
Gustavo Ludovico Guidoni

Transforming Ontology-Based Conceptual
Models into Relational Schemas

Vitória, ES

2023

Gustavo Ludovico Guidoni

Transforming Ontology-Based Conceptual Models into
Relational Schemas

Tese de Doutorado submetida ao Programa de
Pós-Graduação em Informática da Universidade
Federal do Espírito Santo, como requisito parcial
para obtenção do Grau de Doutor em Ciência
da Computação.

Universidade Federal do Espírito Santo – UFES

Centro Tecnológico

Programa de Pós-Graduação em Informática

Supervisor: Prof. Dr. João Paulo Andrade Almeida

Vitória, ES

2023

Ficha catalográfica disponibilizada pelo Sistema Integrado de
Bibliotecas - SIBI/UFES e elaborada pelo autor

G948t
Guidoni, Gustavo Ludovico, 1977-
GuiTransforming Ontology-Based Conceptual Models into
Relational Schemas / Gustavo Ludovico Guidoni. - 2023.
Gui154 f. : il.

GuiOrientador: João Paulo Andrade Almeida.
GuiTese (Doutorado em Ciência da Computação) - Universidade
Federal do Espírito Santo, Centro Tecnológico.

Gui1. Análise de sistemas. 2. Banco de Dados. 3. Ontologia. 4.
Modelagem Conceitual. I. Almeida, João Paulo Andrade. II.
Universidade Federal do Espírito Santo. Centro Tecnológico. III.
Título.

CDU: 004

 Transforming Ontology-Based Conceptual
Models into Relational Schemas

Gustavo Ludovico Guidoni

Tese de Doutorado submetida ao Programa de Pós-Graduação em Informática da Universidade
Federal do Espírito Santo como requisito parcial para a obtenção do grau de Doutor em Ciência
da Computação.

Aprovada em 29 de março de 2023.

Prof. Dr. João Paulo Andrade Almeida
Orientador, participação remota

Prof. Dra. Monalessa Perini Barcellos
Membro Interno, participação remota

Prof. Dr. Vítor Estêvão Silva Souza
Membro Interno, participação remota

Prof. Dra. Maria Luiza Machado Campos
Membro Externo, participação remota

Prof. Dra. Fernanda Araújo Baião
Membro Externo, participação remota

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO
Vitória/ES, 29 de março de 2023

Documento assinado eletronicamente nos moldes do art. 10 da MP 2200/01 e Lei 14063/20
[Hash SHA256] ee130e1169cd045f35482f71e40e4e54f9bb17e5774661823673a9153b06649e

Datas e horários baseados em Brasília, Brasil

Sincronizado com o NTP.br e Observatório Nacional (ON) em

Os registros de assinatura presentes nesse documento pertencem única e exclusivamente a esse envelope.

Documento final gerado e certificado por

Documento em conformidade com o padrão de assinatura digital ICP-Brasil e

validado de acordo com o Instituto Nacional de Tecnologia da Informação

Universidade Federal do Espírito Santo

03/04/2023 às 12:00:42

Folha de Aprovação - Gustavo L. Guidoni
Data e Hora de Criação: 29/03/2023 às 17:50:39

Documentos que originaram esse envelope:

- Folha de Aprovac¸a~o.pdf (Arquivo PDF) - 1 página(s)

Hashs únicas referente à esse envelope de documentos
[SHA256]: ee130e1169cd045f35482f71e40e4e54f9bb17e5774661823673a9153b06649e

[SHA512]: 17c52c7295a77c5fc0512fa71fbc2e4ea170d6f48baa49bdb740e4e1501fd1c992bd8a66ef4d23a1d9f51eab8114a3186d82c7ca5b322f34294a9e28d649350f

Lista de assinaturas solicitadas e associadas à esse envelope

ASSINADO - Fernanda Araújo Baião (fbaiao@puc-rio.br)

Data/Hora: 29/03/2023 - 19:20:35, IP: 139.82.8.110

[SHA256]: 7a372bf7a007202f70526181456dcb6bd85f8847f75364e80fb017693ba044a0

ASSINADO - Maria Luiza Machado Campos (mluiza@ppgi.ufrj.br)

Data/Hora: 01/04/2023 - 16:53:36, IP: 179.67.156.139, Geolocalização: [-23.003296, -43.369576]

[SHA256]: 3221fdc85c8bb9b47957a330ca2fb9c395128aaac56ac1a468d46e4840d62ece

ASSINADO - Monalessa Perini Barcellos (monalessa@inf.ufes.br)

Data/Hora: 03/04/2023 - 10:52:32, IP: 179.217.8.72

[SHA256]: 34dd7f990f24dd77dfc9ed01044dfa2e435bac0ee77cf33ad9bbdf4e618e96a5

ASSINADO - Vítor Estêvão Silva Souza (vitor.souza@ufes.br)

Data/Hora: 03/04/2023 - 11:01:14, IP: 187.36.172.106

[SHA256]: 2e15d633398982aa652b9b7fafcfbbd4b0cf8a0abd27f0bfa1f4647a17663ee9

ASSINADO - Joao Paulo Andrade Almeida (joao.p.almeida@ufes.br)

Data/Hora: 03/04/2023 - 12:00:42, IP: 179.105.121.105, Geolocalização: [-20.257826, -40.271693]

[SHA256]: f3455a6194f42cc82b9c352a12a8ea7f41d2aeccbef38c81f28e97d8c1689302

Histórico de eventos registrados neste envelope

03/04/2023 12:00:42 - Envelope finalizado por joao.p.almeida@ufes.br, IP 179.105.121.105

03/04/2023 12:00:42 - Assinatura realizada por joao.p.almeida@ufes.br, IP 179.105.121.105

03/04/2023 11:01:14 - Assinatura realizada por vitor.souza@ufes.br, IP 187.36.172.106

03/04/2023 11:01:02 - Envelope visualizado por vitor.souza@ufes.br, IP 187.36.172.106

03/04/2023 10:52:32 - Assinatura realizada por monalessa@inf.ufes.br, IP 179.217.8.72

01/04/2023 16:53:36 - Assinatura realizada por mluiza@ppgi.ufrj.br, IP 179.67.156.139

01/04/2023 16:53:05 - Envelope visualizado por mluiza@ppgi.ufrj.br, IP 179.67.156.139

29/03/2023 19:20:35 - Assinatura realizada por fbaiao@puc-rio.br, IP 139.82.8.110

29/03/2023 19:20:28 - Envelope visualizado por fbaiao@puc-rio.br, IP 139.82.8.110

29/03/2023 17:54:08 - Envelope registrado na Blockchain por joao.p.almeida@ufes.br, IP 179.105.121.105

29/03/2023 17:54:07 - Envelope encaminhado para assinaturas por joao.p.almeida@ufes.br, IP 179.105.121.105

29/03/2023 17:50:40 - Envelope criado por joao.p.almeida@ufes.br, IP 179.105.121.105

À minha esposa Amanda, às minhas �lhas Lara e Luísa, aos meus pais Severino e Marlene e ao
meu amigo Fabrício Roulin Bittencourt, por acreditar em mim antes mesmo que eu.

Agradecimentos

Agradeço primeiramente a Deus por estar comigo nos caminhos que escolhi. Quero
fazer um agradecimento especial ao meu orientador, Prof. João Paulo A. Almeida, pela paciência,
dedicação e ensinamentos durante esta jornada. Agradeço aos meus colegas do Nemo, com os
quais tive momentos inspiradores que me �zeram “abrir a mente” e enxergar problemas através
de outras perspectivas. Agradeço ainda aos professores membros do Nemo, em especial ao
professor Falbo (in memoriam) pela serenidade de me colocar nos trilhos da ontologia. Agradeço
ao professor Giancarlo Guizzardi pelas contribuições na elaboração dos artigos. Agradeço aos
membros da banca desta tese pelas importantes contribuições. Agradeço ainda ao Instituto
Federal do Espírito Santo (Ifes), em especial aos meus colegas da Coordenadoria de Informática,
por terem permitido que eu me afastasse das minhas atividades para me dedicar exclusivamente
ao curso de doutorado. Em especial, agradeço à minha esposa pela paciência, carinho e incentivo.
Por �m, e não menos importante, quero agradecer ao meu irmão por ser a luz nos momentos
mais escuros desta jornada.

“Be stronger than your best excuse.”
(Unidenti�ed author)

Resumo

Apesar das contribuições relevantes da modelagem conceitual baseada em ontologias e do
amplo uso de esquemas relacionais na implementação de bancos de dados, a combinação da
modelagem conceitual baseada em ontologias e dos esquemas relacionais ainda não recebeu a
devida atenção. Dentre as tecnologias de modelagem conceitual, a OntoUML se destaca como
linguagem para descrever o domínio do problema, tendo como nicho principal a formulação
e propagação do conhecimento. Portanto, o modelo produzido pela OntoUML pode ser visto
como um “ponto de partida” para outros artefatos, como o esquema relacional. Para produzir
o esquema relacional a partir do modelo conceitual de maneira automatizada, é necessário
compatibilizar uma série de construtos. A literatura atual disponibiliza algumas abordagens de
transformação objeto-relacional que poderiam, em princípio, ser aplicadas a modelos conceitu-
ais orientados a ontologias, como aqueles produzidos em OntoUML. No entanto, há construtos
importantes que não são cobertos por tais abordagens. A maioria das abordagens de transfor-
mação objeto-relacional não dá suporte a modelos conceituais que: (i) incluem generalizações
ortogonais (overlapping) ou incompletas (incomplete); (ii) adotam classi�cação dinâmica; ou (iii)
empregam herança múltipla. Isso ocorre porque muitas das abordagens discutidas na literatura
assumem primitivas subjacentes às linguagens de programação orientadas a objetos (em vez da
linguagens de modelagem conceitual). Para resolver essa lacuna, este trabalho visa compreender
as forças que regem as estratégias clássicas de transformação das hierarquias de classes em
esquemas relacionais, identi�cando meta-propriedades ontológicas que caracterizam as classes
nesses modelos (como sortalidade e rigidez). As informações obtidas são utilizadas para orientar
a transformação do modelo conceitual no esquema relacional a �m de evitar alguns problemas
das abordagens existentes. Além de automatizar a geração do esquema relacional, também
propusemos um mapeamento automatizado de acesso a dados baseado em ontologia para o es-
quema relacional resultante, com o objetivo de expor os dados em termos do modelo conceitual
original, permitindo a produção de consultas em um alto nível de abstração (em SPARQL),
independentemente da estratégia de transformação selecionada. Além disso, incorporamos
restrições adicionais ao longo do processo de transformação objeto-relacional (implementadas
através de triggers) para garantir que seja respeitada a semântica do modelo original. A abor-
dagem proposta é contrastada com as abordagens de transformação dominantes na literatura a
partir das perspectivas: (i) das primitivas de modelagem conceitual suportadas; (ii) do tamanho
do esquema resultante; (iii) do desempenho quanto ao tempo de resposta em consultas; e (iv)
da usabilidade do esquema resultante, para o qual é relatado um estudo empírico.

Palavras-chaves: mapeamento objeto-relacional, transformação, modelagem conceitual, mod-
elos, ontologia, modelagem conceitual baseada em ontologia, preservação semântica.

Abstract

Despite the relevant contributions of ontology-based conceptual modeling and the widespread
use of relational schemas, the combination of these two technologies has not yet received due
attention. Among the conceptual modeling technologies, OntoUML stands out as a language
to describe a domain of interest, having as its main niche the formulation and propagation of
knowledge. Conceptual models produced with OntoUML can be seen as a “starting point” for
other artifacts, such as relational schemas in a database realization. To produce a relational
schema from the conceptual model in an automated way, it is necessary to bridge the gap
between a series of constructs. The current literature provides some object-relational transfor-
mation approaches that could, in principle, be applied to ontology-driven conceptual models,
such as those produced in OntoUML. However, there are important constructs that are not
covered by such approaches that must be addressed. Most of the existing object-relational
transformation approaches fail to support conceptual models that: (i) include overlapping or
incomplete generalizations; (ii) support dynamic classi�cation; (iii) have multiple inheritance;
and (iv) have orthogonal hierarchies. This is because many of the approaches discussed in the
literature assume primitives underlying object-oriented programming languages (instead of
conceptual modeling languages). To solve this gap, this work aims to understand the forces that
govern classical strategies for transforming class hierarchies into relational schemas, while rais-
ing some ontological meta-properties that characterize the classes in these models (like sortality
and rigidity). The information obtained is used to guide the transformation of the conceptual
model into a relational schema in order to avoid some problems in existing approaches, leading
to the novel one table per kind strategy. In addition to automating relational schema generation,
we also propose an automated ontology-based data access mapping for the resulting relational
schema, in order to provide access data in terms of the original conceptual model, and hence
queries can be written at a high level of abstraction (in SPARQL), independently of the transfor-
mation strategy selected. Further, we forward engineer additional constraints along with the
transformed schema (ultimately implemented as triggers) to guarantee that the semantics of the
source model is respected. The proposed approach is contrasted with dominant transformation
approaches in the literature from the perspectives of: (i) the supported conceptual modeling
primitives; (ii) size of the resulting schema; (iii) query answering performance; and (iv) usability
of the resulting schema, for which an empirical study is reported.

Keywords: object-relational mapping, transformation, conceptual modeling, models, ontology,
ontology-based conceptual modeling, semantic preservation.

List of Figures

Figure 1 – Overview of the thesis structure relating the objectives of this thesis with
the chapters in which they are accomplished 24

Figure 2 – Running example . 27
Figure 3 – Running example transformed with the one table per class strategy. 29
Figure 4 – Running example transformed with the one table per concrete class strategy. 30
Figure 5 – Running example transformed with the one �attened table per concrete class

strategy. 31
Figure 6 – Running example transformed with the one �attened table per leaf class

strategy. 33
Figure 7 – Running example transformed with the one table per hierarchy strategy

(excerpt). 34
Figure 8 – Relational schema of the generic structure strategy. 36
Figure 9 – OntoUML 2.0 pro�le stereotypes re�ecting UFO taxonomy of universals. . 39
Figure 10 – Running example in OntoUML. 41
Figure 11 – Flattening process example. 48
Figure 12 – Lifting process example for simple generalization. 49
Figure 13 – Lifting process example for generalization set. 50
Figure 14 – Running example transformed by one table per kind strategy. 51
Figure 15 – Running example with disjoint nationality 65
Figure 16 – Schemas used in the empirical evaluation 66
Figure 17 – Query interpretation correctness . 68
Figure 18 – Query interpretation preference (all respondents) 68
Figure 19 – Query interpretation preference (breakdown) 69
Figure 20 – Query interpretation preference regarding the schema displayed �rst . . . 69
Figure 21 – OBDA work�ow (XIAO et al., 2019). 75
Figure 22 – Tracing example for each execution of �attening and lifting. 76
Figure 23 – Trace table structure. 77
Figure 24 – Initial trace table. 77
Figure 25 – Trace table after the �attening of NamedEntity and Customer. 78
Figure 26 – Trace table after the lifting of PersonalCustomer, CorporateCustomer

and Contractor. 79
Figure 27 – Trace table after the lifting operation on the generalization set with Child

and Adult. 80
Figure 28 – A screenshot of the object-relational plugin interface. 93
Figure 29 – Fragment of the “aguiar2019ooco” project that results in iterated lifting. . . 95
Figure 30 – Core Module. 117

Figure 31 – Class Module. 118
Figure 32 – Class Member Module. 118

List of Tables

Table 1 – Summary of strategies presented. 37
Table 2 – Flattening operation. 44
Table 3 – Lifting with simple generalization. 46
Table 4 – Lifting rule when applied in a generalization set of sortals. 47
Table 5 – Support for conceptual modeling primitives in di�erent strategies. 55
Table 6 – Schema size and performance-related metrics in di�erent strategies. 56
Table 7 – Variable occurrences by OntoUML model. 56
Table 8 – Number of tables, unions and �lters for the queries based on di�erent schemas

over our running example model. 59
Table 9 – Queries response times (averages, in seconds) for the running example. . . . 60
Table 10 – Times required for updates of records representing children (in seconds). . . 60
Table 11 – Metrics of OOC-O models. 62
Table 12 – Number of tables, unions and �lters for the queries based on di�erent schemas

over OOC-O models. 62
Table 13 – Queries response times (averages, in seconds) on OOC-O models. 63
Table 14 – Times required for updates of records representing methods (in seconds). . 63
Table 15 – Performance comparison of relational schemas (in seconds). 82
Table 16 – Performance comparison with Ontop query optimizations (in seconds). . . . 82
Table 17 – Revisiting the �attening and lifting operations. 86
Table 18 – Transformation process results . 94
Table 19 – Transformation performance (in seconds) 96

List of abbreviations and acronyms

API Application Programming Interface

DDL Data De�nition Language

ER Entity-Relationship

EER Extended Entity-Relationship

HQL Hibernate Query Language

MDD Model-Driven Development

OBDA Ontology-Based Data Access

OCL Object Constraint Language

ODCM Ontology-Driven Conceptual Modeling

OOC-O Object-Oriented Code Ontology

ORM Object-Relational Mapping

OWL Web Ontology Language

R2RML RDB to RDF Mapping Language

RDB Relational Database

RDF Resource Description Framework

SPARQL SPARQL Protocol And RDF Query Language

SQL Structured Query Language

UFO Uni�ed Foundational Ontology

UML Uni�ed Modeling Language

VKG Virtual Knowledge Graph

Contents

1 INTRODUCTION . 17
1.1 Context . 17
1.2 Research Problem . 18
1.3 Research Hypothesis . 20
1.4 Objectives . 21
1.5 Approach . 21
1.6 Outline of this Document . 23

2 BACKGROUND . 25
2.1 From Conceptual Models to Relational Schemas 25
2.1.1 Primitives of the Source Conceptual Model 25
2.1.2 Running Example . 27
2.1.3 One Table per Class . 28
2.1.4 One Table per Concrete Class . 29
2.1.5 One Flattened Table per Concrete Class 30
2.1.6 One Flattened Table per Leaf Class . 32
2.1.7 One Table per Hierarchy . 33
2.1.8 Generic Structure . 35
2.1.9 Summary . 36
2.2 Ontology-Driven Conceptual Modeling 38
2.2.1 OntoUML . 38
2.3 Final Considerations . 42

3 A NOVEL ONTOLOGY-BASED TRANSFORMATION STRATEGY . . 43
3.1 Basic Transformation Operations . 43
3.1.1 Flattening . 43
3.1.2 Lifting . 45
3.2 One Table per Kind . 47
3.3 Final Considerations . 52

4 EVALUATION OF THE NOVEL STRATEGY 54
4.1 Support for Conceptual Modeling Primitives 54
4.2 Preliminary Performance Considerations 55
4.3 Actual Database Performance in two Scenarios 57
4.3.1 Running Example Project . 58
4.3.2 Object-Oriented Code Ontology (OOC-O) Project 61

4.3.3 Limitations . 64
4.4 Empirical Evaluation of Query Understanding 64
4.4.1 Materials and Preparation . 65
4.4.2 Results . 67
4.4.3 Limitations . 70
4.5 Related Work . 70
4.6 Final Considerations . 72

5 HIGH-LEVEL DATA ACCESS . 73
5.1 Motivation . 73
5.2 Ontology-Based Data Access (OBDA) . 74
5.3 Tracing Flattening and Lifting . 76
5.4 Synthesizing High-Level Data Access 79
5.5 Performance of Data Access . 82
5.6 Related Work . 83
5.7 Final Considerations . 84

6 PRESERVING CONCEPTUAL MODEL SEMANTICS 85
6.1 Missing Constraints due to Flattening 85
6.2 Missing Constraints due to Lifting . 86
6.3 Missing Constraints due to Hierarchy Emulation 87
6.4 Augmenting the Transformation . 88
6.4.1 Transformation Process . 88
6.4.2 Generation of Triggers . 89
6.4.3 Implementation Restrictions . 91
6.5 Implementation and Tests . 92
6.6 Related Work . 96
6.7 Final Considerations . 98

7 CONCLUSIONS AND FUTUREWORK 99
7.1 Research Contributions . 100
7.2 Limitations . 101
7.3 Future Work . 102

BIBLIOGRAPHY . 104

APPENDICES 113

APPENDIX A – RELATIONAL SCHEMA GENERATED BY ONE TA-
BLE PER KIND STRATEGY 114

APPENDIX B – OBJECT-ORIENTED CODE ONTOLOGY PROJECT 117

APPENDIX C – QUERIES USED IN OUR EVALUATIONS 119

APPENDIX D – SPARQL QUERIES USED IN CHAPTER 5 141

APPENDIX E – ONTOP SQL QUERIES 143

APPENDIX F – OBDA FILE GENERATED FOR THE RELATIONAL
SCHEMATHROUGHONETABLEPERKINDSTRAT-
EGY . 148

APPENDIX G – SURVEY FORM . 151

17

1 Introduction

This chapter presents an overview of this document and de�nes the basis for the
subsequent chapters. It discusses the context in which this thesis is embedded, the motivation
for conducting this work, its main challenges, objectives, and the methodological aspects that
have guided the research. Finally, it presents the structure of this document.

1.1 Context

Conceptual modeling is responsible for elucidating and representing the problem do-
main (GRECA; MOREIRA, 2000). Conceptual models are thus produced with the purpose of
ruling out ambiguous interpretations from the modeled domain, making them a key artifact for
the propagation of knowledge. Various kinds of structural conceptual models have emerged
with this purpose and have been consolidated in the Software Engineering and Knowledge
Representation disciplines. Noteworthy examples include the Entity-Relationship (ER) dia-
grams (CHEN, 1976) and the Uni�ed Modeling Language (UML) class diagrams (BOOCH;
RUMBAUGH; JACOBSON, 1999).

Structural conceptual models play an important role in the design of relational databases,
and are often used to guide the de�nition of relational schemas. Several systematic model
transformation approaches to this end have been explored in the academic literature and
incorporated in production-ready tools (TORRES et al., 2017). In this context, Model-Driven
Development (MDD) and model transformation techniques (BRAMBILLA; CABOT; WIMMER,
2012; CZARNECKI; EISENECKER, 2000; CORRADINI et al., 1997; SENDALL; KOZACZYNSKI,
2003) allow the reuse of design decisions that are incorporated into automated transformations
to alleviate designers from manual (error-prone) realization steps. In these approaches, elements
and patterns of a resulting relational schema have their origin traced back to corresponding
elements and patterns of a source (high-level) conceptual model.

A signi�cant challenge of a model transformation approach is to preserve the semantics
of a source model while obtaining a viable realization of it. This is because, often, source and
target models are based on di�erent paradigms, employ di�erent concepts, which results in a
variety of technical mismatches. A manifest example of this is the so-called Object-Relational
Impedance Mismatch (IRELAND; BOWERS, 2015), which results from a “semantic gap” with
object-oriented constructs (such as those underlying the UML) not bearing a direct correspon-
dence with constructs in relational schemas. For one, relational schemas o�er no counterpart
to class specialization hierarchies found in the object-oriented world, and thus o�er no special
support for classi�cation and polymorphism.

Chapter 1. Introduction 18

This semantic gap is even wider in the case of conceptual models built at a higher
level of abstraction, as is the case of ontology-driven conceptual models (GUIZZARDI, 2005).
Ontology-based conceptual models aim to represent the viewpoint of the user’s problem
domain solely. For this, they must embody abstractions that are based on human cognition and
common sense. A suitable conceptual modeling language should provide a solid theoretical
basis for problem domain representation, aiming at reducing misunderstandings and identifying
potential inconsistencies (CARVALHO, 2016).

With this purpose in mind, Guizzardi (2005) proposed a foundational ontology estab-
lishing general ontological foundations for conceptual modeling, dubbed Uni�ed Foundational
Ontology (UFO). UFO de�nes a set of domain-independent categories intended to enable the
representation of what sorts of things exist in the real world and what are their relationships
to each other (GUIZZARDI et al., 2004). It has been successfully employed in several domains
in the industry (MOREIRA et al., 2014; GONÇALVES; GUIZZARDI; FILHO, 2007; GUIZZARDI
et al., 2015). An important application of UFO is the revision of a fragment of the UML class
diagram called OntoUML. OntoUML emerged from a UML class diagram pro�le to become a
language for structural conceptual modeling based on well-founded UFO concepts (GUIZZARDI
et al., 2015), in other words, an ontology-driven conceptual modeling language. In OntoUML,
the elements of the UML class diagram are categorized in order to gain a specialized semantics
following UFO.

This search for a faithful representation of reality has a long history (CHEN, 1976;
KENT; HOBERMAN, 2012), and as a result of this search, we can observe the emergence of
models with a variety of constructs to represent key details of the problem domain, including
object-oriented models (MARTIN; ODELL, 1994). On the other hand, the conceptualization
of mainstream data storage implementations still follows predominantly the (ontologically-
neutral) relational model (CODD, 1970). Accordingly, the object-relational transformations in
the literature (FOWLER, 2002; TORRES et al., 2017; KELLER, 1997; AMBLER, 2003; YODER;
JOHNSON, 2002) have not yet evolved to take full bene�t of the constructs of ontology-driven
conceptual modeling. This thesis addresses this gap in the literature and identi�es opportunities
to generate better relational schemas taking into account the ontological semantics of the
source conceptual model.

1.2 Research Problem

Despite the existence of several strategies for transforming object-oriented models into
relational schemas, there are a number of features of ontology-based conceptual models (such
as those produced in OntoUML) that have not yet been taken into full account in the existing
literature. Most approaches fail to support conceptual models that: (i) include sets of overlapping
or incomplete generalizations; (ii) support dynamic classi�cation; (iii) have multiple inheritance;

Chapter 1. Introduction 19

and (iv) have orthogonal hierarchies. This is because many of the approaches discussed in
the literature assume primitives underlying object-oriented programming languages (instead
of conceptual modeling languages). Hence, a key challenge is to propose an approach that
supports such primitives. Ideally, this can lead to a well-founded transformation process that
can be automated and thus capture tried-and-tested design decisions (ALMEIDA; IACOB; ECK,
2007), improving productivity and the quality of the resulting schemas, with the elimination of
a manual and error-prone schema design process, which is a typical bene�t of a model-driven
approach (OMG, 2014).

An additional challenge in transformation-based approaches is that users interact with
the results of the transformation, and hence, the usability of such results is important (in this
case the usability of the resulting relational schema). Despite the various bene�ts of automated
transformation, once a database schema is obtained, data access is usually undertaken by relying
on the resulting schema, at a level of abstraction lower than that of the source conceptual
model. As a consequence, data access requires both domain knowledge and comprehension of
the (non-trivial) technical choices embodied in the resulting schema.

An automated transformation process must deal with mismatches between primitives
of the conceptual modeling language and those of the target technical space; in this case, the
relational model. Because of this, some of the information that was embodied in the conceptual
model may be lost in the transformation process. In the case of the transformation of class
inheritance hierarchy, depending on the class-to-table transformation strategy, invariants that
are expressed directly in the conceptual model through cardinality constraints and association
end typing may be weakened. For example, consider a hierarchy with a class Person at the
top and a single subclass Student with a mandatory attribute enrollmentNumber. In the one
table per hierarchy approach (KELLER, 1997), mandatory attributes of subclasses (in this case
enrollmentNumber) are implemented as nullable columns of the table representing the whole
hierarchy (in this case of the table representing all persons). This is required in this approach,
because not all persons have enrollment numbers—albeit all students do. This kind of cardinality
constraint present in the source model is no longer enforced by the target relational schema,
which admits a non-student person to be assigned an enrollmentNumber and a student to
have a null enrollmentNumber. Foreign keys in other tables that should identify only students
(for example, concerning the borrower of a book in the university library) now identify persons
indistinctly. A transformation approach must address this challenge to avoid losing knowledge
embedded in the source conceptual model.

Finally, the literature on transforming object-oriented models into relational schemas
addresses quality aspects of the resulting relational schema, such as time performance and
understandability. However, many of the existing works fail to addresses these qualities sys-
tematically. For example, Philippi (2005) assumes that understandability is a qualitative aspect
which also depends on the individual background of a developer, which cannot be measured

Chapter 1. Introduction 20

objectively. The comments presented by the author are based on his experience, as he does not
present systematic data collection to as rationale to substantiate the adopted design decisions.
The same discussion based on the authors’ experience can be seen in (KELLER, 1997; AMBLER,
1997; AMBLER, 2003) (the authors do not indicate how data were obtained). Ideally, adoption
of a particular transformation strategy should be backed up by evidence of its quality.

1.3 Research Hypothesis

Interest in the use of ontologies to produce conceptual models of problem domains
has been growing since the late 1980s (GUIZZARDI et al., 2015). In the early 2000s, the term
ontology gained popularity with the emergence of the Semantic Web. This is because ontology
models provides a solid theoretical basis for de�ning domain elements and their relationships,
restricting their interpretations and, consequently, providing more accurate models.

In the last decades, it has become clear that ontological principles and corresponding
constructs in methods such as OntoClean (GUARINO; WELTY, 2004) and foundational ontolo-
gies such as UFO (GUIZZARDI, 2005; GUIZZARDI et al., 2015) can support the production
of high-quality conceptual models. We believe that some of these principles and constructs can
be used to guide decision making in object-relational transformation process (hypothesis 1). For
example, identifying that some classes are ‘anti-rigid’ (GUARINO; WELTY, 2004) can lead to
special treatment due to dynamic classi�cation.

In addition, the literature on transformation of conceptual models into relational
schemas has a number of approaches with varying quality. The transformation processes
found in the literature lead to relational schemas with distinct quality characteristics. For
example, according to Philippi (2005), the one table per class strategy results in an easy to
understand relational schema, while the one �attened table per class strategy has better perfor-
mance in data extraction. We believe that principles and constructs of ontology-driven conceptual
modeling can be explored to further improve the quality of resulting relational schemas, with
suitable performance and better understandability (hypothesis 2).

Last, the popularization of the Semantic Web led to the emergence of several tools,
such as databases (‘triple stores’ (DING et al., 2007)) and speci�c query languages (such as
SPARQL (PÉREZ; ARENAS; GUTIERREZ, 2009)). These tools explore the computational facet of
ontology implementations and bring some ontology features to the level of database realization.
Since data storage in the Semantic Web di�ers from the dominant relational model that is
adopted in most commercial applications, several proposals for integration between these tech-
nologies have also emerged, under the banner of Ontology-Based Data Access (ODBA) (POGGI
et al., 2008; BAGOSI et al., 2014). ODBA requires a modeler to write mappings from the re-
lational schema to the ontology that is used to consume the data, which can be a di�cult
task. We believe that a transformation approach can facilitate the OBDA process by automating

Chapter 1. Introduction 21

the generation of the required mappings, and hence easily support data access at a high-level of
abstraction, i.e., in terms of the domain ontology (hypothesis 3).

1.4 Objectives

The general objective of this work is to enable the transformation of ontology-driven
conceptual models into relational schemas, based on the distinctions provided by a foundational
ontology. In this way, we hope to address the gap left by existing object-relational transformation
strategies. We approach this objective from the foundational ontology perspective, which
allows us to understand the semantics of the various classes present in a conceptual model
(called “ontological semantics”) as captured in the OntoUML 2.0 language (GUIZZARDI, 2005;
GUIZZARDI et al., 2018). In sum, we provide guidelines for what could be called ontological-
relational transformation.

To achieve the general objective, the following speci�c objectives have been de�ned:

1. Propose a new strategy to transform inheritance hierarchies of conceptual models into
relational schemas based on ontological semantics of the OntoUML 2.0 language. This
new strategy should address the primitives not covered by current strategies for trans-
forming object-oriented models into relational schemas. The strategy should result in
relational schemas that o�er performance characteristics compatible with other inheri-
tance hierarchy transformation strategies.

2. Create a systematic process to transform conceptual models into relational schemas. This
process should operationalize the new transformation strategy.

3. Conduct an empirical study on the understandability of relational schemas produced by
the new transformation strategy relative to an existing transformation strategy.

4. Automate the generation of high-level data access support, to allow data access in terms
of the ontological model in addition to the usual data access in terms of the resulting
schema. Again, high-level data access should o�er adequate time performance.

5. Incorporate invariants into the resulting relational schema to ensure that the data stored
according to the resulting relational schema respects the semantics of the source con-
ceptual model, i.e., that it does not violate constraints that may be lost in bridging the
semantic gap.

1.5 Approach

There are three main classes of approaches to carry out the transformation between
the object model and a relational schema (CABIBBO, 2004; PHILIPPI, 2005):

Chapter 1. Introduction 22

i Forward engineering approaches (also called object-relational mappings), in which
the relational schema is generated from the class model that must be persisted (often
together with the necessary code to propagate object persistence to the database);

ii Meet-in-the-middle approaches, in which conceptual model and relational schema are
designed, implemented and evolved separately, requiring some middleware to perform
the correspondence between the objects and the database.

iii Reverse engineering approaches (also called relational-object mappings), in which
classes are produced from the existing relational structure;

As our goal is to transform ontology-based conceptual models into corresponding
relational schemas, our approach is clearly positioned in the “forward engineering” camp. The
literature refers to the connection between the conceptual model and the relational schema
as object-relational mapping (ORM). However, we will use the term “transformation” to refer
to the automated production of the relational schema from the conceptual model, rather than
the term “mapping” which could be interpreted as connecting two independently conceived
models.

In order to drive the development of a suitable solution to carry out the transformation
of the conceptual model into the relational schema, a literature review was conducted of existing
object-relational transformations (TORRES et al., 2017), and their main challenges (IRELAND
et al., 2009a). With that, it was possible to identify the transformation patterns applied in the
inheritance hierarchy, as well as identifying the UML class diagram constructs not covered
by classical ORM strategies and some of their inadequacies when applied to certain types of
hierarchies, such as those that allow multiple inheritance.

Many of the primitives not covered by current ORM strategies are widely used by
ontology-based conceptual languages such as OntoUML. Among many ontological languages,
OntoUML has great acceptance in the academic and corporate world (GUIZZARDI et al., 2015),
and is recognized as being fast learning (VERDONCK, 2018). So, we adopted the concepts
provided by UFO (GUIZZARDI, 2005) and the latest taxonomy (version 2.0) of OntoUML (GUIZ-
ZARDI et al., 2021a), to guide the analysis performed. This study culminated in the proposal of
a novel transformation strategy called “one table per kind” as a main contribution of this work
(related to speci�c objective 1). The novel strategy is fully implemented into an OntoUML tool
(speci�c objective 2) and tested extensively with models in the OntoUML repository.

We have conducted an empirical experiment involving software industry professionals
and academics to obtain data related to understanding of the relational schema produced from
the conceptual model. This experiment consists in providing two relational schemas resulting
from the same conceptual model, but generated by di�erent transformation strategies. We
asked participants to answer questions about both models and asked which model was easier

Chapter 1. Introduction 23

to work with. With this, we were able to shed light on the relative quality of the transformation
strategies that were applied (to achieve the speci�c objective 3).

In addition to improving quality and eliminating the manual and error-prone schema
design process, the transformation process can be expanded to provide access to the relational
schema from the conceptual model, that is, to enable queries to be written in terms of the
conceptual model instead of the resulting schema. The bene�t of this approach is that data
access only requires knowledge of the conceptual model, abstracting the (non-trivial) technical
choices embodied in the resulting schema. This approach leverages ODBA technology, which
is based on the abstraction of the relational schema through a set of assertions that capture a
‘mapping’ between the data source and the ontology. We instrument the transformation process
with a tracing structure to be able to generate an OBDA mapping that relates the resulting
schema to the source conceptual model (achieving the speci�c objective 4).

