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Abstract

The standard paradigm of modern cosmology relies on a set of fundamental assumptions
that simplify and make possible the modeling of the Universe. Among these critical
hypotheses, there is the presumption that we do not occupy a special place in the Uni-
verse, the so-called Copernican principle. The assumption of this principle constrains
the degrees of freedom allowed by the theory, and, in particular, within the framework
of the General Theory of Relativity, leads to a spatially homogeneous and isotropic
space-time. Here, we present a program to observationally test the Copernican princi-
ple and study the cosmological applications of inhomogeneous cosmologies. Under the
assumption of a spherically inhomogeneous extension of the standard model and using
the latest cosmological data, we test the Copernican principle by placing constraints
on radial deviations of the spatially homogeneous and isotropic space-time. We also
forecast the precision with which future surveys, such as DES, Euclid and LSST, will be
able to test the Copernican principle and test their ability to detect any possible viola-
tions. Furthermore, we investigate if a local void could explain away the 5σ discrepancy
between the early and late times determinations of the Hubble constant. Our goal is
to take the first steps to extend the boundary of the standard paradigm of modern
cosmology, and, in particular, to develop a suitable framework for the development of
physics beyond the Copernican principle.

Keywords: theoretical cosmology – observational cosmology – large-scale structure of
Universe – Hubble constant



Resumo

O paradigma padrão da cosmologia moderna baseia-se em um conjunto de pressupos-
tos fundamentais que simplificam e possibilitam a modelagem do Universo. Entre essas
hipóteses cŕıticas, está a presunção de que não ocupamos um lugar especial no Uni-
verso, o chamado prinćıpio Copernicano. A suposição deste prinćıpio restringe os graus
de liberdade permitidos pela teoria e, em particular, no âmbito da Teoria Geral da
Relatividade, conduz a um espaço-tempo espacialmente homogêneo e isotrópico. Aqui,
apresentamos um programa para testar observacionalmente o prinćıpio Copernicano e
estudar as implicações cosmológicas dos modelos cosmológicos não homogêneas. Sob
a suposição de uma extensão esfericamente não homogênea do modelo padrão e us-
ando os dados cosmológicos mais recentes, testamos o prinćıpio Copernicano colocando
restrições nos desvios radiais do espaço-tempo espacialmente homogêneo e isotrópico.
Também prevemos a precisão com que os levantamentos futuros de dados, como DES,
Euclid e LSST, poderão testar o prinćıpio Copernicano e testar sua capacidade de de-
tectar posśıveis violações. Além disso, investigamos se um vazio local poderia explicar
a discrepância 5σ entre as determinações em tempos primordiais e tempos tardios da
constante de Hubble. Nosso objetivo é dar os primeiros passos em direção à extensão da
fronteira do paradigma padrão da cosmologia moderna e, em particular, apontamos a
desenvolver uma estrutura adequada para o desenvolvimento da f́ısica além do prinćıpio
Copernicano.

Palavras chaves: cosmologia teórica – cosmologia observacional – estrutura em grande
escala do universo – constante de Hubble
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CHAPTER 1.

Introduction

The human being seems to be in a never-ending quest to answer profound questions about life,
the Universe, and everything. Although such questions indubitably fit in the metaphysical and
philosophical subject, some of them relate to the scientific study of the Universe, i.e., cosmology.
Indeed, given its comprehensive architecture, modern cosmology surpasses the frontiers of natural
science to meet the metaphysical and philosophical playground — following the reasoning exposed
by Ellis et al. [15], cosmology has both narrow and broad aims. While, on the one hand, it shares
some of its aspects with other branches of physics, for instance as an explanatory theory that
aims to explain several phenomena of our cosmos, on the other hand, it can provide a starting
point to research the aforementioned philosophical issues.

This fundamental relation between philosophy and cosmology has also influenced the reasoning
of cosmologists. We can not deny that the profound philosophical questions about our existence
have played a crucial point in the hypotheses contemplated and promoted by cosmologists. More
explicitly, these fundamental metaphysical and philosophical issues have grounded the founda-
tions of the standard paradigm of modern cosmology [15]. Indeed, the current standard framework
of modern cosmology has been established by a set of fundamental assumptions, principles, and
hypotheses that reduce the number of degrees of freedom needed to model our Universe. Thanks
to the fundamental assumptions of modern cosmology, cosmologists have made a terrific advance
in the developing of a scientific theory of the Universe.

On the other hand, the existence of theoretical problems not yet resolved and discrepancies
between different cosmological observations could point to a breakdown of the standard paradigm.
Among those issues faced by modern cosmology, the Hubble tension stands out. This tension
indicates a ∼ 5σ disagreement between physics at late and early times. Such discrepancy can be
illustrated if one considers the value of the Hubble constant inferred from the analysis of CMB
data, H0 = 67.27 ± 0.60 km s−1 Mpc−1 [16], and the latest local determination of the Hubble
constant, H0 = 73.04 ± 1.04 km s−1 Mpc−1, obtained through the cosmic distance ladder [17].

In light of this, testing the fundamental assumptions of modern cosmology is crucial to put on
more solid ground the foundations of the standard paradigm. In this thesis, we explore physics
beyond the standard paradigm by relaxing the assumption of the Copernican principle, the
notion that we are not placed in a special place in the Universe. By assuming an inhomogeneous
extension of the standard Λ Cold Dark Matter model, we aim to study physics beyond the
assumption of homogeneity. To provide the first steps toward an extension of the boundaries of
the current paradigm of modern cosmology, we propose and develop a suitable program to study,
analyze, and interpret cosmological and astrophysical data in inhomogeneous space-times.

This thesis is organized as follows. In Chapter 2, we shall present the empirical and theoretical
foundations of the standard paradigm of modern cosmology. We primarily focus on revising the
Copernican principle and introducing the standard cosmological model. Then, in Chapter 3 we

1



Introduction Section 1.0

will discuss some of the problems faced by the standard paradigm. Our discussion will focus on
problems that relate to the foundations of the standard paradigm, in particular, such relevant
to the assumption of the Copernican principle. Cosmological models beyond the hypothesis
of cosmic homogeneity will be given in Chapter 4. In such a Chapter, we shall also discuss
the Lemâıtre-Tolman-Bondi metric and its application in cosmology. In addition, a spherically
symmetric inhomogeneous model with a cosmological constant, i.e., the LLTB model. Results of
the different analyses performed here will be displayed and discussed in Chapter 5. Finally, we
shall conclude in Chapter 6.

To nurture the discussion presented in this thesis, besides the main Chapters, the present
work includes three Appendixes. In particular, in Appendix A we describe the demarginalization
technique used to obtain the underlying calibration of supernovae given by the Cepheid and
geometrical distances. Appendix B presents, on the other hand, a complementary analysis used
to assess the impact of low-ℓ Planck data in the test of the Copernican principle. Lastly, we
present in Appendix C a re-scaling technique used to create mock catalogs with non-standard
fiducial models.

In this thesis, we adopt natural units such that c = 1, where c is the speed of light in the
vacuum. Additionally, we use the subscript “0” to denote the present-day value of a given
quantity. On the other hand, in Chapters 2 and 3 the derivative with respect to the cosmic time
will be denoted by a dot, but, from Chapter 4 and on we will use a dot to denote the partial
derivative with respect to the time coordinate and a prime to denote the partial derivative with
respect the radial coordinate.
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CHAPTER 2.

The standard paradigm of modern cosmology

In this Chapter, we will briefly revise the foundations of the standard paradigm of modern
cosmology. We shall report some of the empirical evidence and the theoretical assumptions used
to ground a scientific theory of the Universe. We will start introducing a fundamental concept
of observational cosmology, the redshift. Later, the Hubble-Lemâıtre law, Cosmic Microwave
Background, primordial abundances of the light elements, and cosmic acceleration will be dis-
cussed. We will then focus on revisiting the theory of gravity assumed by the standard paradigm:
the General Theory of Relativity. After this, a discussion of the assumption of an isotropic and
homogeneous Universe will take place. The principal aim of such a discussion is to introduce
the Friedmann-Lemâıtre-Roberson Walker metric, the Copernican principle, and their relation
with cosmological observations. We shall close the present chapter by presenting the standard
model of cosmology, i.e., the cosmological constant Λ and Cold Dark Matter model (hereafter,
the ΛCDM model). Basic concepts of the background evolution and perturbations theory will be
reviewed.

2.1. Empirical foundations

Different observations have influenced our perception of the Universe, even leading us in some
cases to modify and postulate new theoretical models. This shows that the groundwork of
modern cosmology not only relies on theoretical studies but also on a set of empirical evidence
that has molded a phenomenological approach to the Universe. Here, we will examine some of
the empirical evidence exploited to set up the foundations of the standard paradigm of modern
cosmology. We will focus our attention on the evidence that will later become relevant and
valuable to the development of this work.

2.1.1. The redshift

Even when we are limited to observing the Universe from our particular position, i.e., Earth,
cosmologists have been able to assemble an accurate and sophisticated program to probe the
nature of our Universe. One of the fundamental pieces of this program — observational cosmology
— is the redshift.

As explained below, the redshift, related to the expansion of the Universe, can be evaluated
through the radiation emitted by the different cosmological structures. Indeed, the expansion of
the Universe stretches the light emitted by a source. Consequently, the radiation is observed at
a wavelength λo large than the emitted one λe. This stretching of the observed electromagnetic
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radiation is quantified through the redshift

z ≡ λo

λe
− 1 . (2.1)

2.1.2. The Hubble-Lemâıtre law

The Hubble-Lemaitre law constitutes the first and most direct observational evidence that we
live in an expanding Universe.1 It establishes that the radial velocity, v, of an object away from
us, for instance a galaxy, is directly proportional to its physical distance, d. More precisely, it
states the empirical relation

v = H0 d . (2.2)

with H0, the so-called Hubble constant, being the constant of proportionality. The Hubble
constant, H0, whose units are given in km s−1Mpc−1, is occasionally presented in its normalized
and dimensionless form defined as h ≡ H0/100 km s−1Mpc−1.

Hubble used Equation (2.2), observations coming from the 100-inch Hooker telescope and
published radial velocities, to determine for the first time the rate of the expansion of the Universe.
Although its measurements were rather imprecise — he obtained an expansion rate of H0 =
500 km s−1Mpc−1 [19] — this first determination of the Hubble constant was fundamental in
the development of observational cosmology. As it will be discussed later, in Section 3.5.1, direct
observational methods used to measure the value of the Hubble constant are deeply inspired by
the Hubble-Lemaitre law.

2.1.3. Cosmic Microwave Background

To explain the expansion of the Universe, the standard paradigm of modern cosmology adopts
the Big Bang hypothesis, the conception that the Universe was born in an extremely dense and
hot state. Besides illustrating how the Universe expanded from an initial state of high density
and temperature, the models stemming from the Big Bang theory also predict the existence of the
Cosmic Microwave Background (hereafter, CMB). Such a prediction was for the first time derived
in 1948, when Ralph Alpher, Robert Herman, and George Gamov applied the Big Bang theory to
establish a mechanism capable of predicting the abundance of light elements in the Universes [20].
The existence of the CMB was not confirmed until 1965 when Penzias and Wilson identified a
3.5 K persistent signal in measurements provided by the 20-foot horn-reflector antenna [21].

This serendipitous discovery made by Penzias and Wilson quickly became one of the empiri-
cal pillars of modern cosmology, providing important support to the hypothesis of a Big Bang
cosmology. Luckily for us, the discovery of the CMB was not limited to being a historical fact
but also opened a window to test cosmological models — the CMB temperature and polarization
fluctuations provide us with one of the most important and accurate observables in cosmol-
ogy. The first NASA’s satellite dedicated to cosmology, COBE, helped not only set an early
program to observationally study the CMB but also provided several sturdy constraints on the
Cosmic Infrared Background [22]. Some of the primary results provided by COBE more than
two decades ago are still relevant, e.g., the measurements of the CMB temperature and the am-
plitude of y-distortion. Considerable improvements came by the hand of the WMAP satellite,
which stood out for providing a few percent constraints on the six parameters of the standard

1In order to acknowledge the contributions made by Georges Lemâıtre to the scientific theory of the expansion of
the Universe [18], the International Astronomical Union (IAU) recommended in 2018 to rename the so-called
Hubble law as the Hubble–Lemâıtre law.
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model, consequently determining the age of the Universe to be 13.77 billion years to within a half
percent [23]. Ultimately, using CMB data coming from the Planck mission [24], we have been
not only capable of constraining several cosmological parameters with an astonishing precision
but also testing fundamental assumptions about our Universe. Indeed, observations from Planck
point to a statistically significant agreement between the fluctuations in the temperature of the
photons released at the last scattering surface and an isotropic Universe [25, 26]. The latter
will be better discussed in Section 2.3.3. Figure 2.1 shows a comparison between the resolution
attained by COBE, WMAP, and Planck missions.

Figure 2.1.: Resolutions on CMB temperature maps as attained by the COBE, WMAP, and
Planck missions. While the first NASA cosmological satellite measured the CMB
fluctuations with a 7◦ resolution, WMAP observed the temperature fluctuations with
a resolution of 0.3◦. Planck satellite achieved unprecedented precision by detection
fluctuations at the 0.07◦ scale. Figure from https://photojournal.jpl.nasa.gov/

catalog/PIA16874.

2.1.4. Primordial abundances of light elements

Along with constraints coming from CMB, the Big Bang Nucleosynthesis (hereafter, BBN) theory
provides accurate predictions for the abundance of deuterium, 3He, 4He, and 7Li. Overall, obser-
vational constraints on the abundance of such elements are consistent with theoretical predictions
and provide important empirical support for Big Bang cosmology. As shown in Figure 2.2, the
standard paradigm of modern cosmology predicts the abundance of light elements as a function
of the baryon-to-photon ratio η. The mismatch between observations and theory, exhibited in
the bottom panel of Figure 2.2, for the abundance of 7Li is the so-called Lithium problem. This
problem will be discussed in Section 3.1.

2.1.5. Cosmic acceleration

Observations coming from the light curves of the Type Ia Supernovae (hereafter, SNe) led to the
discovery of the accelerating expansion of the Universe. By analyzing the luminosity distance-
redshift relationship of SNe, two independent research groups, led by Adam Riess and Saul
Perlmutter, concluded that the universe was not only expanding but also accelerating [28, 29].
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Figure 2.2.: Abundances of light elements as a function of the baryon-to-photon ratio, η. The
light blue vertical band shows the CMB constraint on the η at 95% confidence level,
while the purple vertical band indicates the constraint at 95% confidence level from
BBN D+4He concordance ranges. On the other hand, the yellow boxes illustrate
the observed light elements abundances. Although, BBN accurately predicts the 4He
abundance, it is easy to note that there exists a disagreement between the observation
and theoretical prediction on the abundance of 7Li. Figure from Zyla et al. [27].

This finding produced an enormous change in the paradigm of cosmology and led cosmologists
to postulate the existence of a mysterious component with negative pressure capable to drive
the accelerated expansion of the Universe: the dark energy — a key ingredient of the standard
cosmological paradigm.

It is important to emphasize that the interpretation of an accelerating Universe is given within
the framework of the standard paradigm, particularly under the assumption of the Friedmann-
Lemâıtre-Roberson-Walker metric. Thus, the dimming of SNe’s luminosity does not truly consti-
tute direct evidence of cosmic acceleration. This is particularly noticeable once we demonstrate
that an inhomogeneous space-time, for instance, a Lemâıtre-Tolman-Bondi metric, can mimic the
cosmic acceleration by means of spatial gradients without invoking a dark energy component,
see Section 4.1.3.

Albeit, it is also important to highlight that cosmic acceleration is not only supported by the
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luminosity of SNe. A plethora of cosmological data sets are in agreement with an accelerating
Universe and, in particular, with the standard paradigm — the existence of a mysterious dark
energy component.2 In contrast, alternative explanations tend to fail in explaining further cos-
mological data. This reveals robust evidence in favor of cosmic acceleration. We would like to
close this Section by stressing that the paragraph above does not intend to argue in favor of a
non-accelerating Universe but rather expose a circular problem of modern cosmology: a theo-
retical framework is needed to interpret the data, and the data is needed to test the theoretical
framework.

2.2. The General Relativity framework

Historically associated with the birth of modern cosmology, the General Theory of Relativity
(hereafter, GR), introduced in 1915, is a cornerstone of modern cosmology. Its appearance
grounded the theoretical basis of a scientific theory of the Universe. Thanks to Einstein’s theory
of gravity, we have been able to set a theoretical framework suitable for studying different aspects
of the Universe. Using this framework, cosmologists have proposed and promoted a wealth of
models to describe the Universe. Although we can not confidently state that GR is the correct
theory of gravity, cosmological models relying on Einstein’s theory can accurately describe a
plethora of cosmological observations.

The generalization of Special Relativity led Einstein to propose a theory of gravity whose
mathematical foundations relies on differential geometry. Intricate and rigorous mathematical
definitions swamp and constitute the formal framework of Einstein’s theory of gravity. However,
despite this complexity, physicists have assigned a beautiful, simplistic, and sharp interpretation
to the GR: the presence of matter disturbs the space-time geometry and, in turn, the geometry
of the space-time determines the matter’s dynamics. This interpretation usually stems from the
main result of GR:

Rµν −
1

2
Rgµν = 8πGTµν , (2.3)

the so-called Einstein field equations (hereafter, EFE). Equation (2.3) make clear the relation
between matter and the geometry of the space-time. The matter field, represented by the energy-
momentum tensor Tµν , tells space-time how to curve, and space-time, left-hand side of above
equation, tells matter how to move. Note that the geometrical side of Einstein equation can be
recast using the Einstein tensor, Gµν , such that Gµν ≡ Rµν − 1

2Rgµν .
The EFE equations are highly nonlinear, mainly because of the complex definition of the Ricci

tensor and scalar. Thus, Einstein’s equations do not possess a general solution. Thus, if we aim
to build up cosmological models, assumptions that simplify the solution of Equation (2.3) will
be needed. Such assumptions will typically limit the geometry of the space-time, the left-hand
side of EFE, or the matter content of the Universe, the right-hand side of EFE. The standard
paradigm of cosmology will assume the so-called Cosmological principle to fix the left-hand side of
EFE. We will discuss this assumption and its cosmological consequences in the following Section.

2.3. A spatially isotropic and homogeneous Universe

The standard paradigm of modern cosmology relies on a series of fundamental hypotheses that
establish a theoretical and empirical framework needed to interpret cosmological data and model

2Typical observational probes of cosmic acceleration are thoroughly discussed in the review presented by Weinberg
et al. [30].
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our Universe. Such assumptions typically reduce the degrees of freedom needed to describe our
Universe and simplify the approach required to build up cosmological models. Among these
founding hypotheses, there is the Cosmological principle.

The Cosmological principle, the notion that the Universe is both spatially isotropic and homo-
geneous at sufficiently large scales, was initially introduced by Einstein to reduce the complexity
of the EFE if one considers an arbitrary distribution of matter. As discussed by Coles and Lucchin
[31], Einstein’s motivations were based mainly on the Mach’s principle; Einstein believed that to
develop a theoretical science of cosmology was necessary to assume the simplicity of the global
structure of the Universe to later derive a similar simplicity in the local behavior of matter. The
latter formulation motivated Bondi and Roxburgh [32] to formulate the Perfect Cosmological
principle, version in which the Universe is not only spatially homogeneous but space–time is
homogeneous, and, consequently, consistent with the a idea of a steady-state Universe.

The Cosmological principle constrains the geometry of the space-time, unavoidably leading
to the Friedmann-Lemâıtre-Roberson-Walker metric. It is important to highlight that although
cosmologists still seem to agree with Einstein’s initial rationale, our motivations for assuming a
spatially homogeneous and isotropic Universe are not necessarily related to the Mach’s principle.
Empirical evidence in favor of spatial isotropy is often used together with the so-called Coper-
nican principle to argue in favor of the cosmological principle. In this Section, we will revise
the relation between the Copernican principle and the assumption of a spatially homogeneous
and isotropic space-time. We will start our discussion by introducing the Friedmann-Lemâıtre-
Roberson-Walker metric (hereafter, FLRW metric). Later, the Copernican principle will be
defined and discussed. Finally, we will close this Section by reviewing some routes that can be
taken to obtain the FLRW metric, having the Copernican principle as a starting point.

2.3.1. The Friedmann-Lemâıtre-Roberson-Walker metric

By invoking the Cosmological principle, cosmologists have made a tremendous advance in the
understanding of the Universe. Such a principle not only allows us to simplify the models of GR
but also allows us to understand the whole Universe even though we are only able to collect data
from our position. The specific form of the metric is the principle’s fundamental mathematical
repercussion.

The symmetries established by the Cosmological principle can be translated to the mathemat-
ical language using the theory of symmetric spaces [see Chapter 13 of 33]. Thus, it is possible
to demonstrate that a spatially homogeneous and isotropic Universe correspond to a space-time
with a maximally symmetric subspace. This reduces the metric to follow the FLRW metric:

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
, (2.4)

where a(t) is the scalar factor and k is the curvature of the maximally symmetric sub-space. The
time dependence of the scalar factor is included to account for the expansion of the Universe,
while the curvature of the metric will constrain the geometry of the subspace such that

k =


+|k| spherical sub-space,

0 Euclidean sub-space,
−|k| hyperbolic sub-space.

(2.5)

It is worth mentioning that is always possible to find a coordinate transformation that trans-
forms metrics with the same symmetries, scalar curvature, and numbers of negative and positive
eigenvalues. That is, in a Universe in which the Cosmological principle is valid, the space-time
will be well-described by the FLRW metric.
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2.3.2. The Copernican principle

The Copernican principle proposes the hypothesis that we do not occupy a special place in the
Universe; we are merely typical observers. Equivalent, there are no special parts of the Universe,
and statistically, all regions of the Universe look the same. As explained in the following Section,
when associated with isotropy, the Copernican hypothesis implies a homogeneous Universe and,
consequently, can be interpreted as a weak version of the Cosmological principle.

Since we live in a lumpy universe that deviates on small scales from the FLRW metric, in the
real world, the Copernican hypothesis also implies that when inhomogeneities at small scales
are smoothed out, the Universe turns out homogeneous. This means that the assumption of the
Copernican principle implicitly introduces the existence of a cosmic homogeneity scale. There
have been numerous attempts to establish this scale through observation. For instance, galaxies
and quasars surveys have been analyzed by using number count techniques. The results of such
analyses have led us to determine the presence of a cosmic homogeneity scale with a range around
70 — 150 Mpc [34, 35, 36].

2.3.3. Routes to the FLRW metric

According to the standard paradigm of modern cosmology, we can accurately model the Universe
through the FLRW metric (and its perturbations). Although this postulate is indeed a conse-
quence of assuming the Cosmological principle, it is also true that the assumption of the FLRW
can be also observationally argued if one relies on the observed isotropy and the Copernican
hypothesis. In conjunction with observables, the Copernican principle is capable of constraining
the geometry of the space-time to be spatially isotropic and homogeneous. This latter becomes
noticeable if one considers the Ehlers-Geren-Sachs theorem (hereafter, EGS theorem) and its
different extensions.

In 1968, Ehlers, Geren, and Sachs proved that if the matter content of the Universe is a perfectly
isotropic radiation fluid then the space-time is static or FLRW [37]. This statement, dubbed the
EGS theorem, was one of the first attempts to prove the FLRW metric via observations. An
alternative interpretation of this theorem states that if we observe a perfectly isotropic CMB
radiation, then the space-time in our region must be conformally stationary [38]. Given that
the Copernican principle limits us to be typical observers, space-time should be conformally
stationary at every point resulting in an FLRW space-time. This theorem constitutes a powerful
proof that cosmological observations, hand in hand with the Copernican principle, can constrain
the geometry of space-time to follow the FLRW metric.

Although this theorem is an important result to cosmologists, one should keep in mind that,
due to its unrealistic assumptions, the EGS can not be applied to the real world — in its original
form, the EGS theorem does only consider radiation as the source of the gravitation field. To
overcome these limitations, several extensions of the EGS theorem were proposed. Most of these
proposals include dark energy and matter as components of the Universe [39, 40, 41, 42, 43, 44,
45], nevertheless, such improved versions can not be applied to our cosmos either. The main
reason is that the CMB radiation is not perfectly isotropic but rather almost isotropic. In this
context, the almost-EGS theorem was proposed [see 42, 46, 47, 48, 49, for instance] as a plausible
approximation to the real world.3 In contrast to the latter, it has been also claimed that the
almost-EGS theorem needs further assumptions to be consistent with our CMB observations [50].

Through this thesis, we embrace the almost-EGS theorem to relate the CMB isotropy and

3Note that the almost-EGS theorem leads to an almost FLRW space-time, whose covariant definition is lacking
[38]
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Copernican principle to the FLRW metric. This includes the assumption that the gradients of
the very low multipoles of the CMB power spectrum are small compared to their amplitude.
Finally, it is important to highlight that there exist other ways to arrive at the FLRW metric
using as the principal assumption the Copernican principle [see 38, for a further discussion].

2.4. The standard cosmological model

In this Section, we will introduce the standard cosmological model: the ΛCDM model.4 Our
discussion will focus on reviewing some of the basic concepts of the background evolution and
the theory of perturbations of ΛCDM. We shall also revise some of the concepts that will be
necessary for a fruitful discussion of the results presented in this thesis.

2.4.1. Friedmann equations and the cosmic inventory

The assumption of spatial homogeneity and isotropy also limits the energy-momentum tensor.
Given the special geometry of the FRLW metric, Equation (2.4), the energy flux across the spatial-
surface, T 0j , the momentum density, T 0i, and the shear stress, T ij , of the energy-momentum
tensor are expected to be zero, where i, j = 1, 2, 3 and i ̸= j for the shear stress. This means
that the right-hand side of the Einstein equations should describe a perfect fluid, a fluid whose
viscosity and conductivity are zero. The energy-momentum tensor for a perfect fluid follows:

Tµν = (ρ + p)UµUν + pgµν , (2.6)

where Uµ is the four-velocity of fluid, p is the pressure, and ρ the energy density. The EFE then
give the Friedmann equations

H2 =
8πG

3
ρ− k

a2
, (2.7)

ä

a
= − 4πG

3
(ρ + 3p) , (2.8)

where H ≡ ȧ/a is the Hubble parameter with units of km s−1 Mpc−1, and G is the universal
gravitational constant. Equations (2.7) and (2.8) are also called the first Friedmann equation
and acceleration equation, respectively. Note that the sign of (ρ+ 3p), the right-hand side of the
Equation (2.8), will determine whether the Universe is accelerating or decelerating.

To solve the above equations is necessary to introduce a relation between the energy density
and pressure with the scalar factor. This relation will be provided by the law of conservation of
energy, which, in its covariant form, corresponds to the conservation of the energy-momentum
tensor. In GR, Bianchi identities and Equation (2.3) guarantee

∇µT
µν = 0 , (2.9)

where ∇µ is the covariant derivative which includes the connections or Christoffel symbols of
the metric. In addition, upon the assumption of a barotropic equation of state (hereafter, EoS)

4We use the expression standard paradigm to refer to the theoretical and empirical concepts that constitute the
standard framework of modern cosmology. On the other hand, we use the expression standard model to describe
the set of the most accepted theoretical definition used to build up a framework suitable for the understanding
of cosmology.
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in which the energy density and the pressure related through p = wρ, with w being the EoS
parameter, the continuity equation is obtained:

ρ̇ + 3H(1 + w)ρ = 0 . (2.10)

In order to explain the accelerated expansion of the Universe it is necessary a component whose
EoS parameter obeys w < −1/3, see Equation (2.8).

Using Equation (2.7), we can define the energy density that is necessary to obtain a spatially
flat Universe, this is the critical density

ρcri ≡
3H2

8πG
.

Considering this last definition, we can recast the energy density parameter such that

Ω ≡ ρ

ρcri
=

8πG

3H2
ρ , (2.11)

and consequently the first Friedmann equation follows the closure equation:

1 = Ω + Ωk , (2.12)

where Ωk ≡ − k
a2H2 and Ω are called the density parameters. Since the Universe is filled with

more than one material component, ρ is the total energy density, i.e., it contains the contribution
of all the material species such that ρ ≡ ∑

i ρi, where i labels a particular specie. Note that the
same applies for the pressure p and the density parameter Ω. In what follows, we briefly revise
the matter components of the ΛCDM model.

2.4.1.1. Matter

The non-relativistic matter sector of the standard cosmological model is composed of baryons and
cold dark matter. We dub baryons all the non-relativistic particles described by the Standard
Model of particle physics and denominate as cold dark matter the non-relativistic species that
only interacts gravitationally with the other components of the Universe.

The non-relativistic matter species, or simply matter, is expected to have a negligible pressure
such that the EoS parameter obeys wm ≪ 1. Pragmatically, the EoS is usually set to wm = 0.
Due to conservation of energy and momentum

˙ρm = −3
ȧ

a
ρm ,

ρm(a) = ρm0a
−3 , (2.13)

or using the density parameter:

ρm(a) =
3H2

0

8πG
Ωm0a

−3 ,

Ωm(a) =
Ωm0a

−3

E2(a)
, (2.14)

where the subscript m refers to matter and E(a) ≡ H(a)/H0 is the normalized Hubble parameter.
Note that Ωm = Ωb + Ωc, where subscripts b and c represent baryons and cold dark matter,
respectively.
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The result obtained from the conservation of the energy-momentum tensor, i.e., Equation (2.13),
can be intuitively interpreted. The energy density is roughly speaking defined as the total energy
in a unit of volume, where the latter is proportional to a3. Therefore, in a scenario where the
species have constant energy, due to the expansion of the Universe, the energy density is expected
to decrease as ρ ∝ a−3.

2.4.1.2. Radiation

Relativistic species shape the radiation, which, in the standard model, corresponds to photons
and massless neutrinos. Note that although neutrino flavor oscillations suggest the existence of
massive neutrinos, neutrinos are often approximated as massless.

Relativistic matter species have a EoS parameter wr = 1/3, which according to the conservation
of energy and momentum gives:

ρ̇r = −4
ȧ

a
ρr ,

ρr(a) = ρr0a
−4 , (2.15)

or using the density parameter:

ρr(a) =
3H2

0

8πG
Ωr0a

−4 ,

Ωr(a) =
Ωr0a

−4

E2(a)
, (2.16)

where the subscript r refers to radiation. Ωr accounts for the contributions of photons and
massless neutrinos. Even though the aforementioned relativistic species are expected to evolve
at the same rate, a−4, the energy density of them differs due to their intrinsic definitions. While
photons will follow the Bose-Einstein distribution, the Standard Model neutrinos will be described
by the Fermi–Dirac statistics. Thus, the density parameters of the massless neutrino and photos
will be related through [51]

Ων =
7

8

Neff

2

(
4

11

)4/3

Ωγ ,

where the subscripts ν and γ represent the neutrinos and photons, respectively, and Neff, the
effective families of neutrinos. Ultimately, because of this

Ωr0 = Ωγ0

[
1 +

7

8

Neff

2

(
4

11

)4/3
]
. (2.17)

In contrast to the non-relativistic matter, ρm(a), radiation, ρr(a), possesses an extra a−1. This
additional scale factor in Equation (2.15) comes from the fact that due to the expansion the
energy of a photon decays with a−1. It is important to highlight that here, we refer to the
relic radiation, that is, photons and neutrinos formed in the baryogenesis. For a revision of the
astrophysical radiation released during the structures formation see [52].

