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Resumo

A computação em nuvem tornou-se muito popular como plataforma computa-
cional, fazendo parte do cotidiano das pessoas. Para fornecer o poder de super-
computação exigido pela nuvem, a rede deve desempenhar um papel crucial ao
conectar centenas de milhares de máquinas nos data centers. No entanto, com o
surgimento de um novo conjunto maciço de aplicativos intensivos e nativos da nuvem
(por exemplo, 5G, robótica em nuvem, aprendizado profundo, etc.) combinado com a
virtualização de funções de rede (NFV), uma pressão significativa foi colocada sobre
a capacidade de processamento das CPUs dos servidores, exigindo ainda mais alta
performance e transformando a rede em um gargalo.

Normalmente, a interface de rede (NIC) é usada para conectar servidores à rede.
No entanto, as interface de rede inteligentes (SmartNICs) estão se tornando um
método cada vez mais popular de descarregar tarefas intensivas de processamento
de pacotes dos servidores, liberando ciclos da CPU e impulsionando o desempenho
de aplicativos.

O desafio chave para o uso de uma SmartNIC é como fazer uso eficiente desses
recursos de computação heterogêneos na rede, pois há uma lacuna significativa
entre o aplicativo e os recursos de computação dos dispositivos programáveis. Em
primeiro lugar, este dispositivo carece de modelos genéricos de programação ou
abstrações, sendo geralmente programado usando primitivas de baixo nível ou APIs
proprietárias. Em segundo lugar, o desenvolvedor de rede precisa lidar com a
complexidade interna dos recursos de hardware, bem como gerenciar o equilíbrio
nas cargas de trabalho de descarregamento, tentando descobrir o balanço entre
sobrecargas adicionais e benefícios do descarregamento. É necessário descobrir
como co-projetar a lógica do aplicativo entre o hardware de rede programável e os
servidores dentro do paradigma de computação de borda.

Esta tese apresenta um novo arcabouço para prototipagem e implantação de
aplicativos em rede. Ele é estruturado em um conjunto de componentes que depen-
dem de i) decomposição funcional da aplicação; ii) identificação dos blocos lógicos;
iii) agregação de funções sobrepostas mescladas e mapeadas em funcionalidades de
rede em linguagem P4; iv) interceptar, interagir e encaminhar com estruturas de
dados para balancear o descarregamento de fluxos de rede.

A fim de demonstrar o princípio de co-design em várias aplicações, funções
de rede virtual (VNFs) são criadas, e alguns de seus elementos funcionalmente
decompostos são implantados como pequenas funções de rede incorporadas (eNFs)
em processadores de rede em diversos casos de uso, revisando os componentes
do arcabouço levantados anteriormente: decompondo funções de rede (i, ii, iii) e
unificando componentes para se encaixarem em um conjunto de VNFs/eNFs, exami-
nando latência, taxa de transferência e uso de vCPU em relação à sua contraparte
implementada em software; interceptando e interagindo com robótica em nuvem
(iv), abordando preocupações de segurança ao usar planos de dados programáveis;
evoluindo para funções de rede seguras executadas em computação em rede (i, ii,



iii, iv), verificando o overhead adicionado por elas; e modificando um mecanismo
de escalonador upstream em PON (iv), fornecendo requisitos de baixa latência a
aplicativos.

Palavras-chave: Computação em Rede, Co-design de hardware/software, Virtual-
ização de Funções de Rede, Computação de Borda, Paradigma 5G.



Abstract
Cloud computing has become very popular as a computation platform, being

part of people’s daily life. In order to deliver the cloud-required super-computing
power, the network must play a crucial role by connecting hundreds of thousands
of machines within data centres. However, with the rise of a new massive set of
cloud-native and intensive applications (e.g. 5G, cloud robotics, deep learning,
etc) combined with network function virtualisation (NFV), a significant strain has
been placed on the processing capacity of server CPUs, demanding even higher
performance and turning the network into a bottleneck.

Typically, the network interface card (NIC) has been used to connect servers to
the network. Although, smart network interface cards (SmartNICs) are becoming
an increasingly popular method of offloading intensive packet processing tasks from
servers, thus freeing CPU cycles to drive application performance.

The critical challenge towards using a SmartNIC is how to make efficient use
of these in-network heterogeneous computing resources, as there is a significant
gap between application software and the computing capabilities of programmable
devices. First, this device lacks generic programming models or abstractions, being
usually programmed using low-level primitives or proprietary APIs. Second, the
network developer needs to deal with the internal complexity of hardware resources,
as well as manage the balance on offloading workloads, trying to find out the trade-
off between additional overheads and offloading benefits. It is needed to figure out
how to co-design application logic between programmable network hardware and
end-host servers within the edge computing paradigm.

This thesis presents a novel framework for prototyping and deploying in-network
applications. The framework is structured into a set of components that rely on
i) application functional decomposition; ii) identification of logic blocks; iii) aggre-
gation of overlapped functions merged and mapped on network functionalities in
P4 language; iv) intercepting, interacting and forwarding with data structures for
balancing the offloading of network flows.

In order to demonstrate the principle of co-designing on diverse applications,
Virtual Network Functions (VNFs) are created, and some of their functionally de-
composed elements are deployed as small embedded Network Functions (eNFs) on
in-network processors in sorted use cases, reviewing the framework components
raised previously: decomposing network functions (i, ii, iii) and unifying components
to fit into a set of VNFs/eNFs, examining latency, throughput and vCPU usage
against their software implementation counterpart; intercepting and interacting
with cloud robotics (iv), raising security concerns when using programmable data
planes; evolving to security network functions running at in-network computing (i,
ii, iii, iv), checking the overhead added by them; and modifying a PON upstream
scheduler mechanism (iv), providing low latency requirements for applications.

Keywords: In-Network Computing, Hardware/Software Co-design, Network Func-
tions Virtualisation, Edge computing, 5G paradigm.
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Chapter 1

Introduction

Recent years have seen a rapid increase in network interface bandwidth for data
centre (DC) servers [DC 2015, Cloud 2016], outpacing the CPU computing power.
For example, since 2009, Azure [Firestone 2017] has seen a 50x improvement in
the network bandwidth in contrast with modest increases in CPU performance.
Consequently, data-centre operators have to burn more CPU cores to fully utilise
the network bandwidth, leaving fewer computing resources for tenant workload
execution, increasing the cost of running cloud services, and adding latency and
variability to network performance.

Edge computing has the potential to alleviate these constraints
[Panicucci et al. 2020], aiming to bring cloud resources and services at the
border of the network, as an intermediate layer between the end users and cloud
data centres. By approximating the user to the cloud, network-related issues (e.g.
packet loss, security and high latency) can be fixed for new applications, such
as cloud robotics [Mello et al. 2019, Xie et al. 2019] and passive optical networks
(PON) [Das et al. 2020].

Nevertheless, edge computing is an expensive architecture solution when com-
pared to the cloud and may not be able to tackle a large set of latency-sensitive and
critical applications in production environments. Thus, there is room for exploiting
this demand for computational resources on the edge, by using state-of-the-art data
plane programmability for co-design applications and hardware, reducing host CPU
demand and improving latency requirements.

In-Network Computing (INC) is a promising field that aims at using the capa-
bilities of programmable network devices, such as programmable switch ASICs
and programmable network interface cards (aka SmartNICs), offloading comput-
ing from commodity servers to the programmable data plane [Rüth et al. 2018,
Nour et al. 2020].

Emerging in-networking processor-based smart network interface cards
(SmartNICs) (e.g., Netronome Agilio [NETRONOME 2019], Cavium LiquidIO
[CAVIUM 2019], Mellanox BlueField [MELLANOX 2019]) offer a solution to offload
the network traffic from traditional commodity servers (x86-64), providing a software
development kit (SDK) for customising the data plane by use of domain-specific
programming languages (e.g., P4, eBPF, etc.), expressing how packets should be
processed into these programmable devices.

Figure 1.1 shows the architecture options for INC, highlighting the three main
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architectural targets when prototyping (in-)network applications. In terms of for-
warding performance and computational resources, the main characteristics are the
following:

Server (x64)
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Figure 1.1: Architectural options to In-Network Computing for packets processing.

i. Traditional commodity servers, with plenty of CPU and memory resources
for processing network packets, but with restricted packet forwarding perfor-
mance;

ii. Programmable switch ASIC, with multiple network physical ports and high-
performance for forwarding packets, but with limited system resources, i.e.,
memory, CPU;

iii. SmartNIC (or FPGA-based) programmable device, placed close to the
commodity servers, which can boost up the offloading due to the shortest path
to the software layer, however with the same limited computational resources
as presented in programmable switch ASIC.

Traditionally, these three main architectures can be combined in order to achieve
the aimed performance by offloading specific network function operations to meet
the requirements of a large variety of applications. For example, in the Network
Function Virtualisation (NFV) paradigm, a direct benefit of employing a SmartNIC-
based solution for edge computing is its physical placement in relation to the
commodity servers, shorting the pathway between virtual network functions (VNF)
implemented in software and their potential pairs implemented into the hardware
data plane.

On that account, these INC capabilities allow commodity servers to offload
limited amounts of simple but general computations onto the programmable NIC
while keeping the support of complex application logic on the hosts. By offloading
lightweight and frequently invoked operations from the host to its own programmable
network device, we can accelerate cloud applications on edge, while reducing the
host CPU load without sacrificing the program generality.



12

However, this intuitive scenario is not trivial to be implemented considering that
the following points should be addressed:

• a compact eNF (embedded Network Function) version from a traditional VNF
(Virtual Network Function) or application using a domain-specific programming
language that fits into a resource-limited programmable NIC;

• a proper mechanism for exchanging network traffic between software and
hardware levels;

• the correct balance of network traffic that can be offloaded without degrading
the system’s performance.

Therefore, the first key issue to be addressed is how to fit a conventional VNF
inside a resource-limited programmable network device. In this context, func-
tional decomposition is the process of taking a complex process and breaking it
down into its smaller, simpler parts [Rahman Chowdhury et al. 2019]. Consequently,
a modular functional decomposition can be used to dissect a VNF, enabling the
reconstruction of it as an eNF employing the P4 language.

The next issue to be handled should be the communication between eNF and
its VNF counterpart, as each is running in a different environment separated by
PCI-e bus and system layers. As the network traffic data in the edge mainly flows
from the NIC to the host itself (in contrast with DC networks, where VM traffic
flows inside the host should be predominant), the rational choice is to create an
interception mechanism inside the SmartNIC, which will be able to steer traffic
between hardware and software levels, while following the application requirements.

Furthermore, merging the capabilities of software and hardware is another stone
in the design and implementation process, as they have different constraints and
resources. Hence, the co-design technique aims to incorporate hardware/software
and exploit the synergy between the two, satisfying system load constraints, i.e., the
correct proportion of offloading without overwhelming the overall system, including
host CPU and SmartNIC hardware.

1.1 Research Question

To tackle the aforementioned problems, this thesis aims to answer the following
question:

• How to exploit co-design, i.e., between programmable network devices and
end-host processing, opened by SmartNICs to accommodate diverse logic and
their requirements considering different applications, including malicious ones,
within the edge computing paradigm?

The co-design of applications presents an enormous challenge, as well as an
opportunity, for network developers. By prototyping software-based network appli-
cations regarding the possibility of acceleration by offloading tasks to the data plane,
developers can further explore the hardware capabilities in coexistence with their
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own applications, considering an offloading based on application/hardware require-
ments/constraints, leveraging edge computing by tackling concurrent resources
within in-network computing.

Moreover, the co-design could be exploited (as we will reveal in cloud robotics
security applications), creating a “tampered network device” which can compromise
the network premises of a robot fleet by using malicious techniques for flooding
or modifying the network traffic while flowing transparently through a customised
data plane. Envisioning such a possibility, we can draw up a cryptographic network
function embedded into the SmartNIC, ensuring data integrity by processing traffic
data, and also saving CPU resources by offloading workload to the NIC.

1.2 Hypotheses

In this thesis, we foresee the following hypotheses to tackle the described problem:

• Hypothesis H1: The suitable modular functional decomposition (identification
and aggregation) is a key principle in matching the processing capacity of
in-network computing, provided by the P4 language, to the specialised logic of
applications.

– Justification H1: Since P4 language was not conceived with a modular
functional decomposition method, porting oversized applications originally
designed for the x86-64 architecture – which relies on vast computational
resources (memory and CPU) – to a programmable network device can
demand a lot of effort from the network developers. Functional decom-
position urges simplifying this further migration or integration between
applications and programmable data planes, easing the portability mainly
by identifying the small functional parts of applications and giving a bird’s-
eye view of the network functions.

• Hypothesis H2: The lack of an architectural component for intercepting
and interacting with raw packets is preventing innovative applications for
in-network computing, other than the regular offloading of network flows onto
SmartNICs.

– Justification H2: New complex and critical applications which can take
advantage of edge computing, i.e. cloud robotics and passive optical net-
works, bring specific security and low latency requirements, as a minimum
interference may disrupt the robot fleet operation or latency-sensitive ap-
plications. A programmable network device is a powerful tool, enabling the
customisation of the packet processing/forwarding at a high-granularity
level, but at the same time, raises concerns like: “what if that device
has tampered”? A malicious attack could be delivered by a jeopardised
device, compromising network security. By processing packets beyond the
traditional network layers, or raw packet data, in-network computing can
intercept/interact with the application layer, manoeuvring the end hosts
according to its logic. At the same time, this characteristic also could be
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used for leveraging network applications and building embedded network
functions that can be able to interact with the network traffic data without
the modification of their software/protocol counterpart.

1.3 Objectives

To the best of our knowledge, we have not seen a state-of-art framework that covers
this level of co-design and interaction between hardware and software applications
using proper network programmable hardware and a domain-specific programming
language. In order to tackle the defined research question and test the aforemen-
tioned hypothesis, this work has the following general objectives:

• To propose a framework that relies on modular functional decomposition (iden-
tification and aggregation) for flexible embedding network applications with
their functionalities developed in P4 language and deployed into SmartNICs.
The principle of co-designing will be demonstrated by an NFV use case.

• To introduce an architectural component in the framework for intercepting
and/or interacting with raw packets, tackling security and performance aspects
when using a programmable data plane.

• To demonstrate the framework by addressing diverse applications, such as
cloud robotics applications, cryptographic hash functions and dynamic band-
width allocation (DBA) in passive optical networks (PON).

1.4 Contributions

The proposal of this document was idealised through discussions and studies carried
out in the LabNERDS-UFES and CONNECT Centre - Trinity College Dublin. Fig-
ure 1.2 gives an overview of how the publications are mapped to the different areas
of interest in this thesis. The following contributions bring some clarification about
the author’s collaboration on each work, in reverse chronological order.

Publication A: D.R. Mafioletti, M. Martinello, M. R. N. Ribeiro, M. Ruffini, F.
Slyne, “To Embed or Not to Embed SHA in Programmable Network Interface
Cards”, in 18th International Conference on Network and Service Management
(CNSM), 2022.

Publication B: D.R. Mafioletti, F. Slyne, R. Giller, M. O’Hanlon, D. Coyle, B. Ryan,
M. Ruffini, “Demonstration of a Low Latency Bandwidth Allocation Mecha-
nism for Mission Critical Applications in Virtual PONs With P4 Programmable
Hardware”, in 2022 Optical Fiber Communications Conference and Exhibition
(OFC), 2022, pp. 1-3.

Publication C: D.R. Mafioletti, R. C. de Mello, M. Ruffini, V. Frascolla, M. Mar-
tinello, M. R. N. Ribeiro, “Programmable Data Planes as the Next Frontier
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for Networked Robotics Security: A ROS Use Case”, in 2021 1st Joint Inter-
national Workshop on Network Programmability and Automation, 2021, doi:
10.23919/CNSM52442.2021.9615504.

Publication D: D. R. Mafioletti, F. Slyne, R. Giller, M. O’Hanlon, B. Ryan, and M.
Ruffini, “A Novel low-latency DBA for Virtualised PON implemented through
P4 In-Network Processing”, in Optical Fiber Communication Conference (OFC)
2021, P. Dong, J. Kani, C. Xie, R. Casellas, C. Cole, and M. Li, eds., OSA
Technical Digest (Optical Society of America, 2021), paper F4I.2, doi: 10.1364/
OFC.2021.F4I.2.

Publication E: D. R. Mafioletti, C. K. Dominicini, M. Martinello, M. R. N. Ribeiro
and R. d. S. Villaça, “PIaFFE: A Place-as-you-go In-network Framework for Flex-
ible Embedding of VNFs”, ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9149240.

Programmable
Data Plane

Framework for
Embedding

Passive Optical
Networks

Cloud and Edge 
Network

Publication [B, D]

Publication [E]

Publication [A, C]

Publication [F, G, H, I, J]

Figure 1.2: Correlation between the main topics and publications of the thesis with
the intersection between them.

The following publications, listed in reverse chronological order, were developed
during the PhD and are not directly linked to this proposal. However, they helped to
gain important knowledge in the matter and, therefore, should also be considered
relevant contributions.

Publication F: R. S. Guimaraes, C. Dominicini, V.M.G. Martínez, B. M. Xavier, D. R.
Mafioletti et al., “M-PolKA: Multipath Polynomial Key-based Source Routing
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for Reliable Communications”, in IEEE Transactions on Network and Service
Management, doi: 10.1109/TNSM.2022.3160875.

Publication G: C. Dominicini, R. S. Guimaraes, D. R. Mafioletti et al., “Deploying
PolKA Source Routing in P4 Switches : (Invited Paper)”, 2021 International
Conference on Optical Network Design and Modeling (ONDM), 2021, pp. 1-3,
doi: 10.23919/ONDM51796.2021.9492363.

Publication H: R. S. Guimaraes, V. M. G. Martínez, R. C. Mello, D. R. Mafio-
letti, M. Martinello and M. R. N. Ribeiro, “An SDN-NFV Orchestration for
Reliable and Low Latency Mobility in Off-the-Shelf WiFi”, ICC 2020 - 2020
IEEE International Conference on Communications (ICC), 2020, pp. 1-6, doi:
10.1109/ICC40277.2020.9148900.

Publication I: C. Dominicini, D. R. Mafioletti et al., “PolKA: Polynomial Key-
based Architecture for Source Routing in Network Fabrics”, 2020 6th IEEE
Conference on Network Softwarization (NetSoft), 2020, pp. 326-334, doi:
10.1109/NetSoft48620.2020.9165501.

Publication J: R. Valentim, C. K. Dominicini, R. S Villaça, M. Martinello, M. Ribeiro,
D. R. Mafioletti, “RDNA Balance: Balanceamento de Carga por Isolamento de
Fluxos Elefante em Data Centers com Roteamento na Origem”, in Anais do
XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos,
2019, pp. 1000-1013.

1.5 Text Structure

The remainder of this Doctoral Thesis is divided as follows:
Chapter 2 presents in more detail the comparison with related works. It covers

crucial concepts related to In-Network Computing, Network Function Virtualisa-
tion, and cloud and edge computing, including Cloud Robotics and Passive Optical
Networks, which will be explored during the Thesis.

Chapter 3 gives the building blocks to construct a framework for embedding
applications into a programmable network card, positioning it into the state of the
art of existing network designs and computer architecture for the development and
deployment of applications.

Chapter 4 presents the design and implementation of our framework proposal to
support the implementation of virtual network function on a programmable network
interface card, offloading the network packet processing and sharing the resources
between hardware and software levels using an offloading balancer.

Chapter 5 shows a different perspective of the proposal, now tackling a more
specific use-case: a cloud/edge infrastructure allied with cloud robotics applications
based on Robotic Operating System (ROS), depicting the security concerns over a
programmable data plane and the implications on the local network infrastructure
and discussing the possibilities to overhaul this weakness.

Chapter 6 shows the feasibility of using an embedded application constructed
using the PIaFFE framework to run a secure hash algorithm onto a programmable
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network device, featuring new possibilities when offloading complex applications, in
order to assure data security and reliability onto a limited-resources data plane.

Chapter 7 leads to migration from specific network functions (e.g. firewall,
NAT, etc.) and applications (e.g. cloud robotics and cryptography) to more generic
applications but with a specific purpose, such as a high-level dynamic bandwidth
allocation (DBA) algorithm on Passive Optical Networks (PON), although keeping
the essence of sharing resources between hardware and software. This chapter
also outset the first attempt to deliver the control of the network latency to an
embedded network function based on instructions made available inside the own
network frame/packet.

Chapter 8 draws a conclusion for the Doctoral Thesis discussing the next steps
and future works.



Chapter 2

Foundations and State-of-the-Art

This chapter describes the position of this thesis with related works in the area of
cloud and edge domains and programmable network hardware, as well as towards
more specific domains, such as applications running into the data plane, tackling
security concerns on cloud robotics, as well as possible solutions using cryptographic
functions, and also improving low-latency requirements for passive optical networks
(PON).

Firstly, Subsection 2.1.1 and 2.1.2 position the capabilities of the cloud and edge
domains and NFV, showing the limitations of the current scenario and exposing what
we envision to address these limitations.

Furthermore, in 2.1.1.2 and 2.1.2.1 rely on specific application domains, starting
by describing the cloud robotics network paradigm, showing the points that we
can take advantage of when using a high-level abstraction for exploring the lack
of security on a programmable data plane. In this same direction, we propose the
offloading of cryptographic hash functions for helping to assure the security and
reliability of data, demonstrating that even a small-resource device can afford such
complex applications using the proposed techniques and methods.

Moreover, in 2.1.1.1 we expose the current limitations of actual architecture,
advancing to the constraints of using programmable network hardware on Passive
Optical Networks (PON), in order to improve the scheduling mechanism on upstream
data, delivering low-latency traffic for the required application/service through co-
processing PON frames inside the data plane.

To finish this chapter, in Subsection 2.1.3 we will discuss programmable network
devices – which are one of the enablers of the proposal – and existing frameworks
for programming and/or embedding the programmable data plane in Section 2.2,
comparing them with the current proposal and showing the points on how the
proposal differs from other existing works in 2.3.

