UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

MARCELO LUCAS PEREIRA MACHADO

MODELO TERMOMICROESTRUTURAL PARA DETERMINAÇÃO DE VARIÁVEIS OPERACIONAIS E METALÚRGICAS PARA UTILIZAÇÃO EM SIMULAÇAO E/OU CONTROLE NA LAMINAÇÃO A QUENTE DE AÇOS CARBONO E MICROLIGADOS

MARCELO LUCAS PEREIRA MACHADO

MODELO TERMOMICROESTRUTURAL PARA DETERMINAÇÃO DE VARIÁVEIS OPERACIONAIS E METALÚRGICAS PARA UTILIZAÇÃO EM SIMULAÇAO E/OU CONTROLE NA LAMINAÇÃO A QUENTE DE AÇOS CARBONO E MICROLIGADOS

Tese apresentada ao Programa de Pós-Graduação em Engenharia Elétrica do Centro Tecnológico da Universidade Federal do Espírito Santo, como requisito parcial para obtenção do Grau de Doutor em Engenharia Elétrica, na área de concentração em Automação.

Orientador: Prof. Dr. José Denti Filho

Dados Internacionais de Catalogação-na-publicação (CIP) (Biblioteca Central da Universidade Federal do Espírito Santo, ES, Brasil)

Machado, Marcelo Lucas Pereira, 1959-

M180m

Modelo termomicroestrutural para determinação de variáveis operacionais e metalúrgicas para utilização em simulação e/ou controle na laminação a quente de aços carbono e microligados / Marcelo Lucas Pereira Machado. — 2005.

380 f.: il.

Orientador: José Denti Filho.

Tese (doutorado) – Universidade Federal do Espírito Santo, Centro Tecnológico.

1. Modelos matemáticos. 2. Laminação (Metalurgia). 3. Aço - Metalurgia. 4. Conformação de metais. 5. Simulação (Computadores). 6. Máquinas para conformação de metais. I. Denti Filho, José. II. Universidade Federal do Espírito Santo. Centro Tecnológico. III. Título.

CDU: 004

MARCELO LUCAS PEREIRA MACHADO

MODELO TERMOMICROESTRUTURAL PARA DETERMINAÇÃO DE VARIÁVEIS OPERACIONAIS E METALÚRGICAS PARA UTILIZAÇÃO EM SIMULAÇAO E/OU CONTROLE NA LAMINAÇÃO A QUENTE DE AÇOS CARBONO E MICROLIGADOS

Tese submetida ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal do Espírito Santo como requisito parcial para a obtenção do grau de Doutor em Engenharia Elétrica — Automação.

Aprovada em 15 de Julho de 2005.

COMIS	SSÃO EXAMINADORA	
-	Yosé Dentimo	
Prof.	Dr. José Denti Filho	
Unive	ersidade Federal do Espírito Santo	
Orien	tador	
L	the em L	
Prof.	Dr. Edson de Paula Ferreira	
Unive	rsidade Federal do Espírito Santo	
	Jose Leancho (fella	
Prof.	Dr. José Leandro Félix Salles	
Unive	ersidade Federal do Espírito Santo	
	Studding	
Prof.	Dr. Denio Rebello Arantes	
	o Federal de Educação Tecnológica do Espírito Sar	nto
	April	
Prof.	Dr. José Maria Ramon Caccioppoli	
	ersidade Federal de Minas Gerais	

A meu Pai que ficaria muito feliz
A meus irmãos e a minha Mãe
A minha esposa Jeanine e a minha filha Jessica

AGRADECIMENTOS

Quero agradecer primeiramente ao meu Orientador Professor Dr. José Denti Filho pela importante contribuição para este trabalho, sem o qual dificilmente seria realizado.

Meus agradecimentos ao PPGEE da UFES pelo apoio na realização e divulgação deste trabalho de pesquisa.

Agradeço também a Izabel Eugênia Nascimento da Biblioteca Central da UFES / Seção de Pesquisa pela valiosa contribuição na pesquisa bibliográfica, pois muitos artigos necessários exigiram exaustivas tentativas de procuras, até encontra-los.

Agradeço ao CEFET-ES e particularmente a Coordenadoria de Metalurgia e Materiais pela oportunidade que me deu para que eu pudesse realizar este trabalho.

Meus agradecimentos da Companhia Siderúrgica de Tubarão (CST) pelas contribuições técnicas, troca de informações e apoio na divulgação e busca de novos conhecimentos para este trabalho e em particular aos engenheiros Francisco Coutinho Dornelas, Julio Cezar Bellon e José Fagundes Junior.

Agradeço a Companhia Siderúrgica Nacional (CSN) pelas contribuições técnicas e troca de informações e particularmente ao engenheiro Nilber Bhering Cordeiro.

Quero agradecer aos parentes e amigos pela compreenção e apoio.

Meus agradecimentos a minha mãe Daura Sylvia Pereira Machado pelo apoio a este trabalho.

A minha esposa, Jeanine de Lacerda Benevides, companheira e amiga de todas as horas, cujo o apoio, paciência, encorajamento e carinho contribuiram em muito para a realização deste trabalho.

A minha filha Jessica Benevides da Silva pela compreenção e paciencia de nem sempre poder atender as suas solicitações.

Nós temos um ideal, as vezes ele aparece rápido em nossas vidas e tudo fica mais fácil, mas na maioria das vezes ele está distante. Os caminhos da vida podem fazer com que afastemos do nosso ideal, mas nunca podemos perde-lo de vista. Pois quando menos se espera, as portas começam a se abrir mostrando o caminho a seguir e cabe a nós reunir nossas energias para alcança-lo e não se lamentar pelo resto de nossas vidas por uma oportunidade perdida.

O autor

SUMÁRIO

1 INTRODUÇÃO	43
1.1 – Apresentação do trabalho	46
1.2 – Revisão Bibliográfica	48
1.2.1 - Principais parâmetros que afetam a resistência à deformação na	
laminação	48
1.2.2 - Resistência à deformação de um material laminado	49
1.2.3 - Expressões da Taxa de Deformação do Material	51
1.2.4 - Deformação efetiva do material	52
1.2.5 - Tempo de aplicação da deformação	52
1.2.6 - Deformação redundante do material	52
1.2.7 - Fator de deformação redundante e deformação total	53
1.2.8 - Fator de deslizamento à frente	53
1.2.9 - Equações de fluxos térmicos na laminação	55
1.2.9.1 - Calor gerado no interior do material durante a laminação.	55
1.2.9.2 - Resfriamento do Material Durante a Laminação	57
1.2.10 - Aspéctos metalúrgicos na laminação	64
1.2.10.1 - Processos de restauração do grão.	66
1. 2.10.2 - Fatores que afetam a redução crítica de recristalização	74
1. 2.10.3 - Efeito da temperatura e elementos de liga	76
1. 2.10.4 - Efeito da quantidade de deformação.	76
1. 2.10.5 - Tamanho de grão da austenita completamente recristalizada após	
deformação	77
1. 2.10.6 - Crescimento do grão após completa recristalização na laminação	79
1. 2.10.7 - Tamanho de grão da austenita parcialmente recristalizada	83
1. 2.10.8 - Verificação do início da formação de precipitado	83
1. 2.10.9 - Mudanças estruturais no aço durante o resfriamento	84
1. 2.10.10 - Efeito da microestrutura do aço na tensão de escoamento do material	85
1.2.11 - Cálculo da força de laminação	91
1.2.12 – Curva de Operação e Curva de Reação do Laminador	95
2 - MODELO MICROESTRUTURAL PARA DETERMINAÇÃO DA TENSÃO DE	
ESCOAMENTO MÉDIA E DO TAMANHO DE GRÃO DO AÇO NA LAMINAÇÃO	
À QUENTE	97
2.1 – Equações geométricas utilizadas no modelo microestrutural	97

2.2 - Cálculo da tensão de escoamento média dos aços	98
2.3 - Fração de recristalização dinâmica do material para aços carbono	99
2.4 – Equação geral da fração de recristalização dinâmica do material	100
2.4.1 – Tempo de recristalização dinâmica	100
2.5 - Cálculo da deformação acumulada	101
2.6 - Deformação crítica para início da recristalização dinâmica	101
2.7 - Verificação do início da formação de precipitado	101
2.8 - Fração de recristalização do material	103
2.9 - Tempo para 50% de recristalização do material	103
2.10 - Tamanho de grão recristalizado da austenita	104
2.11 - Crescimento do grão da austenita	104
2.12 - Tamanho de grão da austenita parcialmente recristalizada	105
2.13 - Tamanho de grão da ferrita	105
2.14 - Utilização do modelo de carga de Sims para o cálculo da força aplicada	
ao cilindro de trabalho	106
2.15 – Determinação da espessura de saída do material laminado	107
2.16 – Fluxograma da programação modelo microestrural	108
3 - MODELO TÉRMICO NA LAMINAÇÃO DE TIRAS A QUENTE DE AÇOS	111
3.1 - Desenvolvimento de equações térmicas para a determinação da	
temperatura dos produtos planos laminados a quente	111
3.2 - Aumento de temperatura devido à deformação plástica no passe	112
3.3 - Temperatura máxima devido à deformação plástica no passe	112
3.4 - Queda de temperatura devido à condução de calor pelo cilindro de	
trabalho	112
3.5 - Temperatura de saída do passe	113
3.6 - Queda de temperatura devido à perda de calor por radiação	113
3.7 - Queda de temperatura devido à perda de calor por convecção	113
3.8 - Queda de temperatura devido à condução de calor pela água	114
3.9 - Queda de temperatura entre cadeiras de laminação	114
3.10 - Temperatura de entrada na cadeira seguinte	115
3.11 – Fluxograma da programação do modelo térmico	115
4 -RESULTADOS OBTIDOS	117
4.1 – Modelo microestrutural utilizando força e temperatura fornecidos	117
4.1.1 – Aços Carbono manganês	117

4.1.2 – Aços ao Nióbio	132
4.1.3 – Aços Microligados	136
4.2 - Modelo Termomicroestrutural	140
5 – ANÁLISE DE SENSIBILIDADE	150
5.1 – Efeito dos distúrbios na primeira cadeira de laminação	150
5.1.1 – Efeito da variação na espessura de entrada do material	150
5.1.2 – Efeito da variação na abertura entre os cilindros de trabalho	157
5.1.3 – Efeito da variação na temperatura de entrada do material	163
5.1.4 – Efeito da variação na tensão a frente no material na saída da cadeira	F1 169
5.1.5 – Efeito da variação na velocidade do cilindro de trabalho da cadeira F	1 175
5.2 – Efeito dos distúrbios na segunda cadeira de laminação	181
5.2.1 – Efeito da variação do gap em F1 e sua influência em F2	181
5.2.2 – Efeito da variação na abertura entre os cilindros de trabalho	184
5.2.3 – Efeito da variação na temperatura de entrada do material	190
5.2.4 – Efeito da variação na tensão a ré no material em relação a cadeira F	2 196
5.2.5 – Efeito da variação na tensão a frente no material na saída da cadeira	F2 198
5.2.6 – Efeito da variação na velocidade do cilindro de trabalho da cadeira F	2 204
5.3 – Efeito dos distúrbios na terceira cadeira de laminação	210
5.3.1 – Efeito da variação do gap em F2 e sua influência em F3	210
5.3.2 – Efeito da variação na abertura entre os cilindros de trabalho em F3	212
5.3.3 – Efeito da variação na temperatura de entrada do material	218
5.3.4 – Efeito da variação na tensão a ré no material em relação a cadeira F	3 223
5.3.5 – Efeito da variação na tensão a frente no material na saída da cadeira	F3 225
5.3.6 – Efeito da variação na velocidade do cilindro de trabalho da cadeira F	3 231
5.4 – Regras qualitativas visando controle do processo	237
5.5 – Sugestões para trabalhos futuros	247
6 – CONCLUSÕES	249
7 – REFERÊNCIAS BIBLIOGRÁFICAS	252
ANEXOS	257
	F1 257
·	-2 267
<u>-</u>	3 276
	5 276 285
ANLAU D - LADEIAS DE DISCUIDIOS HA QUALLA CAUEILA DE IAIHINACAO F	→ ∠00

ANEXO E – Tabelas de distúrbios na quinta cadeira de laminação	F5	294
ANEXO F – Tabelas de distúrbios na sexta cadeira de laminação	F6	303
ANEXO G – Efeito dos distúrbios na quarta cadeira de laminação		310
G.1 – Efeito da variação do gap em F3 e sua influência em F4		310
G.2 – Efeito da variação na abertura entre os cilindros de trabalho em F4		312
G.3 – Efeito da variação na temperatura de entrada do material		317
G.4 – Efeito da variação na tensão a ré no material em relação a cadeira F4	4	323
G.5 – Efeito da variação na tensão a frente no material na saída da cadeira	F4	325
G.6 – Efeito da variação na velocidade do cilindro de trabalho da cadeira Fa	4	330
ANEXO H – Efeito dos distúrbios na quinta cadeira de laminação		337
H.1 – Efeito da variação do gap em F4 e sua influência em F5		337
H.2 – Efeito da variação na abertura entre os cilindros de trabalho em F5		339
H.3 – Efeito da variação na temperatura de entrada do material		345
H.4 – Efeito da variação na tensão a ré no material em relação a cadeira F5	5	350
H.5 – Efeito da variação na tensão a frente no material na saída da cadeira	F5	352
H.6 – Efeito da variação na velocidade do cilindro de trabalho da cadeira F5	5	357
ANEXO I – Efeito dos distúrbios na sexta cadeira de laminação		363
I.1 – Efeito da variação do gap em F5 e sua influência em F6		363
I.2 – Efeito da variação na abertura entre os cilindros de trabalho em F6		365
I.3 – Efeito da variação na temperatura de entrada do material		370
I.4 – Efeito da variação na tensão a ré no material em relação a cadeira F6		375
I.5 – Efeito da variação na velocidade do cilindro de trabalho da cadeira F6		378

LISTA DE TABELAS

Tabela 1.1 - Equações cinéticas da fração de recristalização estática	72
Tabela 1.2 - Equações cinéticas da fração de recristalização dinâmica	73
Tabela 1.3 - Equações cinéticas da fração de recristalização metadinâmica	75
Tabela 1.4 – Equações que descrevem o tamanho de grão da austenita após	
completa recristalização estática	79
Tabela 1.5 – Equações que descrevem o tamanho de grão da austenita após	
completa recristalização metadinâmica	79
Tabela 1.6 – Equações que descrevem o tamanho de grão final da austenita após	
recristalização completa	81
Tabela 4.1 – Composição química do aço utilizado na siderúrgica SMI	117
Tabela 4.2 – Dados de entrada para o modelo microestrutural fornecidos pela indústria	117
Tabela 4.3 – Resultados obtidos pelo modelo microestrutural	118
Tabela 4.4 – Resultados obtidos pelo modelo microestrutural	118
Tabela 4.5 – Resultados de tamanho de grão obtidos pelo modelo microestrutural	118
Tabela 4.6 – Força de laminação fornecida pela indústria e a obtida pelo modelo	
microestrutural	118
Tabela 4.7 – Resultados das tensões de escoamento média (TEM) obtida pelo modelo	
de Sims, e as TEM obtidas utilizando a equação de Misaka com as	
correções	119
Tabela 4.8 – Composição química do aço utilizado pela indústria	120
Tabela 4.9 – Resultados obtidos pelo modelo microestrutural	120
Tabela 4.10 – Resultados obtidos pelo modelo microestrutural	121
Tabela 4.11 – Resultados obtidos pelo modelo microestrutural	121
Tabela 4.12 – Força de laminação fornecida pela indústria e força obtida pelo modelo	
microestrutural com e sem correção.	121
Tabela 4.13 – Resultados das tensões de escoamento média (TEM) obtida pelo	
modelo de Sims, equação de Misaka com as correções, e pelo modelo	
microestrutural proposto neste trabalho	121
Tabela 4.14 – Composição química do aço utilizado pela indústria	123
Tabela 4.15 – Resultados obtidos pelo modelo microestrutural	123
Tabela 4.16 – Resultados obtidos pelo modelo microestrutural	123
Tabela 4.17 – Resultados obtidos pelo modelo microestrutural	123
Tabela 4.18 – Força de laminação fornecida pela indústria e força obtida pelo modelo	
microestrutural com e sem correção	123

Tabela 4.19 – Resultados das tensões de escoamento média (TEM) obtida pelo	
modelo de Sims, equação de Misaka com as correções, e pelo modelo	
microestrutural proposto neste trabalho	124
Tabela 4.20 – Composição química do aço utilizado pela indústria	125
Tabela 4.21 – Resultados obtidos pelo modelo microestrutural	125
Tabela 4.22 – Resultados obtidos pelo modelo microestrutural	125
Tabela 4.23 – Resultados de tamanho de grão obtidos pelo modelo microestrutural	125
Tabela 4.24 – Força de laminação fornecida pela indústria e força obtida pelo modelo	
microestrutural com e sem correção	126
Tabela 4.25 – Resultados das tensões de escoamento média (TEM) obtida pelo	
modelo de Sims, equação de Misaka com as correções, e pelo modelo	
microestrutural proposto neste trabalho	126
Tabela 4.26 – Composição química do aço utilizado pela indústria	127
Tabela 4.27 – Resultados obtidos pelo modelo microestrutural	127
Tabela 4.28 – Resultados obtidos pelo modelo microestrutural	
Tabela 4.29 – Resultados de tamanho de grão obtidos pelo modelo microestrutural	128
Tabela 4.30 – Força de laminação fornecida pela indústria e força obtida pelo modelo	
microestrutural com e sem correção	128
Tabela 4.31 – Resultados das tensões de escoamento média (TEM) obtida pelo	
modelo de Sims, equação de Misaka com as correções, e pelo modelo	
microestrutural proposto neste trabalho	128
Tabela 4.32 – Composição química do aço utilizado pela Indústria	130
Tabela 4.33 – Resultados obtidos pelo modelo microestrutural	130
Tabela 4.34 – Resultados obtidos pelo modelo microestrutural	130
Tabela 4.35 – Resultados obtidos pelo modelo microestrutural	130
Tabela 4.36 – Força de laminação fornecida pela industria e força obtida pelo modelo	
microestrutural com e sem correção	130
Tabela 4.37 – Resultados das tensões de escoamento média (TEM) obtida pelo	
modelo de Sims, equação de Misaka com as correções, e pelo modelo	
microestrutural proposto neste trabalho	131
Tabela 4.38 – Composição química do aço utilizado pela Indústria	132
Tabela 4.39 – Resultados obtidos pelo modelo microestrutural	132
Tabela 4.40 – Resultados obtidos pelo modelo microestrutural	132
Tabela 4.41 – Resultados de tamanho de grão obtidos pelo modelo microestrutural	133
Tabela 4.42 – Força de laminação fornecida pela indústria e força obtida pelo modelo	
microestrutural com e sem correção	133

Tabela 4.43 – Resultados das tensões de escoamento média (TEM) obtida pelo	
modelo de Sims, equação de Misaka com as correções, e pelo modelo	
microestrutural proposto neste trabalho	133
Tabela 4.44 – Composição química do aço utilizado pela Indústria	134
Tabela 4.45 – Resultados obtidos pelo modelo microestrutural	134
Tabela 4.46 – Resultados obtidos pelo modelo microestrutural	134
Tabela 4.47 – Resultados de tamanho de grão obtidos pelo modelo microestrutural	134
Tabela 4.48 – Força de laminação fornecida pela indústria e força obtida pelo modelo	
microestrutural com e sem correção	135
Tabela 4.49 – Resultados das tensões de escoamento média (TEM) obtida pelo	
modelo de Sims, equação de Misaka com as correções, e pelo modelo	
microestrutural proposto neste trabalho	135
Tabela 4.50 – Composição química do aço utilizado pela Indústria	136
Tabela 4.51 – Resultados obtidos pelo modelo microestrutural	136
Tabela 4.52 – Resultados obtidos pelo modelo microestrutural	136
Tabela 4.53 – Resultados de tamanho de grão obtidos pelo modelo microestrutural	136
Tabela 4.54 – Força de laminação fornecida pela indústria e força obtida pelo modelo	
microestrutural com e sem correção	137
Tabela 4.55 – Resultados das tensões de escoamento média (TEM) obtida pelo	
modelo de Sims, equação de Misaka com as correções, e pelo modelo	
microestrutural proposto neste trabalho	137
Tabela 4.56 – Composição química do aço utilizado pela Indústria	138
Tabela 4.57 – Resultados obtidos pelo modelo microestrutural	138
Tabela 4.58 – Resultados obtidos pelo modelo microestrutural	139
Tabela 4.59 – Resultados obtidos pelo modelo microestrutural	139
Tabela 4.60 – Força de laminação fornecida pela indústria e força obtida pelo modelo	
microestrutural com e sem correção	139
Tabela 4.61 – Resultados das tensões de escoamento média (TEM) obtida pelo	
modelo de Sims, equação de Misaka com as correções, e pelo modelo	
microestrutural proposto neste trabalho	139
Tabela 4.62 – Força de laminação fornecida pela industria, força obtida pelo modelo	
microestrutural (Modelo), modelo termomicroestrutural (Modelo TM) e as	
temperaturas obtidas pela industria e pelo modelo termomicroestrutural	141

Tabela 4.63	 Resultados das tensões de escoamento média (TEM) obtida pelo 	
	modelo de Sims, pelo modelo microestrutural (modelo) e pelo modelo	
	termomicroestrutural (Modelo TM)	141
Tabela 4.64	 Força de laminação fornecida pela indústria, força obtida pelo modelo 	
	microestrutural (Modelo), modelo termomicroestrutural (Modelo TM) e as	
	temperaturas obtidas pela indústria e pelo modelo termomicroestrutural	143
Tabela 4.65	 Resultados das tensões de escoamento média (TEM) obtida pelo 	
	modelo de Sims, pelo modelo microestrutural (modelo) e pelo modelo	
	termomicroestrutural (Modelo TM)	143
Tabela 4.66	 Força de laminação fornecida pela indústria a força obtida pelo modelo 	
	microestrutural (Modelo), modelo termomicroestrutural (Modelo TM) e as	
	temperaturas obtidas pela indústria e pelo modelo termomicroestrutural	144
Tabela 4.67	 Resultados das tensões de escoamento média (TEM) obtida pelo 	
	modelo de Sims, pelo modelo microestrutural (Modelo) e pelo modelo	
	termomicroestrutural (Modelo TM)	145
Tabela 4.68	 Resultados obtidos pelo modelo termomicroestrutural utilizando o gap 	146
Tabela 4.69	 Resultados obtidos pelo modelo termomicroestrutural utilizando o gap 	147
Tabela 4.70	 Resultados obtidos pelo modelo termomicroestrutural utilizando o gap 	147
Tabela 4.71	 Força de laminação fornecida pela indústria e força obtida pelo modelo 	
	termomicroestrutural utilizando h1 e h2 (Mod TM) e utilizando o gap (Mod	
	TMGap)	147
Tabela 4.72	 Resultados das tensões de escoamento média (TEM) obtida pelo 	
	modelo de Sims e as TEM obtidas pelo modelo termomicroestrutural	
	utilizando h1 e h2 (Mod TM) e utilizando o gap (Mod TMGap)	147
Tabela 4.73	 Resultados obtidos da espessura da saída do material pelo modelo 	
	MTGap em relação ao gap utilizado	148
Tabela 5.1 -	- Resultados do índice de recristalização dinâmica do material devido a	
	alterações na espessura de entrada na cadeira F1, para o aço carbono	
	manganês 3	154
Tabela 5.2 -	- Resultados do índice de recristalização dinâmica em todas as cadeiras	
	de laminação devido a alterações na espessura de entrada na cadeira	
	F1, para o aço carbono manganês 3	155
Tabela 5.3 -	- Resultados do índice de recristalização dinâmica do material devido a	
	alterações no gap da cadeira F1, para o aço carbono manganês 3	160

Tabela 5.4 –	Resultados do índice de recristalização dinâmica em todas as cadeiras	
	de laminação devido a alterações no gap da cadeira F1, para o aço	
	carbono manganês 3	161
Tabela 5.5 -	Resultados do índice de recristalização dinâmica em todas as cadeiras	
	de laminação devido a alterações temperatura de entrada do material em	
	F1, para o aço carbono manganês 3	165
Tabela 5.6 -	Resultados do índice de recristalização dinâmica em todas as cadeiras	
	de laminação devido a alterações temperatura de entrada do material em	
	F1, para o aço carbono manganês 3	173
Tabela 5.7 –	Resultados do índice de recristalização dinâmica em todas as cadeiras	
	de laminação devido a alterações na velocidade do cilindro de trabalho	
	em F1, para o aço carbono manganês 3	179
Tabela 5.8 –	Resultados da fração de recristalização dinâmica em todas as cadeiras	
	de laminação devido a alterações no gap da cadeira F2, para o aço	
	carbono manganês 3	187
Tabela 5.9 -	Resultados da fração de recristalização dinâmica em todas as cadeiras	
	de laminação devido a alterações temperatura de entrada do material em	
	F2, para o aço carbono manganês 3	192
Tabela 5.10	 Resultados da fração de recristalização dinâmica em todas as cadeiras 	
	de laminação devido a alterações temperatura de entrada do material em	
	F2, para o aço carbono manganês 3	202
Tabela 5.11	 Resultados do índice de recristalização dinâmica em todas as cadeiras 	
	de laminação devido a alterações na velocidade do cilindro de trabalho	
	em F2, para o aço carbono manganês 3	208
Tabela 5.12	 Resultados da fração de recristalização dinâmica em todas as cadeiras 	
	de laminação devido a alterações no gap da cadeira F3, para o aço	
	carbono manganês 3	214
Tabela 5.13	 Resultados da fração de recristalização dinâmica em todas as cadeiras 	
	de laminação devido a alterações temperatura de entrada do material em	
	F3, para o aço carbono manganês 3	219
Tabela 5.14	 Resultados da fração de recristalização dinâmica em todas as cadeiras 	
	de laminação devido a alterações temperatura de entrada do material em	
	F3, para o aço carbono manganês 3	229
Tabela 5.15	 Resultados do índice de recristalização dinâmica em todas as cadeiras 	
	de laminação devido a alterações na velocidade do cilindro de trabalho	
	em F3, para o aço carbono manganês 3	232

Tabela 5.16A – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material na espessura de saída e carga	
de laminação, e as correções feitas nas variáveis manipuladas no caso da	
cadeira F1 para o aço C-Mn 3	238
Tabela 5.16B – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material no tamanho de grão e TEM, e	
as correções feitas nas variáveis manipuladas no caso da cadeira F1	
para o aço C-Mn 3	238
Tabela 5.17A – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material na espessura de saída e carga	
de laminação, e as correções feitas nas variáveis manipuladas no caso da	
cadeira F2 para o aço C-Mn 3	239
Tabela 5.17B – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material no tamanho de grão e TEM, e	
as correções feitas nas variáveis manipuladas no caso da cadeira F2	
para o aço C-Mn 3	239
Tabela 5.18A – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material na espessura de saída e carga	
de laminação, e as correções feitas nas variáveis manipuladas no caso da	
cadeira F3 para o aço C-Mn 3	240
Tabela 5.18B – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material no tamanho de grão e TEM, e	
as correções feitas nas variáveis manipuladas no caso da cadeira F3	
para o aço C-Mn 3	240
Tabela 5.19A – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material na espessura de saída e carga	
de laminação, e as correções feitas nas variáveis manipuladas no caso da	
cadeira F4 para o aço C-Mn 3	241
Tabela 5.19B – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material no tamanho de grão e TEM, e	
as correções feitas nas variáveis manipuladas no caso da cadeira F4	
para o aço C-Mn 3	241
Tabela 5.20A – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material na espessura de saída e carga	
de laminação, e as correções feitas nas variáveis manipuladas no caso da	
cadeira F5 para o aço C-Mn 3	242

Tabela 5.20B – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material no tamanho de grão e TEM, e	
as correções feitas nas variáveis manipuladas no caso da cadeira F5	
para o aço C-Mn 3	242
Tabela 5.21A – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material na espessura de saída e carga	
de laminação, e as correções feitas nas variáveis manipuladas no caso da	
cadeira F6 para o aço C-Mn 3	243
Tabela 5.21B – Análise qualitativa das conseqüências dos distúrbios de espessura e	
temperatura de entrada e TEM do material no tamanho de grão e TEM, e	
as correções feitas nas variáveis manipuladas no caso da cadeira F6	
para o aço C-Mn 3	243
Tabela 5.22A – Resultado global da análise qualitativa das conseqüências dos	
distúrbios de espessura e temperatura de entrada e TEM do material na	
espessura de saída e carga de laminação, e as correções feitas nas	
variáveis manipuladas para todas as cadeiras	245
Tabela 5.22B – Resultado global da análise qualitativa das conseqüências dos	
distúrbios de espessura e temperatura de entrada e TEM do material no	
tamanho de grão e TEM, e as correções feitas nas variáveis manipuladas	
para todas as cadeiras	245
Tabela 5.23A – Resultado da análise qualitativa das conseqüências de alterações na	
carga de laminação, e as correções feitas nas variáveis manipuladas para	
acerto de espessura de saída e carga de laminação, na laminação a	
quente	246
Tabela 5.23B – Resultado da análise qualitativa das conseqüências de alterações na	
carga de laminação, e as correções feitas nas variáveis manipuladas	
para acerto de TEM e tamanho de grão, na laminação a quente	246

LISTA DE FIGURAS

Figura 1.1 – Distribuição normal da pressão e das forças de separação nos cilin-	dros 50
Figura 1.2 – Parâmetros da zona de deformação	51
Figura 1.3 – Esquema que mostra o contato geométrico entre o cilindro de traba	lho e
a tira	53
Figura 1.4 – Esquema que mostra a geometria da laminação no ponto neutro	55
Figura 1.5 - Esquema mostrando as entradas de calor no Cilindro de trabalho	62
Figura 1.6 - Esquema mostrando as saídas de calor do Cilindro de trabalho	63
Figura 1.7 – Diagrama de Equilíbrio Ferro-Carbono	66
Figura 1.8 – Esquema mostrando as estruturas cristalinas cúbica de corpo centr	ado
CCC e cúbica de face centrada CFC	67
Figura 1.9 - Efeito da quantidade de redução sobre a formação das bandas de	
deformação	68
Figura 1.10 - Ilustração esquemática da recristalização estática	68
Figura 1.11 - Representação esquemática de uma curva tensão-deformação	71
Figura 1.12 - Efeito da temperatura de deformação e do tamanho de grão sobre	а
quantidade crítica de redução necessária para a completa recristalizaçã	ão no
aço carbono e ao nióbio	75
Figura 1.13 - Aumento na temperatura de recristalização com o aumento de	
elementos de liga no aço com 0,007%C; 1,40%Mn; 0,25%Si	76
Figura 1.14 - Efeito da quantidade de redução e temperatura de laminação sobre	e o
comportamento da restauração: o aço ao nióbio foi aquecido para 1150	° C 77
Figura 1.15 - Efeito da redução total sobre o tamanho de grão da austenita no a	ço
nióbio a qual foi pré-aquecido para 1280° C ou 1150° C e	
subseqüentemente laminado em multi-passes	78
Figura 1.16 - Efeito do tempo de exposição do material a altas temperaturas e d	а
quantidade de redução sobre o Progresso do crescimento do grão aço	
carbono plano e aço nióbio	80
Figura 1.17 - Comportamento do tamanho de grão da austenita após completa	
recristalização em função do tempo mostrado por Hodgson et. al.	82
Figura 1.18 – Representação esquemática da variação da tensão de escoament	to
média TEM em função do inverso da temperatura absoluta e sua influe	ncia
com os fenômenos metalúrgicos, numa laminação a quente com cinco	
passes	86

87
88
88
95
109
110
116
119
119
122
122
122
122
124
124
124
124

Figura 4.11 – Resultados de força de laminação fornecido pela indústria e obtidos	
pelo modelo microestrutural com a correção para a equação de	
Misaka(Modelo) e sem a correção (Modelo sc)	126
Figura 4.12 – Resultados da TEM obtidas pelo modelo de Sims, pela equação de	
Misaka com correções e pelo modelo com a correção para a equação de	
Misaka(Modelo) e sem a correção (Modelo sc)	126
Figura 4.13 – Resultados de força de laminação fornecido pela indústria e obtidos	
pelo modelo microestrutural com a correção para a equação de Misaka	127
Figura 4.14 – Resultados da TEM obtidas pelo modelo de Sims e pelo modelo com a	
correção para a equação de Misaka	127
Figura 4.15 – Resultados de força de laminação fornecido pela indústria e obtidos	
pelo modelo microestrutural com a correção para a equação de	
Misaka(Mod) e sem a correção (Mod sc)	129
Figura 4.16 – Resultados da TEM obtidas pelo modelo de Sims, pela equação de	
Misaka com correções e pelo modelo com a correção para a equação de	
Misaka(Mod) e sem a correção (Mod sc)	129
Figura 4.17 – Resultados de força de laminação fornecido pela industria e obtidos	
pelo modelo microestrutural com a correção para a equação de Misaka	129
Figura 4.18 – Resultados da TEM obtidas pelo modelo de Sims e pelo modelo com a	
correção para a equação de Misaka	129
Figura 4.19 – Resultados de força de laminação fornecido pela industria e obtidos	
pelo modelo microestrutural com a correção para a equação de	
Misaka(Mod) e sem a correção (Mod sc)	131
Figura 4.20 – Resultados da TEM obtidas pelo modelo de Sims, pela equação de	
Misaka com correções e pelo modelo com a correção para a equação de	
Misaka(Mod) e sem a correção (Mod sc)	131
Figura 4.21 – Resultados de força de laminação fornecido pela industria e obtidos	
pelo modelo microestrutural com a correção para a equação de	
Misaka(Mod)	131
Figura 4.22 – Resultados da TEM obtidas pelo modelo de Sims e pelo modelo com a	
correção para a equação de Misaka(Mod)	131
Figura 4.23 – Resultados de força de laminação fornecidos pela industria e obtidos	
pelo modelo microestrutural	133
Figura 4.24 – Resultados da TEM obtidas pelo modelo de Sims, pela equação de	
Misaka com correções e pelo modelo microestrutural	133

Figura 4.25 – Resultados de força de laminação fornecido pela industria e obtidos	
pelo modelo microestrutural	135
Figura 4.26 – Resultados da TEM obtidas pelo modelo de Sims, pela equação de	
Misaka com correções e pelo modelo microestrutural	135
Figura 4.27 – Resultados de força de laminação fornecido pela industria e obtidos	
pelo modelo microestrutural	137
Figura 4.28 – Resultados da TEM obtidas pelo modelo de Sims, pela equação de	
Misaka com correções e pelo modelo microestrutural	138
Figura 4.29 – Resultados de força de laminação fornecidos pela industria e obtidos	
pelo modelo microestrutural	140
Figura 4.30 – Resultados da TEM obtidas pelo modelo de Sims, pela equação de	
Misaka com correções e pelo modelo microestrutural	140
Figura 4.31 – Resultados de força de laminação fornecido pela indústria e obtidos	
pelo modelo com correção pela equação de Misaka (Mod) e pelo modelo	
termomicroestrtural (Mod TM) também com as correções	142
Figura 4.32 –. Resultados da temperatura fornecida pela industria e a temperatura	
obtida pelo modelo microestrutural e térmico	142
Figura 4.33 – Resultados da TEM obtidos pelo modelo com correção pela equação	
de Misaka (Mod) e pelo modelo termomicroestrtural (Mod MT) também com	
as correções	142
Figura 4.34 – Resultados de força de laminação fornecido pela indústria e obtidos	
pelo modelo com correção pela equação de Misaka (Mod) e pelo modelo	
termomicroestrtural (Mod TM) também com as correções	143
Figura 4.35 –.Resultados da temperatura fornecida pela industria e a temperatura	
obtida pelo modelo termomicroestrutural	143
Figura 4.36 – Resultados da TEM obtidos pelo modelo com correção pela equação	
de Misaka (Mod) e pelo modelo termomicroestrtural (Mod TM) também com	
as correções	144
Figura 4.37 – Resultados de força de laminação fornecidos pela indústria e obtidos	
pelo modelo com correção pela equação de Misaka (Mod) e pelo modelo	
termomicroestrtural (Mod TM) também com as correções	145
Figura 4.38 –. Resultados da temperatura fornecida pela industria e a temperatura	
obtida pelo modelo termomicroestrutural	145
Figura 4.39 – Resultados da TEM obtidos pelo modelo com correção pela equação	
de Misaka (Mod) e pelo modelo termomicroestrtural (Mod TM) também com	
as correções	145

Figura 4.40 – Resultados de força de laminação fornecido pela industria e os obtid	os
pelo modelo termomicroestrutural utilizando h1 e h2 (Mod TM) e utilizando	0 0
gap (Mod TMGap)	148
Figura 4.41 – Resultados da TEM obtidas pelo modelo de Sims e os obtidos pelo	
modelo termomicroestrutural utilizando h1 e h2 (Mod TM) e utilizando o ga	ар
(Mod TMGap)	148
Figura 4.42 – Resultados de força de laminação fornecida pela indústria e os obtid	os
pelo modelo termomicroestrutural utilizando o gap (Mod TMGap)	148
Figura 4.43 – Resultados da TEM obtidas pelo modelo de Sims e pelo modelo	
termomicroestrutural utilizando o gap (Mod TMGap)	148
Figura 4.44 – Relação entre o gap fornecido e a espessura de saída calculada pelo	0
modelo termomicroestrutural	149
Figura 4.45 – Resultados da TEM obtidas pelo modelo de Sims utilizando o h2	
calculado pelo modelo termomicroestrutural utilizando o gap (Mod TMGap	o) e
a TEM deste modelo	149
Figura 5.1 – Resultados das tensões de escoamento média(TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações provocadas na espessura de entrada do material na cadeira F1	,
tabela A1.1.	151
Figura 5.2 – Resultados de temperatura de laminação, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas na espessura de entrada do material na cadeira F1, tabela A	1.1
Figura 5.3 – Resultados de tamanho de grão (μm) obtidos pelo modelo	151
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas na espessura de entrada do material na cadeira F1, tabela A2	1.1 152
Figura 5.4 – Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas na espessura de entrada do material na cadeira F1, tabela A	1.1 152
Figura 5.5 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas na espessura de entrada do material na cadeira F1, tabela A	1.1 153
Figura 5.6 – Resultados de TEM, obtidos pelo modelo para aço carbono manganê	S
3, devido a variações provocadas na espessura de entrada do material na	ì
cadeira F1, tabela A1.2	153

Figura 5.7 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações provocadas na espessura de	
entrada do material na cadeira F1, tabela A1.3	154
Figura 5.8 – Resultados da temperatura de laminação, obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas na espessura de	
entrada do material na cadeira F1, tabela A1.4	155
Figura 5.9 – Resultados da espessura de saída do material, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas na	
espessura de entrada do material na cadeira F1, tabela A1.5	156
Figura 5.10 – Resultados da carga de laminação, obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas na espessura de	
entrada do material na cadeira F1, tabela A1.6	156
Figura 5.11 – Resultados das tensões de escoamento média (TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações provocadas no gap da cadeira F1, tabela A2.1	157
Figura 5.12 – Resultados de temperatura de laminação, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap da cadeira F1, tabela A2.1	166
Figura 5.13 – Resultados de tamanho de grão (μm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap da cadeira F1, tabela A2.1	158
Figura 5.14 – Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap da cadeira F1, tabela A2.1	158
Figura 5.15 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap da cadeira F1, tabela A2.6	159
Figura 5.16 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês	
3, devido a variações provocadas no gap da cadeira F1, tabela A2.2	159
Figura 5.17 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas no gap da	
cadeira F1, tabela A2.3	160
Figura 5.18 – Resultados da temperatura de laminação, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações provocadas no gap em F1,	
tabela A2.4	161

Figura 5	5.19 – Resultados da espessura de saída do material, obtidos pelo modelo	
	para aço carbono manganês 3, devido a variações provocadas no gap em	
	F1, tabela A2.5	162
Figura 5	5.20 – Resultados da carga de laminação, obtidos pelo modelo para aço	
	carbono manganês 3, devido a variações provocadas no gap em F1, tabela	
	A2.6	162
Figura 5	5.21 – Resultados das tensões de escoamento média(TEM), obtidos pelo	
	modelo termomicroestrutural para aço carbono manganês 3, devido a	
	variações provocadas na temperatura de entrada do material na cadeira F1,	
	tabela A3.1	163
Figura 5	5.22 – Resultados de temperatura de laminação, obtidos pelo modelo para	
	aço carbono manganês 3, devido a variações provocadas na temperatura	
	de entrada do material na cadeira F1, tabela A3.1	163
Figura 5	5.23 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço	
	carbono manganês 3, devido a variações provocadas na temperatura de	
	entrada do material na cadeira F1, tabela A3.1	164
Figura 5	5.24 – Resultados de espessura de saída (mm) obtidos pelo modelo	
	termomicroestrutural para aço carbono manganês 3, devido a variações na	
	temperatura de entrada do material na cadeira F1, tabela A3.1	165
Figura 5	5.25 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
	termomicroestrutural para aço carbono manganês 3, devido a variações na	
	temperatura de entrada do material, tabela A3.1	166
Figura 5	5.26 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês	
	3, devido a variações provocadas na temperatura de entrada do material na	
	cadeira F1, tabela A3.2	166
Figura 8	5.27 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	
	para aço carbono manganês 3, devido a variações provocadas na	
	temperatura de entrada do material na cadeira F1, tabela A3.3	167
Figura 8	5.28 – Resultados da temperatura de laminação, obtidos pelo modelo para	
	aço carbono manganês 3, devido a variações provocadas na temperatura	
	de entrada do material na cadeira F1, tabela A3.4	168
Figura 5	5.29 - Resultados da espessura de saída do material, obtidos pelo modelo	
	para aço carbono manganês 3, devido a variações provocadas na	
	temperatura de entrada do material em F1, tabela A3.5	168

Figura 5.30 – Resultados da carga de laminação, obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas na espessura de	
entrada do material em F1, tabela A3.6	169
Figura 5.31 – Resultados das tensões de escoamento média(TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações tensão a frente da cadeira F1, tabela A.1	170
Figura 5.32 – Resultados de temperatura de laminação, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações tensão a frente do material na	
cadeira F1, tabela A4.1	170
Figura 5.33 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas tensão a frente do	
material na cadeira F1, tabela A4.1	170
Figura 5.34 – Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas tensão a frente do material na cadeira F1, tabela A4.1	
Figura 5.35 – Resultados de carga de laminação (ton.) obtidas pelo modelo	171
termomicroestrutural para aço carbono manganês 3, devido a variações na	
tensão a frente do material, tabela A4.1	171
Figura 5.36 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês	
3, devido a variações provocadas na tensão a frente do material na cadeira	
F1, tabela A4.2	172
Figura 5.37 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas na tensão a	
frente do material na cadeira F1, tabela A4.3	172
Figura 5.38 – Resultados da temperatura de laminação, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas tensão a frente do material na cadeira F1, tabela A4.4	173
Figura 5.39 – Resultados da espessura de saída do material, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas na tensão a frente de F1, tabela A4.5	174
Figura 5.40 – Resultados da carga de laminação, obtidos pelo modelo	
termomicroestrtural para aço carbono manganês 3, devido a variações	
provocadas na tensão a frente de F1, tabela A4.6	174
Figura 5.41 – Resultados das tensões de escoamento média (TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	.
variações provocadas na velocidade do cilindro da cadeira F1, tabela A5.1	175

Figura 5.42 – Resultados de temperatura de laminação, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações velocidade do cilindro da	
cadeira F1, tabela A5.1	176
Figura 5.43 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço	
carbono manganês 3, devido a variações na velocidade do cilindro da	
cadeira F1, tabela A5.1	176
Figura 5.44 – Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
velocidade do cilindro da cadeira F1, tabela A5.1	177
Figura 5.45 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
velocidade do cilindro em F1, tabela A5.1	178
Figura 5.46 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês	
3, devido a variações provocadas na velocidade do cilindro em F1, tabela	
A5.2	178
Figura 5.47 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas na	
velocidade do cilindro na cadeira F1, tabela A5.3	179
Figura 5.48 – Resultados da temperatura de laminação, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
velocidade do cilindro em F1, tabela A5.4	189
Figura 5.49 – Resultados da espessura de saída do material, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas na velocidade do cilindro em F1, tabela A5.5	180
Figura 5.50 – Resultados da carga de laminação, obtidos pelo modelo	
termomicroestrtural para aço carbono manganês 3, devido a variações	
provocadas na velocidade do cilindro em F1, tabela A5.6	181
Figura 5.51 – Resultados das tensões de escoamento média (TEM) em F2, obtidos	
pelo modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações provocadas no gap em F1, tabela B1.1	182
Figura 5.52 – Resultados de temperatura de laminação em F2, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações no	
gap em F1, tabela B1.1.	182
Figura 5.53 – Resultados de tamanho de grão (μm) em F2, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações no	
gap em F1, tabela B1.1.	183

Figura 5.54 – Resultados de espessura de saída (mm) em F2, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações no	
gap em F1, tabela B1.1.	183
Figura 5.55 – Resultados de carga de laminação (ton.) em F2, obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações no	
gap em F1, tabela B1.1.	184
Figura 5.56 – Resultados das tensões de escoamento média(TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações provocadas no gap da cadeira F2, tabela B2.1.	184
Figura 5.57 – Resultados de temperatura de laminação, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap em F2, tabela B2.1.	185
Figura 5.58 – Resultados de tamanho de grão (μm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap da cadeira F2, tabela B2.1.	185
Figura 5.59 – Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap em F2, tabela B2.1.	186
Figura 5.60 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap em F2, tabela B2.6.	186
Figura 5.61 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês	
3, devido a variações provocadas no gap da cadeira F2, tabela B2.2.	
Figura 5.62 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	187
para aço carbono manganês 3, devido a variações provocadas no gap da	
cadeira F2, tabela B2.3.	188
Figura 5.63 – Resultados da temperatura de laminação, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações provocadas no gap em F2,	
tabela B2.4.	189
Figura 5.64 – Resultados da espessura de saída do material, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas no gap em	
F2, tabela B2.5.	189
Figura 5.65 – Resultados da carga de laminação, obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas no gap em F2, tabela	
B2.6.	190

Figura 5.66 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F2,	
tabela B3.1.	190
Figura 5.67 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura	
de entrada do material na cadeira F2, tabela B3.1.	191
Figura 5.68 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas na temperatura de	
entrada do material na cadeira F2, tabela B3.1.	191
Figura 5.69 – Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
temperatura de entrada do em F2, tabela B3.1.	192
Figura 5.70 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
temperatura de entrada do material em F2, tabela B3.1.	192
Figura 5.71 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês	
3, devido a variações provocadas na temperatura de entrada do material na	
cadeira F2, tabela B3.2.	193
Figura 5.72 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas na	
temperatura de entrada do material na cadeira F2, tabela B3.3.	194
Figura 5.73 – Resultados da temperatura de laminação, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações provocadas na temperatura	
de entrada do material na cadeira F2, tabela B3.4.	194
Figura 5.74 – Resultados da espessura de saída do material, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas na	
temperatura de entrada do material em F2, tabela B3.5.	195
Figura 5.75 – Resultados da carga de laminação, obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas na espessura de	
entrada do material em F2, tabela B3.6.	196
Figura 5.76 – Resultados das tensões de escoamento média(TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações tensão a ré na tira da cadeira F2, tabela B4.1.	196

Figura 5.77 – Resultados de temperatura de laminação, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações tensão a ré da tira da cadeira	
F2, tabela B4.1.	197
Figura 5.78 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas tensão a ré da tira da	
cadeira F2, tabela B4.1.	197
Figura 5.79 – Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas tensão a ré na tira da cadeira F2, tabela B4.1.	198
Figura 5.80 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
tensão a ré do material, tabela B4.1	198
Figura 5.81 – Resultados das tensões de escoamento média(TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações na tensão a frente na tira da cadeira F1, tabela B5.1.	199
Figura 5.82 – Resultados de temperatura de laminação, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações tensão a frente na tira da	
cadeira F2, tabela B5.1.	199
Figura 5.83 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas tensão a frente na tira	
da cadeira F2, tabela B5.1.	200
Figura 5.84- Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas tensão a frente da tira na cadeira F2, tabela B5.1.	200
Figura 5.85 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
tensão a rente da tira em F2, tabela B5.1	200
Figura 5.86 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês	
3, devido a variações provocadas na tensão a frente na tira em F2, tabela	
B5.2.	201
Figura 5.87 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas na tensão a	
frente na tira em F2, tabela B5.3.	201
Figura 5.88 – Resultados da temperatura de laminação, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas tensão a frente na tira em F2, tabela B5.4	202

Figura 5.89 – Resultados da espessura de saída do material, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas na tensão a frente de F2, tabela B5.5.	203
Figura 5.90 – Resultados da carga de laminação, obtidos pelo modelo	
termomicroestrtural para aço carbono manganês 3, devido a variações	
provocadas na tensão a frente de F2, tabela B5.6.	203
Figura 5.91 – Resultados das tensões de escoamento média (TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações provocadas na velocidade do cilindro da cadeira F2, tabela B6.1.	204
Figura 5.92 – Resultados de temperatura de laminação, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações velocidade do cilindro da	
cadeira F2, tabela B6.1.	205
Figura 5.93 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço	
carbono manganês 3, devido a variações na velocidade do cilindro da	
cadeira F2, tabela B6.1.	205
Figura 5.94 – Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
velocidade do cilindro da cadeira F2, tabela B6.1.	206
Figura 5.95 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
velocidade do cilindro em F2, tabela B6.1	206
Figura 5.96 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês	
3, devido a variações provocadas na velocidade do cilindro em F2, tabela	
B6.2.	207
Figura 5.97 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas na	
velocidade do cilindro na cadeira F2, tabela B6.3.	207
Figura 5.98 – Resultados da temperatura de laminação, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
velocidade do cilindro em F2, tabela B6.4	208
Figura 5.99 – Resultados da espessura de saída do material, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas na velocidade do cilindro em F2, tabela B6.5.	209
Figura 5.100 – Resultados da carga de laminação, obtidos pelo modelo	
termomicroestrtural para aço carbono manganês 3, devido a variações	
provocadas na velocidade do cilindro em F2, tabela B6.6.	209

Figura 5.101 – Resultados das tensões de escoamento média (TEM) em F3, obtidos	
pelo modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações provocadas no gap em F2, tabela C1.1.	210
Figura 5.102 – Resultados de temperatura de laminação em F3, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações no	
gap em F3, tabela C1.1.	211
Figura 5.103 – Resultados de tamanho de grão (μm) em F3 obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações no	
gap em F2, tabela C1.1.	211
Figura 5.104 – Resultados de espessura de saída (mm) em F3, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações no	
gap em F2, tabela C1.1.	212
Figura 5.105 – Resultados de carga de laminação (ton.) em F3, obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações no	
gap em F2, tabela C1.1.	212
Figura 5.106 – Resultados das tensões de escoamento média(TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações provocadas no gap da cadeira F3, tabela C3.1.	213
Figura 5.107 – Resultados de temperatura de laminação, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap em F3, tabela C3.1.	213
Figura 5.108 – Resultados de tamanho de grão (μm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap da cadeira F3, tabela C3.1.	214
Figura 5.109 – Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap em F3, tabela C3.1.	214
Figura 5.110 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas no gap em F3, tabela C3.6.	215
Figura 5.111 – Resultados de TEM, obtidos pelo modelo para aço carbono	
manganês 3, devido a variações provocadas no gap da cadeira F3, tabela	
C3.2.	215
Figura 5.112 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas no gap da	
cadeira F3, tabela C3.3.	216

Figura 5	5.113 – Resultados da temperatura de laminação, obtidos pelo modelo para	
	aço carbono manganês 3, devido a variações provocadas no gap em F3,	
	tabela C3.4.	216
Figura 5	5.114 – Resultados da espessura de saída do material, obtidos pelo modelo	
	para aço carbono manganês 3, devido a variações provocadas no gap em	
	F3, tabela C3.5.	217
Figura 5	5.115 – Resultados da carga de laminação, obtidos pelo modelo para aço	
	carbono manganês 3, devido a variações provocadas no gap em F3, tabela	
	C3.6.	217
Figura 5	5.116 – Resultados das tensões de escoamento média (TEM), obtidos pelo	
	modelo termomicroestrutural para aço carbono manganês 3, devido a	
	variações provocadas na temperatura de entrada do material na cadeira F3,	
	tabela C3.1.	218
Figura 5	5.117 – Resultados de temperatura de laminação, obtidos pelo modelo para	
	aço carbono manganês 3, devido a variações provocadas na temperatura	
	de entrada do material na cadeira F3, tabela C3.1.	218
Figura 5	5.118 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço	
	carbono manganês 3, devido a variações provocadas na temperatura de	
	entrada do material na cadeira F3, tabela C3.1.	219
Figura 5	5.119 – Resultados de espessura de saída (mm) obtidos pelo modelo	
	termomicroestrutural para aço carbono manganês 3, devido a variações na	
	temperatura de entrada do em F3, tabela C3.1.	220
Figura 5	5.120 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
	termomicroestrutural para aço carbono manganês 3, devido a variações na	
	temperatura de entrada do material em F3, tabela C3.1.	220
Figura 5	5.121 – Resultados de TEM, obtidos pelo modelo para aço carbono	
	manganês 3, devido a variações provocadas na temperatura de entrada do	
	material na cadeira F3, tabela C3.3.	221
Figura 5	5.122 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	
	para aço carbono manganês 3, devido a variações provocadas na	
	temperatura de entrada do material na cadeira F3, tabela C3.3.	221
Figura 5	5.123 – Resultados da temperatura de laminação, obtidos pelo modelo para	
	aço carbono manganês 3, devido a variações provocadas na temperatura	
	de entrada do material na cadeira F3, tabela C3.4.	222

Figura 5.124 – Resultados da espessura de saída do material, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas na	
temperatura de entrada do material em F3, tabela C3.5.	222
Figura 5.125 – Resultados da carga de laminação, obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas na espessura de	
entrada do material em F3, tabela C3.6.	223
Figura 5.126 – Resultados das tensões de escoamento média(TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações tensão a ré na tira da cadeira F3, tabela C4.1.	223
Figura 5.127 – Resultados de temperatura de laminação, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações tensão a ré da tira da cadeira	
F3, tabela C4.1.	224
Figura 5.128 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas tensão a ré da tira da	
cadeira F3, tabela C4.1.	224
Figura 5.129– Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas tensão a ré na tira da cadeira F3, tabela C4.1.	225
Figura 5.130 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
tensão a ré na tira em F3, tabela C4.1	225
Figura 5.131 – Resultados das tensões de escoamento média(TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações na tensão a frente na tira da cadeira F3, tabela C5.1.	226
Figura 5.132 – Resultados de temperatura de laminação, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações tensão a frente na tira da	
cadeira F3, tabela C5.1.	226
Figura 5.133 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço	
carbono manganês 3, devido a variações provocadas tensão a frente na tira	
da cadeira F3, tabela C5.1.	227
Figura 5.134– Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas tensão a frente da tira na cadeira F3, tabela C5.1.	227
Figura 5.135 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
tensão a rente da tira em F3, tabela C5.1	227

Figura 5.136 – Resultados de TEM, obtidos pelo modelo para aço carbono	
manganês 3, devido a variações provocadas na tensão a frente na tira em	
F3, tabela C5.3.	228
Figura 5.137 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas na tensão a	
frente na tira em F3, tabela C5.3.	228
Figura 5.138 – Resultados da temperatura de laminação, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas tensão a frente na tira em F3, tabela C5.4	229
Figura 5.139 – Resultados da espessura de saída do material, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas na tensão a frente de F3, tabela C5.5.	230
Figura 5.140 – Resultados da carga de laminação, obtidos pelo modelo	
termomicroestrtural para aço carbono manganês 3, devido a variações	
provocadas na tensão a frente de F3, tabela C5.6.	230
Figura 5.141 – Resultados das tensões de escoamento média (TEM), obtidos pelo	
modelo termomicroestrutural para aço carbono manganês 3, devido a	
variações provocadas na velocidade do cilindro da cadeira F3, tabela C6.1.	231
Figura 5.142 – Resultados de temperatura de laminação, obtidos pelo modelo para	
aço carbono manganês 3, devido a variações velocidade do cilindro da	
cadeira F3, tabela C6.1.	231
Figura 5.143 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço	
carbono manganês 3, devido a variações na velocidade do cilindro da	
cadeira F3, tabela C6.1.	232
Figura 5.144 – Resultados de espessura de saída (mm) obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
velocidade do cilindro da cadeira F3, tabela C6.1.	233
Figura 5.145 – Resultados de carga de laminação (ton.) obtidas pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
velocidade do cilindro em F3, tabela C6.1	233
Figura 5.146 – Resultados de TEM, obtidos pelo modelo para aço carbono	
manganês 3, devido a variações provocadas na velocidade do cilindro em	
F3, tabela C6.3.	234
Figura 5.147 – Resultados do tamanho de grão da austenita, obtidos pelo modelo	
para aço carbono manganês 3, devido a variações provocadas na	
velocidade do cilindro na cadeira F3, tabela C6.3.	234

Figura 5.148 – Resultados da temperatura de laminação, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações na	
velocidade do cilindro em F3, tabela C6.4	235
Figura 5.149 – Resultados da espessura de saída do material, obtidos pelo modelo	
termomicroestrutural para aço carbono manganês 3, devido a variações	
provocadas na velocidade do cilindro em F3, tabela C6.5.	236
Figura 5.150 – Resultados da carga de laminação, obtidos pelo modelo	
termomicroestrtural para aço carbono manganês 3, devido a variações	
provocadas na velocidade do cilindro em F3, tabela C6.6.	236
Figura 5.151 – Diagrama de blocos mostrando um tipo de controle não convencional	
na laminação de tiras a quente, utilizando o modelo termomicroestrutural.	248

SIMBOLOGIA

- K_{def} Resistência à deformação,
- P Força de separação do cilindro, Carga de laminação
- F_d Área de trabalho projetada entre o cilindro e o material sendo laminado
- τ_1, τ_2 Tensões a ré e a frente na tira em relação a cadeira de laminação, respectivamente
- β_1,β_2 Coeficientes das tensões a ré e a frente da tira, respectivamente
- p_x Pressão normal à distância "x" a partir do plano de saída
- $P\theta$ Pressão no cilindro no ângulo θ
- I_d Arco de contato projetado entre o cilindro e o material,
- α Ângulo de contato do material com o cilindro de trabalho
- Rc Raio do cilindro de trabalho
- R' Raio do cilindro com deformação durante o trabalho
- h1 e h2 Espessura de entrada e saída do material, respectivamente
- Δh Diferença entre h1 e h2, Δh = h1 h2
- R₁ e R₂ Raios do primeiro e segundo cilindros, respectivamente
- Ri Raio inicial do cilindro de trabalho
- W Largura do material
- v Razão de Poisson do material do cilindro de trabalho
- E Módulo de Young para o cilindro de trabalho
- ε Taxa de deformação do material
- εt Taxa de deformação total do material
- U Velocidade do cilindro em RPM
- r Grau de redução, r = (h1 h2) / h1
- ε_h Deformação homogênea
- ε Deformação efetiva
- t Tempo de aplicação da deformação em segundos
- ε_r Deformação redundante
- ω Ângulo morto
- φr Fator de deformação redundante
- εt Deformação total
- Vr Velocidade tangencial do cilindro de trabalho
- Ve Velocidade de saída da tira
- φn Ângulo neutro

- λ Fator de deslizamento
- λf Fator de deslizamento a frente
- hn Espessura do material no angulo neutro
- ED Energia teórica de deformação por unidade de volume
- ρ Densidade do material
- σ Tensão de escoamento
- ΔT Variação de temperatura do material
- J Calor mecânico equivalente.
- Ee e I Voltagem e a corrente elétrica, respectivamente
- Qm Fluxo de massa do material
- ΔT_{DEF} Aumento de temperatura devido à deformação plástica;
- Atd Equivalente térmico da deformação
- Id Comprimento do arco de contato
- ρ_{aco} Massa específica do aço
- caco Calor específico do aço
- ΔTcil Queda de temperatura devido à condutividade
- fc Fator de condução de calor do cilindro
- C Calor específico do material
- T Temperatura do material
- T_{Cil} Temperatura do cilindro de trabalho
- ΔT_{AC} Queda de temperatura média do material pelo arco de contato
- Vac Vazão do material no arco de contato no passe
- Te Temperatura de entrada do material no passe
- b₃ Efusividade térmica
- λ_{aço} Condutividade térmica do aço
- λ_{carepa} Condutividade térmica da carepa
- S_{carepa} Espessura de carepa
- t_{ac} Tempo de aplicação da deformação no arco de contato em horas
- As Área total da superfície de radiação
- Es Emissividade da superfície
- SB Fator de Stefan-Boltzmann
- V Volume do material
- T_a Temperatura ambiente
- t_{ip} Tempo entre passes
- ΔT_{RAD} Queda de temperatura devido à perda de calor por radiação
- T_{SAIDA} Temperatura de saída do material

 θ_{S} – Temperatura de saída em Kelvin, θ_{S} - T_{SAIDA} + 273

σ_{SB} – Constante de Stefan-Boltzmann

 ϵ_{m} – Emissividade do aço

ΔT_{AR} - Queda de temperatura devido à perda de calor por convecção

λ_{ar} – Condutividade térmica do ar

ρ_{ar} – Massa específica do ar

μ_{ar} – Viscosidade do ar

rw - Taxa de calor absorvido pela água

Wa - Volume do fluxo do jato d'água para retirada de carepa por unidade da largura da placa

 ΔT_w - Aumento da temperatura da água de retirada de carepa

c_w - Calor específico da água

s - Proporção de vapor gerada na operação

 λ_W - Calor latente da água

L₁ - Comprimento de entrada da placa

Q_p - Calor removido a partir da placa

ΔT_{AGUA} - Queda de temperatura devido à condução de calor pela ação da água

Tagua – Temperatura de entrada da água do spray antes do passe

t_{agua} – Tempo de contato da água em segundos

αc - Difusividade térmica

H - Condutância do material que esta sendo laminado

λt - Condutividade térmica

T - Temperatura

x - Distância a partir da interface.