2.4.1.3. Cosmological constant

In 1917, Einstein introduced the cosmological constant, Λ, to make the field equations of GR com-
patible with his vision of a static and finite Universe [53]. However, the presence of instabilities
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in this kind of model demonstrated that the cosmological constant does not satisfactory explain
a static and finite Universe [54]. Nowadays, the role of Λ is not to model a static universe but
rather an accelerated expanding universe. Thanks to its negative pressure, a Universe dominated
by the cosmological constant satisfies w < −1/3 and ergo explains the accelerated expansion of
the universe, ä > 0, see Equation (2.8).

Similar to matter and radiation, the cosmological constant can be included in the Einstein
equations as a component of a perfect fluid such that the energy-momentum tensor is

TΛ
µν = − Λ

8πG
gµν , (2.18)

and, consequently, the cosmological constant energy density and pressure follow

ρΛ =
Λ

8πG
, (2.19)

pΛ = − Λ

8πG
. (2.20)

This means, that the density parameter results

ΩΛ =
ΩΛ0

E2(a)
, (2.21)

where ΩΛ0 = Λ/3H2
0 . On the other hand, in contrast to the other species of the standard

cosmological model, the cosmological constant can be also interpreted as an intrinsic constant of
Einstein theory that can be introduced in Equation (2.3) by modifying the fundamental action
of GR. In such a case, the field equations can be reshape as

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (2.22)

The cosmological constant is often associated with the vacuum energy of the Universe, since
its EoS parameter matches wΛ = −1, as seen from Equations (2.19) and (2.20). Independently
of considering or not the cosmological constant as an intrinsic constant of the Einstein’s theory
of gravity, the presence of Λ is a fundamental piece on the standard paradigm of cosmology. For
the sake of convenience, we will adopt the EFE as expressed in Equation (2.22).

2.4.2. The background evolution

2.4.2.1. Stages of the Universe

The evolution of the scale factor affects the way different species contribute to the total energy of
the Universe. For instance, at early times when a → 0, the contribution of radiation will be more
important than the contribution of matter or the cosmological constant. Analogously, at late-
times where a → 1, Λ is expected to dominate the total energy of our Universe. These features
become more evident if one uses Equations (2.14), (2.16) and (2.21) to recast the Friedmann
equations as

E(z) =
[
Ωm0(1 + z)3 + Ωr0(1 + z)4 + ΩΛ0

]1/2
, (2.23)

q(z) =
1

2
[(1 + wm) Ωm(z) + (1 + wr) Ωr(z) + (1 + wΛ) ΩΛ(z)] , (2.24)
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where the redshift and scale factor are related by a = 1/(1+z), and q ≡ −äa/ȧ2 is the deceleration
parameter.

From Equation Equation (2.23), it is easy to infer that the background evolution of the ΛCDM
scenario will consist of three different epochs: a radiation-dominated era, a matter-dominated
era, and a dark energy-dominated era. Strictly speaking, there exists an additional stage at early
times. This stage, dubbed inflation, occurs before the radiation-dominated epoch and represents
another accelerating epoch of the Universe [see 55, for a thoroughly review of inflation]. Figure 2.3
shows the three mentioned stages of the Universe by showing how the density parameter of the
different species evolves with the scale factor (left panel). We also display the evolution of the
deceleration parameter (right panel). At early times, the radiation dominates the dynamic of
the background yielding to a Universe with decelerated expansion, i.e. q > 0 (light orange
area). Subsequently, because of the expansion, the matter becomes more important and starts
to dominate at redshifts lower than zeq (purple area), with zeq being the redshift of the epoch of
matter-radiation equality, i.e., Ωm(zeq) = Ωr(zeq). Eventually the density of matter and radiation
dilutes conducing to a dark energy-dominated Universe (white area) whose accelerating expansion
is explained by the current value of the decelerating parameter q0 ≈ −0.55.
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Figure 2.3.: Density parameters of the different species of the ΛCDM model (left panel) and the
deceleration parameter (right panel) as a function of the redshift. From the evolution
of Ωi is easily to deduce the three stages of the Universe: the radiation-dominated era
(light orange area), the matter-dominated era (purple area), and the dark energy-
dominated era (white area).

2.4.2.2. Cosmological distances

Establishing a fundamental relationship between redshift and cosmological distances is a key issue
in cosmology. Since, in principle, it is not possible to predict a generic definition of cosmological
distances that can be applied to any cosmological model, we are rather limited to computing
the cosmological distances according to our cosmological model.5 Within the standard paradigm
and the FLRW assumption, there exist two ways of computing cosmological distances: taking
into account or not the expansion of the Universe. The second class of functions are the dubbed
comoving distances. Meanwhile, the former are the so-called proper or physical distances.

5Approximate definitions of model-independent cosmological distances can be constructed using expansions in
series of functions. [see 56, and references therein].
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From the FLRW line element, Equation (2.4), its clear that the radial comoving distance obeys

Dc =

∫ r

0

dr′√
1 − kr′2

,

=


DH√
Ωk0

sinh[
√

Ωk0
r

DH
] , for Ωk0 > 0 ,

r , for Ωk0 = 0 ,

DH√
|Ωk0|

sin[
√

|Ωk0| r
DH

] , for Ωk0 < 0 ,

(2.25)

where we have defined the quantities Ωk0 ≡ −kD2
H , χ ≡ r/DH and DH ≡ 1/H0. Additionally,

as radiation follows null geodesics, ds2 = 0, it is

r =

∫ t0

t

dt′

a(t′)
= DH

∫ z

0

dz′

E(z′)
,

with E(z) being the normalized Hubble rate introduced above. Analogous to the later, we can
define the comoving distance travelled by a sound wave of speed cs from the initial singularity,
z → +∞, to a particular redshift, z, as

rs =

∫ +∞

z

csdz
′

H(z′)
. (2.26)

This is the so-called comoving sound horizon. Finally, the proper distance, DC , will be obtained
by taking into account the effect of the expansion of the Universe, this is

Dp ≡ a(z)Dc =
Dc

(1 + z)
. (2.27)

On the other hand, we can also define the luminosity and angular distances. The former is
important to study standard candles, while the latter to study standard rules. The luminosity
and angular distances are defined by

DL = (1 + z)Dc , (2.28)

DA =
Dc

(1 + z)
, (2.29)

respectively. Note that the luminosity and angular distances follows the Etherington’s distance-
duality, such that DL = (1 + z)2DA . This relation have been demonstrated to be valid if the
photon number is conserved and gravity is described by a metric theory [57].

2.4.3. A lumpy Universe

2.4.3.1. Cosmological perturbations

By embracing the assumption of a homogeneous and isotropic Universe, we have established
the necessary starting point for the development of modern cosmology. However, we can not
deny that we live in a lumpy Universe — our cosmos features large-scale structures, such as
galaxies, galaxy clusters, voids, and filaments. Thereby, a comprehensive cosmological model has
to go beyond the aforementioned symmetrical assumptions. Mathematically, to account for the
undeniable inhomogeneities of the Universe and trace the emergence and evolution of large-scale
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structures, it is necessary to include deviations from the FLRW metric. Such deviations can be
studied via perturbation theory, and, more explicitly, through perturbed FLRW models.

The theory of perturbations is compatible with the theoretical framework settled by GR and
can be used not only to trace the growth of perturbations in our Universe but also to study other
phenomena, e.g., gravitational waves. Here, we apply the theory of perturbations to the EFE.
We start by defining the general perturbed metric, gµν , that can be decomposed as

gµν = gµν + δgµν , (2.30)

where δgµν is the small deviation, provided by the perturbations, and gµν is the background
metric, i.e., the FLRW metric. We then use Equation (2.30) to recast the Einstein’s equations,
such that at first order we have:

δGµν ≡ δRµν −
1

2
δgµνR− 1

2
gµνδR = 8πGδTµν , (2.31)

where is R is the background Ricci scalar.
As mentioned before, it is necessary to develop a perturbed FLRW model if one aims to assess

the perturbations around our spatial homogeneous and isotropic Universe. Similar to the case
of the background evolution, the first step to constructing this kind of model is to define the
metric, i.e., δgµν . However, before proposing a strict definition of δgµν , it is important to discuss
one of the subtleties of Equation (2.30). Given that the background and perturbed metric are
not defined in the same manifold, the relationship established in (2.30) is only well-defined if
a map between the manifold of gµν and δgµν is defined. Since there is no single way to define
such a map, there will be no exclusive definition of cosmological perturbations. This problem,
well-known as the gauge problem, can be overcome if one defines gauge-invariant quantities; that
is, quantities that do not depend on the map. Here, we will not discuss the gauge problem and
its implications in detail, but rather point out some of the gauge-invariant quantities introduced.

We define the perturbed metric, δgµν , by imposing the Newtonian gauge [58]:

ds2 = a2 (η)
{
− [1 + 2Ψ (η, x⃗)] dη2 + [1 + 2Φ (η, x⃗)] δijdx

idxj
}
, (2.32)

where Ψ and Φ are scalars field and we have introduced the conformal time defined as η =
∫
dt/a.

For the sake of the simplicity, hereafter, we will drop the arguments (η, x⃗) on the perturbed
quantities Ψ, Φ, and derived. Given that neither vector nor tensor perturbations are included
in the Newtonian gauge, the potentials Ψ and Φ coincide with the gauge-invariant Bardeen’s
potentials [59]. Thus, we can conveniently rewrite the left-hand side of Equation (2.31) as

δG0
0 = 2a−2

[
3H

(
HΨ − Φ′) + ∇2Φ

]
, (2.33)

δG0
i = 2a−2∂i

(
Φ′ −HΨ

)
, (2.34)

δGi
j = 2a−2

[(
H2 + 2H′)Ψ + HΨ′ − Φ′′ − 2HΦ′] δij

+ a−2
[
∇2 (Ψ + Φ) δij − ∂i∂j (Ψ + Φ)

]
, (2.35)

where H ≡ a′

a = aH is the Hubble parameter in conformal time. On the other hand, the
perturbed energy-momentum tensor is

δTµ
ν =

[(
1 + c2s

)
UµUν + c2sδ

µ
ν

]
δρ + (1 + w) (δUµUν + UµδUν) ρ , (2.36)
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where we have defined the density contrast, velocity divergence, and sound speed as

δ ≡ δρ

ρ
, (2.37)

θ ≡ ∂iv
i , (2.38)

c2s ≡
δp

δρ
, (2.39)

respectively. Note that the peculiar velocity, vi = dxi/dη, comes from the four-velocity definition

Uµ =

[
1

a
(1 − Ψ) ,

vi

a

]
. (2.40)

Expanding Equation (2.36), we can determinate the perturbed components of the energy-momentum
tensor, where

δT 0
0 = −δρ , (2.41)

δT 0
i = (1 + w) ρvi , (2.42)

δT i
j = c2sδ

i
j δρ . (2.43)

Since both sides of the perturbed Einstein equation are determined, see Equations (2.33)
to (2.35) and (2.41) to (2.43), we can compute a set of equations that will govern the dynamics
of the perturbations:

3H
(
HΨ − Φ′) + ∇2Φ = 4πGa2ρδ , (2.44)

∇2
(
Φ′ −HΨ

)
= −4πGa2 (1 + w) ρθ , (2.45)

Ψ + Φ = 0 , (2.46)

Φ′′ + 2HΦ′ −HΨ′ −
(
H2 + 2H′)Ψ = −4πGa2c2sρδ . (2.47)

Each of the above equations has a particular role in the evolution of the FLRW perturbations.
For instance, the relativistic Poisson equation, Equation (2.44), will be important to assess the
evolution of perturbations at all times, directly relating the matter distribution to the gravita-
tional potentials, and the anisotropic-stress equation, Equation (2.46), will be especially relevant
at early times, where photons and neutrinos feature quadrupole moments [60].

2.4.3.2. Summary statistics

To obtain particular solutions of Equations (2.44) and (2.47) initial conditions are necessary. The
theory of inflation predicts such initial conditions and assigns them a quantum origin. Thanks
to this, cosmological perturbations will turn out to be stochastic in nature — initial conditions
as predicted by inflation are probability distributions and not functions. From the theoretical
point of view, this means that we are incapable of predicting the inhomogeneous distribution of
matter around the Universe.

Even if one assumes that is possible to provide deterministic particular solutions to the per-
turbed EFE, the information contained in those would be useless by itself. The main reason:
it is observationally impossible to determinate δ(η, x⃗). From our position in space-time, we are
limited to measure quantities at t0, hence, it will turn out impossible to measure δ(η, x⃗) at any
other time.
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In spite of everything mentioned, the study of cosmological perturbations continues to be fun-
damental for the understanding of large-scale structures. Their stochastic nature does not prevent
us from using them in the analysis of cosmological models but rather offers us the opportunity
to apply descriptive statistics to condensate the information contained in the cosmological per-
turbations. From the pragmatical point of view, we can take advantage of the stochastic nature
of cosmological perturbations.

Within the standard paradigm of modern cosmology, cosmological perturbations are assumed
to be well-represented by stochastic Gaussian field. This implies that the relevant summary
statistics of δ(η, k⃗) are the mean and the variance. Additionally, if one assumes the mean to be
zero, the leftover statistics will be the variance, which is defined by [31]〈

δ̃(η, k⃗1)δ̃(η, k⃗2)
〉

= P (k1, z)δD(k⃗1 + k⃗2) , (2.48)

where P (k, z) is the so-called the power spectrum, δD is the Dira delta function, and we have
used the Fourier transform of the density contrast

δ̃(η, k⃗) =
1

(2π)3

∫
dx3e−k⃗·x⃗δ(η, x⃗) , (2.49)

Note that the isotropy assumed by the standard paradigm is reflected in the definition of the
power spectrum, which depends on the magnitude k but not the k̂ ≡ k⃗/k. We want to conclude
this Chapter o by highlighting that formally, the operator ⟨⟩ denotes the ensemble average,
however, it is pragmatically applied as a spatial average. The difference between the spatial and
ensemble averages will yield the known cosmic variance.
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CHAPTER 3.

Problems of the standard paradigm

Due to its great ability to accurately explain various cosmological observations, the ΛCDM
model is also known as the concordance model [see Fig. 15 in 61]. However, despite its surprising
success, the ΛCDM model faces several theoretical and observational challenges. The fine-tuning
problem [62], the coincidence problem [63], the Lithium problem [64], the CMB anomalies [65],
and tensions in cosmological parameters, e.g., H0 and σ8 [Cosmology intertwined] are only some
examples. Here we shall review some of the problems of the standard paradigm of modern
cosmology. We will mainly focus on revisiting the ones that relate to the fundamental assumptions
of modern cosmology, in particular, those related to the Copernican Principle.

3.1. The lithium problem

As discussed in Section 2.1.4, the BBN theory provides accurate predictions about the abundance
of deuterium, 3He, 4He, and 7Li. Although such predictions provide important support for the
standard paradigm, the mismatch between the measurements and the theoretical prediction of
7Li abundance could signal the breakdown of the standard BBN. Indeed, the theoretical value
predicted by the BBN theory, 7Li/H×1010 = 5.623±0.247 [66], is about 3.5 times larger than the
observational constraint, 7Li/H × 1010 = 1.6 ± 0.3 [27]. This discrepancy of about 4 − 5σ could
be attributed to yet unknown astrophysical or nuclear systematics, nevertheless, this missing
abundance of Lithium could be a hint to the existence of new physics.

Different cosmological solutions have been proposed to the Lithium problem. For instance,
Clara and Martins [67] showed that a variation on the fundamental constants could accommodate
the 7Li abundance to the observed value without affecting the abundance of 3He. A similar
proposal was presented in [68], where the variation on the fundamental constants also impacts
the Hubble tension problem.1 The Lithium problem has also been studied in the context of the
Copernican Principle. Inhomogeneous cosmological models could explain the Lithium problem
through a baryon-to-photon ratio that varies with the scale [70]. Many other alternatives have
been proposed to explain the discordance in the Lithium abundance [see 71, for an interesting
revision of this problem].

3.2. CMB anomalies

Although the ΛCDM framework provides an accurate picture of the CMB observations, several
statistical anomalies have been detected in the CMB data. Most of these anomalies, whose
significance typically reaches out the 2 − 3σ, arise at the the largest observable angular scales,

1A simultaneous solution to the Hubble and Lithium problem was also pursued by Alcaniz et al. [69].
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approximately ≳ 60◦. The source of such anomalies is still unknown and they could indicate a
violation of the fundamental assumptions of the standard paradigm. Of particular interest here
are the cold spot, the variation in cosmological parameters over the sky, and the Planck internal
anomalies.

3.2.1. The cold spot

First found in the WMAP [72] data, and later confirmed by the Planck mission [25, 26], the
cold spot is a large-scale region of the CMB map with a lower temperature than the average
— the mean temperature of the cold spot is about ∼ 100µK lower than the CMB background
temperature. With a diameter of about 10◦ and galactic coordinates corresponding to l, b ≈
209◦,−57◦, the cold spot is inconsistent with some of the fundamental hypotheses of modern
cosmology. For instance, it disagrees with the assumption that cosmological perturbations are
Gaussian fields [73, 74, 75, 76]. Additionally, it could point out to a breakdown of the assumption
of spatial homogeneity [77].2 In 2015, a supervoid aligned with the cold spot was detected [84].
Such superstructure, dubbed Eridanus supervoid, has been proposed as a promising explanation
for the cold spot anomaly [85].

3.2.2. Variation in cosmological parameters over the sky

The variation of the cosmological parameters in the sky has been used to test the symmetries
imposed by the Cosmological Principle [see 86, 87, 88, 89, 90, for instance]. The test about the
isotropic assumption has been remarkable, as it has revealed important deviations of the isotropy
established by the FLRW metric. For example, Fosalba and Gaztanaga [91] have found a direc-
tional dependence of the cosmological parameters across the sky in the Planck map. According to
their study, the dependence across the sky is strongly inconsistent with the isotropy established
by the Cosmological principle — they claimed a probability of ∼ 10−9 for this finding. Similarly,
Yeung and Chu [88] found a directional dependence of the cosmological parameters on the Planck
data. Such directional dependence features a Bayes factor that strongly disfavors an isotropic
FLRW Universe.

3.2.3. Planck internal anomalies

Planck analysis of the temperature and polarization CMB power spectrum found a shift in the
cosmological parameters when constraints coming from ℓ ≲ 800 and ℓ ≳ 800 are compared [92,
93, 94]. While Planck collaboration argues that this slight discordance of ≤ 2σ between high and
low multipoles is driven by the “low-ℓ” deficit found in ℓ < 30, this mismatch could be a hint for
the existence of new physics at large scales or the presence of systematics in low multipoles.

On the other hand, introduced as a phenomenological parametrization, the lens parameter
Alens as constrained by the CMB power spectrum displays a ∼ 2σ discordance with the ΛCDM
paradigm. Planck constraints give Alens = 1.180 ± 0.065 [16], while the ΛCDM model predicts
Alens = 1. The lens parameter is strongly correlated with the mild tension detected between
the low and high multipoles; an excess of lens Alens > 1 reduces the shift in the cosmological
parameters [94]. As in the case of the high and low multipoles discrepancy, in the absence of
systematics, the preference for Alens > 1 could be a hint of the existence of physics beyond the
standard paradigm.

2Given that supervoids have been also considered as possible solutions to the cold spot [78, 79, 80, 81], this
problem could be related to the anomalous strong integrated Sachs-Wolfe signal observed for supervoids and
superclusters [82, 83].
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Figure 3.1.: Left panel: 1d posteriors on the curvature parameter obtained from the analysis of
real and simulated Planck data. The main analysis of Planck constrains a closed
Universe, Ωk0 < 0, at more than 3σ. Right panel: 68% and 95% confidence level
constraints on Ωk0 and Alens from the analysis of Planck 2018 data. It is straight-
forward to note that Ωk0 is strongly correlated with Alens. In particular, a slightly
closed Universe can mimic the excess of lens, and, ergo, solves the internals anomalies
found in Planck CMB data. Figure from Di Valentino et al. [95].

Although these internal anomalies could be produced by statistical fluctuations, one could
argue in favor of cosmological models with non-trivial curvature. For instance, Di Valentino
et al. [95] argue that, since Planck temperature and polarization data exhibit a > 3σ preference
for a closed Universe, the internal anomalies found in the Planck data could be cured by an FLRW
curvature Ωk0 < 0, see Figure Figure 3.1. Di Valentino et al. [95] emphasize that although this
closed Universe-scenario can explain the Planck anomalies, it exacerbates the H0 and S8 tensions,
and further, it is in strong disagreement with other data, e.g., BAO. Finally, the authors claim
that the confirmation of a closed Universe would lead to a crisis in cosmology. We would like to
highlight that Efstathiou and Gratton [96] have argued that the evidence for a closed Universe
found by Di Valentino et al. [95] is prior- and Likelihood-dependent.

In apparent contradiction with the analysis presented in [95], Bose and Lombriser [97] argue
that the AL anomaly and the Hubble and large-scale structure tensions can be cured by an open
and hotter Universe. Although the correlation between the CMB temperature and the curvature
of the Universe, see Figure 3.2, is discussed in an empirical context, the authors suggest that
such changes in the curvature and CMB temperature could be sourced by an inhomogeneous
Universe. In Section 5.4, we will use a ΛLTB model to explore this scenario.

3.3. Cosmic dipoles

The amplitude of the temperature fluctuations in the CMB shows, overall, a good agreement
with the assumption of an FLRW cosmology, mainly because fluctuations are very small. Yet,
this does not apply to the dipole of the CMB temperature.

The amplitude of the CMB dipole (ℓ = 1), as determined from the CMB data, is at least 102
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Figure 3.2.: 68% and 95% confidence level constraints on Ωk0 and T0, the CMB temperature,
from the analysis of Planck 2018 data under the assumption of a phenomenological
extension of the ΛCDM model. Changes on the curvature and CMB temperature
leads to solve several tensions. According to the authors, the strong correlation
between Ωk0 and T0 could be justified by an inhomogeneous model. Figure from Bose
and Lombriser [97].

times bigger than the fluctuations found in higher multipoles, in particular, Planck provides an
dipole’s amplitude of 3.36208 ± 0.00099 mK [98]. Within the standard paradigm, the motion of
the Earth relative to the Hubble flow (or CMB rest-frame) is assumed to be responsible of the
high amplitude of the dipole. Indeed, under such an assumption, the Planck collaboration has
constrained our relative velocity to be v = 369.82 ± 0.11 km/s with a direction that point in the
l, b ≈ 264.0216◦, 48.253◦ galactic coordinates. Nonetheless, the dipole could contain a non-kinetic
contribution intrinsic to the CMB. The amplitude of the latter could either corroborate or refute
the isotropy hypothesis. Although a precise measurement of the intrinsic dipole’s amplitude has
not yet been achieved, by measuring the Doppler- and aberration-like couplings in the CMB,
Ferreira and Quartin [99] have imposed an upper bound limit on the intrinsic dipole: 3.7 mK at
a 95% confidence level.

Besides the CMB dipole, more cosmic dipoles have been also detected in other surveys [see
Table III and Figure 22 in 100]. Some of these dipoles point in the same direction as the CMB
dipole, while others have various directional dependences, and there is no evident pattern in these
observations. Given that they feature different amplitudes, cosmological dipoles could hint at a
violation of the Cosmological principle. For instance, Secrest et al. [101] have recently claimed
that the hypothesis of a merely kinematical dipole in radio galaxies surveys [102] and quasars
data [103] consistent with the CMB dipole can be rejected at more than 5σ, see also [104]. In con-
trast, Darling [105] has claimed the opposite: the sky distribution and brightness of extragalactic
radio sources are consistent with the CMB dipole in direction and velocity.

Cosmic dipoles have also been exploited to constrain anisotropic cosmologies and possible devi-
ations of the Copernican principle. Inhomogeneous Cosmological models that include anisotropic
degrees of freedom, typically by assuming an off-center observer, can provide a non-perturbation
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explanation of the CMB dipole [106]. On the other hand, typical voids of Gpc size are constrained
by the SNe data and CMB dipole to have an observer within the ∼ 0.5% of the radius of the
void [107]. Qualitatively similar results have been found in [108, 109, 110]. Finally, according to
Biswas et al. [111], non-Copernican models with a slightly off-center observer would provide a
natural explanation for the so-called dark flow observed in CMB data [112, 113, 114].

3.4. The S8 tension

It is remarkable how observations have led us to place tight constraints on cosmological param-
eters and, indirectly, on other fundamental branches of physics. We can confidently state that
observations have played, and still playing, a crucial role in the development of modern cosmol-
ogy. However, in an era marked by high precision in cosmological observations, understanding
the source of the errors that surround our data is a pivotal point of the cosmological program.
This becomes crucial if we bring into the discussion the Hubble (next Section) and S8 tensions,
which, in the absence of unknown systematics errors, could prove the existence of physics beyond
the standard model.

The analysis of the temperature and polarization power spectrum of the CMB led us to con-
strain the S8 ≡ σ8(Ωm0/0.3)0.5 parameter to be S8 = 0.834±0.016 [16]. Cosmological analyses of
late time data related to weak lensing, galaxy clustering, and cluster counts, on the other hand,
prefer lower values of the same parameter. For instance, KiDS-1000 analysis of cosmic shear
data points to S8 = 0.759+0.024

−0.021 [115], while the 3 × 2 pt correlation analysis of DES Y3 data
yields S8 = 0.776 ± 0.017 [116]. These constraints reveal a ∼ 3σ discrepancy between the late
and early times observations. 3 Given its mild significance, this tension could be sourced either
by statistical fluctuations or unidentified systematic errors. Moreover, the large-scale structure
tension could also point to the presence of new physics, indeed, the S8 tension has been used as
a new window to test deviations and extensions of the cosmological standard model, see Cosmol-
ogy intertwined and references therein.

3.5. The Hubble crisis

Similarly to the S8 tension, the Hubble tension also indicates a disagreement between physics at
late and early times. On the one hand, under the assumption of the ΛCDM model, the latest
and primary CMB data constrains the expansion rate of the Universe to H0 = 67.27 ± 0.60
km s−1 Mpc−1 [16]. While on the other hand, the most recent model-independent analysis of the
cosmic distance ladder constrains the Hubble constant to be H0 = 73.04±1.04 km s−1 Mpc−1 [17].
Given its high statistical significance of ∼ 5σ, the disagreement between these measurements has
been labeled modern cosmology’s greatest challenge. Analogous to the case of the S8 tension, this
disagreement is not exclusive to the above-mentioned measurements but, instead, systematically
appears if one compares late and early time determinations of the Hubble constant.4 Figure 3.3
shows several indirect and direct measurements of H0 at early and late times, respectively. We
would like to highlight that among the Cepheids-SNe-based measurements, our determination

3This mismatch it is not exclusive to the aforementioned surveys, but instead it arises as a tension between the
early and late times measurements of S8. See Figure 21 and Table II of [100] for a extensive review of the
lastest measurements of S8.

4The tension can reach the ∼ 6σ level if an optimistic H0 estimate, deduced by the combination of 23 direct
measurements, is considered [118].
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Freedman et al. (2019): 69.8 ± 1.9
Reid, Pesce, Riess (2019), SH0ES: 71.1 ± 1.9

Freedman et al. (2020): 69.6 ± 1.9
Soltis, Casertano, Riess (2020): 72.1 ± 2.0

Freedman et al. (2012): 74.3 ± 2.1
Cardona, Kunz, Pettorino (2016): 73.8 ± 2.1

Riess et al. (2016), R16: 73.2 ± 1.7
Feeney, Mortlock, Dalmasso (2017): 73.2 ± 1.8

Follin, Knox (2017): 73.3 ± 1.7
Burns et al. (2018): 73.2 ± 2.3

Camarena, Marra (2019): 75.4 ± 1.7
Riess et al. (2019), R19: 74.0 ± 1.4

Breuval et al. (2020): 72.8 ± 2.7
Riess et al. (2020), R20: 73.2 ± 1.3

Alam et al. (2020), BOSS+eBOSS+BBN: 67.35 ± 0.97
Ivanov et al. (2020), BOSS+BBN: 67.9 ± 1.1

Philcox et al. (2020), P +BAO+BBN: 68.6 ± 1.1

Zhang, Huang (2019), WMAP9+BAO: 68.36+0.53
0.52

Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1
Aiola et al. (2020), ACT: 67.9 ± 1.5

Dutcher et al. (2021), SPT: 68.8 ± 1.5

Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 ± 0.54
Aghanim et al. (2020), Planck 2018: 67.27 ± 0.60

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 ± 0.53
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Figure 3.3.: Constraints at 68% confidence level of the Hubble constant according to different data
sets, both at low and high redshifts. It is easy to note the discrepancy between early
and late times determinations of the Hubble constant. Note that, the cyan vertical
band corresponds to the value of H0 as constrained by the cosmic distance ladder
technique, while the light pink vertical band corresponds to the H0 constraint as
inferred by the CMB data by the Planck 2018 collaboration. Figure from Di Valentino
et al. [117].
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presented in [H0 Paper I] provides the higher value, constraining H0 = 75.4±1.7 km s−1 Mpc−1.
This particular measurement will be discussed in detail in Section 3.5.1.

Undiscovered systematic errors could be the principal source of the Hubble tension. Never-
theless, in the absence of such, the 5σ discrepancy would indicate the existence of new physics.
Commonly, models proposed to explain or alleviate the H0 tension modify the standard model
either at late or early times. In general, these proposals aim to accommodate the CMB con-
straints with a larger value of H0 while keeping a good fit for the whole power spectrum. Strictly
speaking, to provide a theoretical prediction of the CMB power spectrum one should solve the
Boltzmann-Einstein equations. Hence, fully understanding how the non–standard cosmological
models allow for a faster expansion of the Universe and explain the CMB data at the same time
is not a trivial task. However, by considering the angular scale parameter, θ∗, we can gain an
insight into how the modifications to the ΛCDM model change the H0 constraint provided by
the CMB.

The angular scale is defined through the angular diameter distance and the comoving sound
horizon at the recombination, r∗s ≡ rs(z∗) and D∗

A ≡ DA(z∗), respectively, such that

θ∗ =
r∗s

(1 + z∗)D∗
A

, (3.1)

with z∗ being the redshift of the recombination. By considering a flat Universe and using the
definition of the angular diameter distance, Equation (2.29), we can explicitly isolate the con-
tribution of the Hubble constant in the equation above. Thus, we can recast Equation (3.1)
as

θ∗ =
r∗sh

(1 + z∗)d∗A
, (3.2)

where we used the normalized angular distance dA, which is defined according to

dA = 10−2

∫ z

0

dz

E(z)
Mpc .

We can deduce, from Equation (3.2), how a change in the value of the Hubble constant would
affect the constraint on the CMB. Particularly, one can note that in order to keep θ∗ fixed, and
therefore a good agreement with CMB constraints, any change on h should be accompanied
by a change either on d∗A or r∗s . Note that, the CMB temperature and polarization power
spectrum constrains, with an astonishing 0.03% precision, the acoustic angular scale to the value
θ∗ = 1.04109 ± 0.00030.

