 

 
Figure 17. Schematic representation of the various models and methods used in the present 

work to evaluate the exposure of children that reside in the Metropolitan Region of Vitória 

(MRV), Brazil. 
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4.3.1 WRF-URBAN MODEL 

The WRF-Urban model (Skamarock et al., 2008, 2021), version 4.1.5, was responsible for 

providing the meteorological conditions in the present study. The initial and boundary 

conditions for the initialization of the WRF-Urban model came from the ERA5 reanalysis 

dataset (available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-

pressure-levels). ERA5 is a global atmospheric reanalysis of the European Centre for Medium-

Range Weather Forecasts (ECMWF), with higher spatial and temporal resolutions (0.25° x 

0.25° at every hour) when compared to its previous generation (ERA-Interim which has a 

spatial resolution of 0.75° at every 6 hour). The land use and vegetation types categories were 

derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the 

Terra and Acqua satellites. The MODIS data is a default setup of the WRF model, which 

classifies natural vegetation, urbanized, and water surfaces into 21 land use categories based on 

the International Geosphere Biosphere Programme (IGBP). The WRF-Urban model was set to 

run for the entire months in which the monitoring campaigns were performed, that is November 

and December 2019, and February 2020, instead of the exclusively days that the campaigns 

occurred. The simulations were split up by month with a spin-up of one day.  

Regarding the physics options, several WRF parameterisation tests were performed for the 

same study area in a previous study (Salvador et al., 2016), in which the planetary boundary 

layer (PBL) YSU and the land surface model (LSM) Noah schemes showed the most 

satisfactory performance in determining PBL height in sea breeze conditions and captured the 

energy balance information from the soil. However, since some parameterisation schemes were 

updated or added as new options, Kitagawa et al. (2022b) performed new tests in order to assess 

the urban canopy model (UCM) schemes available in the WRF model as well as the lowest 

model level height. The authors obtained a significant improvement using the building effect 

parameterisation (BEP) formulation to emulate meteorological variables over urban surfaces, 

especially for wind speed. Regarding the model’s height, the wind speed was found to be 

sensitive to the lowering of the model height, in which the vertical resolution with model level 

height at 10 m was associated with the best result for wind speed over urban surfaces. For 

temperature, relative humidity, and wind direction, no significant differences could be seen by 

changing the height of the first layer of the model. 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
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The presence of urban structures modifies the surface albedo and roughness length, and 

consequently, the generation of turbulent eddies that drives vertical mixing. The classical 

approach in the WRF model accounts for the processes of urban surfaces through the bulk urban 

parameterisation method in land surface models, and it represents the urban areas as flat 

surfaces, and therefore, it does not depict the city’s heterogeneity (i.e. buildings and roads are 

treated as the same). The next level of complexity was incorporated into the WRF model to 

provide a better representation of the physical processes involved in the interaction of the urban 

environment with the atmosphere using the single-layer urban canopy model (SLUCM), 

developed by Kusaka et al. (2001) and Kusaka and Kimura (2004). The SLUCM represents the 

effect of the building structures as a model cell value-averaged within a single layer; thus, 

parameter information within the urban canopy is not available, and the height of the first layer 

of the model must be higher than the height of the buildings (for which the default value is 7.5 

m). SLUCM assumes a two-dimensional geometry of the urban canopy layer, with radiation 

treated as three-dimensional because it accounts for the solar azimuth angle. Then, to recognise 

the three-dimensional nature of urban surfaces, the second level of complexity is introduced in 

the WRF model using the multilayer urban canopy model, also known as building effect 

parameterisation (BEP), developed by Martilli et al. (2002). This new formulation attempts to 

consider the presence of vertical structures and their effects on heat, moisture, and momentum 

fluxes. To maximise the advantage of BEP, a high vertical resolution is suggested, which is 

close to the ground with several layers within the urban canopy. The dissipation term, 

introduced in momentum and turbulent kinetic energy equations, is computed only based on 

two PBL options of WRF: the MYJ (Mellor and Yamada, 1982; Janjić, 1994) or BouLac 

(Bougeault and Lacarrere, 1989) parameterisation schemes, and two land surface models: Noah 

LSM and Noah-MP (Niu et al., 2011). Experiments using BEP indicate an improvement in the 

representation of nocturnal urban heat islands that are influenced by the sensible heat fluxes 

from the vertical structures, in the inversion layer above the urban region, and in the 

representation of wind fields and temperature surface variables (Kusaka et al., 2001; Martilli et 

al., 2002; Liu et al., 2006; Lin et al., 2008; Martilli et al., 2009; Chen et al., 2011; La Paz et 

al., 2016; Sarmiento et al., 2017). 

In this sense, in this study, the BEP scheme was chosen to represent the effects of urban 

structures. However, as pointed out by Salamanca et al. (2011), together with a complex urban 

canopy scheme, it is also necessary to use representative urban morphological parameter values. 

But, it is sometimes difficult to choose representative UCPs values for a city because of the 
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need for experimental campaigns. Thus, the simulations of the present study followed the 

default values of BEP’s algorithm, which comprise more than 20 parameters. For instance, 

urban fraction of 0.90, heat capacity of roof and building wall of 10-6, thermal conductivity of 

roof and building wall of 0.67, surface albedo of roof, building wall and road of 0.20, surface 

emissivity of roof and building wall of 0.90, building height of 15 m, building width of 17 m, 

and street widths of 25 m. Note that the building height in BEP is not fixed, instead, it is 

classified with different percentages, which the mean building height was 15 m. 

A literature review was also performed to assess at which height the WRF model should be set 

up for air quality assessment. However, many studies have not addressed this height but have 

only focussed on the number of vertical layers required for simulations (Hu et al., 2016, 2017; 

Lu et al., 2016; Wang et al., 2017; Mathur et al., 2017; Jiang and Yoo, 2018; Liu et al., 2018, 

2020; Nguyen et al., 2019; Feng et al., 2019; Yoo et al., 2019; Lai et al., 2019; Andreão et al., 

2020; Souri et al., 2020; Tao et al., 2020; Lin et al., 2020). Shin et al. (2012) reported that 

surface parameters and PBL structures have a high sensitivity when the height is below 12 m 

in the daytime and below 40 m in the nighttime. However, several studies have adopted different 

heights, which usually vary among the locations: for instance, 19, 25, and 54 m in China (Liao 

et al., 2014; Tan et al., 2017; Yang et al., 2019); 39 m in Europe (Schaap et al., 2015); 19 m in 

France (Lian et al., 2018); 25 m in Italy (Pepe et al., 2016); 36 m in the Iberian Peninsula 

(Jiménez et al., 2006); 7 and 11 m in Spain (Salamanca et al., 2012; La Paz et al., 2016); 21, 

30, and 38 m in the US (Punger and West, 2013; Chen et al., 2014; Sharma et al., 2017); 43 m 

in South Korea (Han et al., 2019); 50 m in India (Rooney et al., 2019) and 15 m in East Asia 

(Choi et al., 2019). Because no consensus was found during the literature review about at which 

height the WRF model should be set up, the heights were chosen based on the formulations of 

BEP, which assumes several layers within the urban canopy with a high vertical resolution close 

to the ground. Thus, three different configurations were assessed regarding model height (z), 

which were set up at z = 4, 10, and 20 meters. However, the air pollutant concentrations are a 

scalar variable, which means that the concentrations are calculated in the center of each grid 

cell, that is at z = 2, 5, and 10 meters. As the vertical layer structure configuration in the CMAQ 

model matches the WRF model, the results were labelled as the WRF configuration. 

The other physical parameterisation schemes adopted were Rapid Radiative Transfer Model 

(RRTMG) for shortwave and longwave radiation, Thompson scheme as microphysics option, 

Noah-MP as the land surface model, Grell-Freitas as cumulus scheme, Bougeault–Lacarrere 
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scheme as planetary boundary layer scheme, and Eta similarity as the surface layer. An 

overview of the spatial configurations and physical parameterization schemes used to run the 

WRF-Urban model is presented in Table 8. In addition, the model was run with three nested 

domains with grid resolutions of 9 km, 3 km, and 1 km; being the domain of interest with 162 

km² (Figure 9). The vertical resolution had 44 layers with the model top set at 50 hPa. Note that 

the number of the vertical levels did not increase, they remained constant and all configurations 

were set up with 44 layers from the bottom to the model top. However, with the lowering of the 

first-level height, the number of layers increased close to the ground and practically remained 

constant near the top (Figure 18). Within the first 500 m of the atmosphere, if the model is set 

up to a height equal to 20 m, 10 m, and 4 m, there will be 8, 10, and 14 vertical layers, 

respectively. 

 

Table 8. The spatial configuration adopted and physical parameterization schemes in the WRF-

Urban simulations. 
 November, December, and February 

Horizontal resolution 9 km, 3 km, and 1 km (domain of interest) 

Domains dimensions 73, 121, and 163 cells 

Vertical resolution 44 layers 

Model height (z) 

z = 20 m 

z = 10 m 

z = 4 m 

Longwave radiation RRTMG (option 4) 

Shortwave radiation RRTMG (option 4) 

Land surface scheme Noah-MP (option 4) 

Cumulus scheme Grell-Freitas (option 3) 

Microphysics scheme New Thompson (option 8) 

Surface layer scheme Eta-similarity (option 2) 

PBL scheme BouLac (option 8) 

UCM scheme BEP (option 2) 

Meteorological data ERA5 with 0.25º grid resolution at every hour 

Land use data MODIS_NOAH 
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Figure 18. Geopotential height across the D03 domain from the south (S) to north (N) from the 

bottom to the model top and within the first 500 m.  
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Finally, the Meteorology-Chemistry Interface Processor (MCIP), version 5.0 (Otte and Pleim, 

2010) ingests output from the WRF-Urban model to prepare the meteorology files that are 

required by the CMAQ model, by the Sparse Matrix Operator Kernel Emission (SMOKE; 

available at https://zenodo.org/record/4088945), by the Model of Emissions of Gases and 

Aerosols from Nature (MEGAN) (Guenther et al., 2012), and by the Spatial Allocator Vector 

Tools (available at https://github.com/CMASCenter/Spatial-Allocator). 

 

4.3.2 BIOGENIC EMISSIONS 

The biogenic emissions of the present study were estimated by the MEGAN model version 2.1. 

The MEGAN is an offline model that estimates the flux of biogenic volatile organic compounds 

(BVOCs) between earth and atmosphere by using meteorological data from CMAQ and 

provides emissions in a format suitable for input to the CMAQ and CAMx models (Guenther 

et al., 2012). The MEGAN driving variables, which include meteorology (e.g., temperature, 

solar radiation, humidity, wind speed, and soil moisture) and land cover data (e.g. leaf area 

index and plant functional types), were provided by the Meteorology-Chemistry Interface 

Processor (MCIP) by using the outputs of the WRF model. The final result of MEGAN 

processing was hourly biogenic emissions ready for the CMAQ model.  

The plant functional type (PFT) distribution data were based on MODIS. Figure 19 presents the 

land use and cover (LULC) input data of MODIS used by the WRF model in the D03 domain. 

The urban occupation class (category number 13, in red) is mostly concentrated over the MRV 

and represents only 2.5% of the total amount of land grid cells in D03, that is, not considering 

the water surfaces that accounted for 50.1% of the D03. MODIS considered most areas as 

savannas (33.1%, category number 9, in light green), evergreen broadleaf forest (25.3%, 

category number 2, in dark green), and woody savannas (12.2%, category number 8, in light 

pink), followed by grasslands (category number 10, in orange, 8.8%) and natural vegetation 

mosaic (8.2%, category number 14, in purple). The percentages for each land cover class are 

presented in Table 9. 

 

https://zenodo.org/record/4088945
https://github.com/CMASCenter/Spatial-Allocator
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Figure 19. Land use classes of MODIS used as input data for the WRF model and MCIP 

processor. 2: Evergreen broadleaf forest (dark green), 8: Woody savannas (light pink), 9: 

Savannas (light green), 10: Grasslands (orange), 12: Croplands (yellow), 13: Urban and Built-

up (red), 14: Natural Vegetation Mosaic (purple). 

 

Table 9. Land use classification of MODIS and the occupation (%) of each class in the D03. 

  Occupation (%) 

Category 

number 
Class MODIS-IBGP With water surfaces Without water surfaces 

1 Evergreen Needleleaf Forest 0.1% 0.3% 

2 Evergreen Broadleaf Forest 12.6% 25.3% 

3 Deciduous Needleleaf Forest - - 

4 Deciduous Broadleaf Forest 0.4% 0.8% 

5 Mixed Forests 0.2% 0.5% 

6 Closed Shrublands 0.4% 0.8% 

7 Open Shrublands 1.1% 2.2% 

8 Woody Savannas 6.1% 12.2% 

9 Savannas 16.5% 33.1% 

10 Grasslands 4.4% 8.8% 

11 Permanent Wetlands 0.1% 0.3% 
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12 Croplands 2.5% 5.0% 

13 Urban and Built-Up 1.2% 2.5% 

14 Natural Vegetation Mosaic 4.1% 8.2% 

15 Snow and Ice - - 

16 Barren or Sparsely Vegetated 0.1% 0.2% 

17/21 Water surfaces 50.1% - 

18 Wooded Tundra - - 

19 Mixed Tundra - - 

20 Barren Tundra - - 

 

However, the WRF and MEGAN models use different PFTs classes because WRF is based on 

MODIS-IGBP (20 categories) while MEGAN uses Community Land Model 4 (CLM4) data, 

which is composed of 15 categories of plants (Guenther et al., 2012), meaning that the land use 

input for MEGAN must be coherent with CLM4 vegetation classes and some modification has 

to performed. Thus, Gomes (2020) developed an algorithm that crosses both classifications 

based on climatic and seasonal criteria available in the literature. The dominant PFT classes in 

the D03 domain considering CLM4 data were PFT 4 (Broadleaf Evergreen Tropical Tree), PFT 

9 (Broadleaf Evergreen Temperate Shrub), PFT 13 (Cool C3 Grass), PFT 14 (Warm C4 Grass), 

and PFT 15 (Crop). 

For the leaf area index (LAI) parameter, MEGAN does not assume that LAI is uniformly spread 

over a grid cell, instead, it assumes that foliage covers only that part of the grid cell containing 

vegetation. The average LAI for vegetated areas is estimated by dividing the grid average LAI 

by the fraction of the grid that is covered by vegetation, which is referred to as LAIv (the LAI 

of vegetation covered surfaces) (Guenther et al., 2006). The MCIP does not directly provide 

the LAIv data required by MEGAN. Thus, the calculation of this parameter was done by using 

the MCIP variables: LAI and VEG, which the latter represents the vegetation coverage that 

varies from 0 to 1, with 1 indicating that the coverage is 100% vegetal. Figure 20 shows the 

spatial distribution of the monthly mean LAI during November and December 2019 and 

February 2020 (the study period) over the D03 domain. The maximum LAI values (in yellow) 

were attributed to the grid cells in which MODIS LULC has been considered as an evergreen 

broadleaf forest (category 2). 
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Figure 20. Spatial distribution of the monthly mean leaf area index (LAI) during November and 

December 2019 and February 2020 over the D03 domain.  

 

MEGAN estimates emissions (Fi) of BVOCs chemical species i (isoprene, methanol, acetone, 

terpenes, toluene, among others that include 19 compounds) from terrestrial landscapes as the 

product of emission factors (ɛ, in µ/m2.h) available in the literature at standard conditions for 

vegetation type j and the coverage fraction of the PFT (fj) of each grid cell (that varies from 1 

to 15). The activity factor for each compound class (γi) accounts for emission response to 

sunlight, temperature, leaf age, soil moisture, LAI, and CO2 inhibition (Guenther et al., 2012). 

 

𝐹𝑖 = 𝛾𝑖 ∑ 𝜀𝑖,𝑗𝑓𝑗          (1) 

 

BVOCs emissions estimated by MEGAN indicated that the compounds with the highest 

emission rate were isoprene and terpenes (Figure 21a,b), which represented an average of 88% 

and 10% of the total emissions of BVOCs, respectively, for the months under analysis in the 

present study. The other compounds represented less than 1% of total emissions. Similar results 

were reported by Gomes (2020) which found that isoprene and terpenes constituted around 74% 

and 25% of the total emissions of BVOCs in August 2010 in the MRV. In addition, the author 

reported that the spatial distribution of isoprenes was mostly associated with the distribution of 

broadleaf forests and shrubs because their PFTs had the highest emission factors for this 

compound. Meanwhile, the terpenes did not present a specific distribution pattern.  
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Figure 21. Spatial distribution of the monthly mean of isoprenes and terpenes emissions 

(moles/s) during November and December 2019 and February 2020 over the D03 domain. 

 

 

4.3.3 SMOKE PROCESSOR 

The emissions processed by SMOKE included the data provided by the local environmental 

agency (the base year of 2015) of the MRV (IEMA, 2019). The official emissions inventory 

was developed based on emission factors from literature, such as those from American 

(USEPA) and European (EMEP/EEA) environmental agencies. In addition, the method of the 

emission inventory followed the Data Attribute Rating System (DARS), which was a method 

proposed by USEPA (1996). Through this methodology, the emission inventory was developed 

according to the criteria of the Emission Inventory Improvement Programme (EIIP) for Level 

II regarding the quality assurance and quality control requirements, which include the following 

steps: reality check; peer review; sample calculations; sensitivity analysis; and independent 

audits. Finally, this emission inventory included data for five of the seven municipalities of the 

MRV (Serra, Cariacica, Viana, Vila Velha, and Vitória). Table 10 summarizes the total annual 

emissions of PM, PM10, PM2.5, NOx, CO, SO2, and VOCs from more than 3,000 sources. 
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Table 10. The total emission of atmospheric pollutants by source (IEMA, 2019). 

Sectors 
PM 

(kg/h) 

PM10 

(kg/h) 

PM2.5 

(kg/h) 

NOx 

(kg/h) 

SO2 

(kg/h) 

CO 

(kg/h) 

VOC 

(kg/h) 

Landfill 22.6 6.3 1.8 4.8 0.4 4.1 6.5 

Civil construction 96.1 31.2 3.4 n.a n.a n.a n.a 

Fuel distribution n.a n.a n.a n.a n.a n.a 210.8 

Food industry 16.3 11.2 10.3 17.6 2.9 25.6 0.7 

Mineral products industry 143.8 84.7 43.8 65.8 24.7 192.7 21.4 

Chemical products 

industry 
8.3 6.2 3.8 16.1 3.7 8.9 62.7 

Mining-steel industry 887.0 566.9 368.9 4141.1 3971.0 
19826.

9 
323.0 

Shipping 72.4 52.9 44.2 364.1 180.8 182.8 30.1 

Others of the industrial 

sector 
59.7 46.0 39.4 990.3 315.1 245.5 34.0 

Residential and 

commercial sectors 
1.0 1.0 1.0 19.0 0.3 10.5 850.2 

Vehicular emissions 55.9 43.1 32.5 1020.8 28.1 1282.8 595.6 

Road dust resuspension 6744.7 1294.6 313.2 n.a n.a n.a n.a 

Total 8107.8 2144.1 862.3 6639.6 4527.2 
21779.

8 
2135.1 

n.a.: not applicable 

 

The aforementioned sectors were treated as point, area, and volume emission sources by 

SMOKE. The point source sector included industrial stack emissions for all facilities inside the 

MRV, such as sintering facilities, pelletizing furnaces, coke ovens, blast furnaces, 

thermoelectric power plants, grain processing, activities chemical and mineral products, among 

others. The area and volume sources were also represented by industrial sources, but those as 

piles, material handling, load and unload process, nonroad emissions, landfills, civil 

construction, wind erosion, and airport, among others. The vehicular emissions were treated as 

area sources and represent the vehicular hot exhaust, vehicle evaporative emissions, and tires 

and brake wearing. The shipping sector represents the marine logistics in the region and was 

treated as a volume source. The spatial allocation was taken from the local emissions inventory 

(IEMA, 2019). 

The local emissions inventory informs the annual emission rates of the sources. Thus, except 

for the vehicular emissions, all other sectors had their emissions split equally over the months, 

weeks, and hours. The monthly, weekly, and hourly temporal profiles used in this work are 
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shown in Figures 22, 23, and 24, respectively. The temporal profiles for vehicular emissions 

were taken from IEMA (2019). 

 

 
Figure 22. Monthly temporal profile used by the SMOKE. 

 

 
Figure 23. Weekly temporal profile used by the SMOKE. 

 

 
Figure 24. Hourly temporal profile used by the SMOKE. 
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The emission inventory reports the emission rates for a variety of pollutants, such as CO, NOx, 

VOC, PM10, PM2.5, and SO2. However, the CMAQ model uses chemical mechanisms that 

require model species to represent atmospheric chemistry. Therefore, emissions processing 

requires chemical speciation profiles to convert the emissions in terms of pollutant values to 

the species, especially for NOx, VOC, and PM2.5. In this study, the chemical profiles were 

obtained from the literature, specifically, the EPA SPECIATE version 5.0 database (available 

at https://www.epa.gov/air-emissions-modeling/speciate), as there is no observed chemical 

profile for the emissions sources in the region. The profiles were selected according to the local 

source characteristics, aiming to capture the most appropriate profiles. Moreover, the chemical 

speciation was made by considering the chemical mechanism Carbon Bond 06 (CB06) with 

AERO 07 aerosol module for consistency with the CMAQ model. Figure 25 exhibits, as an 

example, the chemical profiles adopted by the sources that had the highest annual emissions for 

PM2.5 (top 10), which are related to the mining-steel industries and shipping sectors. It exposes 

that the most significant species for stacks are the unspeciated particulates (PMOTHR), organic 

carbon (POC), iron (PFE), and sulfate (PSO4). Whereas, for ships emissions, PMOTHR and 

elemental carbon (PEC) are responsible for most PM2.5 emissions. In addition, Figure 26 

displays their spatial allocation, although it is important to highlight that there are other sources 

in this area. Five out of six of the primary point source (stacks) emissions are situated in the 

industrial complex of mining and steel, which represent a thermoelectric power plant, 

pelletizing furnaces, sintering plant, basic oxygen steelmaking furnace, and coke oven batteries. 

The shipping sector characterizes the port terminals, but there is also the marine traffic close to 

the line coast. 

 

https://www.epa.gov/air-emissions-modeling/speciate
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Figure 25. Chemical speciation of the main sources, which S represents the stacks labelled as 

point sources and Ship the shipping sector. The names of the species are described as follows, 

which P means particulate: PAL: aluminum, PCA: calcium, PCL: chloride, PEC: elemental 

carbon, PFE: iron, PK: potassium, PMN: manganese, PMOTHR: all other unspeciated 

particulates, PNCOM: non-carbon organic matter, PNH4: ammonium, PNO3: nitrate, POC: 

organic carbon, PSI: silica, PSO4: sulfate, PTI: titanium, PNA: sodium, PMG: magnesium, 

PH2O: particle-bound water. 

 

 

Figure 26. Location of the top ten largest emission sources of PM2.5 according to the local 

emission inventory (IEMA, 2019), which are represented by the point sources and shipping 

sector. The yellow dots are the air quality stations. 
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4.3.4 BOUNDARY AND INITIAL CONDITIONS  

To initialise the CMAQ model, it is also necessary to provide initial conditions (ICON) and 

boundary conditions (BCON) of the atmospheric pollutants. ICON module generates pollutants 

concentrations for all grid cells in the modelling domain, that is the background concentration. 

On the other hand, the BCON module generates pollutants concentrations for all grid cells along 

the modelling domain’s horizontal boundaries, meaning that pollutants are coming through the 

boundaries every time step. By default, the CMAQ model generates ICON and BCON as 

spatially uniform and time-independent based on a profile that was developed from an annual 

average hemispheric modelling run with CMAQ for a marine remote grid cell over the Pacific 

Ocean (latitude 37N, longitude –157W) for 2016. Thus, to produce a more realistic scenario, in 

the present study, the GEOS-Chem model version 12.3.2 (Bey et al., 2001) was used to provide 

ICON and BCON for the CMAQ model. The use of the GEOS-Chem was made based on a 

previous study over the same study area that evaluated different approaches of the lateral 

boundary conditions and how they affected air pollutant concentrations (Pedruzzi et al., 2019). 