Tv_S - Temperatura da superfície do cilindro,

Tv₀ - Temperatura a uma distância abaixo da superfície do cilindro,

Tv_L - Temperatura do material que esta sendo laminado,

H - Condutância do material que esta sendo laminado,

pc - Densidade do cilindro

X_t - Fração de recristalização no tempo

t_f - Tempo para produzir a fração de recristalização f

kt- Exponencial do tempo

t_f - Tempo para se produzir uma certa fração de recristalização f

R - Constante dos gases ideais

d₀ - Tamanho inicial do grão de austenita

Q_{rec} - Energia de ativação para a recristalização

Z - Parâmetro Zener-Hollomon

Q_{def} - Energia de ativação para a deformação

εa - Deformação acumulada

εt - Deformação total

X - Fração de recristalização do material

Xdin - Fração de recristalização dinâmica do material

Ass, q - Constantes da equação 1.97

ε_p – Deformação relativa ao limite de resistência

ε_c - Deformação crítica

σ_{ss} - Tensão de escoamento no regime estacionário

Nbef - Efeito do Nióbio

t_{0.5} - Tempo para se alcançar 50% de recristalização

d_{rec} - Tamanho de grão da austenita completamente recristalizada após deformação

d - Tamanho do grão final, após recristalização e crescimento

 t_{ps} - Tempo para a formação de 5% de precipitados de Nb(C,N) a partir da austenita supersaturada

T_{RH} - Temperatura de reaquecimento do material

 d_{rec}^{lpha} - Tamanho de grão da ferrita recristalizada

T - Taxa de resfriamento do aço

 d_{α} - Tamanho de grão final da ferrita em presença de deformação residual ou acumulada t_R ou t_{rec} - Tempo de recristalização

TEM - Tensão de escoamento média

TEM_{MK} - Tensão de escoamento média da equação de Misaka

 $\mathrm{TEM}_{\mathrm{Cor}}^{\mathrm{Carb}}$ - Tensão de escoamento média corrigida para aços ao Carbono

 ${
m TEM}_{
m Cor}^{
m Nb}$ - Tensão de escoamento média corrigida para aços ao Nióbio

 ${
m TEM}_{
m Cor}^{
m Micr}$ - Tensão de escoamento média corrigida para aços Microligados

TEM_{Final} - Tensão de escoamento média final

TEM_{Mod} - Tensão de escoamento média do modelo microestrutural no passe considerado

M - Torque na laminação

a - Braço de alavanca

Q - Fator geométrico da equação de Sims

TCM - Tensão de cisalhamento média

CO - Curva de Operação do laminador

CR - Curva de reação do laminador

g - Distância entre os cilindros de trabalho, gap

Elm - Módulo de Rigidez do laminador

t_{din} - Tempo de recristalização dinâmica

•

 $\epsilon_a\,$ - Taxa de deformação acumulada

ε_{res} - Deformação residual contida no aço após último passe

 P_{Mod} – Força aplicada ao cilindro de trabalho obtida pelo modelo termomicroestrutural

ld - Comprimento do arco de contato

T_{MAX} - Temperatura máxima devido à deformação plástica no passe

t_{ac} – tempo de aplicação da deformação no arco de contato em horas

 $T_{\text{SAÍDA}}$ - Temperatura de saída do passe

Tagua – Temperatura de entrada da água do spray entre passes

t_{agua} - Tempo de contato da água em segundos

S_{agua} – Espessura do filme de água

 ΔT_{IP} - Queda de temperatura entre cadeiras de laminação (entre passes)

Modelo – Modelo microestrutural com correção para a equação de Misaka após certa deformação

Modelo sc - Modelo microestrutural sem correção para a equação de Misaka

Modelo TM – Modelo termomicroestrutural com correção para a equação de Misaka após certa deformação

RESUMO

Devido a forte relação entre as mudanças microestruturais e as propriedades mecânicas do aço durante a laminação à quente, faz-se cada vez mais necessário o desenvolvimento de modelos que levem em consideração propriedades metalúrgicas do aço e variáveis operacionais, com o objetivo de otimizar o processo. O modelo termomicroestrutural desenvolvido calcula a tensão de escoamento média levandando em consideração a deformação acumulada entre passes de maneira a se incorporar o efeito da recristalização estática, dinâmica e metadinâmica. Este modelo termomicroestrutural também permite calcular o tamanho de grão da austenita entre passes de laminação e o tamanho de grão da ferrita após a saída do material da última cadeira de laminação. O modelo calcula a carga de laminação em todas as cadeiras levando em consideração o efeito das tensões entre cadeiras aplicadas no material que está sendo laminado e a medida do espaçamento entre os cilindros de trabalho (gap) como dados de entrada. Desta forma, a espessura de saida do material de uma dada cadeira de laminação ou a espessura de entrada do material na cadeira seguinte seja calculada. Foi desenvolvido um modelo térmico, onde as equações térmicas utilizam modelos matemáticos consagrados que tratam das trocas térmicas do aco durante o processo de laminação. Com isto, o modelo termomicroestrutural pode calcular as variações térmicas, microestruturais e de tensão de escoamento média que ocorrem no aço e também a carga de laminação, a espessura de saída e temperaturas de entrada e saída do aço em cada cadeira, durante a laminação a quente. O modelo mostrou boa concordância com os dados industriais de diferentes laminações e para diferentes tipos de aços ao carbono e microligados e também para dados de literatura. Foram então introduzidos distúrbios operacionais no modelo termomicroestrutural e foi levantada curvas de sensibilidade que mostraram as alterações que estes distúrbios provocam nas propriedades do aco, como tensão de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída do material e carga de laminação, não somente na cadeira de laminação em questão, mas o efeito também nas demais cadeiras. Utilizando as simulações feitas, foram elaborados conjuntos de regras qualitativas que possibilita determinar quais as ações a serem tomadas diante de distúrbios na espessura e/ou temperatura de entrada e/ou tensão de escoamento média e as correções a serem feitas nas variáveis manipuladas que são o gap, tensão a ré, tensão a frente e velocidade do cilindro de trabalho, visando a recuperação da espessura, melhores propriedades mecânicas e redução na carga de laminação. Desta forma, pode-se definir as prioridades e tolerâncias que se deseja obter com relação às propriedades mecânicas do material, microestrutura e espessura de saída da tira e também como parâmetro operacional, a carga de laminação. Estas bases de regras servem de suporte para se desenvolver algum tipo de programação visando controle do processo de laminação a quente utilizando técnicas de controles não convencionais

Palavras-chave: Laminação a quente. Laminação de tiras a quente. Modelo termomicroestrutural. Modelo térmico. Carga de laminação.

ABSTRACT

Due to the strong relationship between the microstructural changes and the mechanical properties of steel in a hot strip mill, the development of models that take into consideration metallurgic steel properties and operational variables with the objective of optimizing the process has become more necessary. The developed thermomicrostructural model calculates the mean flow stress taking into account accumulated strain between passes to incorporate the effect of the static, dynamic and metadynamic recrystallization. This thermomicrostructural model also allows the calculation of the austenite grain size between passes and the ferrite grain size after the steel leaves of the last stand. The model calculates the roll force in all the stands taking into consideration the effect of the strip tension between stands applied on the material during rolling mill and the work roll gap. Therefore, the material exit thickness for each stand or the material entrance thickness of the next stand can be calculated. A thermal model was developed, where the usual thermal equations were used to calculate the thermal exchanges of the steel in the hot strip mill. With this, the thermomicrostructural model can calculate the thermal, microstructural variations, mean flow stress that occurs in the steel and also the roll force, exit thickness and entry temperatures of the steel in each stand, in the hot strip mill. The model also closely agreed with the industrial data of different hot strip mills and for different types of carbon and microalloyed steels and for literature data. Then operational disturbances in the thermomicrostructural model were introduced and sensitivity curves were plotted that showed the changes that these disturbances cause in the steel properties, such as, mean flow stress, grain size, strip temperature, material exit thickness and roll force, not only in the one specific stand but also the effect in the next stands. Using the simulations, it was elaborated a group of qualitative rules that make it possible to determine which actions should be taken if the disturbances occur in the material thickness and/or entry temperature and/or mean flow stress and the corrections to be done in the manipulated variables, which are the roll gap, the strip tension between stand and the work roll speed, aiming to recover the strip thickness, improve mechanical properties and reduce roll force. It can therefore determine the priorities and measures that are needed for the mechanical properties of the material, microstructure and steel exit thickness and also the roll force as an operational parameter. These qualitative rules provide a base to develop some type of programming aimed at hot strip mill control. such as a soft computing program.

Keywords: Hot rolling. Hot strip mill. Thermomicrostructural model. Microstructural model. Thermal model. Roll force.

1 – INTRODUÇÃO

Inicialmente, as operações de laminação tinham como único objetivo atender às dimensões desejadas do laminado. Entretanto, desde os anos 50, tem-se percebido que tanto a temperatura final do laminado após o último passe, quanto o grau de redução aplicado no mesmo afetam significativamente as propriedades físicas do produto.

Desta forma, em muitos processos de laminação a quente, muitas operações são realizadas de modo a se alcançar uma temperatura final que faz com que se obtenham as propriedades físicas desejadas no produto. Estas operações são chamadas de laminação controlada e mais recentemente de tratamentos termomecânicos [1].

O controle das propriedades mecânicas do aço durante a laminação contribui para a redução de custos devido a menor necessidade de adição de elementos de liga no refino do aço e redução de tratamentos térmicos posteriores, visando melhorar suas propriedades mecânicas. Além disso, um controle computacional microestrutural reduzirá o número de amostragens e conseqüentemente aumentará a produtividade da laminação.

Devido a forte relação entre as mudanças microestruturais e as propriedades mecânicas do aço durante a laminação à quente e no resfriamento dos aços, a partir da última década estudos têm sido feitos no sentido de se desenvolver modelos que levem em consideração propriedades físico-químicas e metalúrgicas do aço e também variáveis operacionais, com o objetivo de se otimizar o processo de laminação [2].

Estes modelos inicialmente se concentravam no cálculo da tensão de escoamento, como no caso de Misaka e Yoshimoto (1967), que correlacionou a tensão de escoamento média do aço com a temperatura, teor de carbono, deformação e taxa de deformação [3]. Nesta mesma linha Shida (1969) definiu também uma equação similar para a tensão de escoamento média [25]. Karjalainem et al. (1995) [28] e também Biglou et al. (1996) [53] desenvolveram equações empíricas da tensão de escoamento média a partir de testes de torsão para aços microligados.

Minami et al. (1996) fizeram melhoramentos na equação de Misaka (1967) para incorporar os efeitos de elementos de liga como o nióbio e titânio [4].

Siciliano (1996 e 2000) fez melhoramentos na equação de Misaka (1967) para aços ao carbono e microligados, respectivamente [5,6,25].

Como estes modelos levam em consideração somente a ocorrência de recristalização estática, foi-se necessário se fazer correções nos mesmos quando for o caso do aparecimento de recristalização dinâmica durante a deformação.

Avrami (1980) [33] definiu uma equação que calcula a fração de recristalização estática durante a laminação a quente dos aços em função do tempo entre passes. Como a fração de recristalização estática também é função do tamanho de grão, Sellars (1992) [30]

desenvolveu equações para cálculo do tamanho de grão da austenita, o que possibilitou utilizar o conceito de determinação da recristalização dinâmica por meio de equações que calculam as deformações crítica, máxima deformação para o limite de escoamento e deformação acumulada. Desta forma, foi possível calcular a fração de recristalização dinâmica e separa-la da fração de recristalização estática.

Roucoules et al.(1993) desenvolveram uma equação que calcula a tensão de escoamento média no regime estacionário, que está associada a recristalização dinâmica [34]. Com isto então foi possível calcular a tensão de escoamento média numa laminação a quente, levando-se em consideração as recristalizações estáticas e dinâmicas.

De posse da tensão de escoamento média, pode-se então utilizar diferentes modelos para cálculo da carga de laminação. No caso da laminação a quente, o modelo de carga mais utilizado é o de Sims (1954) [7] e que também foi utilizado neste trabalho.

Com a minha experiência de ter trabalhado oito anos em duas grandes siderúrgicas do Brasil, que são a companhia siderúrgica paulista COSIPA e a companhia siderúrgica de tubarão CST, e também mais de dez anos dedicados ao ensino de metalurgia no CEFET-ES, tenho acompanhado a evolução tecnológica na área de laminação a quente de aços planos. Observo que atualmente, estão sendo desenvolvidos estudos em modelos microestruturais para aplicação na indústria, mas não como modelo preditivo e para controle [2,6]. Nota-se que estes estudos tem como limitadores a dependência de dados como a carga, a temperatura de laminação e a espessura de saída do material que são obtidos *on line*, e no caso da temperatura e espessura, são muitas vezes calculados por modelos.

Com o intuito de tornar o modelo microestrutural preditivo, neste trabalho será mostrado o desenvolvimento de um modelo termomicroestrutural, onde um modelo térmico é desenvolvido e o mesmo é inserido no modelo microestrutural de maneira a se predizer as temperaturas do material durante a laminação a quente.

Esta pesquisa mostra também o desenvolvimento de um equacionamento que calcula a espessura de saída do material em função de dados da abertura entre cilindros de trabalho e do módulo de rigidez da cadeira de laminação.

Neste modelo não será necessário fornecer a carga de laminação, pois o modelo faz interações corrigindo a carga de laminação e outras variáveis do processo até a carga se estabilizar num erro para mais e para menos de um porcento.

Com isto, será possível fazer análise de sensibilidade e introduzir distúrbios em variáveis operacionais e metalúrgicas de maneira a se observar as possíveis alterações nas propriedades metalúrgicas, microestrutura e espessura do material.

Este modelo termomicroestrutural poderá ser utilizado *on line* visando controle e também *off line* para preparar *set ups* visando não somente a espessura do material, mas também as propriedades metalúrgicas e microestruturais do aço. O modelo pode também

ser utilizado no desenvolvimento de novos produtos, minimizando o número de ensaios laboratoriais, que são muito demorados e de custo elevado. O modelo poderá contribuir para a redução de adição de elementos de liga no refino do aço, uma vez que os mesmos são adicionados para melhorar as propriedades mecânicas do material. Outra vantagem de se utilizar este modelo será na redução de tratamentos térmicos após a laminação, que também são utilizados para melhoria de propriedades mecânicas do laminado.

Além disso, a medida que o modelo termomicroestrutural ganhar confiabilidade, o número de amostragem poderá ser reduzido, o que irá proporcionar um aumento significativo de produtividade, além de somar as reduções de custos já descritas.

Devido a inúmeras vantagens em utilizar modelos microestruturais e térmicos, atualmente no Brasil foi formado um grupo de estudos em modelamento matemático liderado pela Associação Brasileira de Metalurgia e Materiais (ABM) e que inclui pesquisadores das principais siderúrgicas e universidades do país, na qual esta pesquisa também faz parte, devido ao desenvolvimento deste trabalho e aos artigos apresentados.

A seguir está listado os artigos que foram e que serão apresentados em congressos e que são resultados deste trabalho de pesquisa:

DENTI Filho J., MACHADO M.L.P., Modelo microestrutural para controle de tamanho de grão, cálculo de tensão de escoamento média e força de laminação a quente de aços carbono e ligas, XV Congresso Brasileiro de automática de 21 a 24 de Setembro, Gramado, RS, Brazil, 2004.

MACHADO M.L.P. DENTI Filho J., FAGUNDES Jr. J. Simulation of operational disturbance in a hot strip mill using a thermomicrostructural model, **IASTED International Conference on Modelling and Simulation (MS 2005), may 18 to 20**, Cancun, Mexico, 2005.

MACHADO M.L.P. DENTI Filho J., FAGUNDES Jr. Análise do efeito de distúrbios de temperatura, espessura da tira e velocidade do cilindro de trabalho utilizando um modelo termomicroestrutural na laminação a quente, 60° Congresso da Associação Brasileira de Metalurgia e Materiais – ABM de 25 a 28 de Julho, Belo Horizonte, 2005.

MACHADO M.L.P. DENTI Filho J., FAGUNDES Jr. A Thermomicrostructural model to simulation disturbances in a hot strip mill and its effect in steel properties, roll force and exit strip thickness, **Proceedings of the XXVI Iberian Latin-American Congress on Computational Methods in Engineering – CILAMCE 2005, de 19 a 21 de Outubro**, Guarapari, 2005.

MACHADO M.L.P. DENTI Filho J., FAGUNDES Jr. Simulação de variações na tensão na tira e na abertura entre cilindros e consequências nas propriedades e espessura da tira, usando modelo termomicroestrutural, **42º Seminário de Laminação Processos e Produtos Laminados e Revestidos, de 25 a 28 de Outubro**, Santos, 2005.

1.1 – APRESENTAÇÃO DO TRABALHO

Nesta pesquisa, o modelo microestrutural utilizado para o cálculo da tensão de escoamento média (TEM) foi baseado na equação de Misaka (1967) para aços C-Mn e foram feitas as correções para aços carbono, ao nióbio e microligados [3,4,5]. Além disso, foi levada em consideração a deformação acumulada entre passes de maneira a se incorporar o efeito da recristalização estática, dinâmica e metadinâmica ao modelo de Misaka (1967) [5,6].

O modelo microestrutural também permite prever o tamanho de grão da austenita entre passes de laminação e o tamanho de grão da ferrita após a saída do material da última cadeira de laminação para uma determinada taxa de resfriamento, como mostrado no artigo de Denti Filho J. e Machado M.L.P. que é orindo desta pesquisa e cuja a bibliografia esta mostrada ne introdução.

Para cálculo da força no cilindro de trabalho utilizam-se modelos de carga como o de Sims, que tem sido muito utilizado em trabalhos publicados sobre laminações de tiras à quente [1,7,8]. Desta forma, a tensão de escoamento média necessária ao modelo de Sims é calculada pelo modelo microestrutural.

Como o modelo microestrutural necessita da carga de laminação para o cálculo do achatamento do cilindro de trabalho e para o modelo térmico, é então necessário utilizar a carga de laminação medida da indústria. Com o intuito de eliminar esta dependência, para que o modelo possa ser preditivo, e não utilizar a carga de laminação da indústria como dado de entrada, o modelo primeiramente calcula a carga de laminação utilizando o raio do cilindro de trabalho não deformado e em seguida faz interações provocando modificações na carga de laminação para se chegar ao valor final estabilizado de mais ou menos um porcento no valor da mesma. Com isto tem-se o raio corrigido do cilindro de trabalho, as temperaturas de entrada, saída e de laminação em cada cadeira, a força de laminação, a tensão de escoamento média, o tamanho de grão da austenita, a fração de recristalização estática e dinâmica, a deformação acumulada, a taxa de deformação, entre outras. Os artigo de Machado et al. (CILAMCE 2005), cuja a bibliografia esta na introdução, mostra um fluxograma que retrata esta programação.

Recentemente, Siciliano et al. (1996) [5] fizeram algumas correções na taxa de deformação do material e na velocidade de saída da tira do cilindro, que foram respectivamente, a deformação redundante e o fator de deslizamento à frente e foram utilizadas neste trabalho.

Foram introduzidas também melhorias no modelo microestrutural de maneira que fosse levado em consideração o efeito da tensão à frente e à ré aplicados no material em

relação a uma cadeira de laminação, de modo a minimizar erros, pois estas tensões afetam a carga de laminação.

Está contemplado também no modelo microestrutural equações de maneira a permitir que a medida da abertura entre cilindros de trabalho (*gap*) possa ser utilizada como dados de entrada. Desta forma, a espessura de saida do material de uma dada cadeira de laminação ou a espessura de entrada do material na cadeira seguinte seja calculada, bastando fornecer a espessura de entrada somente na primeira cadeira de laminação, o *gap* e o módulo de rigidez de cada cadeira de laminação por parte da indústria.

Isto evita que se utilize medidas de espessura fornecidas pela indústria, que normalmente são calculadas por modelos e podem ser um fator de erro, além de preparar o modelo microestrutural para ser preditivo.

A temperatura do material durante a laminação varia significativamente, e ela é um fator determinante na microestrutura do material e conseqüentemente nas suas propriedades mecânicas. Portanto, as equações do modelo microestrutural necessitam do valor da temperatura em cada passe, que é um dado difícil de se obter na industria, a não ser que se utilizem modelos térmicos.

Desta forma, com o intuito de o modelo ser preditivo, é necessário desenvolver um modelo térmico, onde as equações térmicas utilizam modelos matemáticos consagrados que tratam das trocas térmicas do aço durante a sua deformação no laminador, a sua condução de calor pelo cilindro de trabalho e pela agua, as suas perdas de calor por radiação e por convecção para o ar atmosférico.

Com isto, pode-se determinar a temperatura máxima que o material atinge durante a deformação e as temperaturas de entrada e saída do aço em cada cadeira de laminação.

Este modelo térmico inserido no modelo microestrutural resulta no denominado neste trabalho de modelo termomicroestrutural.

Utilizando o modelo termomicroestrutural, pode-se então fazer pela primeira vez, análises de sensibilidade por meio de alterações provocadas na espessura de entrada do material, no *gap*, na temperatura de entrada do material na cadeira de laminação, na tensão a frente e a ré entre cadeiras e na velocidade do cilindro de trabalho.

Desta forma, o modelo termomicroestrutural pode então predizer as variações térmicas, microestruturais e de tensão de escoamento média que ocorrem no aço e também a carga de laminação, durante a laminação a quente.

Com isto, é possível introduzir distúrbios operacionais no modelo termomicroestrutural e analisadas as alterações que estes distúrbios provocavam nas propriedades do aço, como tensão de escoamento média e também, tamanho de grão, temperatura de laminação, espessura de saída do material e carga de laminação. Será

analisado também o efeito destes distúrbios não somente na cadeira de laminação em questão, mas o efeito nas demais cadeiras.

Desta forma, pode-se definir as prioridades e tolerâncias que se desejam obter com relação às propriedades mecânicas do material, microestrutura e espessura de saída da tira e também como parâmetro operacional, a carga de laminação.

Em função destes distúrbios, serão levantadas uma série de bases de regras qualitativas com o intuito de recuperar a espessura de saída do material e ao mesmo tempo, encontrar as mais adequadas propriedades mecânicas do aço sendo laminado.

Desta forma, estas bases de regras qualitativas obtidas, servirão de suporte para se desenvolver um tipo de programação visando controle do processo, utilizando técnicas de controles não convencionais.

Todos estes modelos são desenvolvidos em linguagem de programação C, de maneira que ,caso queira, pode ser feito um controle *on line* ou, por outro lado, estudar *off line* as influências das variáveis microestruturais e operacionais na laminação a quente de aços

1.2 – REVISÃO BIBLIOGRÁFICA

1.2.1 - Principais parâmetros que afetam a resistência à deformação na laminação [9]

- 1 Composição química do material
- 2 Características metalúrgicas do material,
- 3 Temperatura do material
- 4 Geometria da zona de deformação,
- 5 Atrito externo na zona de deformação,
- 6 Material trabalhado duramente antes do passe de laminação em consideração,
- 7 Taxa de deformação.

O estado da arte na teoria de laminação, não permite se obter uma relação analítica entre a resistência à deformação e os parâmetros acima listados. A solução prática para o problema foi em realizar em forma de duas etapas.

A primeira etapa consiste em se determinar as características das medidas de escoamento do material a partir de testes feitos em laboratório ou na planta industrial sob condições controladas. A segunda etapa consiste em se obter uma correlação entre a resistência à deformação com as condições de laminação e as características das medidas de escoamento obtidas nos testes feitos na primeira etapa [9].

1.2.2 - Resistência à deformação de um material laminado [9]

$$K_{\text{def}} = \frac{P}{F_{d}} + (\beta_{1}.\tau_{1} + \beta_{2}.\tau_{2})$$
 (1.1)

onde,

K_{def} = resistência à deformação,

P = força de separação do cilindro,

F_d = área de trabalho projetada entre o cilindro e o material sendo laminado,

 τ_1, τ_2 = tensões de entrada e saída da tira, respectivamente,

 β_1,β_2 = coeficientes das tensões de entrada e saída da tira, respectivamente.

A força de separação do cilindro pode ser determinada, se a distribuição de pressão p_x na zona de deformação for conhecida [9], vide fig.(1.1) e (1.2).

$$P = \int_{0}^{I_{d}} p_{x} . dx = \int_{0}^{\alpha} Rc_{P\theta} . d\theta$$
 (1.2)

onde:

p_x = pressão normal à distância "x" a partir do plano de saída,

 $p\theta$ = pressão no cilindro na posição angular θ ,

I_d = arco de contato projetado entre o cilindro e o material,

 α = ângulo de contato,

Rc = Raio do cilindro de trabalho

A área de trabalho projetada entre o cilindro e o material sendo laminado é dada por:

$$F_d = W.I_d$$
 (1.3)
onde, $W = Iargura \ média \ do \ material,$

Quando a deformação do cilindro não pode ser ignorada, a área projetada do arco de contato é expressa por:

$$l_{d} = L' = \sqrt{R'.\Delta h - \frac{\Delta h^{2}}{4}} \cong \sqrt{R'.\Delta h}$$
 (1.4)

R' = raio do cilindro com deformação durante o trabalho,

h1 e h2 = espessura de entrada e saída do material, respectivamente,

$$\Delta h = h1 - h2$$

para o caso em que a deformação do cilindro é desprezada, é expressa da seguinte forma:

$$l_{d} = L = \sqrt{R.\Delta h - \frac{\Delta h^{2}}{4}} \cong \sqrt{R.\Delta h}$$
 (1.5)

Se os raios dos cilindros não forem iguais, as equações (1.4) e (1.5) devem utilizar o raio médio, que é dado por:

$$R_{m} = \frac{2R_{1}.R_{2}}{R_{1} + R_{2}}$$

$$(1.6) R_{m} = \text{raio m\'edio}$$

$$R_{1} = R_{2} = \text{raios do primeiro e segundo}$$
cilindros.

o raio corrigido do Cilindro de Trabalho (R') pode ser determinado da seguinte forma[1,9]:

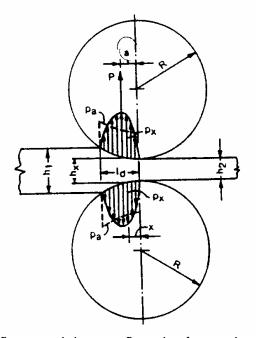


Fig.1.1 – Distribuição normal da pressão e das forças de separação nos cilindros

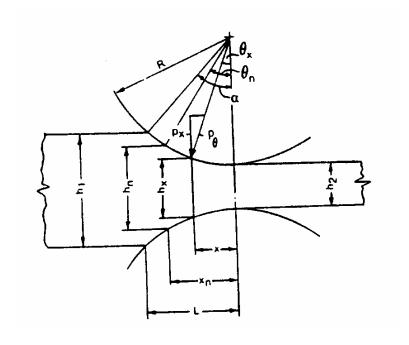


Fig.1.2 – Parâmetros da zona de deformação [9].

1.2.3 - Expressões da Taxa de Deformação do Material (arepsilon)

Alguns pesquisadores desenvolveram expressões que permite calcular a taxa de deformação, listaremos aqui algumas destas expressões.

Solução de Ford e Alexander [10]
$$\varepsilon = \frac{\pi.U}{30} \sqrt{\frac{R}{h1}} \left(1 + \frac{r}{4} \right) . \sqrt{r}$$
 (1.15)

Solução de Sims [7]
$$\varepsilon = \frac{\pi.U}{30} \sqrt{\frac{R}{h1}} \cdot \frac{1}{\sqrt{r}} \cdot \ln \left[\frac{1}{1-r} \right]$$
 (1.16)

Solução de Orowan e Pascoe [11]
$$\varepsilon = \frac{\pi.\mathrm{U}}{30} \sqrt{\frac{R}{h1}} \left[\frac{1 - 0.75.r}{(1 - r).\sqrt{r}} \right]$$
 (1.17)

Solução de Wusatowski [12]
$$\varepsilon = \frac{\pi \cdot U}{30} \sqrt{\frac{R}{h1}} \cdot \sqrt{\frac{r}{1-r}}$$
 (1.18)

Onde:

U = Velocidade periférica do cilindro em rpm,

R = Raio do cilindro de trabalho,

r = Grau de redução r = (h1 - h2) / h1

A taxa de deformação do material também pode ser calculada da seguinte forma [8]:

$$\stackrel{\bullet}{\epsilon} = \frac{\varepsilon}{t} = \frac{\text{deformação no passe}}{\text{tempo de aplicação da deformação}}$$
 (1.19)

1.2.4 - Deformação efetiva do material.

Levando em consideração as espessuras de entrada e saída, a deformação efetiva (ϵ) do material é a deformação homogênea (ϵ _h) multiplicada pelo critério de Von Mises $\left(2/\sqrt{3}\right)$ [8,73]:

$$\varepsilon = \frac{2}{\sqrt{3}} \varepsilon_h$$
, ou seja: $\varepsilon = \frac{2}{\sqrt{3}} \ln \left(\frac{h1}{h2} \right)$ (1.20)

1.2.5 - Tempo de aplicação da deformação (t) [8].

O tempo de aplicação da deformação é aproximadamente igual ao tempo necessário para que o cilindro se mova de um deslocamento angular α como mostrado na fig.(1.2). Nota-se que o deslocamento angular α coincide com os pontos de entrada e saída do material. Então, o tempo pode ser equacionado:

$$t = \frac{\alpha}{2\pi} \cdot \frac{60}{11}$$
 U – velocidade do cilindro em RPM,

$$\alpha = \arccos\left(1 - \frac{h1 - h2}{2R'}\right)$$
 (1.22) α - ângulo de contato do material com o cilindro, rad.

Desta forma, substituindo as equações (1.20) e (1.21) na equação (1.19), tem-se então a taxa de deformação efetiva do material durante o passe, dada por:

$$\stackrel{\bullet}{\epsilon} = \frac{\pi \cdot \sqrt{3} \cdot U}{45 \cdot \alpha} \ln \left(\frac{h1}{h2} \right) \tag{1.23}$$

1.2.6 - Deformação redundante do material.

Alem da deformação nominal ou homogênea do material que é devido às mudanças na seção transversal do aço sendo laminado, existe a deformação redundante que é devido ao trabalho de dobramento e desdobramento do material quando o mesmo entra e sai da zona de deformação.

A deformação redundante para a laminação de planos pode ser calculada geometricamente conforme mostrado na fig.(1.3) e é dada por [5,13]:

$$\varepsilon_{\rm r} = \left(\frac{1}{2}\right) \tan(\omega)$$
 $\varepsilon_{\rm r} = \text{deformação redundante}$
 $\omega = \text{ângulo morto} = \alpha/2$

h1/2
$$\frac{h_1 - h_2}{2}$$
 $\frac{C}{b}$ TIRA h2/2

Fig.1.3 – Esquema que mostra o contato geométrico entre o cilindro de trabalho e a tira [5].

Usando-se de geometria chega-se à seguinte expressão da deformação redundante [5].

$$\varepsilon_{\rm r} = \frac{h1 - h2}{4 * \sqrt{4(R')^2 \cdot \text{sen}^2(\alpha/2) - \frac{(h1 - h2)^2}{4}}}$$
(1.25)

1.2.7 - Fator de deformação redundante (φr) e deformação total (εt).

$$\varphi r = \frac{\varepsilon_r + \varepsilon_h}{\varepsilon_h} \tag{1.26}$$

A deformação total do material deve levar em consideração a deformação homogênea (ϵ_h) e a deformação redundante (ϵ_r)

$$\epsilon_t = \epsilon_h + \epsilon_r$$
 (1.27) ou $\epsilon_t = \epsilon_h . \phi r$ (1.28)

1.2.8 - Fator de deslizamento à frente

Para se ter valores exatos da taxa de deformação e do tempo entre passes, a velocidade de saída da tira em cada passe deve ser estimada precisamente. Sabe-se que a velocidade de saída da tira é maior do que a velocidade tangencial do cilindro de trabalho.

Usando-se equações de fluxo de massa é possível se chegar a um fator de deslizamento à frente em função do ângulo neutro, do raio do cilindro de trabalho, da espessura de saída do material e da velocidade tangencial do cilindro de trabalho [5].

Tomando-se como referencia a fig.(1.4), a velocidade da tira no ponto neutro (Vr) é igual a velocidade tangencial do cilindro que está em função da velocidade angular (U).

$$Vr = 2.\pi.R'.U$$
 (1.29)

Aplicando-se a equação de fluxo de massa no ponto neutro, tem-se:

O ângulo neutro, (ϕn) em radianos, pode ser obtido por:

$$\phi_{n} = \left(\frac{h2}{R'}\right)^{1/2} . \tan\left[\frac{\pi}{8} \left(\frac{h2}{R'}\right)^{1/2} . \ln(1-r) + \frac{1}{2}\arctan\left(\frac{r}{1-r}\right)^{1/2}\right]$$
(1.31)

Denominando-se de fator de deslizamento (λ) como sendo igual a:

$$\lambda = \left(\frac{2R'}{h^2}\cos\phi n - 1\right)(1 - \cos\phi n) \tag{1.32}$$

Então:

$$Ve = Vr(1 + \lambda) \tag{1.33}$$

Denominando-se de fator de deslizamento à frente (λf) como:

$$\lambda f = 1 + \lambda \tag{1.34}$$

Então a expressão da velocidade de saída da tira corrigida pelo fator de deslizamento à frente é dada por:

$$Ve = Vr.\lambda f$$
 (1.35)

A taxa de deformação total do material (ε) deve então levar em consideração também a deformação efetiva e o fator de deslizamento à frente que corrige a velocidade da tira e o tempo de aplicação da deformação, ou seja:

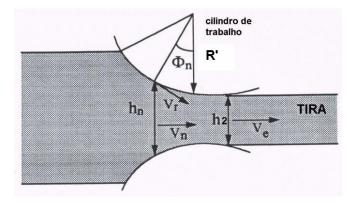


Fig.1.4 – Esquema que mostra a geometria da laminação no ponto neutro [5].

1.2.9 - Equações de fluxos térmicos na laminação

A previsão da temperatura do material que está sendo laminado é parte essencial na tecnologia de laminação. Pelo uso de modelos matemáticos capazes de realizar tais previsões, técnicas de controles automáticos podem ser empregados para estabelecer *setups* e seqüências de operações antes da laminação iniciar. Isto é desejável não somente para melhorar a eficiência da laminação (por exemplo, minimizar o número de passes em um laminador reversível), mas também para se atingir as propriedades metalúrgicas e físicas desejadas do produto final.

Em muitos processos de laminação, a temperatura do material é controlada por sprays de água, isto é particularmente importante na laminação controlada onde certas faixas de temperaturas finais são especificadas. Entretanto, os sprays também são utilizados para a retirada de carepa e para o controle ou remoção de finas partículas de óxidos que são geradas na alta velocidade de laminação do material[1].

1.2.9.1 - Calor gerado no interior do material durante a laminação.

A energia térmica no material ao entrar no laminador pode ser adquirida das seguintes formas:

- a) pela deformação plástica do material,
- b) pelo efeito do atrito na mordida do cilindro de laminação,
- c) pela oxidação ou formação de carepa na superfície do material e
- d) pelas mudanças nas propriedades físicas e metalúrgicas que ocorrem no material.

Se a tensão de escoamento do material é σ , a energia teórica de deformação por unidade de volume ED pode ser escrita pela equação (1.38), onde r é a redução dada no material. Entretanto, o efeito do atrito na mordida do cilindro leva a uma deformação do material de maneira que, a tensão de escoamento assume um valor maior σ^* , este aumento depende de alguns parâmetros da laminação tais como, velocidade de saída do material, diâmetro dos cilindros de trabalho e o coeficiente de atrito entre as superfícies do cilindro e do material [1].

$$ED = \sigma . \ln \left[\frac{1}{1 - r} \right]$$
 (1.38)

Se a densidade e o calor específico do material na temperatura de laminação é ρ e C respectivamente, então o aumento ΔT na temperatura do material para uma determinada redução r é dada por:

$$\Delta T = \frac{\sigma^*}{J.\rho.\rho}.ln \left[\frac{1}{1-r} \right]$$
 (1.39)

Algumas vezes o aumento na temperatura do material é expressa em termos da força motriz:

$$\Delta T = \frac{0.75.550. Ee.I}{746. Qm.C}$$
 Ee e I são a voltagem e a corrente respectivamente,

Qm = Fluxo de massa do material em (lb/s).

Outra maneira de se calcular o aumento de temperatura devido à deformação plástica no passe é dada por [14]:

$$\Delta T_{DEF} = \frac{1}{Atd} \cdot \frac{\varepsilon t.P}{W.ld.\rho_{aco}.c_{aco}}$$
(1.41)

 ΔT_{DEF} - aumento de temperatura devido à Id - comprimento do arco de contato; deformação plástica; $ho_{aço}$ - massa específica do aço;

Atd – equivalente térmico da deformação; c_{aço} – calor específico do aço.

onde:

$$ld = \sqrt{R'.\Delta h}$$
 (1.42)

Com respeito ao aumento de calor devido à mordida do cilindro, isto ocorre somente na superfície e a temperatura média da tira que esta sendo laminada será inversamente proporcional a espessura da mesma.

A oxidação superficial do material durante a laminação é uma reação exotérmica e a sua taxa de geração de calor depende de alguns parâmetros tais como, temperatura do material e espessura da camada de óxido(ou velocidade de formação de carepa). De maneira análoga ao atrito de mordida do cilindro, o aumento na temperatura média do material que está sendo laminado é inversamente proporcional a espessura do mesmo

No caso do calor gerado durante as transformações metalúrgicas que ocorrem no aço, são devido às reações que ocorrem no estado sólido e que está associado à decomposição da estrutura austenítica em ferrita e cementita. Este calor gerado é diretamente proporcional ao teor de carbono no aço e pode variar de 215 até 950 cal/g [1].

1.2.9.2 - Resfriamento do Material Durante a Laminação

Inicialmente, a perda de calor do material é devido:

- a) por condução diretamente para o cilindro de trabalho,
- b) por radiação,
- c) pelo ar (convecção),
- d) pela água,
- e) por condução dentro do próprio material.

Com respeito à perda de calor para o cilindro, é assumido ser equivalente ao calor recebido pelo cilindro. Desta forma, Seredynsky [15] deduziu uma equação térmica que mede a queda de temperatura devido à condução térmica do material com o cilindro de trabalho.

$$\Delta T cil = 60. fc. \sqrt{\frac{r}{h1.R}} \cdot \frac{T - T cil}{(1 - r)\pi \cdot \rho \cdot C.U}$$
(1.43)

ΔTcil = queda de temperatura devido à U = velocidade de revolução do cilindro condutividade.

fc = fator de condução de calor do cilindro r = grau de redução do material, [44.10³J/m²/seg/⁰C],

 ρ = densidade do material [7570kg/m³],

calor específico do [650J/kg/⁰C],

[rotação/min],

h1 = espessura inicial do material [mm],

R = raio do cilindro de trabalho [mm],

material $T = \text{temperatura do material } [^{0}C] e$

 T_{Cil} = temperatura do cilindro [${}^{0}C$].

Outra maneira de se calcular a queda de temperatura devido à condução de calor pelo cilindro de trabalho é dada por [14]:

$$\Delta T_{AC} = \frac{2.\text{Hac.ld.}(\text{Te} - \text{Tcil.}) \cdot \text{W.} \cdot 10^{-9}}{\text{Vac.} \rho_{aco.} c_{aco}}$$
(1.44)

 ΔT_{AC} - queda de temperatura média do W – largura do material [mm], material pelo arco de contato [°C]

Tcil – temperatura do cilindro de trabalho [°C].

Vac – vazão do material no arco de contato no passe [mm³/seg];

Te – temperatura de entrada do material no passe [°C].

onde,

$$Vac = h2.W.Vr.36.10^{-7}$$

Hac =
$$\frac{b_3}{2.\sqrt{t_{ac}}} \left[\psi_{ez} - \frac{1}{z} + \frac{2}{\sqrt{\pi}} \right]$$
 (1.46)

 λ_{aco} – condutividade térmica do aço,

 λ_{carepa} - condutividade térmica da carepa,

$$b_3 = \sqrt{\lambda_{aco} \cdot \rho_{aco} \cdot c_{aco}}$$
 (1.47)

$$z = \frac{2.\lambda_{\text{carepa}} \cdot \sqrt{t_{\text{ac}}}}{b_3.S_{\text{carepa}}}$$
 (1.48)

t_{ac} – tempo de aplicação da deformação no arco de contato em horas

$$\lambda_{aco} = 9,258.10^{-3}.\text{Te} + 14,468$$
 (1.49)

$$t_{ac} = \frac{ld}{Vr \, 3600} \tag{1.50}$$

$$\psi_{ez} = \frac{4}{\sqrt{\pi}} \cdot \frac{1}{(2z)^2} \left[1 - \frac{2!}{1! \cdot (2z)^2} + \frac{4!}{2! \cdot (2z)^4} - \frac{6!}{3! \cdot (2z)^6} + \cdots \right]$$
 (1.51)

Com relação a perda de calor por radiação, A taxa de variação da temperatura do material com o tempo (dT/dt) pode ser expressa em termos de 0k/seg:

$$\frac{dT}{dt} = -\frac{As.Es.SB}{C.V} \cdot \left(T^4 - Ta^4\right) \tag{1.52}$$

As = área total da superfície de radiação [m²],

Es = emissividade da superfície

[0,8 a 900° C],

SB = fator de Stefan-Boltzmann

 $[5,66.10^{-8} \text{J/m}^2/\text{s/k}^4]$

calor específico do material [650J/kg/°C],

V = volume do material [m³],

T = temperatura do material [0k] e

Ta = temperatura ambiente (°k).

Se a temperatura ambiente no instante de tempo t = 0 é T_0 , então a temperatura do material num determinado tempo t é dada por:

$$T = \frac{T_0}{\sqrt{1 + \frac{6.\text{SB.E.T}_0^3.t}{\rho.\text{C.h}}}}$$
 (1.53)

onde h é a espessura do material.

A perda de calor por radiação também pode ser calculada por [14]:

$$\Delta T_{RAD} = \frac{2.\varepsilon_{m}.\sigma_{SB}.\theta_{S}^{4}.t_{ip}}{\rho_{aco}.c_{aco}.h2}$$
(1.54)

 t_{ip} – Tempo entre passes [seg.] σ_{SB} – constante de Stefan-Boltzmann, ΔT_{RAD} - Queda de temperatura devido à σ_{SB} = 1,356.10⁻¹² cal/cm².s.K⁴ perda de calor por radiação ϵ_m – emissividade do aço, ϵ_m = 0,8 θ_S – Temperatura [K], θ_S = T_{SAIDA} + 273

A queda de temperatura devido à perda de calor por convecção (ar) pode ser determinada pela seguinte expressão: $-\Delta T_{AR}$ [14]

$$\Delta T_{AR} = \left(T - T_{AR}\right) \left(1 - e^{\frac{-2\alpha_{ar} \cdot t_{ip}}{\rho_{aço} \cdot c_{aço} \cdot h2}}\right) \qquad \Delta T_{AR} - \text{queda de temperatura devido à perda}$$

$$\Delta T_{AR} - \text{queda de temperatura devido à perda}$$

$$\Delta T_{AR} - \text{queda de temperatura devido à perda}$$

$$\Delta T_{AR} - \text{queda de temperatura devido à perda}$$

$$\lambda_{ar} - \text{condutividade térmica do ar,}$$

$$\rho_{ar} - \text{massa específica do ar,}$$

$$\alpha_{ar} = 0.0284. \lambda_{ar} \left(\frac{\rho_{ar}}{\mu_{ar}}\right)^{0.8} \cdot \frac{Ve^{0.8}}{W^{0.2}} \qquad (1.56)$$

$$\mu_{ar} - \text{viscosidade do ar.}$$

Geralmente a perda de calor por convecção pelo ar é desprezada, por ser muito pequena comparada com perda devido a resfriamento com água. Entretanto, para uma temperatura superficial na faixa 800 a 900°C, o coeficiente de transferência de calor se situa na faixa de 80 a 90 kcal/m²/h/°C[16]. Para uma convecção natural com o ar de superfícies planas do lado superior, a expressão da perda de calor é dada pela equação (1.57) e para o lado inferior pela equação (1.58) é, para a área superficial total esta sendo laminada [17].

$$\Delta T_{AR}^{SUP} = 0.35 T^{0.25}$$
 [BTU/h/ft²] (1.57)

$$\Delta T_{AR}^{INF} = 0.2T^{0.25}$$
 [BTU/h/ft²] (1.58)

O resfriamento da superfície dos aços a altas temperaturas pela água utilizando-se sprays e jatos laminar tem sido estudados por muitos pesquisadores. Os resultados são apresentados em termos diferentes, tal como intensidade de resfriamento (BTU/hora/ft²) e eficiência do spray (BTU/lb de água) e também pelo coeficiente de transferência de calor convencional (BTU/ft²/hora/°F). A eficiência do spray é simplesmente a transferência de calor por unidade de água de resfriamento, e é uma medida que efetivamente mostra a remoção de calor pelo spray [18].

Os sprays são utilizados não somente para a retirada de calor do material, como também para a remoção da carepa formada na superfície do mesmo. Seredynski [17] utilizou uma equação de balanço térmico levando em consideração estes fatores. Ele assumiu que o volume do fluxo do jato d'água para retirada de carepa por unidade da largura da placa é Wa, o peso de água associado com a placa é obtido pelo produto do fluxo do jato d'aqua Wa com a largura da placa W e com a densidade da água ρ_w que é igual a $1000 kg/m^3$. Desta forma, a taxa de calor absorvido pela água r_w é aproximadamente:

$$r_{w} = W.Wa.\rho_{w}.[\Delta T_{w}.C_{w}(1-s) + 85.s.C_{w} + \lambda_{w}]$$
 (1.59)

 $\Delta T_w =$ aumento da temperatura da agua de retirada s = proporção de vapor gerada na de carepa $[^0k],$ operação,

 c_w = calor específico da agua [4186 J/kg/ 0 k], λ_W = calor latente da agua [226 . 10^4 J/kg],

o calor removido a partir da placa Q_p é então dado por:

$$Q_p = h1.L_1.w.\rho_s.C_s.\Delta T_j$$
 (1.60)

h1 = espessura de entrada da placa [m],

 L_1 = comprimento de entrada da placa [m],

 ρ_s = densidade do material [7570 kg/m³]

 C_s = calor específico do material [650 J/kg/ 0 k]

 ΔT_i = queda na temperatura da placa.

desta forma temos:

$$\Delta T_{j} = 30.\text{Wa.W.}\rho_{w} \frac{C_{w} \left[\Delta T_{w} + \text{s.}(85 - \Delta T_{w})\right] + \text{s.}\lambda}{\text{R.U.h1.}C_{s}\pi.\rho_{s}}$$
(1.61)

A queda de temperatura devido à condução de calor pela ação da água também pode ser calculada da seguinte forma:

Na região dos sprays de água, pode-se estimar a queda de temperatura pela seguinte expressão[14]:

$$\Delta T_{AGUA} = \frac{4.\lambda_{aco} \cdot \left(Te - T_{agua}\right)}{b_3} \sqrt{\frac{t_{agua}}{\pi}}$$
(1.62)

ΔT_{AGUA} - Queda de temperatura devido à t_{agua} – tempo de contato da água [seg], condução de calor pela ação da água

Te – temperatura de entrada no passe [°C],

T_{aqua} - temperatura de entrada da água do spray antes do passe [°C],

 λ_{aco} – condutividade térmica do aço [cal / cm.s.°C]

onde,

$$\lambda_{\text{aco}} = 2,572.10^{-5}.\text{Te} + 4,019.10^{-2}$$
 (1.63)

$$b_3 = \sqrt{\lambda_{aco} \cdot \rho_{aco} \cdot c_{aco}}$$
 (1.64)

$$\rho_{aco} = \frac{8050 - 0.5.\text{Te}}{1000} \tag{1.65}$$

$$C_{aco} = \frac{587.8 + 0.0683.Te}{4180}$$
 (1.66)

b₃ - efusividade térmica

ρ_{aco} – massa específica do aço em [g/cm³],

c_{aço} – calor específico do aço [Kcal/Kg.grau, ou cal/g.grau].

1.2.9.3 - Fluxo de Calor no Cilindro de Trabalho.

As entradas de calor no cilindro de trabalho podem ser vistas esquematicamente na fig.(1.5) e são devidas a [9]:

- a) radiação do material que entra e sai no cilindro,
- b) condução de calor do material através da camada de óxido,
- c) efeito do atrito ao longo do arco de contato da mordida do cilindro,
- d) outras fontes.

Geralmente os itens a e d são desconsiderados por serem muito menores que os itens b e C.

As saídas de calor do cilindro de trabalho podem ser vistas esquematicamente na fig.(1.6) e são devidas a [9]:

- a) convecção através do uso de fluido refrigerante (geralmente água),
- b) convecção pelo ar,
- c) radiação para as vizinhanças,
- d) contato com o cilindro de apoio,
- e) fluxo de calor na direção longitudinal para o munhão do cilindro (parte central).

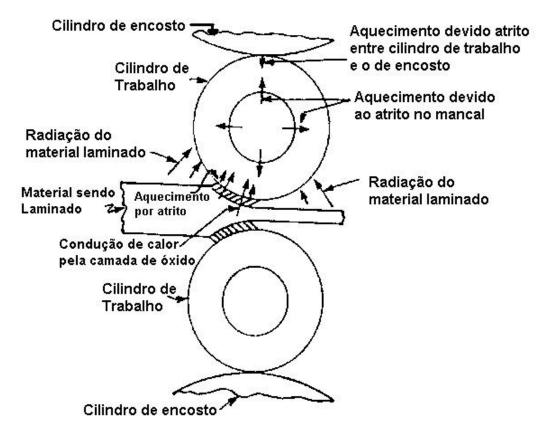


Fig.1.5 - Esquema mostrando as entradas de calor no Cilindro de trabalho.

Os modelos matemáticos descrevem fluxos de entradas e saídas de calor do cilindro de trabalho de maneiras diversas e muito complexas. Basicamente eles podem ser classificados em modelos uni ou bi-dimensional.

Stevens [19] desenvolveu um modelo unidimensional de fluxo térmico entre dois corpos semi-infinitos, entre os quais é repentinamente colocado uma camada de outro material. Este modelo permite estimar a temperatura do cilindro de trabalho durante a laminação.

Os seguintes símbolos são usados no modelo.

 αc = difusividade térmica,

H = condutância do material que esta sendo laminado,

 $\lambda t = \text{condutividade térmica},$

t = tempo,

T = temperatura

x = distância a partir da interface.

os sufixos usados são os seguintes:

1 = inicial, 2 = no tempo t, R = cilindro, S = tira(material).

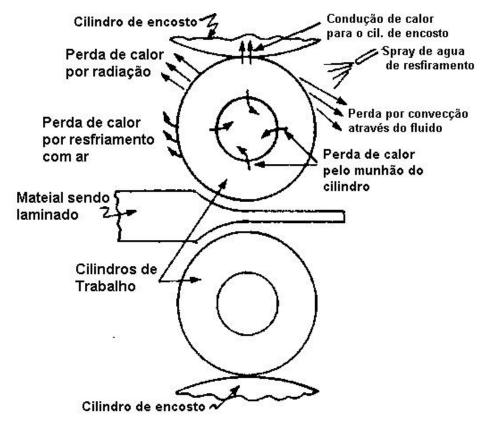


Fig.1.6 - Esquema mostrando as saídas de calor do Cilindro de trabalho.