Proposed cosmological models with non-standard physics at early times typically introduce new
degrees of freedom around the recombination time. This modifies the comoving sound horizon
scale, r∗s [see 119, and references therein]. For instance, if we assume a ΛCDM model with
Neff = 3.75, the presence of radiation at early times will be boosted, see Equation (2.17), and,
consequently, we will have a significant increase in the Hubble rate at z ≳ 100. Given that rs ∝
1/H(z), a decrease in the sound horizon scale will be obtained, explaining, therefore, the rise in
the value of the Hubble constant needed to constrain θ∗. In opposition, new physics at late times
aims to resolve the Hubble tension by increasing the angular distance to the recombination [see
117, for an extensive review of this class of solutions]. This is often addressed by modifying the
dark sector of the Universe. For example, the inclusion of dark energy fluid with wde = −1.25
in the ΛCDM model will modify the Hubble diagram by enhancing the dark energy contribution
to the expansion of the Universe. As a consequence, the distance to the recombination epoch
will increase along with the value of the Hubble constant. We illustrate the aforementioned in
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Figure 3.4.: θ∗ (top panel), r∗s (bottom left panel), and d∗A (bottom right panel) as a function of
h for the ΛCDM (black lines), ΛCDM + Neff (blue dashed lines), and ΛCDM + wde

(red dashed lines) models. The increase in the effective number of neutrino species,
which is assumed to be Neff = 3.75, leads to higher value of h consistently with the
Planck constraints (grey bands) by reducing the sound horizon scale (bottom right
panel) and leaving the normalized angular scale unalterable (bottom right panel).
The opposite is observed when the dark energy component is assumed to have a EoS
different to −1, ΛCDM + wde.

Figure 3.4, where θ∗, r∗s , and d∗A as a function of h for the ΛCDM, ΛCDM + Neff , and ΛCDM +
wde models are shown. The grey bands correspond to the value of the constraint on θ∗ provided
by Planck 2018 [16].

Although several proposals have shown noticeable success in easing the tension on H0, data
analysis has not confirmed the existence of new physics [120]. In addition, the hitherto proposed
models seem to follow a trend of aggravating other problems. Adjustments around recombination
increase the value of the Hubble constant by modifying the sound horizon scale. However, such
modifications typically lead to tensions with BAO and galaxy clustering/lensing data [119]. For
instance, the inclusion of an early dark energy component can fit a local value of the Hubble
constant at the cost the of exacerbating the galaxy clustering S8 tension [121]. On the other hand,
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given that BAO and SNe constrain the Hubble diagram to be consistent with the cosmological
constant, late time extensions of the ΛCDM could be not allowed by this kind of data [8]. Finally,
models with transitions at very low redshift can fit very well BAO, SNe, and CMB data, but,
they will be inconsistent with the SNe calibration provided by Cepheids [H0 Paper III,Benevento
et al.], see Section 3.5.3.

One of the goals of this thesis is to determine if a violation of the Copernican principle can
explain away the Hubble tension, see Section 5.4. In this context, it will be fruitful, for our future
discussion, to review some of our previous analyses of the Hubble problem.

3.5.1. Revising the local determination of H0

Because of the Equation (2.2), Hubble-Lemâıtre law, the issue of determining the expansion rate
of the Universe reduces to measuring velocities and distances. At small scales, the former can
be easily determined from the redshift, this given that v ≈ z. However, measuring distances is
rather challenging. In this context, the cosmic distance ladder, an observational technique that
allows us to directly determine the value of the Hubble constant in a model-independent way,
was established.

Strictly speaking, the cosmic distance ladder employed by the SH0ES collaboration is a three-
step procedure that simultaneous fit geometric distances, Cepheids, SNe in nearby galaxies, and
SNe in the Hubble flow, to provide an accurate constraint on the Hubble constant value [17].
Nevertheless, pragmatically speaking, the cosmic distance ladder can be assembled in two steps.
First, Cepheid and geometrical distances are combined to provide a calibration of SNe in nearby
galaxies. Secondly, such calibration is propagated on SNe in the Hubble flow to determine H0. As
discussed later, the calibration of SNe will be carried out by the absolute magnitude parameter,
MB. Figure 3.5 shows a schematic representation of the SH0ES cosmic distance ladder. Note
that the data employed by SH0ES collaboration is also displayed.

3.5.1.1. The effect of peculiar velocities — cosmic variance intrusion

Since the cosmic distance ladder measures the Hubble constant at low redshifts, local effects could
influence or bias the determination of H0. In particular, the presence of peculiar velocities could
lead to over/underestimating the value of the expansion rate. In effect, the linear perturbation
theory predicts a local Hubble constant, H loc

0 , that deviates from the global Hubble constant, H0,
by [123, 124, 125]

δH =
H loc

0 −H0

H0
=

f(z)

(2π3)

∫
dk3δmL(kR)eik⃗·x⃗ , (3.3)

where δm is the density contrast, f(z) is the growth rate, and R is the scale where the peculiar
velocities act. Additionally, L is a negative function defined as

L(x) ≡ 3

x3

(
sinx−

∫ x

0
dy

sin y

y

)
.

From Equation (3.3), one can note that in an overdense region, δm > 0, the Hubble constant
is under-estimated, δH < 0; while in underdense regions, δm < 0, the Hubble constant will be
locally over-estimated, δH > 0. Statistically, the effect of peculiar velocities is accounted via the
variance

⟨δ2H⟩ =
f2(z)

2π2R2

∫ +∞

0
dkPm(k, z) [(kr)L(kr)]2 , (3.4)
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Figure 3.5.: A schematic view of the cosmic distance ladder. Geometrical distances and Cepheids
(lower left panel) are used to calibrate nearby SNe (middle panel). This calibration
on MB is then propagete into the SNe in the Hubble flow (upper right panel). Note
even though SNe data spams over a wide redshift range (black data points), only
those at 0.023 < z < 0.15 (red data points) will be used to measure the Hubble
constant. Figure from Riess et al. [17]

where Pm is the matter power spectrum and the operator ⟨ ⟩ denotes the ensemble (or position)
average over the perturbation fields, see Section 2.4.3. This variance is the so-called cosmic
variance on the Hubble constant. Figure 3.6 shows the root mean square associated with the
cosmic variance. As expected, contributions of the peculiar velocities are conspicuous around
z ∼ 0.01 but negligible at z ∼ 0.1.

The cosmic variance will source a systematic error that could affect the local determination
provided by SH0ES and, consequently, produce the discrepancy between early and late times
determinations. Such a systematic error can not be assessed by Equation (3.3), given that
this latter assumes that SNe are uniformly distributed over the redshift. Instead, to accurately
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Figure 3.6.: 1, 2, and 3 times the root mean square of the local deviations on the Hubble constant,
⟨δ2H⟩, as a function of the scale, R, and redshift, z. As expcted, larger fluctuations are
found in small scales (small redshift). The dashed vertical line denotes the redshift
z = 0.0233. Figure from Camarena and Marra [126]

compute the budget error produced by peculiar velocities it is necessary to include the redshift
distribution of the SNe used in the cosmic distance ladder. Thus, the systematic generated by
the cosmic variance follows

σδH =

[∫ zmax

zmin

dzWSNe(z)
〈
δH2

〉] 1
2

, (3.5)

where WSNe is the redshift distribution of the SNe and zmin and zmax are the limits established
by the redshift range of the SNe data set adopted in the cosmic distance ladder

In a manuscript published in 2018, we analyzed if the Hubble tension could be eased by the
cosmic variance [126]. By using Equation (3.5), we found that cosmological data constraints
σδH = 2.1% for SNe with redshift 0.01 < z < 0.15 and σδH = 1.2% for SNe with redshift
0.023 < z < 0.15. Thus, we concluded that this systematic, although it could bias the conclusion
of model comparison analysis, can not resolve the Hubble tension. Other approximations have
been used to compute the systematic error produced by the cosmic variance. A Hubble bubble
model leads to estimating σδH = 1.2% for SNe 0.023 < z < 0.15 and σδH = 2.1% [127] for
SNe 0.01 < z < 0.15. In agreement with the latter, N-body simulation analyses constrain
σδH ≈ 1% [128, 129]. On the other hand, Macpherson et al. [130] showed that inhomogeneous
and anisotropic cosmological simulation predicts σδH < 1. Finally, using the called sample
variance, Wu and Huterer [131] estimated σδH = 0.4%.

Although all the estimates mentioned above do not agree precisely on the estimated cosmic
variance error budget, it is easy to conclude from Figure 3.7 that systematic error caused by
peculiar velocities can alleviate but not fully explain the tension. Such a conclusion is expected
to hold cosmologies beyond the standard model — in contrast to the other results, our estimates
are valid not only for the ΛCDM model but also for some phenomenological extensions of it;
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Figure 3.7.: Several estimates of the systematic error produced by peculiar velocities [127, 128,
129, 131, 130]. In SNe with redshift 0.023 < z < 0.15 are include in the cosmic
distance ladder, the cosmic variance can provide at most a deviation of about ∼ 1.1
km s−1 Mpc−1. Therefore, it is unable to cure the Hubble tension. The inclusion
of SNe with arbitrary lower redshift that z = 0.023 will boost the effect of peculiar
velocities.

extensions that aim to enhance the effect of peculiar velocities. Finally, results presented by
Camarena and Marra [126], Marra et al. [127] denote why the current analysis of the SH0ES
collaboration adopts zmin = 0.023 as the minimum redshift for SNe in the Hubble flow, instead
of assuming an arbitrary zmin < 0.023.5

3.5.1.2. The role of the deceleration parameter

As discussed above, one of the requirements to provide a precise constraint of H0 free from cosmic
variance systematic is to set a minimum threshold for the redshift of SNe in the Hubble flow.
Similarly, in order to keep a model-independent and narrow determination of H0 it is necessary
to limit the maximum redshift of the SNe present in the last step of the cosmic distance ladder.

Recalling the mentioned at the beginning of this section, the problem of determining the Hubble
constant is the problem of determining distances. Although standard candles can be used to
obtain an observational relation between the redshift and cosmological distances, in order to
constraint H0, a theoretical estimation of distances is necessary. Such theoretical predictions are,
in principle, only available under the assumption of a cosmological model, see Section 2.4.2. This
complicates the task of providing a model-independent determination of the Hubble constant.
However, this problem can be overcome if standard candles are limited to z ≪ 1.

In order to provide a model-independent determination of H0, the SNe data in the Hubble flow
can be fitted via the so-called cosmographic expansion. This expansion, a Taylor expansion of

5Historically, the particular choice of zmin = 0.023 is justified by the possible existence of a Hubble bubble ending
at the same redshift [see 132, and reference therein].
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H(z) about z = 0, will provide a purely kinematic approximation to the luminosity distance of
SNe. Within the cosmographic approximation, the luminosity distance is defined by [133]

dL(z) =
z

H0

[
1 +

1 − q0
2

z − 1 − q0 − 3q20 + j0
6

z2 + O(z3)

]
, (3.6)

where j0, the current value of the jerk parameter, follows

j0 =

...
a (t)

H3(t)a(t)

∣∣∣∣
t0

.

Thus, for a SNe at redshift z, the apparent magnitude mB is given by:

mB(z) = 5 log10
zH−1

0

1 Mpc
+ 25 + MB (3.7)

+ 5 log10

[
1 +

1 − q0
2

z − 1 − q0 − 3q20 + j0
6

z2 + O(z3)

]
,

where MB is the absolute magnitude of the given SNe.
Since the apparent magnitude, mB, is defined to tell us how bright an object appears when

viewed from our position, by solely observing SNe we will not be able to determine the distance
itself but rather the ratio between the intrinsic luminosity and distance. Therefore, if we aim
to determine the distances of SNe, we will also need to measure the absolute magnitude MB.
Defined as the apparent magnitude observed from a distance of 10 pc, MB effectively calibrates
the SNe. Since we can not move from our position to determine the apparent magnitude from a
distance of 10 pc, in practice, the absolute magnitude is determined by observing SNe and other
standard candles at the same redshift. Within the cosmic distance ladder, such “other” standard
candles are the Cepheids.

By definition, the cosmographic expansion holds only at z ≪ 1, so the SNe data set to be
fitted by the cosmographic approximation should be carefully limited if one aims for robust
and self-consistent results. Additionally to this, an increase in the redshift maximum adopted
for Equation (3.6) could call for an increase in the order of expansion leading to introducing
more parameters and virtually introducing more uncertainties in our constraints. Due to this,
the SH0ES adopts as the upper limit for the SNe in the Hubble flow zmax = 0.15.

The cosmic distance ladder implemented by SH0ES uses the cosmographic expansion up to
second-order, Equation (3.7), to fit the SNe data corresponding to the last rung. This technique
does not require, in principle, any other further assumption to provide a model-independent
measurement of H0 and the cosmographic parameters. However, the SH0ES baseline analysis fits
the Hubble flow SNe by assuming ΛCDM base values for the deceleration and jerk parameters,
i.e., it imposes q0 = −0.55 and j0 = 1 on Equation (3.7). Given that such values correspond to
the value obtained under the assumption of the ΛCDM model, this is wde = −1 and ΩΛ = 0.7,
the main SH0ES determination is not truly model-independent.

In H0 Paper I we perform a reanalysis of the cosmic distance ladder free of the assumption of
q0 = −0.55. We first develop a novel statistical method to determine the underlying calibration of
the absolute magnitude of SNe, MB, as given by the Cepheids and geometrical distances, see Ap-
pendix A. This method dubbed the demarginalization technique, translates the final constraint
provided by Reid et al. [134] into an astrophysical prior of the absolute magnitude of SNe given
by MB = −19.2334 ± 0.0404 (hereafter, astro-prior). Immediately, we use the astro-prior to fit
Pantheon SNe at the 0.023 ≤ z ≤ 0.15 using the first-order cosmographic expansion such that

dL(z) =
z

H0

[
1 +

1 − q0
2

z + O(z2)

]
. (3.8)
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It is possible to demonstrate that neglecting second-order corrections leads to a negligible weighted
error of 0.2%. Moreover, tince j0 is not included in our analysis, our measurements are valid also
for a spatially curved Universe.
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Figure 3.8.: Local determination of the Hubble constant H0 and the deceleration parameter q0
from Pantheon SNe and the astro-prior (red contours) [H0 Paper I] compared with the
constraints inferred from the CMB data (blue contours) [98]. Figure from H0 Paper I.

Our results show that the assumption of q0 = −0.55 and j0 = 1 leads to underestimate the rate
of the expansion of the Universe by ∼ 1.9 km s−1 Mpc−1, i.e., our analysis constrains the Hubble
constant to be H0 = 75.35 ± 1.68 km s−1 Mpc−1. Furthermore, the deceleration parameter is
bound to q0 = −1.08 ± 0.29, which disagrees with the Planck Collaboration at the 2σ level.
Although the usage of q0 as a free parameter leads to an increase in the rate of expansion of the
Universe, this does not exacerbate the problem of the tension, because the uncertainties are also
raised. Figure 3.8 shows the final results of our analysis presented in H0 Paper I.

Finally, it is important to stress that the latest implementation of the cosmic distance ladder
provides an analysis free of the assumption q0 = −0.55. For this analysis, SH0ES reported
q0 = −0.55 ± 0.024 and H0 = 73.30 ± 1.04 km s−1 Mpc−1 [17]. While this finding seems to
contradict our results, one should note that this complementary analysis provided by SH0ES
takes into account SNe with redshift 0.023 ≤ z ≤ 0.8 instead of the same used in the main
analysis 0.023 ≤ z ≤ 0.15. The choice of a broader redshift range is argued by calling upon the
necessity of obtaining a ∼ 1.5% estimation of the Hubble constant. We argue that to determine
the impact of the deceleration parameter on the local determination of the Hubble constant, an
analysis considering 0.023 ≤ z ≤ 0.15 is necessary. Note that our finding is consistent with our
analysis of the inverse distance ladder and the ΛLTB scenario H0 Paper II and CP Paper II,
respectively. In particular, the call for q0 < −1 at local scales could be a hint of fluctuations in
the density of matter [135].
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3.5.2. The inverse distance ladder

Since the cosmic distance ladder relies on a set of empirical relations used to fit astrophysical data,
the presence of systematic errors in such data has been considered as a plausible explanation for
the Hubble discrepancy. For instance, Efstathiou [136] claimed that a systematic bias of ∼ 0.1
– 0.15 mag in the intercept of the Cepheid period-luminosity relations of SH0ES galaxies would
solve the tension. On the other hand, the underlying physics related to cosmological observables
such as CMB and BAO is well-defined. This has led cosmologists to propose the so-called inverse
distance ladder [137]; a version of the cosmic distance ladder that uses cosmological data instead
of astrophysical data.

Besides providing a determination free of astrophysical systematics, the inverse distance ladder
also presents an interesting point of view since it directly relates measurements in early times to
measurements in late times; in this approach SNe will be calibrated by the CMB and BAO data
(or other background probes). However, the main drawback of this method is that, in general,
it does not provide a model-independent determination of H0. The need to convert redshift into
distance calls for a fiducial model, [see 137, 138, 139, 140, 141, for instance]. Although some
analyses have used the cosmographic expansion [142, 143], one should bear in mind that such
approximation only holds at z ≪ 1; background probes are typically observed around z ∼ 1. In
addition, since SNe at 0.15 < z are included in the analysis, the inverse distance ladder does not
provide a local determination of the Hubble constant.

To overcome these issues, we presented in H0 Paper II a new method to build the inverse
distance ladder.6 By exploiting Etherington’s distance-duality dL = (1+z)2dA — valid if photon
number is conserved and gravity is described by a metric theory — and using binned SNe data,
we built up a distance ladder that does not rely on the parameterization of the luminosity-
distance relation at z > 0.15. This allows us to analyze the typical Hubble flow SNe with
redshift 0.023 ≤ z ≤ 0.15 to provide local measurements of the Hubble constant and deceleration
parameter. Figure 3.9 shows, in a schematic way, how our distance ladder works. SNe data set is
splitted in two subset SNe-1 (with redshift 0.023 ≤ z ≤ 0.15) and SNe-2 (with redshift z > 0.15).
The latter will be binned to match the redshift BAO measurements, while the former will be used
to constrain H0 and q0 by fitting Equation (3.8). Note that we have used two different data sets
for BAO measurements coming from anisotropic [144] and angular [145, 146, 147] BAO analyses.
Our distance ladder can be anchored by local probes, i.e., the astro-prior on MB, or early time
cosmology, effectively a prior on rd ≡ rs(zd) coming from CMB, where zd is the redshift of the
drag epoch.

Our main results can be inferred from Figure 3.10. First, one can note that the combination
rdh obtained from angular BAO measurements is in tension with the Planck determination at
the 4.5σ level. Differently, analysis with anisotropic BAO measurements leads to a value of rdh
that deviates by 1.7σ from the Planck constraints. If a rd prior from Planck 2018 is assumed,
the analysis with angular BAO data will provide constraints on H0 in perfect agreement with the
local determination and strong 4.6σ tension with Planck. Opposite of this, if anisotropic BAO is
assumed the final results on H0 will be consistent both with local and CMB determinations of rate
of expansion. Additionally, angular BAO provides a calibration for SNe that is consistent with
the astro-prior MB, but anisotropic BAO raises itself in 3.4σ tension with the latter. On the other
hand, analysis adopting the astro-prior on MB shows that angular BAO provides a constraint on
rd in agreement with CMB and the one from anisotropic BAO is in tension with the latter at the
3.6σ. Finally, all the analyses presented in H0 Paper II constrain the deceleration parameter to

6Our approximation also works as a cosmic distance ladder, since it can be used to fit H0 using the local probes,
i.e., the astro-prior.
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Figure 3.9.: Schematic representation of our approximation to the (inverse) cosmic distance lad-
der [H0 Paper II]. This novel approximation does not require neither any fiducial
model nor parameterization of the luminosity-distance relation at z > 0.15. The
Hubble constant and deceleration parameter are constrained at 0.023 ≤ z ≤ 0.15 by
the subset of SNe-1. Figure from H0 Paper II.

q0 ≈ −1.10 ± 0.29 in agreement with our reanalysis of the cosmic distance ladder [H0 Paper I],
see Section 3.5.1.

In summary, our analyses consistently bound a deceleration parameter in a 2σ discordance
with the CMB constraints; we obtain q0 ≲ −1. Given that this finding strongly agrees with the
results presented in the reanalysis of the cosmic distance ladder [H0 Paper I], see Section 3.5.1,
the 2σ discrepancy could be a hint of particular deviations from the ΛCDM model or the presence
of systematic in SNe in the Hubble flow. On the other hand, we have found a ∼ 3.5σ tension
between the calibration to MB provided by the Cepheid, i.e., the astro-prior, and the calibration
as inferred from the analysis of CMB and anisotropic BAO data. We will thoroughly discuss
this MB tension on the following Section. Finally, we have to mention that although our results
unveil a strong inconsistency between angular and anisotropic BAO measurements, a more recent
determination of the angular BAO distances restores the agreement with the main analysis of
the BOSS collaboration. Indeed, Menote and Marra [148] demonstrated that the angular BAO
distances obtained by analyzing BOSS DR12 and eBOSS DR16 galaxies are in agreement both
with the Planck and anisotropic BAO data.
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Figure 3.10.: 68% and 95% confidence levels constraints on rd and H0 using SNe and BAO data,
under our implementation of the (inverse) cosmic distance ladder. It is straightfor-
ward to note that there exists a tension between anisotropic (gray contours, α⊥BAO)
and angular (red contours, θBAO) BAO measurements. Depending on which prior
is assumed the α⊥BAO and θBAO measurements could or not agree with CMB or
the local determination of SH0ES. See the text for further information. Figure
from H0 Paper II.

3.5.3. The Hubble tension from a Supernovae perspective

Thanks to the demarginalization technique, see Appendix A, we have been able to obtain the
calibration of SNe as given by the Cepheids. Further, our novel approach to the inverse distance
ladder has shown that the latter is in tension with the effective calibration provided by the
combination of CMB and anisotropic BAO. This mean that, from an SNe perspective, the tension
between early and late times determinations of H0 is sourced by the tension on the absolute
magnitude, MB. Being this the case, the role of the absolute magnitude of SNe in the cosmological
analysis should be reevaluated — within the cosmological analysis framework, MB is typically
treated as a nuisance parameter. In H0 Paper III we have examined the role of MB in cosmological
inference. Using a toy model whose EoS parameter rapidly crosses to the phantom region at
very low redshifts, dubbed the hockey stick model (hereafter, hsCDM model), we performed a
cosmological inference analysis considering both the astro-prior and a local prior on H0. The
main results of this analysis are shown in Table 3.1, Figures 3.11 and 3.12.

As shown in Table 3.1, under the usage the prior on H0 the hsCDM model features an extremely
phantom EoS parameter, wx ≃ −14, and provides a significantly lower minimum χ2 as compared
to the wCDM model (top row). Remarkably, the agreement with the SH0ES determination
is recovered. The hsCDM, through its rapid transition to the phantom regions, seems then a
solution to the Hubble crisis. Nevertheless, the underlying SNe calibration disagrees with the
Cepheid calibration — the analysis provides a best-fit on MB 5σ away from the astro-prior MB.
Given that this particular tension is not introduced in the analysis, i.e., not included in the total
χ2, our results and conclusion will be biased. This fact can be also seen in Figure 3.11, where the
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Analysis with
prior on H0

χ̂2
cmb χ̂2

bao χ̂2
sne χ̂2

H0
χ̂2
tot ∆χ̂2 best-fit vector {H0,ΩM0, wx, zt,MB,ΩB0, ns} distance

from HR21
0

distance
from MR21

B

wCDM 2.9 5.1 1030.0 7.8 1045.8 0 {69.6, 0.29, -1.08, ——, -19.39, 0.046, 0.97} 2.8 3.8

hsCDM 1.3 5.9 1027.7 0.3 1035.1 -10.7 {72.5, 0.26, -14.4, 0.010, -19.42, 0.043, 0.97} 0.5 4.9

Analysis with
prior on MB

χ̂2
cmb χ̂2

bao χ̂2
sne χ̂2

MB
χ̂2
tot ∆χ̂2 best-fit vector {H0,ΩM0, wx, zt,MB,ΩB0, ns} distance

from HR21
0

distance
from MR21

B

wCDM 2.8 5.2 1029.3 14.6 1051.9 0 {69.4, 0.29, -1.07, —–, -19.39, 0.047, 0.97} 2.9 3.8

hsCDM 1.8 7.1 1027.1 19.4 1055.4 3.5 {69.3, 0.29, -1.73, 0.055, -19.41, 0.047, 0.97} 3.0 4.4

Table 3.1.: Comparison between the best fits relative to the analyses when the local H0 prior
(top) and the astro-prior on MB (bottom) are considered. The hat to denotes the
minimum χ2, while the ∆χ̂2 values are computed with respect to the best-fit of the
wCDM model. The last two columns show the σ-distance (HR21

0 −Hbf
0 )/σHR21

0
and

(MR21
B −Mbf

B )/σMR21
B

from the values of the H0 and MB priors, respectively. Table

from H0 Paper III.

inferred absolute magnitudes, MB,i = mB,i − µ(zi), and Hubble rate according to the best-fit of
the hsCDM model are shown. The value found for the Hubble constant is in concordance with
the H0 local prior (left panel), yet, the underlying calibration MB,i shows strong disagreement
with the astro-prior (right panel).

On the other hand, the implementation of the astro-prior in the total χ2 shows that analyses of
the hsCDM and wCDM models feature qualitatively similar results. In particular, the hsCDM
model effectively yields the same best-fit H0 as the wCDM model. In both cases the best-fit H0

is 3σ away from the SH0ES prior. Besides that the hsCDM loses its solving tension appeal, given
that the wCDMmodel features a better overall fit to the data. Figure 3.12 explicitly shows how
the cosmological inference changes when a prior on MB is assumed instead of a prior on H0.
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Figure 3.11.: Hubble rate and the inferred absolute magnitudes MB,i = mB,i − µ(zi) for the
best-fit hsCDM model when using the prior on H0 (Table 3.1, top). For sake of
simplicity, we only show the binned version of the Pantheon catalog. Although the
best-fit H0 agrees well with the H0 prior (right panel), the inferred MB,i do not
agree with the local prior on MB (left panel).
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Figure 3.12.: Marginalized constraints for hsCDM model from the analysis of CMB, BAO, SNe,
and local observations. The two sets of contours show how the cosmological infer-
ences changes when one adopts the prior on MB and the prior on H0. As discussed
in the text, the latter analysis leads to biased conclusions by both biasing model
selection and distorting the posterior. Figure from H0 Paper III.

From this analysis, we concluded that from an SNe perspective the Hubble crisis is sourced
by the mismatch between the calibration on MB produced by CMB and BAO and the local
astro-prior calibration obtained via Cepheids. This result is supported by other analyses [see
140, 122, 96, for instance]. In particular, the present results are in agreement with the conclusions
derived from our implementation of the inverse distance ladder [H0 Paper II]. Figure 3.13 shows
the calibration to SNe, MB, as obtained from the present analysis and the analysis of the inverse
distance ladder. In light of this, we also concluded that when comes to the analysis of late time
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modifications of the standard model, the astro-prior on MB should be used instead of a prior
on H0.

−19.5 −19.4 −19.3 −19.2

M

CMB+BAO+SNe CMB+BAO+SNe+MB Inverse ladder

Figure 3.13.: MB posteriors from the inverse-distance ladder (red line) and the analyses of the
hsCDM model (black line) are in strong disagreement with the astro-prior (grey
contour). This robustly shows that CMB and BAO measurements produce a SNe
calibration in tension with the local astrophysical Cepheid calibration. This remains
true even i the astro-prior is used in the analysis of the hsCDM model (black dashed
line). We conclude that the difficulty in matching the MB calibration is the source
of the H0 crisis. Figure from H0 Paper III.

Finally, we would like to highlight that the results and conclusions presented in H0 Paper III
have had a remarkable impact on other research; the astro-prior has already been implemented
in several cosmological analyses [see 149, 150, 151, 152, for instance]. Additionally, thanks to
the discussion raised by H0 Paper III, the last paper presented by the SH0ES collaboration does
not only stress the role of the absolute magnitude of SNe MB in the local determination of
the Hubble constant but also explicitly furnishes the underlying calibration used to determinate
H0 = 73.04 ± 1.04 km s−1 Mpc−1.

3.5.4. Late MB transitions models

Although we have robustly demonstrated that late-time modifications of the standard paradigm
do not solve tension, there is a class of models that circumvents the problem of the absolute
magnitude MB. We refer to the so-called late MB transitions models (hereafter, LMT models).
By postulating a late time transition on the absolute magnitude of SNe, around z ∼ 1, the LMT
provides a natural explanation for the mismatch between the calibration given by the Cepheids
and the effective calibration inferred from the BAO and CMB data.

In collaboration with other researchers, in Alestas et al. [8], we have performed a cosmological
analysis considering the LMT model with other dynamical dark energy models. We demonstrated
that, while typical models with dynamical dark energy fail on the task of explaining the MB
tension, the data allows the transition proposed by the LMT model. It is crucial to mention that,
even though, the LMT model is a purely phenomenological approach, a varying gravitational
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constant could source the late time transition on MB [153]. On the other hand, analyses of
cosmological data have not found evidence in favor of a varying absolute magnitude [see 154, 155,
for instance].

3.5.5. The importance of model-independent measurements

An issue that has not yet been discussed, but was subtly present in this Section, is the issue
of model-independent measurements. Strictly speaking, there is no such thing as a fully model-
independent measurement. In a sense, our measurements, like our cosmological models, are based
on fundamental assumptions that provide a suitable framework for interpreting cosmological
data. For instance, the dimming of the luminosity of SNe does not directly prove the accelerated
expansion of the Universe if the FLRW space-time is not assumed, see Section 2.1.5. Therefore,
it is crucial to distinguish that when we describe model-independent measurements we mainly
refer to determinations that result agnostic to cosmological dynamics and do not rely on the
theoretical framework of the standard ΛCDM model. Yet the cosmological principle is generally
assumed. In this context, it is clear why we argue that the main SH0ES analysis, which relies on
q0 = −0.55 and j0 = 1, does break the model-independent framework. This also clarifies why we
did not refer to our inverse distance ladder determination as a model-independent determination:
even though our novel approach to the inverse distance ladder does not assume a fiducial model,
it relies on the rd Planck prior, which is a byproduct of the ΛCDM model and CMB data.
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Figure 3.14.: Preliminary results of the CSC project. Cosmological simulations have been ob-
tained through Pinocchio [156], while the power spectrums have been reconstructed
by using a modified version of the NBODYKIT code [157].

Finally, it is worth noting the growing interest in proposing observational methods that in-
creasingly depend on fewer and fewer assumptions [see 158, for instance]. Among these proposed
techniques, we emphasize the Cluster of Standard Candles (hereafter, CSC) technique. Presented
in 2019 by Amendola and Quartin [159], the CSC method proposes simultaneously measuring
the power spectrums of the density matter and peculiar velocities of SNe to provide a model-
independent determination of the Hubble rate, H(z), and the β(z) ≡ f(z)/b. Although this
technique will not stand out by its accuracy, the implementation of the CSC method in the
cosmological program will be useful to test the fundamental principles of modern cosmology.
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In collaboration with my co-supervisor, Prof. Luca Amendola, we are currently working on a
more precise forecast analysis of this technique.7 By using LSST forecast data and cosmological
simulations, we aim to forecast the accuracy that this method will provide in the determination
of H(z). In July 2021, this ongoing project was accepted as a standard project of the Time
Domain Analysis Working Group of the LSST-DESC collaboration. Figure 3.14 shows a prelim-
inary results of the ongoing CSC project. This kind of analyses will allow us to reconstruct, in a
model-independent way, the rate of expansion of the Universe.