The author found out that the dynamic ICON and BCON provided by the GEOS-Chem 

approach presented the best performance compared to the other methods that are used to provide 

ICON and BCON. 

The GEOS-Chem was set up with meteorological conditions derived from the GEOS-FP, with 

a spatial resolution of 2° latitude by 2.5° longitude and 47 vertical levels. The simulation 

adopted the full-chemistry plus secondary organic aerosols (complexSOA), with one year of 

spin-up and hourly concentration output. The transport and emission options were taken from 

the default settings of version 12.3.2. Subsequently, the downscaling of the GEOS-Chem for 

the CMAQ model was performed through the air quality model boundary condition (AQMBC) 

tool (available at https://github.com/barronh/aqmbc), which follows Henderson et al. (2014).  

In general, for particles, either the CMAQ default and GEOS-Chem profiles had close values, 

even though with slight differences. Figure 27 shows a comparison between the boundary 

conditions generated by the CMAQ default and GEOS-Chem models in November 2019. For 

the other two months under analysis in the present study, the vertical profiles had similar 

behaviours, minima, maxima, and averages. The CMAQ default had higher concentrations than 

GEOS-Chem for particles of sulfate (ASO4IJ) and nitrate (ANO3IJ) at the four edges of the 

D03 domain (south, east, north, and west), whereas the GEOS-Chem had higher concentrations 

https://github.com/barronh/aqmbc
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over the first 17 levels than the CMAQ default for particles of ammonium (ANH4IJ) and 

elemental carbon (AECIJ). For these species, the concentrations varied between 8×10-4 and 1.2 

µg/m3 using the CMAQ default, and between 2×10-5 and 0.5 µg/m3 using the GEOS-Chem. 

For the gases (Figure 28), GEOS-Chem had lower concentrations than the CMAQ default for 

O3 throughout the layers. The average concentrations were 38.8 and 52.4 µg/m3 over the first 

25 levels using GEOS-Chem and the CMAQ default, respectively, while in the upper layers, 

the concentrations reached around 260 µg/m3. For SO2, NOx, and CO, the concentrations were 

lower when compared to O3, with averages of the CMAQ default of 0.05 µg/m3, 0.04 µg/m3, 

and 0.06 ppm and 0.11 µg/m3, 0.05 µg/m3, and 0.22 ppm for GEOS-Chem. The CMAQ default 

assigned lower values for SO2 and NOx, and for CO, the vertical profiles were similar on the 

ground, with larger differences in the upper levels.  
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Figure 27. Comparison of average boundary conditions of the particles from the GEOS-Chem 

simulation in November 2019 and the CMAQ default fixed values available in version 5.3.2. 

The bars represent minimum and maximum values.  
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Figure 28. Comparison of average boundary conditions of the gases from GEOS-Chem 

simulation in November 2019 and the CMAQ default fixed values available in version 5.3.2. 

The bars represent minimum and maximum values. 
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The horizontal and vertical patterns of the four edges for O3 and NOx are also displayed in 

Figure 29. The pattern reveals that the West edge had slightly lower concentrations when 

compared to the other edges that had similar results. A different pattern is seen for NOx, in 

which the South edge was the one that presented lower concentrations when compared to the 

other edges. 

 
Figure 29. Vertical and horizontal patterns of the four boundary conditions of the D03 domain 

for O3 and NOx in November 2019. 
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4.3.5 CMAQ MODEL 

The CMAQ model is an active open-source development project of the Environmental 

Protection Agency of the U.S. (USEPA) that consists of programmes for conducting air quality 

model simulations. CMAQ is a three-dimensional Eulerian atmospheric chemistry and transport 

model which uses the governing equations to represent processes such as horizontal advection, 

vertical advection, horizontal diffusion, vertical diffusion, photolysis, chemical reactions in the 

gas, aqueous, and cloud phases, aerosol dynamics, particle size distributions, plume effects, and 

gas and aerosol deposition estimation (Byun and Schere, 2006). Equation 2 mathematically 

represents the general form of the theoretical basis of CMAQ’s formulation which is the 

conservation of mass for atmospheric chemical species. 

 

𝜕𝐶𝑖

𝜕𝑡
+

𝜕(𝑢𝐶𝑖)

𝜕𝑥
+

𝜕(𝑣𝐶𝑖)

𝜕𝑦
+

𝜕(𝑤𝐶𝑖)

𝜕𝑧
=

𝜕

𝜕𝑥
(𝑘𝐻

𝜕𝐶𝑖

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝐻

𝜕𝐶𝑖

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘𝑉

𝜕𝐶𝑖

𝜕𝑧
) + 𝑅 + 𝐿 + 𝑆 (2) 

(a)       (b)     (c)            (d)           (e)         (f)   (g)   (h) 

 

(a) pollutant concentration rate of specie i 

(b) horizontal advection  

(c) vertical advection 

(d) horizontal diffusion 

(e) vertical diffusion 

(f) rate of formation of specie i by chemical reactions 

(g) net rate of removal of pollutant i by surface uptake processes (e.g. wet and dry deposition) 

(h) emission rate of all precursors 

 

Where C is the concentration of each chemical specie i; u, v, and w are horizontal and vertical 

wind speed components; and KH and KV are horizontal and vertical turbulent diffusion 

coefficients. The wind components are provided by the WRF model as well as the diffusion 

coefficients are based on the values for the temperature, wind speed, total liquid water content, 

specific humidity, surface pressure, friction velocity, and height of the boundary layer which 

also come from the WRF model.  

The CMAQ model provides the concentration of many pollutant species that are usually 

combinations of different types of primary emissions and secondary formations that have been 
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physically and chemically transformed in the atmosphere, which makes the CMAQ model be 

used in different applications with different temporal and spatial resolutions. Some examples 

are studies that have employed CMAQ to evaluate the anthropogenic emissions, along with the 

effects of wildfires and marine and vegetative biogenic emissions, on air quality in urban areas 

(Albuquerque et al., 2018; Nedbor-Gross et al., 2018); on population exposure (Chen et al., 

2014; Tao et al., 2020); on human health interpreted as estimations of mortality (Punger and 

West, 2013; Liu et al., 2018, 2020) and hospital admissions (Jiang and Yoo, 2018); economic 

losses (Lu et al., 2016), air pollution control strategies (Feng et al., 2019), and future projections 

of climate change (Nguyen et al., 2020). Previous studies using the CMAQ model in South 

America characterized the air quality conditions over São Paulo (Brazil) and Bogotá 

(Colombia) (Albuquerque et al., 2018; Nedbor-Gross et al., 2018), whereas Pedruzzi et al. 

(2019) evaluated different approaches of the lateral boundary conditions and how they affected 

air pollutant concentrations over the same study area of this study (MRV). However, sometimes 

it is desirable to know specific source attribution information, for example, how much of the 

ozone in the urban area was formed due to nitrogen oxides emitted from motor vehicles? Or, 

which emissions sectors most contribute to air quality problems in a city? In this sense, the new 

versions of the CMAQ model have been coupled with the Integrated Source Apportionment 

Method (ISAM) tool. 

The studies worldwide using the CMAQ-ISAM approach have been carried out mainly in 

regions of East Asia, such as China and South Korea, to assess the source apportionment of O3 

and PM2.5 (Han and Zhang, 2018; Han et al., 2018, 2021; Chang et al., 2019; Li et al., 2019; 

Liu et al., 2019; Dong et al., 2020; Yang et al., 2021; Zhang et al., 2021). These studies 

sustained that the surrounding areas had larger contributions against the pollution background 

and suggested that emission control strategies should be implemented in a coordinated manner 

by decision-makers at local and regional scales with unified control to specifically targeted 

sources. The main sources of air pollution in those areas were related to industries, domestic 

combustion, transportation, and agriculture activities. In addition, despite air pollutant 

concentrations significantly decreasing due to effective emission reduction measures, 

meteorological variations also played an important role in regional transport, which can be 

significant if the region is located in the prevailing wind direction.  

These investigations developed in East Asia are examples of how air pollution affects local and 

regional scales, including other countries. However, this type of assessment, for a continental 
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dimension, is inexistent in Brazil, even though it is a single country, which, in principle, air 

pollution controls could be more easily implemented than regions such as Europe, where there 

are several countries concentrated in a single continent. In Brazil, air pollution controls and 

emission reduction policies started to be launched from the 80s, e.g., the National Programme 

for Control of Air Pollution by Automotive Vehicles (PROCONVE) and the National 

Programme for Control of Air Quality (PRONAR). These programmes were effective in 

reducing emissions from industrial stationary and vehicular sources, especially for primary 

atmospheric pollutants such as NOx, PM10, SO2, and CO, and had a positive impact on air 

quality (Andrade et al., 2017). However, ozone and fine particles are not yet controlled and 

little has been done from the point of view of political regulations to ensure the air quality 

regarding these pollutants. Furthermore, Brazil does not have a fully national emission 

inventory and only 1.7% of Brazilian municipalities have air quality monitoring stations (ISS, 

2019), which mostly do not include PM2.5 and are located only in some cities in the Southeast 

of Brazil (Peláez et al., 2020). PM2.5 was included as a criteria pollutant in Brazil only in 2018, 

and its standard was divided into four stages, but the deadlines for its implementation are not 

yet defined and the initial standard is still permissive compared to the WHO guidelines 

(Andreão and Albuquerque, 2021). 

In South America, some studies have investigated the main emissions sectors that contribute to 

air quality problems in urban areas. For instance, East et al. (2021) investigated the main 

emissions sectors that most contributed to PM2.5 concentrations in Bogotá, Colombia, and 

reported that resuspended dust from unpaved roads and boundary conditions were the largest 

contributors. In addition, they also evaluated the potential benefits of emission reductions by 

2030 by considering four emission scenarios. Despite the emissions reductions taking into 

account the likely paving of roads, PM2.5 increased driven by industrial activity and traffic, 

reinforcing the need for emissions control policies in Bogotá. Maciel et al. (2021) assessed 

eight emission scenarios in two periods of 7 days to quantify the impact of emission reductions 

by sector (industry, transport, and both) in Piracicaba city, São Paulo. The emission reduction 

did not significantly alter O3 concentrations (< 1%), or in some scenarios, it resulted in worse 

ambient concentrations, corroborating the non-linearity behaviour of this pollutant. Similarly, 

Albuquerque et al. (2019) considered seven different emission scenarios to assess the 

relationship between the emission of precursors (SO2, NOX, NH3, and particulates of sulfate 

and nitrate) and PM2.5 concentrations in São Paulo city. Their results showed that the reduction 

ratios applied to precursor emissions were not effective at reducing PM2.5 concentrations, 
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mainly due to the contribution of organic and elemental carbon, and other secondary organic 

aerosol species. The largest reduction was obtained with the scenario that considered a 

reduction of 50% together of SO2, NOx, and NH3 emissions (1 to 2 μg/m3 on average). However, 

their study considered only a period of 10 days which can be a drawback for the development 

of air pollution control programmes that would require a longer time scale (seasonal or annual) 

to be more effective. They underpinned the need for simulations with longer periods. The 

aforementioned studies used the brute force method (BFM) approach which required a series 

of simulations and affected the amount of time considered by their studies. 

So far, Pedruzzi (2020) was the single study in South America using the CMAQ-ISAM to 

evaluate the interaction of air pollutants among the capital cities of each state of Brazilian 

Southeastern. For that, he used the Emissions Database for Global Atmospheric Research-

Hemispheric Transport of Air Pollution (EDGAR) global emission inventory to characterize 

the anthropogenic emissions over the study area. The use of global scale inventories is useful 

to consider the emissions of regions without data, however, at the same time, they might not be 

representative or capture local features. As described by Huneeus et al. (2020), global emissions 

datasets have significant discrepancies when compared to local/national city emissions data. 

Maciel et al. (2021) also pointed out the challenge of using global inventory due to the need for 

spatial allocation (regridding from 0.1 degrees to 1 km resolution), which negatively affected 

the simulation results. Andreão et al. (2020) reported higher PM2.5 and PM10 concentrations 

using the EDGAR inventory in different metropolitan areas in Brazil.  

In the present study, the anthropogenic emissions were provided by a local emission inventory 

in which each source type was considered as a tag in the source apportionment assessment. The 

point source sector includes industrial stack emissions for all facilities inside the MRV, such as 

sintering facilities, pelletizing furnaces, coke ovens, blast furnaces, thermoelectric power 

plants, grain processing, chemical and mineral products, among others. The industrial activities 

also include area and volume sources, which are represented by piles, material handling, load 

and unload process, nonroad emissions, landfills, civil construction, wind erosion, airports, 

among others. The label called vehicles represents the vehicular hot exhaust, vehicle 

evaporative emissions, and tires and brake wearing. Ship emissions represent marine logistics 

in the region. The biogenic tag is the emissions emitted by the vegetation. The dust resuspension 

label is the dust deposited on the road surface that is resuspended by vehicular traffic. Three 

additional tags to account for boundary conditions (BCON) and initial conditions (ICON) and 



109 

 

any remaining categories that were not explicitly tracked (OTHERS) were also provided by the 

model.  

 

4.4 PERFORMANCE EVALUATION OF WRF-URBAN/CMAQ MODELS 

The performance of the WRF-Urban model was evaluated by comparing the hourly modelled 

and observed data of meteorological variables of 2-meter surface temperature (T2), 2-meter 

relative humidity (RH2), 10-meter wind speed (WS10), and 10-meter wind direction (WD10) 

through land surface stations. For the CMAQ model validation, it was used PM10, PM2.5, NO2, 

and O3 parameters available at air quality stations (Figure 9). The meteorological and air quality 

monitoring data are provided by national and local agencies, except for the ASMA-Vix station, 

which was set up exclusively for the ASMA-Vix project, within the district and next to the 

school and the residence of children, between narrow streets and surrounded by buildings and 

vegetation. The statistical indices considered in this study were mean bias (MB), root mean 

square error (RMSE), mean absolute gross error (MAGE), normalized mean bias (NMB), 

normalized mean error (NME), Pearson correlation coefficient (r), index of agreement (IOA), 

and the fraction of predictions within a factor of two of observations (FAC2).  
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where 𝑂𝑖 and 𝑀𝑖 are the observed and modelled value; O̅ and M̅ are the mean of the observed 

and modelled samples; and n is the total number of observations. 

These indices are recommended by various studies to assess the reliability and 

representativeness of the simulations (e.g. Boylan and Russell, 2006; Kumar et al., 2009; Hanna 

and Chang, 2012; Zhang et al., 2012; Emery et al., 2001; 2017). MB, RMSE, and MAGE are 

indices related to errors and deviations of the model. Thus, the best quality of the simulations 

is associated with values closer to zero. Since wind direction is a circular variable, the errors 

should consider the shortest angular distance between modelled and observed data (Jiménez 

and Dudhia, 2013). Therefore, for wind direction, it was considered if the observed or modelled 

value was more significant than 180 degrees, thus this value is subtracted by 360. NMB and 

NME report mean paired prediction–observation differences normalized by the mean 

observation. They are unbounded on the positive end (+∞) but bounded at –100% for bias and 

0% for error. r, IOA, and FAC2 are indices of association and agreement between modelled 

and observed data, with zero indicating the absence of correlation and strong correlation when 

closer to 1. Additionally, the non-parametric Kruskal-Wallis test (Kruskal and Wallis, 1952) is 

used to determine whether there are statistically significant differences in WRF-Urban and 

CMAQ model performance among the three configurations (z = 4, 10, and 20 m). 

After the validation of the WRF-Urban/CMAQ models with data from the air monitoring 

stations in the MRV, hourly concentrations corresponding to the grid cells where children lived 

and studied were used to calculate the exposure and dose of the children to PM1, PM2.5, PM10, 

NO2, and O3. Children’s exposure to these air pollutants was also assessed at three different 

heights and the performance of exposure assessment was performed by comparing the NO2 data 

from the passive personal samplers used by the twenty-one children over their daily activities. 

 

4.5 EXPOSURE AND DOSE ASSESSMENT 

Exposure is often confused with concentration, being the latter the most frequently quantified 

(Rivas et al., 2016). The traditional approach for assessing human exposure to ambient air 

pollution was proposed by Ott (1982), which described the exposure as the sum of the product 
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of time spent by a person in different microenvironments and the time-averaged air pollution 

concentrations occurring in those microenvironments (Branco et al., 2014; Borghi et al., 2021). 

The children’s exposure to air pollutants was calculated by using Equation 11: 

 

𝐸𝑖 = ∑ 𝐶𝑗 × 𝑡𝑖𝑗
𝑗
𝑖 × (

𝐼

𝑂
)𝑗         (11) 

 

where Ei is the exposure of the ith child, Cj is the concentration of the pollutant (µg/m3) in the 

jth microenvironment (including home, school, in transit, and outdoor), tij is the time spent by 

the ith child in the jth microenvironment, and (
𝐼

𝑂
)𝑗  is the indoor-outdoor ratio in the jth 

microenvironment. The concentration values (C) were based on the nearby fixed station 

(ASMA-Vix station), and the CMAQ model results. 

For the dose assessment, as reviewed by Borghi et al. (2021), different formulas are employed 

to estimate the inhaled dose of pollutants, and most studies focused on particulate matter and 

ultrafine particles. In a mathematical form, pollutant inhalation depends on the pollutant 

concentration, the exposure time, and the pulmonary parameters (which depend on the subject’s 

physical effort, age, gender, etc.). The USEPA (2020) suggested estimating the potential 

average daily dose (ADD) using Equation 12, which considers the subject inhalation rate (IR) 

(Faria et al., 2020) and the body weight (BW) (Almeida et al., 2018; Goel et al., 2021). 

 

𝐴𝐷𝐷𝑝𝑜𝑡𝑖 =
∑ 𝐶𝑗 × 𝑡𝑖𝑗 

𝑗
𝑖 × (

𝐼

𝑂
)𝑗 × 𝐼𝑅𝑘

𝐵𝑊
        (12) 

 

where ADDpot (µg/day/kg) corresponds to the potential average daily dose per unit of body 

weight (BW) of the ith child, and IR is the inhalation rate (m3/h) for the activity k.  

Similarly, the estimation of the inhaled dose could consider other physiological parameters, 

such as the ventilation rate (VR), the tidal volume (VT), and the breathing frequencies (f), as 
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used by various studies (Kumar and Goel, 2016; Kumar et al., 2017; Segalin et al., 2017) 

(Equation 13). 

 

RDD = VR × 𝐷𝐹𝑖 × 𝑃𝑀𝑖         (13) 

 

The respiratory deposition dose (RDD) provides the net influx of the PM into the respiratory 

system and is the product of children’s VR, the deposition fraction (DF), and the PM 

concentration for fraction i. The DF varies according to the particle diameter and hence is 

usually not directly proportional to the mass concentration (Kumar et al., 2017). In the present 

study, DFs were calculated with the median particle diameter (dp) of PM2.5 and PM1 using 

Equations 14 and 15, provided by Hinds (1999): 

 

DF = IF × (0.0587 +
0.911

1+exp (4.77+1.485 ln 𝑑𝑝)
+

0.943

1+exp (0.508−2.58 ln 𝑑𝑝)
)   (14) 

 

where IF is the inhalable fraction given by: 

 

IF = 1 − 0.5[1 −
0.911

1+(0.00076𝑑𝑝
2.8)

]        (15) 

 

The dp was assumed as 1.25 µm for PM2.5 and 0.50 µm for PM1 based on Segalin et al. (2017). 

Thus, the total deposition fraction was 0.551 for PM2.5 and 0.166 for PM1.  

 

In the present work, the inhalation rates were adopted from Yoon et al. (2020), which assessed 

the IR of boys and girls during resting and light activity by age (Table 11). The mean inhalation 



113 

 

rates for boys (girls) adopted in this study were 0.54 (0.47) m3/h and 1.00 (0.89) m3/h during 

resting and light exercises, respectively. The inhalation rate for ‘light activities’ was considered 

the most appropriate for commuting, being at school, and outdoor activities, as they might 

involve some increment in inhalation rates. For the ‘resting’, it was considered if the children 

were sleeping or doing other sedentary activities. 

 

Table 11. Inhalation rates (m3/h) for children that attended the ASMA-Vix project as a function 

of their activities and age, based on Yoon et al. (2020).  

Children’s code Campaign Gender Age 

(years) 

Weight 

(kg) 

IRresting IRlight 

AN.CR.01 C1 F 11 25.6 0.54 0.87 

AN.CR.02 C1 F 10 54.8 0.40 0.73 

AN.CR.03 C1 F 11 39.1 0.54 0.87 

AN.CR.04 C1 F 10 45.8 0.40 0.73 

AN.CR.05 C1 M 11 36.8 0.48 0.94 

AN.CR.06 C1 M 13 49.6 0.61 1.24 

MA.CR.01 C2 M 11 30.1 0.48 0.94 

MA.CR.02 C2 F 9 37.5 0.44 0.72 

MA.CR.03 C2 F 12 64.4 0.50 0.96 

MA.CR.04 C2 M 13 62.5 0.61 1.24 

MA.CR.05 C2 M 11 36.6 0.48 0.94 

MA.CR.06 C2 F 8 26.8 0.42 0.74 

IT.CR.01 C3 M 9 42.4 0.49 0.80 

IT.CR.02 C3 M 8 25.3 0.47 0.80 

IT.CR.03 C3 M 9 29.7 0.49 0.80 

IT.CR.04 C3 M 9 23.9 0.49 0.80 

IT.CR.05 C3 M 14 70.9 0.66 1.35 

IT.CR.06 C3 M 12 38.7 0.57 1.07 

IT.CR.07 C3 M 13 61.5 0.61 1.24 

IT.CR.08 C3 M 9 35.2 0.49 0.80 

IT.CR.09 C3 F 12 57.5 0.50 0.96 

AN, MA, and IT correspond to the neighbours from where children are (AN=Andorinhas, 

MA=Maruípe, IT=Itararé). 

C1, C2, and C3 correspond to the period when campaigns occurred, that is November/2019, 

December/2019, and February/2020, respectively. 

M=Male; F=Female 
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The inhalation rates of Yoon’s study were comparable to those rates adopted, for example, by 

the USEPA (2011) for children (0.45 m3/h for resting and 0.95 m3/h for light activities – these 

values were aggregated between girls and boys). Rivas et al. (2016) selected different inhalation 

rates based on their activities, such as school indoor (0.42 m3/h), school outdoor (1.27 m3/h), 

commuting (0.91 m3/h), home non-sleeping time (0.42 m3/h), home sleeping time (0.31 m3/h), 

and other (0.91 m3/h), but also considering the same rates for boys and girls. In addition, if 

Yoon’s inhalation rates would be converted to daily rates (the inhalation rates for boys (girls) 

would be 12.96 (11.28) m3/day during resting activities), the values would be comparable to 

those adopted by Brochu et al. (2011; 2014) (see Table 12). Similarly, Allan and Richardson 

(1998) found breathing rates of 15.09 m3/day (boys) and 13.98 m3/day (girls), with an average 

of 14.54 m3/day for children between 5 to 11 years old. Overall, boys breathe faster than girls, 

and overweight and obese individuals usually breathe faster than their normal-weight 

counterparts. Infants and children have a higher resting metabolic rate and oxygen consumption 

rate per unit of body weight than adults because of their rapid growth and relatively larger lung 

surface area per unit of body weight (USEPA, 2011). Such age-related differences, lung 

structure and function, and breathing patterns affect the inhaled dose and deposition of particles 

in the lungs; important factors to consider in risk assessments for inhalation exposures (Foos et 

al., 2008). 

 

Table 12. The mean inhalation rates for males and females by age group and body mass index. 