All transformation strategies were conceived through only two operations on the
hierarchies: (i) �attening, when the attributes and associations of the superclasses migrate to
their subclasses; (ii) lifting, when attributes and associations of subclasses are migrated to their
superclasses, removing the subclasses from the hierarchy. In this way, we can identify the
original constraints that are no longer in place after the application of these operations and,
consequently, include what must be validated in the resulting model to ensure the realization
respects the constraints of the conceptual model. Thus, we produce invariants (implemented
through database triggers), that prevent inserting or updating data that violates the conceptual
modeling restrictions, (achieving the speci�c objective 5).

1.6 Outline of this Document

This document is structured as follows:

• Chapter 2. Background. This chapter describes various established object-relational trans-
formation strategies found in the literature, considering how they deal with inheritance
hierarchies. It also presents the concepts that underlie the OntoUML 2.0 taxonomy and
that will be used in the formulation of the transformation strategy. In this way, we present
all the necessary concepts that will guide our ontology-based transformation process.

• Chapter 3. A Novel Ontology-Based Transformation Strategy. This chapter presents two
primitive transformations operations (lifting and �attening) to be used in any inheritance
hierarchy and sets out the consequences of applying transformations to certain UFO
categories, allowing to establish a roadmap for transforming class models into relational
schemas. Thus, a new transformation process for inheritance hierarchies is proposed,
named one table per kind.

Chapter 1. Introduction 24

• Chapter 4 Evaluation of the Novel Strategy. This chapter discusses the consequences
of di�erent transformation strategies on query performance and presents some data to
support the feasibility of the one table per kind strategy from the perspective of time
performance. This chapter also presents the results obtained from empirical research
about the understanding of two relational schemas produced by di�erent transformation
strategies.

• Chapter 5. High-Level Data Access. This chapter explains how to leverage the transforma-
tion process to manage the traces between the original and target model in order to create
the OBDA mapping. Through the technology provided by Ontop (CALVANESE et al.,
2017), we were able to maintain the conceptual model as an “access point” for data stored
in the relational schema. We also compare the performance of automatically-generated
queries generated with those written manually in order to show the performance over-
head of the proposed approach.

• Chapter 6. Preserving Conceptual Model Semantics. This chapter identi�es the con-
straints that are lost in the transformation process, independently of the class-to-table
transformation strategy applied. It discusses the consequences of �attening and lifting
refactoring operations and shows what must be done at each application of these opera-
tions to produce the invariants (implemented through database triggers) to guarantee
that the constraints of the source conceptual model are respected.

• Chapter 7. Conclusions and Future Work. This chapter summarizes the research contri-
butions and outlines future work.

An overview of structure of this thesis is presented in Figure 1 below.

Figure 1 – Overview of the thesis structure relating the objectives of this thesis with the
chapters in which they are accomplished

25

2 Background

This chapter describes the key concepts used to substantiate this work. It starts in
Section 2.1 by identifying key primitives in a structural (object-oriented) conceptual model
and presents the main object-relational transformation strategies found in the literature. The
result and consequences of each transformation strategy are presented based on a running
example, which is used throughout this work. Section 2.2 presents the additional ontologi-
cal primitives introduced by the Uni�ed Foundational Ontology (UFO) and incorporated in
OntoUML (GUIZZARDI, 2005). These primitives will be used to support the choices of our
transformation strategy presented later in Chapter 3.

2.1 From Conceptual Models to Relational Schemas

An object-relational transformation comprises the compatibility of a series of concepts
that exist uniquely in each paradigm, such as inheritance and =-to-= associations, belonging to
object-oriented conceptual models, and the occurrence of primary and foreign keys, belonging
to relational schemas. The conceptual gap between the two paradigms is addressed in the
literature as Impedance Mismatch (IRELAND; BOWERS, 2015; IRELAND et al., 2009b; AMBLER,
1997; SMITH; ZDONIK, 1987). Over the years, a number of object-relational transformation
strategies have been discussed in the literature, in many cases, assuming di�erent primitives
for the source conceptual model. We review here these primitives, present a running example
that explores all of them, and discuss the implications for the transformation strategies in the
literature. We focus on the strategies used in the transformation of class hierarchies.

2.1.1 Primitives of the Source Conceptual Model

We assume that the basic elements of a taxonomy in a structural conceptual model
are classes and their relations of specialization (also called “is-a”, subclassing, or inheritance
relations). Classes are used to capture common properties of entities they classify, and, in
a taxonomic hierarchy, more general classes are specialized into more speci�c (sub-)classes,
which “inherit” attributes and associations of their superclasses (for brevity, we call here
both the attributes and associations of a class its “features”). We assume conceptual modeling
approaches share these ground notions, nevertheless, there are variations including additional
supporting mechanisms, their semantics and their possible range of use, as discussed in the
remainder of this section.

Multiple Inheritance. A �rst source of variation concerns the possibility of a subclass
to specialize more than one superclass. In a taxonomic hierarchy with multiple inheritance, a

Chapter 2. Background 26

class can be a subclass of di�erent classes (CARDELLI, 1984). A subclass in such a hierarchy
inherits the properties of all its superclasses. Multiple inheritance has been avoided in some
programming languages as it leads to some implementation di�culties. In conceptual modeling,
however, multiple inheritance is hardly dispensable, as it enables opportunities for modularity
and reusability (CARRÉ; GEIB, 1990).

Overlapping Classi�cation. Another variation concerns whether an object can simul-
taneously instantiate multiple classes which are not related by specialization. For example, a
person may instantiate both the BrazilianCitizen and the ItalianCitizen subclasses of
Person. In UML, this can be explicitly supported with the so-called overlapping generalization
sets, in which a set of non-disjoint classes specialize the same superclass. Additionally, this kind
of scenario can be supported with di�erent (orthogonal) hierarchies that specialize a common
superclass based on di�erent criteria. For example, persons may be classi�ed according to
their age and according to citizenship status. In this setting, a Brazilian adult would instanti-
ate both the BrazilianCitizen and the Adult subclasses of Person (each from a di�erent
generalization set).

Non-Exhaustive Classi�cation. A related variation concerns whether specializing sub-
classes “cover” the specialized superclass, i.e., whether they jointly exhaust all the classi�cation
possibilities for the superclass. In UML, this can be explicitly supported with the so-called
complete generalization sets, which are opposed to incomplete generalization sets. In the case of
an incomplete generalization set, it is possible for an instance of the superclass not to instantiate
any of the subclasses in the set. For example, it is possible for a person to be stateless (in the
sense of not being considered a national by any State), and hence a nationality generalization
set could be marked as “incomplete” even in the case all known nationalities are explicitly
modeled.

Dynamic Classi�cation. Another variation concerns whether instances can change
the set of classes they instantiate throughout their existence. For example, a Person may
be reclassi�ed from Child to Adult with the passing of time. This is not possible if static
classi�cation is assumed. Many modeling languages support only static classi�cation given their
roots in object-oriented programming languages that likewise only support static classi�cation;
in these languages, the class that an object instantiates is de�ned at object instantiation time,
and remains �xed throughout that object’s life cycle. Nevertheless, in conceptual modeling,
dynamic classi�cation has been considered an important feature and studied by several authors
(WIERINGA; JONGE; SPRUIT, 1995; STEIMANN, 2000; STEIMANN, 2007; ALBANO et al., 1993;
GOTTLOB; SCHREFL; RÖCK, 1996). Dynamic classi�cation enlarges the realm of classes to
include those which apply contingently or temporarily to their instances. Examples include the
ontological notions of phases (such as Child and Adult), and roles (such as BrazilianCitizen,
ItalianCitizen, Employee and Customer).

Chapter 2. Background 27

Abstract and Concrete Classes. Finally, we assume that the conceptual modeling tech-
nique may distinguish between abstract and concrete classes. Abstract classes have no “direct”
instances, i.e., all of their instances are also instances of specializing subclasses. Concrete classes
in their turn are not bound by this constraint (and thus can have “direct” instances).

2.1.2 Running Example

To discuss and better expose the characteristics of the existing strategies, we propose a
Running Example in a UML class diagram, depicted in Figure 2. This model addresses some
aspects of conceptual models that are under-explored in the ORM literature, including: (i) an
overlapping and incomplete generalization set, in which Persons are specialized according to—
none or more than one—enumerated countries of citizenship; (ii) a generalization set orthogonal
to the �rst one, in which Persons are classi�ed dynamically according to life phase; (iii) multiple
inheritance, with each PersonalCustomer being both a Customer and an Adult, as well as
each CorporateCustomer being both a Customer and an Organization); (iv) orthogonal
classi�cation hierarchies (with Organization being classi�ed as a CorporateCustomer when
it establishes a relation with another Organization and also possibly being classi�ed as a
PrimarySchool in which children may be enrolled or as a Hospital); (v) an abstract class
NamedEntity, which is specialized into Person and Organization and another abstract class
Customer, which is specialized into PersonalCustomer and CorporateCustomer concrete
classes.

Figure 2 – Running example

In the sequel, we present the following strategies and discuss their application to the
running example:

• One table per class;

Chapter 2. Background 28

• One table per concrete class;

• One �attened table per concrete class;

• One �attened table per leaf class;

• One table per hierarchy;

• Generic structure (also called ‘adaptive object model’).

2.1.3 One Table per Class

In the one table per class strategy, also called “class table inheritance” (FOWLER, 2002),
“vertical inheritance” (TORRES et al., 2017) or “one class one table” (KELLER, 1997), each class
gives rise to a separate table, with columns corresponding to the class’s features. Abstract classes
and concrete classes are treated alike. Specialization between classes in the conceptual model
gives rise to a foreign key in the table that corresponds to the subclass (henceforth “subclass
tables” for simplicity). This foreign key references the primary key of the table corresponding
to the superclass (henceforth “superclass table” for simplicity). For example, when applying this
strategy under the hierarchy formed by the classes NamedEntity, Person, BrazilianCitizen
and ItalianCitizen of Figure 2, all classes are transformed into tables. Foreign keys in the
BRAZILIAN_CITIZEN and ITALIAN_CITIZEN tables refer to the primary key of the PERSON

table, which its foreign key references the primary key of NAMED_ENTITY. To ensure a 1:1

relationship between the subclass and superclass tables, the foreign keys of subclass tables
emulating inheritance are also primary keys. The resulting relational schema of this strategy
directly re�ects the organization of classes in the conceptual model, and no restriction on the
primitives of the model are imposed, as can be seen in Figure 3.

Multiple inheritance can be supported by using a composite foreign key in subclass
tables and each foreign key value must be unique across the table. For example, in Figure 3,
PERSONAL_CUSTOMER has a composite key referencing the primary keys of the ADULT and CUS-

TOMER tables and make them unique columns in PERSONAL_CUSTOMER. Otherwise, a person’s
primary key could be in the PERSONAL_CUSTOMER table linked to the primary key of other
consumers, generating a design error regarding the conceptual model.

Constraints on a generalization set (overlapping and non-exhaustive classi�cation) are
re�ected in integrity constraints concerning the cardinality of entries in the subclass tables for
a particular row in each superclass table. However, just the relationship of the superclass table
to the subclass tables does not guarantee the disjoint constraint of the generalization set,
that is, the resulting relational schema accepts that the primary key of the ORGANIZATION table
can be in the HOSPITAL and PRIMARY_SCHOOL tables at the same time, which is not allowed by
the conceptual model.

Chapter 2. Background 29

Figure 3 – Running example transformed with the one table per class strategy.

Dynamic classi�cation is implemented by deletion of a row in a subclass table (cas-
caded to further subclass tables) and, possibly, insertion in another, which is cumbersome to
implement and may require complex transactions. The main drawback of the one table per class
strategy is the performance characteristics of the resulting schema. In order to manipulate
data concerning a single instance of a class, e.g., to read all its attributes or to insert a new
instance with its attributes, one needs to traverse a number of tables corresponding to the depth
of the whole specialization hierarchy. For example, consulting the name and credit_card

of a Person one needs to traverse four(!) tables, namely NAMED_ENTITY, PERSON, ADULT and
PERSONAL_CUSTOMER (and even more tables if we are also interested in a person’s nationality).

2.1.4 One Table per Concrete Class

The one table per concrete class strategy turns into tables only the concrete classes of
the inheritance hierarchy. In this way, the abstract classes are not considered in relational
schema generation. and their attributes only migrate to their immediate concrete subclass tables.
For example, when applying this strategy under the hierarchy formed by the NamedEntity

and Person classes of Figure 2, the attributes and references of the NamedEntity class are
�attened only for Person class and the NamedEntity class is not considered in relational

Chapter 2. Background 30

schema generation., as seen in Figure 4.

Figure 4 – Running example transformed with the one table per concrete class strategy.

One table per concrete class is similar to the one table per class strategy, with the same
issues concerning multiple inheritance, generalization set constraints and dynamic classi�cation.
Although there is some optimization regarding the number of tables in the relational schema,
this strategy has the same performance problem discussed for the one table per class strategy.

2.1.5 One Flattened Table per Concrete Class

In the one �attened table per concrete class strategy, also called “one inheritance path
one table” (KELLER, 1997), “concrete-table” (TORRES et al., 2017) or “concrete table inheritance”
(FOWLER, 2002), abstract classes are not considered in relational schema generation and their
features propagated to subclass tables of the hierarchy. Each subclass table contains the sum
of the attributes of all its superclasses. For example, when applying this strategy under the
hierarchy formed by the NamedEntity, Person, BrazilianCitizen and ItalianCitizen

classes of Figure 2, the NamedEntity class is not considered in relational schema generation
and its attributes are �attened to the PERSON, BRAZILIAN_CITIZEN and ITALIAN_CITIZEN

tables, in the same way that Person attributes are also propagated to BRAZILIAN_CITIZEN

and ITALIAN_CITIZEN tables, as seen in Figure 5. Since all subclasses have the attributes of
superclasses, there is no need for associations between the tables that make up the hierarchy.

It is important to note that the one table per concrete class strategy only propagates
features from the abstract class to its direct subclass tables, while one �attened table per concrete

Chapter 2. Background 31

Figure 5 – Running example transformed with the one �attened table per concrete class strategy.

class propagates them regardless of whether the superclass is abstract and for all subclass tables
of the hierarchy. Another important point is that all attributes belonging to a class are captured
in the table that corresponds to it. For example, when storing data for an Italian person, the
data is not stored in the PERSON table, but only in the ITALIAN_CITIZEN table.

One �attened table per concrete class has problems when the generalization set is over-
lapping to identify the instance of the superclass. Consider the “�attening” of Person in our
example. In case a person has double Brazilian and Italian citizenship, there would be a row in
the BRAZILIAN_CITIZEN table and another row in the ITALIAN_CITIZEN table denoting the
same person, but without a correlating identi�er. This problem is also present for orthogonal
hierarchies of an abstract superclass. (There would be, e.g., a row in the ADULT table corre-
sponding to a row in the BRAZILIAN_CITIZEN table.) Consequently, it is necessary to maintain
a unique way to identify the same person for all subclass tables, otherwise it is impossible
to perform polymorphic queries between classes of the hierarchy. Another problem is the
duplication of data between tables, aggravated when orthogonal hierarchies are composed of
overlapping generalization sets.

This strategy addresses the performance issue discussed for the one table per class, at the
cost of polymorphic queries. Consider, for example, a query to access the name and birth_date
of all people. In the one table per class strategy such a query involves only one table. In this

Chapter 2. Background 32

strategy, however, the query requires the union of PERSON, BRAZILIAN_CITIZEN and ITAL-

IAN_CITIZEN (remember, Nationality generalization set is incomplete). The higher the
class in the specialization hierarchy, the higher the number of tables involved in a polymorphic
query.

Another undesirable feature is the increased number of references to be created in the
relational schema when a class has an association with the superclass, generating an association
for each class in the hierarchy (if the generalization set is incomplete). As we can see, the
association between the Employment and Organization classes (see Figure 2) generates three
associations in the relational schema presented in Figure 5: between EMPLOYMENT and ORGA-

NIZATION; between EMPLOYMENT and HOSPITAL; between EMPLOYMENT and PRIMARY_SCHOOL.
Referential integrity tends to be problematic if the number of leaf classes is large and when
there are orthogonal hierarchies. Consider the case in which there is an association with the
Person class. The resulting relational schema would have an association for each subclass
table as well as the superclass table, that is, �ve associations.

One �attened table per concrete class has some similarities when compared to the one
table per concrete class strategy, since it supports multiple inheritance; has some limitations to
implement “disjoint” generalization sets; and has some performance issues when classi�cation
is dynamic—as records have to be migrated between tables.

2.1.6 One Flattened Table per Leaf Class

In the one �attened table per leaf class strategy, also termed “horizontal inheritance”
(TORRES et al., 2017), each of the leaf classes in the hierarchy gives rise to a corresponding
table. Attributes of all (non-leaf) superclasses of a leaf class are realized as columns in the
“leaf class table”, and all (non-leaf) superclass are not considered in relational schema genera-
tion. No foreign keys emulating inheritance are employed in this approach. The strategy can
be understood as reiterated application of an operation of “�attening” of superclasses. For
example, when applying this strategy under the hierarchy formed by the classes Customer,
PersonalCustomer and CorporateCustomer in Figure 2, the credit_rating attribute of the
Customer correspond to columns in both the PERSONAL_CUSTOMER and CORPORATE_CUSTOMER
tables (which also has columns for attributes of its other superclasses: birth_date and ad-

dress respectively). Any references to a superclass (e.g., the references realized as foreign
keys of a SUPPLY_CONTRACT) now refer to an entry in either of the subclass tables (in this case
PERSONAL_CUSTOMER or CORPORATE_CUSTOMER), as seen in Figure 6.

This approach is similar to the one �attened table per concrete class strategy, except that
the superclass tables are removed. This does not provide an improvement with respect to the
conceptual modeling the primitives addressed. This strategy faces an additional problem when
the generalizations set is incomplete, because with the deletion of the superclass table, there
is no natural way to store just the superclass data in the relational schema. A (rather poor)

Chapter 2. Background 33

Figure 6 – Running example transformed with the one �attened table per leaf class strategy.

workaround is to “choose” a subclass table and provide a means to identify that a given record in
this table is an instance of a superclass and not of the subclass (see attribute is_only_person
in the ITALIAN_CITIZEN table to identify a stateless person.)

2.1.7 One Table per Hierarchy

The one table per hierarchy strategy, also called “single-table” (FOWLER, 2002) or
“one inheritance tree one table” (KELLER, 1997), can be understood as the opposite of one
�attened table per leaf class strategy, applying a “lifting” operation to subclasses instead of
the “�attening” of superclasses. Consider, e.g., the hierarchy formed by NamedEntity, Person,
BrazilianCitizen and ItalianCitizen, shown in Figure 7(a)1. NamedEntity is the top-
level class in this hierarchy, and will thus give rise to a corresponding NAMED_ENTITY table.
Attributes of each subclass become columns in the “superclass table”, with mandatory attributes
corresponding to optional columns. The “lifting”operation is reiterated for each subclass until
the top-level class of hierarchy is reached and the subclasses are not considered in relational
schema generation. The resulting relational schema is shown in Figure 7(b).

This strategy usually requires the creation of an additional column to distinguish
1 We only use part of the Running Example because the one table per hierarchy strategy does not support

multiple inheritance.

Chapter 2. Background 34

Figure 7 – Running example transformed with the one table per hierarchy strategy (excerpt).

which subclass is (or which subclasses are) instantiated by the entity represented in the row (a
so-called “discriminator” column). In principle, the performance problems discussed for the
other strategies do not appear in this approach. However, as discussed by Torres et al. (2017),
standard database integrity mechanisms cannot prevent certain inconsistencies. In our example,
the ENROLLMENT table would have foreign keys to the top-level class NAMED_ENTITY, since
Person and PrimarySchool would be “lifted” to the corresponding top-level class. Thus, the
discriminator would have to be checked to make sure that only children are enrolled in primary

Chapter 2. Background 35

schools, because the database would admit any named entity enrolled in another named entity,
e.g., persons enrolled in hospitals, primary schools enrolled in adults, or even hospitals enrolled
in hospitals. In addition, the greater the number of leaf classes in a hierarchy, the greater the
number of optional columns that remain unattributed in every row. An additional column to
identify the stored subclass may not be a satisfactory solution when there are a large number
of subclasses, due to the increased range of accepted values. This problem is exacerbated when
the generalization set is overlapping. In our case, we create an identi�er for each generalization
set; the NATIONALITY table was created because the nationality_type attribute would be
multivalued, since its generalization set is overlapping.

This approach is problematic in the face of multiple inheritance. First of all, one needs to
decide to which of the various superclasses a subclass will be “lifted”. Consider the case of Per-
sonalCustomer of Figure 2; should the credit_card attribute be lifted to the NAMED_ENTITY
table or to the CUSTOMER table? Second, and more important, if multiple inheritance is admitted,
then there may be top-level classes that are not disjoint (e.g., Customer and NamedEntity).
This means that there will be rows in more than one table denoting the same individual, a
problem which also appeared in one �attened table per leaf class, albeit for di�erent reasons.
Dynamic classi�cation at the top of the hierarchy (such as the case of Customer) also poses a
challenge, not unlike the one faced by one table per leaf class.

2.1.8 Generic Structure

This strategy, also called “metadata-driven” (AMBLER, 2003) or “adaptive object model”
(YODER; JOHNSON, 2002), is based on storing the model metadata along with the data. For
example, consider that classes are stored in a single table called CLASS and class attributes
are stored in a table called ATTRIBUTE. The relationship between these tables identi�es which
attributes belong to which class, as depicted in Figure 8. Inheritance is modeled as a rela-
tionship between classes, just inserting a record in an INHERITANCE table relating superclass
and subclass. Class attribute values are stored in a single table called VALUE, that is, all data
manipulated by a domain application are saved only in the VALUE table, while the other tables
only change when the conceptual model changes. The relational schema shown in Figure 8 is
a simpli�ed one; it could be extended to represent associations, aggregations or multivalued
attributes, for example.

The advantage of this strategy is that the relational schema is una�ected by any changes
in the conceptual model, being recommended when the conceptual model is constantly changing.
This approach has some problems: (i) it requires signi�cant e�ort to write complex queries, as
the data is not stored in an intuitive way. For example, access to several rows is required to
obtain the data for a single instance; (ii) constraints imposed by the conceptual model, such as
nullability of attributes and referential integrity, are lost.

In fact, this strategy cannot be considered a real transformation, because the original

Chapter 2. Background 36

Figure 8 – Relational schema of the generic structure strategy.

model does not really need to be modi�ed, that is, it is just another way to represent the model,
transformed or not.

2.1.9 Summary

Table 1 summarizes the comparison between the strategies presented. As can be seen,
only the one table per hierarchy strategy does not support multiple inheritance, since it is the
only strategy that ‘migrates’ features from subclasses to their superclasses. Problems with
the implementation of orthogonal hierarchies and overlapping generalization sets occur in
the one �attened table per concrete class and one �attened table per leaf class because the same
entity is represented in several tables (unlike the one table per concrete class strategy where an
entity is obtained by joining several tables). Dynamic classi�cation is better implemented by
the one table per hierarchy strategy because it does not entail record migration. In the case of
one table per hierarchy, only a single operation (an update) is required to assign the new entity
classi�cation using discriminator columns. All the other strategies require record migration,
hence are considered to perform ‘poorly’ with respect to dynamic classi�cation.

The table also considers some performance characteristics, with parameters used for
estimation starting with ℎ to represent the maximum height of the hierarchy (i.e., the maximum
path size from a top-level class to a leaf class. ℎ = 0 when there is no specialization hierarchy)
and = represents the number of subclasses in the hierarchy. The table presents worst-case
�gures for the retrieval and insertion of an entity (with all its attributes). One table per class
and one table per concrete class fares poorly in this comparison, with ℎ joins required in the

Chapter 2. Background 37

worst case, with ℎ ≥ ℎ2 (ℎ2 is the maximum height of concrete classes of the hierarchy).
The performance of polymorphic queries is considered, with respect to the number of tables
involved in a union to read one attribute de�ned in a superclass. One �attened table per leaf
class and one �attened table per concrete class perform poorly in this respect, where =2 ≥ =; (=2
is the number of concrete subclasses in the hierarchy and =; is the number of leaf classes in the
hierarchy). All others perform equally, requiring only one access to retrieve all attributes of an
entity.

The “Number of tables a�ected in insert operation” for generic structure is only one. In
fact, this strategy uses only a single table to store all attributes of the conceptual model. However,
when analyzing this column from the viewpoint of the “number of operations performed on the
relational schema to save an entity”, the most suitable result should be “the number of attributes
of the entity”, since for each attribute one insert operation must be performed. Although this
approach seems to fair well when inspecting this summary, as discussed in the previous section,
it has problems related to usability, as: (i) high query writing complexity - queries tend to be
large, as additional joins must be performed to identify classes and their attributes; (ii) poor
query understandability - the joins between the classes are always performed on the same
set of tables (di�ering only by the alias) and by the same attributes, with the understanding
worsened due to the size of the query; (iii) poor usability of the result - query result values are
displayed in just a single column, that is, data for the same entity end up in di�erent rows; (iv)
loss in semantic integrity mechanisms - as the relational schema stores the metadata of the
relational model, the referential integrity (which was previously performed by primary and
foreign keys) must be guaranteed through additional code; (v) potential problems with indexes
- having a single table with a single �eld to store all attributes of the conceptual model restricts
the range of indexes that can be used by the DBMSs to optimize queries. The size of tables can
also become a performance hurdle.

Table 1 – Summary of strategies presented.

Realization
Strategy

Multiple
inheritance

Orthogonal
hierarchies

Dynamic
classi�cation
performance

No of joins
to retrieve
an entity

No of tables in union to
read one attribute

(polymorphic query)

No of tables
a�ected in insert

operation
One table per
class yes yes poor ℎ 1 ℎ + 1

One table per
concrete class yes yes poor ℎ2 1 ℎ2 + 1

One �attened table per
concrete class yes no poor 1 =2 1

One �attened table per
leaf class yes no poor 1 =; 1

One table per
hierarchy no yes good 1 1 1

Generic
structure yes yes poor 1 1 1

Chapter 2. Background 38

2.2 Ontology-Driven Conceptual Modeling

Thusfar, the source conceptual models that have been considered are regular object-
oriented models which can be considered ‘ontologically neutral’ (GUARINO, 2009). Here, we
extend our view on conceptual models to include those that can be characterized as ‘Ontology-
Driven Conceptual Models’ (VERDONCK et al., 2015).

Ontology (written in a capital “O”) is a branch of the discipline of Philosophy that
deals with the most general features of the “things” (entities) that we want to represent from
reality, addressing relations between entities belonging to speci�c domains of science, such
as Physics, Chemistry and Biology and also between entities recognized by common sense
(GUIZZARDI, 2007). The term “ontology” has gained popularity since it was introduced in
1967 in the Computer Science discipline (GUIZZARDI, 2005). However, it acquired di�erent
meanings in some of its branches (in these cases, ontology is written with a lowercase “o”). The
concept of ontology in Conceptual Modeling has the same Philosophy discipline perspective,
with the purpose of developing a formal system of categories that can be used in the production
of scienti�c theories or in speci�c domains of knowledge, regardless of the language used
to describe them. In branches of Computer Science, such as Arti�cial Intelligence, Software
Engineering and Semantic Web, the concept of ontology is used in the artifact perspective
to formalize and restrict interpretations about a speci�c problem domain, expressed in a
knowledge representation language such as OWL or a conceptual modeling language such as
OntoUML. So, in this thesis, we use the term “ontology” in the Computer Science perspective.

The Uni�ed Foundational Ontology (UFO) is a foundational ontology developed by
Guizzardi (2005) through the combination of Formal Ontology theories of Philosophy, Cognitive
Science, Linguistics, and Philosophical Logic. UFO encompasses some microtheories related to
wholes and parts, types and instantiation, rigidity, identity, dependency, mereology, among
others, with the purpose of conceptualizing the fundamental elements of the conceptual
modeling discipline. In order to design a structural modeling language, OntoUML was conceived
to re�ect the UFO taxonomy through a fragment of the UML 2.0 class diagram. This section
discusses the meta-properties of the OntoUML 2.0 taxonomy (GUIZZARDI et al., 2018) that
will guide our transformation process.

2.2.1 OntoUML

OntoUML has been used in di�erent domains, including Geology, Biodiversity Man-
agement, Organ Donation, Petroleum Reservoir Modeling, Disaster Management, Context
Modeling, Datawarehousing, Enterprise Architecture, Data Provenance, Measurement, Lo-
gistics, Complex Media Management, Telecommunications, Heart Electrophysiology, among
many others (GUIZZARDI et al., 2015). The study carried out by Verdonck (2018) shows that
OntoUML can provide additional quality to conceptual models while having a modest learning

Chapter 2. Background 39

curve, being among the most used modeling languages in the Ontology-Driven Conceptual
Modeling (ODCM) literature (VERDONCK; GAILLY, 2016). In addition to usability and appli-
cability, there are existing studies that transform OntoUML diagrams into other languages,
such as an automated transformation to OWL (ZAMBORLINI; GUIZZARDI, 2013), di�erent
transformations to Alloy (BENEVIDES et al., 2011; BRAGA et al., 2010) and more recently a
transformation to gUFO-based OWL ontologies2, which is adopted in this work.

In order to design an ODCM language, a set of stereotypes was proposed to be used into
UML class diagrams in order to support the UFO taxonomy, which resulted in the OntoUML
language. The UML class diagram “pro�les” mechanism allows its metaclasses to be extended
to give rise to new types of classes. These new types of classes can be used in the user model
as stereotypes. OntoUML uses these mechanisms to re�ect the UFO taxonomy. Figure 9 shows
an overview of the pro�le, re�ecting the UFO taxonomy of universals. The pro�le is governed
by a set of semantically motivated syntactic constraints (CARVALHO; ALMEIDA; GUIZZARDI,
2014) that ensure the user’s model complies with UFO. The presentation of UFO in this section
follows largely (GUIDONI; ALMEIDA; GUIZZARDI, 2020). Further reference and formalization,
see (GUIZZARDI, 2005; GUIZZARDI et al., 2021a).

Take a subject domain focused on objects (as opposed to events or occurrences). Central
to this domain we will have a number of object kinds, i.e., the genuine fundamental types of
objects that exist in this domain. The term “kind” is meant here in a strong technical sense,
i.e., by a kind, we mean a type capturing essential properties of the things it classi�es. In other
words, the objects classi�ed by that kind could not possibly exist without being of that speci�c
kind. In Figure 2, we have represented two object kinds, namely, Person and Organization.
2 <https://purl.org/nemo/doc/gufo>

Figure 9 – OntoUML 2.0 pro�le stereotypes re�ecting UFO taxonomy of universals.

https://purl.org/nemo/doc/gufo

Chapter 2. Background 40

These are the fundamental kinds of entities that are deemed to exist in the domain. Kinds
tessellate the possible space of objects in that domain, i.e., all objects belong necessarily to
exactly one kind.

Static subdivisions (or subtypes) of a kind are naturally termed subkinds. In our example,
the kind Organization is specialized in the subkinds Primary School and Hospital. Object
kinds and subkinds represent essential properties of objects, i.e., properties that these objects
instantiate in all possible situations. They are examples of what are termed rigid or static types.
There are, however, also types that represent contingent or accidental properties of objects
(termed anti-rigid types). These include phases and roles. Phases represent properties that are
intrinsic to entities; roles, in contrast, represent properties that entities have in a relational
context, i.e., contingent relational properties. In our example, we have a phase partition including
Child and Adult (as phases in the life of a Person). Several other types in the example are
roles: Employee, Contractor, BrazilianCitizen and ItalianCitizen (the last two in the
context of a relation with a national state, not represented in the model, for simplicity).

Kinds, subkinds, phases, and roles are all object sortals. In the philosophical literature, a
sortal is a type that provides a uniform principle of identity, persistence, and individuation for its
instances (GRANDY; FREUND, 2021). A sortal is either a kind (e.g., Person) or a specialization
of a kind (e.g., Child, Employee, Hospital), i.e., it is either a type representing the essence of
what things are or a sub-classi�cation of entities that “have that same type of essence”. There
are also types that apply to entities of multiple kinds, these are called non-sortals. An example
of non-sortal is Customer (which can be played by both people and organizations). We call
these role-like types that classify entities of multiple kinds role mixins. Another example of
non-sortal is NamedEntity. However, it is a rigid non-sortal, classifying objects of various
kinds statically.

In addition to objects, there are also existentially dependent endurants, i.e., endurants
that depend on other endurants for their existence. Here, we highlight the so-called relators,
which reify a relationship mediating endurants. In our example, an instance of Employment can
only exist as long as a particular instance of Person (playing the Employee role) and a particular
instance of Organization (playing the corresponding Employer role, omitted here) exist. The
meta-properties we have discussed for object types also apply to relator types. In our example,
Employment, Enrollment and SupplyContract are relator kinds. With the rei�cation of these
relationships into relators, the challenge is already addressed at the conceptual model level,
with many other bene�ts (GUARINO; GUIZZARDI, 2015).

Relators are composed of another type of dependent endurant termed a qua-entity (or
role instance) (GUIZZARDI, 2005). Each qua-entity composing a relator inheres in one of the
relatum of that relator while being relationally dependent on the other relata. For example,
suppose John works for the UN. In this case, there is particular relator instance of Employment
connecting John and the UN, which is composed of an instance of Person-qua-Employee

Chapter 2. Background 41

(inhering in John and relationally dependent of the UN) and an instance of Organization-qua-
Employer (inhering in the UN and relationally dependent on John). As discussed by Guizzardi
(2005), qua entities are typically not explicitly represented in type-level conceptual models.
There is, however, a formal connection between qua entities and roles, namely, an individual
instantiates a role i� it bears a qua entity of a particular type (e.g., John instantiates the role of
Employee because there is an individual–John-qua-employee-of-the-UN–inhering in him).

Figure 10 revisits Figure 2, now including class stereotypes according to the ontological
distinctions discussed above, which are part of UFO-based OntoUML pro�le (GUIZZARDI,
2005). According to the rules that apply to OntoUML (formally characterized in (GUIZZARDI
et al., 2018)):

• non-sortals (such as «category» and «roleMixin»), when present, are always superclasses
(and never subclasses) of sortals (such as «kind», «subkind», «role», «phase», «relator»);

• non-sortals are abstract and are only instantiated through their sortal subclasses;

• sortals that are not kinds («subkind», «phase» or «role») specialize exactly one «kind»
(or relator kind stereotyped «relator»), from which they inherit their principle of identity.
So, there is no multiple inheritance of kinds, since all kinds are mutually disjoint;

• rigid types («kind», «subkind», «category», «relator») never specialize anti-rigid types
(«role», «roleMixin» or «phase»).

Figure 10 – Running example in OntoUML.

Chapter 2. Background 42

2.3 Final Considerations

In this chapter, we have discussed some object-relational transformation strategies widely
consolidated in the literature and some principles of Ontology-Driven Conceptual Modeling.

Following the transformation strategies of inheritance hierarchies presented by Fowler
(2002), Torres et al. (2017), Keller (1997), Ambler (2003), Yoder & Johnson (2002), we have
exposed the result of these strategies to the resulting relational schema. By observing the one
table per hierarchy strategy, we can identify an operation of ‘lifting’ of classes that is applied
throughout the transformation process. By observing the one (�attened) table per concrete class
and the one �attened table per leaf class strategies, we can identify an operation of ‘�attening’ of
classes. We have also observe that, in some cases, there is inappropriate support for important
conceptual modeling constructs (especially multiple inheritance, orthogonal classi�cation and
dynamic classi�cation). Further, we have argued that a number of challenges remain concerning
the usability and performance of some of the schemas that are produced by existing strategies.