7As part of my PhD training, and in compliance with the PPGCosmo program rules, during 2019-2020 I visited
my co-supervisor, Prof. Luca Amendola, at the Institute for Theoretical Physics of Heidelberg University.
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CHAPTER 4.

Cosmology beyond the Copernican principle:
Inhomogeneous space-time solutions

The fundamental assumptions used to build the scientific theory of the Universe represent the
frontiers of the standard paradigm of modern cosmology. Thus, expanding such bounds entails
extending or rejecting some of the crucial hypotheses of the standard paradigm. From this
perspective, it is correct to point out that cosmologists have already embarked on the mission of
extending the boundaries of modern cosmology. The accomplishments of such a mission are then
remarkable if we talk about the theory of gravity and the matter component of the Universe —
cosmologists challenge the general relativity theory and the cosmological constant on a daily basis.
However, there are other less explored domains, such as the case of the Copernican principle.

Although we have not yet observationally confirmed the Copernican principle, cosmologists
seem to have settled down on the assumption that we do not occupy a special place in the
Universe.1 Compared with the tests of the theory of gravity or the nature of dark energy, the
Copernican assumption has lately received less interest. While this could be a bias produced by
the historical rejection of the void models as an alternative to dark energy [160, 161] — or the
establishment of the concordance cosmology, it could also be related to the underlying complexity
of studying non-Copernican models. However, a comprehensive program for cosmology should
also include the study of inhomogeneous solutions of the EFE. After all, inhomogeneous models
are not alternatives but natural extensions to the FLRW paradigm; and our Universe is not
completely homogeneous but rather lumpy.

In this Chapter, we aim to discuss cosmology beyond the Copernican principle by exploring so-
lutions to the EFE that do not rely on the assumption of homogeneity. We open our discussion by
briefly reviewing the Szekeres-Szafron, Stephani-Barnes, and Lemâıtre-Tolman-Bondi solutions.
Among the above-mentioned solutions, we shall emphasize the Lemâıtre-Tolman-Bondi metric
by describing both its definition and application in cosmology. By adopting a historical point
of view, we reviewed the so-called void models and the observational evidence that led to rule
out such models. After this, we shall qualitatively discuss the back-reaction effect. Finally, we
present an inhomogeneous generalization to the ΛCDM model: a spherically symmetric inhomo-
geneous model with a cosmological constant, i.e., the ΛLTB model. Before thoroughly discussing
the latter, we advocate the perspective that will define this thesis: although the ΛLTB model
does not correspond to a realistic representation of the Universe, it can be used to study the
effect of inhomogeneous cosmology.

1In the next Chapter, we will discuss on whether or not it is possible to confirm the Copernican principle
observationally.
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4.1. Inhomogeneous space-times

In a compilation presented in 1997, Krasinski [162] revised and discussed more than 750 pa-
pers where inhomogeneous and exact solutions to the EFE were derived. More than a decade
later, Bolejko et al. [163] would present an updated discussion of such solutions, including also
relevant cosmological analyses presented at the time. Both Krasinski [162] and Bolejko et al.
[163] classify the inhomogeneous solutions due to their properties in different families. These
families are the Szekeres-Szafron, the Lemâıtre-Tolman, the Stephani-Barnes families, and other
models, including those with null radiation and stiff-fluids. Here, we will succinctly review some
of those families.

It is important to note that GR also admits more solutions that do not rely on the Cosmological
principle, such as, for instance, the Bianchi solutions. Although these kinds of solutions might
be relevant in cosmology, either for historical or pedagogical reasons, we do not review them
here as they represent a set of spatially anisotropic but homogeneous solutions of the EFE. The
same applies to other types of generalizations to the FLRW that depend on the assumption of
homogeneity.

4.1.1. The Szekeres-Szafron family

The solutions belonging to the Szekeres-Szafron family follow the metric [164, 165]

ds2 = −dt2 + e2αdr2 + e2α
(
dx2 + dy2

)
, (4.1)

with α ≡ α(t, r, x, y) and β ≡ β(t, r, x, y) being functions to be determined from the EFE with a
perfect fluid as the source. This class of solutions possesses two subclasses: when ∂β/∂r ̸= 0 and
when ∂β/∂r = 0. While the latter, ∂β/∂r = 0, corresponds to a simultaneous generalization of
the Friedmann and Kantowski–Sachs models [166] and has no cosmological applications, the for-
mer has been applied in different fields of astrophysics and cosmology. For instance, it has been ap-
plied to the study of inflationary models [167, 168], the apparent dimming of the supernovae [169],
the evolution of cosmological perturbations and cosmic structures [170, 171, 172, 173, 174],
CMB [175], the light propagation and ray tracing [176, 177], and anisotropies in the Hubble
expansion [178].

4.1.2. The Stephani-Barnes family

The invariant definition of the Stephani-Barnes family of solutions states that this family are
all perfect fluid solutions with zero shear, zero rotation, and non-zero expansion. Explicitly, in
comoving coordinates, solutions belonging to the Stephani-Barnes family are defined by [179, 180]

ds2 = −D2dt2 + V −2
(
dx2 + dy2 + dz2

)
, (4.2)

where D ≡ D(t) has been defined as

D =
F (t)

V

∂V

∂t
,

with F (t) being an arbitrary function, and V ≡ V (t, x, y, z) a function to determined by the
equation

w−2∂
2w

∂u2
= f(u) ,
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where f(u) is another arbitrary function. Although we do not explicitly show this here, the
variable u is related in simple ways to the coordinates x, y, z, while the functions w(t, x, y, z) are
related in simple ways to the function V .

Similar to the Szekeres-Szafron family, two subsets of solutions compose the Szekeres-Szafron
family: the conformally flat solutions and the Petrov type-D solutions. One of the most interesting
solutions of this family is the McVittie solution [181], a spherically symmetric solution that
asymptotically tends to the FLRW metric. Piattella [182] used this metric to investigate the
effect of the cosmological expansion on the bending of light due to an isolated point-like mass.

4.1.3. The Lemâıtre-Tolman-Bondi metric — a tale about void models

Defined as a spherically symmetric and radial inhomogeneous solution, the Lemâıtre-Tolman-
Bondi (hereafter, LTB) metric follows [183, 184, 185]

ds2 = −dt2 +
R′2(r, t)

1 − k(r)r2
dr2 + R2(r, t)dΩ , (4.3)

where dΩ = dθ2 + sin2 θdϕ2 and k(r) is an arbitrary function related to the curvature. The
homogeneous case is recovered in the limit k(r) → constant and R(r, t) → a(t)r, with a(t) being
the scale factor as defined in the FLRW metric. Hereafter, we use a prime to denote the partial
with respect to the radial coordinate r and a dot to denote the partial derivative with respect to
the time t.

4.1.3.1. The light propagation and apparent acceleration

LTB solutions have been widely applied in cosmology, primarily as an alternative explanation
for dark energy. The main reason behind this is that the radial dependence introduced by the
LTB model can generate an apparent acceleration capable of explaining the dimming of SNe.
Generally speaking, any temporal change within our lightcone can be trade for a spatial change;
the dimming of the luminosity of SNe could be explained by “faster expansion here than there”
rather than “faster expansion now than before”. This ambiguity between temporal and spatial
change can be demonstrated explicitly using the light propagation equation.

Radiation, as measured by our observations, follows radial null-geodesic paths along our past
lightcone, i.e., ds = dΩ = 0. Thus, from the LTB line element, we obtain

dt

du
= −dr

du

R′(r, t)√
1 − k(r)r2

, (4.4)

where u is a curve parameter and the minus sign denotes that we are dealing with incoming
radiation, dr < 0. This means that the directional derivative along the past lightcone will
follow [186]

d

dt
=

∂

∂t
+

dt

dr

∂

∂r

=
∂

∂t
− R′(r, t)√

1 − k(r)r2
∂

∂r
≈ ∂

∂t
− ∂

∂r
. (4.5)

In the case of the FLRW metric, where the background quantities are r-independent, the last
term does not contribute to the total change along the past lightcone. In contrast, in the case of
an inhomogeneous metric, the background quantities will be spatially dependent and will provide
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a not trivial contribution through ∂/∂r. By using the definition of the Hubble rate, we can rewrite
the FLRW accelerating condition ä > 0 as:

d

dt
(aH) =

da

dt
H + a

dH

dt
> 0 ,

given that da/dt, a, and H are always positive, we obtain

dH

dt
=

∂H

∂t
− ∂H

∂r
> 0.

This is, the typical FLRW acceleration, ä > 0, can be mimic by an inhomogeneous LTB model
through a r-dependent Hubble parameter that satisfies H ′(r) < 0.2

As it will show later, when applied to the EFE, the LTB solution will introduce a non-constant
Big Bang time, tBB(r). This time can be also used to illustrate the apparent acceleration,
H ′(r) < 0. Figure 4.1 shows that tBB(r) will create an age difference of ∆t between a Big Bang
FLRW shell and a Big Bang LTB shell that intersect at the same point in our past lightcone. The
difference between those shells will observationally translate into a relative velocity and, finally,
an apparent acceleration.

Figure 4.1.: ∆t between the FLRW and LTB Big Bang shells generated by tBB(r), the inho-
mogenous Big Bang time. The age difference between the FLRW and LTB shells will
observationally translate into an apparent acceleration. Figure from Krasinski [188]

4.1.3.2. Void models as an alternative to dark energy

Since this family of solutions can feature apparent acceleration, the LTB models have been exten-
sively considered as an alternative to the dark energy component. Substituting to cosmological
constant, LTB voids of gigaparsec-scale, with an observer sitting near the center, were shown
capable of explaining the dimming of SNe [see 186, 189, 187, 190, 191, 192, 193, for instance].
Although these models exhibited a fine-tuning in the observer’s position [194, 163, 38], for more
than a decade, the LTB voids were considered a conceivable explanation for the SNe observation
and possible indication of a violation of the Copernican principle.

2The dimming on the SNe in a LTBmodel can be also demosntrated through analytical derivation of the luminosity
distance, see for instance [187].
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Nevertheless, despite its ability to successfully fit the SNe data, the LTB void models were
shown to be inconsistent with other observations. In particular, CMB analysis indicated that
gigaparsec-scales void would require a low expansion rate of h ∼ 0.65 to fit the first peak of
the CMB [195, 196, 197, 111], raising a substantial disagreement with the local value of the
expansion rate measured at the time, H0 = 72± 8 km s−1 Mpc−1 from [198] and H0 = 73.8± 2.4
km s−1 Mpc−1 from [199]. Against this, Celerier et al. [200] argued that such conclusions were
a consequence of assuming a simultaneous Big Bang time, tBB = 0, and that, overall, more
general LTB models could easily overcome this issue. Similarly, Clifton et al. [201] explicitly
demonstrated that the introduction of an inhomogenous Big Bang time would yield higher values
of H0, and, consequently, lead to an agreement with local measurements.

In spite of all, the LTB void models were ruled out by the analysis of the kinetic Sun-
yaev–Zeldovich (hereafter, kSZ) effect. Indeed, Zhang and Stebbins [160] proved that LTB inho-
mogeneities with amplitude large enough to resolve the SNe data would produce a sizable kSZ
signal, ∆T 2 > 103 µK2, in strong disagreement with the observationally upper limit established
by the South Pole telescope collaboration, ∆T 2 < 6.5µK2 [202], see left panel of Figure 4.2. Given
that the analysis presented by Zhang and Stebbins [160] employed a simplified non-relativistic
void model and disregard the dependence of the kSZ amplitude with other cosmological parame-
ters, Zibin and Moss [161] re-examine the evidence against a violation of the Copernican principle
found by the previous authors. Overall, Zhang and Stebbins [160] arrived at the same conclu-
sions: void models capable of explaining the dimming of SNe will produce a large amplitude of
the kSZ effect, see the right panel of Figure 4.2. Similar analyses relying upon the assumption
of a varying Big Bang time led to the same conclusions [203, 204].

Figure 4.2.: Left panel: Main results of the analyses presented by Zhang and Stebbins [160]. The
void model as constrained by the SNe data (blue dotted and red dashed lines) leads
to a very large kSZ amplitude in disagreement with the upper limit established by
observations, ∆T 2 < 6.5 µK2 [202]. This constitutes conclusive evidence against
the void models. Figure from Zhang and Stebbins [160]. Right panel: Main results
of the analyses presented by Zibin and Moss [161]. The LTB region constrained
by the cosmological data (black dotted lines) shows an irreconcilable tension with
observations. A violation of the Copernican principle as a possible explanation for
dark energy is then ruled out. Figure from Zibin and Moss [161].
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4.2. Back-reaction effects

The above-mentioned inhomogeneous solutions feature position-dependent background dynamics
at large scales, exhibiting a substantial deviation from the standard paradigm. However, fluctua-
tions around the FLRW metric at small scales could also affect the global background dynamics.
We refer to the back-reaction effect.

Although we observe extremely non-linear structures at small scales, the standard paradigm
assumes that the lumpy Universe is well-described by the FLRW metric and its perturbations.
This hypothesis implies that when all inhomogeneities, at small scales, are smoothed out the
Universe looks like an FLRW solution — mathematically, an average of the observed Universe
will yield the homogeneous and isotropic solution. Following this argument, it is natural to
question whether the mentioned assumption does or does not hold in our Universe.

This simplistic explanation could lead one to think that smoothing out the real Universe is a
simple process that does not imply any complexity. However, averaging processes are far from
trivial in GR. This is evident once we note that because of the non-linearity of the EFE, in
general, the smoothing process does not commute. This means that the smooth Einstein tensor
and the FLRW Einstein tensor are not the same, i.e.,

G(smooth)
µν ̸= G(FLRW)

µν . (4.6)

The difference between those will source the so-called back-reaction effect: the change that small-
scale inhomogeneities produce on the global dynamics of the cosmos. To better explain this, we
use Figures 4.3 and 4.4.

Figure 4.3.: The homogeneous Universe (scale 5) is obtained by smoothing the real lumpy Uni-
verse (scales 1 and 3). Each scale will be described by a different metric and energy-
momentum tensor, giab and Tiab, which are defined in different manifolds Mi, with
i = 1, 2, 3. Figure from Ellis [205]

Observations at small scales, where, for instance, stars are relevant structures, will lead to
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concluding that the distribution of the matter around the cosmos is highly inhomogeneous (scale
1 in Figure 4.3). In contrast, observing the Universe on larger scales will detail the existence
of galaxy-like structures and point out a moderately homogeneous energy density (scale 2 in
Figure 4.3). Eventually, at sufficiently large scales, observations will display a homogeneous
Universe well-described by the FLRW solution (scale 3 in Figure 4.3). Each of those pictures
will be mathematically described by their metric, giab, and energy-momentum tensor, Tiab, with
i = 1, 2, 3, where each pair (giab, Tiab) will correspond to a different manifold, Mi. This denotes
that, even if we assume that scale 3 is the resulting picture of smoothing scale 1, mathematically,
we are relating quantities that live in different manifolds. Then, it is clear that the smoothing
process will carry out by a map that smooths the metric and take us from one scale (manifold)
to another scale (manifold).

Figure 4.4 illustrates how the averaging/smoothing process works in the GR framework. The
S31 map smooths the inhomogeneities present in g1ab to yield g3ab, the metric of the following scale.
A different map, S′

31, smooths the small-scale fluctuations featured by the energy-momentum
tensor T1ab resulting in a moderately homogeneous distribution of matter described by T3ab.
Moreover, a third map S′′

31 features the average from scale 1 to scale 3 on the Einstein tensor.
Therefore S′ ̸= S′′ and, in consequence, ⟨Gab(g1ab)⟩ ≠ Gab(⟨g1ab⟩). The latter is equivalent to the
stated in Equation (4.6). Lastly, the back-reaction of small scale will introduce an extra term,
Pµν , on the EFE such that [205]

G(smooth)
µν = 8πGT (smooth)

µν + Pµν , (4.7)

where Pµν = G
(FLRW)
µν −G

(smooth)
µν .

Because of its relationship with the non-linear structures, cosmologists have conjectured that
the back-reaction effect may be responsible for the dark energy phenomena [see for instance 206,
and references therein]. Back-reaction avoids the fine-tuning problem and naturally predicts an
acceleration phase: the arising of non-linear structures around z ∼ 1 will affect the dynamics
of the Universe through Pµν , then leading to an accelerated expansion at late times. Although
this scheme has been largely studied, there is no established consensus on the magnitude of the
back-reaction effect [207, 208, 209], nonetheless, this is commonly assumed to be negligible. On
the other hand, numerical relativity simulations seem to support the hypothesis of a negligible
back-reaction contribution [210].

Complementary, within the LTB framework, the question if back-reaction will impact or not
the dynamics of the Universe can be analytically assessed [211]. In particular, the kind of ΛLTB
models to be considered here are expected to provide a back-reaction effect proportional to
(L/DH)2, with L being the size of the inhomogeneity and DH = 1/H0 [4]. Given that all the
relevant cases here studied will satisfy (L/DH)2 ≪ 1, we disregard the back-reaction effects.

4.3. An inhomogeneous generalization of the standard model: the
ΛLTB model

In the previous Chapters, we have described the standard paradigm of modern cosmology as well
as the problems facing the standard model. In particular, we have emphasized the fundamental
assumptions that ground a scientific theory of the Universe. On the other hand, in the earlier
sections of the present Chapter, we have reviewed some of the exact inhomogeneous solutions of
the EFE and described the back-reaction effect. Among the revised solutions, we highlighted the
historical importance of the so-called void models — Einstein-de Sitter LTB solutions capables
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Figure 4.4.: Schematic illustration of the smoothing/averaging procedure within the GR frame-
work. Since S′ ̸= S′′, the smoothing operator does not commute resulting in
⟨ Gab(g1ab)⟩ ≠ Gab(⟨ g1ab⟩). Figure from Ellis [205]

of explaining the cosmic acceleration. In this Section, relying on all the hitherto discussed, we
shall present the ΛLTB model, a generalization of the standard model that does not rely on the
assumption of the Copernican principle. As explained in the following, this model shall portrait
the perspective adopted in this thesis to study the physics beyond the Copernican principle.

4.3.1. The ΛLTB model as a non-Copernican cosmological model

Inhomogeneous models are not alternative models to the standard paradigm but generalizations
of the same. Indeed, by dropping or easing the hypothesis of homogeneity, we add new degrees of
freedom to the paradigm established by the FLRW solution. These will not lead to a completely
different and unrelated framework to the one proposed by the FLRW scheme but rather an
extension of it. In this context, we propose the study of cosmology beyond the assumption of
the Copernican principle through the ΛLTB model: a ΛCDM model endowed with a spherical
inhomogeneity. Although we do not use the ΛLTB model as an alternative way to model dark
energy phenomena, within the line of thought of this thesis, the inhomogeneous ΛLTB model is
interpreted as a violation of the Copernican principle. Assuming that we are placed within an
inhomogeneous spherical structure, we aim to test if the cosmological data can constrain such
a structure to the Copernican regime. Furthermore, we also intent to determine if the Hubble
tension is a hint for a violation of the Copernican principle.

Note that the ΛLTB model is undeniably limited, and the assumption of an inhomogeneous but
spherically symmetry metric emerges as an ansatz that simplifies a more complex configuration
of the Universe. The framework adopted here does not correspond to realistic modeling of the
Universe but is a simplification of it. At the same time, this inhomogeneous model derives from
a generalization of the standard model and its idealistic approximation of cosmic homogeneity.
We argue that this ΛLTB landscape is suitable for assessing the problems treated here: the local-
void scenario as a solution to the Hubble constant and the observational test of the Copernican
principle. We believe that the aims of this thesis can be accomplished by considering that more
general inhomogeneous degrees of freedom can be condensed into radial deviations from the
FLRW metric.

Additionally, we neglect possible anisotropic degrees of freedom by placing the observer at the
center of the spherical inhomogeneity. Although the imposition of a center observer lead to a
fine-tuning in our model, this choice is empirically justified. In effect, in the case of the test of the
Copernican hypothesis, the CMB dipole, see Section 3.3, shall constrain dobs ≲ 300 Mpc yielding
to a slight fine-tuning of around 1/40, where dobs is the distance between the observer and the
center. On the other hand, in order to be consistent with the observed CMB dipole, the local void
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scenario will call for dobs ≲ 60 Mpc consequently leading to a bigger fine-tuning of ∼ 1/1000. In
this case, the high value of fine-tuning is justified since, if successful, one trades a one-in-a-million
(5σ) inconsistency in data with a one-in-a-thousand fine-tuning. For a thoroughly discussion of
this issue see Sections 5.3.3.5 and 5.4.2.4.

As an alternative point of view, another way of approaching the ΛLTB models is assume
that this class of models does not constitute a violation of the Copernican principle but it does
imply that the assumption of homogeneity could be valid at larger scales. This approach has
been used, for instance, by Marra et al. [4] to develop a program for studying perturbations
in an inhomogeneous space-time and provide for the first time a suite of simulations for the
ΛLTB models. Although this interpretation is adequate to promote the study of the large-scale
structure evolution beyond the assumption of homogeneity, it dissents from the objectives of this
thesis. We aim to determine if cosmological data can constrain the LLTB inhomogeneity to be
Copernican level, with the scale of homogeneity being tacitly set by the latter.

Finally, in agreement with our interpretation of ΛLTB models, we adopt a particular class of
spherical inhomogeneous models: the early-FLRW cosmological models. Given that, our test of
the Copernican principle and the Hubble tension problem relates to the late time cosmology, we
require that, at early times, a near-FLRW metric is recovered. We maintain the concordance
with the standard inflationary paradigm and leave unchanged (pre-)recombination physics.

4.3.2. Background dynamics

4.3.2.1. The inhomogeneous Friedmann-like equations

By using the EFE, see Equation (2.22), and an energy-momentum tensor with a dust component,
Tµν = ρm(r, t)UµUν , we obtain the set of equations that will reign the global dynamics of the
ΛLTB model. Such equations are defined through [186]:

Ṙ2

R2
+

k(r)r2

R2
+

2ṘṘ′

RR′ +

[
k(r)r2

]′
RR′ = 8πG (ρm + ρΛ) , (4.8)

Ṙ2 + 2RR̈ + k(r)r2 = 8πGρΛR
2 , (4.9)

where we have used ρΛ = Λ/8πG, see Section 2.4.1. Note that, for the sake of simplicity, we have
dropped the argument (r, t) in the functions ρm, R, and the different derivatives of the latter.

At first glance, Equations (4.8) and (4.9) remind us of the Friedmann equations, Equations (2.7)
and (2.8), mainly because terms likes Ṙ/R, 8πGρm, or kr2/R2 appear. However, these last
equations also include terms that do not seem to have an FLRW counterpart. In pro of developing
an analog picture between the FLRW and LTB models, we rewrite the above-mentioned equations
to obtain the “inhomogeneous Friedmann” equations.

Integrating Equation (4.9) over R∫ (
Ṙ2 + 2RR̈

)
dR =

∫
d

dR

(
RṘ2

)
dR =

∫ [
8πGρΛR

2 − k(r)r2
]

dR ,

we can obtain the equation analogue to the first Friedmann equation

Ṙ2(r, t)

R2(r, t)
=

8πG

3
ρΛ +

2m(r)

R3(r, t)
− k(r)r2

R2(r, t)
, (4.10)

where m(r), defined as an arbitrary and positive function, arose as a constant of integration.3

Additionally, if we derive Equation (4.10) with respect to the radial coordinate and substitute

3Note that a factor of 2 has been artificiality placed in front of the function m(r). This is just a convention with
no physical repercussions. In general, such a factor can be absorbed by the arbitrary function m.
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the results in Equation (4.8), we get the

ρm(r, t) =
m′(r)

4πGR′(r, t)R2(r, t)
. (4.11)

Due to the above equation, m(r) is called the mass function. As expected, in the FLRW limit,
this is, when R = a(t)r, ρm(r, t) = ρm(t), and k(r) = const., Equation (4.10) trivially reduces
to Equation (2.7), the first Friedmann equation. On the other hand, the equation analog to the
acceleration equation can be obtained by combining Equations (4.8) and (4.9), such that

2

3

R̈(r, t)

R(r, t)
+

1

3

R̈′(r, t)
R′(r, t)

= −4πG

3
[ρm(r, t) + ρΛ] . (4.12)

The last equation illustrates, once again, why the inhomogeneous LTB models were considered
as an alternative to dark energy phenomena: the cosmic acceleration can be attained even if
2ρΛ < ρm at the cost of R̈′(r, t) < 0.

In addition, one should note that the line element Equation (4.3) states an inhomogeneous
and anisotropic expansion — instead of a unique scalar factor, there are two scale factors: a
transverse scale factor, a⊥(r, t) = R(r, t)/r, and a longitudinal one, a∥(r, t) = R′(r, t). Using
these, we defined the corresponding expansion rates

H⊥(r, t) =
ȧ⊥(r, t)

a⊥(r, t)
, (4.13)

H∥(r, t) =
ȧ∥(r, t)

a∥(r, t)
. (4.14)

The transverse Hubble rate can be used to recast Equation (4.10), such that[
H⊥(r, t)

H⊥(r, t0)

]2
= Ωm0(r)

[
a⊥(r, t0)

a⊥(r, t)

]3
+ Ωk0(r)

[
a⊥(r, t0)

a⊥(r, t)

]2
+ ΩΛ0(r) , (4.15)

where the present-day density parameters are now functions of r,

ΩΛ0(r) =
Λ

3H2
⊥(r, t0)

, (4.16)

Ωk0(r) = − k(r)

H2
⊥(r, t0) a2⊥(r, t0)

, (4.17)

Ωm0(r) =
2m(r)

H2
⊥(r, t0) a3⊥(r, t0) r3

, (4.18)

which, akin to the FLRW case, fulfill Ωm0(r) + Ωk0(r) + ΩΛ0(r) = 1.
In analogy to the ΛCDM model, we can use the inhomogeneous first Friedmann equation to

compute the age of the Universe, t0. Integrating Equation (4.15), we obtain

t0 − tBB(r) =
1

H⊥(r, t0)

∫ 1

0

dx√
Ωm0(r)x−1 + Ωk0(r) + ΩΛ0(r)x2

, (4.19)

where tBB(r), the so-called Big Bang time, is another arbitrary function of the ΛLTB model. The
Big Bang time function can be interpreted as the time corresponding to the Big Bang singularity
surface.
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4.3.2.2. The geodesic equations and cosmological distances

The equations above define quantities as a function of the time t and radius r in our past lightcone.
Since, eventually, most of such quantities will be related to the observational phenomena, it is
necessary to rewrite such function as a function of the redshift z in the past lightcone. The
geodesic equations are needed in order to do so.

Assume that a standard candle emits two photons, one at t1 and the other at t2 = t1+λ. Since
these photons follow radial null, from the LTB line element, or Equation (4.4), it is clear that

dt1
du

= −dr

du

R′(r, t1)√
1 + 2r2k(r)M̃2

, (4.20)

dt2
du

=
d (t1 + λ)

du
= −dr

du

R′(r, t1)√
1 + 2r2k(r)M̃2

+
dλ

du
. (4.21)

On the other hand, from Equation (4.4) is also true

dt2
du

= −dr

du

R′(r, t1 + λ)√
1 + 2r2k(r)M̃2

,

= −dr

du

R′(r, t1) + Ṙ′(r, t1)λ√
1 + 2r2k(r)M̃2

 (4.22)

where we have used the Taylor expansion in the last line. Using the definition of the redshift,
z ≡ λ(0)/λ(u) − 1, and Equations (4.21) and (4.22), we obtain

dz

du
=

dr

du

(1 + z)Ṙ′(r, t)√
1 + 2r2k(r)M̃2

. (4.23)

Subsequently, the radial and temporal evolution of the redshift will be determined by set the of
differential equations [186]:

dz

dt
= −(1 + z)Ṙ′(r, t)

R′(r, t)
, (4.24)

dz

dr
=

(1 + z)Ṙ′(r, t)√
1 + 2r2k(r)M̃2

. (4.25)

Since we assume an observer placed at the center of the spherical structure, the equations above
will be solved by using as initial condition: z(t = t0) = 0 and z(r = 0) = 0.

Finally, from the LTB metric, Equation (4.3), one can note that the angular and luminosity
distances, respectively, are

DA(z) = R(r(z), t(z)) , (4.26)

DL(z) = (1 + z)2R(r(z), t(z)) , (4.27)

with t(z) and r(z) being the solutions to the geodesic equations.
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4.3.3. Arbitrary degrees of freedom — free functions: m(r), tBB(r), and k(r)

As already mentioned, the assumption of the Copernican principle reduces the number of degrees
of freedom needed to develop a mathematical description of the Universe. Thus, it is not a
surprise that if such a principle is dropped new degrees of freedom arise. In the case of the
ΛLTB model, such new degrees of freedom will be characterized by the three arbitrary functions
introduced in the previous Section: the mass function m(r), the curvature profile k(r), and the
Big Bang function tBB(r).

Here, we describe and argue our particular choice for such arbitrary functions. We carefully
set these degrees of freedom in concordance with our aims.

4.3.3.1. m(r) as a gauge of freedom

Due to the spherical symmetry established by Equation (4.3), the free functions introduced by
the ΛLTB model are all invariant under a coordinate transformation of the form r̂ = f(r), with
f being a monotonic function. This means that it is possible to define the radial coordinate such
that one of the three arbitrary functions is fixed [212]. Here, we fix this extra gauge of freedom
by choosing a radial coordinate such that the mass function can be defined by m(r) = m0r

3,
where m0 is a proportionality constant to be defined.

Although fixing m(r) is allowed by the extra gauge of freedom, this particular choice exhibits
a drawback: vacuum regions are only available at r = 0. Indeed, our particular choice defines
a derivative m′(r) = 3m0r

2 > 0 and therefore m′(r) ∝ ρm ̸= 0 for any r > 0. This is, vacuum
solutions do not exist for r ̸= 0. This limitation will not impact our future analyses since it will
only prevent us from modeling extreme void regions, i.e., with a density contrast with δ = −1.

4.3.3.2. tBB(r) and the (presence of) decaying modes

While m(r) can be set through an extra degree of freedom, the other two functions, tBB(r) and
k(r), will define the physical nature of our model. For instance, since our analysis of the Coperni-
can principle will be presented in the context of early-FLRW cosmologies, we can impose tBB(r)
and k(r) in agreement with near-FLRW metrics at early times. This condition is particularly
constraining for the Big Bang time, which is expected to introduce decaying modes [213] leading
to a disagreement with the standard paradigm of inflation and an inhomogeneous space-time at
early times [214].

Intuitively, this occurs because different Big Bang shells will occur at various points in time,
leading to a non-negligible inhomogeneity at early times. Mathematically, this can be illustrated
by the derivative of Equation (4.19)

dt

da⊥
=

t′(r)

a′⊥(r, t)
=

1

H⊥(r, t0)

[
Ωm0(r)x−1 + Ωk0(r) + ΩΛ0(r)x2

]−1/2
,

t′(r) =

(
a∥ − a⊥

)
H⊥(r, t0)r

[
Ωm0(r)x−1 + Ωk0(r) + ΩΛ0(r)x2

]−1/2
,

where we have used a′⊥(r) = (a∥ − a⊥)/r and defined x = a⊥(r, t)/a⊥(r, t0). Clearly, a non-
simultaneous Big Bang t′BB ̸= 0, would mean an inhomogeneous Universe at early times, this is
aBB
∥ ̸= aBB

⊥ . Finally, we neglect the presence of decaying modes by imposing tBB(r) = 0.