2.1 Background

2.1.1 Cloud and edge computing

It is well known that cloud computing has been a promising architecture for next-
generation networks once provides high flexibility resource virtualisation (e.g.,
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servers with either CPU or GPU, networks, storage, and services) with cost-efficiency
and centralised management [Le et al. 2016]. The cloud computing service models
are categorised as Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). They offer virtual resources (compute, storage, and
network), software and development platforms (provided by the cloud infrastructure),
and Internet-based applications (hosted on the cloud), respectively [Le et al. 2016].

As mentioned by [Nencioni et al. 2018], the possible future research challenges
on softwarisation technologies such as NFV and SDN are the main enablers to
develop novel solutions on top of new network generation (e.g., 5G network). The
success of network virtualisation heavily relies on orchestrating end-controlling
capabilities, which optimises the capital expenditure and operating costs (CAPEX
and OPEX). In addition to the increasing softwarisation of infrastructure, content
formats and production and consumption patterns are continuously changing as
users demand improved Quality of Experience (QoE).

This trend requires adaptation processes that respond to aspects such as per-
sonalisation, localisation, interactivity, and mobility. Therefore, edge computing
brings a new paradigm which shares computing, storage, and bandwidth resources
as closely as possible with mobile devices or sensors. At the edge, the cloud services
can deliver highly responsive time for local services [Satyanarayanan 2017]. The
nodes at the edge DCs may perform many computing tasks, such as data processing,
caching, service delivery, and privacy protection.

Figure 2.1: Edge computing paradigm. Source [Shi and Dustdar 2016].

ETSI defines the term Multi-Access Edge Computing (MEC) as a set of tech-
nologies that offers application developers and content providers cloud-computing
capabilities and an IT service environment at the edge of the network, which extends
the concept of edge cloud and can be used to assist C-RAN meeting the above 5G
requirements. This environment is characterised by ultra-low latency and high band-
width, as well as real-time access to radio network information that can be leveraged
by applications [Sabella et al. 2019]. Those terms are viewed as necessary to enable
specific use case classes defined, for instance, in 5G networks.
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MEC brings highly efficient cloud computing and storage capabilities at the edge
and can be used by a RAN to offer low-latency and high-bandwidth data processing
for latency-critical applications. It can also offer content caching near end users in
order to alleviate the overall network load on data transmission through caching
and forwarding content at the edge of the network [Das and Ruffini 2020].

2.1.1.1 Cloud Radio Access Networks with Passive Optical Networks

Passive optical networks (PON) are considered one of the prominent access network
solutions due to the high capacity and coverage they can provide using a point-to-
multipoint scheme that enables a single optical fibre to serve multiple premises
using passive components. A typical PON architecture is constituted of a centralised
Optical Line Terminator (OLT) and a number of Optical Network Units (ONUs)
located at the premises, as shown in Figure 2.2.

Splitter

ONU1

ONU2

ONU3

ONU4

ONU5

ONU6

OLT

Internet

Figure 2.2: A typical PON architecture.

Meanwhile, the high Capital expenditure (CAPEX) required for PON deployment
has been an obstacle to large-scale adoption, especially in rural areas with a lower
number of users and bandwidth demand. To this point, multiple solutions have
been proposed in the past to improve the business case of access fibre deployments,
stemming from changes in the overall network architecture to the development of
cost-effective transceivers for multi-wavelength PONs [Cheng et al. 2014].

A complementary approach to economic sustainability is to increase the revenue
generated by the PON by increasing the number and types of services that can be
supported, for example, including mobile back-haul [Alvarez et al. 2016] and front-
haul [Chanclou et al. 2013], in addition to the enterprise and residential applications.
Therefore, a scenario in which all the aforementioned services can coexist and
operate on the same PON infrastructure is pivotal in increasing the utilisation of the
infrastructure, thus generating new revenue streams.

PON uses a dynamic bandwidth allocation (DBA) mechanism (Figure 2.3) to
prevent collisions between simultaneous upstream transmissions of multiple ONUs.
DBA methods have surfaced with strategies to share limited resources in optical
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access networks with a growing number of users. Over the years, these networks
have also vastly improved by increasing their bandwidth. In addition, Quality of
Service (QoS) parameters are incorporated into the bandwidth-sharing procedure.

Figure 2.3: PON DBA abstraction [ITU-T 2014].

Cloud Radio Access Networks (C-RANs), along with functional split processing,
are regarded as the most promising 5G radio technologies that support these
requirements. In the 5G New Radio (5G-NR) architecture of C-RAN, the baseband
processing functions are split into three parts: the central unit (CU), distributed unit
(DU), and a remote unit (RU) [Das et al. 2020], as depicted by Figure 2.4.

Figure 2.4: CU/DU-based C-RAN architecture [Ahmadi 2019].

As 5G networks will bring progressive densification of mobile cells, the cost of
the optical transport network will soar to unsustainable levels, if cells are connected
through dedicated point-to-point fibre. In addition, point-to-point solutions provide
little flexibility in redirecting RUs connectivity between edge cloud nodes during
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migration events. For this reason, PON is being considered as a possible cost-
effective solution to support optical Mobile Fronthaul (MFH) transport, as it can
use an already deployed Optical Distribution Network (ODN) to provide fronthaul
transport for RUs along with serving residential users.

However, achieving low latency for using C-RAN and 5G is a major challenge
for TDM-PONs in the upstream direction, because of the Time Division Multiple
Access (TDMA) nature of the operation, which employs the DBA algorithm to provide
the time slots for transmitting to each ONU on the system. Network function
virtualisation could be used to help overcome this limitation, but the extra layers
added by the software layers (e.g. OS, hypervisor) add more latency to the process,
capping the benefits early noted. In-Network Computing must be an enabler for
low-latency applications since the offloading of virtual network functions running
inside a hypervisor onto a network data plane will cut these extra layers added
before by the NFV paradigm.

2.1.1.2 Cloud Robotics

Robotic systems have brought significant socioeconomic impacts to human lives over
the past few decades. For example, industrial robots have been widely deployed in
factories to execute various tasks, from repetitive ones to dangerous tasks. These
programmed robots have been very successful in industrial applications due to
their high endurance, speed, and precision in structured factory environments.
To extend the functional range of these robots or to deploy them in unstructured
environments, robotic technologies are integrated with network technologies to
foster the emergence of networked robotics.

A networked robotic system refers to a group of robotic devices that are con-
nected via a wired and/or wireless communication network. Networked robotics
applications can be classified as either teleoperated robots or multi-robot systems.
In the former case, a human operator controls or manipulates a robot at a distance
by sending commands and receiving measurements via the communication network.

Networked robotics, similar to standalone robots, faces inherent physical con-
straints as all computations are conducted on board the robots, which have limited
computing capabilities. Information access is also restricted to the collective storage
of the network. With the rapid advancement of wireless communications and recent
innovations in cloud computing technologies, some of these constraints can be over-
come through the concept of cloud robotics, leading to more intelligent, efficient
and yet cheaper robotic networks.

Cloud computing provides a natural venue to extend the capabilities of networked
robotics. NIST [Mell et al. 2011] defines cloud computing as “a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications and services)
that can be rapidly provisioned and released with minimal management effort or
service provider interaction.” Through its three service models (i.e., software,
platform and infrastructure), it enables tremendous flexibility in designing and
implementing new applications for networked robotics.

The Robot Operating System (ROS) was developed as a framework that provided
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the software infrastructure for cloud robotics employment. As a framework, ROS
provides a set of tools and libraries that simplify the task of creating a new robot
and controlling it. Indeed, ROS is the most popular framework in robotics research
and it also grows in terms of industrial use. This makes ROS a worthwhile target for
attackers, especially since security is not addressed by the core framework itself,
suffering from security issues due to its open architecture and flexibility project.
These concerns could be increased if we bring the security flaw to the premises,
based on a jeopardised device (e.g. a server or network device), assuming that these
devices and the overall premises should be considered as a secure zone.

2.1.2 Network Function Virtualisation

The presence of proprietary hardware-based network appliances, known as middle-
boxes, is a crucial part of the operation of today’s computer and telecommunications
networks. It supports a diverse set of network functions, such as firewalls, intrusion
detection systems, load balancers, NAT, caches, and proxies [Martins et al. 2014].
For instance, in company networks, the number of these middleboxes is equivalent
to the number of routers and switches deployed [Sherry et al. 2012].

However, the presence of these middle-boxes brings several problems, such
as [Han et al. 2015]: networks have become very complex with a wide variety of
proprietary elements; the time to bring new services and functionalities to the
market is high, as it depends on the production of new hardware; the operation of
the networks is costly and depends on specialised knowledge in each proprietary
platform; the costs of acquiring equipment to meet network demands are high, but
they quickly reach obsolescence; lack of flexibility and scalability, as resources,
cannot be moved according to demands, and need to be scaled to the peak scenario;
there are big barriers to innovation since it requires a significant investment to
develop a device in hardware; the technologies of different manufacturers are
incompatible with each other and do not allow reuse of hardware and software.

To address these problems and implement less costly and more flexible network
infrastructure, NFV takes network functions of commercial appliances, actually
dedicated hardware and software, to off-the-shelf equipment. By executing software-
based functionality on commodity hardware with virtualisation technologies for
processing, storage, and networking, as exemplified in Figure 2.5, NFV frees a wide
range of innovative solutions for new networks.

The NFV objectives can be summarised as listed below [ETSI NFV ISG 2014]:

• Reduced CAPEX when compared to a specific target of hardware implementa-
tions: This goal is achieved by adopting commodity hardware and virtualisation
techniques, reducing the number of different hardware architectures and
resource sharing.

• Scalability and flexibility network functions: it is possible to decouple location
from functionality and allocate network functions in the most appropriate
places according to demands, increasing resiliency through visualisation, and
making resource sharing easier. It becomes a strong groundbreaking mecha-
nism for the next network generation as 5G networks.
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Figure 2.5: NFV implementation of network functions using virtualisation techniques
over standard hardware. Source: [Han et al. 2015].

• Software-based implementation: it incentives innovation and is time-consuming
for creating a new product which reaches a specific market share.

• Reduced OPEX (operational expenses) by automating the procedures and
making faster decisions for a specific event (e.g., fail, workload, and new
demand).

• Reduced power consumption by migrating workloads and shutting down un-
used hardware.

• Interoperability through open and standardised interfaces between the net-
work functions, the underlying infrastructure, and the associated management
entities. In this way, the elements of NFV architecture can be implemented by
different vendors.

These objectives have a huge impact on the business model of telecommuni-
cations networks, specifically in the new 5G networks. Consequently, this sector
has received more investments in NFV standardisation, as discussed in the next
section. However, it is essential to emphasise that the paradigm is applicable in both
computer networks and telecommunications networks, especially at a time when
both are converging to a resource-delivery model based on cloud computing.

2.1.2.1 Cryptographic hash functions

Cryptographic hash functions are one of the most important tools in the field of
cryptography and are used to achieve a number of security goals like authenticity,
digital signatures, pseudo number generation, digital time stamping and others.

Hash functions map a large collection of messages into a small set of message
digests and can be used for error detection, by appending the digest to the message
during the transmission. The error will be detected if the digest of the received
message, on the receiving end, is not equal to the received message digest. With
the advent of public key cryptography and digital signature schemes, cryptographic
hash functions gained much more prominence. Using hash functions, it is possible
to produce a fixed-length digital signature that depends on the whole message
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and ensures the authenticity of the message. To produce a digital signature for a
message 𝑀 , the digest of 𝑀 , given by 𝐻(𝑀), is calculated and then encrypted with
the secret key of the sender [Sobti and Geetha 2012].

In order to provide security services, cryptographic hash algorithms need to
guarantee some properties which are not necessarily guaranteed by general-purpose
hash functions. The one-way or preimage resistance property of cryptographic
hash functions implies that it is computationally infeasible to compute the message
𝑀 given its hash 𝐷𝑀(𝑀). The second preimage resistance property means
that, given a hash value 𝐷𝑀(𝑀), it is computationally infeasible to find a different
message 𝑀 ′ ̸= 𝑀 that yields the same hash value. The pseudo-randomness prop-
erty means that the hash value of a message must expose statistical randomness.
Finally, the collision resistance property means that it is computationally infea-
sible to find a pair of messages 𝑀1 and 𝑀2 which produce the same hash value
[Martino and Cilardo 2020].

The Secure Hash Algorithm (SHA) is a family of cryptographic hash functions
defined by the National Institute of Standards and Technology (NIST) and published
as the Federal Information Processing Standard (FIPS) 180, Secure Hash Standard
(SHS). The algorithm is an iterative, one-way hash function that can process a
variable-size message to produce a fixed-size condensed representation called a
message digest. This algorithm enables message integrity verification, i.e., any
change to the message will, with a very high probability, result in a different message
digest. This property is useful in the generation and verification of digital signatures
and message authentication codes, and in the generation of random numbers or
bits [Dang et al. 2015]. The SHA-2 family of cryptographic hash functions was first
announced in 2001 and includes SHA-224, SHA-256, SHA-384 and SHA-512, named
according to the length of the message digest created by each one, suppressing the
previous SHA-1 implementation due to security improvements.

As cryptographic hash functions are compute-intensive applications, which begs
the question of extending P4, and its hardware platforms, into cryptographic algo-
rithms. This would enable offloading secure applications/tasks to the data plane.
The expected benefits are twofold: i) saving CPU resources for other applications
running at the hypervisor and their tenants and ii) reducing latency and increasing
the number of processed packets per time unit. The latter benefit will come from
avoiding the operating system and hypervisor stacks in between the network and
the SHA application.

2.1.3 Programmable network hardware

There is paradoxically flexible FPGA-based hardware that is limited by its complex
hardware description languages and powerful ASICs are limited by a reduced set
of functionalities made available by their vendors. SmartNICs emerge as a com-
promise solution. Figure 2.6 shows the architecture of a typical SmartNIC with
an in-networking processor [CAVIUM 2019, NETRONOME 2019]. It is basically
comprised of a multi-core NPU (Networking Processor Unit), local memory and an
SR-IOV (Single Root I/O Virtualisation) interface. These architectural components
connect each other using a high-performance interconnection bus. They also pro-
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vide on-chip/off-chip accelerators to speed up certain operations (e.g., encryption,
hashing, look-ups, buffer management, etc).
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Figure 2.6: SmartNIC architecture simplified block diagram.

In SR-IOV-compliant hardware, each host connects to a privileged physical func-
tion (PF), while each virtual machine connects to its own virtual function (VF). A
VF is exposed as a unique hardware device to each VM, allowing the VM, and
consequently, VNF resided therein, direct access to the actual hardware, and yet
isolating VM data from other VMs. An SR-IOV-compliant SmartNIC also has an
embedded switch to forward packets to the right VF based on the MAC address. In
addition to SR-IOV, Network Processing Unit (NPU) brings programmability to the
data path by using some high-level programming language, such as P4 language.
All this combined and properly used, enables improved throughput, reduced CPU
utilisation, low latency, and scalability.

Despite the vast literature on offloading DC applications by in-network computing,
few frameworks have tackled the NFV challenges. In particular, the state-of-the-art
of NFV platforms has merely replaced monolithic hardware NFs with their monolithic
software components. Interestingly, a large number of common functionalities (e.g.,
packet header parsing, packet classification, etc.) are repeated across different
VNFs [Rahman Chowdhury et al. 2019]. Thus, our proposal brings its novelty by
introducing a framework that allows programmers to decompose and deploy VNF
applications to eNFs using a NIC-side in-networking processor.

2.1.3.1 P4: Programming Protocol-Independent Packet Processors

Programming Protocol-independent Packet Processors (P4) is a domain-specific
language for network devices, specifying how data plane devices (switches, NICs,
routers, filters, etc.) process packets. P4 programs define how the various pro-
grammable blocks of a target architecture are programmed and connected. While
P4 was initially designed for programming switches, its scope has been broadened
to cover a large variety of devices, which are defined by the generic term target.

As a concrete example of a target, Figure 2.7 illustrates the difference between
a traditional fixed-function switch and a P4-programmable switch. In a traditional
switch, the manufacturer defines the data-plane functionality. The control plane
controls the data plane by managing entries in tables (e.g. routing tables), configur-
ing specialised objects (e.g. meters), and processing control packets (e.g. routing
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protocol packets) or asynchronous events, such as link state changes or learning
notifications [The P4 Language Consortium 2021].

Figure 2.7: Traditional switches vs. programmable switches
[The P4 Language Consortium 2021].

Portable Switch Architecture (PSA) Model is a target architecture that describes
common capabilities of network switch devices that process and forward pack-
ets across multiple interface ports. The PSA Model has six programmable P4
blocks and two fixed function blocks, as shown in Figure 2.7. The behaviour
of the programmable blocks is specified using P4 language. The Packet buffer
and Replication Engine (PRE) and the Buffer Queuing Engine (BQE) are target-
dependent functional blocks that might be configured for a fixed set of operations.
[The P4.org Architecture Working Group 2020]

Figure 2.8: Portable Switch Pipeline [The P4.org Architecture Working Group 2020].

Incoming packets are parsed and validated, and then passed to an ingress match
action pipeline, which makes decisions on where the packets go. The ingress
deparser P4 code specifies the packet contents to be sent to the packet buffer, and
what metadata related to the packet is carried with it. After the ingress pipeline,
the packet may optionally be replicated (i.e. copies made to multiple egress ports),
and then stored in the packet buffer. For each such egress port, the packet passes
through an egress parser and match-action pipeline before it is deparsed and queued
to leave the pipeline. Figure 2.9 shows all possible paths for packets that must be
supported by a PSA implementation.
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Figure 2.9: Packet paths in PSA [The P4.org Architecture Working Group 2020].

In P4, a table describes a match-action unit. The lookup table is a finite map
whose contents are manipulated asynchronously (read/write) by the target control-
plane, through a separate control-plane API. Syntactically a table is defined in terms
of a set of key-value properties. The structure of a match-action unit is shown in
Figure 2.10.

Figure 2.10: Match-Action Unit Dataflow. [The P4 Language Consortium 2021].

A P4-programmable target differs from a traditional device in two essential ways
[The P4 Language Consortium 2021]:

• The data plane functionality is not fixed in advance but is defined by a P4
program. The data plane is configured at initialisation time to implement the
functionality described by the P4 program (shown by the long red arrow) and
has no built-in knowledge of existing network protocols.

• The control plane communicates with the data plane using the same channels
as in a fixed-function device, but the set of tables and other objects in the
data plane is no longer fixed since they are defined by a P4 program. The P4
compiler generates the API that the control plane uses to communicate with
the data plane.

Hence, P4 can be said to be protocol independent, but it enables programmers to
express a rich set of protocols and other data plane behaviours. The core abstractions
provided by the P4 language [The P4 Language Consortium 2021] are also depicted
by Figure 2.11:

• Header types describe the format (the set of fields and their sizes) of each
header within a packet.
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• Parsers describe the permitted sequences of headers within received packets,
how to identify those header sequences and the headers and fields to extract
from packets.

• Tables associate user-defined keys with actions. P4 tables generalise tradi-
tional switch tables; they can be used to implement routing tables, flow lookup
tables, access-control lists, and other user-defined table types, including com-
plex multi-variable decisions.

• Actions are code fragments that describe how packet header fields and meta-
data are manipulated. Actions can include data, which is supplied by the
control plane at runtime.

• Match-action units perform the following sequence of operations:

– Construct lookup keys from packet fields or computed metadata,

– Perform table lookup using the constructed key, choosing an action (in-
cluding the associated data) to execute, and

– Finally, execute the selected action.

• Control flow expresses an imperative program that describes packet process-
ing on a target, including the data-dependent sequence of match-action unit
invocations. Deparsing (packet reassembly) can also be performed using a
control flow.

• Extern objects are architecture-specific constructs that can be manipulated
by P4 programs through well-defined APIs, but whose internal behaviour is
hard-wired (e.g., checksum units) and hence not programmable using P4.

• User-defined metadata: user-defined data structures associated with each
packet.

• Intrinsic metadata: metadata provided by the architecture associated with
each packet—e.g., the input port where a packet has been received.

Figure 2.11: Programming a target with P4 [The P4 Language Consortium 2021].
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2.2 Related works

This section describes the related works focusing on network device programmability
and its proposed Frameworks. We position the capabilities of programming and
deploying applications on hardware, showing the approaches of current solutions.
Furthermore, here we compare our solutions with related works in the area of
network programmability and its enablers, pointing out where PIaFFE differs from
the current state-of-the-art proposals on data plane programmability.

Using network programmable devices presents the opportunity to run custom
logic in the network at line rate speeds. However, programming them is not straight-
forward and presents many challenges. Various frameworks and languages have
been proposed to program these devices, including high-level languages like C (high
complexity), as well as domain-specific languages (low complexity) like Programming
Protocol-Independent Packet Processors (P4). Thus, this section will expose the
current solutions and the state of the art for network hardware programming, as
well as how our proposal of framework stands apart from current implementations.

2.2.1 ClickNP

Click Network Processor (ClickNP) [Kun et al. 2016] is an FPGA-accelerated plat-
form for highly flexible and high-performance NF processing on commodity servers.
ClickNP addresses the programming challenges of FPGA by providing a modular
architecture, resembling the well-known Click model [Kohler et al. 2000], where a
complex network function is composed using simple elements. These elements are
written with a high-level C-like language and are cross-platform and can be ported
to binaries on CPU or low-level hardware description language (HDL) for FPGAs.

Figure 2.12: The architecture of ClickNP [Kun et al. 2016].

However, ClickNP may require the programmer of a functional element to ap-
ply specific hardware-related optimisations, when the compiler fails to apply its
automated optimisation. Further, updating a function requires a new synthesis and
flashing of the FPGA design, a process that takes a long time to be done, measured
in hours. Thus, ClickNP was conceived for general network functions, so in ClickNP
we can implement arbitrary packet parsers, states and actions, which is suitable for
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FPGA-based hardware. On the other side, the P4 programming language assumes a
pipeline of match-action tables and is more suitable for programmable switching
chips or network interface cards, which are easy to program and use, leveraging
our proposal of a framework for embedding applications using this domain-specific
language.