We have discussed how Ontology-Driven Conceptual Modeling provides additional
primitives to enrich a conceptual model. We have discussed some principles of the Uni�ed
Foundational Ontology (UFO) and presented the OntoUML language. UFO (and thus OntoUML)
provides key distinctions for the creation of sound inheritance hierarchies considering the
sortality and rigidity of classes. We argue that these properties can guide the transformation of
class hierarchies into relational schemas.

In the next chapter, we use the operations of �attening and lifting along with the
ontological semantics of classes to guide the application of these operations in an overall
transformation process.

43

3 A Novel Ontology-Based Transforma-
tion Strategy

In Chapter 2, we have observed that there are a number of de�ciencies of existing
conceptual model transformation approaches, with (i) poor performance in various data ma-
nipulation operations, (ii) failure to explore bene�cial database mechanisms, and/or (iii) lack of
support for various conceptual modeling primitives including orthogonal classi�cation hierar-
chies, overlapping non-exhaustive generalization sets as well as dynamic classi�cation and
multiple inheritance. This chapter addresses this gap, focusing on the realization of taxonomic
hierarchies of ontology-based conceptual models. More speci�cally, we explore sortality and
rigidity to propose a new transformation and avoid some problems in existing approaches.

This chapter is further organized as follows: Section 3.1 formalizes the basic operations
of �attening and lifting that can be used in the object-relational transformation process to deal
with inheritance hierarchies. Section 3.2 discusses how these operations can be applied in a
new overall transformation process, which applies them in the light of sortality and rigidity:
non-sortals are �attened recursively and sortals are lifted until kinds are reached. The new
strategy is called one table per kind. Section 3.3 presents some �nal considerations.

3.1 Basic Transformation Operations

The transformation strategies presented in Chapter 2 have as approach the propagation
of features between the classes of the hierarchy, with the progressive removal of classes which
have their features propagated. The propagation of features can occur in two directions: (i) from
top to bottom, i.e., from top-level classes to leaf classes, and (ii) from the bottom to the top, i.e.,
from leaf classes to top-level classes. We call the operations that perform these propagations
�attening and lifting, respectively. In the following sections, we present the formalization of
these operations and their consequences. These operations basically correspond to the graph
transformation model abstraction rules proposed in (GUIZZARDI et al., 2019), albeit used here
with a di�erent purpose. The �attening operation corresponds to the non-sortal abstraction
rule (R2), and the lifting operation is a combination of the sortal abstraction rule (R3) and the
subkind and phase partition abstraction rule (R4).

3.1.1 Flattening

The �gures in Table 2 shows the transformation pattern of inheritance hierarchy and
their relationships for the �attening operation. In these �gures, the class TypeG represents a

Chapter 3. A Novel Ontology-Based Transformation Strategy 44

superclass from the domain. The class SubTypeG represents a subclass (specialization) of the
superclass. The class RelatedType8 represents a di�erent class from the domain related to
the superclass through an association. Variables l and u represent, respectively, the lower and
upper bound multiplicities of the features involved (attributes and association ends). When
they identify the multiplicities of association ends, they are indexed by the target and source
class. For example: lx8 indicates the lower cardinality of participation of the class with index
i (RelatedType8) in the class with index x (TypeG). The symbol ∗ indicates zero or more
occurrence of an element and the symbol + indicates one or more occurrence of an element.

In the �attening operation, every attribute of the class that is �attened ()~?4G in gray of
Table 2) is migrated to each of its direct subclasses ((D1)~?4~) and the �attened class is removed
from the model. Association ends attached to the �attened superclass are also migrated to the
subclasses (creating new associations in the process, one for each subclass). The lower bound
cardinality of the migrated association end (;G8) is relaxed to 0, as the original lower bound
is not necessarily satis�ed for each of the subclasses. The cardinalities of attributes (0CCA:) as
well as association ends attached to classes other than the �attened class ('4;0C43)~?48) are
maintained, as these are invariants that apply to all subclasses in virtue of the semantics of
specialization. (For simplicity, the diagram represents only one association between)~?4G and
a '4;0C43)~?48 , but in fact, there can be many such associations.)

Table 2 – Flattening operation.

Flattening Rule Example

So
ur

ce
G
ra
ph

Ta
rg
et

G
ra
ph

For example, in the �attening of the Customer class in the source graph row of Table 2,
the creditRating attribute is migrated to the PersonalCustomer and CorporateCustomer

classes without changing multiplicity, and the Customer class is removed from the model. New
associations are created from PersonalCustomer and CorporateCustomer to SupplyCon-

tract, relaxing the minimum multiplicity with PersonalCustomer and CorporateCustomer.

Chapter 3. A Novel Ontology-Based Transformation Strategy 45

Self-Relationships. Self-relationships in a class being �attened need to be handled as
special cases. Instead of a single association end migrated to subclasses, we have in this case
two association ends that are migrated. This can be approached in two separated steps. First,
one association end is migrated to each subclass, following the procedure de�ned above for
associations between di�erent classes. This results in one new association for each subclass.
Then, in the second step, the association ends that are attached to the superclass are migrated
to each subclass, again following the procedure de�ned above. In the end, all lower bound
cardinalities are relaxed to 0, and all subclasses became related (and have a resulting self-
relationship).

3.1.2 Lifting

The �gures in this subsection show the transformation pattern for an inheritance
hierarchy when applying the lifting operation. In this operation, every attribute of the class
that is lifted ((D1)~?4~ in gray of Table 3 and Table 4) is migrated to each direct superclass,
with lower bound cardinality (;:) relaxed to 0 (i.e., mandatory attributes become optional).
Upper bound cardinality (D:) is maintained. Association ends attached to the lifted class are
migrated to each direct superclass. The lower bound cardinality constraints of the association
ends attached to classes other than the lifted class ('4;0C43)~?48) (if any) are relaxed to 0 in
the same way as the attributes of the lifted class.

Simple generalization. When no generalization set is present (or for generalization sets
with a single subclass), a Boolean attribute is added to each superclass, to indicate whether the
instance of the superclass instantiates the lifted class (8B(D1)~?4~). Is is pre�xed “is” followed
by the name of the lifted class. See Table 3.

For example, the attributes of the lifted PersonalCustomer class in the source graph
row of Table 3 are migrated to the Adult class, relaxing their lower bound cardinality to 0.
One new association is created between Adult and SupplyContract, relaxing the minimum
multiplicity of the association end attached to SupplyContract.

Generalization sets. In some cases, generalizations are grouped into generalization
sets, which are sets of subclasses that specialize the superclass according to a common spe-
cialization principle. For example, people can be further classi�ed by their nationality, stage
of life, profession, gender, among many others. Each of these principles may give rise to a
di�erent generalization set specializing the class Person. These grouping principles may even
be explicitly identi�ed with powertypes, whose instances are subclasses of the base type that is
specialized by the set (CARVALHO; ALMEIDA; GUIZZARDI, 2016). Lifting in this case requires
a discriminator to be added to the superclass, as a means to identify the lifted class that is
instantiated. For this purpose, a discriminator enumeration is created (�(0) in the superclass
with labels corresponding to each (D1)~?4~ in the generalization set. An attribute with that

Chapter 3. A Novel Ontology-Based Transformation Strategy 46

Table 3 – Lifting with simple generalization.

Lifting Rule for Simple Generalization Example

So
ur

ce
G
ra
ph

Ta
rg
et

G
ra
ph

discriminator type is added to each superclass (6B0). Its cardinality follows the generalization
set arrangement:

• disjoint - indicates that “at most one” of the subclasses may be instantiated for each
superclass instance, so the maximum cardinality of 6B0 is set to 1 (one).

• overlapping - indicates that “more than one” subclass may be instantiated by the same
superclass instance, so the maximum cardinality of 6B0 is set to * (many).

• complete - indicates that whenever there is an instance of the superclass, it instantiates
“at least one” subclass in the set, so the minimum cardinality of 6B0 is set to 1 (one).

• incomplete - indicates that there are instances of the superclass that are not instances of
any of the subclasses, so the minimum cardinality of 6B0 is set to 0 (zero).

For example, the attribute of PrimarySchool and Hospital classes in the Source Graph
line of the Table 4 is lifted to Organization class changing its multiplicity to be optional. The
enumeration OrganizationType is created with the names of all subclasses as literals and
a new attribute is created in the Organization class to identify the “type of organization”
instantiated. The multiplicity of this new attribute is optional because the generalization set is
incomplete. Finally, PrimarySchool andHospital classes are removed from the model.

A precondition to the application of lifting is that the class is a leaf of the present
hierarchy (i.e., it has no subclass), and, if it is a subclass in a generalization set, its siblings in the
generalization set must also be leaves of the present hierarchy. Approaches that rely on lifting
(such as one table per hierarchy) usually rule out multiple inheritance, since in the presence of

Chapter 3. A Novel Ontology-Based Transformation Strategy 47

Table 4 – Lifting rule when applied in a generalization set of sortals.

Lifting Rule for Generalization Set Example
So

ur
ce

G
ra
ph

Ta
rg
et

G
ra
ph

multiple inheritance, the preservation of the cardinalities (;~8 and D~8 becomes problematic) in
the lifting step. Here, we operate under the assumption that multiple inheritance is admissible,
but that further lifting steps will end up consolidating the various associations introduced due
to lifting to various subclasses into a single one; in other words, we assume that lifted classes
are ultimately indirect specializations of a single class1.

3.2 One Table per Kind

The approach we propose here makes combined and selective use of both “lifting” and
“�attening”. The approach leverages the specialized semantics of the OntoUML to precisely
determine which classes should be �attened and which should be lifted—given a particular set of
conceptualization choices made about the domain. This is possible because OntoUML explicitly
represents in a system of stereotypes a number of �ner-grained ontological distinctions among
types of classes. These stereotypes enable the explicit representation of these choices.

In a nutshell, we propose to group the classes of the inheritance hierarchy into their
respective kinds because there is a signi�cant body of evidence in cognitive psychology (MAC-
1 When applied to the one table per hierarchy approach, from which this operation was identi�ed, this means

that hierarchies must be disjoint (i.e., there is no class that specializes more than one top-level class).

Chapter 3. A Novel Ontology-Based Transformation Strategy 48

NAMARA; MACNAMARA; REYES, 1994; XU, 1997; XU; CAREY, 1996) that object kinds are
the most relevant category of types in human cognition, being responsible for our most basic
operations of individuation and object identity. Therefore, this strategy results in a schema
composed of tables corresponding to the kinds of entities in the domain. Because of this, it is
termed one table per kind (GUIDONI; ALMEIDA; GUIZZARDI, 2020). The one table per kind
strategy is divided into three steps, outlined below.

Steps 1 and 2 of the one table per kind transformation strategy are refactoring processes
applied in the model in order to remove the inheritance relationships, according to the constructs
found in the conceptual model. Thereby, at the end of steps 1 and 2 we will still have the class
diagram without the inheritance constructs. The transformation to the relational schema is
performed only in step 3.

Figure 11 – Flattening process example.

Step 1: Non-sortals are �attened towards sortals. Non-sortals are always superclasses
(and never subclasses) of sortals. They are also only instantiated through their sortal subclasses
(and are represented by abstract classes). The �attening operation is applied repeatedly to the

Chapter 3. A Novel Ontology-Based Transformation Strategy 49

topmost non-sortals of the hierarchy, until no non-sortal class is left in the model.

Exemplifying the �attening operation in our running example: the Customer class is
a non-sortal, so the creditRating attribute is �attened to PersonalCustomer and Corpo-

rateCustomer classes without changing its multiplicity, and the Customer class is removed
from the model (the same occurs for NamedEntity class), as shown in Figure 11. Two new
associations are created, one between SupplyContract and PersonalCustomer and other
between SupplyContract and CorporateCustomer. The minimum multiplicity of new as-
sociations with PersonalCustomer and CorporateCustomer classes are relaxed to accept
zero association (0..1), because it is not true that every association with Customer necessarily
means an association with PersonalCustomer and with CorporateCustomer.

Step 2: The attributes and associations of the non-kind sortals are lifted (ultimately) to
their kinds. The lifting operation is applied from the most speci�c non-kind sortal until all of
them have been lifted to their kinds.

Figure 12 – Lifting process example for simple generalization.

Exemplifying the lifting operation in our running example: the CorporateCustomer

Chapter 3. A Novel Ontology-Based Transformation Strategy 50

class is a sortal non-kind, so the creditRating and creditLimit attributes are lifted to
Organization class changing its multiplicity to optional (0..1). After that, the isCorporate-
Customer attribute is created in Organization and the CorporateCustomer class is removed
from the model, as shown in Figure 12 (the mandatory multiplicities are not shown). The
minimum association with SupplyContract is relaxed, because not every Organization

instance is a CorporateCustomer instance, so not every organization will have an association
with SupplyContract.

Figure 13 – Lifting process example for generalization set.

Figure 13 shows the lifting of the generalization sets in step 2. In this operations, as
the BrazilianCitizen and ItalianCitizen classes are non-kind sortals, making a general-
ization set with Person, so the RG and CI attributes are lifted to Person class changing their
multiplicities to optional ([0..1]). The enumeration Nationality is created with the names of
all subclasses as literals, and the subclasses are removed from the model. The multiplicity of the
association between the Person and Nationality classes is de�ned as follows: since there is

Chapter 3. A Novel Ontology-Based Transformation Strategy 51

nothing that requires the instantiation of each subclass and at the same time one subclass can
be instantiated multiple times, the association multiplicity on the Person side is set to [0..∗];
the minimum multiplicity on the Nationality side is set to 0 because the generalization set is
incomplete, that is, there may be people who are do not instantiate any of the subclasses of
Person in that set, whereas the maximum multiplicity of the Nationality side is ∗ because the
generalization set is overlapping, that is, a person can have more than one nationality.

Step 3: After these operations have been carried out, tables are produced for each of
the classes in the refactored model. The tables corresponding to dependent entities must have
foreign keys to the entities on which they depend. This is the case for tables corresponding to
relator, kind, and also for the discriminating tables in the case of overlapping generalization
sets. In the latter case, each row in a discriminator table represents a qua-entity connecting
role players with the corresponding (rei�ed) role class. As previously discussed, qua-entities
and relators are existentially dependent entities.

Figure 14 presents the schema that results from the application of these transformation
steps in the conceptual model in Figure 10. We obtain the two tables corresponding to object
kinds: PERSON, ORGANIZATION, three corresponding to relators: EMPLOYMENT, ENROLLMENT and
SUPPLY_CONTRACT. An additional table for the discriminator that results from the overlap-
ping generalization set Nationality is introduced (NATIONALITY, representing a qua-entity
connecting a person to a particular nationality type).

Figure 14 – Running example transformed by one table per kind strategy.

Chapter 3. A Novel Ontology-Based Transformation Strategy 52

3.3 Final Considerations

This chapter has formalized the elementary �attening and lifting operations that are
used to address specialization relations in a class hierarchy. Applying these operations in
di�erent orders results in di�erent object-relational transformation strategies. For example, in
the one table per concrete class strategy (PHILIPPI, 2005) “�attening” is applied for the abstract
superclasses repeatedly. The extreme application of “�attening” to remove all non-leaf classes
of a taxonomy yields one table per leaf class (“horizontal inheritance” (TORRES et al., 2017)).
When “lifting” is applied to all subclasses repeatedly we have the opposite extreme: one table
per hierarchy (also called “single-table” (FOWLER, 2002) or “one inheritance tree one table”
(KELLER, 1997)). Di�erently from these strategies that apply only one operation, the one
table per kind strategy combines �attening and lifting by employing ontological semantics to
determine when they should be applied in the transformation processes. The resulting schema
has a table corresponding to each kind in the source conceptual model.

Using the terminology of Lano et al. (2018), Lúcio et al. (2016), the �attening and
lifting operations presented in this chapter can be understood conceptually as endogenous
model refactorings. An endogenous transformation is one whose target and source models
are represented in the same language (here they are both class diagrams); a refactoring is a
transformation that performs update-in-place making local changes to a part of the model.
These are usually motivated with the model editing intent (LÚCIO et al., 2016), although here,
they have been motivated by progressing towards a model that can be more easily translated
in an ultimate exogenous model transformation (one that produces a relational schema from a
class diagram). Because of that, in some cases, our operations have the opposite intent of some
refactoring operations in the literature. For example, �attening is the opposite of “extract class”
of Fowler (2018). (“Flattening” as used here should not be mistaken with the homonymous
model transformation pattern of Iacob, Steen & Heerink (2008), which refers to the elimination
of hierarchical containment structures in the abstract syntax.) The operations are applied
automatically once the classes to be �attened or lifted in a step are identi�ed.

As can be seen, these operations are not linked to the OntoUML categories (represented
by UML stereotypes), therefore can be applied to any conceptual model based on the UML
class diagram. But here, they are put to use in the one table per kind strategy, and hence, their
applications is guided by the ontological constructs of OntoUML.

The study of ontological foundations in conceptual modeling has produced a number
of advances over the last decades. This chapter extends some of these advances to relational
schema design. We have shown that by considering the ontological status of classes in a
conceptual model we can propose a new transformation strategy that cannot be articulated with
ontologically neutral conceptual modeling primitives (providing thus support for hypothesis 1).

The next chapter compares our strategy with the other strategies presented in Sec-

Chapter 3. A Novel Ontology-Based Transformation Strategy 53

tion 2.1, discussing how it provides adequate support to all the constructs mentioned in
Section 1.2. We also present some considerations regarding the size, performance and usability
of relational schemas produced with the strategy.

54

4 Evaluation of the Novel Strategy

Unlike the various object-relational transformation strategies in the literature, the
proposed one table per kind strategy uses principles and constructs provided by an ontological
language to guide the object-relational transformation. As we have hypothesized, this leads to
improvements in the quality of the resulting relational schemas. This chapter shows support
for this hypothesis (hypothesis 2), assessing the various quality characteristics of the proposed
strategy when compared to those in the literature, demonstrating our speci�c objective 2, 3
and part of speci�c objective 1.

Section 4.1 discusses the support to multiple classi�cation, orthogonal hierarchies and
dynamic classi�cation. Section 4.2 compares the size of the resulting schema, drawing some
considerations for the performance of data operations taking into account some statistics from
previously published OntoUML models. Section 4.3 presents some measurements intended to
show the feasibility of the one table per kind strategy when considering its query time perfor-
mance in relation to other strategies. It also considers the performance of update operations.
Section 4.4 reports on an empirical study to assess the relative understandability of a schema
generated with the one table per kind strategy.

4.1 Support for Conceptual Modeling Primitives

Multiple Inheritance. Problems with multiple inheritance that appear speci�cally in the
one table per hierarchy strategy do not appear in one table per kind because according to UFO
(GUIZZARDI, 2005) there is no multiple inheritance of kinds. Hence, an instance is represented
naturally in a single table corresponding to the unique kind (ultimate sortal) it instantiates.
Multiple inheritance of non-kind sortals (subkinds, phases and roles), while possible, does not
pose a problem, since they are lifted to the same common kind. Discriminators then identify the
instantiated non-kind sortals. Multiple inheritance of non-sortals creates no problems because
they are �attened into kinds, and hence all the inherited features from all superclasses are
supported naturally in the table corresponding to the inheriting kind.

Orthogonal hierarchies. Problems with orthogonal hierarchies and overlapping gener-
alization sets that appear in the one table per leaf class strategy do not arise in the one table per
kind strategy. Kind tables are where the entities’ primary keys are placed, and hence there is
no problem with the same entity being represented in several tables. Flattening of non-sortals
poses no problem in this scenario. In the case of the lifting of non-kind sortals, orthogonal
hierarchies and overlapping generalization sets are, not unlike multiple inheritance, re�ected
in discriminators in the kind table.

Chapter 4. Evaluation of the Novel Strategy 55

Dynamic classi�cation. Dynamic classi�cation is supported for all strategies, however
always requiring what can be considered a workaround in the one table per class and one
table per leaf class strategies: the migration of rows representing the same instance, i.e., the
deletion from a table corresponding to a class that is no longer instantiated by the entity and
the insertion in a table corresponding to the newly instantiated class. Di�erently from those
strategies, in one table per hierarchy and one table per kind, dynamic classi�cation is supported
by simply changing the value of a discriminator.

Table 5 summarizes the coverage of primitives in the transformation strategies consid-
ered, with the one table per kind combining the bene�ts of the other strategies.

Table 5 – Support for conceptual modeling primitives in di�erent strategies.

Realization
Strategy

Multiple
inheritance

Orthogonal
hierarchies

Dynamic
classi�cation

One table per
class yes yes yes (but with migration)

One table per
leaf class yes no yes (but with migration)

One table per
hierarchy no yes yes

One table per
kind yes yes yes

4.2 Preliminary Performance Considerations

Table 6 provides a comparison between the proposed one table per kind strategy and
the other dominant strategies presented in Section 2.1. We consider some variables that may
a�ect query performance: the number of tables representing entities, the number of joins
to retrieve one entity (with all its attributes), the number of tables potentially a�ected in an
insert operation, and the number of tables to read an attribute in a polymorphic query. We
use the following parameters in this comparison: = is the total number of classes in the source
conceptual model, ℎ is the maximum height of the hierarchy (i.e., maximum path size from a
top-level class to a leaf class), =; is the number of leaf classes in the hierarchy, =C the number of
top-level classes, and =: is the number of kinds. Note that the number of kinds (=:) is equal to
or lower than the number of leaf classes (i.e., =: ≤ =; ≤ =), and that they are equal (=: = =;)
only in case there are no subkinds, roles and phases. Thus, the number of tables required to
represent entities in the domain in the proposed one table per kind strategy is equal to or lower
than that required by the other strategies, with the exception of strategy one table per hierarchy,
as shown in “N> of tables representing entities” column. The comparison with one table per
hierarchy requires us to consider the number of top-level classes (=C). The two approaches
result in the same number of tables when there are no non-sortals (=: = =C).

The table also presents that one table per kind is an optimized strategy for the retrieval

Chapter 4. Evaluation of the Novel Strategy 56

Table 6 – Schema size and performance-related metrics in di�erent strategies.

Realization
Strategy

No of tables
representing

entities

No of joins
to retrieve
an entity

No of tables
a�ected in insert

operation

No of tables in union to
read one attribute

(polymorphic query)
One table per
class = ℎ ℎ + 1 1

One table per
leaf class =; 1 1 =;

One table per
hierarchy =C 1 1 1

One table per
kind =: 1 1 =: (1, if de�ned in sortal)

and insertion of an entity (with all its attributes), needing only one access to the database to
perform the action, as shown in “N> of joins to retrieve an entity” and “N> of tables a�ected in
insert operation” columns, respectively. Concerning the performance of polymorphic queries
(number of tables involved in a union to read one attribute de�ned in a superclass), when the
attribute is de�ned in a non-sortal, in which case, =: unions may be required in the worst case
for one table per kind (when the non-sortal class in which the attribute is de�ned classi�es
entities of all kinds in the model). Even in this case, the approach is equal to or better than one
table per leaf class (since =: ≤ =;).

Table 7 shows the values for these variables for a number of models in di�erent domains,
those also employed in (GUIZZARDI et al., 2019). Our intent is to show actual data from models
that have been developed independently (and are part of the OntoUML/UFO catalog1). The data
reveals that the height of the hierarchy (ℎ) ranges from two to six, and the number of kinds in
a model is typically one fourth or one �fth of the total number of classes. The average number
of leaf classes (=;) is 39, contrasted with 15 (=:) for kinds. Thus, the one table per kind strategy
leads to fewer tables (except when compared with one table per hierarchy, which cannot handle
multiple inheritance). When compared with one table per leaf class polymorphic queries involve
unions with fewer tables.

Table 7 – Variable occurrences by OntoUML model.

Variables OntoUML Models
Cloud

Vulnerability ECG G.805 MPOG Normative
Acts OpenBio OpenFlow Open

Provenance PAS 77 Software
Requirements Average

= 30 49 123 15 59 231 20 33 66 17 64
ℎ 3 2 6 4 3 5 2 2 3 2 3
=; 12 18 70 7 43 163 8 12 41 11 39
=C 5 4 14 3 5 9 4 8 5 2 6
=: 12 18 18 5 10 37 6 17 19 7 15

1 <https://github.com/OntoUML/ontouml-models>

https://github.com/OntoUML/ontouml-models

Chapter 4. Evaluation of the Novel Strategy 57

4.3 Actual Database Performance in two Scenarios

We report here a study on the feasibility of the proposed strategy when compared to
existing strategies from the perspective of time performance. We collect data regarding the
performance of some relevant queries for di�erent strategies. We use two source OntoUML
models: our running example and a model produced by a third-party chosen from the OntoUML
repository (BARCELOS et al., 2022). We chose our running example because it covers all
primitives that we support including multiple inheritance, dynamic classi�cation, di�erent
types of generalization sets, as well as orthogonal hierarchies. The other model belongs to the
Object-Oriented Code Ontology project (OOC-O) (AGUIAR, 2021). It was chosen because of
its complex inheritance hierarchies (merging in the same hierarchy simple inheritance and
generalization sets with several levels, associations of subclasses in di�erent levels with other
classes and with subclasses of other hierarchies). Sections 4.3.1 and 4.3.2 are dedicated to each
of these source models respectively.

We have chosen for the comparison the following strategies: one table per concrete class,
one table per leaf class and one table per kind. The one table per hierarchy strategy was not
included due to its lack of support for multiple inheritance, which is present in both source
models. The relational schemas produced were automatically populated with the same synthetic
instances as described in the sequel.

In order to exclude I/O from the response time, which could mask the di�erence between
the strategies used, we have performed a row count for each query e�ectively “packaging” it
into a “select count (1) from (query)”. In the performance of update evaluation, each change
was enacted separately. The values presented in this section are averages of 100 measurements.
As an indication of relative performance, we provide a percentage of di�erence from one table
per kind to the other best-performing strategy in the tables that display query response time.
The query scripts used can be found in the Appendix C.

Measurements presented in this section were obtained in a Windows 10 notebook with
an i3 1.8 GHz processor, 250 GB SSD and 8 GB RAM. Data were obtained through PostgreSQL 5.2,
di�erently from (GUIDONI; ALMEIDA; GUIZZARDI, 2020), where MySql had been employed.
We have decided to focus on PostgreSQL because it o�ered better overall time performance
for all queries and exhibited less variance in the response time for the same query when
executed multiple times. Note that a comparison of the performance of DBMSs is not part of
the scope of this work, and would require in-depth studies on DBMS con�gurations, impact
of the operational system, database size, etc. Further, application-speci�c analyses are still
required, and the purpose of this section is solely to show the feasibility of the approach from
the performance perspective, revealing some cases in which the one table per kind outperforms
other strategies and other cases in which it does not.

Chapter 4. Evaluation of the Novel Strategy 58

4.3.1 Running Example Project

Using the running example as presented in Figure 10, we have created the relational
schemas and populated them with:

• 50k organizations (about 42% hospitals, 38% primary schools and 20% without classi�ca-
tion);

• 200k persons (about 40% Brazilian citizens, 40% Italian citizens, 15% with double nation-
ality and 5% are stateless, over 160k adults, 40k children, 128k employees);

• about 250k supply contracts; 166k employments (30% of the employees with more than
one employment), and

• 56k enrollments (40% of the children with more than one enrollment).

The database size was 110.848 MB for the one table per concrete class strategy, 96.645 MB
for the one table per leaf class and 105.426 MB for the one table per kind strategy.

Query Answering Performance

In order to assess relative query answering performance considering our Running
Example model, a number of queries were written to retrieve:

1. the credit rating of each customer;

2. the name of each child, along with the playground size of the schools in which the child
is enrolled;

3. the names of Brazilian citizens working in hospitals with Italian customers; this query
reveals also the names of these customers and the contract values with the hospital;

4. all data of organizations regardless of whether it is registered as a Hospital or Primary
School;

5. given the CI of an Italian citizen, the name of the Hospital with which he/she has a
contract and the value of that contract.

The queries were designed to have di�erent (representative) characteristics. Query 1
is a polymorphic query with reference to the non-sortal Customer and retrieves an attribute
de�ned at that abstract class. Queries 2 and 3 involve navigation through associations in the
conceptual model. Query 4 is polymorphic with reference to Organization and, di�erently
from query 1, retrieves all attributes of organizations, including those de�ned in subclasses.
Query 5 retrieves data of a speci�c person.

Chapter 4. Evaluation of the Novel Strategy 59

Table 8 shows information regarding the number of tables, unions and �lters of our
queries considering the relational schemas of the three transformation strategies compared. We
can see that queries written for the relational schema generated by the one table per concrete
class strategy need to access more tables to retrieve the data, resulting in more joins. The
queries written for the relational schema generated by the one table per kind strategy is the
one that uses fewer tables, resulting in fewer joins to retrieve data; however, it is the one that
requires more �lters. Although Query 4 is polymorphic, it was implemented with “LEFT JOIN”
for the one table per concrete class strategy, which cannot be done for the one table per leaf class
strategy.

Table 8 – Number of tables, unions and �lters for the queries based on di�erent schemas over
our running example model.

Query
One table per
concrete class

One table per
leaf class

One table per
kind

No of
tables

No of
unions

N° of
�lters

No of
tables

No of
union

N° of
�lters

No of
tables

No of
unions

N° of
�lters

1 2 1 0 2 1 0 2 1 2
2 4 0 0 3 0 0 3 0 0
3 8 0 0 5 0 1 7 0 3
4 4 0 0 7 2 0 1 0 0
5 5 0 1 3 0 1 3 0 2

Table 9 shows the results obtained, comparing with the relational schemas proposed.
The response times of Query 1 indicate that query performance depends directly on the number
of tables accessed to retrieve data (see “No of tables” columns of Table 8), with a slight increase
in the one table per kind strategy due to the �lters performed. Query 2 presents an optimal result
for the one table per leaf class strategy. This result was obtained because this strategy generates
a speci�c table for children which are the speci�c subjects of this query. The same occurs for
the PRIMARY_SCHOOL table. This advantage is not realized in the schema generated by the one
table per concrete class strategy because is necessary to access the PERSON and ORGANIZATION

tables to retrieve the name attribute. Despite the bene�ts for recovering data, the one table per
leaf class strategy can be problematic for dynamic classi�cation (Table 10 addresses this issue).
The bene�t of having a table corresponding to the speci�c entities queried is also present in
Query 3 for one table per leaf class. However, the response time bene�ts are not as great as those
for Query 2, because Query 3 requires joins with more tables and a �lter to discard stateless
people.

Query 4 exposes the problem of polymorphic queries for the one table per leaf class
strategy. As the data are arranged only in the tables corresponding to the leaf classes of the
hierarchy, it is necessary to perform two unions to retrieve data from all organizations (one
union between HOSPITAL and PRIMARY_SCHOOL and another with CORPORATE_CUSTOMER, as
the conceptual model allows organizations without de�ning the organization type). This is the

Chapter 4. Evaluation of the Novel Strategy 60

Table 9 – Queries response times (averages, in seconds) for the running example.

Query One table per
concrete class

One table per
leaf class

One table per
kind

1 0.219 0.220 0.251 (+14.6%)
2 0.272 0.083 0.245 (+195%)
3 0.623 0.481 0.585 (+21.6%)
4 0.041 0.697 0.010 (-75.6%)
5 0.192 0.205 0.182 (-5.5%)

case in which one table per kind excels, outperforming the other approaches by a good margin.
Query 5 presents a subtle di�erence between the strategies, with a slight advantage for the one
table per kind strategy. Although the one table per concrete class strategy accessed two more
tables than the one table per kind strategy, the di�erence was not signi�cant because the result
of this query has just one person.

Performance of Update Operations

Table 10 – Times required for updates of records representing children (in seconds).

Operation One table per
concrete class

One table per
leaf class

One table per
kind

Insert 0.021 0.011 0.006 (-45.5%)
Update (name and rg) 0.014 0.014 0.006 (-57.7%)
Change life_phase (to Adult) 0.020 0.022 0.006 (-70.0%)
Delete 0.055 0.046 0.115 (+150.0%)

We also evaluated some actions to insert, update and delete records, in the following
order: �rst, we inserted 100 Brazilian children; second, we changed the name and rg attributes
of these children; third, we changed the life_phase of this children to ADULT; lastly, we delete
all the children initially inserted. Table 10 shows the response time for the proposed updates.
The one table per kind strategy presents better results in general because updates involve only
one table in the the resulting schema. The one table per concrete class strategy requires three
commands to include one child (insert into PERSON, BRAZILIAN_CITIZEN and CHILD tables)
and two tables to change the name and rg (PERSON and BRAZILIAN_CITIZEN tables), while
the one table per leaf class strategy needs to change two tables both to insert and to update
the children’s name and rg (BRAZILIAN_CITIZEN and CHILD tables). Changing a person’s life
phase has worse times in the relational schemas generated by the one table per concrete class
and one table per leaf class strategies because both require one exclusion and one inclusion to
complete the action, while this action has the same response time as a simple update over the
schema generated by the one table per kind strategy. Although changing the life phase to adult
involves a DELETE and an INSERT in one table per concrete class and one table per leaf class
strategies, the response time of the operation to remove the initially inserted child is greater

Chapter 4. Evaluation of the Novel Strategy 61

because it involves deletes in more tables. The one table per kind strategy has the worst times
for deleting records, which we attribute to checks required to ensure referential integrity in
other large tables that have keys of persons.

4.3.2 Object-Oriented Code Ontology (OOC-O) Project

The OOC-O project (AGUIAR, 2021), whose models are available in the OntoUML repos-
itory (BARCELOS et al., 2022) under the name of aguiar2019ooco, has the purpose of identifying
and representing the semantics of the entities present at compile time in object-oriented source
code. Its models show the existential dependence of constructs present in object-oriented code,
such as Language, Program, Code, Module, Classes, Methods, Variables, Blocks (scope in
which a variable is valid), etc., and the subcategories of each construct when they exist. For
example, the subcategories of Module – formed by Physical Module and Abstract Mod-

ule; the implementable subcategories of Class – formed by Abstract Class and Concrete

Class; the subcategories of Variable – formed by Instance Variable, Class Variable,
Parameter Variable and Local Variable (variables declared in the methods). Programs
are constituted of Code that must be associated with Physical Modules, which are a com-
position of Classes. A class can be composed of Methods and Variables (attributes). The
models of the OOC-O project are included in Appendix B.

We create the relational schemas provided by one table per concrete class, one table per
leaf class and one table per kind strategy to OOC-O models and populated them with:

• 8k classes (about 20% abstract classes and 80% concrete classes);

• 160k methods (about 20% abstract method, 20% concrete method, over 8k constructor
methods, 8k destructor methods, 144k accessor methods), and

• 840k variables (40k declared in classes and 800k declared in methods).

The database size was 255.535 MB for the one table per concrete class strategy, 150.309 MB
for the one table per leaf class and 156.965 MB for the one table per kind strategy.

Query Answering Performance

In order to assess relative query answering performance considering the OOC-O models,
a number of queries were written to retrieve:

1. the names of all named elements;

2. the names of classes, methods and the types of the variables belonging to concrete
methods (parameters or declared in the body of methods);

Chapter 4. Evaluation of the Novel Strategy 62

3. the programs and the names of variables (attributes) belonging to concrete classes, that
is, without taking into account parameters or variables declared in methods;

4. all modules, indicating whether they are physical or logical;

5. all programs that use a given variable name.

The queries were designed with a similar purpose to those in Section 4.3.1, i.e., to
explore di�erent query characteristics. Due to the nature of the model, which features a deep
specialization hierarchy, all queries include some polymorphic access. In addition, there is a
large number of leaf classes (see Table 11). Because of this, some of the queries were written
with sub-queries. Code for all queries is available in Appendix C.2.