Note that in contradiction to the discussion presented here, Krasinski [188] argued that a non-
simultaneous Big Bang time corresponds to an arbitrary choice that could oversimply the LTB
models. The author states that the LTB models should not be taken at the face value, especially,

52



Cosmology beyond the Copernican principle: Inhomogeneous space-time solutions Section 4.3

at times close to the Big Bang. Although this argument could be valid for LTB models, without
cosmological constant, that aim to reproduce cosmological observations, the same should not be
applied to our framework, see Section 4.3.1.

4.3.3.3. The curvature profile k(r)

Once the mass function, m(r), and the Big Bang time, tBB(r), are fixed, we end up with just one
arbitrary degree of freedom: the curvature profile k(r). Since m(r) and tBB(r) are uninformative
about late times, the dynamics of the model will be carried out by k(r).

We model the curvature profile through the function

k(r) = kB + (kC − kB)P3(r/rB) , (4.28)

where rB is the comoving radius of the spherical inhomogeneity, kB ≡ k(r = rB) is the background
curvature, kC ≡ k(r = 0) is the central curvature, and the function Pn follows

Pn(x) =

{
1 − exp

[
− (1 − x)n/x] for 0 ≤ x < 1

0 for 1 ≤ x
. (4.29)

This curvature profile describes a compensated spherical structure of comoving radius rB em-
bedded in a ΛCDM background. Given its compensating properties, it ensures that at the finite
radius r = rB, the ΛLTB model trivially becomes a ΛCDM model. In addition, this compen-
sated profile establishes the existence of the compensating scale, here denoted by rL, at which
the central over/underdense region makes a transition to the surrounding mass-compensating
under/overdense region.

It is straightforward to note that this compensated profile is consistent with the program
proposed to test and observationally study the Copernican principle, se Section 4.3.1, and, un-
equivocally, corresponds to an early-FLRW model. Those features will be fundamental to keep
a robust treatment of cosmological data, especially, CMB data. Lastly, we would like to high-
light that compensated structures are not artificial but are common in nature: for instance,
superclusters are typically surrounded by voids, and voids by sheets and filaments.

Once the three arbitrary functions are fixed, we can compute the matter density contrast using

δ(r, t) ≡ ρm(r, t)

ρm(rB, t)
− 1 , (4.30)

and we can also compute the mass (integrated) density contrast via

∆(r, t0) =
4π

∫ r
0 dr̄ δ(r̄, t0) a

2
⊥(r̄, t0)a∥(r̄, t0)r2

4π a3⊥(r, t0) r3/3
(4.31)

=
m(r)

4πGR3(r, t0)/3 ρoutm (t0)
− 1 =

Ωm0(r)

Ωout
m0

[
H⊥(r, t0)

Hout
⊥ (t0)

]2
− 1 .

Hereafter, we will use the superscript “out” to denote the FLRW background quantities outside
the inhomogeneity, e.g. ρm(r ≥ rB, t0) = ρoutm (t0). Note that the compensated profile features,
by construction, ∆(r = rB, t0) = δ(r = rB, t0) = 0 and δ(r = rL, t0) = 0. Additionally,
Equation (4.31) implies ∆(r = 0, t0) = δ(r = 0, t0). Finally, we define the FLRW comoving
coordinate at the present time, rout, such that

rout ≡ R(r, t0)/a
out(t0) . (4.32)

Given that we used the standard normalization aout0 ≡ a⊥(rB, t0) = 1, the size of the inhomo-
geneity satisfies routB = rB.

53



Cosmology beyond the Copernican principle: Inhomogeneous space-time solutions Section 4.3

4.3.4. Scale invariance

Due to the absence of spatial gradients in the dynamical equations, see Equation (4.10), the
dynamics of the LTB model is scale invariant. In turn, this is a consequence of the spherical
symmetry and the fact that the energy-momentum tensor is solely sourced by dust. While
the former ascribes a null magnetic Weyl tensor and, therefore, no gravitational waves, the
latter suggests no pressure and, hence, no sound waves. Explicitly, this kind of spacetimes are
dubbed ‘silent’ because it can not exist direct communication between neighboring worldlines
[215, 216]. In particular, the appearance of pressure gradients would induce to the transfer of
energy between shells and make the energy function E ≡ −k(r)r2/2 and the mass function m(r)
time dependent [see 217].

Strickly speaking, starting from the solution of Equation (4.10) for a given rB, it is possible to
obtain a new scaled inhomogeneity with radial coordinate r̂ = λr and size r̂B = λrB. Thus, the
Friedmann-like equation can be recast as

˙̂a⊥(r̂, t)

â⊥(r̂, t)
=

8πG

3
ρΛ +

2m0

â3⊥(r̂, t)
− k̂(r̂)

â2⊥(r̂, t)
, (4.33)

where we used the definition of the mass function the m(r) = m0r
3. The functions relative to

the scaled inhomogeneity are then defined according to:

â{⊥,∥}(r̂, t) = a{⊥,∥}(r, t) , (4.34)

Ĥ{⊥,∥}(r̂, t) = H{⊥,∥}(r, t) , (4.35)

k̂(r̂, t) = k(r, t) , (4.36)

ρ̂m(r̂, t) = ρm(r, t) , (4.37)

R̂(r̂, t) = λR(r, t) , (4.38)

m̂(r̂, t) = λ3m(r, t) . (4.39)

Starting from one numerical solution, one can then obtain a family of solutions by varying λ.

4.3.5. Configuration of the parameter space and the ΛLTB solutions

4.3.5.1. Free parameters of the ΛLTB model

We have presented the free functions assumed in the presented thesis. Now, we discuss which
are free parameters of the ΛLTB model and, more important, which are the parameters that will
lead to the generalization of the ΛCDM model.

The background parameters can be trivially identified. Since the LTB metric matches the
FLRW case at the finite radius at r = rB, the background expansion of our model will be
specified by the six parameters of the standard model: the normalized Hubble constant h, the
baryon density Ωb0, the cold dark matter density Ωc0, the optical depth τ , the amplitude of the
power spectrum As and its tilt ns.

The case of the inhomogeneous parameters is, in contrast, a bit subtle. The free functions,
here adopted, explicitly introduce new four parameters: the normalization of the mass function
m0, the background curvature kB, the central curvature kc, and the comoving boundary radius
rB. While the two last parameters, kc and rB, will be the free parameters of the ΛLTB model,
m0 and kB will be related to the background ΛCDM parameters. Indeed, in the FLRW limit,
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the matter and curvature density parameters, Equations (4.16) and (4.18), imply

m0 =
Ωout
m0

(
Hout

0

)2
2

, (4.40)

kB = −Ωout
k0

(
Hout

0

)2
, (4.41)

where we have used the standard FLRW normalization aout0 ≡ a⊥(rB, t0) = 1.
It is important to highlight that although the central curvature, kc, and comoving radius of

the spherical inhomogeneity, rB, are the free parameters of our model, we will use the boundary
redshift, zB, and central density contrast, δ0 ≡ δ(r = 0, t0), to sample the parameter space. This
change is motivated by the fact that zB and δ0 are easier to interpret in the context of a late
time, low-redshift, violation of the Copernican principle. Furthermore, a flat prior on kc will not
ensure a homogeneous exploration of under and overdense regions. Finally, because the central
density contrast is unbound, −1 ≤ δ0 < ∞, in order to avoid numerical issues in the cosmological
analysis, we normalize δ0 such that

δ̃0 =

{
δ0 δ0 ≤ 0

δ0/(1 + δ0) δ0 > 0
, (4.42)

which satisfies −1 ≤ δ̃0 < 1. We will apply the same normalization to ∆L ≡ ∆(rL, t0). For the
sake of simplicity, hereafter we drop the tilde.

4.3.5.2. Semi-analytical solutions: the vd2020 and monteLLTB codes

In the absence of the cosmological constant, LTB models with dust and curvature feature ana-
lytical solutions for the cosmic time, t(a⊥, r), as a function of the transverse scale factor, a⊥, and
the radial coordinate, r, such that [218]:

t(a⊥, r) ∝ k(r)−
3
2

{√
a⊥k(r)

[
a⊥k(r)

2
+

2π

3

]
− 2

3
2π

3
sinh−1

[√
3a⊥k(r)

4π

]}

for the case of a positive curvature k(r) > 0.4 On the other hand, the introduction of a cos-
mological constant leads to more complex solutions. Indeed, in a ΛLTB model, the cosmic time
follows Equation (4.19).

In 2012, Valkenburg [218] demonstrated that Equation (4.19) can be recast using Carlson’s
symmetric form of elliptic integrals.5 This will allow us to obtain an exact solution for the
cosmic time, t(a⊥, r), that can be later used to compute the angular scale factor, a⊥(r, t), through
numerical inversion. Additionally, according to the author, Carlson’s symmetric form of elliptic
integrals will also allow us to provide exact expressions for diverse metric functions as H⊥(r, t),
a∥(r, t), or its derivative. Given that this method does not employ numerical integration, the
author argued that solutions provided by Carlson’s integral are accurate and fast-evaluable semi-
analytical functions. Furthermore, the authors presented an early version of a Fortran module
capable of computing the ΛLTB dynamics. About a decade later, Valkenburg provide an update
of this Fortran module and provide the ΛLTB solver: vd2020.6

4In the case of a negative curvature profile k(r) < 0, the solution holds by imposing sinh → sin.
5See https://dlmf.nist.gov/19.16.
6Available at https://github.com/valkenburg/vd2020.
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Label Ωout
m0 Ωout

b0 Hout
0 δ0 zB

Model 1: Extreme void 0.3 0.048 68 −0.8 0.5

Model 2: Shallow but big void 0.3 0.048 68 −0.15 0.5

Model 3: Deep but small void 0.3 0.048 68 −0.8 0.15

Table 4.1.: Three different sets of parameters used to illustrate the ΛLTB model. Hout
0 is shown

in units of km s−1 Mpc−1.

Combining vd2020 and montepython7 codes, we have created monteLLTB: a cosmological solver
and sampler for the ΛLTB model. By adapting the likelihood computation scheme, we have em-
bedded vd2020 into montepython. First, we modify the file sampler.py, to include ini_LLTB, the
method that will execute the vd2020 solver using the current sampled point of parameter space.
Then, to pass the ΛLTB solution to the corresponding likelihood, we modify the compute_lkl

method to include a call for ini_LLTB on it. The ΛLTB cosmology will be passed to the method
of the likelihood, loglkl, through a new argument LLTBin. The likelihoods have been also
modified to account for the observables according to the ΛLTB predictions. Complementary,
we have created the file LLTB_functions.py. This file contains the fundamental definitions of
the ΛLTB model that will be used to compute the cosmological observables. Additionally, this
file will be also in charge of managing the output of vd2020. Finally, it is important to men-
tion that we have also modified the vd2020 code. While keeping unalterable the main results
of the ΛLTB solver — the implementation to compute t(a⊥, t0) — we customize the manage-
ment of error, output precision, and outputted functions of vd2020 and build a new version of
ΛLTB solver suitable to be implemented in montepython. The monteLLTB code is available at
github.com/davidcato/monteLLTB.

Using three different sets of parameters, see Table 4.1, we illustrate our model in Figures 4.5
and 4.6. The top row of Figure 4.5 shows the density parameter for the matter, curvature,
and cosmological constant as a function of the FLRW comoving radial coordinate, rout, for the
different models displayed in Table 4.1. The density contrast and the integrated mass density
contrast as a function of rout are displayed in the middle row of Figure 4.5. Furthermore, the
bottom row shows the transverse and longitudinal Hubble expansion rates, of the three cases
considered, as a function of the FLRW comoving radial coordinate.

From Figure 4.5, it is easy to note, that Model 1 — the extreme void — features the largest
and longest deviation from the ΛCDM background. It leads to an inner region with almost
non-matter, Ωm0 ≈ 0, and therefore increases the local value Hubble constant by more than 10
km s−1 Mpc−1 with respect Hout

0 . On the other hand, as expected, Model 2 — the shallow but
large void — exhibits an almost negligible deviation from the ΛCDM background. In contrast,
due to its small size, Model 3 — the deep but small void — shows a large and sharp deviation
from the homogeneous ΛCDM case.

One should bear in mind that, in real life, cosmological observables are measured inside our
past lightcone rather than in a particular time. This is, cosmological observations, e.g., cosmic
chronometers, will bound H∥(z) ≡ H∥(r(z), t(z)) and not H∥(r, t0). To illustrate the typical
behavior of observables along the past lightcone, we plot in Figure 4.6 the transversal and longi-
tudinal scales factors (top row), the transversal and longitudinal expansion rates (middle row),

7Available at https://github.com/brinckmann/montepython_public.
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Figure 4.5.: Several metric functions as a function of the FLRW comoving radial coordinate,
rout for the three different configurations of ΛLTB model showed in Table 4.1. The
vertical dotted black lines denote the compensating, routL , and boundary, routB , scales.
Additionally, the horizontal dotted black lines mark down the ΛCDM limit of the
corresponding quantity, for instance, Ωout

m0 for Ωm0(rB). In the last row, we also show
some of the parameters that can be derived in the ΛLTB framework. For sake of the
simplicity, we have defined the dimensionless central curvature as k̂ ≡ k/(Hout

0 )2.

and the luminosity and diameter angular distances (bottom row) as a function of the redshift
for the three different configurations of the ΛLTB model showed in Table 4.1. As in the case of
the previous Figure, it is straightforward to note that Model 1 does provide the largest deviation
from the ΛCDM model, while models like Model 2 and Model 3 will feature less considerable
modification to the ΛCDM background. Such kinds of models will be highly degenerated with
the plain ΛCDM model, especially if we consider cosmological distances.

Before enclosing this Chapter, it is essential to highlight that, as anticipated by Equation (4.28),
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Figure 4.6.: Some metric functions related to cosmological observables as a function of redshift,
z, for the three different configurations of the ΛLTB model showed Table 4.1. While
the vertical dotted black lines denote the redshift corresponding to the boundary
scale, zB, the ticker dashed black lines represent the corresponding quantities for the
ΛCDM model.

Figures 4.5 and 4.6 exhibit a smooth and exact transition between the LTB and FLRW metric
at the finite scale rB (or zB); the ΛCDM model is recovered at scales r ≥ rB (or z ≥ zB).
Furthermore, the cases exposed in Table 4.1 were ad hoc chosen to illustrate how the ΛLTB
model will relate to the problems treated in this thesis. On the one hand, Model 1 exemplifies
how a ΛLTB underdense inhomogeneity could explain the Hubble tension, see left bottom panel
of Figure 4.5. On the other hand, Model 2 and Model 3 represent regions of the parameter space
that will be difficult to constrain, mainly because these models provide small deviations from the
ΛCDM cosmological distances, see the middle bottom and right bottom panels of Figure 4.6.
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CHAPTER 5.

Cosmology beyond the Copernican principle:
the role of the cosmological probes

In the previous Chapters, we have introduced the theoretical and observational groundwork
necessary to investigate physics beyond the Copernican principle. Here, we propose and apply a
suitable program for studying, analyzing, and interpreting cosmological data in inhomogeneous
spacetimes. We also apply this program to observationally test the Copernican principle and
assess the problem of the Hubble tension. The results presented here are nothing more than the
first steps toward an extension of the boundaries of the standard paradigm of modern cosmology.
The discussion is based on three manuscripts that I have published during my PhD, these are
CP Paper I, CP Paper II, CP Paper III. It is important to highlight that I have led these works.

We begin this Chapter by discussing the observables that will be used in our analyses. The
first Section intends to set up the framework needed to confront the theoretical predictions of the
ΛLTB model with the data coming from CMB, SNe, BAO, the y-distortion, the kSZ effect, and
a local prior either on MB or H0. Later, we use the latest cosmological data to place constraints
on the ΛLTB model. We compare the results of this analysis with the constraints coming from
the Copernican prior — the statistical counterpart of the Copernican principle. This comparison
corresponds to a test of the Copernican principle [CP Paper I], which is then presented. After
this, by considering future data coming from DESI, Euclid, and LSST, we forecast constraints on
the ΛLTB model. Such analysis aims to determine the precision with which forth-coming surveys
will be able to test the Copernican principle and to test their ability to detect any possible
violations of it. Finally, we carefully compute the Hubble constant in the ΛLTB framework in
order to investigate if a local void can explain away the 5σ Hubble crisis [CP Paper II].

5.1. Cosmological observations in a ΛLTB Universe

Results discussed in this Chapter could be, at some level, biased by the cosmological data and
its underlying fiducial model. We refer to the fact that most cosmological observations are not
model-independent. Indeed, the standard pipelines employed to convert raw data into cosmo-
logical observations usually call upon a fiducial model. Such fiducial models are either used to
accurately model the uncertainties or directly apply a standard template to interpret observa-
tional phenomena. For instance, the standard BAO analyses make use of a fiducial cosmological
model to analyze the observed redshifts and angles and consequently measure the transverse
and longitudinal BAO peak positions. Although in this particular case, analyses under the pre-
sumptions of a wide range of wCDM cosmologies found no evidence for systematic errors in the
measured BAO signal Carter et al. [219], this could not be the case for other observations. This
remarks again, on the need for model-independent techniques in cosmology, see Section 3.5.5. We
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argue that this caveat is intrinsic to most of the cosmological analyses and do not have a large
impact on our results.

5.1.1. Cosmic microwave background

As discussed in the previous Chapter, this thesis relies on the assumption that at early times our
model matches the standard paradigm, and the physics at decoupling (or pre-decoupling) is as in
the standard ΛCDM model. In other words, the compensated profile defined by Equation (4.28)
is consistent with an early-FLRW Universe. If, in addition to that, we also assume the standard
adiabatic power spectrum, changes on the CMB power spectrum produced by our model will be
only sourced by line-of-sight effects. Specifically, in contrast to a ΛCDM model, the spherical
inhomogeneity only modifies the primary CMB spectrum via the late-time Integrated Sachs-
Wolfe effect (hereafter, ISW) and the angular distance to the last scattering surface, D∗

A. The
assumption of a standard power spectrum will be a posteriori justified since observations will only
permit radial inhomogeneities whose density contrast can be understood as a linear perturbation
of ΛCDM paradigm [220]. The same argument implies that the local ΛLTB structure will not
change the late-time ISW effect as compared with the ΛCDM framework.

Thus, in this picture, in what it concerns to the CMB data, the ΛLTB model is reduced to
a simply late time modification of the ΛCDM model, which aims to change the constraints on
the different cosmological parameters through D∗

A, see Section 3.5. Since our ΛLTB model does
not include radiation, the angular diameter distance to the last scattering can not be directly
computed from our framework. However, one can re-scale the background cosmology to create an
effective FLRW model that accounts for the changes produced in the CMB [221, 222, 111, 197].
Here, in order to obtain the effective FLRW model, we follow the procedure proposed by Marra
and Paakkonen [222].

First, we solve the geodesic equations of the effective ΛCDM cosmology by using as initial
conditions the matching shell, i.e.,

{
tFLRW, rFLRW

}
= {tB, rB} and DFLRW

A = R(rB, tB), where
tB = t(rB). These solutions will allowed us to compute the age of the effective FLRW cosmology,
tFLRW(r = 0) = teff0 , and the new boundary redshify, such that zeffB = aFLRW(teff0 )/aFLRW(tB)−1.
Using both quantities, teff0 and zeffB , we will re-scale the background parameters such that [222]

Heff
0 = Hout

⊥ (teff0 ) , (5.1)

T eff
0 =

(
1 + zB

1 + zeffB

)
TCMB , (5.2)

Ωeff
γ0 = 2.469 × 10−5h−2

eff

(
T eff
0

TCMB

)4

, (5.3)

Ωeff
r0 =

[
1 +

7

8

Neff

2

(
4

11

)4/3
]

Ωeff
γ0 , (5.4)

Ωeff
Λ0 = Ωout

Λ0

[
Hout

⊥ (t0)

Heff
0

]2
, (5.5)

Ωeff
k0 = Ωout

k0

[
aFLRW(t0)H

out
⊥ (t0)

aFLRW(teff0 )Heff
0

]2
, (5.6)

Ωeff
m0 = 1 − Ωeff

Λ0 − Ωeff
k0 − Ωeff

r0 , (5.7)

Ωeff
b0 = ωout

b0 h−2
eff

(
T eff
0

TCMB

)3

. (5.8)
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with the effective number families of neutrinos fixed to Neff = 3.046 and the amount of baryons
ωb0 defined as ωb0 = Ωb0h

2. Note that the non-background parameters, As, ns and τreio will
remain unchanged. Finally, it is important to mention that the CMB power spectrum of the
effective FLRW model shall be computed through the CLASS code [223].1

5.1.2. Type Ia Supernovae

Largely used in cosmology, SNe are standardizable candles whose apparent magnitudes, mB, can
be used to constrain cosmological models through the relation

mB(z) = 5 log10
DL(z)

1Mpc
+ 25 + MB , (5.9)

with DL being the luminosity distances and MB the absolute magnitude. Note that this funda-
mental relation does keep unalterable if we compare with its FLRW version.

Some authors have argued that inhomogeneous models would lead to a redshift-dependent
absolute magnitude, such that MB(z) ̸= const [224]. We believe that such an assumption is an
extra assumption that goes beyond the ΛLTB paradigm and corresponds to assuming that SNe
are not standard candles. Here, we consistently assume that MB is constant over the redshift.

5.1.3. The local Hubble constant

In contrast to the FLRW case, and due to the radial degree of freedom, the ΛLTB model does
not possess a unique definition of the Hubble constant, i.e., H⊥(r, t0) ̸= constant. Since, a priori,
there does not exist any particular scale, rx, at which one can robustly define H0 = H0(rx), the
definition of the Hubble constant remains arbitrary.

In this Section, we propose three different ways of computing the local Hubble rate in an
inhomogeneous model. These proposals will be obtained by extending some of the FLRW concepts
and using observational reasoning. The approaches presented here will use a mock catalog of SNe
in the Hubble flow, this is, in the redshift range 0.023 < z < 0.15. Such mock will be generated
considering ΛLTB luminosity distances as the observed quantity, and the redshift distribution
and covariance matrix of the Pantheon compilation [225]. Given that these approaches will be
applied in the cosmological analysis, it is important to highlight that the mock SNe data set
will be generated at each sampled point of the parameter space. Finally, in this Section, we also
discuss the usage of the absolute magnitude of SNe, MB.

5.1.3.1. Mean Hubble constant HM
0

We first propose the mean Hubble constant, HM
0 , an extension of the approach presented by

Valkenburg et al. [220]. Through a weighted comparison between a radial dependent cosmo-
graphic expansion and the luminosity distance over the range 0.023 < z < 0.15, we define the
mean Hubble constant to be:

HM
0 =

{∫ 0.15

0.023
W (z)

dL(z)

z + 1
2 [1 − q0(r)] z2

dz

}−1

, (5.10)

with W (z) being the normalized redshift distribution of the mock SNe and the r-dependent
deceleration parameter following

q0(r) = Ωm0(r)/2 − ΩΛ0(r) . (5.11)
1Available at https://github.com/lesgourg/class_public.
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5.1.3.2. SH0ES Hubble constant HR
0

Our second approach relies on the procedure proposed by Redlich et al. [226], and lately re-
vised by Efstathiou [227]. In this approach the Hubble constant is obtained by mimicking the
typical cosmic distance ladder procedure, see Section 3.5.1, this is, by fitting the mock catalog
through the FLRW cosmographic expansion and assuming a constant value for H0 along with
fixed deceleration and jerk parameters to q0 = −0.55 and j0 = −1, respectively.

Although the procedure defined for this determination, dubbed HR
0 , neglects the spatial de-

grees of freedom introduced by the LTB metric, it could be useful to identify if deviations of
statistical homogeneity could substantially bias the cosmic distance ladder determinations. It
is important to stress that, while Redlich et al. [226] first presented this method in the context
of inhomogeneous models, Efstathiou [227] proposed this approach to point out that the cosmic
distance ladder technique does not truly determine H0 = H(z = 0) but rather a low redshift
approximation of it.

5.1.3.3. Local Hubble constant HL
0

Our last approach to determine the local Hubble constant in a homogeneous Universe, HL
0 , raises

as an intermediate alternative to HM
0 and HR

0 . This proposal will be determined as HR
0 but with

a radial-dependent deceleration parameter:

q̃0(r,H
L
0 ) = q0(r)

[
H0(r)

HL
0

]2
, (5.12)

where the last factor enforces the constant HL
0 as the local Hubble rate in the definition the

density parameters, Equations (4.16) and (4.18).
Figure 5.1 shows HM

0 , HR
0 , and HL

0 as a function of δ0 for two particular cases of the boundary
redshift: zB = 0.4 (solid lines) and zB = 0.2 (dashed lines). Notably, HR

0 (blue lines) and HL
0

(red lines) provide very similar values for all pairs of δ0 and zB here considered. At the same
time, HM

0 (green lines) amplifies the deviations from Hout
0 , especially at |δ0| ≳ 0.1 for zB = 0.2.

A ΛLTB inhomogeneity with a density contrast δ0 ≈ −0.5 and a redshift size zB = 0.2 — or
δ0 ≈ −0.3 and zB = 0.4 — with a background Hubble rate of Hout

0 = HPlanck
0 can possibly explain

the mismatch between the CMB and cosmic distance ladder observations.

5.1.3.4. The absolute magnitude MB

As already discussed in Section 3.5.3, the MB parameter is often considered a nuisance parameter
in the cosmological analysis. This biases the results of the cosmological inference, the evidence
for late time modifications to the ΛCDM model spuriously increases. Thus, in light of the MB

tension [7], our main analyses will be performed considering a prior on MB instead of H0. s

5.1.4. Cosmic chronometers

The relative age between a pair of passively-evolving galaxies at different redshifts can be deter-
mined through spectroscopic techniques. That differential age can be combined with the redshift
to measure the rate dz/dt, without any underlying assumption about cosmology [228]. This
technique is the denominated cosmic chronometers.

From the definition of the Hubble parameter, H(z) = ȧ/a, it is straightforward to note that,
in the FLRW case, the cosmic chronometers will constrain dz/dt = −(1 + z)H(z). Instead, in
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Figure 5.1.: HM
0 , HR

0 , and HL
0 as a function of the density contrast at the center, δ0, and for

two cases of the boundary redshift: zB = 0.2 and zB = 0.4. A local underdensity
with δ0 ≈ −0.5 and zB = 0.2 — or δ0 ≈ −0.3 and zB = 0.4 — with a background
expansion rate of Hout

0 = HPlanck
0 (horizontal black line) could potentially solve the

Hubble crisis by providing a local rate that agrees with HSH0ES
0 (pink region).

the case of a LTB space-time, such observations will provide information about the longitudinal
expansion rate. This can be demonstrated if we use Equations (4.14) and (4.24), such that

dz

dt
= −(1 + z)H∥(z) . (5.13)

5.1.5. Baryonic Acoustic Oscillations

The so-called Baryonic Acoustic Oscillations imprint, at the drag epoch td, the comoving sound
horizon scale rs(td) ≡ rd in the matter power spectrum. This scale constitutes a standard rule
that can be used to constrain cosmological models through the combination of the comoving
sound horizon, rd, the Hubble rate, H(z), and the diameter angular distance, DA(z).

More specific, within the standard paradigm, the BAO establishes the longitudinal and trans-
verse scales denoted by ∆z = ld(1 + z)H(z) and ∆θ = ld/DA(z), respectively, as standard rulers.
Note, that we have conveniently defined the proper sound horizon scale ld = rd/(1 + z). In
the case of spherically inhomogeneous space-time, this scales will be modified by the anistropic
expansion rate. Precisely, in the ΛLTB model the BAO scales follow [229, 221, 111]:

∆z(z) = l∥(1 + z)H∥ , (5.14)

∆θ(z) =
l⊥

DA(z)
, (5.15)
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where a transverse and longitudinal proper sound horizon scales have been defined through

l⊥ =
a⊥(r(z), t(z))

a⊥(r(z), td)

rd
(1 + zd)

, (5.16)

l∥ =
a∥(r(z), t(z))

a∥(r(z), td)

rd
(1 + zd)

. (5.17)

Although the most recent measurements separately determine the radial, ∆z, and angular, ∆θ,
BAO scales, old surveys used to detect a combination of them. This combination is called the
isotropic BAO and its defined by

dV = rd

( z

∆θ2∆z

)1/3
. (5.18)

5.1.6. Compton y-distortion

Relying on the assumption that we are placed at the center of the spherically inhomogeneity, see
Section 4.3.1, secondary anisotropies of the CMB can be used to constrain the ΛLTB model.

Effectively acting as mirrors, reionized off-center structures scatter CMB photons inside our
past lightcone along our line-of-sight. Since photons with different temperature will be injected
by this scattering, a spectral distortion on the CMB thermal black body spectrum will be pro-
duced. Such distortion is the well-known Compton y-distortion. In the linear single-scattering
approximation, and neglecting the contribution of multipoles higher than ℓ > 2, the y-distortion
produced by an off-center structure is given by [197, 230, 204]:

y =
7

10

∫ zre

0
dz

dτ

dz
β2(z) , (5.19)

where zre is the redshift of the reionization epoch, β(z) is the dipole of the off-center structure
and the derivative of the optical depth τ with respect to the cosmic time is

dτ

dt
= σT fb

(
1 − YHe

2

)
ρm(t)

mp
, (5.20)

with σT being the Thompson cross section, fb the baryon fraction, YHe the helium mas fraction
and mp the proton mass.

While, in the ΛCDM framework, the y-Compton effect is sourced by the cosmological perturba-
tions, in a ΛLTB model such distortion is instead a background effect. Indeed, in a ΛLTB model,
the dipole of an off-center structure can be roughly approximate to β(z) ≃ D

[
H0(z) −Hout

0

]
,

where D is some proper distance [108]. Here, we compute the dipole β(z) by following the
procedure discussed in [231]. We first identify the redshift of the reionized off-center structure,
zoff . Next, by adopting as the starting point {t(zoff), r(zoff)}, we solve the outgoing and ingoing
geodesic equations to the surface of last scattering obtain z− and z+, respectively. Finally, by
taking into account that the temperature of CMB scales according to T ∝ 1/z, the dipole in the
light-cone is given by β(z) = (z+ − z−)/(2 + z+ + z−) [see Figure 1 in 231].

5.1.7. The kinetic Sunyaev–Zeldovich effect

The dipole featured by the off-center structures will also produce anisotropies in the CMB spec-
trum through the kinetic Sunyaev–Zeldovich effect (hereafter, kSZ efect). Generated by the
inverse Compton scattering of low-energy photons with high energy electrons, the kSZ provide
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an interesting window to test the the radial degrees of freedom introduced by a spherically inho-
mogeneity. Indeed, as mentioned in the review of void models, see Section 4.1.3, the kSZ effect
is a powerful observable that can be used to test the Copernican principle [231, 160, 232, 203].

