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“All truths are easy to understand
once they are discovered;

the point is to discover them
(Galileo Galilei)



Resumo
Na indústria siderúrgica, a operação estável dos altos-fornos com monitoramento e controle
eficientes da temperatura do ferro gusa é uma tarefa muito importante no processo de
geração de ferro gusa de alta qualidade. Em geral, a operação dos altos-fornos depende
principalmente de decisões baseadas na experiência de operadores humanos, que usam
as medidas mais recentes de temperatura do gusa líquido e outras variáveis operacionais
para executar as decisões de controle. No entanto, devido ao grande número de variáveis
e à complexa interação entre elas, a operação de tais equipamentos não é uma tarefa
fácil. Este trabalho propõe um sistema de predição como primeiro passo de um sistema
de controle maior e mais complexo para melhorar a eficiência da produção de ferro
considerando o cenário brasileiro. Ele compara vários modelos de aprendizado de máquina
(K-Nearest Neighbors, Linear Regression, Extreme Boosting Machine, Light Gradient
Boosting Machine, Random Forest, Support Vector Machine, XGBoost e Multilayer
Perceptron) na tarefa de previsão da temperatura do gusa. Um bom sistema de predição
de temperatura permitirá planejar melhor as ações de controle a seguir, a fim de estabilizar
a temperatura do forno durante a produção de gusa. O método proposto foi avaliado com
dados reais de uma empresa siderúrgica. Resultados mostraram que o sistema conseguiu
predizer a temperatura do ferro gusa com um erro médio absoluto de 9,56 comparado ao
baseline que teve um erro de 12,61.



Abstract
In the iron and steel industry, the stable operation of blast furnaces with efficient hot
metal temperature monitoring and control is a very important task in the process to
generate high-quality hot metal. In general, the operation of blast furnaces mostly relies
on experience based decisions of human operators, which use the most recent measures
of hot metal temperature and other operational variables to execute control decisions.
However, due to the large number of variables and complex interaction among them,
the operation of such equipment is not an easy task. This work proposes a prediction
system as the first step of a larger and more complex control system for improving the
efficiency of iron production considering the scenario in Brazil. It compares several machine
learning models (K-Nearest Neighbors, Linear Regression, Extreme Boosting Machine,
Light Gradient Boosting Machine, Random Forest, Support Vector Machine, XGBoost,
and Multilayer Perceptron) in the task of hot metal temperature prediction. A good
temperature prediction system will allow to better plan the control actions ahead in order
to stabilize the furnace temperature during hot metal production. The proposed method
was evaluated using real-world data from an steel-producing company. Results shown that
the system can predict the hot metal temperature with mean absolute error of 9.56 when
compared to the baselines with mean average error of 12.61.
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1 Introduction

Iron and steel industries constantly optimize their processes to achieve high-quality
products with greater efficiency and, consequently, greater profits. The steel industry
plays an important role in the world economy by providing steelmaking raw materials
for other industries, such as automotive, aviation, and civil construction (GONZÁLEZ;
KAMIŃSKI, 2011). The main component in the ironmaking process is the blast furnace, a
huge metallurgical reactor used to produce hot metal from iron ore. The furnace is fed
from the top with raw metal materials and fuel. Hot air is also injected from tuyeres at
the bottom of the furnace. These and several other variables are involved in this complex
process which results in hot metal and slag that runs off from tap holes at the lower part
of the furnace, as can be seen in Figure 1 and flows through the casting channels to their
next step in the ironmaking process (ZHANG; KANO; MATSUZAKI, 2019a).

Figure 1 – Tap hole drawing off hot metal - Source: Pixabay
(https://pixabay.com/photos/industry-stole-iron-blast-furnace-647413/)
under Pixabay license

A stable operation of blast furnaces with efficient hot metal temperature (HMT)
monitoring and control is very important to generate high-quality hot metal. To achieve
this, the temperature of the hot metal that runs off from the tap holes should be kept
close to 1500ºC. Monitoring the HMT is essential for measuring the quality of the final
product as well as the thermal state of the furnace. Lower HMT values can lead to the
obstruction of the tap holes and difficulties in separating the hot metal from the slag.
In contrast, high HMT values might indicate elevated fuel consumption and increased
CO2 emission. Moreover, the variation of HMT out of the desired operational range may
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increase costs in the following steps of the ironmaking process due to a larger amount
of impurities in the hot metal (such as silicon), increase maintenance costs and cause
productivity losses. (WANG; HU; TANG, 2021; ZHANG; KANO; MATSUZAKI, 2019b;
HASHIMOTO; SAWA; KANO, 2019).

The thermal control and operation of blast furnaces mostly rely on decisions of
experienced human operators, which use the most recent measures of hot metal temperature
and other operational variables to execute control decisions. However, due to the large
number of variables and complex interaction among them, the operation of such equipment
is not an easy task. Furthermore, due to the limitations of temperature sensors, it is
difficult to directly measure temperatures inside the furnace. Therefore, in practice, the
usual way is periodically measuring it from the hot metal on the casting channels with
thermocouple sensors (ZHANG; KANO; MATSUZAKI, 2019a; HASHIMOTO; SAWA;
KANO, 2019; AZADI et al., 2022).

Machine learning has been widely used in forecasting tasks in industrial environ-
ments. Increasingly inserted in practical environments, regression methods are gaining
more and more space in the market with the application of real-world data, not just in
academia. The blast furnace companies have been using machine learning techniques to
better predict and control their processes, which are very complex.

Works in the literature address prediction in blast furnaces as a time series analysis.
The pioneering work of Pandit et al. (PANDIT; CLUM, 1975) in the 1970s, for instance,
applies multivariate linear analysis of times series for modeling, prediction, and control
of blast furnaces. On that occasion, they addressed the prediction of quality parameters
of hot metal based on the sulfur and silicon content, and on the temperature of the hot
metal.

Despite the potential of utilizing time series methods for predicting hot metal
temperature, the requirement for uniformly spaced input data posed a challenge. Given
the noisy nature of the data, as will be elucidated later, it was decided not to use a time
series approach in this study and to make this problem a regression problem.

Throughout the years, other regression models were incorporated into furnace-
related parameters prediction, such as VARMAX (ÖSTERMARK; SAXÉN, 1996) and, in
particular, Partial Least Square (PLS) (LIN et al., 2011), a technique that addresses the
two main limitations of the standard least squares: non-linearity issues and correlation
among independent variables. Nonetheless, the evolution of the Machine Learning field,
with the Support Vector Machines (SVMs) and the Artificial Neural Networks – particularly
the Multi-Layer Perceptron (MLP) –, has enabled more robust models to treat the inherent
complexity of industrial processes (BAG, 2007; GAO; JIAN; LUO, 2011; PETTERSSON;
CHAKRABORTI; SAXÉN, 2007). Such processes are subjected to several exogenous
(natural or human-induced) factors characterized by noise and data loss.
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Although there are works in the field, they are usually not very accessible in terms
of code and data, hindering comparison and further use. This added to the fact that
each blast-furnace impose different particularities to the machine learning algorithms, the
problem still deserves investigation.

1.1 Objectives
The main objective of this work is the development of a system for predicting the

Hot Metal Temperature of a Blast Furnace.

1.1.1 Specific objectives

To achieve this objective, the following procedures were carried out:

• Investigation of different modeling approaches for the HMT prediction problem,
focusing on regression-based models;

• Evaluation of classical and well-known machine learning based regression methods
applied to the HMT prediction problem;

• Assessing of the qualitative performance of the investigated methods applied to
various modeling approaches on real-world data from an operating blast furnace.

1.2 Proposal
This work proposes a machine-learning based prediction system as the first step of

a larger and more complex control system for improving the efficiency of iron production
considering the scenario of a company in Brazil. It compares several machine learning
models (e.g., K-Nearest Neighbors (KNN), PLS, and MLP) for HMT prediction, while
presenting a new modeling problem based on control variables and temperatures as input
without using time series. A good temperature prediction system will allow to better plan
the control actions ahead in order to stabilize the furnace temperature during hot metal
production.

1.3 Contributions
This work brings two contributions - A paper and an offline system - described

below.
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1.3.1 Paper

As a result of the work developed in this dissertation, an article (NAVARRO et al.,
2022) was submitted and accepted for publication at the SIBGRAPI 2022 - 35th Conference
on Graphics, Patterns and Images. This publication, was written in collaboration with
members of the Instituto de Inteligência Computacional Aplicada and of the industrial
partner.

1.3.2 Offline System

Using the HMT forecasting system proposed in this dissertation, an offline system
was created to perform the forecast in offline mode using data from recent years. Based on
that offline system, an online system was developed and deployed by our team at the our
industrial partner, where it remains operational.

