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Resumo

Taxonomias exercem um papel central emmodelagem conceitual de domínio, tendo um impacto
direto tanto na Ciência da Computação (em áreas como Representação do Conhecimento,
Engenharia de Ontologias e Engenharia de Software) quanto na Ciência da Informação. Apesar
disso, há pouca orientação sobre como criar taxonomias de alta qualidade, sendo exceções
notáveis ametodologia OntoClean e a linguagem demodelagem conceitual orientada a ontologia
OntoUML. Essas técnicas levam em consideração as meta-propriedades ontológicas de rigidez e
sortalidade de tipos para estabelecer regras bem fundamentadas sobre a formação de estruturas
taxonômicas. A meta-propriedade de rigidez define se um tipo se aplica essencialmente ou
contingentemente a suas instâncias, enquanto a sortalidade define se um tipo provê um princípio
de identidade uniforme para suas instâncias. Nesta dissertação, mostramos como utilizar
as regras formais subjacentes a essas técnicas para construir taxonomias que são corretas
por construção. Nós definimos um conjunto de operações que preservam a corretude para
sistematicamente introduzir tipos e relações de especialização em estruturas taxonômicas. Além
de considerar a micro-teoria ontológica dos tipos subjacente a OntoClean e OntoUML, nós
também aplicamos a micro-teoria MLT (Teoria de Multi-Níveis) de tipos de alta ordem que
nos permite lidar com taxonomias multi-nível baseadas no powertype pattern, nas quais uma
entidade pode ser um tipo e uma instância ao mesmo tempo. Para validar nossa proposta,
nós formalizamos as operações de construção de modelos como uma gramática de grafos que
incorpora ambas as micro-teorias. Uma gramática de grafos é um modo formal de se especificar
um grafo inicial e um conjunto de regras de transformação de grafos. Cada grafo representa
um modelo, ou seja, uma taxonomia. Uma regra de transformação consiste em precondições
que devem ser verdadeiras para um modelo para que a regra seja aplicável, e um conjunto de
operações de criação e deleção para vértices e arestas. O conjunto de modelos alcançáveis pela
aplicação das regras da gramática é chamado de linguagem da gramática. Aplicamos técnicas
de verificação automática sobre a linguagem da gramática para mostrar que a gramática de
grafos é correta, ou seja, que todas as taxonomias produzidas pelas regras da gramática são
corretas, pelo menos até certo tamanho. Também mostramos que as regras podem gerar todas
as taxonomias corretas até certo tamanho (um resultado de completude).

Palavras-chave: taxonomias · modelagem conceitual · ontologias · gramáticas de grafo ·
corretude por construção



Abstract

Taxonomies play a central role in conceptual domain modeling, having a direct impact in areas
such as knowledge representation, ontology engineering, and software engineering, as well as
knowledge organization in information sciences. Despite this, there is little guidance on how
to build high-quality taxonomies, with notable exceptions being the OntoClean methodology,
and the ontology-driven conceptual modeling language OntoUML. These techniques take into
account the ontological meta-properties of rigidity and sortality of types to establish well-
founded rules on the formation of taxonomic structures. The rigidity meta-property defines
whether a type applies essentially or contingently to its instances, while the sortality defines
whether a type provides a uniform principle of identity for its instances. In this dissertation, we
show how to leverage the formal rules underlying these techniques in order to build taxonomies
which are correct by construction. We define a set of correctness-preserving operations to
systematically introduce types and subtyping relations into taxonomic structures. In addition
to considering the ontological micro-theory of endurant types underlying OntoClean and
OntoUML, we also employ the MLT (Multi-Level Theory) micro-theory of high-order types,
which allows us to address multi-level taxonomies based on the powertype pattern, in which
an entity can be both a type and an instance at the same time. To validate our proposal, we
formalize the model building operations as a graph grammar that incorporates both micro-
theories. A graph grammar is a formal way to specify an initial graph and a set of graph
transformation rules. Each graph represents a model, in our case, a taxonomy. A transformation
rule consists of preconditions that must be true for a model in order to the rule be applicable,
and a set of creation and deletion operations for vertices and edges. The set of models reachable
applying the grammar rules is called the grammar language. We apply automatic verification
techniques over the grammar language to show that the graph grammar is sound, i.e., that all
taxonomies produced by the grammar rules are correct, at least up to a certain size. We also
show that the rules can generate all correct taxonomies up to a certain size (a completeness
result).

Keywords: taxonomies · conceptual modeling · ontologies · graph grammars · correctness by
construction
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1 Introduction

In this chapter, we present an overview of this work, briefly presenting taxonomies, their
importance, and the gap in representation systems to guide the construction of high-quality
taxonomies. Then, we present some representation systems that address the issues of taxonomy
quality partially, motivating this work by highlighting their current limitations. Finally, we
describe our contribution, showing how taxonomies can be thought as the application of certain
modeling patterns captured in graph grammars, and present the structure of this work.

1.1 Context and Motivation

Taxonomies are structures connecting types via subtyping, i.e., type specialization
relations. These structures are fundamental for conceptual domain modeling, and have a
central organizing role in areas such as knowledge representation, ontology engineering,
object-oriented modeling, as well as in knowledge organization in information sciences (e.g., in
the construction of vocabularies and other lexical resources). Despite taxonomies’ key role in
all these areas, there is little guidance in the literature on how to build high-quality taxonomies,
i.e., taxonomies that take into account ontological distinctions.

A notable exception is OntoClean (GUARINO;WELTY, 2004), a pioneering methodology
providing a number of guidelines for diagnosing and repairing taxonomic relations that are
inconsistent from an ontological point of view. These guidelines are grounded on a number of
formal meta-properties, i.e., properties characterizing types. Derived from these meta-properties,
the methodology offers a number of formal rules governing how types characterized by different
meta-properties can be associated to each other in well-formed taxonomies.

OntoClean has been successfully employed to evaluate and suggest repairs to several
important resources, e.g., WordNet (OLTRAMARI et al., 2002). However, being a methodology,
OntoClean does not offer a representation mechanism for building taxonomies according to its
prescribed rules. To address this problem, a UML profile (GUIZZARDI et al., 2004) was proposed
containing modeling distinctions extending the meta-properties and rules of OntoClean. This
UML profile would later become the basis of the OntoUML modeling language (GUIZZARDI,
2005), incorporating syntactic rules to prevent the construction of incorrect taxonomies in
conceptual models. In (GUIZZARDI et al., 2018), the language has its full formal semantics
defined in terms of a (proved-consistent) ontological theory, and its abstract syntax is defined
in terms of an extension of the UML 2.0 metamodel, redesigned to reflect the ontological
distinctions and axiomatizations put forth by that ontological theory.

As argued in (RUY et al., 2017), instead of leveraging on this axiomatization by proposing
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methodological rules (OntoClean) or semantically motivated syntactical constraints (OntoUML),
a representation system based on this ontological theory could employ a more productive
strategy, leveraging on the fact that formal constraints from the theory impose a correspondence
between each particular type of type (characterized by ontological meta-properties) and certain
modeling structures (or modeling patterns). In other words, a representation system grounded
on this ontological theory is a pattern language, i.e., a system whose basic building blocks are
not low-granularity primitives such as types and relations, but higher-granularity patterns
formed by types and relations.

In this work, we also employ an additional foundational theory called MLT (Multi-
Level Theory) (ALMEIDA et al., 2018; CARVALHO; ALMEIDA, 2018), which allows us to
address taxonomies that also include high-order types, i.e.,multi-level taxonomies. As shown in
(FONSECA et al., 2021; BRASILEIRO et al., 2016a; DADALTO et al., 2021), multi-level taxonomies
are observed at scale in practice and suffer from a large number of modeling errors that can be
attributed to the inadequate use of subclassing and instantiation in tandem. By incorporating
the rules of MLT in a graph grammar, we can prevent such errors from occurring.

1.2 Contribution

This work contributes to the foundations of rigorous conceptual modeling by identifying
the set of rules that should be considered as primitives in the design of correct taxonomies
(including multi-level ones) and formalizing it as a graph grammar that, starting from an initial
taxonomy, allows us to build only correct taxonomies. To put this more precisely: in the area
of formal verification, statements about a system are usually split between soundness and
completeness properties. The soundness of a modeled system ensures that only desirable models
are possible. In our setting, this means that only correct taxonomies can be part of the grammar
language. On the other hand, completeness ensures that if a desirable system configuration
can exist “in the real world”, then a corresponding model is reachable in the formalization. In
our setting, this means that any correct taxonomy can be created using the proposed graph
grammar.

The identification of rules in the design of correct taxonomies is done in a metamodel-
independent way, so the results presented here can be incorporated into different modeling
languages (e.g., ORM (HALPIN; MORGAN, 2010), whose development was already influenced
by the ontological distinctions underlying OntoUML) as well as different tools used by different
communities (e.g., as a modeling plugin to Semantic Web tools such as Protégé1). The quality
of the set of taxonomy building rules is ensured with some activities of formal verification
regarding their soundness and completeness.
1 <https://protege.stanford.edu/>

https://protege.stanford.edu/
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1.3 Approach

The set of model building operations for the construction of correct taxonomies is
formalized in this work as a graph grammar. A graph grammar is a formal way to specify an
initial graph and a set of graph transformation rules. Each graph represents a model, in our
case, a taxonomy. A transformation rule consists of preconditions that must be true for a model
in order to the rule be applicable, and a set of creation and deletion operations for vertices and
edges. The set of models reachable applying the grammar rules is called the grammar language.

In (ZAMBON; GUIZZARDI, 2017), the authors used the GROOVE graph transformation
tool (GHAMARIAN et al., 2012) to make a first attempt to formalize a representation system
grounded on the underlying theory of endurant types from OntoUML as a true pattern grammar,
i.e., as a graph grammar that reflects this theory, with the grammar capturing the language
patterns and their possible relations as graph transformation rules.

Later, in (BATISTA et al., 2021), we used GROOVE to define a graph grammar over a
smaller scope of the theory of endurant types from OntoUML. By employing the state space
exploration mechanism supported by GROOVE, we managed to detect important omissions in
the rule set proposed in (ZAMBON; GUIZZARDI, 2017) and, inspired by that work, to gradually
define our own graph grammar.

Being able to employ automatic verification tools and techniques over the grammar lan-
guage is one major advantage of capturing ontological patterns as a graph grammar (BATISTA
et al., 2021). We were able to show that the graph grammar presented in (BATISTA et al., 2021)
is sound and complete up to a certain size, i.e., that all models produced by the grammar rules
are correct (soundness); and that the rules can generate all correct models (completeness). Such
formal graph transformation rules thus comprise a framework that allows the user to build
models which are correct by construction. This framework could be incorporated in a graphical
tool that, by selecting a transformation rule, the entities in which the selected rule could be
applied would be highlighted; and that, by selecting an entity, the applicable rules would be
highlighted. Such a graphical tool could be used to prototype taxonomies or participate in the
construction of conceptual models involving concepts beyond the scope of the present work.

Here, we expand the work started in (BATISTA et al., 2021) with considerations about
our verification scope, and also employing a foundational theory called MLT (Multi-Level
Theory) (ALMEIDA et al., 2018; CARVALHO; ALMEIDA, 2018), which allows us to address
taxonomies that also include high-order types, i.e., multi-level taxonomies, incorporating the
rules of MLT in a graph grammar. This new MLT-based grammar is then combined with the
original OntoUML graph grammar from (BATISTA et al., 2021), to provide a comprehensive
pattern grammar for multi-level ontology-based conceptual modeling.
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1.4 Structure

The remainder of this dissertation is structured as follows. In Chapter 2, we present
the required theoretical foundations and discuss related work. In Chapter 3, we present and
assess the first graph grammar, which corresponds to the theory of endurant types underlying
OntoClean and OntoUML. In Chapter 4, we address the graph grammar corresponding to the
MLT Multi-Level Theory, which is again formalized and assessed. In Chapter 5, both graph
grammars are combined, leading us to correct ontology-based multi-level taxonomies. Finally,
Chapter 6 presents our concluding remarks.
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2 Background

This chapter covers the background elements employed in this work, including graph
grammars (Section 2.1), the ontological distinctions underlying the Unified Foundational On-
tology (UFO) that form the first micro-theory employed (Section 2.2), the rules in the MLT
Multi-Level Theory that form the second micro-theory (Section 2.3) and related work (Sec-
tion 2.4).