Source: (Brochu et al., 2011; Brochu et al., 2014) 

 Boys/Males Girls/Females 

 Normal weight Overweight/obese Normal weight Overweight/obese 

Age 

(years) 
(m3/day) (m3/kg.day) (m3/day) (m3/kg.day) (m3/day) (m3/kg.day) (m3/day) (m3/kg.day) 

2-5 7.35 0.493 - - 6.90 0.492 - - 

5-7 9.04 0.463 10.86 0.408 8.59 0.441 10.18 0.372 

7-10 11.17 0.428 13.84 0.354 10.71 0.395 12.70 0.335 

10-16.5 15.64 0.383 15.02 0.260 13.32 0.306 15.15 0.254 

16.5-25 20.39 0.290 
23.35 0.228 

16.46 0.275 
18.18 0.221 

25-35 20.00 0.282 15.82 0.273 

35-45 20.12 0.289 26.34 0.269 16.21 0.277 21.57 0.228 

45-65 18.41 0.259 21.97 0.228 14.46 0.247 14.63 0.182 

65-96 15.25 0.225 17.00 0.199 11.51 0.202 12.32 0.175 

https://link.springer.com/article/10.1007/s11356-018-2045-8#ref-CR1
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Like IR, VR is also a parameter that depends on personal data and physical activity. Although 

personal data (i.e., age, weight, physical activity) of the selected children were registered during 

the experimental campaigns, their pulmonary ventilation rates were not collected due to 

technical limitations for this personal parameter. In this sense, we assumed the ventilation rate 

provided by USEPA (2009) for the boys and girls for sleep and light exercises (Table 13). 

 

Table 13. Mean ventilation rate (m3/min) for children that attended the ASMA-Vix project as a 

function of their activities and age, based on USEPA (2009).  

Age (years) Activity Boys Girls 

  (m3/min) (m3/kg.min) (m3/min) (m3/kg.min) 

6 to <11 Sleep 0.00461 0.00015 0.00436 0.00015 

6 to <11 Light 0.01164 0.00038 0.01107 0.00038 

11 to <16 Sleep 0.00526 0.00010 0.00481 0.00009 

11 to <16 Light 0.01322 0.00025 0.01202 0.00023 

 

Because the concentration values (C) of the nearby fixed station and the CMAQ model 

represent ambient concentrations and people spend most of their time indoors, some studies 

assessed indoor and outdoor concentrations simultaneously to account for how much of the 

outdoor concentration would be transferred to indoor environments, the so-called 

indoor/outdoor (I/O) ratio. Chao (2001) evaluated the relationships between indoor and outdoor 

concentrations of NO (0.98 ± 0.19), NO2 (0.79 ± 0.30), SO2 (1.01 ± 0.78), and O3 (0.40 ± 0.31) 

in residential buildings in Hong Kong. Similarly, Lee et al. (2002) evaluated I/O ratios of NO2 

(2.08 ± 1.69) and O3 (0.24 ± 0.18) in residential environments in Southern California, USA. 

Later, Lee et al. (2004) conducted O3 I/O experiments (0.10 ± 1.09) in homes of elementary 

school children (10-12 years old) living in Nashville, Tennessee, USA. Meanwhile, Blondeau 

et al. (2005) considered experiments for NO2 (from 0.88 to 1), NO (from 0.5 to 1), and O3 (from 

0 to 0.45) at schools located in La Rochelle, France. Esplugues et al. (2010) assessed indoor 

and outdoor concentrations of NO2 in homes of 1-year-old children residing in Valencia, Spain. 

The outdoor NO2 concentrations were 26.2 μg/m3 while those measured indoors averaged 18.0 

μg/m3, being a ratio of 0.69. Pegas et al. (2011) found I/O ratios ranging between 0.35 and 1 
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for NO2 at primary schools in Lisbon, Portugal. Godoi et al. (2013) found I/O ratios varying 

from 0.62 to 1.38 for SO2 and from 1.02 to 1.12 for NO2 in homes and schools in Curitiba, 

South Brazil. Likewise, Demirel et al. (2014) assessed NO2 (0.67–1.75) and O3 (0.46–1.08) I/O 

ratios in primary schools in Eskişehir, Turkey. In Barcelona, Spain, Rivas et al. (2014) 

evaluated NO2 (0.67–1.75) and PM2.5 (0.46–1.08) I/O ratios also in primary schools. Dėdelė 

and Miškinytė (2016) evaluated NO2 concentrations in various microenvironments (kitchen, 

living room, bedroom) of houses with gas and electric stoves in Kaunas, Lithuania. The 

concentration of NO2 depended on the stove type used in the kitchen, those with gas stoves (I/O 

= 1.1–1.7) had higher concentrations compared to homes with electric stoves (I/O = 0.6–0.9). 

Segalin et al. (2017) assessed the PM2.5 (1.89) and PM10 (1.06) concentrations inside elderly 

residences in the Metropolitan Region of São Paulo. Meanwhile, Martins et al. (2020) examined 

the relationship between indoor and outdoor size-fractionated particulate matter in homes and 

schools in Lisbon, Portugal. The I/O ratios varied between 0.5 and 6.4 for PM1, 0.7–5.2 for 

PM2.5, and 0.4–6.5 for PM10. The I/O ratio greater than unity indicates that either there are 

significant indoor sources and there can be a transport event from outside towards the inside 

environment. It can be considered a ‘correction factor’ to represent the difference between 

concentrations indoors and outdoor (Monticelli et al., 2021). 

The ASMA-Vix project has determined the air pollutant I/O ratio in the microenvironments of 

the schools and homes for PM2.5, PM10, and NO2 can be found in Velasco (2020). Thus, in this 

study, the schools (homes) I/O ratios for PM2.5 were 4.18 (3.84), PM10 2.03 (2.21), and NO2 

1.52 (Velasco, 2020). The I/O ratio for NO2 in homes was adopted from the literature (1.40) 

because of the lack of data during the experimental campaigns for this parameter at homes. In 

this sense, the study of Dedele and Miskinyte (2016) was considered because homes with gas 

stoves were considered in their study, which was a characteristic similar to the residences of 

the selected children in the ASMA-Vix project. In the same way, the I/O ratios for O3 and PM1 

were also taken from the literature because there were no experimental campaigns for these 

parameters. Thus, the I/O ratios for O3 and PM1 were 0.45 (Blondeau et al., 2005) and 1.44 

(Martins et al., 2020) for schools, and 0.40 (Chao, 2001) and 1.34 (Martins et al., 2020) for 

residences, respectively. Table 14 summarizes the I/O ratios used in the exposure and dose 

assessments of this study. It is important to highlight that the literature is limited to the I/O 

values for the microenvironments under analysis. For this reason, a sensitivity test was also 

performed to assess the impact of the I/O parameter in the exposure and dose assessment, which 

considered the I/O equal to 1. Similarly, the estimation of personal exposure and inhaled doses 
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is also highly affected by transport microenvironments (private vehicles, buses, metro), road 

types, street configuration, and commuting behaviour (Boniardi et al., 2019b; Borghi et al., 

2021). However, due to the absence of these types of data related to the subjects and to avoid 

further possible biases, the time spent in home-to-school commuting (which had an average of 

8 minutes) was treated as outdoor concentrations.  

 

Table 14. The I/O ratios adopted in the present study. 

Pollutant School Home 

NO2 1.52 (Asma-Vix project) 1.40 (Dėdelė and Miškinytė, 2016) 

PM10 2.03 (Asma-Vix project) 2.21 (Asma-Vix project) 

PM2.5 4.18 (Asma-Vix project) 3.84 (Asma-Vix project) 

PM1 1.44 (Martins et al., 2020) 1.34 (Martins et al., 2020) 

O3 0.45 (Blondeau et al., 2005) 0.40 (Chao et al., 2001) 
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5. RESULTS AND DISCUSSION 

5.1 THE WRF-URBAN VALIDATION 

In this section, it is presented the performance of the WRF-Urban model because changes in 

the magnitude of meteorological parameters, especially temperature and wind speed, affect the 

chemical reactions of secondary pollutants and pollution dispersion, which can induce, for 

instance, an increase in concentrations of ozone and particulate matter (Liao et al., 2014; La 

Paz et al., 2016; Franco et al., 2019). Each subsection shows hourly time series and diurnal 

variation plots for each station that measured the specific meteorological parameter. Tables 

with the statistical indices of errors and correlation for the variables over the three months 

(November, December, February) and the three configurations (z = 4 m, z = 10 m, z = 20 m) 

are displayed in the Appendix. In summary, the results will show that the lowering of the model 

height was more sensitive to wind speed than the other parameters, despite slight differences 

also being seen for T2 and RH2. However, the Kruskal-Wallis test revealed that there was no 

statistical difference in the statistical indices (MB, RMSE, MAGE, r, IOA, FAC2) among the 

three configurations for any of the meteorological parameters. 

 

5.1.1 WIND SPEED AND DIRECTION 

The most significant performance variability with the lowering of the model height was seen 

for the wind speed parameter. During the experimental campaigns, the hourly mean (median) 

observed and standard deviation of WS10 over the three months was 4.0 (3.5)±2.2 m/s at 

Airport, 1.2 (0.8)±1.1 m/s at ASMA-Vix, 1.3 (1.2)±0.7 m/s at Carapina, 1.9 (1.8)±0.9 m/s at 

Cariacica, 1.8 (1.6)±0.9 m/s at Enseada, 2.6 (2.4)±1.2 m/s at IBES, and 1.6 (1.4)±1.0 m/s at 

INMET-VIX. As we can see, the Airport site registered the highest wind speed values while 

the other stations recorded wind speeds lower than 2 m/s, except for the IBES station. This 

difference seen in observed data is due to the fact that the Airport site is the only station located 

at an open site and it is not influenced by the presence of buildings and vegetation; or any other 

obstacle, that can slow down the wind speed. Figure 30 exhibits the comparison of hourly (left) 

and diurnal variation (right) between modelled WS10 for the three configurations, and the 

observed data for each station separately. Overall, the configuration with z = 4 m simulated the 

lowest wind speeds, with a mean (median) observed and standard deviation averaged over the 
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seven stations of 2.5 (2.5)±1.3 m/s, followed by z = 10 m 2.7 (2.8)±1.3 m/s, and then, z = 20 m 

3.2 (3.2)±1.4 m/s. 
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Figure 30. Comparison of WS10 hourly time series (left) and mean hourly variation (right) for 

observed (black line) and modelled by the WRF-Urban varying the lowest model height for 

each monitoring site.  

 

The mean hourly variation plots show that as the model height reduced, the magnitude of WS10 

also decreased. However, this behaviour was not evident for Carapina and INMET-Vix stations 

analyses, in which the three configurations had similar results and the WRF model more 

overestimated WS10 when compared to the other paired values of modelled/observed (RMSE 

equal to 4.0 m/s for Carapina and 3.2 m/s for INMET-Vix). These differences in results among 

the stations can be explained by the fact that the WRF-Urban BEP is exclusively activated in 

the grid cells assigned as ‘Urban and Built-up’ class, which in this study were represented by 

Airport, ASMA-Vix, Cariacica, Enseada, and IBES stations; whereas the location of Carapina 

and INMET-Vix stations were seen as vegetated surfaces by the WRF model. For urban 

surfaces, the BEP parameterization forces WS10 (and T2 as well) to be equal to the values at 

the lowest model level, in which U and V are prognostic variables computed by the model 

dynamically following the Navier–Stokes equations. This is mainly for two reasons: (i) The 

Monin–Obukhov similarity theory is not valid in the urban canopy, thus the 2m and 10m values 

do not use the log-law, (ii) to use BEP, it is necessary to have a very high vertical resolution 

close to the ground, thus the differences between the lowest model level value and the 2m and 

10m values are expected to be small. On the other hand, over the vegetated/natural surfaces, 

WS10 is diagnosed in the surface-layer scheme and is calculated from the wind speed in the 

first level via the logarithmic formula, following the Monin–Obukhov similarity theory. A 

recent study suggested an unphysical characteristic related to the 10-m wind speed 
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parameterization based on Monin-Obukhov similarity (Avisar et al., 2021), which can explain 

why no differences could be seen over vegetated surfaces with the lowering of the model height.  

In the bulk schemes, the roughness length and thermal properties, which represent the sink of 

momentum and heat storage, are fixed values that are not directly dependent on the urban 

morphology. On the opposite, BEP estimates the sink of momentum with a drag coefficient 

force that depends on the urban morphology and the density of vertical surfaces (walls) 

distributed from the ground surface up to the height of the highest building. The sources/sinks 

of heat due to the heat fluxes from walls, streets, and roofs are estimated by solving an energy 

budget for each surface which takes into account the shadowing and radiation trapping effects 

(Martilli et al., 2002; Chen et al., 2011; Salamanca et al., 2011; Liao et al., 2014; La Paz et al., 

2016; Huang et al., 2019). The presence of buildings is modelled through two parts: the building 

heights and their corresponding proportions. This study used building heights of 10 m, 15 m, 

and 20 m corresponded to a proportion of 20%, 60%, and 20%, respectively, for all the three 

configurations. As a consequence, the turbulent fluxes are different among the configurations 

in the urban canopy layer, and the configuration with the model height at z=4 m depicts a higher 

building density at the first level of the model than the other configurations, which can be 

conducive to trapping more heat and enhancing the drag force, leading to weaker winds and 

higher temperatures. 

In comparison with observations, the statistical analyses (Figure 31 and Table S1) showed that 

Carapina and INMET-Vix stations had the greatest errors (e.g. RMSE ranged between 3–4 m/s) 

and the lowest agreements (e.g. IOA under 0.5) for all configurations, despite the r-values were 

at about 0.4 for Carapina and 0.7 for INMET-Vix. The low FAC2 values, which were under 

0.30, indicated that the modelled wind speeds at these two locations were not within a factor of 

2 of observations. On the other hand, the results over urban surfaces had a better agreement 

with the observed data, with absolute errors under 2 m/s and IOA-values above 0.6. ASMA-

Vix, Cariacica, Enseada, and IBES stations met the criteria suggested by Emery et al. (2001) 

and Hanna and Chang (2012) (RMSE ≤ 2 m/s; FAC2 ≥ 0.50), which are more conservative 

when compared to those suggested by Kemball-Cook et al. (2005) (RMSE ≤ 2.5 m/s) for 

complex terrains. All statistical indices separated by station and month are presented in the 

Appendix, in which the lowest errors and highest indices of agreements are highlighted in green 

(conversely, the worst indices are in red). Statistical indices for WS10 are exhibited in Table 

S1 and showed that, overall, the configuration with the model height at 4 m was the one that 
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most met the benchmark value of MB ≤ ±0.5 m/s, in contrast to the reference value of RMSE 

≤ 2 m/s, in which the model height configured with z = 20 m presented the best performance. 

However, as mentioned, the Kruskal-Wallis test revealed that there was no statistical difference 

in the statistical indices (MB, RMSE, MAGE, r, IOA, FAC2) among the three configurations. 

 

 
Figure 31. Comparison of the averages of statistical indices for each station and configuration, 

considering the three months together, for WS10. 

 

The overestimation of wind speed has been reported by several studies using the WRF model 

(Carvalho et al., 2014; Hariprasad et al., 2014; Banks et al., 2016; Avolio et al., 2017; Siuta et 

al., 2017; Linaje et al., 2019; Gholami et al., 2021). Potential error sources were related to (i) 

the initial and boundary conditions dataset used to initialize the model; (ii) the choice of 

physical parameterisation schemes, which depends on the area under study and the period of 

the year being analysed; (iii) the ability of the model to simulate topographical features 

realistically because the model tends to smooth the actual terrain because of the sub-grid scale 

processes; thus, under the effect of flatter terrains, the friction between surface and atmosphere 

will be reduced, and thus the model will overestimate the wind speed; (iv) the actual location 
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of the weather stations which the presence of barriers, such as hills and buildings, slows down 

the wind speed measured at the stations. The present study sought to minimize these potential 

error sources by adopting high spatial and temporal resolutions (0.25° x 0.25° at every hour) of 

the initial and boundary conditions with ERA5 and with the use of BEP together with BouLac, 

which is among the best for the coastal area (Banks et al., 2016) and it is the PBL scheme that 

has been tested most extensively coupled with BEP (Ribeiro et al., 2021). The results of the 

present study are consistent with previous studies that evaluated the BEP scheme and generally 

found a good agreement with wind speed observations (Liao et al., 2014; La Paz et al., 2016; 

Sarmiento et al., 2017; Franco et al., 2019; Huang et al., 2019; Avisar et al., 2021). A 

comparison of the statistical indices of errors between this study and the others is presented in 

Table 15. Sarmiento et al. (2017) reported that despite the wind speed exhibiting an 

overestimation in the model for all configurations tested for summer and winter over 

Indianapolis, US, the lowest average wind speed error, in both the wintertime (mean error of 

1.5 m/s) and summertime (mean error of 2.1 m/s), was with BEP. The use of BEP resolved 

better heat and momentum balances during the day in Madrid, Spain (La Paz et al., 2016) 

because the scheme depends on drag coefficients for momentum transfer, and heat exchanges 

are developed without taking into account thermal stratification. The additional layers in the 

urban canopy and the fact that wall, street, and roof surfaces particularly act as sources and 

sinks of heat and momentum lead to the increased production of turbulent kinetic energy, which 

induced a better representation of the urban boundary-layer height in the city of Lisbon, 

Portugal (Teixeira et al., 2019). Similarly, Franco et al. (2019), which conducted experiments 

in São Paulo city, affirmed that BEP showed much better 10-m wind speed agreement with the 

observed data because in BEP’s formulation the exchange of momentum on the vertical 

surfaces of the buildings exerts pressure and viscous drag force on the flow. This force induces 

an orthogonal movement in the direction of the street canyon with a component against the 

horizontal wind direction (Martilli et al., 2002), causing a reduction in the wind speed.  
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Table 15. Comparison of the wind speed performance of the present study with others found in 

the literature review. The values of this study were averaged among the stations. 

Authors Study Area Statistic Value Period analysed 

Liao et al. 

(2014) 

Yangtze River 

Delta, China 

RMSE 1.20 January, 2010 

RMSE 1.39 July, 2010 

r 0.62 January, 2010 

r 0.39 July, 2010 

La Paz et al. 

(2016) 
Madrid, Spain 

RMSE 0.90 
Annual 

IOA 0.80 

Sarmiento et 

al. (2017) 
Indianapolis, US 

MB 2.10 June 15 to July 20, 2013 

MB 1.50 
February 15 to March 20, 

2013 

Franco et al. 

(2019) 
São Paulo, Brazil 

MB -0.19 October 31 to November 4, 

2013 RMSE 1.12 

Huang et al. 

(2018) 
Beijing, China 

MB 0.34 

5 to 8 July 2015 RMSE 1.18 

r 0.32 

Avisar et al. 

(2021) 

Tel-Aviv 

Metropolitan Area, 

Israel 

MB -0.68 

13 to 14 July 2013 MAGE 0.71 

RMSE 0.82 

Present study MRV, Brazil 

RMSE z=4 m 2.00 

November, 

December/2019, and 

February/2020 

RMSE z =10 m 1.95 

RMSE z =20 m 1.97 

r z =4 m 0.61 

r z =10 m 0.67 

r z =20 m 0.67 

 

In contrast to WS10, the results for WD10 had much more similar behaviour among the three 

configurations. Based on the Airport station measurements (Table 16), wind roses showed that 

winds predominantly came from the north 16%, 22.9%, and 19.4% of the time, and northeast 

12.8%, 18.4%, 15.5% in November, December, and February, respectively. Similar behaviour 

was depicted by the WRF model, despite the model predicting that the winds mostly came from 

north-northeast and northeast regardless of the model height configuration. For instance, in 

November, the configuration z = 4 m, z = 10 m, and z = 20 m indicated that the winds blew 

from the northeast (north-northeast) 20.3% (16.2%), 20.4% (16.3%), and 17.4% (13.9%) of the 

time, respectively. This indicates that the model rotated clockwise the winds with respect to the 
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observed records, also represented by the positive MB (Table S2 and Figure 32) for Airport, 

IBES, INMET-VIX stations over the three months, and Carapina in November. For Carapina 

in December and February, ASMA-VIX, Cariacica, and Enseada stations, the statistical 

analyses showed negative MB which meant that the model counterclockwise shifted the winds. 

The wind roses for each station and month are displayed in the Appendix (Table S3). 

 

Table 16. Observed and simulated wind roses at the Airport station for each month. 

 Nov/2019 Dec/2019 Feb/2020 

Observed 

   

z = 4 m 

   

z = 10 m 

   

z = 20 m 
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Figure 32. Comparison of the averages of statistical indices for each station and configuration, 

considering the three months together, for WD10. 

 

The results for WD10 were beyond the benchmark suggested by Emery et al. (2001), which 

indicated MB <±10° and MAGE ≤ 30°, except for some specific months and stations, but 

without a clear pattern. Figure 32 shows that the lowest errors were seen for Airport and IBES 

stations, while the highest errors occurred for ASMA-VIX, Carapina, and Enseada. Since all 

configurations had similar results, averaged MAGE over the three configurations were 44º for 

Airport, 85º for ASMA-Vix, 75º for Carapina, 64º for Cariacica, 60º for Enseada, 49º for IBES, 

and 54º for INMET-Vix. Similar results were found in Franco et al. (2019), in which the use of 

BEP in São Paulo city had MAGE equal to 56°. According to Jiménez and Dudhia (2013), the 

errors in wind direction usually become larger at low wind speeds, as well as, the errors are also 

larger over complex terrain than in flatter areas. As shown, observed wind speeds at the Airport 

(mean of 4.0 m/s) and IBES (mean of 2.6 m/s) stations were greater when compared to the other 

stations. Figure 32 also presents the indices of agreement in which r-, IOA-, and FAC2-values 

varied between -0.1–0.6, 0.3–0.8, and 0.3–0.7, respectively. FAC2 was under 0.5 for ASMA-

Vix, Carapina and Cariacica stations. The IOA-values were above 0.6, except for the ASMA-

Vix station, which also had weak negative correlations between modelled and observed data, 
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meanwhile, the other stations presented stronger and positive correlations. Regarding the 

configuration that presented the most suitable results compared to the observations, Table S2 

shows that the configuration with the model height of 4 m had the lowest errors and the highest 

indices of agreements (highlighted in green), followed by the configuration with the model 

height of 10 m, and then, of 20 m. 

 

5.1.2 TEMPERATURE AND RELATIVE HUMIDITY 

During the experimental campaigns, the hourly mean observed and standard deviation of T2 

(RH2) at the meteorological stations was 24.8±3.2°C (79.2±14.6%) in November, 26.0±3.1°C 

(75.7±14.8%) in December, and 27.0±3.1°C (77.5±13.5%) in February. Meanwhile, the WRF 

model set up at z = 4 m simulated mean values of 25.4±3.3°C (77.5±14.4%), 26.3±3.5°C 

(76.5±14.9%), and 27.2±3.5°C (78.4±15.3%). The configuration with model height at 10 m had 

mean values of 25.3±3.1°C (77.5±14.2%), 26.2±3.3°C (76.6±14.6%), and 26.9±3.4°C 

(79.1±15.1%); and at z = 20 m of 25.1±2.9°C (78.2±13.9%), 25.8±3.0°C (77.7±13.9%), and 

26.7±3.1°C (79.6±14.6%) in November, December, and February, respectively. The time-series 

plots comparing hourly and diurnal variation of simulated T2 and RH2 and observed data 

separated by station over the three months are shown in Figures 33 and 34. Comparing observed 

and modelled data, one can see that the WRF model had an acceptable agreement in simulating 

T2 and RH2 over the MRV regardless of the model height configuration. Usually, the model 

overestimated T2 during the daytime and underestimated it during the nighttime. The opposite 

behaviour is seen for RH2 (right side of Figs. 33-34). 
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Figure 33. Comparison of T2 hourly time series (left) and mean hourly variation (right) for 

observed (black line) and modelled by the WRF-Urban varying the lowest model height for 

each monitoring site.  
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Figure 34. Comparison of RH2 hourly time series (left) and mean hourly variation (right) for 

observed (black line) and modelled by the WRF-Urban varying the lowest model height for 

each monitoring site.  