Table 11 – Metrics of OOC-O models.

No of
classes (=)

Maximum height
of the hierarchy (ℎ)

No of leaf
classes (=;)

No of
kinds (=:)

55 5 25 11

Table 12 shows some elementary information of the queries produced for the transfor-
mation strategies used. The greater number of polymorphic queries resulted in queries with a
greater number of tables. One table was counted more than once if it is used in more than one
sub-query. The queries performed for the one table per kind strategy require a smaller number
of tables to retrieve the requested information and the one table per leaf class strategy required
more unions when compared to the other strategies. The one table per concrete class strategy
used the greatest number of tables because the requested information is distributed among the
tables that represent the inheritance hierarchy.

Table 12 – Number of tables, unions and �lters for the queries based on di�erent schemas over
OOC-O models.

Query
One table per
concrete class

One table per
leaf class

One table per
kind

No of
tables

No of
unions

N° of
�lters

No of
tables

No of
unions

N° of
�lters

No of
tables

No of
unions

N° of
�lters

1 3 2 0 7 6 0 3 2 0
2 12 1 0 9 4 0 3 0 1
3 25 3 0 24 6 0 6 0 1
4 2 1 0 2 1 0 1 0 0
5 21 2 3 14 7 4 6 0 1

Table 13 shows the response times obtained, for the three strategies employed. Query 1
had very similar response times with one table per leaf class marginally better. With the
exception of Query 1, in all other queries the one table per kind strategy does not use UNIONs
and manipulated a signi�cantly smaller number of tables, achieving better results.

Chapter 4. Evaluation of the Novel Strategy 63

Table 13 – Queries response times (averages, in seconds) on OOC-O models.

Query One table per
concrete class

One table per
leaf class

One table per
kind

1 0.294 0.285 0.296 (+3.7%)
2 0.717 0.430 0.362 (-18.8%)
3 5.651 2.141 0.982 (-118.0%)
4 0.003 0.003 0.002 (-50.0%)
5 0.496 0.493 0.315 (-56.5%)

Performance of Update Operations

We also evaluated some actions to insert, update and delete records, in the following
order: �rst, we insert 100 constructor methods; second, we change the name and the associated
class of these methods; third, we reclassify these methods to accessor method; lastly, we delete
all the methods initially inserted. Table 14 shows the response time for the proposed updates.

Table 14 – Times required for updates of records representing methods (in seconds).

Operation One table per
concrete class

One table per
leaf class

One table per
kind

Insert 0.034 0.011 0.006 (-83.3%)
Update (name and association) 0.006 0.011 0.006 (-83.3%)
Change to accessor method 0.011 0.084 0.005 (-120.0%)
Delete 0.135 0.191 0.203 (33.5%)

Just like the evaluation of schemas generated from the running example model, the one
table per kind strategy presents better results in general because updates involve only one table
in the the resulting schema. The one table per concrete class strategy requires six commands
to include one constructor method (insert into CONSTRUCTOR_METHOD, INSTANCE_METHOD,
CONCRETE_METHOD, METHOD_MEMBER_FUNCTION, NON_OVERRIDABLE_METHOD and GENERIC_-

METHOD tables) and only one command to change the name and its associated class (METHOD_-
MEMBER_FUNCTION table), while the one table per leaf class strategy needs to change two tables
both to insert and to update the name and the associated class (CONSTRUCTOR_METHOD and
GENERIC_METHOD tables). Changing the method’s type to accessor has worse times in the
relational schemas generated by the one table per concrete class and one table per leaf class
strategies because both require one exclusion and one inclusion to complete the action, while
this action has the same response time as a simple update over the schema generated by the
one table per kind strategy. The one table per kind strategy has the worst times for deleting
records, which we attribute to checks required to ensure referential integrity in other large
tables that have keys of methods.

Chapter 4. Evaluation of the Novel Strategy 64

4.3.3 Limitations

Our aim in this chapter was to show that the one table per kind strategy can address the
required modeling primitives, while still providing acceptable performance characteristics in
comparison with a number of other strategies. The performance analysis was limited to two
models, one designed with the purpose of exploring all the modeling primitives (the running
example), and another model produced independently by a third-party and published in a model
repository. We have not considered the one table per hierarchy strategy as it cannot address
multiple inheritance, which is required in both models considered. A clear issue for further
investigation is the generalization of these performance results, including a large number of
models with di�erent characteristics.

The data presented in this section is not intended to indicate the best transformation
strategy. There are a large number of factors that need to be considered in a particular applica-
tion and that are not analyzed here. The data reveals that the relational schema generated by the
one table per kind strategy has strengths in certain types of queries and database operations, and
not so much in others. A system designer must make the necessary system-speci�c analyzes
to indicate which transformation strategy is most appropriate for the system to be developed.
The automation of transformation can support the designer in experimenting with the various
resulting schemas under realistic loads.

We did not evaluate the performance of the relational schema regarding concurrency
or in relation to di�erent DBMSs. Keeping data concentrated in large tables can impact in the
concurrency and, consequently, a�ect database performance. Further, response time assessment
can vary signi�cantly according to the chosen DBMS. In fact, we did preliminary analyzes
between PostgreSQL and MySQL and obtained di�erent results regarding the response time
of some queries. The data were not presented here because this analysis requires a deeper
study in relation to the isolation level used, relational schema size, throughput of the service
performed in a concurrency situation, among others. This should be the subject of a dedicated
study on this theme.

4.4 Empirical Evaluation of Query Understanding

In order to assess the implications of the one table per kind strategy with respect to the
usability of the resulting schema, we decided to contrast it with one other strategy only, for a
number of reasons. First, adding several schemas would make the experiment long, which could
a�ect negatively the participation in the experiment. Second, the experiment could become
overly complex, in particular because we would need explanations for some of the more complex
schemas, e.g., those resulting from one �attened table per leaf class. Third, learning e�ects could
be compounded if a subject is exposed to several schemas.

Therefore, we focused our e�orts on identifying which strategy would best serve in the

Chapter 4. Evaluation of the Novel Strategy 65

comparison. First of all, the one table per hierarchy strategy was excluded as it cannot be applied
to our running example because it has multiple inheritance. We established that the contrasted
strategy should still emulate inheritance, di�erently from one table per kind. Hence, one table
per leaf class was excluded. The one table per class strategy was considered, but excluded since
it generates an excessive number of tables, and the e�ect of the number of tables solely could
overshadow other factors. Hence, we have opted for the one table per concrete class strategy; it
still emulates some inheritance, but generates fewer tables.

4.4.1 Materials and Preparation

We use as a starting point the running example with a minor modi�cation, as shown
in Figure 15. The sole modi�cation is that the generalization set for nationality is marked
disjoint instead of overlapping, which avoids the creation of an additional NATIONALITY
table. This table would only have created some noise in the experiment, since the query used
does not consider nationality altogether.

Figure 15 – Running example with disjoint nationality

Figure 16 (a) presents the relational schema generated by the one table per concrete class
strategy and Figure 16 (b) the relational schema generated by the one table per kind strategy.

Several invitations to an online survey, prepared with Google Forms, were sent to online
SQL mailing lists (pgsql-sql, SQLite forum, MariaDB discuss and mysql-br). The invitations
stated that the purpose of the experiment was to investigate the understanding and usability
of di�erent relational schemas, without making any mention of strategies for transformation.
It was made clear that participation was voluntary and the responses would be recorded
anonymously, not revealing the identity of the participant.

The experiment was organized into two phases: phase I requested demographic data to
be used as a control, especially concerning level of expertise; phase II investigated the ability to
interpret queries written for the schemas generated with the two strategies and the perceived

Chapter 4. Evaluation of the Novel Strategy 66

Figure 16 – Schemas used in the empirical evaluation

ease of understanding. Some information was provided to the subjects about the relational
schemas, such as the purpose of tables and columns, especially concerning discriminators
columns. No information about the conceptual model and the transformation strategy to obtain
the relational schema was presented.

Phase II of the experiment consists in three questions about the queries. Question 1
presents the query of the Listing 4.1 and the schema of Figure 16 (a) (one table per concrete
clas) and asks for the query’s purpose. Question 2 presents the query of the Listing 4.2 and the
schema of Figure 16 (b) (one table per kind) and requires its purpose. The purpose of the queries
are the same for both relational schemas. The order of the questions was de�ned randomly by
the tool used, to cancel the e�ect of learning. So, half of the subjects were asked a question
about the query written for the one table per concrete class strategy �rst, and only then for the
query written for the one table per kind strategy; the other half were asked these questions in

Chapter 4. Evaluation of the Novel Strategy 67

reversed order. At the end of this part of the experiment, we asked the participants (Question
3) which query was easier to interpret (“Which of the two queries presented to you before was
easier to understand?”).

Listing 4.1 – Query on schema generated by theone table per concrete class strategy

1 SELECT *
2 FROM person p
3 JOIN child c
4 ON p.person_id = c.person_id
5 JOIN enrollment e
6 ON c.person_id = e.person_id
7 JOIN primary_school ps
8 ON e.organization_id = ps.organization_id
9 JOIN organization o

10 ON ps.organization_id = o.organization_id
11 JOIN corporate_customer cc
12 ON o.organization_id = cc.organization_id
13 JOIN supply_contract sc
14 ON cc.organization_id = sc.organization_customer_id
15 JOIN contractor cont
16 ON sc.organization_contractor_id = cont.organization_id
17 JOIN organization cont_org
18 ON cont.organization_id = cont_org.organization_id
19 JOIN hospital h
20 ON cont_org.organization_id = h.organization_id

Listing 4.2 – Query on schema generated by the one table per kind strategy

1 SELECT *
2 FROM person p
3 JOIN enrollment e
4 ON p.person_id = e.person_id
5 JOIN organization o
6 ON e.organization_id = o.organization_id
7 AND o.organization_type_enum = ’PRIMARYSCHOOL ’
8 JOIN supply_contract sc
9 ON o.organization_id = sc.organization_customer_id

10 JOIN organization cont_org
11 ON sc.organization_contractor_id = cont_org.organization_id
12 AND cont_org.organization_type_enum = ’HOSPITAL ’
13 WHERE p.life_phase_enum = ’CHILD’

4.4.2 Results

In total, 20 people participated in the experiment. 85% reported being IT profession-
als; 15% professors/researchers; no students participated in the experiment. Only 10% of the
participants reported 1 to 3 years of experience with databases, 90% reported over 5 years
experience.

A score from 0 to 10 was assigned to the answers to Questions 1 and 2. We have
considered ‘correct’ those answers that received a score equal to or greater than 8. For an
answer to be considered correct, the participant must say, at least, that the query “lists children
enrolled in primary schools, which have a supply contract with a hospital”. Any answer that

Chapter 4. Evaluation of the Novel Strategy 68

does not mention somehow “children enrolled in primary schools” and that “school has a
supply contract with hospital” was given a score lower than 8.

We obtained the following results (shown in Figure 17): 50% of the participants inter-
preted both queries correctly; 10% interpreted only one of the queries correctly (5% interpreted
only the query with the schema generated by the one table per kind strategy correctly and
5% interpreted only the query with the schema generated by the one table per concrete class
strategy correctly); 40% of the participants scored less than 8 for both queries. Based on these
results, we can conclude that the relational schema generated by our transformation strategy
did not a�ect query understanding relative to the relational schema generated by the one table
per concrete class strategy.

50%

5%5%

40%

both queries correctly
only query for one table per kind correctly
only query for one table per concrete class correctly
both queries wrong.

Figure 17 – Query interpretation correctness

Despite the lack of di�erences concerning query interpretation correctness, we obtained
the following result regarding the overall reported query preference, shown in Figure 18: none
of the participants preferred to perform interpretations on the query on the schema generated
by the one table per concrete class strategy; 30% were indi�erent and 70% preferred to interpret
queries on the schema generated by the one table per kind strategy. Thus, our experiment shows
a striking result in favor of the perceived ease of understanding of the schema generated with
one table per kind.

0%

70%

30% prefer one table per concrete class (0%)
prefer one table per kind
indi�erent

Figure 18 – Query interpretation preference (all respondents)

Figure 19 shows the relational schema preference of our participants in relation to the
correctness of the query interpretation. The preference is exactly the same when observing
only the participants who got both interpretations right (Figure 19 (a)), and equal for those who
correctly interpreted just one query right, regardless of whether another query was correct
(Figure 19 (b) and (c)). The percentage of participants who preferred to interpret queries for the
schema generated by the one table per concrete class strategy increases when analyzing only
those who answered incorrectly (Figure 19 (d)).

Chapter 4. Evaluation of the Novel Strategy 69

prefer one table per concrete class (0%)

0%

prefer one table per kind

70%

indi�erent

30%

(a) interpreted both queries correctly

prefer one table per concrete class (0%)

0%

prefer one table per kind

72.7%

indi�erent

27.3%

(b) interpreted one table per kind correctly
prefer one table per concrete class (0%)

0%

prefer one table per kind

72.7%

indi�erent

27.3%

(c) interpreted one table p. concrete class correctly

prefer one table per concrete class (0%)

0%

prefer one table per kind

62.5%

indi�erent

37.5%

(d) interpreted both queries incorrectly

Figure 19 – Query interpretation preference (breakdown)

Figure 20 shows a break-down of the query preference considering the order in which
the schemas were presented to participants. Figure 20 (a) shows that a vast majority of partici-
pants that were exposed to the one table per kind schema �rst preferred it. Figure 20 (b) reveals
that more participants became indi�erent when shown the one table per concrete class �rst. A
more in-depth experiment would be required to explain this e�ect.

prefer one table per concrete class (0%)

0%

prefer one table per kind

90.9%

indi�erent

9.1%

(a) one table per kind �rst
prefer one table per concrete class (0%)

0%

prefer one table per kind

44.4%

indi�erent

55.6%

(b) one table per concrete class �rst

Figure 20 – Query interpretation preference regarding the schema displayed �rst

Chapter 4. Evaluation of the Novel Strategy 70

4.4.3 Limitations

We de�ned a query for the experiment involving only simple SQL constructs, to max-
imize the target audience, therefore we did not work with queries with a higher degree of
di�culty, such as polymorphic queries or queries that required the use of LEFT JOIN or sub-
queries. We hypothesize that these results obtained for simple queries would transfer to more
complex queries, but that remains to be con�rmed. We are aware that the design space for SQL
queries is enormous, and, hence, a comprehensive assessment of the various aspects a�ecting
query and schema design and consequent ease of use is an important theme for future work.

For the reasons discussed in the beginning of Section 4.4, we have limited the experiment
to a comparison between one table per kind and one other strategy (one table per concrete class).
Comparing more approaches is a topic for further studies.

In the experiment, due to the low number of participants we were not able to cover
all levels of participants experience in this experiment. Most participants can be considered
non-beginners, and most can be considered experienced SQL users. Therefore, it was not
possible to assess the understanding of queries in relation to the experience of the participants.
It is plausible that beginners could have revealed more di�erences with respect to query
interpretation correctness, and this is an issue for further study.

As the data were collected remotely through Google Forms, it was not possible to
collect information about the time used for the participants answer the proposed questions.
The average time spent on each question could provide further insight into relative ease of use.

4.5 Related Work

Rybola and Pergl wrote several papers about transforming OntoUML models into
relational models (RYBOLA; PERGL, 2016b; RYBOLA; PERGL, 2016c; RYBOLA; PERGL, 2016a;
RYBOLA; PERGL, 2017), which are summarized in a Ph.D. thesis (RYBOLA, 2017). The main
feature of their work is an object-relational transformation process anchored in Model-Driven
Development (MDD) principles. Their approach performs the transformation in three steps:
(1) from OntoUML to UML; (2) from UML to Relational Database Model; (3) from Relational
Database Model to the relational schema. In his Ph.D. thesis, Rybola (2017) proposes the
transformation of non-sortals with a pattern that introduces a table for each class. In this
sense, his approach approximates one table per class, but produces even more tables due to the
patterns employed to address the relation between the non-sortal and sortal hierarchies. This
exacerbates the performance issues when accessing or inserting an object.

Some ontology-based transformation processes focus on the relational realization of
computational OWL ontologies. We have transformations such as those of Afzal et al. (2016) and
Vyšniauskas et al. (2011), which implement the one table per class strategy, thus, transforming

Chapter 4. Evaluation of the Novel Strategy 71

each OWL class to a relational table; without considering any additional ontology constructs
in the transformation process.

There are also a number of programming-level object-relational mapping tools. A
popular one is Hibernate2 (BAUER; KING, 2005), which targets the Java programming language.
It uses explicit annotations in Java code to guide the creation of the relational schema and the
corresponding object access through SQL queries, making the database largely transparent
to the developer. Regarding the inheritance hierarchy, Hibernate is capable of performing the
following transformation strategies, named as: Mapped Superclass, Single Table, Joined table,
and Table per Class. These strategies are referred to in this work respectively as: one �attened
table per leaf class, one table per hierarchy, one table per concrete class, and one �attened table
per concrete class. No support for multiple inheritance or dynamic classi�cation is provided, as
these are not supported in the language.

Guizzardi et al. (2019) present OntoUML model transformation rules with the purpose
of reducing the number of classes visualized in the model. The purpose of that work is to
produce a more abstract version of the model for communication and understanding purposes,
not for realization of the conceptual model. Some rules presented in our work are similar to
the rules presented by Guizzardi et al. (2019) because we act on the same UFO categorization
principles, but with di�erent e�ects on the target model. For example, the names of the classes
that are lifted are used to name associations ends. Here, in contrast, classes lifted are identi�ed
by discriminator attributes, as the information on whether a particular entity instantiates the
lifted subclass cannot be lost in the database.

Over the years, a number of authors have compared the various object-relational
transformation strategies in terms of system infrastructure (performance and storage) and
relational schema design (understanding and maintainability). Among these, Keller (1997)
points out the infrastructure and design “forces” that govern the development of a relational
schema, as well as some characteristics used in the application design, such as polymorphism.
The author also exposes the consequences of using the strategies, which also is done by Fowler
(2002) when identifying the strengths and weaknesses of each strategy. Ambler (1997) performs
a brief comparison between the strategies and is concerned with the practical di�erences
between the relational and the object-oriented paradigms. Philippi (2005) establishes the
consequences of transformation strategies in relation to the infrastructure and design aspects
of the relational schema when the inheritance hierarchy is associated with other classes of
the model along with association cardinality. In turn, Torres et al. (2017) does not perform
a systematic comparison between the strategies, but identi�es their adoption in the various
object-relational transformation tools. Considerations of the authors in favor of their solutions
are based on their (subjective) experiences, while we present some quantitative data to support
the comparison between strategies.
2 <https://hibernate.org/>

https://hibernate.org/

Chapter 4. Evaluation of the Novel Strategy 72

4.6 Final Considerations

In addition to the dominant strategies we have discussed, there are approaches which
use the distinction between abstract and concrete classes, with impact on performance charac-
teristics. For example, one �attened table per concrete class is a variant of one table per concrete
class in which abstract classes are �attened out. Since �attening of abstract classes reduces
the height of the hierarchy, this strategy has the potential of improve the performance of
retrieving and inserting an entity. Nevertheless, that performance is still much dependent on
the size of the concrete class hierarchy. Further, dynamic classi�cation performance remains
a challenge in this approach. By identifying the ontological meta-properties of classes in the
source conceptual model, we are able to better navigate performance tradeo�s, beyond what
can be achieved with the abstract–concrete distinction. For example, strategies such as one table
per rigid sortal become possible, approximating one �attened table per concrete class in terms of
performance but circumventing its di�culty with dynamic classi�cation. We have shown that
the one table per kind strategy has characteristics that di�er from the dominant approaches
in the literature. Further, it supports source conceptual models with multiple inheritance,
orthogonal and overlapping hierarchies and dynamic classi�cation.

Problems with multiple inheritance in one table per hierarchy do not appear in one
table per kind because according to UFO de�nitions (GUIZZARDI, 2005) there is no multiple
inheritance of kinds. Multiple inheritance of non-kind sortals (subkinds, phases and roles) does
not pose a problem, as discriminators identify the instantiated classes. Multiple inheritance of
non-sortals creates no problems because they are �attened into kinds. Problems with orthogonal
hierarchies and overlapping generalization sets in one table per leaf class also do not arise as a
consequence of the transformation strategy. Kinds tables are where the entities primary keys
are placed, and hence there is no problem with the same entity being represented in several
tables. Flattening of non-sortals poses no problem in this scenario. In the lifting of non-kind
sortals, orthogonal hierarchies and overlapping generalization sets are, not unlike multiple
inheritance, re�ected in discriminators in the kind table. Dynamic classi�cation is supported
naturally as reclassi�cation is simply change in discriminators. This is not the case with one
table per class, one table per concrete class, one �atted table per concrete class and one �atted table
per leaf class, which require deletion and insertion, posing a problem for referential integrity.

We have shown that the one table per kind approach has acceptable performance char-
acteristics when contrasted with other approaches. Although there are a number of important
limitations to the performance study conducted here (as discussed in Section 4.3.3), it is indica-
tive of the feasibility of the one table per kind strategy from the perspective of performance. We
emphasize that automating the generation of schemas for the various strategies can be used for
targeted performance evaluation considering speci�c applications (with speci�c queries and
with a speci�c DBMS solution in mind), in the presence of strict performance requirements.

73

5 High-Level Data Access

Despite the various bene�ts of object-relational automated transformation, once a
database schema is obtained, data access is usually undertaken by relying on the resulting
schema, at a level of abstraction lower than that of the source conceptual model. As a conse-
quence, data access requires both domain knowledge and comprehension of the (non-trivial)
technical choices embodied in the resulting schema. For example, in the one table per class
approach, joint access to attributes of an entity may require a query that joins several tables
corresponding to the various classes instantiated by the entity. In the one table per leaf class
approach, queries concerning instances of a superclass involve a union of the tables corre-
sponding to each of its subclasses. Further, some of the information that was embodied in the
conceptual model—in this case the taxonomic hierarchy—is no longer directly available for the
data user. This chapter addresses these challenges. We instrument the transformation process
so that as it advances, at each application of an operation, a set of traces from source to target
model is maintained, ultimately producing not only the relational schema, but also a high-level
data access mapping for the resulting schema using the set of traces. This mapping exposes
data in terms of the original conceptual model, and hence queries can be written at a high level
of abstraction, independently of the transformation strategy selected (providing thus support
for hypothesis 3).

This chapter is further organized as follows: Section 5.1 presents the motivation to
access data in terms of the conceptual model (domain ontology) instead of the relational schema.
Section 5.2 presents the basic concepts of the Ontology-Based Data Access (OBDA) technology
employed. Section 5.4 shows the adaptation of our transformation process to maintain traces
between the conceptual model and the relational schema and synthethize the required OBDA
mapping. Section 5.5 presents a comparison of the performance time of queries generated by a
tool that implements OBDA and manually on di�erent relational schemas. Section 5.6 presents
some related work and �nally the Section 5.7 presents some �nal considerations.

5.1 Motivation

In order to exemplify the di�erences in data access consider the user is interested in a
report with “the Brazilian citizens who work in hospitals with Italian customers”. This need
would require two di�erent queries depending on the transformation strategy. Listing 5.1 shows
the query for the one table per concrete class strategy and Listing 5.2 for one table per kind
strategy.

Note that the second query trades some joins for �lters. In the one table per concrete
class strategy, many of the joins are used to reconstruct an entity whose attributes are spread

Chapter 5. High-Level Data Access 74

Listing 5.1 – Query on the schema of Figure 4, adopting one table per concrete class
1 select p.name brazilian_name , o.name organization_name ,
2 sc.contract_value , p2.name italian_name
3 from brazilian_citizen bc
4 join person p
5 on bc.person_id = p.person_id
6 join employment em
7 on p.person_id = em.person_id
8 join organization o
9 on om.organization_id = o.organization_id

10 join hospital h
11 on o.organization_id = h.organization_id
12 join supply_contract sc
13 on o.organization_id = sc.organization_id
14 join person p2
15 on sc.person_id = p2.person_id
16 join italian_citizen ic
17 on p2.person_id = ic.person_id

Listing 5.2 – Query on the schema of Figure 14, adopting one table per kind
1 select p.name brazilian_name , o.name organization_name ,
2 sc.contract_value , p2.name italian_name
3 from person p
4 join nationality n
5 on p.person_id = n.person_id
6 and n.nationality_enum = ’BRAZILIANCITIZEN ’
7 join employment em
8 on p.person_id = em.person_id
9 join organization o

10 on em.organization_id = o.organization_id
11 and o.organization_type_enum = ’HOSPITAL ’
12 join supply_contract sc
13 on o.organization_id = sc.organization_id
14 join person p2
15 on sc.person_id = p2.person_id
16 join nationality n2
17 on p2.person_id = n2.person_id
18 and n2.nationality_enum = ’ITALIANCITIZEN ’

throughout the emulated taxonomy. In the one table per kind strategy, �lters are applied using
the discriminators that are added to identify the (lifted) classes that are instantiated by an
entity. The di�erent approaches certainly have performance implications (as discussed in the
previous chapter). Regardless of those implications, we can observe that the database is used at
a relatively low level of abstraction, which is dependent on the particular realization solution
imposed by the transformation strategy. This motivates us to investigate a high-level data
access mechanism. It should be independent of the particular transformation strategy and allow
the expression of data access in terms of the conceptual model, instead of a particular schema.

5.2 Ontology-Based Data Access (OBDA)

We can leverage Ontology-Based Data Access (OBDA) to o�er data access at a higher-
level of abstraction. OBDA (POGGI et al., 2008) provides integration and access to the relational
schema through queries that are speci�ed taking into account the ontological conceptual model
rather then the relational schema. Figure 21 depicts an overview of the OBDA work�ow (XIAO

Chapter 5. High-Level Data Access 75

et al., 2019). The approach performs all required data processing to translate data between
technological spaces: at the lowest level, data storage using relational databases (accessed
through SQL) and at the highest level, information representation through a computational
ontology (using SPARQL). Each SPARQL query is automatically rewritten to SQL queries that
are executed at the database. Results of the query are then automatically mapped back to triples
and consumed by the user using the vocabulary established at the ontology. The integration
layer is structured through graphs, kept virtual, in order to incorporate ontology knowledge.
For this reason, the OBDA paradigm is also known in the literature as the Virtual Knowledge
Graph (VKG) (XIAO et al., 2019) paradigm.

Figure 21 – OBDA work�ow (XIAO et al., 2019).

To retrieve the data as a conceptual representation of the problem domain and not as they
are structured in the relational database, OBDA requires the speci�cation of mapping assertions
between the ontology and the data source (represented by the green arrows in Figure 21).
Each mapping assertion consists of an association of an ontology concept or property in an
SQL query. The overall OBDA speci�cation is de�ned in (XIAO et al., 2018) as P = (O,M,S),
where:

• O - is the computational ontology, and must be written in the OWL language. This layer
can be seen as a set of axioms expressing the formal description of the domain of interest.

• S - is the schema of the data source. In our case, it is a relational database.

• M - is the set of assertions for mapping the data between its physical data source and
the elements of the ontology, i.e., speci�es how A-Box assertions (or RDF triples) can be
created in accordance with the data of the relational schema.

Chapter 5. High-Level Data Access 76

Let G be a list of arguments to be returned by a query, then mappingM can be un-
derstood as a set of assertions in the form i (G) → k (G), where i (G) is a query over S, and
k (G) the same query over the alphabet of O. The tuples returned by i (G) are �lled in k (G)
respecting rules in ontology. Thus, the mapping creates a bridge between O and S, and the
OBDA solution can work as a middleware to connect disparate structures.

The standard for representing the mapping M is de�ned by the W3C as RDB to
RDF Mapping Language (R2RML)1. Generating R2RML mappings is not a trivial task, as a
consequence, many systems that implement OBDA technology have their own approach to
carry out the mapping between the ontology and the relational schema, which is the case of
Ontop (CALVANESE et al., 2017), the OBDA solution adopted here. Ontop is an open-source
OBDA framework developed at the Free University of Bozen-Bolzano, released under the
Apache 2 License. Ontop has good performance in query answering, supports almost all the
features of SPARQL 1.1, R2RML and OWL 2 QL and SPARQL entailment (XIAO et al., 2020).

5.3 Tracing Flattening and Lifting

As discussed in Section 3.2, the �attening operation consists of removing a superclass
and migrating its attributes to each subclass, with association ends attached to the �attened
superclass also migrated to each subclass. Each time the �attening operation is executed, one
trace is produced for each pair of �attened superclass and subclass. For example, the �attening
of NamedEntity, depicted by the green dashed arrows in Figure 22, creates one trace from this
class to Person and another to Organization.

Figure 22 – Tracing example for each execution of �attening and lifting.

Naturally, tracing for lifting occurs in the opposite direction in the hierarchy. For every
class lifted, traces are created from the lifted subclass to its superclasses. Di�erently from
1 https://www.w3.org/TR/r2rml/

Chapter 5. High-Level Data Access 77

�attening, the traces for lifting require the speci�cation of a “�lter” determining the value
of the discriminator. This �lter is used later to preserve information on the instantiation of
the lifted subclass. For example, the lifting of Child creates a trace from that class to Person

(traces as a result of lifting are represented with blue arrows in Figure 22). However, not every
Person instance is an instance of Child. The added �lter thus requires the discriminator
lifePhase=‘Child’.

We have employed a trace table following the model shown in Figure 23. A TraceTable

is produced in each application of the transformation and consists of a collection of TraceSets
for each source class in the model. Each TraceSet identi�es the set of Traces to target
classes. The transformation begins by initializing the TraceTable with one TraceSet for each
source class in the model each of which containing a single Trace to the same class. As the
transformation progresses, traces in a trace set are updated. Required Filters are added in case
of lifting. We detail below the changes in TraceTable on the conceptual model of Figure 22
when the �attening and lifting operations are applied.

Figure 23 – Trace table structure.

Figure 24 shows the trace sets contained in the initial TraceTable as an object diagram.
For brevity, the traces for Person, Organization and SupplyContract classes will be omitted
as they remain unchanged throughout the process to apply the one table per kind approach,
which we adopt in this example, as it applies both �attening (with an intermediate result that
re�ects one table per concrete class) and lifting.

Figure 24 – Initial trace table.

Chapter 5. High-Level Data Access 78

In the conceptual model shown at Figure 22, NamedEntity will be �attened to the
Person and Organization classes. This means that NamedEntity will be identi�ed by the
union of all instances of Person and Organization. Thereby, is necessary to replace the traces
that currently refer to the �attened class with those referring to the subclasses in the �attening
operation. The same is true for the Customer class and its subclasses. The result of this updates
are shown in gray in Figure 25. (If we are following the one table per concrete class approach,
this would be the �nal state of the trace table.)

Figure 25 – Trace table after the �attening of NamedEntity and Customer.

When lifting is performed on a subclass (to carry out one table per kind strategy at this
point in the transformation), the traces currently referring to the lifted subclass are updated
with traces to the superclasses. Filters are added according to the discriminators required as
discussed in Section 3.1.2. The set of mandatory properties that were lifted are added to the �lter.
For example, the lifting of the PersonalCustomer class indicates that it becomes identi�ed in
the Adult class when the isPersonalCustomer attribute is equal to true, requiring the �lling
of the creditRating and creditCard attributes. As the PersonalCustomer class no longer
exists in the resulting model, every reference to it in the trace table is updated to the target class
of the lifting process (in this case, Adult). Thereby, the PersonalCustomer and Customer

source classes that traced PersonalCustomer now trace Adult (including �lters). Figure 26
shows the result of the lifting of PersonalCustomer, CorporateCustomer and Contractor,
whose lifting preconditions are established. After lifting these classes, the trace for the source
class PersonalCustomer is updated to Adult. The trace for source class CorporateCustomer
is updated to Organization. The traces of source class Customer is also updated, as it targeted
the lifted classes. It now includes a trace to Adult and a trace to Organization, since the

Chapter 5. High-Level Data Access 79

Figure 26 – Trace table after the lifting of PersonalCustomer, CorporateCustomer and Con-
tractor.

previously traced PersonalCustomer and CorporateCustomer have been lifted to those
classes. The trace for Contractor is updated to Organization. In all cases �lters are added
to identify the subclass in the superclass.

Finally, Figure 27 shows the lifting of Child and Adult. Note that since Adult already
had a �lter (in the trace set of PersonalCustomer), this �lter is preserved, and the new one
is added (lifePhase=ADULT). This is because the �nal conditions that must be imposed on
the target class are the conjunction of these �lters. At this point, no further operations are
applicable in the one table per kind approach and we have the �nal state of the trace table for
translation to the relational schema. Each class in the set of target classes referred to in the
trace table corresponds to a table in the resulting relational schema.

5.4 Synthesizing High-Level Data Access

In our approach, instead of having the OBDA mapping speci�cation written manually,
we incorporate the automatic generation of this mapping speci�cation into the transformation.
Therefore, our transformation not only generates a target relational schema, but also generates
an OBDA mapping speci�cation to accompany that schema. Having O as the user-provided
ontology and the transformation process of O to produce S,M can be obtained by inspecting
the trace tables discussed in the previous section. With the �nal set of traces, we are able to
synthesize the OBDA mapping for Ontop (CALVANESE et al., 2017).

Although the source models we consider are speci�ed here with UML (or OntoUML),

Chapter 5. High-Level Data Access 80

Figure 27 – Trace table after the lifting operation on the generalization set with Child and
Adult.

a transformation to OWL is used as part of the overall solution as required for Ontop; this
transformation preserves the structure of the source conceptual model, and hence SPARQL
queries refer to classes in that model. The overall solution is implemented as a plugin to Visual
Paradigm2 (also implementing the one table per kind cf. Chapter 3.)

For each tracing path from TraceTable (shown in Figure 27) an Ontop mapping is
produced. Mappings are speci�ed in Ontop as target Turtle templates for the creation of an
instance of the ontology corresponding to source tuples that are obtained by simple SQL queries
in the relational database. In the following, we present examples of the mappings generated for
three classes of the running example in the one table per kind strategy: (i) a class that is neither
�attened nor lifted (Person); (ii) a class that is �attened (NamedEntity) and (iii) a class that is
lifted (ItalianCitizen). (The complete mapping is in Appendix F).

Listing 5.3 shows the Ontop mapping generated for the kind Person. Given the absence
of �attening and lifting, the mapping establishes the straightforward correspondence of a
2 <http://purl.org/guidoni/ontouml2db>

http://purl.org/guidoni/ontouml2db

Chapter 5. High-Level Data Access 81

source entry in the PERSON table and a target instance of Person; the primary key of the
PERSON table is used to derive the URI of the instance of Person corresponding to each entry
of that table. Labels between brackets in the target template of the mapping ({person_id}
and {birth_date}) are references to values in the source pattern select clause. Corresponding
attributes (birthDate) are mapped one-to-one.

Listing 5.3 – OBDA mapping for the Person class in Ontop.

1 mappingId RunExample -Person
2 target :RunExample/person /{ person_id} a :Person ;
3 :birthDate {birth_date }^^xsd:dateTime .
4 source SELECT person.person_id , person.birth_date
5 FROM person

Listing 5.4 shows the mappings generated for a class that is �attened: NamedEntity.
Because the class is �attened to two subclasses, two mappings are produced, one for each
table corresponding to a subclass (PERSON and ORGANIZATION). Since attributes of the �attened
superclass are present in each table, one-to-one mappings of these attributes are produced.

Listing 5.4 – OBDA mapping for the �attened NamedEntity class in Ontop.