2.1 Graph Grammars

Graph transformation (or graph rewriting) (HECKEL, 2006) has been advocated as a
flexible formalism, suitable for modeling systems with dynamic configurations or states. This
flexibility is achieved by the fact that the underlying data structure, that of graphs, is capable
of capturing a broad variation of systems. Some areas where graph transformation is being
applied include visual modeling of systems, the formal specification of model transformations,
and the definition of graph languages, to name a few (ZAMBON, 2013; GHAMARIAN et al.,
2012).

The core concept of graph transformation is the rule-based modification of graphs,
where each application of a rule leads to a graph transformation step. A transformation rule
specifies both the necessary preconditions for its application and the rule effect (modifica-
tions) on a host graph. The modified graph produced by a rule application is the result of the
transformation.

In this work, we use graph transformations to formally model the operations for the
construction of a taxonomy. A set of graph transformation rules can be seen as a declarative
specification of how the construction can evolve from an initial state, represented by an initial
host graph. This combination of a rule set plus an initial graph is called a graph grammar, and
the (possibly infinite) set of graphs reachable from the initial graph constitute the grammar
language.

2.1.1 Graphs

Graphs and diagrams provide a simple and powerful approach to a variety of problems
that are typical to computer science in general, and software engineering in particular. In fact,
for most activities in the software process, a variety of visual notations have been proposed,
including state diagrams, Structured Analysis, control flow graphs, architectural description
languages, function block diagrams, and the UML family of languages. These notations pro-
duce models that can be easily seen as graphs and thus graph transformations are involved,
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either explicitly or behind the scenes, when specifying how these models should be built and
interpreted, and how they evolve over time and are mapped to implementations. At the same
time, graphs provide a universally adopted data structure, as well as a model for the typology
of object-oriented, component-based and distributed systems. Computations in such systems
are therefore naturally modelled as graph transformations, too (HECKEL, 2006).

Graphs provide the most basic mathematical model for entities and relations. A graph
consists of a set of vertices V and a set of edges E such that each edge e in E has a source
and a target vertex s(e) and t(e) in V, respectively (HECKEL, 2006). The vertices (or the edges)
can be labeled, having a label that suggests an interpretation for the graph with respect to
corresponding real-world entities.

2.1.2 The GROOVE Graph Transformation Tool

Graphs in GROOVE consist of nodes (vertices), which can be typed, and edges. An edge
is a directed labeled arrow between two nodes.

Graphs are transformed by applying rules. A rule consists of the following:

• A pattern that must be present in the host graph in order for the rule to be applicable;

• Subpatterns that must be absent in the host graph in order for the rule to be applicable;

• Elements (nodes and edges) to be deleted from the graph;

• Elements (nodes and edges) to be added to the graph.

All these elements are combined into a single graph; colors and shapes are used to
distinguish them. Alternatively, one may think in terms of application conditions and modifica-
tions: of the former, we distinguish positive (which must be present in order to apply a rule)
and negative (which must be absent in order to apply a rule) ones, whereas of the latter, we
distinguish deletion and creation of elements (GHAMARIAN et al., 2012).

Figure 1 – Example of GROOVE transformation rule.

• The black (continuous thin) “reader” elements, in Figure 1 the nodes A and B and the
edge labeled ‘parent’ between them, must be present and are preserved – in fact, they
form a positive application condition;
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• The red (dashed thick) “embargo” elements must be absent in the graph, in Figure 1 the
nodes A and C and the edges labeled ‘child’ from the node B to them – in fact, each
connected subgraph of embargo elements forms a negative application condition;

• The blue (dashed thin) “eraser” elements, in Figure 1 the node D and the edge labeled
‘child’ from the node B to it, must be present and are deleted;

• The green (continuous thick) “creator” elements, in Figure 1 the node C and the edge
labeled ‘child’ from the node B to it, are created.

For the rule depicted in Figure 1 be applicable, we need to have a model with a node B
with an edge labeled ‘parent’ pointing to a node A and an edge labeled ‘child’ pointing to a
node D. Besides, an edge labeled ‘child’ from this node B to either a node A or a node C must
be absent. When the rule is applied, both the edge labeled ‘child’ from node B to node D and
the node D are deleted. And a node C and an edge labeled ‘child’ from the node B to this new
node C is created. An application of the rule depicted in Figure 1 is illustrated in Figure 2.

(a) source-graph (b) target-graph

Figure 2 – An application of the example rule depicted in Figure 1.

The label of a given edge in an application condition may end with one of the symbols
‘*’ and ‘+’. The symbol ‘*’ is used to represent a condition with zero or more edges with the
same label, while the symbol ‘+’ is used to represent a condition with one or more edges with
the same label. Finally, the symbol ‘!’ at the beginning of a edge label is used in GROOVE as
a negation. If used in a positive application condition, it represents the absence of an edge
with that label and its use is equivalent to the use of the same label in a negative application
condition. If the symbol ‘!’ is used in a negative application condition, it represents the forbidden
absence (not the presence) of an edge with that label. To illustrate the concept of the forbidden
absence of an edge, consider the transformation rule shown in Figure 3, that is applicable in
the graphs of Figures 4(a, b), but not of Figure 4(c). Note that an edge ‘children’ from the node
A to a node D must be present to the absence of an edge ‘children’ from the node B to a node
D be forbidden.

Figure 3 – Example of a transformation rule with a forbidden absence.



Chapter 2. Background 20

(a) forbidden-
absence-a

(b) forbidden-
absence-
b

(c) forbidden-
absence-c

Figure 4 – Graphs to illustrate the forbidden absence applicability.

The core functionality of GROOVE is to recursively apply one of all rules from a prede-
fined set (the graph transformation system) to a given start graph, and to all graphs generated
by such applications. This results in a state space consisting of the generated graphs (GHAMAR-
IAN et al., 2012). The combination of a start graph with a graph transformation system is called
a graph grammar.

A graph grammar may include type graphs that determine the allowed combinations
of node types and edges (GHAMARIAN et al., 2012). In these type graphs, as usual, UML
arrows with a closed head connect subtypes to their supertypes (the arrowhead pointing to the
supertype). The Figure 5 shows the type graph used in the grammar with the rules presented
in Figures 1 and 3. The types A, B, C and D are defined as specializations of the type Node,
and only the ‘child’ and ‘parent’ relations can be present between Nodes.

Figure 5 – Example of GROOVE type graph.

There are graphs in GROOVE that present the same elements of graphs representing
transformation rules, but that do not have modification elements, only application conditions. It
is said that these graphs represent graph conditions. These graph conditions, as the name points
out, are used to verify whether the graphs of a given state space satisfy certain conditions or
not.

2.2 Ontological Foundations

In this section, we present some ontological distinctions that are, alongside with multi-
level modeling concepts, the basis for this dissertation. These notions, and the constraints
governing their definitions and relations, correspond to a fragment of the foundational ontol-
ogy underlying OntoUML, which incorporates and extends the theory of types underlying
OntoClean (GUIZZARDI, 2005; GUIZZARDI et al., 2015). For an in-depth discussion, philo-
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sophical justification, empirical support, and full formal characterization of these notions,
see (GUIZZARDI, 2005; GUIZZARDI et al., 2018).

Types represent properties that are shared by a set of possible instances. The set of
properties shared by those instances is termed the intension of a type; the set of instances that
share those properties (i.e., the instances of that type) is termed the extension of that type.
Types can change their extension across different circumstances, either because things come in
and out of existence, or because things can acquire and lose some of those properties captured
in the intension of that type.

Taxonomic structures capture subtyping relations among types, both from intensional
and extensional points of view. In other words, subtyping is thus a relation between types that
govern the relation between the possible instances of those types. So, if type B is a subtype
of A, then we have that: (i) it is necessarily the case that all instances of B are instances of A,
i.e., in all possible circumstances, the extension of B subsets the extension of A; and (ii) all
properties captured by the intension of A are included in the intension of type B, i.e., B’s are A’s
and, therefore, B’s have all properties that are properties defined for type A.

Suppose all instances that exist in a domain of interest are endurants (GUIZZARDI
et al., 2018). Endurants roughly correspond to what we call objects in ordinary language, i.e.,
things that (in contrast to occurrences, events) endure in time changing their properties while
maintaining their identity. Examples include you, each author of this dissertation, Mick Jagger,
the Moon, the Federal University of Espírito Santo.

Every endurant in our domain belongs to one Kind. In other words, central to any
domain of interest we will have a number of object kinds, i.e., the genuine fundamental types
of objects that exist in that domain. The term “kind” is meant here in a strong technical sense,
i.e., by a kind, we mean a type capturing essential properties of the things it classifies. In other
words, the objects classified by that kind could not possibly exist without being of that specific
kind (GUIZZARDI et al., 2018).

Kinds tessellate the possible space of objects in that domain, i.e., all objects belong to
exactly one kind and do so necessarily. Typical examples of kinds include ‘Person’, ‘Organiza-
tion’, and ‘Car’. We can, however, have other static subdivisions (or subtypes) of a kind. These
are naturally termed Subkinds. As an example, the kind ‘Person’ can be specialized in the
(biological) subkinds ‘Man’ and ‘Woman’.

Endurant kinds and subkinds represent essential properties of objects. They are exam-
ples of Rigid Types (GUIZZARDI et al., 2018). Rigid types are those types that classify their
instances necessarily, i.e., their instances must instantiate them in every possible circumstance
in which they exist. We have, however, types that represent contingent or accidental properties
of endurants termed Anti-Rigid Types (GUIZZARDI et al., 2018). For example, in the way that
‘being a living person’ captures a cluster of contingent properties of a person, that ‘being a
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Figure 6 – An example of sortal hierarchy for the kind ‘Person’.

puppy’ captures a cluster of contingent properties of a dog, or that ‘being a husband’ captures
a cluster of contingent properties of a person participating in a marriage.

Kinds, subkinds, and the anti-rigid types specializing them are categories of endurant
Sortals. In the philosophical literature, a sortal is a type that provides a uniform principle
of identity, persistence, and individuation for its instances (GUIZZARDI et al., 2018). To put
it simply, a sortal is either a kind (e.g., ‘Person’) or a specialization of a kind (e.g., ‘Student’,
‘Teenager’, ‘Woman’), i.e., it is either a type representing the essence of what things are or a
sub-classification applied to the entities that “have that same type of essence”, be it rigid, i.e.,
a Subkind, or anti-rigid, i.e., an Anti-Rigid Sortal. Figure 6 presents an example of sortal
hierarchy for the kind ‘Person’. The figure depicts this hierarchy as a directed graph, revealing
the abstract syntax of taxonomies as adopted in this work. Each node represents a class, whose
ontological nature in UFO is represented in bold (here, ‘Kind’, ‘SubKind’ and ‘AntiRigidSortal’).
Edges are labeled to identify the relation between the elements; in this figure all edges represent
specializations and are labeled ‘subClassOf’.

In general, types that represent properties shared by entities of multiple kinds are
termed Non-Sortals, i.e., non-sortals are types whose extension possibly intersect with the
extension of more than one kind. Non-sortals too can also be further classified depending on
whether the properties captured in their intension are essential (i.e., rigid) properties or not.

