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Resumo

No contexto de aprendizado de maquina, a classificacao é a tarefa de identificar a que classe
pertence uma instancia de acordo com o conhecimento obtido atraves de um conjunto
de treinamento, ou seja, um conjunto de instancias cuja classificacdo é previamente
conhecida. A classificacdo unirrétulo, uma das versdes mais tradicionais do problema de
classificacao, permite que uma instancia pertenca a apenas uma classe considerando-as,
portanto, mutualmente exclusivas. Entretanto, problemas do mundo real em que interse¢oes
entre classes ocorrem frequentemente podem ser melhor modelados como problemas de
classificacao multirrétulo, cuja tarefa permite que multiplos rétulos sejam atribuidos a
mesma instancia. Miultiplos classificadores, tanto unirrétulo quanto multirrétulo, podem
ser treinados para o mesmo problema de classificacao e gerar um resultado combinado. Essa
técnica, conhecida como comités de classificadores, é comumente utilizada para melhorar
a performance de classificacdo. Varias abordagens ja foram propostas para realizar a
combinagao dos resultados individuais dos classificadores. Neste trabalho, é apresentada
uma abordagem de combinacao de conjuntos de classificagao multirrétulo baseado na
técnica Modelos de Decisao para Comités de Cadeias de Classificadores que incorpora a
exploracao de correlagoes entre os rétulos no processo de fusao dos classificadores.

Na técnica de Perfis de Decisao, originalmente proposta para a fusdo de classificadores
de rotulo dnico, estima-se um perfil de decisdo por classe usando o mesmo conjunto de
treinamento que é usado para o conjunto de classificadores. A classificacdo para cada
instancia invisivel é obtida medindo a similaridade entre seu perfil de decisdo e os perfis
de decisao das classes. O método proposto estima dois perfis de decisao por classe, um
representando a presenga da classe e o outro representando sua auséncia. Para cada nova
instancia, é criado um novo perfil de decisao e a similaridade entre os perfis de decisao das
classes e o perfil de decisao da instancia determina o conjunto de rétulos resultante. Para
cada rotulo analisado, informacgoes sobre rétulos correlacionados é incorporada. O método
de fusao proposto é utilizado em um algoritmo tradicional e de eficiéncia comprovada de
comité de classificadores multirrotulo: Comités de Cadeias de Classificadores. As evidéncias
empiricas indicam que o uso da adaptagao dos Perfis de Decisao proposto pode melhorar o
desempenho em relacao aos esquemas de combinagao tradicionalmente usados na maioria
das métricas avaliadas melhorando o desempenho de um método de comité de classificadores

ja conhecido na literatura multirrétulo.

Palavras-chaves: Multirrétulo. Classificacao. Comités. Perfis de decisao.






Abstract

In the context of machine learning, classification is the task of identifying which class an
instance belongs according to the knowledge obtained through a training set, that is, a
set of instances whose classification is previously known. Single-label classification, one of
the most traditional versions of the classification problem, allows an instance to belong
to only one class, thus making them mutually exclusive. However, real-world problems
where intersections between classes often occur can be better modeled as multi-label
classification problems, whose task is to allow multiple labels to be assigned to the same
instance. Multiple classifiers, both single-label and multi-label, can be trained on the
same classification problem and generate a combined result. This technique, known as
classifier ensembles, is commonly used to improve classification performance. Several
approaches have already been proposed to perform the combination of the individual
classifiers’ results. In this work, an approach for combining multiple-label classification sets
based on the Decision Templates for Ensemble of Classifier Chains technique is presented
that incorporates the exploration of correlations between the labels in the classifiers’ fusion
process. In the Decision Templates technique, originally proposed for merging single-label
classifiers, a per-class decision model is estimated using the same training set that is
used for the set of classifiers. The classification for each unseen instance is obtained by
measuring the similarity between its decision profile and the decision templates. The
proposed method estimates two decision templates per class, one representing the presence
of the class and the other representing its absence. For each new instance, a new decision
profile is created and the similarity between the decision templates and the decision profile
determines the resulting set of labels. For each label analyzed, information about correlated
labels is incorporated. The proposed fusion method is used in a traditional and proven
algorithm of multiple-label classifier committee: Ensemble of Classifier Chains. Empirical
evidence indicates that the use of the proposed Decision Templates adaptation can improve

performance over traditionally used fusion schemes on most of the evaluated metrics.

Keywords: Multi-label. Classification. Ensembles. Decision Templates.
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1 Introduction

The single-label classification task associates a feature vector & from domain
X with exactly one out of m possible labels ¢;, j = 1,...,m. A training set S =
{(x1,91),- .-, (@n,yn)} consists of feature-label pairs (z,yx) where the desired output
yi is one of the possible m labels. A common practice is to code the class membership of
the features as a vector y, from domain ) of length m where the components are binary
values. This is called one-out-of-m coding. Only one of the binary values has value one, i.e.
Yr,; = 1, the remaining (m — 1) values are zero, hence the associated class information
of the feature vector xj, becomes ¥y, = (Yk.1--- Yk j—1, Yjk> Yk,j+1 - - - Ye,m)- Lhe single-label
classification problem may be binary (two possible label values) or multiclass (three or

more label values).

Multi-label classification is a generalization of the traditional single-label classifi-
cation problem where instances are associated with a label set instead of a single label.
Several real world domains are better represented as multi-label problems. In the movie
genre classification, for instance, a movie can belong to any combination of genres, such
as drama, action and romance at the same time. In the multi-label classification task let
X C R" be the feature space and L = {{y, 05,03, ...,0,} be the set of possible labels. A
classifier can be defined as a function that maps the feature space X to the label space
Y={0,1}""or h: X - Y, x — y. Many real-world problems such as image recognition
(CHEN et al., 2019), subcellular locations of proteins (CHOU, 2019), and text classification
(DU et al., 2019) can best be represented as multi-label problems.

Many of the proposed multi-label classification algorithms, such as Ensemble of
Classifier Chains (ECC) (READ et al., 2011) are based upon the concept of ensembles of
classifiers. In those methods, an ensemble is composed of multiple multi-label classifiers. In
order to classify an unseen instance, the output of each member of the ensemble for that
instance is collected and then a predefined fusion function determines the final classification
result. The choice of this function has fundamental importance for the operation of the

ensemble and directly influences its performance.

This work focuses on an adaptation of the Decision Templates (DT) classifier fusion
method, which organizes the results of the ensemble members into matrices called Decision
Profiles (DP). These DPs are then used to calculate the DT of each class. Given a label
j, a DT can be understood as the expected DP for the instances that belong to the j-th
class. During the classification process of an unknown instance, the class with the most
similar DT is chosen. Since this method was created to work with single-label ensembles,

DT cannot be applied directly in multi-label problems.
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In a review study evaluating state-of-the-art multi-label classifiers based on en-
sembles, the ECC method stood out as the one with the best overall performance and,
therefore, was chosen to be used in this work (MOYANO et al., 2018). In order to adapt
the DT method to the ECC multi-label classifier, the Decision Templates for Ensemble
of Classifier Chains (DTECC) method was proposed (ROCHA; VAREJAO; SEGATTO,
2022). Two DP matrices are defined for each label, one representing the instances that
are assigned to that label and a complementary DP representing the instances that are
not assigned to that label. For an unseen instance, the task of classification for each label
becomes the task of selecting the most suitable of the two DP matrices computed for
that label. This procedure enables the assignment of multiple labels to each instance, and
thus, adapts the DT method to multi-label problems. We also expand the ideia of the
DTECC and propose a novel fusion method called UDDTECC (Unconditionally Dependent
Decision Templates for Ensemble of Classifier Chains) where the DP matrices of a class
j can use classification information from other labels in the problem if any correlation

between those labels is identified.

An adaptation of the DT method for working with the Recursive Dependent
Binary Relevance (RDBR) multi-label classifier was presented in (RAUBER et al., 2016).
Despite not being an ensemble method, the intermediate values generated by the RDBR
classification process can be used to compose DP matrices. This procedure, however, is
not ideal since the RDBR method offers small diversity when compared to a real ensemble
method. To the best of our knowledge, unless of the DTECC method, this is the unique

application of Decision Templates in a multi-label context.

In (ROCHA; VAREJAO; SEGATTO, 2022) the performance of the DTECC is
empirically evaluated and compared to two known fusion methods often present in the
literature: Majority Vote and Mean Ensemble. The empirical results show that replacing
the fusion scheme of the ECC method with the DT can improve the performance for
Accuracy and F-measure in most data sets, while remaining competitive in terms of other

metrics.

1.1 Objectives

This work adapts Decision Templates fusion function to teh multi label classifi-
cation problem and also includes the exploration of inter-label correlations in the fusion
process. This is done specifically by proposing two new methods called DTECC (ROCHA;
VAREJAO; SEGATTO, 2022) and UDDTECC which extends the DTECC method so as

to take label correlations into account. To accomplish this task, the specific objectives are:

o Literature review of the theoretical foundation necessary for the understanding of

the proposed methods.
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» Presentation of the proposed DTECC and UDDTECC methods.

o Performing experiments that compare the proposed method to the most widely used

in the literature.

o Analysis of the experiments.

1.2 Justification and Contributions

We propose a novel approach, which incorporates the exploitation of label corre-
lations in the multi-label ensemble fusion process in order to improve its performance.
Another trainable method based on the stacking scheme (called STACKECC) is also
proposed to compare the UDDTECC method due to the similarity of the DDTECC
scheme to a stacking strategy. Therefore, in this dissertation two fusion methods are
proposed and compared with the most widely used fusion methods in the multi-label
classification literature. Furthermore, experimental results are presented in order to prove

the effectiveness of using the proposed method.

1.3 Structure

This document is structured as follows:

Chapter 2 presents the theoretical foundation necessary for the understanding
of the proposed method. Chapter 2.1 defines the problem of multi-label classification
including the difference between problem adaptation methods and problem transformation
methods. The Classifier Chains method, the base classifier of the proposed method, is also
defined in detail. In Chapter 2.2 classifier ensemble methods are defined and explained.
An explanation of the inner workings of the ECC method in its traditional configuration is
also provided. Chapter 2.3 discusses fusion functions. The difference between fixed fusion
rules and trainable functions is explained and this difference is exemplified through its
main representatives. Chapter 3 proposes and explains how the proposed DTECC and
UDDTECC methods work. Chapter 4 details the methodology used in the experiments
including the metrics and datasets used. Chapter 5 presents and discusses the results of
the experiments performed comparing the methods according to their results on each

metric. Finally, Chapter 6 presents the work conclusions and indicates future works.
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2 Theoretical Background

This section presents the theoretical concepts necessary to understand the proposed
methodology. First, the concept of a multi-label classifier is defined and its different
approaches are briefly explained. Being a fundamental part of the UDDTECC method,
a more detailed explanation of the multi-label Classifier Chains classification method is
provided. Then the concept of Ensemble of Classifiers is explained and the Ensemble of
Classifier Chains method is detailed. Fusion functions, responsible for combining the results
of the various classifiers in the ensemble, are discussed in section 2.3 and the differentiation
between trainable and fixed methods is explained. The untrainable Majority Vote and
MeanEssemble and trainable Decision Templates and Stacking fusion methods used in the

experiments are detailed.

2.1 Multi-label Classification MLC

Multi-label classification, a generalization of the single-label classification problem,
allows an observation (or instance) to be associated with multiple labels. This generalization

allows us to more accurately model many real-world problems.

Multi-label classification generalizes the classification problem by removing the
restriction in single-label classification that an observation (or instance) can only be
associated with one label. This generalization is key to accurately model many real-world
problems where instances may belong to intersections of the classes. Let L be the set of
possible labels of a multi-label classification problem, all 2/*! unique label combinations
are therefore acceptable answers. In this context, it becomes critical to understand the
correlations between the labels in order to extract the best possible result (LIN et al.,
2017).