2.2.2 Azure Accelerated Networking (AccelNet)

AccelNet provides near-native network performance in a virtualised environment,
offloading packet processing from the host CPU to the Azure SmartNIC. Building
upon the software-based Virtual Filtering Platform (VFP) host SDN platform for
Azure, and the hardware and software infrastructure of the Catapult program,
AccelNet provides the performance of dedicated hardware, with the programmability
of software running in the hypervisor [Firestone et al. 2018].

The authors describe a mechanism called Generic Flow Table Offload (GFT),
which is a match-action language that defines transformation and control operations
on packets for one specific network flow. As depicted by Figure 2.13, the flow
table may not contain a matching rule for a given packet. In these cases, the
offload hardware will send the packet to the software layer as an 𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑃𝑎𝑐𝑘𝑒𝑡.
Exception packets are most common on the first packet of a network flow when
the flow is just getting established. A special virtual port (𝑣𝑃𝑜𝑟𝑡) dedicated to
the hypervisor is established for exception packets. When the FPGA receives an
exception packet, it overloads the 802.1Q VLAN ID tag in the packet to specify that
it is an exception path packet, and forwards the packet to the hypervisor 𝑣𝑃𝑜𝑟𝑡. VFP
monitors this port and performs the necessary flow creation tasks after determining
the appropriate policy for the packet’s flow. If the exception packet was destined for
a VM on the same host, the VFP software can deliver the packet directly to the VM.
If the exception packet was outbound (sent by a VM for a remote destination), then
the VFP software must resend the packet to the SmartNIC, which it can do using
the same dedicated hypervisor vPort. VFP also needs to be aware of terminated
connections so that stale connection rules do not match new network flows. When
the FPGA detects termination packets such as TCP packets with 𝑆𝑌 𝑁 , 𝑅𝑆𝑇 or
𝐹𝐼𝑁 flag set, it duplicates the packet – sending the original packet to its specified
destination, and an identical copy of the packet to the dedicated hypervisor 𝑣𝑃𝑜𝑟𝑡.
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Figure 2.13: The SmartNIC GFT architecture, showing the flow of exception
packets from the FPGA to software to establish a flow offloaded in hardware
[Firestone et al. 2018].

In this work, the authors consider using FPGA-based SmartNICs due to their
superior performance when compared with traditional SmartNICs. However, various
aspects of the FPGA design ecosystem, such as the need to globally synthesise,
placement and the difficulty of developing using low-level languages, should be
raised in order to employ the overall proposal. Another aspect that needs attention is
the proposed solution is designed for working only in the Microsoft Azure ecosystem,
from the hardware to the software layers, limiting the scope for experimenting
and implementation for testing. In contrast, the PIaFFE framework was conceived
to be used in multiple environments, enabling the prototyping and deployment in
different scenarios and virtualisation technologies (e.g. QEMU, Linux namespaces,
Docker), using a programmable network interface for offloading and co-execution of
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applications inside this hardware.

2.2.3 FLOEM

FLOEM is a toolkit which provides language, compiler, and runtime tools for program-
ming NIC-accelerated applications, enabling offload design exploration by providing
programming abstractions to assign computation to hardware resources; control
mapping of logical queues to physical queues; access fields of a packet and its meta-
data without manually marshalling a packet; use a NIC to memorise expensive com-
putation and interface with an external application. The FLOEM compiler contains
three primary components that: (1) translate a data-flow program with elements
into C programs, (2) infer minimal data transfers across queues, and (3) expand the
high-level caching construct into primitive elements [Phothilimthana et al. 2018],
as depicted in Figure 2.14.

Figure 2.14: FLOEM system architecture. [Phothilimthana et al. 2018].

FLOEM aims to simplify the development of NIC-accelerated network applica-
tions by providing a unified framework to implement an application that is split
across the CPU and NIC. However, it is based on a static offloading approach of
specialised tasks, focusing on state migration between hosts other than developing
a high-level application that should be able to interact with network traffic data at
higher-level layers (after the traditional headers), as the PIaFFE framework can
do through a mechanism for steering traffic flow between hardware and software,
empowering network applications and saving resources in both physical hosts and
virtual machines.
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2.2.4 Lambda-NIC

The 𝜆-NIC is a framework for running interactive serverless workloads entirely on
SmartNICs. 𝜆-NIC implements a new programming abstraction (Match+Lambda)
along with a machine model – an extension of P4’s match-action abstraction with
more sophisticated actions – and helps address some shortcomings of SmartNICs by
using techniques that explore the small nature of lambdas [Choi et al. 2019].

Figure 2.15: 𝜆-NIC’s abstract machine model. [Choi et al. 2019]

In 𝜆-NIC, users write their Match+Lambda workloads against an abstract ma-
chine model, as shown in Figure 2.15. In this model: (1) lambdas are independent
programs that do not share state and are isolated from each other; only a matching
rule can invoke these functions; (2) The matching stage serves as a scheduler (anal-
ogous to the OS networking stack) that forwards packets to the matching lambdas
or the host OS; (3) a parser handles packet operations (like header identification),
and lambdas operate directly on the parsed headers [Choi et al. 2019].

The authors argue that these properties of the Match+Lambda machine model
can make it easier for software developers to express serverless functions by sep-
arating out the parsing and matching logic, as well as for hardware designers to
efficiently support the model on their target SmartNICs. Thus, the abstract machine
model enables unique optimisations that let serverless workloads run as lambdas in
parallel without any interference from each other.

However, this approach is restricted to serverless environments and does not take
into account the possibility of parsing data from parts of the packet payload. PIaFFE
can be extended to other paradigms – such as NFV – providing more flexibility when
creating new micro-applications to be embedded into a programmable network card
using P4 language, also enabling the possibility to parse data from packet payload,
creating “pseudo-headers” based on application specification.

2.2.5 NICA

NICA is a hardware-software co-designed framework for inline acceleration of the
application data plane on F-NICs in multi-tenant systems based on FPGA NIC Server
Acceleration. A new 𝑖𝑘𝑒𝑟𝑛𝑒𝑙 programming abstraction, tightly integrated with the
network stack, enables application control of F-NIC computations that process appli-
cation network traffic, with minimal code changes. In addition, NICA’s virtualisation
architecture supports fine-grain time-sharing of F-NIC logic and provides I/O path
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virtualisation. Together these features enable cost-effective sharing of F-NICs across
virtual machines with strict performance guarantees [Eran et al. 2019].

Figure 2.16 shows the main NICA components with a single physical Accel-
erator Functional Unit (AFU) [Corporation 2020]. NICA comprises three layers:
application-visible OS abstractions and services inside a VM integrated with the
network stack; the hypervisor layer for managing F-NIC resources and QoS; the
hardware layer which includes the support for OS abstractions, physical AFU logic
(pAFU), a virtualisation framework exposing virtual AFUs (vAFUs), and a hardware
runtime with network I/O services for application-level message processing on AFUs.

Figure 2.16: NICA overview. [Eran et al. 2019].

NICA is a software/hardware framework that introduces specific software abstrac-
tions that connect FPGA blocks with a user program running on a general-purpose
CPU. However, applications can only be designed by composing the provided hard-
ware blocks, not enabling the possibility to connect other abstractions than the
pre-defined ones, hampering new implementations due to the difficulty of developing
using a low-level programming language related to FPGA-based network cards.
Therefore, PIaFFE uses a high-level domain-specific language, which is not only easy
to be used but also fits with data plane programmability, with a number of constructs
optimised for network data forwarding and processing.

2.2.6 iPipe

The iPipe proposal provides an actor programming model and a runtime system that
includes the following components: (1) a lightweight work-conserving scheduler that
maximises the NIC processor utilisation without hurting the target link bandwidth;
(2) distributed object abstractions that enable efficient use of remote host memory
and flexible actor migration; (3) a cross PCIe messaging tier and a shim networking
stack for communicating with host processors and RX/TX ports; (4) a dynamic
resource manager that supports weighted max-min fairness on the link bandwidth
and provides execution latency guarantees for multi-application consolidations.
Programmers can express applications using the actor model and rely on the runtime
to automatically schedule (and/or migrate) the actor execution on either the in-
networking processor or the host CPU [Liu et al. 2019].
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Figure 2.17: An overview of the iPipe runtime on the programmable NIC
[Liu et al. 2019].

The iPipe runtime (see Figure 2.17) manages and schedules the computational
resources of the programmable NIC and exposes APIs for managing the computing,
memory, and communication resources. It provides a distributed shared object
abstraction that enables flexible actor migration, as well as support for a software-
managed cache and NIC-local objects. In the communication layer, iPipe provides a
cross-PCIe message passing tier for communications between the host and the NIC,
as well as a simplified networking stack that delivers packets from/to TX/RX ports.
iPipe has an actor scheduler, which schedules (and/or migrates) actor execution
instances on the host/NIC, and uses a resource manager that supports multi-tenancy
based on user policies.

However, iPipe framework can offload only a portion of these applications to a NIC
as a bump-in-the-wire and need CPUs to do the remaining processing. Furthermore,
the system has proposed using the programmability for transport protocol offload
and some essential network functions, such as load-balancing of congestion control,
leaving a gap for application-related offloading, such as high-level applications
running inside a network programmable hardware which is easily filled using PIaFFE
framework for embedding a range of applications, from essential network-related
functions to advanced applications that require dynamic offloading of network packet
processing.

2.2.7 FlowBlaze

FlowBlaze is an open abstraction for building stateful packet processing func-
tions on NetFPGA SmartNIC hardware using the Extended Finite State Machines
(EFSM) model, introducing the explicit definition of flow state and allowing to
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leverage of flow-level parallelism. In order to accomplish it, FlowBlaze adapts match-
action tables to describe the evolution of a network flow’s state employing EFSM,
[Pontarelli et al. 2019].

According to Figure 2.18, the FlowBlaze machine model consists of a stateless
element and a stateful element. A stateless element is the same as a “match–action”
table. And stateful element is split into Flow Context Table, EFSM table and update
function. The Flow Context Table is used to save states of flows, while the EFSM
table is used to implement functions abstracted by EFSM. The update function is
responsible for executing the state update. Similarly, a small stash memory is used
to handle hash collision, providing scalability for the Flow Context Table. FlowBlaze
solves the race condition problem with a simple scheduler scheme to guarantee the
consistency of flow states.

Figure 2.18: FlowBlaze machine model. [Pontarelli et al. 2019].

While FSMs provide a naturally suited abstraction for stateful packet process-
ing, realising scalable stateful packet processing systems based on programmable
data plane systems is still challenging. In particular, creating low-latency stateful
applications in programmable ASICs could be unmanageable due to target-specific
requirements and constrained memory and stateful ALU resources.

PIaFFE Framework defines a pathway to create applications into SmartNICs by
finding the limits of the network programmable device, sharing resources between
commodity servers and data plane, expressing the capabilities and limits of each
platform, and leveraging packet processing and forwarding, which can be used to
develop and deploy flexible embedded stateful applications in both levels: hardware
and software.

2.2.8 FairNIC

FairNIC is a system to provide performance isolation between tenants utilising
the full capabilities of a commodity SoC SmartNIC, based on Cavium LiquidIO
2360s. FairNIC provides a set of per-resource isolation techniques to ensure that
each resource is partitioned (wherever possible) or multiplexed according to tenant
service-level objectives. Thus, it effectively dedicates a portion of the SmartNIC’s
end-to-end packet processing pipeline to each tenant as shown in Figure 2.19, where
individual resources may be allocated in different proportions depending on the
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needs of each tenant, in colours orange and blue. Some resources are consumed by
FairNIC itself, depicted in pink [Grant et al. 2020].

Figure 2.19: FairNIC sharing resources between two tenants. [Grant et al. 2020].

While using statically partitioning resources to reduce interference between
tenants, FairNIC sacrifices CPU utilisation because each task must be provisioned
with enough resources to accommodate peak load on the CPU. Moreover, the main
focus of the FairNIC is a multi-tenant cloud environment and its sharing resources
aspects, where one of the aspects of the PIaFFE framework is to define a way to
coordinate the offloading at the edge, between a single application running on the
host’s software layer and an embedded network function running on SmartNIC
hardware’s layer (one-to-one relationship), which is more expected by the overall
employment at the edge environment.

2.2.9 P4Runtime

The P4Runtime API is a control plane specification for controlling the data plane
elements of a device defined or described by a P4 program. Figure 2.20 represents
the P4Runtime Reference Architecture. The device or target to be controlled is
at the bottom, and one or more controllers are shown at the top. A multi-master
protocol allows more than one controller to participate, and a role-based arbitration
scheme ensures only one controller has to write access to each read/write entity, or
the pipeline config itself. Any controller may perform read access to any entity or
the pipeline config. Later sections describe this in detail. For the sake of brevity, the
term controller may refer to one or more controllers.
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Figure 2.20: Programming a target with P4 [The P4.org API Working Group 2020].

The P4Runtime API defines the messages and semantics of the interface between
the client(s) and the server. The API is specified by the p4runtime.proto Protobuf
file, which is available on GitHub as part of the standard. It may be compiled via
𝑝𝑟𝑜𝑡𝑜𝑐 – the Protobuf compiler – to produce both client and server implementation
stubs in a variety of languages. It is the responsibility of target implementers to
instrument the server.

The controller can access the P4 entities which are declared in the P4Info meta-
data. The P4Info structure is defined by p4info.proto, another Protobuf file available
as part of the standard. The controller can also set the 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐶𝑜𝑛𝑓𝑖𝑔,
which amounts to installing and running the compiled P4 program output, which
is included in the 𝑝4_𝑑𝑒𝑣𝑖𝑐𝑒_𝑐𝑜𝑛𝑓𝑖𝑔 Protobuf message field, and installing the asso-
ciated P4Info metadata. Furthermore, the controller can query the target for the
𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐶𝑜𝑛𝑓𝑖𝑔 to retrieve the device config and the 𝑃4𝐼𝑛𝑓𝑜.

P4Runtime is one of the most commonly used data plane APIs that is standardised
in the API Working Group [The P4.org API Working Group 2020] of the P4 Language
Consortium for controlling data plane elements which use P4 as the basis for pro-
gramming. In such a manner, it does not support programmers for the development
and deployment of micro-applications into programmable network hardware, thus it
is not suitable for the main goal of the proposal of this Thesis, which is to create a
framework for embedding applications into programmable network cards, covering
from the development to deployment of such applications.

2.2.10 EP4

EP4 relies on an application-aware extended P4-based network architecture that of-
fers hosted applications an extensible catalogue of services through its control plane.
The latter configures a PDP that can achieve minimal parsing and processing for fast-
tracked packets as well as customised processing and forwarding for other packets.
An extended parser (eParser) performs the first task, which reduces the necessary
latency experienced by packets. Alternatively, adaptive processing is achieved using
an enhanced processor (eProcessor) that optionally parses customised headers using
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just-in-time programmable parsers. It then executes selected P4 packet processing
pipelines implementing different services [Karrakchou et al. 2021].

Figure 2.21: Overview of the EP4 architecture [Karrakchou et al. 2021].

As shown in Figure 2.1.3.1, the control plane must discover the network’s topol-
ogy and compute the different routes before placing instances of each network
service in switches along the flow paths. For every flow and switch, the control plane
will generate the P4 code corresponding to the chain of service instances placed on
that switch. The data plane configuration generated by the control plane consists
of table values, corresponding to the flows’ route configuration, and the associated
P4 code for every flow and switch. It is then installed in the data plane using the
P4Runtime API.

The EP4 framework proposes an application-aware network architecture using a
P4 programmable data plane based on an extensible catalogue of network services to
hosted applications and translates them to configurations at the data plane. Despite
the overall architecture, the proposal does not target the application implementa-
tion itself on the data plane, limiting the scope to network-related functions (e.g.
best-effort service). PIaFFE can be used for the implementation and deployment
of applications into a programmable data plane using a well-defined element for
controlling the amount of data that will be processed by hardware and software,
increasing the expressiveness of a range of applications that can be conceived using
the framework.

2.2.11 DPPx

Data Plane Programmability and Exposure framework (DPPx) implements a frame-
work for P4-based data plane programmability and exposure which allows for to en-
hancement of NFV services. They introduce data plane modules written in P4 which
can be leveraged by the application plane. It integrates P4-compatible programmable
devices into OpenStack, which is the main platform to build the Virtual Infrastructure
Manager (VIM) for the ETSI MANO [ETSI NFV ISG 2014]. DPPx provides lifecycle
management (LCM) for data plane modules, which are defined in the P4 language,
and exposes northbound LCM API to external users [Osinski et al. 2019].



41

Figure 2.22: The DPPx system architecture [Osinski et al. 2019]

According to Figure 2.22 Data plane of the system is composed of programmable
switches and DPP Agents managing them. DPP Agent uses a target-specific adapter
to configure data plane modules. The DPP Agent is composed also of a northbound
protocol interface to communicate with a control plane. The Agent Engine translates
protocol messages and invokes a relevant adapter. The Config Manager of the
DPP Agent is used to configure an adapter and access parameters associated with
a particular target platform. A control plane of a system consists of a Network
Controller, which is responsible for controlling the lifecycle of data plane modules.
It implements northbound API and translates high-level commands to low-level
protocol messages. A part of the Network Controller is a local Service Database,
that stores record about currently installed data plane modules. The DPP Engine
coordinates requests for handling and database transactions. DPP Driver may also
invoke a third-party SDN controller to implement northbound APIs. Besides, the
system architecture is composed of supplementary building blocks: a) P4 compiler
translating P4 program into a target code to be executed on a programmable switch,
b) repository, where compiled P4 programs are stored, c) application plane consisting
of external systems, and d) Deployment Studio providing Graphical User Interface
to manage data plane modules [Osinski et al. 2019].

In fact, DPPx provides a life cycle management framework to ease the deployment
of P4 programs. Although this includes some examples of applications for P4, the
framework has been only evaluated in a testbed environment using the BMv2
software switch and none of these P4 applications aims to enable the support of a
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new network protocol or applications with similar scope as the PIaFFE framework
do, using a well-defined method for steering traffic between software and hardware
implementations.

2.3 PIaFFE framework

Overall, programming abstractions provided by existing packing processing frame-
works are insufficient for our target domain, and possibly for other hardware-based
platforms, as discussed above. Consequently, we design the PIaFFE framework to
help programmers explore how to offload their server network applications to a
SmartNIC, not only the network traffic, leveraging the hardware/software co-design
by using P4 language and processing raw packets at the data plane, intercepting
and interacting with network flows in a transparent manner.

The applications which benefit from PIaFFE have computations that may be
more efficient to run on the SmartNIC than on the CPU because of the Smart-
NIC’s hardware-accelerated functions, parallelism, or even reduced latency when
eliminating some system layers from the processing path.

However, while parts of typical server applications can be built by composing
predefined elements, many parts cannot. In the selected target domain, developers
often want to offload an application by reusing existing application code instead of
writing code from scratch. Besides porting existing applications, some developers
may prefer to implement most of their applications in P4 due to their low complexity
for development and domain-specific nature.

This correlation between software applications and hardware functions can be
addressed by using mechanisms available in the framework, helping to steer network
flows among these two levels. Thus, the data plane could be used, for example, to
interact directly with network flows, without the dependency on an application at
the software level, acting like the application itself.

Table 2.1 shows a comparison between the PIaFFE framework with other works
cited above. In this context, is worth mentioning some definitions in the table:

• We define an embedded network function (eNF) as a virtual network func-
tion running inside a programmable network device, working with network-
related data in the link, network and/or transport layers (e.g. firewall, ISD,
NAT) or even application layer data, inspecting and/or changing its data.

• We also consider an embedded application (eApp) a subclass of eNF, running
inside a programmable network device and interacting with raw packets at
application layer data (e.g. DNS, HTTP server, MQTT), classifying and building
new headers in order to manipulate network flows. Both eNF and eApp
rely on the co-design of software and hardware, leveraging the best of each
architecture.

• Intercepting/processing are related to the ability to inspect packet head-
ers and/or data for post-processing into a specific computational logic unit
inside the data plane, interacting with both network flows and “software-level”
applications running at a hypervisor in a run time fashion.
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• Functional decomposition (Func. Decomp.) remits to a method for dissect-
ing a complex process in order to examine its individual elements, easing the
development and the consequent deployment in a limited-resource device, like
SmartNIC; this methodology will be detailed in Chapter 3.

Framework
Hardware

Implementation
eNF eApp

Intercepting/
Processing

Func.
Decomp.

ClickNP (2.2.1) yes (FPGA) no no no no

AccelNet (2.2.2)

yes
(sNIC-FPGA,

Azure)
no no no no

Floem (2.2.3)

yes
(sNIC, Cavium

LiquidIO)
no yes no no

{𝜆}-NIC (2.2.4)

yes
(sNIC,

Netronome
Agilio)

no yes yes no

NICA (2.2.5)
yes

(sNIC-FPGA)
no yes no no

iPipe (2.2.6)

yes
(sNIC, Cavium

LiquidIO)
no no no no

FlowBlaze (2.2.7)

yes
(sNIC-FPGA,

SUME)
yes no yes no

FairNIC (2.2.8)

yes
(sNIC, Cavium

LiquidIO)
no yes yes no

P4Runtime (2.2.9)
yes

(PSA-based)
no no no no

EP4 (2.2.10) no (bmv2) no yes yes no
DPPx (2.2.11) no (bmv2) yes no no yes

PIaFFE
yes (sNIC,
Netronome

Agilio)
yes yes yes yes

Table 2.1: PIaFFE compared with other framework projects.
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2.4 Chapter remarks

This chapter discussed the foundations of the proposal, as well as the related works
and their limitations, which inspired the creation of our framework, giving a brief
resume of the technologies that will be addressed during the next chapters, in
the same way as how our work differs from the related works cited here and its
contributions.

In this Thesis, we advocate that the most appropriate expressive development and
deployment methods offer a flexible embedding for offloading network workload onto
a programmable network device using a domain-specific programming language,
such as the P4 language. A framework becomes crucial by eliminating the extra
work-out during the development phase, which covers the choice of the virtualisation
technology, the “connection” between software and hardware network applications
and the final deployment of these applications.

Consequently, the correct balance between software and hardware execution
could be acquired using this “connector” for offloading partially or totally network
flows to the programmable data plane. Moreover, security-related concerns can
be raised when using such network programmability, which also can be addressed
using the same devices as enablers for offloading security applications, which will
be covered by the proposal.