A equação geral de condução de calor de um modelo unidimensional é dada por [1]:

$$\frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2} - \frac{\partial \mathbf{T}}{\partial \mathbf{x}} \cdot \frac{1}{\alpha} = 0 \tag{1.67}$$

Considerando o fluxo de calor do material para a superfície do cilindro como:

$$H(T_{S} - T_{R}) = -\lambda t \frac{\partial T}{\partial x}, \quad x = 0$$
 (1.68)

A solução das equações (1.67) e (1.68) é expressa por:

$$T_{R2} = T_{R1} + (T_{S1} - T_{R1}) \cdot \frac{H \cdot \sqrt{\alpha c_R}}{\lambda t_R \cdot A} \cdot \left\{ erfc \left(\frac{x}{2 \cdot t \cdot \sqrt{\alpha c_R}} \right) - exp \left[\left(\frac{A}{\sqrt{\alpha c_R}} + t \cdot A^2 \right) \cdot erfc \left(\frac{x}{2 \cdot t \cdot \sqrt{\alpha c_R}} + A \cdot \sqrt{t} \right) \right] \right\}$$

$$(1.69)$$

onde,

$$A = \frac{H}{\lambda c_R \cdot \underline{ht_S}} \left(\lambda t_R \cdot \sqrt{\underline{\alpha c_S}} + \lambda t_S \cdot \sqrt{\underline{\alpha c_R}} \right)$$
 (1.70)

na superfície onde x = 0, tem-se:

$$T_{R2} = T_{R1} + \left(T_{S1} - T_{R1}\right) \frac{H.\sqrt{\alpha c_R}}{\lambda t_R.A} \left\{1 - \exp\left[t.A^2.\operatorname{erfc}\left(A.\sqrt{t}\right)\right]\right\}$$
(1.71)

algumas vezes a equação (1.69) pode ser escrita da seguinte forma:

$$\frac{\operatorname{Tv}_{S} - \operatorname{Tv}_{0}}{\operatorname{Tv}_{L} - \operatorname{Tv}_{0}} = \frac{1}{2} \left\{ \operatorname{erfc} \left[\frac{x}{2.\sqrt{\underline{\alpha}\underline{c}.t}} \right] - \exp(h.x + h^{2}.\underline{\alpha}\underline{c}.t) \operatorname{erfc} \left[\frac{x}{2.\sqrt{\underline{\alpha}\underline{c}.t}} + \underline{h}\underline{c}.\sqrt{\underline{\alpha}\underline{c}.t} \right] \right\}$$
(1.72)

$$\underline{\text{hc}} = \frac{2H}{\lambda t_{R}} \tag{1.73}$$

onde,

 $\alpha c = a$ difusividade do material do cilindro,

Tv_S = temperatura da superfície do cilindro,

Tv₀ = temperatura a uma distância abaixo da superfície do cilindro,

Tv_L = temperatura do material que esta sendo laminado,

H = a condutância do material que esta sendo laminado,

No caso onde somente a temperatura da superfície do cilindro é necessária, temos:

 $h^2 \alpha c.t \ll 1$ e $h \sqrt{\alpha c.t} \ll 1$, de maneira que,

$$\frac{\operatorname{Tv}_{S} - \operatorname{Tv}_{0}}{\operatorname{Tv}_{L} - \operatorname{Tv}_{0}} = \frac{h\sqrt{\underline{\alpha}\underline{c}.t}}{2} = H\sqrt{\frac{t}{\rho c.\lambda t_{R}}}$$
(1.74)

onde, pc e é a densidade do cilindro.

1.2.10 - Aspéctos metalúrgicos na laminação

Antes dos Aspectos Metalúrgicos na Laminação serem analisados, é necessário se fazer um breve comentário sobre as estruturas cristalográficas e as fases do aço durante o seu aquecimento e resfriamento para que se possa melhor compreender as mudanças nas propriedades do material.

Para o bom entendimento dos aços, é necessário se conhecer primeiro o diagrama de equilíbrio ferro-carbono (Fe-C) dado na fig.(1.7) [20]. Esse diagrama é geralmente apresentado até 6,7% de carbono, porque este elemento forma com o ferro o composto Fe₃C (cementita) que é extremamente duro e contém, aproximadamente, 6,7% de carbono.

Como pode ser visto na fig.(1.7), o ferro puro (isento de carbono), apresenta-se até 912° C sob a forma alotrópica alfa (α) e acima de 912° C até 1354° C no estado alotrópico (γ). Essas formas alotrópicas se caracterizam por possuírem reticulados cristalinos diferentes para os átomos de ferro: o ferro α possui reticulado cúbico de corpo centrado (CCC) e o ferro γ possui reticulado cúbico de face centrada (CFC).

A fig.(1.8) mostra os reticulados cristalinos dos átomos de ferro nas formas alotrópicas CCC e CFC. Observa-se que a estrutura CCC possui somente um átomo de ferro no centro do reticulado cristalino. Por outro lado, a estrutura CFC possui átomos de ferro no centro das faces do reticulado.

Nota-se também no diagrama Fe-C que à medida o teor de carbono aumenta até o limite de 0,77%C obtêm-se a estrutura austenitica (Fe γ) a temperaturas cada vez mais baixas até o limite de 727°C. Esta faixa de teor de carbono de 0 a 0,77%C é onde se situa praticamente todos os aços comercialmente utilizados no mundo.

Os átomos de carbono ocupam os espaços vazios dos reticulados de átomos de ferro e como pode ser observado na fig.(1.7), a fase austenítica (estrutura CFC) tem capacidade para absorver mais carbono do que a fase ferrítica (estrutura CCC).

A estrutura CFC devido ao seu formato de empilhamento é muito mais fácil de ser deformado do que a estrutura CCC. Desta forma, para se laminar a quente um aço, deve-se primeiro alcançar a estrutura austenítica, ou seja: conforme o teor de carbono, aquecer o aço em torno de 800 a 880°C, para em seguida fazer a deformação no laminador. Desta forma, economiza-se energia, equipamentos, tempo, e viabiliza economicamente o produto além de poder conferir boas propriedades mecânicas e metalúrgicas ao aço posteriormente ou durante a laminação.

Para se ter uma idéia da facilidade de deformação de um metal com estrutura cristalina CFC, o chumbo é um material que possui esta estrutura na temperatura ambiente e o ferro por outro lado, na temperatura ambiente possui estrutura CCC.

Uma das consequências do processo de reaquecimento do aço é o crescimento de grão. O controle deste crescimento é uma etapa importante no processo de laminação controlada onde se desenvolve grandes esforços para alcançar produtos com estruturas de granulação fina [21,22].

Para aços microligados, a temperatura de reaquecimento deve ser alta o bastante para solubilizar as partículas estáveis que se formaram com as ligas.

A temperatura de reaquecimento também afeta a formação da chamada bandas de deformação, a qual desenvolve um importante papel durante o processo subseqüente de restauração do grão[23]. Como pode ser visto na fig.(1.9) [9], quanto maior a temperatura de reaquecimento do material, menor será a quantidade de formação das bandas de deformação e com menos uniformidade após uma dada redução no material.

Para que o tamanho de grão final da austenita seja fortemente dependente do reaquecimento do metal, é necessário que a temperatura de reaquecimento seja mantida acima da temperatura de crescimento do grão [21].



Fig.1.7 – Diagrama de Equilíbrio Ferro-Carbono[20]

1.2.10.1 - Processos de restauração do grão.

A restauração dos grãos é um mecanismo de amaciamento do material que envolve recuperação e/ou recristalização dos grãos. A recuperação ocorre quando a energia de deformação elimina as discordâncias e outros defeitos cristalinos, tais como, vazios e

elementos intersticiais, permitindo o rearranjamento da estrutura cristalina sem alterar o tamanho de grão, mas promove amaciamento do material. A recristalização normalmente aparece após a recuperação, porem, ocorre nucleação de novos grãos, promovendo também o amaciamento do material.

Inicialmente na laminação à quente, a microestrutura do aço consiste de grãos equiaxiais grosseiros de austenita, como pode ser visto na fig.(1.10). Durante o passe no laminador, os grãos de austenita são deformados e alongados. As bandas de deformação podem aparecer dentro dos grãos de austenita, como mostrado na fig.(1.10).

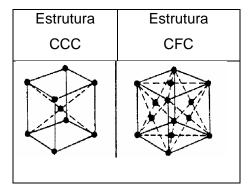


Fig.1.8 – Esquema mostrando as estruturas cristalinas cúbica de corpo centrado CCC e cúbica de face centrada CFC.

Na laminação à quente existem três processos de restauração dos grãos que são:

- a) Processo de restauração Estático Este processo inicia e termina após a deformação,
- b) Processo de restauração Dinâmico Este processo inicia e termina durante a deformação do material,
- c) Processo de restauração Metadinâmico Este processo se inicia durante a deformação e se completa após a deformação do material.

1.2.10.1.1 - Processo de restauração estático.

Devido aos defeitos na estrutura cristalina principalmente na forma de discordâncias, existe uma energia armazenada no material, chamada de força motriz. Esta força motriz depende tanto da taxa de deformação quanto da força aplicada durante o passe para dar início ao processo de restauração estático.

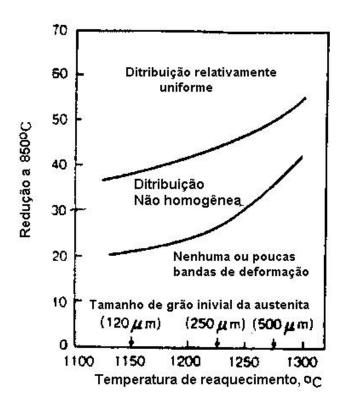


Fig.1.9 - Efeito da quantidade de redução sobre a formação das bandas de deformação

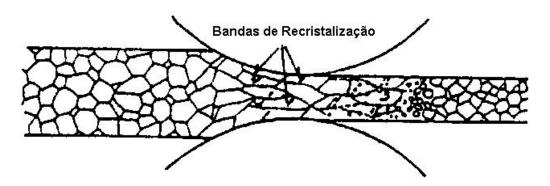


Fig.1.10 - Ilustração esquemática da recristalização estática [9].

O amaciamento do material devido à recuperação e recristalização estáticas ocorre numa velocidade que depende das condições de deformação e da temperatura anteriores.

Na laminação à quente, a recristalização estática pode iniciar espontaneamente. O núcleo de recristalização toma lugar preferencialmente nos contornos de grãos alongados e nas bandas de deformação [24].

Na laminação a quente dos aços, a recristalização estática normalmente ocorre entre passes, ou seja, após a deformação.

A curva de recristalização geralmente segue uma equação como a de Avrami[18], Johnson-Mehl[25], ou Kolmogorov [25], que se apresentam na seguinte forma:

$$X_t = \text{fração de recristalização no tempo}, \\ X_t = 1 - \text{exp} \left[-c. \left(\frac{t}{t_R} \right)^{kt} \right] \\ \text{(1.75)} \quad t_f = \text{tempo para produzir a fração de recristalização f,} \\ c = -\text{ln}(1\text{-f}), \\ \text{kt= exponencial do tempo}. \\ \text{}$$

O tempo para se produzir uma certa fração de recristalização f, normalmente é obtido por uma expressão que depende da temperatura, da deformação, da taxa de deformação, do tamanho de grão inicial e da energia de ativação para a recristalização. A forma geral desta expressão pode ser descrita como [25]:

$$t_{f} = B.\epsilon^{-p}.d_{0}^{q}.Z^{-r}.\exp\left(\frac{Q_{rec}}{RT}\right)$$
(1.76)

onde,

R = constante dos gases,
 B,p,q e r = são constantes que dependem do material,
 ε = deformação do material,

 d_0 = tamanho de grão inicial,

Q_{rec} = Energia de ativação para a recristalização.

Z = Parâmetro Zener-Hollomon.

O parâmetro Zener-Hollomon está diretamente relacionado a uma velocidade de deformação levando em consideração o efeito da temperatura, e é dado por:

$$Z = \varepsilon \cdot \exp\left(\frac{Q_{\text{def}}}{R.T}\right) \tag{1.77}$$

 ε = taxa de deformação, R = constante dos gases, T = temperatura absoluta,

 Q_{def} = Energia de ativação para a deformação.

Como a energia armazenada no material representa a força motriz para a recristalização, isto justifica o expoente negativo para a deformação do material e para o parâmetro Zener Hollomon. Pois quanto maior a deformação aplicada no material, menor será o tempo para se produzir uma determinada recristalização f. A redução do tempo de recristalização também pode ser reduzido com a diminuição do tamanho de grão antes da deformação, devido ao aumento de densidade de sítios de nucleação.

Deformação acumulada - ¿a

Caso não ocorra recristalização completa num determinado passe, alguma deformação residual ficará retida e será transferida para o passe seguinte [13,26,27,28], então:

$$\epsilon a_i = \epsilon t_i + (1 - X_{i-1}) \epsilon a_{i-1}$$
 (1.78) $\epsilon t = \text{Deformação total},$ $\epsilon t = \text{Deformação de recristalização do material}$

Muitos autores têm encontrado equações que determinam a fração de recristalização X e o tempo para se alcançar uma determinada recristalização. Na tabela (1.1), está listado as equações disponíveis na literatura para a recristalização estática.

1.2.10.1.2 - Processo de restauração dinâmico.

Quando o aço é deformado no estado de austenita a altas temperaturas, a tensão de escoamento aumenta para um máximo e em seguida cai para um valor constante, como mostrado na fig.(1.11) [9]. Isto é devido ao fato de que após um certo tempo de deformação, a geração de discordâncias e sua posterior eliminação alcançam um certo equilíbrio de modo que o material pode continuar a ser deformado sem que ocorra qualquer aumento ou diminuição na tensão de escoamento. Esta tensão é denominada de tensão de escoamento no regime estacionário σ_{ss} . Esta tensão pode ser escrita da seguinte forma [4]:

$$\sigma ss = Ass. \begin{bmatrix} \bullet \\ \epsilon t. exp(Qdef/R.T) \end{bmatrix}^q \\ (1.97) \begin{array}{l} Ass, \ q \ - \ Constantes \ da \ equação \ acima, \\ Qdef \ - \ Energia \ de \ ativação \ para \ a \\ deformação, \\ R \ - \ Constante \ universal \ dos \ gases \ ideais, \\ \end{array}$$

T - Temperatura

Desta forma pode-se afirmar que: altas taxas de deformação favorecem a recristalização dinâmica e quanto maiores forem as taxas de deformação mais rapidamente se iniciará o processo de recristalização dinâmica no material.

O limite de resistência ε_p que corresponde ao valor máximo que a tensão de escoamento atinge durante a deformação à quente do aço [9], é dado por:

$$\epsilon_p = A.Z.d_0^{1/n} \\ \text{(1.98)} \quad \begin{array}{l} \text{A, n = constantes,} \\ \text{d}_0 = \text{tamanho de grão inicial,} \\ \text{Z = Parâmetro Zener-Hollomon.} \end{array}$$

Desta forma, a restauração dinâmica se inicia quando a deformação aplicada ultrapassa o valor da deformação critica ϵ_c [4,30]. Muitos autores consideram que, para os

aços carbono-manganês, o valor da deformação crítica ε_c corresponde a 80% do valor do limite de resistência ε_p [4,30], ou seja:

$$\varepsilon_{\rm c} = 0.8.\varepsilon_{\rm p} \tag{1.99}$$

Portanto, quando uma certa deformação ϵ aplicada durante a laminação for menor do que ϵ_c , ou seja, $\epsilon \le \epsilon_c$ ou $\epsilon \le 0.8.\epsilon_p$ tem-se recristalização estática, por outro lado, quando $\epsilon > \epsilon_c$ ou $\epsilon > 0.8.\epsilon_p$ tem-se recristalização dinâmica.

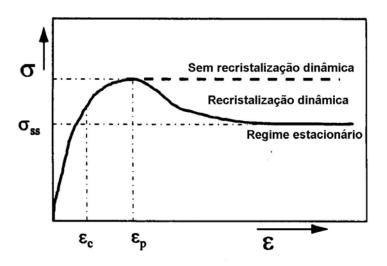


Fig.1.11 - Representação esquemática de uma curva tensão-deformação [9]. σ_{ss} - Tensão de escoamento no regime estacionário.

Como pode ser observado na fig.(1.11), a restauração dinâmica na laminação dos aços tem início para grandes deformações, devido ao fato de que a deformação crítica necessária para alcançar o estado constante da tensão de escoamento ser muito alta, mesmo em altas temperaturas.

Como existem inúmeros estudos que relaciona o limite de resistência ϵ_p em função do tamanho de grão inicial, temperatura, taxa de deformação, etc, pode-se então calcular a deformação crítica do aço em função destas mesmas variáveis.

A relação entre $\varepsilon_0/\varepsilon_p$ para vários tipos de aço, se encontra na faixa entre 0,67 e 0,86 [33]. Foi observado que para aços ao nióbio, o valor da relação $\varepsilon_0/\varepsilon_p$ está na faixa de 0,65 [25,34].

Os elementos de liga influenciam no limite de resistência do aço, principalmente o nióbio. Os autores Siciliano F.et. al.[6] e Minami K. et. al.[4], estudaram o efeito do nióbio em diferentes tipos de aço e obtiveram a seguinte equação do limite de resistência.

Tabela 1.1 - Equações cinéticas da fração de recristalização estática - X e do tempo para se alcançar certa fração (f) de recristalização [2,4,6,13,25,26,27,29,30,31,32].

TIPO DE AÇO	AUTOR(ES)	EQUAÇÕES	
Carbono – Manganes	Sellars	$X = 1 - \exp\left[-0.693 {t_{ip} \choose t_{0.5}}^{2}\right] $ (1.79)
		$t_{0,5} = 2.5.10^{-19} \cdot \epsilon^{-4} \cdot d_0^2 \cdot \exp(300000/R.T)$	(1.80)
	Hodson	$X = 1 - \exp\left[-0.693 \left(t_{ip} / t_{0.5}\right)\right]$	(1.81)
		$t_{0,5} = 2,3.10^{-15}.\epsilon^{-2,5}.d_0^2.\exp(230000/R.T)$	(1.82)
1	Roberts et al.	$X = 1 - \exp\left[-0.693 \left(\frac{t_{ip}}{t_{0.5}}\right)^{1.7}\right]$	(1.83)
		$t_{0,5} = 5,1.10^{-21}.\epsilon^{-4}.d_0^2.\exp(330000/R.T)$	(1.84)
	Yada e Senuma	$X = 1 - \exp \left[-0.693 \left(\frac{t_{ip}}{t_{0.5}} \right)^{2} \right]$	(1.85)
		$t_{0,5} = 2,2.10^{-12}.\epsilon^{-2}.\epsilon^{-0,2}.\text{S}_{V}^{-0,5}.\exp(30000/T)$	(1.86)
		$S_V = \left(\frac{24}{\pi \cdot d_0}\right) [0.491 \cdot \exp(\epsilon) + 0.155 \cdot \exp(-\epsilon) + 0.1433 \cdot \exp(-3\epsilon)]$	(1.87)
L	Hodgson	$X = 1 - \exp\left[-0.693 \left(\frac{t_{ip}}{t_{0.5}}\right)\right]$	(1.88)
		$t_{0,5} = (-5,24 + 550\text{Nb}).10^{-18}.\epsilon^{(-4+77\text{Nb})}.d_0^2.\exp(330000/R.T)$	(1.89)
	Laasraoui e Jonas	$X = 1 - \exp\left[-0.693 \left(t_{ip} / t_{0.5}\right)\right]$	(1.90)
		$t_{0,5} = 1,27.10^{-18}.\varepsilon^{-3,81}.\varepsilon^{-0,36}.\exp(404000/R.T)$	(1.91)
Ao Titânio e Nióbio	Williams et al.	$X = 1 - \exp\left[-0.288 \left(\frac{t_{ip}}{t_{0.25}}\right)\right]$	(1.92)
		Para temperaturas acima de 990° C tem-se: $t_{0,25} = 1,5.10^{-18}.d_0^2 (\epsilon - 0,025)^{-2,8}.exp(30[Nb]).exp(300000/R.T)$	(1.93)
		Para temperaturas abaixo de 990° C tem-se: $t_{0,25} = 10^{-54}.d_0^2 \left(\epsilon - 0.025\right)^{-2.8}.\exp(30[\text{Nb}]).\exp(885000/\text{R.T})$	(1.94)
Microligado	Kirihata	$X = 1 - \exp\left[-0.693 \left(\frac{t_{ip}}{t_{0.5}}\right)\right]$	(1.95)
<u></u>		$t_{0,5} = 1,57.10^{-14}.d_0^2.\epsilon^{-2,9}.exp(271000/R.T)$	(1.96)

$$\varepsilon_{p} = \frac{(1+20\text{Nb})}{1.78} \cdot 2.8 \cdot 10^{-4} \cdot d_{i-1}^{0.5} \left[\epsilon \cdot \exp\left(375000 / R.T\right) \right]^{0.17}$$
(1.100)

Onde o efeito do Nióbio (Nbef) é dado por[6]:

$$Nb_{ef} = Nb - \frac{Mn}{120} + \frac{Si}{94}$$
 (1.101)

Desta forma, os autores obtiveram uma equação da deformação crítica que leva em consideração o efeito do nióbio[4,6].

$$\varepsilon_{\rm c} = \varepsilon_{\rm p} \cdot \left(0.8 - 13. \text{Nb}_{\rm ef} + 112. \text{Nb}_{\rm ef}^2 \right)$$
 (1.102)

A tabela (1.2) mostra algumas equações que determinam a fração de recristalização dinâmica e que estão disponíveis na literatura.

Tabela 1.2 - Equações cinéticas da fração de recristalização dinâmica - X e do tempo para se alcançar 50% de recristalização - t_{0,5}. [2,4,6,13,25,26,27,29,30,31,32].

	-		
TIPO DE AÇO	AUTOR(ES)	EQUAÇÕES	
Carbono – Manganes	Sellars	$X = 1 - \exp \left[-0.693 \left(\frac{t_{ip}}{t_{0.5}} \right)^2 \right]$	(1.103)
		$t_{0,5} = 1,06.Z^{-0,6}.\exp\left(\frac{300000}{R.T}\right)$	(1.104)
	Hodgson	$X = 1 - \exp \left[-0.693 \left(\frac{t_{ip}}{t_{0.5}} \right)^{1.5} \right]$	(1.105)
		$t_{0,5} = 1.1.Z^{-0.8}.\exp(230000/R.T)$	(1.106)
		$X = 1 - \exp\left[-0.693 \left(\frac{\varepsilon - \varepsilon_{c}}{\varepsilon_{0.5}}\right)^{2}\right]$	(1.107)
	Yada	$\varepsilon_{\rm c} = 4.76.10^{-4} \cdot \exp\left(8000 / T\right)$	(1.108)
		$\varepsilon_{0,5} = 1,144.10^{-5}.d_0^{0,28}.\varepsilon^{\bullet} exp(6420/T)$	(1.109)

1.2.10.1.3 - Processo de restauração Metadinâmico

No processo de restauração metadinâmico, a recuperação e recristalização do material se inicia durante a deformação e prossegue no intervalo entre passes. Este fenômeno normalmente ocorre na deformação a quente quando a deformação aplicada ultrapassa a deformação crítica ϵ_c , mas a tensão de escoamento no regime estacionário σ_{ss} não é alcançada.

As microestruturas desenvolvidas pelo processo de restauração dinâmico não são estáveis e a elevadas temperaturas são modificadas por processos de restauração metadinâmicos e estáticos. Este último processo pode incluir recuperação estática, recristalização estática e metadinâmica.

As equações da fração de recristalização para a recristalização metadinâmica possuem uma cinética rápida como as mostradas na recristalização dinâmica e podem ser vistas na tabela (1.3).

Observa-se que a cinética da recristalização metadinâmica não depende da deformação, mas somente da taxa de deformação, como foi observado por vários autores [32,33,34,35]. Nota-se que esta analise é feita após a deformação do material ultrapassar a deformação crítica. Da mesma forma com que acontece na recristalização dinâmica, altas taxas de deformação favorece com que mais cedo se inicia o processo de recristalização metadinâmico. Devido a grande influencia da taxa de deformação, outros fatores como temperatura e elementos de liga nos aços tem pouca influencia na recristalização metadinâmica [25,32]. Adições de molibidênio, nióbio e titânio possuem pequeno efeito na recristalização metadinâmica, principalmente devido à formação de carbonetos que inibem o início da recristalização[25].

1.2.10.2 - Fatores que afetam a redução crítica de recristalização.

A quantidade crítica de deformação é a redução mínima na laminação na qual a austenita se recristaliza completamente, e é chamada de redução crítica de recristalização. De acordo com cada processo de restauração a redução crítica aumenta rapidamente com a diminuição da temperatura de deformação e também com adição de elementos de liga, especialmente o nióbio [23].

Outro fator que afeta a redução crítica de recristalização é o tamanho de grão inicial [23], ou seja, quanto maior o tamanho de grão, menor é a redução crítica de recristalização. A fig.(1.12) mostra também que para os aços carbono a redução crítica de recristalização é muito pequena. Observa-se uma forte influência da temperatura de laminação, pois quanto maior a temperatura de laminação menor é a redução crítica de recristalização.

Tabela 1.3 - Equações cinéticas da fração de recristalização metadinâmica — X e do tempo para se alcançar 50% de recristalização — $t_{0,5}$. [2,4,6,13,25,26,27,28,29,30,31,32].

TIPO DE AÇO	AUTOR(ES)	EQUAÇÕES	
Nióbio e Carbono – Manganes	Hodgson	$X = 1 - \exp \left[-0.693 \left(\frac{t_{ip}}{t_{0.5}} \right)^{1.1} \right]$	(1.110)
		$t_{0,5} = 0.4.Z^{-0.8}.\exp(240000/R.T)$	(1.111)
Nióbio	Houcoules	$X = 1 - \exp\left[-0.693 \left(\frac{t_{ip}}{t_{0.5}}\right)\right]$	(1.112)
		$t_{0,5} = 4,42.10^{-7}.\varepsilon^{\bullet} \frac{-0.59}{\text{exp}} \exp\left(153000 / \text{R.T}\right)$	(1.113)
	Hodgson	$X = 1 - \exp \left[-0.693 \left(\frac{t_{ip}}{t_{0.5}} \right)^{1.1} \right]$	(1.114)
		$t_{0,5} = 1, 1.Z^{-0,8}.exp(230000/R.T)$	(1.115)
Microligado	Kirihata	$X = 1 - \exp\left[-0.693 \left(\frac{t_{ip}}{t_{0.5}}\right)\right]$	(1.116)
		$t_{0,5} = 1.84 \cdot \left[\frac{\bullet}{\epsilon} \cdot \exp(330000 / R.T) \right]^{-0.86} \cdot \exp(271000 / R.T)$	(1.117)

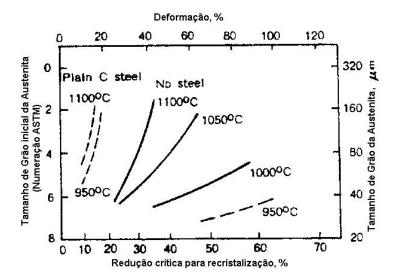


Fig.1.12 - Efeito da temperatura de deformação e do tamanho de grão sobre a quantidade crítica de redução necessária para a completa recristalização no aço carbono e ao nióbio.

1.2.10.3 - Efeito da Temperatura e Elementos de Liga

Temperatura de recristalização de um aço é a temperatura mais baixa a qual a estrutura austenítica se recristaliza completamente após deformação. Portanto, quanto mais alta a temperatura de laminação a quente, maior será o número de grãos deformados que serão recristalizados.

A temperatura de recristalização do material aumenta com a adição de elementos de liga. Esta relação pode ser vista na fig.(1.13).

O cobalto, alumínio, nióbio, titânio e em menor grau o vanádio retardam a recristalização estática e dinâmica [1,36].

1.2.10.4 - Efeito da Quantidade de Deformação

Dependendo da quantidade de deformação na laminação, o processo de restauração estático se processa de três formas, como mostrado na fig.(1.14).

a) Recuperação – Esta forma de restauração estática ocorre quando o laminador tem redução menor do que o valor crítico para a recristalização parcial. Neste caso, os grãos coalescem ao invés de refinar devido às tensões induzidas com as migrações nos contornos de grãos, podendo produzir grãos maiores do que os iniciais. Estes grãos grandes formados devido a pequena deformação na região de recuperação permanece ainda após muitos passes na zona de recristalização parcial.

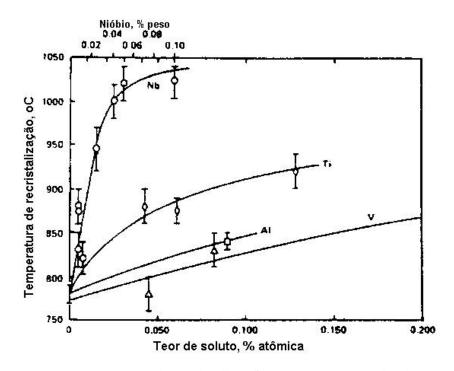


Fig.1.13 - Aumento na temperatura de recristalização com o aumento de elementos de liga no aço com 0,007%C; 1,40%Mn; 0,25%Si [9].

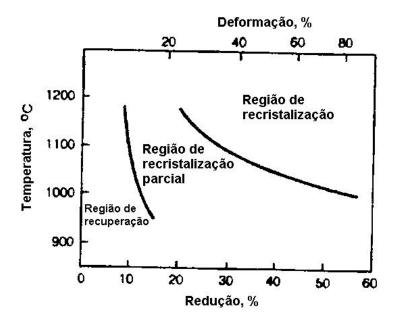


Fig.1.14 - Efeito da quantidade de redução e temperatura de laminação sobre o comportamento da restauração: o aço ao nióbio foi aquecido para 1150° C a qual deu um tamanho de grão de aproximadamente 180 μm e laminado em um passe [9].

- b) Recristalização Parcial Quando a redução na laminação é suficiente para iniciar a recristalização parcial, produzindo uma microestrutura mista de grãos recristalizados e grãos restaurados.
- c) Recristalização Completa É a redução mínima na laminação na qual a austenita se recristaliza completamente e é sempre chamada de redução crítica de recristalização [37]. O tamanho de grão da austenita recristalizada diminui significativamente com o aumento no grau de redução total, como pode ser visto na fig.(1.15).

1.2.10.5 - Tamanho de grão da austenita completamente recristalizada após deformação

Os grãos recristalizados após deformação podem ter sido originados após a recristalização estática ou após recristalização dinâmica ou metadinâmica.

No caso de recristalização estática, os tamanhos de grão após completa recristalização são função da deformação prévia do material e do seu tamanho de grão inicial. Normalmente estas equações são escritas da seguinte forma:

$$d_{rec} = E.d_0^F.\epsilon^{-G}$$

(1.118) E, F e G são constantes da equação

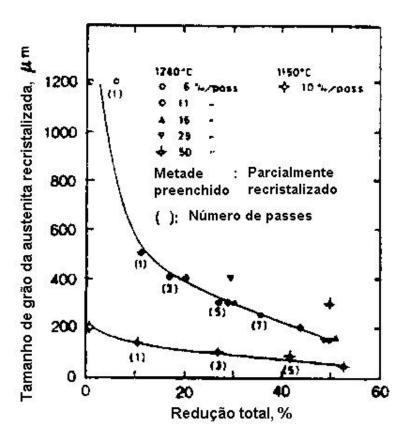


Fig.1.15 - Efeito da redução total sobre o tamanho de grão da austenita no aço nióbio a qual foi pré-aquecido para 1280° C ou 1150° C e subseqüentemente laminado em multipasses.

Observa-se que o tamanho de grão aumenta com o tamanho de grão inicial e diminui com o aumento da deformação aplicada ao material.

Pequenos tamanhos de grãos levam a maiores densidades de discordâncias que por sua vez, contribui para o aumento da taxa de nucleação de grãos o que resulta numa diminuição dos grãos recristalizados. A tabela (1.4) mostra as equações que calcula o tamanho de grão da austenita após completa recristalização estática, disponíveis na literatura.

Os tamanhos de grãos completamente recristalizados originados após a recristalização metadinâmica foram estudados por alguns autores[6,25,38] e suas equações estão listadas na tabela (1.5).

Tabela 1.4 – Equações que descrevem o tamanho de grão da austenita -d_{rec} após completa recristalização estática [4,6,25,27,28,29,30,31,32,33,38,39,40].

TIPO DE AÇO	AUTOR(ES)	EQUAÇÕES	
Carbono – Manganes	Sellars	$d_{rec} = 0.5.d_0^{0.67}.\epsilon^{-1.0}$	(1.119)
	Hodgson	$d_{rec} = 343.d_0^{0,4}.\epsilon^{-0,5}.exp(-45000/R.T)$	(1.120)
	Robert	$d_{rec} = 6.2 + 55.7.d_0^{0.5}.\epsilon^{-0.65}.\left[\exp\left(-350000/R.T\right)\right]^{-0.1}$	(1.121)
	Choquet	$d_{rec} = 45.exp(-24980/R.T)d_0^{0.374}.\epsilon^{-0.6}.\epsilon^{\bullet}$	(1.122)
	Yada	$d_{rec} = \frac{5}{(S_{V}.\varepsilon)^{0.6}}$	(1.123)
	Taua	$S_V = \left(\frac{24}{\pi \cdot d_0}\right) [0.491 \cdot \exp(\epsilon) + 0.155 \cdot \exp(-\epsilon) + 0.1433 \cdot \exp(-3\epsilon)]$	(1.124)
Ao Nióbio	Sellars	$d_{rec} = 1, 1.d_0^{0,67}.\epsilon^{-0,67}$ para (T > 950°C)	(1.125)
	Choquet	$d_{rec} = 472.exp(-48597/R.T)d_0^{0,277}.\epsilon^{-0,7}.\epsilon^{\bullet}$	(1.126)
Ao Titânio e Vanádio	Robert	$d_{rec} = 4.3 + 195.7.d_0^{0.15}.\epsilon^{-0.57}.\left[\exp\left(-350000/R.T\right)\right]^{-0.11}$	(1.127)

Tabela 1.5 – Equações que descrevem o tamanho de grão da austenita após completa recristalização metadinâmica

TIPO DE AÇO	AUTOR(ES)	EQUAÇÕES	
Carbono – Manganes	Hodgson	$d_{rec} = 2,6.10^4.Z^{-0,23}$	(1.128)
Ao Nióbio e Carbono- Manganes	Hodgson	$d_{rec} = 6.8.10^4.Z^{-0.27}$	(1.129)
Ao nióbio	Roucoules	$d_{rec} = 1370.\epsilon^{-0.13}.exp(-45000/R.T)$	(1.130)

1.2.10.6 - Crescimento do grão após completa recristalização na laminação.

Após a completa recristalização do grão, inicia-se o seu processo de crescimento devido às altas temperaturas e a energia acumulada nos contornos de grãos produzida pelas deformações aplicadas. Desta forma, pode-se listar os principais fatores que afetam a velocidade e o tamanho dos grãos recristalizados, que são:

a) Tamanho de grão da austenita antes da deformação, a qual é função da temperatura de aquecimento,

- b) Tempo de exposição do material a altas temperaturas,
- c) Quantidade de deformação antes de qualquer deformação posterior,

Como os sítios de recristalização são predominantemente localizados nos contornos de grãos, o tamanho de grão inicial tem uma grande influencia no tamanho de grão final do aço. A fig.(1.16) mostra o efeito do tempo de exposição do material a altas temperaturas e da quantidade de redução sobre o progresso do crescimento do grão aço carbono plano e aço ao nióbio.

O crescimento do grão é dividido em três regiões [23].

Região I – Nesta região, os grãos começam a crescer a partir de uma estrutura mista com grãos recuperados e grãos grandes ou grãos recristalizados e outros recuperados, dependendo da quantidade de redução.

Região II – Nesta região, os grãos o crescimento dos grãos segue a equação de Miller [33]:

$$d^{10} = d_R^{10} + (A'.t) exp\left(\frac{-Q'}{R.T}\right)$$
 (1.131)

onde, A',Q' são constantes, e t o tempo

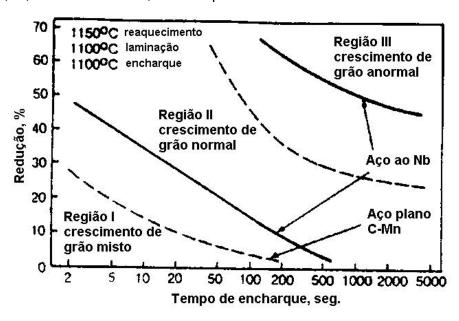


Fig.1.16 - Efeito do tempo de exposição do material a altas temperaturas e da quantidade de redução sobre o Progresso do crescimento do grão aço carbono plano e aço nióbio[23].

Região III – Esta região corresponde ao crescimento anormal quando grãos muito grandes subitamente se desenvolvem entre os grãos pequenos. O tamanho dos grãos coalescidos a partir de uma estrutura de grãos pequenos durante este processo de recristalização secundária é muito maior do que os grãos coalescidos a partir de uma estrutra de grãos grandes.

No caso da laminação a quente dos aços a equação geral para o crescimento de grão é dada por:

$$d^{y} = d_{rec}^{y} + K.t.exp \begin{pmatrix} -Qcre/R.T \end{pmatrix}$$
 (1.132)

d e d_{rec} – tamanho do grão final e recristalizado, respectivamente, y – exponecial do crescimento do grão, K – constante,

t – tempo entre passes na laminação, $Q_{\text{cre}} \ - \ \text{energia} \ de \ ativação \ para \ o \ crescimento do grão.$

Muitos autores desenvolveram equações que descrevem o crescimento de grão da austenita. A tabela (1.6) mostra estas equações.

Tabela 1.6 – Equações que descrevem o tamanho de grão final da austenita após recristalização completa em função do tempo [4,22,25,27,38,41]

TIPO DE AÇO	AUTOR(ES)	TIPO DE RECRIST.	EQUAÇÕES	
Carbono – Manganes	Hodgson	Estática		
		P/t <1seg	$d^2 = d_{rec}^2 + 4.0.10^7 (tip - 4.32.t_{0.5}) exp(-113000/R.T)$	1.133)
		P/t>1seg	$d^7 = d_{rec}^7 + 1.5.10^{27} (tip - 4.32.t_{0.5}) exp(-400000/R.T)$	(1.134)
		Dinâmica		
		P/t <1seg	$d^{2} = d_{rec}^{2} + 1.2.10^{7} \cdot (tip - 2.65.t_{0.5}) \exp(-113000/R.T)$	(1.135)
		P/t>1seg	$d^7 = d_{rec}^7 + 8.2.10^{25} (tip - 2.65.t_{0.5}) exp(-400000/R.T)$	(1.136)
	Roberts	-	$d^2 = d_0^2 + \exp(6.6 - 113000 / T) \text{tip}$	(1.137)
	Senuma e Yada	-	$d^2 = d_0^2 + 1,44.10^{12}.tip.exp(32100/T)$	(1.138)
	Sellars e Whiteman	p/T>1000°C	$d^{10} = d_0^{10} + 3,87.10^{32}.tip.exp(400000/R.T)$	(1.139)
		p/T<1000°C	$d^{10} = d_0^{10} + 5,02.10^{53}.tip.exp(914000/T)$	(1.140)
Ao Nióbio	Hodgson e Gibbs	-	$d^{4,5} = d_0^{4,5} + 4,1.10^{23}.tip.exp(-435000/R.T)$	(1.141)

Hodgson et. al. [27,38] mostrou que o tempo entre passes tem um papel muito importante no crescimento do grão, e que durante o primeiro segundo o crescimento do grão é muito rápido e segue uma curva parabólica. Após este tempo, a taxa de crescimento do grão diminui para um exponencial da ordem de sete. Como na laminação a quente o tempo entre passes é muito curto, portanto este tempo de um segundo afeta significativamente o tamanho de grão.

Este mesmo autor também sugere que diferentes taxas de crescimento do grão são obtidas quando ocorre recristalização estática ou dinâmica [27,38]. Segundo o autor, a recristalização estática requer nucleação, portanto os grãos formados são pequenos e possuem uma alta taxa de crescimento. Por outro lado, durante a recristalização dinâmica não é necessária a nucleação, portanto o crescimento dos grãos recristalizados se inicia a partir de um certo tamanho. Em seus estudos, o autor concluiu que os grãos produzidos pela recristalização dinâmica/metadinâmica são mais finos do que os oriundos da recristalização estática.

Desta forma, como pode ser visto na tabela (1.6), é necessário utilizar-se as duas equações e em cada uma delas levar-se em consideração o tempo maior ou menor que um segundo e o tipo de recristalização ocorrida, para se ter o tamanho de grão final do aço. A fig.(1.17) mostra este comportamento do tamanho de grão da austenita após completa recristalização em função do tempo.

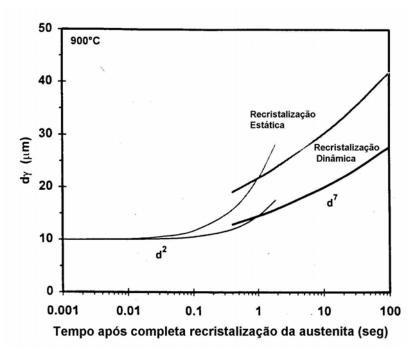


Fig.1.17 - Comportamento do tamanho de grão da austenita após completa recristalização em função do tempo mostrado por Hodgson et. al. [27].

1.2.10.7 - Tamanho de grão da austenita parcialmente recristalizada

No caso em que não ocorra recristalização completa, ou seja, recristalização menor do que 95%, o tamanho de grão para o próximo passe pode ser calculado pela seguinte expressão [27,30]:

$$d = d_{rec} \cdot X^{\frac{4}{3}} + d_{i-1} \cdot (1-X)^2$$
(1.142)

1.2.10.8 - Verificação do início da formação de precipitado - tps

Dutta e Sellars [42] desenvolveram um modelo que determina o tempo para a formação de 5% de precipitados de Nb(C,N) a partir da austenita supersaturada, em função da concentração de nióbio, temperatura, deformação, taxa de deformação e relação de supersaturação para precipitação do nióbio, ou seja:

$$t_{ps} = A.Nb^{-1}.\epsilon^{-1}.Z^{-0.5}.exp(270000/R.T)exp(B/T^3.(lnKs)^2)$$
 (1.143)

$$B = 2,5.10^{10} \tag{1.144}$$

A constante (A) representa o número de precipitados nucleados por unidade de volume, Dutta e Sellars [42] obtiveram o valor para a mesma de 3.10⁻⁶. Esta constante está mais bem representada pela equação desenvolvida por Bai, pois leva em consideração os efeitos de nióbio, carbono, manganês e silício [6].

$$A = \frac{\left(\frac{Mn}{Si}\right)^{0,42} \cdot \exp\left(\frac{0,42.Nb}{C}\right)}{1694000}$$
(1.145)

Ks - Relação de supersaturação para precipitação do nióbio que é a expressão que determina a força motriz para a precipitação [6,43,44].

$$K_{S} = \frac{10^{\left(2,26-6770/T_{RH}\right)}}{10^{\left(2,26-6770/T\right)}}$$
 (1.146)
$$T - Temperatura \ de \ reaquecimento \ do \\ T - Temperatura no passe (K)$$
 Z- Parâmetro de Zener-Hollomon.

Parâmetro de Zener-Hollomon que é dado por [6,9]:

$$Z = \varepsilon \cdot \exp\left(\frac{375000}{R.T}\right) \tag{1.147}$$

Park [6,25] utilizou um modelo de precipitação isotérmico para a laminação à quente de aços, onde considerou a temperatura constante no intervalo entre passes e calculava-se a relação t_{ip}/t_{ps} para cada passe e somava-se à mesma relação obtida no passe seguinte. Quando o somatório destas relações fosse igual ou superior a uma unidade, significará que estará ocorrendo formação de precipitado, ou seja:

$$\sum \frac{t_{ip}}{t_{ns}} \! \ge \! 1 \hspace{1.5cm} \text{Início de formação de precipitado no passe} \\ \hspace{1.5cm} \text{considerado}$$

1.2.10.9 - Mudanças estruturais no aço durante o resfriamento.

Após a laminação à quente, o material é sujeito a um resfriamento combinado de ar e água. O tamanho de grão da ferrita será afetado por [45,46]:

- a) temperatura final de laminação,
- b) atraso de tempo entre a laminação e o início do resfriamento com água,
- c) velocidade de resfriamento.

O tamanho de grão da ferrita no aço aumenta com o aumento do atraso de tempo e diminui tanto com a diminuição da temperatura final de laminação quanto com o aumento da velocidade de resfriamento do material.

1.2.10.9.1 - Tamanho de grão da Ferrita

O tamanho de grão final da ferrita no aço é um dos principais parâmetros da laminação devido a sua forte influencia nas propriedades mecânicas do mesmo. Por outro lado, o tamanho de grão da ferrita é fortemente influenciado pelo tamanho de grão da austenita e da taxa de resfriamento após o último passe e também da deformação residual final contida no aço [32].

Sellars e Beynom [6,25] fizeram um equacionamento levando em consideração estes fatores. O equacionamento consiste primeiro em se calcular o tamanho de grão da ferrita sem deformação residual, levando-se em consideração somente a taxa de resfriamento e o tamanho de grão final da austenita. Em seguida calcula-se o tamanho de grão final da ferrita no aço, levando-se em consideração a deformação residual contida no mesmo.

Desta forma pode-se escrever o tamanho de grão da ferrita recristalizada, sem presença de deformação residual ou acumulada - d_{rec}^{α} , da seguinte forma:

$$d_{\text{rec}}^{\alpha} = a + b.T + g.\left[1 - \exp(-1.5.10^{-2}.d)\right]$$
 (1.149)

T - Taxa de resfriamento do aço [°C/s],
d - Tamanho de grão da austenita [μm],
a, b e g - São constantes para cada tipo de aço [25]

a = 1,4; b = 5,0; g = 22 para aço carbono e microligado [25],

a = 2.5; b = 3.0; g = 20 para aço carbono ao nióbio [25].

A deformação residual ou acumulada reduz o tamanho de grão final da ferrita, por causa da presença de grande quantidade de discordâncias que aumenta o número de sítios de nucleação para a transformação de austenita em ferrita.

Hodgson e Gibbs [32] utilizaram a seguinte expressão para aços carbono, nióbio e microligados para cálculo do tamanho de grão da ferrita em presença de deformação residual ou acumulada - d_{α} .

$$d_{\alpha} = d_{\text{rec}}^{\alpha} \left(1 - 0.45. \varepsilon_a^{1/2} \right) \tag{1.150}$$

 ε_a – Deformação residual ou acumulada.

1.2.10.10 - Efeito da microestrutura do aço na tensão de escoamento do material

Durante a deformação do aço, energia é armazenada devido a deformação dos grãos na forma de defeitos no reticulado(discordâncias). Desta forma, onde ocorre uma recristalização em que os defeitos do reticulado são eliminados e a energia armazenada nos grãos deformados é reduzida. Portanto, a tensão de escoamento de uma estrutura completamente recristalizada será bem menor do que aquela que foi parcialmente recristalizada.

Desta forma, o controle da evolução microestrutural durante a laminação a quente tem um papel fundamental no resultado da tensão de escoamento média (TEM) do material e, por conseguinte nas propriedades mecânicas do mesmo.

Boratto e outros autores[8,13,28,29,47,48] utilizaram a analise da curva TEM com o inverso da temperatura para prever três temperaturas criticas do aço durante a laminação, que são as temperaturas Ar_3 e Ar_1 do diagrama Fe-C e a temperatura de não recristalização T_{nr} .

Esta técnica passou a ser utilizada também para se prever a ocorrência da recristalização dinâmica na laminação a quente dos aços[4,6,13,49,50]. Sarmento e Evans[50] traçaram curvas da TEM com a deformação total usando dados industriais de

duas laminações a quente de tiras. Eles analisaram o comportamento da TEM nos aços C-Mn e Nb e concluíram que a recristalização dinâmica somente ocorre quando a deformação acumulada ultrapassa a deformação crítica.

Desta forma, outros autores[4,6,13,25,49], analisaram o comportamento da TEM com o inverso da temperatura de modo a identificar a ocorrência de mudanças microestruturais durante a laminação a quente dos aços, tais como, recristalização estática, dinâmica e metadinâmica, deformação acumulada, e transformação de fase.

Para melhor entendimento destas analises, a fig.(1.18) mostra estes fenômenos de uma maneira esquemática.

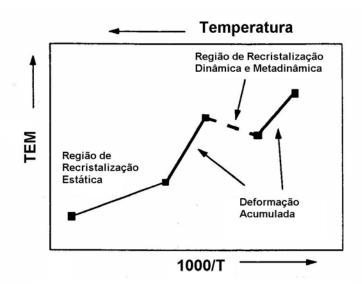


Fig.1.18 – Representação esquemática da variação da tensão de escoamento média TEM em função do inverso da temperatura absoluta e sua influencia com os fenômenos metalúrgicos, numa laminação a quente com cinco passes[12].

Observe que no primeiro passe onde se situa a mais alta temperatura a inclinação da curva é menor onde ocorre recristalização estática. Pois altas temperaturas favorecem a completa recristalização entre passes. Nota-se pelo aumento da inclinação da curva que no segundo passe com temperatura mais baixa a recristalização completa não ocorre, levando ao aparecimento de deformações acumuladas. O acumulo destas deformações levam a um limite onde se inicia a recristalização dinâmica no passe três seguida da metadinâmica até o passe quatro. Esta mesma análise foi feita por D. Auzinger e outros [49] para laminação de tiras a quente, como pode ser visto na fig. (1.19).

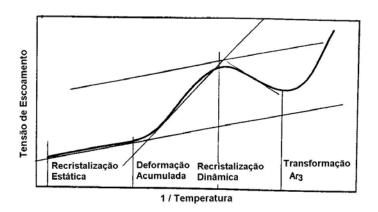


Fig.1.19 – Representação esquemática da variação da tensão de escoamento em função do inverso da temperatura durante a laminação a quente [49].

Entretanto, para se avaliar corretamente a tensão de escoamento na laminação à quente, alguns autores [51,52] consideraram as seguintes duas situações para o caso da recristalização estática, mas que podem ser aplicadas para qualquer tipo de recristalização.

- a tempo de recristalização t_R ou t_{rec} é menor ou igual ao tempo entre passes t_l ou t_{ip} (t_{rec} < t_{ip}),
- b- tempo de recristalização t_R ou t_{rec} é maior do que o tempo entre passes t_l ou t_{ip} ($t_{rec} > t_{ip}$).

O primeiro caso está mostrado na fig.(1.20) onde d_{01} é o tamanho de grão inicial antes do primeiro passe. A estrutura dos grãos é de completamente recristalizada (X_R =1) para o tempo t_R , onde o tamanho de grão totalmente recristalizado é igual a d_R . Por conseguinte, a tensão de escoamento para o segundo passe pode ser determinada pelo uso da equação conhecida aplicável para estruturas de grãos completamente recristalizadas e em seguida equações para crescimento do grão, pois a figura (1.20) mostra recristalização completa antes de o grão chegar no passe seguinte.

Caso a recristalização não tenha sido completada antes do segundo passe, então a equação para a tensão de escoamento pode ser apresentada como consistindo de dois componentes, como mostrado na fig.(1.21).

$$\sigma = X_R \cdot \sigma_2(\bar{\epsilon}_2) + (1 - X_R) \cdot \sigma_1(\bar{\epsilon}_1 + \bar{\epsilon}_2)$$
(1.151)

onde:

 $\sigma_2(\bar{\epsilon}_2)$ é o componente da tensão de escoamento correspondente a parte recristalizada da estrutura dos grãos, e

 $\sigma_1(\bar{\epsilon}_1 + \bar{\epsilon}_2)$ é o componente da tensão de escoamento correspondente a parte não recristalizada da estrutura dos grãos.

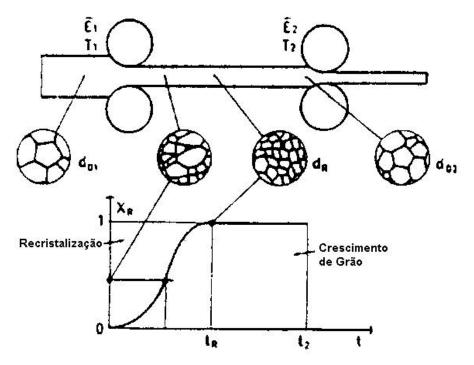


Fig.1.20 - Evolução dos parâmetros estruturais entre os passes.

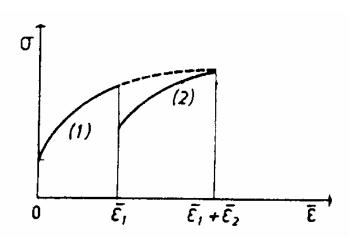


Fig.1.21 - Princípio de um modelo de tensão de multi-passes.

Misaka e Yoshimoto[3] desenvolveram um modelo que calcula a tensão de escoamento média (TEM) em aços C-Mn durante a laminação de tiras à quente. Esta equação considera somente recristalização estática e leva em consideração o teor de

carbono (%C), a deformação homogênea (ϵ_h) e a taxa de deformação (ϵ). Esta equação é escrita da seguinte forma:

$$TEM_{MK} = exp \left[0.126 - 1.75[C] + 0.594[C]^2 + \frac{2851 + 2968[C] - 1120[C]^2}{T} \right] \epsilon^{0.21} \cdot \epsilon^{0.13}$$
 (1.152)

Onde:

TEM_{MK} - tensão de escoamento média da equação de Misaka, [kgf/ mm²]

T - Temperatura, K

C – teor de carbono no aço.

Esta equação foi testada para teores de carbono na faixa de 0,05 a 1,20%, taxa de deformação entre 30 e 200 s⁻¹, temperatura entre 750 e 1200° C, e deformação abaixo de 0,50.

Shida[25] também deduziu uma equação para o calculo da TEM usando oito tipos de aços carbono-manganês com teor de carbono na faixa de 0,01 a 0,08%, taxa de deformação entre 0,2 e 30s⁻¹, temperatura entre 650 e 1200° C, e deformação acima de 0,60. A sua equação é dada por:

$$TEM = K \left[1, 3 \left(\frac{\varepsilon}{0, 2} \right)^{n} - \left(\frac{\varepsilon}{0, 2} \right) \right] \left(\frac{\varepsilon}{10} \right)^{m}$$
 (1.153)

Onde:

TEM - tensão de escoamento média,

K, n, m - fatores que dependem da temperatura e teor de carbono.

Karjalainem e outros [28] desenvolveram uma equação empírica da TEM a partir de testes de torsão para aços microligados com teores na faixa de 0,05–0,9%C; 1,20–1,57%Mn; 0,011-0,046%Nb; 0,001-0,142%Ti; 0-0,082%V e 0,03-0,70%Ni; e a mesma é dada por:

$$TEM = -225 + \frac{380000}{T} \tag{1.154}$$

Biglou e outros[53] também desenvolveu uma equação empírica da TEM a partir de testes de torção para aços com teores na faixa de 0,07%C; 1,3%Mn; 0,076%Nb; 0,24%Ti; e a mesma é dada por:

$$TEM = 166,6 + 391,2.\left(\frac{1000}{T}\right)$$
 (1.155)

Esta equação foi desenvolvida para a condição de total recristalização entre passes.

A equação de Misaka passou a ser utilizada por alguns autores para prever a TEM dos aços em função da temperatura e teor de carbono [4,6]. Porém, para se levar em consideração outros elementos de liga e também não somente a ocorrência de completa recristalização estática entre passes, mas também a recristalização dinâmica e metadinâmica foi necessário fazer melhoramentos na sua equação. As equações serão mostradas a seguir[4,6,25]:

$$TEM_{Cor}^{Carb} = TEM_{MK} . \{0,768 + 0,137.[Mn]\}$$
 (1.156)

TEM Carb - Tensão de escoamento média do Misaka corrigida para aços ao Carbono A faixa de concentração de manganês estudada foi de 0,27 a 1,08%.

$$TEM_{Cor}^{Nb} = TEM_{MK}.\{0,768 + 0,51.[Nb] + 0,137.[Mn] + 4,217.[Ti]\}$$
(1.157)

 ${
m TEM}_{
m Cor}^{
m Nb}$ - Tensão de escoamento média do Misaka corrigida para aços ao Nióbio

A faixa de concentração estudada foi de 0,02 a 0,08%Nb; 0,35 a 1,33%Mn; e de 0 a 0,024%Ti

$$TEM_{Cor}^{Micr} = TEM_{Mk} \cdot \{0,835 + 0,098 \cdot [Mn] + 0,51 \cdot [Nb] + 0,128 \cdot [Cr]^{0,8} + 0,144 \cdot [Mo]^{0,3} + 0,175 \cdot [V] + 0.01 \cdot [Ni] \}$$

$$(1.158)$$

 ${
m TEM}_{
m Cor}^{
m Micr}$ - Tensão de escoamento média do Misaka corrigida para aços Microligados A faixa de concentração estudada foi de 0 a 0,08%Nb; 0,52 a 0,66%Mn; 0,83 a 1,38%Cr; 0 a 0,46%Ni; 0,15 a 0,97%Mo e de 0 a 0,27%V.