Now, before we proceed, we should notice that the logical negation of rigidity is not
anti-rigidity but non-rigidity. If being rigid for a type 𝐴 means that all instances of 𝐴 are
necessarily instances of 𝐴, the negation of that (i.e., non-rigidity) is that there is at least one
instance of 𝐴 that can cease to be an instance of 𝐴; anti-rigidity is much stronger than that,
it means that all instances of 𝐴 can cease to be instances of 𝐴, i.e., 𝐴’s intension describes
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Figure 7 – Non-Sortal examples.

properties that are contingent for all its instances. Finally, we call a type 𝐴 semi-rigid iff it
is non-rigid but not anti-rigid, i.e., if it describes properties that are essential to some of its
instances but contingent to some other instances. Because non-sortal types are dispersive
(HIRSCH, 1992), i.e., they represent properties that behave in very different ways with respect
to instances of different kinds, among non-sortal types, we have: those that describe properties
that apply necessarily to the instances of all kinds it classifies (i.e., Rigid Non-Sortals, which are
termed Categories); those that describe properties that apply contingently to the instances
of all kinds it classifies (Anti-Rigid Non-Sortals); those that describe properties that apply
necessarily to the instances of some of the kinds it classifies but that also apply contingently to
the instances of some other kinds it classifies (i.e., Semi-Rigid Non-Sortals, termedMixins). An
example of a category is ‘Physical Object’ representing properties of all kinds of entities that
have masses and spatial extensions (e.g., people, cars, watches, buildings); an example of an
anti-rigid non-sortal is ‘Customer’ representing contingent properties for all its instances (i.e.,
no customer is necessarily a customer), which can be of the kinds ‘Person’ and ‘Organization’;
an example of a mixin is ‘Insured Item’, which describes properties that are essential to entities
of given kinds (e.g., suppose that cars are necessarily insured) but which are contingent to
things of other kinds (e.g., houses can be insured but they are not necessarily insured). Figure 7
presents examples of the different types of non-sortals discussed.

Figure 8 represents (with a UML class diagram) the typology of endurant types generated
by the possible values of the two properties, sortality and rigidity. As usual, UML arrows with
a closed head connect subtypes to their supertypes (the arrowhead pointing to the supertype).
Two subtyping relations joined in their arrowheads form a generalization set, which here we
assume to tessellate the extension of the supertype (pointed to by the joint arrowhead), i.e., these
are disjoint and complete generalization sets. There are two superimposed generalization trees,
one formed by first considering the sortality meta-property (in red) and the other considering
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Figure 8 – A taxonomy for Endurant Types.

first the rigidity meta-property (in blue). As a result of the combination of these two meta-
properties, we have the following six (exhausting and mutually disjoint) types of types (i.e.,
metatypes): Kinds, Subkinds, Anti-Rigid Sortals, Categories, Anti-Rigid Non-Sortals,
and Mixins (shaded in Figure 8).

The ontological meta-properties that characterize these different types of types also
impose constraints on how they can be combined to form taxonomic structures (GUIZZARDI
et al., 2018). As we have already seen, since kinds tessellate our domain and, because all sortals
are either kinds or specializations thereof, we have that: (i) no kind can specialize another kind;
and (ii) every sortal that is not a kind specializes a unique kind. In other words, every sortal
hierarchy has a unique kind at the top. Moreover, from these, we have that any type that is a
supertype of a kind must be a non-sortal. But also that, given that every specialization of a kind
is a sortal, non-sortals cannot specialize sortals. Finally, given the formal definitions of rigidity
(including anti-rigidity), it just follows logically that anti-rigid types (sortals or not) cannot be
supertypes of semi-rigid and rigid types (sortals or not – see proof in (GUIZZARDI et al., 2018)).
For example, if we determine that ‘Customer’ applies contingently to persons in the scope of
business relationships, then a taxonomy in which a rigid type ‘Person’ specializes an anti-rigid
type ‘Customer’, as shown in Figure 9, is logically incorrect. Intuitively, a person will be at the
same time required through the specialization to be statically classified as a ‘Customer’ while at
the same time, being defined dynamically classified as a ‘Customer’, in virtue of the definition of
that type. So, either: (i) the definition of ‘Customer’ should be revised to capture only essential
properties, becoming a rigid type and thus solving the incorrect specialization problem; or (ii)
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a different organization of the taxonomy is required, with ‘Personal Customer’ as an anti-rigid
specialization of the rigid type ‘Person’, ‘Corporate Customer’ an anti-rigid specialization of
‘Organization’, and ‘Customer’ as an anti-rigid supertype of ‘Personal Customer’ and ‘Corporate
Customer’ as shown in Figure 7 (this solution is identified as the ‘roles with disjoint allowed
types’ design pattern in (GUIZZARDI, 2005)).

Figure 9 – Incorrect representation of type ‘Customer’.

2.3 The Multi-Level Theory

So far, we have covered conventional taxonomies built up by establishing specialization
relations between types. However, there are several knowledge domains in which types are also
considered instances of other types. For example, in the biological domain, types of animals such
as ‘Dog’ and ‘Cat’ may be considered instances of ‘Species’, and types such as ‘Greyhound’ and
‘Siamese Cat’ may be considered instances of ‘Breed’ specializing ‘Dog’ and ‘Cat’ respectively.
In these domains, meta-types or high-order types appear (such as ‘Species’ and ‘Breed’). The
taxonomy can thus be considered a multi-level one, with a classification level of types whose
instances are individuals (in this example, ‘Dog’ and ‘Cat’) and higher classification levels, with
types whose instances are types (in this example, ‘Species’ and ‘Breed’). This example in the
biological domain is shown in Figure 10. Other examples of multiple classification levels come
from domains such as that of organizational roles (or professional positions) (CARVALHO;
ALMEIDA, 2015), software engineering (GONZALEZ-PEREZ; HENDERSON-SELLERS, 2006)
and product types (NEUMAYR; GRÜN; SCHREFL, 2009).
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Figure 10 – An example of multi-level taxonomy in biological domain.

Over the last decades, the importance of this modeling phenomenon has justified a
number of works under the banner of “multi-level modeling” (ATKINSON; KÜHNE, 2001;
GONZALEZ-PEREZ; HENDERSON-SELLERS, 2006; NEUMAYR; GRÜN; SCHREFL, 2009; CAR-
VALHO; ALMEIDA, 2018; ALMEIDA; FRANK; KÜHNE, 2018). Techniques for multi-level
modeling must provide modeling concepts to deal with types in various classification levels
and the relations that may occur between those types. These approaches embody conceptual
notions that are key to the representation of multi-level models, such as the existence of entities
that are simultaneously types and instances, the iterated application of instantiation across an
arbitrary number of levels, etc (ALMEIDA et al., 2018).

These fundamental notions for multi-level modeling have been captured formally in
the MLT Multi-Level Theory, described in various publications over the last years (ALMEIDA;
FRANK; KÜHNE, 2018; CARVALHO et al., 2017; CARVALHO; ALMEIDA, 2018). Similarly to the
endurant types theory described in Section 2.2, MLT was formalized (CARVALHO; ALMEIDA,
2018) and applied in the design of a well-founded profile for UML (CARVALHO; ALMEIDA;
GUIZZARDI, 2016). The theory was also applied fruitfully to uncover problematic taxonomies
in Wikidata (BRASILEIRO et al., 2016a; DADALTO et al., 2021), to design the ML2 multi-level
modeling language embodying the theory’s rules as syntactic constraints (FONSECA et al.,
2021), to support multi-level models using Semantic Web technologies (BRASILEIRO et al.,
2016b), etc.

The following key definitions are proposed for MLT (ALMEIDA et al., 2018): Individuals
are those entities which cannot possibly play the role of type in the instantiation relation.
Examples include Albert Einstein, Laika the Soviet space dog, The Earth. First-order
types are those types whose instances are individuals. Examples include Person, Dog, Planet,
Car. Second-order types are those types whose instances are first-order types. Examples include
Species, Breed, but also Astronomical Object Type, Car Model. Third-order types are those



Chapter 2. Background 27

types whose instances are second-order types (e.g., Taxonomic Rank whose instances may
include Species and Breed), and so on. The topmost order can be established as required by
applications, and the scheme can thus be extended to cope with an arbitrary number of levels.

Classification levels in MLT are generated by the iterative application of the notion
of powertype in line with the definition of Cardelli (CARDELLI, 1988). A type 𝑝𝑡 is powertype
of a (base) type 𝑡 iff all instances of 𝑝𝑡 are (improper) specializations of 𝑡 and all possible
specializations of 𝑡 are instances of 𝑝𝑡 . Powertypes in this sense are analogous to powersets.
The powerset of a set 𝐴 is a set that includes as members all subsets of 𝐴 (including 𝐴 itself).
Using this definition, we can clarify how classification levels are related: if Individual is the
type that classifies all possible individuals, then the type that classifies all first-order types—
First-order Type—can be defined as the powertype of Individual. Second-order Type can
be defined as the powertype of First-order Type, and so on. The types defined in this way,
i.e., Individual, First-order Type, Second-order Type, etc., are called basic types in MLT.
It follows from Cardelli’s definition of powertype that a powertype is unique for a base type,
i.e., a base type has one and only one powertype. Further, the base type is unique for a given
powertype (for theorems and their proofs see (CARVALHO; ALMEIDA, 2018)).

Using the definition of basic types, MLT partitions a domain taxonomy into strictly
stratified levels by establishing that all domain types are specializations of these basic types.
This amounts to enforcing the strict metamodeling principle (ATKINSON; KÜHNE, 2000). Since
basic types form a line connected by powertype relations, a first-order type (such as Animal)
is at the same time an instance of the basic type First-Order Type and a specialization of
Individual (since its instances are individuals). A second-order type (such as Species) is
at the same time an instance of the basic type Second-Order Type and a specialization of
First-Order Type (since its instances are first-order types), and so on for higher-order types.

MLT also accounts for an important variant of the powertype pattern proposed by
(ODELL, 1994) (that inspired the homonymous construct in UML class diagrams). Odell stated
simply that a powertype is a type whose instances are subtypes of a base type. This means, that,
differently from Cardelli, not all subtypes of the base type are required to be instances of the
powertype. (In fact, as pointed out by (HENDERSON-SELLERS, 2012), the relation defined by
Odell is misnamed powertype since, in fact, it is analogous to a subset of the powerset.) MLT
calls the relation between an Odell powertype and its base type categorization. For example,
we can say that Animal Species categorizes Animal; this is because some specializations of
Animal are instances of Species (Dog, Cat), but not all of them are (e.g., Female Dog, Siamese
Cat, while specializations of Animal, are not instances of Species). Figure 11 enriches the
model of Figure 10 revealing the ‘First-Order Type’ and ‘Individual’ basic types as well as
the categorization relations. (The ‘instanceOf’ edges between the various first-order types
specializing ‘Individual’ are omitted for the sake of readability.)
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Figure 11 – A multi-level model for the biological domain including variants of the powertype
pattern.

The consequences of the theory can be used to identify sound multi-level structures,
including the following derived rules (these rules are formally proven theorems that follow from
the MLT definitions and axioms (CARVALHO; ALMEIDA, 2018) as summarized in (ALMEIDA
et al., 2018)):

• The instance of relation in MLT is irreflexive, antisymmetric and anti-transitive. Further,
it only relates entities of adjacent levels.

• Every type belongs to a specific order, specializing one and only one basic type.

• Specialization (whether proper or not) cannot cross level boundaries (i.e., a first-order type
can only be specialized by first-order types, a second-order type can only be specialized
by second-order types, and so on).

• Both relations is powertype of and categorizes can only be applied between adjacent
levels, with the base type one order lower than the high-order type.