A multi-label classifier can be defined as a mapping h : X — ), x — y of the
feature space X for the class domain ) = {0, 1}™. A multi-label dataset is defined as n
pairs of feature vectors and binary vectors of dimension m as S = {(z',y'),..., (z",y")},
with yf € {0,1}. Where yf = 1 represents the presence of the label ¢; in example k and

yf = 0 represents its absence.

Multi-label methods can be divided into two groups: problem transformation
methods and problem adaptation methods. The difference between these strategies for

approaching the multi-label problem are explained next.
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2.1.1 Problem adaptation

The problem adaptation methods strategy consists of modifying existing single-label
methods to work directly with multi-label instances. Examples of methods that follow this
approach include: ML-kNN (ZHANG; ZHOU, 2007) which adapts the single-label kNN
method, Adaboost.MH and Adaboost.MR (SCHAPIRE; SINGER, 2000) both adapting
the AdaBoost (FREUND; SCHAPIRE, 1997) method for multi-label classification, and
BPMLL (ZHANG; ZHOU, 2006) which adapts a back-propagation neural network to work

directly with multi-label classification.

2.1.2 Problem transformation

In the problem transformation approach, the multi-label problem is transformed
into one or several single-label problems. This transformation allows the use of traditional

single-label classification methods on this modified input space.

Binary relevance is widely considered as the baseline method of multi-label problem
transformation, it consists of forming a binary classifier that independently classifies each
label of a given multi-label problem. This strategy, although straightforward, does not
take into account the correlations between the labels and can lead to suboptimal classifica-
tion performance (TANAKA; BARANAUSKAS, 2012). Several problem transformation
methods that seek to explore the correlation between labels have been proposed among
which are Label Powerset (LP), Pruned Sets (PS), ChipDep and Classifier Chains (CC).

The Label Powerset (LP) (TSOUMAKAS; VLAHAVAS, 2007) transformation
method incorporates correlations between labels by considering each of the different
subsets of labels as a single label. It then then learns a single-label multiclass classifier to
make the predictions. The main disadvantage of the LP method is the large number of

label subsets presented in the datasets, most of them associated with very few examples.

In order to overcome the sparseness problem of LP, the Pruned Sets (PS) (READ;
PFAHRINGER; HOLMES, 2008) method was proposed. Pruning removes the sets of
labels that occur less frequently in the multi-label training set D. Therefore reducing the
computational complexity of the problem by prioritizing the relations of more important
label sets in D.

Following another transformation approach, the ChipDep (TENENBOIM-CHEKINA;
ROKACH; SHAPIRA, 2010) method seeks to identify the dependencies between labels
and clusters all labels in independent subsets, building an LP classifier for each subset. The
LP classifiers are combined similarly to the Binary Relevance method, i.e, transforming

the multi-label problem into several binary problems one for each label.

Derived from BR, a chaining methodology was proposed as a way to explore possible

correlations between labels in the classification process. This method, called Classifier
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Chains (CC), is an integral part of the Ensemble Of Classifier Chains (ECC) methodology.
Since the UDDTECC method is applied on top of ECC, a more detailed explanation is

provided next.

The multi-label classification method Classifier Chain (CC) is categorized as a
problem transformation method, i.e., it transforms the multi-label problem into n single-

label problems to allow the use of single-label methods.

To explore possible correlations between the labels the CC method first defines
the order in which the problem labels will be evaluated and for each evaluated label it
incrementally adds the classification results using the evaluated labels. The first classifier
of the string h{° : X — {0,1}, z — y; works as one of m single-label binary classifiers.
The prediction value of the first label is used in conjunction with the feature vector x
to perform the prediction of the second label. hS¢ : X x {0,1} — {0,1}, (z,y1) — vo.
The classifiers that compose the CC are trained using the real labels y;, whereas in
the prediction phase the estimated label values ¢; are used in the mapping, such that
(z,11) — ¥a. Therefore, CC is composed of m classifiers that can use from zero to (m — 1)
labels as additional attributes, such that in the training phase A : X x {0,1}77" — {0, 1},
(@, 91,.--,Yj-1) = ¥;,J = 1,...,m and in the prediction phase h§° : X x {0,1}77! —
{0,1}, (=, 91, ... ,0j-1) — ¥;,J = 1,...,m. Although it directly influences the classification
performance, the CC method does not define the order in which the labels are chained. The
ordering used is defined randomly so that two CC classifiers trained on the same training
set can generate different classifications for the same test instances. In order to create
results less dependent on the random ordering defined by the CC method, the Ensemble
of Classifier Chains (ECC) method was proposed. By training multiple CC classifiers each
with random label ordering, the ECC method achieves a more stable classification result.

The ECC method is explained in more detail below.

2.2 Ensembles of Multi-label Classifiers

The technique of combining the predictions of multiple classifiers to produce a single
classifier is known as ensemble of classifiers (OPITZ; MACLIN, 1999; ROKACH, 2010).
Typically, an classifier ensemble achieves better performance than any of the individual
classifiers of the ensemble. Good ensembles are generally composed by individual classifiers
which are both accurate and make their errors in different parts of the input space.
Ensemble methods can be divided into two categories: classifier selection and classifier
fusion (WOODS; KEGELMEYER; BOWYER, 1997; KUNCHEVA; BEZDEK; DUIN,
2001; KUNCHEVA, 2002; HO, 2000).

Classifier selection methods train classifiers to be local experts in some area of the

feature space. The importance given to the prediction of a specific classifier is inversely
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proportional to the distance of the data used to train this classifier. One or more classifiers
can be selected to give the final decision (WOODS; KEGELMEYER; BOWYER, 1997;
JACOBS et al., 1991; ALPAYDIN; JORDAN, 1996; GIACINTO; ROLI, 2001).

In classifier fusion, classifiers are trained on the entire feature space. In those
techniques the output of the weaker classifiers must be merged to create the stronger output.
Traditional methods such as Bagging (BREIMAN, 1996) and Boosting (SCHAPIRE, 1990;
FREUND; SCHAPIRE; ABE, 1999) are based on this approach. These methods are based
on resampling techniques for obtaining different training sets for each of the individual
classifiers. This work focuses on classifier fusion methods. Thus, a more in dept explanation

on the operation of classifier fusion methods is presented in section 2.3.

Many of the proposed multi-label classification algorithms, such as Ensemble of
Classifier Chains (ECC) (READ et al., 2011), Ensemble of Pruned Sets (EPS) (READ;
PFAHRINGER; HOLMES, 2008), Ensemble of Subset Learners (ESL) (TENENBOIM-
CHEKINA; ROKACH; SHAPIRA, 2010), and RAndom k-labELsets (RAKEL) (TSOU-
MAKAS; VLAHAVAS, 2007) are based upon the concept of ensembles of classifiers. In
those methods, an ensemble is composed of multiple multi-label classifiers. In order to
classify an unseen instance, the output of each member of the ensemble for that instance
is collected and then a predefined fusion function determines the final classification result.
The choice of this function has fundamental importance for the operation of the ensemble

and directly influences its performance.

The RAndom £-labELsets (RAKEL) (TSOUMAKAS; VLAHAVAS, 2007) overcomes
this problem by creating an ensemble composed of LP classifiers. Each ensemble member
is trained based on k randomly chosen label subsets (denominated labelsets). Although
this approach significantly reduces the number of label subsets, depending on the value of
k, there is still the possibility of having large number of label subsets associated with very

few examples.

Incorporating the idea of ensembles, EPS combines several PS models. During
the training phase of the EPS method, ¢ iterations are performed in which a subset of
the examples is selected to train a PS classifier. At the end of the procedure, ¢ different

classifiers are trained.

The ESL method combines distinct ChiDep classifiers to improve classification
performance. Each one of the ¢ ChiDep classifiers that compose the ensemble is defined
by a distinct label set partition. The ¢ set partitions are selected from a large sample of
randomly generated partitions. The score for each generated set partition is computed
according to a normalized 2 score for of all its label pairs and only the best ¢ partitions

according to the highest scores are selected as members of the ensemble.

As explained in the section 2.1.2, the Classifier Chains method is a problem
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transformation method that chains the problem labels and performs their classification,
the method, however, does not define a predetermined optimal chaining order. The order
in which the chaining of results is done has an impact on the final result, and is therefore
an important issue when using the CC method. With this in mind, the method Ensemble
of Classifier Chains was proposed. In the ECC method n CC classifiers C1, Cs, ..., C, are
trained. In order to create a diverse set of classifiers, each of these classifiers is trained
using a random ordering of labels and a random subspace of the training dataset, allowing
each CC model to be unique and capable of making distinct predictions. (READ et
al., 2011). In a review study evaluating state-of-the-art multi-label classifiers based on
ensembles, the ECC method stood out as the one with the best overall performance
and, therefore, was chosen to be used in this work (MOYANO et al., 2018). Thus, the
UDDTECC fusion method proposed in this paper focuses on the Ensemble of Classifier

Chains for its experimental evaluation.

2.3 Fusion Functions

Let H = {hy, ha, ..., h.} be the set of classifiers of a classifier ensemble. The output
of each classifier can be scaled to the [0,1] interval without loss of generality. For a feature
vector ¢ € X, the output of the ith classifier is represented as h;(x) = [d; 4, (Z), ..., d;y,, (T)]
ydig,(xz) €[0,1],1 < j < m, where d;,(x) can be generally interpreted as the degree of
support outputted by the h; classifier to the hypothesis that z is labeled as ¢;. The output
of all classifiers that compose an ensemble composed by ¢ classifiers and m labels can be

organized as a matrix known as the Decision Profile (DP) of z:

d1,€1 (ar:) . dl,gj (il,‘) . dl,fm (:1:)
DP(z) = dzgl (a:) oo dig(x) .. dig, (x)
dc,él (ar;) PN dc7gj ((L‘) Ce dqgm (:1;)

The output of the resulting classifier h is defined by a fusion function F that uses

the classifiers outputs to create a combined output:

h(z) = F(h(x), ..., ho(x)) = F(DP(x)). (2.1)

Fusion functions can be divided into two groups based on whether they require
additional training once the classifiers of the ensemble are trained (KUNCHEVA, 2014).

The explanation of both strategies is presented in the following subchapters.
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2.3.1 Fixed Fusion Functions

One of the simplest and most direct strategies for combining individual classificati-
ons generated in a classifier committee is to use non trainable functions directly on the
support values for that label (KUNCHEVA, 2014). Thus, given a DP matrix, the support
value d;(x) for label ¢; is defined using a function f such that £; = F(dig,(x), ..., deg,(x))
and a threshold value ¢, typically defined as ¢t = 0.5, is used to define the final labels of

the classification.

Except for the majority vote, which uses DP(z) for computing the label that is
most voted by the classifiers, all these functions compute the combined support value for

each label as
dj(x) = f(die(x),... dey,(x)), (2.2)

where f represents the corresponding mathematical function (maximum, minimum, ave-
rage, or product). For single-label classification, the resulting label is calculated using
equation 2.3: In single-label problems, only one label can be ultimately assigned to z. This

is usually done by selecting the label with the greater support value:

h(z) = (< d(x) = max {d;(x)}. (2.3)

j=1,...m

2.3.1.1 Majority Vote

This fusion function, named MajorityVote (MV), sums the positive and negative
votes of all classifiers for each problem class. The fraction of positive votes relative to
the total number of classifiers is calculated and only labels with a value above a defined
threshold ¢ are assigned to the example. Traditionally only classes with a majority of
positive votes (i.e. t > 0.5) are assigned to the example and ties are broken randomly. This

approach is exemplified with an example from the Image data set in table 1.