Para se levar em consideração a recristalização dinâmica foi utilizada a seguinte expressão[4,6,25].

$$TEM_{Final} = TEM_{Cor.}(1 - Xdin) + K.\sigma ss.Xdin$$
 (1.159)

onde:

TEM_{Final} - Tensão de escoamento média final,

Xdin - Fração de recristalização dinâmica do material que ocorre a partir do pico da curva de tensão/deformação no regime estacionário - σss,

K - Constante da equação acima,

σss - Tensão de escoamento no regime estacionário.

1.2.11 - Cálculo da força de laminação

Pesquisadores como Sims, Cook-McCrum, Ford-Alexander e outros [9] desenvolveram expressões para o cálculo da força e torque na laminação. Mas a exemplo do cálculo da resistência à deformação, um importante critério para selecionar a equação mais adequada, é a capacidade de verificação e calibração desta equação, utilizando os dados reais da planta. Desta forma, a equação deve conter variáveis que possam ser prontamente medidas durante os testes de laminação.

O torque de deformação numa laminação é igual ao torque necessário para mover ambos os cilindros. No caso de os cilindros serem de iguais diâmetros, a equação geral do torque puro na laminação é dada por [9]:

$$M = 2.P.a$$
 (1.160)

M = torque na laminação, P = força de reação à deformação do a = braço de alavanca mostrado na fig.(1.1), material aplicada aos cilindros.

A força de laminação é dada por:

$$P = K_{def}.F_{d} = K_{def}.W.I_{d}$$
 (1.161)

Na presença de tensões de entrada e saída da tira esta força pode ser modificada para [9]:

$$P = W.(TEM - \beta_1 \tau_1 - \beta_2 \tau_2).\sqrt{R'.\Delta h}$$
(1.162)

Também levando em consideração a tensão na tira entre duas cadeiras de laminação, pode-se determinar a resistência a deformação, K_{def} em função de fatores geométricos que podem ser calculados, como mostrado na equação (1.163) [72].

$$K_{def} = TEM - \left(\frac{\tau_1 + \tau_2}{\alpha}\right) \phi n$$
 (1.163)

φ_n – Ângulo neutro

O braço da alavanca normalmente é expresso como uma fração do comprimento do arco de contato I_d.

$$a = m.I_d = m.\sqrt{R'.\Delta h}$$
 (1.164)

O coeficiente do braço de alavanca (m) é dado por:

$$m = \frac{M}{2.P.I_{d}}$$
 (1.165)

Sims desenvolveu um modelo para a distribuição de pressão ao longo do arco de contato para laminação a quente [7,54]. Levando-se em consideração a fig.(1.2), o modelo de Sims obteve relações de tensões de compressão S com a tensão de escoamento K, tanto para a região de entrada até o ângulo neutro, como do ângulo neutro para a região de saída do arco de contato. As equações obtidas são [1,7]:

$$\frac{S^{+}}{K} = \frac{\pi}{4} \ln \left(\frac{hn}{h2} \right) + \frac{\pi}{4} + \left(\frac{R'}{h2} \right)^{\frac{1}{2}} . \tan^{-1} \left[\left(\frac{R'}{h2} \right)^{\frac{1}{2}} . \theta \right]$$
 (1.166)

$$\frac{S^{-}}{K} = \frac{\pi}{4} \ln \left(\frac{hn}{h1} \right) + \frac{\pi}{4} - \left(\frac{R'}{h1} \right)^{\frac{1}{2}} . \tan^{-1} \left[\left(\frac{R'}{h1} \right)^{\frac{1}{2}} . \alpha \right] + \left(\frac{R'}{h1} \right)^{\frac{1}{2}} . \tan^{-1} \left[\left(\frac{R'}{h1} \right)^{\frac{1}{2}} . \theta \right]$$
(1.167)

onde:

S⁺ - Tensão de compressão na região de saída do arco de contato,

S⁻ - Tensão de compressão na região de entrada do arco de contato.

 α - Ângulo do arco de contato da tira com o cilindro,

 θ - Ângulo qualquer da região do arco de contato,

 ϕ_n – Ângulo neutro,

hn – Espessura da tira no ângulo neutro.

Fazendo S⁺ = S⁻ e θ = ϕ n determina-se a expressão do ângulo neutro conforme a equação (1.31).

$$\phi_{n} = \left(\frac{h2}{R'}\right)^{1/2} . \tan \left[\frac{\pi}{8} \left(\frac{h2}{R'}\right)^{1/2} . \ln(1-r) + \frac{1}{2} \arctan\left(\frac{r}{1-r}\right)^{1/2}\right]$$
(1.31)

Sims considerou que a força de laminação P pode ser expressa como a integral da pressão s ao longo do arco de contato [1], ou seja:

$$P = R' \int_{0}^{\alpha} s d\theta$$
 (1.168)

Pela integração das duas regiões de cada lado do ponto neutro a partir da equações (1.166) e (1.167) chega-se a seguinte expressão para a força específica de laminação [1].

$$P = R'.K. \left[\left(\frac{\pi}{2} \right) \left(\frac{h2}{R'} \right)^{\frac{1}{2}} . \tan^{-1} \left[\frac{r}{(1-r)} \right]^{\frac{1}{2}} - \pi . \frac{\alpha}{4} - \ln \left(\frac{hn}{h1} \right) + \frac{1}{2} \ln \left(\frac{h1}{h2} \right) \right]$$
(1.169)

Fazendo-se o fator geométrico Q igual a:

$$Q = \frac{1}{2} \cdot \sqrt{\frac{1-r}{r}} \cdot \left\{ \pi \cdot \tan^{-1} \left(\sqrt{\frac{r}{1-r}} \right) - \sqrt{\frac{R'}{h2}} \cdot \ln \left[\left(\frac{\ln n}{h2} \right)^2 \cdot (1-r) \right] \right\} - \frac{\pi}{4}$$
 (1.170)

onde r é o grau de redução do material sendo laminado.

A espessura do material no angulo neutro (hn) pode ser calculado da seguinte forma [8].

$$hn = 2.R' [1 - \cos(\phi n)] + h2$$
 (1.171)

A equação da força específica de laminação simplifica para:

$$P = \sigma \left[R'.(h1 - h2) \right]^{1/2}.Q$$
 (1.172)

Na laminação de aços planos, considera-se um estado plano de deformações [8], portanto, substituí-se a tensão de escoamento σ pela tensão de escoamento média TEM utilizando o critério Von Mises que é $2/\sqrt{3}$, ou seja:

$$TEM = \frac{2}{\sqrt{3}}.\sigma$$
 (1.173)

Desta forma, a equação da força de laminação para aços planos torna-se:

$$P = TEM.W.\sqrt{R'.(h1-h2).Q}$$
 (1.174)

Onde, W é a largura da peça sendo laminada.

No caso em que existir aplicação de tensão na tira entre cadeiras de laminação a TEM deve ser substituída pela resistência a deformação K_{def} , mostrada na equação (1.163), que leva em consideração estes fatores. Portanto, a equação da força de laminação tornase:

$$P = K_{def} \cdot W \cdot \sqrt{R' \cdot (h1 - h2)} \cdot Q$$
 (1.175)

Ford e Alexander [10], propuseram uma simplificação ao modelo se Sims para facilitar sua utilização *on-line* devido a sua simplicidade computacional, ou seja:

$$P = TCM.W. \left[\sqrt{R'.(h1 - h2)} \right] \left[1,57 + \frac{\sqrt{R'.(h1 - h2)}}{h1 - h2} \right]$$
 (1.176)

onde, TCM é a tensão de cisalhamento média.

A relação entre a TEM obtida por Sims e a TCM obtida por Ford e Alexander pode ser escrita da seguinte forma [25]:

$$TEM = \sqrt{3}.TCM \tag{1.177}$$

Para facilitar o uso do modelo de Sims no cálculo da força de laminação para diferentes temperaturas e tipos de aços, Cook e McCrum [55] reescreveram e equação de Sims da seguinte forma:

$$P = R'.J_{p}.C_{p}$$
 (1.178)

onde,

$$J_{P} = \sqrt{\frac{(1+r)}{(1-r)}}.TEM \tag{1.179}$$

$$C_{P} = \sqrt{\frac{h2}{R'}} \left(\frac{r}{1+r}\right) \cdot Q \tag{1.180}$$

1.2.12 – Curva de operação e curva de reação do laminador

O processo de laminação se desenvolve segundo uma Curva de Operação (CO) a qual relaciona o comportamento da Carga de laminação (P) em função da espessura de saída (h2), para um dado conjunto de parâmetros operacionais [74].

Na figura (1.22) é mostrado uma curva de operação genérica, onde o Ponto de Operação (Q) é aquele obtido pela sobreposição da curva de reação do laminador (CR) ou reta de carga, com a Curva de Operação (CO) [9,74].

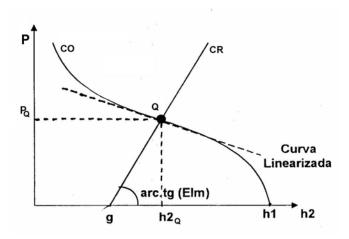


Fig.1.22 – Curva de operação (reta de carga) genérica de um laminador [74].

A curva de reação do laminador (CR) tem como abscissa na origem a abertura entre os cilindros, chamada de gap (g) e como declividade o módulo de Rigidez do laminador (Elm), que é linear na faixa útil de operação e, portanto constante para uma dada largura de entrada do material laminado [9,74].

A Curva de Reação (CR) pode ser obtida experimentalmente, o que seria um processo custoso e exaustivo, ou por simulação por meio de modelos matemáticos.

A linearização da CO em torno do ponto Q, pode ser obtida por uma rotina de linearização qualquer como o método dos mínimos quadrados. Este procedimento foi realizado por Denti, J. [74], onde a linearização foi feita numa faixa tal que o erro produzido pela adoção da nova curva estava dentro de limites aceitáveis e de acordo, por um fator multiplicativo conveniente, com a excursão máxima permitida para a espessura de saída do material sob laminação, de maneira a permitir que sejam tomadas decisões de controle eficazes com os dados aproximados obtidos pela curva linearizada.

A curva de reação do laminador (CR) relaciona as mesmas grandezas da curva de operação (CO), entretanto sob o aspecto de comportamento da máquina.

A cadeira de laminação se distende elasticamente durante o processo de deformação do material. Portanto, a espessura de saída do material (h2) é maior do que o

gap (g), que na região de deformação elástica linear do laminador leva e seguinte expressão [1,9,74]:

$$P = Elm.(h2 - g)$$
 (1.181)

O módulo de rigidez do laminador pode ser determinado quando se conhece a carga de laminação (P), a espessura de saída (h2) e o gap (g). Como este módulo é um valor constante, ele pode seu utilizado quando não se conhece as outras variáveis do processo, como por exemplo, estimar a espessura de saída entre cadeiras. Deve-se tomar o cuidado de periodicamente recalcular o módulo de rigidez, pois fatores como temperatura e principalmente troca de cilindros podem afetar o mesmo.

2 - MODELO MICROESTRUTURAL PARA DETERMINAÇÃO DA TENSÃO DE ESCOAMENTO MÉDIA E TAMANHO DE GRÃO DO AÇO NA LAMINAÇÃO À QUENTE

Devido a forte relação entre as mudanças microestruturais e as propriedades mecânicas do aço durante a laminação à quente e no resfriamento dos aços, na última década estudos tem sido feitos no sentido de se desenvolver modelos que levem em consideração propriedades físico-químicas e metalúrgicas do aço e também variáveis operacionais, com o objetivo de otimizar o processo de laminação [2].

O controle das propriedades mecânicas do aço durante a laminação contribui para a redução de custos devido a menor necessidade de adição de elementos de liga no refino do aço e redução de tratamentos térmicos posteriores, visando melhorar suas propriedades mecânicas. Além disso, um controle computacional microestrutural reduzirá o número de amostragens e conseqüentemente aumentará a produtividade da laminação.

No modelo microestrutural utilizado, o cálculo da tensão de escoamento média (TEM) foi baseado na equação (1.152) de Misaka para aços C-Mn e foram feitas correções para aços carbono, ao nióbio e microligados. Além disso, foi levada em consideração a deformação acumulada entre passes de maneira a se incorporar o efeito da recristalização estática, dinâmica e metadinâmica ao modelo de Misaka.

O modelo microestrutural também permite prever o tamanho de grão da austenita entre passes e o tamanho de grão da ferrita após a última cadeira de laminação para uma dada taxa de resfriamento.

A TEM calculada pelo modelo microestrutural é utilizada no modelo de carga de Sims para se obter a força de laminação aplicada ao cilindro de trabalho.

2.1 – EQUAÇÕES GEOMÉTRICAS UTILIZADAS NO MODELO MICROESTRUTURAL

Considerando a fig.(1.2) mostrada no capítulo 1 as seguintes expressões foram utilizadas:

Grau de Redução (r)

$$r = \frac{h1 - h2}{h1} \tag{2.1}$$

Raio corrigido do Cilindro de Trabalho:

equações (1.7) e (1.8)

as seguintes constantes foram utilizadas:

v - razão de Poisson do material do cilindro de trabalho, v = 0,3

E - módulo de Young para o cilindro de trabalho, E_{aco}=21092,1 kgf/mm²

Deformação efetiva do material:	equação (1.20)
Tempo de aplicação da deformação:	equação (1.21)
Distância angular α :	equação (1.22)
Taxa de deformação em cada passe:	equação (1.23)
Deformação redundante do material:	equação (1.25)
Fator de deformação redundante:	equação (1.26)
Fator de deslizamento e fator de deslizamento à frente:	equação (1.34)
Velocidade de saída da tira:	equação (1.35)
Velocidade tangencial do cilindro:	equação (1.29)

Cálculo do Tempo entre Passes no LTQ (t_{ip}).

O tempo de laminação entre dois passes é dado pela seguinte relação:

$$t_{ip} = \frac{\text{distância entre passes}}{\text{Ve}}$$
 (2.2)

2.2 - CÁLCULO DA TENSÃO DE ESCOAMENTO MÉDIA DOS AÇOS

A equação (1.152) de Misaka foi desenvolvida para calcular a TEM em aços C-Mn durante a laminação de tiras à quente. Esta equação considera somente recristalização estática e leva em consideração o teor de carbono (%C), a deformação homogênea (ε_h) e a taxa de deformação (ε). Neste trabalho serão levadas em consideração às deformações redundante e acumulada nestas equações.

Utilizou-se a equações (1.156), (1.157) e (1.158) que corrige a TEM de Misaka de modo a se considerar o efeito do manganês nos aços ao carbono e outros elementos químicos, aços ao nióbio e aços microligados, respectivamente. Finalmente chega-se a equação (2.3) que determina a TEM do modelo microestrutural e que foi obtida a partir da equação (1.159), onde se leva em consideração a TEM corrigida de Misaka e a recristalização dinâmica do material durante a laminação.

Na equação (1.152) de Misaka, utilizou-se o fator multiplicativo de 1,15 que é o critério Von Mises utilizado quando se tem estado plano de deformações, como na laminação de aços planos e também multiplica-se a mesma equação por 9,8 para fazer a

conversão de unidades de kgf/mm² para MPa e a soma-se 273 em T que é para se trabalhar com T graus centigrados.

A tensão de escoamento média do modelo microestrutural é obtida pela seguinte expressão:

σss

$$TEM_{Mod} = TEM_{Cor}.(1 - Xdin) + Kc.\sigma ss.Xdin$$
 (2.3)

TEM_{Mod} - Tensão de escoamento média do modelo microestrutural no passe considerado.

Xdin - Fração de recristalização dinâmica do material que ocorre a partir do pico da curva de tensão/deformação no regime estacionário - σss

Kc - Constante da equação acima Kc = 1,14

σss - Tensão de escoamento no regime estacionário e é obtida pela equação (1.97) [11]

Ass - Constante da equação acima, valores de 7,2; 4,2 e 1,18 para aços carbono ao nióbio e microligados, respectivamente [4,25].

q - Expoente da equação acima, valores de 0,09; 0,09 e 0,15 para aços carbono ao nióbio e microligados, respectivamente [4,25].

Qdef - Energia de ativação para a deformação, valores de 300; 375 e 330KJ/mol para aços carbono ao nióbio e microligados, respectivamente [4,25].

R - Constante universal dos gases ideais, R = 8,314 kJ/mol.k

2.3 - FRAÇÃO DE RECRISTALIZAÇÃO DINÂMICA DO MATERIAL PARA AÇOS CARBONO – Xdin

A recristalização dinâmica durante a laminação somente ocorrerá caso a deformação acumulada (εa) até o passe considerado seja maior que a deformação crítica para Início da recristalização dinâmica (εc) e desde que não haja precipitação de carbonetos. Desta forma pode-se escrever a equação (2.4) que representa a fração de recristalização dinâmica do material que ocorre a partir do pico da curva de tensão/deformação no regime estacionário σss [4,25,30] e que foi baseada na equação (1.107) de Yada.

$$X_{din} = 1 - \exp \left[-0.693 \left(\frac{\varepsilon_a - \varepsilon_c}{\varepsilon_{0,5}} \right)^2 \right]$$
 (2.4)

ε₀₅ - Deformação para 50% de recristalização,

ε_c = Deformação crítica para Início da recristalização dinâmica.

Utilizou-se a equação (1.109) de Yada, para cálculo de 50% de deformação e a equação (1.108) do mesmo autor para cálculo da deformação critica do aço carbono, quando se deseja calcular a recristalização dinâmica dos aços C-Mn [26], sendo (d) o tamanho de grão inicial do passe em µm.

2.4 – EQUAÇÃO GERAL DA FRAÇÃO DE RECRISTALIZAÇÃO DINÂMICA DO MATERIAL

A equação (2.4) foi desenvolvida para aços C-Mn, portanto o formato da equação (2.4) e as equações de ε_c e ε_{05} se aplicam somente para estes casos. É necessário então corrigir o formato destas equações para o caso dos aços Nióbio Microligados, etc.

Ao invés de se fazer correções de equações utilizando resultados experimentais e se utilizar de constantes empíricas, foi feito o desenvolvimento de uma equação geral para o cálculo da fração de recristalização dinâmica do aço baseado nas equações existentes e nos conhecimentos teóricos. Este desenvolvimento está descrito no item (2.4.1) a seguir.

2.4.1 – Tempo de recristalização dinâmica - t_{din}

O tempo de recristalização dinâmica do aço foi baseado na equação de imbert et al.[69] e pode ser escrito da seguinte forma:

$$t_{\text{din}} = \frac{\varepsilon_{\text{a}} - \varepsilon_{\text{c}}}{\bullet}$$

$$\varepsilon_{\text{a}}$$
(2.5)

 ε_a - É a taxa de deformação acumulada, onde inclui a deformação total (efetiva mais a redundante) e a deformação retida do passe anterior quando não ocorre recristalização completa, ou seja:

$$\varepsilon_{a} = \frac{\varepsilon_{a}}{t}$$
(2.6)

t = tempo de aplicação da deformação no arco de contato, [segundos].

Desta forma, utiliza-se o tempo de recristalização dinâmica na equação de Avrami para cada tipo de aço e encontra-se a fração de recristalização dinâmica do material. Para o nosso caso as equações utilizadas foram:

1) Para o caso de recristalização dinâmica de aços C-Mn utilizou-se a equação (1.110) como base e chegou-se a seguinte expressão:

$$X_{din} = 1 - \exp \left[-0.693 \left(t_{0.5} \right)^{1.1} \right]$$
 (2.7)

2) Para o caso de recristalização dinâmica de aço ao Nióbio e microligados utilizouse a equação (1.81) como base e chegou-se a seguinte expressão:

$$X_{din} = 1 - \exp \left[-0.693 \left(t_{din} / t_{0.5} \right)^{1} \right]$$
 (2.8)

t₀₅ - Tempo para 50% de recristalização do material (s)

t_{din} - Tempo de recristalização dinâmica do material (s)

2.5 - CÁLCULO DA DEFORMAÇÃO ACUMULADA - εa

Caso não ocorra recristalização completa num determinado passe, alguma deformação residual ficará retida e será transferida para o passe seguinte, desta forma utilizou-se para o cálculo a equação (1.78).

2.6 - DEFORMAÇÃO CRÍTICA PARA INÍCIO DA RECRISTALIZAÇÃO DINÂMICA - ϵ_c

Para Aços ao Carbono [27,70].

$$\varepsilon_{c} = 5,6.10^{-4}.d^{0,3} \left[\varepsilon \cdot \exp\left(300000 / RT\right) \right]^{0,17}$$
 (2.9)

d - Tamanho de grão.

Para os Aços Microligados.

Neste caso a mesma equação para aços ao carbono. Porém, colocando-se o valor da energia de ativação da deformação para aços microligados.

$$\varepsilon_{c} = 5.6.10^{-4} \cdot d^{0.3} \left[\varepsilon \cdot \exp(330000 / R.T) \right]^{0.17}$$
 (2.10)

Para os Aços ao Nióbio

Neste caso deve-se levar em consideração o efeito do nióbio dado pela equação (1.101), a equação (1.100) que trata do limite de resistência do material - ερ e que leva em consideração o efeito do Nióbio para se calcular a deformação crítica para aços ao nióbio dada na equação (1.102).

2.7 - VERIFICAÇÃO DO INÍCIO DA FORMAÇÃO DE PRECIPITADO - tps

3.7.1 - Tempo para formação de 5% de precipitado de Nióbio - t_{ps} (s)

O modelo desenvolvido por Dutta e Sellars que determina o tempo para a formação de 5% de precipitados de Nb(C,N) a partir da austenita supersaturada, em função da concentração de nióbio, temperatura, deformação, taxa de deformação e relação de supersaturação para precipitação do nióbio, foi utilizado e esta representado pela equação (1.143).

Para o cálculo da constante (A) da equação (1.143) que representa o número de precipitados nucleados por unidade de volume foi utilizada a equação (1.145) desenvolvida por Bai, pois leva-se em consideração os efeitos de nióbio, carbono, manganês e silício.

Sendo Ks da equação (1.143), a relação de supersaturação para precipitação do nióbio que é a expressão que determina a força motriz para a precipitação e é calculado pela equação (1.146), e o parâmetro Zener-Hollomon que é calculado pela equação (1.147).

2.7.2 - cálculo da relação $\sum_{t_{ps}}^{t_{ip}}$, acumulado a cada passe

Utilizou-se o modelo desenvolvido por Park para a laminação à quente de aços, onde calcula-se a relação t_{ip}/t_{ps} para cada passe e soma-se à mesma relação obtida no passe seguinte. Quando o somatório destas relações fosse igual ou superior a uma unidade, significará que estará ocorrendo formação de precipitado, Isto esta representado na equação (1.148).

2.8 - FRAÇÃO DE RECRISTALIZAÇÃO DO MATERIAL - X

A quantidade de material recristalizado em cada passe é determinada pela equação de Avrami. Para o caso de recristalização estática de aços ao carbono e estática e dinâmica para aços Microligados e ao Nióbio, utiliza-se a equação (1.81).

Para o caso de recristalização dinâmica de aços ao carbono, utiliza-se a equação (1.110), sendo t_{05} o tempo para 50% de recristalização do material (s) e tip o tempo de deslocamento do material entre passes (s)

2.9 - TEMPO PARA 50% DE RECRISTALIZAÇÃO DO MATERIAL - t_{05}

O tempo para 50% de recristalização do material varia em função do tipo de recristalização, se estática ou dinâmica e também de acordo com o tipo de aço. As equações utilizadas foram:

2.9.1 - Recristalização Estática

Aços Carbono equação (1.82)

sendo (d) o tamanho de grão inicial no passe em μm.

Aços ao Nióbio equação (1.89)
Aços Microligados equação (1.96)

2.9.2 - Recristalização Dinâmica

Aços Carbono equação (1.111)

Aços ao Nióbio equação (1.113)
Aços Microligados equação (1.117)

2.10 - TAMANHO DE GRÃO RECRISTALIZADO DA AUSTENITA

Para se determinar o tamanho de grão da austenita que entrará no passe seguinte, deve-se primeiro calcular qual seria o tamanho de grão dela totalmente ou parcialmente recristalizada. Certamente o tamanho de grão dependerá do tipo de recristalização que esteja ocorrendo no momento.

Autores como Hodson, Sellars, Roucoules e outros [4,6,25,27,28,29,30,31,32,33,38,39,40] desenvolveram equações que determinam o tamanho de grão recristalizado da austenita, quando ocorre recristalização estática, dinâmica ou metadinâmica. As equações utilizadas são mostradas a seguir.

2.10.1 - Recristalização Estática

Aços Carbono: equação (1.120)
Aços ao Nióbio e Microligados: equação (1.125)

2.10.2 - Recristalização Dinâmica/Metadinâmica

Aços Carbono: equação (1.128)
Aços ao Nióbio e Microligados: equação (1.130)

2.11 - CRESCIMENTO DO GRÃO DA AUSTENITA

O crescimento do grão da austenita entre passes é fortemente influenciado pelo tempo entre passes, e só ocorre após pelo menos 95% de grão recristalizado [4,22,25,27,38,41]. Alguns autores equacionaram este fenômeno, mas Hodgson [27,38] aplicou equações de crescimento de grão diferentes para os casos de recristalização estática e dinâmica. Além disto, ele mostrou que durante o primeiro segundo após a saída do material do laminador, o crescimento do grão segue um comportamento parabólico e que após este tempo a taxa de crescimento se acelera para a ordem de sétima potencia, como mostrado a seguir.

2.11.1 - Recristalização Estática

Para tempo entre passes menor do que um segundo ($t_{ip} < 1s$): equação (1.133) Para tempo entre passes maior do que um segundo ($t_{ip} > 1s$): equação (1.134)

2.11.2 - Recristalização Dinâmica

Para tempo entre passes menor do que um segundo ($t_{ip} < 1s$): equação (1.135) Para tempo entre passes maior do que um segundo ($t_{ip} > 1s$): equação (1.136)

2.12 - TAMANHO DE GRÃO DA AUSTENITA PARCIALMENTE RECRISTALIZADA

No caso em que não ocorra recristalização completa, ou seja, recristalização menor do que 95%, o tamanho de grão para o próximo passe é calculado pela seguinte equação (1.142).

2.13 - TAMANHO DE GRÃO DA FERRITA

Como foi dito anteriormente, o tamanho de grão da ferrita é fortemente influenciado pelo tamanho de grão da austenita, pela taxa de resfriamento após o último passe e também pela deformação residual final contida no aço [32].

As equações utilizadas foram as desenvolvidas por Sellars e Beynom [6,25]. O equacionamento consiste primeiro em se calcular o tamanho de grão da ferrita sem deformação residual, levando-se em consideração somente a taxa de resfriamento e o tamanho de grão final da austenita. Em seguida calcula-se o tamanho de grão final da ferrita no aço, levando-se em consideração a deformação residual contida no mesmo. Desta forma pode-se escrever:

2.13.1 - Tamanho de grão da Ferrita Recristalizada (sem presença de deformação residual)

Utilizou-se a equação (1.149), sendo a taxa de resfriamento do aço (T) em [0 C/s] e tamanho de grão da austenita (d) em [μ m],

2.13.2 - Tamanho de grão da ferrita levando em consideração deformação residual contida no aço - d_{α}

Foi utilizado a equação (1.150) de Hodgson e Gibbs [22] para aços carbono, nióbio e microligados para cálculo do tamanho de grão da ferrita em presença de deformação residual.

2.13.3 – Determinação da deformação residual contida no aço - ϵ_{res}

A deformação residual é a deformação contida no aço imediatamente antes do material entrar na mesa de resfriamento. Portanto o aço percorre uma certa distancia antes de chegar na mesa de resfriamento, onde irá também ocorrer recristalização. Portanto, para o cálculo da deformação residual foi desenvolvido neste trabalho a seguinte equação.

$$\varepsilon_{\text{res}} = (1 - X_{\text{n}}).\varepsilon a_{\text{n}} \tag{2.11}$$

 ϵ_{res} - Deformação residual após último passe,

X_n - Fração de recristalização do material após último passe,

εa_n – deformação acumulada no último passe.

2.14 - UTILIZAÇÃO DO MODELO DE CARGA DE SIMS PARA O CÁLCULO DA FORÇA APLICADA AO CILINDRO DE TRABALHO

Utiliza-se o modelo de Sims através da equação (1.173) para o cálculo da força. Entretanto, neste trabalho a tensão de escoamento média (TEM) utilizada, é a obtida pelo modelo microestrutural calculada através da equação (2.3). Obtêm-se então a força a ser aplicada ao cilindro de trabalho em toneladas, ou seja:

$$P_{\text{Mod}} = \frac{\text{TEM}_{\text{Mod}}.W\sqrt{R'(h1-h2)}.Q}{9800}$$
 (2.12)

P_{Mod} – Força aplicada ao cilindro de trabalho , [ton.],

Q - Fator geométrico que é dado pela equação (1.169).

Quando da existência de tensão na tira entre cadeiras de laminação, calcula-se a resistência à deformação utilizando a tensão de escoamento média obtida pelo modelo na equação (1.163) e (1.175).

Desta forma, a carga de laminação, agora levando em consideração a tensão na tira entre cadeiras, pode ser obtida da seguinte forma:

$$P_{\text{Mod}} = \frac{K_{\text{def}}.W\sqrt{R'(h1-h2)}.Q}{9800}$$
 (2.13)

2.15 – DETERMINAÇÃO DA ESPESSURA DE SAÍDA DO MATERIAL LAMINADO

Como a cadeira de laminação se distende elasticamente durante o processo de deformação do material, conseqüentemente, a espessura de saída do material (h2) é maior do que o gap (g). Portanto, foi utilizada a equação (1.181) para se determinar a espessura de saída do material, pois leva em consideração a carga de laminação, o gap e o módulo de rigidez do laminador.

$$h2 = \frac{P_{\text{Mod}}}{Elm} + g \tag{2.14}$$

P_{Mod} – Carga de laminação obtida pelo modelo, [ton.];

Elm – Módulo de rigidez do laminador, [ton./mm];

g - Abertura entre os cilindros de trabalho, gap, [mm].

Nota-se que o gap é uma variável operacional onde se pode atuar, e na espessura de saída isto não é possível.

O módulo de rigidez utilizado que é específico de cada laminador foi informado pela industria. Como o modelo, neste caso, irá fazer interações até que a força de laminação tenha um erro máximo de um porcento (+/-1%) em relação aquela obtida da interação anterior, o módulo de rigidez poderá sofrer pequenas correções a maior, no caso em que numa determinada interação for encontrada uma condição em que a espessura de saída seja maior do que a de entrada, ou quando o número de interações for maior do que setenta.

2.16 – FLUXOGRAMA DA PROGRAMAÇÃO MODELO TERMOMICROESTRURAL

A programação do modelo termomicroestrutural foi feita em linguagem C, onde o mesmo pode ou não entrar com a temperatura em cada passe, pois é o caso onde se tenha somente a temperatura de entrada na primeira cadeira. Desta forma, modelo calcula todas as demais temperaturas até a temperatura final após o último passe, onde a mesma pode ser comparada com a temperatura dada no pirômetro que mede a temperatura da tira antes de entrar na mesa de resfriamento. Para isto foi desenvolvido um modelo térmico que está mostrado no capítulo seguinte e que foi inserido ao modelo microestrutural, resultando no modelo termomicroestrutural.

O modelo termomicroestrutural permite que não se utilize a carga de laminação da indústria como dado de entrada, pois neste caso ele faz interações para se chegar ao valor final estabilizado do raio corrigido do cilindro de trabalho e das temperaturas de entrada, saída e de laminação em cada cadeira, da força de laminação, da tensão de escoamento média, do tamanho de grão da austenita, da fração de recristalização estática e dinâmica, da deformação acumulada, da taxa de deformação, entre outras. O modelo também calcula as espessuras de saída do material em cada cadeira de laminação, bastando fornecer a espessura de entrada somente na primeira cadeira de laminação, o gap em cada cadeira e o módulo de rigidez da cadeira que pode ser determinado pela industria.

Para calcular o diâmetro final da ferrita é necessário que se forneça a taxa de resfriamento após a ultima cadeira de laminação, ou forneça a temperatura medida nos pirômetros antes e após a mesa de resfriamento.

Com o modelo termomicroestrutural, pode-se obter muitas variáveis de processo e metalúrgicas, como carga de laminação, fração de recristalização estática e dinâmica, TEM, tamanho de grão da austenita e ferrita, tempo entre passes, deformação acumulada, entre outras, que podem auxiliar o engenheiro no entendimento do mesmo, na solução de problemas e na melhoria de qualidade do produto final. A figura (2.1). mostra o fluxograma da programação utilizada considerando as espessuras de entrada e saída do material em cada cadeira como dado de entrada e na figura (2.2) mostra a programação onde se utiliza o gap em cada cadeira como dado de entrada. A variável i representa o número de passe em questão e a variável j o número de interações do programa em cada passe.

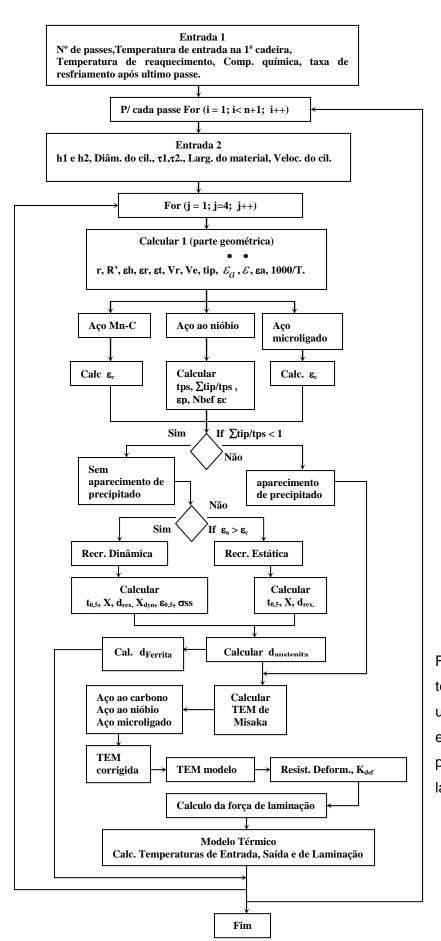


Figura 2.1.

Fluxograma do modelo termomicroestrutural utilizando as espessuras de entrada e saída do material para cada cadeira de laminação.

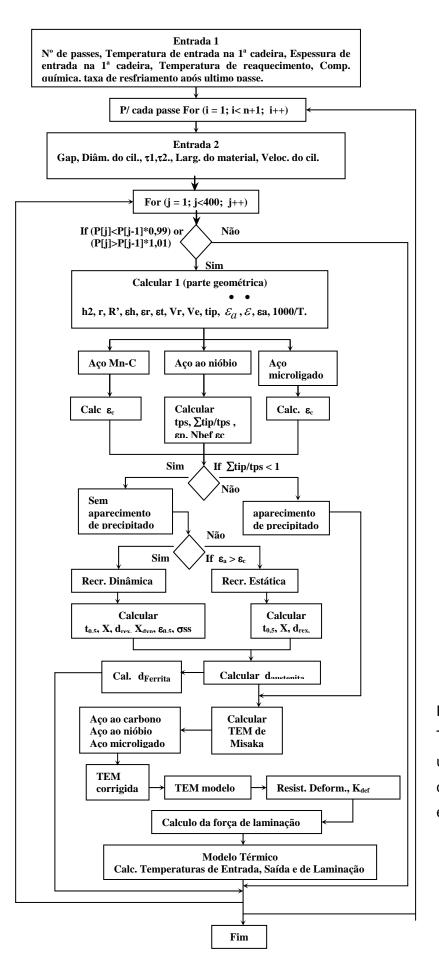


Figura 2.2.
Fluxograma do modelo
Termomicroestrutural
utilizando o gap em cada
cadeira como dado de
entrada.

3 - MODELO TÉRMICO NA LAMINAÇÃO DE TIRAS A QUENTE DE AÇOS

O modelo térmico da laminação de tiras a quente utiliza fatores geométricos e equações térmicas. O primeiro caso leva em consideração as correções utilizadas como o achatamento do cilindro de trabalho durante a laminação [1,7,8,9,10], cálculo do grau de redução, taxa de deformação do material, etc. Recentemente foram introduzidas algumas correções na taxa de deformação do material e na velocidade de saída da tira do cilindro, que foram respectivamente, a deformação redundante e o fator de deslizamento à frente [5].

As equações térmicas utilizam modelos matemáticos consagrados que tratam das trocas térmicas do aço durante a deformação, condução de calor pelo cilindro de trabalho, perdas de calor por radiação e por convecção. Com isto, pode-se determinar a temperatura máxima que o material atinge durante a deformação e as temperaturas de entrada e saída do aço em cada cadeira de laminação.

3.1 - DESENVOLVIMENTO DE EQUAÇÕES TÉRMICAS PARA A DETERMINAÇÃO DA TEMPERATURA DOS PRODUTOS PLANOS LAMINADOS A QUENTE

No desenvolvimento do balanço térmico global no LTQ foi levado em consideração que não há gradiente térmico no desenfornamento das placas e as seguintes variações de temperatura no aço [14]:

- a Aumento de temperatura devido à deformação plástica no passe ΔT_{DEF};
- b Queda de temperatura devido à condução de calor pela ação da água diretamente no material - ΔT_{AGUA};
- c Queda de temperatura devido à condução de calor pelo cilindro de trabalho ΔT_{AC};
- d Queda de temperatura devido à perda de calor por radiação até a próxima cadeira de laminação - ΔT_{RAD};
- e Queda de temperatura devido à perda de calor por convecção (ar) até a próxima cadeira
 ΔT_{AR}.

Desta forma, a queda de temperatura global entre a entrada numa cadeira e a entrada na cadeira seguinte pode ser escrita da seguinte forma [14]:

$$\Delta T_{TOTAL} = \Delta T_{DEF} - \Delta T_{AGUA} - \Delta T_{AC} - \Delta T_{RAD} - \Delta T_{AR}$$
(3.1)

3.2 - AUMENTO DE TEMPERATURA DEVIDO À DEFORMAÇÃO PLÁSTICA NO PASSE - ΔT_{DEF} .

A elevação média de temperatura no material pode ser calculada pela equação (1.41) [14]:

onde:

Atd – equivalente térmico da deformação, considerado [427000 Kgf.mm/Kcal];

Id – comprimento do arco de contato, [mm];

ρ_{aco} – massa específica do aço, [g/cm³];

c_{aço} – calor específico do aço em [Kcal/Kg.grau], ou [cal/g.grau].

O comprimento do arco de contato ld pode ser calculado pela equação (1.42):

3.3 - TEMPERATURA MÁXIMA DEVIDO À DEFORMAÇÃO PLÁSTICA NO PASSE, T_{MAX}.:

$$T_{MAX} = Te + \Delta T_{DEF}$$
 (3.2)

3.4 - QUEDA DE TEMPERATURA DEVIDO À CONDUÇÃO DE CALOR PELO CILINDRO DE TRABALHO - ΔT_{AC} .

A queda de temperatura média do material pelo arco de contato - ΔT_{AC} , pode ser medida pela equação (1.44).

onde,

Tcil – temperatura do cilindro de trabalho, [°C];

W - largura do material, [mm]

Vac – vazão do material no arco de contato no passe, [m³/h];

A vazão do material é calculada pela equação (1.45)

O valor do Hac, b_3 , z, t_{ac} e ψ_{ez} são calculados pelas equações (1.46), (1.47), (1.48), (1.50) e (1.51), respectivamente [14]:

sendo,

b₃ – efusividade térmica,

λ_{aco} – condutividade térmica do aço, [Kcal / m.h.°C] obtida pela equação (1.49),

 λ_{carepa} - condutividade térmica da carepa, [λ_{carepa} = 1,4. Kcal / m.h. °C],

S_{carepa} – espessura de carepa, [mm].

3.5 - TEMPERATURA DE SAÍDA DO PASSE - T_{SAÍDA}.

A temperatura de saída do passe pode ser calculada da seguinte forma:

$$T_{SAÍDA} = T_{MAX} - \Delta T_{AC}$$
 (3.3)

3.6 - QUEDA DE TEMPERATURA DEVIDO À PERDA DE CALOR POR RADIAÇÃO - ΔT_{RAD}

A queda de temperatura devido à perda de calor por radiação será calculada pela equação (1.54)

3.7 - QUEDA DE TEMPERATURA DEVIDO À PERDA DE CALOR POR CONVECÇÃO (AR) - ΔT_{AR}

A queda de temperatura devido à perda de calor por convecção será calculada pelas equações (1.55) e (1.56)

Sendo considerado os seguintes valores de constantes:

 λ_{ar} – condutividade térmica do ar, [λ_{ar} = 7,5.10⁻⁵cal/cm.s.°C],

 ρ_{ar} – massa específica do ar [ρ_{ar} = 0,0013g/cm³],

 μ_{ar} – viscosidade do ar [μ_{ar} = 0,0002g/cm.s].

3.8 - QUEDA DE TEMPERATURA DEVIDO À CONDUÇÃO DE CALOR PELA ÁGUA - ΔT_{AGUA} .

Na região dos sprays de água, pode-se estimar a queda de temperatura pela equação [1.62].

onde:

Tsaida – temperatura de saída no passe, [°C],

Tagua – temperatura de entrada da água do spray entre passes, [°C],

t_{aqua} – tempo de contato da água, [seg.] [14],

λ_{aco} – condutividade térmica do aço, [cal / cm.s.°C] dada pela equação (1.63).

$$t_{agua} = \frac{S_{agua}}{Ve}$$
 (3.4)

onde,

S_{aqua} – espessura do filme de água, [mm],

b₃ – efusividade térmica, obtida pela equação [1.64],

ρ_{aço} – massa específica do aço dado pela equação (1.65), [g/cm³];

c_{aço} – calor específico do aço dado pela equação (1.66), [Kcal/Kg.grau], ou [cal/g.grau].

A espessura do filme de agua sobre o material esta relacionada com o resfriamento que se deseja na tira. Portanto ela é específica para cada cadeira de laminação e consedera-se constante caso não seja feita alterações no sistema de refrigeração do material. Desta forma, a espessura do filme de agua foi determinado comparando os resultados do modelo térmico com as obtidos da industria e este valor foi introduzido no modelo térmico. Após este procedimento, todas as simulações adotaram os mesmos filmes de agua para cada cadeira de laminação

3.9 - QUEDA DE TEMPERATURA ENTRE CADEIRAS DE LAMINAÇÃO - ΔΤ_{IP}

A queda de temperatura entre duas cadeiras é a soma das perdas de calor por radiação, por convecção e pela agua, ou seja:

$$\Delta T_{IP} = \Delta T_{RAD} + \Delta T_{AR} + \Delta T_{AGUA} \tag{3.5}$$

3.10 - TEMPERATURA DE ENTRADA NA CADEIRA SEGUINTE - Te

A temperatura de entrada no passe seguinte, Te será a soma da temperatura de saída do passe anterior descontada a perda de calor entre os dois passes, ou seja:

$$Te = T_{SAIDA} - \Delta T_{IP}$$
 (3.6)

3.11 – FLUXOGRAMA DA PROGRAMAÇÃO DO MODELO TÉRMICO

O modelo térmico foi feito em linguagem C, onde foram colocadas equações térmicas que estão mostradas neste capítulo. Desta forma, o modelo calcula todas as perdas térmicas, as temperaturas de saída em cada passe e a temperatura de entrada no passe seguinte, até a temperatura final após o último passe, onde a mesma pode ser comparada com a temperatura dada no pirômetro que mede a temperatura da tira antes de entrar na mesa de resfriamento.

Este modelo térmico pode então ser inserido no modelo microestrutural e utilizar as variáveis de entrada do mesmo, que são comuns as necessárias para o modelo térmico. Com isto, o modelo microestrutural somente necessitará da temperatura de entrada na primeira cadeira de laminação.

A força de laminação necessária ao modelo térmico é calculada pelo modelo microestrutural e a temperatura de laminação necessária para o modelo microestrutural é calculada pelo modelo térmico.

Para isto, o modelo microestrutural e térmico juntos, agora chamado de modelo termomicroestrutural, fazem interações para se chegar aos valores desejados estabilizados. A figura 3.1. mostra o fluxograma da programação do modelo térmico utilizada.

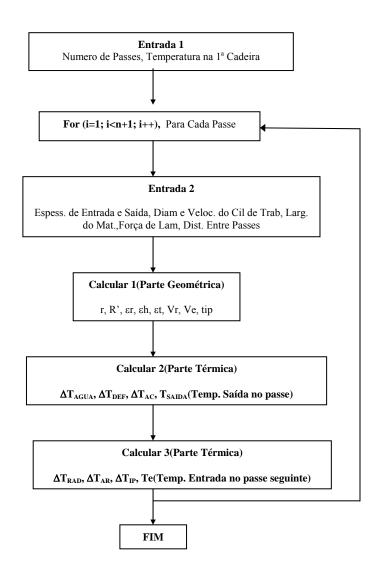


Figura 3.1. Fluxograma da programação feita para o modelo térmico

4 - RESULTADOS OBTIDOS

Foi desenvolvido um modelo no qual pode-se utilizar como dados de entrada os citados no fluxograma do modelo microestrutural, além disso, pode-se utilizar as forças e as temperaturas obtidas diretamente da máquina quando se deseja fazer um acompanhamento da evolução microestrutural somente. Pode-se não utilizar as forças dadas pelas células de carga quando se deseja uma predição e controle das mesmas, e finalmente pode-se não utilizar as forças nem as temperaturas quando se deseja fazer predição e controle tanto das forças de laminação quanto das temperaturas em cada cadeira de laminação. Esta última análise pode também ser utilizada *off line* para se prever o comportamento do material antes de entrar no laminador, estimar as forças e temperaturas de laminação, taxa de resfriamento e análise da microestrutura, poupando muitos ensaios mecânicos.

4.1 – MODELO MICROESTRUTURAL UTILIZANDO FORÇA E TEMPERATURA FORNECIDOS

Primeiramente iremos trabalhar com o modelo utilizando como dados de entrada todas aquelas previstas no fluxograma da figura (2.1) mais os dados de força de e temperatura de laminação.

4.1.1 – Aços Carbono manganês

4.1.1.1 - Resultados ulilizando dados idustriais obtidos da literatura [5].

Tabela 4.1 – Composição química do aço utilizado na siderúrgica SMI [5]

Industria	%C	%Mn	%Si	%P	%AI
SMI[5]	0,10	1,08	0,06	0,017	0.02

Tabela 4.2 – Dados de entrada para o modelo microestrutural fornecidos pela industria

Dados	Dados industriais [5]								
Steel: C-Mn									
Passe	diam. Cil. (mm)	Vel. Cil. (RPM)	Largura (mm)	Espes (mm)	Força Lam (ton)	Temp. (°C)			
				30,60					
F1	787	33,9	1264	17,33	2157	987			
F2	782	54,5	1264	10,79	2223	951			
F3	761	79,2	1264	7,42	2116	915			
F4	729	119,0	1264	5,10	1691	907			
F5	726	147,1	1264	3,90	1357	896			
F6	751	167,2	1264	3,14	1264	884			
F7	755	172,0	1264	2,61	1627	872			

Tabela 4.3 – Resultados obtidos pelo modelo microestrutural

Cadeira	Х	X_{din}	d _{rec} μm	d μm	€ ₀₅	t ₀₅ seg	• &	• & a
F1	1	0,244	17,38	23,959	0,677	0,045	15,149	15,149
F2	1	0,126	12,286	18,777	0,568	0,027	28,748	28,748
F3	1	0,005	9,724	15,95	0,641	0,019	45,569	45,569
F4	1	0	15,367	22,134	0	0,073	81,045	81,045
F5	0,729	0	19,796	14,609	0	0,412	100,424	100,436
F6	0,894	0	15,388	13,414	0	0,191	120,792	161,489
F7	0,531	0	16,094	9,872	0	0,487	137,259	160,310

Tabela 4.4 – Resultados obtidos pelo modelo microestrutural

Cadeira	t _{ip} seg.	ε _h	ε _t	ε _a	$\epsilon_{ m c}$
F1	3,473	0,657	0,702	0,702	0,462
F2	2,126	0,547	0,579	0,579	0,387
F3	1,455	0,432	0,455	0,455	0,453
F4	0,993	0,433	0,452	0,452	0,492
F5	0,775	0,31	0,323	0,323	0,592
F6	0,618	0,25	0,26	0,348	0,569
F7	0,533	0,213	0,221	0,258	0,599

Tabela 4.5 – Resultados obtidos pelo modelo microestrutural

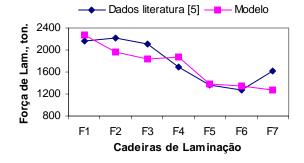

d aust	d aust	Taxa de	d ferrita	d ferrita
Recrist.	μm	resfriamento	Recrisist.	μm
16,094	9,872	29,421	5,35	4,513

Tabela 4.6 – Força de laminação fornecida pela industria e a obtida pelo modelo microestrutural.

Cadeira	1000/T	Força de Laminação, ton.				
Cauella	1000/1	Dados Industr.	Modelo			
F1	0,7937	2157	2269,326			
F2	0,817	2223	1970,146			
F3	0,8418	2116	1831,112			
F4	0,8475	1691	1865,548			
F5	0,8554	1357	1378,361			
F6	0,8643	1264	1345,331			
F7	0,8734	1627	1275,805			

Tabela 4.7 – Resultados das tensões de escoamento média (TEM) obtida pelo modelo de Sims, onde utilizou-se a força dada pela industria e as TEM obtidas utilizando a equação de Misaka com as correções, inclusive de recristalização dinâmica, e as obtidas pelo modelo microestrutural.

Cadeira	1000/T	TEM, MPa				
Cadella	1000/1	Sims	Misaka	Modelo		
F1	0,7937	149,743	171,996	157,541		
F2	0,817	194,373	193,133	172,265		
F3	0,8418	238,744	210,677	206,601		
F4	0,8475	209,056	230,833	230,635		
F5	0,8554	223,295	226,81	226,81		
F6	0,8643	236,732	251,964	251,964		
F7	0,8734	310,172	243,22	243,22		

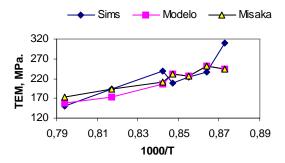


Fig.4.1 - Resultados de força de laminação Fig.4.2 - Resultados da TEM obtidas pelo obtidos pelo modelo microestrutural e da Industria [5].

modelo de Sims, pela equação de Misaka com correções e pelo modelo proposto por este trabalho.

Observe a boa concordância dos dados de força de laminação da literatura com os valores encontrados pelo modelo. Os dados do modelo também tiveram boa concordância quando comparados com os obtidos pelo método de Sims e de Misaka. No modelo de Misaka também foi incorporado o efeito da recristalização dinâmica.

4.1.1.2 - Resultados ulilizando dados industriais.

Analisando os dados industriais, mostrados nas tabelas e figuras a seguir, observouse que para os aços carbono, nas duas primeiras cadeiras de laminação, o resultado do modelo com correção de composição química sempre mostrou melhor comportamento do que o modelo de Misaka, onde não é feita a correção da composição química, mas utiliza todos os outros parâmetros do modelo, inclusive a recristalização dinâmica quando for o caso. Portanto, a única diferença entre os dois modelos é a correção que é feita na composição química.

Observou-se também que, para deformações (ε) abaixo de 0,5 o modelo com a equação de Misaka apresentou um melhor comportamento do que o modelo com a equação com correção da composição química, quando comparado com os dados de força de laminação e de tensão de escoamento média da indústria. Isto pode ser visto nas tabelas (4.13, 4.19, 4.25, 4.31, 4.37) e figuras (4.3, 4.4, 4.7, 4.8, 4.11, 4.12, 4.15, 4.16, 4.19 e 4.20). Estas observações estão de acordo com as condições de validade do modelo de Misaka, onde o mesmo não foi aplicado para deformações maiores do que 0,5 [3,71].

No caso deste trabalho, a deformação utilizada para esta comparação foi a deformação acumulada, e notou-se que, quando se tinha altas deformações nas primeiras cadeiras, ou seja, a soma das deformações da primeira e segunda cadeira eram maiores do que um ($\epsilon(F1)+\epsilon(F2)>1$) o modelo de Misaka se comportava melhor para deformações abaixo de 0,5. Quando a soma destas deformações eram menores do que um ($\epsilon(F1)+\epsilon(F2)<1$) o modelo de Misaka se comportava melhor para deformações abaixo de 0,3. Mas para ambos os casos nas duas primeiras cadeiras o modelo com correção da composição química sempre se comportava melhor, como será mostrado nas tabelas e figuras a seguir.

Desta forma, o modelo contemplou estas observações e quando as condições acima são atingidas o modelo muda para a equação de Misaka sem a correção. Portanto, nos gráficos a seguir serão mostrados o modelo (modelo), que inclui a correção pelo Misaka, o modelo de Misaka (Misaka) e o modelo sem correção (modelo sc) onde o mesmo não muda de equação quando atingir as condições acima, alem do modelo de Sims (Sims), onde se calcula a tensão de escoamento média TEM utilizando os dados de força da industria.

Utilizou-se dados de duas indústrias e que foram separadas em indústria A e B, as quais serão discutidos a seguir.

4.1.1.2.1 - Aço Carbono Manganês 1

Tabela 4.8 – Composição química do aço utilizado pela indústria

Industria	%C	%Mn	%Si	%Nb	%Ti	%Cr	%Mo	%Ni	%V
Α	0,0369	0,186	0,007	0	0,001	0,005	0,001	0,003	0

Tabela 4.9 – Resultados obtidos pelo modelo microestrutural

Cadeira	Х	X_{din}	d _{rec} μm	d μm	ε ₀₅	t ₀₅	• &	• & a
F1	1	0,151	14,932	21,372	0,77	0,038	18,842	18,842
F2	1	0,166	11,628	18,344	0,581	0,022	38,508	38,508

F3	1	0,05	9,407	16,151	0,615	0,013	71,541	71,541
F4	1	0	16,218	21,556	0	0,061	117,718	117,718
F5	0,72	0	20,804	15,118	0	0,315	151,725	151,769
F6	0,807	0	17,534	13,741	0	0,213	159,653	224,626

Tabela 4.10 – Resultados obtidos pelo modelo microestrutural

Cadeira	t _{ip} seg.	ϵ_{h}	ε _t	$arepsilon_{a}$	$\epsilon_{ m c}$
F1	2,892	0,642	0,689	0,689	0,536
F2	1,699	0,609	0,642	0,642	0,407
F3	1,062	0,516	0,539	0,539	0,459
F4	0,742	0,431	0,449	0,449	0,502
F5	0,58	0,304	0,317	0,317	0,596
F6	0,506	0,209	0,218	0,307	0,567

Tabela 4.11 – Resultados obtidos pelo modelo microestrutural

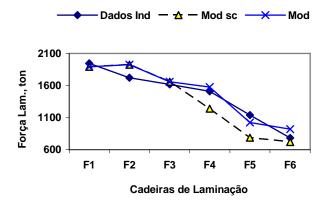

d aust	d aust	Taxa de	d ferrita	€ _{Resid}	d ferrita
Recrist.	μm	resfriamento	Recrisist.		μm
17,534	13,741	30,916	6,397	0,059	5,697

Tabela 4.12 – Força de laminação fornecida pela industria e força obtida pelo modelo microestrutural com e sem correção.

Cadeira	1000/T	Força de Laminação, ton.					
Cauella	1000/1	Dados Industr.	Modelo	Modelo sc			
F1	0,812	1947,755	1891,497	1891,497			
F2	0,8228	1722,959	1926,69	1926,69			
F3	0,8326	1616,02	1659,375	1659,375			
F4	0,8396	1508,469	1576,804	1239,752			
F5	0,8466	1138,469	1024,993	786,346			
F6	0,8543	784,694	921,506	721,824			

Tabela 4.13 – Resultados das tensões de escoamento média(TEM) obtida pelo modelo de Sims, equação de Misaka com as correções, e pelo modelo microestrutural proposto neste trabalho.