• The powertype of a base type (in Cardelli’s sense) is unique for that base type;

• Types that categorize a base type always specialize the base type’s powertype.

Violation of these rules and basic definitions of MLT lead to problematic taxonomies,
as illustrated in Figure 12 with a multi-level taxonomy found in Wikidata. As discussed in
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(DADALTO et al., 2021), this taxonomy is problematic since ‘Mayor’ is at the same time an
instance of ‘Position’ and a specialization of ‘Position’ (through ‘Public Office’). Note the logical
contradiction: instantiation places ‘Position’ and ‘Mayor’ in adjacent levels (e.g., ‘Mayor’ as a
first-order type and ‘Position’ as a second-order type), while specialization requires them to be
at the same level. Further empirical evidence discussed in (DADALTO et al., 2021; BRASILEIRO
et al., 2016a; FONSECA et al., 2021) shows that this is a large-scale problem in practice. Our
objective here is then to incorporate the basic rules underlying MLT in our graph grammar,
and thus rule out problematic multi-level taxonomies by construction.

Figure 12 – An incorrect multi-level model present in Wikidata and uncovered in (DADALTO
et al., 2021).

2.4 Related Works

Graph grammars and graph transformation (GT) have long been advocated as a suit-
able formalism for the specification, analysis and verification of models from many distinct
domains (HECKEL; TAENTZER, 2020). One of the reasons for this proposition is the smaller
syntactic gap between some modeling languages and graph rewriting. Since several languages
are graphical, GT rules fit naturally within the model syntax; much more so, for instance, than
when compared with text-based formalisms. For instance, Triple Graph Grammars (TGGs), a
specialized form of graph grammar, have been applied successfully for several years in a range
of application scenarios including: model generation, conformance testing, bidirectional model
transformation, and incremental model synchronization (ANJORIN; LEBLEBICI; SCHÜRR,
2015). In fact, model transformation is a very active field of research where the modeling and
GT communities intersect. As a particular example, one case study in (GHAMARIAN et al.,
2012) describes how GT rules can be used to transform from BPMN to BPEL models. This
formalization identified inconsistencies on the original transformation semantics, which was
only informally specified.

Several other GT tools have been developed to perform some kind of model transforma-
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tion or analysis. For instance, Fujaba (NICKEL; NIERE; ZÜNDORF, 2000) is a tool with support
for model-based software engineering and re-engineering, employing UML class diagrams
and specialized activity diagrams (called story diagrams in the tool), that are based on graph
transformations. Viatra2 (VARRÓ; BALOGH, 2007) and Henshin (ARENDT et al., 2010) are
model transformation tools that are part of the Eclipse Modeling Framework (EMF), and thus
can handle Ecore models.

Closer to conventional programming languages and methods, GrGen.NET (JAKUMEIT;
BUCHWALD; KROLL, 2010) is a GT-based tool designed for compiler optimization and code
refactoring. Similarly, the domain-specific language Chart (MOL; RENSINK; HUNT, 2012) adds
GT-based functionality to existing Java programs. The approach relies on a set of annotations to
identify the intended graph structure, as well as on user methods to manipulate that structure,
within the user’s own Java class declarations. The advantage of the approach is that it allows
any Java program to be enhanced, non-invasively, with declarative graph rules that can later
be used for program analysis. Along the lines of programming language semantics, a type
graph (a sort of graph grammar metamodel) for Java was defined in (RENSINK; ZAMBON,
2009) and later refined in (ZAMBON, 2013). Subsequently, the GROOVE tool was used to define
a complete formalization for the control flow semantics of Java (ZAMBON; RENSINK, 2018).

As a final note, it is worth mentioning that the GT rules used in GROOVE have the
same expressive power than First-Order Logic (FOL) (RENSINK, 2004). Thus, any ontological
theory based on FOL can, in principle, be properly supported/formalized by a GROOVE graph
grammar.

In the work described in (RUY et al., 2017), the authors argued that instead of proposing
methodological rules or semantically motivated syntactical constraints based on the axioma-
tization of ontological theories, a representation system to build models following ontologi-
cal restrictions could employ a more productive strategy, leveraging on the fact that formal
constraints from the theory impose a correspondence between each particular type of type
(characterized by ontological meta-properties) and certain modeling structures (or modeling
patterns). The authors present an approach to derive conceptual ontology patterns from ontolo-
gies of different generality levels, ranging from foundational to domain ontologies. Then, they
present guidelines that describe how these derived patterns can be applied in combination for
building reference domain ontologies in a reuse-oriented process.

The work discussed here is related to other efforts that employ foundational theories
in conceptual modeling tasks, detecting important omissions, by employing the state space
exploration mechanism supported by GROOVE, in the rule set proposed in (ZAMBON; GUIZ-
ZARDI, 2017), where the authors made a first attempt to formalize a representation system
to build models following ontological restrictions, capturing modeling patterns derived from
the underlying theory of endurant types from OntoUML and their possible relations as graph
transformation rules. This work also extends the work started in (BATISTA et al., 2021), adding
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to it considerations about the verification scope of the grammar proposed and all the analysis
to the construction of multi-level taxonomies. As discussed in (GUIZZARDI, 2005), UFO’s
typology of endurant types was originally inspired by the typology of types on which the
OntoClean methodology is based. A pioneering and among the most important methodologies
for the construction of ontologically correct taxonomies, OntoClean is extended in important
ways by the graph grammar proposed here: (i) firstly, because OntoClean does not provide
any concrete modeling mechanism for building taxonomies, but only a set of methodological
guidelines and only for taxonomy evaluation. Our proposal instead formalizes a grammar with
concrete ontological patterns as modeling constructs; (ii) secondly, OntoClean is focused (even
if not explicitly) on object types (also called substantial types) as opposed to more generally ad-
dressing taxonomies formed by other endurant types (e.g., types whose instances are dependent
entities such as symptoms, marriages, enrollments, etc. (GUIZZARDI et al., 2018)); (iii) finally,
OntoClean does not address the construction of higher-order types. In summary, our proposal
provides for a concrete modeling mechanism that supports the construction of taxonomic
structures that go much beyond what is covered by OntoClean. The first two mentioned points
also apply to the graph grammar proposed in (BATISTA et al., 2021).

The aforementioned points (ii-iii) but also (i) (regarding the pattern-based representation
support) are also true for theories of type structures that extend OntoClean (e.g. (WELTY; AN-
DERSEN, 2005; SEYED; SHAPIRO, 2011; SEYED, 2012)). In particular, they also apply to a series
of proposals of Order-Sorted Logics extendedwith ontological predicatemeta-hierarchies. These
logics play an important role in knowledge representation and, more generally, in symbolic
artificial intelligence by supporting the construction and formal verification of ontologically-
informed taxonomies, as well as computationally tractable automated reasoning with them.
These include: (KANEIWA; MIZOGUCHI, 2005; KANEIWA, 2011), which propose new order-
sorted modal logics and tableau calculus to check the (un)satisfiability and validity of sorted
modal formulas; (KANEIWA; NGUYEN, 2009; KANEIWA, 2004), which propose order-sorted
Horn-calculus combining ontologies and logic programming.
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3 Taxonomies of Endurant Types

This chapter presents our first proposed graph grammar that takes into account the
ontological constraints imposed by the meta-properties of categories of endurant types (Sec-
tion 3.1). This graph grammar comprises the identified transformation rules for the construction
of ontologically correct taxonomies of endurant types. It is made an assessment of the proposed
graph grammar regarding its soundness and completeness (Section 3.2).

3.1 Graph Transformation Rules for Ontologically Correct Tax-

onomies

The grammar described in this section was created with GROOVE (GHAMARIAN et
al., 2012), a graph transformation tool suitable for the (partial) enumeration of a grammar
language, which the tool calls the state space exploration of the graph grammar. This grammar
has a type graph shown in Figure 13 and established to reflect the taxonomy presented in
Figure 8. The grammar starts from an empty host graph. We will use the GROOVE tool later to
demonstrate that our proposed taxonomy grammar are sound and complete, at least up to a
certain taxonomy size.

Figure 13 – Type graph established to reflect the taxonomy for Endurant Types.

3.1.1 Introducing New Types

We start by defining transformation rules to introduce a new type in the taxonomy.
Types for four of the leaf ontological metatypes given in Figure 8 can be introduced in the
taxonomy without being related with a previously introduced type: these include all Kinds
and all the non-sortals: Categories, Mixins and Anti-Rigid Non-Sortals.

Figure 14 shows the four rules that introduce these ‘independent’ types, using the
GROOVE visual notation for presenting rules. Each rule is formed only by a green thick lined
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box representing the type that will be created during rule application. A type has an ontological
metatype (the label inside the box). No rule in Figure 14 has preconditions. Therefore, types for
these four ontological metatypes can be introduced without requiring the existence of other
types or relations in the taxonomy.

(a) new-
kind

(b) new-
category

(c) new-
mixin

(d) new-antirigid-
nonsortal

Figure 14 – Transformation rules to introduce an independent type.

3.1.2 Introducing Dependent Types

In contrast to non-sortals and kinds, Subkinds and Anti-Rigid Sortals have precon-
ditions upon their introduction.

In the case of Subkinds, their introduction requires the existence of a previous sortal,
from which the subkind will inherit a principle of identity. In addition, this sortal must be
rigid, to respect the ontological principle that a rigid type cannot specialize an anti-rigid one.
These preconditions for the introduction of a new Subkind are captured in the rule shown
in Figure 15. The existing Rigid Sortal is shown as a gray box in the figure. The green thick
“subClassOf” arrow states that a new direct subtyping relation will be introduced in the model.

Figure 15 – Transformation rule to introduce a Subkind type.

In the case of an Anti-Rigid Sortal type, the only precondition is the existence of a
previous sortal, from which the newly introduced Anti-Rigid Sortal will inherit a principle
of identity. This rule is shown in Figure 16. Differently from a Subkind, an Anti-Rigid Sortal
can specialize any Sortal (and not only rigid ones).

Figure 16 – Transformation rule to introduce an Anti-Rigid Sortal type.
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3.1.3 Introducing Specializations for Existing Non-Sortal Types

Having defined rules for the introduction of types, we proceed with rules to insert
subtyping relations between two types already present in the model. We start with Category
andMixin specializations, as both of these ontological metatypes have meta-properties that
allow their types to be specialized in any Endurant Type, without breaking formal ontology
principles.

Figure 17(a) shows a rule that creates a subtyping relation between an existingCategory
supertype and an existing Endurant subtype. The red dashed arrow in the figure prevents the
introduction of a circularity in the subtyping relations. Note that circularity of specializations
may be tolerated in taxonomies structured with improper specialization relations, such as the
case of rdfs:subClassOf used in RDF and OWL. However, for the purposes of this work,
we represent only proper specializations, i.e., those in which the subtype is different from its
supertype (in that some possible instances of the supertype are not instances of the subtype).
Red elements in GROOVE rules indicate forbidden patterns, i.e., elements that, if present,
prevent the rule application. The label “subClassOf*” indicates “subClassOf” paths of any size
(including zero, which would amount to the equality between the related classes.) Figure 17(b)
shows the analogous rule for the specialization of aMixin.

(a) category-
specialization

(b) mixin-specialization

Figure 17 – Transformation rules to specialize a Category or a Mixin.

Finally, the rule depicted in Figure 18 allows the specialization of an Anti-Rigid Non-
Sortal by another Anti-Rigid Type.

Figure 18 – Transformation rule to specialize an Anti-Rigid Non-Sortal type.

3.1.4 Introducing Generalizations for Existing Sortal Types

Kind types appear on the top of Sortal hierarchies because kinds provide a principle
of identity for all their instances. By definition, kinds cannot specialize other kinds. Therefore,
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they can only specialize Non-Sortal types, more specifically Categories and Mixins. These
specializations can already be constructed with the rules presented in Section 3.1.3.