The next chapters will present the solution based on a Framework for embedding
network programmable cards – from the development to deployment of network
applications into a real programmable network device – following their specific use-
cases exposed in chapter format and its applicability to network-related applications,
showing and discussing the results, which compose our proposal of the Thesis.



Chapter 3

A framework for flexible
software/hardware co-design of
in-network computing

3.1 Overview

Emerging in-networking processor-based programmable network interface cards
(NIC) offer a solution for offloading network traffic data, using domain-specific
programming languages to express how packets should be processed in order to
try to alleviate the high demand for network bandwidth and CPU computing power.
These in-network computing capabilities allow hosts to offload general computations
onto the programmable NIC while keeping the support of complex application
logic on the hosts. By offloading lightweight but frequently invoked operations, we
can accelerate cloud/edge applications while reducing the host CPU load without
sacrificing the program generality.

Despite the option to use these programmable network devices as an accelerator
for cloud and edge devices, vendors do not define how to develop and deploy a “fully
integrated environment” using these domain-specific languages and the remaining
applications running at the hypervisor, enabling the co-execution of data processing
with minimal or even no changes into the original application.

This chapter describes the architecture and design principles of our framework
proposal: PIaFFE – a framework for embedding network programmable cards,
using an in-networking processor on a programmable NIC to co-execute distributed
workloads, aiming for an automated environment for the development and deploy-
ment of applications, which can enable the reduction of both request execution
latency on the fast path (network programmable hardware data plane), as well as
host CPU computation load.

Specifically, we explore the feasibility of decomposition and deploying using a
domain-specific programming language, such as P4 language, executing lightweight
applications (aka embedded network functions – eNF) on a NIC-side in-network
processor using a new technique for steering traffic to be processed between the
hardware and applications running at a Virtual Machine (VM). We also describe
the architectural options raised before, delimiting the selected elements for use
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with cloud and edge computing. Moreover, the building blocks of the proposal are
described here, raising the main aspects of the framework and how it can be adapted
to tackle different targets.

The initiative opens new avenues for programmers to develop data centre appli-
cations using an in-networking processor effectively. PIaFFE framework provides a
method for decomposing and deploying network applications using the P4 language
into SmartNICs, in conjunction with traditional VMs at the hardware data path.

3.2 Proposal

This section describes the design principles, architecture and enablers, and the
potential limitations of our approach using PIaFFE to develop and deploy micro-
applications onto network programmable hardware. We also discuss the relationship
between the PIaFFE framework with P4 language and programmable network
devices. In finishing the chapter, we also review the relationship between the
PIaFFE foundation and the End-to-End principle, positioning the proposal over the
main aspect of network and Internet functionality.

3.2.1 Design principles

According to [Johnson 1997], a framework is a larger-scale design that describes
how a program is decomposed into a set of interacting objects, reusing the main
program and delivering to the developer the decision of what is plugged into it and
making new components that are plugged in.

Based on the framework definition cited early, the design principles of our pro-
posed framework were motivated by the challenge of deploying micro-applications
on resource-limited network hardware, keeping their expressiveness and functional-
ity even running on these restricted devices, besides using high-level definitions to
specify the overall project from software to hardware levels, as shown in Figure 3.1.

Following the Figure 3.1, PIaFFE architecture is comprised into two main levels:

• Project definition:
This level is responsible for the software-related constraints, enumerated by
their respective processes as follows:

(1.1) Virtualisation specifications, or the type of virtualisation that can be
defined at the start of the project (e.g. Linux libvirt, Linux namespace,
Docker, etc.), which will be deployed during the experiment lifecycle.

(1.2) Functional decomposition, permitting the application to be broken down
into its most simplistic components and functions for rapid application
development. As functional decomposition is a broad topic, we will discuss
it in more detail further in the text.

(1.3) Application description is one of the steps in this level, characterising
the applications which will be used in the project, including the kind of
network application (e.g. a layer 3/4 firewall, a network load-balancer, a



47

cryptographic network function, etc), the main source-code of the proto-
type software and its relation with the programmable network device.

(1.4) P4 table entries for matching with the specific use case, enabling the
communication between software and hardware levels and also through
the application and programmable data plane.

(1.5) Monitoring is another characteristic implemented using PIaFFE, in order
to collect data for providing visibility on the framework, which can be
defined or implemented using a third-party tool such as gRPC or even
using In-band Network Telemetry (INT).

(1.6) Network topology also needs to be defined in order to create the testbed
used during the experiment, including the network nodes (physical or
virtual ones) connected through the SmartNIC.

(1.7) connection between software and hardware levels, the “path” used to
forward packets throughout these two levels according to the definitions
and process listed above.
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Figure 3.1: PIaFFE framework architecture.

• Programmable data plane:
Despite the “Software Level” development process, the PIaFFE framework
defines the steps enabling the programmability into the SmartNIC, creating the
three main building blocks during the development and after the deployment:

(2.1) Embedded Network Function (eNF) logic, which is the main P4 pro-
gram embedded into the hardware, constructed over the P4 target pipeline
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and strictly linked with its software counterpart application, thus, both
software and hardware applications have a tightly integrated develop-
ment process, as one complements the other in terms of functionality and
usability.

(2.2) PIaFFE definitions, based on a collection of pre-built P4 and micro-c
libraries with standard protocol headers (e.g. Ethernet, IPv4, Ipv6, TCP,
UDP, etc.), already shipped with the PIaFFE framework.

(2.3) User definitions, where the users can freely create and define new
libraries and externs, custom headers and metadata, according to the
application requirements and constraints.

To address the early-mentioned challenges, as well as the framework definitions
and its processes cited above, we design the solution based on the following enablers:

• Introduction for functional decomposition:
Most network functions are deployed as a single monolith, whereby all com-
ponents are bundled together into one entity. This can lead to maintenance
challenges, as well as slow down the trailing of new technologies. Decompo-
sition is therefore a significant step in evolving VNFs to be cloud-native and
much more agile and scalable. It will be undertaken for the majority of the data
plane, control and signalling VNFs. In this context, we define decomposition
as breaking a monolithic network function into a set of small applications, or
“micro-applications”.

Decomposition also allows for common functions to be stripped away from
the core logic of the applications. This allows the applications themselves
to be more lightweight – which makes them easier and quicker to develop,
manage, and deploy into programmable network hardware – as well as cen-
tralise core functions and operate in an “as-a-service” model. We also want
to be able to reuse common functionality, but not have to pay for it multiple
times. The process of decomposition also gives micro-application owners the
opportunity to remove unnecessary functionality from the application logic
[Richardson 2018].

However, the main challenge in realising any micro-application-based software
using decomposition is to identify the set of functionalities, and this is difficult
because it requires domain-specific knowledge. One way to approach decompo-
sition is to leverage domain expertise (e.g., by consulting with domain-specific
developers) or to study existing open-source network applications, identifying
smaller functional units.

As a key to employing functional decomposition, the PIaFFE framework defines
a roadmap to create an embedded Network Function (eNF) using an approach
based on the application network-related characteristics (e.g., packet parsing,
classifying, processing and forwarding), re-architecting the network program-
ming ecosystem, in order to make a feasible and practical placement of these
micro-applications into an in-network programmable device.
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For example, using for reference two monolithic network applications, the
first one based on an L2/L3 packet forwarder and the second one based
on the SHA-256 algorithm, we can outline the steps for decomposing these
two applications into a new micro-application, as shown in Figure 3.2. The
first step for decomposing multiple applications is to identify the network-
related characteristics of each one, in this case, we can enumerate the primary
operations, starting with the L2/L3 Forwarder:

i. parse headers;

ii. L2 header classification;

iii. L3 header classification;

iv. L2/L3 forwarder logic

v. forwarding table;

vi. drop action;

vii. the forwarding action as it is.

Application

L2/L3 Forwarder

L2 header 
classification

Yes

No

Match?
L2/L3 Logic

Drop

Parse
headers

L2/L3 
Forwarder

Application

1. Monolithic
network

application
2. Identifying network-related characteristics and decomposing

L2 header 
classification

L3 header 
classification

L4 header 
classification

App Logic

L3 header 
classification

Fwd. Table  

Micro-application

Header 
classification

Fwd. Table  

Parse
headers

Parse
headers

No

Drop

3. Micro-application realisation

Match?

eNF Logic

App Logic

L2/L3 Logic
Yes

Figure 3.2: Illustrative example of functional decomposition using a set of network
applications.

In the same way, we enumerate the characteristics of the next “generic applica-
tion” to be developed and deployed, using more stages for header classification
just for illustrating the overall process:

viii. parse headers;

ix. L2 header classification;

x. L3 header classification;

xi. L4 header classification;

xii. application logic.

As we can see, Figure 3.2 uses the same blue colour to highlight the overlapped
characteristics and green colour for specific functions. We also standardise the
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orange colour pattern to emphasise the main logic behind both applications. As
illustrated by the colour map, we can merge the “duplicated” functions of the
applications into the micro-application realisation, using a single structure
representing the two main applications, making it possible to be embedded in
programmable network hardware and customising the data plane behaviour.

• Multi-level forwarding between hardware and software:
PIaFFE framework implements the PIaFFE Intercepting and Forwarding ele-
ment (PIIF) to steer network traffic through the embedded Network Function
or send it up to the application at the virtualisation layer, using a bottom-up
approach as shown in Figure 3.3. As long as the network traffic arrives at
the SmartNIC, it is intercepted and forwarded to the OS level, or kept at the
hardware level, and processed using the SmartNIC network hardware.

Hypervisor

Application

iface0 iface1

SmartNIC switch

eNF

SR-IOV

L2/L3 Forward

Multi-level
Forwarding

PIIF 

Figure 3.3: Multi-level forwarding using PIaFFE Intercepting and Forwarding (PIIF)
element.

The multi-level forwarding can be used for allowing to determine the amount
of the network traffic which will be offloaded via hardware or processed into
the software level. It can be implemented via:

i hash table: a fundamental data structure in network applications, includ-
ing route lookup, packet classification and monitoring [Song et al. 2005],
providing time- and space-saving data structure for packet lookup, which
is very useful when ported to a resource-restricted data plane like Smart-
NICs;

ii bloom filter: a well-known randomised probabilistic hashing data struc-
ture that answers set membership queries, which can provide fast de-
tection of heavy flows [Tarkoma et al. 2012], for example, allowing the
correct balance between hardware and software packet processing by
steering selected traffic between them;

iii external trigger: which can be implemented via an operating system call
using gRPC or P4 table interaction, running aside of the data plane and
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reacting according to a specific system condition (e.g. external sensor,
CPU or memory usage) or a manual intervention by the user.

In Listing 3.1, it is presented a fragment of the P4 source code illustrating the
PIIF element. This code defines a basic (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) data structure. Whenever
an incoming packet hits a table’s entry (by its source IPv4 and UDP port),
then it is steered to the software, otherwise, it is sent to the eNF pipeline that
applies a specific function. This approach fits with the external trigger option,
as an application could interact with traffic by changing the P4 table.

1 ...
2 @name(".piif_table")
3 table piif {
4 key = {
5 standard_metadata.ingress_port: exact;
6 hdr.ipv4.srcAddr: exact;
7 hdr.udp.srcPort: exact;
8 }
9 actions = {

10 NoAction;
11 }
12 size = 512;
13 default_action = NoAction;
14 }
15 ...
16 apply {
17 if (piif.apply().hit) {
18 sw_forward.apply(); // network traffic to software
19 } else {
20 do_micro_application(); // executes an application at hardware
21 hw_forward.apply(); // forward traffic via hardware
22 }
23 }
24

Listing 3.1: P4 source code of the PIIF

Splitting the functionality of network applications into two levels could raise
new constraints related to keeping state and consistency between hardware and
software. For example, a network function may need to use a counter to register
some kind of traffic (i.e. heavy-hitter detector), but as defined previously, we have
the same network function in both levels. In this specific case, we can delegate
the task to the hardware level, sharing the data with the software level. However,
we need to weigh each use case separately, as the hardware data plane could be a
bottleneck if another kind of data structure overflows its capacity.

3.3 Architecture design and enablers

This section describes the hardware and techniques employed to build the PIaFFE
framework. Also, it provides some guidelines on designing the P4 code and metadata
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structures that will be embedded into a SmartNIC and how the multi-level forwarding
can be used to steer the network traffic between software and hardware.

According to Figure 3.4, the PIaFFE framework can be used to implement a set
of applications using two main architectures as the basis:

i. x86 servers, to development and deployment of traditional VNFs;

ii. SmartNICs, for the deployment of eNFs for offloading network traffic and
computation.

Computational resources are inversely proportional to the packet processing
performance, due to the generic processing and operational system stacks on
general-purpose processors (x86 servers). Moreover, SmartNICs are faster than x86
servers when running basic operations in network packets (e.g. forwarding, small
processing), but it loses hardware resources and overall computational power. It is
natural a merge these two platforms, each one complementing their constraints and
improving the network packet processing performance using in-network computing
to alleviate the network packet processing tasks.
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Figure 3.4: Architectural options for PIaFFE.

From an engineering perspective, the PIaFFE framework has been built over
traditional x86 Intel-based servers and the Netronome Agilio SmartNIC SDK. We take
advantage of the P4 toolchain (compilers, linker and loader) provided by Netronome
Network Flow Processor SDK to build and burn the customised firmware generated
using the framework. It is worth mentioning that the framework was designed in a
modular fashion, and can be easily adapted to other SDKs that follow the same logic
as the one used, as we will discuss better during this Section.
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Figure 3.5: Netronome P4 SDK architecture.

The building blocks are described in Figure 3.6, where PIaFFE starts by using the
Functional decomposition to break down the functional relationship of complex
elements into smaller units, easing the comprehension of each task inside a network
function and enabling the reconstruction of those parts into an embedded network
function (eNF) by using P4 or micro-C languages.
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Figure 3.6: PIaFFE framework building blocks.

In parallel, we have the Virtualisation and function description, crucial for
defining the kind of virtualisation that will be utilised during the experiment, as
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well as the network function capabilities and definitions, according to their network-
related actions. In-Network Telemetry (INT) is another part of the process, used
to describe the fields to be acquired during the experiment for measurements, as
well as the headers which will be inserted into the network packets.

Simultaneousness, the Network (virtual) Interfaces will be explicit, in order
to expose the hardware capabilities to the hypervisor and the network functions
running inside it. Furthermore, it will be an important component of the next
component, enabling the communication between the eNF and the application
through the PIIF element.

Following the last depiction, the software-hardware connector is responsible
for attaching the high-level application to its hardware counterpart, redirecting
(offloading) the network traffic using a bottom-up approach : the traffic comes from
the SmartNIC hardware and can be forwarded to the software or just kept in the
hardware, following the PIIF element instruction set.

As we described before, the PIaFFE framework was conceived to be coupled into
the Netronome SDK, reusing specific elements of the platform, as shown in Figure
3.5. Following the Netronome SDK, we can expand PIaFFE’s building blocks from
the main PIaFFE architecture design in Figure 3.1, addressing the leading points
connected to the original SDK, highlighted in Figure 3.6.

Hence, the only portion of the Netronome SDK which is kept is comprised of the
compilers, linker and loader binaries – the toolchain responsible for building the
firmware to the desired target architecture – and all other parts are stripped out to
make room for the PIaFFE framework modules, each one with its respective function,
as described in the previous section. Again, is important to note that PIaFFE can be
adapted to any programmable interface card SDK, as long as they employ a similar
structure (e.g. compilers, linker and loader elements).

3.3.1 Network programmability levels

PIaFFE framework employs a software development approach based on network pro-
grammability levels, starting at the hardware level using P4 programming language,
which can be leveraged by micro-C libraries and functions – pre-built or user-defined
– and, finally, using an application running on the software level in a general-purpose
processor (x86).

1. P4 language for network programming:
At this level, PIaFFE provides the main P4 source-code structure, using pre-
designed libraries and routines, to enable programmability via an in-network
programming device based on SmartNICs. The complexity for creating appli-
cations of this level is low when compared with the micro-C level, however,
PIaFFE using P4 can express sophisticated, hardware-independent packet pro-
cessing algorithms using solely general-purpose operations and table look-ups.
Such programs are portable across hardware targets that implement the same
architectures and extensive to different architectures using the next software
development level – micro-C externs – which will be detailed below.
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2. Micro-C externs as a complement:
PIaFFE employs externs implementation in the P4 language via micro-C (a
C-like language), extending the features not supported in the P4 language,
such as loop control and hardware timestamp support. Despite the complexity
imposed by using this level of development being high compared with the P4
language, we can advance the programmability using in-network programming
devices, unlocking some constraints imposed by the P4 language design, and
exploring the specific resources of each target, enabling the optimisation of
the solution to be implemented.

3. Network software application:
At the highest level of the stack, PIaFFE defines the connectors between the
application running at x86 general-purpose processors and the embedded
network function running into the programmable network card. Thus, at
this level, we can define the complex applications which need more intensive
computation to be completed, such as machine learning, computational vision
and other compute-intensive tasks.

3.4 PIaFFE automated deployment

In software engineering, software deployment may be defined to be the process
between the acquisition and execution of software. This process is performed
by a software deployer who is the agent that acquires the software, prepares it
for execution, and possibly executes the software. Software deployment may be
considered to be a process consisting of a number of inter-related activities including
the release of software at the end of the development cycle; the configuration of
the software, the installation of software into the execution environment and the
activation of the software [Dearle 2007].

PIaFFE framework also simplifies the development and deployment process of
the application, as shown in Figure 3.7, covering all activities mentioned before,
both at the software and hardware levels. Consequently, all stages are “protected”
and guided by the framework using the predefined descriptions set during the Appli-
cation description and Virtualisation specifications phases in the development
process, fostering the automated deployment of the desired execution environment.
Hence, the embedding of the network application occurs in a transparent manner for
the developer that aims to program a data plane for offloading applications running
at a specific virtualisation technique.



56

Specs
P4 eNF

Application

P4 eNF
P4 eNF

Figure 3.7: Resumed steps for embedding applications into a programmable network
device using the PIaFFE framework.

The deployment stage needs to be “protected” once the firmware burning process
changes the hardware characteristics of the SmartNIC (e.g. the number of available
virtual functions), leading to a total release/renewal of resources allocated for the
network programmable hardware. When these resources are directly attached to a
Virtual Machine (VM) and this release of resources happens, the operating system
tends to crash, due to a lack of communication between the firmware’s loader and
the hypervisor.

To illustrate the process we can cite an example, when a developer needs to
deploy an application using the software level, in parallel with an embedded net-
work function (eNF) running at the SmartNIC hardware, we need to take some
precautions:

• The application (or the OS) running at the hypervisor needs to be turned
off before the firmware deployment at the SmartNIC, due to possible access
violation issues when using a pass-through technique, such as SR-IOV, to expose
the network hardware to the OS running on the virtual machine.

• All traffic flowing through the SmartNIC must be stopped in the same way, in
order to guarantee the system integrity during the deployment process.

• All instantiated virtual machines need to be stopped as well, in order to release
the virtual functions allocated in the hypervisor to the original operating
system.

• Besides, after a successful deployment, the environment needs to be started
again, from the virtual hosts to the new eNF built into the SmartNIC, enabling
the testbed for experimentation.

All these steps cited above are fully covered by the deployment process of the
PIaFFE framework: from checking the successful compilation and link process to the
interruption of all resources allocated to the experiment, avoiding user interaction –
and possible errors and disruptions – during the development and experimentation
flow cycle, leveraging the general operation for prototyping an environment that
requires a programmable data plane operating in conjunction with an application in
an automated fashion.
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3.5 Chapter remarks

In this chapter, we propose the PIaFFE Framework focusing on a place-as-you-go
approach that exploits the flexibility of embedding applications in programmable
SmartNICs. The framework provides a guide to programmers to decompose and
deploy VNF applications to an eNF using a NIC-side in-networking processor with
traditional applications running at a commodity server.

Thus, key aspects of the practical use of programmability and offloading con-
straints were addressed in PIaFFE Framework by creating programming abstrac-
tions as building blocks using the P4 language and proposing novel multi-level
offloading through eNFs in SmartNICs.

However, we still need to validate the framework, offloading traffic processing
using consolidated virtualisation technology, such as Network Function Virtualisa-
tion (NFV), and improving the multi-level forwarding element to tackle both levels –
software and hardware – simultaneously. Thus, the PIaFFE framework can be em-
ployed to deliver the building blocks to architect a fully-compliant offloading system
for use with multiple virtualisation techniques, outlining latency improvements and
saving CPU resources, as part of processing can be done via in-network computing.

In the next chapters, we will explore multiple domains: starting with a wide-range
NFV paradigm, then going into specific network applications, and finally diving into
the network layers and passive optical networks, in order to validate and evolve
the proposed framework, using the PIaFFE framework for prototyping, compiling,
burning and running the environment for verification and analysis, showing the
feasibility of the proposal for embedding programmable network cards.



Chapter 4

A co-design use-case on Network
Function Virtualisation (NFV)

4.1 Overview

Network operators ubiquitously deploy hardware middle-boxes (e.g., NATs, Fire-
walls, WAN Optimisers etc.) to implement a whole range of different network
services [Sherry et al. 2012]. Despite being an integral part of modern enterprise
and telecommunication networks, middle-boxes are usually proprietary and have
little or no programmability. They are also hard to vertically integrate with other
packet processing elements. Such a closed and inflexible ecosystem explains in
part the high capital and operational expenditures incurred by network operators.
This led to the Network Function Virtualisation (NFV) movement initiated in 2012
[Canada et al. 2017].

NFV proposes to disaggregate the tightly coupled Network Functions (NFs) and
hardware middle-boxes and deploy the NFs as Virtual Network Functions (VNFs) on
commodity servers. Through this disaggregation, NFV promises to reduce CAPEX
by consolidating multiple NFs on the same hardware and reduce OPEX by enabling
on-demand flexible service provisioning.

In-network computing can leverage the NFV environment by offloading light-
weight but frequently invoked operations onto a programmable network device,
accelerating data centre applications while reducing the host CPU load without
sacrificing the program generality. However, vendors do not define how to deploy a
fully integrated environment using these domain-specific programming languages
using the NFV paradigm.