Cadeira	1000/T		TEM,	MPa		ϵ_{a}
Cauella	1000/1	Sims	Misaka	Modelo	Modelo sc	
F1	0,812	146,667	179,563	142,48	142,48	0,689
F2	0,8228	143,487	195,161	159,992	159,992	0,642
F3	0,8326	168,255	209,744	172,626	172,626	0,539
F4	0,8396	215,272	224,258	224,258	179,933	0,449
F5	0,8466	243,41	221,644	221,644	175,871	0,317
F6	0,8543	203,451	236,982	236,982	188,041	0,307

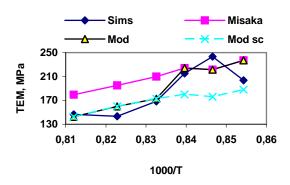
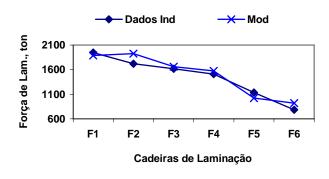



Fig.4.3 Resultados de força de laminação Fig.4.4 - Resultados da TEM obtidas pelo fornecidos pela industria e obtidos pelo modelo microestrutural com a correção para a equação de Misaka(Modelo) e sem a correção (Modelo sc).

modelo de Sims, pela equação de Misaka com correções e pelo modelo com a correção para a equação de Misaka(Modelo) e sem a correção (Modelo sc).

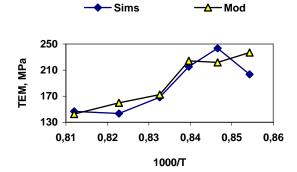


Fig.4.5 – Resultados de força de laminação fornecidos Fig.4.6 – Resultados da TEM obtidas pelo pela industria e obtidos pelo modelo microestrutural com a correção para a equação de Misaka.

modelo de Sims e pelo modelo com a correção para a equação de Misaka.

Observa-se que o modelo mudou para a equação de Misaka na F4 quando a soma das deformações acumulada nas duas primeiras cadeiras foi maior do que 1 e a deformação acumulada foi menor do que 0,5 na cadeira F4, melhorando o seu comportamento quando comparado com os dados industriais.

Observe na figura (4.4) que o modelo de Misaka apresentou pior desempenho nas três cadeiras iniciais e o modelo sem correção apresentou pior desempenho nas últimas cadeiras. O modelo proposto corrige estas distorções.

4.1.1.2.2 - Aço Carbono manganês 2

Tabela 4.14 - Composição química do aço utilizado pela indústria

Industria	%C	%Mn	%Si	%Nb	%Ti	%Cr	%Mo	%Ni	%V
Α	0,1747	0,82	0,206	0,0001	0,001	0,008	0	0,003	0,002

Tabela 4.15 – Resultados obtidos pelo modelo microestrutural

Cadeira	Х	X_{din}	d _{rec} μm	d μm	ε ₀₅	t ₀₅	• &	• & a
F1	0,904	0	44,77	40,067	0	1,018	10,565	10,565
F2	1	0,021	15,536	21,291	0,595	0,042	15,257	16,801
F3	0,998	0	24,374	27,671	0	0,219	19,531	19,531
F4	0,832	0	26,014	21,142	0	0,619	27,754	27,806
F5	0,845	0	21,791	17,915	0	0,492	35,26	42,292
F6	0,42	0	24,523	13,74	0	1,593	30,046	40,152

Tabela 4.16 – Resultados obtidos pelo modelo microestrutural

Cadeira	t _{ip} seg.	ε _h	ϵ_{t}	ε _a	$\epsilon_{ extsf{c}}$
F1	3,447	0,355	0,395	0,395	0,437
F2	2,547	0,342	0,374	0,412	0,386
F3	2,004	0,263	0,287	0,287	0,362
F4	1,594	0,247	0,27	0,27	0,452
F5	1,323	0,208	0,227	0,273	0,468
F6	1,252	0,113	0,126	0,168	0,466

Tabela 4.17 – Resultados obtidos pelo modelo microestrutural

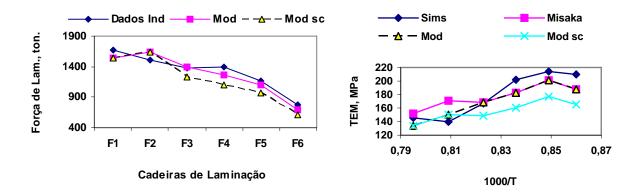
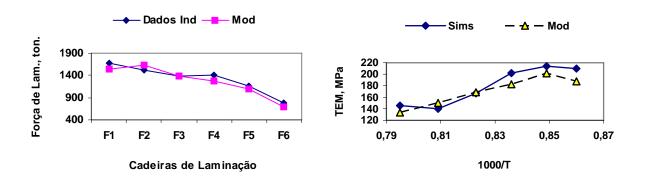

d aust Recrist.	d aust μm	Taxa de resfriamento	d ferrita Recrisist.	E _{Resid}	d ferrita μm
24,523	13,74	21,171	6,584	0,097	5,659

Tabela 4.18 – Força de laminação fornecida pela industria e força obtida pelo modelo microestrutural com e sem correção.

Cadeira	1000/T	Força de Laminação, ton.					
Cauciia	1000/1	Dados Industr.	Modelo	Modelo sc			
F1	0,795	1672,653	1533,943	1533,943			
F2	0,809	1515,102	1632,327	1632,327			
F3	0,823	1377,551	1391,404	1224,005			
F4	0,836	1401,531	1263,989	1108,28			
F5	0,849	1170,102	1098,493	962,894			
F6	0,86	781,122	697,849	612,807			


Tabela 4.19 - Resultados das tensões de escoamento média(TEM) obtida pelo modelo de Sims, equação de Misaka com as correções, e pelo modelo microestrutural proposto neste trabalho.

Cadaira	1000/T		TEM,	MPa		ε _a
Cadeira	1000/T	Sims	Misaka	Modelo	Modelo sc	
F1	0,795	145,616	151,807	133,642	133,642	0,395
F2	0,809	139,682	170,686	150,262	150,262	0,412
F3	0,823	166,831	168,468	168,468	148,693	0,287
F4	0,836	201,89	182,591	182,591	160,742	0,27
F5	0,849	213,987	201,268	201,268	177,185	0,273
F6	0,86	209,753	187,754	187,754	165,287	0,168

fornecidos pela industria e obtidos pelo modelo microestrutural com a correção para a equação de Misaka(Modelo) e sem a correção (Modelo sc).

- Resultados de força de laminação Fig.4.8 - Resultados da TEM obtidas pelo modelo de Sims, pela equação de Misaka com correções e pelo modelo com a correção para a equação de Misaka(Modelo) e sem a correção (Modelo sc).

fornecidos pela industria e obtidos pelo modelo microestrutural com a correção para a equação de Misaka.

Fig.4.9 - Resultados de força de laminação Fig.4.10 - Resultados da TEM obtidas pelo modelo de Sims e pelo modelo com a correção para a equação de Misaka.

Observa-se que o modelo mudou para a equação de Misaka na F3 quando a soma das deformações acumulada nas duas primeiras cadeiras foi menor do que 1 e a deformação acumulada foi menor do que 0,3 na cadeira F3, melhorando o seu comportamento quando comparado com os dados industriais.

Observe que o modelo de Misaka apresentou pior desempenho nas duas cadeiras iniciais e o modelo sem correção apresentou pior desempenho nas quatro últimas cadeiras. O modelo proposto corrige estas distorções.

4.1.1.2.3 - Aço Carbono manganês 3

Tabela 4.20 - Composição química do aço utilizado pela industria

Industria	%C	%Mn	%Si	%Nb	%Ti	%Cr	%Mo	%Ni	%V
Α	0,1311	0,52	0,006	0	0,002	0,011	0	0,004	0,001

Tabela 4.21 – Resultados obtidos pelo modelo microestrutural

Cadeira	Х	X_{din}	d _{rec} μm	d μm	€ ₀₅	t ₀₅	• &	• & a
F1	1	0,29	15,214	22,175	0,747	0,035	20,993	20,993
F2	1	0,258	11,685	18,822	0,572	0,019	44,405	44,405
F3	1	0,015	9,755	16,452	0,599	0,014	64,01	64,01
F4	0,994	0	17,91	21,524	0	0,113	96,104	96,104
F5	0,632	0	21,533	14,593	0	0,46	123,023	123,948
F6	0,842	0	16,566	13,539	0	0,219	131,075	196,412

Tabela 4.22 – Resultados obtidos pelo modelo microestrutural

Cadeira	t _{ip} seg.	ε _h	ϵ_{t}	$arepsilon_{a}$	$arepsilon_{ extsf{c}}$
F1	2,929	0,777	0,826	0,826	0,528
F2	1,641	0,675	0,706	0,706	0,409
F3	1,133	0,429	0,448	0,448	0,443
F4	0,836	0,349	0,364	0,364	0,492
F5	0,663	0,27	0,282	0,284	0,586
F6	0,583	0,201	0,21	0,314	0,558

Tabela 4.23 – Resultados obtidos pelo modelo microestrutural

d aust Recrist.	d aust μm	Taxa de resfriamento	d ferrita o Recrisist.	€ _{Resid}	d ferrita μm
16,566	13,539	30,556	6,348	0,050	5,712

Tabela 4.24 - Força de laminação fornecida pela indústria e força obtida pelo modelo microestrutural com e sem correção.

Codoiro	1000/T	Força de Laminação, ton.				
Cadeira	1000/1	Dados Industr.	Modelo	Modelo sc		
F1	0,8065	1697,143	1995,717	1995,717		
F2	0,8179	1643,878	1857,024	1857,024		
F3	0,8286	1402,245	1389,469	1209,913		
F4	0,8411	1192,755	1055,97	868,681		
F5	0,8495	1042,449	788,671	643,125		
F6	0,8589	843,163	828,353	689,804		

Tabela 4.25 - Resultados das tensões de escoamento média(TEM) obtida pelo modelo de Sims, equação de Misaka com as correções, e pelo modelo microestrutural proposto neste trabalho.

Cadeira	1000/T		ϵ_{a}			
Cauella	1000/1	Sims	Misaka	Modelo	Modelo sc	
F1	0,8065	140,714	196,825	165,183	165,183	0,826
F2	0,8179	157,566	202,363	177,497	177,497	0,706
F3	0,8286	206,647	204,825	204,825	179,218	0,448
F4	0,8411	251,343	225,231	225,231	189,478	0,364
F5	0,8495	291,306	227,529	227,529	190,951	0,284
F6	0,8589	258,654	254,284	254,284	213,405	0,314

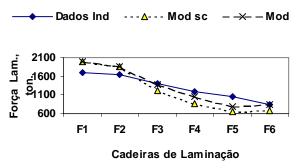
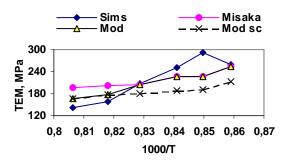
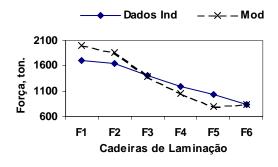




Fig.4.11 - Resultados de força de laminação Fig.4.12 - Resultados da TEM obtidas pelo fornecido pela industria e obtidos pelo modelo microestrutural com a correção para a equação de Misaka(Modelo) e sem a correção (Modelo sc).

modelo de Sims, pela equação de Misaka com correções e pelo modelo com a correção para a equação de Misaka(Modelo) e sem a correção (Modelo sc).

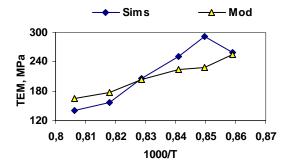


Fig.4.13 - Resultados de força de laminação Fig.4.14 - Resultados da TEM obtidas pelo fornecido pela industria e obtidos pelo modelo microestrutural com a correção para a equação de Misaka.

modelo de Sims e pelo modelo com a correção para a equação de Misaka.

Observa-se que o modelo mudou para a equação de Misaka na F3 quando a soma das deformações acumulada nas duas primeiras cadeiras foi maior do que 1 e a deformação acumulada foi menor do que 0,5 na cadeira F3, melhorando o seu comportamento quando comparado com os dados industriais.

Observe que o modelo de Misaka apresentou pior desempenho nas duas cadeiras iniciais e o modelo sem correção apresentou pior desempenho nas quatro últimas cadeiras. O modelo proposto corrige estas distorções.

4.1.1.2.4 - Aço Carbono manganês 4

Tabela 4.26 – Composição química do aço utilizado pela industria

Industria	%C	%Mn	%Si	%Nb	%Ti	%Cr
В	0,096	0,44	0,013	0,002	0	0,01

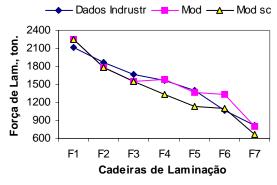
Tabela 4.27 – Resultados obtidos pelo modelo microestrutural

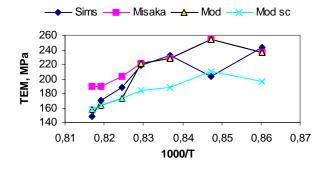
Cadeira	Х	X_{din}	d _{rec} μm	d μm	€ ₀₅	t ₀₅ seg	• &	• & a
F1	1	0,228	15,617	22,166	0,785	0,046	15,13	15,13
F2	1	0,167	12,945	19,874	0,566	0,026	29,855	29,855
F3	1	0,057	10,794	17,858	0,587	0,016	54,783	54,783
F4	1	0	17,771	24,966	0	0,056	99,059	99,059
F5	0,798	0	21,917	17,233	0	0,258	145,777	145,78
F6	0,867	0	17,389	14,681	0	0,153	196,711	244,228
F7	0,25	0	19,332	11,305	0	0,842	200,094	261,772

Tabela 4.28 – Resultados obtidos pelo modelo microestrutural

Cadeira	t _{ip} seg.	$arepsilon_{h}$	ϵ_{t}	ε _a	$\epsilon_{ extsf{c}}$
F1	3,822	0,756	0,808	0,808	0,532
F2	2,22	0,591	0,625	0,625	0,386
F3	1,369	0,495	0,518	0,518	0,427
F4	0,879	0,433	0,451	0,451	0,472
F5	0,594	0,339	0,352	0,352	0,583
F6	0,447	0,285	0,295	0,366	0,585
F7	0,349	0,152	0,158	0,207	0,606

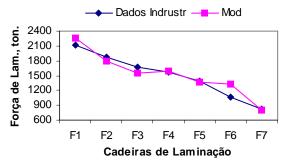
Tabela 4.29 – Resultados obtidos pelo modelo microestrutural


d aust	d aust	Taxa de	d ferrita	d ferrita
Recrist.	μm	resfriamento	Recrisist.	μm
19,332	11,305	44,916	5,578	4,744


Tabela 4.30 – Força de laminação fornecida pela industria e força obtida pelo modelo microestrutural com e sem correção.

Cadeira	1000/T	Força de Laminação, ton.				
Cauciia	1000/1	Dados Industr.	Modelo	Modelo sc		
F1	0,8169	2110,5	2250,547	2250,547		
F2	0,8192	1867,25	1784,853	1784,853		
F3	0,8245	1672,12	1543,693	1543,693		
F4	0,8294	1570,88	1587,684	1327,861		
F5	0,8369	1393,38	1370,746	1135,362		
F6	0,8472	1066,88	1329,78	1101,43		
F7	0,8602	821,62	797,061	660,19		

Tabela 4.31 – Resultados das tensões de escoamento média(TEM) obtida pelo modelo de Sims, equação de Misaka com as correções, e pelo modelo microestrutural proposto neste trabalho.


Cadeira	1000/T		TEM, MPa				
Cauella	1000/1	Sims	Misaka	Modelo	Modelo sc		
F1	0,8169	147,636	190,072	157,433	157,433	0,808	
F2	0,8192	170,61	189,333	163,082	163,082	0,625	
F3	0,8245	187,633	203,204	173,222	173,222	0,518	
F4	0,8294	218,64	220,979	220,979	184,816	0,451	
F5	0,8369	231,862	228,096	228,096	188,927	0,352	
F6	0,8472	203,809	254,032	254,032	210,409	0,366	
F7	0,8602	244,072	236,776	236,776	196,117	0,207	

fornecido pela industria e obtidos pelo modelo microestrutural com correção para а equação Misaka(Mod) e sem a correção (Mod sc).

Fig.4.15 - Resultados de força de laminação Fig.4.16 - Resultados da TEM obtidas pelo modelo de Sims, pela equação de Misaka com correções e pelo modelo com a correção para a equação de Misaka(Mod) e sem a correção (Mod sc).

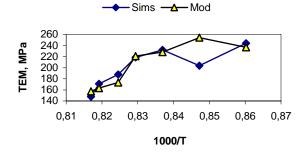


Fig.4.17 - Resultados de força de laminação Fig.4.18 fornecido pela industria e obtidos pelo modelo microestrutural com a correção para a equação de Misaka.

Resultados da TEM obtidas pelo modelo de Sims e pelo modelo com a correção para a equação de Misaka.

Observa-se pelo gráfico da TEM que o modelo mudou para a equação de Misaka na F3 quando a soma das deformações acumulada nas duas primeiras cadeiras foi maior do que 1 e a deformação acumulada foi menor do que 0,5 na cadeira F3, melhorando o seu comportamento quando comparado com os dados industriais.

Observe que o modelo de Misaka apresentou pior desempenho nas cadeiras iniciais e o modelo sem correção apresentou pior desempenho a partir da F4.

Nota-se que na industria B os modelos apresentaram o mesmo comportamento daquele mostrado na industria A. Desta forma, o modelo proposto corrige estas distorções dando um melhor comportamento em relação aos dados reais.

4.1.1.2.5 - Aço Carbono manganês 5

Tabela 4.32 - Composição química do aço utilizado pela Industria

Industria	%C	%Mn	%Si	%Nb	%Ti	%Cr
В	0,035	0,19	0,009	0,001	0	0,01

Tabela 4.33 – Resultados obtidos pelo modelo microestrutural

Cadeira	Х	X _{din}	d _{rec} μm	d μm	€ ₀₅	t ₀₅ seg	• &	• & a
F1	1	0,17	14,929	21,009	0,828	0,053	12,462	12,462
F2	1	0,105	12,355	18,821	0,597	0,031	24,517	24,517
F3	1	0,053	10,299	17,053	0,614	0,018	47,822	47,822
F4	1	0	16,17	24,175	0	0,053	90,192	90,192
F5	0,89	0	19,128	16,675	0	0,199	148,432	148,432
F6	0,75	0	17,153	12,731	0	0,231	190,84	220,893
F7	0,453	0	15,976	9,368	0	0,421	199,84	296,103

Tabela 4.34 – Resultados obtidos pelo modelo microestrutural

Cadeira	t _{ip} seg.	ε _h	ϵ_{t}	€ _a	$arepsilon_{ extsf{c}}$
F1	4,394	0,731	0,784	0,784	0,546
F2	2,577	0,572	0,607	0,607	0,395
F3	1,559	0,524	0,55	0,55	0,437
F4	0,979	0,462	0,482	0,482	0,483
F5	0,636	0,4	0,414	0,414	0,606
F6	0,462	0,278	0,288	0,334	0,606
F7	0,367	0,167	0,173	0,257	0,614

Tabela 4.35 – Resultados obtidos pelo modelo microestrutural

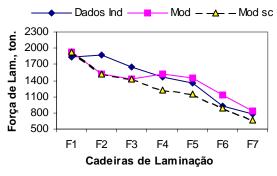
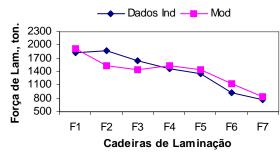

d aust Recrist.	d aust um	Taxa de resfriamento		d ferrita um
15,976	9,368	42,737	5,049	4,198

Tabela 4.36 – Força de laminação fornecida pela industria e força obtida pelo modelo microestrutural com e sem correção.

Cadeira	1000/T	Forg	a de Laminação	o, ton.
Cauella	1000/1	Dados Industr.	Modelo	Modelo sc
F1	0,8266	1837,62	1923,365	2250,547
F2	0,8312	1868,38	1528,807	1784,853
F3	0,8347	1643,88	1436,688	1543,693
F4	0,838	1473,5	1527,197	1327,861
F5	0,8441	1351	1450,216	1135,362
F6	0,8554	933,12	1124,234	1101,43
F7	0,8695	770	832,607	660,19

Tabela 4.37 - Resultados das tensões de escoamento média(TEM) obtida pelo modelo de Sims, equação de Misaka com as correções, e pelo modelo microestrutural proposto neste trabalho.


Cadeira	1000/T		TEM,	MPa		ε _a
Cauella	1000/1	Sims	Misaka	Modelo	Modelo sc	
F1	0,8266	138,31	182,315	144,764	157,433	0,784
F2	0,8312	187,881	186,42	153,734	163,082	0,607
F3	0,8347	188,884	203,123	165,078	173,222	0,55
F4	0,838	210,774	218,455	218,455	184,816	0,482
F5	0,8441	215,902	231,758	231,758	188,927	0,414
F6	0,8554	200,125	241,113	241,113	210,409	0,334
F7	0,8695	228,496	247,074	247,074	196,117	0,257

Misaka Mod sc 250 TEM, MPa. 210 170 130 0,82 0,83 0,84 0,85 0,86 0,87 0,88 1000/T

fornecido pela industria e obtidos pelo modelo microestrutural com equação correção para а de Misaka(Mod) e sem a correção (Mod sc).

Fig.4.19 - Resultados de força de laminação Fig.4.20 - Resultados da TEM obtidas pelo modelo de Sims, pela equação de Misaka com correções e pelo modelo com a correção para a equação de Misaka(Mod) e sem a correção (Mod sc).

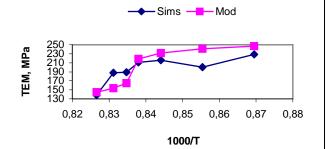


Fig.4.21 - Resultados de força de laminação Fig.4.22 - Resultados da TEM obtidas pelo modelo fornecido pela industria e obtidos pelo modelo microestrutural com a correção para a equação de Misaka(Mod).

de Sims e pelo modelo com a correção para a equação de Misaka(Mod).

Observa-se pelo gráfico da TEM que o modelo mudou para a equação de Misaka na F4 quando a soma das deformações acumulada nas duas primeiras cadeiras foi maior do que 1 e a deformação acumulada foi menor do que 0,5 na cadeira F4, melhorando o seu comportamento quando comparado com os dados industriais.

Observe que o modelo de Misaka apresentou pior desempenho nas cadeiras iniciais e o modelo sem correção apresentou pior desempenho a partir da F4.

Nota-se que na industria B os modelos apresentaram o mesmo comportamento daquele mostrado na industria A. Desta forma, o modelo proposto corrige estas distorções dando um melhor comportamento em relação aos dados reais.

4.1.2 – Aços ao Nióbio

Para estes aços foi observado que o modelo com correção da composição química aplicado a aços ao nióbio sempre apresentou melhor comportamento do que a equação de Misaka, como pode ser vistos nos gráficos a seguir tanto da industria A quanto da B.

4.1.2.1 - Aço ao Nióbio 1

Temperatura de reaquecimento da placa, Trh = 1200°C

Tabela 4.38 – Composição química do aço utilizado pela Industria

Industria	%C	%Mn	%Si	%Nb	%Ti	%Cr	%Mo	%Ni	%V
Α	0,0988	1,02	0,052	0,0337	0,002	0,012	0	0,004	0,002

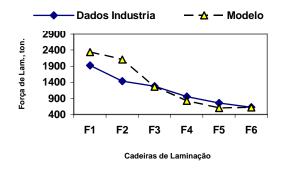
Tabela 4.39 – Resultados obtidos pelo modelo microestrutural

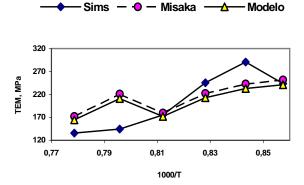
Cadeira	Х	X_{din}	d _{rec} μm	d μm	t ₀₅	• &	• & a
F1	0,341	0	25,011	40,706	4,75	19,342	19,342
F2	1	0,029	17,675	22,123	0,108	28,233	57,453
F3	0,227	0	17,280	15,614	3,764	39,493	39,493
F4	0,291	0	11,633	10,095	2,481	37,055	94,241
F5	0,324	0	8,915	6,598	1,962	36,211	137,885
F6	0,369	0	7,096	4,505	1,579	39,006	147,725

Tabela 4.40 – Resultados obtidos pelo modelo microestrutural

Cadeira	Ks	t _{ip} seg.	t _{ps} seg	t _{ip} /t _{ps}	$\sum t_{ip}/t_{ps}$	ε _h	ε _t	ε _a	$\epsilon_{ m c}$
F1	5,407	2,858	38,034	0,075	0,075	0,705	0,755	0,755	0,826
F2	7,019	1,887	12,134	0,156	0,231	0,452	0,481	0,979	0,717
F3	9,033	1,398	18,314	0,076	0,307	0,341	0,363	0,363	0,634
F4	11,525	1,23	11,564	0,106	0,413	0,168	0,182	0,462	0,596
F5	14,487	1,108	10,521	0,105	0,519	0,106	0,117	0,444	0,536
F6	17,73	1,049	10,22	0,103	0,621	0,098	0,108	0,408	0,489

Tabela 4.41 – Resultados obtidos pelo modelo microestrutural


d aust Recrist.	d aust μm	Taxa de resfriamento	d ferrita Recrisist.	ϵ_{Resid}	d ferrita μm
7,096	4,505	15,172	4,577	0,258	3,532


Tabela 4.42 - Força de laminação fornecida pela industria e força obtida pelo modelo microestrutural com e sem correção.

Cadeira	1000/T	Força de La	minação, ton.
Cauella	1000/1	Dados Industr.	Modelo
F1	0,779	1920,408	2334,954
F2	0,796	1433,061	2106,111
F3	0,812	1281,327	1259,934
F4	0,828	953,3673	823,685
F5	0,843	754,4898	600,512
F6	0,858	620,4082	613,27

Tabela 4.43 - Resultados das tensões de escoamento média(TEM) obtida pelo modelo de Sims, equação de Misaka com as correções, e pelo modelo microestrutural proposto neste trabalho.

Cadeira	1000/T		TEM, MPa					
Cauella	1000/1	Sims	Misaka	Modelo				
F1	0,779	135,413	171,931	164,435				
F2	0,796	144,482	220,663	211,042				
F3	0,812	174,859	179,612	172,007				
F4	0,828	245,354	222,460	212,761				
F5	0,843	290,32	243,172	232,570				
F6	0,858	243,69	251,916	240,933				

fornecidos pela industria e obtidos pelo modelo microestrutural.

Fig.4.23 - Resultados de força de laminação Fig.4.24 - Resultados da TEM obtidas pelo modelo de Sims, pela equação de Misaka com correções e pelo modelo microestrutural.

Nota-se que a força encontrada pelo modelo apresentou boa concordância com a força obtida na indústria. Observa-se também que a $\sum t_{ip}/t_{ps}$ foi menor do que 1, portanto não houve aparecimento de precipitados.

Observa-se uma queda na inclinação da curva da TEM no passe 3 devido a ocorrência de recristalização metadinâmica entre o passe 2 e 3.

4.1.2.2 - Aço Nióbio 2

Temperatura de reaquecimento da placa, Trh = 1229°C

Tabela 4.44 - Composição química do aço utilizado pela Industria

Industria	%C	%Mn	%Si	%Nb	%Ti	%Cr
В	0,10	0,99	0,048	0,028	0	0,01

Tabela 4.45 – Resultados obtidos pelo modelo microestrutural

Cadeira	Х	X _{din}	d _{rec} μm	d μm	t ₀₅ seg	• &	• & a
F1	0,499	0	23,815	29,532	3,36	18,255	18,255
F2	1	0,057	18,994	24,455	0,081	36,198	60,439
F3	0,498	0	15,045	12,104	1,216	63,824	63,824
F4	1	0,013	18,268	21,689	0,057	116,273	178,815
F5	0,085	0	17,878	18,819	4,337	162,168	162,188
F6	0,109	0	12,103	15,568	2,462	186,172	452,943
F7	0,042	0	9,971	14,446	5,182	174,476	901,272

Tabela 4.46 – Resultados obtidos pelo modelo microestrutural

Cadeira	Ks	t _{ip} seg.	t _{ps} seg	t _{ip} /t _{ps}	$\sum t_{ip}/t_{ps}$	$arepsilon_{h}$	ϵ_{t}	ε _a	$\epsilon_{ m c}$
F1	6,465	3,347	19,23	0,174	0,174	0,764	0,813	0,813	0,858
F2	6,902	1,922	9,517	0,202	0,376	0,578	0,609	1,016	0,599
F3	7,66	1,208	12,255	0,099	0,475	0,471	0,493	0,493	0,626
F4	8,839	0,803	5,162	0,156	0,63	0,443	0,46	0,708	0,518
F5	10,551	0,558	7,615	0,073	0,703	0,326	0,338	0,338	0,795
F6	12,988	0,41	3,953	0,104	0,807	0,208	0,216	0,525	0,833
F7	21,699	0,317	3,176	0,1	0,907	0,107	0,112	0,58	0,837

Tabela 4.47 – Resultados obtidos pelo modelo microestrutural

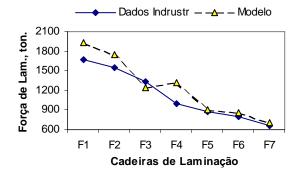

d aust Recrist.	d aust μm	Taxa de resfriamento	d ferrita Recrisist.	d ferrita μm
9,971	14,446	49,46	6.823	4.485

Tabela 4.48 – Força	de	laminação	fornecida	pela	industria	е	força	obtida	pelo	modelo
microestr	utur	al com e se	m correção	ο.						

Cadeira	1000/T	Força de Laminação, ton.					
Cauciia	1000/1	Dados Industr.	Modelo				
F1	0,784	1669,75	1924,824				
F2	0,787	1546,12	1752,866				
F3	0,7924	1334,5	1237,052				
F4	0,8004	991,5	1319,425				
F5	0,8108	871,5	909,675				
F6	0,8231	802,25	866,922				
F7	0,8375	668,25	703,088				

Tabela 4.49 - Resultados das tensões de escoamento média(TEM) obtida pelo modelo de Sims, equação de Misaka com as correções, e pelo modelo microestrutural proposto neste trabalho.

Cadeira	1000/T	TEM, MPa						
Cadella	1000/1	Sims	Misaka	Modelo				
F1	0,784	140,389	176,308	161,835				
F2	0,787	176,438	217,92	200,031				
F3	0,7924	189,782	190,766	175,924				
F4	0,8004	167,319	242,57	222,657				
F5	0,8108	186,446	211,785	194,613				
F6	0,8231	234,493	276,058	253,396				
F7	0,8375	281,364	322,507	296,033				

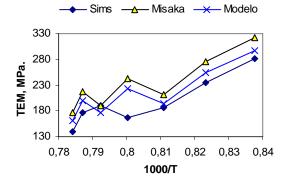


Fig.4.25 - Resultados de força de laminação Fig.4.26 - Resultados da TEM obtidas pelo fornecido pela industria e obtidos pelo modelo microestrutural.

modelo de Sims, pela equação de Misaka com correções e pelo modelo microestrutural.

Nota-se que a força encontrada pelo modelo apresentou boa concordância com a força obtida na indústria.

Observa-se que a $\sum t_{ip}/t_{ps}$ foi menor do que 1, portanto não houve aparecimento de precipitados durante a laminação. Observa-se também que o modelo de Misaka sempre apresentou pior comportamento do que o modelo proposto.

Observa-se uma queda na inclinação da curva da TEM nos passes 3 e 5 devido a ocorrência de recristalização metadinâmica entre os passes 2 e 3 e 4, respectivamente.

4.1.3 – Aços Microligados

Para estes aços foi observado que o modelo com correção da composição química aplicado a aços microligados sempre apresentou melhor comportamento do que a equação de Misaka, como pode ser vistos nos gráficos a seguir tanto da industria A quanto da B.

4.1.3.1 - Aço Microligado 1

Temperatura de reaquecimento da placa, Trh = 1200°C

Tabela 4.50 – Composição química do aço utilizado pela Indústria

Industria	%C	%Mn	%Si	%Nb	%Ti	%Cr	%Mo	%Ni	%V
Α	0,0667	0,61	0,285	0,0013	0,002	0,381	0	0,151	0,002

Tabela 4.51 – Resultados obtidos pelo modelo microestrutural

Cadeira	Х	X _{din}	d _{rec} μm	d μm	t ₀₅ seg	• &	• & a
F1	1	0,023	17,871	23,553	0,046	17,296	17,296
F2	1	0,028	17,097	20,576	0,024	35,695	35,695
F3	0,044	0	12,519	19,012	18,292	65,15	65,15
F4	1	0,041	14,637	18,049	0,005	88,309	214,507
F5	0,003	0	17,158	17,951	161,164	120,122	120,122
F6	0,009	0	11,989	17,661	47,189	126,596	306,608

Tabela 4.52 – Resultados obtidos pelo modelo microestrutural

Cadeira	Ks	t _{ip} seg.	t _{ps} seg	t _{ip} /t _{ps}	$\sum t_{ip}/t_{ps}$	$arepsilon_{h}$	ε _t	$arepsilon_{a}$	$\epsilon_{ m c}$
F1	0	3,261	0	0	0	0,732	0,783	0,783	0,756
F2	0	1,877	0	0	0	0,645	0,678	0,678	0,643
F3	0	1,178	0	0	0	0,522	0,546	0,546	0,738
F4	0	0,875	0	0	0	0,349	0,365	0,887	0,823
F5	0	0,678	0	0	0	0,286	0,299	0,299	0,908
F6	0	0,596	0	0	0	0,201	0,21	0,508	0,977

Tabela 4.53 – Resultados obtidos pelo modelo microestrutural

d aust Recrist.	d aust μm	Taxa de resfriamento	d ferrita Recrisist.	ϵ_{Resid}	d ferrita μm
11,989	17,661	31,891	7,405	0,503	5,041

Tabela 4.54 – Força de laminação fornecida pela industria e força obtida pelo modelo microestrutural com e sem correção.

Cadeira	1000/T	Força de Laminação, ton.					
Cauella	1000/1	Dados Industr.	Modelo				
F1	0,8012	2204,082	2463,677				
F2	0,8133	2012,653	2367,504				
F3	0,8245	1873,061	1961,22				
F4	0,8365	1646,224	1655,137				
F5	0,8457	1284,796	988,09				
F6	0,8555	1075	1028,235				

Tabela 4.55 – Resultados das tensões de escoamento média(TEM) obtida pelo modelo de Sims, equação de Misaka com as correções, e pelo modelo microestrutural proposto neste trabalho.

Cadeira	1000/T	TEM, MPa						
Cadella	1000/1	Sims	Misaka	Modelo				
F1	0,8012	154,076	179,87	172,063				
F2	0,8133	164,329	201,106	192,675				
F3	0,8245	198,228	216,256	207,286				
F4	0,8365	271,371	285,146	272,77				
F5	0,8457	275,148	225,048	216,038				
F6	0,8555	281,106	281,532	269,313				

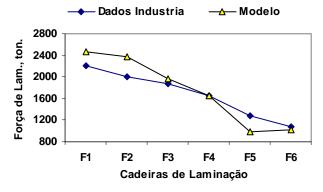


Fig.4.27 – Resultados de força de laminação fornecido pela industria e obtidos pelo modelo microestrutural.

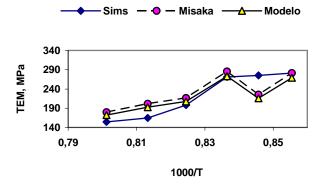


Fig.4.28 – Resultados da TEM obtidas pelo modelo de Sims, pela equação de Misaka com correções e pelo modelo microestrutural.

Nota-se que a força encontrada pelo modelo apresentou boa concordância com a força obtida na industria.

Observa-se também que o modelo de Misaka sempre apresentou pior comportamento do que o modelo proposto.

Observa-se uma queda na inclinação da curva da TEM nos passes 2, 3 e 5 devido a ocorrência de recristalixação metadinâmica nos passes anteriores.

4.1.3.2 - Aço Microligado 2

Temperatura de reaquecimento da placa, Trh = 1239 °C

Tabela 4.56 – Composição química do aço utilizado pela Industria

Industria	%C	%Mn	%Si	%Nb	%Ti	%Cr
В	0,002	0,13	0,007	0,001	0,067	0,01

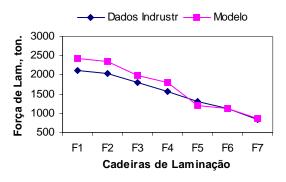
Tabela 4.57 – Resultados obtidos pelo modelo microestrutural

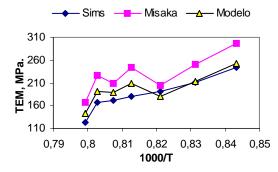
Cadeira	Х	X _{din}	d _{rec} μm	d μm	t ₀₅ seg	• &	• & a
F1	0,041	0	25,585	73,943	55,406	16,221	16,221
F2	1	0,258	17,06	22,521	0,015	26,978	63,595
F3	0,042	0	14,891	20,887	22,391	47,364	47,364
F4	1	0,09	16,754	21,15	0,006	80,961	167,129
F5	0,004	0	18,88	20,983	112,002	105,804	105,804
F6	0,012	0	12,989	20,526	32,052	123,967	291,254
F7	0,007	0	11,243	20,25	44,978	114,314	615,84

Tabela 4.58 – Resultados obtidos pelo modelo microestrutural

Cadeira	Ks	t _{ip} seg.	t _{ps} seg	t _{ip} /t _{ps}	$\sum t_{ip}/t_{ps}$	$arepsilon_{h}$	ε _t	ε _a	$\epsilon_{ m c}$
F1	0	3,343	0	0	0	0,68	0,73	0,73	0,738
F2	0	2,129	0	0	0	0,484	0,516	1,216	0,806
F3	0	1,386	0	0	0	0,437	0,461	0,461	0,64
F4	0	0,944	0	0	0	0,395	0,415	0,857	0,71
F5	0	0,69	0	0	0	0,29	0,304	0,304	0,79
F6	0	0,549	0	0	0	0,214	0,224	0,527	0,867
F7	0	0,465	0	0	0	0,112	0,119	0,639	0,921

Tabela 4.59 – Resultados obtidos pelo modelo microestrutural


d aust	d aust	Taxa de	d ferrita	d ferrita
Recrist.	μm	resfriamento	Recrisist.	μm
11,243	20,25	33,722	8,024	5,148


Tabela 4.60 – Força de laminação fornecida pela industria e força obtida pelo modelo microestrutural com e sem correção.

Cadeira	1000/T	Força de Laminação, ton.		
Cauciia	1000/1	Dados Industr.	Modelo	
F1	0,799	2105,5	2433,932	
F2	0,803	2047,88	2346,906	
F3	0,808	1790,25	1980,396	
F4	0,813	1557,88	1791,322	
F5	0,821	1296,38	1212,389	
F6	0,831	1114,62	1129,735	
F7	0,843	830,75	859,567	

Tabela 4.61 – Resultados das tensões de escoamento média(TEM) obtida pelo modelo de Sims, equação de Misaka com as correções, e pelo modelo microestrutural proposto neste trabalho.

Cadeira	1000/T	TEM, MPa			
Cadella	1000/1	Sims	Misaka	Modelo	
F1	0,799	123,773	168,012	143,08	
F2	0,803	167,767	225,765	192,263	
F3	0,808	171,289	209,249	189,482	
F4	0,813	181,164	244,609	208,311	
F5	0,821	192,148	205,335	179,699	
F6	0,831	210,352	250,355	213,205	
F7	0,843	244,75	297,366	253,24	

fornecidos pela industria e obtidos pelo modelo microestrutural.

Fig.4.29 - Resultados de força de laminação Fig.4.30 - Resultados da TEM obtidas pelo modelo de Sims, pela equação de Misaka com correções e pelo modelo microestrutural.

Nota-se que a força encontrada pelo modelo apresentou boa concordância com a força obtida na industria, e que o modelo de Misaka sempre apresentou pior comportamento do que o modelo proposto.

Observa-se uma queda da TEM nos passes 3 e 5 devido a ocorrência de recristalização metadinâmica entre os passes 2 e 3 e 3 e 4, respectivamente.

4.2 - MODELO TERMOMICROESTRUTURAL

O modelo térmico calcula todas as perdas térmicas, as temperaturas de saída em cada passe e a temperatura de entrada no passe seguinte, até a temperatura final após o último passe, onde a mesma pode ser comparada com a temperatura dada no pirômetro que mede a temperatura da tira antes de entrar na mesa de resfriamento.

Desta forma, o modelo microestrutural somente necessitará da temperatura de entrada na primeira cadeira de laminação.

A força de laminação necessária ao modelo térmico é calculada pelo modelo microestrutural e a temperatura de laminação necessária para o modelo microestrutural é calculada pelo modelo térmico.

Para isto, o modelo microestrutural e térmico juntos agora chamado de modelo termomicroestrutural fazem interações para se chegar aos valores desejados estabilizados.

Os valores encontrados do modelo termomicroestrutual foram praticamente os mesmos daqueles quando se utiliza os dados de força de laminação e de temperatura diretamente da indústria. Com isto, pode-se fazer predições, set up, antes de o material entrar no laminador e também para controle on line.

A título de diferenciação, o modelo microestrutural onde utiliza os dados de força de laminação e temperatura da indústria continuará sendo chamado de Modelo, e o modelo termomicroestrutural será chamado de Modelo TM. A seguir, listaremos alguns exemplos utilizando esta modelagem.

4.2.1 - Aço Carbono manganês 2

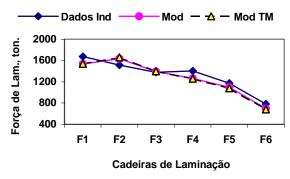

Este aço foi utilizado no item 4.1 e os resultados obtidos serão comparados com os do Modelo termomicroestrutural.

Tabela 4.62 – Força de laminação fornecida pela industria, força obtida pelo modelo microestrutural (Modelo), modelo termomicroestrutural (Modelo TM) e as temperaturas obtidas pela industria e pelo modelo termomicroestrutural.

Cadeira	Força de Laminação, ton.			Temp (°C)	Temp (°C)
	Dados Industr.	Modelo	Modelo TM	Industria	Mod TM
F1	1672,653	1533,943	1538,732	985,4	983,362
F2	1515,102	1632,327	1660,458	962,8	958,267
F3	1377,551	1391,404	1398,206	942,8	940,925
F4	1401,531	1263,989	1257,525	922,8	923,191
F5	1170,102	1098,493	1075,824	905,5	909,896
F6	781,122	697,849	680,854	889,5	894,397

Tabela 4.63 – Resultados das tensões de escoamento média (TEM) obtida pelo modelo de Sims, pelo modelo microestrutural (modelo) e pelo modelo termomicroestrutural (Modelo TM).

Cadeira	1000/T	TEM, MPa			
		Sims	Modelo	Modelo TM	
F1	0,795	145,616	133,642	134,239	
F2	0,809	139,682	150,262	152,478	
F3	0,823	166,831	168,468	169,188	
F4	0,836	201,89	182,591	182,51	
F5	0,849	213,987	201,268	198,077	
F6	0,86	209,753	187,754	184,933	

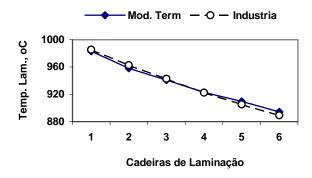


Fig.4.31 - Resultados de força de laminação Fig.4.32 -. Resultados da temperatura fornecida fornecido pela indústria e obtidos pelo modelo com correção pela equação de Misaka (Mod) е pelo modelo termomicroestrtural (Mod TM) também com as correções.

pela industria e a temperatura obtida pelo modelo microestrutural e térmico.

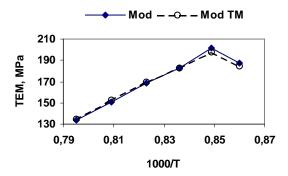


Fig.4.33 - Resultados da TEM obtidos pelo modelo com correção pela equação de Misaka (Mod) e pelo modelo termomicroestrtural (Mod MT) também com as correções.

Observe que as temperaturas do modelo térmico se ajustaram muito bem com as temperaturas fornecidas pela indústria.

Nota-se que a força de laminação e a tensão de escoamento média obtida pelo modelo termomicroestrutural (Modelo TM) onde não se utiliza dados de temperatura (somente a temperatura da primeira cadeira) e de força de laminação da industria, foram praticamente as mesmas obtidas pelo modelo microestrutural (Modelo) onde utilizou-se os dados de força e temperatura da industria.

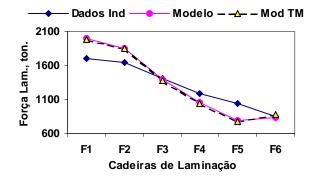

4.2.2 - Aço Carbono manganês 3

Tabela 4.64 - Força de laminação fornecida pela industria, força obtida pelo modelo microestrutural (Modelo), modelo termomicroestrutural (Modelo TM) e as temperaturas obtidas pela industria e pelo modelo termomicroestrutural.

Cadeira	Força de Laminação, ton.			Temp (°C)	Temp (°C)
Cauella	Dados Industr.	Modelo	Modelo TM	Industria	Mod TM
F1	1697,143	1995,717	1979,06	966,9	972,256
F2	1643,878	1857,024	1852,9	949,7	951,985
F3	1402,245	1389,469	1372,62	933,9	937,877
F4	1192,755	1055,97	1042,26	915,9	915,51
F5	1042,449	788,671	774,502	904,1	897,035
F6	843,163	828,353	884,848	891,3	876,113

Tabela 4.65 – Resultados das tensões de escoamento média(TEM) obtida pelo modelo de Sims, pelo modelo microestrutural (modelo) e pelo modelo termomicroestrutural (Modelo TM).

Cadeira	4000/T	TEM, MPa				
	1000/T	Sims	Modelo	Modelo TM		
F1	0,8065	140,714	165,183	163,3		
F2	0,8179	157,566	177,497	176,215		
F3	0,8286	206,647	204,825	202,775		
F4	0,8411	251,343	225,231	225,617		
F5	0,8495	291,306	227,529	232,469		
F6	0,8589	258,654	254,284	268,687		

Mod. Term - - O - Industria 1000 Temperatura, oC 970 940 910 880 850 F1 F2 F3 F4 F5 F6 Cadeiras de laminação

Fig.4.34 - Resultados de força de laminação Fig.4.35 -. Resultados da temperatura fornecida fornecido pela industria e obtidos pelo modelo com correção pela equação de Misaka (Mod) е pelo modelo termomicroestrtural (Mod TM) também com as correções.

pela industria e a temperatura obtida pelo modelo termomicroestrutural.

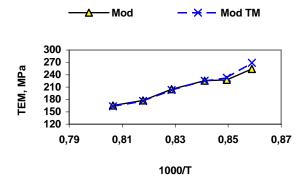


Fig.4.36 – Resultados da TEM obtidos pelo modelo com correção pela equação de Misaka (Mod) e pelo modelo termomicroestrtural (Mod TM) também com as correções.

Observe que também neste caso, as temperaturas do modelo térmico se ajustaram muito bem com as temperaturas fornecidas pela indústria, e que a força de laminação e a tensão de escoamento média obtida pelo modelo termomicroestrutural (Modelo TM), também ficaram muito próximas daquelas obtidas pelo modelo microestrutural (Modelo).

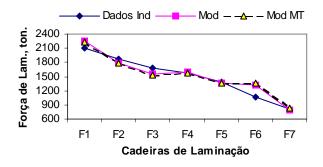

4.2.3 - Aço Carbono manganês 4

Tabela 4.66 – Força de laminação fornecida pela indústria a força obtida pelo modelo microestrutural (Modelo), modelo termomicroestrutural (Modelo TM) e as temperaturas obtidas pela indústria e pelo modelo termomicroestrutural.

Cadeira	Forç	a de Laminação	o, ton.	Temp (°C)	Temp (⁰ C)
Cauella	Dados Industr. Modelo		Modelo MT	Industria	Mod TM
F1	2110,5 2250,547 22		2233,262	951,15	955,421
F2	1867,25	1784,853	1778,073	947,63	948,334
F3	1672,12	1543,693	1540,039	939,92	938,478
F4	1570,88	1587,684	1582,774	932,71	934,753
F5	1393,38	1370,746	1354,974	921,92	925,052
F6	1066,88	1329,78	1361,258	907,38	906,311
F7	821,62	797,061	837,349	889,47	887,269

Tabela 4.67 – Resultados das tensões de escoamento média(TEM) obtida pelo modelo de Sims, pelo modelo microestrutural (Modelo) e pelo modelo termomicroestrutural (Modelo TM).

On deine	4000/T	TEM, MPa					
Cadeira	1000/T	Sims	Modelo	Modelo TM			
F1	0,8169	147,636	157,433	156,054			
F2	0,8192	170,61	163,082	162,757			
F3	0,8245	187,633	173,222	173,693			
F4	0,8294	218,64	220,979	220,143			
F5	0,8369	231,862	228,096	226,482			
F6	0,8472	203,809	254,032	248,6			
F7	0,8602	244,072	236,776	248,496			

Temp Mod Term ——Temp Industria Temperatura, oC 970 940 910 880 F1 F2 F3 F4 F5 F6 Cadeiras de Laminação

Fig.4.37 - Resultados de força de laminação Fig.4.38 -. Resultados da temperatura fornecida fornecidos pela industria e obtidos pelo modelo com correção pela equação de pelo Misaka (Mod) modelo е termomicroestrtural (Mod TM) também com as correções.

pela industria e a temperatura obtida pelo modelo termomicroestrutural.

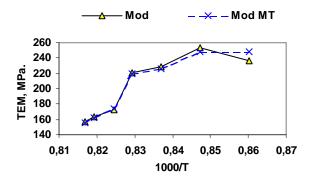


Fig.4.39 - Resultados da TEM obtidos pelo modelo com correção pela equação de Misaka (Mod) e pelo modelo termomicroestrtural (Mod TM) também com as correções.

Observe que também neste caso, as temperaturas do modelo térmico se ajustaram muito bem com as temperaturas fornecidas pela industria.

Nota-se que a força de laminação e a tensão de escoamento média obtida pelo modelo termomicroestrutural (Modelo TM), também foram praticamente as mesmas obtidas pelo modelo microestrutural (Modelo).

4.2.4 – Modelo termomicroestrutural na determinação da espessura de saída do material

Como neste caso o modelo irá determinar a espessura de saída do material pela equação (2.14), e esta espessura influi diretamente na carga de laminação, o modelo fará interações até que se atinja um erro máximo de um porcento entre as duas ultimas interações.

O módulo de rigidez fornecido pela indústria foi de 500 ton./mm sendo que este valor sofre correções periódicas. Foi considerado então como valor inicial o Elm em cada cadeira igual a 500 e este módulo poderá sofrer pequenas correções a maior, no caso em que numa determinada interação for encontrada uma condição em que a espessura de saída seja maior do que a de entrada, ou quando o número de interações for maior do que setenta.

Como será calculada a espessura de saída em cada cadeira, será então necessário a espessura de entrada somente na primeira cadeira e o gap em todas as cadeiras.

Foi utilizado o aço carbono manganês 3 para esta nova análise do modelo termomicroestrutural que será chamado de Mod TMGap, como mostrado a seguir.

Tabela 4.68 – Resultados obtidos pelo modelo termomicroestrutural utilizando o gap

Cadeira	Х	X_{din}	d _{rec} μm	d μm	€ ₀₅	t ₀₅	• &	• & a
F1	1	0,17	15,564	22,096	0,736	0,039	18,245	18,245
F2	1	0,135	12,13	18,83	0,575	0,022	37,164	37,164
F3	1	0	18,57	24,685	0,594	0,069	56,568	56,568
F4	0,953	0	20,842	21,048	0,725	0,188	91,336	91,337
F5	0,939	0	18,869	17,439	0,743	0,161	136,791	143,446
F6	0,396	0	22,719	12,968	0	0,806	116,388	131,76

Tabela 4.69 – Resultados obtidos pelo modelo termomicroestrutural utilizando o gap

Cadeira	t _{ip} seg.	ε _h	ϵ_{t}	$arepsilon_{a}$	$\epsilon_{ m c}$
F1	2,981	0,634	0,68	0,68	0,512
F2	1,669	0,568	0,599	0,599	0,402
F3	1,138	0,409	0,431	0,431	0,432
F4	0,834	0,372	0,39	0,39	0,54
F5	0,653	0,358	0,374	0,392	0,571
F6	0,586	0,171	0,18	0,203	0,565

Tabela 4.70 – Resultados obtidos pelo modelo termomicroestrutural utilizando o gap

d aust	d aust	Taxa de	d ferrita	ϵ_{Resid}	d ferrita
Recrist.	μ m	resfriamento	Recrisist.		μm
22,719	12,968	30,373	6,196	0,123	5,219

Tabela 4.71 – Força de laminação fornecida pela industria e força obtida pelo modelo termomicroestrutural utilizando h1 e h2 (Mod TM) e utilizando o gap (Mod TMGap).

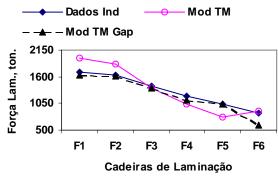
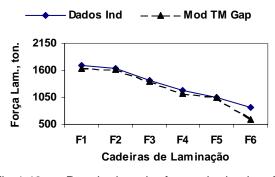
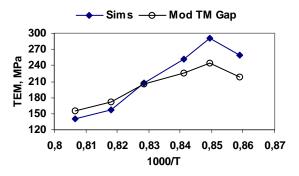

Cadeira	1000/T	Força de Laminação, ton.					
Cauella	1000/1	Dados Industr.	Mod. TM	Mod. MTGap			
F1	0,8065	1697,143	1979,06	1995,72			
F2	0,8179	1643,878	1852,897	1857,02			
F3	0,8286	1402,245	1372,622	1389,47			
F4	0,8411	1192,755	1042,261	1055,97			
F5	0,8495	1042,449	774,502	788,671			
F6	0,8589	843,163	884,848	828,353			

Tabela 4.72 – Resultados das tensões de escoamento média (TEM) obtida pelo modelo de Sims e as TEM obtidas pelo modelo termomicroestrutural utilizando h1 e h2 (Mod TM) e utilizando o gap (Mod TMGap).

Cadeira	1000/T	TEM, MPa					
Cauella	1000/1	Sims	Mod. TM	Mod. TMGap			
F1	0,8065	140,714	163,3	155,048			
F2	0,8179	157,566	176,215	171,969			
F3	0,8286	206,647	202,775	204,566			
F4	0,8411	251,343	225,617	225,106			
F5	0,8495	291,306	232,469	243,462			
F6	0,8589	258,654	268,687	217,91			

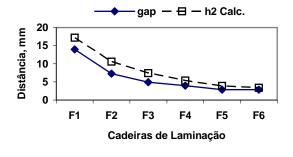
Tabela 4.73 – Resultados obtidos da espessura da saída do material pelo modelo MTGap em relação ao gap utilizado.

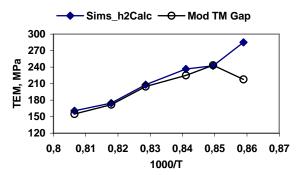

Cadeira	gap mm	h2 Calc. mm
F1	13,964	17,225
F2	7,294	10,554
F3	4,941	7,405
F4	3,955	5,364
F5	2,904	3,933
F6	2,836	3,393



Sims Misaka --- △ -- Mod TM Mod TM Gap 300 FEM, MPa 240 180 120 0,8 0,81 0,82 0,83 0,84 0,85 0,86 0,87 1000/T

Fig.4.40 - Resultados de força de laminação Fig.4.41 - Resultados da TEM obtidas pelo fornecido pela industria e os obtidos pelo modelo termomicroestrutural utilizando h1 e h2 (Mod TM) e utilizando o gap (Mod TMGap).


modelo de Sims e os obtidos pelo modelo termomicroestrutural utilizando h1 e h2 (Mod TM) e utilizando o gap (Mod TMGap).



fornecida pela industria e os obtidos modelo termomicroestrutural utilizando o gap (Mod TMGap).

Fig.4.42 - Resultados de força de laminação Fig.4.43 - Resultados da TEM obtidas pelo modelo de Sims e pelo modelo termomicroestrutural utilizando o gap (Mod TMGap).

espessura de saída calculada pelo modelo termomicroestrutural.

Fig.4.44 - Relação entre o gap fornecido e a Fig.4.45 - Resultados da TEM obtidas pelo modelo de Sims utilizando o h2 calculado pelo modelo termomicroestrutural utilizando o gap (Mod TMGap) e a TEM deste modelo.

Observa-se que a força de laminação calculada pelo modelo termomicroestrutural com cálculo da espessura de saída apresentou uma boa concordância com a carga de laminação obtida pela indústria, como pode ser visto na figuras (4.40) e (4.42). Este bom desempenho pode ser confirmado quando se utilizou a espessura de saída calculada no modelo de Sims para determinar a TEM. Observe na figura (4.45) que as TEM de Sims e do Mod TMGap estão bem próximas, a exceção da última cadeira de laminação, onde a temperatura está mais baixa podendo esta ocorrendo mudança de fase e o modelo tem melhor desempenho quando fase totalmente austenitica.