The fusion scheme originaly proposed by the authors of the ECC method was
majority voting (MV). MV is one of the most straightforward and widely used fusion
schemes in problems involving ensembles of multi-label classifiers. In this scheme, the label
¢; is only assigned to a test example x if a certain percentage of the classifier ensemble
members (a predefined threshold value) have predicted for this label. The individual
results of each classifier h; = (d;g,,...,d;y, ) are summed and stored in a sum vector
W = (A1,..., Ap) such that \; = 327, d;;, which is then normalized into a vector W™,
representing a distribution in [0, 1]. The final classification result Y is defined by a threshold
value t so that ¢; € Y only if A\; > t. The threshold value is usually set to 50%, meaning
that for the label /; to be in the final prediction at least half of the classifiers must have
predicted this label.
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= | { Desert Mountains Sea Sunset Trees }
hi | ( 1 0 0 1 1 )
hy | (1 1 0 1 0 )
hs | (0 0 0 1 0 )
he | (1 0 0 1 0 )
hs | (0 1 0 1 1 )
W[ ( 3 2 0 5 2 )
Wi | (.60 .40 00 1.00 .40 )
Y [ ( 1 0 0 1 0 )

Table 1 — Example of MajorityVoteEnsemble fusion function for classifying an instance of
the Image data set with an ensemble consisting of 5 multi-label classifiers. Each
instance of the data set represents an image that can be classified according to
five possible labels: Desert, Mountains, Sea, Sunset and Trees. If the average
of the binary decisions for each label is larger than the threshold, the label is
chosen. In this example, a user defined value of threshold ¢t = 0.5 defines the
labels present in the final classification result. The label set ultimately assigned
to the image is Desert + Sunset.

2.3.1.2  Minimum/Maximum

One possibility when using fixed combination rules is the selection of maximum
or minimum values. Such rules find almost no practical application as they ignore much
of the information generated by the classifiers, focusing on extreme values that are very

susceptible to outliers. Those rules are exemplified in table 2.

L = |{ Desert Mountains Sea Sunset Trees }
ha ( 0.8 0.3 0.1 0.6 0.7 )
ha ( 0.7 0.8 0.1 0.8 03 )
hs ( 0.2 0.4 0.2 0.8 02 )
he | (09 0.2 01 09 04 )
hs ( 0.3 0.8 0.2 0.8 0.8 )
min | ( 0.2 0.2 0.1 0.6 0.2 )
mazx | ( 0.9 0.8 0.2 0.9 0.8 )

Table 2 — Example of min and max as fusion functions for classifying an instance of
the Image data set with an ensemble consisting of 5 multi-label classifiers. A
user defined value of threshold ¢ = 0.5 defines the labels present in the final
classification result.

2.3.1.3 Average

This fusion function, named MeanEnsemble (ME), computes the average sup-
port value for each class and only includes in the final result classes with an average
support value greater than a threshold ¢. The ith classifier h; € H predicts a vector
hi(z) = [dii(z),...,dim(x)] € [0,1]™. The MeanEnsemble method stores the sums of

the predictions of each individual classifier in a vector W = (Ay,..., \,,) € L, such that



34

Chapter 2. Theoretical Background

Aj = >iqdi;. W is then averaged to W,,, € R,,, which represents a distribution of
votes for each label in the [0, 1] interval. Using a score-based method (GHARROUDI;
ELGHAZEL; AUSSEM, 2015) a threshold ¢ is used to choose the final multi-label set Y’
such that /; € Y when ’\73 > t. Hence the relevant labels in Y represent the final multi-label

prediction. This scheme is represented in algorithm 1 and exemplified in table 3 for the

Image data set. The sum of support values of all classifiers are stored in a vector and then

averaged according to the number of classifiers. If the average support value for the label

is greater than the threshold value, the label is assigned to the instance.

Algorithm 1: The MeanEnsemble multi-label fusion function.

Function Y < ClassifyME(z, H, L, t)
Input: Test instance x, Ensemble of classifiers H, set of possible labels L,

threshold ¢
Output: label set Y
for j =1 to |£] do
| W]« 0;
forall h € H do

for j=1to |£| do
L W] = Wil + hiz)[]
for j =1 to |£| do
Wangli] < il
if Woyglj] > t then
| Y[« 1
else
| Y]] 0
L return Y
= | { Desert Mountains Sea Sunset Trees }
hy (038 0.3 0.1 0.6 0.7 )
hs (07 0.8 0.1 0.8 03 )
hs ( 0.2 0.4 0.2 0.8 02 )
INn ( 0.9 0.2 0.1 0.9 04 )
hs (03 0.8 0.2 0.8 0.8 )
W | (29 2.5 07 39 24 )
Wavg | (- 0.58 0.5 0.14 0.78 048 )
Y ( 1 1 0 1 0 )

Table 3 — Example of MeanEnsemble fusion function for classifying an
Image data set with an ensemble consisting of 5 multi-label classifiers. The
support values for each label are averaged and the final decision is taken. In this
example, a user defined value of threshold ¢t = 0.5 defines the labels present in
the final classification result. The resulting label set for this instance is Desert +

Mountains + Sunset.

instance of the
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ECC frequently is also used with the MeanEnsemble (ME) as its fusion function
(GUO et al., 2016).

2.3.2 Trainable Fusion Functions

Trainable fusion methods, unlike untrainable methods, follow a strategy of learning
and adapting to each problem specifically from previously observed examples. The idea
behind this strategy is that the fusion methods can learn, through the training process, an
efficient way to combine the outputs and generate a better output. This strategy introduces
an additional computation cost in the classification process performed by the ensemble,
but this trade-off is often small compared to the total cost for training and classification
performed by the ensemble member classifiers. Decision Templates, a method fundamental
to understanding UDDTECC, falls into this category of fusion methods and is explained
in more detail below. Another trainable fusion method is based on the stacking strategy.

An explanation of this generic method is also provided.

2.3.2.1 Decision Templates

The Decision Templates method (KUNCHEVA; BEZDEK; DUIN, 2001) is a single-
label classifier fusion function. The main idea consists of using the DP matrix in its
entirety thus avoiding missing information that can improve the overall performance of
the ensemble. Let S = {(z1,v1), ..., (s, yn)} be the single-label training set. An ensemble

of classifiers is trained using S. For each label ¢; € L a DT matrix is computed:

>h1 J Yk, £;) - DP(xy)
DT, =
! ZZ:l f(ylmgj) 7

where f(yg,¢;) is a function that assumes the value 1 if the label of yj, is ¢;. Otherwise,

(2.4)

the function is 0.

DT, can be defined as the expected value of DP(z) for the ¢; label. The final
support value p; to ¢; is directly proportional to the level of similarity between the
matrices DP(z) and DT;.

The similarity function based on the Euclidean distance recommended in (ROGOVA,
1994) is calculated as:

@) — L IIDP@ ~DTE
S (- [IPP(@) — DT

(2.5)

where ||.||2 is the entry-wise matrix norm, or equivalently the Euclidean distance
between the linearized DP and DT (all lines have been sequentially assembled into a ¢ x m
vector). After the support value ¢; has been obtained for each class, a further evaluation

takes the final decision. Usually, in a single-label crisp classification task, the highest
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Figure 1 — Decision Templates fusion process for evaluating feature vector . An ensemble
of ¢ classifiers outputs the values that compose the Decision Profile (DP(x)).
A similarity function computes the similarity values between DP(x) and DT}
for all m labels. The resulting label is selected by the largest similarity value.

score defines the assigned class. In a binary classification task, the first class is chosen, if
¢1(x) > ¢o(z). In a multi-label problem, this strategy is not applicable. Figure 1 illustrates
the application of the DT method for defining the classification of feature vector x.

Algorithm 2 describes the process of composing a Decision Profile matrix. Predict
is a function that has the unseen instance and a classifier as inputs, and outputs a |L|-
dimensional vector containing the support value for each label j € L. For a given instance,
the support vector of each classifier is collected and its values are used to compose the DP

matrix.

Algorithm 2: Decision Profile.
Function DP «+ ComputeDP(x,H, L)
Input: feature vector of an unseen instance z, trained set of classifiers H, set
of possible labels £

Output: the resulting Decision Profile DP
DP is an |H| x |£| matrix;
for i =1 to |H| do // all classifiers

s « Predict(z,H;) ;

for j =1 to |£| do //all labels

‘ D.PZ'J' S5

end

end

return DP
end

Algorithm 3 shows how to compute single label Decision Templates (DT) matrices.
ComputeDT computes a Decision Profile (DP) matrix for each training instance. A DT

matrix for a given label is obtained by averaging the values of all the DP matrices for the
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training instances associated with that label. Each DP is added to the DT matrix of the
label to which the instance belongs. Then, the DT matrix is divided by the number of
training instances belonging to the respective label (counting is performed by function
countByLabel).

Algorithm 3: Single-label Decision Templates.
Function DT + ComputeDT(S,H,L)
Input: Single-label training data set S, set of trained classifiers H, set of
possible labels £
Output: set of Decision Templates (one for each label) DT
for (z,y) € S do
DP «+ ComputeDP(x,H,L) ;
DT, < DT, + DP ;
for j =1 to |£| do // all labels
cl < countByLabel(S, j) ;
DT ¢ 53 ;
L return DT

Algorithm 4 combines the classifier outputs in order to assign a label to an instance.
The ClassifyDT function computes a DP for the test instance. According to the similarity
function, the label ¢ associated with the most similar DT of the test instance DP is chosen

as output.

Algorithm 4: Single-label Decision Templates Classification.
Function | < ClassifyDT(x,H,DT ,F L)

Input: feature vector of an unseen instance x, trained set of classifiers H, set
of Decision Templates - one for each possible label DT, similarity
function F, set of possible labels £

Output: label [ assigned to instance x

DP <« ComputeDP(z,H,L) ;

stmilarity <— —oo ;

[+ 0;

for j =1 to |£| do // all labels

s < F(DP,DTj) ;

if s > similarity then
stmilarity < s
[+

end

end

return [
end
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Figure 2 — The Stacking Classifier Ensemble Process Diagram.

2.3.2.2 Stacking

Stacking consists of the technique of combining ensembles in which the final
classification result is obtained through a meta classifier. The ensemble member classifiers,
also called first-level classifiers, are trained using the training set and the meta classifier is

trained using the results of these methods.

The classification results generated by all first-level classifiers are combined into a
single vector that is interpreted by the second-level classifier (or meta-classifier) as the
problem features. The meta-classifier is trained using these meta-features and assigned
the job of generating the final classification result for the problem. This fusion process is

summarized in algorithm 5 and illustrated in fig. 2.

The stacking strategy relies on the strength of each individual estimator using its
output as input to a final estimator. The outputs of the classifiers form instances that will

be used as input data for a meta-classifier that generates the final classification result.

Any multi-label learner can be used as a meta-classifier for the Stack method, but

in this work the chosen method was the Classifier Chains.
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Algorithm 5: Stacking. Adapted from (TANG; ALELYANTI; LIU, 2014).

Function Y < Stack(D = {z;,y,}},)
Input: Training data D
Output: Ensemble of classifiers H
¢ |H];
Step 1: Learn first level classifiers
fori=1 tocdo
| Learn a base classifier h; based on D;
Step 2: Construct new data sets from D
fori=1 ton do
L Construct a new data set that contains {z},y,}, where
z; = {hi(®:), ha(@i), ... he(i) }5
Step 3: Learn a second-level classifier
Learn a new classifier A’ based on the newly constructed data set
return Y = 1/ (hy(z), ha(z), ..., he(x))
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3 FUSION OF MULTI-LABEL CLASSIFIER
ENSEMBLES USING DECISION TEM-
PLATES

This section details the operation of the DTECC method that adapts the DT
method for the multi-label classifier fusion problem. This method has been shown to be
superior to MV and ME strategies mainly on datasets with large number of instances
(ROCHA; VAREJAO; SEGATTO, 2022). Following the explanation of the original DTECC
method, the proposed UDDTECC method is explained, which extends the operation of

the DTECC incorporating information about correlated labels.