Subkind types, on the other hand, carry a principle of identity from their supertypes
and, ultimately, from exactly one Kind type. The rule shown in Figure 19(a) properly captures
this restriction. If there is a Rigid Sortal distinct from a Subkind and not specializing the
latter (as defined by the “subClassOf*” red dashed edge) and both carry a principle of identity
from the same Kind, then a direct subtyping relation can be created between the two. The
black thin lined edges with labels “subClassOf*” and “subClassOf+” indicate that, for the rule to
be applied, a specialization relation from the new supertype and from the Subkind to the same
Kind must already be present, or at least that the new (direct) supertype of the Subkind is its
own Kind. Subkinds can also specialize any rigid or semi-rigid non-sortal, but these cases are
already covered by the rules presented in Section 3.1.3. A similar construction for Anti-Rigid
Sortal types can be seen in Figure 19(b).

(a) subkind-generalization (b) antirigid-sortal-
generalization

Figure 19 – Transformation rules to generalize a Subkind or an Anti-Rigid Sortal.

3.1.5 Summary of the Grammar Rules

The grammar to build ontologically correct taxonomies is structured into the following
operations:

• The introduction of endurant types that do not require a previously existing type in the
taxonomy (kinds and non-sortals);

• The introduction of sortals that require a previously existing sortal in the taxonomy to
inherit a principle of identity;

• The specialization of existing non-sortals in other endurant types;

• The generalization of existing sortals in other sortals of the same kind.
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3.2 Formal Verification

We use the GROOVE graph transformation tool to carry out a formal verification of
the graph grammar presented in Section 3.1. To do so, we employ verification conditions in
GROOVE, which formally define the ontological constraints described in Section 2.2, and allow
us to perform an analysis over the graph state model (a state in this case corresponds to a
taxonomy shape, representing an equivalence class of isomorphic taxonomies). We then use
the state space exploration functionality of the tool to examine the taxonomy shapes that the
grammar generates.

As stated in Section 3.1, our objective with the verification is two-fold: to demonstrate
the soundness and completeness of the proposed graph grammar. Soundness ensures that
the grammar rules only produce correct taxonomies, i.e., those that do not invalidate well-
formedness constraints. Completeness ensures that any and all correct taxonomies can be
produced by a sequence of rule applications. (Certain caveats concerning taxonomy size apply
to our formal verification tasks, these will be discussed in Sections 3.2.1 and 3.2.2.)

A graph condition in GROOVE is represented diagrammatically in the same way as
transformation rules, albeit without creator (green thick lined) elements. A graph condition
is satisfied by a taxonomy model if all reader (black thin lined) elements of the condition are
present in the model, and all forbidden (red dashed) elements are absent.

Figure 20 shows our first graph condition, capturing the restriction that Kinds must
appear at the top of sortal hierarchies, hence not specializing another Sortal. It is important
to note that restrictions are stated positively but are checked negatively. Thus, the condition
in Figure 20 characterizes an undesired model violation (a Kind specializing a Sortal), and
therefore, by verifying that such condition never occurs in any taxonomy model, we can
determine the grammar is sound. This same rationale holds for all other conditions shown in
this section.

Figure 20 – Restrictive condition of a Kind specializing another Sortal.

Figure 21 formalizes a second restrictive condition, stating that a Sortal cannot inherit
its principle of identity frommore than oneKind. A third condition, shown in Figure 22, captures
the situation in which the rigidity meta-property is contradicted, that is, when a rigid or semi-
rigid type specializes an anti-rigid one. Similarly, the fourth restrictive condition, depicted in
Figure 23, represents the situation in which the sortality meta-property is contradicted, that is,
when a Non-Sortal type specializes a Sortal one.
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Figure 21 – Restrictive condition of a Sortal with more than one Kind.

Figure 22 – Restrictive condition of a rigid or semi-rigid type specializing an anti-rigid one.

Figure 23 – Restrictive condition of a Non-Sortal type specializing a Sortal one.

To specify a fifth and final restrictive condition, we consider that all Sortals ultimately
should specialize (or be) a Kind, from which they inherit a principle of identity. The violating
situation, in which a Sortal does not specializes a Kind, is shown in Figure 24.

Figure 24 – Restrictive condition of a Sortal without a Kind.

Note that each restrictive condition emerges as a direct consequence of an ontological
restriction, what gives reliance to the assumption that the graph conditions are correct.

3.2.1 Verifying Soundness

The first step in verifying the soundness of the graph grammar proposed is to enumerate
its language, i.e., construct all possible taxonomy shapes reachable by any sequence of rule
applications. Subsequently, the graph conditions just presented are checked against these
constructed shapes. If any model triggers one or more graph conditions, then we know the
model violates some ontological restrictions, and therefore it is incorrect. Consequently, the
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goal of the soundness analysis is to verify that no taxonomy shape in the language is incorrect.
To perform the grammar state space exploration we use the GROOVE Generator, a command-
line tool designed for this task. Details of GROOVE usage can be found at the tool manual
(available at <https://sourceforge.net/projects/groove/>). Additional case studies that illustrate the
tool functionalities are presented in (GHAMARIAN et al., 2012).

A major caveat in the first step above is that the grammar language is infinite, thus
preventing a complete enumeration in a finite amount of time. To cope with this situation, we
need to perform a bounded exploration with the GROOVE tool. In this setting, our bound 𝑁

is the number of types present in a taxonomy shape. When performing the exploration, the
tool managed to generate a total of 2,123,196 taxonomy shapes up to a bound 𝑁 = 6, with
a breakdown of this total per bound value shown in Table 1. The table also shows that our
soundness goal was validated (at least up to 𝑁 = 6), with no taxonomy shapes being flagged as
incorrect by the graph conditions.

# types (𝑁 ) Produced taxonomy shapes Incorrect taxonomy shapes
1 4 0
2 21 0
3 160 0
4 2,032 0
5 46,885 0
6 2,074,094 0

Table 1 – Results of soundness analysis for the endurant types graph grammar.

Given the inherently exponential growth of the number of possible taxonomy shapes
with respect to bound 𝑁 , it was not possible to continue the exploration for 𝑁 = 7 and beyond
due to memory limitations (the execution was halted after several million models partially
produced.) This state space explosion is a common problem for all explicit state model checkers,
such as GROOVE (GHAMARIAN et al., 2012).

To support that the soundness results in Table 1 are significant, we rely on the small
scope hypothesis, which basically claims most design errors can be found in small counterexam-
ples (GAMMAITONI; KELSEN; MA, 2018). Experimental results suggest that exhaustive testing
within a small finite domain does indeed catch all type system errors in practice (ROBERSON
et al., 2008), and many case studies using the tool Alloy have confirmed the hypothesis by
performing an analysis in a variety of scopes and showing, retrospectively, that a small scope
would have sufficed to find all the bugs discovered (JACKSON, 2019).

3.2.2 Verifying Completeness

The verification described in the previous subsection assures that all taxonomy shapes
produced are correct, but does nothing to persuade us that any and all possible correct taxonomy

https://sourceforge.net/projects/groove/
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shapes can be produced. To provide this kind of assurance is the goal of the completeness
verification described in this subsection.

To perform the completeness analysis we need to consider not only correct taxonomy
shapes but also the incorrect ones. To this end, we developed another, completely permissible,
graph grammar that allows the creation of both correct and incorrect models. The grammar is
quite simple, with six rules for the unrestricted creation of the leaf types of types in Figure 8,
and one rule allowing the introduction of a subtyping relation between any two endurant types.
This completely permissive grammar is presented in Appendix A.

The results of the exploration with this new permissible grammar are presented in
Table 2. As expected, the rate of growth in this scenario is even steeper, given that more models
can be produced. The tool was able to perform a bounded exploration up to 𝑁 = 5, with larger
bounds exceeding the available memory. The second column of Table 2 lists all shapes created
with the new grammar, both correct and incorrect. We again use the same graph conditions to
flag violations of ontology restrictions in the models. If a taxonomy shape triggers any of the
graph conditions, then it is considered incorrect. Conversely, if no graph condition is triggered
by a model, then it certainly describes a correct taxonomy shape. The last two columns in the
table summarize this classification.

# types (𝑁 ) All taxonomy shapes Incorrect shapes Correct shapes
1 6 2 4
2 57 36 21
3 956 796 160
4 30,741 28,709 2,032
5 1,958,538 1,911,653 46,885

Table 2 – Results of completeness analysis for the endurant types graph grammar.

The completeness goal can be verified by a comparison between the Correct shapes
column of Table 2 and the Produced taxonomy shapes column of Table 1. It can be seen
immediately that all values up to 𝑁 = 5match. Given that the permissible grammar produces all
possible models (correct and incorrect), this allows us to conclude that the taxonomy grammar
of Section 3.1 produces all correct taxonomy shapes up to that size, and only the correct ones.

Partial Completeness Results

To strengthen the evidence of completeness to our graph grammar for endurant types,
we developed three additional permissive graph grammars, of which one, that is presented in
Appendix B, does not necessarily respect the meta-property of rigidity, whose constraint is
presented in Figure 22; another, that is presented in Appendix C, does not necessarily respect
the meta-property of sortality, whose constraint is presented in Figure 23; and a last, that is
presented in Appendix D, does not necessarily respect the constraints related to Kinds, shown
in Figures 20, 21 and 24.
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The results of the exploration with these three permissive grammars are presented in
Tables 3, 4 and 5. The tool was able to perform a bounded exploration up to 𝑁 = 6, for all these
three permissive grammars, with larger bounds exceeding the available memory. We again use
the same graph conditions to flag violations of ontology restrictions in the models. Note that
the set of incorrect models produced by each of these grammars is disjoint from the others,
since the constraint not enforced by one grammar is always respected in all others.

# types (𝑁 ) All taxonomy shapes Incorrect shapes Correct shapes
1 4 0 4
2 24 3 21
3 231 71 160
4 4,005 1,973 2,032
5 132,672 85,787 46,885
6 8,649,770 6,575,676 2,074,094

Table 3 – Results of completeness analysis for the endurant types graph grammar that can only
violate rigidity.

# types (𝑁 ) All taxonomy shapes Incorrect shapes Correct shapes
1 4 0 4
2 24 3 21
3 235 75 160
4 4,217 2,185 2,032
5 146,398 99,513 46,885
6 10,055,218 7,981,124 2,074,094

Table 4 – Results of completeness analysis for the endurant types graph grammar that can only
violate sortality.

# types (𝑁 ) All taxonomy shapes Incorrect shapes Correct shapes
1 4 0 4
2 27 6 21
3 277 117 160
4 4,685 2,653 2,032
5 139,253 92,368 46,885
6 7,634,331 5,560,237 2,074,094

Table 5 – Results of completeness analysis for the endurant types graph grammar that can only
violate Kind constraints.

These tables 3, 4 and 5 show that none of the 14,543,863 taxonomy shapes (the same
2,123,196 correct ones presented in Table 1, and 12,420,667 incorrect ones) is an incorrect
taxonomy shape not produced by the graph grammar presented in 3.1, providing additional
evidence that the taxonomy grammar of Section 3.1 produces only correct shapes, and all of
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them. In other words, these tables provide additional evidence that our endurant types graph
grammar is not only sound, but also complete.