1 mappingId RunExample -NamedEntity
2 target :RunExample/person /{ person_id} a :NamedEntity ;
3 :name {name }^^xsd:string .
4 source SELECT person.person_id , person.name
5 FROM person
6
7 mappingId RunExample -NamedEntity2
8 target :RunExample/organization /{ organization_id} a :NamedEntity;
9 :name {name }^^xsd:string .

10 source SELECT organization.organization_id , organization.name
11 FROM organization

Listing 5.5 shows the mapping generated for a class that is lifted (ItalianCitizen)
to the Person class, again in the one table per kind strategy. Here, the �lter captured during
tracing is included in the SQL query to ensure that only instances of the lifted superclass
are included. Because of the multivalued discriminator employed to capture the overlapping
generalization set Nationality, a join with a discriminator table is required (otherwise, a
simple �lter would su�ce). For performance reasons, an index is created in the transformation
for enumerations corresponding to generalization sets.

Listing 5.5 – OBDA mapping for the lifted ItalianCitizen class in Ontop.

1 mappingId RunExample -ItalianCitizen
2 target :RunExample/person /{ person_id} a :ItalianCitizen ;
3 :CI {ci}^^xsd:string .
4 source SELECT person.person_id , person.ci
5 FROM person
6 JOIN nationality
7 ON person.person_id = nationality.person_id
8 AND nationality.nationality_enum = ’ITALIANCITIZEN ’

Chapter 5. High-Level Data Access 82

5.5 Performance of Data Access

In order to evaluate the performance of data access in our approach, we create and
randomly populate the databases generated by the one table per concrete class and one table
per kind strategies (corresponding to �gures 4 and 14, respectively). We have employed the
two transformation strategies as discussed before. Our main objective was to consider the
overhead of the high-level data access approach. Because of that, we have contrasted the time
performance of handwritten SQL queries with those automatically rewritten from SPARQL.

We used the same queries and database settings of Section 4.3. We use the Ontop 2.0.3
plugin for Protégé 5.5.0. The SPARQL queries can be found in Appendix D. Table 15 shows the
results obtained, including the overhead for the queries that were generated automatically.

Table 15 – Performance comparison of relational schemas (in seconds).

Query One Table per Concrete Class One Table per Kind
Manual Query Ontop Query Manual Query Ontop Query

1 0.219 0.232 (+5.9%) 0.251 0.275 (+9.6%)
2 0.272 0.290 (+6.6%) 0.245 0.281 (+14.7%)
3 0.623 0.641 (+2.9%) 0.585 0.932 (+59.3%)
4 0.041 0.043 (+4.9%) 0.010 0.022 (+120.0%)
5 0.192 0.207 (+7.8%) 0.182 0.193 (+6.0%)

In the one table per concrete class strategy, the performance of the automatically trans-
formed queries is similar to the performance of the manually written queries. In the one table per
kind strategy, signi�cant overhead is only imposed for queries 3 and 4. Upon close inspection
of the generated queries, we were able to observe that the automatically rewritten queries
include �lters which are not strictly necessary and that were not present in the manual queries.
For example, in query 1, we assume in the manual query that only adults enter into supply
contracts, as imposed in the conceptual model. Ontop adds that check to the query, in addition
to several IS NOT NULL checks. As a result, the Ontop queries are ‘safer’ than the manual ones.
Removing the additional checks from the rewritten queries reduces the overhead as shown
in Table 16. Regardless of the overhead, the values in bold (for queries 2, 4 and 5) show cases
in which the (optimized) Ontop queries for one table per kind still outperform the manually
written queries for one table per concrete class.

Table 16 – Performance comparison with Ontop query optimizations (in seconds).

Query One Table per Kind
Manual Query Ontop Query

1 0.251 0.257 (+2.4%)
2 0.245 0.248 (+1.2%)
3 0.585 0.910 (+55.6%)
4 0.010 0.020 (+100.0%)
5 0.182 0.187 (+2.8%)

Chapter 5. High-Level Data Access 83

5.6 Related Work

There is a wide variety of proposals for carrying out data access at a high-level of
abstraction. Some of these rely on native graph-based representations, instead of relational
databases. These include triplestores such as Stardog, GraphDB, AllegroGraph, ArangoDB,
In�niteGraph, Neo4J, 4Store and OrientDB. A native graph-based solution has the advantage
of requiring no mappings for data access. However, they depart from established relational
technologies which are key in many production environments and on which we aim to leverage
with our approach.

Some other OBDA approaches such as Ultrawrap (SEQUEDA; MIRANKER, 2013) and
D2RQ (BIZER; SEABORNE, 2004), facilitate the reverse engineering of a high-level representation
model from relational schemas. Ultrawrap (SEQUEDA; MIRANKER, 2013) works as a wrapper
of a relational database using a SPARQL terminal as an access point. Similarly to Ontop it uses
the technique of rewriting SPARQL queries into their SQL equivalent. It includes a tool with
heuristic rules to provide a starting point for creating a conceptual model through the reverse
engineering of a relational schema. D2RQ (BIZER; SEABORNE, 2004) also allows access to
relational databases through SPARQL queries. It supports automatic and user-assisted modes
of operation for the ontology production. Virtuoso (ERLING; MIKHAILOV, 2007) also supports
the automatic conversion of a relational schema into an ontology through a basic approach.
It allows complex manual mappings which can be speci�ed with a specialized syntax. There
are also a range of bootstrappers like (JIMÉNEZ-RUIZ et al., 2015; MEDEIROS et al., 2015)
that perform automatic or semi-automatic mapping between the relational schema and the
ontology. However, these bootstrappers assume that the relational schema exists and provide
ways to map it into an existing ontology or help to create an ontology.

Di�erently from these technologies, we have proposed a forward engineering transfor-
mation, in which all mapping is automated. Combining both reverse and forward engineering
is an interesting theme for further investigation, which could serve to support a conceptual
model based reengineering e�ort.

Calvanese et al. (2018) propose a two-level framework for ontology-based data access.
First, data access from a relational schema to a domain ontology is facilitated with a manually
written OBDA mapping. A second ontology-to-ontology mapping—also manually speci�ed—
further raises the level of data access to a more abstract reference ontology. An interesting
feature of this approach is that, based on the two mappings, a direct mapping from the abstract
reference ontology to the relational schema is produced. Such a two-level schema could be
combined with our approach to increase data access abstraction to the reference ontology level.

The Hibernate Query Language3 (HQL) is an object-oriented query language used
to access data stored in relational databases using Hibernate. Unlike the SQL language that
3 <https://docs.jboss.org/hibernate/core/3.3/reference/en/html/queryhql.html>

https://docs.jboss.org/hibernate/core/3.3/reference/en/html/queryhql.html

Chapter 5. High-Level Data Access 84

operates on tables, HQL operates on objects and their properties, with the ability to support
inheritance and aggregation. Although this is some form of higher-level data access, as stated
in Section 4.5, Hibernate is limited to the object-oriented programming language it operates on
(which among other things does not support multiple inheritance, orthogonal hierarchies and
dynamic classi�cation).

5.7 Final Considerations

We propose an approach to automatically forward engineer a data access mapping to
accompany a relational schema generated from a source conceptual model. The objective is
to allow data representation in relational databases and its access in terms of the conceptual
model. Since the approach is de�ned in terms of the operations of �attening and lifting, it can
be applied to various transformation strategies described in the literature. The approach is
based on the tracing of the transformation operations applied to classes in the source model.
It is implemented as a plugin to Visual Paradigm4; it generates a DDL script for relational
schemas and corresponding mappings for the Ontop OBDA platform. Ontop uses the generated
mappings to translate SPARQL queries to SQL, execute them and translate the results back.
Although we adopt OBDA technology, it is only part of our solution. This is because by using
solely OBDA, the user would have to produce an ontology and data access mappings manually.
Instead, these mappings are generated automatically in our approach, and are a further result
of the transformation of the conceptual model.

We present a study of the performance aspects of the approach. We show that the
overhead imposed by the generated mappings and Ontop’s translation varies for a number of
queries, but should be acceptable considering the bene�ts of high-level data access. Further
performance studies contrasting various transformation strategies should be conducted to
guide the selection of a strategy for a particular application. In any case, the writing of queries
in terms of the conceptual model can be done independently of the selection of a transformation
strategy.

4 <http://purl.org/guidoni/ontouml2db>

http://purl.org/guidoni/ontouml2db

85

6 Preserving ConceptualModel Semantics

These chapter identi�es the constraints that are lost in the transformation of structural
conceptual models to relational schemas, independently of the class-to-table transformation
strategy applied. Our approach is based on the primitive refactoring operations of �attening
and lifting of classes that can account for the transformation of a specialization hierarchy into
tables according to the class-to-table transformation strategies seen in Section 2.1. We show
how to incorporate the generation of the required constraints along a transformation of a
conceptual model into a relational schema. As the transformation advances, at each application
of an operation, we maintain a set of traces from source to target model, ultimately producing
not only the relational schema, but also invariants that are applicable to the resulting schema
using the set of traces. These invariants are implemented as triggers, detecting when data that
violates the conceptual model is introduced in the database. A fully automated implementation
of the transformation is provided.

6.1 Missing Constraints due to Flattening

As can be seen in the “Flattening” line of Table 17 , the �attening of the superclass to all
its subclasses does not generate integrity issues regarding superclass attributes, because they
are propagated in the same way as they are de�ned in the superclass. However, associations
with other classes (which are not subclasses) are rede�ned to suit the new classes arrangement,
generating distortions of what is allowed in the resulting model in relation to the original model.
The missing constraint are: (MC1), in the presence of an association in the source model with
an association end attached to the �attened superclass and lower bound ;G8 = 1, we must ensure
that at least one instance of the target subclasses is related to an instance of the '4;0C43)~?48
through the associations that were introduced in the �attening operation, in order to enforce
the original lower bound cardinality. In this case, for a particular SupplyContract, there is
a related PersonalCustomer or a CorporateCustomer; and (MC2), in the presence of an
association in the source model with an association end attached to the �attened superclass and
upper bound DG8 = 1, we must ensure that an instance of the superclass is related through the
associations that were introduced in the �attening operation to at most one instance of the union
of all subclasses. In this case, considering both conditions, an instance of SupplyContract is
related to exactly one instance in the union of PersonalCustomer and CorporateCustomer.

Chapter 6. Preserving Conceptual Model Semantics 86

Table 17 – Revisiting the �attening and lifting operations.

Source Graph Target Graph

Fl
at
te
ni
ng

Li
ft
in
g Si
ng

le
G
en

er
al
iz
at
io
n

G
en

er
al
iz
at
io
n
Se
t

6.2 Missing Constraints due to Lifting

Lifting of Attributes. As seen in Table 17, the lifting of attributes has the following
consequences: (MC3) mandatory attributes are now optional, a situation which, although
necessary—since not all instances of the superclass are instances of the lifted subclass—is
inadmissible for instances of the lifted subclass according to the original model. The example
model after lifting of the generalization set admits the possibility that a personal customer
represented as an instance of Person is assigned no value for creditRating. Further, (MC4)
instances of the superclass (even those that do not represent instances of a lifted subclass) may
indiscriminately be given values to the lifted attributes. In the example model, it is possible for a
child represented as an instance of Person to be assigned a value for creditCard, even though
this was inadmissible in the original model. The creation of a discriminator attribute in the
lifting process provides us the means to formulate missing constraints to enforce the semantics
of the original model: assignment of a value to a lifted attribute must be admitted conditionally
on the value of the discriminator. In the model shown in Figure 13 (Final arrangement), due
to the lifting of CorporateCustomer to Organization, we need to condition the assignment
of creditRating and creditLimit to those instances of Organization for which isCor-

porateCustomer=true. Since we have two applications of lifting of PersonalCustomer to
Adult and then from Adult to Person, we have the condition that persons may be assigned a
creditRating and a creditCard only when isPersonalCustomer=true (i) and that is only

Chapter 6. Preserving Conceptual Model Semantics 87

admissible when lifePhase=ADULT (ii). Note that discriminator attributes may also be subject
to lifting in further applications of the operation, and will also result in additional occurrences
of MC4 in those cases,that is, the discriminator attribute may depend on the �lling of some
other discriminator attribute.

Migration of association ends to superclasses. The lifting operation results in the
migration of association ends from the lifted subclasses to their superclasses. As a consequence,
analogously to mandatory attributes, the association ends opposite to the superclass must
have their lower bound cardinality (;8~) relaxed. Again, the discriminator attribute (8B(D1)~?4~
or 6B0) gives us the means to enforce the semantics of the association is in the source model:
(MC5), in case ;8~ = 1, we need to introduce a constraint that, for each instance of the superclass,
if 8B(D1)~?4~ = true (or 6B0 is equal to or includes BD1)~?4~), then that instance of the super-
class must be associated to one instance of the related class ('4;0C43)~?48). (MC6), only those
instances with 8B(D1)~?4~ = true (or6B0 is equal to or includes BD1)~?4~) may be associated to
an instance of the related class ('4;0C43)~?48), to ensure the association end typing is respected.
In the model shown in Figure 13 (Final arrangement), due to the lifting of CorporateCus-
tomer to Organization, we need to condition the association of an organization to a supply
contract through hasCorporateCustomer to those instances of Organization for which
isCorporateCustomer=true. Likewise, due to the lifting of Contractor to Organization,
we need to condition the association of an organization to a supply contract through has-

Contractor to those instances of Organization for which isContractor=true. Since we
have two applications of lifting of PersonalCustomer to Adult and then from Adult to Per-

son, we have the condition that persons must be associated with one SupplyContract when
isPersonalCustomer=true (i) and that that is only admissible when lifePhase=ADULT (ii).

6.3 Missing Constraints due to Hierarchy Emulation

The literature on EER to relational schema transformation—such as the seminal work
of (TEOREY; YANG; FRY, 1986)—has early on identi�ed missing integrity constraints when
translating EER diagrams with generalization and subset hierarchies into relational schemas.
They have concentrated their e�orts in the one table per entity strategy, which does not apply
any operations such as �attening and lifting. In any case, the missing constraints they have
identi�ed must be taken into account in any transformation that still preserves generalizations
in the last translation step (e.g., one table per class, one table per concrete class).

In these transformations, there is an emulation of generalization in the relational schema.
A table corresponding to a subclass has as primary key a foreign key that refers to entries
in the table corresponding to the topmost superclass. (In the case of multiple inheritance of
classes in the top of the hierarchy, this becomes a composite key.) Let us consider for instance
the model in Figure 11 (Final arrangement), which is the result of the �attening of abstract

Chapter 6. Preserving Conceptual Model Semantics 88

classes, and hence is the class model to be translated into a relational schema in the one table
per concrete class approach. In the translation of this model, the table ADULT corresponding to
the concrete class Adult has a foreign key person_id which is the primary key of PERSON,
and likewise for CUSTOMER and PERSONAL_CUSTOMER. A similar solution applies to the other
subclasses in the model.

The emulation of generalization provides some guarantees of referential integrity
through the use of keys: an entry representing a subclass instance will always be properly
related to its superclasses. However, the following missing integrity constraint is identi�ed by
Teorey, Yang & Fry (1986, Section 3.1.4, with terminology adjusted here): when a generalization
set is disjoint, it must be inadmissible for two tables corresponding to disjoint subclasses to
have entries that refer to the same ‘superclass key’ (MC7). This is required to preserve the
semantics of disjointness and applies in our example, to the tables CHILD and ADULT in the one
table per concrete class approach. Note that this constraint is not required in approaches that
remove all generalizations by progressively applying �attening and lifting (e.g., one table per
leaf class, one table per hierarchy and one table per kind.)

6.4 Augmenting the Transformation

As we have observed in the previous section, the operations produce cumulative e�ects
throughout the transformation process. We discuss here how this process is operationalized in
our implementation by maintaining a set of traces, which are updated when each of the two
operations are applied. We also show the last step of the overall conceptual model to relational
schema transformation, which entails the production of triggers to enforce the accumulated
constraints from the �nal set of traces and the refactored model.

6.4.1 Transformation Process

Three class-to-table approaches have been implemented in a plugin to Visual Paradigm1:
one table per class, one table per concrete class, and one table per kind. There are no manual
steps in our approach, and the implementation applies the three transformation strategies
fully automatically. The three approaches are accommodated by applying �attening and lifting
operations in di�erent orders and under di�erent conditions. In the one table per kind and in one
table per concrete class, �rst, all abstract classes are �attened, from the top of the hierarchy until
concrete classes are reached. In the one table per kind, leaf concrete classes are lifted until all
only kinds remain. In all strategies, the resulting refactored class model is then translated into
a relational schema. (In the case of the one table per class approach, no operations of �attening
and lifting are performed, and hence translation happens in the original model.)
1 see <https://github.com/nemo-ufes/forward-db-vp-plugin> for the full implementation

https://github.com/nemo-ufes/forward-db-vp-plugin

Chapter 6. Preserving Conceptual Model Semantics 89

6.4.2 Generation of Triggers

We focus here on the generation of triggers to detect violations of the missing constraints
that were identi�ed in Section 6.1 and 6.2. The trigger code is generated by using the �nal state
of the trace table and the source model.

Consequences of lifting. The process goes through the trace table to identify the target
classes that have �lters that were the result of the lifting of mandatory attributes; for example,
isPersonalCustomer for the target class Person and isCorporateCustomer for Organiza-
tion. A trigger speci�cation must then detect violations: if (i) the discriminator attribute in
the �lter matches the �lter value and at the same time any of the columns corresponding to
mandatory attributes are not �lled in (line 7 in Listing 6.1 for the PERSON table and the �lter
on isPersonCustomer), addressing the missing constraint MC3; or, if (ii) the discriminator
attribute in the �lter does not match the �lter value and any of the columns corresponding
to mandatory attributes are �lled in (line 10 in Listing 6.1), addressing the missing constraint
MC4. (While the trigger shown in the listing applies to inserts on PERSON, a trigger with the
same body is included for any subsequent updates.)

Listing 6.1 – Trigger for the PERSON table

1 CREATE OR REPLACE FUNCTION check_person_i ()
2 RETURNS TRIGGER
3 LANGUAGE PLPGSQL
4 AS
5 $$
6 BEGIN
7 if (
8 (NEW.is_personal_customer = true AND (NEW.credit_card is null OR NEW.

credit_rating is null))
9 OR

10 (NEW.is_personal_customer <> true AND (NEW.credit_card is not null OR NEW.
credit_rating is not null))

11)
12 then
13 RAISE EXCEPTION ’ERROR 1: ...[check_person_i].’;
14 end if;
15 if(
16 (NEW.life_phase_enum <> ’ADULT ’ AND (
17 (NEW.is_personal_customer is not null AND NEW.is_personal_customer = TRUE)

OR
18 NEW.credit_rating is not null OR NEW.credit_card is not null)
19)
20)
21 then
22 RAISE EXCEPTION ’ERROR 2: ...[check_person_i].’;
23 end if;
24 RETURN NULL;
25 END
26 $$;
27
28 CREATE TRIGGER tg_person_i
29 AFTER INSERT ON person
30 FOR EACH ROW
31 EXECUTE PROCEDURE check_person_i ();

Chapter 6. Preserving Conceptual Model Semantics 90

The process also identi�es, for each target class (here SupplyContract, Person and
Organization), whether they were originally associated with other classes in the source
model. When the associated source classes have �lters in their respective trace sets (here
Contractor and Customer for SupplyContract), this means the associated source classes
were subject to lifting, and possible violations of the original semantics need to be detected
according to the missing constraints identi�ed in Section 6.2 (under ‘Migration of association
ends to superclasses’). The following violations must be detected in the trigger: (i) if an entry
in the table corresponding to the target class (such as SUPPLY_CONTRACT) is associated to a
lifted source class (such as Contractor), but the required �lters associated to that source class
are not satis�ed (lines 7–18 of Listing 6.2 for SUPPLY_CONTRACT in its original association with
a Contractor; lines 20–31 for the original association with a Customer concerning its trace
to Organization, and lines 33–45 for the original association with a Customer concerning its
trace to Person). This addresses MC6.

Consequences of �attening. The process also goes through the trace table to identify
those trace sets of originally associated classes with more than one trace, which is a consequence
of �attening. In our example, this occurs for the association between SupplyContract and
Customer. As discussed in Section 6.1 (under ‘Missing constraints’), we must ensure that a
supply contract is associated with exactly one instance in the union of PersonalCustomer
and CorporateCustomer in lines 47–52 of Listing 6.2. This addresses the missing constraints
MC1 and MC2.

Listing 6.2 – Trigger for the SUPPLY_CONTRACT table

1 CREATE OR REPLACE FUNCTION check_supply_contract_i ()
2 RETURNS TRIGGER
3 LANGUAGE PLPGSQL
4 AS
5 $$
6 BEGIN
7 if NEW.organization_contractor_id is not null
8 then
9 if not exists (

10 SELECT 1
11 FROM organization
12 WHERE is_contractor = TRUE
13 AND organization.organization_id = NEW.organization_contractor_id
14)
15 then
16 RAISE EXCEPTION ’ERROR 1: ...[check_supply_contract_i]’;
17 end if;
18 end if;
19
20 if NEW.organization_customer_id is not null
21 then
22 if not exists (
23 SELECT 1
24 FROM organization
25 WHERE is_corporate_customer = TRUE
26 AND organization.organization_id = NEW.organization_customer_id
27)

Chapter 6. Preserving Conceptual Model Semantics 91

28 then
29 RAISE EXCEPTION ’ERROR 2: ...[check_supply_contract_i]’;
30 end if;
31 end if;
32
33 if NEW.person_id is not null
34 then
35 if not exists (
36 SELECT 1
37 FROM person
38 WHERE is_personal_customer = TRUE
39 AND life_phase_enum = ’ADULT’
40 AND person.person_id = NEW.person_id
41)
42 then
43 RAISE EXCEPTION ’ERROR 3: ...[check_supply_contract_i]’;
44 end if;
45 end if;
46
47 if(SELECT CASE WHEN NEW.organization_customer_id is null THEN 0 ELSE 1 END +
48 CASE WHEN NEW.person_id is null is null THEN 0 ELSE 1 END
49) <> 1
50 then
51 RAISE EXCEPTION ’ERROR 4: ...[check_supply_contract_i]’;
52 end if;
53 END;
54 $$;
55
56 CREATE TRIGGER tg_supply_contract_i
57 AFTER INSERT ON supply_contract
58 FOR EACH ROW
59 EXECUTE PROCEDURE check_supply_contract_i ();

6.4.3 Implementation Restrictions

Whenever associations have lower bound cardinality 1 in both association ends, there
is a mutual dependency between the instances of the associated classes. This is the case
in the example of the associations between SupplyContract and Customer and between
SupplyContract and Contractor. In this case, enforcing both MC5 and MC6 after each
insert becomes problematic: e.g., inserting a row in the SUPPLY_CONTRACT table would require
an insertion in the CUSTOMER table and vice-versa. Unfortunately, this would require related
inserts to be part of a single transaction, and a database implementation with transaction-level
triggers, which is not the case here. Hence, we have opted not to enforce MC5 and MC6 in
tandem in the implemented trigger generation. Violations of the missing constraint (MC5 in
this case) could be detected by a regular query that can easily be generated from the trace table
following the same procedure to obtain the expressions concerning the triggering of MC6.

We have not yet implemented support for detecting violations of MC7, which applies
to the emulation of specialization with keys in disjoint hierarchies. As discussed in Section 6.3,
the constraint is not required in one table per kind, which has been the focus of our e�orts.
To support this constraint in general, further instrumentation of the transformation process
is required, in particular due to �attening involving disjoint generalization sets. This is not

Chapter 6. Preserving Conceptual Model Semantics 92

necessary for the particular case of OntoUML models, since the required conditions for the
relational schema can be derived directly from the source model by inspecting the classes
stereotyped «kind» and «relator» along with generalization set constraints.

Finally, although we have discussed the support for self-relationships in Chapter 3,
these are not supported in the implementation.

6.5 Implementation and Tests

Figure 28 contains a screenshot of the implemented object-relational plugin for Visual
Paradigm. The menu at the top includes the “Database mapping” button to access the func-
tionalities of the plugin. (The other buttons displayed are part of the OntoUML plugin2) The
implementation supports three transformation approaches (one table per class, one table per
concrete class, and one table per kind); di�erent target DBMSs for the generated scripts (MySql,
Postgres and standard SQL 1999); and some optimization and customization parameters.

In addition to the formal speci�cation and automated proofs for the �attening and
lifting operations, we have performed a number of tests on the implemented transformation.
As the veri�cation and validation of the constraints produced is manual and requires the
understanding of the conceptual model, we employed in the tests the �rst 30 projects published
in the OntoUML repository (BARCELOS et al., 2022), which are produced by third parties. The
models evaluated in our tests are in “.vpp” format, forcing us to open the model through the
Visual Paradigm to carry out the tests, making it di�cult to automatically evaluate a large
volume of models. The main objective of these test is to prove that the developed tool works in
di�erent modeling situations and not just in controlled scenarios. We used the one table per
kind approach, as it exercises both lifting and �attening. Unlike paper (GUIDONI; ALMEIDA;
GUIZZARDI,), the data presented in this work was obtained through PostgreSQL 5.2.

Table 18 provides a quantitative overview of the results, reporting the number of
generated tables (excluding those used to represent N:N associations and multivalued attributes,
which are created regardless of the chosen object-relational approach) as well as the number of
constraints enforced by the resulting artifacts. Constraints MC1 and MC2 are reported together
because the same generated command validates both cases (see. e.g., lines 50–56 of Listing 6.2).
The same occurs for MC3 and MC4. We excluded from the tests 8 of the �rst 30 projects due to
(i) syntactic errors in the source models, (ii) presence of reserved keywords in labels, or (iii)
complex handling of datatypes (addressing complex datatype support and treating reserved
keywords is not yet implemented in the prototype).

As expected, the transformation of some projects did not generate �attening-related
2 OntoUML plugin was developed to facilitate the development of OntoUML models and veri�es its compliance

with OntoUML’s syntactical rules (see (GUIZZARDI et al., 2021b) for more details), among other features. This
plugin can be found at <https://github.com/OntoUML/ontouml-vp-plugin>.

https://github.com/OntoUML/ontouml-vp-plugin

Chapter 6. Preserving Conceptual Model Semantics 93

Figure 28 – A screenshot of the object-relational plugin interface.

MC1 and MC2 constraints because they do not have associations involving abstract classes. These
constraints are quite numerous however in projects that include classes de�ned at a high level of
generality (typical of “core ontologies”) such as “aguiar2019oco”, “aires2022valuenetworks-geo”,
“amaral2019rot” and “amaral2020rome”. Further, some of the projects do not include MC3 and
MC4 because they have no attributes in lifted classes or have no concrete class hierarchies of
depth greater than two (in which discriminators from a previous lifting round are themselves
lifted). MC6 occurrences are the most common as they relate to the typing of associations in lifted
classes (and thus are required for every association involving lifted classes independently of
the cardinalities). The only projects with no occurrences of MC6 are “barros2020programming”
(as it is a pure taxonomy with no associations) and “chartered-service” (that has associations,
but does not employ specialization.)

We have selected one project for exhaustive inspection, namely “aguiar2019ooco”,
which has the largest number of classes in the sample and for which all types of constraints
were generated. We do not evaluate the selected project against modeling quality attributes

Chapter 6. Preserving Conceptual Model Semantics 94

Table 18 – Transformation process results

Project Number
of Classes

Number
of Tables

MC1 and
MC2

Constraints

MC3 and
MC4

Constraints

MC6
Con-
straint

aguiar2019ooco 55 19 12 16 28
ahmad2018aviation 21 5 0 10 16
aires2022valuenetworks-geo 24 19 18 0 6
amaral2019rot 48 26 48 2 18
amaral2020game-theory 22 11 0 2 16
amaral2020rome 48 35 38 0 16
amaral2022ethical-requirements 20 15 2 0 8
andersson2018value-ascription 13 11 0 0 2
bank-model 23 8 2 2 24
barcelos2013normative-acts 42 16 0 10 24
barros2020programming 12 1 0 6 0
brazilian-governmental-
organizational-structures 15 5 4 2 4

buchtela2020connection 19 6 0 0 2
buridan-ontology2021 53 20 0 10 82
carolla2014campus-management 17 12 0 0 18
castro2012cloudvulnerability 32 14 0 8 8
cgts2021sebim 29 10 0 2 2
chartered-service 11 11 0 0 0
clergy-ontology 29 13 0 14 58
cmpo2017 55 18 0 12 98
construction-model 13 7 0 4 6
debbech2019gosmo 22 10 0 2 34

such as correctness. We have manually inspected the source model to derive test cases. The
test cases cover all of the constraints required to preserve the semantics of the source model
in the present of lifting and �attening. 60 test cases consist in attempting to insert or update
data that would o�end the original model semantics, and hence a pass in these test cases is
an insert or update error raised by the generated triggers (the number of test cases does not
correspond to the total number of missing constraints because some test cases check inserts
only, some other test cases check updates only, and a number of those concern more than one
missing constraint.) The test cases jointly cover 100% of the conditions (IFs) in the generated
triggers for the model. Another 36 test cases were added to insert or update data that does not
o�end the original model semantics, to make sure that they would not result in unintended
insert or update errors.

An example of test case (TC_AGUIAR_MC3and4_001) is shown in Listing 6.3, that exer-
cises the database corresponding to the fragment shown in Figure 29 (from “aguiar2019ooco”).
As a result of the lifting process, two discriminator columns are introduced in the table
corresponding to the Language kind. The is_object_oriented_programming_language

discriminator column is introduced as a result of the �rst application of lifting, and the
is_programming_language is introduced in the second application of lifting. As a conse-
quence, the column is_object_oriented_programming_language can only be given a value

Chapter 6. Preserving Conceptual Model Semantics 95

when is_programming_language=’1’ (i.e., corresponds to true). The test case attempts to
insert a new language, with identi�er 3 (language_id=3), marked as an object-oriented pro-
gramming language (is_object_oriented_programming_language=’1’), but not marking
it as a programming language (is_programming_language=’0’). This should result in a
violation of the insert trigger for the language table.

Figure 29 – Fragment of the “aguiar2019ooco” project that results in iterated lifting.

Listing 6.3 – Example test case TC_AGUIAR_MC3and4_001.

1 Test case name: TC_AGUIAR_MC3and4_001
2 Project name: aguiar2019ooco
3 Missing constraints evaluated: MC3and4 Number: 1 Action:

Insert
4 Objective: Check whether MC3 and MC4 are correctly enforced in the case of

lifting of "Object -Oriented Programming Language" and "Programming Language
".

5 Test: Insert a row in the table ’language ’ that is marked as an "Object -Oriented
Programming Language" but not as "Programming Language ".

6 Expected result: Error.
7 Script:
8
9 INSERT INTO language

10 (language_id , is_programming_language ,
is_object_oriented_programming_language)

11 VALUES (3, false , true);
12
13 Return message: ERROR: Violating conceptual model rules[check_language_i].
14 Test result: PASS

We have performed some simple tests to assess the performance overhead imposed with
the introduction of the validation triggers. We selected the table from our test set that is accom-
panied by the largest number of constraints in triggers, namely the METHOD_MEMBER_FUNCTION
table in “aguiar2019ooco”. This table’s triggers enforce seven constraints that resulted from
lifting and �attening. We have contrasted the performance of 10 individual record inserts in
the table with and without the triggers. It is important to mention that there is only one trigger

Chapter 6. Preserving Conceptual Model Semantics 96

enabled per insert or update operation and there are no indexes on the a�ected tables. We
have found the following results: 10 milliseconds on average for an insert in the table when
the triggers are enabled; and 9 milliseconds on average for an insert when the triggers are
disabled. This indicates the overhead is not prohibitive. Further performance analysis in actual
applications is straightforward, since triggers can be disabled and regular operation (that does
not violate constraints) assessed directly.

Table 19 – Transformation performance (in seconds)

Project
Schema

generation
time (seconds)

Triggers
generation

time (seconds)
aguiar2019ooco 0.019 0.026
buridan-ontology2021 0.056 0.063
cmpo2017 0.168 0.237

Finally, in order to assess the performance of the transformation itself (design time
performance), we have measured the time required to generate all relational schemas and
triggers in the largest models in our test set. The results are presented in Table 19, showing
the response times in seconds for the generation of the schema and of the scripts for the three
largest projects in the test set (the data were obtained in the same computational environment
presented in Section 4.3).

6.6 Related Work

Banerjee et al. (1987) propose well-de�ned rules that cover many aspects of object-
oriented database schema manipulations, including “dropping an existing class”. Di�erently
from our work, their overall objective is to perform evolutionary manipulations of object-
oriented schemas, so there is no concern for preservation of all aspects of the original model.
The same can be said of several other works, like those of Penney & Stein (1987), Lerner &
Habermann (1990). They also rely on the solution space of object-oriented database systems.

Some work on refactoring strategies on UML class diagrams aim to preserve the syn-
tactic correctness and/or semantics of the original model. For example, Markovic & Baar (2005)
detail some refactoring rules along with their impacts on OCL constraints. Baar & Markovic
(2006) focus on the preservation of semantics in the face of a ‘MoveAttribute’ operation. As
discussed in Section 6.1 and 6.2 concerning the refactoring presented by Fowler (2018), the
intent here is the transformation between models, and so the supported operations do not
match those we require for relational schema realization.

There are also di�erent approaches that aim to obtain SQL implementations of ex-
plicitly formulated OCL constraints. Some of these approaches, e.g., OCL2SQL (DEMUTH;
HUSSMANN, 1999; DEMUTH; HUSSMANN; LOECHER, 2001), Incremental OCL constraints

Chapter 6. Preserving Conceptual Model Semantics 97

checking (ORIOL; TENIENTE, 2014) and $�!�$ (FRANCONI et al., 2014) are focused on
transformations OCL Boolean expressions only, while others such as SQL-PL4OCL (EGEA;
DANIA, 2017) and MySQL4OCL (EGEA; DANIA; CLAVEL, 2010) consider OCL expressions in
general. One other approach, namely, GeoUML (PELAGATTI et al., 2009) considers the SQL
implementation of special-purpose OCL constraints for expressing geo-spatial relations.

There is a variety of studies focusing on the transformation of structural conceptual
models, such as EER diagrams or UML class diagrams, into relational schemas, such as those
performed by Shah & Slaughter (2003), Hull & King (1987), Teorey, Yang & Fry (1986), Pergl,
Sales & Rybola (2013). Shah & Slaughter (2003) discuss the various class-to-table strategies but
do not provide detailed model transformation rules for realizing these strategies, and do not
consider the consequences of the strategies in terms of preservation of semantics. The seminal
study presented by Teorey, Yang & Fry (1986) proposes transformation rules to bridge the
constructs of EER diagrams with those of relational schemas, identifying missing constraints
for disjoint generalizations as we discussed in Section 6.3. More recently, Pergl, Sales & Rybola
(2013) have discussed how to transform OntoUML models into relational schemas. In Rybola
(2017) Ph.D. thesis, proposes the transformation process, presenting quite sophisticated ways
of preserving integrity constraints. Validation triggers were proposed to preserve the semantics
of the original constructs from the source OntoUML model (modal aspects of the stereotypes
which we do not address here). A common trait of these approaches is that they consider solely
the one table per class strategy for transforming generalization hierarchies. While this yields a
straightforward relation between the conceptual model and the relational schema, using the
resulting relational schema may be cumbersome depending on the source conceptual model, in
particular in the presence of generalization hierarchies, which are emulated as we discussed in
Section 6.3, with the consequences discussed in Chapters 2 and 4. Because of this, these tools
are usually employed by providing a UML class diagram that is in fact a visual representation
of the relational schema: the model is produced manually at a lower level of abstraction, with
automation restricted to straightforward translation. In some cases, stereotypes for primary
and foreign keys are introduced in the notation (SHAH; SLAUGHTER, 2003).