In this chapter, we will expose the benefit of using the PIaFFE framework pro-
posal, exploring the use-case of an in-networking processor on a programmable
NIC to co-execute data centre workloads employing NFV, so that one can reduce
both request execution latency on the fast path, as well as host CPU computation
load. Specifically, we explore the feasibility of VNFs decomposition and deploying
utilising a domain-specific programming language, such as P4 language, executing a
lightweight VNFs (aka embedded network functions – eNF) on a NIC-side in-network
processor that can process and/or redirect traffic to traditional VNFs running at a
Virtual Machine (VM), employing a multi-level Service Function Chaining (SFC).
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However, this intuitive scenario is not trivial to be implemented considering that
the following points should be addressed:

i. a proper mechanism for exchanging network traffic between VNFs and eNFs
must be found (i.e. service function chaining);

ii. a compact virtual network function using a domain-specific programming
language that fits into the SmartNIC hardware must be built;

iii. the correct balance of network traffic that can be offloaded without degrading
the overall performance must be found.

We evolve the initial implementation of the PIaFFE framework for addressing
the above challenges. This initiative aims to open new avenues for programmers to
develop edge VNF applications using an in-networking processor. PIaFFE provides
a method for decomposing and deploying VNFs mainly using the P4 language into
SmartNICs, implementing a multi-level chaining technique that allows the partial or
full VNF traffic offloading into programmable network hardware.

4.2 NFV use-case

This section describes the design principles, architecture and enablers, and the
potential limitations of our approach using PIaFFE to develop and deploy Virtual
Network Functions onto network programmable hardware. Here, PIaFFE will tackle
the Network Function Virtualisation scenario as a use case, positioning it into the
ETSI reference architecture and enabling the deployment of embedded network
functions using multi-level chaining for VNFs and eNFs.

4.2.1 Experimentation design

For the sake of demonstration, we choose a use-case motivated by the challenge of
deploying network functions on resource-limited network hardware, when high-level
VNFs remain running on the top-level applications, sharing resources between both.
Thus, this chapter includes the implementation of VNFs using PIaFFE, aiming at the
data link, network and transport layers, as depicted in Figure 4.1. Hence, PIaFFE
will tackle these network layers using the NFV paradigm allied with in-network
computing for offloading processing using a SmartNIC.
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Figure 4.1: Network layers handled by PIaFFE in this Chapter.

To address the early-mentioned challenges, we design the solution based on the
following enablers:

• Functional decomposition in NFV: PIaFFE employs a functional decompo-
sition of multiple VNFs, re-architecting the network programming ecosystem
[Rahman Chowdhury et al. 2019], in order to make a feasible and practical
placement of these VNFs into an in-network programmable device. For ex-
ample, let us consider an infrastructure that has to place a set of network
functions such as a simple authentication/authorisation application, a firewall
and an Intrusion Detection System (IDS), as shown in Figure 4.2. Each part
of a VNF has its own role in a monolithic implementation, and developers will
need to implement these parts separately, on their respective VNFs. Therefore,
when a packet goes through the VNFs in an SFC, this would require more
CPU cycles due to the repeated execution of the same functionality (e.g. parse
headers and header classification).
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Figure 4.2: Functional decomposition of monolithic VNFs, inspired by
[Rahman Chowdhury et al. 2019].

• Network application deployment using P4 language: Decomposing a
network application brings us a clear vision of the parts that have overlapped
functions. For instance, to receive a packet from NIC, parse packet header
and classification, and forward to NIC or to next VNF, as depicted in Figure
4.2. Once we have identified the common parts, the next step is to merge
all of them into a new clean layer which will enable the creation of an eNF
to be placed into a SmartNIC. The last step consists of mapping the common
functions into modular eNFs so that the PIaFFE framework may create their
respective P4 primitives (such as parse headers, header classification, drop
and count actions) and logic (eNF Logic), as shown in Figure 4.3.

Figure 4.3: Modular eNFs and P4 logic mapping for network functionalities.

• Multi-level chaining: PIaFFE implements multi-level chaining for VNFs
and eNFs using an Offload Balancer to steer traffic through the 𝑒𝑁𝐹𝑖 at the
hardware level or send it up to the 𝑉 𝑁𝐹𝑖 at the virtualisation layer, as shown
in Figure 4.4.
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Figure 4.4: Multi-level Chaining of Network Functions.

The Offload Balancer can be defined using three modes: 1) internal, based on
packet interception and classification (e.g. load balancer, classification policy);
2) external: based in an external event (e.g. trigger, command line); and 3)
dynamic: based on probabilistic data structures or queue policies (e.g. bloom
filters, hash tables, round robin).

In this use-case, the Offload Balancer was implemented via internal mode,
using a load balancer to select the path of the network flow, as illustrated on
the pseudo-code 4.1. Thus, when certain condition matches, the network traffic
is managed by the SmartNIC switch, processing the network traffic data into its
own hardware; otherwise, the traffic is steered to the VNF at the software level,
where it will be processed and then forwarded to the next function, according
to the specific VNF purpose (e.g. if a firewall blocks the particular flow, it will
be stopped on the current position of the function chaining). We have made
use of the 𝐴𝑁𝐷 bitwise operator – which is more computationally efficient
than executing a traditional modulo operation – for defining the percentage of
traffic which will be processed through the eNF or the VNF. It is worth noting
that the 𝐴𝑁𝐷 bitwise operator can replace the traditional modulo operation
only when 𝑥 is a positive integer and power of two; also, this is a constraint
in Netronome SmartNIC hardware implementation, which can only handle
the modulo operation when the same premise is true, as represented by the
following equation:

𝑥% 2𝑛 == 𝑥& (2𝑛 − 1) (4.1)

4.2.1.1 Source-code fragment for the Offload Balancer

In Listing 4.1, it is presented a P4 source code fragment of the Offload Balancer
element. This simple code redefines a (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) data structure from the PIIF
element examined previously in Chapter 3, now adapted to be used with a VNF.
The underlying logic remains the same: whenever an incoming packet satisfies
the statement – here based on a bitwise operation result – then it is steered to the
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VNF, otherwise, it is sent to the pipeline eNF that applies a specific function. We
choose the bitwise operation because it generates less overhead to the hardware,
as the calculation was done using fewer cycles when compared with the division
reminder and others, enabling the offloading using a percentage fashion, according
to the result of the operation. Thus, the main difference here is that we can use
a load balancer based on the bitwise operation, in order to distribute network or
application traffic across the hardware and/or software, increasing the capacity and
reliability of VNFs and eNFs.

1 ...
2 @name(".firewall")
3 table firewall {
4 key = {
5 hdr.ipv4.srcAddr: exact;
6 hdr.ipv4.dstAddr: lpm;
7 hdr.tcp.dstPort: exact;
8 }
9 actions = {

10 // L3 firewall action provided by PIaFFE
11 do_firewall;
12 drop;
13 NoAction;
14 }
15 size = 512;
16 default_action = NoAction;
17 }
18 ...
19 apply {
20 // traffic steering based on bitwise operation
21 // the operation will split the traffic on a 50% scale (x % 2 == x & 1)
22 if ((hdr.ipv4.identification & 1) == 0) {
23 // network traffic goes to VNF
24 firewall_vnf.apply();
25 } else {
26 // offload to eNF
27 firewall_enf.apply();
28 }
29 }

Listing 4.1: P4 source code example of an Offload Balancer

4.2.2 Usage of the framework

This section describes the PIaFFE architecture enablers, starting with its position
on ETSI NFV reference architecture, the hardware description and techniques
employed to build the PIaFFE framework onto the NFV paradigm. Also, it provides
some guidelines on designing the P4 code and metadata structures that will be
embedded into a SmartNIC, and how the multi-level chaining can be used to steer
the network traffic between VNFs and eNFs.

Figure 4.5 shows the position of PIaFFE in ETSI NFV reference architecture. The
framework defines the functional blocks and the reference points needed to support
the infrastructure services in the operator’s network. Within NFV, the infrastructure
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services are referred to as network services, which are provided by the NFs.

Figure 4.5: PIaFFE outlined onto ETSI NFV reference architecture framework
[Canada et al. 2017]

To show compliance, we map the components of PIaFFE to blocks in the frame-
work, starting with the Service, VNF and Infrastructure Description, where the
P4 application will be described, based on its capacities and available resources.
Each VNF is an implementation of a network application running atop the Network
Function Virtualisation Infrastructure (NFVI) resource; PIaFFE assigns an eNF
directly to the hardware resource based on a programmable network device, in this
case, a SmartNIC, which is mapped to its VNF pair through the Virtualisation Layer
and the Virtual Resources, exposing a virtual function of the SmartNIC to the VNF,
which will be used as a communication channel to exchange data and offloading
processing to the hardware. Data plane reconfiguration was not addressed by the
work, as the proposal is to enable offloading workload from an NFV to an eNF, and
it is out of the scope of the current work.

The PIaFFE framework prototype has been built on the Netronome Agilio Smart-
NIC [NETRONOME 2019]. As discussed in Chapter 3, we take advantage of the
compilers, builder and linker provided by Netronome Network Flow Processor SDK.
The process from compilation to firmware burning into the SmartNIC is fully con-
trolled by PIaFFE, in the same way as loading the user configuration. After firmware
had been generated, it is loaded to be executed in the SmartNIC, then the user
configuration is enabled on the SmartNIC, starting the network environment using
the desired virtualisation technology.

4.3 Experimental evaluation

Our evaluation aims to answer the following questions:
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1. Compared with host-side execution, what are the latency savings of running
parts of the applications on an in-network processor?

2. How much throughput can an application achieve using multi-level chaining?

4.3.1 Experimentation setup

For the benchmark tests, we used the environment described in section 4.2 and
illustrated in Figure 4.6. The test consists of generating traffic that goes through
a sequence of multi-level function chaining and measuring latency and throughput
performance. As a proof-of-concept, we selected the following chaining sequence:
pAuth → pIDS → pFW or vFW.

In this way, the multi-level chaining is deployed only for the firewall application,
which consists of an iptables-based firewall at VNF and a similar implementation
at the eNF level based on a table using match/drop actions, both with a few dozen
pre-inserted rules. This setup allows isolating the effects of offloading a single VNF.

UDP packets are generated at line rate (10 Gbps) using pktgen-dpdk1 with
the built-in Lua2 script library for throughput and latency measurements, which
automates the experiment and data collection. In our experiments, the traffic
generator follows the RFC25443 specification for frame sizes to be used on Ethernet,
starting by 64-byte and ending by 1518-byte, besides the methodology using a tester
and a DUT (device under test) in a closed loop.

To evaluate the impact of partial or full offloading of the firewall application, we
divided the experiment by varying load between eNF and VNF. In order to filter
similarities and simplify the results, we decided to synthesise the experiment into
four main types:

1. 100%@VNF : all traffic is processed by VNF;

2. 50%@eNF : half of the traffic is processed by eNF, and the other half is pro-
cessed by VNF;

3. 90%@eNF : 90% of traffic is processed by eNF, and 10% is processed by VNF;
and

4. 100%@eNF : all traffic is processed by eNF.

4.3.2 Testbed specification

Our testbed consists of two machines connected back-to-back without any switch,
as shown in Figure 4.6. One of them hosts the traffic generator, while the other
hosts the PIaFFE prototype plus SmartNIC. Each machine is equipped with a 1x6-
core Intel Xeon E5-2620 v3 2.4GHz CPU and 2 threads per core (hyper-threading
enabled), 16GB memory, and a DPDK-compatible Intel X710-2 10G Ethernet adapter
on the traffic generator side.

1http://git.dpdk.org/apps/pktgen-dpdk/
2https://www.lua.org/
3https://www.ietf.org/rfc/rfc2544.txt
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4.3.2.1 Multi-level chaining for network functions

In the right side of Figure 4.6, the chaining of three Network Functions is deployed
as PIaFFE proof-of-concept. They will be used throughout the chapter for different
evaluation scenarios: (1) Authentication: check if MAC/IP address is registered into
the system accounting management. (2) Intrusion Detection System (IDS) : takes
account of packets based on a table tuple match (e.g. count packets from defined
source IP address, or based on destination TCP/UDP port). (3) Application Firewall :
block traffic based on IDS accounting or a proactive rule.

Physical Server 1

Intel DPDK @ Intel X710-2

Physical Server 2

SmartNic 
Switch

pktgen-dpdk 
Lua script

P0 P1TX

pAuth pIDS

Hypervisor

vAuth vIDS

if0

vFW

eNFs

Physical SFP+ Interfaces

RX

if1 if2 if3 ifN

SR-IOV

PIIF 

pFW

Figure 4.6: Prototype implementation and testbed.

4.3.2.2 Traffic generator

Physical Server 1 runs Intel pktgen-dpdk version 19.10 application to generate
traffic at line rate – in this case, 10 Gbit/s, following the limit of the SmartNIC
physical interface, while Physical Server 2 acts as an edge data centre and uses
the PIaFFE framework to process packets using in-network eNF and traditional
VNFs, like in Figure 4.6. Each VNF runs on their respective qemu-kvm VM and has
a dedicated virtual function from SmartNIC, provided by SR-IOV pass-through on
the hypervisor, with 4GB RAM and 2 CPU cores unpinned, in order to create a more
realistic environment as possible. As proof of concept, we deploy VNFs using Linux
netmap and Linux OS tools (e.g. the application firewall VNF uses the iptables tool
to implement this function). The physical servers run Ubuntu Linux Server 18.04,
with kernel version 4.15.0-60, as same as the OS running on VMs that are hosting
each VNF.

4.3.3 Latency results

Figure 4.7 shows that partial or full offloading of a VNF to an eNF reduces latency
for all the test scenarios. Particularly, the reduction in the end-to-end latency is
more significant with small packet sizes (< 1280 bytes). For instance, the difference
reaches approximately 76x when we compare the 100%@VNF scenario (≈3300𝜇𝑠)
with the 100%@eNF scenario (≈43𝜇𝑠) for packet sizes of 64 and 128 Bytes.
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Figure 4.7: Latency comparison for different scenario types.

For big packets, partial offloading also causes latency reduction. For 1280-Byte
packets, the latency decreases approximately 62% when we compare the 100%@VNF
scenario with the 90%@eNF scenario. For 1518-Byte packets, the latency decreases
approximately 63% when we compare the 100%@VNF scenario with the 90%@eNF
scenario.

However, when the packet sizes increase, the full offloading to an eNF can cause
a negative impact on the latency measurements, due to the trade-off between packet
processing and forwarding at SmartNIC. For example, with 1518-Byte packets, the
latency difference between the two extremes (no offloading and full offloading)
is only ≈100𝜇𝑠, and the latency for 90%@eNF offloading is smaller than the full
offloading scenario. This benchmark is important to evaluate the trade-off on how
to determine the traffic that can be processed at the SmartNIC and when partial
offloading is better than full offloading.

4.3.4 Throughput results

Figure 4.8 shows the packet throughput measurements in Mpps for different test
scenarios. For small packets, the throughput gain of VNF offloading is evident. For
example, it reaches up to +10x with 64-Byte packets, and the gain decreases as the
packet size increases.

For packet sizes greater than 1024, the offloading does not affect significantly
the throughput performance, whereas the latency, in contrast, has been substantially
reduced, as explained in the previous experiment (see Figure 4.7).

Figure 4.9 complements the visualisation of throughput measurements now in
Mbps for the same tests. Given these results, it is clear that partial and full offloading
help to reduce packet losses for small and medium size packets.

For packet sizes smaller than 1280 Bytes, we can observe that the VNF with-
out offloading is not able to process packets at a line rate and offers very poor
performance. On the other hand, the partial and full offloading scenarios have a
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great impact on increasing the total traffic that can be processed by the firewall
application. Note that the percentage of traffic processed by eNF plays a crucial
role for small packets: for the 90%@eNF scenarios, the throughput achieves line
rate speed for packet sizes equal to or greater than 256 Bytes, while the 50%@eNF
scenarios can achieve line rate speed for packet sizes equal or greater than 512
Bytes.
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Figure 4.8: Throughput in Millions of Packets per Second (Mpps).
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Figure 4.9: Throughput in Megabits per second (Mbps).

Similarly to latency tests, throughput tests also show that full VNF offloading may
slightly reduce performance when compared to partial VNF offloading in some cases.
This is also due to the trade-off between packet processing and forwarding. However,
this difference could be even greater for a more complex eNF and reinforces the idea
that one should consider partial offloading of a VNF based on how much processing
can be shared between an eNF and a VNF.
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4.3.5 vCPU usage

The vCPU usage for the VNF vFW, considering small packets (64 Bytes) and big
packets (1518 Bytes), are presented in Figure 4.10. The experiment allocates 2
vCPUs to the VNF (out of 12 total vCPUs) at Physical Server 2. The chart shows the
influence of VNF processing for different offloading cases, except for full offloading
when all traffic is processed at eNF and only SmartNIC CPU is used. For 1518-
Byte packets, there is 100% vCPU consumption in the scenario with no offload
(100%@VNF), and a substantial decrease in the vCPU consumption (less than 5%
vCPU usage) for the offloading scenarios. Besides, little difference could be seen
when comparing the two partial offloading cases (50%@eNF and 90%@eNF), since
the processing demand is not high in terms of Mpps (see Fig. 4.8).
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Figure 4.10: VNF CPU usage for two extreme packet sizes.

For 64-Byte packets, the processing demand is much higher in terms of Mpps
(see Fig. 4.8). If we correlate the vCPU usage with the throughput of Figure
4.9, we can observe that the scenario with no offload (100%@VNF) presents very
poor performance (less than 1 Gbps), while the scenario 50%@eNF achieves higher
throughput (more than 5 Gbps) with the same vCPU consumption (100% vCPU
usage). Moreover, the scenario 90%@eNF achieves even higher throughput (more
than 7 Gbps) with much lower vCPU consumption (8% vCPU usage), as it offloads
most of the processing to the SmartNIC.

These results demonstrate experimentally that partial offloading can improve
latency and throughput performance while saving vCPU usage and releasing re-
sources for traditional VMs that run on the same hypervisor as the VNFs, which
enables a better allocation of resources by the tenant.
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4.4 Chapter remarks

In this chapter, we expose the practical use of NFV, i.e., programmability and
offloading constraints, using PIaFFE [Mafioletti et al. 2020] framework by creating
VNF programming abstractions as building blocks using P4 language and the P4
Data Structure element for multi-level chaining to offload VNFs using eNFs in
SmartNICs, which can be dynamic or static -defined triggers.

We demonstrated PIaFFE flexibility in a use case with three eNFs and one VNF.
These eNFs were deployed on a commodity programmable SmartNIC, while its VNF
counterpart on a kernel-based hypervisor, the latter emulated a tenant environment
acting like a cloud platform.

Moreover, we have improved the data structure from the original proposal,
now implementing an Offload Balancer concept, which enables the full or partial
offload of network traffic acting by three different fashions: internally, externally or
dynamically triggered. Our evaluations show that even with partial traffic offloading
to the SmartNIC, latency and throughput can be significantly improved alongside
reducing vCPU usage at virtual hosts and, consequently, at the main host, increasing
the capacity for virtualisation and resources.



Chapter 5

Hacking programmable data planes
in cloud robotics: intercepting and
modifying ROS messaging

5.1 Overview

Envisioned as a key factor for the upcoming generation of service robots, cloud-
enabled robots will also play important roles in areas such as eHealth and Industry
4.0 [Saha and Dasgupta 2018]. Given resource constraints imposed by embedded
hardware, the possibility of offloading processing into a programmable element
closer to the robots (e.g. edge) allows more cost-effective robots to cooperate in
unstructured environments [Saha and Dasgupta 2018].

Network-related issues (e.g., latency) may prevent further advances in cloud
robotics, and edge computing techniques have the potential to alleviate such con-
straints [Mello et al. 2019]. Nevertheless, edge computing is an expensive architec-
ture solution when compared to the cloud and may not suit some latency-sensitive
and critical applications in production environments (e.g., lower-level controllers).
Thus, there is room for exploiting this market using state-of-the-art network pro-
grammability. In-network computing is a promising field that uses the capabilities of
programmable network devices (e.g., programmable switches and NICs) to offload
computing to the network [Nour et al. 2020].

Figure 5.1 presents the concept of In-Network Edge (INE), in which a pro-
grammable data plane connects robots to edge and cloud servers, and allows for
robotic functionality to be instantiated within the network. Leveraging in-network
applications based on a consolidated network programming language, such as the
P4 language, may enhance management and control at the edge. Since network
devices are in physical proximity to robots and distributed sensors, the use of in-
network computing for robotics also reduces the overall latency, which is especially
interesting for time-critical applications. In this context, INE may be enabled by the
P4 language and an NFV framework [Mafioletti et al. 2020], with the potential to
unleash real-time functionality in networked robotics.

Nevertheless, routing data from networked robotic systems via programmable
network devices opens another window of opportunity for attackers trying to get
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Figure 5.1: Cloud Robotics and Programmable Data Plane.

access to the system. In this sense, in-network computing is a double-edged sword:
vulnerabilities in how data is transmitted and interpreted can be explored from
within the network. Thus, in a threat model in which malicious applications are
running inside programmable devices, aspects related to data security, integrity
and validity must be taken into further consideration. Multiple works have advo-
cated for the use of in-network computing for robotics (e.g., [Glebke et al. 2019,
Cesen et al. 2020, Kunze et al. 2021]), but to the best of our knowledge, this is
the first work to address security concerns introduced by programmable network
devices to networked robotic systems.

We argue that most current robotic systems are vulnerable to simple attacks
in a programmable data plane. We discuss two threat models in which robotic
systems might be driven to unstable conditions by a compromised network device.
We demonstrate such vulnerabilities using a networked robotics system based on
the Robot Operating System (ROS), which is currently the most adopted robot
development framework, communicating over a P4-enabled network device. The
main contribution of this work is to cast light on how attacks that are well described
in the literature can be refactored to be launched from the network itself.

5.2 ROS use-case

This section describes the potential constraints, the design and the enablers of our
following proposals to exploit the security in a programmable data plane.