Observe na figura (4.44) que a distância da espessura de saída em relação ao gap é maior nas primeiras cadeiras e vai reduzindo em direção as últimas.

5 – ANÁLISE DE SENSIBILIDADE

Utilizando-se o modelo termomicroestrutural, foram feitas análises de sensibilidade por meio de alterações provocadas na espessura de entrada do material na primeira cadeira, e para todas as cadeiras, independentemente do número de cadeiras, as alterações provocadas foram no gap, na temperatura de entrada do material na cadeira de laminação, na tensão a frente e a ré entre cadeiras e na velocidade do cilindro de trabalho.

Com isto, foram analisadas as alterações que estes distúrbios provocavam nas propriedades do aço, como tensão de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída do material e carga de laminação. Foi analisado também o efeito destes distúrbios não somente na cadeira de laminação em questão, mas o efeito nas demais cadeiras.

Utilizou-se o aço ao carbono manganês 3 dado no item (4.1.1.2.3) e foram feitos os distúrbios em todas as cadeiras.

Para cada distúrbio introduzido em relação ao resultado nominal dado pelo modelo termomicroestrutural foram feitas variações de dez por cento para mais e para menos. Para os distúrbios de tensão à frente e a ré a variação foi de zero a cem por cento, para se ter uma maior sensibilidade quando não se tem tensão aplicada ou quando a tensão é o dobro da nominal. Dentro destas variações foram feitas cinco medições a maior e a menor em relação a nominal. Desta forma, podem-se traçar gráficos com onze posições para cada distúrbio provocado.

Como os resultados encontrados para as diferentes cadeiras de laminação levam a praticamente as mesmas conclusões, e para que não fique cansativo, os resultados e os comentários das análises de sensibilidades obtidos para as cadeiras de laminação quatro, cinco e seis foram calocados nos apendices G, H e I, respectivamente.

5.1 – EFEITO DOS DISTÚRBIOS NA PRIMEIRA CADEIRA DE LAMINAÇÃO

5.1.1 - Efeito da variação na espessura de entrada do material - h11

Foram feitas simulações para variação da espessura e levantados os gráficos de espessura de entrada & tensão de escoamento média, espessura de entrada & tamanho de grão, espessura de entrada & temperatura de laminação, espessura de entrada & espessura de saída e espessura de entrada & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo A.

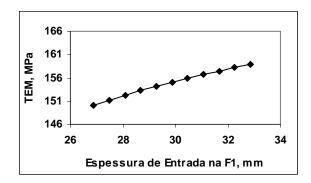


Figura 5.1 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material na cadeira F1, tabela A1.1.

Observe que a TEM cresce com o aumento na espessura de entrada do material, o que esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com a deformação e com a taxa de deformação do material.

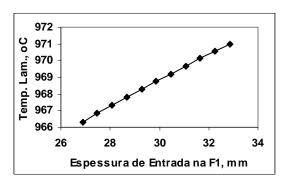


Figura 5.2 – Resultados de temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material na cadeira F1, tabela A1.1.

Nota-se um aumento na temperatura de laminação com o aumento na espessura de entrada do material, pois irá provocar aquecimento do material devido a maior deformação plástica, o que esta de acordo com a equação (1.41).

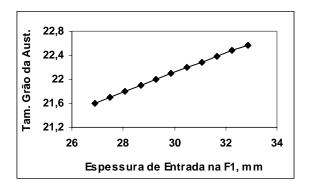


Figura 5.3 – Resultados de tamanho de grão (μm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material na cadeira F1, tabela A1.1.

O tamanho de grão final da austenita obtido na figura (5.3) é o tamanho de grão inicial ou de entrada na cadeira F2. Portanto é influenciado pela temperatura entre passe conforme a equação (1.128) e (1.136), dadas para a recristalização dinâmica como é o caso.

Observe-se que quanto maior a temperatura maior é o tamanho de grão. Nota-se na mesma equação (1.128), que o aumento na espessura irá certamente aumentar a taxa de deformação no passe que por sua vez irá diminuir o tamanho de grão. O gráfico da figura (5.3) mostra um pequeno aumento no tamanho de grão devido a estes dois efeitos concorrentes.

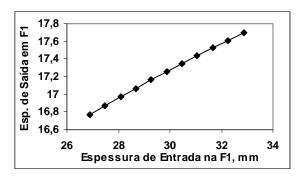


Figura 5.4 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material na cadeira F1, tabela A1.1.

Observe na figura (5.4) que quanto maior a espessura de entrada, maior é a espessura de saída do material no laminador. Isto é devido ao aumento da carga de laminação provocada pelo aumento da espessura de entrada, fazendo com que o laminador

se distenda mais, resultando no aumento da espessura de saída do material. Isto está de acordo com a equação (2.14).

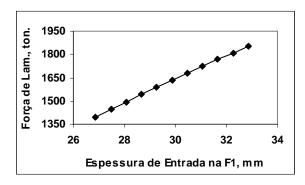


Figura 5.5 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material na cadeira F1, tabela A1.1.

Como pode ser visto na figura (5.5), quanto maior a espessura de entrada do material, maior é a carga de laminação, devido a maior resistência a passagem do material no laminador. A equação (2.12) de Sims mostra esta relação.

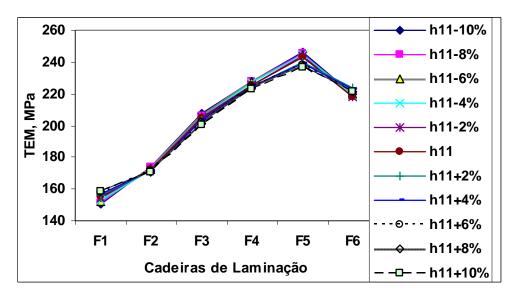


Figura 5.6 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material na cadeira F1, tabela A1.2.

Observe que o aumento na espessura de entrada na cadeira F1 provocou um aumento TEM da mesma. Porem, este aumento de espessura provocou aumento na recristalização dinâmica e metadinâmica entre as cadeiras F1 e F2, proporcionando assim

uma redução na TEM nos passes seguintes, como pode ser visto na tabela (5.1), pois o aumento na recristalização dinâmica diminui a TEM.

Nota-se que o efeito do distúrbio provocado na cadeira F1 afeta mais significativamente a própria cadeira e pouco nas cadeiras seguintes.

Tabela 5.1 – Resultados do índice de recristalização dinâmica do material devido a alterações na espessura de entrada na cadeira F1, para o aço carbono manganês 3.

	h11 –10%	h11	h11 +10%
Xdin	0,096	0,17	0,25

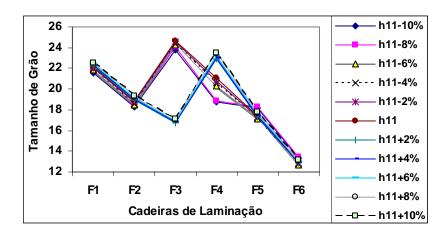


Figura 5.7 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material na cadeira F1, tabela A1.3.

Nota-se que o efeito no tamanho de grão é pequeno, mas se propaga para as demais cadeiras de laminação.

Observe-se que na cadeira F3 houve um crescimento no tamanho de grão seguido de diminuição nas cadeiras posteriores, para espessuras menores de h11+2%. Para espessuras maiores o crescimento de grão aparece na cadeira F4. Este crescimento é devido a não haver mais recristalização dinâmica no passe considerado. Isto pode ser visto na tabela (5.2).

No caso da mudança de comportamento no tamanho de grão nas espessuras h11-10% e h11-8%, observe que houve um menor tamanho de grão, isto foi devido a não ter havido recristalização completa (X<0,95). Isto resulta numa redução do tamanho de grão, equação (1.142).

Tabela 5.2 – Resultados do índice de recristalização dinâmica em todas as cadeiras de laminação devido a alterações na espessura de entrada na cadeira F1, para o aço carbono manganês 3.

		Recristalização dinâmica - Xdin									
	h11-10%	h11-8%	h11-6%	h11-4%	h11-2%	h11	h11+2%	h11+4%	h11+6%	h11+8%	h11+10%
F1	0,096	0,11	0,124	0,139	0,154	0,17	0,185	0,201	0,217	0,233	0,25
F2	0,101	0,108	0,115	0,12	0,127	0,135	0,142	0,15	0,158	0,165	0,176
F3	0	0	0	0	0	0	0,011	0,013	0,013	0,014	0,015
F4	0	0	0	0	0	0	0	0	0	0	0
F5	0	0	0	0	0	0	0	0	0	0	0
F6	0	0	0	0	0	0	0	0	0	0	0

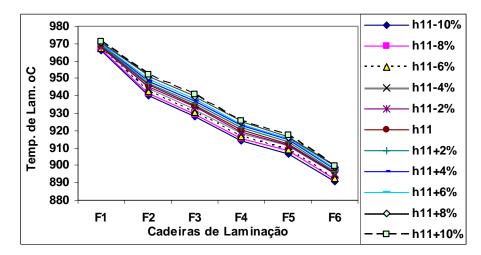


Figura 5.8 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material na cadeira F1, tabela A1.4.

Observe que o aumento na espessura de entrada em F1 aumenta a temperatura de laminação em todas as cadeiras seguintes, sendo que o seu efeito reduz gradativamente para as cadeiras mais distantes de F1.

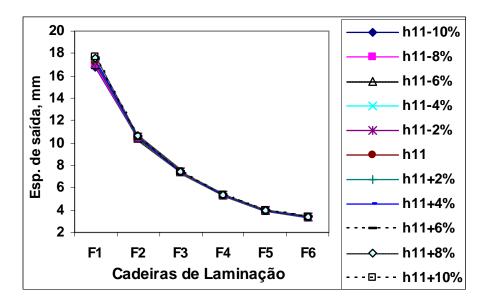


Figura 5.9 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material na cadeira F1, tabela A1.5.

Observe na figura (5.9) que a partir da F2 o aumento na espessura de saída devido ao aumento na espessura de entrada do material foi pouco significativo.

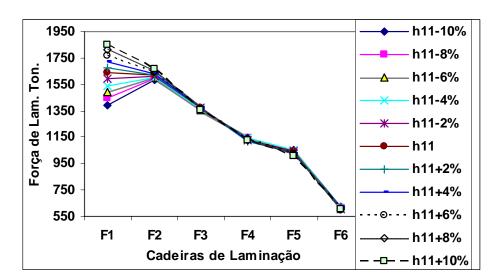


Figura 5.10 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material na cadeira F1, tabela A1.6.

O aumento na espessura de entrada na F1 provoca um aumento na espessura de entrada na F2, consequentemente aumenta a força de laminação em F2, como observado na figura (5.10).

5.1.2 - Efeito da variação na abertura entre os cilindros de trabalho - gap1

Foram feitas simulações para variação do gap em F1 e levantados os gráficos de gap & tensão de escoamento média, gap & tamanho de grão, gap & temperatura de laminação, gap & espessura de saída e gap & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo A.

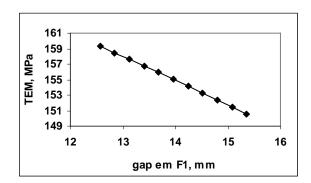


Figura 5.11 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F1, tabela A2.1.

Observe que a TEM decresce com o aumento no gap em F1 devido ao aumento na espessura de entrada do material, reduzindo assim a deformação e taxa de deformação. Isto esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com a deformação e com a taxa de deformação do material.

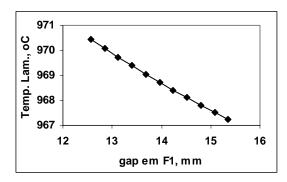


Figura 5.12 – Resultados de temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F1, tabela A2.1.

Nota-se um aumento na temperatura de laminação com a diminuição do gap em F1, pois irá provocar aquecimento do material devido a maior deformação plástica, o que esta de acordo com a equação (1.41).

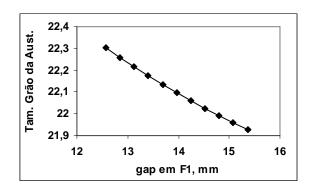


Figura 5.13 – Resultados de tamanho de grão (μm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F1, tabela A2.1.

O tamanho de grão final da austenita obtido na figura (5.13) é o tamanho de grão inicial ou de entrada na cadeira F2. Portanto é influenciado pela temperatura entre passe conforme a equação (1.128) e (1.136), dadas para a recristalização dinâmica como é o caso.

Observe-se que quanto menor a temperatura menor é o tamanho de grão. Nota-se na mesma equação (1.128), que o aumento no gap, irá certamente diminuir a taxa de deformação no passe que por sua vez irá aumentar o tamanho de grão. O gráfico da figura (5.13) mostra uma pequena redução no tamanho de grão devido a estes dois efeitos concorrentes.

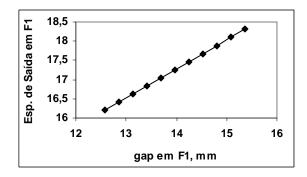


Figura 5.14 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F1, tabela A2.1.

Observe na figura (5.14) que quanto maior o gap, maior é a espessura de saída do material no laminador.

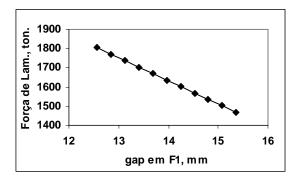


Figura 5.15 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F1, tabela A2.6.

Como pode ser visto na figura (5.15), quanto maior o gap, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador. A equação (2.12) de Sims mostra a redução da carga de laminação com o aumento da espessura de saída.

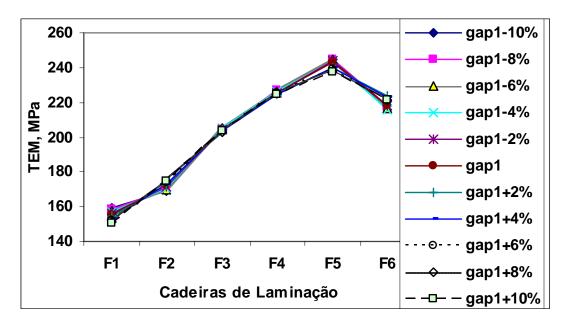


Figura 5.16 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F1, tabela A2.2.

Observe que o aumento no gap em F1 provocou uma redução da TEM da mesma. Porem, este aumento de gap provocou redução na recristalização dinâmica e metadinâmica entre as cadeiras F1 e F2, proporcionando assim um aumento na TEM no passe seguinte,

como pode ser visto na tabela 5.3, pois a redução na recristalização dinâmica aumenta a TEM.

Nota-se que o efeito do distúrbio provocado na cadeira F1 afeta mais significativamente a própria cadeira e pouco nas cadeiras seguintes.

Tabela 5.3 – Resultados do índice de recristalização dinâmica do material devido a alterações no gap da cadeira F1, para o aço carbono manganês 3.

	gap1 -10%	gap11	gap1 +10%
Xdin	0,236	0,17	0,114

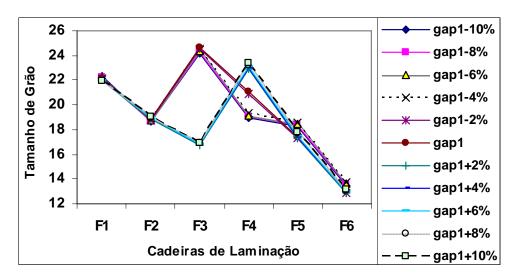


Figura 5.17 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F1, tabela A2.3.

Nota-se que o efeito no tamanho de grão é pequeno, mas se propaga para as demais cadeiras de laminação.

Observe-se que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores, para gap menores de gap1+2%. Para gap maiores o crescimento de grão aparece na cadeira F4. Este crescimento é devido a não haver mais recristalização dinâmica no passe considerado. Isto pode ser visto na tabela (5.4).

No caso da mudança de comportamento no tamanho de grão em gap1-10%, gap-8%, e gap-6%, observe que houve um menor tamanho de grão, isto foi devido a não ter havido recristalização completa (X<0,95).). Portanto, não houve crescimento de grão, resultando assim numa redução do tamanho de grão, equação (1.142).

Tabela 5.4 – Resultados do índice de recristalização dinâmica em todas as cadeiras de laminação devido a alterações no gap da cadeira F1, para o aço carbono manganês 3.

		Recristalização dinâmica - Xdin									
	gap1-10%	gap1-8%	gap1-6%	gap1-4%	gap1-2%	gap1	gap1+2%	gap1+4%	gap1+6%	gap1+8%	gap1+10%
F1	0,236	0,222	0,208	0,195	0,182	0,17	0,158	0,146	0,135	0,124	0,114
F2	0,095	0,103	0,11	0,118	0,126	0,135	0,143	0,152	0,16	0,169	0,178
F3	0	0	0	0	0	0	0,012	0,012	0,014	0,015	0,018
F4	0	0	0	0	0	0	0	0	0	0	0
F5	0	0	0	0	0	0	0	0	0	0	0
F6	0	0	0	0	0	0	0	0	0	0	0

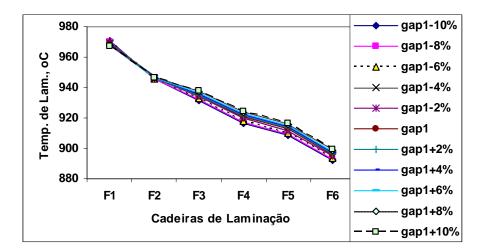


Figura 5.18 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F1, tabela A2.4.

Observe que o aumento no gap em F1 aumenta a temperatura de laminação em todas as cadeiras a partir da F3, sendo que o seu efeito se mantém para as cadeiras mais distantes de F1. Na cadeira F2 não houve aumento de temperatura, pois o aumento de espessura foi compensado pela redução de deformação em F1.

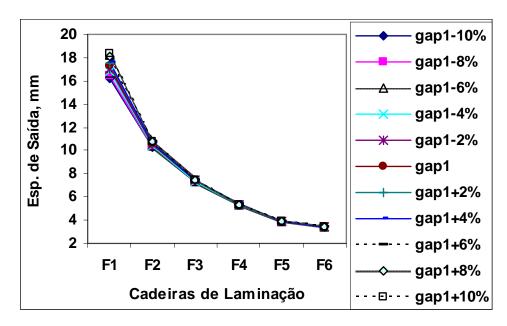


Figura 5.19 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F1, tabela A2.5.

Observe na figura (5.19) que a partir da F2 o aumento na espessura de saída devido ao aumento no gap em F1 foi pouco significativo.

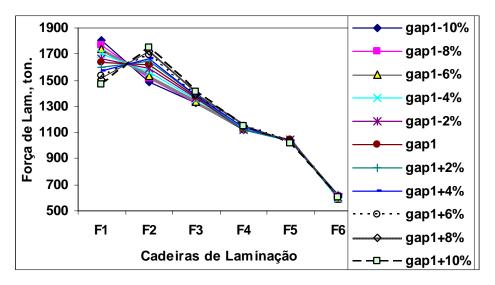


Figura 5.20 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F1, tabela A2.6.

O aumento no gap em F1 provoca um aumento na espessura de entrada na F2, consequentemente reduz a carga de laminação em F1 e aumenta em F2, como observado na figura (5.20).

5.1.3 – Efeito da variação na temperatura de entrada do material – Te1

Foram feitas simulações para variação da temperatura de entrada em F1 e levantados os gráficos de temperatura de entrada & tensão de escoamento média, temperatura de entrada & tamanho de grão, temperatura de entrada & temperatura de laminação, temperatura de entrada & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo A.

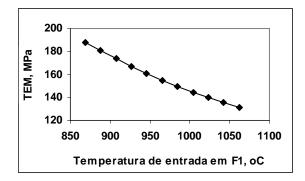


Figura 5.21 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F1, tabela A3.1.

Observe que a TEM diminui com o aumento na temperatura de entrada do material, o que esta de acordo com a equação (1.152), de Misaka que mostra a relação inversa com a temperatura de laminação.

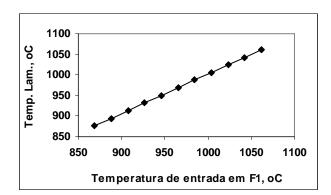


Figura 5.22 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F1, tabela A3.1.

Nota-se uma relação quase direta do aumento na temperatura de laminação com o aumento na temperatura de entrada do material, pois a temperatura de laminação é dada pela média entre a temperatura de entrada e saída no passe.

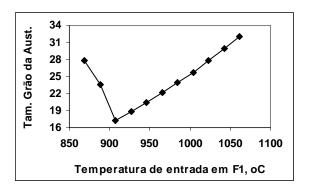


Figura 5.23 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F1, tabela A3.1.

O tamanho de grão final da austenita obtido na figura (5.23) é o tamanho de grão inicial ou de entrada na cadeira F2. Portanto é influenciado pela temperatura entre passe conforme as equações (1.120) e (1.134) para a recristalização estática e (1.128) e (1.136), para a recristalização dinâmica.

Observe na tabela (5.5) que para as temperaturas de entrada mais baixas do material em F1, ou seja, Te1-10% e Te2-8% não houve recristalização dinâmica, portanto estes tamanhos de grão são regidos pelo mecanismo de recristalização estática, equações (1.120) e (1.134), que produzem tamanho de grãos maiores, como pode ser visto na figura (5.23).

Como o tamanho de grão inicial foi considerado de 100 μ m, e não houve recristalização completa nas temperaturas mais baixas de Te1-10% e Te1-8%, que produziram frações de recristalização (X) de 0,603 e 0,744, respectivamente, a temperatura mais baixa reteve maior quantidade de maiores tamanho de grão inicial devido a menor fração de recristalização. A equação (1.142) retrata este comportamento.

Para temperaturas maiores o mecanismo que controla o tamanho de grão é o de recristalização dinâmica e as frações de recristalização (X) são iguais a 1. Portanto, quanto maior a temperatura maior é o tamanho de grão, o que esta de acordo com as equações (1.128) e.(1.136).

Tabela 5.5 – Resultados do índice de recristalização dinâmica em todas as cadeiras de laminação devido a alterações temperatura de entrada do material em F1, para o aço carbono manganês 3.

	Recristalização dinâmica - Xdin										
	Te1-10%	Te1-8%	Te1-6%	Te1-4%	Te1-2%	Te1	Te1+2%	Te1+4%	Te1+6%	Te1+8%	Te1+10%
F1	0	0	0,05	0,081	0,121	0,17	0,226	0,29	0,359	0,432	0,509
F2	0,065	0,068	0,032	0,06	0,096	0,135	0,185	0,232	0,288	0,35	0,403
F3	0	0	0	0	0	0	0,02	0,035	0,053	0,071	0,096
F4	0	0	0	0	0	0	0	0	0	0	0
F5	0	0	0	0	0	0	0	0	0	0	0
F6	0	0	0	0	0	0	0	0	0	0	0

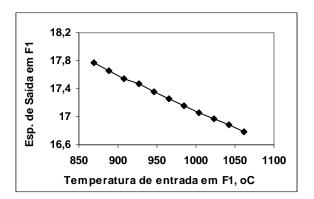


Figura 5.24 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do material na cadeira F1, tabela A3.1.

Observe na figura (5.24) que quanto maior a temperatura de entrada, menor é a espessura de saída do material no laminador. Isto é devido a menor carga de laminação e consequentemente o laminador distende menos. A equação (2.14) mostra este comportamento.

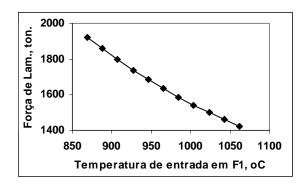


Figura 5.25 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do material, tabela A3.1.

Como pode ser visto na figura (5.25), quanto maior a temperatura de entrada do material, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador. A equação (2.12) de Sims mostra a redução da carga de laminação com o aumento da espessura de saída.

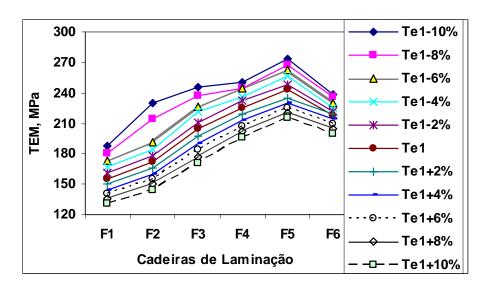


Figura 5.26 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F1, tabela A3.2.

Observe que o aumento na temperatura de entrada na cadeira F1 provocou uma diminuição na TEM que continuou em todas as outras cadeiras.

Observa-se que a TEM é bastante sensível ao efeito na temperatura de entrada na cadeira F1.

Nota-se uma mudança de comportamento na cadeira F2 devido as temperaturas de entrada mais baixas na cadeira F1 (Te1-10% e Te1-8%) influenciaram numa recristalização

não completa em F1 acarretando em acumulo de deformação residual no mesmo, proporcionando um aumento mais acentuado na TEM.

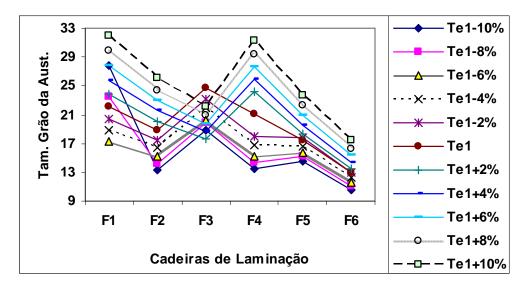


Figura 5.27 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F1, tabela A3.3.

Nota-se que o efeito no tamanho de grão é bastante sensível à variação da temperatura de entrada em F1, e se propaga para as demais cadeiras de laminação.

Observe-se que na cadeira F4 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores para as temperaturas de entrada maiores (Te1+2%, Te1+4%, Te1+6%, Te1+8%, Te1+10%),. Este crescimento em F4 foi devido a não haver mais recristalização dinâmica no passe F4, como pode ser visto na tabela (5.5). Para o caso das temperaturas Te1-6%, Te1-4%, Te1-2%, nota-se que o crescimento de grão acentuado foi na F3, devido a não haver mais recristalização dinâmica neste passe.

Para as temperaturas mais baixas Te1-10% e Te1-8%, na F1 os tamanhos de grão foram maiores devido a não haver recristalização dinâmica em F1, em seguida ocorre uma queda significativa no tamanho de grão em F2, devido a ocorrência de recristalização dinâmica em F2. Em seguida ocorre um aumento acentuado no tamanho de grão devido a não ocorrência de recristalização dinâmica em F3. Isto pode ser visto na tabela (5.5).

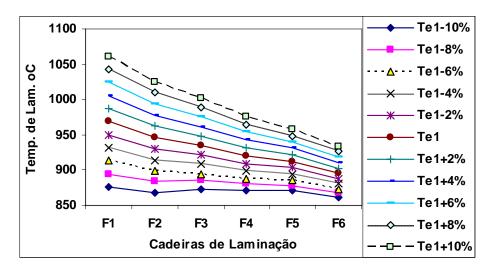


Figura 5.28 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F1, tabela A3.4.

Observe que o aumento na temperatura de entrada em F1 aumenta a temperatura de laminação em todas as cadeiras seguintes, sendo que o seu efeito reduz gradativamente para as cadeiras mais distantes de F1.

Nota-se também que a temperatura de laminação é bastante sensível a temperatura de entrada na cadeira F1.

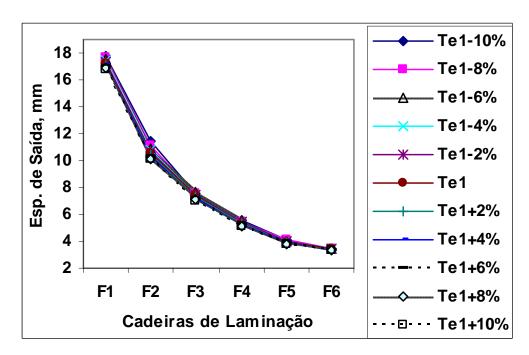


Figura 5.29 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material em F1, tabela A3.5.

Observe na figura (5.29) que uma diminuição na espessura de saída principalmente em F1 e F2 devido ao aumento na temperatura de entrada do material em F1. Mas esta redução diminui gradativamente na cadeiras posteriores.

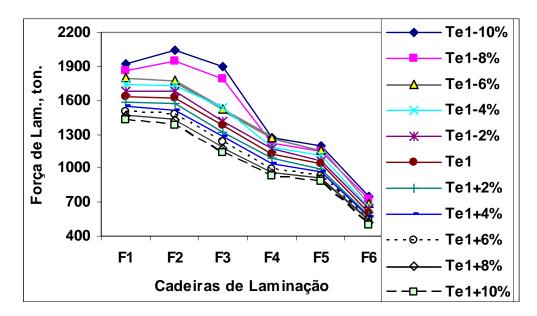


Figura 5.30 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material em F1, tabela A3.6.

O aumento na temperatura de entrada do material em F1 provoca uma diminuição na TEM, consequentemente diminuição espessura de entrada na F2, portanto reduz a carga de laminação em todas as cadeiras. O aumento da carga de laminação em F2 para temperaturas mais baixas Te1-10% e Te1-8% foi por causa do aumento na TEM devido a não recristalização completa em F1.

5.1.4 – Efeito da variação na tensão a frente no material na saída da cadeira F1 - τ21

Foram feitas simulações para variação da tensão e a frente do material na saída de F1 e levantados os gráficos de tensão a frente & tensão de escoamento média, tensão a frente & tamanho de grão, tensão a frente & temperatura de laminação, tensão a frente & espessura de saída e tensão a frente & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo A.

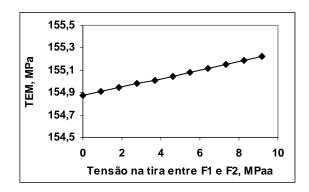


Figura 5.31 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações tensão a frente da cadeira F1, tabela A.1.

Observe que a TEM aumenta ligeiramente com o aumento na tensão a frente do material. Isto é devido ao fato de a aplicação da tensão a frente reduzir a carga de laminação, que por sua vez irá reduzir a espessura de saída do material, figura (5.34), aumentando assim a deformação e a taxa de deformação. Além disso, haverá uma redução de temperatura de laminação, veja figura (5.32), que também provoca aumento na TEM. Isto esta de acordo com a equação (1.152).

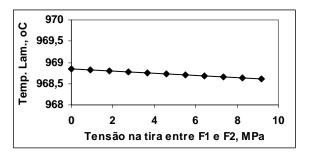


Figura 5.32 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações tensão a frente do material na cadeira F1, tabela A4.1.

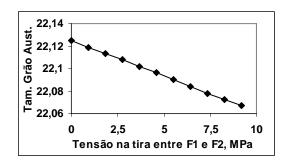


Figura 5.33 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas tensão a frente do material na cadeira F1, tabela A4.1.

O tamanho de grão final da austenita obtido na figura (5.32) é o tamanho de grão inicial ou de entrada na cadeira F2. Portanto é influenciado pela temperatura entre passe conforme as equações (1.120) e (1.134) para a recristalização estática e (1.128) e (1.136), para a recristalização dinâmica. Portanto, se o aumento na tensão a ré diminui a temperatura de laminação, o tamanho de grão tende a cair ligeiramente.

Figura 5.34— Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a frente do material na cadeira F1, tabela A4.1.

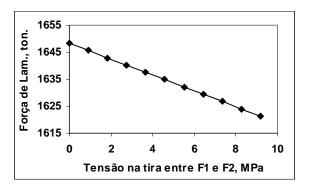


Figura 5.35 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a frente do material, tabela A4.1

Como pode ser visto na figura (5.35), quanto maior a tensão a frente do material, menor é a carga de laminação, devido principalmente a redução na resistência a deformação do material, equações (1.163) e (2.13), alem disso, a redução na espessura de saída diminui a resistência a passagem do material no laminador.

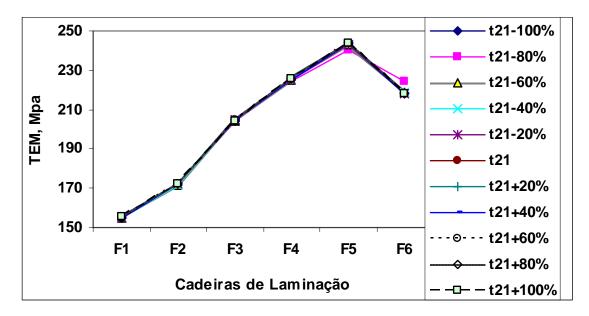


Figura 5.36 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na tensão a frente do material na cadeira F1, tabela A4.2.

Observe que o aumento na tensão a frente em F1 provocou variações pouco significativas nas demais cadeiras de laminação. Isto provavelmente devido ao baixo nível de tensão a frente aplicada que foi da ordem de 0 a 9,18 MPa.

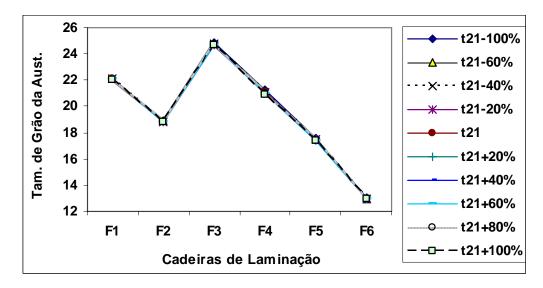


Figura 5.37 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na tensão a frente do material na cadeira F1, tabela A4.3.

Observe-se que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores para as temperaturas de entrada maiores. Este crescimento em F3 foi devido a não haver mais recristalização dinâmica no passe F3, como pode ser visto na tabela (5.6).

Nota-se que a influencia da tensão a frente foi pouco significativa na variação do tamanho de grão.

Tabela 5.6 – Resultados do índice de recristalização dinâmica em todas as cadeiras de laminação devido a alterações temperatura de entrada do material em F1, para o aço carbono manganês 3.

	Recristalização dinâmica - Xdin										
	τ21-100%	τ21-60%	τ21-40%	τ21-20%	τ21	τ21+20%	τ21+40%	τ21+60%	τ21+80%	τ21+100%	
F1	0,168	0,169	0,169	0,169	0,17	0,17	0,17	0,17	0,171	0,171	
F2	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	
F3	0	0	0	0	0	0	0	0	0	0	
F4	0	0	0	0	0	0	0	0	0	0	
F5	0	0	0	0	0	0	0	0	0	0	
F6	0	0	0	0	0	0	0	0	0	0	

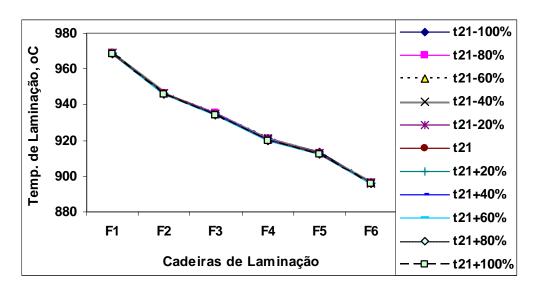


Figura 5.38 – Resultados da temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a frente do material na cadeira F1, tabela A4.4

Observe que a variação da tensão a frente neste caso teve pouca influencia na variação da temperatura de laminação em todas as cadeiras de laminação.

Figura 5.39 – Resultados da espessura de saída do material, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a frente de F1, tabela A4.5.

Observe na figura (5.39) que houve muita pouca influencia da tensão a frente da F1 nas espessuras de saídas do material, provavelmente devido ao baixo nível de tensões aplicados.

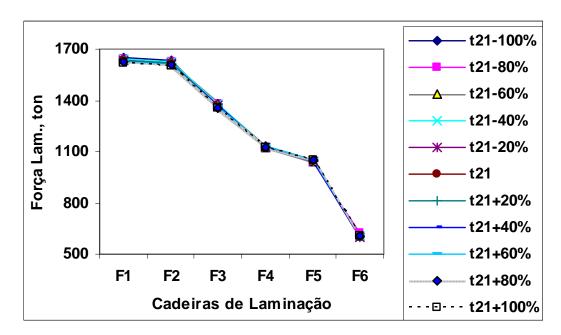


Figura 5.40 – Resultados da carga de laminação, obtidos pelo modelo termomicroestrtural para aço carbono manganês 3, devido a variações provocadas na tensão a frente de F1, tabela A4.6.

Há maior influencia da tensão a frente de F1 foi nas cargas em F1 e F2, produzindo uma diminuição das mesmas com o aumento da tensão a frente. Mas neste caso a influencia foi pequena devido ao baixo nível de tensão aplicada na tira.

5.1.5 - Efeito da variação na velocidade do cilindro de trabalho da cadeira F1 - Vr1

Foram feitas simulações para variação da velocidade do cilindro de trabalho de F1 e levantados os gráficos de velocidade do cilindro & tensão de escoamento média, velocidade do cilindro & tamanho de grão, velocidade do cilindro & temperatura de laminação, velocidade do cilindro & espessura de saída e velocidade do cilindro & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo A.

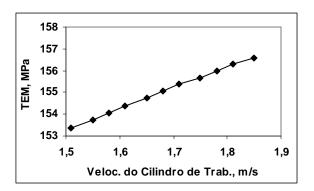


Figura 5.41 – Resultados das tensões de escoamento média (TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro da cadeira F1, tabela A5.1.

Observe que a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho conforme a equação (1.23).

Nota-se que este crescimento foi pouco significativo.

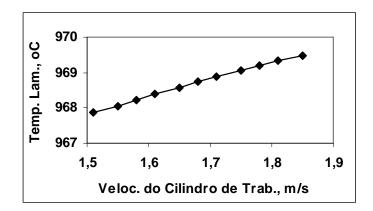


Figura 5.42 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F1, tabela A5.1.

Nota-se um aumento na temperatura de laminação com o aumento velocidade do cilindro de trabalho. Isto esta de acordo com as equações, porque como foi dito o aumento na TEM implica no aumento da carga de laminação, equação (3.7), e o aumento da carga de laminação provoca aumento da temperatura de laminação devido ao maior aquecimento por deformação plástica, equação (1.41).

Observe também que este aumento na temperatura de laminação foi pouco significativo.

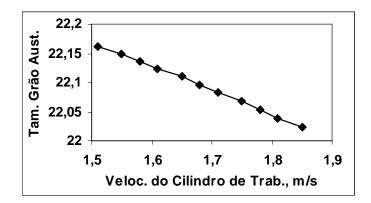


Figura 5.43 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações na velocidade do cilindro da cadeira F1, tabela A5.1.

Observe-se que houve muito pouca influencia do tamanho de grão com a velocidade do cilindro. Mas houve uma pequena diminuição do mesmo com o aumento da velocidade do cilindro. Isto é devido a efeitos concorrentes, pois o aumento da velocidade do cilindro diminui o tempo entre passes o que implicará na redução do tamanho de grão, pois haverá

menos tempo para o crescimento de grão, conforme a equação (1.136). Da mesma forma, o aumento da velocidade implica num aumento da taxa de deformação do material diminuindo assim o tamanho de grão, conforme equação (1.128). Por outro lado, o aumento da velocidade do cilindro aumenta a temperatura de laminação que por sua vez aumenta o tamanho de grão segundo a equação (1.136).

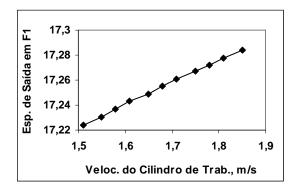


Figura 5.44 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F1, tabela A5.1.

Nota-se que a espessura de saída cresce ligeiramente com o aumento da velocidade do cilindro de trabalho. Neste caso temos também alguns efeitos concorrentes, como no caso, o aumento na velocidade do cilindro aumenta a temperatura que por sua vez provoca redução na espessura de saída do material, figura (5.24). Por outro lado, a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho conforme a equação (1.23). O aumento da TEM aumenta a carga de laminação, figura (5.45), fazendo com que o laminador se distenda mais, acarretando no aumento da espessura de saída, equação (2.14).

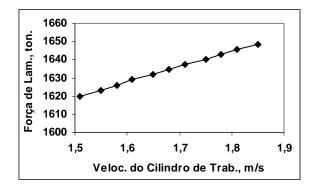


Figura 5.45 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na velocidade do cilindro em F1, tabela A5.1

Figura 5.46 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F1, tabela A5.2.

Observe que o aumento na velocidade do cilindro em F1 provocou um aumento da TEM em F1 e redução em F2 que se manteve para as demais cadeiras. Isto provavelmente foi devido ao aumento na temperatura de entrada em F2.

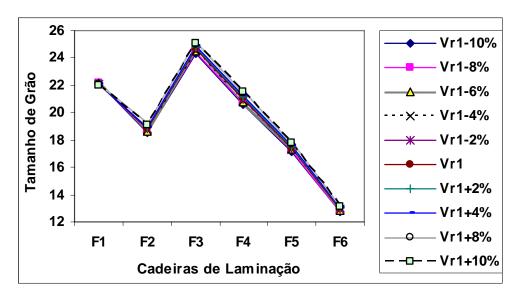


Figura 5.47 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro na cadeira F1, tabela A5.3.

Observe-se que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores. Este crescimento em F3 foi devido a não haver mais recristalização dinâmica no passe F3, como pode ser visto na tabela (5.7).

Nota-se que a influencia da velocidade do cilindro de trabalho em F1 foi pouco significativa na variação do tamanho de grão.

Tabela 5.7 – Resultados do índice de recristalização dinâmica em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho em F1, para o aço carbono manganês 3.

	Recristalização dinâmica – Xdin										
	Vr1-10%	Vr1-8%	Vr1-6%	Vr1-4%	Vr1-2%	Vr1	Vr1+2%	Vr1+4%	Vr+8%	Vr1+10%	
F1	0,171	0,171	0,17	0,17	0,17	0,17	0,169	0,169	0,169	0,169	
F2	0,121	0,124	0,127	0,129	0,132	0,135	0,137	0,14	0,144	0,147	
F3	0	0	0	0	0	0	0	0	0	0	
F4	0	0	0	0	0	0	0	0	0	0	
F5	0	0	0	0	0	0	0	0	0	0	
F6	0	0									

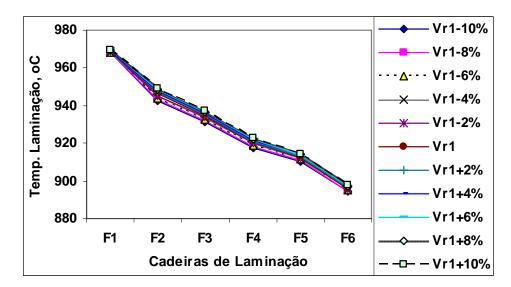


Figura 5.48 – Resultados da temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na velocidade do cilindro em F1, tabela A5.4

Observe que o aumento na velocidade do cilindro em F1 influencia mais a temperatura de laminação na cadeira F2. Isto é devido ao fato de que com uma maior velocidade do material entre F1 e F2, menor é a perda térmica por radiação conforme equação (1.54) onde a mesma apresenta uma relação direta com o tempo entre passes. Da mesma forma isto acontece com a perda de calor para o ar segundo a equação (1.55).

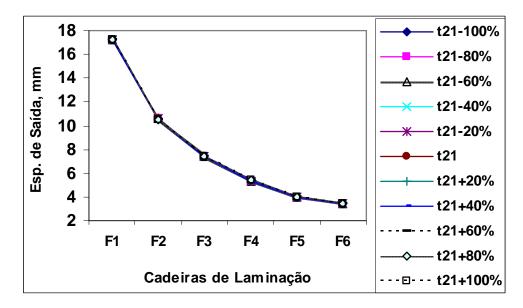


Figura 5.49 – Resultados da espessura de saída do material, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F1, tabela A5.5.

Observe na figura (5.49) que houve muita pouca influencia da velocidade do cilindro em F1 nas espessuras de saídas do material.

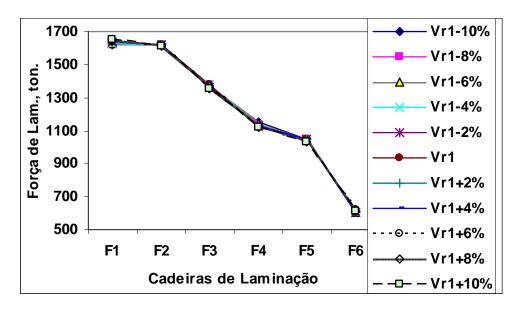


Figura 5.50 – Resultados da carga de laminação, obtidos pelo modelo termomicroestrtural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F1, tabela A5.6.

Há maior influencia da variação na velocidade do cilindro em F1 foi na carga em F1, nas demais cadeiras sua influencia foi pouco significativa.

5.2 – EFEITO DOS DISTÚRBIOS NA SEGUNDA CADEIRA DE LAMINAÇÃO

5.2.1 - Efeito da variação do gap em F1 e sua influência em F2 - gap1

Foram feitas simulações para variação do gap na primeira cadeira de laminação e levantados os gráficos de gap em F1 & tensão de escoamento média, gap em F1 & tamanho de grão, gap em F1 & temperatura de laminação, gap em F1 & espessura de saída e gap em F1 & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo B.

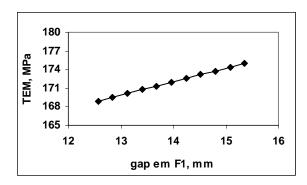


Figura 5.51 – Resultados das tensões de escoamento média (TEM) em F2, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F1, tabela B1.1.

Observe que a TEM cresce com o aumento no gap em F1, o que esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com a deformação e com a taxa de deformação do material, pois o aumento do gap em F1 aumenta a espessura de entrada em F2.

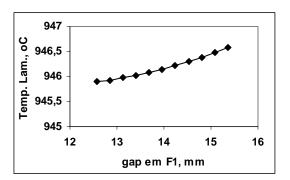


Figura 5.52 – Resultados de temperatura de laminação em F2, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F1, tabela B1.1.

Nota-se um aumento na temperatura de laminação com o aumento no gap em F1, pois irá provocar aquecimento do material devido a maior deformação plástica, o que esta de acordo com a equação (1.41). Este aumento de temperatura foi pouco significativo para estas variações.

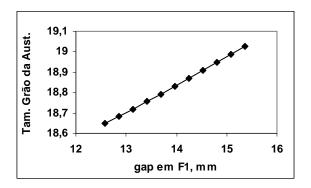


Figura 5.53 – Resultados de tamanho de grão (μm) em F2, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F1, tabela B1.1.

O tamanho de grão final da austenita obtido na figura (5.53) é o tamanho de grão inicial ou de entrada na cadeira F3. Portanto é influenciado pela temperatura entre passe conforme as equações (1.128) e (1.136), dadas para a recristalização dinâmica como é o caso.

Observe-se que quanto maior a temperatura maior é o tamanho de grão. Nota-se na mesma equação (1.128), que o aumento na espessura de entrada devido ao aumento do gap em F1 irá certamente aumentar a taxa de deformação no passe que por sua vez irá diminuir o tamanho de grão. O gráfico da figura (5.53) mostra um pequeno aumento no tamanho de grão devido a estes dois efeitos concorrentes.

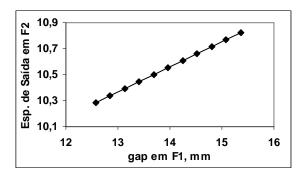


Figura 5.54 – Resultados de espessura de saída (mm) em F2, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F1, tabela B1.1.

Observe na figura (5.54) que quanto maior o gap em F1, portanto maior é a espessura de entrada em F2, maior é a espessura de saída do material no laminador. Isto é devido ao aumento da carga de laminação provocada pelo aumento da espessura de

entrada, fazendo com que o laminador se distenda mais, resultando no aumento da espessura de saída do material. Isto está de acordo com a equação (2.14).

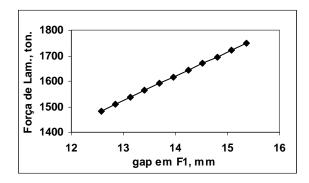


Figura 5.55 – Resultados de carga de laminação (ton.) em F2, obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F1, tabela B1.1.

Como pode ser visto na figura (5.55), quanto maior o gap em F1, consequentemente maior é a espessura de entrada do material em F2, maior é a carga de laminação, devido a maior resistência a passagem do material no laminador. A equação (2.12) de Sims mostra esta relação.

5.2.2 – Efeito da variação na abertura entre os cilindros de trabalho em F2- gap2

Foram feitas simulações pela variação do gap em F2 e levantados os gráficos de gap & tensão de escoamento média, gap & tamanho de grão, gap & temperatura de laminação, gap & espessura de saída e gap & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo B.

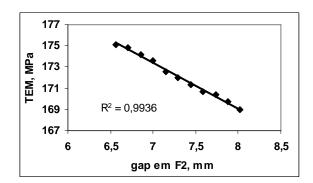


Figura 5.56 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F2, tabela B2.1.

Observe que a TEM decresce com o aumento no gap em F2, devido ao aumento na espessura de saída do material, reduzindo assim a deformação e a taxa de deformação. Isto esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com a deformação e com a taxa de deformação do material.

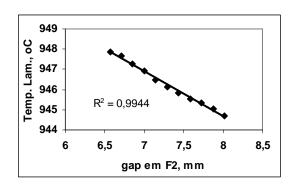


Figura 5.57 – Resultados de temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F2, tabela B2.1.

Nota-se um aumento na temperatura de laminação com a diminuição do gap em F2, pois irá provocar aquecimento do material devido a maior deformação plástica.

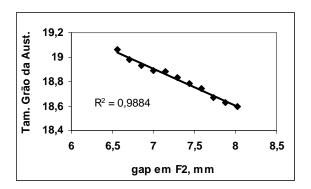


Figura 5.58 – Resultados de tamanho de grão (μm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F2, tabela B2.1.

O tamanho de grão final da austenita obtido na figura (5.58) é o tamanho de grão inicial ou de entrada na cadeira F3. Portanto é influenciado pela temperatura entre passe conforme a equações (1.128) e (1.136), dadas para a recristalização dinâmica como é o caso.

Observe-se que quanto menor a temperatura menor é o tamanho de grão. Nota-se na mesma equação (1.128), que o aumento no gap, irá certamente diminuir a taxa de

deformação no passe que por sua vez irá aumentar o tamanho de grão. O gráfico da figura (5.58) mostra uma pequena redução no tamanho de grão devido a estes dois efeitos concorrentes.

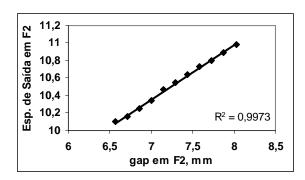


Figura 5.59 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F2, tabela B2.1.

Observe na figura (5.59) que quanto maior o gap, maior é a espessura de saída do material no laminador.

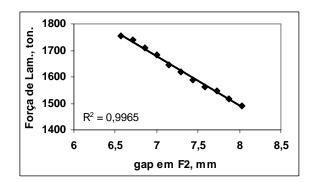


Figura 5.60 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F2, tabela B2.6.

Como pode ser visto na figura (5.60), quanto maior o gap, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador. A equação (2.12) de Sims mostra a redução da carga de laminação com o aumento da espessura de saída.

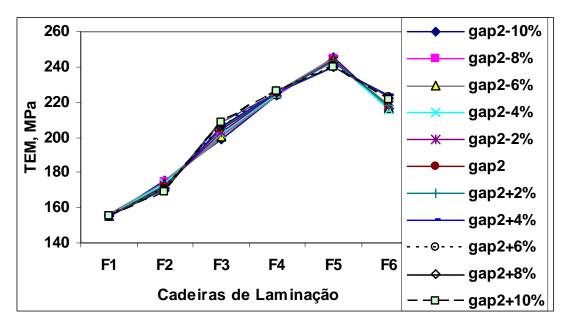


Figura 5.61 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F2, tabela B2.2.

Observe na figura (5.61) que o aumento no gap em F2 provocou uma redução da TEM neste passe. O aumento de gap provocou redução na recristalização dinâmica e metadinâmica entre as cadeiras F2 e F3, proporcionando assim um aumento na TEM no passe seguinte, como pode ser visto na tabela (5.8), pois a redução na recristalização dinâmica aumenta a TEM.

Tabela 5.8 – Resultados da fração de recristalização dinâmica em todas as cadeiras de laminação devido a alterações no gap da cadeira F2, para o aço carbono manganês 3.

	Recristalização dinâmica - Xdin											
	Gap2-10%	gap2-8%	gap2-6%	gap2-4%	gap2-2%	gap2	gap2+2%	gap2+4%	gap2+6%	gap2+8%	gap2+10%	
F1	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	
F2	0,192	0,183	0,171	0,159	0,145	0,135	0,125	0,115	0,108	0,098	0,089	
F3	0	0	0	0	0	0	0	0,013	0,012	0,015	0,015	
F4	0	0	0	0	0	0	0	0	0	0	0	
F5	0	0	0	0	0	0	0	0	0	0	0	
F6	0	0	0	0	0	0	0	0	0	0	0	

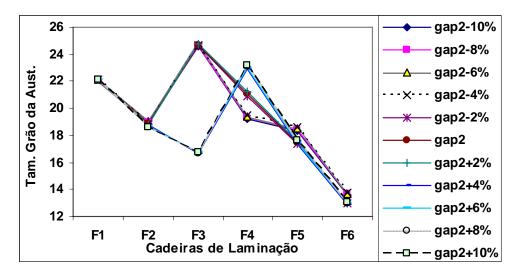


Figura 5.62 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F2, tabela B2.3.

Nota-se que o efeito no tamanho de grão é pequeno, mas se propaga para as demais cadeiras de laminação.

Observe-se que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores, para gap menores de gap2+4%. Para gap maiores o crescimento de grão aparece na cadeira F4. Este crescimento é devido a não haver mais recristalização dinâmica no passe considerado. Isto pode ser visto na tabela (5.8).

No caso da mudança de comportamento no tamanho de grão em F4 para gap2-10%, gap-8%, gap-6% e gap-4%, observe que houve um menor tamanho de grão, isto foi devido a não ter havido recristalização completa (X<0,95). Portanto, não houve crescimento de grão, resultando assim numa redução do tamanho de grão, equação (1.142).

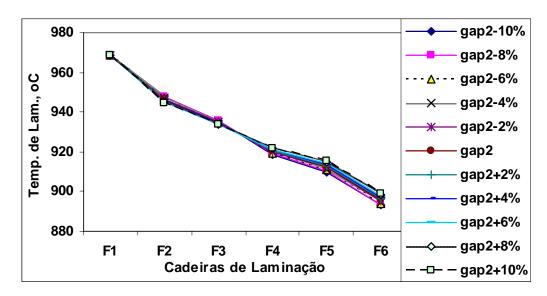


Figura 5.63 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F2, tabela B2.4.

Observe que o aumento no gap em F2 aumenta a temperatura de laminação em todas as cadeiras a partir da F4, sendo que o seu efeito se mantém para as cadeiras mais distantes de F2. Na cadeira F3 não houve aumento de temperatura, pois o aumento de espessura foi compensado pela redução de deformação em F2.

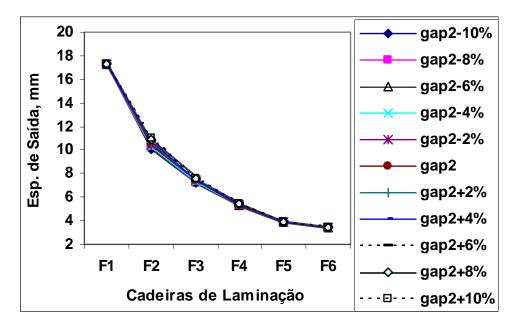


Figura 5.64 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F2, tabela B2.5.

Observe na figura (5.64) que a partir da F3 o aumento na espessura de saída devido ao aumento no gap em F2 foi pouco significativo.

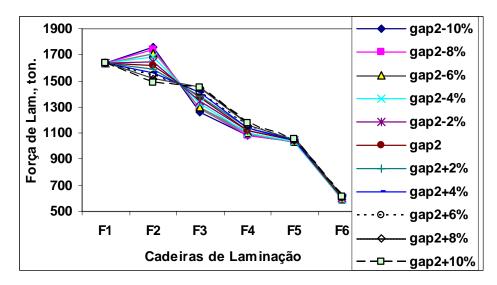


Figura 5.65 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F2, tabela B2.6.

O aumento no gap em F2 provoca um aumento na espessura de entrada na F3, consequentemente reduz a carga de laminação em F2 e aumenta em F3, como observado na figura (5.65).

5.2.3 – Efeito da variação na temperatura de entrada do material – Te2

Foram feitas simulações pela variação da temperatura de entrada em F2 e levantados os gráficos de temperatura de entrada & tensão de escoamento média, temperatura de entrada & tamanho de grão, temperatura de entrada & temperatura de laminação, temperatura de entrada & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo B.

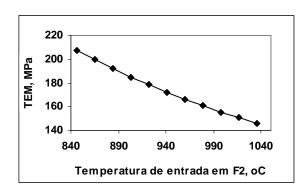


Figura 5.66 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F2, tabela B3.1.

Observe que a TEM diminui com o aumento na temperatura de entrada do material.