Alloy is commonly used in the literature to validate semantic changes in UML class
models. For example, the work of Cunha, Garis & Riesco (2015) proposes to identify semantic
losses through bidirectional transformations using Alloy. Their job consists of performing
transformations for Alloy through the UML and OCL speci�cations, and to translate them
back to UML and OCL, thus allowing to verify and validate the results of a transformation in
Alloy. Gheyi, Massoni & Borba (2007) present a catalog of primitive transformations to predict
whether a change in the source model will cause semantic loss. To do so, the authors formalize
a static semantics for Alloy to match the source model semantics. With this, it is possible to
predict whether any change in the source model will cause semantic losses. These approaches
provide useful general frameworks which could be employed to formalize the operations we
have discussed here.

Chapter 6. Preserving Conceptual Model Semantics 98

Finally, there are a number of model transformation speci�cation languages in the
literature, including most prominently ATL (JOUAULT; KURTEV, 2005), the Epsilon Transfor-
mation Language (ETL) (KOLOVOS; PAIGE; POLACK, 2008) and those solutions implementing
the MOF QVT speci�cation (KURTEV, 2007). These languages focus on the speci�cation of
a model transformation in terms of the constructs present in source and target metamodels.
Model transformation speci�cations written in these languages are usually interpreted with
a corresponding transformation engine to execute the transformation of a speci�c source
model. Model transformation languages operate at the abstract syntax level and are neutral
with respect to the semantics of the source and target languages. We focus here instead on
the content of the transformation, i.e., we are concerned with the design decisions that can
be generalized into a speci�c model transformation and with the semantics of the source
model and its correspondence with the resulting relational schema. In principle, any of these
transformation languages could have been used for the implementation of the transformation
we present here.

6.7 Final Considerations

In this chapter, we have focused on the consequences of various class-to-table trans-
formation strategies, such that the relational schema can be complemented with integrity
constraints that re�ect the source conceptual model constraints. We have formulated the
approach in terms of the consequences of �attening and lifting thus account for various trans-
formation strategies in the literature, including one table per concrete class, one table per leaf
class, one table per kind, and one table per hierarchy.

We has focused only on the challenges concerning the transformation of inheritance
hierarchies into relational schemas; other aspects of object-relational mapping such as whole-
part associations, N-to-N associations, or the creation and propagation of primary keys were
not part of our studies. However, we used the extensive knowledge available in the literature
on object-relational mapping to make our transformation tool functional.

An important limitation of the approach is that we do not deal with existing (OCL)
constraints that need to be rewritten in the transformation process due to lifting and �attening.
For example, consider the constraint that a contractor should not be a customer of itself in
the scope of a supply contract. We expect we can pro�t from query rewriting strategies in the
literature—such as those used in Ontology-Based Data Acccess (CALVANESE et al., 2017)—to
address this in the future. We also aim to investigate to what extent we can leverage the
aforementioned views such that OCL invariants can be directly enforced at the database level
with references to those views instead of rewriting. We also do not address behavioral and
dynamic aspects, and provide no special treatment for whole-part relations.

99

7 Conclusions and Future Work

In this work, we have explored principles of Ontology-Driven Conceptual Modeling to
propose a new object-relational transformation strategy. By studying the literature on object-
relational transformations, we have identi�ed the �attening and lifting operations performed
on inheritance hierarchies. We have then explored sortality and rigidity of types to guide
�attening and lifting selectively according to these metaproperties, producing the one table per
kind strategy. Hence, we have demonstrated that ontological metaproperties can be used to
automate relational schema design. Applying these operations by following di�erent criteria,
other strategies may arise, such as one table per sortal, one table per rigid sortal, etc.

We demonstrated that our strategy can cope e�ectively with certain aspects of con-
ceptual modeling that have been neglected by some other transformation strategies (multiple
inheritance, orthogonal generalizations, dynamic classi�cation). We have also shown that, in
terms of performance, the proposed approach presents similar or better results in some situa-
tions in relation to other strategies. We have also shown empirical support for the claim that the
proposed approach does not jeopardize the correctness of relational schema understanding (as
judged by query correctness interpretation). The one table per kind strategy resulted in a schema
that was preferred by a signi�cant majority of the participants in an empirical experiment
when contrasted with one table per concrete class.

A common characteristic of many approaches in the literature (SHAH; SLAUGHTER,
2003; HULL; KING, 1987; TEOREY; YANG; FRY, 1986; PERGL; SALES; RYBOLA, 2013) is that
they consider solely the one table per class strategy for transforming generalization hierarchies,
which is also the approach adopted in the various commercial tools to perform this kind
of transformation. A result is that the conceptual model is in fact produced manually by the
modeler at a lower level of abstraction, with automation restricted to straightforward translation.
That is detrimental to the objectives of model-driven development, including abstraction and
platform-independence. In this light, our work contributes to a fuller application of model-
driven transformation of conceptual models, by e�ectively decoupling conceptual models from
their implementation.

We evolved our transformation process to incorporate a tracing structure of the concep-
tual model classes into the relational schema tables, adhering to any object-relational mapping
strategy that uses �attening and lifting operations to transform the inheritance hierarchy.
From this evolution, we were able to generate the corresponding mappings for the Ontop
OBDA platform independently of the selection of a transformation strategy. We have demon-
strated the e�ectiveness of our solution through the Ontop plugin for Protégé, where the same
SPARQL query can be executed on di�erent relational schemas generated by our solution. We

Chapter 7. Conclusions and Future Work 100

also present a simple study of the response time of queries generated by Ontop with queries
produced manually in di�erent relational schemas. Encapsulating transformation decisions
and OBDA mapping generation alleviate designers from an otherwise manual and error-prone
design process.

Finally, we identify and conceptualize some constraints lost by the transformation
process in light of �attening and lifting operations. As a result, we were able to generate
database triggers to restrict inserts and updates that do not respect the conceptual model
constraints. The amount of validations generated for di�erent conceptual models, presented
in Section 6.4.3, corroborates the need to generate restrictions to ensure that the conceptual
model constraints are respected in the relational database realization.

7.1 Research Contributions

We can summarize the research contributions in this thesis as follows:

• We have proposed the one table per kind strategy of object-relational transfor-
mation. After contextualizing the concepts that govern how hierarchies can be arranged
according to OntoUML 2.0, we proposed the one table per kind strategy of object-relational
transformation based on UFO principles (addressing the speci�c objective 1). The strategy
presented is based on �attening and lifting operations, which can be applied to other
class-based models, as long as it is possible to identify the kinds in these models. The
�attening and lifting operations can also be customized to generate other strategies,
whether ontology-driven—such as one table per sortal—or not. This work demonstrates
that it is possible to propose a new approach for transforming inheritance hierarchies by
taking into account the ontological categories of classes, providing evidence to support
our �rst hypothesis.

• We automate the relational schema generation process. As a result of this work,
we developed a Visual Paradigm plugin capable of generating the relational schema
script from the class model for a number of Database Management Systems (PostgreSQL,
MySQL, SqlServer, Oracle, and H2) (addressing speci�c objective 2). The supported
transformation strategies (initially, one table per class, one table per concrete class, and
one table per kind) were implemented through successive applications of �attening and
lifting operations.

• We evaluate the understanding of the relational schemas generated by the one
table per kind strategies. We performed an empirical study to assess the understanding
of the relational schema produced by our strategy (addressing the speci�c objective 3).
The majority of the participants indicated understanding was easier with the relational
schema generated by the one table per kind strategy, providing evidence to support our

Chapter 7. Conclusions and Future Work 101

second hypothesis.

• We have proposed a forward engineering approach to enable access to data in
the relational schema through the conceptual model. We encapsulate all the man-
ual (error-prone) work of relational schema generation and OBDA mapping production
(addressing speci�c objective 4), con�rming our third hypothesis. To make this possible,
we reused a plugin to generate the OWL �le from the OntoUML model and another
plugin to transform SPARQL queries into SQL queries (a gUFO plugin for Visual Paradigm
and the Ontop plugin for Protégé, respectively).

• We provide means to preserve model constraints in the relational realization.
We identify the constraints of the conceptual model that are a�ected as a consequence
of the �attening and lifting operations. With this, we were able to identify, store and
reconstruct the constraints in terms of triggers that prevent the invalid insertions or
updates (addressing speci�c objective 5).

The aforementioned research contributions were published in three peer-reviewed
papers:

• GUIDONI, Gustavo Ludovico; ALMEIDA, João Paulo A.; GUIZZARDI, Giancarlo. Trans-
formation of ontology-based conceptualmodels into relational schemas. In: Con-
ceptual Modeling - 39th International Conference, ER 2020. Lecture Notes in Computer
Science, vol. 12400, Springer, 2020. DOI: 10.1007/978-3-030-62522-1_23.

• GUIDONI, Gustavo Ludovico; ALMEIDA, João Paulo A.; GUIZZARDI, Giancarlo. For-
ward Engineering Relational Schemas and High-Level Data Access. In: Concep-
tual Modeling - 40th International Conference, ER 2021. Lecture Notes in Computer
Science, vol. 13011, Springer, 2021. DOI: 10.1007/978-3-030-89022-3_12.

• GUIDONI, Gustavo Ludovico; ALMEIDA, João Paulo A.; GUIZZARDI, Giancarlo. Pre-
serving conceptual model semantics in the forward engineering of relational
schemas, Frontiers in Computer Science, vol. 4, Frontiers Media, 2022. DOI: 10.3389/f-
comp.2022.1020168.

7.2 Limitations

The performance analysis was limited to two models, one designed with the purpose
of exploring all the modeling primitives (the running example), and another model produced
independently by a third-party. Restricting the evaluation to these two models, we were only
able to show the feasibility of the proposed strategy in these scenarios. To indicate which
transformation strategy is better suited for a set of relational schema usage requirements, it is

Chapter 7. Conclusions and Future Work 102

necessary to carry out deeper analyses, which would involve various of the strategies presented
in this work. We argue that this can be done in a much easier manner when the various
transformations are automated as proposed here. Applying several automated transformations
can enable one later to measure and compare response times, perform further analyses of the
space used, the e�ect of concurrency on the various generated schemas, etc. Similarly, one
can consider the e�ect of techniques employed by di�erent Database Management Systems
(DBMS) such as query optimization strategies, suppression of “null” values, etc.

The empirical evaluation was carried out with a relatively small number of experienced
database users for a single model. We believe it is necessary to evaluate the approach with a
larger group of participants, categorizing them by experience in database projects to identify
the consequences of using the relational schemas produced by the strategies presented in this
work. A variety of realistic models could be employed in this process.

The veri�cation of the correctness of the relational schema generated by the proposed
tool was performed manually for the test models presented in Section 6. Although these testing
steps were undertaken carefully, it is relevant that this evaluation be carried out in an automated
way or by people not involved in the design and implementation of the transformation tool.

7.3 Future Work

We identify the following points for further investigation and improvement:

• The transformation approach can be extended to facilitate access to the data through
database views that mirror the conceptual model classes. In the same way that OBDA
mappings are generated for Ontop, we anticipate that it is also possible to generate
database views of each conceptual model class, regardless of the chosen transformation
strategy. In these cases, in addition to providing database abstraction, it would also be
possible to work with applications that are written directly in terms of the conceptual
model classes. Special attention will be required to data change operations.

• The transformation approach can be extended to propagate changes in the conceptual
model to the relational schema. This will require the de�nition of a new transforma-
tion process to identify changes in the conceptual model and to synthesize scripts for
automated database schema migration.

• The transformation approach can be extended to enable bidirectional tracing. The tracing
table presented in Chapter 5 provides tracing from the classes of the conceptual model
to the tables of the relational schema. Identifying the classes that correspond to the
resulting tables is not supported easily with the trace tables that were de�ned, because
the resulting tables can be found several times on the target side of the TraceTable.

Chapter 7. Conclusions and Future Work 103

Having bidirectional traces may support a strategy to propagate changes in the relational
schema back to the corresponding classes in the conceptual model.

• The approach can be extended to support the automatic evaluation of database per-
formance for a speci�c source conceptual model. This extension would be possible
by generating di�erent relational schemas through di�erent transformation strategies,
populating the resulting database and evaluating the performance of each relational
schema. This solution could also be applicable to evaluate the most suitable DBMS for a
given source model and strategy. Unlike benchmarks, which characterize the general
performance of a database, this solution would provide indication of performance for the
speci�c application at hand.

• The transformation approach could be extended to support the rewriting of OCL con-
straints in the source model, which are a�ected due to �attening and lifting operations.
OCL constraints can refer to classes or features that are altered in the transformation
processes, and that should be taken into account.

• Further investigation could focus on the usability of resulting queries. The design space for
SQL queries is enormous, and ease of use varies signi�cantly according to the developer’s
experience. Therefore, a comprehensive assessment of the various aspects that a�ect
query and schema design and consequent ease of use could be useful to in�uence the
various transformation strategies.

• Ontology-based transformation strategies similar to the one employed for here relational
databases could be investigated concerning their suitability to guide the realization of
non-relational databases, such as “NoSQL” databases (STONEBRAKER, 2010), which are
gaining popularity and have not had the same attention as relational databases when
considered as targets for conceptual model transformation.

104

Bibliography

AFZAL, H. et al. OWLMap: fully automatic mapping of ontology into relational database
schema. Intl. journal of advanced computer science and applications, v. 7, n. 11, p. 7–15, 2016.
Cited in page 70.

AGUIAR, C. Z. de. Interoperabilidade Semântica entre Códigos-Fonte baseada em Ontologia.
Vitória, ES, Brasil, 2021. Cited 2 times in pages 57 and 61.

ALBANO, A. et al. An object data model with roles. In: Proc. 19th International
Conf. on Very Large Data Bases. Morgan Kaufmann, 1993. p. 39–51. Disponível em:
<http://www.vldb.org/conf/1993/P039.PDF>. Cited in page 26.

ALMEIDA, J.; IACOB, M.; ECK, P. v. Requirements Traceability in Model-Driven Development:
Applying Model and Transformation Conformance. Information Systems Frontiers, v. 9, p.
327–342, 2007. ISSN 13873326. Cited in page 19.

AMBLER, S. W. Mapping objects to relational databases. White Paper, AmbySoft Inc. 1997.
Cited 3 times in pages 20, 25, and 71.

AMBLER, S. W. Agile database techniques: e�ective strategies for the agile software developer.
USA: Wiley, 2003. Cited 4 times in pages 18, 20, 35, and 42.

BAAR, T.; MARKOVIC, S. A graphical approach to prove the semantic preservation of UML/OCL
refactoring rules. In: Perspectives of Systems Informatics, 6th International Andrei Ershov
Memorial Conference, PSI. Novosibirsk, Russia: Springer, 2006. (Lecture Notes in Computer
Science, v. 4378), p. 70–83. Disponível em: <https://doi.org/10.1007/978-3-540-70881-0_9>.
Cited in page 96.

BAGOSI, T. et al. The Ontop framework for ontology based data access. In: ZHAO, D. et al.
(Ed.). The Semantic Web and Web Science - 8th Chinese Conference, CSWS. Wuhan, China:
Springer, 2014. (Communications in Computer and Information Science, v. 480), p. 67–77.
Cited in page 20.

BANERJEE, J. et al. Semantics and implementation of schema evolution in object-oriented
databases. In: Proceedings of the Association for Computing Machinery Special Interest Group on
Management of Data 1987 Annual Conference. San Francisco, CA, USA: ACM Press, 1987. p.
311–322. Disponível em: <https://doi.org/10.1145/38713.38748>. Cited in page 96.

BARCELOS, P. P. F. et al. A FAIR Model Catalog for Ontology-Driven Conceptual Modeling
Research. In: 41st International Conference Proceedings (ER). Hyderabad, India: Springer-Verlag,
2022. p. 17–20. <https://purl.org/ontouml-models/>. Cited 3 times in pages 57, 61, and 92.

BAUER, C.; KING, G. Hibernate in action. Greenwich, CT: Manning, 2005. v. 1. Cited in page
71.

BENEVIDES, A. B. et al. Validating modal aspects of OntoUML conceptual models using
automatically generated visual world structures. J. Univers. Comput. Sci., v. 16, n. 20, p.
2904–2933, 2011. Cited in page 39.

http://www.vldb.org/conf/1993/P039.PDF
https://doi.org/10.1007/978-3-540-70881-0_9
https://doi.org/10.1145/38713.38748
https://purl.org/ontouml-models/

Bibliography 105

BIZER, C.; SEABORNE, A. D2RQ-Treating non-RDF databases as virtual RDF graphs. In:
Proceedings of the 3rd international semantic web conference, ISWC. Springer, 2004. v. 2004.
Disponível em: <https://�les.i�.uzh.ch/ddis/iswc_archive/iswc/ab/2004/iswc2004.semanticweb.
org/posters/PID-SMCVRKBT-1089637165.pdf>. Cited in page 83.

BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. The Uni�ed Modeling Language User Guide. 1st. ed.
Boston, MA, USA: Addison-Wesley, 1999. ISBN 978-0131489066. Cited in page 17.

BRAGA, B. F. B. et al. Transforming OntoUML into Alloy: towards conceptual model validation
using a lightweight formal method. Innov. Syst. Softw. Eng., v. 6, n. 1-2, p. 55–63, 2010. Cited in
page 39.

BRAMBILLA, M.; CABOT, J.; WIMMER, M. Model-Driven Software Engineering in Practice. San
Rafael, CA, USA: Morgan & Claypool, 2012. v. 1. (Synthesis Lectures on Software Engineering,
v. 1). ISBN 978-1-60845-882-0. Cited in page 17.

CABIBBO, L. Objects meet relations: On the transparent management of persistent objects.
In: Proc. CAiSE. Springer, 2004. (Lecture Notes in Computer Science, v. 3084), p. 429–445.
Disponível em: <https://doi.org/10.1007/978-3-540-25975-6_31>. Cited in page 21.

CALVANESE, D. et al. Conceptual schema transformation in ontology-based data access. In:
European Knowledge Acquisition Workshop. Cham: Springer, 2018. (Lecture Notes in Computer
Science, v. 11313), p. 50–67. Cited in page 83.

CALVANESE, D. et al. Ontop: Answering SPARQL queries over relational databases. Semantic
Web, v. 8, n. 3, p. 471–487, 2017. Cited 4 times in pages 24, 76, 79, and 98.

CARDELLI, L. A semantics of multiple inheritance. In: KAHN, G.; MACQUEEN, D. B.;
PLOTKIN, G. D. (Ed.). Semantics of Data Types. Sophia-Antipolis, France: Springer, 1984.
(Lecture Notes in Computer Science, v. 173), p. 51–67. ISBN 3-540-13346-1. Disponível em:
<https://doi.org/10.1007/3-540-13346-1_2>. Cited in page 26.

CARRÉ, B.; GEIB, J. The point of view notion for multiple inheritance. In: YONEZAWA, A.
(Ed.). Conference on Object-Oriented Programming Systems, Languages, and Applications /
European Conference on Object-Oriented Programming, OOPSLA/ECOOP, Proceedings. Ottawa,
Canada: ACM, 1990. p. 312–321. Disponível em: <https://doi.org/10.1145/97945.97983>. Cited
in page 26.

CARVALHO, V. A. Foundations for Ontology-based Multi-level Conceptual Modeling. Tese
(Doutorado) — Universidade Federal do Espírito Santo, 2016. Cited in page 18.

CARVALHO, V. A.; ALMEIDA, J. P. A.; GUIZZARDI, G. Using reference domain ontologies
to de�ne the real-world semantics of domain-speci�c languages. In: JARKE, M. et al. (Ed.).
Advanced Information Systems Engineering - 26th International Conference, CAiSE. Proceedings.
Thessaloniki, Greece: Springer, 2014. (Lecture Notes in Computer Science, v. 8484), p. 488–502.
Cited in page 39.

CARVALHO, V. A.; ALMEIDA, J. P. A.; GUIZZARDI, G. Using a well-founded multi-level
theory to support the analysis and representation of the powertype pattern in conceptual
modeling. In: International Conference on Advanced Information Systems Engineering. Ljubljana,
Slovenia,: Springer, 2016. p. 309–324. Cited in page 45.

CHEN, P. P. The entity-relationship model - toward a uni�ed view of data. ACM Trans.

https://files.ifi.uzh.ch/ddis/iswc_archive/iswc/ab/2004/iswc2004.semanticweb.org/posters/PID-SMCVRKBT-1089637165.pdf
https://files.ifi.uzh.ch/ddis/iswc_archive/iswc/ab/2004/iswc2004.semanticweb.org/posters/PID-SMCVRKBT-1089637165.pdf
https://doi.org/10.1007/978-3-540-25975-6_31
https://doi.org/10.1007/3-540-13346-1_2
https://doi.org/10.1145/97945.97983

Bibliography 106

Database Syst., v. 1, n. 1, p. 9–36, 1976. Disponível em: <https://doi.org/10.1145/320434.320440>.
Cited 2 times in pages 17 and 18.

CODD, E. F. A relational model of data for large shared data banks. Communications of
the ACM, Association for Computing Machinery (ACM), v. 13, n. 6, p. 377–387, jun. 1970.
Disponível em: <https://doi.org/10.1145/362384.362685>. Cited in page 18.

CORRADINI, A. et al. Handbook of graph grammars and computing by graph transformation:
Volume i. foundations. World Scienti�c Publishing Co., p. 163–245, 1997. Cited in page 17.

CUNHA, A.; GARIS, A. G.; RIESCO, D. Translating between Alloy speci�cations and UML class
diagrams annotated with OCL. Softw. Syst. Model., v. 14, n. 1, p. 5–25, 2015. Disponível em:
<https://doi.org/10.1007/s10270-013-0353-5>. Cited in page 97.

CZARNECKI, K.; EISENECKER, U. W. Generative Programming. Methods, Tools and Applications.
USA: ACM Press/Addison-Wesley Publishing Co., 2000. Cited in page 17.

DEMUTH, B.; HUSSMANN, H. Using UML/OCL constraints for relational database design. In:
Proc. UML‘99. Berlin, Heidelberg: Springer, 1999. (Lecture Notes in Computer Science, v. 1723),
p. 598–613. Cited in page 96.

DEMUTH, B.; HUSSMANN, H.; LOECHER, S. OCL as a speci�cation language for business
rules in database applications. In: GOGOLLA, M.; KOBRYN, C. (Ed.). «UML» 2001 - The Uni�ed
Modeling Language, Modeling Languages, Concepts, and Tools, 4th International Conference,
Proceedings. Toronto, Canada: Springer, 2001. (Lecture Notes in Computer Science, v. 2185), p.
104–117. Disponível em: <https://doi.org/10.1007/3-540-45441-1_9>. Cited in page 96.

DING, L. et al. Using ontologies in the semantic web: A survey. In: SHARMAN, R.; KISHORE,
R.; RAMESH, R. (Ed.). Ontologies: A Handbook of Principles, Concepts and Applications in
Information Systems. Springer, 2007, (Integrated Series in Information Systems, v. 14). p. 79–113.
Disponível em: <https://doi.org/10.1007/978-0-387-37022-4_4>. Cited in page 20.

EGEA, M.; DANIA, C. SQL-PL4OCL: an automatic code generator from OCL to SQL procedural
language. Software & Systems Modeling, Springer, v. 18, n. 1, p. 769–791, maio 2017. Disponível
em: <https://doi.org/10.1007/s10270-017-0597-6>. Cited in page 97.

EGEA, M.; DANIA, C.; CLAVEL, M. MySQL4OCL: A stored procedure-based mysql code
generator for OCL. Electron. Commun. Eur. Assoc. Softw. Sci. Technol., v. 36, 2010. Cited in page
97.

ERLING, O.; MIKHAILOV, I. RDF support in the virtuoso DBMS. In: AUER, S. et al. (Ed.). The
Social Semantic Web 2007, Proceedings of the 1st Conference on Social Semantic Web (CSSW).
Leipzig, Germany: GI, 2007. (LNI, P-113). Cited in page 83.

FOWLER, M. Patterns of enterprise application architecture. Boston, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002. ISBN 0321127420. Cited 7 times in pages 18, 28, 30, 33, 42,
52, and 71.

FOWLER, M. Refactoring: Improving the Design of Existing Code. USA: Pearson Education, 2018.
(Addison-Wesley Signature Series (Fowler)). ISBN 9780134757704. Cited 2 times in pages 52
and 96.

FRANCONI, E. et al. Logic foundations of the OCL modelling language. In: Logics in Arti�cial

https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/362384.362685
https://doi.org/10.1007/s10270-013-0353-5
https://doi.org/10.1007/3-540-45441-1_9
https://doi.org/10.1007/978-0-387-37022-4_4
https://doi.org/10.1007/s10270-017-0597-6

Bibliography 107

Intelligence - 14th European Conference, JELIA. Proceedings. Funchal, Madeira, Portugal:
Springer, 2014. (Lecture Notes in Computer Science, v. 8761), p. 657–664. Cited in page 97.

GHEYI, R.; MASSONI, T.; BORBA, P. A static semantics for Alloy and its impact in
refactorings. Electron. Notes Theor. Comput. Sci., v. 184, p. 209–233, 2007. Disponível em:
<https://doi.org/10.1016/j.entcs.2007.03.023>. Cited in page 97.

GONÇALVES, B.; GUIZZARDI, G.; FILHO, J. G. P. An electrocardiogram (ECG) domain
ontology. In: Workshop on Ontologies and Metamodels for Software and Data Engineering, 2nd.
João Pessoa, Brazil: [s.n.], 2007. p. 68–81. Cited in page 18.

GOTTLOB, G.; SCHREFL, M.; RÖCK, B. Extending object-oriented systems with roles. ACM
Trans. Inf. Syst., ACM, New York, NY, USA, v. 14, n. 3, p. 268–296, 1996. ISSN 1046-8188. Cited
in page 26.

GRANDY, R. E.; FREUND, M. A. Sortals. In: ZALTA, E. N. (Ed.). The Stanford Encyclopedia of
Philosophy. Summer 2021. Metaphysics Research Lab, Stanford University, 2021. Disponível em:
<https://plato.stanford.edu/archives/sum2021/entries/sortals/>. Cited in page 40.

GRECA, I. M.; MOREIRA, M. A. Mental models, conceptual models, and modelling. International
journal of science education, Taylor & Francis, v. 22, n. 1, p. 1–11, 2000. Cited in page 17.

GUARINO, N. The ontological level: Revisiting 30 years of knowledge representation. In:
BORGIDA, A. et al. (Ed.). Conceptual Modeling: Foundations and Applications - Essays in Honor
of John Mylopoulos. Springer, 2009. (Lecture Notes in Computer Science, v. 5600), p. 52–67.
Disponível em: <https://doi.org/10.1007/978-3-642-02463-4_4>. Cited in page 38.

GUARINO, N.; GUIZZARDI, G. “We Need to Discuss the Relationship”: Revisiting Relationships
as Modeling Constructs. In: Advanced Information Systems Engineering - 27th International
Conference, CAiSE, Proceedings. Stockholm, Sweden: Springer, 2015. (Lecture Notes in Computer
Science, v. 9097), p. 279–294. Disponível em: <https://doi.org/10.1007/978-3-319-19069-3_18>.
Cited in page 40.

GUARINO, N.; WELTY, C. A. An overview of OntoClean. In: STAAB, S.; STUDER, R. (Ed.).
Handbook on ontologies. Heidelberg: Springer, 2004. p. 151–171. Cited in page 20.

GUIDONI, G. L.; ALMEIDA, J. P. A.; GUIZZARDI, G. Preserving conceptual model semantics in
the forward engineering of relational schemas. Frontiers in Computer Science, Frontiers, p. 155.
Cited in page 92.

GUIDONI, G. L.; ALMEIDA, J. P. A.; GUIZZARDI, G. Transformation of ontology-based
conceptual models into relational schemas. In: Conceptual Modeling - 39th International
Conference, ER, Proceedings. Vienna, Austria: Springer, 2020. (Lecture Notes in Computer
Science, v. 12400), p. 315–330. Cited 3 times in pages 39, 48, and 57.

GUIZZARDI, G. Ontological foundations for structural conceptual models. Tese (Doutorado) —
University of Twente, 10 2005. Cited 11 times in pages 18, 20, 21, 22, 25, 38, 39, 40, 41, 54,
and 72.

GUIZZARDI, G. On ontology, ontologies, conceptualizations, modeling languages, and
(meta)models. In: VASILECAS, O.; EDER, J.; CAPLINSKAS, A. (Ed.). Databases and Information
Systems IV - Selected Papers from the Seventh International Baltic Conference, DB&IS. Vilnius,
Lithuania: IOS Press, 2007. (Frontiers in Arti�cial Intelligence and Applications, v. 155), p.
18–39. Cited in page 38.

https://doi.org/10.1016/j.entcs.2007.03.023
https://plato.stanford.edu/archives/sum2021/entries/sortals/
https://doi.org/10.1007/978-3-642-02463-4_4
https://doi.org/10.1007/978-3-319-19069-3_18

Bibliography 108

GUIZZARDI, G. et al. Towards an ontological analysis of powertypes. In: PAPINI, O. et al. (Ed.).
Proceedings of the Joint Ontology Workshops 2015 Episode 1: The Argentine Winter of Ontology
co-located with the 24th International Joint Conference on Arti�cial Intelligence (IJCAI). Buenos
Aires, Argentina: CEUR-WS.org, 2015. (CEUR Workshop Proceedings, v. 1517). Cited in page
20.

GUIZZARDI, G. et al. Ontology-based model abstraction. In: 13th International Conference on
Research Challenges in Information Science, RCIS. Brussels, Belgium: IEEE Press, 2019. p. 1–13.
Cited 3 times in pages 43, 56, and 71.

GUIZZARDI, G. et al. Types and taxonomic structures in conceptual modeling: A novel
ontological theory and engineering support. Data & Knowledge Engineering, Elsevier, v. 134, p.
101891, 2021. Cited 2 times in pages 22 and 39.

GUIZZARDI, G. et al. Types and taxonomic structures in conceptual modeling: A novel
ontological theory and engineering support. Data Knowl. Eng., v. 134, p. 101891, 2021.
Disponível em: <https://doi.org/10.1016/j.datak.2021.101891>. Cited in page 92.

GUIZZARDI, G. et al. Endurant types in ontology-driven conceptual modeling: Towards
OntoUML 2.0. In: Proc. ER. Xi’an, China: Springer, 2018. (Lecture Notes in Computer Science, v.
11157), p. 136–150. Cited 3 times in pages 21, 38, and 41.

GUIZZARDI, G. et al. Towards ontological foundations for conceptual modeling: The uni�ed
foundational ontology (UFO) story. Appl. Ontology, v. 10, n. 3-4, p. 259–271, 2015. Disponível
em: <https://doi.org/10.3233/AO-150157>. Cited 4 times in pages 18, 20, 22, and 38.

GUIZZARDI, G. et al. An ontologically well-founded pro�le for UML conceptual models. In:
PERSSON, A.; STIRNA, J. (Ed.). Advanced Information Systems Engineering, 16th International
Conference, CAiSE, Proceedings. Riga, Latvia: Springer, 2004. (Lecture Notes in Computer
Science, v. 3084), p. 112–126. Disponível em: <https://doi.org/10.1007/978-3-540-25975-6_10>.
Cited in page 18.

HULL, R.; KING, R. Semantic database modeling: Survey, applications, and research
issues. ACM Comput. Surv., ACM, v. 19, n. 3, p. 201–260, 1987. Disponível em:
<https://doi.org/10.1145/45072.45073>. Cited 2 times in pages 97 and 99.

IACOB, M.; STEEN, M. W.; HEERINK, L. Reusable model transformation patterns. In: 12th
Enterprise Distributed Object Computing Conference Workshops. Munich, Germany: IEEE, 2008.
p. 1–10. ISBN 978-0-7695-3720-7. Cited in page 52.

IRELAND, C.; BOWERS, D. Exposing the myth: object-relational impedance mismatch is
a wicked problem. In: Proc. 7th DBKDA. IARIA XPS Press, 2015. p. 21–26. Disponível em:
<https://oro.open.ac.uk/43318/>. Cited 2 times in pages 17 and 25.

IRELAND, C. et al. A classi�cation of object-relational impedance mismatch. In: CHEN, Q. et
al. (Ed.). The First International Conference on Advances in Databases, Knowledge, and Data
Applications. Gosier, Guadeloupe, France: IEEE Computer Society, 2009. p. 36–43. Disponível
em: <https://doi.org/10.1109/DBKDA.2009.11>. Cited in page 22.

IRELAND, C. et al. Understanding object-relational mapping: A framework based approach. Int
J Adv Softw, v. 2, 2009. Cited in page 25.

JIMÉNEZ-RUIZ, E. et al. BootOX: Practical mapping of RDBs to OWL 2. In: Proc. 14th Int.

https://doi.org/10.1016/j.datak.2021.101891
https://doi.org/10.3233/AO-150157
https://doi.org/10.1007/978-3-540-25975-6_10
https://doi.org/10.1145/45072.45073
https://oro.open.ac.uk/43318/
https://doi.org/10.1109/DBKDA.2009.11

Bibliography 109

Semantic Web Conf. ISWC - Part II. Bethlehem, USA: Springer, 2015. v. 9367, p. 113–132. Cited
in page 83.

JOUAULT, F.; KURTEV, I. Transforming models with ATL. In: International Conference on
Model Driven Engineering Languages and Systems. Montego Bay, Jamaica: Springer, 2005. p.
128–138. Cited in page 98.

KELLER, W. Mapping objects to tables. In: Proc. of European Conference on Pattern Languages of
Programming and Computing. Kloster Irsee, Germany: Citeseer, 1997. v. 206, p. 207. Cited 9
times in pages 18, 19, 20, 28, 30, 33, 42, 52, and 71.

KENT, W.; HOBERMAN, S. Data and Reality: A Timeless Perspective on Perceiving and Managing
Information in Our Imprecise World. Technics Publications, LLC, 2012. (Classic Series). ISBN
9781935504214. Disponível em: <https://books.google.com.br/books?id=7z57tgAACAAJ>.
Cited in page 18.

KOLOVOS, D. S.; PAIGE, R. F.; POLACK, F. A. C. The epsilon transformation language.
In: VALLECILLO, A.; GRAY, J.; PIERANTONIO, A. (Ed.). Theory and Practice of Model
Transformations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. p. 46–60. ISBN
978-3-540-69927-9. Cited in page 98.

KURTEV, I. State of the art of QVT: A model transformation language standard. In: SCHÜRR,
A.; NAGL, M.; ZÜNDORF, A. (Ed.). Applications of Graph Transformations with Industrial
Relevance, Third International Symposium, AGTIVE. Kassel, Germany: Springer, 2007. (Lecture
Notes in Computer Science, v. 5088), p. 377–393. Cited in page 98.

LANO, K. et al. A survey of model transformation design patterns in practice. Journal
of Systems and Software, v. 140, p. 48–73, 2018. ISSN 0164-1212. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0164121218300438>. Cited in page 52.

LERNER, B. S.; HABERMANN, A. N. Beyond schema evolution to database reorganization.
In: YONEZAWA, A. (Ed.). Conference on Object-Oriented Programming Systems,
Languages, and Applications / European Conference on Object-Oriented Programming,
OOPSLA/ECOOP, Proceedings. Ottawa, Canada: ACM, 1990. p. 67–76. Disponível em:
<https://doi.org/10.1145/97945.97956>. Cited in page 96.