3.1 DTECC: Decision Templates for Ensemble of Classifier Chains

In the DTECC method, given an ensemble composed by ¢ multi-label classifiers,
the problem is transformed into m binary classification problems. The DTECC method
condenses the information of the original ¢ x m into ¢ x 2 DP matrices. Using the
previously labeled multi-label training set D = {(21,¥,),. ., (®,,¥,)}, the DP for each
label /; € L,j =1,..., m becomes:

duj (IL')
DP;(z) = j=1,...,m. (3.1)
dc’gj (:L')

Using the previously labeled multi-label training set D = {(z1,%), ..., (Zn,¥,)},

two corresponding matrices are computed for each label ¢; € L,j =1,... ,m:

i f(y;,£;)DPj(x;)
DT — 9
’ i [y, Ej)

(3.2)

o7, — Il = f 6)DPs(z:)] 53

S 11— fys, 4))]

where f(y;,¢;) is a function that takes value 1 if {; € y,. Otherwise, its value is 0.

DT; represents the average DP matrices of the training instances associated with
the label £;, whilst D'T; represents the average DP of the instances with the complementary

labels. The classification of each label is done separately according to the level of similarity.

This work adopts a similarity function in the fusion process based on equation 2.5

but removes the normalization:
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pi(x) =1 —|[DP;
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z) - DTjll; =

-2
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Normalization is removed only to reduce computational cost and does not change
the final result, as the ordering of labels with respect to their similarities remains unchanged,

regardless of normalization.

Thus, the level of similarity measured between DP(z) and both DT; and DT;
is computed using equation 3.4. Finally, an unseen instance (z,y) is labeled as ¢; if
pj(x) > p7(z). The DTECC architecture is represented in fig. 3.

DT,
DP, (x) ]
Classiier 1 | : DT;
x Classifier 2 | o |:|
g Compare using .
" the similarity function =
o S
2 - | DP.ix DT,
o 3
. ]
— ]
DT

Figure 3 — (DTECC) Decision Templates for Ensemble of Classifier Chains fusion archi-
tecture. The output of ¢ CC classifiers are combined into one final classification
output.

Algorithm 6 shows how to compute the Ensemble of Classifier Chains Decision
Templates. For each training instance, the results of the classifiers are compiled into a DP
matrix, which is added to one of the two possible DT matrices for each label, according to
the actual label of the instance. At the end of the process, the DT matrices are averaged.
Function ComputeDTECC outputs two Decision Templates for each label instead of just
one: a DT matrix for the positive training instances and another for the negative training
instances. Algorithm 7 shows how to assign a label set y to an instance. The function
ClassifyDTECC' checks for each label whether the DP of instance x is more similar to DT
of positive training instances or the DT of negative training instances. Fig. 4 shows an
example of using the DTECC method in an instance of the Image data set for evaluating

if the label Desert should be assigned to the multi-label set of the instance. The similarity
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Figure 4 — Example of classifier fusion using the DTECC method on an instance of the
Image data set for the label Desert.

level of the D Ppegers matrix with DTpesers and DT is measured, as p1; > pg the label
is assigned to the instance. This procedure is performed for all labels in the problem:
Desert, Mountains, Sea, Sunset and Trees. At the end of this procedure the Label set

associated with the instance is determined.

Algorithm 6: Decision Templates for Ensemble of Classifier Chains.
Function DT «+ ComputeDTECC(D,H,L)
Input: Multi-label training data set D, set of trained classifiers H, set of
possible labels £
Output: set of Decision Templates DT, two for each possible label
for (z,y) <~ D do // all training instances
DP «+ ComputeDP(xz,H,L) ;
for j =1 to |£| do // all labels
if j € y then
| DT; < DT;+ DPF;
else
| DT; < DT;+ DP;

-ty

or j =1to |£]| do // all labels
cl < countByLabel(D, j) ;
DTJ-

DT —
L return DT

(ID[~cl) Cl)
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Algorithm 7: Decision Templates for Ensemble of Classifier Chains Classification.
Function y < ClassifyDTECC(x,H,DT ,F,L)

Input: feature vector from an unseen instance «, trained set of classifiers H,
set of Decision Templates DT, similarity function F, set of possible
labels £

Output: Label set y assigned to the instance x

DP <+ ComputeDP(x,H,L) ;

y < {};

for j =1 to |£| do // all labels

s; < F(DP;,DT};) ;

if s; > s then

|y yU{y}

end

end

return y

end

3.2 UDDTECC: Unconditionally Dependent Decision Templates

for Ensemble of Classifier Chains

For the proposed UDDTECC version, additional information regarding labels
related to the label that is currently being classified is included. The classification process
for a label [; includes in its matrices DP; and DT} all labels correlated to [;. Therefore, the
only information known a priori is that the number of rows of the generated DP matrices
will be equal to the number of classifiers that make up the set ¢ and that the number of
columns is in the range [1,m]. In the extreme cases, this method becomes equivalent to
DTECC: If no correlation is identified among the labels the matrix becomes the same
used in the DTECC method.

In order to identify unconditionally related label pairs Phi (¢) (COHEN et al.,

2013) coefficients are used.

Given two labels ¢, and ¢, € L, and a contingency table for both labels as in

Table 4, ¢ coefficient is calculated as:

[l by
A B
~4,|C D

Table 4 — Contingency table for labels ¢, and ¢,

AD — BC
V(A+B)(C + D)(A+C)(B + D)

(b(ga; gb) =
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Similarly, the Chi (x?) coefficient can also be used to determine unconditional
relationships between pairs of labels. If x? > 6.635 values for a label pair, they are
considered dependent at 99% confidence (GREENWOOD; NIKULIN, 1996).

(AD — BC?*(A+B+C+ D)
(A+ B)(C + D)(A+ C)(B+ D)

X (las ) = (3.6)

X and ¢ coefficients follow the mathematical relation x%(€,, &) = n - /d(la, lp),
where n is the number of instances. The advantage of using the ¢ coefficient instead of
x as the threshold parameter for defining the correlations between the labels lies in the
range defined by ¢. As we are working with a 2 x 2 contingency matrix, the ¢ coefficient
is within the —1 and 1 range while the y coefficient can vary indefinitely according to the

number of evaluated instances.

Like the DTECC, in the UDDTECC method, the DT; and DT; matrices for each

label are calculated using equation 3.2 and equation 3.3 respectively.

The difference between the proposed methods lies on the DP matrix of each label
used for defining both DT; and DT as well the DP;(z) matrix of the instance x to be
classified. A user-defined threshold ¢, value defines whether the ¢ value is enough for the
label pair to be considered correlated. Using the previously labeled multi-label training set
D ={(z1,9,),...,(@n,y,)}, and P; = {p|p € L A\ |¢(l;,{;)| > ¢} representing the labels
unconditionally dependent to ¢;, therefore the DP for each label ¢; € L,j =1,...,m

becomes:

dng(iL') dl,fpl ((L‘) .
DP;(z) = . |yg=1....m and {p1, ...} =P, (3.7)

dn,ﬂj (x) dn,€p1 (IB)

Let’s take the correlation matrix for the Scene dataset shown in fig. 5 as an example.
Intuitively, the correlation matrix is symmetric because each pair of variables has to have
the same relationship (correlation) whether its correlation is in the upper right triangle
or the lower left triangle. If a value of ¢; = 0.20 is set, the Mountain class would be
considered unconditionally correlated with the Sunset and Urban classes in the fusion
process. In this case, the vector of unconditionally related labels to Mountain would
be Pyrountain = {Mountain, Sunset, Urban} and the DP matrix for the label Mountain

considered would become:

dl,Mountain(x) dl,Sunset(x) dl,Urban<x>

dc,Mountain (.’E) dc,Sunset (1:) dc,Urban (Z)
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TEMPLATES

correlation ¢

Urban 1.00 0.24 0.20 0.21 0.19 0.16
Mountain 0.24 1.00 0.05 0.20 0.22 0.15
Field 0.20 0.05 1.00 0.14 0.20 0.21
FallFoliage 0.21 0.20 0.14 1.00 0.18 0.20
Sunset 0.19 0.22 0.20 0.18 1.00 0.19

<)
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©
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Beach 0.16

Urban
Mountain
Field
FallFoliage
Sunset
Beach

- 1.0
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-0.0

Figure 5 — Matrix of the ¢ coefficients correlation absolute values of the Scene dataset

labels.
DT viountain
09 0.1 0.3
DPMountain 09 02 0 3\ H1 = 11— ||DPMountain - DTMountaian =04
—=10.1 09 0.8
0.8 {0.3] 0.7 08 03 0.7
0.7 10.2] 0.8 03 06 0 8J
0.2 10.8] 0.9|1— GDYMounmin =1
0.9 {0.1] 0.8 DT
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l Lovban ———[ 0.5 0.7 0.3 9
Coumset 02 09 02|H1= 1= [|D Pytountain — DT spoumiaznllz = —2.37
M ountain 0.2 06 0.3

Figure 6 — Example of classifier fusion using the UDDTECC method on an instance of

the Scene data set for the label Mountain.

and, given these conditions, the classification of an unseen instance is exemplified

in fig. 6.

The similarity value between the DT, matrix of the label ¢; being evaluated and

the DT; and DT matrices are calculated using equation 3.9. As in the original DTECC

method, an instance is labeled as ¢; only if p;(z) > pz(z).

(3.9)
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3.2.1 UDDTECC Workflow

Eu acho que o workflow deveria incluir os seguintes passos: 1. dividir os dados
disponiveis em folds; 2. realizar validacao cruzada aninhada para definir os valores de phit
candidatos (aqueles que ganham em cada rodada de teste) - workflow da figura 7 esta
incluido neste passo e deve ser apresentado no fluxograma; 3. realizar validagao cruzada
simples para cada um dos metodos usando os phit candidatos; 4. Escolher como phit aquele
que obtiver o melhor desempenho; 5. treinar o sistema usando todos os dados disponiveis
(base completa inclusive com exemplos usados para teste) com o phit escolhido; 6. aplicar

o classificador para novos casos (de acordo com uso pretendido).

To use the UDDTECC method, one must follow the workflow presented at fig. 7.
The first step consists of calculating the correlation matrix of ¢ values between the labels.
The calculation of the correlation matrix can be performed independently of the training

of the ensemble base classifiers.

The second stage is the tuning of the ¢; value. It is necessary that the training of

the base classifiers are complete.

After training the classifiers and calculating the classification ou correlation???
correlation matrix, several phi, values should be tested for selecting the value which
achieves the best result of a given metric que métrica é essa? Vc esta falando da metrica
usada para avaliar o desempenho de classificacao? a métrica usada para selecionar o phit

com melhor desempenho.

The ¢; value can be tuned as a method hyperparameter using the following steps:

1. Partition the available training data into folds;

2. Perform nested cross-validation to define candidate ¢; values (those that win in each

test round);

3. Perform simple cross-validation for each of the methods using the candidate ¢,;

4. Choose the best performing ¢ as the ¢;

Once the value of ¢, is selected, the next step consists of training the system using
all available data (complete data set including examples used for testing) with the chosen

¢¢; In the last step we apply the classifier to unseen instances.
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Train Base Classifiers

Compute ¢ correlation matrix

Tune ¢; value

Compute DT} and DT5 for each label

Figure 7 - UDDTECC training workflow.
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4 EXPERIMENTAL METHODOLOGY

This chapter details the methodology used in the experiments, describes the used

datasets and also the metrics employed for evaluating the proposal.

4.1 Experimental Setup

All classifiers present in the experiments are evaluated using a 10-fold cross-
validation technique. To ensure an unbiased evaluation of the methods, all the experiments
use ¢ = 50 classifiers in the ensemble, a threshold value of ¢ = 0.5 and Naive Bayes
as a single-label base classifier. While working on the multi-label feature ranking based
on ensembles, (PETKOVIC; DZEROSKI; KOCEV, 2020) showed that ensembles of 50
classifiers are enough to maximize most metrics. It has been also shown that ensemble
learning works well when Naive Bayes is used as the base classifier (ANTONUCCI et al.,
2013). Additional ECC parameters were set as the default values defined by the authors,
e.g., size of each bag sample as a percentage of the training size is set to 100, and sampling

with replacement is used.

Mulan (TSOUMAKAS et al., 2011) provides implementations for the Ensemble
of Classifier Chains and for all evaluated metrics, those implementations were used to
perform the experiments. Reproducibility and verifiability are very important issues when
it comes to experimental results (RAUBER et al., 2020), in order to make the experiments
in this work reproducible, the code and the results of the experiments are made available

in the public repository <https://github.com/vfrocha/ddtecc>.