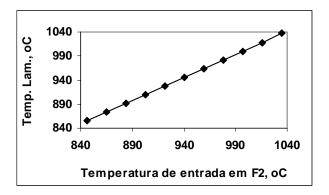


Figura 5.67 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F2, tabela B3.1.

Nota-se uma relação quase direta do aumento na temperatura de laminação com o aumento na temperatura de entrada do material.

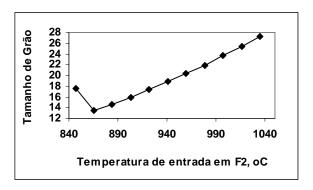


Figura 5.68 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F2, tabela B3.1.

O tamanho de grão final da austenita obtido na figura (5.68) é o tamanho de grão inicial ou de entrada na cadeira F3. Portanto é influenciado pela temperatura entre passe conforme as equações (1.120) e (1.134) para a recristalização estática e (1.128) e (1.136), para a recristalização dinâmica.

Observe na tabela (5.9) que para a temperatura de entrada mais baixa do material em F2, ou seja, Te2-10% não houve recristalização dinâmica em F2, portanto estes tamanhos de grão são regidos pelo mecanismo de recristalização estática, equações (1.120) e (1.134), que produzem tamanho de grãos maiores, como pode ser visto na figura (5.23).

Tabela 5.9 – Resultados da fração de recristalização dinâmica em todas as cadeiras de laminação devido a alterações temperatura de entrada do material em F2, para o aço carbono manganês 3.

	Recristalização dinâmica - Xdin											
	Te2-10%	Te2-8%	Te2-6%	Te2-4%	Te2-2%	Te2	Te2+2%	Te2+4%	Te2+6%	Te2+8%	Te2+10%	
F1	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	
F2	0	0,003	0,018	0,044	0,086	0,135	0,2	0,271	0,345	0,427	0,514	
F3	0	0	0	0	0	0	0,022	0,041	0,068	0,102	0,136	
F4	0	0	0	0	0	0	0	0	0	0	0	
F5	0	0	0	0	0	0	0	0	0	0	0	
F6	0	0	0	0	0	0	0	0	0	0	0	

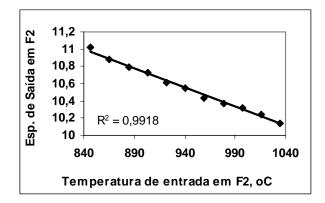


Figura 5.69 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do em F2, tabela B3.1.

Observe na figura (5.69) que quanto maior a temperatura de entrada, menor é a espessura de saída do material no laminador. Isto é devido a menor carga de laminação e consequentemente o laminador distende menos. A equação (2.14) mostra este comportamento.

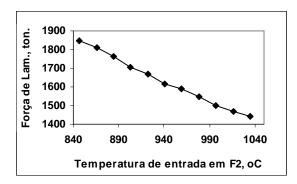


Figura 5.70 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do material em F2, tabela B3.1.

Como pode ser visto na figura (5.70), quanto maior a temperatura de entrada do material, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador. A equação (2.12) de Sims mostra a redução da carga de laminação com o aumento da espessura de saída.

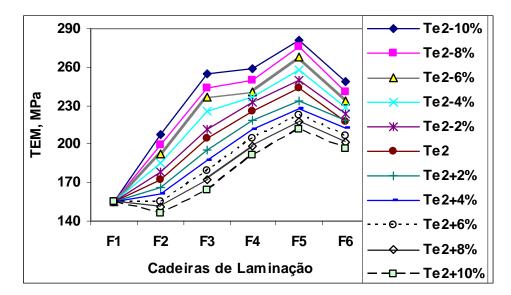


Figura 5.71 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F2, tabela B3.2.

Observe que o aumento na temperatura de entrada na cadeira F2 provocou uma diminuição na TEM que continuou em todas as outras cadeiras subsequentes.

Observa-se que a TEM é bastante sensível ao efeito na temperatura de entrada na cadeira F2.

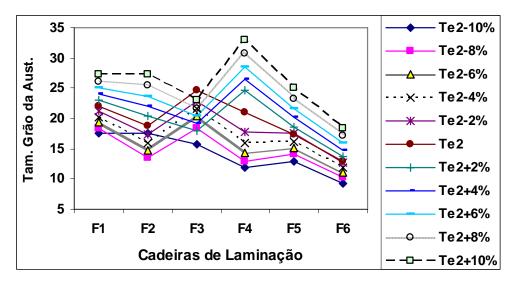


Figura 5.72 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F2, tabela B3.3.

Nota-se que o efeito no tamanho de grão é bastante sensível à variação da temperatura de entrada em F2, e se propaga para as demais cadeiras de laminação.

O tamanho de grão indicado nas cadeiras de laminação é o tamanho de grão que chega à cadeira seguinte e, portanto ele é influenciado pela temperatura da cadeira seguinte. Por isto observa-se um aumento no tamanho de grão em F1, mas na verdade é o tamanho de grão que chega em F2.

Observa-se onde ocorre um crescimento rápido no tamanho de grão é exatamente onde não mais ocorre recristalização dinâmica, como pode ser visto na tabela (5.9).

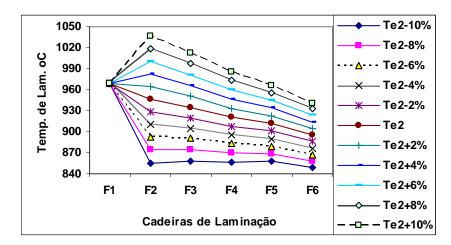


Figura 5.73 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F2, tabela B3.4.

Observe que o aumento na temperatura de entrada em F2 aumenta a temperatura de laminação em todas as cadeiras seguintes, sendo que o seu efeito reduz gradativamente para as cadeiras mais distantes de F2.

Nota-se também que a temperatura de laminação é bastante sensível a temperatura de entrada na cadeira F2.



Figura 5.74 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material em F2, tabela B3.5.

Observe na figura (5.74) que uma diminuição na espessura de saída principalmente em F2 e F3 devido ao aumento na temperatura de entrada do material em F2. Mas esta redução diminui gradativamente nas cadeiras posteriores.

O aumento na temperatura de entrada do material em F2 provoca uma diminuição na TEM, consequentemente diminuição espessura de entrada na F3, portanto reduz a carga de laminação em todas as cadeiras posteriores.

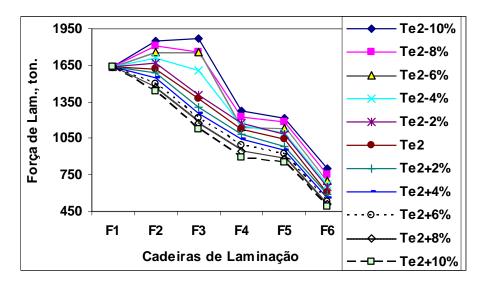


Figura 5.75 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material em F2, tabela B3.6.

5.2.4 – Efeito da variação na tensão a ré no material em relação a cadeira F2 - τ12

Foram feitas simulações pela variação da tensão e a ré do material em relação a F2 e levantados os gráficos de tensão a ré & tensão de escoamento média, tensão a ré & tamanho de grão, tensão a frente & temperatura de laminação, tensão a ré & espessura de saída e tensão a ré & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo B.

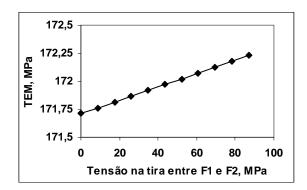


Figura 5.76 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações tensão a ré na tira da cadeira F2, tabela B4.1.

Observe que existe uma tendência de pouco significativa de aumento da TEM com o aumento na tensão a ré do material. Isto é devido ao fato de a aplicação da tensão a ré

reduzir a carga de laminação, que por sua vez irá reduzir na espessura de saída do material, aumentando assim, a deformação e a taxa de deformação. Por outro lado, A aplicação da tensão a ré diminui a espessura de saída do material na cadeira anterior que irá contribuir para a redução da deformação e taxa de deformação. Além disso, haverá uma redução de temperatura de laminação, veja figura (5.77), que também provoca aumento na TEM. Isto esta de acordo com a equação (1.152).

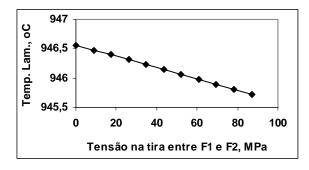


Figura 5.77 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações tensão a ré da tira da cadeira F2, tabela B4.1.

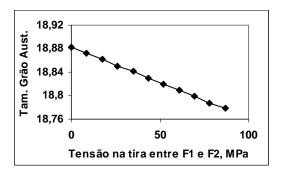


Figura 5.78 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas tensão a ré da tira da cadeira F2, tabela B4.1.

O tamanho de grão final da austenita obtido na figura (5.78) é o tamanho de grão inicial ou de entrada na cadeira F2. Portanto é influenciado pela temperatura entre passe conforme as equações (1.120) e (1.134) para a recristalização estática e (1.128) e (1.136), para a recristalização dinâmica. Desta forma, se o aumento na tensão a ré diminui a temperatura de laminação, o tamanho de grão tende a cair ligeiramente.

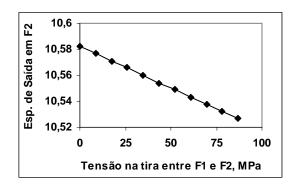


Figura 5.79– Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a ré na tira da cadeira F2, tabela B4.1.

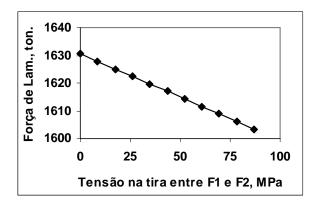


Figura 5.80 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a ré do material, tabela B4.1

Como pode ser visto na figura (5.80), quanto maior a tensão a ré do material, menor é a carga de laminação, devido principalmente a redução na resistência a deformação do material, equações (1.163) e (2.13), alem disso, a redução na espessura de saída diminui a resistência a passagem do material no laminador.

5.2.5 – Efeito da variação na tensão a frente no material na saída da cadeira F2 - τ22

Foram feitas simulações pela variação da tensão e frente do material na saída de F2 e levantados os gráficos de tensão a frente & tensão de escoamento média, tensão a frente & tamanho de grão, tensão a frente & temperatura de laminação, tensão a frente & espessura de saída e tensão a frente & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo B.

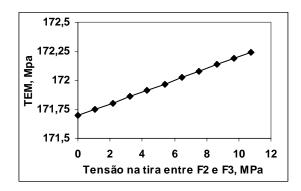


Figura 5.81 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a frente na tira da cadeira F1, tabela B5.1.

Observe que a TEM aumenta ligeiramente com o aumento na tensão a frente do material. Isto é devido ao fato de a aplicação da tensão a frente reduzir a carga de laminação, que por sua vez irá reduzir a espessura de saída do material, aumentando assim, a deformação e a taxa de deformação. Além disso, haverá uma redução de temperatura de laminação, que também provoca aumento na TEM.

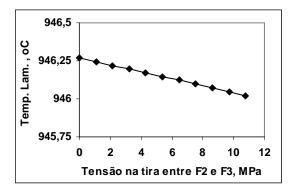


Figura 5.82 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações tensão a frente na tira da cadeira F2, tabela B5.1.

O tamanho de grão final da austenita obtido na figura (5.83) é o tamanho de grão inicial ou de entrada na cadeira F3. Portanto é influenciado pela temperatura entre passe. Desta forma, se o aumento na tensão a frente diminui pouco a temperatura de laminação, o tamanho de grão tende a cair ligeiramente.

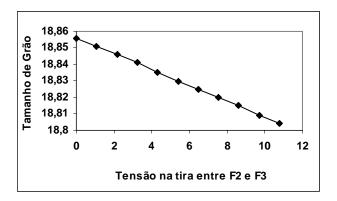


Figura 5.83 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas tensão a frente na tira da cadeira F2, tabela B5.1.

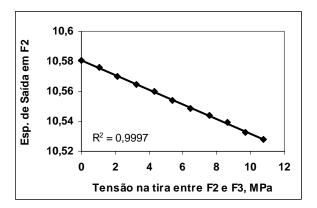


Figura 5.84— Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a frente da tira na cadeira F2, tabela B5.1.

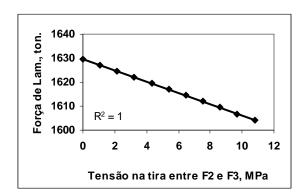


Figura 5.85 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a rente da tira em F2, tabela B5.1

Como pode ser visto na figura (5.85), quanto maior a tensão a frente do material, menor é a carga de laminação, devido principalmente a redução na resistência a

deformação do material, equações (1.163) e (2.13). Alem disso, a redução na espessura de saída diminui a resistência a passagem do material no laminador.

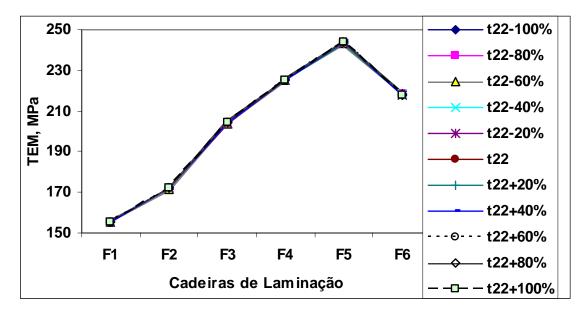


Figura 5.86 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na tensão a frente na tira em F2, tabela B5.2.

Observe que o aumento na tensão a frente em F2 provocou variações pouco significativas nas demais cadeiras de laminação. Isto provavelmente devido ao baixo nível de tensão a frente aplicada.

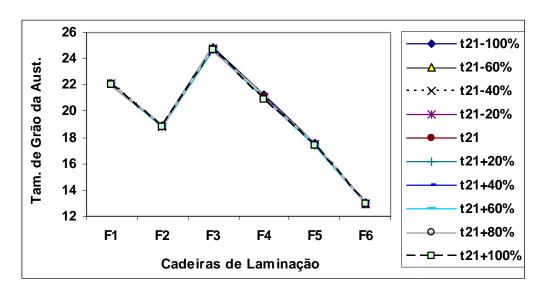


Figura 5.87 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na tensão a frente na tira em F2, tabela B5.3.

Observe-se que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores para as temperaturas de entrada maiores. Este crescimento em F3 foi devido a não haver mais recristalização dinâmica no passe F3, como pode ser visto na tabela (5.10).

Nota-se que a influencia da tensão a frente foi pouco significativa na variação do tamanho de grão.

Tabela 5.10 – Resultados da fração de recristalização dinâmica em todas as cadeiras de laminação devido a alterações temperatura de entrada do material em F2, para o aço carbono manganês 3.

	Recristalização dinâmica - Xdin											
	τ22-100%	τ22-80%	τ22-60%	τ22-40%	τ22-20%	τ22	τ22+20%	τ22+40%	τ22+60%	τ22+80%	τ22+100%	
F1	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	
F2	0,132	0,133	0,133	0,134	0,134	0,135	0,135	0,136	0,136	0,137	0,137	
F3	0	0	0	0	0	0	0	0	0	0	0	
F4	0	0	0	0	0	0	0	0	0	0	0	
F5	0	0	0	0	0	0	0	0	0	0	0	
F6	0	0	0	0	0	0	0	0	0	0	0	

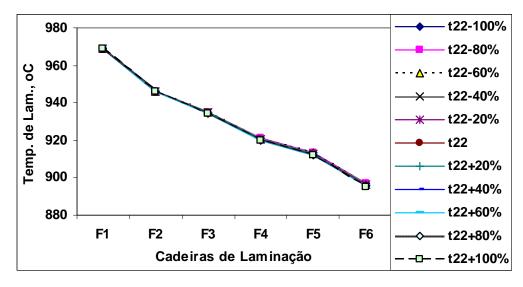


Figura 5.88 – Resultados da temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a frente na tira em F2, tabela B5.4

Observe que a variação da tensão a frente neste caso teve pouca influencia na variação da temperatura de laminação em todas as cadeiras de laminação.

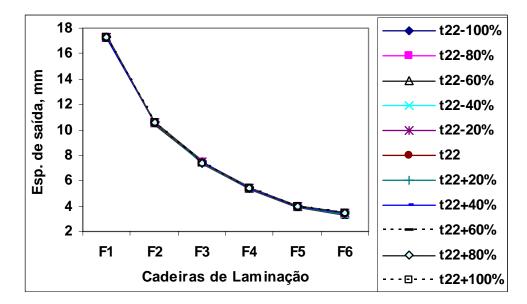


Figura 5.89 – Resultados da espessura de saída do material, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a frente de F2, tabela B5.5.

Observe na figura (5.89) que houve muita pouca influencia da tensão a frente da F2 nas espessuras de saídas do material, provavelmente devido ao baixo nível de tensões aplicados.

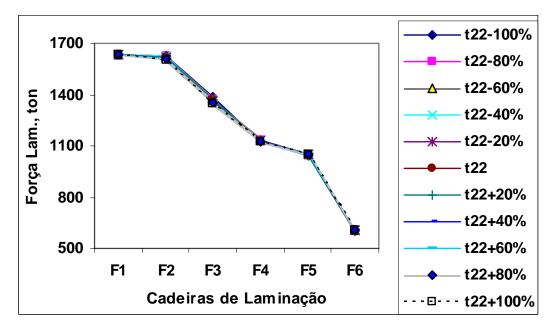


Figura 5.90 – Resultados da carga de laminação, obtidos pelo modelo termomicroestrtural para aço carbono manganês 3, devido a variações provocadas na tensão a frente de F2, tabela B5.6.

Há maior influencia da tensão a frente de F2 foi nas cargas em F2 e F3, produzindo uma diminuição das mesmas com o aumento da tensão a frente. Mas neste caso a influencia foi pequena devido ao baixo nível de tensão aplicada na tira.

5.2.6 – Efeito da variação na velocidade do cilindro de trabalho da cadeira F2 – Vr2

Foram feitas simulações pela variação da velocidade do cilindro de trabalho de F2 e levantados os gráficos de velocidade do cilindro & tensão de escoamento média, velocidade do cilindro & tamanho de grão, velocidade do cilindro & temperatura de laminação, velocidade do cilindro & espessura de saída e velocidade do cilindro & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo B.

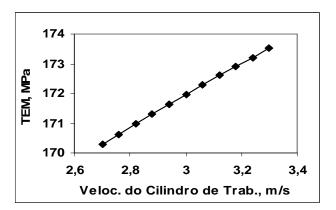


Figura 5.91 – Resultados das tensões de escoamento média (TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro da cadeira F2, tabela B6.1.

Observe que a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho conforme a equação (1.23).

Nota-se que este crescimento foi pouco significativo.

Observe na figura (5.92) um aumento na temperatura de laminação com o aumento velocidade do cilindro de trabalho. Isto esta de acordo com as equações, porque como foi dito o aumento na TEM implica no aumento da carga de laminação, equação (3.7), e o aumento da carga de laminação provoca aumento da temperatura de laminação devido ao maior aquecimento por deformação plástica, equação (1.41).

Observe também que este aumento na temperatura de laminação foi pouco significativo.

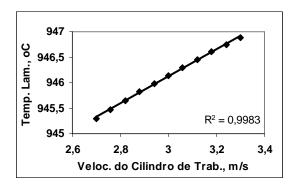


Figura 5.92 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F2, tabela B6.1.

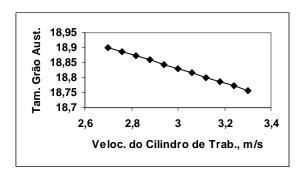


Figura 5.93 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações na velocidade do cilindro da cadeira F2, tabela B6.1.

Observe-se que houve muito pouca influencia do tamanho de grão com a velocidade do cilindro. Mas houve uma pequena diminuição do mesmo com o aumento da velocidade do cilindro. Isto é devido a efeitos concorrentes, pois o aumento da velocidade do cilindro diminui o tempo entre passes o que implicará na redução do tamanho de grão, pois haverá menos tempo para o crescimento de grão, conforme a equação (1.136). Da mesma forma, o aumento da velocidade implica num aumento da taxa de deformação do material diminuindo assim o tamanho de grão, conforme equação (1.128). Por outro lado, o aumento da velocidade do cilindro aumenta a temperatura de laminação que por sua vez aumenta o tamanho de grão segundo a equação (1.136).

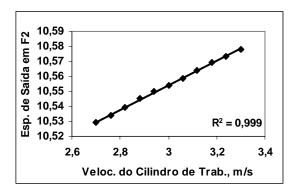


Figura 5.94 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F2, tabela B6.1.

Nota-se que a espessura de saída cresce ligeiramente com o aumento da velocidade do cilindro de trabalho. Neste caso temos também alguns efeitos concorrentes, como no caso o aumento na velocidade do cilindro aumenta a temperatura que por sua vez provoca redução na espessura de saída do material. Por outro lado, a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho conforme a equação (1.23). O aumento da TEM aumenta a carga de laminação, figura (5.95), fazendo com que o laminador se distenda mais, acarretando no aumento da espessura de saída, equação (2.14).

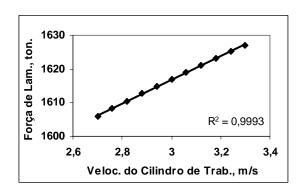


Figura 5.95 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na velocidade do cilindro em F2, tabela B6.1

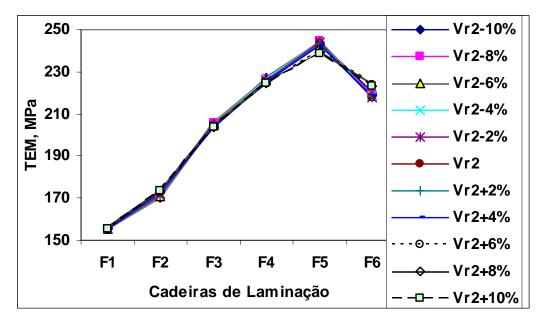


Figura 5.96 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F2, tabela B6.2.

Observe que o aumento na velocidade do cilindro em F2 provocou um ligeiro aumento da TEM em F2 e redução em F3 que se manteve para as demais cadeiras. Isto provavelmente foi devido ao aumento na temperatura de entrada em F3.

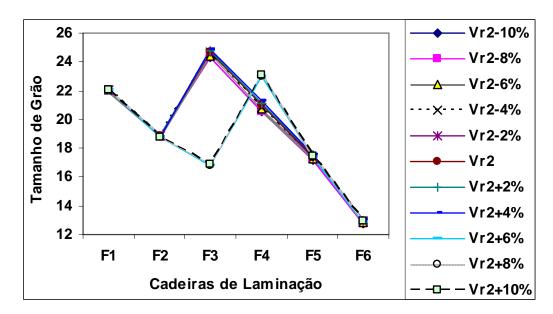


Figura 5.97 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro na cadeira F2, tabela B6.3.

Observe-se que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores para velocidades de cilindro menores do que Vr2+6%. Este crescimento em F3 foi devido a não haver mais recristalização dinâmica no passe F3. Para velocidades do cilindro maiores, a crescimento de grão foi na cadeira F4 pelo mesmo motivo, como pode ser visto na tabela 5.11.

Nota-se que a influencia da velocidade do cilindro de trabalho em F2 foi pouco significativa na variação do tamanho de grão.

Tabela 5.11 – Resultados do índice de recristalização dinâmica em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho em F2, para o aço carbono manganês 3.

	Recristalização dinâmica – Xdin												
	Vr2-10%	Vr2-8%	Vr2-6%	Vr2-4%	Vr2-2%	Vr2	Vr2+2%	Vr2+4%	Vr2+6%	Vr2+8%	Vr2+10%		
F1	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17		
F2	0,136	0,136	0,136	0,135	0,135	0,135	0,134	0,134	0,134	0,133	0,133		
F3	0	0	0	0	0	0	0	0	0,011	0,012	0,013		
F4	0	0	0	0	0	0	0	0	0	0	0		
F5	0	0	0	0	0	0	0	0	0	0	0		
F6	0	0	0	0	0	0	0	0	0	0	0		

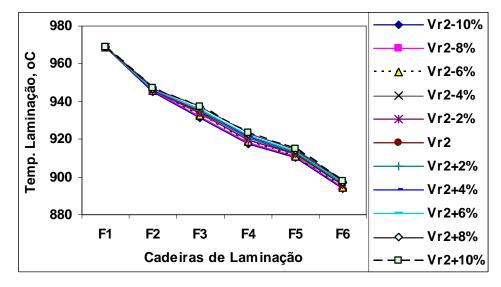


Figura 5.98 – Resultados da temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na velocidade do cilindro em F2, tabela B6.4

Observe que o aumento na velocidade do cilindro em F2 influencia mais a temperatura de laminação na cadeira F3. Isto é devido ao fato de que com uma maior velocidade do material entre F2 e F3, menor é a perda térmica por radiação conforme

equação (1.54) onde a mesma apresenta uma relação direta com o tempo entre passes. Da mesma forma isto acontece com a perda de calor para o ar segundo a equação (1.55).

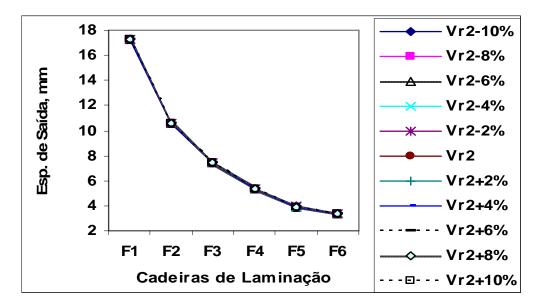


Figura 5.99 – Resultados da espessura de saída do material, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F2, tabela B6.5.

Observe na figura (5.99) que houve muita pouca influencia da velocidade do cilindro em F2 nas espessuras de saídas do material.

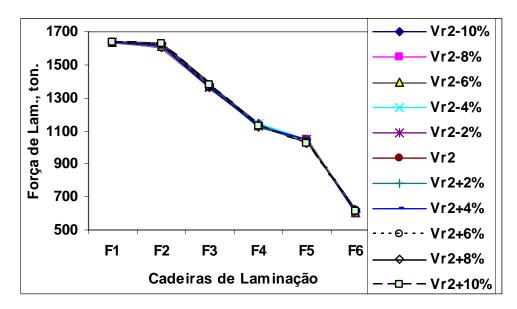


Figura 5.100 – Resultados da carga de laminação, obtidos pelo modelo termomicroestrtural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F2, tabela B6.6.

Há maior influencia da variação na velocidade do cilindro em F2 foi na carga em F2, nas demais cadeiras sua influencia foi pouco significativa.

5.3 - EFEITO DOS DISTÚRBIOS NA TERCEIRA CADEIRA DE LAMINAÇÃO

5.3.1 - Efeito da variação do gap em F2 e sua influência em F3 - gap3

Foram feitas simulações pela variação do gap na primeira cadeira de laminação e levantados os gráficos de gap em F2 & tensão de escoamento média, gap em F2 & tamanho de grão, gap em F2 & temperatura de laminação, gap em F2 & espessura de saída e gap em F2 & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo C.

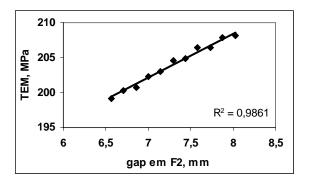


Figura 5.101 – Resultados das tensões de escoamento média (TEM) em F3, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F2, tabela C1.1.

Observe que a TEM cresce com o aumento no gap em F2, o que esta de acordo com os comentários feitos para as cadeiras anteriores.

Nota-se na figura (5.102), uma diminuição na temperatura de laminação com o aumento no gap em F2. Isto significa que a parcela de perda de calor devido a radiação e convecção por causa do maior tempo entre passe de F2 para F3, foi superior ao aquecimento pela deformação plástica. Além disso, a taxa de resfriamento se manteve constante.

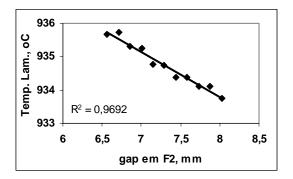


Figura 5.102 – Resultados de temperatura de laminação em F3, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F3, tabela C1.1.

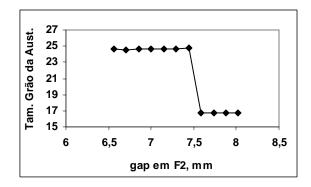


Figura 5.103 – Resultados de tamanho de grão (μm) em F3 obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F2, tabela C1.1.

Observe na figura (5.103) e tabela (C1.1), que o tamanho de grão permanece praticamente constante devido a pouca variação na temperatura até gap2+2%. Em seguida ha uma queda acentuada no tamanho de grão devido ao início de recristalização dinâmica, como pode ser visto na tabela (5.8). Após o tamanho de grão volta a ser constante devido a não variação de temperatura.

Observe na figura (5.104) que quanto maior o gap em F2, maior é a espessura de entrada em F3, portanto maior é a espessura de saída do material no laminador. Isto é devido ao aumento da carga de laminação provocada pelo aumento da espessura de entrada, fazendo com que o laminador se distenda mais, resultando no aumento da espessura de saída do material.

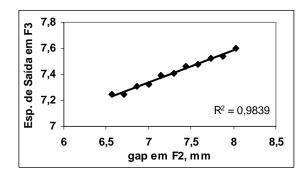


Figura 5.104 – Resultados de espessura de saída (mm) em F3, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F2, tabela C1.1.

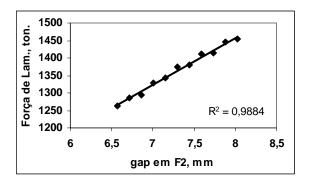


Figura 5.105 – Resultados de carga de laminação (ton.) em F3, obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F2, tabela C1.1.

Como pode ser visto na figura (5.106), quanto maior o gap em F2, maior é a espessura de entrada do material em F3, consequentemente, maior é a carga de laminação, devido a maior resistência a passagem do material no laminador.

5.3.2 - Efeito da variação na abertura entre os cilindros de trabalho em F3- gap3

Foram feitas simulações pela variação do gap em F3 e levantados os gráficos de gap & tensão de escoamento média, gap & tamanho de grão, gap & temperatura de laminação, gap & espessura de saída e gap & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo C.

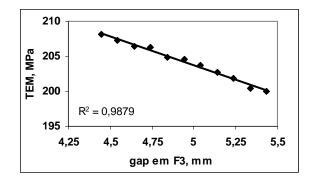


Figura 5.106 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F3, tabela C3.1.

Observe que a TEM decresce com o aumento no gap em F3, devido ao aumento na espessura de saída do material, reduzindo assim a deformação e a taxa de deformação.

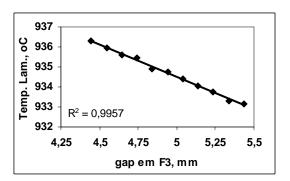


Figura 5.107 – Resultados de temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F3, tabela C3.1.

Nota-se um aumento na temperatura de laminação com a diminuição do gap em F3, pois irá provocar aquecimento do material devido a maior deformação plástica. Esta variação máxima de temperatura foi de 0,3%, o que pode ser considerado pouco significativo.

Observe na figura (5.108) e tabela (C3.1), que o tamanho de grão permanece praticamente constante devido a pouca variação na temperatura até gap3-2%. Em seguida ocorre um aumento acentuado no tamanho de grão devido a não mais ocorrência de recristalização dinâmica, como pode ser visto na tabela (5.13). Após o tamanho de grão volta a ser constante devido a pouca variação de temperatura.

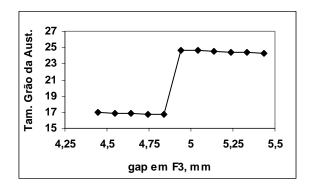


Figura 5.108 – Resultados de tamanho de grão (μm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F3, tabela C3.1.

Tabela 5.12 – Resultados da fração de recristalização dinâmica em todas as cadeiras de laminação devido a alterações no gap da cadeira F3, para o aço carbono manganês 3.

	Recristalização dinâmica - Xdin											
	gap3-10%	gap3-8%	gap3-6%	gap3-4%	gap3-2%	gap3	gap3+2%	gap3+4%	gap3+6%	gap3+8%	Gap3+10%	
F1	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	
F2	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	
F3	0,025	0,021	0,018	0,016	0,012	0	0	0	0	0	0	
F4	0	0	0	0	0	0	0	0	0	0	0	
F5	0	0	0	0	0	0	0	0	0	0	0	
F6	0	0	0	0	0	0	0	0	0	0	0	

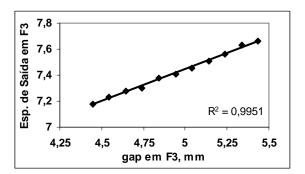


Figura 5.109 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F3, tabela C3.1.

Observe na figura (5.109) que quanto maior o gap em F3, maior é a espessura de saída do material no laminador.

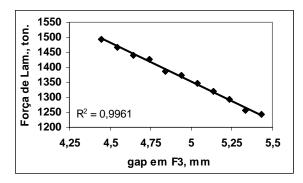


Figura 5.110 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F3, tabela C3.6.

Como pode ser visto na figura (5.110), quanto maior o gap, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador.

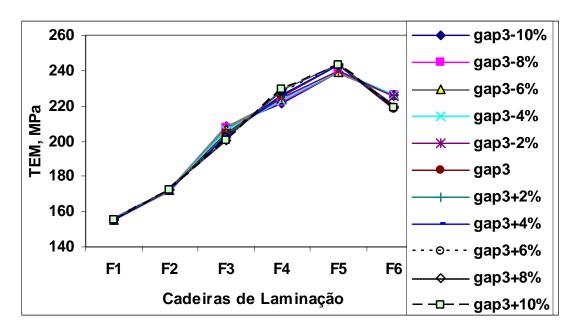


Figura 5.111 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F3, tabela C3.2.

Observe na figura (5.111) que o aumento no gap em F3 provocou uma redução da TEM neste passe. O aumento de gap provocou redução na recristalização dinâmica e metadinâmica entre as cadeiras F3 e F4, proporcionando assim um aumento na TEM no passe seguinte, como pode ser visto na tabela 5.12, pois a redução na recristalização dinâmica aumenta a TEM.

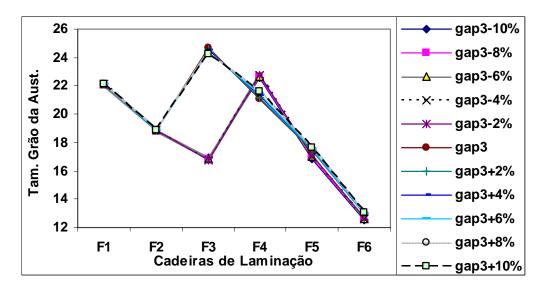


Figura 5.112 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F3, tabela C3.3.

Nota-se que o efeito no tamanho de grão é pequeno, mas se propaga para as demais cadeiras de laminação.

Observe-se que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores, para gap maiores de gap3-3%. Para gap menores o crescimento de grão aparece na cadeira F4. Este crescimento é devido a não haver mais recristalização dinâmica no passe considerado. Isto pode ser visto na tabela (5.12).

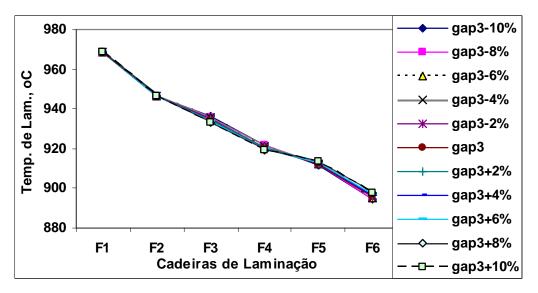


Figura 5.113 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F3, tabela C3.4.

O aumento no gap em F3 proporcionou pouca influencia na temperatura de laminação em passes posteriores.

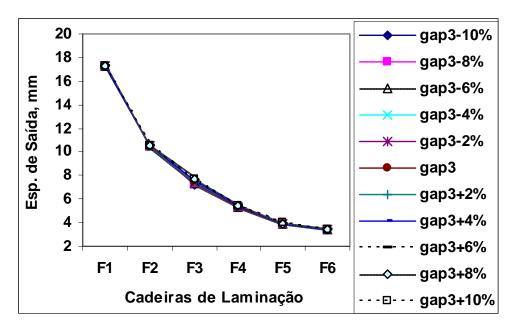


Figura 5.114 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F3, tabela C3.5.

Observe na figura (5.114) que a partir da cadeira F4 o aumento na espessura de saída devido ao aumento no gap em F3 foi pouco significativo.

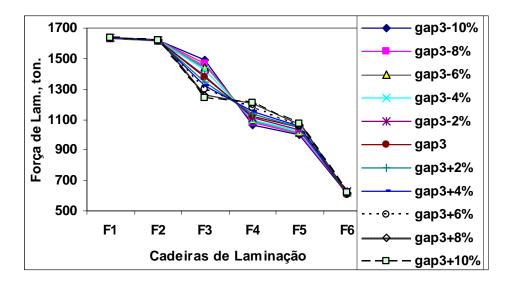


Figura 5.115 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F3, tabela C3.6.

O aumento no gap em F3 provoca um aumento na espessura de entrada na F4, consequentemente reduz a carga de laminação em F3 e aumenta em F4, como observado na figura (5.116).

5.3.3 – Efeito da variação na temperatura de entrada do material – Te3

Foram feitas simulações pela variação da temperatura de entrada em F3 e levantados os gráficos a seguir, cujas tabelas relativas aos gráficos mostrados neste item estão no anexo C.

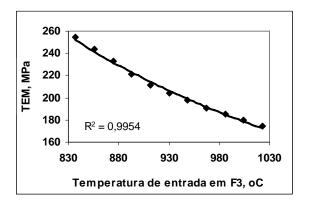


Figura 5.116 – Resultados das tensões de escoamento média (TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F3, tabela C3.1.

Observe que a TEM diminui com o aumento na temperatura de entrada do material.

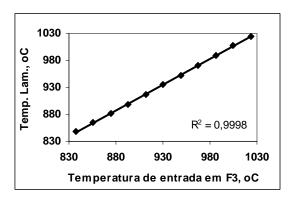


Figura 5.117 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F3, tabela C3.1.

Nota-se uma relação quase direta do aumento na temperatura de laminação com o aumento na temperatura de entrada do material.

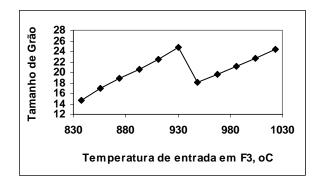


Figura 5.118 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F3, tabela C3.1.

Observe na tabela (5.13) que para temperaturas de entrada da tira mais baixas do que Te3+2%, não houve recristalização dinâmica em F3, portanto estes tamanhos de grão são regidos pelo mecanismo de recristalização estática, equações (1.130) e (1.134), que produzem tamanho de grãos maiores, como pode ser visto na figura (5.118). Para temperaturas maiores o mecanismo que rege o tamanho de grão é o de recristalização dinâmica. Por isto ocorre inicialmente uma queda no tamanho de grão para em seguida crescer.

Tabela 5.13 – Resultados da fração de recristalização dinâmica em todas as cadeiras de laminação devido a alterações temperatura de entrada do material em F3, para o aço carbono manganês 3.

				Re	ecristaliza	ação d	inâmica -	Xdin			
	Te3-10%	Te3-8%	Te3-6%	Te3-4%	Te3-2%	Te3	Te3+2%	Te3+4%	Te3+6%	Te3+8%	Te3+10%
F1	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17
F2	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135
F3	0	0	0	0	0	0	0,029	0,055	0,095	0,142	0,198
F4	0	0	0	0	0	0	0	0	0	0	0,062
F5	0	0	0	0	0	0	0	0	0	0	0
F6	0	0	0	0	0	0	0	0	0	0	0

Observe na figura (5.119) houve flutuações em torno de 3% na espessura de saída que certamente foi influenciada pelas flutuações na carga de laminação dada na figura (5.120). A equação (3.14) mostra que a variação na espessura de saída é muito sensível a variação na carga de laminação.

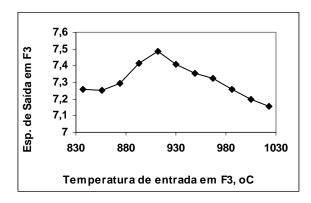


Figura 5.119 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do em F3, tabela C3.1.

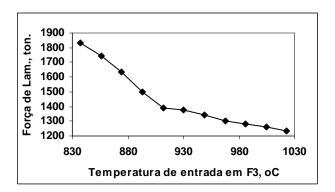


Figura 5.120 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do material em F3, tabela C3.1.

Como pode ser visto na figura (5.120), quanto maior a temperatura de entrada do material, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador.

Observe na figura (5.121) que o aumento na temperatura de entrada na cadeira F3 provocou uma diminuição na TEM que continuou em todas as outras cadeiras subsequentes.

Observa-se também que a TEM é bastante sensível ao efeito na temperatura de entrada na cadeira F3.

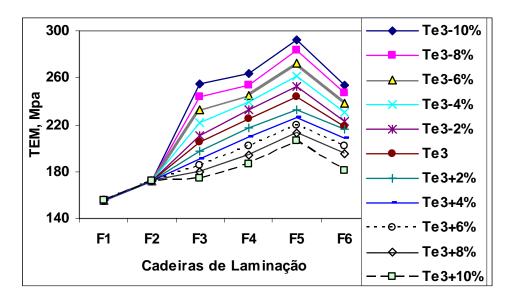


Figura 5.121 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F3, tabela C3.3.

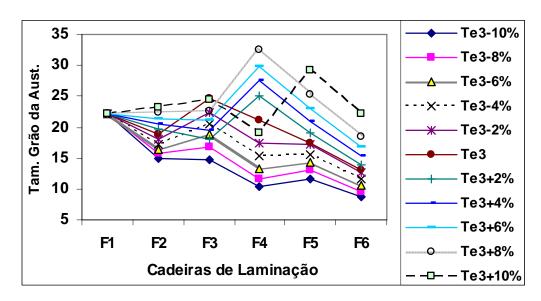


Figura 5.122 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F3, tabela C3.3.

Nota-se que o efeito no tamanho de grão é bastante sensível à variação da temperatura de entrada em F3, e se propaga para as demais cadeiras de laminação.

Observa-se onde ocorre um crescimento rápido no tamanho de grão é exatamente onde não mais ocorre recristalização dinâmica, como pode ser visto na tabela 5.13.

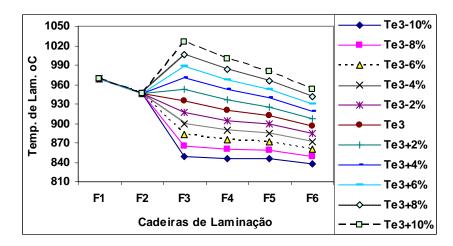


Figura 5.123 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F3, tabela C3.4.

Observe que o aumento na temperatura de entrada em F3 aumenta a temperatura de laminação em todas as cadeiras seguintes, sendo que o seu efeito reduz gradativamente para as cadeiras mais distantes de F3.

Nota-se também que a temperatura de laminação é bastante sensível a temperatura de entrada na cadeira F3.

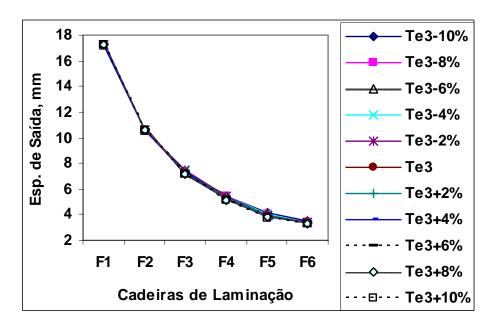


Figura 5.124 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material em F3, tabela C3.5.

Observe na figura (5.124) que a variação na espessura de saída devido a variação na temperatura de entrada do material em F3 foi pouco significativa.

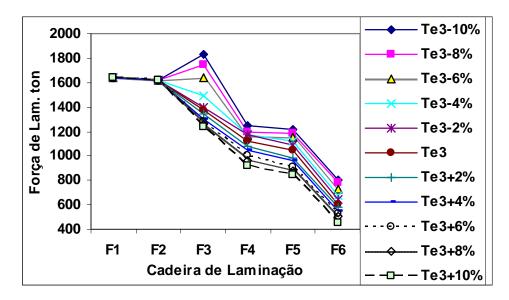


Figura 5.125 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material em F3, tabela C3.6.

O aumento na temperatura de entrada do material em F3 provoca uma diminuição na TEM, portanto reduz a carga de laminação em todas as cadeiras posteriores.

5.3.4 – Efeito da variação na tensão a ré no material em relação a cadeira F3 - τ13

Foram feitas simulações pela variação da tensão a ré do material em relação a F3 e levantados os gráficos cujas tabelas no anexo C.

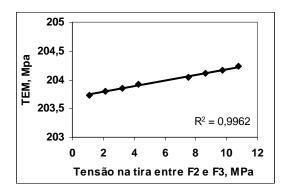


Figura 5.126 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações tensão a ré na tira da cadeira F3, tabela C4.1.

Observe que existe uma tendência de pouco significativa de aumento da TEM com o aumento na tensão a ré do material. Isto é devido ao fato de a aplicação da tensão a ré reduzir a carga de laminação, que por sua vez irá reduzir na espessura de saída do material, aumentando assim, a deformação e a taxa de deformação. Por outro lado, A aplicação da tensão a ré diminui a espessura de saída do material na cadeira anterior que irá contribuir para a redução da deformação e taxa de deformação. Além disso, haverá uma redução de temperatura de laminação, veja figura (5.127), que também provoca aumento na TEM.

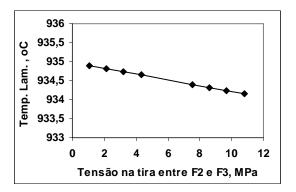


Figura 5.127 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações tensão a ré da tira da cadeira F3, tabela C4.1.

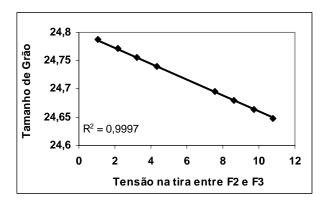


Figura 5.128 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas tensão a ré da tira da cadeira F3, tabela C4.1.

O tamanho de grão final da austenita obtido na figura (5.128) é o tamanho de grão inicial ou de entrada na cadeira F3. Portanto é influenciado pela temperatura entre passe conforme as equações (1.120) e (1.124) para a recristalização estática e (1.128) e (1.126), para a recristalização dinâmica. Desta forma, se o aumento na tensão a ré diminui a temperatura de laminação, o tamanho de grão tende a cair ligeiramente.

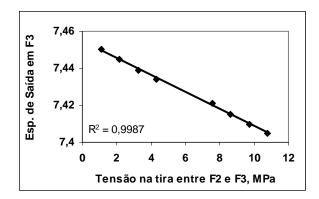


Figura 5.129 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a ré na tira da cadeira F3, tabela C4.1.

A espessura de saída é fortemente influenciada pela carga de laminação. Observe que há uma tendência de redução na espessura de saída com a aplicação da tensão a ré na tira, pois a carga de laminação tem também uma tendência de redução. Veja figura (5.130). Isto é devido principalmente a redução na resistência a deformação do material, equações (1.163) e (2.13).

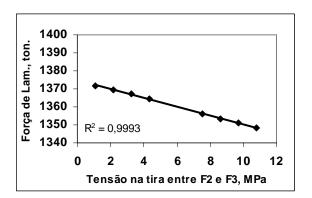


Figura 5.130 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a ré na tira em F3, tabela C4.1

5.3.5 – Efeito da variação na tensão a frente no material na saída da cadeira F3 - τ23

Foram feitas simulações pela variação da tensão a frente do material na saída de F3 e levantados os gráficos a seguir, cujas tabelas estão no anexo C.

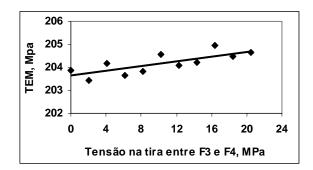


Figura 5.131 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a frente na tira da cadeira F3, tabela C5.1.

Observe que a TEM aumenta ligeiramente com o aumento na tensão a frente do material. Isto é devido ao fato de a aplicação da tensão a frente reduzir a carga de laminação, que por sua vez irá reduzir a espessura de saída do material, aumentando assim, a deformação e a taxa de deformação. Além disso, haverá uma redução de temperatura de laminação, que também provoca aumento na TEM.

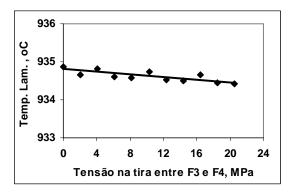


Figura 5.132 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações tensão a frente na tira da cadeira F3, tabela C5.1.

O tamanho de grão final da austenita obtido na figura (5.133) é o tamanho de grão inicial ou de entrada na cadeira F3. Portanto é influenciado pela temperatura entre passe. Desta forma, se o aumento na tensão a ré diminui muito pouco a temperatura de laminação, o tamanho de grão tende a permanecer quase constante.

Como pode ser visto na figura (5.135), quanto maior a tensão a frente do material, menor é a carga de laminação, devido principalmente a redução na resistência a deformação do material.

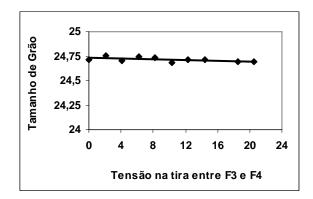


Figura 5.133 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas tensão a frente na tira da cadeira F3, tabela C5.1.

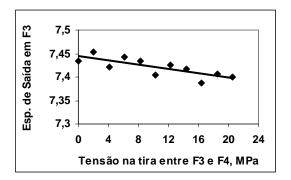


Figura 5.134 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a frente da tira na cadeira F3, tabela C5.1.

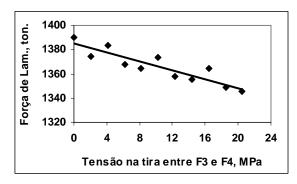


Figura 5.135 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a rente da tira em F3, tabela C5.1

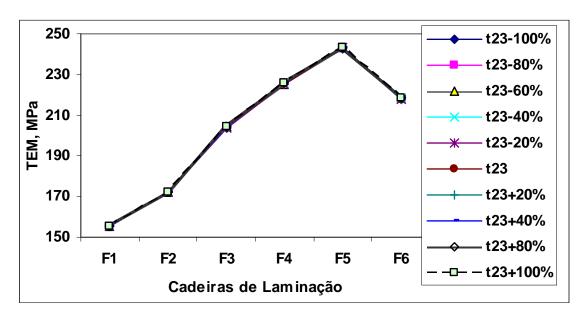


Figura 5.136 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na tensão a frente na tira em F3, tabela C5.3.

Observe que o aumento na tensão a frente em F3 provocou variações pouco significativas nas demais cadeiras de laminação. Isto provavelmente devido ao baixo nível de tensão a frente aplicada.

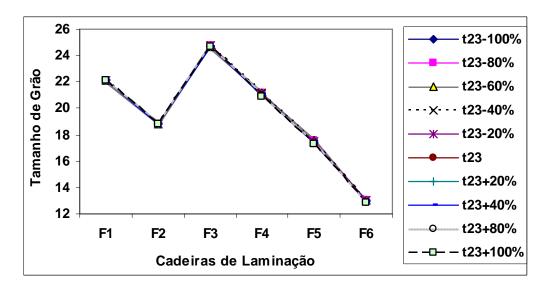


Figura 5.137 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na tensão a frente na tira em F3, tabela C5.3.

Observe-se que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores para as temperaturas de entrada

maiores. Este crescimento em F3 foi devido a não haver mais recristalização dinâmica no passe F3, como pode ser visto na tabela (5.14).

Nota-se que a influencia da tensão a frente foi pouco significativa na variação do tamanho de grão.

Tabela 5.14 – Resultados da fração de recristalização dinâmica em todas as cadeiras de laminação devido a alterações temperatura de entrada do material em F3, para o aço carbono manganês 3.

				Recrist	alização o	dinâm	ica - Xdin			
	τ23-100%	τ23-80%	τ23-60%	τ23-40%	τ23-20%	τ23	τ23+20%	τ23+40%	τ23+80%	τ23+100%
F1	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17
F2	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135
F3	0	0	0	0	0	0	0	0	0	0
F4	0	0	0	0	0	0	0	0	0	0
F5	0	0	0	0	0	0	0	0	0	0
F6	0	0	0	0	0	0	0	0	0	0

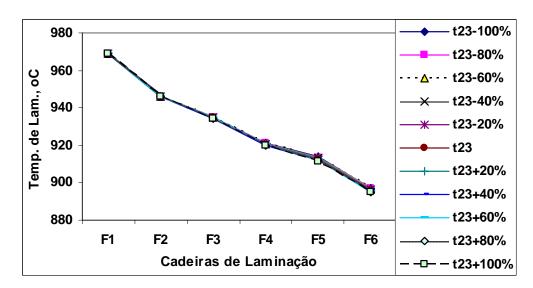


Figura 5.138 – Resultados da temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a frente na tira em F3, tabela C5.4

Observe que a variação da tensão a frente neste caso teve pouca influencia na variação da temperatura de laminação em todas as cadeiras de laminação.

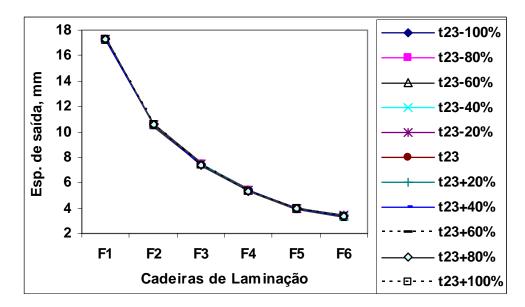


Figura 5.139 – Resultados da espessura de saída do material, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a frente de F3, tabela C5.5.

Observe na figura (5.139) que houve muita pouca influencia da tensão a frente da F3 nas espessuras de saídas do material, provavelmente devido ao baixo nível de tensões aplicados.

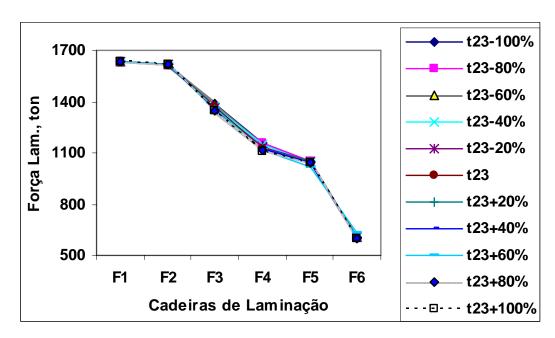


Figura 5.140 – Resultados da carga de laminação, obtidos pelo modelo termomicroestrtural para aço carbono manganês 3, devido a variações provocadas na tensão a frente de F3, tabela C5.6.

Há maior influencia da tensão a frente de F3 foi nas cargas em F3 e F4, produzindo uma diminuição das mesmas com o aumento da tensão a frente. Mas neste caso a influencia foi pequena devido ao baixo nível de tensão aplicada na tira.

5.3.6 - Efeito da variação na velocidade do cilindro de trabalho da cadeira F3 - Vr3

Foram feitas simulações pela variação da velocidade do cilindro de trabalho de F3 e levantados os gráficos cujas tabelas estão no anexo C.

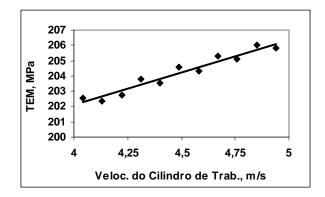


Figura 5.141 – Resultados das tensões de escoamento média (TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro da cadeira F3, tabela C6.1.

Observe que a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.153), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho conforme a equação (1.33).

Nota-se que este crescimento foi pouco significativo.

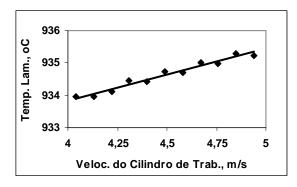


Figura 5.142 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F3, tabela C6.1.

Nota-se um aumento na temperatura de laminação com o aumento velocidade do cilindro de trabalho, porque como foi dito, o aumento na TEM implica no aumento da carga de laminação, equação (3.7), e o aumento da carga de laminação provoca aumento da temperatura de laminação devido ao maior aquecimento por deformação plástica, equação (1.41).

Observe também que este aumento na temperatura de laminação foi pouco significativo.

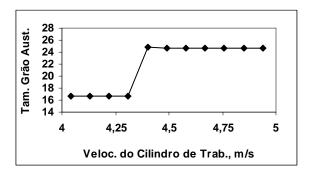


Figura 5.143 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações na velocidade do cilindro da cadeira F3, tabela C6.1.

Observe-se que houve muito pouca influencia do tamanho de grão com a velocidade do cilindro. Mas para velocidades acima de Vr3-4% houve um aumento no tamanho de grão devido a não mais ocorrência de recristalização dinâmica em F3, como pode ser visto na tabela 5.15.

Tabela 5.15 – Resultados do índice de recristalização dinâmica em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho em F3, para o aço carbono manganês 3.