Here, by considering Limber approximation and the effect due to all free electrons in the
reionized universe, we compute the linear kSZ effect [160, 232]:

CkSZ
ℓ ≃ 16π2

(2ℓ + 1)3

∫ rre

0
dr r

[
β(r)

dτ

dr

]2
∆2

m , (5.21)

where rre is the radial coordinate at zre and ∆m is the nonlinear dimensionless matter power
spectrum, whose definition depends on r according to:

∆2
m = ∆2

m

((
k̄ =

2ℓ + 1

2r

)
× Ξ, z(r)

)
. (5.22)

Note that Ξ was introduced in order to correct for the anisotropic expansion of our inhomogeneous
model. This correction is defined by

Ξ =

(
1 + z

1 + z

)[
a2(t, r(z))

a2(t(z), r(z))

a∥(t, r(z))

a∥(t(z), r(z))

]1/3

. (5.23)

Let us consider k̄ as the comoving FLRW wavenumber. Since our model is an early-FLRW
model, the comoving ΛLTB wave number will coincidence, at an early-enough time t̄, with the
FLRW definition k̄. However, because of the subsequent anisotropic expansion, in ΛLTB model,
the proper mode k̄/ā will be stretched differently along the longitudinal and transverse direction.
This means, that today, the comoving ΛLTB wave number will follow

k{∥,⊥}
a

=
k

a

a{∥,⊥}(t, r)

a{∥,⊥}(t, r)
. (5.24)

Additionally, since the standard power spectrum does only consider a single wavenumber, in
analogy to the BAO scales, one can define the isotropic comoving wavenumber to be Ξ ∝[
k2⊥(z)k∥(z)

]1/3
, justifying then Equations (5.21) and (5.23).

5.2. The Copernican principle in light of the latest cosmological data

In CP Paper I, we tested the Copernican principle by placing constraints in a ΛCDM model
endowed with a spherical inhomogeneity around us, i.e., the ΛLTB model. We confront the
constraints coming from the analyses of the latest cosmological data, with the constraints coming
from the Copernican prior — the statistical counterpart of the Copernican principle. Here, we
discuss the results of this test.

We start our discussion by presenting the cosmological data that will be considered during this
Section. We will later introduce the Copernican prior and its relation to the ΛLTB parameter
space. After that, we present the results of our analyses and promote the discussion of those.
Finally, we shall enclose this Section discussing the conclusions and final remarks of CP Paper I.

5.2.1. Data sets used in the analysis

We adopt the latest cosmological data available to constrain the ΛLTB model. Specifically, we use:
Planck 2018 data coming from the high-ℓ and low-ℓ TT+TE+EE power spectrum [233]; Pantheon
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compilation with 1048 SNe data in the range 0.01 < z < 2.3 [225]; BAO measurements from
6dFGS [234], SDSS-MGS [235] and BOSS-DR12 [144]; 30 cosmic chronometer points spanning
the redshift range 0 < z < 2 measurements from [236, 237, 238, 239, 240, 241]; a 2σ upper bound
on the Compton y-distortion coming from the COBE-FIRAS satellite [242]; a Gaussian prior on
the amplitude of the kSZ at ℓ = 3000, i.e., Dobs

3000, from the SPT-SZ + SPTpol surveys [243]; and
the astro-prior on MB from H0 Paper I.

It is important to highlight that the assumption that the late-time ISW does not change in the
presence of inhomogeneity is not only a posterior assured by the constraints but also justified by
the fact that fully computing the contribution of the late-time ISW effect in an inhomogeneous
ΛLTB model is a non-trivial task [244, 245, 163]. Indeed, accurate computation of this effect —
and, in general, of all contributions of large-scale inhomogeneities in low-ℓ multipoles — involves
the use of a not yet fully developed cosmological perturbations theory in an inhomogeneous
space-time. In order to assess the impact of the low-ℓ data in our main results, and also to test
our assumption about the late-time ISW effect, we have performed an extra analysis without the
low-ℓ data. The results of this are discussed in Appendix B.

As mentioned above, we will impose a Gaussian prior on the amplitude of the kSZ effect.
More specific, we will constrain the spherically inhomogeneities around us using the first kSZ
measurement at more than 3σ, Dobs

3000 = 3.0±1.0 µK, provided by SPT-SZ + SPTpol surveys [243],
where 2πDℓ = ℓ(ℓ + 1)Cℓ. In order to provide a consistent confrontation between observations
and theory, it is crucial to note that the kSZ effect would not disappear in the limit δ0 → 0
and zB → 0, given that the linear perturbations of the ΛCDM are also expected to provide
a contribution. Here, we use the patchy and homogeneous parameterizations to compute the
ΛCDM perturbation contribution [246]:

h-AkSZ = 1.65
( σ8

0.8

)4.46
, (5.25)

p-AkSZ = 2.03

[
(1 + zre)

11
− 0.22

](
∆zre
1.05

)0.51

, (5.26)

where ∆zre = z(xi = 25%) − z(xi = 75%) is the duration of reionization and xi is the ionization
fraction of hydrogen. We compute xi using the tanh model [247]. Finally, one should note, that
as in the case of the low-ℓ scales, fully consistent treatment of kSZ requires the not-yet available
understanding of the growth of matter perturbations in an inhomogeneous background.

5.2.2. Copernican prior

The large-scale structure of the Universe might feature arbitrary radial inhomogeneities in the
absence of the Copernican principle. As opposed to this, within the standard paradigm, those
structures are constrained by the Copernican principle. Indeed, the assumption that we do not oc-
cupy a special location in the Universe assigns a likelihood to the large-scale structures. Through
linear perturbation theory, one can demonstrate that such probability follows [CP Paper I]:

P(δ0, zB) ∝ exp

[
−1

2

∆2(rL, t0)

σ2(routL )

]
, (5.27)

where the effective density contrast, ∆(rL, t0), has been assumed to be a Gaussian field whose
root-mean-square is defined by

σ2(r) =

∫ ∞

0

dk

k

[
k3Pm0(k)

2π

3j1(rk)

rk

]2
, (5.28)
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with Pm0(k) being the standard power spectrum today and j1 the spherical Bessel function of
the first kind. Equation (5.27) is the so-called Copernican prior. Note that, since routL defines the
radius of the center under/overdensity, it is the scale of interest of our model. This is confirmed
by the Copernican prior, which value acquires a physical meaning if evaluated routL ; by definition
Equation (5.27) would be trivial is one considers rB instead of rL, this because the matter and
mass fluctuations disappear at the boundary scale, δ(rB, t0) = ∆(rB, t0) = 0.

Although Equation (5.27) does constrain the radial degree of freedom introduced by the ΛLTB
model — by effectively constraining δ0 and zB — the Copernican prior does not bound the
power matter spectrum, Pm0, or the cosmological parameters needed to asses to it. On the other
hand, under the assumption of the Copernican prior, the cosmological perturbations inferred from
CMB data should describe the early universe at any point and, in particular, also at our observing
position. That means, CMB summary statistics, such as the power spectrum, do constrain both
the background and ΛLTB parameters.

Thus, constraints coming from the assumption of the Copernican principle will be actually
obtained by the convolution of the Copernican prior with the CMB likelihood. Explicitly, if the
Copernican principle is valid, the probability distribution of δ0 and zB, given the initial conditions
obtained from the CMB and their uncertainty, will defined by:

P (δ0, zB) =

∫
dpi P(δ0, zB)LCMB(pi,∆0, zB) , (5.29)

where pi denotes the standard ΛCDM parameters and LCMB is the CMB likelihood adopted here,
see Section 5.2.1.

Finally, it is important to mention that despite our approach to the statistical counterpart of
the Copernican principle follows on the idea presented by Valkenburg et al. [220], the Copernican
prior presented here differs in three aspects from the one adopted by Valkenburg et al. [220].
First, since the latter spuriously reduce the likelihood of inhomogeneities with zB ∼ 0, we have
removed the normalization factor (σL

√
2π)−1 on Equation (5.27). Second, while Valkenburg

et al. [220] adopt the relativistic mass to compute ∆(r, t0), we have used the Euclidean mass.
By internal analyses, we have confirmed that this change does not have a large impact on our
results. Finally, we have corrected the LTB gauge by using rout instead of r.

5.2.3. Results and discussion

We perform the cosmological analysis using the ΛLTB solver and sampler: monteLLTB, see Sec-
tion 4.3.5.2. Since the parameter space will be sampled using the Markov-chain Monte Carlo
(hereafter, MCMC) technique, we evaluate the convergence of the MCMC chains by using
the Gelman-Rubin diagnostic R [248]. Given the complexity of the ΛLTB parameter space,
we establish the threshold (R − 1) ≲ 0.05 for the inhomogeneity parameters δ0 and zB and
(R− 1) ∼ O(10−3) for the background ΛCDM parameters as the criterion of convergence. Most
of the plots shown here have been produced using getdist [249].

5.2.3.1. Constraints on the inhomogeneity

We show in Figure 5.2 the marginalized constraints on the comoving compensating scale routL and
integrated mass contrast ∆L = ∆(rL, t0) of the spherical inhomogeneity for various combinations
of the cosmological data. Figure 5.2 also shows the constraints coming from the Copernican prior
convolved with the CMB likelihood of Equation (5.29), i.e., the radial fluctuations as allowed by
the standard paradigm. When all observables are taken into account, it becomes evident that

67



Cosmology beyond the Copernican principle: the role of the cosmological probes Section 5.2

−0.5 0.0 0.5

∆L

0

200

400

600

800

1000

ro
u

t
L

[M
p

c]

−0.5 0.0 0.5

∆L

0

200

400

600

800

1000

ro
u

t
L

[M
p

c]
−0.5 0.0 0.5

∆L

0

200

400

600

800

1000

ro
u

t
L

[M
p

c]

+ BAO + Hz

−0.5 0.0 0.5

∆L

0

200

400

600

800

1000

ro
u

t
L

[M
p

c]

+ y-distortion

−0.5 0.0 0.5

∆L

0

200

400

600

800

1000

ro
u

t
L

[M
p

c]

+ kSZ

−0.5 0.0 0.5

∆L

0

200

400

600

800

1000

ro
u

t
L

[M
p

c]

+ All

CMB + low-z SNe + MB CMB + SNe + MB Copernican Prior + CMB

Figure 5.2.: Marginalized constraints on the effective density contrast ∆L and compensating scale
routL of the ΛLTB inhomogeneity at 68% and 95% confidence level. The empty con-
tours denote the constraints from the analayses of the corresponding cosmological
data. The green area, instead, shows the region of the ΛLTB parameter space that
is allowed by the standard paradigm and the Copernican principle, here represented
via the Copernican prior convolved with the CMB likelihood, P (δ0, zB).

only linear non-Copernican structures are permitted at greater radii, however for smaller scales,
the Copernican principle (CP) is confirmed and observations begin to map the local structure.

To better explain this, we define the effective non-Copernican density contrast as

∆non.
L =

√
σ2
obs − σ2

CP

where σ2
obs and σ2

CP are the variances of ∆L relative to the empty and green contours of Fig-
ure 5.2, respectively. We show in Figure 5.3 the effective contrast beyond what is allowed by the
Copernican principle, ∆non.

L , as a function of the FLRW comoving compensating scale routL . Note
that ∆non.

L is computed using routL bins. Figure 5.3 shows that non-Copernican structures can
features small extra effective contrast of just ∆non.

L ∼ 0.01.2

68



Cosmology beyond the Copernican principle: the role of the cosmological probes Section 5.2

0 95 190 285 380 475 570 665 760 855 950

rout
L [Mpc]

10−2

10−1

∆
n

on
.

L

CMB + SNe + MB

CMB + SNe + MB + All
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a function of the effective size routL of the ΛLTB inhomogeneity. Cosmological data
allows for non-Copernican structures with a small extra effective contrast of just
∆non.
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Figure 5.4.: Marginalized constraints on the six ΛCDM parameters and also the density param-
eter of the cosmological constant ΩΛ and the SNe absolute magnitude MB. This
plot shows that the standard ΛCDM constraints are robust against the effect of in-
homogeneities, whose effect is essentially negligible, see Table 5.1. This point that
cosmological inference without the Copernican principle not only is possible but is
affected to a very minor extent.
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Parameter ΛCDM ΛLTB

102ωb 2.25+0.026
−0.027 2.25+0.027

−0.025

ωcdm 0.119+0.002
−0.002 0.119+0.002

−0.002

H0 68.56+0.84
−0.82 68.53+0.82

−0.81

ln1010As 3.04+0.03
−0.03 3.04+0.03

−0.03

ns 0.967+0.007
−0.007 0.967+0.007

−0.007

τreio 0.056+0.016
−0.016 0.056+0.016

−0.015

ΩΛ 0.70+0.011
−0.011 0.70+0.011

−0.011

Table 5.1.: 68% confidence level intervals for the six ΛCDM parameters and also the derived
parameter ΩΛ, marginalized over the effect of inhomogeneities around us (ΛLTB) and
for the standard ΛCDM model that assumes the Copernican principle.

5.2.3.2. Constraints on the the standard model parameters

Besides examining if the cosmological data can prove the Copernican principle, we also investigate
if dropping the Copernican hypothesis does affect the cosmological constraints on the parameters
of the standard model.

Figure 5.4 and Table 5.1 show the constraints on the six ΛCDM parameters, marginalized
over the ΛLTB parameters. We also show, for comparison sake, the constraints relative to
the standard ΛCDM model and the assumption of the Copernican principle. Our results show
that dropping the Copernican principle has an almost negligible effect on the constraints of the
ΛCDM parameters. We also report small correlations between the background parameters and
the parameters that model the inhomogeneity around us, δ0 and zB. See Figure 5.5, the triangular
plot with the eight free parameters of the ΛLTB model.

5.2.3.3. Towards inhomogeneous cosmology

Figure 5.2 shows that the region ∆L - routL of the parameter space allowed by the data is progres-
sively constrained to closely follow the constraints obtained by the Copernican prior. This means
that cosmological data allows spherical inhomogeneity around us that are close to the typical
FLRW perturbations of the standard paradigm. Further, it is interesting to note that although
the combination of CMB+ SNe + MB data already tightly constrains the ΛLTB model, large-
scale inhomogeneities at routL ≳ 500 Mpc are efficiently constrained only if the combinations of
all probes is considered. This shows that the synergies between different probes are fundamental
to the test deviation from the FLRW metric. The results presented here represent a substantial
improvement as compared to the previous analysis of Valkenburg et al. [220].

As proposed by Valkenburg et al. [220], one can globally quantify how much non-Copernican
structure is allowed by comparing, in Figure 5.2, the CP area with the one allowed by data.
Table 5.2 shows the ratios of the areas of the 2σ contours for the different cases here analyzed. It
is straightforward to note that, when areas are compared using the whole parameter space, the
ratio is close to 1. These estimations seem to point to an almost confirmation of the Copernican

2Note that, because of the non-Gaussian nature of the posterior, it is not straightforward to compare Figure 5.3
with Figure 5.2.
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Figure 5.5.: 68% and 95% marginalized constraints on the eight independent parameters of the
spherically inhomogeneous extension of the standard model, the ΛLTB model.
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Case
Aobs/ACP Aobs/ACP

0≤routL 190Mpc≤routL

CMB + SNe + MB 1.16 2.85

CMB + SNe + MB + BAO + HZ 1.11 2.88

CMB + SNe + MB + y-dist. 1.12 2.83

CMB + SNe + MB + kSZ 1.07 2.35

CMB + SNe + MB + All 1.02 2.15

Table 5.2.: Ratios of the areas of the 2σ constraints from observations and the Copernican prin-
ciple, see Figure 5.2.

principle. However, as pointed out earlier, large-scale inhomogeneities are more difficult to con-
strain — noticeably, as can be seen from Figure 5.2, at scales routL ≥ 190 Mpc, cosmological data
still allow for a region of parameter space that is rejected by the Copernican prior. Thus, in order
to take this into account, we also compute the ratios considering only scales routL ≥ 190 Mpc.
Results from such analyses show that the ratio is ∼ 3 when CMB+SNe+MB are considered and
decreases to ∼ 2 when all data are included.

Further, we have also considered the case of a nonzero background curvature. In the analyses
of this case, we found that our results remained unaltered. The reason is that CMB strongly
constrains the background value of Ωk, and this is not affected by the compensated LTB inho-
mogeneity, which is constrained to small contrasts by the other observables.

All these results imply that, within the present modeling, we are close to observationally
establishing the Copernican principle and, even more important, that dropping the Copernican
principle assumption does not imply worse constraints on the cosmological parameters.

5.2.3.4. The LTB parametrization

It is crucial to mention that although our choice for the curvature profile is justified in the
framework of an early-FLRW model, the presumption of Equation (4.28) is still arbitrary. This
is, our results depend, to some extent, on the chosen parametrization for the curvature function
given in Equation (4.28). While it is clear that the two physical parameters that best describe
a spherical inhomogeneity are its size rB and contrast δ0, it is also true that, as constraints get
ever-tighter, other aspects of the curvature profile, such as its smoothness, may start to have
an important impact. This limitation on the modeling of the curvature — or density profile —
could be overcome by considering a more flexible parametrization as proposed by Redlich et al.
[226], where an n-node spline is considered. This approach is clearly recommended if one wants
to find the best-fit inhomogeneous model for observations.

Since we aim to test the Copernican principle and democratically explore the parameter space
of the ΛLTB model, the adoption of a more general profile may lead to problems. Indeed,
meaningful analyses should similarly explore the overdensities and underdensities, which, within
the LTB framework, is not a trivial task. The main reason behind this is that underdensities may
experience shell-crossing singularities which, although unphysical, prevent the analysis and create
a spurious asymmetry in the parameter space. Shell crossing will occur when R′ = 0, and this
would happen when the inner faster-expanding underdensity pushes against the compensating

72



Cosmology beyond the Copernican principle: the role of the cosmological probes Section 5.3

shell. In other words, when exploring the parameter space of a more flexible profile, shell crossing
could lead to volume effects which would bias the results.

By performing an internal consistency test of the ΛLTB model, we have confirmed that the
parametrization of the curvature profile, Equation (4.28), does not penalize underdensities or
overdensities. However, it is crucial to bear in mind that the results shown in Figures 5.2 and 5.3
are conditional to the assumed parametrization of the LTB model.

Also corresponding to the parametrization of our model is the assumption of a center ob-
server. Even though, we argued in Section 4.3.1 that considering radial inhomogeneities around
us is enough for the treatment of this thesis, the real anisotropy of the Universe could affect
observations as much radial inhomogeneities do. Our approach to non-Copernican cosmologies
introduced a fine-tuning in the observer position. Given that the test presented in the following
Section provides qualitatively similar results as the results presented here, we refer to the reader
to Section 5.3.3.5, for a thorough discussion of the fine-tuning position of the observer.

5.2.4. Final considerations

The analysis presented here constitutes but a first step in the direction of analyzing and inter-
preting cosmological and astrophysical data within the framework of inhomogeneous cosmologies,
where the latter are natural extensions of the standard paradigm. Given that data itself could
prove the existence of large-scale inhomogeneities and isotropies in the Universe at odds with the
standard paradigm of modern cosmology, it is fundamental to pursue a program that confronts
observations with arbitrarily inhomogeneous cosmologies.

Here, we adopted a simple approach by embedding a spherical inhomogeneity in a ΛCDM
background. Our results show that, within the ΛLTB framework, data can stringently constrain
the radial inhomogeneity around us. Also, we found that the typical constraints on the standard
ΛCDM parameters are not weakened after marginalizing over the local inhomogeneity parame-
ters. Namely, dropping the Copernican hypothesis does not necessarily imply significantly worse
constraints on the background parameters. This positive result demonstrates that the inhomo-
geneous cosmology framework can be used to meaningfully analyzed future and present data.

A possible route that can be taken to develop the present analysis is to consider inhomogeneities
in the radiation field, as proposed by Regis and Clarkson [70]. If the universe features large-scale
inhomogeneities in the matter, one may anticipate a similar trend in the baryon fraction or
baryon-to-photon ratio or other domains, which can drastically affect parts of the analysis and
restrictions. We envision that present and future cosmological data will nevertheless be able to
constrain the free functions of these models.

Finally, mapping the local structure may have important implications; a notable one is its
effect on the H0 crisis, see Figure 4.5. This topic will be discussed in Section 5.4.

5.3. Testing the Copernican principle with next-generation surveys

Given the common scientific interests, in 2018, I joined, as an external collaborator, the Work
Package 5 “Deviations from homogeneity and Isotropy” of the Theory Science Working Group of
Euclid Consortium. To date, I have actively participated in the activities of this group, not only
collaborating on a project [14] but also leading the most recent project of this group: the “Testing
the Copernican principle with next-generation survey” project [CP Paper III], where, using mock
data coming from DESI, Euclid, LSST, SH0ES, and current surveys, we forecast constraints on
the ΛCDM model. We aim to determine the precision with which forthcoming surveys will be
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Label MB Ωm0 ωb0 H0 δ0 zB

ΛCDM: standard model −19.3 0.32 0.02225 67 - -

ΛLTB 1: Copernican structure −19.3 0.32 0.02225 67 −0.5 0.05

ΛLTB 2: Shallow but large void −19.3 0.32 0.02225 67 −0.1 0.4

ΛLTB 3: Shallow but huge void −19.3 0.32 0.02225 67 −0.1 0.8

Table 5.3.: The configurations of the fiducial models that were adopted to create the forecast
data. The parameters value assumed here for the ΛCDM model follows the fiducial
of Euclid Collaboration: Blanchard et al. [250], where a flat background is assumed.
H0 is shown in units of km s−1 Mpc−1 and MB is shown in units of mag.

able to test the Copernican principle and their ability to detect any possible violations of it. In
this Section, we discuss the results of this project.

In the first part of this Section, we present both the forecast and current data used to constrain
the ΛLTB model. Despite we aim to forecast constraints on the Copernican principle considering
data from future surveys, it is crucial to point out that the inclusion of current data is still
needed to tightly constrain the ΛLTB model, especially, at small scales where the model highly
degenerates with ΛCDM model, see Figure 4.6, for instance. Later, we show the results and
discuss several aspects of our analysis. We end the discussion of this project by mentioning the
conclusions and final remarks of CP Paper III.

Before presenting the data that is used in this analysis, it is crucial to mention that forecast
data sets are generated considering four fiducial models, see Table 5.3. The analyses of such
mock catalogs, which are based on the ΛCDM and ΛLTB models, have different aims. While
the analysis of ΛCDM forecast data aims at estimating the accuracy with which next-generation
surveys will be able to probe for spherically inhomogeneities around the FLRW metric, the study
of the ΛLTB mock data, instead, is used to address the ability of future surveys to detect a
violation of the Copernican principle. Furthermore, current, i.e., real, data is rescaled to agree
with the fiducial models shown in Table 5.3. For sake of the readability of the text, we discuss
the re-scaling procedure in Appendix C. Since this analysis corresponds to a forecast analysis,
we idealize cosmological data by assuming that there are no tensions among the different data
sets; this includes tensions between early and late determinations.

5.3.1. Data sets used in the analysis: forecast data

In order to forecast the impact of DESI, Euclid, and LSST surveys on constraints of deviations
from the Copernican principle, we generate mock SNe and BAO catalogs. As already discussed,
within the ΛLTB framework, BAO measurements will effectively constrain the longitudinal Hub-
ble rate and the diameter angular distances by Equations (5.14) and (5.15), while the apparent
magnitude of SNe will bound the cosmology through the luminosity distance, see Equation (5.9).
Note that, the recipes described in this Section are used to create the ΛCDM forecast data using.
In contrast, the ΛCDM catalogs will be obtained by a suitable re-scaling of data as thoroughly
explained in Appendix C.

We use four fiducial cosmologies, based on the ΛCDM and the ΛLTB model, to create the
forecast catalogs. These are shown in Table 5.3, with being the ΛCDM configuration the one
also used in Euclid Collaboration: Blanchard et al. [250]. To produce the ΛCDM catalogs,
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we computed the redshift evolution of the Hubble parameter, along with the luminosity and
angular diameter distances, as described in the following. The forecast recipe will be based
on the specifications of the corresponding surveys, i.e., DESI, Euclid, and LSST. In contrast, as
remarked earlier, we will obtain the ΛLTB catalogs following the process described in Appendix C.
Given that computing correlation matrices for non-ΛCDM cosmologies may be not feasible [251,
252, 253], we first compute the correlation matrix assuming the ΛCDM fiducial to later apply
the re-scaling method described in Appendix C to obtain the corresponding ΛLTB matrices.

5.3.1.1. SNe surveys

Our analysis will rely on the usage of two forthcoming SNe experiments: the Euclid DESIRE
[254, 255] and LSST surveys [256]. In particular, to create the Euclid DESIRE-based catalog we
assume that 1700 SNe will be observed in the redshift range z ∈ [0.7, 1.6], while in order to create
the LSST-based data 8800 SNe in the redshift range z ∈ [0.1, 1.0] will be assumed. In total, our
forecast data catalog will contain 10 500 SNe data point.

In both cases, we assume the redshift distributions of the SNe events as described in Astier
et al. [255], where we will also assume that the points are not correlated with each other. The
total error on the measurements of SNe will be modeled through

σ2
tot,i = δµ2

i + σ2
flux + σ2

scat + σ2
intr , (5.30)

where the terms corresponding to the intrinsic contributions, the scatter and the flux are the
same for all events: σintr = 0.12, σscat = 0.025, and σflux = 0.01 respectively. Lastly, we consider
an error on the modulus distance µ = m−MB that with a linear dependence on the redshift such
that δµ = eM z, where eM follows a Gaussian distribution with zero mean and standard deviation
σ(eM) = 0.01 [see 257, 255]. This latter also includes the possible redshift evolution of SNe not
taken into account by the distance estimator, see Astier et al. [255]. It is important to point
out that although eM = 0.01 is required to take into account a possible systematic evolution,
this term would be quadratically propagated together with the effective term that arose from
the SNe lensing eM = 0.055. Several authors have theoretically computed this error consistently
finding σlens ≃ 0.055 z [258, 259, 260]. Note that observationally determinations agree with the
theoretically predicted value of σlens. For instance, Supernova Legacy Survey found this error to
be σlens = (0.055 ± 0.04) z [261] and σlens = (0.054 ± 0.024) z [262].

We would like to highlight that, despite that the Euclid SNE survey is not yet assured to
take place, we resolve to include it in the analysis in order to broaden the redshift range of the
SNe data; the inclusion of Euclid DESIRE-based SNe allows us to reach luminosity distances up
to zmax = 1.6.

5.3.1.2. Local prior on the Hubble constant

The inclusion of a local prior is essential to effectively calibrate the luminosity distance of SNe.
We have earlier argued that in light of the Hubble constant analyses of late time modifications of
the ΛCDM model should include a prior on the absolute magnitude of SNe instead of on the local
Hubble constant. Here, since the forecast analysis neglect any tension, we impose a constraint on
the H0 instead of MB. This choice is also justified by the fact that the great goal of the SH0ES
collaboration is to provide a 1% local measurement of the Hubble constant. In particular, we
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forecast

H0 =



67.00 ± 0.67 km s−1 Mpc−1 for ΛCDM

67.62 ± 0.68 km s−1 Mpc−1 for ΛLTB 1

68.22 ± 0.68 km s−1 Mpc−1 for ΛLTB 2

68.45 ± 0.68 km s−1 Mpc−1 for ΛLTB 3

, (5.31)

where the central value correspond the fiducial H0 value for the ΛCDM fiducial model, mean-
while, for the ΛLTB models, the central value is computed through HL

0 , see Section 5.1.3. The
corresponding Gaussian prior of Equation (5.31) is imposed on HL

0 ; our choice of HL
0 over HR

0 or
HR

0 will be justified in Section 5.4.
Lastly, we remark that the forecast scenario neglects the tension between early and late deter-

minations of the Hubble constant. By assuming a single consistent fiducial model, we focus on
the constraining potential of future surveys to test the Copernican principle, leaving the issue of
the Hubble tension to other studies. This particular choice will be also justified by the analysis
presented in the next Chapter — or CP Paper I, CP Paper II.

5.3.1.3. Large-scale structure surveys

Here, we will succinctly outline our method for producing mock BAO data based on Euclid
specifications using a Fisher matrix approach. Since we are interested in accurately measuring
the angular diameter distance DA(z) and the Hubble parameter H(z), we follow the methodology
of Euclid Collaboration: Blanchard et al. [250] for the spectroscopic survey. Future Euclid weak
lensing, nor other perturbation level observables such as redshift space distortions, will consider
in this analysis. This is because there is not yet a fully developed linear perturbation theory on
inhomogeneous backgrounds.

As explained in Euclid Collaboration: Blanchard et al. [250], the main targets of the Euclid
survey will be Emission Line Galaxies (ELGs). The latter are bright emitters in specific lines,
like Hα and [O III], that can be seen in the redshift range z ∈ [0.9, 1.8], and are useful to mea-
sure the galaxy power spectrum. Euclid will determine, in particular, approximately 30 million
spectroscopic redshifts with an uncertainty of σz = 0.001(1 + z) [263], which will provide the
galaxy power spectrum with information on the distortions due to the redshift uncertainty, the
residual shot noise, the galaxy bias, the Alcock-Paczynski effect, and the redshift space distor-
tions. Where, nonlinear effects, such as nonlinear smearing of the BAO feature or a nonlinear
scale-dependent galaxy bias that distort the shape of the power spectrum, have also been taken
into account, see Wang et al. [264] and de la Torre and Guzzo [265], respectively.

For this analysis, we will use the same binning scheme as in Martinelli et al. [266, 267]. Par-
ticularly, this differs from that of Euclid Collaboration: Blanchard et al. [250] such that instead
of four equally spaced redshift bins nine bins of width ∆z = 0.1 are considered. After rebinning
the data provided in Euclid Collaboration: Blanchard et al. [250], we obtain the following spec-
ifications for the galaxy number density n(z), given in units of Mpc−3, and that of the galaxy
bias b(z):

n(z)={2.04, 2.08, 1.78, 1.58, 1.39, 1.15, 0.97, 0.7, 0.6}×10−4, (5.32)

b(z)={1.42, 1.5, 1.57, 1.64, 1.71, 1.78, 1.84, 1.90, 1.96} . (5.33)

Under the assumption of the ΛCDM fiducial, we can use the methodology described in Euclid
Collaboration: Blanchard et al. [250] to derive the Fisher — and covariance — matrix for the
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cosmological parameters. Thus, in order to create the ΛLTB mock, we specifically consider the
background quantities {ωm, h, ωb, ns}, two non-linear parameters {σp, σv} and the five redshift
dependent parameters{lnDA, lnH, ln fσ8, ln bσ8, Ps}, which are estimated in every redshift bin.
Note that, we have defined fσ8 ≡ f(z)σ8(z) as the linear growth rate multiplied by σ8, and
bσ8 ≡ b(z)σ8(z) and Ps as the galaxy bias and the shot noise, respectively. Thus, using this
approach we can determine the expected uncertainty of the measurements of the Euclid survey
for both the angular diameter distance DA(z) and the Hubble parameter H(z), in every redshift
bin. The approach presented in Appendix C is, on the other hand, applied to generate the
corresponding ΛLTB data.

Although Euclid will provide accurate measurements at redshift z ∼ 1, its spectroscopic survey
will be rather limited in the redshift range z ∈ [0.9, 1.8]. Therefore, in order to complement
Euclid, we will also use data products from the DESI survey covering then smaller redshifts.
DESI — operating since 2021 — is expected to eventually provide spectra for tens of millions of
galaxies and quasars up to z ∼ 4. Here, to produce both the angular diameter distance DA(z)
and the Hubble parameter H(z) DESI mock for the ΛCDM fiducial, we adopt the technique
discussed in Aghamousa et al. [268]. These Fisher matrix forecasts were also derived using the
full anisotropic galaxy power spectrum, i.e. measurements of the matter power spectrum as a
function of the angle with respect to the line of sight, as described in Font-Ribera et al. [269]. This
approach is similar to that of the Euclid forecasts and it also includes all information from the
two-point correlation function. In particular, the baseline DESI survey will cover approximately
14 000 deg2 and will target emission line galaxies (ELGs), luminous red galaxies (LRGs), bright
galaxies (BGs) and quasars, all in the redshift range z ∈ [0.05, 3.55], albeit the precision of the
measurements will depend on the target population. Regarding the specific populations, the BGs
will be in the range z ∈ [0.05, 0.45] in five equally spaced redshift bins, while the ELGs and the
LRGs will be in the range z ∈ [0.65, 1.85] in 13 equally spaced bins. Finally, the Ly-α forest
quasars will be in the range z ∈ [1.96, 3.55] in 11 equally spaced bins and we will assume that the
points are uncorrelated with each other. In order to avoid overlap between the DESI and Euclid
and the introduction of undesired correlations, when these two surveys are used in combination,
we will only consider the DESI points that do not overlap with those of Euclid.