1.4 Structure
The remainder of this dissertation is structured as follows: Section. 2 describes

the theoretical basis; Section. 3 presents the proposed system; Section. 4 defines the
experimental methodology; Section. 5 shows the results and analysis, and, finally, the
conclusions are presented in Section. 6.
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2 Theoretical Basis

This section describes the concepts needed to understand the proposed method.
Section 2.1 describes Supervised Learning. Section 2.2 talks about the regression problem.
In Section 2.3 are some popular regressors in the literature. Section 2.4 brings information
about the operation of blast furnaces and Section 2.5 a review of the literature on the
subject.

2.1 Supervised Learning
Supervised learning is a machine learning technique that uses labeled data to train

a model to predict an output label given an input feature. Labels are the desired output
of the input. The labeled data is a set of pairs, formed by a instance x and a label y in:
{(xi, yi)}n

i=1, this way each input has a respective output. The term supervised learning
comes from the idea of having an instructor or teacher guiding the model through what to
do. (GOODFELLOW; BENGIO; COURVILLE, 2016; ZHU; GOLDBERG, 2009; ZHANG
et al., 2021)

In supervised learning, the labeled data is used to training a function f seen in
Equation 2.1 to discover a pattern. After training, input data that was not seen by the
model will be inserted, and the goal of this algorithm is to find correct labels for this
unknown input.

f : X → Y (2.1)

The label can have many domains, it can have a finite set like {hot, cold}, or it can
belong to a domain of real numbers. The domain label defines the type of problem to be
solved. When the domain is a finite set of discrete values the problem to be solved is the
Classification, and when the Y is a continuous value the problem is the Regression.
The Figure 2 illustrates the visual difference of the classification and regression problems.

From the model, one needs to know whether the predicted value is good enough
as the true label. For this, a loss function is needed, which measures the error size of the
predicted value and the actual value. The error of a supervised learning model refers to
the difference between the predicted output and the true output labels for a given input
example. This error is typically measured using a loss function, which calculates a numeric
value representing the magnitude of the error.
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Figure 2 – Example of classification and regression models

2.2 The Regression Problem
Regression is about using input data to predict an actual continuous value. It is a

common task in machine learning that can be applied in many cases. Suppose it is needed
to calculate the rent of a house from the size of house and number of bathrooms. This
is a regression problem because the output, or the rent, is a continuous value. In order
to solve this problem, we could gather a dataset of houses with their corresponding sizes,
number of bathrooms, and rents. Using the previous equation 2.1, X would be the size
and number of bathrooms of the house, and Y would be the predicted rent.

Since the regression model predicts a real value, it is unrealistic to expect the model
to predict exactly with a real number label, as it is expected from classification. Thus,
the error measure between these two tasks is different. In regression, the error measure
is based on the difference between the predicted actual value and a correct actual value.
(MOHRI; ROSTAMIZADEH; TALWALKAR, 2018)

One of the error functions used in regression problems is the Mean Absolute Error
(MAE) seen in Equation 2.2, where y is the true label, ŷ is the predicted label, and n

is the number of samples in the training data set. It is calculates the average absolute
difference between the predicted output and the ground-truth.

MAE = 1
n

n∑
i=1

yi − ŷi (2.2)

Another error function often used in regression problems is the Root Mean Squared
Error (RMSE), which calculate the squared root of another metric Mean Squared Error
(MSE). The MSE is calculated as the average squared difference between the predicted
values and the true values. The Equation 2.3 shows the RMSE, where y is the true label,



Chapter 2. Theoretical Basis 22

ŷ is the predicted label, and n is the number of samples in the training dataset.

RMSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.3)

The RMSE is more sensitive to outliers than the MAE. This means that the RMSE
will be larger than the MAE if there are outliers present in the data. Furthermore the
RMSE is more affected by the magnitude of the error, while the MAE is more affected by
the frequency of the error. This means that the RMSE will be larger than the MAE if
there are a few large errors, even if the number of errors is small.

The Mean Absolute Percentage Error (MAPE) is a metric used to evaluate the
performance of a machine learning model when predicting a continuous value, which the
Equation is seen in 2.4, where n is the number of data points, yi is the true value, in
the ith points, and ŷ is the predicted value. The first step of MAPE is calculate the
absolute percentage error for each data point, which is done taking the absolute value of
the difference between the true value and the predicted value, and dividing this value by
the true value. The MAPE is then calculated summing the absolute percentage errors for
all data points, and dividing by the total number of data points.

MAPE = 1
n

∑
|(yi − ŷi)

yi

| (2.4)

2.3 Regressors
To solve regression problems, several methods have been proposed in the literature

over time. This section will describe some of these methods that are widely used.

2.3.1 Linear Regression

One of the simplest and most common regression methods is Linear Regression
(LR). It assumes that the relationship between the features and the target is almost linear,
and has records that go back to the beginning of the 19th century (LEGENDRE, 1805).
The model is responsible for describing how features can be transformed into an output
forecast.

ŷ = Xw + b (2.5)

A basic linear model can be described in the Equation 2.5. The X is the feature
input matrix, the w the model weights vector, which determines the influence of each
feature on the forecast. The b is the bias and determines the value of the prediction when
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all features are equal to 0, and the ŷ is the output of the prediction, belonging to the set
of real numbers (ZHANG et al., 2021). With this model, the objective of linear regression
is to find the vector of weights and biases that best predicts the output vector ŷ, with the
smallest possible error compared to the actual output of the dataset.

2.3.2 Partial Least Square

Partial Least Square is a regression method that uses dimensionality reduction
technique. The aim is predicting a set of dependent variables from a set of independent
variables, which is performed as follows: PLS create a set of “latent” variables that are linear
combinations of the original predictor variables, and then regress the response variable
onto these latent variables. PLS has similarities to PCA in dimensionality reduction. In
PLS, we have the decomposition of input X and output Y. The difference is that in PCA
only the input is decomposed. (ABDI, 2010; BHATTACHARYA, 2005)

X = TP + E (2.6)

Y = TP + F (2.7)

As can be seen in the Equations 2.6 and 2.7, both input and output are decomposed,
where the E and F are residual matrices, the T is the variable latent matrix, correspondent
to the principal component in the PCA, and the P means the loading matrix. (ZHANG;
KANO; MATSUZAKI, 2019a)

2.3.3 Random Forest

Random Forest (RF) is a machine learning model proposed by Breiman (2001).
This method is a ensemble of decision trees that works training this decision trees on
random subsets of the training data and then averaging the prediction of all the trees.

The steps for the random forest training are as follows:

1. A random sample of the training data is selected. This sample is used to train each
individual decision tree.

2. For each decision tree, a random subset of the features is selected. This ensures that
each decision tree is trained on a different subset of the features, which helps to
reduce overfitting.

3. A decision tree is trained on the selected sample of training data and features.

4. Steps 1-3 are repeated for the desired number of decision trees.



Chapter 2. Theoretical Basis 24

5. To make a prediction for a new sample, the sample is passed through each of the
trained decision trees and their predictions are averaged.

2.3.4 EBM

Explainable Boosting Machine is a machine learning technique created by Nori et
al. (2019), used for regression and classification tasks and based on a Generalized Additive
Model. The EBM are designed to be interpretable, providing a clear explanation of how
the model is makings its predictions.

g(E[y]) = β0 +
∑

fj(xj) +
∑

fi,j(xj, xi) (2.8)

The method equation can be seen in the Equation 2.8, where the g is the link
function what says if is a classification or a regression, β is the interception, fj is a feature
function that operates in each one of the features, and fi,j is the function that uses iteration
terms, two variables at once. (NORI et al., 2021).

2.3.5 LGBM

The Light Gradient Boosting Machine (LGBM) is a Gradient Boosting Machine
(GBM) method based on decision trees, which use histogram methods and the tree lead-
wise growth approach. This method was proposed by Ke et al. (2017) and is an tool to
regression and classification, using fewer memory. This method has two alterations from
GBM, which are the exclusive features bundling (EFB) that can use a big number of input
features without overfitting the model, and the gradient-based one-side sampling (GOSS)
which works well with big datasets.

V̂j(d) = 1
n


(∑

xi∈Al
gi + 1−a

b

∑
xi∈Bl

gi

)2

nj
l (d)

+

(∑
xi∈Ar

gi + 1−a
b

∑
xi∈Br

gi

)2

nj
r(d)

 (2.9)

The equation of the GOSS can be seen in Equation 2.9, where the Al = xi ∈ A : xij ≤ d

and Ar = xi ∈ A : xij > d, and Bl = xi ∈ B : xij ≤ d, and Br = xi ∈ B : xij > d.