4.2 Datasets

Data sets from several domains were used in the experiments, some of their
properties can be found on Table 5. Cardinality (Card) is defined as the average of the
number of labels present in all examples in the dataset, and density (Dens) is the cardinality
value divided by the number of labels. The number of labelsets present in the dataset

divided by the maximum possible number of labelsets in the dataset is called label diversity
(Div).

The datasets used were taken from the multilabel classification repository compi-
led by the KDIS (Knowledge Discovery and Intelligent Systems) research group at the
Universidad de Cérdoba available at <https://www.uco.es/kdis/mllresources/>. Due to

the relatively high computational cost of training the classifier ensembles not all databases
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Table 5 — Properties of the multi-label data sets used in the experiments: number of
instances (n), number of features (d), number of labels (m), cardinality, label
density and label diversity.

Dataset Domain n d m Card  Dens Div

3s-bbc1000 Text 352 1000 6 1.125  0.188 0.234
3s-guardian1000 Text 302 1000 6 1.126  0.188 0.219
3s-inter3000 Text 169 3000 6 1.142  0.190 0.172
CAL500 Music 502 68 174  26.044 0.150 1.000
Emotions Music 593 72 6 1.868  0.311 0.422
Enron Text 1702 1001 53 3.378 0.064 0.442
Genbase Biology 662 1186 27 1.252 0.046 0.048

GnegativeGO Biology 1392 1717 8 1.046  0.131 0.074
GpositiveGO Biology 519 912 4 1.008  0.252 0.438

Image Image 2000 294 5 1.236  0.247 0.625
Medical Text 978 1449 45 1.245 0.028 0.096
Scene Image 2407 294 6 1.074  0.179 0.234
VirusGO Biology 207 749 6 1.217  0.203 0.266
Water-quality Chemistry 1060 16 14 5.073 0.362 0.778
Yeast Biology 2417 103 14 4.237  0.303 0.082

could be used in the experiments. Execution time and the amount of available memory

were limiting factors regarding the number of databases used in the experiments.

4.3 Evaluation Metrics

This section presents the measures used to compare the algorithms in the experi-
ments. Multi-label evaluation metrics are usually divided into two groups according to
the way they are calculated: example-based metrics which are calculated for each test
example separately, and then returning the mean value across the test set, and label-based
which are calculated with respect to each class label separately, and then returning the
macro/micro-averaged value across all class labels (ZHANG; ZHOU, 2013). The metrics

used in this work are all example-based.

The Example-Based Accuracy measure is defined as the proportion of correctly

classified labels on the total number of labels of each test sample.

_ lynh(z)|

Accuracy (y, h(z)) = WUh@)|

(4.1)

Hamming Loss (SCHAPIRE; SINGER, 2000) computes the fraction of incorrectly

predicted labels by the classifier h. It is a loss metric, i.e, a classifier that only produces
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correct outputs would achieve a value of zero for this metric.

1 m
HammingLoss(y, h( = >y # hi(z (4.2)
=1

Subset accuracy, or Subsety; accuracy, (CHENG; HULLERMEIER; DEMBCZYNSKI,
2010) compares the label set predicted by h to the real label set y associated with the
example. The set of labels predicted for the example must exactly match the corresponding

set of labels in y.

Subseto 1 (y, h(x)) = [y = h(z)] (4.3)

It should be noted that Subset accuracy is a very strict metric since it penalizes
nearly correct and completely wrong predictions in the same way. This metric may be
useful, however, in certain applications where an exact classifier performance is of high

priority.

Example-Based Precision is defined as the ratio of correct predicted labels, i.e., the

ratio of labels predicted by h that actually occurs in y:

ly N h(z)|
h(z)]

Example-Based Recall represents the ratio of actual labels effectively predicted,

Precision(y,h(x)) = (4.4)

i.e., the ratio of labels occurring in y that were actually predicted by h:

ynh@)|

Recall(y,h(z)) = ™

(4.5)

A classifier that has a high recall, but low precision values provides many labels,
yet mostly incorrect. A classifier with high precision, but low recall values provides few

correct labels, yet most actual labels are omitted.

Example-Based F-measure is a commonly applied multi-label metric that binds
well with unbalanced data sets. F-measure is a function of two other multi-labels metrics:

example-based precision and example-based recall.

The Example-Based F-measure, or Fi, is defined as the harmonic mean of the
precision and recall values. The value of the F; measure metric is high only when recall

and precision values are high.

Precision - Recall

) 4.6
Precision + Recall (4.6)






53

5 RESULTS AND DISCUSSION

This chapter presents the empirical study of the performance of the UDDTECC
method and compares them to the MEECC (Mean Ensemble for ECC), MVECC (Majority
Vote for ECC) and STACKECC (the proposed Stacking strategy for ECC) methods.

The evaluation and comparison of the classification methods is performed using a
10-fold cross-validation. The datasets are divided into 10 folds of equal or similar size, and
in each of the 10 iterations of cross-validation, 9 of these folds are used for training and 1
is reserved for test, this procedure is performed in such a way that the validation fold is
different in each iteration. At the end of the iterations, the 10 results collected for each

metric are averaged and an aggregate result is obtained for that metric.

The use of the ECC method for all fusion schemes avoids the interference of
other aspects than the fusion in the results. By keeping the same method and the same
hyperparameters, one may be sure that only the classifier fusion method is responsible for

the differences in the results.

5.1 DTECC

This section presents the empirical study of the performance of the DTECC method,
and compares them to the MEECC and MVECC methods. The methods are evaluated
against each other according to their average performance for all iterations of the 10-fold
cross validation of each data set. All the experiments use ¢ = 50 classifiers in the ensemble,

a threshold value of ¢ = 0.5 and Naive Bayes as a single-label base classifier.

Tables 6 to 11 show the results obtained by each method using Accuracy, Precision,
Recall, F-measure, Subset Accuracy and Hamming Loss metrics, respectively. Altogether
with the average performance, the rank achieved by the method is also presented between
parenthesis. Best results are highlighted in bold face. At first glance, one may see that
there is no method that is the best in all data sets when evaluated by one of the metrics.

Indeed, every method is the best for at least two data sets in each metric.
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name DTECC MEECC MVECC
20NG 0.4085(1.0)  0.4066(2.0)  0.4056(3.0)
3sources_ guardian1000  0.0778(2.0) 0.0790(1.0)  0.0773(3.0)
3sources__ inter3000 0.0059(2.5) 0.0088(1.0)  0.0059(2.5)
CAL500 0.2186(3.0)  0.2210(2.0) 0.2212(1.0)
Emotions 0.5329(1.0)  0.5322(2.0)  0.5301(3.0)
Enron 0.2484(1.0)  0.2448(2.0)  0.2444(3.0)
Genbase 0.0982(3.0)  0.2980(2.0) 0.3007(1.0)
GnegativeGO 0.8990(1.5)  0.8983(3.0) 0.8990(1.5)
GpositiveGO 0.8950(2.0)  0.8931(3.0) 0.8959(1.0)
HumanGO 0.6685(1.0)  0.6633(3.0)  0.6639(2.0)
Image 0.3579(1.0)  0.3571(3.0)  0.3573(2.0)
Langlog 0.1958(1.0)  0.1948(2.0)  0.1946(3.0)
Medical 0.0253(3.0)  0.3714(2.0) 0.3736(1.0)
Reuters-K500 0.1463(2.0) 0.1470(1.0)  0.1453(3.0)
Scene 0.4617(1.0)  0.4600(2.0)  0.4589(3.0)
VirusGO 0.8121(2.0)  0.8008(3.0) 0.8123(1.0)
Water-quality 0.3923(1.0)  0.3870(2.0)  0.3869(3.0)
Yeast 0.4253(3.0)  0.4294(2.0) 0.4309(1.0)
Yelp 0.5512(1.0)  0.5453(3.0)  0.5466(2.0)

Table 6 — Results for Accuracy for the ECC using all the fusion schemes and data sets.

Table 6, table 7, table 9 and table 11 show that the DTECC method presents the
largest number of wins for Accuracy, Precision, F-measure and Hamming Loss on the
evaluated data sets. Table 8 shows that the MVECC method achieves the best results for
the Recall metric, winning in 11 of the data sets, while the DTECC achieves almost the
same performance, winning in 10 data sets. The only metric that the DTECC actually
achieves an inferior performance is Subset Accuracy, shown in table 10, even though it

was still able to win in 6 data sets.
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name DTECC MEECC MVECC
20NG 0.4097(1.0)  0.4077(2.0)  0.4067(3.0)
3sources_ guardian1000  0.0856(2.0) 0.0867(1.0)  0.0851(3.0)
3sources__ inter3000 0.0088(2.5) 0.0118(1.0)  0.0088(2.5)
CAL500 0.2802(3.0) 0.2855(1.0)  0.2834(2.0)
Emotions 0.5814(2.0) 0.5818(1.0)  0.5798(3.0)
Enron 0.3633(1.0)  0.3587(2.0)  0.3574(3.0)
Genbase 0.1044(3.0)  0.3323(2.0) 0.3368(1.0)
GnegativeGO 0.9123(2.0)  0.9120(3.0) 0.9130(1.0)
GpositiveGO 0.8088(2.0)  0.8969(3.0) 0.8998(1.0)
HumanGO 0.6904(1.0)  0.6880(2.0)  0.6872(3.0)
Tmage 0.3850(1.0)  0.3835(2.0)  0.3834(3.0)
Langlog 0.1970(1.0)  0.1959(2.0)  0.1956(3.0)
Medical 0.0254(3.0)  0.4217(2.0) 0.4224(1.0)
Reuters-K500 0.1522(2.0) 0.1529(1.0)  0.1511(3.0)
Scene 0.4689(1.0)  0.4672(2.0)  0.4661(3.0)
VirusGO 0.8208(2.0)  0.8210(3.0) 0.8300(1.0)
Water-quality 0.4734(1.0)  0.4600(2.0)  0.4583(3.0)
Yeast 0.5310(3.0) 0.5419(1.0)  0.5414(2.0)
Yelp 0.6514(3.0)  0.6564(2.0) 0.6577(1.0)
Table 7 — Results for Precision for the ECC using all the fusion schemes and data sets.
name DTECC MEECC MVECC
20NG 0.7496(1.0)  0.7313(3.0)  0.7335(2.0)
3sources__guardian1000 0.0961(2.0) 0.0961(2.0) 0.0961(2.0)
3sources__inter3000 0.0088(2.0) 0.0088(2.0) 0.0088(2.0)
CAL500 0.5030(2.0) 0.5013(3.0) 0.5077(1.0)
Emotions 0.7547(1.0)  0.7494(3.0)  0.7516(2.0)
Enron 0.6460(2.0)  0.6449(3.0) 0.6470(1.0)
Genbase 0.3967(1.0)  0.2980(3.0)  0.3007(2.0)
GnegativeGO 0.9407(1.0)  0.9389(3.0)  0.9400(2.0)
GpositiveGO 0.9191(2.0)  0.9114(3.0) 0.9210(1.0)
HumanGO 0.8388(1.0)  0.8269(3.0)  0.8288(2.0)
Tmage 0.7963(3.0)  0.7993(2.0) 0.8008(1.0)
Langlog 0.8125(3.0)  0.8136(2.0) 0.8158(1.0)
Medical 0.5338(1.0)  0.4365(3.0)  0.4401(2.0)
Reuters-K500 0.8530(3.0) 0.8534(2.0) 0.8543(1.0)
Scene 0.8542(2.0)  0.8534(3.0) 0.8551(1.0)
VirusGO 0.8676(2.0)  0.8556(3.0) 0.8679(1.0)
Water-quality 0.7021(3.0)  0.7295(2.0) 0.7303(1.0)
Yeast 0.6149(1.0)  0.6097(3.0)  0.6139(2.0)
Yelp 0.6712(1.0)  0.6436(3.0)  0.6456(2.0)