 

The statistical analyses (Figures 35-36 and Tables S4-S5) showed the configuration with the 

model height of 20 m had lower errors and greater correlations for RH2 at ASMA-Vix station, 

and for T2 at Airport and Carapina stations throughout the three months. On the other hand, for 

the Cariacica station, the model height of 10 m had better results when compared to the other 

two configurations. Despite there being differences among the statistical indices values, they 

were not remarkable. As mentioned, the Kruskal-Wallis test revealed that there was no 

statistical difference in the statistical indices (MB, RMSE, MAGE, r, IOA) among the three 

configurations (z = 4 m, 10 m, 20 m) for temperature and humidity. In fact, all configurations 

met the criteria for T2 suggested by Emery et al. (2001) and Hanna and Chang (2012) (MB ± 
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0.50; MAGE ≤ 2.00; IOA ≥ 0.80; FAC2 ≥ 0.50), except for the Carapina station in November, 

in which MAGE was equal to 2.2°C. The T2 (RH2) WRF-modelled mean absolute errors 

(MAGE) were around 1.5°C (7.1%), 1.5°C (6.9%), and 1.4°C (6.8%) for z=4 m, z=10 m, and 

z=20 m configurations, respectively. FAC2 was equal to 1.00 over the entire period for both T2 

and RH2. The modelled and observed data presented strong positive correlations, with r-values 

varying between 0.77 (ASMA-Vix) and 0.91 for T2, and between 0.72 (ASMA-Vix) and 0.87 

for RH2. The IOA-values were also high, which varied between 0.87 (ASMA-Vix and 

Carapina) and 0.95 for T2, and between 0.84 (ASMA-Vix) and 0.92 for RH2 (Figure 35-36). 

The high r- and IOA-values point out that the model captures the temporal trends correctly.  

Overall, the statistical analyses indicated that the lowering of the model height did not 

significantly affect the results of T2 and RH2 over urban surfaces (represented by Airport, 

ASMA-Vix, and Cariacica stations) and natural areas, which were represented by INMET-Vix 

and Carapina stations. However, as discussed, the WRF-Urban is activated exclusively in the 

grid cells assigned as ‘Urban and Built-up’ class, in which the BEP algorithm forces T2 to be 

equal to the values calculated at the lowest model level height, explaining the differences in the 

results when compared to the vegetated surfaces.  

Like WS10 and WD10, the T2 results of the present study are consistent with previous studies 

that generally found a better statistical indices agreement using BEP (see Table 17) (Liao et al., 

2014; La Paz et al., 2016; Sarmiento et al., 2017; Franco et al., 2019; M. Huang et al., 2019; 

Avisar et al., 2021). The study of Franco et al. (2019), which was conducted for São Paulo city, 

was the single study that evaluated the RH2 performance. The authors reported an MB of 0.9%, 

MAGE of 5.8%, and IOA of 0.95. Similarly, this study found an MB of 0.1%, 0.4%, and 1.2%, 

MAGE of 7.1%, 6.9%, and 6.8%, and IOA of 0.89, 0.90, and 0.90 for z = 4 m, z = 10 m, z = 20 

m, respectively.  
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Figure 35. Comparison of the averages of statistical indices for each station and configuration, 

considering the three months together, for T2.  

 

 
Figure 36. Comparison of the averages of statistical indices for each station and configuration, 

considering the three months together, for RH2. 
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Table 17. Comparison of the temperature performance of the present study with others found 

in the literature review. The values of this study were averaged among the stations. 

Authors Study Area Statistic Value Period analysed 

Liao et al. 

(2014) 

Yangtze River 

Delta, China 

RMSE 1.97 January, 2010 

RMSE 2.47 July, 2010 

r 0.91 January, 2010 

r 0.75 July, 2010 

La Paz et al. 

(2016) 
Madrid, Spain 

RMSE 2.10 
Annual 

IOA 0.98 

Sarmiento et 

al. (2017) 
Indianapolis, US 

MB -0.20 June 15 to July 20, 2013 

MB -0.10 
February 15 to March 20, 

2013 

Franco et al. 

(2019) 
São Paulo, Brazil 

MB 0.12 
October 31 to November 

4, 2013 
MAGE 1.22 

IOA 0.97 

Huang et al. 

(2018) 
Beijing, China 

MB -0.16 

5 to 8 July 2015 RMSE 1.54 

r 0.93 

Avisar et al. 

(2021) 

Tel-Aviv 

Metropolitan Area, 

Israel 

MB -2.54 

13 to 14 July 2013 MAGE 2.61 

RMSE 2.79 

Present study MRV, Brazil 

MAGE z=4 m 1.52 

November, 

December/2019 and 

February/2020 

MAGE z=10 m 1.45 

MAGE z=20 m 1.41 

IOA z=4 m 0.90 

IOA z=10 m 0.91 

IOA z=20 m 0.91 

r z=4 m 0.86 

r z=10 m 0.87 

r z=20 m 0.87 

 

5.2 THE CMAQ MODEL EVALUATION 

In this section, the performance of the CMAQ model for NO2, O3, PM2.5, and PM10 is presented 

considering the three configurations adopted by the WRF model (z = 4 m, z = 10 m, z = 20 m) 

over the three months. Tables with the statistical indices of errors and correlation separated by 
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month, configuration, and monitoring station for the pollutants are displayed in the Appendix 

(Tables S6–S9). Overall, the CMAQ model overpredicted the hourly PM and NO2 

concentrations, and underpredicted ozone when compared to the monitoring data. The results 

also showed that the lowering of the model height increased the pollutant concentrations, and 

the most suitable performance was related to the meteorological conditions that came from 

WRF with the lowest model level height of 20 m. However, the differences in results due to the 

different configurations did not have a pronounced effect on concentrations as we observed for 

wind speed, e.g. from z = 20 m to z = 4 m. Again, the Kruskal-Wallis test revealed that there 

was no statistical difference in the statistical indices (MB, RMSE, MAGE, r, IOA, FAC2) 

among the three configurations for any of the air pollutants. 

Figure 37 displays the boxplots of hourly observed NO2, O3, PM2.5, and PM10 concentrations 

for each monitoring station in the MRV for (a) November, (b) December, and (c) February. 

Note that no observations of NO2 were available in February at Jardim Camburi (JC) station, 

nor of O3 at Cariacica, Enseada, IBES, and Laranjeiras in November, and at ASMA-Vix station 

in December and February. Similar levels of NO2 were obtained over the three months in all 

the stations, except for the ASMA-Vix station which varied substantially compared to the other 

stations, with the lowest levels and less variability (mean±SD of 6.7±3.1 μg/m3 and median of 

5.8 μg/m3). The means of PM2.5 concentrations at the ASMA-Vix station (mean/median less 

than 5 μg/m3) also were lower than at Enseada (mean/median around 10 μg/m3). Note that there 

were only two stations monitoring PM2.5 in the MRV during the experimental campaigns. On 

the other hand, O3 and PM10 levels were more comparable among all the stations. O3 means 

varied between a minimum of 27.2±14.8 μg/m3 registered at Cariacica and a maximum of 

42.4±17.1 μg/m3 at IBES, both in February. For PM10, the means varied between a minimum 

of 12.6±4.7 μg/m3 at Carapina and a maximum of 29.9±9.7 μg/m3 at Enseada, both in 

November. 
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Figure 37. Boxplots of hourly observed NO2, O3, PM2.5, and PM10 for each station and month. 
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These differences in concentrations among the stations may be related to a couple of factors, 

e.g. the distance of emission sources, urban landscapes, and meteorological conditions, that can 

favour (or not) the process of pollutant dispersion. For instance, Cariacica station is located in 

the parking lot of Espírito Santo Central Food Supply (CEASA - Central de Abastecimento do 

Espírito Santo), where there is intense traffic of vehicles, surrounded by trees and obstacles that 

can hinder the dispersion of pollutants and aid to trap them (Sharma and Kumar, 2018). Enseada 

station is placed at street level next to a busy road, which is also highly influenced by the traffic 

of vehicles, apart from the influence of industrial sources due to the proximity to the Tubarão 

Complex that has pelletizing, steel, and port activities (Galvão et al., 2018). Conversely, the 

ASMA-Vix station was placed in a playground of a school in low traffic neighbourhood, where 

the principal circulation of vehicles can be related to the drop-off and pick-up of students at 

school. Experiments in Canada and England have already affirmed that during the drop-off and 

pick-up of children at school, local concentrations can significantly increase, regardless of 

background conditions (Adams and Requia, 2017; Kumar et al., 2017), which can be 

represented by the outliers displayed in the boxplots. 

The mean±SD for observed NO2, O3, PM2.5, and PM10 over the three months were 14.8±5.4 

μg/m3, 31.2±14.2 μg/m3, 7.5±2.1 μg/m3, and 18.6±5 μg/m3, respectively. Meanwhile, the 

modelled mean±SD with the configuration at z = 20 m (z = 4 m) were 19.6±8.3 (23.0±8.3) 

μg/m3, 27.8±16.6 (25.3±16.9) μg/m3, 9.5±3.4 (12.0±4.4) μg/m3, and 20.5±6.7 (26.1±8.6) μg/m3 

for NO2, O3, PM2.5, and PM10, respectively. The modelled mean±SD for z = 10 m fell between 

the values of the z = 20 m and z = 4 m configurations, with 20.8±8 μg/m3, 26.5±16.8 μg/m3, 

10.6±9.9 μg/m3, and 22.9±7.2 μg/m3 for NO2, O3, PM2.5, and PM10, respectively. Figures 38, 

39, 40, and 41 show time series plots for the air pollutant concentrations together with the mean 

daily variations. The vertical bars indicate the standard deviation of the pollutants 

concentrations measured at the air quality stations. NO2, PM2.5, and PM10 are displayed as 24-

hour averages and the maximum daily 8-hour average (MDA8) for O3 in order to compare the 

concentration levels in the MRV with the final standard of WHO (2021) and to evaluate the 

CMAQ performance through the proposed goals and criteria, which usually are based on 24-

hour means (Boylan and Russell, 2006; Emery et al., 2017). The WHO (2021) has lowered by 

5 µg/m3 the limits for PM2.5 (from 25 µg/m3 to 15 µg/m3) and PM10 (from 50 µg/m3 to 45 

µg/m3) when compared to the previous air quality guidelines. The 24-hour guideline for NO2 

(25 µg/m3) has been additionally introduced, and for O3, the MDA8 standard remains the same 

at 100 µg/m3. 
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Figure 38. Comparison of observed and modelled 24-h average NO2 (left) and mean hourly 

variation (right) for each monitoring station and model’s configuration. The red line represents 

the final standard of WHO 2021 (25 µg/m3).  

 

Figure 38 exhibits that observed NO2 concentrations exceeded the air quality standard 

established by the WHO (2021) at all monitoring stations, except for the ASMA-Vix station. 

Cariacica was the place that most exceeded the air quality standard (31 times) over the three 

months, followed by Enseada (12 times), Centro-Vix (7 times), IBES and Laranjeiras (both 3 

times). The modelled results enhanced the number of times that air quality limits were surpassed 

because NO2 concentrations were overpredicted by the CMAQ model. On average, NO2 was 

overestimated by 9.7 μg/m3 (z = 4 m), 7.5 μg/m3 (z = 10 m), and 6.2 μg/m3 (z = 20 m) by CMAQ 

model when compared with observations. However, this bias typically was compensated by an 

underestimation during the day and an overestimation during the night. The daily average 

profiles of NO2 observations indicate that concentrations started to increase from 4 a.m. local 

time (LT) (3 a.m. for Cariacica and 7 a.m. for ASMA-Vix) with the first peak corresponding to 

the traffic peak between 6–7 a.m. LT. After that, the concentrations remained nearly constant 

with slight increases and decreases until reaching the second peak which occurred between 6–

7 p.m. The concentrations of the second peak usually were greater than the first peak, except 

for Cariacica and Laranjeiras where both peaks had the same levels. The higher concentrations 

of the second peak might be a result of continuous NOx emission throughout the day together 

with the reaction between NO and O3 to form NO2 at night when the photolysis reaction of NO2 

is stagnant, resulting in its gradual accumulation (Wang et al., 2020). In urban centers, NO2 is 

recognized as mainly originating from vehicular emissions (Janssen et al., 2001; Kornartit et 

al., 2010), a fact that was well-pictured in the first semester of 2020, during the COVID-19 

pandemic. The studies showed that due to restricted movements, NO2 concentrations decreased 

between 30% and 60% when compared to previous periods (Baldasano, 2020; Dantas et al., 

2020; Salma et al., 2020; Jephcote et al., 2021). However, that is not the case of the MRV, 

which has a peculiar arrangement and NO2 is not mostly exclusively emitted by vehicular 

sources. The local emission inventory pointed out that the major contributor of NOx emissions 

in the region is the industrial sources, especially those related to the pelletizing-siderurgy 

activities, which are located together in the same port complex and relatively near the 

population residences.  
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Figure 39. Comparison of observed and modelled MDA8 O3 (left) and mean hourly variation 

(right) for each monitoring station and model’s configuration. The red line represents the final 

standard of WHO 2021 (100 µg/m3).  

 

Differently from NO2, O3 concentrations (Figure 39) did not exceed the air quality standard of 

WHO (2021). However, it is important to highlight the quantitative lack of observed O3 data 

over the three months, which could indicate opposite results. The model adequately simulated 

the O3 variations and concentrations, despite MB indicating that all configurations 
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overestimated MDA8 O3 (except for Enseada station and IBES in February), but 

underestimated hourly O3 by –6.2 μg/m3 (z = 4 m), –4.9 μg/m3 (z = 10 m), and –3.6 μg/m3 (z = 

20 m) when compared to observations. The daily average profiles of O3 observations indicate 

that concentrations started to increase from 6 a.m. local time (LT) (7 a.m. for ASMA-Vix) with 

the maximum peak occurring between 10 a.m. and 12 p.m. L.T. After that, the concentrations 

slightly started to decrease until reached the minima at late night/dawn. The general trend of O3 

concentrations confirms that the production of ozone is induced by the presence of sunlight, 

high temperature, low winds, and its precursors. The correlation matrix showed that O3 strongly 

correlated (r higher than 0.8) with temperature, relative humidity, and wind speed at all 

monitoring stations, except for Enseada (r ≈ 0.6). 

PM2.5 (Fig. 40) and PM10 (Fig. 41) levels also exceeded the air quality standard by 10 and 3 

times at Enseada, respectively. No exceeding of the limits was observed at the other stations 

over the three months, despite the modelled data indicating the opposite, especially on 2-7 

November, 28-30 December, and 6-7-11 February. On average, PM2.5 and PM10 were 

overestimated by 4.5 and 8.6 μg/m3 (z = 4 m), 3.8 and 5.6 μg/m3 (z = 10 m), and 2.9 and 3.7 

μg/m3 (z = 20 m) by CMAQ model, respectively. The modelled daily average variations were 

similar for both PM, which portrayed two peaks throughout the day, like NO2, correlating to 

the traffic rush hours. However, the observations revealed a different pattern in which the 

concentrations started to increase from 4 a.m. L.T., remained slightly increasing over the day, 

until they started to decrease at the beginning of the night, except at JC station where the 

concentrations kept increasing, with a maximum at 9 p.m. L.T. The vertical bars also indicated 

a high variability of the hourly data over the days. Intriguingly, the daily average cycle of PM 

and NO2 were strongly correlated at all monitoring stations, indicating that these pollutants may 

have the same source of emission. The correlation coefficient values were 0.98 (CENTRO-

Vix), 0.92PM10 and 0.75 PM2.5 (ASMA-Vix), 0.83PM10 and 0.94PM2.5 (Enseada), 0.78 (JC), 0.76 

(Laranjeiras), and 0.75 (IBES).  
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Figure 40. Comparison of observed and modelled 24-h average PM2.5 (left) and mean hourly 

variation (right) for each monitoring station and model’s configuration. The red line represents 

the final standard of WHO 2021 (15 µg/m3).  
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Figure 41. Comparison of observed and modelled 24-h average PM10 for each monitoring 

station and model’s configuration. The red line represents the final standard of WHO 2021 (45 

µg/m3).  

 

The comparison among the three configurations exposed that the lowering of the lowest model 

level height increased the concentrations and enlarged the overprediction of NO2, PM2.5, and 

PM10 when compared to observations, while the opposite behaviour was seen for O3. Higher 

temperature and lower wind speed magnitudes, as emulated by the configuration z = 4 m in 

comparison with the other two configurations, affected the dispersion of the pollutants and 

increased their concentrations near-surface. In this sense, the better agreement of modelled 

WS10 with observations using the model height at 4 m did not reflect an improvement in the 

CMAQ results when compared to air quality observations. Additionally, it is worth mentioning 

that the use of z = 4 m also implied higher computational costs due to the high vertical resolution 

close to the ground. The overprediction of air pollutant concentrations not only can be related 

to low wind speed values (<1 m/s) simulated by the WRF model, especially during the 

nighttime, but also it can be attributable to a limitation in the representation of nocturnal PBL 

and atmospheric chemistry, and inaccuracies in the temporal profiles of the emissions inventory 

(Shin et al., 2012; Liao et al., 2014; La Paz et al., 2016; Huang et al., 2019). The configuration 

z = 4 m augmented the mean concentrations of PM10 (+5.5 μg/m3), PM2.5 (+2.6 μg/m3) and NO2 

(+3.4 μg/m3) when compared to the simulations with z = 20 m. This effect was the opposite for 
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O3 (–2.5 μg/m3). In comparison with z = 10 m, the mean concentrations followed the same trend 

of z = 20 m, but with fewer differences +3.2, +1.4, +2.2, and –1.3 μg/m3, respectively. Together 

with the lowering of the model height, the use of BEP also can be pointed to as a source of 

contribution to increasing the concentrations. La Paz et al. (2016) reported that the use of BEP 

increased the simulated NO2 concentrations in the city of Madrid by 40% (or 10 μg/m3), 

especially during the summer season due to higher simulated temperatures, in comparison with 

bulk schemes. Similarly, the PM10 concentrations were 32.7% (or 18.3 μg/m3) higher in 

Hangzhou city during summer (Liao et al., 2014) when compared to the non-use of BEP. 

According to the authors, the wind speed and the diffusion condition influenced the PM10 spatial 

distributions, leading to its accumulation over the urban areas. Similar results also were found 

in Franco et al. (2019) who reported a better representation of the meteorological fields over 

São Paulo city considering BEP parameterization, but the same was not achieved for the ozone 

surface concentrations. 

Regarding the CMAQ performance, Boylan and Russel (2006) proposed the use of the mean 

fractional bias (MFB) and the mean fractional error (MFE) as indicators to evaluate the 

robustness of air quality models. They stated that if the MFB value was between −60% and 

60% and the MFE was less than 75%, the model simulation result could be considered to be 

within an acceptable range. Although, the model performance goal would be to meet the criteria 

of MFB between −30% and 30% and MFE less than 50%. Recently, Emery et al. (2017) 

suggested a more restrictive range of values through the statistics of normalized mean bias 

(NMB) and normalized mean error (NME). They proposed that if the NMB value was between 

±50% (±35%) and the NME is less than 35% (10%), the simulations could be considered to be 

within an acceptable (goal) range. MDA8 O3 adhered to different values which considered 

NME (NMB) goal of <15% (<±5%) and criteria of < 25% (<±15%). Figure 42 presents the 

CMAQ statistical metrics for NO2, O3, PM2.5, and PM10 based on Emery’s recommendations 

which are more conservative when compared to those suggested by Boylan and Russel (2006).  
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Figure 42. NME and NMB for 24-h averages of NO2, PM2.5, and PM10. The NME (NMB) goal 

(green line) and criteria (red line) considered <35% (<±10%) and <50% (<±30%), respectively. 

For MDA8 O3, NME (NMB) goals and criteria were <15% (<±5%) and < 25% (<±15%), 

respectively. 
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The three configurations had similar results, especially for O3 which the markers (that varied 

by station and month) fell close to each other. Even so, overall, the configuration z = 20 m (★ 

in Fig. 42) was the one that most met Emery’s criteria of NMB (±35%) and NME (<35%). The 

model predicted well O3 concentrations with slight underprediction in February at Enseada and 

IBES stations. Likewise, the model also had a good performance for PM10 and the NMB goal 

(±35%) and the NME criteria (<35%) were met. Positive NMB was found in all months and 

stations (except for Cariacica), indicating the model overpredicted the NO2 concentrations. For 

PM2.5, the model performance was completely different between the only two stations available 

in the region. The PM2.5 concentrations measured at the ASMA-Vix station (4.2±1.6 μg/m3) 

were lower than Enseada (10.8±2.6 μg/m3). The low values were not depicted by the model, 

which grossly overpredicted PM2.5 over the three months, with NMB means of 110% (z = 4 m), 

99% (z = 10 m), and 88% (z = 20 m). Meanwhile, at Enseada, PM2.5 was well represented and 

met the performance NMB goal (±35%), especially using the configuration z = 20 m. 

Nevertheless, NME and NMB can grow disproportionally for overpredictions scenarios 

because it gives more weight to them than underpredictions (Zhang et al., 2012). Therefore, it 

is important to bolster NME and NMB indicators with other types of statistical measure that 

addresses variability over the entire range of prediction–observation pairs (Emery et al., 2017). 

Tables S6 (NO2), S7 (O3), S8 (PM2.5), and S9 (PM10) present the statistical indices split by 

station and month. The agreement indices had varied results, with some stations having low r, 

IOA, and FAC2-values, while others reached the criteria benchmarks of r >0.5 for O3 and r 

>0.40 for PM (Emery et al., 2017), and FAC2 >0.5 (Hanna and Chang, 2012). A comparison 

of the statistical indices between this study and other studies that also evaluated air quality 

models’ performance using BEP is presented in Table 18 (NO2). The studies carried out in the 

city of Madrid, Spain (La Paz et al., 2016; Martilli et al., 2022), had higher errors when 

compared to the present study, but IOA-value was higher. Wang et al. (2021), that performed 

sensitivity experiments over Chengdu, southwestern China, found MFE= 34.3% and r=0.36 

(MFE= 34.4%, r=0.31) for NO2 (PM2.5) in winter. However, during the summer, the 

concentrations were more overestimated, with MFE of 44.6% and r=0.36 for NO2 (MFE= 

44.6%, r=0.31 for PM2.5). This study also found similar NO2 MFE (≈50 μg/m3), but higher 

PM2.5 MFE (≈60 μg/m3) than Wang et al. (2021). O3 RMSE was about 17 μg/m3 while the other 

studies had higher errors, except for Liao et al. (2014) in the winter (Table 19). The IOA-values 

were close to 0.70 for all configurations, meanwhile, La Paz et al. (2016) reported an IOA of 

0.60 and Franco et al. (2019) of 0.80. In this study, the averages of MFE were 67% for z = 4 m, 
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62% for z = 10 m, and 58% for z = 20 m, with the r-values equal to 0.53 for all configurations. 

Similar results were also found in a previous study in the same study area (Pedruzzi et al., 

2019). The authors found MFE of 48%, RMSE of 19 μg/m3, and r of 0.39 for O3, while for 

PM10, MFE was 64%, RMSE = 30 μg/m3, and r = 0.23. For PM10, the averages of MFE (RMSE) 

were 41% (13 μg/m3) for z = 4 m, 36% (10 μg/m3) for z = 10 m, and 33% (9 μg/m3) for z = 20 

m.  

 

Table 18. Comparison of NO2 performance of the present study with others found in the 

literature review. The values of this study were averaged among the stations. 

Study Study Area Statistic Value Period 

La Paz et al. 

(2016) 
Madrid, Spain 

MB 1.5 

Annual RMSE 41.0 

IOA 0.68 

Jiang et al. 

(2020) 
Paris, France 

MB -5.1 27th November 

to 4th 

December 

2016 

RMSE 2.9 

r 0.79 

Wang et al. 

(2021) 

Chengdu, 

China 

MFB 37.2 

January 2017 MFE 34.3 

r 0.36 

MFB 49.7 

July 2017 MFE 44.6 

r 0.36 

Martilli et al. 

(2022) 
Madrid, Spain 

MB -12.8 
22nd to 30th 

December 

2016 

RMSE 38.0 

IOA 0.68 

r 0.49 

Present study MRV, Brazil 

MB z=4 m 8.2 

Nov/2019 

Dec/2019 

Feb/2020 

MB z=10 m 6.0 

MB z=20 m 4.8 

RMSE z=4 m 12.1 

RMSE z=10 m 10.8 

RMSE z=20 m 10.5 

IOA z=4 m 0.47 

IOA z=10 m 0.49 

IOA z=20 m 0.49 

 

 



146 

 

Table 19. Comparison of O3 performance of the present study with others found in the literature 

review. The values of this study were averaged among the stations. 