LÚCIO, L. et al. Model transformation intents and their properties. Software & Systems Modeling,
v. 15, n. 3, p. 647–684, 2016. Disponível em: <https://doi.org/10.1007/s10270-014-0429-x>.
Cited in page 52.

MACNAMARA, J. T.; MACNAMARA, J.; REYES, G. E. The logical foundations of cognition. New
York, NY: Oxford University Press on Demand, 1994. (Vancouver Studies in Cognitive Science,
4). Cited in page 48.

MARKOVIC, S.; BAAR, T. Refactoring OCL annotated UML class diagrams. In: Model Driven
Engineering Languages and Systems, 8th International Conference, MoDELS, Proceedings.
Montego Bay, Jamaica: Springer, 2005. (Lecture Notes in Computer Science, v. 3713), p. 280–294.
Disponível em: <https://doi.org/10.1007/11557432_21>. Cited in page 96.

MARTIN, J.; ODELL, J. J. Object-oriented methods. New Jersey, USA: Prentice hall PTR, 1994.
Cited in page 18.

MEDEIROS, L. de et al. MIRROR: automatic R2RML mapping generation from relational

https://books.google.com.br/books?id=7z57tgAACAAJ
https://www.sciencedirect.com/science/article/pii/S0164121218300438
https://doi.org/10.1145/97945.97956
https://doi.org/10.1007/s10270-014-0429-x
https://doi.org/10.1007/11557432_21

Bibliography 110

databases. In: Proc. 15th ICWE. Rotterdam, The Netherlands: Springer, 2015. v. 9114, p. 326–343.
Cited in page 83.

MOREIRA, J. L. R. et al. Ontowarehousing - multidimensional design supported by a
foundational ontology: A temporal perspective. In: BELLATRECHE, L.; MOHANIA, M. K.
(Ed.). Data Warehousing and Knowledge Discovery - 16th International Conference, DaWaK.
Proceedings. Munich, Germany: Springer, 2014. (Lecture Notes in Computer Science, v. 8646), p.
35–44. Disponível em: <https://doi.org/10.1007/978-3-319-10160-6_4>. Cited in page 18.

OMG. Model Driven Architecture (MDA) MDA Guide rev. 2.0. 2014. OMG Document
ormsc/2014-06-01. Disponível em: <https://www.omg.org/cgi-bin/doc?ormsc/14-06-01>.
Cited in page 19.

ORIOL, X.; TENIENTE, E. Incremental checking of OCL constraints through SQL queries. In:
Proc. MODELS). Valencia, Spain: CEUR-WS.org, 2014. (CEUR Workshop Proceedings, v. 1285),
p. 23–32. Cited in page 97.

PELAGATTI, G. et al. From the conceptual design of spatial constraints to their implementation
in real systems. In: Proceedings of the 17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. New York, NY, USA: Association for
Computing Machinery, 2009. (GIS ’09), p. 448–451. ISBN 9781605586496. Disponível em:
<https://doi.org/10.1145/1653771.1653841>. Cited in page 97.

PENNEY, D. J.; STEIN, J. Class modi�cation in the gemstone object-oriented DBMS.
In: Conference on Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA, Proceedings. Orlando, Florida, USA: ACM, 1987. p. 111–117. Disponível em:
<https://doi.org/10.1145/38765.38817>. Cited in page 96.

PÉREZ, J.; ARENAS, M.; GUTIERREZ, C. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., v. 34, n. 3, p. 16:1–16:45, 2009. Disponível em: <https:
//doi.org/10.1145/1567274.1567278>. Cited in page 20.

PERGL, R.; SALES, T. P.; RYBOLA, Z. Towards OntoUML for software engineering: from
domain ontology to implementation model. In: Model and Data Engineering - Third International
Conference, MEDI. Proceedings. Amantea, Italy: Springer, 2013. (Lecture Notes in Computer
Science, v. 8216), p. 249–263. Cited 2 times in pages 97 and 99.

PHILIPPI, S. Model driven generation and testing of object-relational mappings. Journal of
Systems and Software, v. 77, p. 193–207, 2005. Cited 5 times in pages 19, 20, 21, 52, and 71.

POGGI, A. et al. Linking data to ontologies. J. Data Semantics, v. 10, p. 133–173, 2008. Cited 2
times in pages 20 and 74.

RYBOLA, Z. Towards OntoUML for Software Engineering: Transformation of OntoUML into
Relational Databases. Prague, Czech Republic: PhD thesis, Czech Technical University in
Prague, 2017. Cited 2 times in pages 70 and 97.

RYBOLA, Z.; PERGL, R. Towards OntoUML for software engineering: introduction to
the transformation of OntoUML into relational databases. In: Workshop on Enterprise and
Organizational Modeling and Simulation. Ljubljana, Slovenia: Springer, 2016. p. 67–83. Cited in
page 70.

RYBOLA, Z.; PERGL, R. Towards OntoUML for software engineering: transformation of

https://doi.org/10.1007/978-3-319-10160-6_4
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://doi.org/10.1145/1653771.1653841
https://doi.org/10.1145/38765.38817
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278

Bibliography 111

anti-rigid sortal types into relational databases. In: International Conference on Model and Data
Engineering. Almería, Spain: Springer, 2016. p. 1–15. Cited in page 70.

RYBOLA, Z.; PERGL, R. Towards OntoUML for software engineering: transformation of rigid
sortal types into relational databases. In: 2016 Federated Conference on Computer Science and
Information Systems (FedCSIS). Gdańsk, Poland: IEEE, 2016. p. 1581–1591. Cited in page 70.

RYBOLA, Z.; PERGL, R. Towards OntoUML for software engineering: Transformation of kinds
and subkinds into relational databases. Comput. Sci. Inf. Syst., v. 14, n. 3, p. 913–937, 2017.
Cited in page 70.

SENDALL, S.; KOZACZYNSKI, W. Model transformation: the heart and soul of model-driven
software development. Software, IEEE, v. 20, n. 5, p. 42–45, 2003. Cited in page 17.

SEQUEDA, J. F.; MIRANKER, D. P. Ultrawrap: SPARQL execution on relational data. J. Web
Semant., v. 22, p. 19–39, 2013. Cited in page 83.

SHAH, D.; SLAUGHTER, S. Transforming UML class diagrams into relational data models. In:
UML and the Uni�ed Process. USA: IGI Global, 2003. p. 217–236. Cited 2 times in pages 97
and 99.

SMITH, K. E.; ZDONIK, S. B. Intermedia: A case study of the di�erences between relational and
object-oriented database systems. In: MEYROWITZ, N. K. (Ed.). Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’87), Proceedings. Orlando, Florida,
USA: ACM, 1987. p. 452–465. Cited in page 25.

STEIMANN, F. On the representation of roles in object-oriented and conceptual modelling.
Data Knowledge Engineering, v. 35, n. 1, p. 83–106, 2000. Cited in page 26.

STEIMANN, F. The role data model revisited. Applied Ontology, v. 2, n. 2, p. 89–103, 2007.
Cited in page 26.

STONEBRAKER, M. Sql databases v. nosql databases. Commun. ACM, Association for
Computing Machinery, New York, NY, USA, v. 53, n. 4, p. 10–11, apr 2010. ISSN 0001-0782.
Disponível em: <https://doi.org/10.1145/1721654.1721659>. Cited in page 103.

TEOREY, T. J.; YANG, D.; FRY, J. P. A logical design methodology for relational databases
using the extended entity-relationship model. ACM Computing Surveys, Association
for Computing Machinery (ACM), v. 18, n. 2, p. 197–222, jun. 1986. Disponível em:
<https://doi.org/10.1145/7474.7475>. Cited 4 times in pages 87, 88, 97, and 99.

TORRES, A. et al. Twenty years of object-relational mapping: A survey on patterns, solutions,
and their implications on application design. Information & Software Technology, v. 82, 2017.
Cited 10 times in pages 17, 18, 22, 28, 30, 32, 34, 42, 52, and 71.

VERDONCK, M. Ontology-driven conceptual modeling: Model comprehension, ontology selection,
and method complexity. Tese (Doutorado) — Ghent University, 2018. Cited 2 times in pages 22
and 38.

VERDONCK, M.; GAILLY, F. Insights on the use and application of ontology and conceptual
modeling languages in ontology-driven conceptual modeling. In: COMYN-WATTIAU, I. et
al. (Ed.). Conceptual Modeling - 35th International Conference, ER, Proceedings. Gifu, Japan:
Springer, 2016. (Lecture Notes in Computer Science, v. 9974), p. 83–97. Cited in page 39.

https://doi.org/10.1145/1721654.1721659
https://doi.org/10.1145/7474.7475

Bibliography 112

VERDONCK, M. et al. Ontology-driven conceptual modeling: A systematic literature mapping
and review. Appl. Ontology, v. 10, n. 3-4, p. 197–227, 2015. Cited in page 38.

VYŠNIAUSKAS, E. et al. Reversible lossless transformation from owl 2 ontologies into
relational databases. Information technology and control, v. 40, n. 4, p. 293–306, 2011. Cited in
page 70.

WIERINGA, R. J.; JONGE, W. de; SPRUIT, P. Using dynamic classes and role classes to model
object migration. TAPOS, v. 1, n. 1, p. 61–83, 1995. Cited in page 26.

XIAO, G. et al. Ontology-based data access: A survey. In: LANG, J. (Ed.). Proceedings of the
Twenty-Seventh International Joint Conference on Arti�cial Intelligence IJCAI. Stockholm,
Sweden: ijcai.org, 2018. p. 5511–5519. Cited in page 75.

XIAO, G. et al. Virtual knowledge graphs: An overview of systems and use cases. Data Intell.,
v. 1, n. 3, p. 201–223, 2019. Cited 2 times in pages 10 and 75.

XIAO, G. et al. The virtual knowledge graph system Ontop. In: The Semantic Web–ISWC: 19th
International Semantic Web Conference, Proceedings, Part II. Athens, Greece: Springer, 2020. p.
259–277. Cited in page 76.

XU, F. From lot’s wife to a pillar of salt: Evidence that physical object is a sortal concept. Mind
& Language, Wiley Online Library, v. 12, n. 3-4, p. 365–392, 1997. Cited in page 48.

XU, F.; CAREY, S. Infants metaphysics: The case of numerical identity. Cognitive psychology,
Academic Press, v. 30, n. 2, p. 111–153, 1996. Cited in page 48.

YODER, J. W.; JOHNSON, R. E. The adaptive object-model architectural style. In: BOSCH, J. et
al. (Ed.). Software Architecture: System Design, Development and Maintenance, IFIP 17th World
Computer Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Software Architecture (WICSA3).
Montréal, Québec, Canada: Kluwer, 2002. (IFIP Conference Proceedings, v. 224), p. 3–27. Cited
3 times in pages 18, 35, and 42.

ZAMBORLINI, V.; GUIZZARDI, G. An ontologically-founded rei�cation approach for
representing temporally changing information in OWL. In: 11th International Symposium on
Logical Formalizations of Commonsense Reasoning. Agia Napa, Chipre: Elsevier, 2013. Cited in
page 39.

Appendices

114

APPENDIX A – Relational Schema
Generated by One Table per Kind Strategy

1 CREATE TABLE IF NOT EXISTS organization (
2 organization_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY

KEY
3 , organization_type_id INTEGER NULL
4 , name VARCHAR (20) NOT NULL
5 , address VARCHAR (20) NOT NULL
6 , credit_rating DOUBLE NULL
7 , credit_limit DOUBLE NULL
8 , is_corporate_customer TINYINT (1) NOT NULL DEFAULT FALSE
9 , playground_size INTEGER NULL

10 , capacity INTEGER NULL
11 , is_contractor TINYINT (1) NOT NULL DEFAULT FALSE
12);
13
14 CREATE TABLE IF NOT EXISTS employment (
15 employment_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY

KEY
16 , organization_id INTEGER NOT NULL
17 , person_id INTEGER NOT NULL
18 , salary DOUBLE NOT NULL
19);
20
21 CREATE TABLE IF NOT EXISTS enrollment (
22 enrollment_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY

KEY
23 , person_id INTEGER NOT NULL
24 , organization_id INTEGER NOT NULL
25 , grade INTEGER NOT NULL
26);
27
28 CREATE TABLE IF NOT EXISTS person (
29 person_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY

KEY
30 , life_phase_id INTEGER NOT NULL
31 , name VARCHAR (20) NOT NULL
32 , birth_date DATE NOT NULL
33 , rg VARCHAR (20) NULL
34 , ci VARCHAR (20) NULL
35 , credit_rating DOUBLE NULL
36 , credit_card VARCHAR (20) NULL
37 , is_personal_customer TINYINT (1) NOT NULL DEFAULT FALSE
38 , is_employee TINYINT (1) NOT NULL DEFAULT FALSE
39);
40
41 CREATE TABLE IF NOT EXISTS supply_contract (
42 supply_contract_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY

KEY
43 , organization_customer_id INTEGER NULL

APPENDIX A. Relational Schema Generated by One Table per Kind Strategy 115

44 , person_id INTEGER NULL
45 , organization_id INTEGER NOT NULL
46 , contract_value DOUBLE NOT NULL
47);
48
49 CREATE TABLE IF NOT EXISTS nationality (
50 nationality_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY

KEY
51 , nationality VARCHAR (20) NOT NULL
52);
53
54 CREATE TABLE IF NOT EXISTS life_phase (
55 life_phase_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY

KEY
56 , life_phase VARCHAR (20) NOT NULL
57);
58
59 CREATE TABLE IF NOT EXISTS organization_type (
60 organization_type_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY

KEY
61 , organization_type VARCHAR (20) NOT NULL
62);
63
64 CREATE TABLE IF NOT EXISTS nationality_person (
65 nationality_person_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY

KEY
66 , person_id INTEGER NOT NULL
67 , nationality_id INTEGER NOT NULL
68);
69
70
71
72 ALTER TABLE organization ADD FOREIGN KEY (organization_type_id) REFERENCES

organization_type (organization_type_id);
73
74 ALTER TABLE employment ADD FOREIGN KEY (organization_id) REFERENCES

organization (organization_id);
75
76 ALTER TABLE employment ADD FOREIGN KEY (person_id) REFERENCES person (

person_id);
77
78 ALTER TABLE enrollment ADD FOREIGN KEY (person_id) REFERENCES person (

person_id);
79
80 ALTER TABLE enrollment ADD FOREIGN KEY (organization_id) REFERENCES

organization (organization_id);
81
82 ALTER TABLE person ADD FOREIGN KEY (life_phase_id) REFERENCES life_phase (

life_phase_id);
83
84 ALTER TABLE supply_contract ADD FOREIGN KEY (organization_customer_id)

REFERENCES organization (organization_id);
85
86 ALTER TABLE supply_contract ADD FOREIGN KEY (person_id) REFERENCES person (

person_id);
87
88 ALTER TABLE supply_contract ADD FOREIGN KEY (organization_id) REFERENCES

APPENDIX A. Relational Schema Generated by One Table per Kind Strategy 116

organization (organization_id);
89
90 ALTER TABLE nationality_person ADD FOREIGN KEY (person_id) REFERENCES person (

person_id);
91
92 ALTER TABLE nationality_person ADD FOREIGN KEY (nationality_id) REFERENCES

nationality (nationality_id);

117

APPENDIX B – Object-Oriented Code
Ontology Project

Figure 30 – Core Module.

APPENDIX B. Object-Oriented Code Ontology Project 118

Figure 31 – Class Module.

Figure 32 – Class Member Module.

119

APPENDIX C – Queries used in our
evaluations

C.1 Running Example Model

C.1.1 Queries for One table per kind strategy

Listing C.1 – Query 1.

1 select count (1)
2 from (
3 select person_id
4 , credit_rating
5 from person
6 where is_personal_customer = true
7
8 union all
9

10 select organization_id
11 , credit_rating
12 from organization
13 where is_corporate_customer = true
14) as temp
15 ;

Listing C.2 – Query 2.

1 select count (1)
2 from(
3 select p.name person_name
4 , e.grade
5 , o.name organization_name
6 , o.playground_size
7 from person p
8 join enrollment e
9 on p.person_id = e.person_id

10 join organization o
11 on e.organization_id = o.organization_id
12) as temp
13 ;

Listing C.3 – Query 3.

1 select count (1)
2 from(
3 select p.name brazilian_name
4 , p.birth_date
5 , p.rg
6 , em.salary
7 , o.name organization_name
8 , p2.name italian_name
9 , sc.contract_value

APPENDIX C. Queries used in our evaluations 120

10 from person p
11 join nationality n
12 on p.person_id = n.person_id
13 and n.nationality_enum = ’BRAZILIANCITIZEN ’
14 join employment em
15 on p.person_id = em.person_id
16 join organization o
17 on em.organization_id = o.organization_id
18 and o.organization_type_enum = ’HOSPITAL ’
19 join supply_contract sc
20 on o.organization_id = sc.organization_id
21 join person p2
22 on sc.person_id = p2.person_id
23 join nationality n2
24 on p2.person_id = n2.person_id
25 and n2.nationality_enum = ’ITALIANCITIZEN ’
26)as temp
27 ;

Listing C.4 – Query 4.

1 select count (1)
2 from(
3 select o.name
4 , o.address
5 , o.credit_rating
6 , o.credit_limit
7 , capacity
8 , playground_size
9 from organization o

10) as temp
11 ;

Listing C.5 – Query 5.

1 select count (1)
2 from(
3 select p.name person_name
4 , sc.contract_value
5 , o.name organization_name
6 from person p
7 join supply_contract sc
8 on p.person_id = sc.person_id
9 join organization o

10 on sc.organization_id = o.organization_id
11 and o.organization_type_enum = ’HOSPITAL ’
12 where p.ci = ’433019254 ’
13) as temp
14 ;

C.1.2 Queries for One table per class strategy

Listing C.6 – Query 1.

1 select count (1)
2 from (
3 select pc.named_entity_id
4 , c.credit_rating
5 from named_entity ne

APPENDIX C. Queries used in our evaluations 121

6 join personal_customer pc
7 on ne.named_entity_id = pc.named_entity_id
8 join customer c
9 on pc.customer_id = c.customer_id

10
11 union all
12
13 select cc.named_entity_id
14 , c.credit_rating
15 from named_entity ne
16 join corporate_customer cc
17 on ne.named_entity_id = cc.named_entity_id
18 join customer c
19 on cc.customer_id = c.customer_id
20
21) as temp
22 ;

Listing C.7 – Query 2.

1 select count (1)
2 from(
3 select ne_p.name person_name
4 , e.grade
5 , ne_o.name organization_name
6 , ps.playground_size
7 from named_entity ne_p
8 join enrollment e
9 on ne_p.named_entity_id = e.named_entity_id

10 join named_entity ne_o
11 on e.named_entity_primary_school_id = ne_o.named_entity_id
12 join primary_school ps
13 on ne_o.named_entity_id = ps.named_entity_id
14) as temp
15 ;

Listing C.8 – Query 3.

1 select count (1)
2 from(
3 select ne_p.*
4 from named_entity ne_p
5 join person p
6 on ne_p.named_entity_id = p.named_entity_id
7 join brazilian_citizen bc
8 on p.named_entity_id = bc.named_entity_id
9 join employment em

10 on p.named_entity_id = em.named_entity_id
11 join hospital h
12 on em.named_entity_organization_id = h.named_entity_id
13 join named_entity ne_o
14 on h.named_entity_id = ne_o.named_entity_id
15 join supply_contract sc
16 on h.named_entity_id = sc.named_entity_id
17 join customer c
18 on sc.customer_id = c.customer_id
19 join personal_customer pc
20 on c.customer_id = pc.customer_id
21 join named_entity ne_i
22 on pc.named_entity_id = ne_i.named_entity_id
23 join italian_citizen ic

APPENDIX C. Queries used in our evaluations 122

24 on ne_i.named_entity_id = ic.named_entity_id
25) as temp
26 ;

Listing C.9 – Query 4.

1 select count (1)
2 from(
3 select ne.name
4 , o.address
5 , c.credit_rating
6 , cc.credit_limit
7 , h.capacity
8 , pc.playground_size
9 from named_entity ne

10 join organization o
11 on ne.named_entity_id = o.named_entity_id
12 left join corporate_customer cc
13 on o.named_entity_id = cc.named_entity_id
14 left join customer c
15 on cc.customer_id = c.customer_id
16 left join hospital h
17 on o.named_entity_id = h.named_entity_id
18 left join primary_school pc
19 on o.named_entity_id = pc.named_entity_id
20) as temp
21 ;

Listing C.10 – Query 5.

1 select count (1)
2 from(
3 select ne.name person_name
4 , sc.contract_value
5 , ne_o.name organization_name
6 from italian_citizen ic
7 join named_entity ne
8 on ic.named_entity_id = ne.named_entity_id
9 join personal_customer pc

10 on ne.named_entity_id = pc.named_entity_id
11 join supply_contract sc
12 on pc.customer_id = sc.customer_id
13 join named_entity ne_o
14 on sc.named_entity_id = ne_o.named_entity_id
15 join hospital h
16 on sc.named_entity_id = h.named_entity_id
17 where ic.ci = ’999984780 ’
18) as temp
19 ;

C.1.3 Queries for One table per concrete class strategy

Listing C.11 – Query 1.

1 select count (1)
2 from (
3 select person_id
4 , credit_rating
5 from personal_customer

APPENDIX C. Queries used in our evaluations 123

6
7 union all
8
9 select organization_id

10 , credit_rating
11 from corporate_customer
12) as temp;

Listing C.12 – Query 2.

1 select count (1)
2 from(
3 select p.name person_name
4 , e.grade
5 , o.name organization_name
6 , ps.playground_size
7 from person p
8 join child c
9 on p.person_id = c.person_id

10 join enrollment e
11 on c.person_id = e.person_id
12 join organization o
13 on e.organization_id = o.organization_id
14 join primary_school ps
15 on o.organization_id = ps.organization_id
16) as temp
17 ;

Listing C.13 – Query 3.

1 select count (1)
2 from(
3 select p.name brazilian_name
4 , p.birth_date
5 , bc.rg
6 , em.salary
7 , o.name organization_name
8 , p2.name italian_name
9 , sc.contract_value

10 from brazilian_citizen bc
11 join person p
12 on bc.person_id = p.person_id
13 join employment em
14 on p.person_id = em.person_id
15 join organization o
16 on em.organization_id = o.organization_id
17 join hospital h
18 on o.organization_id = h.organization_id
19 join supply_contract sc
20 on o.organization_id = sc.organization_id
21 join person p2
22 on sc.person_id = p2.person_id
23 join italian_citizen ic
24 on p2.person_id = ic.person_id
25) as temp
26 ;

Listing C.14 – Query 4.

1 select count (1)
2 from(

APPENDIX C. Queries used in our evaluations 124

3 select o.name
4 , o.address
5 , cc.credit_rating
6 , cc.credit_limit
7 , h.capacity
8 , pc.playground_size
9 from corporate_customer cc

10 join organization o
11 on cc.organization_id = o.organization_id
12 left join hospital h
13 on o.organization_id = h.organization_id
14 left join primary_school pc
15 on o.organization_id = pc.organization_id
16) as temp
17 ;

Listing C.15 – Query 5.

1 select count (1)
2 from(
3 select p.name person_name
4 , sc.contract_value
5 , o.name organization_name
6 from italian_citizen ic
7 join person p
8 on ic.person_id = p.person_id
9 join supply_contract sc

10 on p.person_id = sc.person_id
11 join organization o
12 on sc.organization_id = o.organization_id
13 join hospital h
14 on o.organization_id = h.organization_id
15 where ic.ci = ’999984780 ’
16) as temp
17 ;

C.1.4 Queries for One �attened table per concrete class strategy

Listing C.16 – Query 1.

1 select count (1)
2 from (
3 select person_id
4 , credit_rating
5 from personal_customer
6
7 union all
8
9 select organization_id

10 , credit_rating
11 from corporate_customer
12) as temp;

Listing C.17 – Query 2.

1 select count (1)
2 from(
3 select c.name person_name
4 , e.grade

APPENDIX C. Queries used in our evaluations 125

5 , ps.name organization_name
6 , ps.playground_size
7 from child c
8 join enrollment e
9 on c.person_id = e.person_id

10 join primary_school ps
11 on e.organization_id = ps.organization_id
12) as temp
13 ;

Listing C.18 – Query 3.

1 select count (1)
2 from(
3 select bc.name brazilian_name
4 , bc.birth_date
5 , bc.rg
6 , em.salary
7 , h.name organization_name
8 , ic.name italian_name
9 , sc.contract_value

10 from brazilian_citizen bc
11 join employment em
12 on bc.person_id = em.person_id
13 join hospital h
14 on em.organization_hospital_id = h.organization_id
15 join supply_contract sc
16 on h.organization_id = sc.organization_id
17 join italian_citizen ic
18 on sc.personal_customer_id = ic.person_id
19) as temp
20 ;

Listing C.19 – Query 4.

1 select count (1)
2 from(
3 select o.name
4 , o.address
5 , cc.credit_rating
6 , cc.credit_limit
7 , h.capacity
8 , pc.playground_size
9 from organization o

10 left join corporate_customer cc
11 on o.organization_id = cc.organization_id
12 left join hospital h
13 on o.organization_id = h.organization_id
14 left join primary_school pc
15 on o.organization_id = pc.organization_id
16) as temp
17 ;

Listing C.20 – Query 5.

1 select count (1)
2 from(
3 select ic.name person_name
4 , sc.contract_value
5 , h.name organization_name
6 from italian_citizen ic

APPENDIX C. Queries used in our evaluations 126

7 join supply_contract sc
8 on ic.person_id = sc.personal_customer_id
9 join hospital h

10 on sc.organization_id = h.organization_id
11 where ic.ci = ’999984780 ’
12) as temp
13 ;

C.1.5 Queries for One �attened table per leaf class strategy

Listing C.21 – Query 1.

1 select count (1)
2 from(
3 select person_id
4 , credit_rating
5 from personal_customer
6
7 union all
8
9 select organization_id

10 , credit_rating
11 from corporate_customer
12) as temp;

Listing C.22 – Query 2.

1 select count (1)
2 from(
3 select c.name person_name
4 , e.grade
5 , ps.name organization_name
6 , ps.playground_size
7 from child c
8 join enrollment e
9 on c.person_id = e.person_id

10 join primary_school ps
11 on e.organization_id = ps.organization_id
12) as temp
13 ;

Listing C.23 – Query 3.

1 select count (1)
2 from(
3 select bc.name brazilian_name
4 , bc.birth_date
5 , bc.rg
6 , em.salary
7 , h.name organization_name
8 , ic.name italian_name
9 , sc.contract_value

10 from brazilian_citizen bc
11 join employment em
12 on bc.person_id = em.person_id
13 join hospital h
14 on em.organization_hospital_id = h.organization_id
15 join supply_contract sc
16 on h.organization_id = sc.organization_id

APPENDIX C. Queries used in our evaluations 127

17 join italian_citizen ic
18 on sc.personal_customer_id = ic.person_id
19 and ic.is_only_person = false
20) as temp
21 ;

Listing C.24 – Query 4.

1 select count (1)
2 from(
3 select cc.name
4 , cc.address
5 , cc.credit_rating
6 , cc.credit_limit
7 , h.capacity
8 , pc.playground_size
9 from corporate_customer cc

10 left join hospital h
11 on cc.organization_id = h.organization_id
12 left join primary_school pc
13 on cc.organization_id = pc.organization_id
14
15 union
16
17 select h.name
18 , h.address
19 , 0 credit_rating
20 , 0 credit_limit
21 , h.capacity
22 , 0 playground_size
23 from hospital h
24 where not exists(select 1
25 from corporate_customer cc
26 where cc.organization_id = h.organization_id
27)
28
29 union
30
31 select ps.name
32 , ps.address
33 , 0 credit_rating
34 , 0 credit_limit
35 , 0 capacity
36 , ps.playground_size
37 from primary_school ps
38 where not exists (select 1
39 from corporate_customer cc
40 where ps.organization_id = cc.organization_id
41)
42
43) as temp
44 ;

Listing C.25 – Query 5.

1 select count (1)
2 from(
3 select ic.name person_name
4 , sc.contract_value
5 , h.name organization_name
6 from italian_citizen ic

APPENDIX C. Queries used in our evaluations 128

7 join supply_contract sc
8 on ic.person_id = sc.personal_customer_id
9 join hospital h

10 on sc.organization_id = h.organization_id
11 where ic.ci = ’999984780 ’
12) as temp
13 ;

C.1.6 Queries for Generic structure strategy

Listing C.26 – Query 1.

1 select count (1)
2 from(
3 select v.*
4 from value customer
5 join value v
6 on customer.instance_id = v.instance_id
7 where customer.attribute_id in (19, 22)
8 and (
9 (customer.attribute_id = 19 and v.attribute_id in (19, 2, 20))

10 or
11 (customer.attribute_id = 22 and v.attribute_id in (22, 12, 23))
12)
13 order by 1,2
14) as temp
15 ;

Listing C.27 – Query 2.

1 select count (1)
2 from(
3 select p.val person_name
4 , e_grade.val grade
5 , o_name.val organization_name
6 , s.val playground_size
7 -- child
8 from value c
9 -- person

10 join value p
11 on c.instance_id = p.instance_id
12 and p.attribute_id = 2 -- name
13 -- enrollment
14 join value e
15 on c.val = e.val
16 and e.attribute_id = 31 -- person_id (enrollment)
17 join value e_grade
18 on e.instance_id = e_grade.instance_id
19 and e_grade.attribute_id = 32 -- grade
20 join value e_org
21 on e.instance_id = e_org.instance_id
22 and e_org.attribute_id = 30 -- organization_id (enrollment)
23 -- organization
24 join value o
25 on e_org.val = o.val
26 and o.attribute_id = 11 -- organization_id (organization)
27 join value o_name
28 on o.instance_id = o_name.instance_id
29 and o_name.attribute_id = 12
30 -- primary_school

APPENDIX C. Queries used in our evaluations 129

31 join value s
32 on o.instance_id = s.instance_id
33 and s.attribute_id = 17 -- playground_size
34
35 where c.attribute_id = 8 -- person_id (child)
36) as temp
37 ;

Listing C.28 – Query 3.

1 select count (1)
2 from(
3 select person_n.val brazilian_name
4 , person_b.val birth_date
5 , person_rg.val rg
6 , employment_s.val salary
7 , organization_n.val organization_name
8 , supply_contract_v.val contract_value
9 , italian_n.val italian_name

10
11 from value brazilian
12 -- person
13 join value person_n
14 on brazilian.instance_id = person_n.instance_id
15 and person_n.attribute_id = 2 -- name
16 join value person_b
17 on brazilian.instance_id = person_b.instance_id
18 and person_b.attribute_id = 3 -- birth_date
19 join value person_rg
20 on brazilian.instance_id = person_rg.instance_id
21 and person_rg.attribute_id = 5 -- rg
22 -- employment
23 join value employment
24 on brazilian.val = employment.val
25 and employment.attribute_id = 27 -- person_id (employment)
26 join value employment_s
27 on employment.instance_id = employment_s.instance_id
28 and employment_s.attribute_id = 28 -- salary
29 join value employment_o
30 on employment.instance_id = employment_o.instance_id
31 and employment_o.attribute_id = 26 -- organization_id (employment)
32 -- organization
33 join value organization
34 on employment_o.val = organization.val
35 and organization.attribute_id = 14 -- orgnization_id (hospital)
36 join value organization_n
37 on organization.instance_id = organization_n.instance_id
38 and organization_n.attribute_id = 12 -- name
39 -- supply_contract
40 join value supply_contract
41 on employment_o.val = supply_contract.val
42 and supply_contract.attribute_id = 36 -- organization_id (supply_contract)
43 join value supply_contract_v
44 on supply_contract.instance_id = supply_contract_v.instance_id
45 and supply_contract_v.attribute_id = 37 -- contract_value
46 join value supply_contract_p
47 on supply_contract.instance_id = supply_contract_p.instance_id
48 and supply_contract_p.attribute_id = 35 -- person_id (supply_contract)
49 -- italian
50 join value italian
51 on supply_contract_p.val = italian.val
52 and italian.attribute_id = 6 -- person_id (italian_citizen)

APPENDIX C. Queries used in our evaluations 130

53 join value italian_n
54 on italian.instance_id = italian_n.instance_id
55 and italian_n.attribute_id = 2 -- name
56
57 where brazilian.attribute_id = 4 -- 4 person_id (brazilian_citizen)
58) as temp
59 ;

Listing C.29 – Query 4.

1 select count (1)
2 from(
3 select organization_n.val organization_name
4 , organization_a organization_address
5 , customer_r.val credit_rating
6 , customer_l.val credit_limit
7 , hospital.val capacity
8 , school.val playground_size
9 from value organization

10 -- organization
11 join value organization_n
12 on organization.instance_id = organization_n.instance_id
13 and organization_n.attribute_id = 12 -- name
14 join value organization_a
15 on organization.instance_id = organization_a.instance_id
16 and organization_a.attribute_id = 13 -- address
17 -- customer
18 left join value customer_r
19 on organization.instance_id = customer_r.instance_id
20 and customer_r.attribute_id = 23 -- credit_rating
21 left join value customer_l
22 on organization.instance_id = customer_l.instance_id
23 and customer_l.attribute_id = 24 -- credit_limit
24 -- hospital
25 left join value hospital
26 on organization.instance_id = hospital.instance_id
27 and hospital.attribute_id = 15 -- capacity
28 -- primary_chool
29 left join value school
30 on organization.instance_id = school.instance_id
31 and school.attribute_id = 17 -- playground_size
32 where organization.attribute_id = 11 -- organization_id
33) as temp
34 ;

Listing C.30 – Query 5.

1 select count (1)
2 from(
3 select person_n.val person_name
4 , contract_v.val contract_value
5 , organization_n.val organization_name
6 from value italian
7 -- person
8 join value person
9 on italian.instance_id = person.instance_id

10 and person.attribute_id = 1
11 join value person_n
12 on italian.instance_id = person_n.instance_id
13 and person_n.attribute_id = 2 -- name (person)
14 -- supply_contract

APPENDIX C. Queries used in our evaluations 131

15 join value contract
16 on person.val = contract.val
17 and contract.attribute_id = 35 -- person_id (supply_contract)
18 join value contract_v
19 on contract.instance_id = contract_v.instance_id
20 and contract_v.attribute_id = 37 -- contract_value
21 join value contract_o
22 on contract.instance_id = contract_o.instance_id
23 and contract_o.attribute_id = 36 -- organization_id (supply_contract)
24 -- hospital
25 join value hospital
26 on contract_o.val = hospital.val
27 and hospital.attribute_id = 14 -- organization_id (hospital)
28 join value organization_n
29 on hospital.instance_id = organization_n.instance_id
30 and organization_n.attribute_id = 12 -- name (organization)
31
32 where italian.val = ’229602246 ’
33) as temp
34 ;

C.2 OOC-O Project

C.2.1 Queries for One table per kind strategy

Listing C.31 – Query 1.

1 select count (1)
2 from (
3 select class_id
4 , name
5 from class
6
7 union all
8
9 select method_member_function_id

10 , name
11 from method_member_function
12
13 union all
14
15 select variable_id
16 , name
17 from variable
18) as temp;

Listing C.32 – Query 2.

1 select count (1)
2 from (
3 select c.name class_name
4 , m.name method_name
5 , v.value_type
6 from class c
7 join method_member_function m
8 on c.class_id = m.class_member_id
9 join variable v

10 on m.method_member_function_id = v.method_member_function_id

APPENDIX C. Queries used in our evaluations 132

11 where m.implementation_enum1 = ’CONCRETEMETHOD ’
12) as temp;

Listing C.33 – Query 3.