2.3.6 XGBoost

XGBoost is a machine learning method based on Gradient Boosting Machine
proposed by Chen e Guestrin (2016). The method has a reinforcement technique, combining
the prediction of weak learners to create a strong learner. This is done by minimizing the
objective functions, allowing the prediction and regularization terms to be combined to
make the process as fast as possible (NORI et al., 2019). To correct weak learners, the first
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learner receives the entire data set input, in the next the second learner receives the residuals.
That is, it is a set that adds new learners to adjust the existing error (OGUNLEYE;
WANG, 2020).

L(t) =
n∑

i=1
l(yi, ŷi

(t−1) + ft(xi)) + Ω(ft) (2.10)

The equation of the objective function of XGBoost, which contains the regularization
and the loss function can be seen in Equation 2.10, where the Ω(ft) is the penalty and l is
a function that measures the difference between yi and ŷi.

2.3.7 KNN

K-Nearest Neighbors is a simple machine learning method of classification and
regression. The algorithm was firstly introduced in 1951 by Evelyn Fix and Hodges. To
find the next neighbors, KNN uses a measure of distance, such as Euclidean distance.
Subsequently, the method makes a prediction with the average value of the neighbors.
KNN is called lazy learning because it has no explicit training, storing all training data
and making predictions only when it receives a new sample.

ŷ = 1
k

∑
yi (2.11)

The Equation for KNN used in regression problems can be seen in 2.11, where y is
the output predicted, k is the number of nearest neighbors, and yi is the output for each
of the k nearest neighbors.

2.3.8 SVR

Support Vector Regression is a famous machine learning method. The goal of the
method is to find a hyperplane to separate the data into classes, maximizing the distance
between the closest points. The distance between the hyperplane and the first point of
each class is called the margin. This method doesn’t work very well with noisy data.

minimize
1
2 ||w||2 (2.12)

subject to yi − wxi − b ≤ ϵ (2.13)

The point of SVR is realize a dual optimization problem with the Equation 2.12
and 2.13, where the w is the parameter, b is the bias term of the hyperplane equation,
||w||2 is the Euclidean norm for the w length, and the ϵ is the maximum deviation from
the target data yi. (SMOLA; SCHÖLKOPF, 2004)
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2.3.9 MLP

Neural networks are a type of machine learning algorithm that are modeled after
the structure and function of the human brain. They consist of interconnected nodes, which
are similar to neurons, that process and transmit information. The first neural network
was called a perceptron and was introduced by Rosenblatt (1958). There are several types
of neural networks, including feedforward networks, which only process information in
one direction, from input to output. The Multilayer Perceptron is a type of feedforward
network (CINAR, 2020) that is made up of multiple layers, including at least one input
layer, one output layer, and one or more hidden layers.

y = f(W2 ∗ f(W1 ∗ x + b1) + b2) (2.14)

For example, given a MLP with an input layer x, a hidden layer h, and an output
layer y, this neural network can be written as in the Equation 2.14, where W1 and W2 are
weight matrices that control the connections between the layers, b1 and b2 are bias vectors
of the hidden layer and output layer, respectively, and f is the activation function.

2.4 Blast Furnace Description
The process of producing hot metal in a blast furnace can be described as follows.

In the beginning, raw materials such as iron ore, sinter (a type of agglomerated ore), and a
fuel named metallurgical coke (a fuel made from coal that is used to provide the necessary
heat and carbon for the smelting process) are loaded into the upper part of the furnace,
the throat. At the bottom, hot air enriched with oxygen alongside with fuels - such as
pulverized coal, oil, and natural gas - is injected into the furnace by multiple tuyeres. The
tuyeres are used to blow the hot blast into the furnace, providing the necessary heat for
the smelting process. The preheated blast at temperatures above 1000ºC chemically reacts
with the descending loads of coke and injected fuels, producing a large amount of reducing
gases (mainly carbon monoxide), reaching flame temperatures of the order of 2000°C. This
high temperature is necessary to melt the iron ore and produce hot metal. The carbon
monoxide is a reducing agent that removes the oxygen from the ore. The hot metal is then
poured out of the furnace through the tap hole at the bottom. The slag (a byproduct of
the smelting process) is poured out through a separate hole. The hot metal and slag are
cooled and solidified, and the hot metal is then processed further to produce various steel
products.

The Blast Furnace is a component responsible to make the hot metal from the
iron ore. The blast furnace components include the throat, stack, belly, bosh and hearth,
which can be seen in the Figure 3 (GEERDES; CHAIGNEAU; LINGIARDI, 2020). The
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Figure 3 – Blast furnace components

throat is the upper part of the blast furnace where raw materials are loaded. It is located
above the stack and below the furnace top. The stack is the vertical cylinder that forms
the main body of the blast furnace. It is lined with refractory bricks to protect it from the
high temperatures and chemical reactions inside the furnace. The belly is the intermediate
part of the blast furnace, located between the stack and the bosh. It is where the most
chemical reactions between the hot blast, injected fuels, and raw materials take place, and
where the hot metal is produced. The bosh is the lower part of the blast furnace, located
below the belly. It is where the slag is produced and separated from the hot metal. The
hearth is the lowest part of the blast furnace, located below the bosh. It is where the hot
metal is collected and poured out of the furnace through the slag hole. The hearth is also
where the furnace tap hole is located, through which the hot metal and slag are removed
from the furnace.

The result of this process is the reduction of oxidized iron and melting of slag and
metallic iron, which accumulates in the hearth of the blast furnace. The slag is generated
by unreduced impurities and it is on top of the hot metal. The hot metal removal process
is done along with the slag removal. The hearth of the blast furnace has tap holes used to
periodically draw off the hot metal and the slag for the following steps of the iron-making
process (CARDOSO; FELICE; BAPTISTA, 2022; WANG; HU; TANG, 2021; ZHOU et
al., 2017). In a blast furnace with four tap holes (1, 2, 3, and 4), such in the case that
was used in this dissertation, they would usually be circularly arranged at the base of
the furnace, with the pairs (1,3) and (2,4) orthogonal to each other, such as can be seen
at the Figure 4. The next subsections describe the blast furnace that was used in this
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Figure 4 – Tap holes distribution in a Blast Furnace with four tap holes

dissertation, and may not describe a generic furnace.

2.4.1 Temperature Measurement

The hot metal is extracted in a process called casting, in which one of the tap
holes is opened so that the hot metal flows through the casting channels. The castings
are performed alternating between opposite tap holes, meaning that several castings are
performed alternating between 1 and 3, and later several castings are performed alternating
between 2 and 4. For example, in our dataset, a single casting lasts on average 02:49 ±
00:31 hours, with an average interval between the last measurement of a casting and the
first measurement of the next one of 01:14 ± 00:23 hours.

Hot metal temperature is usually measured through a manual process, in which an
operator puts a sensor inside the flowing hot metal every 30 minutes. The first temperature
measurement of the casting is performed after a stabilization period that lasts for around
one hour from the tap hole opening. As a result, a single casting outputs several temperature
measurements (on average 5.87 ± 1.87 measurements) which are stored in the blast furnace
system. These temperatures are analyzed by a specialist in order to change the action
plan of the blast furnace parameters to keep the temperature between the desired range of
1480◦C to 1520◦C.

2.4.2 Blast Furnace Variables

Several variables may describe or affect the HMT in a blast furnace. They can be
categorized into two types: control variables, those that can be changed by the operator
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(e.g., a load of material to be added to the furnace); and sensors variables, whose values
come from sensors installed in the blast furnace. The data associated with these variables is
stored in the blast furnace system with sampling frequency ranging from 1 to 10 minutes.

The control variables can be load variables, which are related to the charge injected
into the top of the furnace, such as dry coke, which is the charge in tons of dry coke that
is placed in the furnace, silicon charge, ore and others. And the variables related to the
actions of the furnace, such as water flow in the stave, temporal variation of skin flow
temperature, top pressure, pulverized coal injection, among others.

Each of the control variables has a different expected time to affect the blast furnace
temperature. That is, when increasing the load at a given moment, it is only possible to
see the change referring to it after a certain time. In Table 1 it is possible to see the time
that each control variable takes to change the temperature, with the data received by the
furnace operator.

Table 1 – Expected Time to affect the Temperature

Variables Interference Time

Blast Flow Rate 30 min
Blast Moisture 30 min
Blast Temperature 30 min
PCI 1 hour
Top Pressure 0 hour
Top Gas Analysis (H2) 30 min to 1 hour
Top Gas Analysis (N2) 30 min to 1 hour
Top Gas Analysis (CO) 30 min to 1 hour
Blast flow Rate 30 min
Direct reduction 1 hour
HO Thermal Index 1 hour

The sensors variables describe the actual state of the furnace, giving the operator
information about how the furnace is at that moment. Some examples of sensors variables
are the CO/CO2 ratio, the permeability index, direct reduction, the thermal loss of the
stave, among others. These variables are used by the operator to take actions.