5.3.2. Data sets used in the analysis: Current data

As discussed in Section 5.2.3.3, the combination of CMB + SNe is needed to tightly constrain
the ΛLTB model, particularly, at small scales. In the context of the forecast analysis, this signal
that the presence of real data, i.e., Planck 2018 and Pantheon SNe, is essential even if we aim to
forecast the contribution of future surveys. The usage of CMB data is necessary to constrain the
background parameters, while the introduction of low-z SNe is needed to break the degeneracy of
the ΛLTB parameters model at small scales. Here, we present the complementary current data
that will be considered in the forecast analysis. As mentioned earlier, in order to use a consistent
fiducial model, this data will be rescale considering the predictions of the fiducial models shown
in Table 5.3 and according to the procedure described in Appendix C.

5.3.2.1. Cosmic Microwave background

The latest Planck CMB data [16] will be included in the analysis of the ΛCDM forecast. In
particular, we will use the high-ℓ TT+TE+EE, low-ℓ TT, and low-ℓ EE likelihood, where data
for high-ℓ will be considered in its compressed version, i.e., the likelihood normalized over all
nuisance parameters except Aplanck. Note that these likelihoods for Planck will not be rescaled
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since its typical constraints from ΛCDM model will agree with the fiducial values adopted for
the forecast data (Table 5.3) within 68% confidence level.

In contrast, the ΛLTB model presented in Table 5.3 could lead to a significant change in the
power spectrum of CMB and it is not ensured that they could agree with the constraints of
the aforementioned likelihoods. Therefore, a rescaling of the CMB data according to the ΛLTB
fiducial cosmologies is necessary. However, given the complex structure of the CMB likelihoods
and our limited understanding of perturbations on the inhomogeneous models, rescaling Planck
data may not be a trivial task. To overcome this issue, for the analyses of the ΛLTB mock
catalogs we adopt the CMB distance priors on the shift parameter R, the acoustic scale lA, the
amount of baryons ωb, and the tilt of the power spectrum ns. We build the mock CMB priors
considering the current measurements given by Chen et al. [270] and the effective FLRW model
methodology presented in Section 5.1.1.

5.3.2.2. SNe surveys

LSST forecast data span over the redshift range z = [0.1, 1.0], clearly pointing out a lack of SNe
at very low redshifts. The lack of such will lead to weakening the constraints on the ΛLTB model
by increasing the degeneracy between δ0 and zB. Here, to overcome this limitation, our analyses
will also include the Pantheon SNe compilation [225]. This data set will be rescaled according to
our method presented in Appendix C.

5.3.2.3. Large-scale structure surveys

We also include BAO measurements coming from the 6dFGS [234], SDDS-MGS [235] and BOSS-
DR12 [144] surveys. While BOSS data will allow us to test H∥(z) and DA(a) at the redshifts
z = {0.38, 0.51, 0.61}, isotropic measurements from 6dFGS and SDSS-MGS will conveniently
constrain the ΛLTB dynamics at low redshift, specifically z = {0.1, 0.15}. Despite the current
BAO measurements displayed here overlap with the forecast DESI mock, we assume no correla-
tions between these data sets. For sake of simplicity, hereafter, we collectively refer to this set of
data as BAO. Furthermore, our analysis does not use the latest eBOSS data [271, 272, 273, 274],
mainly, because, eBOSS data set spans all the redshift range of the forecast Euclid data. Finally,
in line with earlier mentioned, we rescale the BAO measurements, to agree with the fiducial
cosmologies Table 5.3, according to the method discussed in Appendix C.

5.3.2.4. y-Compton distortion and the kSZ effect

In the analysis of forecast data from ΛCDM, we impose priors both on the y-Compton distortion
and the kinetic Sunyaev-Zeldovich (kSZ) effect. On the one hand, for the kSZ effect, we adopt
the ∼ 47% constraint from SPT-SZ and SPTpol surveys [243] — considering the ΛCDM fiducial
model, and a 46% precision, we obtain the Gaussian prior D3000 = 3.49 ± 1.63µ K for the
amplitude of the kSZ effect. On the other hand, for the y-Compton distortion, we adopt the
upper limit prior at 95.4% uncertainty provided by COBE-FIRAS y < 1.5 × 10−5 [242].

Priors on the y-Compton distortion and the kSZ effect are instead not implemented in our
analyses of the ΛLTB forecast data — our complimentary analyses demonstrate that in this case,
these priors do not improve upon constraints given by the combinations of the other data sets.
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5.3.3. Results and discussion

Similar to the Section 5.2, we constrain the ΛLTB model using several combinations of current
and forecast data. We denote as the baseline analysis (hereafter ‘Base’) the combination of CMB,
Pantheon SNe, LSST, and H0 data, note that possible correlations between LSST and Pantheon
are neglected. Further, the baseline analysis relative to current data (hereafter ‘Base C’) is defined
as the combination of CMB, Pantheon, and MB data. We also neglect any possible correlation
between the future DESI and Euclid data set with the current BAO. When DESI and Euclid
data are combined, we replace DESI measurements between z ∈ [0.95, 1.75] with the Euclid data
points. Here, we also explore the parameter space using the solver and sampler for the ΛLTB
model, the monteLLTB code. Most of the plots shown in this section have been produced using
getdist [249].

For sake of readability, we present separately our results for the cases of the ΛCDM and ΛLTB
fiducial models of Table 5.3. As already discussed, we consider the ΛCDM fiducial model to test
how well future data can constrain deviations from the Copernican principle, while we use the
ΛLTB fiducial models to see if future data can detect a violation of the same.
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Figure 5.6.: The 95% and 99% confidence level constraints on the integrated mass contrast, ∆L,
and the comoving size, routL , for three different data combinations as compared to the
constraints from the Copernican prior convolved with the CMB likelihoods.

5.3.3.1. ΛCDM mocks: The Copernican principle in light of the forthcoming surveys

In Figure 5.6 we show the marginalized constraints at the 95% and 99% confidence levels on the
integrated mass contrast, ∆L, and the comoving size, routL , for three different data combinations
as compared to the constraints coming from the Copernican prior convolved with the CMB
likelihoods.

The constraining power of future surveys on the radial inhomogeneity can be quantitatively
compared to the expectation from the Copernican prior and CMB by comparing the ratio of
the 95% confidence regions in the parameter space, see Table 5.4. Considering all scales, the
ratio is always less than one, showing the capability of future surveys to rule out non-Copernican
structures. However, at large scales, constraints provided by data still allow for non-Copernican
mass density fluctuations since for routL ≥ 190 Mpc the ratio is approximately equal to two. Note
that, for both cases, the combination Base + DESI + Euclid provides constraints comparable to
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Observables
Aobs/ACP

0≤routL 190 Mpc≤routL

Flat background FLRW metric

Base (CMB+Pantheon+LSST+H0) 0.82 2.1

Base + BAO + Euclid 0.80 2.0

Base + BAO + DESI 0.78 1.9

Base + BAO + Euclid + DESI 0.75 1.9

Data above + y-dist. + kSZ 0.75 1.7

Curved background FLRW metric

Data above 0.82 1.9

Table 5.4.: Ratios of the areas of the 95% contours from observations and the Copernican princi-
ple. We also include (last row) the case with background curvature, kB ̸= 0 in Equa-
tion (4.28).

those obtained from the combination of all data, pointing out the important role that forthcoming
large-scale structure surveys will have to test the Copernican principle.

We also consider the case of nonzero background curvature, i.e. kB ̸= 0 in Equation (4.28).
The result is shown in the last row of Table 5.4. The inclusion of background curvature degrades
the constraints by approximately 10% compared to the flat case, still providing a competitive
constraint on the non-Copernican parameters.

5.3.3.2. ΛCDM mocks: Comparison with present-day constraints

In order to quantify the role of future surveys in constraining inhomogeneity around us, we
compare our constraints with the ones from current data only, as obtained in CP Paper I. Specif-
ically, we compute the improvement on the observed area Aobs considering the data combinations
presented in Table 5.5. Our present analyses do not include a Cosmic chronometer data set as
contributions of this kind of data are expected to be secondary as compared with SNe and BAO
[CP Paper I]. Note that our previous implementation of such data did not include the full covari-
ance matrix presented in [275], revised and discussed in [158].

Our Base analysis shows an improvement upon the current constraints by more than 20%, when
all scales are considered, and provides an improvement of 28% when compared to the constraints
from Base C and Base C + BAO + HZ at scales routL ≥ 190 Mpc, where HZ denotes the Cosmic
chronometers data set used in CP Paper I. It is interesting to note that our forecast Base analysis
provides constraints comparable to those obtained with all the latest cosmological data available,
Base C + BAO + HZ + y-dist + kSZ case, showing the importance of forthcoming SNe surveys
and 1% prior on the Hubble constant.

On the other hand, LSS surveys will play an important role in testing the Copernican principle.
As shown in Table 5.5, future measurements from Euclid and DESI will sharpen the current
constraints of Base C by approximately 35%, both at 0≤routL and 190 Mpc≤routL . The inclusion
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Observables used in this analysis
Present-day observables used
in Camarena et al. [1]

Percent improvement

0≤routL 190 Mpc≤routL

Base

Base C (CMB + Pantheon + MB) 29% 28%

Base C + BAO + HZ 26% 28%

Base C + BAO + HZ + y-dist. + kSZ 20% 0%

Base + BAO + Euclid + DESI

Base C 35% 34%

Base C + BAO + HZ 32% 34%

Base C + BAO + HZ + y-dist. + kSZ 26% 10%

Base + BAO + Euclid + DESI + y-dist. + kSZ

Base C 35% 41%

Base C + BAO + HZ 32% 41%

Base C + BAO + HZ + y-dist. + kSZ 26% 19%

Table 5.5.: Percent improvement on constraints on radial inhomogeneity from next-generation
surveys as compared to present-day constraints.

of Euclid and DESI will also tighten the parameter space by more than 30% compared to the
combination Base C + BAO + HZ. When compared to the combination Base C + BAO + HZ +
y-dist. + kSZ, our analysis with the forthcoming Euclid and DESI data shows an improvement
of 26% for 0≤routL and 10% for 190 Mpc≤routL .

Finally, the combination of all data considered here will tighten our current constraints leading
to improvements up to 41% for scales at 190 Mpc≤routL and 35% for 0≤routL , see Table 5.5.

5.3.3.3. ΛLTB mocks

In Figure 5.7 we show the marginalized constraints at the 95% and 99% confidence levels on δ0
and zB, for the three ΛLTB fiducial cosmologies, as compared to the constraints coming from
the Copernican prior and CMB observations.

From the analysis relative to ΛLTB 1 (top row), we can see that future data will be able to
probe the local structure. This means that the effect of the cosmic variance on the position of
the observer will be reduced thanks to the forthcoming surveys.

On the other hand, from the analysis relative to ΛLTB 2 (middle row) and 3 (bottom row),
we see that inhomogeneities that are large, but relatively shallow, can be detected with high
significance thanks to future data. More precisely, one can note that our analyses exclude the
FLRW case (δ0 = 0 and zB = 0) by ≳ 3σ (pink contours). This stresses the important roles of
the next-generation surveys in testing the Copernican principle.

5.3.3.4. The role of large-scale structure data

We have seen from the results of Sections 5.3.3.1 and 5.3.3.2 on the ΛCDM mocks that future
surveys, such as Euclid, will grant a ≈ 30% improvement on inhomogeneity around the observer.
In particular, for scales greater than 190 Mpc, the combination of all data will constrain inhomo-
geneity to only 1.7 times the area of the region allowed by standard cosmology. Given the fact
that Euclid probes the redshift range 0.9 < z < 1.8, one may wonder if the improvement due to
Euclid comes directly from better constraints on the shape of the angular diameter distance and
Hubble rate or indirectly from better constraints on the cosmological parameters.
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Figure 5.7.: The 95% and 99% confidence level constraints on the density contrast at the center,
δ0, and the redshift of the boundary, zB, for the ΛLTB mock catalogs of Table 5.3
as compared to the constraints from the Copernican prior convolved with the CMB
likelihood. The black star is placed at the fiducial values for the LTB parameters,
i.e. δ0 = −0.5 and zB = 0.05 (top row, ΛLTB 1), δ0 = −0.1 and zB = 0.4 (middle
row, ΛLTB 2), and δ0 = −0.1 and zB = 0.8 (bottom row, ΛLTB 3). Note that the
zB-axis is not the same for all figures.
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In order to answer the previous question, we show in Figure 5.8 the fluctuations in the apparent
magnitude, Hubble rate, and angular diameter distance for the ΛLTB model as compared to the
fiducial ΛCDM one. The 68% and 95% bands are obtained by evaluating the relevant functions
at every point of the chains. We compare three analyses: the Base one, Base with present BAO
and Euclid, and Base with present BAO and DESI. From this plot, it appears that the shape
of the various functions does not change when adding Euclid or DESI. In other words, these
two surveys do not improve the constraints in specific redshift ranges but rather they help at
tightening the overall uncertainties. From this, we conclude that the improvement due to Euclid
comes mostly from better constraints on the cosmological parameters, although this works in
synergy with DESI and the other observables.
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Figure 5.8.: Fluctuations in the apparent magnitude (top row), Hubble rate (middle row) and
angular diameter distance (bottom row) for the ΛLTB model as compared to the
fiducial ΛCDM one. The 68% and 95% bands are obtained by evaluating the relevant
functions at every point of the chains. The red points show LSST and Euclid DESIRE
supernovae data, the black ones Euclid data, and the purple ones DESI data. See
Section 5.3.3.4.

5.3.3.5. Beyond the central observer

As mentioned earlier, our aim is to test radial homogeneity around us, neglecting anisotropies.
We then placed the observer at the centre of the spherical over/underdensity. However, in an
inhomogeneous universe beyond FLRW, neglecting anisotropies could not be justified because
anisotropies may affect observables as much as radial inhomogeneities. In other words, the
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modelling adopted in this work implies a spherically symmetric inhomogeneity and a fine tuning
of the observer’s position.

From the results of Sections 5.3.3.1 and 5.3.3.2 on the ΛCDM mocks we see, a posteriori, that
large structures with shallow contrasts are allowed by future data. If, for example, we consider a
contrast of δ = −0.1, the corresponding change in the Hubble rate is approximately

δH0/H0 = −f(Ωm)δ/3 , (5.34)

≃ 0.017 ,

where f ≃ 0.5 is the present-day growth rate for the concordance ΛCDM model. The CMB
dipole, if the observer were at e.g. a distance dobs = 300 Mpc from the centre, using v = ∆H dobs,
is then:

β =
v

c
≃ 1.2 × 10−3 , (5.35)

which is basically the observed CMB dipole [98]. As the structures that we consider in this
work extend to, at most, 1000 Mpc (see Figure 5.6), the required fine tuning is less than 1 in 40
chances. In other words, the fine tuning required to satisfy the CMB dipole is rather mild and
therefore the motivation for considering an off-centre observer is to provide a better description
of possibly anisotropic data, rather than to relieve the fine tuning of the observer’s position.

It is worth mentioning that the fine-tuning is instead very severe when considering void models
as alternatives to dark energy, a possibility that was not explored here and not favoured by data,
see BEHOMO Paper I and CP Paper II. Indeed, in this case the underdensity has a radius of ≈ 3
Gpc and δH0/H0 ≈ 0.2 so that the observer has to be within ≈ 30 Mpc from the centre, giving
rise to a fine tuning of one in a million [194]. Note, however, as pointed out in Garcia-Bellido and
Haugboelle [276], that it is possible to alleviate this improbability by displacing the observer and
then making them move towards the centre. For distances of a few hundred Mpc and velocities
of a few thousand km s−1, the effect is indistinguishable from the observed CMB dipole. In a
way, one exchanges an improbability in location for an improbability in the direction of motion.
The overall effect is to reduce the coincidence to a few parts in a thousand.

5.3.4. Final considerations

Testing fundamental assumptions of cosmology is a crucial step toward improving our under-
standing of the Universe and firmly establishing the foundations of the standard cosmological
paradigm. In CP Paper I, we have tested the Copernican principle by placing constraints on the
ΛLTB model using current and forecast data products. Specifically, we focus on the capability of
forthcoming surveys, such as SH0ES, DESI, Euclid, and LSST, to test the Copernican principle
in conjunction with current data.

In particular, we compare constraints on the ΛLTB model coming from the forecast and current
data against constraints drawn from the Copernican prior—the statistical counterpart of the
Copernican principle. This comparison allows us to quantify how well we can constrain deviations
from the Copernican principle.

We have considered two types of fiducial models: the standard ΛCDM model and the inhomo-
geneous ΛLTB model. By analyzing the latter we aim to determine if next-generation surveys
will be able to detect deviations from the Copernican principle, while our analysis of ΛCDM data
aims to investigate if forthcoming data can successfully test the Copernican principle.

We have found that the inclusion of future data, coming from SH0ES, DESI, Euclid, and
LSST, will improve the current constraints on the Copernican principle by up to 40%. This
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improvement will be especially important at scales rB ≥ 190 Mpc, where the inclusion of next-
generation surveys will reduce the constrained area of the space parameters to a factor of < 2
as compared with the area allowed by the Copernican prior. Furthermore, we found that using
the forthcoming SH0ES, DESI, Euclid, and LSST data, we will be able to detect inhomogeneous
deviations of the FLRW metric, including Gpc-scale inhomogeneities of contrast −0.1. Our
analyses show that given the precision of next-generation of surveys a detection of this kind
would allow us to rule out the FLRW space-time (δ0 = 0 and zB = 0) by ≳ 3σ.

In summary, this work highlights the importance of synergies the forthcoming surveys in testing
the Copernican principle, which is one of the fundamental assumptions of the standard paradigm
of modern cosmology.

5.4. A void in the Hubble tension? The end of the line for the
Hubble bubble

Current data can tightly constraint radial inhomogeneities at almost to the cosmic variance level,
see Section 5.2 and [CP Paper I], effectively pointing out to fluctuations with magnitude δ ∼ 0.01
on scales ≳ 100 Mpc. In this Section, we discuss the results of the analyses presented in CP Pa-
per II, where we have investigated if the current inhomogeneous non-Copernican fluctuations
allowed by the data could explain the Hubble tension. Besides studying the Hubble tension
problem, we also perform a model selection analysis between the standard ΛCDM model and
its inhomogeneous extension, the ΛLTB model. Additionally, by considering the best fit to the
cosmological data, we reconstruct our local space-time.

Similar to the previous Sections, we start our discussion by presenting the cosmological data
that have been considered in the analysis of CP Paper II. Later, we present and discuss the
results of the same, mainly focusing on the Hubble tension, the model selection analysis, and the
reconstruction of the local structure of the Universe. We end this Section by stating the final
remarks and conclusions of our analysis.

5.4.1. Data sets used in the analysis

Given that this analysis is an extension of the test of the Copernican principle, see Section 5.2 and
CP Paper I, we will carry out our analyses using several combinations of the data presented in
Section 5.2.1. We will also consider combinations of data including not the whole set of Pantheon
supernovae but only SNe in the redshift range 0.023 < z < 0.15 — the so-called Hubble flow
supernovae that are used by SH0ES in the determination of H0. We dub this subset of the
Pantheon catalog as low-z supernovae. Additionally, we carried out analyses including a prior on
the Hubble constant, instead of a prior on MB. Specifically, we impose the SH0ES determination
H0 = 73.5± 1.4 km s−1 Mpc−1 [134] on HL

0 . These extra analyses aim to demonstrate that both
methods, either with a prior on MB or a prior on H0, are statistically equivalent when the local
H0 prior is implemented considering that the cosmic distance ladder technique does not measure
the Hubble rate at z = 0 but rather in a specific redshift range [227].

5.4.2. Results and discussion

We repeat the approach used in Section 5.2: cosmological analysis is performed using monteLLTB,
we adopt as convergence criteria the threshold (R− 1) ≲ 0.05 for the inhomogeneity parameters,
δ0 and zB, and (R − 1) ∼ O(10−3) for the background ΛCDM parameters. Here, we also use
getdist to produce most of the plots of this Section.
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Given that Planck data has shown moderate evidence for a closed Universe [95, 277], the ques-
tion, of whether our Universe is flat or curved, has been recently investigated, see Section 3.2.3.
Additionally, the FLRW curvature has been found to have a strong correlation with a possible
change in the CMB temperature, potentially pointing out the existence of a strong correlation
with the parameters of an inhomogeneous model, see also Section 3.2.3. Here we will analyze
the ΛLTB model considering both a flat and a curved ΛCDM background. Finally, we denote as
Base the combination of CMB, SNe, and the local prior (either on H0 or MB).

−19.4 −19.3 −19.2

MB [mag]

66

70

74

78

H
L 0

[k
m

s−
1

M
p

c−
1
]

M
B

[m
ag

]

66 70 74 78

HL
0 [km s−1 Mpc−1]

CMB + MB + low-z SNe

MB + low-z SNe

CMB + MB + SNe

MB + SNe

−0.4 −0.2 0.0 0.2 0.4

∆L

0

200

400

600

800

1000

ro
u

t
L

[M
p

c]

−2 0 2 4 6

HL
0 −Hout

0 [km s−1 Mpc−1]

65 70 75 80

Hout
0 [km s−1 Mpc−1]

CMB + MB + low-z SNe

MB + low-z SNe

CMB + MB + SNe

MB + SNe

Figure 5.9.: Marginalized constraints, at 68% and 95% confidence level, on several parameters of
interest when considering, in a flat background Universe, combinations of CMB and
supernova data, together with the local prior on the supernova absolute magnitude
MB. Shown are MB and the local Hubble rate HL

0 (top), the effective mass density
contrast ∆L and compensating scale routL of the ΛLTB model (center), and back-
ground Hubble constant Hout

0 and the local increase with respect to the background
rate, ∆H = HL

0 −Hout
0 (bottom). Note that there is tension only when considering

all supernovae and the CMB. See Section 5.4.2.1.
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Figure 5.10.: Apparent magnitude residuals of the Pantheon supernovae, as function of the red-
shift, taking as a reference the best fit of the ΛCDM model to the combination
CMB + MB + SNe + All. One can see, from the left panel, that the best fit of the
ΛLTB model to CMB + MB + low-z SNe (blue line) fits well the supernovae in the
range 0.023 < z < 0.15 (green data points) and provides a solution to the Hubble
crisis, see Section 5.4.2.1. However, the other supernovae (purple data points) con-
strain the ΛLTB luminosity distance (red line) to a shape similar to the ΛCDM one.
The result is that the ΛLTB model cannot explain the Hubble tension. The right
panel shows the case without CMB data. While the full supernova sample does not
prefer an underdensity (solid curve), when only considering low-z supernovae one
sees that the profile is compatible with a local void (dashed black line). This is due
to a fluctuation in the supernova apparent magnitudes at 0.1 ≲ z ≲ 0.15.

5.4.2.1. Flat background FLRW metric

We start by considering a flat ΛCDM background (kB = 0) and only CMB and SNe observa-
tions, together with the local prior on the supernova absolute magnitude MB. Figure 5.9 shows
marginalized constraints on several parameters of interest for four observable combinations. Fig-
ure 5.10 shows the corresponding apparent magnitude residuals of the ΛLTB best fits with respect
to the ΛCDM best fit.

As it is well known, the freedom in defining the LTB curvature function allows one to fit any
luminosity-distance-redshift relation, that is, any supernova sample. If one adds a prior on MB,
then the latter simply constrains the supernova absolute magnitude, and so local H0, without
changing the fit to supernova data. We start by discussing this case for the full Pantheon sample
and its low-redshift subset (0.023 < z < 0.15). From Figure 5.9 we see that the constraints on
∆L and routL from the full SN sample (solid black lines) are along the ∆L = 0 axis, not favoring
under- or overdensities. In particular, one has HL

0 ≈ Hout
0 ≈ HSH0ES

0 . In other words, there is no
local void nor H0 tension, as expected.

If one considers only low-z supernovae (dashed black lines), the situation is qualitatively the
same, albeit with weaker constraints. Note, however, that a local underdensity is somewhat
preferred: this is caused by fluctuations in the supernova apparent magnitudes at 0.1 ≲ z ≲ 0.15,
as evident from Figure 5.10. Because of this allegedly random fluctuation, there is a small shift
between HL

0 and Hout
0 , see Figure 5.9.

Next, we add CMB observations, which are fit by a lower background H0 as compared with
HSH0ES

0 . If we consider low-z supernovae (blue curves), then one can have all the supernovae
inside a local underdensity and is free to fit any ∆H = HL

0 − Hout
0 , see Figures 5.9 and 5.10.

Specifically, the data favors a local underdensity and the local value of the Hubble rate is in
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agreement with the local prior and the tension between CMB observations and the local prior
is solved. Note also that the local calibration of MB is not affected by CMB observations.
Table 5.6 shows the marginalized constraints for the relevant parameters, including HL

0 , HR
0 ,

and HM
0 . We also show the change in the observed CMB temperature ∆T ≡ T obs

0 − T out
0 ,

with T obs
0 being the CMB temperature measured by the observer and T out

0 = 2.7255 K the
background temperature.3 Indeed, analogous to other parameters, the observer at the center of
the inhomogeneity is expected to measure a different CMB temperature as compared with the
expected FLRW background temperature. This change in the temperature is strongly related
to the features of inhomogeneity. Within this scenario, one expects a ≈ 2 mK change in the
CMB temperature. It is worth pointing out that the fact that the analysis MB + low-z SNe also
suggests a similar underdensity is a coincidence: even without the fluctuation at 0.1 ≲ z ≲ 0.15
one would have obtained here a similar result.

3Note that we have neglected possible dynamical effects of radiation [245].
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Parameter CMB + loc. prior + low-z SNe Base Base + BAO + Hz Base + y-dist. Base + kSZ Base + All

Prior on MB

MB [mag] −19.271+0.032
−0.035 −19.384+0.014

−0.014 −19.389+0.011
−0.012 −19.386+0.014

−0.014 −19.384+0.014
−0.014 −19.391+0.012

−0.012

HM
0 [km/s/Mpc] 72.47+1.09

−1.10 69.06+0.53
−0.60 68.89+0.44

−0.46 69.01+0.58
−0.55 69.07+0.56

−0.54 68.77+0.40
−0.46

HL
0 [km/s/Mpc] 72.29+1.11

−1.12 69.06+0.54
−0.57 68.89+0.43

−0.46 69.00+0.57
−0.53 69.07+0.55

−0.54 68.78+0.39
−0.44

HR
0 [km/s/Mpc] 72.38+1.12

−1.14 69.06+0.52
−0.54 68.90+0.41

−0.44 69.00+0.54
−0.51 69.07+0.53

−0.50 68.79+0.37
−0.42

∆T [mK] 1.861+0.639
−0.918 −0.017+0.042

−0.041 −0.007+0.027
−0.045 −0.009+0.025

−0.048 −0.023+0.023
−0.027 −0.022+0.022

−0.025

Tension on H0 0.7 3.0 3.1 3.0 2.9 3.2

Tension on MB 0.7 3.5 3.7 3.6 3.5 3.8

χ2
min 2996.1 3808.7 3826.7 3807.3 3808.0 3828.2

Prior on H0

MB [mag] −19.258+0.047
−0.044 −19.386+0.015

−0.015 −19.391+0.012
−0.012 −19.389+0.015

−0.015 −19.389+0.014
−0.014 −19.392+0.011

−0.012

HM
0 [km/s/Mpc] 73.01+1.49

−1.53 69.09+0.56
−0.58 68.90+0.47

−0.49 68.98+0.59
−0.60 68.94+0.55

−0.51 68.83+0.43
−0.46

HL
0 [km/s/Mpc] 72.83+1.53

−1.49 69.08+0.57
−0.56 68.88+0.44

−0.47 68.97+0.55
−0.58 68.94+0.54

−0.51 68.83+0.41
−0.44

HR
0 [km/s/Mpc] 72.94+1.56

−1.51 69.08+0.54
−0.53 68.89+0.46

−0.46 68.98+0.54
−0.55 68.94+0.51

−0.48 68.84+0.39
−0.42

∆T [mK] 2.145+0.869
−1.043 0.004+0.021

−0.065 0.007+0.024
−0.061 0.001+0.056

−0.067 −0.017+0.026
−0.032 −0.015+0.020

−0.036

Tension on H0 0.3 2.9 3.1 3.0 3.0 3.2

Tension on MB 0.4 3.6 3.8 3.6 3.6 3.8

χ2
min 2998.3 3803.8 3826.8 3805.0 3803.0 3824.5

Table 5.6.: 68% confidence level intervals for the relevant parameters for the different combinations of data here analyzed, considering
both the prior on H0 and MB. We also report the χ2

min and the tensions on H0 and MB in sigma units.89
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Then, we consider the full Pantheon sample. In this case, the luminosity-distance-redshift
relation mapped by the supernovae does not allow for a sufficiently large and deep underdensity
that can solve the H0 tension: a sudden change in the luminosity distance is not allowed by the
supernovae at z > 0.15, see Figures 5.9 and 5.10. In particular, CMB data induce a lower value
of MB, at odds with the local prior, the so-called MB tension [H0 Paper III]. Also, in this case,
the change in the CMB temperature is much smaller, approximately ≈ 0.01 mK. Our results are
that a local void is not favored by the data and the H0 tension is not solved. Note, however, that
∆H = HL

0 −Hout
0 does prefer small but positive values, that is, and underdensity. We will come

back to this in Section 5.4.2.6.
Finally, we include other observables, considering all the combinations discussed in CP Paper I.

Table 5.6 presents the relevant results, including the corresponding χ2
min and the resulting tensions

on MB and H0, with respect to H0 Paper I and Reid et al. [134], respectively.

5.4.2.2. Curved background FLRW metric
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Figure 5.11.: Marginalized constraints on the effective mass density contrast ∆L, compensating
scale routL , temperature deviation ∆T and background curvature Ωk,0 at 68% and
95% confidence levels.

We also study the case of a non-flat FLRW background. Results for these analyses are shown
in Table 5.7 and Figure 5.11. From Table 5.7, we can see that the inclusion of the curvature
does not significantly change the overall results. In particular, the data favors a slightly open
universe with Ωk,0 ≈ 0.002, compatible with the flat case at 2σ. In particular, in Figure 5.11 we
do not observe a strong correlation between Ωk,0 and the other parameters, in particular ∆T ,
which remains constrained around zero.

Finally, Figure 5.12 shows the different values obtained for HL
0 and MB for our different

analyses, both considering a prior on MB and H0. For the sake of the comparison, we have
also included the results coming from analyses of the ΛCDM model. We can see how the ΛLTB
results follow the ones relative to the ΛCDM model.