Study Study Area Statistic Value Period 

Liao et al. 

(2014) 

Yangtze River 

Delta, China 

MB -1.20 

January, 2010 RMSE 7.50 

r 0.55 

MB -11.00 

July, 2010 RMSE 29.80 

r 0.52 

La Paz et al. 

(2016) 
Madrid, Spain 

MB 25.00 

Annual RMSE 46.00 

IOA 0.57 

Franco et al. 

(2019) 

São Paulo, 

Brazil 

MB -11.28 
October 31 to 

November 4, 

2013 
RMSE 33.36 

IOA 0.80 

NMB -21.17 

Present study MRV, Brazil 

MB z=4 m -6.20 

Nov/2019 

Dec/2019 

Feb/2020 

MB z=10 m -4.90 

MB z=20 m -3.60 

RMSE z=4 m 17.30 

RMSE z=10 m 16.80 

RMSE z=20 m 16.50 

IOA z=4 m 0.68 

IOA z=10 m 0.69 

IOA z=20 m 0.69 

r z=4 m 0.53 

r z=10 m 0.53 

r z=20 m 0.52 

 

Overall, the CMAQ model overpredicted the PM and NO2, and underpredicted ozone when 

compared to the monitoring data. These results can infer that either the modelling is 

overestimating concentrations, either the monitoring stations are not placed in the 

neighbourhoods with higher concentrations, which may contribute to underestimating the city-

level concentration; or the combination of both situations. Additionally, other sources of bias 

in model predictions are related to uncertainties in emission inventory (Hu et al., 2016), 

chemical mechanisms (Kitayama et al., 2019), and boundary conditions (Pedruzzi et al., 2019). 

Therefore, it can be assumed that the CMAQ model suitably simulated air pollutant 
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concentrations over the MRV because the representation of air pollutant concentrations by 

models without bias is a complex task. After all, modelling cannot capture some local features 

and there is also a lack/few observed monitoring data (Andreão et al., 2020).  

 

5.3 PERSONAL EXPOSURE TO NO2: COMPARISON WITH PERSONAL DATA 

In this section, it is presented the assessment of personal exposure of twenty-one children to 

NO2 based on concentrations estimated by the CMAQ model. The results obtained using the 

chemical transport model were compared to passive samplers wore by children and also to the 

monitoring station placed close to their homes and schools. In addition, indoor/outdoor ratios 

were used to consider the amount of time spent indoors by children in homes and schools. Thus, 

eight scenarios are evaluated using data from the ASMA-Vix station and the three 

configurations of the CMAQ model (z = 4 m, z = 10 m, z = 20 m). Each one considered two 

approaches (i) using I/O equal to 1, that is assuming no indoor correction, and (ii) using I/O 

values to represent differences between indoor and outdoor concentrations of home and school 

microenvironments (values were exhibited in Table 13). 

Figures 43, 44, and 45 present the exposures calculated for the aforementioned scenarios for 

six children in Campaign 1 (November 2-17, 2019) in Andorinhas (Code #AN.CR.0*), six 

children in Campaign 2 (December 4-19, 2019) in Maruípe (Code #MA.CR.0*), and nine 

children in Campaign 3 (February 12-19, 2020) in Itararé (Code #IT.CR.0*). As mentioned, in 

C1 and C2, the filters were changed every 5 days over three weeks, while in C3, children used 

the personal sampler over 7 days of one single week. 
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Figure 43. Comparison of children’s hour-mean exposure estimates using data from the ASMA-

Vix station and the CMAQ model during Campaign 1 (November 2-17, 2019) in Andorinhas. 

The red line represents the concentration detected in the passive samplers wore by the children. 

The suffix I/O indicates that concentrations were adjusted for home and school 

microenvironments.  
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Figure 44. Comparison of children’s hour-mean exposure estimates using data from the ASMA-

Vix station and the CMAQ model during Campaign 2 (December 4-19, 2019) in Maruípe. The 

red line represents the concentration detected in the passive samplers wore by the children. The 

suffix I/O indicates that concentrations were adjusted for home and school microenvironments. 
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Figure 45. Comparison of children’s hour-mean exposure estimates using data from the ASMA-

Vix station and the CMAQ model during Campaign 3 (February 12-19, 2020) in Itararé. The 

red line represents the concentration detected in the passive samplers wore by the children. The 

suffix I/O indicates that concentrations were adjusted for home and school microenvironments. 

 

Campaigns 1 (Fig. 43) and 2 (Fig. 44) had similar results between them. The mean (median) ± 

standard deviation of the personal monitors in C1 and C2 was 13.0±4.7 µg/m3 (12.2 µg/m3) and 

10.8±6.1 µg/m3 (9.8 µg/m3), respectively. The closest results to personal samplers in terms of 

mean hour exposure were provided by the monitoring station with I/O adjusted (C1mean = 

11.9±2.4 µg/m3; C2mean = 7.9±0.7 µg/m3). Meanwhile, the poorest results were provided by the 

exposure scenario that was estimated using the CMAQ model z = 4 m with I/O adjusted. 
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Although the largest MB (C1 = 14.4 µg/m3; C2 = 12.5 µg/m3), RMSE (C1 = 15.6 µg/m3; C2 = 

14.2 µg/m3), and MAGE (C1 = 14.4 µg/m3; C2 = 13.2 µg/m3); the standard deviation (SD) was 

better captured by CMAQ model z = 4 m with I/O adjusted (C1 = ±3 µg/m3; C2 = ±4.5 µg/m3) 

than the monitoring station with I/O adjusted when compared to personal monitors, as well as 

the maximum values. In C3 (Fig. 45), better results were found using the CMAQ model z = 10 

m and z = 20 m without I/O adjusted (C3mean+SD = 17.0±1.2 µg/m3) when compared to personal 

monitors (C3mean+SD = 13.7±2.3 µg/m3). The differences between both configurations regard the 

statistical indices of r and IOA, in which z = 20 m had r = 0.25 and IOA = 0.46 while z = 10 m 

was equal to 0.21 and 0.45, respectively (Table 20). 

Figures 43, 44, and 45 also exhibit that there was a better agreement between the monitoring 

station without I/O correction and the personal samplers when NO2 concentrations were lower 

than 9 µg/m3 for C1 and 7 µg/m3 for C2. For the monitoring station with I/O correction, the 

method well-captured concentrations between 9–15 µg/m3 for C1, 8–11 µg/m3 for C2, and 10–

12 µg/m3 for C3. However, this changes for higher concentrations. For instance, the children 

more exposed according to the personal monitor in C1 (22.5 µg/m3 in week 3), C2 (30.5 µg/m3 

in week 3), and C3 (18.7 µg/m3) were better depicted by the CTM model. CMAQ had better 

results when exposures to NO2 concentrations were higher than 17 µg/m3 for C1, 11 µg/m3 for 

C2, and 13 µg/m3 for C3. In this sense, we could assume that for NO2 exposures lower than 15 

µg/m3, the monitoring station with or without I/O correction could be representative to assess 

the children’s personal exposure, otherwise, it is preferable to choose a CTM approach. 

 

Table 20. Statistical analysis of exposure methods  
MB RSME MAGE r IOA FAC2 

Station -5.57 7.66 6.02 0.10 0.42 0.60 

Station I/O adj. -2.95 6.23 4.61 0.11 0.45 0.86 

z = 4 m 6.26 8.16 7.18 0.21 0.43 0.69 

z = 4 m I/O adj. 13.06 14.31 13.30 0.17 0.33 0.43 

z = 10 m 4.18 6.51 5.52 0.25 0.47 0.74 

z = 10 m I/O adj. 10.24 11.57 10.59 0.22 0.38 0.52 

z = 20 m 3.60 6.19 5.20 0.22 0.45 0.81 

z = 20 m I/O adj. 9.39 10.81 9.95 0.19 0.38 0.57 
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Figure 46. Comparison of the children personal exposure to NO2 measured by the passive 

samplers (green), and estimated using data from the ASMA-Vix station (yellow) and the 

CMAQ model with three different heights. The diamond (lines) represent the mean (median) 

values, the circles represent the outliers, and the bars represent the minimum and maximum 

values. 

 

Figure 46 summarizes the average children’s personal exposure to NO2 considering the three 

experimental campaigns together. The measured children’s personal exposure to NO2 varied 

between 4.6 and 30.5 µg/m3, with a mean and standard deviation of 12.3±5.1 µg/m3. The 

exposures were underestimated using the monitoring station concentrations with or without I/O 

correction, while the CMAQ model provided higher exposures regardless of the configuration. 

The results using the monitoring station data without I/O adjusted had lower variability, with a 

mean personal exposure of 6.7±1.9 µg/m3, which varied between 4.7 and 11.0 µg/m3. The 

personal exposure characterized by the nearest air quality station (with an average distance of 

2 km between the participants) was less than those measured by the passive samplers. Various 

studies already reported that the monitoring stations offer a limited spatial resolution, leading 

to a misclassification of the exposure assessment to air pollution and can be unsuitable for 

epidemiological studies (Ott, 1982; Mölter et al., 2012; Steinle et al., 2013; Reis et al., 2018; 

Salonen et al., 2019). However, the use of a fixed I/O ratio has benefitted exposure results using 

the monitoring station, which provided the results closer to the personal monitors, with an 

average of 9.3±2.7 µg/m3 (6.6–15.5 µg/m3) and the lowest MB (–3.0 µg/m3) and MAGE (4.6 

µg/m3). On the opposite, the use of a fixed I/O ratio has not improved the exposure results using 
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the CMAQ model, in which the configuration z = 20 m without I/O adjusted exhibited the 

closest results to the personal monitors, with an average of 15.9±2.0 µg/m3 (10.2–19.0 µg/m3) 

and the lowest RMSE (6.2 µg/m3). Additionally, the use of fixed I/O ratios enlarged the results 

estimated with the configuration z = 4 m (25.4±3.9 µg/m3), which did not agree well with 

personal monitoring and had the largest positive bias for all campaigns (MB = 13.1 µg/m3). As 

seen in the previous section, the lowering of the model height (from z = 20 m to z = 10 m, and 

then, to z = 4 m) enhanced the concentrations, suggesting that children would be exposed to 

higher levels of air pollution. Similar results were reported in Monticelli et al. (2021), in which 

the I/O correction for the monitoring station made the exposure results closer to personal 

monitors, but not for dispersion model results with CALPUFF. Table 20 presents the statistical 

indices between the personal monitors and the eight indirect methods used to evaluate 

children’s personal exposure to NO2. The correlations were better using CMAQ z = 10 m 

without adjustment (r = 0.26, IOA = 0.47). FAC2 was less than 0.5 only when using the z = 4 

m with I/O adjusted. 

Few studies have conducted the exposure assessment on a personal level to air pollutants in 

Brazil, especially with children. Godoi et al. (2013) evaluated children’s personal exposure to 

NO2 in the south of Brazil. The authors found that the average personal exposure over 2 weeks 

(21 µg/m3) in an urban area, in which vehicular traffic played an appreciable role, was almost 

twice that of our study. However, their study only considered two subjects to carry the passive 

samplers. Similarly, a study performed in Manchester, UK (Mölter et al., 2012), which also 

used passive samplers to estimate the exposure of sixty children to NO2, found that the average 

exposure over 2-weeks (20.4 µg/m3) was also greater than in this study. In addition, the use of 

an urban monitoring station (28.6 µg/m3) to assess children’s exposure presented higher 

concentrations than the use of a land-use regression model (19.6 µg/m3). The authors concluded 

that fixed urban monitoring sites are relatively poor predictors of personal exposure which was 

on average about 4 km away from the child’s home, and more than 60% of children were 

assigned to the same urban monitor. The study conducted by Demirel et al. (2014) also found 

a higher exposure of sixty-five children to NO2 in Turkey, with a mean of 42.8 µg/m3 over 24 

hours. In general, the children’s exposure to NO2 in this study was found to be lower than those 

reported in the literature, despite the differences in the sample size and the amount of time they 

used the passive samplers. 
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Some limitations of our study can be related to the uncertainties in the personal exposure 

estimates as participants may have sometimes incorrectly filled their diaries, or they may have 

forgotten to use the passive monitor with them. In addition, this ASMA-Vix project considered 

only children with asthma symptoms. Studies that only focus on children with asthma have 

small sample sizes and the extrapolation of the results could be impaired (Xu et al., 2020).  

 

5.4 CHILDREN EXPOSURE TO O3 AND PARTICULATE MATTER 

The exposures to PM10, PM2.5, PM1, and O3 were also estimated through the children’s routines 

diaries (Figure 47). One downside factor in this analysis was the lack of personal data to 

compare with the monitoring station and modelled data, making the analysis exclusively 

qualitative. The modelling approach can be useful to prognosticate air contaminants that are 

poorly spatially represented and/or are not routinely monitored by environmental agencies 

because they are not regulated yet, which is the case of ultrafine particles in the MRV, and also 

in Brazil.  
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Figure 47. Average daily exposure of children to a) PM10, b) PM2.5, c) O3, and d) PM1 using the 

information of their daily routines and data from the ASMA-Vix station and the CMAQ model 

with three different heights. The diamond (lines) represent the mean (median) values, the circles 

represent the outliers, and the bars represent the minimum and maximum values. 

 

The sensitivity analyses of the CMAQ model relative to the model height in children’s exposure 

showed the same tendency seen in the performance results presented in the previous section. It 

means that the configuration with the lowest model height had the highest average daily 

exposure rates, except for ozone which showed the opposite trend, despite the differences being 

slight. For the sake of simplicity, from now on, the results will be discussed based on the results 

of the CMAQ configuration z = 20 m and the monitoring station with and without I/O 

correction. The choice of these configurations was because they had the most suitable 

performance when compared to the NO2 personal monitors. 

Overall, the model’s results show that the twenty-one children would be exposed on a daily 

average of 29.8±8.7, 17.2±6.3, 8.0±3.0, and 6.3±2.6 µg/m3 to O3, PM10, PM2.5, and PM1, 

respectively. With the I/O correction, the daily average exposures would increase to 35.2±13.1, 

28.5±10.7, and 8.3±3.4 µg/m3 to PM10, PM2.5, and PM1, respectively, and decrease to 14.5±4.4 

for O3. For the nearby monitoring station, the daily average exposures were estimated as 

29.1±9.1 µg/m3 for O3, 19.8±5.9 µg/m3 for PM10, and 5.0±2.3 µg/m3 for PM2.5. PM1 data are 

not presented because it was not subject to monitoring. With the I/O correction, the daily 

average exposures would be 13.9±4.4, 40.4±12.1, and 17.8±8.7 µg/m3 for O3, PM10, and PM2.5, 

respectively. Additionally, the results also revealed that, in terms of daily exposure, children of 

the first campaign are more exposed to air pollution than children of the C2 and C3. The mean 

and maximum values were the highest during C1 for O3, PM10, and PM2.5 regardless of the 

method and correction. For instance, the daily means in C1 were 15±6.5 (16±3.6) µg/m3 for O3, 

21±11.5 (31±14) µg/m3 for PM2.5, and 48±14 (40±17) µg/m3 for PM10 using monitoring station 

(model) data. For C2, the exposures decreased by 1–1.5 µg/m3 for O3, 3–6 µg/m3 for PM2.5, and 

10–12 µg/m3 for PM10 when compared to C1 regardless of the method. For C3, the exposures 

decreased by 3–5 µg/m3 for O3, for PM2.5 and PM10, the differences between C1 and C3 depend 

on the method adopted. The use of the monitoring station exhibited a difference between 8–12 

µg/m3, while the modelled concentrations only showed a difference of 1–3 µg/m3. For PM1, the 

mean daily exposure was almost the same for children of the first and third campaigns (≈ 9 
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µg/m3), despite the maximum value being higher in C1 (20 µg/m3) than C3 (14 µg/m3). For C2, 

the daily average exposure to PM1 was 7 µg/m3, varying between 3.8 and 12 µg/m3. 

The use of I/O adjustment has raised the PM10 daily exposure by twice in comparison to the 

non-use, for PM1 the increase was about 30%, and for O3 it was half, following the I/O ratios 

adopted for them. The largest difference regarding the use of I/O correction was seen for PM2.5, 

whose use increased the daily exposure by 250%. By comparing both indirect methods, the 

exposure to O3 and PM10 showed similar results and practically the same magnitude. 

Meanwhile, for PM2.5, there was a considerable difference between the exposure estimated by 

the monitoring station and the CTM model. The difference was 11 µg/m3 using the I/O 

adjustment scenario and 3 µg/m3 without it, meaning that the exposure to PM2.5 can be more 

than its additional half in the region depending on the type of approach the study relies on. 

Previous epidemiological studies based on data exclusively from air monitoring stations in the 

region could be underestimated (Andreão, et al., 2018; Souza et al., 2018). However, it is 

important to highlight that, although fixed monitoring stations and modelling approaches have 

been useful to estimate people’s exposure to air pollution, these methods cannot replace, in 

terms of accuracy and representativeness, instrumental personal measures of exposure carried 

out correctly. The lack of personal monitoring of different PM fractions and O3 of the children 

in the ASMA-Vix study can be pointed out as a drawback of this study. 

In this study, ambient modelled NO2 (19.6 µg/m3), PM10 (20.5 µg/m3), and PM2.5 (9.5 µg/m3) 

were lower than the exposure levels (21.7, 35.2, and 28.5 µg/m3, respectively). These results 

are strictly related to the time spent by children in the indoor environments and the I/O ratios 

that were greater than 1. The I/O ratios found during the experimental campaigns of this study 

for NO2 and PM10 were similar to those found in the literature (WHO, 2010; Godoi et al., 2013; 

Pallarés et al., 2019; Salonen et al., 2019; Shrestha et al., 2019; Faria et al., 2020). However, 

with respect to PM2.5, despite the literature reports that I/O ratios are usually greater than unity, 

in this study, these ratios were two to four times higher than in other studies which ranged 

between 1.2 and 2.1 (Rivas et al., 2014; Chen et al., 2020; Faria et al., 2020; Fernandes et al., 

2021). According to them, the main factors that caused these differences (in the absence of 

indoor sources) were a result of ventilation and airtightness of the spaces, the children’s 

activities, and dust resuspension. As mentioned, homes and schools in this project usually used 

open windows and ceiling fans to allow the entering of fresh and cool air into the indoor 

environments (Velasco, 2020; Monticelli et al., 2021). In addition, complex urban landscapes, 
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the distance of pollutant sources, and meteorological conditions within the urban area can 

hinder the dispersion process, and thus aid in enhancing air pollutants concentrations (Milner 

et al., 2005). 

In this study, the personal exposure of children was comparable to those found in the literature. 

For example, in Lisbon, Portugal, the average exposure of nine children to PM1 and PM2.5 was 

14 μg/m3 and 19 μg/m3 (Cunha-Lopes et al., 2019), while in this study, these values considering 

the I/O adjustment were 8.3 μg/m3 (model) and 17.8 μg/m3 (monitoring station), respectively. 

If the model was taken into account for PM2.5, the average exposure would be 28.5 µg/m3 

instead of 17.8 μg/m3 and thus, comparable to studies performed in Asian cities which exposed 

that the average exposure of children to PM2.5 was 35 µg/m3 in Cheonan, Korea (Choi et al., 

2020); and 40±17 µg/m3 in Shanghai, China (Barkjohn et al., 2020). Although higher exposures 

to PM2.5 are expected because Eastern Asia is well-known to be more polluted than other parts 

of the world. The median personal concentration exposure to PM10 of children living in 

Australia was 28 µg/m3, 48 µg/m3, and 45 µg/m3 in mining, rural, and urban/suburbs areas, 

respectively (Hinwood et al., 2014). The exposure in the urban area is higher than those found 

in both methods (monitoring station and model) with or without I/O correction. 

Oppositely to PM, ambient modelled MDA8 O3 concentration (42 µg/m3) was about 3 times 

higher than the daily personal exposure (14 µg/m3), being the indoor I/O ratio adopted for O3 

almost half due to its high reactivity. Similarly, Niu et al. (2018) found the personal exposure 

of college students to O3 to be 1/2 to 1/3 of ambient concentrations in Shanghai, China. In 

Shanghai, the 48-h personal exposure to O3 of children was 22±10 μg/m3 (Barkjohn et al., 

2020). In another study performed in Tennessee, USA, children were exposed to O3 on a weekly 

average of 7±7.4 μg/m3, corresponding to 7 to 31% of outdoor O3 concentrations (Lee et al., 

2004). In addition, children would be more exposed to O3 during the transit between school to 

home and vice-versa, or doing outdoor exercises and playing in playgrounds, because they 

usually do it during the day, when outdoor O3 concentrations tend to be higher due to its diurnal 

variation pattern. A comparison of the estimation of the exposure to air pollutants between this 

study and others is presented in Table 21. 
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Table 21. Comparison of the exposure to air pollutants of the present study with others found 

in the literature review. The values are presented in terms of mean ± standard deviations. The 

values of this study were presented with I/O correction. 

Study Study Area Method NO2 O3 PM10 PM2.5 PM1 

This 

study 

n=21 

Vitória, 

Brazil 

passive samplers 
12.3 

±5.1 
- - - - 

monitoring station 
9.3 

±2.8 

13.9 

±4.4 

40.4 

±12.1 

17.8 

±8.7 
- 

CMAQ model 

z = 20 m 

21.7 

±2.9 

14.5 

±4.4 

35.2 

±13.1 

28.5 

±10.7 

8.3 

±3.4 

Cunha-

Lopes et 

al. 

(2019) 

n=9 

Lisbon, 

Portugal 

portable 

monitoring 

equipment 

- - - 19.0 14.0 

Choi et 

al. 

(2020) 

n=52 

Cheonan, 

Korea 
fixed station - - - 34.6 - 

Barkjoh

n et al. 

(2020) 

n=43 

Shanghai, 

China 
low-cost monitors - 

21.7 

±9.9* 
- 

40 

±17 
- 

Hinwoo

d et al. 

(2014) 

n=70 

Perth, 

Australia 

iron ore 

mining/shipping 

area (n=13) 

- - 28.0 - - 

rural area (n=15) - - 48.4 - - 

urban area (n=42) - - 44.8 - - 

Lee et 

al. 

(2004) 

n=33 

Tennessee, 

USA 
passive samplers - 7±7.4* - - - 

Godoi et 

al. 

(2013) 

n=2 

Curitiba, 

Brazil 

Urban 21.0 - - - - 

Suburban 10.2 - - - - 

Molter 

et al. 

(2012) 

n=60 

Manchester

, 

UK 

passive samplers 
20.4 

±7.9 
- - - - 

fixed station 
28.6 

±15 
- - - - 

microenvironmenta

l exposure model 

19.6 

±4.7 
- - - - 

LUR model 
31.2 

±5.4 
- - - - 

Demirel 

et al. 

(2014) 

n=65 

Eskişehir, 

Turkey 
passive samplers 

42.8 

±15 

38.4 

±10.4 
- - - 
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5.5 INHALATION DOSE ASSESSMENT OF PARTICULATE MATTER 

Inhaled doses of PM2.5 and PM1 were also evaluated based on the daily activity pattern reported 

in the time–activity diaries, exposure concentration data in each microenvironment, the 

inhalation rate (m3/h) and ventilation rate (L/min) during resting (sleeping hours) and light 

exercises using Equations 12 and 13. Figures 48 and 49 show hourly PM2.5 and PM1 potential 

inhaled doses (unadjusted for body weight) for children of all campaigns using data from the 

monitoring station and the CMAQ model with z = 20 m with and without I/O correction. Note 

that only the simulated data by CMAQ is presented for PM1. 

 

 

 
Figure 48. Boxplot of the hourly PM2.5 inhaled dose of children (unadjusted for body weight) 

considering (a) no I/O correction and (b) with I/O correction using data from the monitoring 

station and the CMAQ model with z = 20 m. 
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Figure 49. Boxplot of the hourly simulated PM1 inhaled dose of children (unadjusted for body 

weight) considering (a) no I/O correction and (b) with I/O correction using data from CMAQ 

model z = 20 m. 