2.5 Literature Revision
In the last decades, many works have been proposed using machine learning methods

to improve the control of the furnace and produce hot metal with high quality and low
production cost. These methods include regressive models, support vector regression
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methods, artificial neural networks, and other artificial intelligence models. In these data-
driven models, unlike in physics-based simulations, little to no prior information about
the process is required, given that it is their goal to detect patterns in the data that
could potentially describe the dynamic behavior of the studied systems. The work of Lin
et al. (LIN et al., 2011) used models based on partial least-squares (PLS) and principal
component analysis (PCA) regression for predicting silicon in the hot metal. Ding et
al. (DING et al., 2018) used a long short term memory network (LSTM) and a recurrent
neural network to solve the same task of silicon prediction in the hot metal. Zhou et
al. (ZHOU et al., 2017), proposed a nonlinear autoregressive exogenous model that uses
multioutput least squares support vector regression for the task of multivariable prediction
of the hot metal quality indexes, namely the hot metal temperature, silicon content, sulfur
content and phosphorus content of the hot metal. In Azadi et al. (AZADI et al., 2022), a
hybrid modeling framework is proposed for the prediction of hot metal silicon content and
slag basicity in industrial-scale blast furnaces.

Other works (ZHANG; KANO; MATSUZAKI, 2019b) proposed an ensemble pattern
trees model for the task of hot metal temperature prediction. For the same HMT prediction
task, Su et al. (SU et al., 2019) proposed an ensemble model based on multi layer extreme
learning machine and strategies using the adaptive particle swarm optimization. Hashimoto
et al. (HASHIMOTO; SAWA; KANO, 2019) developed a model to predict HMT by
adopting moving horizon estimation based on a one-dimensional transient model. Zhang
et al. (ZHANG; KANO; MATSUZAKI, 2019a) provide a comparative study between some
shallow and deep methods for prediction of hot metal temperature, including, among others,
PLS, SVR, and neural networks. Hashimoto et al. (HASHIMOTO et al., 2022) proposed
a non-linear model predictive control (NMPC) to predict the hot metal temperature 10
hours ahead and indicate the controlling action for a variable called pulverized coal rate
(PCR).

In general, times series analysis assumes regularly-sampled (over time) data. Con-
sidering the irregularity of our data, traditional methods for times series analysis were
not included in the analysis. Moreover, there is a relevant discussion on the use of Deep
Learning for hot metal temperature prediction (ZHANG; KANO; MATSUZAKI, 2019a).
The authors suggest that deep models are more suitable for short-term prediction, whereas
shallow models yield better performance on multi-steps ahead (long term) prediction. Since
we are also interested in the latter scenario, deep models were not considered in this work.
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3 Temperature Prediction System

This section presents the description of the temperature prediction system and its
components, and organized as follows: Section 3.1 presents the overview of the system,
Section 3.2 presents the input variables used in the models, Section 3.3 the modeling
using absolute temperatures and Section 3.4 the modeling of the system using projected
temperatures. At the end, the pre-processing of the system is described in Section 3.5 and
the prediction process in Section 3.6.

3.1 Overview
The objective of the system is to predict the hot metal temperature with several

input variables coming from the blast furnace and make the result available to the operator.
The inputs for the prediction model comprise the control variables, sensors variables, and
additional information related to the temperature measurements and the elapsed time
between the prediction time and the measurement times. An overview of the proposed
system considering is shown in Figure 5.

TEMPERATURE

PRE 

PROCESSING
PREDICT

PREDICTED 

TEMPERATURE

OPERATOR

CONTROL 

VARIABLES

SENSORS

VARIABLES

SYSTEM

∆t

xctrl

xsnrs

Figure 5 – Modules and flow of information. The system receives a set of control variables,
temperatures and delta times which are preprocessed and used to predict a
temperature in the future

The current application of the system takes place at the present time (designated as
t0) to predict a temperature in the future (prediction time, tp) based on recent history and
a action plan on the control variables from t0 to tp. The input data, comprising past and
future values of the control variables (in some experiments, the past values from sensors
variables) and information about the last measured temperatures, are firstly preprocessed
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and then used by a machine learning algorithm (regressor) to predict the temperature.
This variables are better explained later in Figure 7.

With the prediction available, the operator can properly update the action plan of
the furnace (control variables). It is worth noting that this work focuses on studying the
potential of the prediction system, therefore, the action plan is assumed to be known.

3.2 Input Variables
The input variables of the model comprise a subset of furnace control variables,

sensors variables, temperature measurements, and elapsed times related to relevant furnace
events (Figure 7) which are described below.

3.2.1 Control Variables

Ten control variables were initially identified by an experienced operator as those
with greater potential to change the furnace temperature, which can be seen in the Table
2 with the description of each variable.

Table 2 – Control variables used as input in the system and description of each of them

Variables Description

Blast volume Volume or air + enriched O2 injected inside the furnace through the tuyeres.
Oxygen enrichment Amount of oxygen added to the air on the blast
Blast moisture Total moisture on the blast (added steam + atmospheric)
Blast temperature Air + O2 mixture temperature before the tuyeres
Pulverized coal injection Amount of coal being injected at the tuyeres
Top pressure Regulated pressure at the top of the furnace
Dry coke Amount of coke charged by the top disregarding its moisture content
Coke rate Amount of consumed coke per ton of produced hot metal (kg/tonHMT)
Ore rate Amount of ore used per ton of produced hot metal (kg/tonHMT)
Ore Amount of ore charged by the top

Recall that the proposed system receives updates about the state of the blast furnace
variables every 30 minutes. The state of the chosen control variables is synchronized but
the temperature measurements are not. The time it takes for each control variable to have
an impact on the hot metal temperature is different. Often, some variables only starts
influencing the temperature after an hour or two, while others take effect instantly. To
predict the change in the temperature from the last measurement, xctrl carries a window
of n hours of the ten control variables in time. Moreover, other input variable related to
control variables, ∆tctrl, is used to inform the system of the elapsed time from the last
supposed update of the control variables to the time of prediction.
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The control variables are used as input in all modelings. They are essential and
allow a more flexible system because, as intended for real/online operation of the system,
the control variables can be replaced by a action plan ranging from the current time to
the time of prediction.

3.2.2 Sensors Variables

Three sensors variables were chosen by the furnace operator who uses them to
control the blast furnace, which can be seen in the Table 3 with the description of each
variable. Like the control variables, these variables are reported to the system every 30
minutes.

Table 3 – Sensor variables used as input in the system and description of each of them

Variables Description

Direct reduction Calculated direct reduction percentual via heat, oxygen, carbon and iron balances
Thermal Index H0 Proprietary thermal control index
CO2 composition at the top Continuous CO2 measurement via chromatography at the top

Sensors variables were not included as input variables throughout the modeling,
being used as a separate experiment, in a different approach. This happens because unlike
the control variables, in an online operation of the system, the sensor variables cannot be
replaced by a control plane, as it is not possible to assume what the state of the furnace
will be like.

3.2.3 Summarization

Since the temperature measurement process is noisy and the sampling rate of the
blast furnace variables is higher than the expected temperature response, the data is
summarized to enable the later online use of the system. The data summarization process
is described in the following.

For the hot metal temperature, the several measurements per casting are sum-
marized into a single measurement to help removing noise. In the beginning, the first
measurement of each casting is removed since it is usually noisier than the others, because
many times the channel that runs the hot metal is still cold in these first measurements.
Subsequently, for each casting, the highest temperature is chosen as the representative
of the respective casting. Then, the data associated with the blast furnace variables is
summarized in intervals of 30 minutes considering the average value of the past 30 minutes.

The summary of a casting can be seen in Figure 6, in a run with four measurements,
where Tmax is the maximum temperature of the run, and tmax is the respective time of that
measured. The first measurement in that casting is a temperature higher than the chosen
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Figure 6 – Illustrates a casting with four measurements with the maximum temperature
of that casting marked

maximum temperature; However because it is the first of a casting, it is disregarded.

3.3 Model with Absolutes Temperatures
The modeling with absolute temperatures uses measurement temperature variables

later than current. As the tap holes behave independently, when predicting a temperature
from a certain X tap hole, if the last temperature measurement comes from a different
tap hole, an Y tap hole (which occurs in 99,5% of the times) information about the last
recorded temperature coming from that same tap hole is important.

The elapsed time of the last measurement is also crucial information. Without this
elapsed time, the input having a temperature from 25 minutes ago and 3 hours ago would
be erroneously the same. Without knowing the elapsed time of these measurements, it
would be impossible to know which measurement is more recent, and, thus, which one
would be more relevant for the prediction. Therefore, these temperatures and elapsed
times are needed for the prediction.