Table 8 — Results for Recall for the ECC using all the fusion schemes and data sets.
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name DTECC MEECC MVECC
20NG 0.4916(1.0)  0.4854(2.0)  0.4851(3.0)
3sources_ guardian1000  0.0859(2.0) 0.0866(1.0)  0.0854(3.0)
3sources__ inter3000 0.0078(2.5) 0.0098(1.0)  0.0078(2.5)
CAL500 0.3447(3.0) 0.3477(2.0) 0.3483(1.0)
Emotions 0.6295(1.0)  0.6278(2.0)  0.6270(3.0)
Enron 0.3649(1.0)  0.3601(2.0)  0.3596(3.0)
Genbase 0.1594(3.0)  0.3071(2.0) 0.3104(1.0)
GnegativeGO 0.9173(1.5)  0.9164(3.0) 0.9173(1.5)
GpositiveGO 0.9043(2.0)  0.9005(3.0) 0.9056(1.0)
HumanGO 0.7284(1.0)  0.7221(3.0)  0.7227(2.0)
Image 0.4818(1.0)  0.4809(3.0)  0.4812(2.0)
Langlog 0.2401(1.0)  0.2386(2.0)  0.2382(3.0)
Medical 0.0483(3.0)  0.4072(2.0) 0.4094(1.0)
Reuters-K500 0.2092(2.0) 0.2101(1.0)  0.2081(3.0)
Scene 0.5735(1.0)  0.5720(2.0)  0.5715(3.0)
VirusGO 0.8365(2.0)  0.8261(3.0) 0.8368(1.0)
Water-quality 0.5369(1.0)  0.5333(2.0)  0.5329(3.0)
Yeast 0.5416(3.0)  0.5452(2.0) 0.5466(1.0)
Yelp 0.6262(1.0)  0.6163(3.0)  0.6178(2.0)

Table 9 —

Results for F-measure for the ECC using all the fusion schemes and data sets.

name DTECC MEECC MVECC
20NG 0.2170(3.0) 0.2250(1.0)  0.2224(2.0)
3sources_ guardian1000  0.0562(2.5) 0.0596(1.0)  0.0562(2.5)
3sources__inter3000 0.0000(2.5) 0.0059(1.0)  0.0000(2.5)
CALS500 0.0000(2.0) 0.0000(2.0) 0.0000(2.0)
Emotions 0.2327(2.0) 0.2361(1.0)  0.2310(3.0)
Enron 0.0047(2.5)  0.0047(2.5) 0.0053(1.0)
Genbase 0.0000(3.0)  0.2764(2.0) 0.2779(1.0)
GnegativeGO 0.8441(2.0) 0.8441(2.0)  0.8441(2.0)
GpositiveGO 0.8670(2.5) 0.8709(1.0)  0.8670(2.5)
HumanGO 0.5009(1.0)  0.4984(3.0)  0.4987(2.0)
Image 0.0740(3.0) 0.0760(1.0)  0.0755(2.0)
Langlog 0.1418(2.0)  0.1418(2.0) 0.1418(2.0)
Medical 0.0000(3.0)  0.2710(2.0) 0.2730(1.0)
Reuters-K500 0.0382(2.0) 0.0383(1.0)  0.0372(3.0)
Scene 0.1824(1.0)  0.1803(2.0)  0.1778(3.0)
VirusGO 0.7395(2.0)  0.7250(3.0) 0.7398(1.0)
Water-quality 0.0019(2.0) 0.0019(2.0) 0.0019(2.0)
Yeast 0.1047(3.0) 0.1088(1.0)  0.1084(2.0)
Yelp 0.3123(3.0)  0.3215(2.0) 0.3222(1.0)

Table 10 — Results for Subset Accuracy for the ECC using all the fusion schemes and data

sets.
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name DTECC MEECC MVECC
20NG 0.0848(3.0) 0.0825(1.0)  0.0831(2.0)
3sources_guardian1000 0.2037(1.5) 0.2037(1.5)  0.2059(3.0)
Jdsources__inter3000 0.2011(2.5) 0.2001(1.0) 0.2011(2.5)
CAL500 0.2009(3.0) 0.2855(1.0)  0.2892(2.0)
Emotions 0.2459(2.0) 0.2454(1.0)  0.2468(3.0)
Enron 0.1745(1.0)  0.1797(2.0)  0.1812(3.0)
Genbase 0.1615(3.0)  0.0341(2.0) 0.0339(1.0)
GregativeGO 0.0234(2.0) 0.0234(2.0) 0.0234(2.0)
GpositiveGO 0.0462(2.5)  0.0462(2.5) 0.0453(1.0)
HumanGO 0.0560(3.0) 0.0556(1.0)  0.0558(2.0)
Image 0.4115(1.0)  0.4162(2.0)  0.4169(3.0)
Langlog 0.2066(1.0)  0.2093(2.0)  0.2111(3.0)
Medical 0.5824(3.0) 0.0248(1.5) 0.0248(1.5)
Reuters-K500 0.2697(1.0)  0.2775(2.0)  0.2797(3.0)
Scene 0.2324(1.0)  0.2337(2.0)  0.2345(3.0)
VirusGO 0.0665(1.5)  0.0674(3.0) 0.0665(1.5)
Water-quality 0.3998(1.0)  0.4233(2.0)  0.4239(3.0)
Yeast 0.3012(3.0) 0.2924(1.0)  0.2928(2.0)
Yelp 0.2161(3.0)  0.2118(2.0) 0.2115(1.0)

Table 11 — Results for Hamming Loss for the ECC using all the fusion schemes and data

sets.

Learner DTECC MEECC MVECC
Accuracy 1.736842  2.157895  2.105263
Precision 1.921053 1.842105  2.236842
Recall 1.789474  2.684211 1.526316
Subset accuracy  2.315789 1.710526  1.973684
F-measure 1.736842  2.157895  2.105263
Hamming Loss 2.052632 1.710526  2.236842

Table 12 — Average rank of the ECC methods using the evaluated fusion schemes for all
data sets.

Arguably the most important result obtained in the experiments comes from
comparing the average ranking results for the metrics. Table 12 shows the average rank
of all methods for each evaluated metric. Whilst the DTECC fusion method version was
superior on average for the Accuracy and F-measure metrics, MEECC was the best for
the Hamming Loss, Precision and Subset accuracy metrics. MVECC only gives the best
Recall results. However, among the three fusion methods evaluated, the DTECC method
was the most consistent in its evaluation metrics results, not being among the two best
metrics only for Subset accuracy. The MEECC method, on the other hand, despite the

good results for the Precision, Subset Accuracy and Hamming Loss presented the worst
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results for all other metrics. Similarly, MVECC has the best average rankings for Recall
but the worst for Precision and Hamming Loss. In addition, while the MEECC method
was ranked best in most metrics, one may argue that results obtained in Accuracy and
F-measure are the most relevant since they are two of the three most commonly used
example-based metrics for evaluating multi-label classifiers (PEREIRA et al., 2018).

DTECC results are particularly positive in data sets with a reliably large number
of instances. A possible explanation for the good results of the DTECC for large data sets
is that a larger number of instances allows the creation of more accurate decision profiles
compared with data sets with fewer instances. As the decision profiles are calculated
through the training instances it is desirable that there is a reasonable number of instances
for the creation of a reliable decision profile. Table 13 shows the average rank of all three
methods considering only data sets with more than a thousand instances: 20NG, Enron,
GnegativeGO, HumanGO, Image, Langlog, Reuters-K500, Scene, Water-quality, Yeast

and Yelp. As one may see, DTECC now wins in three out of six metrics.

Learner DTECC MEECC MVECC
Accuracy 1.318182  2.272727  2.409091
Precision 1.545450  1.909091  2.545455
Recall 1.909091  2.636364 1.454545
Subset accuracy — 2.227273 1.772727  2.000000
F-measure 1.318182 2272727  2.409091

Hamming Loss 1.818182 1.727273  2.454545

Table 13 — Average rank of the ECC methods using the evaluated fusion schemes for the
largest data sets in terms of number of instances.

The positive results on data sets with a larger number of instances was confirmed
by statistical tests. Whenever performed using all data sets they showed no statistically
significant difference on the overall results. However, these differences were found when
analyzing only the results on data sets with more than a thousand instances. The Friedman-
Nemenyi test was applied. First the Friedman test is performed to reject the null hypothesis,
and then proceed with a post-hoc analysis based on the Nemenyi method. For the Nemenyi
test it was used v = 0.1. Fig. 8 shows the critical difference diagrams. Wherever methods
are connected by a horizontal line, it means they are not significantly different. It can be
seen from the diagrams in fig. 8a and fig. 8b that the DTECC method is significantly
better on the Accuracy and F-measure metrics in the data sets evaluated. The DTECC
method is also the best on Precision, but it is not statistically better than the MEECC
method, as shown in fig. 8d. For the metrics Hamming Loss, Recall and Subset Accuracy,
respectively shown in fig. 8c, fig. 8e and fig. 8f, no statistically significant difference was
found between the DTECC method and the other methods.

The fusion methods running times were also compared. Since the running times of
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Figure 8 — Critical Difference (CD) diagrams obtained from the average ranking comparison
of the methods over the 11 data sets with more than 1000 instances: 20NG,
Enron, GnegativeGO, HumanGO, Image, Langlog, Reuters-K500, Scene, Water-
quality, Yeast and Yelp.

=&

S~

TEst time (5}
(=]

o
i

DTECC MEECC MVECC
Method

Figure 9 — Average of test runtime in seconds for each cross validation round on the
CAL500 data set.

the fusion methods depends mainly on the number of labels, the CAL500 data set, which
has the highest number of labels, was chosen to perform the runtime test. Fig. 9 reports
the average running times for each cross-validation round in seconds. One may observe

that there is virtually no difference in terms of execution time between the evaluated
methods.
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5.2 UDDTECC

For the UDDTECC method, in the experimental setup, the data set is divided into
10 folds, in each iteration of the cross-validation one of these folds is selected as the test
set and the remaining folds are divided into validation and training sets in the ratio of
33% (3 folds) and 67% (6 folds) respectively as shown in fig. 10. Each UDDTECC model
with ¢, € [0.0,0.25,0.5,0.75, 1] is then trained on the training set and validated on the
validation set. The results for each model are then compared according to a pre-selected
metric that is currently being evaluated (Accuracy, F-Measure, Subset Accuracy, and
Hamming Loss). The best model is then selected and trained using both the inner training
and the inner validation folds and finally applied to the test fold. After 10 iterations we
have the results for all folds in the original data set for the selected metric. The final result

of the experiment is the average of the metric over these 10 results.

As shown in the performance evaluation framework in algorithm 8 the total amount
of n patterns is randomly split into K stratified folds. The intermediate layer trains the
classifier with (K — 1) folds and tests the remaining fold in a usual K-fold cross validation
(CV) procedure (outer CV loop). However, before the training of the classifier is performed,
the best ¢; hyperparameter for the UDDTECC classifier is estimated in a tuning step.
The tuning is achieved by an inner layer (inner CV loop). The inner CV loop further
subdivides the training data of the outer CV loop into K — 1 stratified folds. 3 of these
folds are then used as internal validation and the remaining folds are used as internal
training. Each evaluated ¢; value is trained on the internal training folds and validated
on the internal validation fold. The ¢; value of the classifier with the best result on the

evaluated metric is then selected and used in the outer CV loop.

Training Test fold
A

& J J
Y Y

Inner Validation Inner Trainig

Figure 10 — Fold division used in the experiments.

To ensure an unbiased evaluation of the methods, all experiments use n = 50
classifiers in the ensemble, a threshold value of ¢ = 0.5 and Naive Bayes as a single-label
base classifier. Bayesian classifiers are often efficient when used as base classifiers of
ensembles (ANTONUCCI et al., 2013). The STACKECC method uses Classifier Chains as
its meta-classifer. Additional ECC parameters were defined as the default values defined
by their authors, e.g., size of each bag sample as a percentage of the training size is

set to 100, and the choice of sampling with replacement. By keeping the values of these
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parameters constant, one may get a better idea of the impact of the fusion scheme on the
final classification result, as this is the only difference that exists between the methods

used in the experiments.