3.2.3 Verification Scope Matters

The small scope hypothesis asserts that a problem in the grammar would be revealed
in violating taxonomy shapes of small size. To lend credence to this hypothesis, we need
to consider the nature of well-formedness violations (according to the restrictive conditions
shown in Figures 20–24). For example, in the case of rigidity and sortality, violations arise from
specializations relating classes with particular meta-properties: rigid classes cannot specialize
anti-rigid classes (Figure 22) and non-sortals cannot specialize sortals (Figure 23). The violations
of rules concerning rigidity and sortality can therefore arise with taxonomies of size 2 (e.g.,
a single rigid class specializing a single anti-rigid class and a single non-sortal specializing
a single sortal). Taxonomies of size 2 also reveal violations of the rules involving kinds (a
kind specializing another kind or any other sortal, Figure 20). These sorts of violations are all
covered by our analysis (and are included in the 36 incorrect taxonomy shapes of size 2 in the
second row of Table 2). So, a problem involving these violations would have been revealed if
the proposed grammar could produce them. Other problems involving kinds are manifested
with taxonomies of size 3, e.g., when a sortal specializes two kinds (Figure 21), or even size 1, in
a taxonomy with a single sortal other than a kind (Figure 24). Given the nature of the restrictive
conditions, they can only be violated in taxonomies larger than 3 classes either due to: (i) the
occurrence of a violating fragment of size 1–3 (corresponding to one of the Figures 20–24) or
(ii) due to the transitivity of the subClassOf relation. Problems involving transitivity would
already be revealed with taxonomies of size 3 (in most cases) and 5 (in the case of Figure 21). In
conclusion, all restrictive conditions can be possibly violated with taxonomy shapes of size 5
or less, which gives us confidence that the exhaustive exploration up to that size (1,958,538
taxonomy shapes as reported in Table 2) is relevant to our verification goals.

With respect to completeness, there is an inherent limitation of the exhaustive enumer-
ation of states as proposed here. In our future work, we intend to address this limitation by
exploring other techniques, such as other ways to partially explore the grammars state space
or the use of proof assistants.
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4 Multi-Level Taxonomies

This chapter presents our second proposed graph grammar that takes into account the
constraints imposed by the Multi-Level Theory (Section 4.1) on types. This graph grammar com-
prises the identified transformation rules for the construction of correct multi-level taxonomies,
i.e., taxonomies involving types of different classification levels. We have made an assessment
of the proposed graph grammar regarding its soundness and completeness (Section 4.2).

4.1 Graph Transformation Rules for Correct Multi-Level Tax-

onomies

Our construction of multi-level taxonomies starts from a host graph that contains only
the basic type representing the class of individuals, as shown in Figure 25.

Figure 25 – Initial host graph only with one basic type representing the Individual class.

The type graph shown in Figure 26 is used.

Figure 26 – Type graph established to reflect the MLT relations.

Taxonomies are then further built up with operations that introduce first-order types by
specializing this first basic type (Section 4.1.1); or that introduce new basic types for additional
levels of classification (or orders – Section 4.1.2). Then, high-order types can be introduced as
(Odell) powertypes of existing (lower-order) types (Section 4.1.3). Finally, specialization and
instantiation between existing elements can be introduced (Sections 4.1.4 and 4.1.5).

4.1.1 Introducing a New First-Order Type

The order of a particular basic type is inferred by the length of the powertype relation
chain. The last basic type in this chain—the one that is not a powertype—is always the basic
type representing the type of all individuals (and is introduced initially in the host graph as
shown in Figure 25). By definition, the specializations of this basic type are first-order types,
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which are introduced exactly as direct or indirect (proper) specializations of the basic type at
the tail of the sequence of basic types. This rule is shown in Figure 27. The forbidden fragment
guarantees the selection of the right basic type for specialization (the basic type representing
the Individual class).

Figure 27 – Transformation rule to introduce a First-Order Type.

4.1.2 Introducing a New Order

The model can be extended to accommodate higher levels of types by creating the
powertype of the basic type of the highest order present in the model thus far, i.e., the powertype
with no existing powertype in the model (see Figure 28).

Figure 28 – Transformation rule to introduce a new order.

4.1.3 Introducing a New High-Order Type

Newhigh-order types are then introduced in themodel as Odell powertypes categorizing
a base type at one order below. As shown in Figure 29, the categorizer specializes the basic
type that is the powertype of the basic type at the order below (to which the categorized base
type belongs). Note that, as all specializations of a basic type are instances of its powertype
(which is the basic type of the order above), we omit the instantiations of that higher-order
basic type, as they are redundant.

Figure 29 – Transformation rule to introduce a new high-order type.
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4.1.4 Introducing Specialization Relations

As stated by MLT, a (proper) specialization relation can only hold between two types
of the same order, i.e., types that specialize the same basic type. In addition, to enforce the
semantics of specialization, we require the subtype to have no instances when the subClassOf
relation is first introduced in the model. This prevents the situation in which an entity is an
instance of a subtype without being an instance of the supertype. All these restrictions are
formalized in the graph transformation rule given in Figure 30.

Figure 30 – Transformation rule to introduce a new specialization relation.

4.1.5 Introducing Instantiation Relations

A high-order type can be instantiated by a type that specializes the base type it cat-
egorizes, as shown by the rule in Figure 31. The new instance of the high-order type must
be an instance of all its supertypes that are not basic types, to ensure that the semantics of
specialization is enforced. The ‘!’ in the “!instanceOf” red dashed arrow in the rule indicates a
forbidden absence of an instance of relation.

Figure 31 – Transformation rule to introduce a new instantiation relation.

4.1.6 Summary of the Grammar Rules

The grammar to build correct multi-level taxonomies is structured into the following
operations:

• The introduction of new first-order types, specializing the basic type representing the
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Individual class;

• The introduction of a basic type representing a new order;

• The introduction of new high-order types, specializing some high-order basic type and
categorizing some type at one level below;

• The introduction of specialization relations between types of the same order;

• The introduction of instantiation relations between a specialization of a type and its
(higher-order) categorizer.

4.2 Formal Verification of MLT Constraints

The formal verification of the graph grammar presented in Section 4.1 follows the same
process discussed in Section 3.2 for the endurant types grammar. In order to use GROOVE
to analyze the new grammar language, we again need verification conditions, this time to
formally define the constraints that follow from the MLT axiomatization, as summarized in
Section 2.3. These conditions are discussed in the following subsections, with the verification
results presented subsequently.

Once more, as in 3.2, the fact that the restrictive conditions are direct consequences of
the MLT theorems gives reliance that they are correct.

4.2.1 Constraints Related to Basic Types

We start by presenting constraints on how basic types can be related. Figure 32 shows
our first graph condition regarding basic types, capturing the restriction that a basic type
cannot have more than one powertype.

Figure 32 – Restrictive condition of a basic type with more than one powertype.

Conversely, the restriction in Figure 33 shows that different basic types cannot have
the same powertype.

Figure 33 – Restrictive condition of different basic types with the same powertype.
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The rule presented in Figure 34 captures the restriction that different basic types must
be, directly or indirectly, related by the powertype relation, since they have different orders. It
is important to note once again that all restrictions in this section are stated positively but are
checked negatively. Thus, the condition shown in Figure 34 describes the undesired case where
two basic types in the model are not in a transitive powertype relation. Therefore, by checking
in the verification phase that such case never occurs, we ensure that all type orders are related.

Figure 34 – Restrictive condition of unrelated basic types.

Finally, the condition in Figure 35 states that two basic types cannot be mutually
connected by the powertype relation. Since a base type is an instance of a Cardelli powertype,
basic types thus related would in fact instantiate each other, which would contradict their
purpose to establish the basic structure for the stratified level scheme.

Figure 35 – Restrictive condition of mutual powertype relation between basic types.

4.2.2 Constraints Related to Level Stratification

Figure 36 shows a key graph condition related to level stratification, capturing the
restriction that every type must be either a basic type or a specialization of a basic type.

Figure 36 – Restrictive condition of a type with no basic type as supertype.

The graph condition depicted in Figure 37 captures the restriction that no type can
specialize more than one basic type, otherwise the type would belong to more than one order
or level.
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Figure 37 – Restrictive condition of a type specializing more than one basic type.

Three more conditions related to level stratification are presented in Figures 38(a, b, c),
indicating that a categorization relation cannot exist between types that are not in adjacent
levels. In other words, a categorization cannot cross multiple levels (Figure 38a) or occur between
two types in the same level (Figure 38b), and a type cannot categorize a type at a higher order
(Figure 38c). Types can only categorize lower-order types one level below.

(a) categorization-across-multiple-levels

(b) intra-level-
categorization

(c) reverse-categorization

Figure 38 – Restrictive conditions of categorization between nonadjacent levels.

Analogously to categorization, instantiation cannot cross multiple levels or occur
between two types in the same level, and a type cannot instantiate another at a lower order.
These restrictions are captured by the graph conditions shown in Figures 39(a, b, c). As can
be seen, the conditions in Figures 38 and 39 differ only in the “categorizes” and “instanceOf”
relations and their directions.

The last condition concerning level stratification is shown in Figure 40, capturing the
restriction that a type cannot specialize another type in a different level (whether directly or
indirectly).
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Figure 40 – Restrictive condition of specialization between different levels.

4.2.3 Constraints Related to Categorization and Specialization

The MLT theory summarized in Section 2.3 defines one more condition with respect to
categorization, that stems directly from the definition of an Odell powertype. This condition is
shown in Figure 41, requiring that all instances of a categorizer must be a proper specialization
of the categorized type.

Figure 41 – Restrictive condition of a categorizer instance not proper specializing the catego-
rized type.

A similar condition follows straightforwardly from the semantics of specialization. This
condition is depicted in Figure 42, where an instance of a type must instantiate all of its (direct
or indirect) supertypes.

(a) instantiation-across-multiple-levels

(b) intra-level-
instantiation

(c) reverse-instantiation

Figure 39 – Restrictive conditions of instantiation between nonadjacent levels.



Chapter 4. Multi-Level Taxonomies 49

Figure 42 – Restrictive condition of an instance violating the definition of specialization.

4.2.4 Verifying Soundness

Similarly to what was reported in Section 3.2.1 for the endurant types grammar, in order
to verify that the graph grammar proposed for multi-level taxonomies is sound, we need to
enumerate its language, constructing all possible taxonomy shapes reachable by any sequence
of rule applications. Subsequently, the graph conditions presented for multi-level modeling
are checked against these constructed shapes. If a model triggers any of the graph conditions,
then the taxonomy shape is incorrect, because it violates some well-formedness rules from the
theory. Consequently, the goal of the soundness analysis is to verify that no taxonomy shape
in the language is incorrect.

As done in Section 3.2.1, given that the grammar language is infinite, we perform a
bounded exploration with the GROOVE tool, with bound 𝑁 being the number of types present
in a taxonomy shape. The tool managed to generate a total of 149,282 taxonomy shapes up to
a bound 𝑁 = 7, with a breakdown of this total per bound value shown in Table 6. The table
also shows that the soundness goal was validated (at least up to 𝑁 = 7), with no shapes being
flagged as incorrect by the graph conditions.

# types (𝑁 ) Produced taxonomy shapes Incorrect taxonomy shapes
2 2 0
3 5 0
4 22 0
5 196 0
6 3,685 0
7 145,372 0

Table 6 – Results of soundness analysis for the MLT-based graph grammar.

Once more, the exponential growth of the number of possible taxonomy shapes w.r.t.
bound 𝑁 prevented an enumeration for larger values, a common limiting factor when perform-
ing an exhaustive explicit enumeration of a grammar language (GHAMARIAN et al., 2012). For
the MLT-based grammar, an enumeration for 𝑁 = 8 and beyond was not possible due to time
and memory limitations. Nevertheless, to support the significance of the soundness results
presented in Table 6, we again rely on the small scope hypothesis, as discussed in Section 3.2.3,
which requires violations to be detectable in small taxonomy shapes. Concerning this matter,
the restrictive conditions on basic types (Figures 32–35) can be violated with taxonomy shapes
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of size 2 and 3. Conditions on stratification (Figures 36–40) can be violated with taxonomy
shapes of size 5 or less. Conditions on categorization and specialization (Figures 41 and 42) can
be violated with taxonomy shapes of size 5 (2 of which are basic types).