 

Between 11 p.m. and 5 a.m., when most children were sleeping, the potential inhaled dose was 

at the lowest level in a day, with a range between 2 and 4 μg for PM2.5 and 1–3 for PM1, with 

small differences among children. However, considering the I/O correction, the potential 

inhaled dose increased from a range of 6–16 for PM2.5, although these levels were still the 

lowest in a day. From 6 a.m., children started to have an increase in the potential inhaled dose, 

with some peaks values (represented by the bar and the outliers), despite the average inhaled 

dose remaining at a reduced level, with a mean difference of 1–4 μg (monitoring station) and 

4–8 μg (model) for PM2.5 (2 μg for PM1) compared to the previous hours. The monitoring 

station data exhibited that the median potential inhaled dose of children for PM2.5 tended to be 

the same between 7 a.m. and 8 p.m., which range between 3.9 (11) μg and 5.3 (18) μg 

considering no (with) I/O correction, with the maximum value occurring at 8 p.m. On the other 

hand, the modelled data showed more variability and indicated that the potential inhaled dose 

increased along the day, with the maximum value of 12 (40.8) μg for PM2.5 and 10 (12.7) μg 

for PM1 occurring at 7 p.m. As previously discussed, this period is related to the traffic rush 

hour at the end of a day, indicating the gradual accumulation of particulate matter in the 

atmosphere. After that, the potential inhaled dose of children dropped and was similar to the 

other periods of the beginning of the day. Nevertheless, it can be found that the PM inhaled 

dose was the largest during the late afternoon, the median is 3–4 times the number during 

sleeping hours. 
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Figure 50 exhibits the potential accumulated daily dose adjusted for body weight for PM2.5 and 

PM1 for children of all campaigns using data from the monitoring station and the CMAQ model 

with z = 20 m with and without I/O correction. 

 

 
Figure 50. Children’s potential average daily dose (ADDpot) of a) PM2.5 with I/O correction, b) 

PM2.5 with no I/O correction, and c) PM1 using data from the monitoring station and the CMAQ 

model z=20 m. The diamond (lines) represent the mean (median) values, the circles represent 

the outliers, and the bars represent the minimum and maximum values. 

 

The mean (median) of the potential modelled inhaled daily doses adjusted for body weight was 

13.0±5.9 (11.7) μg/kg for PM2.5 with I/O correction, 3.7±1.5 (3.4) μg/kg for PM2.5 no I/O correction, 3.8±1.7 

(3.4) μg/kg for PM1 with I/O correction, and 2.9±1.2 (2.6) μg/kg for PM1 no I/O correction. 

Correspondingly, considering the nearby urban station, the mean (median) of the potential 

inhaled daily doses was 7.5±4.4 (6.8) μg/kg for PM2.5 with I/O correction and 2.1±1.2 (1.9) μg/kg for 

PM2.5 no I/O correction. In the toxicological risk assessment, the average daily dose can be used to 

estimate the risk quotient in relation to a reference dose. If we consider that the reference 

concentration is 5 μg/m3 (Oliveira et al., 2012) or 5.8 μg/m3 (de Souza Silva et al., 2016) for 

PM2.5, the risk quotient using data from the monitoring station or the CMAQ model with I/O 

correction would be greater than 1, meaning that PM2.5 causes adverse health effects and is 

detrimental to public health in the MRV. On the contrary, if no I/O adjustment would be 

applied, the risk quotient would be less than 1, and thus, the PM2.5 would not be considered a 

threat to public health. However, it is important to highlight that these reference concentration 

values were taken from the literature, in which both studies evaluated the exposure to PM2.5 of 

children and adolescents residents in the Brazilian Amazon region during the biomass burning.  
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By comparing with results found in the literature, our modelled results showed that the children 

in this study inhaled similar PM doses when compared to the mothers living in Oporto 

metropolitan area (Portugal), which virtually attended the same microenvironments as newborn 

children (Madureira et al., 2020). In their study, the PM2.5 inhalation doses among newborn 

children were 4-fold higher than their mothers due to their low body weights, with estimated 

means of 69.8±53.9 μg/kg and 16.7±14.2 μg/kg, respectively. The average body weight of boys 

(girls) in this study was 41.8±14.4 (43.9±13.3) kg, meaning that the children could inhale daily 

doses that varied between 155–571 μg for PM2.5 (model), 88-330 μg for PM2.5 (monitoring 

station), and 121–167 μg for PM1, according to the different configurations used to estimate the 

air pollutant concentrations and the use or non-use of I/O ratios. These results show that children 

residing in the MRV have the potential to inhale more PM when compared to children residing 

in Lisbon (PM2.5 = 243.5 μg) (Faria et al., 2020). But does not go beyond the limits found by 

Song et al. (2021) for residents from Guangzhou, China, which revealed that PM2.5 inhaled dose 

in a day was about 940±94.5 μg, being higher during the day and low at night (619–1284 μg). 

In addition, they highlighted that the individual differences in inhaled doses concern the 

commuting and leisure periods, during the working and sleeping periods, the differences were 

small.  

The estimation of inhaled doses of PM2.5 and PM1 in this study considered inhalation rates 

obtained from the literature (Yoon et al., 2020), which can be pointed out as a limitation of the 

study, despite the adopted values being consistent with the other studies (Allan and Richardson, 

1998; USEPA, 2011; Brochu et al., 2011; 2014; Carvalho et al., 2018). In this sense, since the 

estimation of the inhaled dose can consider other respiratory parameters (e.g. ventilation rate, 

tidal volume, breathing frequency) and the values can vary considerably in the literature, we 

estimated the potential inhaled dose of children also considering the respiratory deposition dose 

(RDD) approach to putting our results in perspective. Figure 51 presents the results using the 

RDD equation for PM2.5 and PM1 using data from the monitoring station and the CMAQ model 

with z = 20 m with and without I/O correction, separated for boys and girls. 

 

https://link.springer.com/article/10.1007/s11356-018-2045-8#ref-CR1
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Figure 51. Respiratory deposition doses (RDD) throughout the respiratory tract of boys and 

girls during sleeping and light exercises for a) PM2.5 with I/O correction, b) PM2.5 with no I/O 

correction, and c) PM1 using data from the monitoring station and the CMAQ model z=20 m. 

 

The RDD for PM2.5 and PM1 was calculated separately for boys and girls considering the 

sleeping and light exercises. The RDD for girls (boys) varied between 2.6±1.0 (2.6±1.2)×10-2 

µg/min (station) and 3.7±1.1 (4.5±1.0)×10-2 µg/min (model) for PM2.5 and 0.9±0.3 

(1.1±0.3)×10-2 µg/min for PM1. By considering the I/O correction, the RDD for girls (boys) 

varied between 8.7±4.0 (9.4±4.1)×10-2 µg/min (station) and 12.6±4.7 (16.2±4.1)×10-2 µg/min 

(model) for PM2.5 and 1.1±0.4 (1.4±0.4)×10-2 µg/min for PM1. Slight higher RDD was found 

for boys than girls. That was expected because the respiratory parameters of males usually are 

greater than females, and thus, males would inhale more PM (Hinds, 1999). Similar results were 

found in Segalin et al. (2017), which evaluated the RDD of elderly residents of São Paulo and 

reported a mean RDD of 5.7 (4.3)×10-2 µg/min and 15.8 (14)×10-2 µg/min for males (females) 

during seated position and light exercises. In the same way, Kumar et al. (2017) estimated the 

RDD for babies (< 1 year) in a sedentary condition and found values between 1.2–20.4 µg/h 

for female babies, with an RDD ratio of 1.06 for male babies. 

By integrating the RDD over a day, the respiratory deposition dose assessment presents smaller 

inhaled doses (37–233 µg/day) than the ADDpot (88–571 µg/day). That occurred because while 

the ADDpot equation uses the inhalation rate (IR) parameter, which is given by m3 per hour, the 

RDD alternatively employs the ventilation rate (VR), which usually is measured as the volume 

of air exhaled per minute. Thus, if the VR values from USEPA (2009) would be converted to 

hourly rates, the inhalation rates for boys (girls) between 11–16 years old would be 0.32 (0.29) 

m3/h and 0.79 (0.72) m3/h during sleeping and light activities, which are smaller than those 

adopted from Yoon’s study (2020). In addition, the RDD equation considers the deposition 

fraction (DF) parameter that takes into account the particle diameter and therefore is usually 
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not directly proportional to the mass concentration (Kumar et al., 2017). This paradigm has 

been discussed by Borghi et al. (2021) and reported that the literature concerning the estimation 

of the inhaled dose of pollutants is few compared with the exposure assessment studies because 

the latter considers the external dose (exposure) and not the potential dose (the amount of 

contaminant inhaled, not all of which is actually absorbed). Furthermore, the estimation of the 

internal dose (the amount of contaminant that passes the exchange boundary and into the blood, 

or the amount of the contaminant that can interact with organs and tissues to cause biological 

effects) is highly sensitive to the physiological parameters (e.g. age, gender, body, weight, 

intensity of physical activity), especially those related to the mode of a subject breath.  

A further important implication is, in the present study, both approaches (ADD or RDD) used 

respiratory parameters that assumed that children are non-asthmatic. Asthmatic children have 

higher inhalation rates, and thus, the potential inhaled doses could be higher for asthmatic 

children (USEPA, 2011). The breathing rates are also higher during heavy activities than the 

light activities and resting positions (Hinds, 1999). Physical education and other exercises (i.e., 

walking, running, and cycling) increase the pulmonary ventilation rates, and thereby, increase 

the risk associated with exposure to air pollution due to higher doses of pollutants that may 

penetrate the human body. Coarse and ultrafine particles are primarily deposited in the head 

airways region (nose, mouth, pharynx, and larynx) due to inertial impaction and diffusion 

(Hinds, 1999). However, fine and ultrafine particles can be efficiently deposited in the 

pulmonary region, and their sizes can favour the deposition of toxic elements in pulmonary 

alveoli (Oberdörster et al., 2005; Kumar et al., 2014; Han et al., 2016; Madureira et al., 2020). 

 

5.6 SOURCES CONTRIBUTIONS TO THE CHILDREN’S PERSONAL 

EXPOSURE 

The MRV is a complex urban and industrialized area in southeastern Brazil with significant air 

pollution problems caused by a peculiar arrangement of pelletizing-siderurgy activities and 

marine and vehicular traffic within the urban zone. The main sources of emissions are 

practically located in the same areas, which aids in enhancing the pollutant concentrations in 

certain regions. Figures 52, 53, and 54 quantify the averaged percentage contribution of each 

emission sector to NO2, O3, and PM2.5 mass concentration, respectively. The results are 

presented based on the simulations configured with CMAQ z = 20 m without I/O correction. 
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The influence of source contributions was split into weekdays and weekends and per hour of 

the day for each campaign. For that, a fixed time activity profile for children was assumed, in 

which the label ‘Home’ corresponds to the hours between 6 p.m. and 6 a.m. The label ‘Outdoor’ 

assigns to the hours that usually children are in transit/commuting between microenvironments 

(7 a.m., 12 p.m., and 5 p.m.). The labels ‘Morning’ and ‘Afternoon’ were assumed to be the 

hours that children would be at school or doing any other activities, and thus, it was divided 

from 8 a.m. to 11 a.m. and from 1 p.m. and 4 p.m., respectively.  

Overall, BCON was the major contributor to NO2 and O3 concentrations, corresponding to 42% 

(≈5.8 µg/m3) and 74% (≈27 µg/m3) of the total mass respectively. The broad influence of BCON 

on pollutant concentrations, especially ozone, can be related to the fact that BCON was 

provided by a global model with a dynamic hourly process, making the pollutants constantly 

transported into the domain. Another factor is the size of the domain, which despite having been 

increased from a previous study in the same region (Pedruzzi et al., 2019) may still not be 

adequate. Nonetheless, Pedruzzi et al. (2019) exhibited that the non-use of a dynamic process 

for lateral boundary conditions generates poor results for O3 simulation, and thus, they highly 

recommended this scenario for air quality modelling.  

The second greatest contributor to NO2 and O3 concentrations was the vehicular sources, with 

an average of 30% (3.2 µg/m3) and 8% (3.2 µg/m3), respectively. In comparison among the four 

categories of time, the vehicles category had its broadest influence during the Morning hours 

(8 a.m. – 11 a.m.) on both NO2 (39%) and O3 (10%). In the meantime, BCON had its greatest 

contribution during the Home hours (6 p.m. – 6 a.m.) on both NO2 (44%) and O3 (97%). In 

addition to BCON, the shipping sector also contributed to NO2 concentrations during Home 

hours, with a mean of 10% (1.6 µg/m3). The ISAM tool also indicated that point sources also 

played an important role in NO2 and O3 mass concentrations in the campaign areas, especially 

during the Afternoon hours (1 p.m. – 4 p.m.), when its emissions represented an average of 20% 

(4.4 µg/m3) and 16% (5.1 µg/m3) of NO2 and O3 total concentrations, respectively.  

Although BCON influenced 30% (1.6 µg/m3) of the total PM2.5 mass, road dust resuspension 

was its major contributor, with an average of 43% (2.9 µg/m3), followed by the point (13%, 1.0 

µg/m3), vehicles (5%, 0.3 µg/m3), and shipping (4%, 0.2 µg/m3) sources. The road dust 

resuspension is directly linked to the influence of vehicular traffic movement; however, at the 

same time, the origin of the PM2.5 deposited on the road should be attributed to miscellaneous 
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sources in the region, including industrial (mining, steel, quarries, civil construction, maritime 

ports, etc.), vehicular, and natural sources such as biogenic, crustal, and sea salt. The transport 

contribution from sources outside of the domain was also described by Li et al. (2019), which 

evaluated the PM2.5 contributors over 15 provinces in China and found a proportion of 

approximately 20%, but it can exceed 50% during some seasons. East et al. (2021) also found 

similar results in Bogotá, Colombia, to those found in this study. The authors identified that 

dust resuspension of roads was the largest local source of PM2.5 (37% and 45% during dry and 

rainy seasons), whereas the BCON also had a great contribution (33% and 18% during dry and 

rainy seasons).  

Biogenic emissions notably affected NO2 concentrations during the Morning hours. Little 

differences could be seen between weekdays and weekends, but the major contributors 

remained the same. In the same way, despite the main contributors being also the same, the 

slight differences seen between the campaigns can be attributable to meteorological conditions 

during the three months in transforming and transporting the air pollutants (Dong et al., 2020; 

Zhang et al., 2021). The category Others represents any remaining that were not explicitly 

tracked. BCON highly dominated Home hours (97%), however over the day, it could be noticed 

the influence of the local emissions, which make BCON contribution decrease to almost 50%. 

The emissions from the volume and area sources, which also represent industrial activities, little 

affected the pollutant concentrations (0.5% – 3%). Although the analyses of Figures 49–51 

showed that most of the time BCON was the major contributor, the hourly peaks were caused 

by the local emission sectors, meaning that their contributions are relevant to the exposure to 

air pollution in the region.  
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Figure 52. Contributions of different sectors to NO2 concentrations for each campaign during 

a) weekdays and b) weekends. The numbers in the pie chart indicate the percentage of the most 

relevant sectors. 
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Figure 53. Contributions of different sectors to O3 concentrations for each campaign during a) 

weekdays and b) weekends. The numbers in the pie chart indicate the percentage of the most 

relevant sectors. 
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Figure 54. Contributions of different sectors to PM2.5 concentrations for each campaign during 

a) weekdays and b) weekends. The numbers in the pie chart indicate the percentage of the most 

relevant sectors. 
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6. CONCLUSIONS 

There are different methods to evaluate exposure to air pollution. In this study, the exposure of 

children to NO2, O3, PM10, PM2.5, and PM1 was estimated using data from a numerical 

modelling system combining information from WRF-Urban and CMAQ-ISAM models. In 

addition, sensitivity tests were conducted to investigate the relationship between the 

configuration of the lowest model height and air pollutant concentrations over the Metropolitan 

Region of Vitória, Brazil, in November and December 2019, and February 2020. This period 

represents the months when experimental campaigns occurred in the region and NO2 personal 

exposure data of twenty-one children were collected through passive samplers wore by them.  

First, the modelled hourly meteorological parameters (temperature, relative humidity, and wind 

field) and hourly mass concentrations of NO2, O3, PM10, and PM2.5 were compared with ground-

based observation data to evaluate the accuracy and reliability of the models. The simulation 

results were generally good and able to broadly capture the values of and variation trends in the 

observation data. The results exhibited differences when the lowest model level height was 

changed, although slightly. A great advance was obtained using the BEP formulation together 

with the model height of 4 meters for wind speed. However, overall, the most suitable results 

for T2, RH2, NO2, O3, PM10, and PM2.5, when compared to observed data, were acquired with 

the model height set up at 20 meters. The better agreement of WS10 in simulations using the 

model height at 4 m did not improve the CMAQ performance. In fact, the lowering of the model 

height together with the use of BEP parameterization increased the concentrations and enhanced 

the overprediction and exposure to the air pollutants. Despite meteorological conditions playing 

an important role, the accuracy of the CMAQ model is also highly dependent on the quality of 

emissions inventory used as model input. For instance, for the majority of emissions sources 

(excluding the vehicular sector), the quantity of pollutants emitted was provided as a total per 

year, so they were equally distributed across the year in the model, impacting the hourly, daily, 

and monthly modelled concentrations.  

Once the air pollutant concentrations were estimated by the numerical modelling system, the 

personal exposure was calculated using the time-activities diaries of the children, and I/O ratios 

were also used to consider the amount of time they spent indoors. In total, eight scenarios were 

considered to assess the children’s exposure, one was using data from the fixed monitoring 

station and the three came from the CMAQ model that adopted different configurations (z = 4 
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m, z = 10 m, z = 20 m). Additionally, each one considered two approaches (i) using I/O equal 

to 1, that is assuming no indoor correction, and (ii) using I/O values to represent differences 

between indoor and outdoor concentrations of home and school microenvironments. In general, 

the exposures were underestimated using the monitoring station concentrations with or without 

I/O correction, while the CMAQ model provided higher exposures regardless of the model 

height configuration. In comparison with NO2 personal monitors (12.3±5.1 µg/m3), the use of 

I/O correction benefitted exposure results using the monitoring station (9.3±2.7 µg/m3). On the 

other hand, it has not benefitted exposure results using the CMAQ model, in which the most 

suitable performance was found with the configuration z = 20 m without I/O adjustment 

(15.9±2.0 µg/m3). It is important to mention that applying constant I/O ratios (some derived 

from other study sites) could lead to uncertainties and errors in the exposure estimates. 

The exposures to O3, PM10, PM2.5, and PM1 were qualitatively estimated since there were no 

personal observations. Nevertheless, the results were presented comparing both indirect 

methods (monitoring station and model), which showed that the exposure to O3 and PM10 

practically had the same magnitude. Meanwhile, for PM2.5, there was a considerable difference 

between the exposure estimated by the monitoring station and the CMAQ model, suggesting 

that studies concerning PM2.5 that rely exclusively on monitoring stations in the region could 

be underestimated. In any case, the exposures of children to these air pollutants were 

comparable to other studies found in the literature. The results also revealed that, in terms of 

daily exposure, children of the first campaign are more exposed to O3, PM10, and PM2.5 than 

children of the second and third campaigns. A potential inhaled dose assessment was performed 

considering two approaches (ADD and RDD) for PM2.5 and PM1. The results showed that the 

potential PM inhaled dose can be about 3–4 times higher during daily activities than during 

sleeping hours, and the highest inhaled doses would occur between 7 p.m. and 8 p.m, with boys 

intaking greater doses than girls. This difference in intake doses is because the respiratory 

parameters for the boys were assumed to be higher than for the girls, indicating that dose 

assessment is highly dependent on the respiratory parameters (e.g. ventilation rate, tidal volume, 

breathing frequency). Additionally, the use of I/O ratios presented two directions regarding the 

potential of PM2.5 to be favourable to cause adverse health effects. That is because if air 

pollutant concentrations data considered I/O correction, it indicated that PM2.5 could cause 

adverse health effects. Otherwise, the result would be the opposite. 
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The source apportionment assessment revealed that the greatest contributors to children’s 

exposure to NO2 were the boundary conditions, the vehicular exhausts, the industrial point 

sources, and the emission from the shipping sector. For PM2.5 mass concentration, the main 

sources were the road dust resuspension, boundary conditions, and industrial point sources. 

Despite the influence of BCON on both pollutant concentrations, the hourly peaks were caused 

by the local emissions, suggesting that local policies can play an important role in reducing the 

risk of children being exposed to PM2.5 and NO2. On the other hand, the ISAM tool 

demonstrated that ozone concentrations predominantly came from the boundary conditions. In 

other words, outside of our study domain, it means that to reduce the health risk caused by, for 

instance, O3, it should also consider regional and national authorities. Slight differences in the 

values of source contributors were seen between the campaigns, which can be attributable to 

meteorological conditions since the emission quantities are almost the same.  

Some of the novel aspects of this study were the use of the WRF-Urban model at a high spatial 

resolution in a tropical Brazilian coastal-urban area. Additionally, the use of the multi-layer 

urban canopy model BEP together with different model heights (z = 4 m, z = 10 m, z = 20 m) 

was evaluated in modelling urban meteorological and air pollution conditions. The numerical 

modelling system also accounted for the source apportionment method using a local emission 

inventory aiming at investigating the sources that mostly contributed to the increase in 

children’s exposure to air pollutants. This modelled approach, which is an indirect method to 

estimate air pollutant exposure, was compared with a direct method, which was the data 

collected from wearable passive samplers during experimental campaigns and are scarce in the 

literature, especially considering Brazilian children, in which their daily routines and habits 

may differ from European, American and Chinese children where most studies were carried 

out. To date, the present work is the first study using the aforementioned combinations.  

For future investigation, it is suggested: 

• Sensitivity analysis regarding the urban canopy parameters (e.g. building height, street 

width, building width, among others) in the BEP algorithm could be performed in order to 

evaluate their influence on meteorological parameters and consequently, on the 

concentrations of air pollutants. 

• Vertical profile measurements of PBL height, ozone, PM concentrations would aid to 

validate the models’ performance.  



175 

 

• Increase the domain size in order to evaluate the influence of BCON on pollutant 

concentrations, especially ozone. 

• Sensitivity analysis of the chemical speciation profiles of the sources should be considered 

since the present study used those provided by the USEPA dataset and may not accurately 

represent the local air pollutant species.  

• Some parameters adopted values found in the literature (e.g. inhalation rates, I/O ratios, 

ventilation rates). For future studies, these parameters could be replaced by measured values 

directly from the children that attend the experimental campaigns. 

• The passive samplers represented the accumulative personal exposure over a week. It would 

be interesting to make further investigation focuses on the microenvironments that children 

attend, such as the transit/commuting environments (walking, bicycle, car, bus) since the 

literature points out that despite children spending little time in this microenvironment, the 

exposure generally results in higher inhaled doses.  

• The use of a Global Positioning System (GPS) device to track the children’s routines and 

routes would aid to reduce the uncertainties related to the filling of the diaries.  
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Table S1. Statistical metrics for WS10. 