Algorithm 8: The Performance Evaluation Framework.

Function PM <« ModelPerformance(D,K)

Input: n labelled patterns D from c classes, number of folds K (outer loop)

Output: Make K stratified folds. One fold is fixed as test, remaining folds are
train and tune. Calculate performance criterion for each combination
of round and fold and put into R x K performance matrix PM

// generate K stratified folds

fk;k': 1,...,K;

for k=1to K do // all folds

// training set of k-th fold

T—{AU...Ufe}\ fr;

// test set of k-th fold

V< fr;

P* < Tuning(7T);

C < trainclassifier( T, P* );

crit < testclassifier(C, V);

PM(k)< crit

end

end

Function P* < Tuning(D)
Input: Data set D
Output: Optimal hyperparameter set P* of classifier model
initialize best criterion maxcrit < 0;
// three first folds are used as inner validation
V <+ D[:3];
// remainder are used as inner training
T < DI[3:];
repeat // grid search for best hyperparameter set P*
generate hyperparameter candidate set P;
C < trainclassifier( 7, P );
crit < testclassifier(C, V);
if crit > maxcrit then
mazxcrit < crit;
P« P

end

until search completed;
end

5.2.1 Overall Datasets Results

Tables 14, 15, 16 and 17 show the results obtained by each method using Accuracy,

F-measure, Subset Accuracy and Hamming Loss metrics, respectively. Altogether with



62 Chapter 5. RESULTS AND DISCUSSION

the average performance, the rank achieved by the method is also shown in parenthesis.
The average ranking is presented in the last row of each table and the best results are
highlighted in bold face. At first glance, one may see that there is no method that is the

best in all data sets when evaluated by one of the metrics.

UDDTECC MEECC MVECC STACKECC

Dataset

3sourcesbbe1000 0.3219(1.0)  0.1526(4.0) 0.1547(3.0) 0.2852(2.0)
3sources guardian1000 0.2840(1.0) 0.0790(3.0) 0.0773(4.0) 0.2243(2.0)
3sources__inter3000 0.1195(2.0)  0.0088(3.0) 0.0059(4.0) 0.1538(1.0)
CAL500 0.2187(3.0)  0.2210(2.0) 0.2212(1.0) 0.1991(4.0)
Emotions 0.5336(1.0)  0.5322(2.0) 0.5301(3.0) 0.5141(4.0)
Enron 0.2510(1.0)  0.2448(2.0) 0.2444(3.0) 0.0863(4.0)
Genbase 0.2002(4.0)  0.2980(3.0) 0.3007(2.0) 0.3819(1.0)
GregativeGO 0.8990(1.5)  0.8983(3.0) 0.8990(1.5) 0.5649(4.0)
GpositiveGO 0.9113(1.0)  0.8931(4.0) 0.8959(3.0) 0.9085(2.0)
Image 0.3652(1.0)  0.3571(4.0) 0.3573(3.0) 0.3614(2.0)
Medical 0.0484(3.0)  0.3714(2.0) 0.3736(1.0) 0.0458(4.0)
Scene 0.4620(1.0)  0.4600(2.0) 0.4589(3.0) 0.4074(4.0)
VirusGO 0.8121(2.0)  0.8008(3.0) 0.8123(1.0) 0.6963(4.0)
Water-quality 0.3027(1.0)  0.3870(2.0) 0.3869(3.0) 0.3760(4.0)
Yeast 0.4261(3.0)  0.4294(2.0) 0.4309(1.0) 0.3821(4.0)
Avg. Rank 1.766667 2.733333 2.433333 3.066667

Table 14 — Results for Accuracy for the ECC using all the fusion schemes and data sets.

We note from Table 14 that the UDDTECC method obtained the best Accuracy
result in 9 of the 15 datasets evaluated. In second place we have the MVECC method with
5 wins, which, together with consistent results in the other datasets, gave it the second
best average ranking for Accuracy. The MEECC method did not obtain the best result
in any of the evaluated datasets, but its average results in most datasets gave it a better
average ranking than the STACKECC method, which, despite obtaining the best result in

two of the evaluated datasets, was the worst overall.
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UDDTECC MEECC MVECC STACKECC

Dataset

3sourcesbbe1000 0.3979(1.0)  0.1669(4.0) 0.1699(3.0) 0.3618(2.0)
3sources_guardian1000 0.3360(1.0) 0.0866(3.0) 0.0854(4.0) 0.3053(2.0)
3sources__inter3000 0.1648(2.0)  0.0098(3.0) 0.0078(4.0) 0.2238(1.0)
CALS500 0.3446(3.0)  0.3477(2.0) 0.3483(1.0) 0.3217(4.0)
Emotions 0.6260(3.0)  0.6278(1.0) 0.6270(2.0) 0.6175(4.0)
Enron 0.3671(1.0)  0.3601(2.0) 0.3596(3.0) 0.1554(4.0)
Genbase 0.2915(4.0)  0.3071(3.0) 0.3104(2.0) 0.4339(1.0)
CnegativeGO 0.9166(2.0) 0.9164(3.0) 0.9173(1.0) 0.6841(4.0)
GpositiveGO 0.9229(1.0)  0.9005(4.0) 0.9056(3.0) 0.9210(2.0)
Tmage 0.4930(1.0)  0.4809(3.0) 0.4812(2.0) 0.4801(4.0)
Medical 0.0911(3.0)  0.4072(2.0) 0.4094(1.0) 0.0838(4.0)
Scene 0.5737(1.0)  0.5720(2.0) 0.5715(3.0) 0.5416(4.0)
VirusGO 0.8334(2.0)  0.8261(3.0) 0.8368(1.0) 0.7708(4.0)
Water-quality 0.5371(1.0)  0.5333(2.0) 0.5329(3.0) 0.5208(4.0)
Yeast 0.5445(3.0)  0.5452(2.0) 0.5466(1.0) 0.5028(4.0)
Avg. Rank 1.933333 2.600000 2.266667 3.200000

Table 15 — Results for F-Measure for the ECC using all the fusion schemes and data sets.

The results of the F-Measure metric are presented in table 15. UDDTECC again
proved to be the best both in terms of average ranking and number of best results,
outperforming the others in 7 of the 15 bases evaluated. MVECC kept the second average
ranking with 5 wins and consistent results in the other datasets. STACKECC was the best
in 2 of the evaluated datasets but often showed the worst results, which put it in the last
position behind MEECC method.
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UDDTECC MEECC MVECC STACKECC

Dataset

3sources_ bbc1000 0.1786(1.0)  0.1162(2.5) 0.1162(2.5) 0.0996(4.0)
3sources_guardian1000 0.1423(1.0)  0.0596(2.0) 0.0562(3.0) 0.0528(4.0)
3sources__inter3000 0.0180(1.0)  0.0059(2.5) 0.0000(4.0) 0.0059(2.5)
CALS500 0.0000(2.5)  0.0000(2.5) 0.0000(2.5) 0.0000(2.5)
Emotions 0.2326(2.0)  0.2361(1.0) 0.2310(3.0) 0.1940(4.0)
Enron 0.0094(1.0)  0.0047(3.0) 0.0053(2.0) 0.0000(4.0)
Genbase 0.0167(4.0)  0.2764(2.0) 0.2779(1.0) 0.2388(3.0)
GnegativeGO 0.8441(2.0)  0.8441(2.0) 0.8441(2.0) 0.2443(4.0)
GpositiveGO 0.8805(1.0)  0.8709(2.5) 0.8670(4.0) 0.8709(2.5)
Image 0.0720(4.0)  0.0760(2.0) 0.0755(3.0) 0.0860(1.0)
Medical 0.0000(4.0) 0.2710(2.0) 0.2730(1.0) 0.0010(3.0)
Scene 0.1824(1.0)  0.1803(2.0) 0.1778(3.0) 0.0657(4.0)
VirusGO 0.7395(2.0)  0.7250(3.0) 0.7398(1.0) 0.4745(4.0)
Water-quality 0.0019(2.5)  0.0019(2.5) 0.0019(2.5) 0.0019(2.5)
Yeast 0.1088(1.5) 0.1088(1.5) 0.1084(3.0) 0.0732(4.0)
Avg. Rank 2.033333 2.200000 2.500000 3.266667

Table 16 — Results for Subset Accuracy for the ECC using all the fusion schemes and data
sets.

The Subset Accuracy results presented in table 16 show more balanced results
between the UDDTECC and MEECC methods. Still the UDDTECC method stood out
as the best in terms of average result. MVECC obtained the third best average ranking,
doing considerably better than the STACECC method in most of the datasets evaluated.
Observing the relatively low results we note the difficulty of optimizing this metric on
datasets with large numbers of labels for all the methods evaluated. The CAL500 dataset,
which has 174 labels, makes this difficulty evident with all methods obtaining the same

value of 0.0, i.e., no total hits.
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UDDTECC MEECC MVECC STACKECC

Dataset

3sources bbc1000 0.2174(2.0)  0.2155(1.0) 0.2179(3.0) 0.3433(4.0)
3sources_guardian1000 0.2037(1.5) 0.2037(1.5) 0.2059(3.0) 0.4411(4.0)
3sources__inter3000 0.2011(2.5) 0.2001(1.0) 0.2011(2.5) 0.4643(4.0)
CALS500 0.2899(3.0)  0.2855(1.0) 0.2892(2.0) 0.3737(4.0)
Emotions 0.2468(2.5)  0.2454(1.0) 0.2468(2.5) 0.2684(4.0)
Enron 0.1737(1.0)  0.1797(2.0) 0.1812(3.0) 0.6141(4.0)
Genbase 0.1704(4.0)  0.0341(2.0) 0.0339(1.0) 0.1251(3.0)
GnegativeGO 0.0234(2.0)  0.0234(2.0) 0.0234(2.0) 0.1405(4.0)
GpositiveGO 0.0443(1.5)  0.0462(4.0) 0.0453(3.0) 0.0443(1.5)
Image 0.4005(2.0)  0.4162(3.0) 0.4169(4.0) 0.3929(1.0)
Medical 0.5488(4.0)  0.0248(1.5) 0.0248(1.5) 0.5162(3.0)
Scene 0.2324(1.0)  0.2337(2.0) 0.2345(3.0) 0.2619(4.0)
VirusGO 0.0665(1.5) 0.0674(3.0) 0.0665(1.5) 0.1172(4.0)
Water-quality 0.3998(1.0)  0.4233(3.0) 0.4239(4.0) 0.4111(2.0)
Yeast 0.3018(3.0)  0.2924(1.0) 0.2928(2.0) 0.3615(4.0)
Avg. Rank 2.166667 1.933333  2.533333 3.366667

Table 17 — Results for Hamming Loss for the ECC using all the fusion schemes and data
sets.

The results presented in table 17 for the Hamming loss metric differ largely from the
others. In this metric, unlike the other results, the UDDTECC method ranked second and
the MEECC method achieved the best average result. Nine best results were obtained by
MEECC versus seven obtained by the UDDTECC method. The MVECC and STACKECC

methods ranked third and fourth on average, respectively.

Table 18 — Average rank of the ECC methods using the evaluated fusion schemes for all

datasets.
Accuracy F-measure Hamming Subset
Learner Loss  Accuracy
UDDTECC 1.766667 1.933333  2.166667 2.033333
MEECC 2.733333  2.600000 1.933333  2.200000
MVECC 2433333  2.266667  2.533333  2.500000

STACKECC  3.066667  3.200000  3.366667  3.266667

Table 18 shows the average rank of all methods for each evaluated metric. The
UDDTECC fusion method version was superior on average for the Accuracy, F-measure
and Subset Accuracy metrics, and it ranks second in Hamming Loss. The only method other
than UDDTECC that achieved the top rank in a metric was the MEECC method in the
Hamming Loss metric. The MVECC method presented consistent results, ranking second
or third depending on the metric evaluated. The STACKECC method stood out negatively,
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presenting the worst average result in all metrics evaluated. One possible explanation for
these poor results is the use of all support values in the classification process performed by
the meta-classifier. By using all the support values generated in the classification we end
up passing to the meta-classifier values that are not correlated to the label being evaluated.
These values do not contribute to the result of the method and end up working as noise in
the classification process. This being true, it demonstrates the importance of the selection
process of correlated labels in UDDTECC since the indiscriminate inclusion of all support

values for all labels is actually detrimental to the final result.