5.2.1 Experimentation design

For demonstrative purposes, we select a use-case inspired by the challenge of
exposing security concerns about cloud robotics using the Robotics Operating
System (ROS) as a proof-of-concept. Here, the framework needs to parse and modify
raw packets, situated at high-level layers, i.e. transport and application network
layers, in order to achieve the proposed security exploit.

Thus, this chapter includes the implementation of a VNF using PIaFFE which is
capable of intercepting and changing application data inside higher layers of the
network stack, proving that a jeopardised device could be used to compromise the
security of the Cloud Robotics system. In order to do this, the PIaFFE framework
will cover the implementation of an eNF that acts in almost all network layers, from
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the link and network layers for providing packet forwarding, to the transport and
application layers, changing protocol and data, as shown in Figure 5.2.

Application

Transport

Data Link

Network
IPv4

TCP

Ethernet

ROS

Physical

PIaFFE

Figure 5.2: Network layers handled by PIaFFE in this Chapter.

To address the early-mentioned challenge, we have envisioned the design based
on the following enablers:

• a mechanism capable of intercepting, storing and modifying ROS standard
messages;

• keeps the current implementations of both ROS and robot simulator, working
transparently to the applications.

5.2.1.1 Placement of embedded network function and its security

In NFV, the VNF placement is normally defined by where and how many instances of
each network function should be placed and allocated. When using this paradigm in
conjunction with programmable data planes, we have to define the most desirable
place to execute a specific network function, in order to optimise both hardware and
software resources.

Hypervisor
VNF

vif0 vif1

SmartNIC

eNFPIIF 

Figure 5.3: PIaFFE and multi-level chaining concept.
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PIaFFE [Mafioletti et al. 2020] is a framework that uses decomposing and deploy-
ing approaches to transform Virtual Network Functions (VNFs) into small embedded
Network Functions (eNFs) on in-network processors, allowing the correct placement
and balance between hardware capabilities from a programmable NIC, using the
flexibility of traditional VNFs running on virtual hosts. As depicted by Figure 5.3,
the PIaFFE framework can be used to deploy micro-applications into programmable
data planes, creating small functions that can cope with network-related services
(i.e. firewall, routing) and/or high-level network applications (i.e. data encryption,
telemetry), enabling the inference on the upper application stack into the network
packets. As long as the network traffic arrives at the SmartNIC, PIaFFE employs the
Intercepting and Forwarding (PIIF) element – which can be a hash table, a bloom
filter or a simple trigger, for instance – to steer traffic through the eNF or send it up
to the VNF at the virtualisation layer, using SR-IOV as an efficient communication
channel.

In this use-case, we propose the use of PIaFFE for creating ROS micro-applications
that are able to interact with the network in a transparent fashion, using the PIIF
with an external trigger to enable/disable the in-network computing, processing
network packets when forwarding them, exposing the potential disruption that can
be achieved using a programmable data plane with a malicious embedded code.

5.2.2 Usage of the framework

This section describes the patterns to build an exploit using programmable hardware,
acting in a transparent fashion for robots and the cloud.

Figure 5.4 shows how the eNF parses and recognises ROS data inside network
packets. A standard library was reused from the PIaFFE framework to identify the
traditional network headers (e.g. Ethernet, IPv4, IPv6, TCP), plus a new one was
generated to parse and classify ROS message headers and ROS data contained by
the payload of the packet. The eNF acts like a layer 2 forwarder application, but
concurring with the forwarder was another application, which is able to check and
store data from ROS messages for further use.

Figure 5.4: Network packet headers, ROS message header and ROS data.

Moreover, the PIaFFE framework enables the user to define new libraries and
headers, permitting the extension of types of messages that can be interpreted into
an eNF inside the network programmable device, extending the interaction between
the programmable data plane and Cloud Robotics applications.

5.2.3 Background review

As with other embedded systems, robotics manufacturers place a high priority on
safety, development cost, speed to market, and providing customer features. Cy-
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bersecurity is a lower, and sometimes, forgotten priority in part because security is
not a primary consideration for customers [Clark et al. 2017]. The end-user demands
more concerns on cost, usability, features and functionality [Mirjalili and Lenstra 2008].
However, due to their direct interaction with human beings, robotics applica-
tions must be required to be more secure and safe than other embedded sys-
tems. Overall, various security concerns, issues, vulnerabilities, and threats are
constantly arising, including the malicious misuse of these robots via cyberat-
tacks, which may result in serious injuries and even death [Kirschgens et al. 2018,
Ángel Manuel Guerrero-Higueras et al. 2018].

5.2.4 Vulnerabilities in programmable network devices

As desirable properties for securing network communications, we can list con-
fidentiality, message integrity, end-point authentication and operational security
[Kurose and Ross 2016]. Together, these terms define a desirable secure environ-
ment for devices to ensure that the messages exchanged between them are authentic
and to increase the network’s confidence.

Programmable devices are extremely effective in improving performance and
giving flexibility to the data plane, through the use of domain-specific programming
languages and compilers which could exploit that emerging programmable data
plane devices. However, they bring novel security concerns, such as targeted denial
of service and state exhaustion attacks, and data plane attacks [Dargahi et al. 2017],
which need to be exposed both to programmers and the end-user.

A compromised device can disrupt the overall network’s confidence since all
packets need to be routed through this type of device, and given the location on the
premises, which is generally considered safe, even a small malicious exploit inserted
on it may result in disastrous problems. Notwithstanding, non-programmable net-
work devices are also susceptible to these problems [CVE 2020, Wang et al. 2020],
and now with the possibility to customise the data plane using high-level program-
ming languages, these constraints can escalate to a new level, leaving room for new
types of exploits that can be pre-inserted and programmed to catch information or
simply to disrupt all network traffic passing through these devices.

5.2.4.1 Security in ROS systems

ROS [Quigley et al. 2009] is the de facto standard middleware for robotics. It
separates application management issues and the communication of data, which
is abstracted by the middleware. This decentralisation of components pairs well
with networked robotic systems and ROS can be used as a base to connect multiple
components, even when parts of the system are in the cloud. Given its widespread
use, ROS is ideal to demonstrate how programmable data planes can be used to
explore vulnerabilities in robotic systems.

To briefly explain how ROS works, the pieces of software that compose the
system (i.e., nodes) are executed on top of an operating system (OS) and use the
underlying ROS infrastructure to communicate with other nodes. Communication is
carried out by transmitting well-defined data structures (i.e., messages) via topics in
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Figure 5.5: ROS operation: the master registers and provides information for
publishers and subscribers to establish connections and allow nodes to exchange
information directly via topics.

a pub/sub architecture. A ROS master is implemented using XMLRPC, a stateless
HTTP-based protocol, and provides naming and registration services to the nodes
in the system. The master is used to connect nodes and, once a publishing node
locates a subscriber they can communicate peer-to-peer. This process is illustrated
in Fig. 5.5: upon startup, nodes NodeA and NodeB advertise to the master that they
will publish messages to topics named /topic1 and /topic2, respectively; to subscribe
to those topics, NodeC communicates with the master to register two subscribers,
each associated with one topic. Then, as there are both publishers and subscribers
registered to each topic, the master sends instructions to the nodes to establish a
connection and start communicating with one another.

Traditionally, custom protocols based on TCP/IP or UDP/IP are used in ROS
(TCPROS and UDPROS, respectively) [Quigley et al. 2009]. Upon initialisation, a
publisher node provides the ROS master with the topic name and associated data
structure (i.e., ROS message type). The master then informs the node about all of
the other publishers and subscribers. When a node becomes a publisher on a topic,
it will connect to subscribers to that specific topic and there is no access control for
topics beyond the data type MD5 hash [Rivera et al. 2019].

In general, no security mechanisms regarding confidentiality, integrity or authen-
ticity are implemented out of the box. Data is transmitted unencrypted and the only
information needed to decode intercepted ROS packets is the type of the message
being transmitted, which describes the associated data structure and is usually
standardised in the ROS framework. Thus, ROS messages can be intercepted and
decoded either by direct inspection of the payload. Notwithstanding, the stateless
API does not take into account what is happening in the network.

The Secure ROS (SROS) was introduced to add cryptography and security mea-
sures to ROS, thus addressing some of its vulnerabilities [White et al. 2016]. The
SROS enables TLS support for encrypted communication within ROS, access con-
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trol policies and user-space tooling to generate node key pairs. Nevertheless, the
use of the SROS hampers performance and such a trade-off must be taken into
account. Alternatives to the SROS have been presented, but none seem to have
gained traction. Dieber et al. [Dieber et al. 2020] identified that compromised user
space libraries can break communication’s confidence in ROS. We argue that a
compromised programmable data plane can be exploited to the same end.

It is worth noting that ROS’ evolution, ROS2 tackles some of the security concerns
with ROS. It uses DDS as the messaging layer, which supports a security standard
for protecting messages between parties with access control enforcement. The
SROS2 is the current initiative to integrate DDS security and ROS2 and has been
found to significantly affect system performance [Kim et al. 2018], which is also
observed in other approaches [DiLuoffo et al. 2018]. ROS’ user base is much larger
than ROS2’s, making it more relevant to the security concerns we raise, some of
which also apply to ROS2 and will be addressed in our future work.

5.3 Threat models exposed

In this section, we explore two vulnerabilities in the use of ROS within the paradigm
of programmable data planes. First, we show how insecure communication can be
leveraged by a compromised network device to take over robot control. Then, we
demonstrate how even systems implementing secure communication are susceptible
to accepting old of repeated data as valid. Given the projects described in the
literature and in the open-source community, the majority of ROS systems would be
vulnerable to such attacks. In the remainder of this section, for each vulnerability,
we describe a corresponding threat model and demonstrate how it can be exploited
transparently via in-network computing.

5.3.1 In-network hijacking: man-in-the-middle attack

Despite ROS’ distributed nature, security aspects in communication are not imple-
mented. Common message types encapsulate raw data and it’s safe to assume that
most ROS’ users take no further steps into securing it. Thus, if one can isolate
a packet flow and identify the associated data structure interpreting the data is
straightforward. More than that, it becomes easy to tamper with the flow by directly
modifying the data being transmitted; this can be done in a coherent manner, replac-
ing the actual data for feasible – but incorrect – data, thus making it harder for any
automated function to detect that the system has been compromised.
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Figure 5.6: Threat model: hijacking.

We consider that programmable network devices have transparent access to data
exchanged in a ROS system. Such devices may be used to identify a given flow and
alter the data being transmitted. There are three assumptions: (i) ROS’ standard
libraries and messages are used; (ii) ROS’ nodes are distributed among different
machines, and; (iii) transmitted data is not encrypted. All of these assumptions are
compatible with the standard ROS operation and are present in most systems.

To demonstrate how to explore such vulnerabilities using programmable network
devices, we implement a ROS system composed of two VMs communicating over a
P4-enabled SmartNIC. One VM simulates a robot and the other VM instantiates a
navigation controller. In this feedback loop, the robot sends its current position to
the controller, which generates velocity commands for the robot. In the SmartNIC,
we implement a P4 library relating packet size and part of the payload to standard
message types. The SmartNIC parses its traffic to single out packets identified as
messages coming from the simulated robot’s controller, as exemplified in Figure 5.6.
Once the target flow is identified, its payload is altered to a given valid instruction,
thus hijacking the robot’s motion.
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Figure 5.7: TurtleSim robot simulator: (1) Normal robot behaviour; (2) Setting a
trigger via P4 table; (3) Abnormal robot behaviour (red track)

We use the TurtleSim package to simulate a robot being controlled to follow
an eight-shape trajectory. Given an external trigger, the hijacking takes place and
the messages sent from the controller to the robot are modified to trick the robot
into following a spurious trajectory. Figure 5.7 illustrates the outcomes of our
demonstration. The controller tracks an eight-shaped trajectory and, once the attack
begins, the robot receives tampered instructions to make it follow a circular path.
By changing the payload directly, it is possible to inject any instruction to pose as a
legitimate control output. A similar approach could be used to modify sensor data,
introducing artificial noise to hamper system performance without leaving clear
signs of an attack.

In our demonstration, we rely on live per-packet detection of a given ROS flow. A
more sophisticated approach would be to identify ROS’ control packets exchanged
among nodes and the ROS master to identify publish/subscriber pairs and the type
of message exchanged among them. Thus, to identify the flow associated with a
given pair of nodes, one only needs to parse the TCP header in such packets.

Encryption could be used in all communications within a ROS system to overcome
such a threat, especially in production environments. Nevertheless, encryption



80

algorithms introduce processing and bandwidth overheads that must be considered
since they can degrade the overall performance. In case the internal network is
considered to be secure and encryption is only used when communicating with the
cloud, a compromised programmable network device within the local network might
also be exploited for a similar result.

5.3.2 In-network replay attack

A replay attack occurs when an individual eavesdrops on secure network communica-
tion, intercepts the packets, and then delays or re-sends it to misdirect the receiver
into doing what the attacker wants, or simply messes with the final proposes of the
overall communication. Thereafter, programmable network devices are not only
capable of modifying packet data but can also clone or create packets, inserting
them into a given flow.

Thus, it becomes possible to clone valid ROS messages to mislead subscribers,
whether data is encrypted or not. Since ROS’ subscribers rely on a middleware-level
buffer for relaying incoming messages, overflowing the buffer may lead to undefined
behaviour in the ROS system. This could be achieved by inserting considerably
lower levels of throughput than it would be necessary to disrupt the robot network.
By being done transparently, from the inside of the network, such an attack could be
hard to be detected and could demand direct inspection of incoming packets in the
robot.

By default, neither ROS nor the new ROS2 implements mechanisms to verify if
the arriving data is duplicated. A sequence field is present in the header of some
messages in ROS, but it was deprecated in earlier versions. This means that, unless
the developer explicitly implements methods to avoid message repetition, every
message extracted from the overflowed buffer would be considered valid. One way
to mitigate such a threat without directly addressing it is to discard messages with
old timestamps but, even if a short time-to-live mechanism is present, the buffer size
would have to be tuned accordingly to limit the amount of accepted duplicate data.
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Figure 5.8: Threat model: replay attack.

For this threat model, we consider that a programmable network device may
insert packets in publisher/subscriber flows in ROS systems, as illustrated in Figure
5.8. A given flow can be targeted and have its packets cloned to overflow subscribers’
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buffers. There are two assumptions: (i) ROS’ nodes are distributed among different
machines, and; (ii) subscriber nodes do not implement any mechanisms to discard
duplicate messages. These assumptions are compatible with the standard ROS
operation and are present in most users’ ROS systems.

We use the same setup described in the Subsection 5.3.1 to demonstrate how to
generate unstable behaviours in robot systems by flooding a ROS subscriber. In the
SmartNIC, we implement a P4 library relating packet size and part of the payload
to common standard ROS message types. The SmartNIC is now programmed with
P4 code that parses its traffic to single out a given flow and replicate its packets.
In separate experiments, we target the subscriber in the controller node, which
receives the current robot position, and the subscriber in the robot’s motion node.
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Figure 5.9: Replay attack: a) robot position on plane varying with time, normal
(blue) versus disturbed (red) operation
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Figure 5.10: Replay attack: angular velocity of the robot under normal operation
(blue zone) and under attack (red zone); the red dashed line marks the beginning of
the attack.

0 20 40 60 80 100 120 140
Time (s)

2

1

0

1

2

Li
ne

ar
 V

el 
(m

/s)

Current velocity
Reference Vel. (Control Signal)

Figure 5.11: Replay attack: linear velocity of the robot under normal operation (blue
zone) and under attack (red zone); the red dashed line marks the beginning of the
attack.

As we can see in Figure 5.9, the desired robot trajectory (blue) was disturbed by
the in-network replay attack, forming a different pattern (red) due to the overload
generated by the eNF on the network device. Following Figure 5.10 and 5.11, we
also have the angular and linear velocities of the TurtleSim, captured before (blue
zone) and during (red zone) the attack, showing the erratic behaviour of the system
as a result of the disruption caused by the replay attack. In a real scenario of
robotics, this could lead to a catastrophic outcome, since the robot would supposedly
be receiving orders from the controller, which in turn would not be aware of what
the robot was doing.
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5.4 Chapter remarks

In this Section, we discuss concerns about the effects of jeopardised programmable
devices on networked robotic systems. We show that micro-applications can be
inserted into the data plane to intercept and modify network packets. In particular,
we implement such micro-applications to interact with packets of ROS systems,
causing problems for both controller and the robot fleet. We also discuss the main
threat models, pointing at some aspects of the current implementations of networked
robotics, and showing the results using P4-enabled network hardware. Our results
confirm the possibility of exploiting programmable network devices as attack vectors
for robotics systems.

Although the results shown here go against the end-to-end principle discussed
before, the main objective was to raise concerns about a device with compromised
security, intentionally or not, revealing the weaknesses of a programmable network
device. Therefore, knowing the weaknesses, we can devise a way to ensure the
confidentiality and reliability of the data, adding and checking information via hash
algorithms, such as SHA-256, and/or cryptography using an embedded network
function (eNF) near the robot fleet, increasing both security and performance using
the hardware network to offloading processing.



Chapter 6

Providing data integrity by
interacting and modifying raw
packets: an SHA use-case

6.1 Overview

In the area of networking, one of the most CPU-demanding activities is the se-
curitisation of communications using cryptography. Payload data processing and
specialised cryptographic hash functions are commonly employed in secure and
resilient communication, avoiding unauthorised access, data manipulation and modi-
fication. In-network processor-based programmable network interface cards (NIC)
offer a solution for offloading network traffic, allowing hosts to process general
computations onto the programmable NIC while keeping the support of high-level
applications on them.

The advent of new programming paradigms like P4 [Bosshart et al. 2014] for
high-speed packet processing platforms has enabled a wide variety of networking
applications. For instance, in-network caching [Jin et al. 2017], heavy-hitter de-
tection [Sivaraman et al. 2017, da Silva et al. 2018], and network load balancing
[Grigoryan et al. 2019] enable these functions that were primarily designated for
running into commodity servers to migrate to the data plane, using hash-based
data structures like bloom filters, count–min and hash tables to track network flows
directly into the data plane.

However, the P4 language currently only supports a few non-cryptographic
hash algorithms based on cyclic redundancy check (CRC) or checksum computa-
tions typically used in network protocols like TCP, IPv4 and IPv6 checksums due
to target hardware constraints. However, there is still a need for packet-based
functionalities involving basic data security and verification. In those cases, “true”
cryptographic hash functions are required, for example, hash-based message au-
thentication codes (HMAC) [Turner 2008], providing message authentication, or
any other cryptographic hash functions used to increase resilience against hash
collisions for hash-based applications cited early.

To address advanced secure applications implementation using in-network com-
puting and also the disaggregation of services into different virtualised functions,
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we argue that complex cryptographic hash functions extensively used nowadays, like
Secure Hash Algorithm 2 (SHA-2), should be ported onto P4 targets. For this end,
however, one has to deal first with the limited computational resources, such as the
ones available at SmartNICs [NETRONOME 2019], when enabling the offloading of
secure applications to the data plane.

To the best of our knowledge, this is the first proof-of-concept implementation of
an SHA-2 variant library on a commodity programmable in-networking processor
using the P4 language. Our strategy is to implement a shared object library as an
“extern” to overcome language-related restrictions. This way we manage to embed a
complex algorithm that includes loop statements and other non-native features.

A testbed is also created for a benchmark study on finding out whether SHA-2
embedding as Network Function (NF) is worth not considering throughput and la-
tency features. Those metrics are key for providing SHA along with Service Function
Chaining (SFC) in a Network Function Virtualisation (NFV) modern infrastructures.
The SmartNIC embedded Network Function (eNF) prototype implementation is
checked against other two software data plane implementations, namely, Open
vSwitch software switch (OvS) and Intel Data Plane Development Kit (DPDK), both
ported with the same SHA-2 library.

However, this intuitive scenario is not trivial to be implemented considering that
the following points should be addressed:

i. a proper mechanism for exchanging network traffic between software and
hardware must be found;

ii. an application using a domain-specific programming language and its extern
option that fits into the SmartNIC hardware must be built;

We evaluate the initial implementation of the PIaFFE framework for addressing
the above challenges. This initiative aims to open new avenues for programmers to
develop applications using an in-networking processor which requires cryptographic
hash functions running into a programmable network device.

6.2 SHA use-case

This section describes the design principles, architecture and enablers, and the
potential limitations of our approach using PIaFFE to develop and deploy a secure
hash algorithm onto network programmable hardware. Here, PIaFFE will be used
to develop and deploy a complex algorithm using a limited resources network
programmable hardware, checking the usage of the framework for this category of
application to further enable the usage of cryptographic algorithms not present in
the SmartNIC’s original design.

6.2.1 Experimentation design

The design principles of our proposed use case for experimenting, and consequently,
evolving our framework were motivated by the challenge of deploying complex
network applications on resource-limited network hardware, providing support for
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modern applications that require such a type of cryptographic hash algorithm for
assuring data integrity. Thus, this chapter includes the implementation of the Secure
Hash Algorithm v2 (SHA-2) using PIaFFE, covering almost all network layers, from
transport to data link layers for forwarding and at the application layer for acquiring
data to be hashed, as depicted in Figure 6.1. Thus, PIaFFE will tackle these network
layers using in-network computing for offloading processing data.
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UDP

Physical

Payload
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Figure 6.1: Network layers handled by PIaFFE in this Chapter.

6.2.2 Usage of the framework

Hash functions play a key role in various network applications being fundamental for
modern network communication. As more and more functionality is being moved into
programmable data planes, supporting hash functions with strong cryptographic
properties will be a key enabler for various networking use cases. In order to
address the early-mentioned challenges, we design a simple architecture based on
the following enablers from the PIaFFE framework:

i. functional decomposition for deployment;

ii. multi-level forwarding between hardware and software.