5.4.2.3. Model selection

We have seen how the Hubble tension is solved when only low-redshift supernovae are considered
but it is no longer solved when all supernovae are included. Here, we will quantify this statement
using a Bayesian model comparison between the ΛCDM and ΛLTB models. We perform model
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Parameter Base + BAO + Hz Base + All

Prior on MB (Prior on H0)

Ωk0 0.0024+0.0016
−0.0016 (0.0022+0.0017

−0.0017) 0.0024+0.0017
−0.0017 (0.0021+0.0018

−0.0017)

MB [mag] −19.372+0.016
−0.016 (−19.375+0.017

−0.017) −19.373+0.017
−0.015 (−19.377+0.018

−0.015 )

HM
0 [km/s/Mpc] 69.41+0.59

−0.61 (69.43+0.61
−0.65) 69.38+0.62

−0.55 (69.30+0.60
−0.57)

HL
0 [km/s/Mpc] 69.42+0.58

−0.59 (69.41+0.59
−0.62) 69.38+0.61

−0.53 (69.30+0.57
−0.56)

HR
0 [km/s/Mpc] 69.42+0.56

−0.58 (69.43+0.58
−0.61) 69.39+0.59

−0.52 (69.31+0.57
−0.55)

∆T [mK] −0.016+0.026
−0.039 (0.004+0.028

−0.060) −0.020+0.020
−0.032 (−0.014+0.016

−0.032)

Tension on H0 2.7 (2.7) 2.7 (2.8)

Tension on MB 3.2 (3.2) 3.2 (3.3)

χ2
min 3828.4 (3820.1) 3829.0 (3822.7)

Table 5.7.: As Table 5.6, but for a curved background, Ωk0 ̸= 0.

selection using the Bayes ratio. Since the ΛCDM model is nested in the ΛLTB model, we can
simplify the computation of the Bayes ratio by using the Savage-Dickey density ratio (SDRR)
[278]. This technique reduces the Bayes ratio to:

B01 =

∫
P(δ0, zB, θi)dθi
p(δ0)p(zB)

∣∣∣∣
δ0=0,zB=0

, (5.36)

with P being the posterior of the ΛLTB model, θi the ΛCDM background parameters, and p the
prior function. Although the SDRR can be safely applied to nested models, one should bear in
mind that Equation (5.36) assumes that priors are separable, i.e., p(δ0, zB, θi) = p(δ0)p(zB)p(θi).
Here, this assumption is fully satisfied since our analyses use wide flat priors over all parameters.4

Specifically, we impose zB ∈ [0, 0.5] and δ0 ∈ [−1, 1] such that the flat priors result in p(δ0) = 1/2
and p(zB) = 2. In Equation (5.36) it is B01 ∝ E0/E1, with 0 representing the nested model, in
our case the ΛCDM model, and 1 the more complex model, the ΛLTB model. We qualitatively
interpret the ratio B01 via the Jeffreys’ scale [279]. Specifically, we adopt the conservative version
discussed in Trotta [278].

We also use the Akaike information criterion (AIC):

AIC = χ2
min + 2k , (5.37)

with k being the number of free parameters. The relative differences ∆AIC ≡ AICΛLTB −
AICΛCDM are qualitatively interpreted using the calibrated Jeffreys’ scale.

Results are shown in Tables 5.8 and 5.9 for the flat and curved ΛCDM background, respectively.
Under the assumption of a flat background metric, we find a strong evidence, B01 = −12.5, in
favor of the ΛLTB model when the CMB + MB + low-z SNe data is considered. This is confirmed

4Except for HL
0 and MB , but the priors are still separable.
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Figure 5.12.: Constraints on HL
0 and MB at 95% confidence level for the cases here considered.

The gray area corresponds to the value of the Hubble constant at 68% and 95%
confidence level inferred from the CMB observations [233], while the pink areas cor-
respond to the H0 determination by SH0ES [134] and the corresponding calibration
of MB [H0 Paper I].

Criteria CMB + MB + low-z SNe CMB + H0 + low-z SNe CMB + MB + All CMB + H0 + All

χ2
ΛCDM 3014.3 3015.0 3830.0 3825.2

∆χ2 -18.2 -16.7 -1.8 -0.7

∆AIC -14.2 -12.7 2.2 3.3

lnB01 -12.5 -17.3 3.0 2.2

Table 5.8.: Results of the model selection analysis for the case of a flat background Universe
(∆χ2 = χ2

ΛLTB − χ2
ΛCDM).
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Criteria CMB + MB + All CMB + H0 + All

χ2
ΛCDM 3828.7 3824.9

∆χ2 0.4 -2.2

∆AIC 4.4 1.8

lnB01 2.2 2.4

Table 5.9.: Results of the model selection analysis for the case of a curved background Universe
(∆χ2 = χ2

ΛLTB − χ2
ΛCDM).

by the ∆AIC which shows no support for the ΛCDM model. On the other hand, the inclusion of
the full supernova dataset removes the preference for the ΛLTB model. The analysis relative to
the combination CMB + MB + All shows a moderate evidence for the ΛCDM model, B01 = 3.0,
and a substantial support to the same model, ∆AIC = 2.2. Similar results are obtained by
considering a prior on H0. Finally, as can be seen, from Table 5.9, the introduction of a non-
vanishing background curvature does not qualitatively change the results discussed above.

5.4.2.4. Anisotropies

As said earlier, we consider the observer at the center of a spherical structure, a scenario in
which observations are perturbed in a spherically symmetric way. As the universe is both radially
inhomogeneous and anisotropic, one may argue that an anisotropic perturbation of observations
should be considered. To this point, one may consider a more general metric such as the quasi-
spherical Szekeres model [280], which features a dipole inhomogeneity instead of a spherical one
[281], or simply displace the observer from the origin [108].

Our modeling, however, is justified a priori by the fact that we wish to understand if a
local underdensity can explain away the Hubble tension. Indeed, this calls for a 9% increase
in the local Hubble rate, which means that the observer must be within a deep underdensity of
contrast ≈ −0.5, see Eq. (5.34), with subdominant anisotropic corrections. The smaller axis of
an underdense ellipsoid grows indeed faster as compared to the longer ones, with the consequence
that voids become increasingly spherical as they evolve. If then the observer is misplaced from
the center of such a structure, they will develop a peculiar velocity with respect to the CMB of
approximately v = ∆H dobs, where ∆H ≃ 6 km/s/Mpc and dobs is the distance from the center
[194]. As the observed CMB dipole is v/c ≃ 1.2 × 10−3 [98], this means that dobs ≲ 60 Mpc,
which is small as compared to the size of the inhomogeneity (see Fig. 5.13): in the standard
model a source at z = 0.15, the maximum redshift considered in the local H0 determination by
SH0ES, is at a distance of ≈ 600 Mpc. We conclude that our modeling is adequate for testing the
local-void scenario. On the other hand, it is worth stressing that the local-void scenario fine-tunes
the position of the observer by ≈ (60/600)3 = 1/1000 chances. In other words, if successful, one
trades a one-in-a-million (5σ) inconsistency in data with a one-in-a-thousand fine-tuning.

5.4.2.5. Generalized curvature profile

As discussed in Section 4.3.5.1, the ΛLTB model has three arbitrary functions. We have set
two of them, m(r) and tBB(r), using a gauge choice and physical arguments. On the other
hand, our particular choice of k(r) is still arbitrary. Here, we study the impact, on the Hubble
tension problem, of such an assumption by performing an extra analysis that uses a generaliza-
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tion of Equation (4.28):

P3(x, α) =


1 for 0 ≤ x < α

1 − exp

[
1−α
x−α

(
x−α
1−α − 1

)3
]

for α ≤ x < 1

0 for 1 ≤ x

, (5.38)

where 0 < α < 1 is a new parameter that modifies the smoothness of the transition between the
inner and background regions. Sharper profiles are obtained when α approximates unity. Note
that our main analysis with Equation (4.28) can be recovered by setting α = 0.

Results are shown in Table 5.10, where, for the sake of comparison, we also report the results
relative to α = 0. The addition of the parameter α leads to an increase in the value of HL

0

by 0.64 km s−1 Mpc−1 as compared with the previous analysis with α = 0. This, along with
the increment on the error, reduces the Hubble tension to 2.7σ. The tension on MB decrease
to 3.2σ. In other words, we find a small improvement with respect to the analysis, but the
ΛLTB cannot fully explain the tension. The assumption of the generalized curvature profile of
Equation (5.38) reduces the χ2

min by 0.3 so that we obtain ∆AIC = 1.7 and B01 = 1.9 in favor of
the simplest model with α = 0. Namely, weak evidence in favor of the curvature profile given by
Equation (4.28) is found.

Parameter α free α = 0

MB −19.372+0.016
−0.016 −19.391+0.012

−0.012

HM
0 69.41+0.59

−0.61 68.77+0.40
−0.46

HL
0 69.42+0.58

−0.59 68.78+0.39
−0.44

HR
0 69.42+0.56

−0.58 68.79+0.37
−0.42

∆T [mK] −0.016+0.026
−0.039 −0.022+0.022

−0.025

Tension H0 2.7 3.2

Tension MB 3.2 3.8

χ2
min 3827.9 3828.2

Table 5.10.: 68% confidence level intervals for the relevant parameters. See Section 5.4.2.5 for
details.

5.4.2.6. Mapping the local structure of the Universe

While Occam’s razor favors the ΛLTB model with α = 0, the generalized curvature profile is
useful to map the local matter distribution. Figure 5.13 shows the rates of expansion H∥(r, t0)
and H⊥(r, t0) (right panel), the matter and mass density (top mid panel), and the deviations of
Ωm,0 and Ωk,0 from the ΛCDM background (bottom mid panel) as functions of the comoving
FLRW coordinate rout for the best fit of the analysis CMB + MB + All with Equation (5.38)
(solid lines). Local fluctuations in the matter density parameters were found by Colgáin et al.
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Figure 5.13.: Characterization of our local spacetime from the best fit to all data of the ΛLTB
analysis with the generalized profile with 0 < α < 1 (solid lines) and with α = 0
(dashed lines). The panel on the top shows the size routL and depth ∆L of the two
best-fit models as compared with the standard model expectation, which is quanti-
fied via the Copernican prior convolved with the CMB likelihood [see CP Paper I].
The panels in the left bottom show the matter and mass density contrasts (top) and
the deviations of Ωm,0 and Ωk,0 from the ΛCDM background (bottom) as functions
of the comoving FLRW coordinate rout. The dotted vertical lines mark the redshift
range 0.023 < z < 0.15 that is used to determine H0. The panel on the right bottom
shows the rates of expansion H∥(r, t0) and H⊥(r, t0) a function of rout. The purple
and gray areas correspond to constraints at 68% and 95% confidence level of the
Hubble constant as determined by the SH0ES [134] and Planck collaboration [233],
respectively. See Section 5.4.2.6 for details.
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[282] when analyzing supernova data. We also display the same quantities considering the best
fit of our main analysis with α = 0 (dashed lines). The best-fit values are

{α,∆L, r
out
L ,Ωout

m,0, H
out
0 }={0.28,−0.038, 330, 0.304, 68.3} (5.39)

for the case of the generalized profile of Equation (5.38), and

{∆L, r
out
L ,Ωout

m,0, H
out
0 } = {−0.013, 294, 0.302, 68.4} (5.40)

for the case with α = 0.
The left panel of Figure 5.13 shows size routL and depth ∆L of the two best-fit models as

compared with the standard model expectation, which is quantified via the Copernican prior
convolved with the CMB likelihood [CP Paper I]. We can see that the data prefers a shallow
void with ∆L ≈ −0.04 and routL ≈ 300 Mpc, which, interestingly, lies on the border of the 95%
credible region relative to the standard model expectation.

Even though the analysis including α allows us to map the local distribution of matter in a more
general way, the local structure of the Universe could be restricted using a yet more general profile,
such as an n-node spline function [226] or a data-driven technique, possibly including anisotropic
degrees of freedom. Indeed, while our modeling is adequate to test if a local underdensity can
explain away the Hubble tension, it may be important to consider anisotropies when modeling a
shallow structure such as the one depicted in Figure 5.13. This is also suggested by recent maps
of our cosmological neighborhood [283]. We leave this problem to the future.

5.4.3. Final considerations

In CP Paper II, we pursued a program to test one of the fundamental assumptions of modern
cosmology: the Copernican principle. In particular, we modeled the spacetime around us without
any prior on the parameters that describe the inhomogeneity, but rather let observations constrain
the local structure. Our analysis showed that current cosmological data can tightly constrain
radial deviations from the FLRW metric at almost the cosmic variance level. We also showed
that typical constraints on the ΛCDM parameters are not weakened if one drops the Copernican
hypothesis. Here, we aimed to quantify the impact of the Copernican principle on the Hubble
problem: can a non-Copernican structure explain away the Hubble tension?

In order to robustly answer this question, we put care into how to compute the Hubble constant
in an inhomogeneous universe, which we parametrize via the ΛLTB model—basically a radial
perturbation of an FLRW metric. We adopted three different definitions, which all give basically
similar results. Then, in order to quantitatively conclude if the extra geometrical degrees of
freedom of the ΛLTB model is favored by the data, we carried out Bayesian model selection
via both the Bayes factor and the Akaike information criterion. Finally, we considered both
a flat and a curved background FLRW model. Our results show that the ΛLTB model can
successfully explain away the H0 tension and is favored with respect to the ΛCDM model only
if one solely considers supernovae in the redshift range that is used to fit the Hubble constant,
that is, 0.023 < z < 0.15. If one considers all the SNe sample then the H0 tension is not solved
and the support for the ΛLTB model vanishes. We have also carried out an analysis that adopts
a more general curvature profile. We have found that the inclusion of a new parameter, that
sharpens or smooths the transition between the inner inhomogeneity and the background model,
does not provide a solution to the Hubble constant problem, only slightly increasing the local
expansion rate. Our results are in good agreement with previous studies and improve upon them
by considering a more thorough statistical analysis and a more comprehensive set of observations.
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Finally, we have used the generalized curvature profile to reconstruct our local spacetime. We
have found that the best fit to current cosmological data corresponds to a shallow void with
∆L ≈ −0.04 and routL ≈ 300 Mpc, which, interestingly, lies on the border of the 95% credible
region relative to the standard model expectation. A more generic reconstruction of the local
matter distribution of the Universe could be achieved using data-driven methods. We leave the
study of this topic for future research.

5.5. Future prospects: the beyond homogeneity and isotropy project

In this chapter, we have studied the role of cosmological observations in the issue of testing the
Copernican principle. Further, as mentioned earlier, the analyses presented here do correspond
to nothing more than the first steps to the development of inhomogeneous precision cosmology.
This is particularly noticeable if one notice that, on top of the already mentioned drawbacks of
our analysis, our description of the ΛLTB model, as well as the usage of cosmological observa-
tion, is limited to the background dynamics. Given that, currently, there is not a satisfactory
understanding of the evolution of the large-scale structure on an inhomogeneous background,
our analyses do not use perturbation level observables such as redshift space distortions or weak
lensing. Subsequently, a better understanding of the evolution of the large-scale structure is a
necessary step to place the foundations of the standard paradigm of modern cosmology on more
solid grounds.

As a first step, to a better understanding of the evolution of the large-scale structure on an
inhomogeneous background, we presented in BEHOMO Paper I the first suite of simulations for
the simplest possible early-FLRW cosmologies, i.e., the ΛLTB model. The BEHOMO Paper I
paper not only describes the numerical implementation used to produce ΛLTB simulations but
also carefully shows that our approach does accurately describe the semi-analytical solutions
provided by the vd2020 code, see Figure 5.14. Within our future prospects, we plan to use the
data products presented in BEHOMO Paper I to study the growth of perturbations at the linear
and nonlinear level, gravitational lensing, cluster abundances and proprieties, and many other
applications which we invite the scientific community to propose. Finally, we would like to stress
that the aims of the BEHOMO project are aligned with the objectives of this thesis — both
pursue the same grand goal: set up a suitable theoretical and empirical program to push the
boundaries of modern cosmology by studying beyond the assumption of large-scale homogeneity
and isotropy.
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Figure 5.14.: The first row shows the large-scale structure of Box 3 of BEHOMO Paper I at
z = 0 of the overdense (middle panel) and underdense (right panel) ΛLTB models
together with the corresponding ΛCDM model (left panel). The larger thin dashed
circle marks the boundary rB of the ΛLTB inhomogeneity and the smaller one the
compensating scale rL at which δ(t0, rL) = 0. The arrows show the velocity field.
One can see how the large-scale structure is identical outside the inhomogeneity,
but it is distorted by the inhomogeneous bulk flow inside the LTB spherically in-
homogeneity. The last three rows show the evolution of the density contrast, from
z = 3.7 to z = 0 as obtained from the simulation and the general relativistic solution
obtained as described in Section 4.3.5.2. The larger vertical line marks rB and the
smaller rL.
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CHAPTER 6.

Conclusions

The standard paradigm of modern cosmology relies on a series of fundamental assumptions
that simplify our understanding of the Universe. Thanks to these simplifications, which con-
tribute to building a suitable empirical and theoretical framework for the study of the cosmos,
cosmologists have made a splendid advance in the understanding of our Universe. By analyzing
cosmological data, we have been able not only to constrain cosmological parameters with un-
precedented precision but also to discriminate between several cosmological models. However,
the presence of not-yet resolved theoretical problems and the existence of cosmological tensions
could be a hint for physics beyond the standard paradigm; or a breakdown of the fundamental
assumptions of the standard paradigm of modern cosmology.

In this context, a crucial step toward improving our understanding of the Universe and firmly
establishing the foundations of the standard cosmological paradigm is to relax the fundamental
assumptions of modern cosmology. The cosmological community has already begun its journey
to promoting and studying physics beyond the standard paradigm and its central hypotheses.
Noticeable is the effort made to extend the boundaries of modern cosmology by using a theory
of gravity beyond GR and also using dark energy models different from a cosmological constant.
Despite this, and the fact that cosmologists have also explored other directions in terms of the
extension of the standard paradigm, the hypotheses that establish the symmetry of the Universe
have, on the other hand, been less explored. We refer to the Cosmological principle, and more
important for our discussion, the Copernican principle. Although we lack observational confirma-
tion that the Copernican principle holds on cosmological scales, cosmologists seem to have settled
on the hypothesis that we do not occupy a special place in the Universe and, consequently, we
are merely typical observers.

The results of this thesis constitute but the first steps toward a well-established analysis and
interpretation of cosmological and astrophysical data within the groundwork of non-Copernican
cosmologies. First, by using the latest cosmological data, we have tested the Copernican principle
by placing constraints on a spherically inhomogeneous generalization of the standard cosmological
model, the ΛLTB model. Later, using a similar approach, we focused on the study of the
capability that forthcoming surveys, such as SH0ES, Euclid, DESI, and LSST, will have to test
the Copernican principle. Finally, we address the question if the Hubble discrepancy could be
explained away by a local inhomogeneity.

Regarding our test of the Copernican principle, we found that, under the assumption of the
ΛLTB model, data can tightly constrain radial inhomogeneity around us. Our results also show
that since the typical constraints on the standard ΛCDM parameters are not weakened after
marginalizing over the local inhomogeneity parameters, relaxing the Copernican hypothesis does
not necessarily imply significantly worse constraints on the background parameters. The results
of this analysis positively demonstrate that the non-Copernican cosmologies can be used to
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meaningfully analyzed future and present data.
Additionally, our forecast analysis demonstrates that future surveys will improve the current

constraints on the Copernican principle by up to 40%. This improvement will be remarkable at
scales rB ≥ 190 Mpc, where the inclusion of future data will reduce the constrained area of the
space parameters to a factor of < 2 as compared with the area allowed by the Copernican prior.
Furthermore, we found that the usage of the data provided by next-generation surveys we will
allow us to detect inhomogeneous deviations of the FLRW metric, including Gpc-scale inhomo-
geneities of contrast −0.1. Finally, our forecast analysis also reveals that given the precision of
future surveys a detection of this kind would allow us to rule out the FLRW space-time (δ0 = 0
and zB = 0) by ≳ 3σ.

On the other hand, to robustly answer the question of whether or not a local void could explain
the Hubble discrepancy, we carefully compute the Hubble constant in an inhomogeneous ΛLTB
universe. Our results show that the ΛLTB model can successfully explain away the H0 tension
and is favored with respect to the ΛCDM model only if one solely considers the SNe in the Hubble
flow used to fit the Hubble constant, that is, 0.023 < z < 0.15. In contrast, if the whole set of SNe
is considered then the H0 tension is not solved by the ΛLTB model, and the support for the same
vanishes. In addition, our analysis using a generalized curvature profile shows that the inclusion
of a new parameter, that sharpens or smooths the transition between the inner inhomogeneity
and the background model, does not provide a solution to the Hubble constant problem, only
slightly increasing the local expansion rate. The same analysis also allows us to reconstruct our
local spacetime. We have found that the best fit to current cosmological data corresponds to a
shallow void with δL ≈ −0.04 and routL ≈ 300 Mpc, which, interestingly, lies on the border of the
95% credible region relative to the standard model expectation.

The results presented in this thesis are nothing but the first steps toward a robust and precise
implementation of cosmology beyond the assumption of the Copernican principle. One can
consider several routes to take the following steps toward broadening the boundaries of modern
cosmology. For instance, in analogy to the matter field, inhomogeneous degrees of freedom could
be considered in the radiation component of the Universe. This would not only allows us to
generalize the ΛCDM framework, but also assess the effects of an inhomogeneous recombination
on the Lithium problem. On the other hand, the arbitrariness introduced by the particular
choice of a curvature profile could be overcome by using parametric or data-driven methods in
the implementation of the model. This kind of analysis would useful to obtain a more generic
reconstruction of the local matter distribution of the Universe and, eventually, could be applied to
try to reconstruct the metric of the Universe from data. In addition, another generalization of the
analysis presented here could be attained by considering an off-center observer. The introduction
of anisotrpic degrees of freedom could be used to study the cosmic dipoles and possible detect
a violation to the standard framework of modern cosmology. Last but not least, pursuing the
development of perturbations theory in the inhomogeneous background is a crucial step toward
a better understanding of physics beyond the Copernican principle. The understanding of the
growth of matter perturbations in an inhomogeneous background would be helpful not only to
provide a theoretical framework need to use future data, e.g., Euclid weak lensing, but also achieve
a fully consistent treatment of observables as the kSZ effect and the y-Compton distortion effect.
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APPENDIX A.

The Cepheid calibration: demarginalization
technique

From a Bayesian point of view, the SH0ES implementation of the cosmic distance ladder can
be effectively summarized by the posterior

f(H0,MB|SNe) =
f(H0)f(MB)L(SNe|H0, q0,MB)

E , (A.1)

f(H0|SNe) =

∫
dMB f(H0,MB|SNe) , (A.2)

where the last line, posterior on H0, was obtained by marginalizing over MB. In the equations
above, f(H0) is an improper flat prior on H0, L is the likelihood, E is the evidence, and SNe
represents the standard candles in the range 0.023 ≤ z ≤ 0.15. Further, f(MB) is the informative
prior on the absolute magnitude of SNe and is the result of the complicated calibration of the
local supernovae via the cosmic distance ladder [see 284, for instance].

The likelihood is given by:

L(SNe|H0, q0,MB) = |2πΣ|−1/2e−
1
2
χ2(H0,q0,MB) , (A.3)

where the χ2 function is

χ2 = {mB,i −mt
B(zi)}Σ−1

ij {mB,j −mt
B(zj)} , (A.4)

Σ is the supernova covariance matrix, mB,i are the observed apparent magnitudes at the red-
shifts zi, and mt

B is the theoretical prediction according to Equation (3.6). Following the method-
ology of [284], we fix the nuisance parameters that control stretch and color corrections to
α = 0.14, β = 3.1, correct the apparent supernova magnitudes with hosts above and below
logMstellar ∼ 10 by 0.03 mag fainter and brighter, respectively, and include an intrinsic disper-
sion of σint = 0.1 mag together with a peculiar velocity error of 250 km/s.

Here, in order to get the calibration prior f(MB) we solve the integral equation obtained by
demanding that Equation (A.2) gives the constraint H0 = 73.5±1.4 km s−1 Mpc−1, the result of
the analysis using q0 = −0.55 and j0 = 1 [134]. Assuming a Gaussian distribution for MB with
mean M̄B and dispersion σM – which is also justified a posteriori by the fact that MB is tightly
constrained by data – it is possible to marginalize analytically the 2D posterior in Equation (A.2).
The result is that H0 is distributed according to a lognormal distribution with parameters:

µdm
ln =

ln 10

5

[
M̄B +

ln 10

5

(
σ2
M +

1

S0

)
− S1

S0

]
, (A.5)

σdm
ln =

ln 10

5

√
σ2
M +

1

S0
. (A.6)
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Figure A.1.: Reconstruction of the determination by Reid et al. [134], i.e., H0 = 73.5 ±
1.4 kms−1Mpc−1, using the calibration prior of Equation (A.11). Also shown is
a Gaussian with same mean and dispersion. It is evident that the deviation from
Gaussianity is negligible.

One can then match first and second moments of the lognormal distribution with H0 = 73.5 ±
1.4 kms−1Mpc−1 so that one has:

µRe19
ln ≃ 4.2971 , σRe19

ln ≃ 0.019046 , (A.7)

where we used equations the definition of the mean and variance of the lognormal distribution.
The calibration prior is then given by:

Mdm
B =

5

ln 10
µRe19
ln +

S1

S0
− ln 10

5

(
σ2
M +

1

S0

)
, (A.8)

σ2
Mdm

B
=

25

ln2 10
σ2Re19
ln − 1

S0
, (A.9)

where the S0 and S1 quantities are defined as

Wi = mB,i − m̃t
B(zi) ,

Vi = 1 ,

S0 = V · Σ−1 · V T ,

S1 = W · Σ−1 · V T . (A.10)

with m̃t
B(zi) ≡ mt

B −MB + 5 log10H0. Using the previous equations one obtains the calibration
prior f(MB):

Mdm
B = −19.2334 ± 0.0404 mag . (A.11)

The reconstructed lognormal distribution on H0 is very close to a Gaussian as shown in Figure A.1,
where the lognormal f(H0|SNe) is compared with a Gaussian, both with mean and dispersion as
given by Reid et al. [134], i.e., H0 = 73.5 ± 1.4 km s−1 Mpc−1.
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Impact of large scales inhomo
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Figure B.1.: Marginalized constraints on the effective density contrast, ∆L, and the compensat-
ing scale, routL , with/out low-ℓ Planck data. It is straightforward to note that the
inclusion of low-ℓ data has a negligible impact on the constraints of the ΛLTB pa-
rameters.

As discussed in Section 5.2.1, our analyses rely on the assumption that the ΛLTB model does
not change the late-time ISW effect compared to the ΛCDM model. Here, in order to test such
an assumption and also assess the impact of the low-ℓ data in our main results, we constrain the
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ΛLTB model without assuming low-ℓ Planck data. Figures B.1 and B.2 compare the constraints
when using both high- and low-ℓ Planck data with the more conservative case of only including
high-ℓ Planck data. We see that the impact on the parameters of the inhomogeneity is minor, see
Figure B.1, while the impact on the ΛCDM parameters is, as expected, strong, see Figure B.2.
In other words, in the present analysis, the low-ℓ Planck data are effective only for the ΛCDM
parameters. A more complete treatment requires the challenging computation of perturbations
in an inhomogeneous background.
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Figure B.2.: Marginalized constraints on the background parameters of the ΛCDM model
with/out low-ℓ Planck data. As expected, disregarding low-ℓ data largely impact
the ΛCDM-six parameters constraints, mainly, in those related to the early time
physics.
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APPENDIX C.

Re-scaling data sets

Covariance matrices are fundamental pieces of forecast analyses. However, their production
for forthcoming surveys is an open issue when non-standard cosmologies are considered

Consider a given dataset, with xi being the observed quantity, zi the corresponding redshift,
and Cij the covariance matrix. This dataset can be re-scaled to agree with a particular model
via the following steps:

1. We define Rij = Cij/xixj , a new matrix that contains the relative uncertainties and corre-
lations from the original covariance matrix.

2. We compute with the theoretical prediction of the new model the fiducial values at the
relevant redshifts, such that xfi ≡ xfid(zi).

3. Using the above defined quantities, we compute the new correlation matrix as C̃ij =
xfix

f
j Rij .

4. We then draw a random realization, x̃i, of the multivariate-normal distribution N (xfi, C̃ij).

Note that this method assumes that relative error and correlations are not changed by a non-
standard model. As discussed in this paper, the procedure above is also applied to re-scale
real data according to the fiducial models presented on Table 5.3; this ensures that all data are
consistently described by a particular fiducial model.
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stra, F. Hormuth, H. Israel, K. Jahnke, E. Keihanen, S. Kermiche, C. C. Kirkpatrick,
R. Kohley, B. Kubik, H. Kurki-Suonio, S. Ligori, P. B. Lilje, I. Lloro, D. Maino, E. Maio-
rano, O. Marggraf, N. Martinet, F. Marulli, R. Massey, E. Medinaceli, S. Mei, Y. Mellier,
B. Metcalf, J. J. Metge, G. Meylan, M. Moresco, L. Moscardini, E. Munari, R. C. Nichol,
S. Niemi, A. A. Nucita, C. Padilla, S. Paltani, F. Pasian, W. J. Percival, S. Pires, G. Polenta,
M. Poncet, L. Pozzetti, G. D. Racca, F. Raison, A. Renzi, J. Rhodes, E. Romelli, M. Ron-
carelli, E. Rossetti, R. Saglia, P. Schneider, V. Scottez, A. Secroun, G. Sirri, L. Stanco, J.-L.
Starck, F. Sureau, P. Tallada-Cresp\’\i, D. Tavagnacco, A. N. Taylor, M. Tenti, I. Tereno,
R. Toledo-Moreo, F. Torradeflot, L. Valenziano, T. Vassallo, G. A. Verdoes Kleijn, M. Viel,
Y. Wang, A. Zacchei, J. Zoubian, and E. Zucca. Euclid preparation - VII. Forecast valida-
tion for Euclid cosmological probes. , 642:A191, 2020. doi: 10.1051/0004-6361/202038071.
URL https://doi.org/10.1051/0004-6361/202038071. Cited on pages 74 and 76.

[251] Joachim Harnois-Deraps, Benjamin Giblin, and Benjamin Joachimi. Cosmic Shear Co-
variance Matrix in wCDM: Cosmology Matters. Astron. Astrophys., 631:A160, 2019. doi:
10.1051/0004-6361/201935912. Cited on page 75.

[252] O. Friedrich et al. Dark Energy Survey year 3 results: covariance modelling and its impact
on parameter estimation and quality of fit. Mon. Not. Roy. Astron. Soc., 508(3):3125–3165,
2021. doi: 10.1093/mnras/stab2384. Cited on page 75.

124

https://doi.org/10.1051/0004-6361/202038071


Bibliography

[253] Tassia Ferreira and Valerio Marra. A fast and reliable method for the comparison of
covariance matrices. art. arXiv:2107.04211, July 2021. Cited on page 75.

[254] R. Laureijs et al. Euclid Definition Study Report. arXiv e-prints, art. arXiv:1110.3193,
October 2011. Cited on page 75.

[255] P. Astier et al. Extending the supernova Hubble diagram to z ∼ 1.5 with the Euclid space
mission. Astron. Astrophys., 572:A80, 2014. doi: 10.1051/0004-6361/201423551. Cited on
page 75.
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