Therefore, the inputs in the absolute temperatures model are: Tlast (last denotes
the last temperature measurement considering the current time) and Tsame (same denotes
the last temperature measurement of the same tap hole considering the current time), and
by ∆tlast and ∆tsame, the respective elapsed times from such measurements to the time of
desired prediction. The measurements are illustrated in Figure 7.

Thus, for a particular temperature prediction at tp, the model receives as input an
updated vector x = (xctrl, T, ∆t), where xctrl is the current state of the control variables
window, T = (Tlast, Tsame) and ∆t = (∆tctrl, ∆tlast, ∆tsame). Using the sensors variables,
the vector x also contains xsnrs, which are the current state of the sensors variables window.
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Figure 7 – Illustrates, in time, the input and output information of a prediction at tp with
the user at time t0 considering information of n hours prior tp.

As in the approach using sensors variables it is not possible to replace values in
online mode as control variables, only variables prior to t0 were used.

3.4 Model with Projected Temperatures
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Figure 8 – The temperature difference in two tap holes (Tap Hole 2 and 4)

Despite belonging to the same blast furnace, the tap holes behave differently within
the same time interval. As can be seen in Figures 8 and 9, there is a gap in measurement
temperatures between two interleaved tap holes. Given this difference, predicting the
temperature of a given hole using the last measured temperature, which belongs to another
hole, can negatively influence the forecast.

Aiming at this problem, this model was built, which generates an artificially
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Figure 9 – The temperature difference in two tap holes (Tap Hole 1 and 3)
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Figure 10 – Illustrates the generation of the Tprojected

projected temperature to be used as input, Tprojected. To generate this temperature, which
can be seen in Figure 10, we obtain the rate of change between measurements T0 and the
previous temperature of the same tap hole (in this case, T−2), and their respective time
lapses. From this rate of change, a new T0 value is projected from T−1, the same hole as
Tp. In 95.7% of the time, T0 and T−2 correspond to the same tap hole. The equation that
describes this process is:

Tprojected = T0 − T−2

t0 − t−2
∗ (t0 − t−1) + T−1 (3.1)

This value is projected at the same position as the last measurement t0. In this
way, the value of the last measurement stops feeding the model, which starts to receive the
projected value. As with absolute temperature modeling, the elapsed time between the
last temperature measurement and the current temperature is also used as input. That is,
the ∆tprojected is equals to ∆tlast.
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To predict a certain point, the model with the projected temperature receives the
x = (xctrl, T, ∆t) vector as input in the same way as in the absolute temperature model
(with the xsnrs in the sensors variables approach), but with the T = (Tprojected, Tsame)
and ∆t = (∆tctrl, ∆tprojected, ∆tsame) vector in this way. As in the approach using sensors
variables it is not possible to replace values in online mode as control variables, only
variables prior to tprojected were used.

3.5 Preprocessing
The system was evaluated with real-world data collected from a blast furnace of a

large steelmaking company. Prior to use, the data was cleaned and preprocessed as follows
next.

3.5.1 Noise Removal

Noisy temperatures with clearly low values (below 100◦C) were removed. Castings
having temperatures with same timestamp were removed. Then, we removed some runs
that had all of their measurements associated with same timestamp in their system. This
situation should never happen and it is probably caused by a problem in their system,
which makes these runs unreliable.

The shorter casting was removed in case of overlapping castings. Although this
overlap can happen in practice (albeit most of them were due to problems with the logging
system), the shorter one was removed because it was deemed less reliable and would yield
a lower impact on the raw data. Moreover, as the HMT measurement process is noisy in
itself, sometimes an operator notices that the temperature measurement is likely to have
been wrongly taken, and retakes it. Usually, this second measurement happens shortly after
(in an interval of less than 5 minutes). Therefore, measurements that had a subsequent
one within this interval were also removed. Besides, the first HMT measurement of each
casting was removed because it usually presents a lower signal-to-noise ratio.

Continuing the cleaning process, the data collected close to a maintenance downtime
(±8h) were disregarded because the blast furnace may be in an unusual state preparing to
or recovering from the maintenance. Furthermore, control variables with values outside
their operational range (provided by an expert) were considered outliers and had their
values truncated.

3.5.2 Normalization

After the cleaning, the data was preprocessed in a two-fold manner: data normaliza-
tion and data imputation. To normalize the data, we employed an IQR-based normalization,
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which is basically the subtraction of the median and division by the interquartile range
(IQR).

Control variables were normalized by mean and IQR of each variable separately.
As for the temperature and delta variables, these were normalized differently. The deltas
have been normalized together. Temperatures were normalized using the median and
IQR of one variable, the run maximum temperature. All data was normalized using the
normalization parameters from training data. There was no contamination of the test set
with the training data.

Finally, some control and sensors variables may have missing values due to various
reasons (e.g., sensor malfunctioning, system and networking issues, database failures). As
most of the models evaluated in this work do not support working with missing data, we
imputed values according to the moving average using a fixed window of the past 4 hours.
After the data imputation, the data is ready for use.

3.6 Prediction
In order to perform a prediction with a system, the user defines the interval (in

the future) when the casting is meant to happen. Within this interval, predictions are
performed every 30 minutes approximately, and the maximum predicted temperature
among them is used for that casting.

In the online system, we do not have the control variables until the prediction,
the values are replaced by a control plan, provided by the furnace operator with their
next steps. But, in an offline approach, all control variables are available; Therefore, the
substitution of future variables to a control plan is not required.
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4 Experimental Methodology

In order to evaluate the system, a set of experiments were performed with real-
world data from a blast furnace. The evaluating of the experiments was focused on two
modelings, with absolute temperatures and projected temperatures, and with and without
the sensors variables. In Section 4.1, the dataset is described, while Section 4.2 covers the
hyper-parameter search. The evaluation metrics are discussed in Section 4.3, followed by a
detailed description of the experiments themselves in Section 4.4. Finally, the baselines
used are presented in Section 4.5.

4.1 Dataset
The proposed system was evaluated with real-world data from the industry. The

preprocessed dataset comprises 79,764 records of sensor data collected along the years
2017 to 2021. We split data into training (47,416 records), validation (16,968 records), and
testing (15,380 records) sets. The training set comprises data collected from the years 2017,
2018, and 2019, the validation set includes only the year 2020, and the test set includes the
year 2021 (more recent data). The data was actually collected and stored in the company
systems already considering the synchronization in time (as described in Section 2).

4.2 Hyper-Parameter Search
To provide a fair comparison study, for each of the evaluated regressors, we

performed an extensive hyper-parameter search using the Tree-structured Parzen Estima-
tor (BERGSTRA et al., 2011), and the best model was chosen as that which maximizes the
MAE on the validation set. For each regressor, a hyper-parameter search was performed to
find the best combination in each case. The methods were optimized using the MAE metric
as a guide for the best result on the validation set. The search for hyperparameters took
place around the default values of each library. The default value and chosen range are
listed below. Each method’s default value listed in the library was considered when selecting
the intervals and ranges. The investigated parameters and their respective domains are
mentioned in the following (real ranges are expressed as [·]R):

• EBM1:

– Max Bins - Default: 256 - Range: ∈ [128, 512];
1 Library used: https://interpret.ml/docs/ebm.html
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– Max Interactions - Default: 32 - Range:∈ [16, 64]);

– Number of Interactions - Default: 10 - Range:∈ [5, 15];

– External Pockets - Range: ∈ [4, 16];

– Number of Trials: 30.

• KNN2

– Number of neighbors - Default: 5 - Range: ∈ [3, 100];

– Number of Trials: 25.

• LGBM3

– Boosting Type - Default: gbdt - Range: ∈ {gbdt, dart, goss};

– Number of Estimators - Default: 100 - Range: ∈ [3, 1000];

– Number of Leaves - Default: 31 - Range: ∈ [25, 100];

– Number of Trials: 15.

• PLS2

– Number of Components - Default: 2 - Range:∈ [1, 100];

– Number of Trials: 100.

• Linear Regression2

– Intercept Adjustment - Default: True - Range: ∈ {True, False};

– Number of Trials: 2

• MLP2

– Number of Neurons - Default: 100 - Range:∈ [25, 27];

– Number of Layers - Default: 1 - Range: ∈ [2, 5];

– Initial Learning Rate - Default: 0.0001 - Range: ∈ [0.0001, 0.01]R;

– Activation Function - Default: ReLU - Range:∈ {ReLU, tanh};

– Maximum Number of Iterations - Default: 200 - Range: ∈ [100, 1000];

– Number of Trials: 15.