4.2.5 Verifying Completeness

For the completeness analysis of theMLT-based grammarwe repeat the same procedures
described in Section 3.2.2, where we consider both correct and incorrect taxonomy shapes. As
before, this requires the elaboration of an additional, permissible graph grammar, that allows
the creation of correct and incorrect models. The construction of taxonomies with this grammar
starts from a host graph that contains only the basic type representing the class of individuals,
as shown in Figure 25. This grammar is presented in Appendix E and is composed by five rules:

• A rule to create new levels of classification, as in Figure 28;

• A rule to create a new non-basic type as a specialization of any existing type;

• A rule to introduce a categorizer of any non-basic type as a specialization of any existing
type;

• A rule to introduce a specialization relation between any two non-basic types, avoiding
circularity;

• And a rule to introduce an instantiation relation between any two non-basic types,
avoiding circularity.

The exploration results for this permissible grammar are presented in Table 7. The
second column lists the number of taxonomy shapes created with the permissible grammar,
both correct and incorrect. As we can see, at least up to 𝑁 = 5, the number of correct taxonomy
shapes matches those produced by our grammar (second column of Table 6). Even more acutely
than in the case of the completeness analysis of the UFO-based grammar presented earlier,
there is an exponential growth in the number of shapes, fueled by the additional relations
introduced in a multi-level taxonomy (instantiation and categorization). This suggests further
work is required to support a completeness claim. Note that given the formation constraints
of the grammar, a very large portion of the taxonomy shapes generated by the permissive
(control) grammar is incorrect. This shows that much is required from a free-form modeler
to produce a correct model on their own by employing what we call – in comparison with a
high-level pattern language – ‘low-level’ primitives; the liberty in an unrestricted setting is
so vast that some mistakes are bound to occur, especially in large constructs. Therefore, tool
automation and assistance is of the utmost importance for a model designer.
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# types (𝑁 ) All taxonomy shapes Incorrect shapes Correct shapes
2 2 0 2
3 23 18 5
4 4,064 4,042 22
5 6,480,294 6,480,098 196

Table 7 – Results of completeness analysis for the MLT-based graph grammar.

Partial Completeness Results

Further evidence of the completeness of ourMLT-based grammar can be given following
a strategy similar to that given in Section 3.2.2. To this end, we define three additional graph
grammars to partially verify the completeness of the grammar presented in Section 4.1. The
first one produces taxonomy shapes in that categorization relations do not necessarily respect
the stratification of classification levels, but specialization relations do. In other words, in this
grammar, that is presented in Appendix F, categorization relations do not necessarily occur
between types of adjacent levels, i.e., the constraints presented in Figures 38(a, b, c) are not
enforced, but the constraint presented in Figure 40 is. The second grammar, that is presented
in Appendix G, produces taxonomy shapes in that specialization relations do not necessarily
respect the stratification, i.e., the constraint presented in Figure 40 is not enforced. Finally, a
third grammar, that is presented in Appendix H, produces taxonomy shapes in that instantiation
relations do not necessarily respect the definitions of categorization and specialization, i.e., the
constraints presented in Figures 41 and 42 are not enforced.

Table 8 summarizes the results obtained with the permissible grammar that can violate
the stratification by categorization relations, but not by specialization relations. The Table 9
summarizes the results obtained with the permissible grammar that can violate the stratification
by specialization relations. And, finally, the Table 10 summarizes the results obtained with a
permissible grammar where instantiation relations can violate the definitions of categorization
and specialization.

# types (𝑁 ) All taxonomy shapes Incorrect shapes Correct shapes
2 2 0 2
3 5 0 5
4 22 0 22
5 201 5 196
6 3,909 224 3,685
7 168,078 22,706 145,372

Table 8 – Results of completeness analysis for the MLT-based graph grammar that can only
violate the stratification by categorization relations.
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# types (𝑁 ) All taxonomy shapes Incorrect shapes Correct shapes
2 2 0 2
3 5 0 5
4 25 3 22
5 348 152 196
6 22,641 18,956 3,685
7 8,340,140 8,194,768 145,372

Table 9 – Results of completeness analysis for the MLT-based graph grammar that violates the
stratification by specialization relations.

# types (𝑁 ) All taxonomy shapes Incorrect shapes Correct shapes
2 2 0 2
3 5 0 5
4 23 1 22
5 218 22 196
6 4,417 732 3,685
7 190,919 45,547 145,372

Table 10 – Results of completeness analysis for the MLT-based graph grammar with instantia-
tion relations violating the categorization and specialization definitions.

Each one of these three permissive grammars generated all the 149,282 taxonomy
shapes produced by our MLT-based grammar, and no more correct models, what can be seen
comparing the Column Produced taxonomy shapes of the Table 6 with the Column Correct
shapes of Tables 8, 9 and 10. These three permissive grammars generated a total of 8,432,398
taxonomy shapes (8,283,116 of them are incorrect ones). As in 3.2.2, this provides further
evidence in favor of the completeness of our MLT-based grammar.
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5 Joining the Foundational Theories

Having designed and assessed two independent graph grammars each corresponding to
a foundational theory, in this chapter, we are ready to combine both grammars into a single rule
set, which is presented in Section 5.1. Subsequently, in Section 5.2, we reuse the graph conditions
for the grammar of endurant types (Section 3.2) and the grammar of multi-level taxonomies
(Section 4.2), to show that the results of soundness still carry over to the combined grammar.
In other words, the combined grammar consolidates rules that guarantee the production of
correct ontologically well-founded multi-level taxonomies.

As discussed in (GUIZZARDI et al., 2015), the ontological distinctions among endurant
types discussed in Section 2.2 can also apply to higher-order types. For example, Bird Species
can be conceived as a second-order Kind, whose instances are individual bird species such
as American Eagle or Emperor Penguin, which instantiate that type necessarily. In their turn,
Endangered Bird Species or Extinct Bird Species are anti-rigid second-order types (phases) that
can contingently classify instances of Bird Species, and Recognized Bird Species is an anti-rigid
second-order type (a role) played by instances of Bird Species when officially recognized. Hence,
a combined theory is required to take into account these ontological distinctions for higher-
order types in multi-level taxonomies. It is important to note that the rules of our combined
grammar cannot be used to model the categories of endurant types, presented in 2.2 in the
Figure 8. The rules can only be used to model domain types.

5.1 Graph Transformation Rules to Build Ontologically Correct

Multi-Level Taxonomies

Our construction of ontology-based multi-level taxonomies starts from the same host
graph of Section 4.1 (Figure 25). This initial host graph contains only a single basic type
representing the class of individuals.

The type graphs presented in Figures 43 and 44 are used. The dashed lined node type
Type is abstract, in the sense that it cannot be directly instantiated. In practice, only the six
leaf types of types in Figure 43 can be directly instantiated.
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Figure 43 – Type graph established to reflect the taxonomy for Endurant Types.

Figure 44 – Type graph established to reflect the MLT relations.

5.1.1 Introducing First-Order New Types

The endurant independent types originally presented in Section 3.1.1, i.e., Kinds, Cate-
gories, Mixins and Anti-Rigid Non-Sortals, are now introduced in the first level as a direct
specialization of the basic type representing the Individual class. The amalgamation of the
rules given in Figures 14(a-d) and 27 lead to the new rules shown in Figures 45(a-d).

(a) new-first-order-kind (b) new-first-order-category

(c) new-first-order-mixin (d) new-first-order-antirigid-nonsortal

Figure 45 – Transformation rules to introduce a new first-order independent type.

5.1.2 Introducing First-Order Dependent Types

Similarly to the independent ones, the endurant dependent types from Section 3.1.2,
i.e., Subkinds and Anti-Rigid Sortals, are introduced in the first level as a specialization of
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some Sortal type from which they inherit a principle of identity. The new rules depicted in
Figures 46(a, b) result from the combination of the rules originally given in Figures 15, 16 and
27. In case of a Subkind, its principle of identity is inherited from a Rigid-Sortal. In case of
an Anti-Rigid Sortal, it is inherited from any Sortal.

(a) new-first-order-subkind (b) new-first-order-antirigid-sortal

Figure 46 – Transformation rules to introduce a new first-order dependent type.

5.1.3 Introducing a New Order

A new order in the taxonomy is introduced in the same way as discussed in Section 4.1.2,
via the creation of a powertype of a basic type in the highest order so far. This is accomplished
by the rule shown in Figure 47, which is the same as the original rule in Figure 28, being
repeated here just for convenience.

Figure 47 – Transformation rule to introduce a new order.

5.1.4 Introducing High-Order New Types

Endurant independent types are introduced in high levels as a direct specialization of a
basic type representing some high-order, categorizing any Endurant Type at one order below,
as shown in Figures 48(a-d). These new rules result from the combination of the ones presented
in Figures 14(a-d) and 29. Once more the instantiations of basic types remain implicit as they
can be inferred from the powertype declaration: all subtypes of the base type are, by definition,
instances of the powertype.
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(a) new-high-order-kind (b) new-high-order-category

(c) new-high-order-mixin (d) new-high-order-antirigid-nonsortal

Figure 48 – Transformation rules to introduce a new high-order independent type.

5.1.5 Introducing High-Order Dependent Types

Endurant dependent types are introduced in high levels as a specialization of some
Sortal type from which they inherit a principle of identity, respecting the rigidity ontological
principle, and categorizing any Endurant Type at one order below. This is performed by the
rules shown in Figures 49(a, b), which are the product of the amalgamation of the original rules
presented in Figures 15, 16 and 29.

(a) new-high-order-subkind (b) new-high-order-antirigid-sortal

Figure 49 – Transformation rules to introduce a new high-order dependent type.

5.1.6 Introducing Specializations for Existing Non-Sortal Types

Proceeding with the merging of the rules in Sections 3.1.3 and 4.1.4, Categories and
Mixins can be specialized in any Endurant Type without instances at the same level, and
Anti-Rigid Non-Sortals can be specialized in an Anti-Rigid Type without instances at the
same level. Two new rules are shown in Figures 50(a, b), resulting from combining the ones
from Figures 17(a, b) and 30. Additionally, the new rule depicted in Figure 51 stems from the
merging of original rules from Figures 18 and 30.
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(a) category-specialization (b) mixin-specialization

Figure 50 – Transformation rules to specialize a Category or a Mixin.

Figure 51 – Transformation rule to specialize an Anti-Rigid Non-Sortal.

5.1.7 Introducing Generalizations for Existing Sortal Types

In line with the discussion from Sections 3.1.4 and 4.1.4, Sortal types without instances
can be generalized accordingly to the rules in Figures 52(a, b), which are formed from the
original ones in Figures 19(a, b) and 30.

(a) subkind-generalization (b) antirigid-sortal-generalization

Figure 52 – Transformation rules to generalize a Sortal.

5.1.8 Classifying Types

Finally, to introduce a new instantiation relation similar to the one described in Sec-
tion 4.1.5, we adapt the original rule from Figure 31 to consider only the instantiation of
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Endurant Types, preventing the instantiation of two different Kinds by the same type, yield-
ing the new rule shown in Figure 53.

Figure 53 – Transformation rule to classify an Endurant Type.