Month Station 
MeanO

BS 

Media

nOBS 
SDOBS Height 

MeanM

OD 

Media

nMOD 
SDMOD MB RSME MAGE r IOA FAC2 

Nov 

AERO

PORT

O 

4.10 3.60 2.30 

4m 1.77 1.78 0.82 -2.32 2.94 2.40 0.70 0.56 0.36 

10m 2.03 2.05 0.92 -2.05 2.69 2.17 0.72 0.58 0.48 

20m 2.79 2.85 1.20 -1.29 2.12 1.68 0.70 0.67 0.76 

Dec 4.05 3.60 2.26 

4m 1.90 1.93 0.89 -2.15 2.71 2.22 0.80 0.60 0.36 

10m 2.14 2.21 1.00 -1.91 2.47 2.02 0.81 0.63 0.50 

20m 2.79 2.90 1.33 -1.26 1.91 1.55 0.80 0.75 0.81 

Feb 3.74 3.35 2.06 

4m 1.62 1.67 0.82 -2.12 2.60 2.16 0.78 0.59 0.33 

10m 1.84 1.88 0.89 -1.90 2.40 1.97 0.78 0.61 0.45 

20m 2.45 2.48 1.17 -1.28 1.86 1.52 0.78 0.72 0.76 

Nov 

ASMA-

VIX 

1.08 0.67 1.07 

4m 1.45 1.43 0.64 0.35 1.15 0.93 0.24 0.51 0.47 

10m 1.81 1.81 0.76 0.69 1.31 1.08 0.28 0.53 0.46 

20m 2.57 2.57 1.05 1.44 1.91 1.63 0.28 0.48 0.36 

Dec 1.33 0.91 1.17 

4m 1.49 1.53 0.64 0.16 1.10 0.85 0.39 0.58 0.56 

10m 1.88 1.99 0.80 0.55 1.22 0.97 0.43 0.63 0.55 

20m 2.61 2.75 1.12 1.28 1.75 1.49 0.45 0.58 0.42 

Feb 1.05 0.71 0.94 

4m 1.29 1.29 0.62 0.24 0.85 0.66 0.52 0.69 0.58 

10m 1.60 1.64 0.73 0.55 1.02 0.83 0.50 0.66 0.51 

20m 2.24 2.32 1.01 1.20 1.54 1.28 0.51 0.58 0.39 

Nov 

CARA

PINA 

1.33 1.15 0.71 

4m 4.89 4.92 2.56 3.56 4.27 3.65 0.41 0.25 0.15 

10m 5.14 5.17 2.28 3.82 4.26 3.84 0.64 0.28 0.05 

20m 4.99 5.01 2.07 3.67 4.03 3.67 0.68 0.29 0.06 

Dec 1.41 1.32 0.74 

4m 4.93 5.08 2.57 3.54 4.19 3.60 0.57 0.29 0.15 

10m 5.27 5.42 2.34 3.86 4.30 3.89 0.72 0.30 0.06 

20m 4.98 5.19 2.20 3.57 3.96 3.59 0.76 0.32 0.07 

Feb 1.24 1.16 0.63 

4m 4.19 4.11 2.32 2.95 3.61 3.06 0.49 0.28 0.16 

10m 4.62 4.63 2.00 3.39 3.75 3.40 0.71 0.29 0.07 

20m 4.39 4.47 1.91 3.15 3.49 3.16 0.74 0.31 0.08 

Nov 
CARIA

CICA 
1.72 1.65 0.96 

4m 1.49 1.55 0.68 -0.23 0.82 0.67 0.58 0.72 0.76 

10m 1.77 1.81 0.76 0.05 0.79 0.63 0.61 0.77 0.77 

20m 2.48 2.58 1.06 0.76 1.19 0.95 0.60 0.69 0.69 
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Dec 1.99 1.90 0.91 

4m 1.67 1.74 0.71 -0.33 0.67 0.54 0.76 0.82 0.91 

10m 1.94 2.04 0.82 -0.06 0.59 0.46 0.77 0.87 0.90 

20m 2.70 2.85 1.13 0.71 1.02 0.82 0.76 0.78 0.82 

Feb 1.85 1.78 0.74 

4m 1.44 1.50 0.66 -0.42 0.70 0.55 0.69 0.76 0.83 

10m 1.67 1.73 0.73 -0.19 0.61 0.47 0.69 0.81 0.85 

20m 2.32 2.44 1.00 0.47 0.86 0.70 0.69 0.76 0.85 

Nov 

ENSEA

DA 

1.72 1.55 0.87 

4m 2.05 1.96 0.95 0.33 0.83 0.66 0.65 0.78 0.82 

10m 2.41 2.38 1.03 0.69 1.06 0.86 0.66 0.72 0.76 

20m 3.10 3.04 1.27 1.38 1.70 1.47 0.62 0.57 0.56 

Dec 1.94 1.81 0.91 

4m 2.12 2.13 1.02 0.19 0.75 0.60 0.72 0.84 0.86 

10m 2.46 2.50 1.13 0.52 0.94 0.75 0.72 0.79 0.84 

20m 3.10 3.20 1.38 1.17 1.51 1.26 0.72 0.65 0.71 

Feb 1.71 1.54 0.86 

4m 1.81 1.80 0.96 0.10 0.69 0.53 0.73 0.84 0.84 

10m 2.10 2.08 1.03 0.39 0.83 0.65 0.71 0.80 0.84 

20m 2.68 2.70 1.28 0.97 1.34 1.10 0.69 0.67 0.72 

Nov 

IBES 

2.44 2.23 1.29 

4m 1.72 1.65 0.81 -0.71 1.17 0.96 0.70 0.71 0.76 

10m 1.97 1.91 0.88 -0.46 1.03 0.84 0.70 0.77 0.83 

20m 2.74 2.69 1.18 0.31 1.04 0.83 0.68 0.81 0.80 

Dec 2.75 2.59 1.29 

4m 1.83 1.84 0.88 -0.89 1.17 1.00 0.79 0.76 0.81 

10m 2.07 2.08 0.96 -0.65 0.99 0.83 0.80 0.82 0.89 

20m 2.82 2.88 1.29 0.12 0.81 0.62 0.79 0.90 0.88 

Feb 2.53 2.45 1.11 

4m 1.55 1.54 0.82 -0.97 1.19 1.02 0.79 0.71 0.71 

10m 1.75 1.72 0.89 -0.78 1.04 0.86 0.79 0.77 0.80 

20m 2.41 2.39 1.19 -0.12 0.77 0.59 0.78 0.88 0.87 

Nov 

INMET

-VIX 

1.61 1.40 0.97 

4m 4.81 4.68 2.48 3.20 3.90 3.31 0.45 0.34 0.20 

10m 4.59 4.56 2.12 2.98 3.43 3.02 0.61 0.40 0.22 

20m 4.32 4.30 1.92 2.71 3.10 2.73 0.63 0.43 0.25 

Dec 1.70 1.50 1.01 

4m 4.76 4.95 2.33 3.06 3.61 3.13 0.59 0.40 0.23 

10m 4.70 4.95 2.18 3.00 3.41 3.03 0.71 0.44 0.21 

20m 4.36 4.61 2.04 2.66 3.03 2.68 0.74 0.48 0.28 

Feb 1.55 1.30 0.96 

4m 3.97 3.92 2.27 2.47 3.11 2.62 0.56 0.43 0.31 

10m 3.90 3.99 2.01 2.38 2.82 2.44 0.70 0.48 0.32 

20m 3.68 3.78 1.85 2.15 2.52 2.18 0.74 0.52 0.38 
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Table S2. Statistical metrics for WD10. 

Month Station 
MeanO

BS 

Median

OBS 
SDOBS Height 

MeanM

OD 

Median

MOD 
SDMOD MB RSME MAGE r IOA FAC2 

Nov 

AEROP

ORTO 

11.49 20.00 96.29 

4m 22.69 38.59 96.61 11.83 95.97 52.94 0.49 0.74 0.63 

10m 24.01 37.66 95.12 13.34 96.48 53.10 0.48 0.73 0.63 

20m 28.08 39.89 94.00 18.42 101.46 56.60 0.43 0.70 0.60 

Dec 5.95 10.00 74.69 

4m 15.62 28.34 68.74 9.67 72.23 37.70 0.50 0.73 0.58 

10m 14.60 25.46 69.52 8.68 74.36 38.58 0.47 0.72 0.55 

20m 14.58 23.51 69.20 8.96 75.33 39.05 0.46 0.71 0.53 

Feb 11.45 20.00 82.94 

4m 11.80 22.36 81.94 4.93 75.40 40.45 0.53 0.77 0.61 

10m 7.13 18.43 83.07 0.99 72.08 37.41 0.57 0.80 0.61 

20m 9.94 18.48 83.10 3.24 77.60 40.96 0.51 0.76 0.59 

Nov 

ASMA-

VIX 

38.87 38.78 55.36 

4m 20.45 39.13 98.25 -19.59 122.55 98.83 -0.10 0.31 0.30 

10m 20.56 36.24 98.20 -19.08 123.83 99.88 -0.13 0.29 0.29 

20m 24.83 39.23 97.06 -14.31 121.47 97.60 -0.11 0.30 0.30 

Dec 45.87 50.35 40.45 

4m 14.39 28.20 71.40 -31.48 90.93 66.36 -0.09 0.32 0.36 

10m 11.05 23.54 72.00 -34.82 91.24 67.10 -0.05 0.34 0.33 

20m 7.58 18.19 72.58 -38.30 93.51 69.25 -0.06 0.34 0.29 

Feb 46.79 52.74 45.91 

4m 6.22 24.35 86.04 -40.87 108.83 85.74 -0.08 0.34 0.25 

10m 2.88 17.44 87.20 -44.23 112.47 89.37 -0.12 0.32 0.22 

20m 4.44 14.82 87.03 -42.74 110.55 88.98 -0.09 0.34 0.22 

Nov 

CARA

PINA 

4.11 63.76 109.72 

4m 22.07 37.63 98.03 17.87 123.93 86.00 0.31 0.63 0.41 

10m 20.58 35.09 97.55 16.39 124.78 87.47 0.29 0.62 0.38 

20m 21.61 37.98 96.45 17.36 124.71 87.90 0.29 0.62 0.39 

Dec 31.85 66.82 86.54 

4m 9.58 27.39 72.83 -22.39 81.05 60.40 0.53 0.73 0.40 

10m 9.85 26.49 72.90 -22.09 82.75 61.89 0.51 0.72 0.39 

20m 10.77 24.03 71.91 -21.16 82.83 61.91 0.50 0.71 0.38 

Feb 14.68 66.76 98.23 

4m 6.55 19.37 83.82 -8.14 105.17 76.27 0.34 0.64 0.36 

10m 0.89 15.84 84.05 -13.79 100.04 72.80 0.42 0.68 0.36 

20m 4.41 15.51 84.68 -10.27 105.27 76.29 0.35 0.64 0.35 

Nov 
CARIA

CICA 
17.48 69.69 97.30 

4m 16.02 35.08 97.70 -1.46 112.77 79.26 0.33 0.64 0.47 

10m 15.00 34.42 96.51 -2.48 109.03 76.84 0.37 0.66 0.45 

20m 12.49 30.34 97.49 -5.00 109.64 78.60 0.37 0.66 0.43 
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Dec 46.15 75.32 74.33 

4m 12.44 29.30 69.52 -33.76 77.60 60.36 0.53 0.71 0.38 

10m 13.14 26.80 68.10 -33.07 78.83 62.13 0.50 0.70 0.35 

20m 10.61 22.72 68.52 -35.59 79.15 63.79 0.51 0.70 0.32 

Feb 6.86 52.24 89.13 

4m 6.40 24.47 83.98 -0.45 82.96 49.83 0.54 0.76 0.54 

10m 9.18 23.74 83.46 2.32 90.92 54.25 0.45 0.71 0.52 

20m 6.29 19.03 82.70 -0.57 90.00 54.14 0.45 0.71 0.48 

Nov 

ENSEA

DA 

47.50 56.22 94.71 

4m 19.65 44.64 97.01 -27.85 125.04 70.25 0.19 0.56 0.65 

10m 22.23 42.78 96.04 -25.27 124.80 71.11 0.18 0.55 0.63 

20m 25.31 44.11 93.44 -22.19 123.01 70.94 0.17 0.55 0.61 

Dec 39.95 46.43 75.01 

4m 20.03 34.81 70.13 -19.93 87.75 44.73 0.31 0.62 0.69 

10m 13.88 29.58 71.82 -26.08 90.23 47.59 0.31 0.62 0.64 

20m 13.07 24.42 70.44 -26.89 92.58 50.49 0.26 0.59 0.60 

Feb 42.50 48.34 87.54 

4m 13.63 32.31 84.30 -28.87 110.06 61.49 0.24 0.58 0.65 

10m 6.76 23.43 85.44 -35.74 107.10 59.46 0.32 0.62 0.62 

20m 5.26 19.22 84.93 -37.24 110.45 62.71 0.27 0.60 0.58 

Nov 

IBES 

-7.08 40.29 105.61 

4m 15.76 39.37 96.21 22.71 97.98 55.83 0.56 0.76 0.62 

10m 21.63 41.53 95.05 28.72 100.62 57.69 0.54 0.75 0.62 

20m 22.67 42.13 93.58 29.78 105.12 61.18 0.50 0.73 0.59 

Dec 5.78 45.04 76.21 

4m 17.84 32.13 69.22 17.08 73.60 43.26 0.40 0.70 0.58 

10m 12.67 29.76 70.36 12.30 68.93 41.42 0.45 0.74 0.58 

20m 11.37 25.20 69.95 11.07 68.35 41.78 0.45 0.74 0.56 

Feb -11.27 -4.97 94.95 

4m 6.21 28.25 83.46 17.48 80.61 47.59 0.62 0.79 0.59 

10m 6.53 25.92 84.47 17.81 82.29 47.90 0.60 0.79 0.58 

20m 2.79 20.77 83.82 14.06 82.95 48.17 0.59 0.78 0.56 

Nov 

INMET

-VIX 

6.91 8.00 100.21 

4m 21.48 38.70 99.67 14.61 114.22 65.31 0.35 0.66 0.53 

10m 21.12 37.44 98.87 14.26 115.52 66.00 0.33 0.65 0.54 

20m 25.79 41.45 97.49 19.33 119.21 69.15 0.29 0.63 0.52 

Dec -5.44 -5.00 74.32 

4m 12.27 21.73 72.06 17.66 77.88 44.44 0.46 0.71 0.44 

10m 10.77 19.56 73.06 16.17 78.03 44.61 0.46 0.71 0.46 

20m 6.09 16.09 73.58 11.49 75.28 43.12 0.49 0.73 0.48 

Feb -5.98 -13.00 89.13 

4m 6.63 18.35 87.29 10.76 90.00 52.47 0.49 0.74 0.55 

10m 3.92 15.43 88.15 8.16 87.75 50.52 0.52 0.75 0.55 

20m 5.42 14.38 88.05 10.26 96.62 54.67 0.42 0.70 0.54 
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Table S3. Comparison of observed and modelled wind roses. 

Station Month Observed z=4 m z=10 m z=20 m 

ST02 

Carapina 

Nov/2019 

    

Dec/2019 

    

Feb/2020 
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ST04 

Enseada 

Nov/2019 

    

Dec/2019 

    

Feb/2020 
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ASMA-

Vix 

Nov/2019 

    

Dec/2019 

    

Feb/2020 
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INMET-

Vix 

Nov/2019 

    

Dec/2019 

    

Feb/2020 
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Airport 

Nov/2019 

    

Dec/2019 

    

Feb/2020 
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ST06 

IBES 

Nov/2019 

    

Dec/2019 

    

Feb/2020 
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ST08 

Cariacica 

Nov/2019 

    

Dec/2019 

    

Feb/2020 
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Table S4. Statistical metrics for T2. 
Month Station MeanOBS MedianOBS SDOBS Height MeanMOD MedianMOD SDMOD MB RSME MAGE r IOA FAC2 

Nov 

AEROPORTO 

24.84 24.00 2.76 

4m 25.74 24.74 3.30 0.94 2.02 1.46 0.84 0.89 1.00 

10m 25.60 24.67 3.08 0.80 1.81 1.32 0.85 0.90 1.00 

20m 25.25 24.65 2.65 0.44 1.45 1.10 0.87 0.93 1.00 

Dec 25.93 26.00 2.65 

4m 26.58 25.35 3.57 0.65 2.10 1.47 0.83 0.88 1.00 

10m 26.41 25.35 3.34 0.48 1.89 1.33 0.84 0.89 1.00 

20m 25.95 25.21 2.83 0.02 1.48 1.07 0.85 0.92 1.00 

Feb 26.88 26.00 2.60 

4m 27.44 26.19 3.68 0.63 1.99 1.46 0.87 0.90 1.00 

10m 27.20 26.02 3.40 0.38 1.67 1.25 0.88 0.92 1.00 

20m 26.81 26.07 2.89 -0.02 1.26 0.98 0.89 0.95 1.00 

Nov 

ASMA-VIX 

25.46 24.94 2.83 

4m 25.76 24.67 3.43 0.08 2.31 1.74 0.65 0.84 1.00 

10m 25.60 24.59 3.22 -0.07 2.20 1.64 0.65 0.85 1.00 

20m 25.23 24.51 2.78 -0.43 2.04 1.51 0.66 0.85 1.00 

Dec 27.03 26.66 2.86 

4m 26.60 25.41 3.64 -0.43 2.42 1.85 0.76 0.85 1.00 

10m 26.36 25.29 3.38 -0.67 2.35 1.80 0.75 0.85 1.00 

20m 25.90 25.19 2.89 -1.13 2.35 1.80 0.74 0.83 1.00 

Feb 28.04 27.43 2.84 

4m 27.43 26.12 3.73 -0.61 1.87 1.61 0.89 0.92 1.00 

10m 27.17 25.97 3.46 -0.87 1.78 1.52 0.90 0.92 1.00 

20m 26.79 25.97 2.96 -1.25 1.78 1.53 0.90 0.91 1.00 

Nov 

CARAPINA 

22.75 21.94 3.33 

4m 24.79 24.18 2.55 2.04 2.59 2.21 0.89 0.83 1.00 

10m 24.76 24.17 2.65 2.00 2.53 2.16 0.89 0.84 1.00 

20m 24.71 24.08 2.73 1.96 2.49 2.12 0.89 0.85 1.00 

Dec 23.78 22.99 3.31 

4m 25.56 24.92 2.69 1.76 2.29 1.90 0.89 0.86 1.00 

10m 25.58 24.93 2.77 1.78 2.29 1.89 0.90 0.87 1.00 

20m 25.46 24.79 2.79 1.66 2.20 1.81 0.89 0.88 1.00 

Feb 24.82 23.82 3.34 

4m 26.44 25.77 2.71 1.62 2.08 1.78 0.93 0.89 1.00 

10m 26.30 25.58 2.78 1.48 1.92 1.63 0.94 0.91 1.00 

20m 26.23 25.53 2.84 1.41 1.87 1.58 0.93 0.91 1.00 

Nov 
CARIACICA 

26.03 24.98 3.83 

4m 25.87 24.41 4.00 -0.16 1.81 1.38 0.89 0.94 1.00 

10m 25.70 24.44 3.72 -0.33 1.73 1.37 0.90 0.95 1.00 

20m 25.34 24.35 3.26 -0.68 1.80 1.42 0.90 0.93 1.00 

Dec 27.25 26.32 3.72 4m 26.89 25.42 4.26 -0.35 1.89 1.40 0.90 0.94 1.00 
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10m 26.65 25.28 3.95 -0.60 1.82 1.37 0.90 0.94 1.00 

20m 26.15 25.17 3.38 -1.09 1.96 1.57 0.90 0.92 1.00 

Feb 28.27 27.14 3.59 

4m 27.65 25.90 4.32 -0.63 1.77 1.43 0.93 0.95 1.00 

10m 27.40 25.85 3.99 -0.87 1.72 1.40 0.93 0.95 1.00 

20m 27.01 25.81 3.43 -1.26 1.86 1.52 0.93 0.93 1.00 

Nov 

INMET-VIX 

24.77 24.10 3.16 

4m 25.06 24.25 2.99 0.29 1.48 1.16 0.89 0.94 1.00 

10m 25.00 24.16 3.04 0.23 1.48 1.16 0.89 0.94 1.00 

20m 24.86 23.99 3.08 0.09 1.43 1.14 0.90 0.95 1.00 

Dec 25.90 25.50 3.11 

4m 25.94 25.12 3.21 0.04 1.40 1.02 0.90 0.95 1.00 

10m 25.88 25.09 3.26 -0.01 1.42 1.05 0.90 0.95 1.00 

20m 25.70 24.93 3.27 -0.20 1.42 1.08 0.90 0.95 1.00 

Feb 26.73 26.00 3.17 

4m 26.80 25.90 3.24 0.07 1.16 0.88 0.91 0.97 1.00 

10m 26.64 25.61 3.28 -0.10 1.12 0.86 0.91 0.97 1.00 

20m 26.51 25.50 3.30 -0.22 1.14 0.89 0.92 0.97 1.00 

 

Table S5. Statistical metrics for RH2. 
Month Station MeanOBS MedianOBS SDOBS Height MeanMOD MedianMOD SDMOD MB RSME MAGE r IOA FAC2 

Nov 

ASMA-VIX 

81.04 83.18 13.73 

4m 74.54 78.76 15.23 -5.71 12.72 10.15 0.61 0.79 1.00 

10m 74.71 78.50 14.66 -5.54 12.44 9.94 0.62 0.79 1.00 

20m 75.76 78.86 13.59 -4.43 11.19 9.09 0.64 0.81 1.00 

Dec 77.18 78.42 12.35 

4m 74.01 78.55 15.83 -3.18 11.62 8.95 0.71 0.82 1.00 

10m 74.59 78.27 15.02 -2.59 11.16 8.67 0.70 0.82 1.00 

20m 76.09 78.46 13.46 -1.09 10.37 7.96 0.68 0.82 1.00 

Feb 77.36 79.37 12.17 

4m 75.92 80.06 16.29 -1.44 8.95 6.89 0.85 0.90 1.00 

10m 76.68 80.09 15.60 -0.68 8.46 6.63 0.84 0.90 1.00 

20m 77.62 80.24 14.30 0.26 7.95 6.19 0.83 0.90 1.00 

Nov 
CARAPINA 

81.74 84.95 13.91 

4m 81.58 85.15 11.86 -0.16 7.65 6.16 0.84 0.91 1.00 

10m 81.53 84.64 12.33 -0.21 7.50 5.89 0.84 0.91 1.00 

20m 81.60 84.64 12.94 -0.14 7.34 5.61 0.85 0.92 1.00 

Dec 80.15 83.23 12.67 4m 81.22 84.04 11.78 1.21 7.12 5.29 0.83 0.91 1.00 
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10m 80.92 84.20 12.00 0.92 6.84 5.15 0.84 0.92 1.00 

20m 81.41 84.52 12.20 1.42 7.16 5.52 0.83 0.91 1.00 

Feb 80.64 83.20 12.64 

4m 82.59 85.31 12.25 1.95 6.36 5.04 0.88 0.93 1.00 

10m 83.49 86.96 12.49 2.84 6.26 5.06 0.90 0.94 1.00 

20m 83.52 87.13 12.94 2.88 6.54 5.24 0.89 0.93 1.00 

Nov 

CARIACICA 

75.09 78.93 15.13 

4m 73.73 77.53 16.87 -1.12 9.29 7.12 0.83 0.91 1.00 

10m 73.76 77.90 16.21 -1.11 8.93 6.86 0.83 0.91 1.00 

20m 74.71 77.91 14.94 -0.18 8.12 6.32 0.84 0.92 1.00 

Dec 68.64 74.90 19.46 

4m 71.73 77.43 18.06 3.08 12.76 8.71 0.78 0.88 0.95 

10m 72.15 76.81 17.35 3.51 12.79 8.72 0.78 0.87 0.95 

20m 73.57 77.10 15.64 4.92 13.21 9.00 0.78 0.85 0.94 

Feb 74.73 78.73 14.06 

4m 74.32 79.22 18.40 -0.41 8.72 6.69 0.89 0.92 1.00 

10m 74.76 79.07 17.58 0.03 8.29 6.36 0.89 0.93 1.00 

20m 75.61 79.75 16.21 0.88 7.91 6.08 0.87 0.93 1.00 

Nov 

INMET-VIX 

78.86 81.00 15.53 

4m 80.15 83.48 13.52 1.29 8.92 7.35 0.82 0.90 1.00 

10m 80.12 83.31 13.79 1.26 8.84 7.17 0.83 0.90 1.00 

20m 80.76 84.83 14.29 1.90 8.60 6.79 0.85 0.91 1.00 

Dec 76.79 78.00 14.60 

4m 78.91 82.02 14.12 2.12 8.11 6.30 0.85 0.92 1.00 

10m 78.93 81.77 14.19 2.14 8.00 6.29 0.86 0.92 1.00 

20m 79.78 82.63 14.32 3.00 8.37 6.58 0.85 0.91 1.00 

Feb 77.46 79.00 14.97 

4m 80.60 84.06 14.42 3.21 7.70 6.17 0.85 0.93 1.00 

10m 81.42 84.97 14.67 4.09 7.88 6.39 0.86 0.93 1.00 

20m 81.78 85.47 14.97 4.46 8.28 6.71 0.86 0.92 1.00 

 

Table S6. Statistical metrics for NO2. 