5.2.2 Higher Diversity Datasets Results

Diversity indicates the fraction of label sets present in a dataset relative to the
maximum possible number of sets. Thus, lower diversity values indicate that a dataset has
more predictable label sets relative to datasets with high diversity values. When we look
specifically at the experimental results for datasets with higher diversity (Diversity > 0.1)
we see that the best UDDTECC results are concentrated exactly in datasets with this
characteristic. The table 19 table shows the average results of the analyzed metrics when
we focus on the 11 bases (3sources bbc1000, 3sources  guardian1000, 3sources inter3000,
CAL500, Emotions, Enron, GpositiveGO, Image, Scene, VirusGO, Water-quality) whose
Diversity > 0.1.

Table 19 — Average rank of the ECC methods using the evaluated fusion schemes for all

datasets.
Accuracy F-measure Hamming Subset
Learner Loss  Accuracy
UDDTECC 1.363636 1.545455 1.772727 1.727273
MEECC 2.818182 2.636364  2.045455  2.318182
MVECC 2.818182  2.636364  2.863636  2.772727

STACKECC  3.000000  3.181818  3.318182  3.181818

It can be seen that in the set of datasets with such a characteristic, the UDDTECC
method is superior in all metrics evaluated. These results seem to show a tendency for
UDDTECC to be better suited to datasets where labelsets results are less predictable.

Statistical tests were performed in order to prove such results in the two scenarios
presented. Although no significant difference was identified when analyzing the total set of
datasets, analyzing the datasets with higher diversity shows a slightly different scenario.
The Friedman-Nemenyi statistical test was selected and applied. First the Friedman test is
performed to reject the null hypothesis, and then proceed with a post-hoc analysis based

on the Nemenyi method. For the Nemenyi test it was used a = 0.1.

To better illustrate the test results, critical difference diagrams have been generated.
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Figure 11 — Critical difference (CD) diagrams for comparing the average of the methods
evaluated in the 11 data sets with the highest diversity.

Wherever methods are connected by a horizontal line, it means they are not significantly
different. It can be seen from the diagrams in fig. 11a that the UDDTECC method is

significantly better on the Accuracy metric in the data sets evaluated.

The UDDTECC method is also the best on F-Measure, Hamming Loss and Subset
Accuracy, respectively shown in fig. 11b, fig. 11c and fig. 11d, but no statistically significant
difference was found between UDDTECC and the MEECC and MVECC methods.

5.2.3 DTECC x UDDTECC

This section compares the results of the two methods proposed in this work: DTECC

and UDDTECC. Since the experiments were performed separately, the DTECC method
was tested on a larger number of datasets compared to the UDDTECC method. The
experiments performed with DTECC were performed before the UDTECC experiments
and therefore had more time available for execution and consequently have results in a
larger number of data sets. Thus, the experimental results presented so far cannot be
compared directly. In order to provide a fairer comparison between the methods only
results where both methods have been evaluated were considered.
Three comparison scenarios were performed: (a) the general scenario one uses all datasets
where both methods were evaluated; (b) the scenario with datasets with higher number of
instances where the DTECC method showed statistical difference compared to MVECC
and MEECC for the Accuracy metric; and (c) the scenario with datasets with higher
diversity where the UDDTECC method showed the best experimental results.

Table 20 compares the results of the two experiments performed using the 10
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mutually occurring datasets: Water-quality, VirusGO, Medical, GpositiveGO, Gnegati-
veGO, Genbase, Enron, Emotions, CAL500, 3sources inter3000, Yeast, Image, Scene.
With these results we see that the UDDTECC method outperforms the DTECC method in
all the metrics evaluated. Contrasting to the result presented in section 5.2.1, the MEECC
method ranked the best in Subset Accuracy while previously was the second behind the
STACKECC method. The inclusion of the DTECC method and the use of a subset of
datasets used there modified the results enough to change the ranking of the methods in

this metric.

Table 20 — Average rank of the ECC methods using the evaluated fusion schemes for all

datasets.
Accuracy F-measure Hamming Subset
Learner Loss  Accuracy
DTECC 3.230769  2.923077  2.923077  3.423077
MEECC 3.230769  3.076923 2.500000 2.500000
MVECC 2.730769  2.538462  2.961538  2.807692

STACKECC  3.846154  4.076923  3.961538  3.692308
UDDTECC  1.961538 2.384615  2.653846  2.576923

5.2.3.1 Larger Datasets

Table 21 — Average rank of the ECC methods using the evaluated fusion schemes for the
larger datasets.

Accuracy F-measure Hamming Subset
Learner Loss  Accuracy
DTECC 2.500000  2.250000  2.250000  3.083333
MEECC 3.333333  3.166667  2.916667  2.583333
MVECC 3.166667  2.916667  3.750000  2.916667

STACKECC  4.500000  5.000000  4.000000  4.000000
UDDTECC  1.500000 1.666667 2.083333 2.416667

The average ranking results of the methods on data sets with more than 1000
instances are presented in table 21. Despite the good results presented by the DTECC
method in these databases, the UDDTECC method presented the best result in all metrics
evaluated. The results presented in section 5.1 show that the performance data sets
with a larger number of instances are the main strength of the DTECC method but
the UDDTECC method achieved results that exceeded them, showing that the use of
the method that takes into account the dependencies between labels is preferable. The
inclusion of the DTECC method and the use of a subset of the datasets modified the

results enough to change the ranking of the methods in this metric.
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5.2.3.2 Higher Diversity

As shown in section 5.2.2, the UDDTECC method tends to be superior to the
other methods especially on datasets with more diversity. As shown in table 22, this trend
holds when we include the DTECC method in the comparison. The UDDTECC method
outperforms the DTECC and all other methods in all metrics evaluated for the subset of
data sets with this property.

Table 22 — Average rank of the ECC methods using the evaluated fusion schemes for higher
diversity datasets.

Accuracy F-measure Hamming Subset
Learner Loss  Accuracy
DTECC 2.888889  2.500000  2.611111  3.166667
MEECC 3.444444 3.222222  2.833333  2.722222
MVECC 3.277778  3.055556  3.500000  3.222222

STACKECC  3.888889 4.222222  3.944444  3.555556
UDDTECC  1.500000 2.000000 2.111111 2.333333

5.2.4 Comparison with Baseline Methods

The results shown so far directly compare the fusion schemes used in the ECC
classifier. In order to give a broader perspective and determine if the use of ensemble of
classifiers was indeed positive on the considered data sets, results are presented including
two traditional multi-label classifiers that are not ensemble based: Binary Relevance (BR)
and Classifier Chain (CC).

The results shown in table 23 demonstrate the advantage of using the ensemble-
based method over more traditional classification schemes where only one classifier is used.
ECC-based methods performed better in all metrics of the experiments, the UDDTECC
method with 3 wins and with MEECC winning in Hamming Loss.

Table 23 — Comparison of ECC-based methods with Binary Relevance and Classifier Chain.

Accuracy F-measure Hamming Subset
Learner Loss  Accuracy
BR 4.266667  3.933333  4.400000  4.033333
cC 3.566667  3.466667  4.400000  3.400000
UDDTECC  2.200000 2.466667  2.433333 2.566667
MEECC 3.600000  3.600000 2.133333  2.966667
MVECC 3.166667  3.200000  2.733333  3.233333

STACKECC  4.200000  4.333333  4.900000  4.800000
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6 CONCLUSIONS

As the complexity of classification systems continually increases over the years,
multi-label classification has became an important factor in current classification systems
(LUGHOFER, 2022). Many real-world problems can be best modeled as classification
problems where multiple labels can be assigned to each example. And, because these pro-
blems are more complex compared to single-label classification problems, the development
of robust and efficient classifiers is required. In this context, ensemble of classifiers allow
complex multi-label classification problems to be solved elegantly by combining the results

of simpler classifiers.

In this context, we propose the UDDTECC method. A trainable multi-label classifier
fusion method based on the single-label classifier combination scheme called Decision
Templates. The main features that distinguish the UDDTECC method from other fusion
methods typically used in multi label classification are its ability to adapt to the problem
it is being used on and the exploitation of unconditional dependencies between problem
labels. Methods commonly used in Multi-Label ensembles, such as MV and ME, consist
of applying fixed and invariant rules regardless of the problem to which they are being

applied.

In this study, the UDDTECC method is evaluated using a cross-validation scheme
in which it is directly compared to the most commonly used fusion schemes in multi-label
classifier fusion: Majority Vote and MeanEnsemble. STACKECC, another trainable fusion
model is also included in the tests to see how the UDDTECC would perform against a

Stacking method given the similarity between the two strategies.

Of the four metrics evaluated, the UDDTECC method was the best on average in
three of them: Accuracy, F-measure and Subset-Accuracy. In Hamming Loss, the method
was in second place, losing to MEECC in terms of average results. The STACKECC
method, on the other hand, despite obtaining competitive results in very few datasets,
obtained the worst average result in all the metrics evaluated, showing that the strategy of
using trainable functions is not necessarily superior to fixed combination rules in all cases.
The use of all unfiltered information by the STACKECC method may have introduced
noise (information about labels unrelated to what is being evaluated) which would explain
the low performance of the method. Using label information that does not correlate to
what is being evaluated can be detrimental in the classification process. In the way it
was proposed, the meta-classifier is responsible for filtering the useful attributes and
performing the classification process, a strategy that did not prove to be good enough in

the experiments.
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This work made some simplifying choices for making the experiments lighter. The
Naive Bayes classifier was used for not requiring hyperparameter tuning. In addition, the
threshold value of 0.5 was used by the MVECC and MEECC methods in all experiments
with different data sets. Therefore, future work should expand the methodology of expe-
riments including other classifiers beyond Naive Bayes and performing hyperparameter

optimization using a nested cross-validation model selection procedure.

The incorporation of the proposed DT method in other multi-label classification
methods, such as Ensemble of Pruned Sets (EPS) (READ; PFAHRINGER; HOLMES,
2008), Ensemble of Subset Learners (ESL) (TENENBOIM-CHEKINA; ROKACH; SHA-
PIRA, 2010), and RAndom k-labELsets (RAKEL) (TSOUMAKAS; VLAHAVAS, 2007)

should also be tested, since its operation is not intrinsically dependent on the ECC method.

Execution time and computational cost were limiting factors in the choice of
databases used in this study. If more time and computational resources are available,

several multi-label datasets can be added to the experimental results.

A version of the STACKECC method in which only label values that have a
correlation with what is being evaluated are used, similar to what is done with UDDTECC,
can be proposed and tested. If the result is significantly better than that presented by
STACKECC, the effectiveness of the proposed technique would be demonstrated.

Overall, it is best to tune the threshold value for each data set. New experiments
adjusting the threshold parameters can be done for the MVECC and MEECC methods.

The Naive Bayes classifier was used in all experiments performed in order to ensure
that all methods tested had a fair comparison. Besides the method used, it would be
interesting to verify the behavior of the evaluated methods when using another base

classifier such as kNN and Random Forest.

The evaluation of other statistical methods of correlation between nominal varia-
bles besides the ¢ coefficient, for example y? and mutual information, employed in the

experiments, is also a possibility for future work.

It can also be argued that the UDDTECC method by including confidence values
for all related labels ends up taking away some of the importance of the label that is being
classified. Based on this a new method can be developed where the values of confidence
are weighted in order to preserve the importance of the confidences of the label being

classified.
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Figure 1: Selected ¢. by the DTECCd method in the experiments by metric.
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