• Random Forest2

– Number of Estimators - Default: 100 - Range:∈ [3, 1000];
2 Library used: https://scikit-learn.org/
3 Library used: https://lightgbm.readthedocs.io/
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– Function to measure the quality of a split - Default: MSE - Range: ∈ {MSE, Friedman MSE};

– Function that limits the Number of features in split decisions - Default: None -
Range:∈ {sqrt, log};

– Number of Trials: 100.

• SVM2

– Number of Estimators - Default: 10 - Range:∈ [10, 15];

– Number of Trials: 10.

• XGBoost4

– Number of Estimators ∈ [3, 1000];

– Loss function - Default: MSE - Range:∈ {MSE, pseudo-huber};

– Number of Trials: 30.

4.3 Evaluation Metrics
Five metrics were used to evaluate the performance of the model on real-world

data. Three of them are very common in prediction analysis: Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).
The other two address the particularities of this application: accuracy at range (AAR)
and a trend metric (TM). AAR quantifies the ratio of predictions that lie within a margin
of tolerance ϵ in relation to the ground-truth. Given npred predictions,

AAR(ϵ) = 1
npred

|{t : |T̂t − Tt| ≤ ϵ}|, (4.1)

where T̂t stands for the prediction at time t and Tt for the respective ground-truth
temperature.

While AAR can be seen as a two-class (“hit or not hit”) classification metric, there
is the trend metric (TM) that regards three classes: constant, increased, or decreased.
These classes (labels) are given by the following function that verifies the trend behavior
when moving from a temperature Tcurr to Tnext:

B(Tcurr, Tnext) =


“increased”, if Tnext − Tcurr > ϵ

“decreased”, if Tnext − Tcurr < −ϵ

“constant”, otherwise.

(4.2)

4 Library used: https://xgboost.readthedocs.io/
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Based on this definition, the trend measure is defined as

TM(ϵ) = 1
npred − 1 |{t : B(Tt, T̂t+1) matches B(Tt, Tt+1)}|. (4.3)

The metric chosen to be used as a standard was the Mean Absolute Error, as it is
widely used in regression problems, as in this work. It was used in most analyzes and to
optimize parameters in parameter search.

4.4 Experiments
In this work, we perform a comprehensive comparative study of several machine

learning regressors: KNN, LR, PLS, EBM, LGBM, RF, SVM, XGBoost, and MLP. Overall,
our study comprises tuning these regressors (via a hyper-parameter search on the validation
set) in multiple configurations (combinations of the length of the time history for the
control variables and which previous temperatures to provide for the model) for three
scenarios of interest (predicting one, two and three castings ahead), then evaluating them
on a large-scale real-world test set in all these scenarios. Following, we provide details on
each of the steps we performed for this study.

4.4.1 Absolute Temperature

This experiment uses absolute temperature modeling, taking as temperature inputs
only actual measurements. Three specific experiments was performed in this approach,
which can be seen below.

4.4.1.1 History Length

In order to verify the maximum influence of the control variables, and to cover a
period of time in which there is no temperature measurement, lagged control variables
were given as input, in two possibilities, with 8 hours of delay and 6 hours of delay. In this
experiment, the prediction is one (t+1) casting ahead. This analysis will verify which of
the two possibilities performed better, and define this parameter for the next experiments.

4.4.1.2 Main Experiment - Predictions Ahead

The models are finally evaluated on three different use cases: HMT prediction
one (t+1), two (t+2), and three (t+3) castings ahead, after exhaustively searching the
best hyper-parameter for each method in the validation set. As already mentioned, given
that the evaluation is on historical data, we assume that the operator followed the only
control plan available (i.e., the one present in the data) and predictions were performed
synchronously with the real measurements. The best models on the validation set are
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evaluated on the test set and their results are reported. For the AAR and TM metrics, we
used ϵ = 10ºC. After this experiment, the next ones predict only t+1 casting ahead, as
this is the central problem to be explored.

4.4.1.3 Custom History Length

Each control variable has a different time of influence on the temperature. The
introduction of these control variables at a time when there is no interference in the hot
metal temperature could allow the model to learn a nonexistent correlation at that point.
That way, a mask was made on the input control variables so that the model includes
only from the moment when the beginning of the load affects the temperatures. This
experiment will verify the effectiveness of the mask in affecting the result in the right way,
compared to the best result without the mask of the Ttp−1 experiment.

To carry out this test, at a certain point in the data set an artificial value was
inserted in one of the variables. From this, it is analyzed whether the behavior of the
custom history length system and contrasted with the full history approach.

4.4.2 Projected Temperature

This experiment uses projected temperature modeling, taking as temperature
inputs actual measurements and projected measurements. Two specific experiments was
performed in this approach, which can be seen below.

4.4.2.1 Main Experiment

The idea of this experiment is to analyze the predicted temperature modeling,
performing a comparative study of each regression model in the same way as the absolute
temperature, searching the best parameters. However, in the projected temperature
experiments, only the predicted HMT prediction one casting ahead (t+1) is analyzed.

4.4.2.2 Custom History Length

Implemented in the same way as modeling absolute temperatures, this experiment
checks whether, with the custom history length, the variables influence the predicted
temperature in the expected way.

4.4.3 Sensor Variables

In these experiments, the sensor variables are used as input along with the control
variables. As the furnace operator uses these variables to guide the blast furnace, the
objective of the experiment is to verify if the system is able to capture this information
to aid in prediction. Such as the main experiment of the absolute temperature modeling
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and projected temperature modeling, is done a search of the best parameters for each
regression model.

This experiment is done for both absolute and projected modeling.

4.5 Baselines
As, to the best of our knowledge, the models published in the literature are not

publicly available. Therefore, in addition to the comparison between the several evaluated
models, we also provide common baselines: a naive forecast that repeats the last values
(in our case, Ttp−1, Ttp−2 and Ttp−3 being one for each type of prediction t+1, t+2 and t+3

respectively) as well as moving averages with window size w = 2 for each of the scenarios
t+1, t+2 and t+3. The moving averages Mw

tp−1, Mw
tp−2 and Mw

tp−3 are calculated considering
the w past temperature measurements starting from Ttp−1, Ttp−2 and Ttp−3 for each of the
considered scenarios respectively.

4.6 Computational performance
The experiments were executed in a machine with 256GB of memory RAM, with

Ubuntu 16.04.5 LTS and CPU Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.10GHz with 128
cores.
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5 Results and Discussion

This section presents the results to the experiments described in Section 4 and the
study limitations at the end.

5.1 Absolute Temperature
In this section, the results referring to the experiments and analysis using absolute

temperatures are presented.

5.1.1 History Length

In this experiment, the results referring to the duration of the history used were
reported. As can be seen in Table 4, the experiments that used the 8-hour history achieved
a better validation MAE than the experiments that used the 6-hour history. For this
experiment, we predict only t+1 castings ahead.

Table 4 – History Length Experiment - Validation Result

Method MAE 6h MAE 8h

PLS 10.415 10.142
Linear 10.422 10.159
LGBM 11.289 11.275
MLP 12.088 11.804
EBM 12.160 12.219
XGBoost 11.863 12.102
SVM 14.343 14.067
RF 12.029 12.134
KNN 16.784 16.882

The first four best-performing methods, PLS, Linear, LGBM, and MLP, achieved a
lower MAE using the 8-hour history, together with the SVM. The other methods, XGBoost,
RF, EBM and KNN also worked well, and achieved better results using a 6-hour history.

Unfortunately, it is only possible to conjecture that these methods do not give as
much importance to the variables referring to the last lags as to the first methods.

This study aims to define the best value for the parameter history length. The
experiment that obtained the best validation result was the one with a history length of
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8-hours. Therefore, this value (8-hours) is chosen as the default for the parameter history
length in the next experiments.

5.1.2 Predictions Ahead

In this comparative study, we report results for several machine learning methods
on three use case scenarios, where the HMT prediction is made one (t+1), two (t+2), and
three (t+3) castings ahead. The Linear Regression and PLS methods were the ones that
obtained the best results in all scenarios.

The results of this experiment can be seen in the next tables, which each comprise
12 rows, one per method (described in the first column), along with 8 columns showing
the results of each metric: MAE, MAPE, and RMSE, and the AAR and TM metrics with
5ºC and 10ºC tolerances.

In t+1 the PLS and Linear tied with MAE of 9.66, as can be seen in Table 5. The
AAR(10) shows that in approximately 60% of the cases of t+1 scenario the system predicts
the correct temperature within 10◦C. The TM(10) shows the system follows the trend in
approximately 62% of the cases.