6.2.3 Functional decomposition for deployment

Most network functions are deployed as a monolith application, whereby all compo-
nents are bundled together into a single piece of code. This can lead to maintenance
challenges, as well as slow down the trailing of new technologies. Decomposition
is therefore a significant step towards evolving VNFs to be cloud-native and much
more agile and scalable. And decomposing must be undertaken for the majority of
the data plane, control and signalling VNFs. In this context, we define decomposi-
tion as breaking a monolithic network function into a set of small applications, or
“micro-applications”.
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Decomposition also allows for common functions to be stripped away from the
core logic of the applications. This allows the applications themselves to be lighter
– which makes them easier and quicker to develop, manage, and deploy into pro-
grammable network hardware. In addition, it centralises core functions and operates
in an “as-a-service” model. We also want to be able to reuse common functionalities,
but not have to pay for them multiple times. The process of decomposition also gives
micro-application owners the opportunity to remove unnecessary functionality from
the application logic [Richardson 2018].

The challenge in realising any micro-application-based software using decompo-
sition is to identify the set of functionalities, and this is difficult because it requires
domain-specific knowledge. One way to approach decomposition is to leverage do-
main expertise (e.g., by consulting with domain-specific developers) or to study exist-
ing open-source network applications, identifying smaller functional units. As a key
to employing functional decomposition, PIaFFE Framework [Mafioletti et al. 2020]
defines a roadmap towards creating an embedded network function (eNF) using
an approach based on the application network-related characteristics (e.g., packet
parsing, classifying, processing and forwarding), re-architecting the network pro-
gramming ecosystem.
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Figure 6.2: Illustrative example of decomposition using a set of network applications.

From the previous approach defined in Chapter 3, we extend the decomposition
method for a specific network function, now using for reference two monolithic
network applications, the first one based on a L2/L3 packet forwarder and the
second one based on SHA-256 algorithm, we can outline the steps for decomposing
these two applications into a new micro-application, as shown in Figure 6.2. The
first step for decomposing multiple applications is to identify the network-related
characteristics of each one, starting with the L2/L3 Forwarder.

In the same way, we enumerate the characteristics of the next application, in this
case, SHA-256 algorithm: here, we use the same colour (blue) to highlight the
overlapped characteristics and another colour (green) for specific functions. We also
used a specific colour (orange) to emphasise the main logic behind both applications,
keeping the pattern established before. Based on the colour map, we can merge
the repeated functions of the applications into the micro-application realisation,
using a single structure representing the two main applications, making it possible
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to be embedded in limited-resource programmable network hardware.

6.2.4 Multi-level forwarding between hardware and software

In order to switch traffic between hardware and software implementations, we
employ the Intercepting and Forwarding element (PIIF) from PIaFFE, steering
network traffic through the embedded Network Function or sending it up to the
application at the virtualisation layer, using a bottom-up approach as shown in
Figure 6.3: as soon as a packet arrives at the SmartNIC, it is either intercepted
and forwarded to the “OS level”, or kept into the “hardware level”, being processed
using the SmartNIC network hardware.

Hypervisor

Application

iface0 iface1

SmartNIC switch

eNF

SR-IOV

L2/L3 Forward

Multi-level
Forwarding

PIIF 

Figure 6.3: Multi-level forwarding using Intercepting and Forwarding (PIIF) element.

In Listing 6.1, it is presented a fragment of the P4 source code illustrating the
PIIF element utilised in this use-case. This code defines a basic (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) data
structure. Whenever an incoming packet hits a table’s entry (defined by its source
IPv4 and UDP port), then it is steered to the software, otherwise, it is sent to the
eNF pipeline that applies a specific hash function.

1 ...
2 @name(".piif_table")
3 table piif {
4 key = {
5 standard_metadata.ingress_port: exact;
6 hdr.ipv4.srcAddr: exact;
7 hdr.udp.srcPort: exact;
8 }
9 actions = {

10 NoAction;
11 }
12 size = 512;
13 default_action = NoAction;
14 }
15 ...
16 apply {
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17 if (piif.apply().hit) {
18 sw_forward.apply();
19 } else {
20 do_sha256();
21 hw_forward.apply();
22 }
23 }

Listing 6.1: Pseudo code of the PIIF

6.2.5 Hash algorithm implementation

Our implementation is focusing on porting SHA-256 to a P4 programmable device for
evaluating the performance of the basic cryptographic hash operations, which could
be applied for a range of use cases further, such as HMAC calculations, hash-based
networking applications and others.

P4 language lacks a loop control flow statement, and this limits the possibilities
for implementing complex applications, such as SHA-256 which requires that for
stages like shuffling and compressing data. To overcome this limitation, we have
created an extern based on micro-C language (a variant of C language), as shown in
the fragment of code in 6.2, which can be called from the P4 program as a “function”,
interacting with the P4 pipeline and its data/metadata.

1 #include "pif_plugin.h"
2 #include "plugin.h"
3 ...
4 int pif_plugin_do_sha256(
5 EXTRACTED_HEADERS_T *ext_hdrs,
6 MATCH_DATA_T *match_data)
7 {
8 PIF_PLUGIN_payload_T *payload;
9 BYTE buf[SHA256_BLOCK_SIZE];

10 SHA256_CTX ctx;
11 /* Grab a pointer to the payload ’header’ */
12 payload=pif_plugin_hdr_get_payload(ext_hdrs);
13 BYTE text[] = payload->block0;
14 /* begin sha256 calculation */
15 sha256_init(&ctx);
16 sha256_update(&ctx, text, strlen(text));
17 sha256_final(&ctx, buf);
18 /* end sha256 calculation */
19 /* storing hash into the specific field */
20 payload->sha256_field = buf;
21 return PIF_PLUGIN_RETURN_FORWARD;
22 }

Listing 6.2: A fragment of micro-C extern SHA-256 function.

The target hardware used for the implementation of our architecture (i.e.,
Netronome SmartNIC), has limited resources for hosting large applications. Thus,
the firmware and NIC “storage” memory capacity must be properly used, otherwise,
the image can no longer be loaded onto the SmartNIC. To tackle this constraint, we
have developed a slim P4 code for L2/L3 packet forwarder based on static table
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entries in conjunction with the SHA-256 algorithm running as an extern as cited
above, fitting with NIC’s firmware image size.

As mentioned before, the micro-C code fragment 6.2 starts by exposing the
headers and match data from the P4 program, which can be accessed and modified
inside the extern, including the packet payload, which is represented by a “payload
header” split into blocks of 512-bit size, due to header size restrictions imposed by
the used target hardware. The SHA-256 function is called in three steps, in order
to accomplish all stages of the algorithm, namely, the padding process, shuffling
and compression. In the end, the hash is added to a specific header field previously
defined in the P4 program. Here is defined by the 𝑠ℎ𝑎256_𝑓𝑖𝑒𝑙𝑑 variable, being
transmitted with the original network packet. In this phase of the processing, we
are also using this approach in order to measure the time to generate and insert
hashes using in-network computing, however, the functionality can be extended to
accomplish more elaborated scenarios in future implementations.

One may even think of a combination of an optimised integration with native
dedicated hardware acceleration components. However, crypto security accelerators
are not usually accessible nor documented when using P4 language shipped with
the NIC’s SDKs. Thus, this integration is beyond the scope of this work.

6.3 Experimental evaluation

The performance of the secure hash function, in terms of latency and processing time
(processing plus forwarding packets), is critical for high-performance applications.
Thus, our evaluation aims to answer the following key question for NFV applications:

i. Compared with host-side execution, what are the expected latency savings of
forwarding and processing network traffic through an in-network device?

ii. What are the latency statistics when running such micro-applications on differ-
ent platforms?

iii. How close can we get to the maximum possible throughput in terms of packets
per second (PPS)?

6.3.1 Benchmarking the virtualisation techniques

As far as test scenarios are concerned, we are comparing the in-networking comput-
ing capability with network forwarding technologies used on the Linux OS doing the
same operation, as follows:

1. Open vSwitch switch: modified Open vSwitch software switch executed
at kernel-mode as a layer 2 network forwarder with a selectable SHA-256
application, as shown in Figure 6.4.
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Figure 6.4: Virtualisation techniques: Open vSwitch software switch

2. Intel DPDK: Intel DPDK L2FWD application acting as a layer 2 forwarder and
SHA-256 algorithm which can be turned on/off according to the traffic, as same
as previous Open vSwitch switch, as depicted in Figure 6.5.
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T1: SHA256 calc.

Physical SFP+ Interfaces

Figure 6.5: Virtualisation techniques: Intel DPDK L2 forwarder application

3. P4-enabled hardware: using a Netronome SmartNIC [NETRONOME 2019]
with a layer 2 forwarder embedded network function, also running a ported
SHA-256 application dynamically enabled, as we can see on Figure 6.6.
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Figure 6.6: Virtualisation techniques: P4-enabled hardware

In all virtualisation techniques, the topology and network functionality are the
same in each level (software and hardware levels): packets are generated in one
host, being forwarded through the SmartNIC hardware in another host running
Linux OS and network drivers in three different modes, respectively: 1) Linux netdev
mode, 2) Intel DPDK mode or 3) P4 mode. All details about the testbed will be
discussed below.

6.3.2 Experimentation setup

For the benchmark tests, we used the environment described in 6.2 and illustrated
in Figure 6.7, using the technique explained in Figure 6.8.
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SmartNic 
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Hypervisor

Physical SFP+ Interfaces
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Figure 6.7: Testbed specification: Prototype implementation and testbed.
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Figure 6.8: Using hardware timestamp to measure the time to process/deliver a
packet.

The test consists of generating traffic that goes through each virtualisation
technique specified before, measuring latency performance to forward-only and
forward-calculate using a specific case. As a proof-of-concept, the Secure Hash
Algorithm 256 (SHA-256) library, is widely used for authentication and encryption
protocols, including SSL, TLS, IPsec, SSH, PGP, and secure password hashing on
Linux OS. This algorithm is public and open-source, portable for most platforms.
We built a library using our previous work, allowing us to check the feasibility of
the development and deployment of complex applications using the framework to
deliver a micro-application onto a programmable network device.

Hence, UDP packets are generated using pktgen-dpdk through the 𝑇𝑋 interface
and received using the same application in 𝑅𝑋. These packets are diverted accord-
ing to the purpose of each experiment: selecting either the SmartNIC hardware
only or the software level using a virtual machine. This virtual machine runs a
forwarder application with the SHA-256 algorithm inside, that can be enabled or
disabled dynamically during the experiments using a different UDP source port in
𝑇𝑋, permitting the measurement for each virtualisation technique.

6.3.2.1 Testbed description

Our testbed consists of two machines connected back-to-back without any switching
element in between, as shown in Fig. 6.7. One of them hosts the traffic generator,
while the other bears the prototype and the Netronome SmartNIC NFP-4000 2x10G.
Each machine is equipped with a 1x6-core Intel Xeon E5-2620 v3 2.4Ghz CPU and 2
threads per core (hyper-threading enabled), 8GB memory, and a DPDK compatible
Intel X710-2 2x10G Ethernet NIC on the traffic generator side.
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To collect the latency results, we use the SmartNIC’s internal hardware clock
to calculate the timestamps of each packet before it goes out of the SmartNIC to
an application and inserts another timestamp when it comes back to the SmartNIC.
This gives us more precision to calculate the total cost to run an application inside
and outside of the SmartNIC, using a nanosecond scale, as shown in Figure 6.8. To
collect the throughput (and consequently, the processing capacity) of the target, we
employ a Lua script1 to automatise the experiment and to collect packet data into a
comma-separated value (CSV) file, to later be processed and generated the results.

6.3.2.2 Traffic generator and DUT

Physical Server 1 runs Intel pktgen-dpdk2 version 20.04 traffic generator, while
Physical Server 2 acts as a Device Under Test (DUT), using applications developed
and deployed into a network device, processing packets using in-network processor
or a traditional application running on a qemu-kvm hypervisor, like in Figure 6.7. The
application runs on their respective qemu-kvm virtual machine and has a dedicated
embedded network function from SmartNIC, provided by SR-IOV pass-through on
the hypervisor, with 8GB RAM and 2 CPU cores unpinned, in order to create a more
realistic environment as possible. The physical servers run Ubuntu Linux Server
20.04, with kernel version 4.15.0-60, as same as the OS running on virtual machines.

6.3.3 Results

As we can see, in Figure 6.9, the Open vSwitch software switch, despite running on
kernel-mode, presents the worst latency level: ≈197 𝜇𝑠𝑒𝑐 to forward only and ≈216 𝜇s
to calculate the SHA-256 function (+9.89 %). DPDK implementation improves it
significantly down to around 67 𝜇𝑠 in both cases (with and without SHA-256 function),
showing that, as might be expected, the Linux kernel bypass method used by DPDK
is a key technology for such applications. And finally, using an eNF, we can achieve
the best result in terms of latency, reaching 834 nanoseconds to forward a packet
(not visible in the chart, due to its small value), but this value increases to ≈40.8 𝜇s
when we run the SHA-256 function on the hardware, rising at least 40x the time to
process and forward a network packet. This highlights the cost of running such a
complex application on a resource-limited network programmable device. However,
the latency values stay below the best software use-case (DPDK), showing that the
network device could be used for offloading the calculation of SHA-256, alleviating
the host-side processing.

1https://www.lua.org
2http://git.dpdk.org/apps/pktgen-dpdk
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Figure 6.9: Latency (Processing and forwarding) for software and hardware micro-
applications running SHA-256 algorithm and network forwarding: Total latency
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Figure 6.10: Cumulative Distribution Function (CDF) Probability for SHA-256 calcu-
lation and forwarding.

As far as Cumulative Distribution Function (CDF) is concerned, Figure 6.10 allows
us to see that the eNF has a small variability (almost a deterministic behaviour)
when compared with other implementations (Open vSwitch and DPDK) based in
software. This is due to the randomness added by the stacks in the OS used to
forward the packet from the NIC to the software and then back to the NIC. The
DPDK-based application, which enables a shortcut to the user-level applications,
the CDF resembles a well-behaved uniform distribute function but with enlarged
variability when compared to the OvS implementation. This is important in NFV
because latency higher-order moments are important for real-time applications.
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There may be a trade-off between end-to-end latency and jitter that may work
against choosing the DPDK solution.
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Figure 6.11: Packet processing capacity comparison between software and hardware
micro-applications running SHA-256 algorithm, using different packet sizes and
virtualisation techniques: Open vSwitch (OVS) software switch.
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Figure 6.12: Packet processing capacity comparison between software and hardware
micro-applications running SHA-256 algorithm, using different packet sizes and
virtualisation techniques: DPDK application.
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Figure 6.13: Packet processing capacity comparison between software and hardware
micro-applications running SHA-256 algorithm, using different packet sizes and
virtualisation techniques: embedded network function with P4 in NIC.

Figures 6.13, 6.12 and 6.11 depict the capacity of each virtualisation technique
for processing packets using SHA-256 algorithm. In addition, a theoretical line
showing the maximum packets per second (PPS) throughput according to the packet
size using 10 Gbit/s speed, following the Ethernet frame MTU (64-bytes and 1500-
bytes packets) of the experiment in order to check on the maximum and sustained
processing rates when forwarding packets through each virtualisation technique.

It is important to highlight that the SmartNIC is not able to achieve line-rate
speeds with small packets (<512 bytes), as confirmed in a set of benchmarks
available on the manufacturer’s document library3. However, the validity of our
comparative results was not affected by this limitation once all experiments were
performed using the same setup.

Starting with the Open vSwitch switch, we noted that the software switch cannot
process and forward small to large packets (Fig. 6.11) alike, keeping the packets per
second rate below a figure of 800𝐾, possibly due to the kernel/user modes and the
OS stack, being unable to forward or process packets close to 10 Gbit/s. Meanwhile,
DPDK has a more consistent result, showing that the polling mode and CPU resource
reservation makes a difference in packet processing/forwarding actions. The eNF
results are practically the same as those of the DPDK application, showing that
despite the fact that packets are being processed in the network hardware, and
consequently avoiding the OS stack and interrupts, the hardware is stressed when
calculating and forwarding small packets at near line-rate. A tradeoff between cost
and performance may lean the choice of the platform toward DPDK solutions when
PPS is concerned.

Based on the results and low-latency application requirements in need of crypto-
graphic hash functions, we can conclude that Open vSwitch, which is a well-known
software switch intensively used by hypervisors, had an unsuitable performance

3https://www.netronome.com/document-library
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to use as an enabler for low-latency applications. It takes more than 210 𝜇s to
compute the SHA-256 algorithm and forward a packet. Thus, the time to send the
network packets from the “hardware plane” to the “software plane” is quite high
using the Open vSwitch switch. It can be reduced when using the DPDK application.
Considering that the time to forward a packet on SmartNIC hardware is lower than
1 𝜇s, all values exposed previously basically correspond to the time to switch the
context from hardware to software levels. Moreover, comparing each approach, the
eNF is the best option to forward a packet, in the same way, to compute a small
work on its hardware. In fact, the eNF can complete the SHA-256 hash function,
and in sequence forward a packet, using ≈ 60% of the time needed by the best VNF
case (DPDK) and ≈19 % of the time needed by the worst case (OvS).
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6.4 Chapter remarks

Cryptographic hash functions are essential for assuring the security and privacy of
network communication obliterating data from malicious entities, avoiding attacks
and establishing mutual or multi-party trust relationships. This paper investigated
alternatives for offloading the processing of cryptographic hash algorithms from
application-level hosts into in-network computing for SFC in NFV infrastructures.

We described architecture and prototype implementations integrating secure
hashing algorithm 2 (SHA-2) in different virtualisation techniques to benchmark
the P4 hardware target platform. Our design of a P4 data plane is able to run a
secure hash algorithm using a mechanism for steering traffic between software and
hardware levels, enabling the use of complex applications for generating hashes.

Results obtained for hashing using in-network computing demonstrate that it
is feasible, and in some cases better than the traditional virtualisation techniques,
including DPDK. Applications running on general-purpose CPUs can do offloading of
its processing to the network device, freeing resources for tenants and improving
latency and throughput.



Chapter 7

Low-latency passive optical networks
(PON) through intercepting and
modifying DBA frames

7.1 Overview

The next-generation networks will need to deal with a new set of groundbreaking
applications such as intelligent transportation systems, tactile Internet, and cyber-
physical systems (CPS) for Industry 4.0. Among the major service groups, ultra-
reliable and low-latency communications (URLLC) aims to foster new applications
with stringent demands on latency and reliability [Pocovi et al. 2018]. Nevertheless,
notwithstanding their promising capabilities, those networks also expect to coexist
with different resources and technologies, such as WiFi and LTE networks crossing
optical layers.

Passive Optical Networks (PONs) are considered a cost-effective architecture for
ubiquitous broadband delivery, due to their ability to share cost and capacity across
endpoints. For this reason, they are being increasingly considered as a possible
solution to connect small cells in 5G functional split architecture (i.e., supporting
ORAN Remote Unit(RU)-Distributed Unit(DU) split as well as higher level splits).

One of the main drawbacks of the PON point-to-multipoint topology is upstream
latency, which is higher compared to the simpler point-to-point solution, as the
scheduling mechanism requires the exchange of reports and bandwidth map calcula-
tions that introduce an additional few hundreds of microsecond delay.

We can cite approaches such as Cooperative DBA [Tashiro et al. 2014], recently
standardised as Cooperative Transport Interface (CTI) [O-RAN 2020], which have
addressed this latency issue by providing coordination between mobile scheduling
at the DU and OLT scheduling. However, CTI works because in Cloud-RAN the low
latency issue is generated by a protocol mismatch between PON and RAN rather
than by application-level requirements. For this reason, the CTI is able to fix the
issue by sharing the advanced scheduling information from the DU with the OLT.
This exchange of information is further facilitated by PON virtualisation mechanisms
[Ruffini et al. 2020], which simplifies the integration between wireless and optical
technologies.
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In this chapter, we address a more challenging issue on PON networks, where
the low latency requirement comes from the application. We argue that using a
mechanism for intercepting and reacting to these low-latency requirements directly
on a network programmable hardware – after they are forwarded to a virtual
network function – may even unleash comprehensive, reliable and low-latency
service delivery using micro-applications and In-Network Computing. We also
experimentally demonstrate a concept of a Fast Intercept Mechanism, to achieve
low latency on PON upstream frames, leveraging the Virtual DBA implementation.

7.2 PON use-case

This section describes the potential limitations, the design principles and the ar-
chitecture of our following proposal for the Fast Intercept Mechanism in Passive
Optical Networks using PIaFFE as an enabler. Thus, this chapter explains how to use
the framework to develop and deploy applications into programmable network hard-
ware based on the passive optical networks use-case and its upstream scheduling
algorithm.

7.2.1 Experimentation design

The experimentation design of our proposed use case for experimenting and evolving
our framework was motivated by the challenge to tackle low-latency applications
using PON, once we have to work with a low-level network layer and protocols, such
as PON GEM frames. This chapter includes the implementation of a VNF using
PIaFFE which is capable of intercepting and changing control data inside PON GEM
frames, providing low latency for applications that want it. In order to do this, the
PIaFFE framework will cover the implementation of an eNF that acts in the data link
layer, as shown in Figure 7.1.

Application

Transport

Data Link

Network

PIaFFE
Ethernet

XGEM

Physical

Figure 7.1: Network layers handled by PIaFFE in this Chapter.
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To address the early-mentioned challenge, we have envisioned the design based
on the following enablers:

i. a mechanism capable of intercepting and modifying PON frames based on the
application requirements;

ii. split the upstream DBA scheduling to reach normal and low-latency bandwidth
map (BWMAP);

iii. keeps the current implementation of the virtual DBA proposal, working trans-
parently with the high-level applications.

7.2.2 Usage of the framework

Our proposal is to implement a mix of classical and modern approaches. The bulk of
the scheduling calculations is executed as virtualised network functions on the host,
however, some key calculations are performed on the network interface card. These
key calculations usually pertain to scheduling routines which have strict response
times.

Figure 7.2 depict the main objective of the use-case. According to 3GPP, the
delay threshold for 5G front-haul traffic is set at 250 𝜇𝑠 [Alliance 2015]. Thus, the
focus here is to implement a low-latency solution for small cell virtualisation and
C-RAN, which is defined to be less or equal to 10km of distance (50 𝜇𝑠), which will
be the limit for providing a low-latency schedule mechanism improvement using
in-network computing.
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Figure 7.2: Fast Intercept concept.