5.1.9 Summary of the Grammar Rules

The grammar to build ontologically correct multi-level taxonomies is structured into
the following operations:

• The introduction of new first-order types specializing directly the basic type representing
the Individual class (introduction of first-order kinds and non-sortals);

• The introduction of new first-order sortals that require an existing first-order sortal to
inherit a principle of identity;

• The introduction of a basic type representing a new order;

• The introduction of new high-order types specializing directly some high-order basic
type and categorizing some type at one level below (introduction of high-order kinds
and non-sortals);

• The introduction of new high-order sortals that require an existing high-order sortal
at the same level to inherit a principle of identity, categorizing some type at one level
below;

• The specialization of existing non-sortals in other endurant types;

• The generalization of existing sortals in other sortals of the same kind;

• The introduction of instantiation relations between a specialization of a type and its
(higher-order) categorizer.
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5.2 Formal Verification

We perform the same verification process as previously described for each individual
micro-theory grammar, in order to ensure that the soundness results still hold for the combined
grammar described in this chapter. Luckily, given that the ontological restrictions from each
micro-theory are orthogonal, our new set of well-formedness restrictions can be composed
by just taking the graph conditions presented for the grammar of endurant types (Section 3.2)
and the grammar of multi-level taxonomies (Section 4.2) in tandem, except for one restriction,
which is of a type instantiating simultaneously two different Kinds. This last restriction, that
only appears when both micro-theories are considered in tandem, is presented in Figure 54.

Figure 54 – Restrictive condition of a type instantiating multiple Kinds.

We once more run a language enumeration, this time to analyze the combined graph
grammar proposed in this chapter. When executing, the GROOVE tool managed to generate a
total of 2,389,713 taxonomies up to a bound 𝑁 = 7. The results obtained with this experiment
are summarized in Table 11. Once again, we can see that the soundness property holds (at least
up to the reachable bound.)

# types (𝑁 ) Produced taxonomy shapes Incorrect taxonomy shapes
2 5 0
3 26 0
4 202 0
5 2,514 0
6 55,592 0
7 2,331,374 0

Table 11 – Results of soundness analysis for the combined grammar.

As discussed in Section 4.2.5 for the MLT-based grammar, a completeness analysis
beyond 𝑁 = 5 with the proposed strategy is not feasible, and further work is required to
support a completeness claim for the joint grammar, possibly involving partial exploration of
the state space or proof assistants.
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6 Final Considerations

We developed a formally specified, ontologically well-founded, metamodel-independent
and sound graph grammar for the elaboration of multi-level taxonomies. This expands on the
current state-of-the-art modeling methods, by proposing a novel technique that leads to the
development of (multi-level) taxonomies that are correct by construction.We have accomplished
that by leveraging on a typology of endurant types and a theory of high-order types. The typology
of endurant types is part of the Unified Foundational Ontology (UFO) (GUIZZARDI et al., 2015),
which underlies the Ontology-Driven Conceptual Modeling language OntoUML (GUIZZARDI
et al., 2018). The theory of high-order types was conceived as a foundation for multi-level
models (ALMEIDA et al., 2018; CARVALHO; ALMEIDA, 2018) and was also applied successfully
in a number of initiatives, including the definition of a well-founded multi-level modeling
language (FONSECA et al., 2021).

The original theory of UFO puts forth a number of ontological distinctions based on
formal meta-properties. As a result of the logical characterization of these meta-properties, we
have that certain structures (patterns) are imposed on the language primitives representing these
distinctions (RUY et al., 2017). We have identified a set of primitive operations on taxonomic
structures that incorporates the ontological distinctions of UFO and multi-level modeling
concepts from MLT, and that guarantees the soundness of the generated taxonomies. This
forms the basis for the systematic design of such structures at a higher level of abstraction.

Given the limitations of metamodels as a mechanism for representing the abstract
syntax of a language, these structures were not treated as first-class citizens before and have
remained hidden in the abstract syntax of the original OntoUML proposal (GUIZZARDI, 2005).
This work addresses this exact problem. By leveraging on that theory, we propose a pattern
grammar (formalized as a graph grammar) that embeds these distinctions and multi-level
modeling concepts, ensuring by design the construction of taxonomic structures that abide by
the formal constraints governing their relations. The work proposed here is inspired by the
work in (ZAMBON; GUIZZARDI, 2017) and advances the work initiated in (BATISTA et al.,
2021). For example, by employing the state exploration mechanism supported by GROOVE, we
managed to detect important omissions in the rule set proposed in that first work.

As we have shown, the ratio between incorrect and correct taxonomies is enormous,
and worse still, grows exponentially as the number of elements in the model grows. This
provides support for our claim that the graph grammar patterns identified here are indeed
‘higher-level’ constructs when compared to the direct creation of modeling elements and
relations in conventional (free-form) modeling environments.

Another important aspect is that our proposal captures the representation consequences
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of ontology theories in a way that is metamodel-independent. For this reason, these results can
be carried out to other languages and platforms. In particular, we are currently developing a
plugin for Protégé that, among other things, implements the primitive operations proposed
in this dissertation. This plugin is intended to be used in tandem with the gUFO ontology (a
lightweight implementation of UFO) (ALMEIDA et al., 2019). In that implementation, these
operations take the form of ontology patterns to be applied, to support its users in modeling
consistent Semantic Web ontologies.

All the graph grammars proposed in this dissertation for the construction of correct
taxonomies, in addition to our completely permissive grammars for endurant types and the
MLT, can be obtained at <https://github.com/nemo-ufes/ufo-mlt-taxonomy-graph-grammar>.
All of our permissive graph grammars, including those used to partially verify the completeness
of our proposed grammars, are presented in the Appendix.

6.1 Limitations

As a first limitation of our work, we can point that the grammar language generated
by all of our graph grammars are infinite, i.e., these grammars potentially generate an infinite
number of graph state models. To cope with this situation, using model checking as in this
work, we need to limit the exploration of the state space, what is done here by the number of
types present in each taxonomy shape. This way, we cannot conclusively demonstrate any
soundness or completeness claim for the graph grammars proposed here, as maybe it could
be done using proof assistants, for example. Given the inherently exponential growth of the
number of possible taxonomy shapes with respect to the number of types, a great amount
of additional memory and processing time is necessary to a little increase in the number of
types used as limit. This state space explosion is a common problem for all explicit state model
checkers, such as GROOVE (GHAMARIAN et al., 2012).

Nonetheless, to support our soundness claims for the graph grammars we propose, we
rely on the small scope hypothesis, which basically claims most design errors can be found in
small counterexamples (GAMMAITONI; KELSEN; MA, 2018), and we present an analysis of
the nature of well-formedness violations according to our restrictive conditions, showing that
these violations could appear in taxonomy shapes with a number of types less or equal the
limits established in this work. With respect to completeness claims, we developed additional
permissive graph grammars, each of which generates the correct models and a set of incorrect
models disjoint from the others, providing additional evidence that our graph grammars are
not only sound, but also complete.

https://github.com/nemo-ufes/ufo-mlt-taxonomy-graph-grammar
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6.2 Future Work

In our future work, we intend to address the aforementioned scalability limitations
by exploring other techniques, such as different ways to partially explore the grammars state
space or the use of proof assistants to analyse properties of the grammars in order to define
and prove theorems about them.

In this work, we did some choices about what to include in the scope from the MLT and
the typology of endurant types of UFO. We have focused on the essential aspects of taxonomic
structures, leaving out some concepts for the sake of grammar simplicity and formal verification
tractability. For instance, we did not include different forms of powertype and categorization,
subordination, generalization set declarations and its constraints (disjointness and completeness),
relationships and existential dependence. In future works, these and other concepts from the
two micro-theories could be taken into account.
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APPENDIX A – Completely Permissive

Endurant Types Graph Grammar

(a) new-
kind

(b) new-
subkind

(c) new-antirigid-
sortal

(d) new-
category

(e) new-
mixin

(f) new-antirigid-
nonsortal

Figure 55 – Transformation rules to introduce an endurant type.

Figure 56 – Transformation rule to introduce a specialization relation.



69

APPENDIX B – Rigidity Permissive

Endurant Types Graph Grammar

(a) new-
kind

(b) new-
category

(c) new-
mixin

(d) new-antirigid-
nonsortal

Figure 57 – Transformation rules to introduce an independent type.

Figure 58 – Transformation rule to introduce a Subkind type.

Figure 59 – Transformation rule to introduce an Anti-Rigid Sortal type.

(a) category-
specialization

(b) mixin-specialization

Figure 60 – Transformation rules to specialize a Category or a Mixin.

Figure 61 – Transformation rule to specialize an Anti-Rigid Non-Sortal type.
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(a) subkind-generalization (b) antirigid-sortal-
generalization

Figure 62 – Transformation rules to generalize a Subkind or an Anti-Rigid Sortal.
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APPENDIX C – Sortality Permissive

Endurant Types Graph Grammar

(a) new-
kind

(b) new-
category

(c) new-
mixin

(d) new-antirigid-
nonsortal

Figure 63 – Transformation rules to introduce an independent type.

Figure 64 – Transformation rule to introduce a Subkind type.

Figure 65 – Transformation rule to introduce an Anti-Rigid Sortal type.

(a) category-
specialization

(b) mixin-specialization

Figure 66 – Transformation rules to specialize a Category or a Mixin.

Figure 67 – Transformation rule to specialize an Anti-Rigid Non-Sortal type.
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(a) antirigid-nonsortal-
generalization

(b) category-
generalization

(c) mixin-generalization

Figure 68 – Transformation rules to generalize Non-Sortals.

(a) subkind-generalization (b) antirigid-sortal-
generalization

Figure 69 – Transformation rules to generalize a Subkind or an Anti-Rigid Sortal.
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APPENDIX D – Permissive Endurant Types

Graph Grammar Regarding Kind Constraints

(a) new-
kind

(b) new-
category

(c) new-
mixin

(d) new-antirigid-
nonsortal

Figure 70 – Transformation rules to introduce an independent type.

Figure 71 – Transformation rule to introduce a Subkind type.

Figure 72 – Transformation rule to introduce an Anti-Rigid Sortal type.

(a) category-
specialization

(b) mixin-specialization

Figure 73 – Transformation rules to specialize a Category or a Mixin.

Figure 74 – Transformation rule to specialize an Anti-Rigid Non-Sortal type.
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(a) subkind-
generalization

(b) antirigid-sortal-
generalization

Figure 75 – Transformation rules to generalize a Rigid or an Anti-Rigid Sortal.
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APPENDIX E – Completely Permissive

Multi-Level Taxonomies Graph Grammar

Figure 76 – Transformation rule to introduce a non-basic type.

Figure 77 – Transformation rule to introduce a new order.

Figure 78 – Transformation rule to introduce a new categorizer.

Figure 79 – Transformation rule to introduce a new specialization relation.

Figure 80 – Transformation rule to introduce a new instantiation relation.



76

APPENDIX F – Multi-Level Taxonomies

Graph Grammar with Categorization

Breaking Stratification

Figure 81 – Transformation rule to introduce a first-order type.

Figure 82 – Transformation rule to introduce a new order.

Figure 83 – Transformation rule to introduce a new categorizer.

Figure 84 – Transformation rule to introduce a new specialization relation.
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Figure 85 – Transformation rule to introduce a new instantiation relation.
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APPENDIX G – Multi-Level Taxonomies

Graph Grammar with Specialization

Breaking Stratification

Figure 86 – Transformation rule to introduce a first-order type.

Figure 87 – Transformation rule to introduce a new order.

Figure 88 – Transformation rule to introduce a new high-order type.

Figure 89 – Transformation rule to introduce a new specialization relation.
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Figure 90 – Transformation rule to introduce a new instantiation relation.
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APPENDIX H – Permissive Multi-Level

Taxonomies Graph Grammar Regarding

Instantiation Constraints

Figure 91 – Transformation rule to introduce a first-order type.

Figure 92 – Transformation rule to introduce a new order.

Figure 93 – Transformation rule to introduce a new high-order type.

Figure 94 – Transformation rule to introduce a new specialization relation.
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Figure 95 – Transformation rule to introduce a new instantiation relation.
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