Table 5 – Main experiment – Predicting t+1 – 8-Hours History Length *Baseline methods

Method MAE MAPE RMSE AAR(5) AAR(10) TM(5) TM(10)

PLS 9.66 0.64 12.55 34.17 60.14 59.20 62.49
Linear 9.66 0.65 12.56 34.20 60.03 59.23 62.59
MLP 10.22 0.68 13.22 32.35 58.11 57.55 60.60
LGBM 10.36 0.69 13.35 32.66 57.12 56.07 60.40
EBM 10.76 0.72 13.83 29.57 55.71 55.22 58.79
XGBoost 10.93 0.73 14.05 29.06 54.99 54.53 57.52
SVM 10.97 0.73 14.16 30.40 55.58 57.21 58.65
RF 11.52 0.77 14.78 28.03 52.66 49.76 53.78
M2

tp−1* 12.61 0.84 16.06 27.38 49.57 44.41 50.03
Tt−1* 13.83 0.92 17.55 26.07 45.80 26.15 45.81
KNN 17.03 1.14 21.42 18.73 36.47 47.32 45.16

In the scenario t+2, which can be seen in Table 6, Linear was a little better with
MAE of 10.12, followed by PLS with MAE of 10.14. And again, at t+3, PLS was the best
with a MAE of 12.33 behind Linear with a MAE of 12.34 (Table 7).

The other regression methods also obtained satisfactory results with values similar
to Linear and PLS, with an average MAE of 10.648 in t+1, with the exception of Random



Chapter 5. Results and Discussion 47

Table 6 – Main experiment – Predicting t+2. – 8-Hours History Length *Baseline methods.

Method MAE MAPE RMSE AAR(5) AAR(10) TM(5) TM(10)

Linear 10.12 0.68 13.01 31.25 57.87 58.68 61.08
PLS 10.14 0.68 13.01 30.84 57.74 58.44 60.09
LGBM 11.04 0.74 13.98 27.93 53.38 56.52 57.28
EBM 11.17 0.75 14.24 28.27 53.48 56.21 56.35
SVM 11.52 0.77 14.75 28.41 52.62 57.31 58.07
XGBoost 11.61 0.77 14.79 27.41 51.49 54.98 56.52
MLP 11.79 0.79 15.21 27.79 52.11 55.29 57.48
RF 12.36 0.82 15.68 25.21 49.06 51.85 52.75
Tt−2* 14.91 0.99 19.05 24.29 42.47 47.80 47.98
M2

tp−2* 16.31 1.09 20.82 21.24 39.45 40.63 42.69
KNN 17.08 1.14 21.46 18.66 35.99 47.22 45.06

Forest and KNN. KNN itself was the worst method in all use cases, the only worst-than-
baseline regression model.

Table 7 – Main experiment – Predicting t+3. – 8-Hours History Length *Baseline methods.

Method MAE MAPE RMSE AAR(5) AAR(10) TM(5) TM(10)

PLS 12.33 0.82 15.85 25.73 49.91 54.08 54.63
Linear 12.34 0.82 15.86 25.76 49.78 54.26 54.56
SVM 13.20 0.88 16.83 25.25 46.62 52.57 52.88
EBM 13.63 0.91 17.32 23.40 45.35 52.09 50.69
LGBM 13.68 0.91 17.30 23.19 45.01 51.89 51.17
XGBoost 14.50 0.97 18.37 22.16 42.71 49.59 48.80
RF 14.92 0.99 18.84 21.85 41.20 49.14 47.77
MLP 15.39 1.03 19.41 20.21 39.97 49.45 48.94
KNN 17.36 1.16 21.81 18.29 35.30 47.12 44.82
M2

tp−3* 19.17 1.28 24.65 18.83 35.06 40.84 41.11
Tt−3* 20.10 1.34 25.68 17.74 34.07 35.11 36.41

For the experiments, qualitative results were generated covering four time lapses
of ten days, to cover all tap holes and not present biased results of only time lapse. The
date interval are: 21 Jan 2021 to 31 Jan 2021, 21 Mar 2021 to 31 Mar 2021, 10 Feb 2021
to 20 Feb 2021 and 15 Apr 2021 to 25 Apr 2021. The results are charts with the X axis
is the time, and the Y axis is the hot metal temperature. Qualitative results are graphs
where the X-axis is time and the Y-axis is the hot metal temperature. You can see the
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ground-truth in blue, the forecast with the Linear model in red, and the best baseline for
each use case in green. In addition, two lines that guide whether the temperature is hot
(1520ºC) and cold (1480ºC) are marked on the graph.

The qualitative results of t+1 can be seen in the Figure 11. The prediction model
trend, in this case the Linear model that achieves the smallest error, follows the the ground-
truth trend for almost the entire time interval shown, being more close to ground-truth
than the baseline. Close to the January 25, 2021 it is possible to see a large discrepancy.
On closer inspection, an experienced operator informed that the ground-truth temperature
data was inconsistent with the other measurements, showing, as previously said, that the
data set has a lot of noise.

Figure 12 shows the result of the experiment with t+2, using the same time interval
shown in Figure 11 above. The model used is Linear, still with the best result in t+2, and
follows the trend of the ground-truth and obtains at certain points a temperature closer
to the ground-truth than t+1 . This is because the model input comprises not the last run
measurement, but its predecessor, which has the same tap hole as the predict.

In Figure 13, which shows the experiment t+3, the model errs more when moving
away from the ground-truth than in t+1 and t+2. But the predict is still inside the guide
lines that inform if the temperature is hot or cold, such as can be seen in the figure.

The Figure 14 show the absolute error of the model and baseline compared to the
ground-truth, in the same time interval of the Figures 11, 12 and 13. It can be seen that
the error is smaller in the t+1 but closer to the baseline, whereas in the t+3 the error is
bigger but the baseline is worst.

The next analysis and experiments maintain a pattern by predicting only t+1, the
central problem investigated.

5.1.3 Analysis by Tap Hole

Considering the mismatch between the tap holes, an analysis was performed using
a specific test set for each of the tap holes, in order to verify the performance of each of
them separately. The Table 8 shows the results with the MAE metric of each of the tap
holes. The method used in the analysis was Linear Regression, which achieved a lower
MAE in the experiment t+1.

It is possible to notice that the error of experiment using tap hole 1 and using
tap hole 2, with approximately 8.7 together, is relatively smaller than the error of the
experiments using tap hole 3 and tap hole 4, which is around 10.5. This indicates that the
temperature measured in the first tap holes is better explained by the control variables
than in the later tap holes. The MAE using all holes (9.54) is approximately the average
MAE of the separate tap holes (9.6).
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Figure 11 – Qualitative experiment: predicting t+1
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Figure 12 – Qualitative experiment: predicting t+2
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Figure 13 – Qualitative experiment: predicting t+2
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Figure 14 – Qualitative experiment: error of predicting t+1, t+2 and t+3 (top to bottom)
between 2021-01-21 and 2021-01-31.

5.1.4 Custom History Length

To verify the performance of the custom history length, we compared the results
using the Linear regression model (the best and fastest model in the experiment) with and
without the custom history length. The metric itself does not show an improvement. The
custom history length achieves a MAE of 10.144 against the MAE of the original t+1 with
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Table 8 – Tap Hole Experiment – Absolute Temperature – Predicting t+1 – 8-Hours History
Length

Selected Tap Hole MAE

Tap Hole 1 8.655
Tap Hole 2 8.813
Tap Hole 3 10.407
Tap Hole 4 10.757

9.66, so we created a situation to check if the custom history length was actually used or
not.

To perform this experiment, we generate artificial values in two control variables,
PCI rate and Increased Oxygen Rate at the 04:30h in Feb 18, 2021. With these artificial
values, is more clear to see the inference of a specify control variable in the predict
temperature. As can be seen in the Figures 15 and 16, with a custom history length the
model have a delay to receive the impact of the variable, showing that the purpose of the
custom history length, is achieved.
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Figure 15 – Mask Experiment: Increased PCI variable t+1 – Absolute Temperature

From these results, the custom history length shows that fulfills its purpose,
influencing the temperature at the right time, despite the MAE was worse than the original
experiment predicting t+1 one casting ahead.

5.2 Projected Temperature
In this section, the results referring to the experiments and analysis using predicted

temperatures are presented.
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Figure 16 – Mask Experiment: Increased Oxygen Rate variable t+1 – Absolute Temperature

5.2.1 Main Experiment

In this experiment we evaluated the performance of projected temperature modeling
to isolate the tap holes making the prediction. As can be seen in Table 9, a better result
was obtained (MAE of 9.56), compared to the absolute temperature (MAE of 9.66 in
Table 5), without using the last measured temperature.