According to Figure 7.2, the standard TDM-PON cycle is disclosed by 125 𝜇𝑠,
which is synchronised between vOLT and vONUs. As shown in the diagram, we
define as a 𝑔𝑟𝑒𝑦 𝑧𝑜𝑛𝑒 (𝑇𝑔𝑧,𝑏𝑒𝑔𝑖𝑛 and 𝑇𝑔𝑧,𝑒𝑛𝑑) the interval in which a DBRu report will
miss the opportunity to be included in the current BWMAP calculation cycle at
vOLT perspective, however, will benefit from the Fast Intercept mechanism, being
inserted into the current BWMAP cycle into the SmartNIC, interval which is called
as 𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 𝑤𝑖𝑛𝑑𝑜𝑤 (∆ 𝑂𝑤). In the same way, we use the term 𝑑𝑒𝑎𝑑 𝑧𝑜𝑛𝑒 (𝑇𝑑𝑧,𝑏𝑒𝑔𝑖𝑛

and 𝑇𝑑𝑧,𝑒𝑛𝑑) to delimit the interval in which a DBRu report will definitively miss the
opportunity to be included in the current BWMAP calculation cycle at vOLT side.
Based on the diagram, we can find the values of each variable using the following
equations:

𝑇𝑔𝑧,𝑏𝑒𝑔𝑖𝑛 = [125− (𝐷𝑝𝑟𝑜𝑝 +𝐷𝑓𝑤𝑑)] + 1 (7.1)

𝑇𝑔𝑧,𝑒𝑛𝑑 = (125−𝐷𝑓𝑤𝑑 −𝐷𝑝𝑟𝑜𝑐 −𝐷𝑓𝑖) (7.2)

∆ 𝑂𝑤 = 𝑇𝑔𝑧,𝑏𝑒𝑔𝑖𝑛 − 𝑇𝑔𝑧,𝑒𝑛𝑑 (7.3)



104

𝑇𝑑𝑧,𝑏𝑒𝑔𝑖𝑛 = 𝑇𝑔𝑧,𝑒𝑛𝑑 + 1 (7.4)

𝑇𝑑𝑧,𝑒𝑛𝑑 = 𝑃𝑂𝑁𝑐𝑦𝑐𝑙𝑒𝑒𝑛𝑑 (7.5)

The range of ONU response time is a system-wide parameter that is chosen
to give the ONU sufficient time to receive the downstream frame, including the
upstream bandwidth map, perform downstream and upstream FEC as needed, and
prepare an upstream response. All ONUs are required to have an ONU response
time of 35 ± 1 𝜇s. Further, the ONU is required to know its response time. The
plus 1 𝜇s included in the equations illustrated above are necessary due to avoid the
overlapped begin/end zone times.

The general term 𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒 𝑑𝑒𝑙𝑎𝑦 refers to the total extra delay that an ONU may
be required to apply to the upstream transmission beyond its regular response time.
The purpose of the requisite delay is to compensate for variation of propagation and
processing delays of individual ONUs, and to avoid or reduce the probability of colli-
sions between upstream transmissions [ITU-T 2014]. During regular operation, the
requisite delay is equal to the assigned equalisation delay (𝐸𝑞𝐷𝑖). The equalisation
delay of the ONU is found as:

𝐸𝑞𝐷𝑖 = 𝑇𝑒𝑞𝑑 −𝑅𝑇𝐷𝑖 = 𝑇𝑒𝑞𝑑 −
(︂
∆𝑅𝑁𝐺

𝑖 − 𝑆𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒

𝑅𝑛𝑜𝑚

)︂
(7.6)

Here, 𝑇𝑒𝑞𝑑 is the elapsed time between the start of the downstream PHY frame
carrying a specific BWMAP and the upstream PHY frame implementing the BWMAP,
𝑅𝑇𝐷𝑖 is the first round-trip delay measurement during serial number acquisition,
𝑅𝑛𝑜𝑚 is the nominal upstream line rate in words/𝜇s, 𝑆𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒 is the start of the up-
stream PHY frame in ONU’s view, ∆𝑅𝑁𝐺

𝑖 is the elapsed time between the downstream
PHY frame containing the ranging grant and the upstream PHY burst containing the
response Registration PLOAM. All details of each stage of communication between
ONUs and the OLT are available in [ITU-T 2014] and will not be covered here due to
being out of our scope.

Related to the traditional DBA mechanism, Figure 7.3 reports the different steps
involved in a DBA process, together with typical latency times, from the moment a
packet arrives at the ONU queue, until the moment that ONU is allowed to transmit
the packet. Some of the latency times are typical of DBA implementation, while
others are experimentally measured in our setup and further discussed in this
chapter.
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Figure 7.3: Summary of steps involved in the traditional DBA process.

(a) the ONU needs to wait for the opportunity to piggyback the DBRu to an
upstream message (between 0 and 125 𝜇𝑠, for an average of 62.5 𝜇𝑠);

(b) the DBRu propagates trough fibre (assume 50 𝜇𝑠 for a 10 km distance);

(c) the information travels between the physical card and the virtual process (this
only occurs for virtual PON implementations, about 22 𝜇𝑠 from our experimen-
tal data, i.e. half the round trip time of 41.96 𝜇𝑠);

(d) the DBA process waits for a given time window to receive DBRus from multiple
ONUs (between 0 and 125 𝜇𝑠, for an average of 62.5 𝜇𝑠);

(e) the OLT runs the DBA algorithm to calculate the Bandwidth Map (assume DBA
calculation time of 77 𝜇𝑠, according to results in figure 7.8 – the difference
between second and third bars in the plot);

(f) the Bandwidth Map is included at the beginning of the next downstream frame
(between 0 and 125 𝜇𝑠, for an average of 62.5 𝜇𝑠);

(g) the Bandwidth Map travels between the virtual function and the physical card
(same consideration as c);

(h) the Bandwidth Map propagates trough fibre (same considerations as b);

(i) the ONU can transmit the data at its allocated time (considering we can
schedule low latency allocations at the beginning of a frame, we assume
between 0 and 20 𝜇𝑠, for an average of 10 𝜇𝑠).

Considering the calculations provided above, the minimum average time for
low latency allocation through a classical DBA mechanism is of 374.5 𝜇𝑠, which is
increased to 418.5 𝜇𝑠 for a virtual implementation (i.e. considering the additional
steps c) and g) above).

Our proposed approach is illustrated in Figure 7.4. The main difference here is
that the grant calculations for the Fast Intercept mechanism occur in parallel in the
P4 NIC while waiting for a BWMAP to arrive from the CPU VNF. We assume that the
T-CONT ID is used to determine whether an allocation requires low-latency support.
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As soon as it arrives, the Fast Intercept mechanism modifies the BWMAP to include
the latest arrival low-latency grant requests.

Figure 7.4: Proposed dual-DBA process with P4 in-NIC computing.

Thus, with respect to the stages above (we adopt the same step labels for ease of
comparison), we have: a) The ONU needs to wait for the opportunity to piggyback
the DBRu to an upstream message; b) the DBRu propagates through fibre; f) the
next Bandwidth Map arrives at the NIC (between 0 and 125 𝜇𝑠, for an average of
62.5 𝜇𝑠), in parallel the NIC calculates the BWMAP update for the low latency grants
(7.55 𝜇𝑠 according to our results in section 3); f2) the NIC updates the BWMAP
including the low latency grant allocations (2.5 𝜇𝑠 according to our results in section
3); h) the BWMAP propagates through fibre; i) the ONU can transmit the data at its
allocated time.

To reduce this part of latency, we have to short some steps, and that is the basis
of our proposal of a Fast Intercept mechanism, that takes account of a programmable
network device: a SmartNIC, which supports the high-level P4 language for de-
ploying applications into this network card. Using it, we can build a mechanism
that splits the upstream DBA scheduling into two parts, as shown in Figure 7.5.
At the top of the diagram, using a standard DBA application running on a virtual
machine, that operates according to standard DBA procedures, and a Fast Intercept
mechanism on the bottom, that works independently from the first part and runs on
the SmartNIC. Its basic functionality is: (i) to check the DBRu packets, storing their
content for further updating the bandwidth maps; (ii) To select the low and normal
latency data, diverting them to the high-level vDBA and update bandwidth maps,
before sending them to ONUs.
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Figure 7.5: Multi-level DBA scheduling provided by In-Network Computing.

It is important to emphasise that the realisation of Multi-level DBA scheduling
is enabled via PIaFFE Intercepting and Forwarding (PIIF) element, discussed
in Chapter 3. In this use-case, it is responsible for a) intercepting, inspecting and
directing the network traffic between the two levels: software and hardware, finding
the packets with the low-latency tag; b) storing their DBRu requests into an internal
buffer (registers) to be; c) further updated into grants inside the BWMAP, allowing
the Fast Intercept mechanism to be implemented using an in-network processor
using PIaFFE framework as an enabler.

7.2.3 Implementation details

Upstream data paths are typically Time Division Multiplexed requiring coordination
of talk interval using a single centralised, remotely located, controller located
upstream. We see this in the DBA of PONs, the mac scheduler of LTE radio networks.
In classical implementations, these schedulers are embedded in hardware, making
modification of the algorithm difficult or impossible to achieve. Classical DBA is
calculated in proprietary hardware, collocated with OLT. Round trip transmission
latency is around tens and hundreds of nanoseconds. In newer implementations that
are seen in 5G networks, we see schedulers implemented as virtualised network
functions running on host devices. While making the algorithms configurable and
flexible, it does introduce latency.

The Fast Intercept mechanism implements a rescheduling mechanism, as de-
picted by Figure 7.6, which is capable of altering the original BWMAP coming from
the vDBA host, reordering the allocation structures to insert the low-latency DBRu
request into the first position of the grant. Here, we assume that the DBRu request
is less or equal to the original pre-allocation, allowing the exchange of allocation
structures positions and/or values without a complex calculation or reallocation from
another allocation structure(s).
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Figure 7.6: Fast Intercept rescheduling mechanism.

Thus, in this chapter, we propose a performance analysis of the use of the P4
language in a programmable NIC to implement complex algorithms, in particular,
a partial DBA scheduler algorithm that relies on preempting bandwidth allocation
for ONT/T-CONTs related to LTE traffic, modifying them directly on a P4-enabled
hardware device, to overcome the total pathway budget of the network function
virtualisation environment employed to deploy the Virtual DBA.

Based on our previous work of embedding VNFs on P4-enabled devices, we
developed a P4 embedded network function (eNF) on a Netronome SmartNIC that
processes the BWMAPs and DBRus data structures. Figure 7.7 shows the P4 Parser
and Ingress pipelines on the SmartNIC. Our eNF classifies and timestamps the
DBRUs and BWMAPs, and then stores their header structures in registers for later
processing by the main DBA algorithm logic, in the Ingress pipeline.

Parser

parse_bwmap_length

parse_bwmap

Yes

No

bwmap.next?

accept

bwmap
array

Ingress

No

Yes

bwmap[n].isValid()?

header_check

idx = alloc_id;
value = start_time++grant_size;

bwmap_reg.write(idx, value);

Figure 7.7: P4 Parser and Ingress pipelines

For each upstream burst arriving at the SmartNIC, the eNF checks the T-CONTs
and stores their content (DBRus) in a data structure for subsequent checking in
the downstream direction. Thus, in the downstream direction, the eNF analyses
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the data stored previously run a fast intercept rescheduling DBA algorithm on the
network hardware and updates the upcoming BWMAP accordingly.

7.3 Experimental evaluation

Before going into further experimentation details, one consideration we want to
make is whether allocating part of the BWMAP for low latency applications could be
considered wasteful, in case there are not enough applications requiring it on any
given frame. In our implementation we easily solve this issue: as all DBRu request
always passes through the SmartNIC, the Fast Intercept mechanism can fill in spare
allocations using requests from other lower priority grant requests (i.e., that do not
have low latency constraints), to avoid wasting capacity.

7.3.1 Experimental results

Figure 7.8 reports both DBA computation time and transmission time between
SmartNIC and CPU. These affect the steps c), e) and g) shown in Figure 7.3. The
first bar in Figure 7.8 reports the time required to send DBRus from NIC to CPU, for
the DPU to calculate the BWMAP and for this to be sent from the CPU to the NIC.
This is a baseline scenario, where no specific optimisation is carried out, using Linux
Netdev, and shows the longest time of about 393 𝜇𝑠. The second bar represents the
same process, but when implemented through our optimised Intel DPDK solution for
virtual PON. This bypasses the Linux network stack and runs in user space in poll
mode, and it reduces the timing to 119.51 𝜇𝑠. The third bar shows the time required
for a round trip time between NIC and CPU when using DPDK (41.96 𝜇𝑠). From the
difference, we can infer the DBA processing time in the DPDK implementation of
77.55 𝜇𝑠.
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Figure 7.8: Comparison between multiple approaches to calculating the DBA algo-
rithm.
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The fourth bar finally, shows the time required by the NIC to operate the Fast
Intercept mechanism, inclusive of grant calculation and update of the BWMAP. As
this does not require any data transfer between NIC and CPU and allows fast P4
processing for the fast DBA, it can be computed to be only 7.47 𝜇𝑠. It should also be
noted that since the PON is a synchronous TDM technology, the eNF knows exactly
when the BWMAP will be received from the CPU. Thus it can initiate the fast DBA
calculation 8 𝜇𝑠 before it receives the BWMAP. In this case, the only additional time
will be that required to modify the BWMAP. This is reported in Figure 7.9, which
shows the breakdown of the eNF computation time.

As discussed before, the algorithm modifies the 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 and 𝑔𝑟𝑎𝑛𝑡_𝑠𝑖𝑧𝑒 in the
BWMAP, rescheduling the allocation structures and reordering the BWMAP into the
network hardware. The process then follows the following 4 steps, as depicted by
Figure 7.9:

1. The eNF identifies the DBRus in transit into a P4 register, which is a fast
memory on the network hardware.

2. If the DBRu does not include a low latency grant request, the DBRu packets
continue to their destination (the DBA in the CPU), without any modification.

3. If the DBRu does include a low latency grant request, the eNF prepares the
allocation that will be used to modify the incoming BWMAP, applying any
required modification to the grant_size fields.

4. When the next BWMAP arrives to the NIC from the CPU, the P4 process modi-
fies this accordingly to include the low latency allocations, before forwarding it
to the ONUs.
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Figure 7.9: Dissecting the algorithm: times of each step.

Summarising the experimental results in Figure 7.8 and 7.9, re-iterating the
overall DBA calculation times reported in the previous section and Figure 7.3 and 7.4,
we have calculated that a standard DBA mechanism (assuming the DBA is calculated
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for each service interval), would have an average latency of 374.5 𝜇𝑠 and 418.5 𝜇𝑠,
respectively for an OEM and virtual implementation of a PON DBA. On the other
hand, our proposed mechanism, split into a CPU and SmartNIC implementation can
provide an average latency of 237.5 𝜇𝑠. This is a significant reduction of 37 % and
43 %, for upstream PON latency, which can enhance the PON support for low latency
applications.

7.4 Chapter remarks

C-RAN transport service on an eCPRI interface requires latency below 250 𝜇𝑠 for
variable rate traffic. Traditional DBAs provide a high-latency report/grant process,
which can be reduced using an eNF to process the low-latency related data, granting
the vDBA the ability to tackle the eCPRI requirements.

PIaFFE framework proves that can be used to port a solution using in-network
processing, leveraging the packet processing for Passive Optical Networks in lower
network layers using the capabilities of the network hardware exposed by the P4
language to build complex functions inside a narrow programmable network card.

We have trade-offs using a NIC to process a high volume of data, due to their
hardware processing limitations (CPU, memory), as well as the restrictions about
float point operations and lack of loops related to the P4 language plus SmartNIC
architecture, restricting the development of more complex calculations using an
in-network processor. However, the overall processing is improved, taking advantage
of the Fast Intercept mechanism which builds an opportunity window inside the
in-network processor, allowing the update of grants for ONUs during the same
TDM-PON cycle, improving the latency and shorting the path to process network
data directly into the programmable network interface card.



8. Conclusion and Future Works

In this concluding chapter, we summarise this thesis and the work hereby presented

to discuss the implications of our research. We then give our view concerning possi-

ble research directions that may emerge from our work and how other techniques

can extend the network programmability using the PIaFFE Framework. Finally, we

finish the thesis with our concluding remarks.

8.1 Thesis Summary

The thesis’ more general implications just scratch the surface of the debate that

aims to refute the widely held belief that network programmability should be con-

sidered as an enabler for offloading data the edge. Given that, we have explored

various aspects of hardware and software co-design for developing and deploying

network and non-network applications onto smart network interface cards, also

known as SmartNICs, which led us to tackle the following questions: “How to exploit

co-design, i.e., between programmable network devices and end-host processing,

opened by SmartNICs to accommodate diverse logic and their requirements consid-

ering different applications, including malicious ones, within the edge computing

paradigm?”

In order to fully meet the co-design capability for the deployment of network ap-

plications, we claim that the development process must be supported by a functional

decomposition approach, aligning with Hypothesis H1. Therefore, in Chapter 4

explore experimentally this affirmative and also the questions mentioned above. The

merit of our approach is in creating a mechanism for steering traffic data between

the hardware and software levels (SmartNIC and VNF), offloading network compu-

tation when providing a technique to select the desired data to be processed in a

run-time fashion.

Extending the programmability level, we develop Chapter 5, now envisioning

the creation of a network function able to intercept and interact with the cloud

robotics use-case, matching with Hypothesis H2 and showing the vulnerabilities

of a programmable data plane using a Robot Operating System (ROS), which is

currently a widely used framework for robot development, casting light in how
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attacks that are well described in the literature can be refactored to be launched

from the network itself. Moreover, in Chapter 6 we discuss a possible solution for

ensuring data integrity by implementing a cryptographic hash function based on

Secure Hash Algorithm 2 (SHA-2), complementing the security constraints raised in

the previous chapter.

The fragment of the work presented in Chapter 7 explores the development

and deployment of an application using in-network computing and Passive Optical

Networks using the Virtual DBA [Ruffini et al. 2020] as the basis, tackling the ap-

plication’s low latency requirements – named as Fast Intercept mechanism – after

they are forwarded to a virtual network function, reacting to these requests directly

on a network programmable hardware based on packet inspection to determine

when these low latency requirements are needed. The Chapter also ensures the

Hypothesis H2, once a new complex and critical application took advantage of such

mechanism for intercepting and interacting with raw packets.

Each use-case, listed in the thesis in chapter format, served to improve the

prototyping techniques of our PIaFFE framework for embedding applications into

SmartNICs and performing with traditional applications running on the server

side. Starting with the NFV approach for creating or supporting traditional network

applications, moving to security use-cases over cloud robotics, exposing the concerns

when using a programmable network device in such scenarios, as well as proposing

the offloading of cryptographic hash functions into the data plane. Finishing, the

work shows the evolution towards non-network applications, such as the PON

schedule mechanism, using the capabilities of the programmable data plane to

process, modify and generate network data in a transparent manner for the legacy

applications running inside commodity servers.

8.2 Future Works

Notwithstanding our efforts to limit the scope of this work, our research activities

have inevitably touched on a diversity of other topics. Hence, future works involve

exploring programmable data planes to enable a new range of modern and innovative

applications using the PIaFFE Framework, such as:

• Cryptographic applications, as shown by Chapter 6, we have room for

exploring cryptographic algorithms using in-network computing to alleviate

the packet processing by the host, as this kind of algorithm is considered

compute-intensive. We can build a cryptographic application that can be used to

encrypt/decrypt data directly on the data plane, porting existing cryptographic

libraries and methods for running inside this hardware. Thus, using PIaFFE for
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prototyping and embedding cryptographic hash functions we can effectively

maximise the network resource utilisation and alleviate the host side execution

by offloading packet processing to a SmartNIC, co-executing the application in

a transparent fashion.

• Data security and authenticity, which brings the tampering of the headers

or even the data from the network as one of the challenges for developing in-

network applications. To solve this problem, it is possible to explore well-known

techniques for checking and encrypting data over the network, creating public

and private keys to be verified between data planes, and avoiding the host’s

CPU usage when computing these data or creating a co-execution environment

between hardware and software, optimising the utilisation of both.

• Passive Optical Networks, improving the Fast Intercept mechanism to afford

a more realistic scenario should be a good starting point, as we can explore

new targets for the development and deployment of applications using PIaFFE

Framework, such as programmable switches, which fits better with PON

network operators that employ these network devices in the “real world”. This

step will bring new challenges, and also, new opportunities for embedding

applications into a network programmable hardware, extending the PIaFFE

Framework definition to new SDK tools from specific targets and moving

forward the extensibility and applicability of the framework for developing new

embedded network functions outside of a commodity host.

• In-band network telemetry for cloud robotics, despite the possibility of

collecting network data and bundling with the network packets in the P4

language using the PIaFFE Framework, we can explore more ways to employ

it, providing per-packet latency/jitter performance and generic robot fleet

information, such as embedded sensor data and feedback control. Since the

packet header will carry on such information, we can avoid the OS’ layers

when processing data inside the data plane, improving latency when reacting

to some robot events which require them.

8.3 Final Remarks

From a broader perspective, there is a fascinating list of research questions around

our proposals. For example, one great challenge of modern networks is selecting

the best place to execute a network application in the function of the nature of the

traffic data flowing through the stacks of OS and hardware. Whereas, in recent

years, emerging networking programming languages and architectures, such as
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P4 and PISA, have created unprecedented opportunities for rapidly prototyping

disruptive solutions in programmable data planes. In addition, the potential impacts

of providing a framework aligned with multiple different targets are far-reaching

the principle of separating control and data planes, providing tools and methods to

develop and deploy applications across multiple platforms, including programmable

switches.

Therefore, even after all these years in which we have conducted this work,

in-network computing and data plane customisation are still exciting research fields.

However, various properties are missing to be explored in the PIaFFE Framework.

It was shown as a viable paradigm to enable and empower a wide range of network

applications, which was not the case when we started with this line of research.

Finally, we conclude by reaffirming our belief that the work present in this thesis

provides solid guidelines and interesting insight to foster expressive and flexible

research and experimentation using programmable network devices.
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