Month 
Statio

n 

Mean 

OBS 

Media

nOBS 
SDOBS Height 

Mean

MOD 

Media

nMOD 
SDMOD MB RSME 

MAG

E 
NMB NME r IOA FAC2 

Nov ASMA

-VIX 

10.0 8.5 4.3 

4m 19.4 17.6 9.5 9.9 12.4 9.9 98.7 98.7 0.60 0.45 0.57 

10m 17.9 16.5 8.9 8.3 10.6 8.4 83.3 83.9 0.69 0.54 0.70 

20m 17.9 15.3 9.7 8.3 10.8 8.4 83.4 83.8 0.76 0.56 0.67 

Dec 5.7 5.6 1.3 4m 15.3 12.2 8.9 9.6 12.8 9.6 168.4 168.4 0.48 0.16 0.45 
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10m 14.6 12.2 8.7 8.9 12.0 8.9 155.0 155.0 0.48 0.16 0.48 

20m 14.7 12.2 9.1 9.0 12.3 9.0 156.7 156.7 0.50 0.16 0.48 

Feb 4.5 3.2 3.8 

4m 17.8 14.0 9.8 13.4 15.9 13.4 299.3 299.3 0.51 0.34 0.07 

10m 16.9 12.3 9.8 12.4 15.2 12.4 278.4 278.4 0.47 0.34 0.10 

20m 16.5 11.5 9.8 12.0 14.8 12.0 268.7 268.7 0.47 0.34 0.10 

Nov 

CARI

ACIC

A 

23.1 21.1 9.5 

4m 21.8 19.6 7.8 -1.3 8.1 5.8 -5.5 25.3 0.59 0.77 0.93 

10m 19.2 17.9 7.3 -3.9 8.6 6.6 -16.8 28.5 0.61 0.74 0.97 

20m 17.7 16.4 7.5 -5.4 9.1 7.2 -23.4 31.2 0.65 0.74 0.93 

Dec 19.1 17.1 8.4 

4m 18.9 16.2 8.8 -0.1 4.9 3.8 -0.7 20.1 0.84 0.91 0.94 

10m 17.1 15.8 8.5 -2.0 5.5 4.7 -10.6 24.8 0.82 0.89 0.94 

20m 16.3 14.5 8.7 -2.8 6.0 5.4 -14.8 28.3 0.81 0.87 0.90 

Feb 21.2 19.5 8.2 

4m 20.6 19.0 8.8 -0.6 7.6 5.9 -3.0 27.8 0.61 0.78 0.93 

10m 18.8 16.9 8.7 -2.4 8.2 6.7 -11.2 31.8 0.57 0.75 0.90 

20m 18.0 16.7 8.9 -3.2 8.2 6.8 -15.1 32.3 0.61 0.76 0.79 

Nov 

CENT

RO-

VIX 

19.9 19.9 6.6 

4m 21.8 23.1 7.2 2.0 7.2 5.5 9.9 27.8 0.45 0.69 0.97 

10m 19.9 21.0 7.2 -0.1 6.2 4.7 -0.4 23.6 0.56 0.78 0.97 

20m 18.5 18.9 6.9 -1.5 6.9 5.5 -7.4 27.8 0.45 0.70 0.93 

Dec 13.0 11.5 6.4 

4m 19.9 18.5 8.2 7.0 11.3 7.8 53.6 59.8 0.28 0.53 0.77 

10m 18.3 17.5 8.2 5.3 10.7 7.3 40.9 56.7 0.21 0.52 0.81 

20m 17.8 17.2 8.9 4.9 10.7 7.3 37.7 56.0 0.27 0.55 0.81 

Feb 14.5 14.7 4.5 

4m 21.5 19.2 7.5 7.0 9.2 7.7 48.3 53.1 0.61 0.55 0.90 

10m 19.8 17.7 7.9 5.3 8.4 6.7 36.6 46.5 0.55 0.56 0.93 

20m 19.1 16.3 8.2 4.6 8.3 6.4 32.0 44.0 0.55 0.57 0.93 

Nov 

ENSE

ADA 

20.3 19.0 6.1 

4m 27.5 28.2 8.9 7.2 12.7 9.4 35.6 46.4 0.06 0.41 0.77 

10m 24.2 24.1 7.8 3.9 10.1 8.1 19.4 39.8 0.11 0.47 0.80 

20m 22.2 21.4 7.5 1.9 9.6 8.1 9.5 39.7 0.06 0.43 0.90 

Dec 16.4 15.2 4.8 

4m 29.7 29.4 8.3 13.4 16.2 14.7 81.7 89.8 0.10 0.30 0.55 

10m 26.9 26.3 8.3 10.5 13.9 12.5 64.3 76.2 0.11 0.33 0.71 

20m 25.2 25.2 8.5 8.8 12.5 11.0 53.9 67.1 0.21 0.38 0.71 

Feb 13.9 13.7 4.8 

4m 29.7 29.9 8.0 16.1 18.2 16.3 116.2 117.4 0.25 0.30 0.38 

10m 27.0 27.0 8.2 13.5 15.9 13.7 96.9 98.9 0.26 0.33 0.52 

20m 25.3 25.1 8.6 11.9 14.8 12.6 85.6 90.6 0.23 0.34 0.55 

Nov IBES 14.8 12.8 6.4 4m 29.8 28.2 9.0 15.0 17.2 15.0 101.2 101.2 0.43 0.42 0.47 
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10m 25.6 24.3 7.7 10.8 13.3 11.3 72.9 76.3 0.40 0.47 0.57 

20m 22.5 21.8 7.2 7.7 11.1 8.9 52.1 60.5 0.31 0.49 0.63 

Dec 13.1 12.9 4.1 

4m 30.5 31.1 5.6 17.8 18.5 17.8 136.0 136.0 0.38 0.27 0.26 

10m 27.3 27.5 5.8 14.5 15.7 14.5 111.1 111.1 0.30 0.30 0.45 

20m 25.0 24.7 6.1 12.2 13.7 12.2 93.3 93.4 0.26 0.33 0.61 

Feb 13.0 12.3 3.9 

4m 30.8 31.5 6.7 17.8 19.2 17.8 137.7 137.7 0.22 0.24 0.28 

10m 27.2 28.2 6.9 14.2 15.9 14.2 109.8 109.8 0.22 0.27 0.41 

20m 24.9 25.5 7.4 12.0 14.1 12.4 92.3 95.5 0.26 0.29 0.52 

Nov 

JC 

14.9 14.0 4.6 

4m 25.2 21.6 10.9 10.2 12.9 10.3 68.3 68.6 0.76 0.51 0.70 

10m 22.9 20.2 10.0 7.9 10.8 8.2 53.1 54.6 0.73 0.57 0.80 

20m 21.8 19.0 10.3 6.8 10.3 7.5 45.8 50.3 0.71 0.58 0.80 

Dec 13.2 12.2 3.6 

4m 20.1 18.5 8.8 5.4 7.5 5.7 41.2 43.2 0.32 0.58 0.90 

10m 18.2 16.4 8.8 3.3 6.3 4.4 25.0 33.7 0.29 0.63 0.94 

20m 17.8 14.7 9.7 2.9 6.6 4.4 21.9 33.5 0.34 0.64 0.94 

Feb    
            

            

            

Nov 

LARA

NJEIR

AS 

17.9 17.5 5.4 

4m 20.3 20.7 7.8 2.3 8.4 6.2 13.1 34.4 0.30 0.53 0.87 

10m 18.4 16.7 7.8 0.5 8.2 6.5 2.8 36.0 0.27 0.53 0.83 

20m 15.8 13.9 7.5 -2.1 8.9 7.2 -11.5 40.2 0.13 0.45 0.73 

Dec 12.7 10.7 6.4 

4m 18.8 17.6 8.1 6.0 13.2 9.4 47.4 74.2 -0.31 0.20 0.68 

10m 16.8 15.8 7.1 4.1 11.7 8.7 32.4 68.7 -0.32 0.20 0.71 

20m 16.0 14.3 7.8 3.3 12.3 9.3 25.7 73.0 -0.38 0.13 0.71 

Feb 14.0 13.1 4.1 

4m 20.6 18.8 7.4 6.6 9.2 7.1 46.8 51.0 0.47 0.48 0.83 

10m 19.6 18.0 7.1 5.6 8.5 6.6 39.7 47.0 0.44 0.51 0.83 

20m 18.1 15.9 7.4 4.1 7.9 6.1 29.5 43.8 0.43 0.53 0.83 

 

Table S7. Statistical metrics for O3. 

Month 
Statio

n 

Mean 

OBS 

Media

nOBS 
SDOBS Height 

Mean

MOD 

Media

nMOD 
SDMOD MB RSME 

MAG

E 
NMB NME r IOA FAC2 

Nov 38.8 38.8 14.0 4m 42.1 40.8 10.3 2.3 14.2 10.8 5.8 27.8 0.37 0.59 0.90 
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ASMA

-VIX 

10m 42.2 41.0 9.2 3.0 14.2 10.8 7.7 27.9 0.36 0.56 0.90 

20m 41.4 41.1 10.9 2.0 14.3 10.9 5.2 28.2 0.40 0.62 0.93 

Dec 
CARI

ACIC

A 

41.3 41.9 8.7 

4m 46.5 46.4 7.9 5.3 15.1 11.2 12.9 27.1 -0.43 0.23 0.97 

10m 46.7 46.8 7.6 5.5 14.8 10.6 13.3 25.6 -0.40 0.27 0.94 

20m 47.8 47.8 7.8 6.6 15.1 10.5 15.9 25.5 -0.33 0.30 0.94 

Feb 39.8 40.3 9.1 

4m 42.9 40.1 10.2 3.1 12.5 9.9 7.9 24.8 0.22 0.52 1.00 

10m 44.3 41.0 10.0 4.5 12.9 10.0 11.4 25.2 0.20 0.49 1.00 

20m 44.8 41.7 9.7 5.0 13.1 10.1 12.7 25.4 0.18 0.47 1.00 

Dec 

ENSE

ADA 

36.4 35.4 7.3 

4m 34.6 32.3 11.7 -1.7 11.9 8.7 -4.8 24.0 0.30 0.51 0.97 

10m 35.8 33.6 11.7 -0.5 12.0 8.7 -1.5 24.1 0.26 0.49 0.94 

20m 36.5 34.9 12.1 0.1 12.4 8.6 0.4 23.6 0.26 0.49 0.94 

Feb 40.2 38.8 9.1 

4m 31.8 33.6 7.9 -8.4 12.5 10.7 -21.0 26.7 0.42 0.54 1.00 

10m 33.2 32.7 7.2 -7.0 11.5 9.5 -17.4 23.7 0.39 0.54 1.00 

20m 34.4 35.7 8.1 -5.9 11.4 9.4 -14.6 23.3 0.37 0.56 1.00 

Dec 

IBES 

40.2 40.1 7.8 

4m 41.3 40.4 9.2 1.0 9.9 7.5 2.6 18.8 0.36 0.55 1.00 

10m 42.2 41.4 8.9 1.9 10.0 7.6 4.8 18.9 0.34 0.54 1.00 

20m 42.6 41.9 9.3 2.3 10.4 8.0 5.7 19.8 0.32 0.54 1.00 

Feb 54.8 52.3 11.3 

4m 38.9 39.1 7.7 -15.9 19.7 16.2 -29.0 29.5 0.29 0.47 0.97 

10m 40.3 40.1 6.8 -14.5 18.4 14.8 -26.5 27.1 0.30 0.48 0.97 

20m 40.4 39.6 6.5 -14.4 18.2 14.8 -26.3 27.0 0.32 0.48 0.97 

Dec 
LARA

NJEIR

AS 

42.7 41.7 9.8 

4m 43.8 43.9 6.6 1.5 12.1 9.0 3.5 21.1 -0.04 0.32 1.00 

10m 45.0 44.8 5.5 2.4 11.7 8.8 5.6 20.7 -0.02 0.31 1.00 

20m 45.6 46.0 6.1 3.2 12.6 9.7 7.4 22.7 -0.11 0.29 1.00 

Feb 37.2 33.0 8.2 

4m 41.3 39.5 8.2 4.1 11.3 8.9 10.9 23.9 0.19 0.46 1.00 

10m 42.0 39.5 8.4 4.8 12.3 10.2 12.9 27.3 0.07 0.39 1.00 

20m 42.3 38.9 8.3 5.1 13.1 10.8 13.7 29.0 -0.08 0.28 1.00 

 

Table S8. Statistical metrics for PM2.5. 

Month 
Statio

n 

Mean 

OBS 

Media

nOBS 
SDOBS Height 

Mean

MOD 

Media

nMOD 
SDMOD MB RSME 

MAG

E 
NMB NME r IOA FAC2 

Nov 4.3 3.1 2.2 4m 8.6 8.3 3.4 4.4 5.9 4.7 102.7 109.3 0.09 0.34 0.50 
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ASMA

-VIX 

10m 7.8 8.0 2.5 3.6 4.8 3.9 83.3 90.7 0.09 0.39 0.50 

20m 7.4 7.3 2.5 3.2 4.5 3.7 74.8 85.8 0.11 0.40 0.53 

Dec 4.4 4.3 1.5 

4m 7.8 7.0 3.0 3.4 5.0 3.6 75.4 81.5 -0.27 0.21 0.61 

10m 7.5 6.8 2.8 3.1 4.7 3.5 69.5 78.5 -0.27 0.21 0.65 

20m 7.3 6.4 2.8 2.8 4.5 3.3 63.6 73.1 -0.25 0.22 0.65 

Feb 3.7 3.9 1.1 

4m 9.4 7.7 4.2 5.7 7.0 5.7 152.1 152.8 0.28 0.21 0.38 

10m 9.1 7.3 4.6 5.4 7.0 5.5 144.5 146.2 0.25 0.20 0.38 

20m 8.4 6.8 4.0 4.7 6.1 4.8 125.8 127.9 0.16 0.21 0.45 

Nov 

ENSE

ADA 

11.8 11.4 3.4 

4m 14.1 13.2 4.9 2.2 5.8 3.9 18.9 32.8 0.21 0.50 0.93 

10m 11.3 11.1 3.2 -0.5 3.8 3.2 -4.3 27.2 0.36 0.63 1.00 

20m 9.9 9.4 3.2 -2.0 4.3 3.6 -16.6 30.5 0.33 0.59 0.97 

Dec 10.7 10.7 2.6 

4m 15.1 14.4 4.8 4.4 7.1 5.3 41.3 49.8 -0.04 0.28 0.84 

10m 13.0 12.8 3.8 2.3 5.1 4.0 21.2 37.2 -0.02 0.35 0.84 

20m 11.4 10.6 3.4 0.7 4.4 3.4 6.7 31.6 -0.04 0.33 0.90 

Feb 9.8 9.6 1.9 

4m 16.8 15.1 6.1 7.0 9.0 7.1 71.2 72.7 0.35 0.28 0.72 

10m 14.7 13.3 5.6 4.8 7.0 5.2 49.4 53.1 0.42 0.36 0.83 

20m 12.6 11.5 4.7 2.8 5.3 3.9 28.5 39.7 0.32 0.41 0.93 

 

Table S9. Statistical metrics for PM10. 

Month 
Statio

n 

Mean 

OBS 

Media

nOBS 
SDOBS Height 

Mean

MOD 

Media

nMOD 
SDMOD MB RSME 

MAG

E 
NMB NME r IOA FAC2 

Nov 

ASMA

-VIX 

20.1 21.3 6.8 

4m 19.0 18.5 7.1 -0.3 8.2 6.8 -1.3 33.8 0.27 0.54 0.97 

10m 17.2 17.5 5.0 -2.2 7.6 6.2 -10.9 30.8 0.22 0.51 0.87 

20m 16.4 16.7 5.0 -3.0 7.9 6.6 -15.1 33.0 0.24 0.52 0.83 

Dec 16.8 16.8 3.5 

4m 15.8 14.9 4.7 -1.0 6.4 5.2 -5.9 30.8 -0.16 0.25 0.94 

10m 15.0 13.9 4.5 -1.7 6.2 5.3 -10.4 31.9 -0.11 0.30 0.97 

20m 14.3 13.0 4.4 -2.5 6.2 5.5 -14.6 32.6 -0.04 0.33 0.97 

Feb 16.2 15.4 4.0 

4m 19.3 17.9 8.0 3.1 8.6 6.4 19.3 39.8 0.24 0.46 0.86 

10m 18.5 16.2 8.4 2.3 8.9 6.3 14.3 38.9 0.21 0.44 0.90 

20m 17.1 13.7 7.4 0.9 7.9 5.8 5.7 36.0 0.15 0.45 0.86 
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Nov 

CARA

PINA 

12.6 11.1 4.7 

4m 15.7 14.8 3.8 3.1 5.3 4.4 24.4 34.8 0.50 0.63 0.97 

10m 15.8 14.6 4.1 3.1 5.2 4.3 24.8 34.3 0.56 0.67 0.97 

20m 15.2 13.7 4.4 2.6 5.5 4.4 20.2 35.1 0.43 0.61 0.97 

Dec 16.6 16.2 3.2 

4m 15.1 14.4 3.2 -1.6 4.3 3.5 -9.4 20.8 0.21 0.53 1.00 

10m 14.8 14.6 3.2 -1.8 4.1 3.3 -11.1 19.9 0.36 0.60 1.00 

20m 14.7 13.9 3.7 -1.9 4.6 3.9 -11.5 23.5 0.24 0.53 0.97 

Feb 15.5 14.5 4.1 

4m 17.7 16.3 5.7 2.2 5.9 4.4 14.3 28.1 0.43 0.60 0.97 

10m 18.5 16.1 7.5 3.0 7.6 4.9 19.4 31.6 0.39 0.52 0.93 

20m 17.9 14.8 7.1 2.4 6.8 4.6 15.4 29.4 0.45 0.58 0.93 

Nov 

CENT

RO-

VIX 

15.8 15.5 4.2 

4m 23.3 23.6 6.9 7.6 10.3 8.0 47.9 50.9 0.28 0.42 0.80 

10m 20.5 20.0 5.8 4.7 7.5 5.9 29.6 37.5 0.35 0.54 0.93 

20m 17.9 17.4 5.0 2.1 5.5 4.6 13.3 28.9 0.40 0.63 0.97 

Dec 14.6 14.2 2.6 

4m 20.8 21.0 4.7 6.2 7.9 6.7 42.6 45.6 0.18 0.37 0.94 

10m 18.3 18.3 4.2 3.7 5.7 4.6 25.2 31.3 0.24 0.47 0.97 

20m 16.8 16.3 4.1 2.2 4.8 3.6 14.8 24.9 0.22 0.50 0.97 

Feb 13.3 13.4 2.9 

4m 24.2 22.7 8.6 10.9 13.5 10.9 82.1 82.1 0.34 0.29 0.72 

10m 21.4 20.6 7.8 8.1 10.9 8.4 61.2 63.4 0.36 0.34 0.72 

20m 18.7 17.0 6.3 5.4 8.2 5.9 40.7 44.8 0.28 0.37 0.86 

Nov 

ENSE

ADA 

29.9 28.2 9.7 

4m 34.1 32.6 11.7 4.6 15.3 11.3 15.5 37.7 0.11 0.46 0.83 

10m 27.9 27.8 8.0 -1.9 11.5 10.0 -6.3 33.5 0.21 0.52 0.90 

20m 24.2 23.6 7.5 -5.4 12.0 10.2 -18.2 34.1 0.26 0.51 0.93 

Dec 22.2 21.9 3.7 

4m 35.2 32.7 9.6 15.3 18.9 15.8 69.0 70.9 -0.21 0.16 0.90 

10m 29.6 29.9 7.3 9.1 12.4 10.1 40.8 45.4 -0.29 0.19 0.94 

20m 25.5 24.1 6.2 4.6 8.9 6.7 20.9 30.1 -0.22 0.19 0.97 

Feb 19.2 18.7 3.7 

4m 38.3 36.9 11.8 19.1 22.3 19.4 99.3 101.1 0.20 0.20 0.59 

10m 33.1 33.0 10.9 13.9 17.4 14.4 72.5 75.1 0.28 0.27 0.69 

20m 28.2 27.6 8.9 9.0 12.8 10.4 47.0 54.4 0.18 0.30 0.83 

Nov 

IBES 

21.5 21.0 9.2 

4m 25.4 23.8 9.7 3.8 11.7 7.7 17.9 35.9 0.32 0.59 0.90 

10m 21.8 20.8 6.8 0.2 8.5 6.8 1.1 31.5 0.46 0.69 0.93 

20m 19.5 19.1 7.0 -2.0 9.2 7.0 -9.3 32.7 0.41 0.64 0.93 

Dec 21.1 20.9 5.4 

4m 25.4 23.6 8.7 4.4 11.6 7.8 20.9 36.9 -0.11 0.29 0.87 

10m 22.5 21.8 7.1 1.4 9.5 6.7 6.8 31.9 -0.10 0.33 0.87 

20m 20.2 19.3 6.9 -0.8 9.3 7.2 -3.9 34.2 -0.12 0.30 0.87 
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Feb 18.7 19.3 4.1 

4m 29.8 26.7 12.5 11.1 17.0 11.5 59.7 61.6 0.06 0.24 0.72 

10m 26.5 23.9 11.5 7.8 14.3 10.0 42.0 53.6 0.06 0.26 0.76 

20m 23.5 19.8 10.5 4.8 12.2 8.4 25.7 45.1 0.03 0.29 0.83 

Nov 

JC 

19.9 19.3 6.0 

4m 27.9 25.2 9.2 8.0 13.7 10.0 40.4 50.4 -0.04 0.31 0.77 

10m 23.1 23.0 5.7 3.2 9.1 7.4 16.0 37.2 -0.08 0.35 0.90 

20m 20.6 20.6 6.5 0.7 8.9 7.0 3.8 35.1 -0.02 0.35 0.93 

Dec 19.4 20.1 5.3 

4m 26.2 23.7 8.9 6.8 14.0 9.6 35.1 49.4 -0.44 0.13 0.77 

10m 22.5 20.8 6.8 3.1 10.7 7.9 15.8 40.8 -0.42 0.14 0.87 

20m 20.0 18.1 6.0 0.6 9.6 7.5 3.1 38.7 -0.44 0.14 0.84 

Feb 14.9 14.8 4.2 

4m 31.2 28.8 13.7 15.9 21.1 15.9 106.3 106.3 0.14 0.20 0.76 

10m 26.6 22.9 12.0 11.4 16.8 11.4 76.2 76.2 0.16 0.22 0.79 

20m 23.8 20.2 10.2 8.7 13.9 9.0 58.4 60.2 0.13 0.25 0.83 

Nov 

CENT

RO-

VV 

22.4 20.7 9.1 

4m 32.7 32.1 9.5 10.3 15.6 12.3 46.0 54.8 0.20 0.48 0.73 

10m 27.0 26.1 6.7 4.6 10.5 8.4 20.4 37.5 0.32 0.57 0.77 

20m 23.3 22.0 7.3 0.9 9.3 7.1 4.1 31.6 0.37 0.62 0.87 

Dec 20.5 19.8 4.6 

4m 33.0 32.2 8.5 12.4 15.7 12.7 60.7 61.7 0.04 0.30 0.77 

10m 28.3 28.6 6.4 7.8 10.9 8.4 38.1 41.1 0.07 0.39 0.87 

20m 24.7 24.7 5.9 4.2 8.4 5.6 20.3 27.3 0.06 0.42 0.87 

Feb 18.3 17.6 4.6 

4m 37.4 33.7 13.0 19.1 23.4 19.2 104.4 104.7 0.07 0.22 0.52 

10m 32.5 29.3 10.8 14.2 18.1 14.4 77.7 78.8 0.12 0.28 0.66 

20m 28.5 25.4 10.0 10.2 15.2 11.0 55.5 60.1 -0.06 0.25 0.79 
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