Table 9 – Projected Temperatures – Predicting t+1 – 8-Hours History Length

Method MAE MAPE RMSE AAR(5) AAR(10) TM(5) TM(10)

Linear 9.56 0.64 12.33 33.76 59.93 60.60 63.56
PLS 9.60 0.64 12.35 33.45 59.90 60.50 62.90
EBM 10.36 0.69 13.20 30.26 56.74 59.09 60.64
LGBM 10.45 0.70 13.36 30.74 56.43 58.41 59.03
XGBoost 10.59 0.71 13.59 30.15 56.60 57.96 59.68
SVM 10.89 0.73 13.96 29.71 55.13 58.37 59.03
MLP 10.99 0.73 14.17 30.15 53.65 56.38 59.16
RF 11.00 0.73 14.04 28.85 54.58 55.25 56.90
KNN 17.16 1.14 21.54 18.46 35.82 47.05 45.30

In general, all methods performed better than the absolute temperature experiment,
decreasing the MAE. There was an improvement in trend (TM) but a slight decrease in
accuracy (AAR).

The Figure 17 shows the qualitative result of the projected temperature, presenting
a result similar to the absolute temperature, with better performance than the baseline
being closer to the original temperature.

Visually comparing the absolute temperature modeling and the projected tem-
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Figure 17 – Qualitative experiment: predicting t+1 with projected temperature

perature modeling (seen in Figure 18), the two models had a similar behavior, in some
moments the absolute modeling is closer to the ground-truth, as in 23 Apr, and in other
moments the projected modeling temperature works best as in 19 Apr.
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Figure 18 – Qualitative experiment: predicting t+1 with projected temperature

5.2.2 Custom History Length

To verify the performance of the custom history length, we compared the results
using the Linear regression model (the best and fastest model in the experiment) with and
without the custom history length, implemented in the same way as modeling absolute
temperatures. Such as the absolute temperatures model, the MAE does not show an
improvement, achieving a MAE of 9.99 against to a 9.56 from the main experiment.

To perform this experiment, we generate artificial values in two control variables,
PCI rate and Increased Oxygen Rate at the 04:30h in Feb 18, 2021. With these artificial
values, is more clear to see the inference of a specify control variable in the predict
temperature.
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The Figures 19 and 20 shows the results with a custom history length. The first
figure shows a similar result to the absolute temperature, with the HMT being affected
after a longer time than in the original model. In the second figure, the model is also
affected after a while, but in a different way than the absolute temperature, probably due
to a particularity of the projected temperature model.
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Figure 19 – Mask Experiment: Increased PCI variable t+1 – Projected Temperature
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Figure 20 – Mask Experiment: Increased Oxygen Rate variable t+1 – Projected Tempera-
ture

Despite the difference between absolute temperature and projected temperature
experiments, the custom history length also serves its purpose in projected temperature
by inserting a delay to affect the hot metal temperature in the prediction.

5.2.3 Analysis by Tap Hole

An analysis evaluating the model prediction separately by hole was also done with
the projected temperature. As you can see in Table 10, tap holes 1 and 2 still had a smaller
error than using all tap holes as input, but tap hole 1 obtained a worse MAE (8.737) than
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the experiment with absolute temperature using only tap hole 1 (MAE of 8.655), while
tap hole 4, obtained a MAE of 10.260, better than the absolute temperature experiment
using only tap hole 4(10.757).

Table 10 – Tap Hole Experiment – Projected Temperature – Predicting t+1 – 8-Hours
History Length

Selected Tap Hole MAE

Tap Hole 1 8.737
Tap Hole 2 9.090
Tap Hole 3 10.127
Tap Hole 4 10.260

This indicates that the projected temperature modeling renders the tap holes
more independent of the influence of others tap holes, as it does not pass a temperature
from another hole at the entrance. This makes the prediction by tap hole using projected
temperature closer to a prediction with all tap holes than the predict by tap hole using
absolute temperatures.

5.3 Sensors Variables Analysis
The experiments in this sections comprises the two models, the absolute tempera-

tures and projected temperatures, with the sensors variables.

The absolute temperature results can be seen in Table 11 . Modeling with sensor
variables showed no improvement in MAE. The original absolute temperature had a MAE
of 9.66 and with sensor variables a MAE of 9.77. The bests methods, are similar to the
absolute temperature: PLS and Linear in the top. It is concluded that the variables of the
sensors did not improve the model, despite being good for the operator, the model was
not able to capture the necessary information from them for a good prediction.

The experiments using projected temperature also failed to see an improvement in
a metric, as can be seen in Table 12. The main design goes from a MAE of 9.56 for Linear
to a MAE of 9.72 for Linear as well, a result similar to absolute temperature modeling.

The sensor variables do not improve in the modeling with absolute temperature
and projected temperature, showing that the sensor variables can have relevant and useful
information for the operator, but not in the model prediction.
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Table 11 – Sensors variables experiment - Absolute Temperature – Predicting t+1 – 8-Hours
History Length * Baseline methods.

Method MAE MAPE RMSE AAR(5) AAR(10) TM(5) TM(10)

PLS 9.77 0.65 14.68 34.79 60.86 60.47 62.66
Linear 9.79 0.65 14.71 34.44 60.62 60.19 62.77
LGBM 10.70 0.72 13.83 30.70 56.67 55.11 57.89
SVM 11.07 0.74 14.20 29.40 54.51 57.04 57.52
XGBoost 11.41 0.76 14.68 28.92 53.89 51.27 55.11
RF 11.60 0.77 14.86 28.51 53.17 50.17 53.40
EBM 11.97 0.80 15.20 26.48 51.08 53.19 54.32
MLP 12.37 0.83 15.74 27.00 49.02 53.88 52.71
M2

tp−1* 12.61 0.84 16.06 27.38 49.57 44.41 50.03
Tt−1* 13.83 0.92 17.55 26.07 45.80 26.15 45.81
KNN 16.81 1.12 21.15 18.63 36.16 47.70 45.33

Table 12 – Sensors variables experiment - Projected Temperature – Predicting t+1 – 8-
Hours History Length * Baseline methods.

Method MAE MAPE RMSE AAR(5) AAR(10) TM(5) TM(10)

Linear 9.72 0.65 16.38 33.93 61.34 60.78 63.59
PLS 9.83 0.66 14.11 33.07 59.79 60.36 62.63
LGBM 10.51 0.70 13.47 30.12 57.32 57.38 58.85
EBM 10.68 0.71 13.75 30.70 54.85 58.34 60.36
XGBoost 10.74 0.72 13.83 30.91 55.92 57.93 58.13
SVM 10.78 0.72 13.68 29.37 54.61 58.51 59.44
RF 11.13 0.74 14.20 28.95 53.76 55.73 56.49
MLP 12.32 0.82 20.04 28.06 50.60 56.62 57.04
M2

tp−1* 12.61 0.84 16.06 27.38 49.57 44.41 50.03
Tt−1* 13.83 0.92 17.55 26.07 45.80 26.15 45.81
KNN 16.93 1.13 21.28 18.53 35.88 47.63 45.16

5.4 Limitations
The study had some limitations in its development. The furnace operator did not

have the opportunity to effectively test the prediction system on the fly. Therefore, the
whole analysis was performed offline. In addition, the data had a large amount of noise,
with variations of up to 10°C in temperature measurements, which affected the accuracy
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of the results. The modeling of the problem was limited to predicting temperature values
only for the next casting, not being possible to predict short-term values, such as half
an hour, which may be desirable within the blast furnace operation. The temperature
range of hot metal temperature to ensure good quality is very small (1480ºC - 1520ºC),
this together with the sensor measurement error of 10ºC makes it difficult to make a
good prediction, as the range is small and the error is large. And finally, the gap in the
measurement temperature between two interleaved tap holes at the same time can affect
the prediction.
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6 Conclusion

In this work, we investigated the effectiveness of different machine learning regression
techniques for predicting temperature in a blast furnace obtaining a perform better than
naive baselines used for comparison. We used a real-world dataset consisting of temperature
measurements collected over a period of time in different tap holes of a blast furnace.

We evaluated the performance of machine learning regression methods: KNN, LR,
PLS, EBM, LGBM, RF, SVM, XGBoost, and MLP, in two different modeling, using
absolute temperatures and projected temperatures, using two approaches: with sensors
variables and without sensors variables.

The results showed that the PLS and LR techniques performed best in comparison
to other methods and the baseline for all models. The model with projected temperature,
without using sensors variables, proved to be the best method for the problem. To make a
good prediction, it is necessary to have the temperature information of the tap hole to be
predicted, as this has been proven.

Overall, our results suggest that machine learning regression techniques can be
useful for predicting temperature in a blast furnace but is necessary an evaluation for the
operator to guarantee the efficiency. However, it is important to consider the limitations
of the data and any potential issues that may impact the accuracy of predictions. These
aspects should be taken into account in future research to further improve the performance
of these models. In future works, a control system is included that indicates the next steps
and suggests values of control variables to the operator based on the temperature predict,
and a tap hole driven prediction system, which can counteract the tap hole difference
limitation.
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