1 select count (1)
2 from (
3 select pr.program_id
4 , va.name
5 from program pr
6 join code co
7 on pr.program_id = co.program_id
8 join object_oriented_source_code_physical_module oo
9 on co.code_id = oo.code_id

10 join module mo
11 on oo.module_id = mo.module_id
12 join class cl
13 on mo.module_id = cl.module_physical_module_id
14 join variable va
15 on cl.class_id = va.class_id
16 where cl.implementation_enum = ’CONCRETECLASS ’
17) as temp;

Listing C.34 – Query 4.

1 select count (1)
2 from (
3 select module_id , module_type_enum
4 from module
5) as temp;

Listing C.35 – Query 5.

1 select count (1)
2 from (
3 select po.*
4 from variable va
5 join class cl
6 on va.class_id = cl.class_id
7 join module mo
8 on module_physical_module_id = mo.module_id
9 join object_oriented_source_code_physical_module oo

10 on mo.module_id = oo.module_id
11 join code co
12 on oo.code_id = co.code_id
13 join program po
14 on co.program_id = po.program_id
15 where va.name = ’XLACXMYSCL ’
16) as temp;

C.2.2 Queries for One table per concrete class strategy

Listing C.36 – Query 1.

1 select count (1)
2 from (
3 select class_id
4 , name

APPENDIX C. Queries used in our evaluations 133

5 from class
6
7 union all
8
9 select method_member_function_id

10 , name
11 from method_member_function
12
13 union all
14
15 select variable_id
16 , name
17 from variable
18) as temp;

Listing C.37 – Query 2.

1 select count (1)
2 from (
3 select cl.name class_name
4 , mmf.name method_name
5 , va.value_type
6 , va.variable_id
7 from class cl
8 join concrete_class cc
9 on cl.class_id = cc.class_id

10 join method_member_function mmf
11 on cc.class_id = mmf.class_id
12 join parameter_variabe pv
13 on mmf.method_member_function_id = pv.method_member_function_id
14 join variable va
15 on pv.variable_id = va.variable_id
16
17 union all
18
19 select cl.name class_name
20 , mmf.name method_name
21 , v.value_type
22 , v.variable_id
23 from class cl
24 join concrete_class cc
25 on cl.class_id = cc.class_id
26 join method_member_function mmf
27 on cc.class_id = mmf.class_id
28 join concrete_method cm
29 on mmf.method_member_function_id = cm.method_member_function_id
30 join block b
31 on cm.block_id = b.block_id
32 join local_variable lv
33 on b.block_id = lv.block_id
34 join variable v
35 on lv.variable_id = v.variable_id
36) as temp;

Listing C.38 – Query 3.

1 select count (1)
2 from (
3 select pr.program_id
4 , va.name
5 from program pr

APPENDIX C. Queries used in our evaluations 134

6 join code co
7 on pr.program_id = co.program_id
8 join object_oriented_source_code_physical_module oosc
9 on co.code_id = oosc.code_id

10 join class cl
11 on oosc.module_id = cl.module_physical_module_id
12 join concrete_class cc
13 on cl.class_id = cc.class_id
14 join attribute_member_variable amv
15 on cl.class_id = amv.class_id
16 join variable va
17 on amv.variable_id = va.variable_id
18
19 union all
20
21 select pr.program_id
22 , v.name
23 from program pr
24 join code co
25 on pr.program_id = co.program_id
26 join object_oriented_source_code_physical_module oosc
27 on co.code_id = oosc.code_id
28 join class cl
29 on oosc.module_id = cl.module_physical_module_id
30 join concrete_class cc
31 on cl.class_id = cc.class_id
32 join method_member_function mmf
33 on cc.class_id = mmf.class_id
34 join concrete_method cm
35 on mmf.method_member_function_id = cm.method_member_function_id
36 join block b
37 on cm.block_id = b.block_id
38 join local_variable lv
39 on b.block_id = lv.block_id
40 join variable v
41 on lv.variable_id = v.variable_id
42
43 union all
44
45 select pr.program_id
46 , v.name
47 from program pr
48 join code co
49 on pr.program_id = co.program_id
50 join object_oriented_source_code_physical_module oosc
51 on co.code_id = oosc.code_id
52 join class cl
53 on oosc.module_id = cl.module_physical_module_id
54 join concrete_class cc
55 on cl.class_id = cc.class_id
56 join method_member_function mmf
57 on cc.class_id = mmf.class_id
58 join parameter_variabe pv
59 on mmf.method_member_function_id = pv.method_member_function_id
60 join variable v
61 on pv.variable_id = v.variable_id
62) as temp;

Listing C.39 – Query 4.

1 select count (1)
2 from (

APPENDIX C. Queries used in our evaluations 135

3 select module_id , ’PHYSICALMODULE ’
4 from physical_module
5
6 UNION ALL
7
8 select module_id , ’LOGICALMODULE ’
9 from logical_module

10) as temp;

Listing C.40 – Query 5.

1 select count (1)
2 from (
3 select po.*
4 from variable va
5 join attribute_member_variable amv
6 on va.variable_id = amv.variable_id
7 join class cl
8 on amv.class_id = cl.class_id
9 join object_oriented_source_code_physical_module oopm

10 on cl.module_physical_module_id = oopm.module_id
11 join code co
12 on oopm.code_id = co.code_id
13 join program po
14 on co.program_id = po.program_id
15 where va.name = ’XLACXMYSCL ’
16
17 union
18
19 select po.*
20 from variable va
21 join parameter_variabe pv
22 on va.variable_id = pv.variable_id
23 join method_member_function mmf
24 on pv.method_member_function_id = mmf.method_member_function_id
25 join class cl
26 on mmf.class_id = cl.class_id
27 join object_oriented_source_code_physical_module oopm
28 on cl.module_physical_module_id = oopm.module_id
29 join code co
30 on oopm.code_id = co.code_id
31 join program po
32 on co.program_id = po.program_id
33 where va.name = ’XLACXMYSCL ’
34
35 union
36
37 select po.*
38 from variable va
39 join local_variable lv
40 on va.variable_id = lv.variable_id
41 join concrete_method cm
42 on lv.block_id = cm.block_id
43 join method_member_function mmf
44 on cm.method_member_function_id = mmf.method_member_function_id
45 join class cl
46 on mmf.class_id = cl.class_id
47 join object_oriented_source_code_physical_module oopm
48 on cl.module_physical_module_id = oopm.module_id
49 join code co
50 on oopm.code_id = co.code_id
51 join program po

APPENDIX C. Queries used in our evaluations 136

52 on co.program_id = po.program_id
53 where va.name = ’XLACXMYSCL ’
54) as temp;

C.2.3 Queries for One �attened table per leaf class strategy

Listing C.41 – Query 1.

1 select count (1)
2 from (
3 select abstract_class_id
4 , name
5 from abstract_class
6
7 union all
8
9 select concrete_class_id

10 , name
11 from concrete_class
12
13 union all
14
15 select generic_method_id
16 , name
17 from generic_method
18
19 union all
20
21 select instance_variable_id
22 , name
23 from instance_variable
24
25 union all
26
27 select parameter_variabe_id
28 , name
29 from parameter_variabe
30
31 union all
32
33 select class_variable_id
34 , name
35 from class_variable
36
37 union all
38
39 select local_variable_id
40 , name
41 from local_variable
42) as temp;

Listing C.42 – Query 2.

1 select count (1)
2 from (
3 select cc.name class_name
4 , gm.name method_name
5 , pv.value_type
6 from concrete_class cc
7 join generic_method gm

APPENDIX C. Queries used in our evaluations 137

8 on cc.concrete_class_id = gm.generic_class_id
9 join parameter_variabe pv

10 on gm.generic_method_id = pv.generic_method_id
11
12 union all
13
14 select cc.name as class_name
15 , cm.name as method_name
16 , lv.value_type
17 from concrete_class cc
18 join (
19 select concrete_class_id as class_id
20 , name
21 , block_id
22 from constructor_method
23
24 union all
25
26 select concrete_class_id
27 , name
28 , block_id
29 from destructor_method
30
31 union all
32
33 select concrete_class_id
34 , name
35 , block_id
36 from accessor_method
37
38 union all
39
40 select concrete_class_id
41 , name
42 , block_id
43 from class_method
44) as cm
45 on cc.concrete_class_id = cm.class_id
46 join local_variable lv
47 on cm.block_id = lv.block_id
48) as temp;

Listing C.43 – Query 3.

1 select count (1)
2 from (
3 select pr.program_id
4 , amv.name
5 from program pr
6 join object_oriented_source_code oosc
7 on pr.program_id = oosc.program_id
8 join object_oriented_source_code_physical_module oopm
9 on oosc.object_oriented_source_code_id = oopm.object_oriented_source_code_id

10 join physical_module pm
11 on oopm.physical_module_id = pm.physical_module_id
12 join concrete_class cc
13 on pm.physical_module_id = cc.physical_module_id
14 join (
15 select instance_variable_id
16 , concrete_class_id
17 , name
18 from instance_variable

APPENDIX C. Queries used in our evaluations 138

19
20 union
21
22 select class_variable_id
23 , concrete_class_id
24 , name
25 from class_variable
26) as amv
27 on cc.concrete_class_id = amv.concrete_class_id
28
29 union all
30
31 select pr.program_id
32 , cm.name
33 from program pr
34 join object_oriented_source_code oosc
35 on pr.program_id = oosc.program_id
36 join object_oriented_source_code_physical_module oopm
37 on oosc.object_oriented_source_code_id = oopm.object_oriented_source_code_id
38 join physical_module pm
39 on oopm.physical_module_id = pm.physical_module_id
40 join concrete_class cc
41 on pm.physical_module_id = cc.physical_module_id
42 join (
43 select concrete_class_id as class_id
44 , name
45 , block_id
46 from constructor_method
47
48 union all
49
50 select concrete_class_id
51 , name
52 , block_id
53 from destructor_method
54
55 union all
56
57 select concrete_class_id
58 , name
59 , block_id
60 from accessor_method
61
62 union all
63
64 select concrete_class_id
65 , name
66 , block_id
67 from class_method
68) as cm
69 on cc.concrete_class_id = cm.class_id
70 join local_variable lv
71 on cm.block_id = lv.block_id
72
73 union all
74
75 select pr.program_id
76 , lv.name
77 from program pr
78 join object_oriented_source_code oosc
79 on pr.program_id = oosc.program_id
80 join object_oriented_source_code_physical_module oopm
81 on oosc.object_oriented_source_code_id = oopm.object_oriented_source_code_id

APPENDIX C. Queries used in our evaluations 139

82 join physical_module pm
83 on oopm.physical_module_id = pm.physical_module_id
84 join concrete_class cc
85 on pm.physical_module_id = cc.physical_module_id
86 join generic_method gm
87 on cc.concrete_class_id = gm.concrete_class_id
88 join parameter_variabe lv
89 on gm.generic_method_id = lv.generic_method_id
90
91) as temp;

Listing C.44 – Query 4.

1 select count (1)
2 from (
3 select physical_module_id , ’PHYSICALMODULE ’
4 from physical_module
5
6 UNION ALL
7
8 select logical_module_id , ’LOGICALMODULE ’
9 from logical_module

10) as temp;

Listing C.45 – Query 5.

1 select count (1)
2 from (
3 select pr.*
4 from program pr
5 join object_oriented_source_code oosc
6 on pr.program_id = oosc.program_id
7 join object_oriented_source_code_physical_module oopm
8 on oosc.object_oriented_source_code_id = oopm.object_oriented_source_code_id
9 join (

10 select concrete_class_id as class_id
11 , physical_module_id
12 from concrete_class
13
14 union all
15
16 select abstract_class_id as class_id
17 , physical_module_id
18 from abstract_class
19) as cl
20 on oopm.physical_module_id = cl.physical_module_id
21
22 join (
23 select case when concrete_class_id is not null
24 then concrete_class_id
25 else abstract_class_id
26 end as class_id
27 , name
28
29 from instance_variable
30 where name = ’LZERXRWANL ’
31
32 union all
33
34 select case when concrete_class_id is not null
35 then concrete_class_id

APPENDIX C. Queries used in our evaluations 140

36 else abstract_class_id
37 end as class_id
38 , name
39 from class_variable
40 where name = ’LZERXRWANL ’

141

APPENDIX D – SPARQL queries used in
Chapter 5

Listing D.1 – Retrieve the credit rating of each customer.

1 PREFIX : <https :// example.com#>
2
3 SELECT ?id1 ?creditRating{
4
5 ?id1 a :Customer ;
6 :creditRating ?creditRating .
7 }

Listing D.2 – Retrieve the name of each child along with the playground size of the schools in
which the child is enrolled.

1 PREFIX : <https :// example.com#>
2
3 SELECT ?name_child ?grade ?name_school ?size{
4
5 ?id1 a :Child ;
6 :name ?name_child .
7
8 ?id2 a :Enrollment ;
9 :grade ?grade ;

10 :hasChild ?id1 ;
11 :hasPrimarySchool ?id3.
12
13 ?id3 a :PrimarySchool ;
14 :name ?name_school ;
15 :playgroundSize ?size.
16 }

Listing D.3 – Retrieve the names of Brazilian citizens working in hospitals with Italian customers;
this query reveals also the names of these customers and the contract values with the hospital.

1 PREFIX : <https :// example.com#>
2 SELECT ?brazilianName ?organizationName ?contractValue ?italianName {
3 ?brazilainPerson a :BrazilianCitizen ;
4 :name ?brazilianName .
5 ?employment a :Employment ;
6 :hasEmployee ?brazilainPerson;
7 :hasOrganization ?hospital .
8 ?hospital a :Hospital .
9 ?hospital a :Contractor ;

10 :name ?organizationName .
11 ?contract a :SupplyContract ;
12 :hasContractor ?hospital ;
13 :hasCustomer ?personalCustomer ;
14 :contractValue ?contractValue.
15 ?personalCustomer a :PersonalCustomer .
16 ?personalCustomer a :ItalianCitizen ;
17 :name ?italianName .
18 }

APPENDIX D. SPARQL queries used in Chapter 5 142

Listing D.4 – Retrieve all data of organizations regardless of whether it is registered as a Hospital
or Primary School.

1 PREFIX : <https :// example.com#>
2
3 SELECT ?name ?capacity ?playgroundSize ?creditRating ?creditLimit
4 WHERE
5 {
6 ?organization a :CorporateCustomer ;
7 :name ?name ;
8 :creditRating ?creditRating ;
9 :creditLimit ?creditLimit .

10 OPTIONAL { ?organization a :Hospital;
11 :capacity ?capacity.
12 }
13 OPTIONAL { ?organization a :PrimarySchool;
14 :playgroundSize ?playgroundSize .
15 }
16 }

Listing D.5 – Retrieve the CI of an Italian citizen the name of the Hospital with which has a
contract and the value of that contract.

1 PREFIX : <https :// example.com#>
2
3 select ?personName ?CI ?contract_value ?organizationName{
4
5 ?id1 a :ItalianCitizen ;
6 :name ?personName ;
7 :CI ?CI.
8
9 ?id1 a :PersonalCustomer.

10
11 ?id2 a :SupplyContract ;
12 :hasCustomer ?id1 ;
13 :contractValue ?contract_value ;
14 :hasContractor ?id3 .
15
16 ?id3 a :Hospital;
17 :name ?organizationName .
18
19 FILTER (?CI = ’229732380 ’) .
20 }

143

APPENDIX E – ONTOP SQL Queries

E.1 Generated by ONTOP

Listing E.1 – Ontop Query 1.

1 select count (1)
2 from(
3 SELECT v5.credit_rating2m11 AS credit_rating2m11
4 , v5.organization_id1m1 AS organization_id1m1
5 , v5.person_id1m2 AS person_id1m2
6 , v5.v0 AS v0
7 FROM (
8 SELECT v1.credit_rating AS credit_rating2m11
9 , v1.organization_id AS organization_id1m1

10 , NULL AS person_id1m2
11 , 0 AS v0
12 FROM organization v1
13 WHERE(v1.credit_rating IS NOT NULL
14 AND (v1.is_corporate_customer = true))
15
16 UNION ALL
17
18 SELECT v3.credit_rating AS credit_rating2m11
19 , NULL AS organization_id1m1
20 , v3.person_id AS person_id1m2
21 , 1 AS v0
22 FROM person v3
23 WHERE (v3.credit_rating IS NOT NULL
24 AND (v3.is_personal_customer = true)
25 AND ’ADULT’ = v3.life_phase_enum)
26) v5
27) as temp
28 ;

Listing E.2 – Ontop Query 2.

1 select count (1)
2 from(
3 SELECT v2.grade AS grade1m9
4 , v3.name AS name2m4
5 , v1.name AS name2m8
6 , v3.playground_size AS playground_size1m17
7 FROM person v1
8 , enrollment v2
9 , organization v3

10 WHERE(v3.playground_size IS NOT NULL
11 AND v1.person_id = v2.person_id
12 AND v2.organization_id = v3.organization_id
13 AND ’PRIMARYSCHOOL ’ = v3.organization_type_enum)
14) as temp
15 ;

Listing E.3 – Ontop Query 3.

1 select count (1)

APPENDIX E. ONTOP SQL Queries 144

2 from(
3 SELECT v9.contract_value1m18 AS contract_value1m18
4 , v9.name2m15 AS name2m15
5 , v9.name2m4 AS name2m4
6 , v9.name2m8 AS name2m8
7 FROM (SELECT DISTINCT v7.contract_value AS contract_value1m18
8 , v5.employment_id AS employment_id1m5
9 , v3.name AS name2m15

10 , v6.name AS name2m4
11 , v4.name AS name2m8
12 , v5.organization_id AS organization_id1m6
13 , v2.person_id AS person_id1m30
14 , v1.person_id AS person_id1m57
15 , v7.supply_contract_id AS supply_contract_id1m1
16 FROM nationality v1
17 , nationality v2
18 , person v3
19 , person v4
20 , employment v5
21 , organization v6
22 , supply_contract v7
23 WHERE ((v3.is_personal_customer = true)
24 AND v2.person_id = v3.person_id
25 AND v1.person_id = v4.person_id
26 AND v1.person_id = v5.person_id
27 AND v5.organization_id = v6.organization_id
28 AND v5.organization_id = v7.organization_id
29 AND v2.person_id = v7.person_id
30 AND ’BRAZILIANCITIZEN ’ = v1.nationality_enum
31 AND ’ITALIANCITIZEN ’ = v2.nationality_enum
32 AND ’ADULT’ = v3.life_phase_enum
33 AND ’HOSPITAL ’ = v6.organization_type_enum)
34) v9
35) as temp
36 ;

Listing E.4 – Ontop Query 4.

1 select count (1)
2 from(
3 SELECT v1.capacity AS capacity1m2
4 , v1.credit_limit AS credit_limit1m14
5 , v1.credit_rating AS credit_rating2m11
6 , v1.name AS name2m8
7 , v1.playground_size AS playground_size1m1
8 , v1.organization_type_enum AS v0
9 FROM organization v1

10 WHERE(v1.credit_rating IS NOT NULL
11 AND (v1.is_corporate_customer = true)
12 AND v1.credit_limit IS NOT NULL)
13) as temp
14 ;

Listing E.5 – Ontop Query 5.

1 select count (1)
2 from(
3 SELECT v6.contract_value1m18 AS contract_value1m18
4 , v6.name2m6 AS name2m6
5 , v6.name2m8 AS name2m8
6 FROM(SELECT DISTINCT v3.contract_value AS contract_value1m18

APPENDIX E. ONTOP SQL Queries 145

7 , v4.name AS name2m6
8 , v1.name AS name2m8
9 , v3.organization_id AS organization_id1m1

10 , v1.person_id AS person_id1m20
11 , v3.supply_contract_id AS supply_contract_id0m2
12 FROM person v1
13 , nationality v2
14 , supply_contract v3
15 , organization v4
16 WHERE((v1.is_personal_customer = true)
17 AND v1.person_id = v2.person_id
18 AND v1.person_id = v3.person_id
19 AND v3.organization_id = v4.organization_id
20 AND ’433019254 ’ = v1.ci
21 AND ’ADULT’ = v1.life_phase_enum
22 AND ’ITALIANCITIZEN ’ = v2.nationality_enum
23 AND ’HOSPITAL ’ = v4.organization_type_enum)
24) v6
25) as temp
26 ;

E.2 ONTOP Queries Optimized

Listing E.6 – Ontop Query 1 Optimized.

1 select count (1)
2 from(
3 SELECT v5.credit_rating2m11 AS credit_rating2m11
4 , v5.organization_id1m1 AS organization_id1m1
5 , v5.person_id1m2 AS person_id1m2
6 , v5.v0 AS v0
7 FROM (
8 SELECT v1.credit_rating AS credit_rating2m11
9 , v1.organization_id AS organization_id1m1

10 , NULL AS person_id1m2
11 , 0 AS v0
12 FROM organization v1
13 WHERE((v1.is_corporate_customer = true))
14
15 UNION ALL
16
17 SELECT v3.credit_rating AS credit_rating2m11
18 , NULL AS organization_id1m1
19 , v3.person_id AS person_id1m2
20 , 1 AS v0
21 FROM person v3
22 WHERE ((v3.is_personal_customer = true))
23) v5
24) as temp
25 ;

Listing E.7 – Ontop Query 2 Optimized.

1 select count (1)
2 from(
3 SELECT v2.grade AS grade1m9
4 , v3.name AS name2m4
5 , v1.name AS name2m8
6 , v3.playground_size AS playground_size1m17

APPENDIX E. ONTOP SQL Queries 146

7 FROM person v1
8 , enrollment v2
9 , organization v3

10 WHERE(v1.person_id = v2.person_id
11 AND v2.organization_id = v3.organization_id)
12) as temp
13 ;

Listing E.8 – Ontop Query 3 Optimized.

1 select count (1)
2 from(
3 SELECT v9.contract_value1m18 AS contract_value1m18
4 , v9.name2m15 AS name2m15
5 , v9.name2m4 AS name2m4
6 , v9.name2m8 AS name2m8
7 FROM (SELECT DISTINCT v7.contract_value AS contract_value1m18
8 , v5.employment_id AS employment_id1m5
9 , v3.name AS name2m15

10 , v6.name AS name2m4
11 , v4.name AS name2m8
12 , v5.organization_id AS organization_id1m6
13 , v2.person_id AS person_id1m30
14 , v1.person_id AS person_id1m57
15 , v7.supply_contract_id AS supply_contract_id1m1
16 FROM nationality v1
17 , nationality v2
18 , person v3
19 , person v4
20 , employment v5
21 , organization v6
22 , supply_contract v7
23 WHERE (v2.person_id = v3.person_id
24 AND v1.person_id = v4.person_id
25 AND v1.person_id = v5.person_id
26 AND v5.organization_id = v6.organization_id
27 AND v5.organization_id = v7.organization_id
28 AND v2.person_id = v7.person_id
29 AND ’BRAZILIANCITIZEN ’ = v1.nationality_enum
30 AND ’ITALIANCITIZEN ’ = v2.nationality_enum
31 AND ’HOSPITAL ’ = v6.organization_type_enum)
32) v9
33) as temp
34 ;

Listing E.9 – Ontop Query 4 Optimizd.

1 select count (1)
2 from(
3 SELECT v1.capacity AS capacity1m2
4 , v1.address AS address1m3
5 , v1.credit_limit AS credit_limit1m14
6 , v1.credit_rating AS credit_rating2m11
7 , v1.name AS name2m8
8 , v1.playground_size AS playground_size1m1
9 FROM organization v1

10 WHERE((v1.is_corporate_customer = true))
11) as temp
12 ;

Listing E.10 – Ontop Query 5 Optimized.

APPENDIX E. ONTOP SQL Queries 147

1 select count (1)
2 from(
3 SELECT v6.contract_value1m18 AS contract_value1m18
4 , v6.name2m6 AS name2m6
5 , v6.name2m8 AS name2m8
6 FROM(SELECT DISTINCT v3.contract_value AS contract_value1m18
7 , v4.name AS name2m6
8 , v1.name AS name2m8
9 , v3.organization_id AS organization_id1m1

10 , v1.person_id AS person_id1m20
11 , v3.supply_contract_id AS supply_contract_id0m2
12 FROM person v1
13 , nationality v2
14 , supply_contract v3
15 , organization v4
16 WHERE(v1.person_id = v2.person_id
17 AND v1.person_id = v3.person_id
18 AND v3.organization_id = v4.organization_id
19 AND ’274124858 ’ = v1.ci
20 AND ’ITALIANCITIZEN ’ = v2.nationality_enum
21 AND ’HOSPITAL ’ = v4.organization_type_enum)
22) v6
23) as temp
24 ;

148

APPENDIX F – OBDA File Generated for
the Relational Schema through One Table

per Kind Strategy

1 [PrefixDeclaration]
2 : https :// example.com#
3 gufo: http :// purl.org/nemo/gufo#
4 rdf: http :// www.w3.org /1999/02/22 -rdf -syntax -ns#
5 rdfs: http :// www.w3.org /2000/01/rdf -schema#
6 owl: http :// www.w3.org /2002/07/ owl#
7 xsd: http :// www.w3.org /2001/ XMLSchema#
8
9 [MappingDeclaration] @collection [[

10 mappingId RunExample -NamedEntity
11 target :RunExample/person /{ person_id} a :NamedEntity ; :name {name }^^ xsd:

string .
12 source SELECT person.person_id , person.name
13 FROM person
14
15 mappingId RunExample -NamedEntity40
16 target :RunExample/organization /{ organization_id} a :NamedEntity ; :name {

name }^^xsd:string .
17 source SELECT organization.organization_id , organization.name
18 FROM organization
19
20 mappingId RunExample -Person
21 target :RunExample/person /{ person_id} a :Person ; :birthDate {birth_date

}^^ xsd:dateTime .
22 source SELECT person.person_id , person.birth_date
23 FROM person
24
25 mappingId RunExample -Organization
26 target :RunExample/organization /{ organization_id} a :Organization ; :

address {address }^^ xsd:string .
27 source SELECT organization.organization_id , organization.address
28 FROM organization
29
30 mappingId RunExample -BrazilianCitizen
31 target :RunExample/person /{ person_id} a :BrazilianCitizen ; :RG {rg}^^ xsd:

string .
32 source SELECT person.person_id , person.rg
33 FROM person
34 INNER JOIN nationality
35 ON person.person_id = nationality.person_id
36 AND nationality.nationality_enum = ’BRAZILIANCITIZEN ’
37
38 mappingId RunExample -ItalianCitizen
39 target :RunExample/person /{ person_id} a :ItalianCitizen ; :CI {ci}^^xsd:

string .

APPENDIX F. OBDA File Generated for the Relational Schema through One Table per Kind Strategy 149

40 source SELECT person.person_id , person.ci
41 FROM person
42 INNER JOIN nationality
43 ON person.person_id = nationality.person_id
44 AND nationality.nationality_enum = ’ITALIANCITIZEN ’
45
46 mappingId RunExample -Child
47 target :RunExample/person /{ person_id} a :Child .
48 source SELECT person.person_id
49 FROM person
50 WHERE life_phase_enum = ’CHILD ’
51
52 mappingId RunExample -Adult
53 target :RunExample/person /{ person_id} a :Adult .
54 source SELECT person.person_id
55 FROM person
56 WHERE life_phase_enum = ’ADULT ’
57
58 mappingId RunExample -PersonalCustomer
59 target :RunExample/person /{ person_id} a :PersonalCustomer ; :creditCard {

credit_card }^^ xsd:string .
60 source SELECT person.person_id , person.credit_card
61 FROM person
62 WHERE is_personal_customer = TRUE
63 AND life_phase_enum = ’ADULT ’
64
65 mappingId RunExample -CorporateCustomer
66 target :RunExample/organization /{ organization_id} a :CorporateCustomer ; :

creditLimit {credit_limit }^^xsd:decimal .
67 source SELECT organization.organization_id , organization.credit_limit
68 FROM organization
69 WHERE is_corporate_customer = TRUE
70
71 mappingId RunExample -Employee
72 target :RunExample/person /{ person_id} a :Employee .
73 source SELECT person.person_id
74 FROM person
75 WHERE is_employee = TRUE
76 AND life_phase_enum = ’ADULT ’
77
78 mappingId RunExample -Employment
79 target :RunExample/employment /{ employment_id} a :Employment ; :salary {

salary }^^xsd:decimal ; :hasOrganization :RunExample/organization /{
organization_id} ; :hasEmployee :RunExample/person /{ person_id} .

80 source SELECT employment.employment_id , employment.salary , employment.
organization_id , employment.person_id

81 FROM employment
82
83 mappingId RunExample -Customer
84 target :RunExample/organization /{ organization_id} a :Customer ; :

creditRating {credit_rating }^^xsd:decimal .
85 source SELECT organization.organization_id , organization.credit_rating
86 FROM organization
87 WHERE is_corporate_customer = TRUE
88
89 mappingId RunExample -Customer41
90 target :RunExample/person /{ person_id} a :Customer ; :creditRating {

APPENDIX F. OBDA File Generated for the Relational Schema through One Table per Kind Strategy 150

credit_rating }^^xsd:decimal .
91 source SELECT person.person_id , person.credit_rating
92 FROM person
93 WHERE is_personal_customer = TRUE
94 AND life_phase_enum = ’ADULT ’
95
96 mappingId RunExample -SupplyContract
97 target :RunExample/supply_contract /{ supply_contract_id} a :SupplyContract

; :contractValue {contract_value }^^xsd:decimal ; :hasCustomer :RunExample/
organization /{ organization_customer_id} ; :hasCustomer :RunExample/person /{
person_id} ; :hasContractor :RunExample/organization /{ organization_id} .

98 source SELECT supply_contract.supply_contract_id , supply_contract.
contract_value , supply_contract.organization_customer_id , supply_contract.
person_id , supply_contract.organization_id

99 FROM supply_contract
100
101 mappingId RunExample -PrimarySchool
102 target :RunExample/organization /{ organization_id} a :PrimarySchool ; :

playgroundSize {playground_size }^^xsd:int .
103 source SELECT organization.organization_id , organization.playground_size
104 FROM organization
105 WHERE organization_type_enum = ’PRIMARYSCHOOL ’
106
107 mappingId RunExample -Hospital
108 target :RunExample/organization /{ organization_id} a :Hospital ; :capacity

{capacity }^^ xsd:int .
109 source SELECT organization.organization_id , organization.capacity
110 FROM organization
111 WHERE organization_type_enum = ’HOSPITAL ’
112
113 mappingId RunExample -Enrollment
114 target :RunExample/enrollment /{ enrollment_id} a :Enrollment ; :grade {

grade }^^ xsd:int ; :hasChild :RunExample/person /{ person_id} ; :
hasPrimarySchool :RunExample/organization /{ organization_id} .

115 source SELECT enrollment.enrollment_id , enrollment.grade , enrollment.
person_id , enrollment.organization_id

116 FROM enrollment
117
118 mappingId RunExample -Contractor
119 target :RunExample/organization /{ organization_id} a :Contractor .
120 source SELECT organization.organization_id
121 FROM organization
122 WHERE is_contractor = TRUE
123]]

151

APPENDIX G – Survey Form

This appendix shows the questionnaire for the experiment reported in Chapter 4.

Note that, if in Question 2 the participant marks the option “I have no knowledge of
databases”, the respondent is thanked and the questionnaire no longer proceeds. The order of
Questions 4 and 5 is randomized by Google Forms.

G.1 Participant’s Pro�le

Question 1: What is your present occupation:

() Student.

() IT Professional.

() Professor/Researcher.

() Other:

Question 2: Please qualify your database experience (concerning relational modeling
and SQL queries)?

() Only academic (I have taken one or more database courses).

() Professional (I work or have worked with databases).

() I have no knowledge of databases.

Question 3: How many years of database experience do you have?

() Less than 1 year.

() Between 1 and 3 years.

() Between 3 and 5 years.

() More than 5 years.

APPENDIX G. Survey Form 152

G.2 Query Interpretation

Fill in your answers *strictly* in the order in which the questions appear below. The
order is very important to us.

Question 4: Describe in free text the purpose of the query below (this query assumes
the schema with 5 tables immediately below).

Answer:

APPENDIX G. Survey Form 153

Question 5: Describe in free text the purpose of the query below (this query assumes
the schema with 15 tables immediately below).

Answer:

APPENDIX G. Survey Form 154

G.3 Response Order Control

Question 6: On the previous screen, the questions were presented in random order by
the system. What query was presented to you at the top of the page?

() Query on the schema with 5 tables.

() Query on the schema with 15 tables.

G.4 Empirical Study for the Evaluation of Relational Schemas

Question 7: Which of the two queries presented to you before was easier to understand?

() Query A (on the schema with 5 tables).

() Query B (on the schema with 15 tables).

() Both had the same level of di�culty.

G.5 Feedback

Register here, any considerations, criticisms, or other remarks that you may have on
the schemas and queries in this experiment.

Answer:

	Title page
	Dedication
	Agradecimentos
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Context
	Research Problem
	Research Hypothesis
	Objectives
	Approach
	Outline of this Document

	Background
	From Conceptual Models to Relational Schemas
	Primitives of the Source Conceptual Model
	Running Example
	One Table per Class
	One Table per Concrete Class
	One Flattened Table per Concrete Class
	One Flattened Table per Leaf Class
	One Table per Hierarchy
	Generic Structure
	Summary

	Ontology-Driven Conceptual Modeling
	OntoUML

	Final Considerations

	A Novel Ontology-Based Transformation Strategy
	Basic Transformation Operations
	Flattening
	Lifting

	One Table per Kind
	Final Considerations

	Evaluation of the Novel Strategy
	Support for Conceptual Modeling Primitives
	Preliminary Performance Considerations
	Actual Database Performance in two Scenarios
	Running Example Project
	Object-Oriented Code Ontology (OOC-O) Project
	Limitations

	Empirical Evaluation of Query Understanding
	Materials and Preparation
	Results
	Limitations

	Related Work
	Final Considerations

	High-Level Data Access
	Motivation
	Ontology-Based Data Access (OBDA)
	Tracing Flattening and Lifting
	Synthesizing High-Level Data Access
	Performance of Data Access
	Related Work
	Final Considerations

	Preserving Conceptual Model Semantics
	Missing Constraints due to Flattening
	Missing Constraints due to Lifting
	Missing Constraints due to Hierarchy Emulation
	Augmenting the Transformation
	Transformation Process
	Generation of Triggers
	Implementation Restrictions

	Implementation and Tests
	Related Work
	Final Considerations

	Conclusions and Future Work
	Research Contributions
	Limitations
	Future Work

	Bibliography
	Appendices
	Relational Schema Generated by One Table per Kind Strategy
	Object-Oriented Code Ontology Project
	Queries used in our evaluations
	Running Example Model
	Queries for One table per kind strategy
	Queries for One table per class strategy
	Queries for One table per concrete class strategy
	Queries for One flattened table per concrete class strategy
	Queries for One flattened table per leaf class strategy
	Queries for Generic structure strategy

	OOC-O Project
	Queries for One table per kind strategy
	Queries for One table per concrete class strategy
	Queries for One flattened table per leaf class strategy

	SPARQL queries used in Chapter 5
	ONTOP SQL Queries
	Generated by ONTOP
	ONTOP Queries Optimized

	OBDA File Generated for the Relational Schema through One Table per Kind Strategy
	Survey Form
	Participant's Profile
	Query Interpretation
	Response Order Control
	Empirical Study for the Evaluation of Relational Schemas
	Feedback