					Recrista	lização	dinâmica -	- Xdin			
	Vr3-10%	Vr3-8%	Vr3-6%	Vr3-4%	Vr3-2%	Vr3	Vr3+2%	Vr3+4%	Vr3+6%	Vr3+8%	Vr3+10%
F1	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17
F2	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135
F3	0,01	0,009	0,009	0,01	0	0	0	0	0	0	0
F4	0	0	0	0	0	0	0	0	0	0	0
F5	0	0	0	0	0	0	0	0	0	0	0
F6	0	0	0	0	0	0	0	0	0	0	0

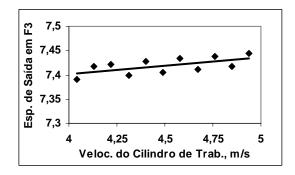


Figura 5.144 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F3, tabela C6.1.

Nota-se que a espessura de saída praticamente se manteve constante, mas com uma ligeira tendência de crescimento com o aumento da velocidade do cilindro de trabalho. Neste caso temos também alguns efeitos concorrentes, como no caso o aumento na velocidade do cilindro aumenta a temperatura que por sua vez provoca redução na espessura de saída do material. Por outro lado, a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho conforme a equação (1.23). O aumento da TEM aumenta a carga de laminação, figura (5.145), fazendo com que o laminador se distenda mais, acarretando no aumento da espessura de saída, equação (2.14).

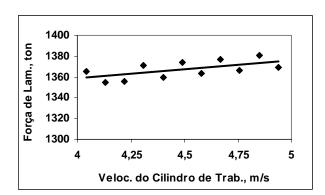


Figura 5.145 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na velocidade do cilindro em F3, tabela C6.1

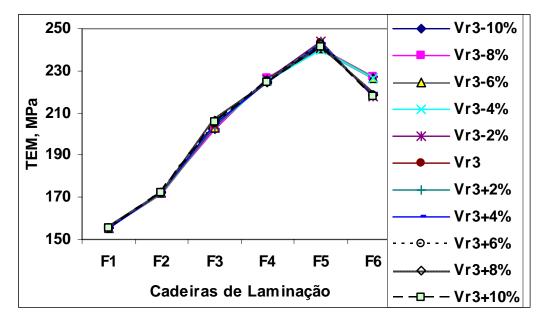


Figura 5.146 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F3, tabela C6.3.

Observe que o aumento na velocidade do cilindro em F3 provocou um ligeiro aumento da TEM em F3 e redução em F4 que se manteve para as demais cadeiras. Isto provavelmente foi devido ao aumento na temperatura de entrada em F4.

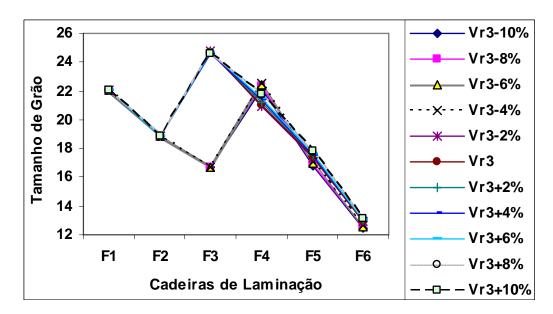


Figura 5.147 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro na cadeira F3, tabela C6.3.

Observe-se que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores para velocidades de cilindro menores do que Vr3-2%. Este crescimento em F3 foi devido a não haver mais recristalização dinâmica no passe F3. Para velocidades do cilindro maiores, a crescimento de grão foi na cadeira F4 pelo mesmo motivo, como pode ser visto na tabela (5.15).

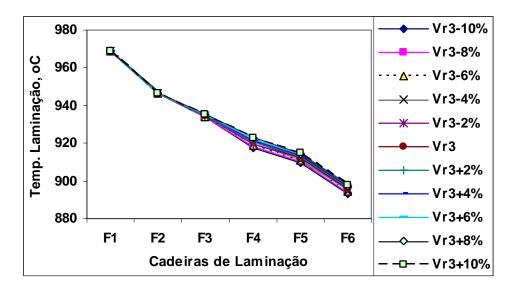


Figura 5.148 – Resultados da temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na velocidade do cilindro em F3, tabela C6.4

Observe que o aumento na velocidade do cilindro em F3 influencia mais a temperatura de laminação na cadeira F4. Isto é devido ao fato de que com uma maior velocidade do material entre F3 e F4, menor é a perda térmica por radiação onde a mesma apresenta uma relação direta com o tempo entre passes. Da mesma forma isto acontece com a perda de calor para o ar.

Observe na figura (5.149) que houve muita pouca influencia da velocidade do cilindro em F3 nas espessuras de saídas do material.

Há maior influencia da variação na velocidade do cilindro em F3 foi na carga em F3, nas demais cadeiras sua influencia foi pouco significativa, como pode ser visto na figura (5.150).

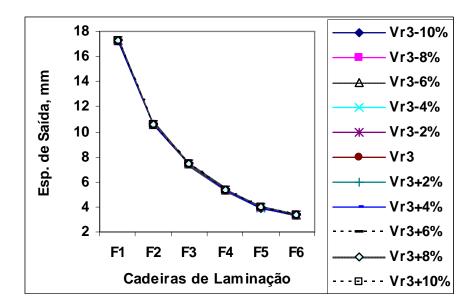


Figura 5.149 – Resultados da espessura de saída do material, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F3, tabela C6.5.

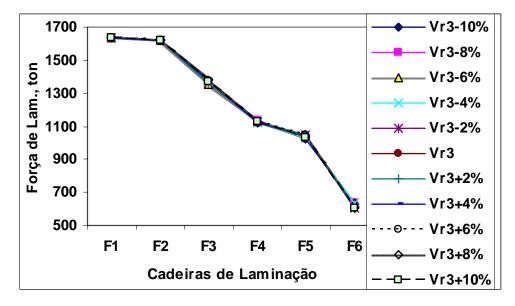


Figura 5.150 – Resultados da carga de laminação, obtidos pelo modelo termomicroestrtural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F3, tabela C6.6.

5.4 - REGRAS QUALITATIVAS VISANDO CONTROLE DO PROCESSO

Utilizando as simulações feitas para todas as cadeiras de laminação, foram elaborados conjuntos de regras qualitativas que determinam quais as ações a serem tomadas diante de distúrbios na espessura e/ou temperatura de entrada e/ou tensão de escoamento média, e que poderão servir de suporte para controle do processo de laminação a quente.

A variável de observação imediata de distúrbio é a carga de laminação por ser uma variável facilmente medida.

Para as análises foi adotado o princípio de que a alteração de uma variável manipulada não implica na alteração das demais, pois considera-se que os controladores locais as mantenham em seus *set-points*.

Desta forma, foram feitas tabelas para cada cadeira de laminação onde se estabeleceu como ruídos/distúrbios a espessura de entrada (h1), temperatura de entrada (Te) e tensão de escoamento média do material (TEM). Como conseqüências destas alterações, ocorrem mudanças na espessura de saída (h2), tamanho de grão (d) do material, TEM e carga de laminação (P). Esta última é a variável de observação/medida.

A TEM só é considerado distúrbio quando sua variação ocorre isoladamente, sem que haja variações na espessura e/ou temperatura de entrada. Caso contrário a TEM será considerado como conseqüência das variações de espessura e temperatura de entrada do material.

Nestas tabelas também são mostradas as correções a serem feitas nas variáveis manipuladas que são o gap (g), tensão a ré $(\tau 1)$, tensão a frente $(\tau 2)$ e velocidade do cilindro de trabalho (Vr). Em seguida, após serem feitas as correções, são apresentadas as conseqüências na espessura de saída e carga de laminação em uma tabela e tamanho de grão e TEM em outra tabela para cada cadeira de laminação. Desta forma, cada linha da tabela que contem todas estas informações representa uma condição de distúrbio/ruído (CD)

As informações nas tabelas são qualitativas, de maneira que, quando uma variável aumenta de valor aparece o símbolo (\uparrow), quando diminui o símbolo é (\downarrow). Caso não haja alteração na variável o símbolo então será (=). Após efetuadas as correções nas variáveis manipuladas as tabelas mostram como resultado as conseqüências em h2, P, TEM e d. Quando o resultado destas conseqüências são concorrentes, a variável que produziu maior influência é a que determina o resultado final e o símbolo aparecerá sublinhado na forma (\uparrow) ou (\downarrow) se o resultado for aumentar ou reduzir, respectivamente.

As correções nas variáveis manipuladas são feitas com o objetivo principal de recuperar a espessura de saída do material e observar o comportamento das propriedades mecânicas e microestruturais do material.

As tabelas de 5.16 a 5.21 foram feitas para cada cadeira de laminação e os comentários estão após a tabela 5.21.

Tabela 5.16A – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material na espessura de saída e carga de laminação, e as correções feitas nas variáveis manipuladas no caso da cadeira F1 para o aço C-Mn 3.

CD		Distúrbi	os	Var Med	Resu	ıltado	Va	ar. Ma Corre	anipula ções e	adas em:		Cor após o		iência ções e				r
	h1	Te	TEM	Р	h2	d	g	τ1	τ2	Vr		h2	2				Р	
		. 0	1 = 101	'	112	3	9	l I	12	٧.	g	τ1	τ2	Vr	g	τ1	τ2	Vr
1	\uparrow	\downarrow	↑	↑	↑	\downarrow	\downarrow		\uparrow	\downarrow	\downarrow		\downarrow	\downarrow	<u>↑</u>		\downarrow	\downarrow
2	↓	↑	\	\	↓	↑	↑		\	↑	↑		1	↑	$\overline{\downarrow}$		↑	↑
3	↑	↑	↑	↑	↑	↑	\downarrow		↑	\downarrow	\downarrow		\downarrow	\downarrow	<u>↑</u>		\downarrow	\downarrow
4	↑	\uparrow	\downarrow	\downarrow	\downarrow	↑	↑		\rightarrow	↑	↑		↑	↑	$\underline{\downarrow}$		↑	\uparrow
5	\downarrow	\downarrow	↑	↑	↑	\downarrow	\downarrow		↑	\downarrow	\downarrow		\downarrow	\downarrow	<u>↑</u>		\downarrow	\downarrow
6	\rightarrow	\rightarrow	\downarrow	\downarrow	\downarrow	\rightarrow	\uparrow		\downarrow		↑		↑	↑	\downarrow		↑	↑
7	=	=	↑	↑	↑	\downarrow	\downarrow		\uparrow	\downarrow	\downarrow		\downarrow	\downarrow	<u>↑</u>		\downarrow	\downarrow
8	=	=	\downarrow	\downarrow	\downarrow	\uparrow	↑		\downarrow	↑	↑		\uparrow	\uparrow	$\underline{\downarrow}$		\uparrow	↑
9	←	ı	↑	↑	↑	\leftarrow	\rightarrow		\uparrow	\rightarrow	\downarrow		\downarrow	\downarrow	<u>↑</u>		\downarrow	\downarrow
10	\rightarrow	II	\downarrow	\downarrow	\downarrow	\rightarrow	\uparrow		\downarrow	←	↑		↑	↑	\downarrow		↑	↑
11	=	↑	\downarrow	\downarrow	\downarrow	↑	↑		\downarrow	↑	↑		↑	↑	\downarrow		↑	↑
12	=	\downarrow	1	1	↑	\downarrow	\downarrow		↑	\downarrow	\downarrow		\downarrow	\downarrow	<u>↑</u>		\downarrow	\downarrow

Tabela 5.16B – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material no tamanho de grão e TEM, e as correções feitas nas variáveis manipuladas no caso da cadeira F1 para o aço C-Mn 3.

CD	ı	Distúrbi	ios	Var Med	Resu	ultado			anipula ções e			Cons após o		èncias ções e				r
	h1	Te	TEM	Р	h2	d	g	τ1	τ2	Vr		TE					d	
						_	3		-		g	τ1	τ2	Vr	g	τ1	τ2	Vr
1	\uparrow	\downarrow	↑	↑	↑	\downarrow	\downarrow		↑	\downarrow	↑		\uparrow	\downarrow	<u>↑</u>		\downarrow	\uparrow
2	\leftarrow	\uparrow	\downarrow	\downarrow	\downarrow	↑	↑		\downarrow	1	\rightarrow		\rightarrow	↑	$\overline{\downarrow}$		↑	\downarrow
3	↑	↑	1	1	↑	1	\downarrow		1	\downarrow	↑		↑	\downarrow	<u>↑</u>		\downarrow	↑
4	↑	↑	↓	\downarrow	↓	1	1		\	1	\downarrow		\	↑	$\overline{\downarrow}$		↑	\downarrow
5	\downarrow	\downarrow	1	1	1	\downarrow	\downarrow		1	\downarrow	↑		↑	\downarrow	<u>↑</u>		\downarrow	↑
6	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	1		\downarrow	↑	\downarrow		\rightarrow	↑	$\underline{\downarrow}$		↑	\downarrow
7	II	II	↑	↑	↑	\downarrow	\downarrow		↑	\downarrow	↑		\leftarrow	\downarrow	<u>↑</u>		\downarrow	\uparrow
8	=	II	\downarrow	\downarrow	\downarrow	↑	1		\downarrow	1	\downarrow		\rightarrow	↑	$\underline{\downarrow}$		↑	\downarrow
9	↑	ı	↑	↑	↑	↑	\rightarrow		↑	\downarrow	↑		\leftarrow	\downarrow	<u>↑</u>		\downarrow	\uparrow
10	\downarrow	=	\downarrow	\downarrow	\downarrow	\downarrow	↑		\downarrow	↑	\downarrow		\rightarrow	↑	\downarrow		↑	\downarrow
11	=	↑	\downarrow	\downarrow	\downarrow	1	1		\downarrow	1	\downarrow		\rightarrow	↑	<u>↑</u>		\downarrow	\downarrow
12	=	\downarrow	1	1	1	\downarrow	\downarrow		1	\downarrow	↑		↑	\downarrow	$\underline{\downarrow}$		↑	\uparrow

Tabela 5.17A – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material na espessura de saída e carga de laminação, e as correções feitas nas variáveis manipuladas no caso da cadeira F2 para o aço C-Mn 3.

CD		Distúrbi	os	Var Med	Resu	ıltado			anipula ções e			Cor após o		iência ções e				r
0.5	h1	Te	TEM	Р	H2	d	g	τ1	τ2	Vr		h2	2				Р	
	111	-	1 - 101	'	112	3	9	l I	12	VI	g	τ1	τ2	Vr	g	τ1	τ2	Vr
1	\uparrow	\downarrow	↑	↑	\uparrow	\downarrow	\downarrow	\uparrow	\uparrow	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
2	\rightarrow	↑	↓	\downarrow	\downarrow	↑	\uparrow	\downarrow	\downarrow	↑	↑	↑	1	↑	\downarrow	1	↑	\uparrow
3	↑	↑	↑	↑	↑	↑	\downarrow	↑	↑	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
4	↑	↑	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	\downarrow	↑	↑	↑
5	\downarrow	\downarrow	↑	↑	1	\downarrow	\rightarrow	↑	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\rightarrow	\downarrow
6	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	\downarrow	↑	↑	↑
7	II	ı	↑	\uparrow	↑	\rightarrow	\downarrow	\leftarrow	↑	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
8	I	II	\downarrow	\rightarrow	\downarrow	↑	\uparrow	\rightarrow	\downarrow		\uparrow		1	↑	\downarrow	1	↑	↑
9		II	↑	\uparrow	↑		\downarrow	\leftarrow	↑	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
10	\downarrow	=	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	$\underline{\downarrow}$	1	↑	↑
11	II	↑	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	$\underline{\downarrow}$	1	↑	↑
12	=	\downarrow	1	↑	↑	\downarrow	\downarrow	1	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow

Tabela 5.17B – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material no tamanho de grão e TEM, e as correções feitas nas variáveis manipuladas no caso da cadeira F2 para o aço C-Mn 3.

CD		Distúrbi	os	Var Med	Resu	ıltado			nipula ções e			Cons após o		èncias ções e				r
	h1	Te	TEM	Р	H2	d	g	τ1	τ2	Vr		TE	М				d	
		. •	. =	•		١	9	٠.			g	τ1	τ2	Vr	g	τ1	τ2	Vr
1	\uparrow	\downarrow	↑	\uparrow	↑	\downarrow	\downarrow	\uparrow	\uparrow	\downarrow	\uparrow	\uparrow	\uparrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\uparrow
2	\downarrow	↑	\downarrow	\downarrow	\downarrow	↑	\uparrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	\downarrow	↑	\downarrow	1	↑	\downarrow
3	↑	↑	↑	↑	↑	↑	\downarrow	↑	↑	\downarrow	↑	↑		\downarrow	<u>↑</u>	\downarrow	\downarrow	↑
4	↑	↑	\	\	↓	↑	1	\	\	↑	\	\	\	↑	$\overline{\downarrow}$	1	↑	\downarrow
5	\	\downarrow	1	↑	1	\	\	↑	↑	\	↑	↑	↑	\downarrow	<u>↑</u>	\downarrow	\	↑
6	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑	\downarrow	\downarrow	\rightarrow	↑	\downarrow	↑	↑	\downarrow
7	II	II	↑	\uparrow	↑	\rightarrow	\downarrow	\leftarrow		\rightarrow	↑		\leftarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	↑
8	II	II	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	↑	\downarrow	\downarrow	\rightarrow	↑	\downarrow	↑	↑	\downarrow
9	↑	II	↑	↑	↑	↑	\downarrow	↑	↑	\downarrow	↑	↑		\downarrow	<u>↑</u>	\downarrow	\downarrow	↑
10	\downarrow	=	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑	\downarrow	\downarrow	\rightarrow	↑	\downarrow	↑	↑	\downarrow
11	II		\downarrow	\rightarrow	\downarrow		\uparrow	\rightarrow	\rightarrow		\downarrow	\rightarrow	\rightarrow	↑	<u>↑</u>	\downarrow	\downarrow	\downarrow
12	=	\downarrow	1	↑	1	\downarrow	\downarrow	1	↑	\downarrow	↑	↑	↑	\downarrow	\downarrow	1	↑	↑

Tabela 5.18A – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material na espessura de saída e carga de laminação, e as correções feitas nas variáveis manipuladas no caso da cadeira F3 para o aço C-Mn 3.

CD		Distúrbi	os	Var Med	Resu	ıltado			anipula ções e			Cor após o		iência ções e				r
0.5	h1	Te	TEM	Р	H2	d	g	τ1	τ2	Vr		h2	2				Р	
	111	-	1 - 101	'	112	3	9	l I	12	VI	g	τ1	τ2	Vr	g	τ1	τ2	Vr
1	\uparrow	\downarrow	↑	↑	\uparrow	\rightarrow	\downarrow	\uparrow	\uparrow	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
2	\rightarrow	↑	↓	\downarrow	\downarrow	↑	\uparrow	\downarrow	\downarrow	↑	↑	↑	↑	↑	\downarrow	1	↑	\uparrow
3	↑	↑	↑	↑	↑	↑	\downarrow	↑	↑	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
4	↑	↑	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	\downarrow	↑	↑	↑
5	\downarrow	\downarrow	↑	↑	1	\downarrow	\rightarrow	↑	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\rightarrow	\downarrow
6	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	\downarrow	↑	↑	↑
7	II	=	↑	\uparrow	↑	\rightarrow	\downarrow	\leftarrow	↑	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
8	=	II	\downarrow	\rightarrow	\downarrow	↑	\uparrow	\rightarrow	\downarrow		\uparrow		↑	↑	\downarrow	1	↑	↑
9		II	↑	\uparrow	↑		\downarrow	\leftarrow	↑	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
10	\downarrow	=	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	$\underline{\downarrow}$	1	↑	↑
11	II	↑	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	$\underline{\downarrow}$	1	↑	↑
12	=	\downarrow	1	↑	↑	\downarrow	\downarrow	1	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow

Tabela 5.18B – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material no tamanho de grão e TEM, e as correções feitas nas variáveis manipuladas no caso da cadeira F3 para o aço C-Mn 3.

CD		Distúrbi	os	Var Med	Resu	ıltado			anipula ções e			Cons após o		èncias ções e				r
	h1	Te	TEM	Р	h2	d	g	τ1	τ2	Vr		TE	М				d	
		. •	. =	•		١	9	٠.		•	g	τ1	τ2	Vr	g	τ1	τ2	Vr
1	\uparrow	\downarrow	↑	↑	\uparrow	\downarrow	\downarrow	\uparrow	↑	\downarrow	\uparrow	↑	\uparrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\uparrow
2	\downarrow	↑	\downarrow	\downarrow	\downarrow	↑	\uparrow	\downarrow	\downarrow	1	\downarrow	\downarrow	\downarrow	↑	\downarrow	1	↑	\downarrow
3	↑	↑	↑	↑	↑	↑	\downarrow	↑	↑	\downarrow	↑	↑		\downarrow	<u>↑</u>	\downarrow	\downarrow	↑
4	↑	↑	\	\downarrow	\	↑	1	\	\downarrow	1	\	\	\downarrow	↑	$\overline{\downarrow}$	1	↑	\downarrow
5	\	\	1	1	1	\	\	↑	↑	↓	↑	1	↑	\downarrow	<u>↑</u>	\downarrow	\	↑
6	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑	\downarrow	\downarrow	\rightarrow	↑	\downarrow	↑	↑	\downarrow
7	II	II	↑	↑		\rightarrow	\downarrow	\leftarrow	↑	\downarrow	↑	↑	\leftarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	↑
8	II	II	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	1	\downarrow	\downarrow	\rightarrow	↑	\downarrow	↑	↑	\downarrow
9	↑	II	↑	↑	↑	↑	\downarrow	↑	↑	\downarrow	↑	↑		\downarrow	<u>↑</u>	\downarrow	\downarrow	↑
10	\downarrow	=	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	1	\downarrow	\downarrow	\rightarrow	↑	\downarrow	↑	↑	\downarrow
11	II		\downarrow	\downarrow	\rightarrow		\uparrow	\rightarrow	\downarrow	↑	\downarrow	\downarrow	\rightarrow	↑	<u>↑</u>	\downarrow	\downarrow	\downarrow
12	=	\downarrow	1	1	↑	\downarrow	\downarrow	1	1	\downarrow	↑	1	↑	\downarrow	\downarrow	1	↑	↑

Tabela 5.19A – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material na espessura de saída e carga de laminação, e as correções feitas nas variáveis manipuladas no caso da cadeira F4 para o aço C-Mn 3.

CD		Distúrbi	os	Var Med	Resu	ıltado			anipula ções e			Cor após o		iência ções e				r
0.5	h1	Te	TEM	Р	h2	d	g	τ1	τ2	Vr		h2	2				Р	
	111	-	1 - 101	'	112	3	9	l I	12	VI	g	τ1	τ2	Vr	g	τ1	τ2	Vr
1	\uparrow	\downarrow	↑	↑	\uparrow	\rightarrow	\downarrow	\uparrow	\uparrow	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
2	\rightarrow	↑	↓	\downarrow	\downarrow	↑	\uparrow	\downarrow	\downarrow	↑	↑	↑	1	↑	\downarrow	1	↑	↑
3	↑	↑	↑	↑	↑	↑	\downarrow	↑	↑	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
4	\leftarrow	\uparrow	\downarrow	\downarrow	\downarrow		↑	\rightarrow	\downarrow	\leftarrow	\uparrow		↑	\uparrow	$\underline{\downarrow}$	↑	↑	\uparrow
5	\downarrow	\downarrow	↑	↑	1	\downarrow	\rightarrow	↑	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\rightarrow	\downarrow
6	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	\downarrow	↑	↑	↑
7	II	II	1	↑	↑	\rightarrow	\downarrow	\leftarrow	↑	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
8	I	II	\downarrow	\downarrow	\downarrow	↑	\uparrow	\rightarrow	\downarrow		↑		↑	↑	\downarrow	1	↑	↑
9	\uparrow	=	↑	↑	\uparrow	\uparrow	\downarrow	\uparrow	\uparrow	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
10	\downarrow	=	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	$\underline{\downarrow}$	1	↑	↑
11	II	↑	\downarrow	\downarrow	\downarrow		\uparrow	\rightarrow	\downarrow		\uparrow		↑	↑	$\underline{\downarrow}$	1	↑	↑
12	=	\downarrow	1	1	↑	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow

Tabela 5.19B – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material no tamanho de grão e TEM, e as correções feitas nas variáveis manipuladas no caso da cadeira F4 para o aço C-Mn 3.

CD		Distúrbi	os	Var Med	Resu	ultado			nipula ções e			Cons após o		èncias ções e				•
	h1	Te	TEM	Р	h2	d	g	τ1	τ2	Vr		TE	М				d	
	•••			•	112	ŭ	9	C I	٧2	VI	g	τ1	τ2	Vr	g	τ1	τ2	Vr
1	↑	\downarrow	↑	↑	↑	\downarrow	\downarrow	↑	↑	\downarrow	↑	\uparrow	↑	\downarrow	<u>↑</u>	\downarrow	\rightarrow	\uparrow
2	\	↑	\	\downarrow	↓	1	1	↓	\	↑	\	\	\downarrow	↑	\downarrow	1	↑	\downarrow
3	↑	↑	1	↑	↑	1	\downarrow	1	↑	\downarrow	1	↑	↑	\downarrow	<u>↑</u>	\downarrow	\downarrow	↑
4	↑	↑	\	\downarrow	↓	1	1	↓	\	↑	\	\	\downarrow	↑	\downarrow	1	↑	\downarrow
5	\	\downarrow	1	↑	1	\downarrow	\downarrow	1	↑	\downarrow	1	↑	↑	\downarrow	<u>↑</u>	\downarrow	\downarrow	↑
6	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	1	\downarrow	\downarrow	↑	\downarrow	\rightarrow	\rightarrow	↑	\downarrow	↑	↑	\downarrow
7	=	=	↑	↑	1	\	\downarrow	1	↑	\	↑	↑	1	\downarrow	<u>↑</u>	↓	\	↑
8	=	II	\downarrow	\downarrow	\downarrow	↑	1	\downarrow	\downarrow	↑	\downarrow	\rightarrow	\rightarrow	↑	$\underline{\downarrow}$	↑	↑	\downarrow
9	←	II	↑	\uparrow	↑	↑	\rightarrow	\uparrow	\leftarrow	\rightarrow	\uparrow	\leftarrow	\leftarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\uparrow
10	\downarrow	=	\downarrow	\downarrow	\downarrow	\downarrow	1	\downarrow	\downarrow	↑	\downarrow	\downarrow	\downarrow	↑	\downarrow	↑	↑	\downarrow
11	II	\leftarrow	\downarrow	\rightarrow	\downarrow	↑	↑	\downarrow	\rightarrow		\downarrow	\rightarrow	\rightarrow	↑	<u>↑</u>	\downarrow	\downarrow	\rightarrow
12	=	\downarrow	↑	↑	1	\	\downarrow	↑	↑		↑	↑	1	\downarrow	\downarrow	↑	↑	↑

Tabela 5.20A – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material na espessura de saída e carga de laminação, e as correções feitas nas variáveis manipuladas no caso da cadeira F5 para o aço C-Mn 3.

CD		Distúrbi	os	Var Med	Resu	ıltado			anipula ções e			Cor após o		iência ções e				r
0.5	h1	Te	TEM	Р	h2	d	g	τ1	τ2	Vr		h2	2				Р	
	111	-	1 - 101	'	112	3	9	l I	12	VI	g	τ1	τ2	Vr	g	τ1	τ2	Vr
1	\uparrow	\downarrow	↑	↑	\uparrow	\rightarrow	\downarrow	\uparrow	\uparrow	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
2	\rightarrow	↑	↓	\downarrow	\downarrow	↑	\uparrow	\downarrow	\downarrow	↑	↑	↑	1	↑	\downarrow	1	↑	↑
3	↑	↑	↑	↑	↑	↑	\downarrow	↑	↑	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
4	\leftarrow	\uparrow	\downarrow	\downarrow	\downarrow		↑	\rightarrow	\downarrow		\uparrow		↑	\uparrow	$\underline{\downarrow}$	↑	↑	\uparrow
5	\downarrow	\downarrow	↑	↑	1	\downarrow	\rightarrow	↑	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\rightarrow	\downarrow
6	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	\downarrow	↑	↑	↑
7	II	II	1	↑	↑	\rightarrow	\downarrow	\leftarrow	↑	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
8	I	II	\downarrow	\downarrow	\downarrow		\uparrow	\rightarrow	\downarrow		\uparrow		1	↑	\downarrow	1	↑	↑
9	\uparrow	=	↑	↑	\uparrow	\uparrow	\downarrow	\uparrow	\uparrow	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow
10	\downarrow	=	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑	↑	↑	↑	↑	$\underline{\downarrow}$	1	↑	↑
11	II	↑	\downarrow	\downarrow	\downarrow		\uparrow	\rightarrow	\downarrow		\uparrow		↑	↑	$\underline{\downarrow}$	1	↑	↑
12	=	\downarrow	1	1	↑	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow

Tabela 5.20B – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material no tamanho de grão e TEM, e as correções feitas nas variáveis manipuladas no caso da cadeira F5 para o aço C-Mn 3.

CD		Distúrbios			Resultado				nipula ções e		Conseqüências em TEM e d, após correções em g, τ1,τ2 e Vr								
	h1	Te	TEM	Р	h2	d G τ1 τ2 Vr				Vr	TEM				d				
		. •	. =	•		١		٠.			g	τ1	τ2	Vr	g	τ1	τ2	Vr	
1	\uparrow	\downarrow	↑	↑	↑	\downarrow	\downarrow	\uparrow	↑	\downarrow	\uparrow	↑	\uparrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\uparrow	
2	\downarrow	↑	\downarrow	\downarrow	\downarrow	↑	\uparrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	\downarrow	↑	\downarrow	1	↑	\downarrow	
3	↑	↑	↑	↑	↑	↑	\downarrow	↑	↑	\downarrow	↑	↑		\downarrow	<u>↑</u>	\downarrow	\downarrow	↑	
4	↑	↑	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	↑	\downarrow	\downarrow	\rightarrow	↑	$\underline{\downarrow}$	↑	↑	\downarrow	
5	\rightarrow	\downarrow	↑	↑	↑	\downarrow	\downarrow	↑	↑	\downarrow	↑	↑		\downarrow	<u>↑</u>	\downarrow	\downarrow	↑	
6	\rightarrow	\rightarrow	\downarrow	\downarrow	\rightarrow	\rightarrow	\uparrow	\rightarrow	\rightarrow		\downarrow	\rightarrow	\rightarrow	↑	\downarrow	1	↑	\downarrow	
7	II	=	↑	↑	↑	\downarrow	\downarrow	\uparrow	↑	\downarrow	\uparrow	↑	\uparrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\uparrow	
8	II	=	\downarrow	\downarrow	\rightarrow		↑	\rightarrow	\rightarrow		\downarrow	\rightarrow	\rightarrow	↑	$\overline{\downarrow}$	↑	↑	\downarrow	
9		II	1	↑			\downarrow	\leftarrow	\leftarrow	\rightarrow	↑		\leftarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	↑	
10	\rightarrow	II	\downarrow	\downarrow	\rightarrow	\rightarrow	\uparrow	\rightarrow	\rightarrow		\downarrow	\rightarrow	\rightarrow	↑	\downarrow	1	↑	\downarrow	
11	II	↑	\downarrow	\downarrow	\rightarrow	↑	\uparrow	\rightarrow	\rightarrow		\downarrow	\rightarrow	\rightarrow	↑	<u>↑</u>	\downarrow	\downarrow	\downarrow	
12	=	\downarrow	1	1	↑	\downarrow	\downarrow	1	↑	\downarrow	↑	↑	\uparrow	\downarrow	\downarrow	↑	↑	\uparrow	

Tabela 5.21A – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material na espessura de saída e carga de laminação, e as correções feitas nas variáveis manipuladas no caso da cadeira F6 para o aço C-Mn 3.

CD		Distúrbi	os	Var Med Resultado					nipula ções e		Conseqüências em h2 e P, após correções em g, τ1,τ2 e Vr								
	h1	Te	TEM	Р	h2	d	d G τ1 τ2 Vr				h2				Р				
		. 0	. =			3	Ŭ	C I	"	٧.	g	τ1	τ2	Vr	g	τ1	τ2	Vr	
1	\uparrow	\downarrow	↑	↑	\uparrow	\rightarrow	\downarrow	\uparrow		=	\downarrow	\downarrow		=	<u>↑</u>	\downarrow		=	
2	\downarrow	↑	↓	\downarrow	\downarrow	↑	\uparrow	\downarrow		=	↑	1		=	\downarrow	1		=	
3	↑	↑	↑	↑	↑	↑	\downarrow	↑		=	\downarrow	\downarrow		=	<u>↑</u>	\downarrow		=	
4	←	\uparrow	\downarrow	\downarrow	\downarrow		↑	\rightarrow		II	↑	↑		=	$\underline{\downarrow}$	↑		=	
5	\rightarrow	\rightarrow	↑	↑	↑	\rightarrow	\downarrow	\leftarrow		II	\downarrow	\downarrow		=	<u>↑</u>	\downarrow		=	
6	\rightarrow	\rightarrow	\downarrow	\downarrow	\downarrow	\rightarrow	↑	\rightarrow		II	↑	↑		=	$\overline{\downarrow}$	↑		=	
7		II	1	↑	↑	\rightarrow	\downarrow	\leftarrow			\downarrow	\downarrow		=	<u>↑</u>	\downarrow		=	
8	II	II	\downarrow	\downarrow	\downarrow	↑	\uparrow	\rightarrow		II	↑	↑		=	\downarrow	1		=	
9	↑	=	↑	↑	\uparrow	\downarrow	\downarrow	\uparrow		=	\downarrow	\downarrow		=	<u>↑</u>	\downarrow		=	
10	\downarrow	=	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow		=	↑	↑		=	$\underline{\downarrow}$	1		=	
11	=	↑	\downarrow	\downarrow	\downarrow	↑	\uparrow	\downarrow		=	↑	↑		=	$\underline{\downarrow}$	1		=	
12	=	\downarrow	1	1	↑	\downarrow	\downarrow	↑		=	\downarrow	\downarrow		=	<u>↑</u>	\downarrow		=	

Tabela 5.21B – Análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material no tamanho de grão e TEM, e as correções feitas nas variáveis manipuladas no caso da cadeira F6 para o aço C-Mn 3.

CD		Distúrbi	os	Var Med Resultado					nipula ções e		Conseqüências em TEM e d, após correções em g, τ1,τ2 e Vr								
	h1	Te	TEM	Р	h2	d	g	τ1	τ2	Vr			d						
				-			9				g	τ1	τ2	Vr	g	τ1	τ2	Vr	
1	↑	\downarrow	↑	↑	↑	\downarrow	\downarrow	\uparrow		=	\uparrow	=		=	=	\downarrow		=	
2	\downarrow	↑	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow		=	\downarrow	=		=	=	1		=	
3	↑	↑	↑	↑	↑	↑	\downarrow	↑		=	↑	=		=	=	\downarrow		=	
4	↑	↑	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow		=	\downarrow	=		=	=	↑		=	
5	\downarrow	\downarrow	↑	↑	↑	\downarrow	\downarrow	↑		=	↑	=		=	=	\downarrow		=	
6	\rightarrow	\rightarrow	\downarrow	\downarrow	\rightarrow	\rightarrow	\uparrow	\rightarrow		II	\downarrow	=		II	=	↑		=	
7	II	II	↑	↑		\rightarrow	\rightarrow	\leftarrow		II	↑	=		II	=	\downarrow		=	
8	=	II	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow		=	↑	=		=	=	↑		=	
9	←	=	↑	↑		\rightarrow	\rightarrow	\leftarrow		II	↑	=		II	=	\downarrow		=	
10	\downarrow	=	\downarrow	\downarrow	\downarrow	↑	\uparrow	\downarrow		=	↑	=		=	=	↑		=	
11	=	↑	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow		=	\downarrow	=		=	=	\downarrow		=	
12	=	\downarrow	1	1	↑	\downarrow	\downarrow	↑		=	↑	=		=	=	↑		=	

Nesta última cadeira, os efeitos dos distúrbios no tamanho de grão foram pouco significativos.

Nota-se na tabela (5.16A) que quando a carga de laminação aumenta devido somente ao aumento na TEM, acarretando um aumento na espessura de saída, condição

de distúrbio 7 (CD 7), caso queira-se reduzir o gap para recuperação da espessura, a carga, a TEM e o tamanho de grão irão aumentar ainda mais. Por outro lado, caso aumente a tensão à frente, a TEM poderá sofrer um ligeiro acréscimo, mas a carga de laminação, espessura de saída e o tamanho de grão da austenita irão reduzir. Evidentemente, que a correção pelo gap produz efeito mais significativo na espessura de saída, do que correção na tensão entre cadeiras.

Observa-se para outras cadeiras que correções feitas na tensão à frente e a ré produzem o mesmo efeito na espessura de saída, carga de laminação, TEM e tamanho de grão.

Nota-se também que uma diminuição na velocidade do cilindro de trabalho acarreta numa redução de espessura de saída, da TEM, da carga de laminação e aumento no tamanho de grão. Mas como já mostrado anteriormente, o seu efeito é pouco significativo.

Observa-se em todas as tabelas que correção pelo gap visando a mesma recuperação de espessura de saída produz efeito contrário na carga de laminação em relação às correções na tensão na tira entre cadeiras e velocidade do cilindro de trabalho. Este efeito contrário se mantém somente em relação a TEM e tamanho de grão com a tensão entre cadeiras no material.

Com isto, pode-se definir as prioridades e tolerâncias que se deseja obter com relação às propriedades mecânicas do material, no caso a TEM, microestrutura, no caso tamanho de grão e espessura de saída da tira e também como parâmetro operacional, a carga de laminação.

Uma maneira de minimizar a utilização de informações do modelo termomicroestrtural como dados de entrada, o ideal seria ter sensores de espessura e temperatura de entrada em cada cadeira de laminação além do sensor de medida de carga de laminação para a identificação de distúrbios.

Pode-se montar as tabelas (5.22A e B) como representativa para todas as cadeiras de laminação.

Tabela 5.22A – Resultado global da análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material na espessura de saída e carga de laminação, e as correções feitas nas variáveis manipuladas para todas as cadeiras.

CD		Distúrbios			Resultado				anipula ções e		Conseqüências em h2 e P, após correções em g, τ1,τ2 e Vr								
	h1	Te	TEM	Р	h2	d g τ1 τ2 Vr						h2		Р					
		. 0	. =			ŭ	9		12	•	g	τ1	τ2	Vr	g	τ1	τ2	Vr	
1	\uparrow	\downarrow	↑	↑	\uparrow	\downarrow	\downarrow	↑	\uparrow	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow	
2	\downarrow	1	↓	\downarrow	\downarrow	1	\uparrow	\downarrow	\downarrow	↑	↑	↑	1	↑	\rightarrow	↑	↑		
3	↑	↑	↑	↑	↑	↑	\downarrow	1	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow	
4	←	↑	\downarrow	\downarrow	\downarrow	↑	\uparrow	\downarrow	\downarrow		↑		\uparrow	↑	$\underline{\downarrow}$	↑	↑	\uparrow	
5	\downarrow	\downarrow	↑	↑	↑	\downarrow	\rightarrow	1	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u> </u>	\downarrow	\rightarrow	\rightarrow	
6	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	\downarrow		↑		\uparrow	↑	$\underline{\downarrow}$	↑	↑	\uparrow	
7		=	1	↑	↑	\downarrow	\downarrow	1	↑	\rightarrow	\downarrow	\rightarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\rightarrow	
8	=	=	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	↑	\uparrow	↑	\uparrow	\uparrow	$\underline{\downarrow}$	↑	↑	\uparrow	
9	↑	=	↑	↑	↑	↑	\downarrow	↑	\uparrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow	
10	\downarrow	=	\downarrow	\downarrow	\downarrow	\downarrow	1	\downarrow	\downarrow	↑	↑	↑	↑	↑	$\underline{\downarrow}$	↑	↑	↑	
11		1	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow		↑		↑	\uparrow	\downarrow	↑	↑	↑	
12	=	\downarrow	1	1	↑	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\downarrow	

Tabela 5.22B – Resultado global da análise qualitativa das conseqüências dos distúrbios de espessura e temperatura de entrada e TEM do material no tamanho de grão e TEM, e as correções feitas nas variáveis manipuladas para todas as cadeiras.

CD		Distúrbios			Var Med Resultado				anipula ções e		Conseqüências em TEM e d, após correções em g, τ1,τ2 e Vr								
	h1	Te	TEM	Р	H2	d	g	τ1	τ2	Vr	TEM						d		
	•••					3	9	C I	ı_	٧.	g	τ1	τ2	Vr	g	τ1	τ2	Vr	
1	←	\rightarrow	↑	↑	↑	\rightarrow	\downarrow	↑	↑	\rightarrow	↑	↑	\uparrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\uparrow	
2	\downarrow	↑	↓	\downarrow	\downarrow	↑	\uparrow	\downarrow	\downarrow	↑	\downarrow	\downarrow	\downarrow	↑	\rightarrow	↑	↑	\downarrow	
3	↑	↑	1	↑	1	↑	\downarrow	↑	↑	\downarrow	↑	1	1	\downarrow	<u>↑</u>	\downarrow	\downarrow	↑	
4	←	\uparrow	\downarrow	\downarrow	\downarrow		\uparrow	\downarrow	\downarrow		\downarrow	\downarrow	\downarrow	↑	$\underline{\downarrow}$	↑	↑	\downarrow	
5	\rightarrow	\rightarrow	↑	↑	↑	\rightarrow	\downarrow	1	↑	\rightarrow	↑	↑	↑	\downarrow	<u>↑</u>	\downarrow	\downarrow	↑	
6	\rightarrow	\rightarrow	\downarrow	\downarrow	\downarrow	\rightarrow	\uparrow	\downarrow	\downarrow		\downarrow	\downarrow	\downarrow	↑	$\underline{\downarrow}$	↑	↑	\downarrow	
7	II	ı	↑	↑	↑	\rightarrow	\downarrow	↑	↑	\rightarrow	↑	↑	\uparrow	\downarrow	<u>↑</u>	\downarrow	\downarrow	\uparrow	
8	II	ı	\downarrow	\downarrow	\downarrow		↑	\downarrow	\downarrow		\downarrow	\downarrow	\downarrow	↑	$\underline{\downarrow}$	↑	↑	\downarrow	
9		II	↑	↑	↑	\leftarrow	\downarrow	↑	↑	\rightarrow	↑	↑	↑	\downarrow	<u>↑</u>	\downarrow	\downarrow	\uparrow	
10	\rightarrow	II	\downarrow	\downarrow	\downarrow	\rightarrow	↑	\downarrow	\downarrow		\downarrow	\downarrow	\downarrow	↑	$\underline{\downarrow}$	↑	↑	\downarrow	
11	=	↑	\downarrow	\downarrow	\downarrow	↑	↑	\downarrow	\downarrow	↑	\downarrow	\downarrow	\downarrow	↑	<u>↑</u>	\downarrow	\downarrow	\downarrow	
12		\rightarrow	↑	↑	↑	\rightarrow	\downarrow	↑	↑	\rightarrow	↑	↑	\uparrow	\downarrow	$\underline{\downarrow}$	↑	↑	\uparrow	

Como na maioria das indústrias tem-se somente como variável medida, sem ajuda de modelos, a carga de laminação, pode-se fazer uma síntese de todas estas observações para utilizar somente como identificador de distúrbio a carga de laminação. Desta forma, podemos utilizar as tabelas (5.23A) e (5.23B) como representativa para o efeito dos

distúrbios em todas as cadeiras de laminação. Lembrando que possíveis correções pela velocidade do cilindro de trabalho têm efeito pouco significativo.

Tabela 5.23A – Resultado da análise qualitativa das conseqüências de alterações na carga de laminação, e as correções feitas nas variáveis manipuladas para acerto de espessura de saída e carga de laminação, na laminação a quente.

Var Med	F	Resultado)			nipula ções e		Conseqüências em h2 e P, após correções em g, τ1,τ2 e Vr								
Р	h2	TEM	d	а	g 71 72 Vr h2				h2					Р		
)		,		g	τ1	τ2	Vr	g	τ1	τ2	Vr	
↑	↑	↑	\rightarrow	\rightarrow	\leftarrow	\leftarrow	\downarrow	\rightarrow	\downarrow	\downarrow	\rightarrow	<u> </u>	\rightarrow	\downarrow	\downarrow	
\	\downarrow	\rightarrow	↑	↑	\downarrow	\downarrow	1	↑	↑	↑	↑	\leftarrow	↑	1	\uparrow	

Tabela 5.23B – Resultado da análise qualitativa das conseqüências de alterações na carga de laminação, e as correções feitas nas variáveis manipuladas para acerto de TEM e tamanho de grão, na laminação a quente.

Var Med	F	Resultado)			anipula ções e		Conseqüências em TEM e d, após correções em g, τ1,τ2 e Vr									
Р	h2	TEM	Ь	а	т1	τ2	Vr		TE	М		d					
			ŭ	9	•	02	•	g	τ1	τ2	Vr	g	τ1	τ2	Vr		
↑	↑	↑	\downarrow	\downarrow	\uparrow	↑	\downarrow	\uparrow	↑	\uparrow	\downarrow	$\overline{}$	\downarrow	\rightarrow	↑		
\downarrow	↓	\	↑	1	\downarrow	\	1	\	\	\	↑	$\overline{\downarrow}$	↑	↑	\downarrow		

Observa-se de imediato na tabela (5.23A) que um aumento na carga de laminação irá provocar um aumento na espessura de saída do material, na TEM e redução no tamanho de grão. Portanto haverá uma melhoria nas propriedades mecânicas, mas poderá haver perda dimensional. Caso se queira aumentar ainda mais a TEM do material, reduzir mais o tamanho de grão, aliviar a carga de laminação e, além disso, corrigir a espessura de saída deve-se aumentar à tensão a ré e/ou a tensão à frente no material.

Por outro lado caso deseja-se fazer recuperações mais significativas na espessura de saída do material com o intuito de reduzi-la, deve-se diminuir o gap e com isto aumentará ainda mais a carga de laminação e TEM e diminuirá o tamanho de grão.

Outro fator importante de observação é que o aumento na tensão a ré irá também reduzir a carga de laminação na cadeira anterior, que por sua vez irá reduzir a sua espessura de saída e tamanho de grão. A redução na espessura de saída da cadeira anterior irá reduzir a carga de laminação na cadeira seguinte que por sua vez irá reduzir a espessura e tamanho de grão (tabela (5.22A) CD 10). Desta forma, devem-se fazer as correções nas variáveis manipuladas de maneira a se ter o melhor produto dentro das dimensões desejadas e com as melhores propriedades mecânicas e microestrutura.

Como já foi observado que a não mais ocorrência de recristalização dinâmica num determinado passe acarreta num crescimento significativo do tamanho de grão na entrada do passe seguinte, pode-se então considerar que o fim da recristalização dinâmica provoca um distúrbio no crescimento de grão no sentido de aumentá-lo. Por outro lado, o surgimento da recristalização dinâmica irá provocar um distúrbio no tamanho de grão no sentido de diminuí-lo significativamente. Portanto, no caso em que o modelo detectar o fim da recristalização dinâmica, o tamanho de grão irá crescer significativamente e caso se queira refinar mais o grão para melhorar as propriedades mecânicas do aço e não mexer no gap, deve-se aumentar a tensão a frente e/ou a ré na tira entre a cadeira do passe seguinte. Neste caso a TEM e a carga de laminação irá reduzir. O aumento na velocidade do cilindro tende a diminuir também o tamanho de grão, mas ao contrario, irá provocar um ligeiro aumento na TEM e carga de laminação.

5.5 – SUGESTÕES PARA TRABALHOS FUTUROS

Desenvolver um modelo microestrutural e térmico da tira para a região da mesa de resfriamento, considerando aparecimento de diferentes fases.

Como as equações que calculam as tensões de escoamento média possuem validade somente na fase austenítica, sugiro que se desenvolva equações que façam correções ou substitua a equação da TEM para o caso de temperaturas mais baixas, como é o caso da última cadeira de laminação.

Desenvolver um modelo microestrutural e térmico do material, que envolva a saída do forno de reaquecimento, laminador desbastador, quebradores de carepa, *coil box*, até a chegada do material nos laminadores de acabamento.

Trabalhos de levantamento de dados junto das indústrias podem ajustar constantes mais adequadas nas equações da TEM que levem em consideração especificações de cada cadeira de laminação, porém, elas não poderão ser consideradas como equações gerais.

De posse destas bases de regras descritas no item 5.4, pode-se desenvolver algum tipo de programação visando controle do processo utilizando técnicas de controles não convencionais.

A figura (5.151) mostra um diagrama de blocos de um princípio de controle não convencional utilizando o modelo termomicroestrutural e que poderá servir de exemplo para trabalhos futuros.

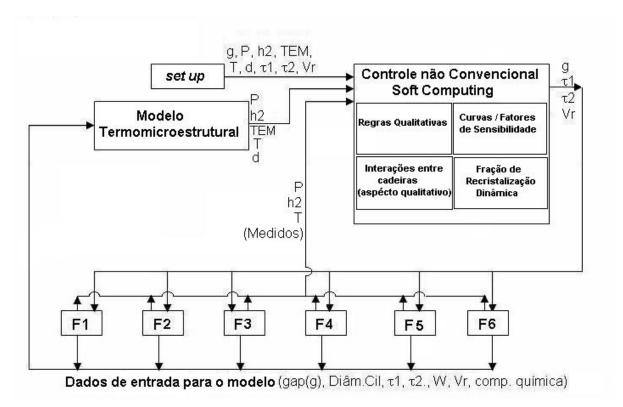


Figura 5.151 – Diagrama de blocos mostrando um tipo de controle não convencional na laminação de tiras a quente, utilizando o modelo termomicroestrutural.

6 - CONCLUSÕES

O modelo microestrutural apresentou boa concordância com os resultados de força de laminação quando comparados com os resultados fornecidos pela indústria. Portanto, O modelo microestrutural pode ser utilizado para obter a tensão de escoamento média do aço, e esta ser utilizada no cálculo da força de laminação.

O modelo ajustou melhor os resultados de força e de TEM quando se introduziu a mudança de equações quando a soma das deformações acumuladas nas duas primeiras cadeiras fosse maior ou igual a uma unidade a mudança se dava quando a deformação fosse num determinado passe menor do que 0,5. Caso a soma das deformações acumuladas fosse menor do que uma unidade, a mudança para a equação de Misaka ocorreria quando a deformação acumulada num determinado passe fosse menor do que 0,3.

O modelo termomicroestrutural pode ser usado para testar distúrbios operacionais como variação na temperatura de entrada do material na cadeira de laminação, na velocidade do cilindro de trabalho, na espessura de entrada e saída do material no passe, no gap entre cilindros de trabalho e na tensão aplicada no material entre passe com o objetivo de se obter melhores propriedades mecânicas e melhor domínio do processo.

O modelo térmico mostrou-se perfeitamente adequado para a laminação de tiras a quente. Desta forma, ele pode ser utilizado para predizer as temperaturas do aço durante a laminação de tiras a quente, e as mesmas podem ser utilizadas em outros modelos de simulação como modelos microestruturais, etc *on line* ou *off line*.

O modelo termomicroestrutural calcula a força de laminação, temperatura e espessura de saída do material para cada cadeira de laminação e também outras variáveis do processo, como fração de recristalização estática, dinâmica, tempo entre passes, velocidade de saída do material, deformação, taxa de deformação entre outras, sem haver a necessidade de se fornecer dados de força e de temperatura por parte da indústria.

Com o modelo termomicroestrutural é possível que se acompanhe *on line* para cada passe ou em simulações *off line*, as variações na microestrutura do aço como tamanho de grão da austenita e ferrita, o tipo de recristalização, se estática ou dinâmica, se está ocorrendo formação de precipitados e acumulo de deformações residuais, pois os dados de entrada do modelo são de fácil acesso na indústria.

Pode-se então estabelecer um controle automático para a força de laminação, baseado nas predições das propriedades mecânicas do aço, tais como: TEM, tamanho de grão da austenita, espessura de saída do material e carga de laminação em cada passe.

O modelo termomicroestrutural mostrou que um aumento no gap da cadeira anterior aumenta a TEM, a carga de laminação e a espessura de saída no passe seguinte e também um aumento na temperatura de laminação. O efeito no tamanho de grão foi pouco significativo, mas com tendência de crescimento.

O aumento no gap da cadeira anterior aumenta a temperatura de laminação em todas as cadeiras seguintes, sendo que o seu efeito reduz gradativamente para as cadeiras mais distantes.

O aumento no gap da cadeira anterior pode provocar aumento na recristalização dinâmica e metadinamica entre passes na cadeira seguinte, proporcionando assim uma redução na TEM nos passes seguintes.

O aumento no gap da própria cadeira reduz a TEM, a carga e a temperatura de laminação. Aumenta a espessura de saída no passe e reduz o tamanho de grão. Este aumento de espessura de saída ocasiona um aumento na carga de laminação na cadeira seguinte e que vai sendo gradativamente atenuado para as cadeiras posteriores.

O aumento na temperatura de entrada do material reduz significativamente a TEM e a carga de laminação e estes efeitos também são transferidos para as cadeiras de laminação seguintes. Ocorre também um aumento significativo no tamanho de grão do material, caso não ocorra recristalização dinâmica.

A redução na temperatura de entrada do material no passe pode interromper a fração de recristalização dinâmica e acarretar um aumento na TEM do material.

O acompanhamento do tamanho de grão da austenita ao longo das cadeiras de laminação mostrou ser um bom identificador para se determinar o fim da recristalização dinâmica, pois neste caso o seu tamanho de grão cresce significativamente para depois diminuir. Este acompanhamento no tamanho de grão também pode identificar a ocorrência de acúmulo de deformação residual pela mudança na inclinação da curva. Portanto, o fim ou surgimento de recristalização dinâmica e o acúmulo de deformação residual pode servir também de indicativo de distúrbio no tamanho de grão do material.

O aumento da tensão a ré no material provoca um aumento na TEM, queda na temperatura de laminação, tamanho de grão e espessura de saída. A queda na carga de laminação é mais significativa. O efeito da tensão a ré é pouco significativo nas cadeiras à frente, mas afeta a cadeira anterior como tensão a frente.

O aumento da tensão a frente do material produz os mesmos efeitos daqueles obtidos pela tensão a ré, mas lembrando que neste caso a mudança também introduzirá alterações no material laminado na cadeira seguinte. Nas demais cadeiras o seu efeito é pouco significativo.

O aumento na velocidade do cilindro de trabalho aumenta a TEM e a temperatura de laminação, mas foi pouco significativo. Também houve muito pouca influencia do tamanho de grão com a velocidade do cilindro de trabalho.

O aumento na velocidade do cilindro de trabalho influencia mais a temperatura de laminação na cadeira seguinte. Isto é devido ao fato de que com uma maior velocidade do material entre passe, menor é a perda térmica por radiação e por convecção (ar).

O aumento na velocidade do cilindro de trabalho aumenta a TEM, temperatura de laminação, espessura de saída do material e carga de laminação e diminui o tamanho de grão do material. Mas estas variações são pouco significativas. A influencia nas outras cadeiras de laminação foi pouco representativa.

Correção pelo gap visando a mesma recuperação de espessura de saída produz efeito contrário na carga de laminação em relação às correções na tensão na tira entre cadeiras e velocidade do cilindro de trabalho. Este efeito contrário se mantém somente em relação a TEM e tamanho de grão com a tensão entre cadeiras no material.

As bases de regras qualitativas obtidas servem de suporte para se desenvolver um tipo de programação visando controle do processo, utilizando técnicas de controles não convencionais.

Pode-se então definir as prioridades e tolerâncias que se deseja obter com relação às propriedades mecânicas do material, microestrutura e espessura de saída da tira e também como parâmetro operacional, a carga de laminação.

7 – REFERÊNCIAS BIBLIOGRÁFICAS

- 1 ROBERTS, L.W., Hot Rolling of Steel, Manufacturing Engineering and Materials Processing; 10, New York, 1983, 1033p.
- 2 KWON, O., A technogy for the prediction and control of microstructural changes and mechanical properties in steel, ISIJ International, 32(3), 1992, 350-358.
- 3 MISAKA, Y., YOSHIMOTO, Y. (1967-8). Formularization of mean resistance to deformation of plain carbon steels at elevated temperature, Journal of The Japan Soc. Tec. Plasticity, 8(79), 414-422.
- 4 MINAMI, K., SICILIANO, F., MACCAGNO, T.M.& JONAS, J.J., Mathematical modeling of the mean flow stress during the hot strip rolling of Nb steels, ISIJ International, 36(12), 1996, 1507-1515.
- 5 SICILIANO, F., MINAMI, K., MACCAGNO, T.M & JONAS, J.J., Mathematical modeling of the mean flow stress, fractional softening and grain size during the hot strip rolling of C-Mn steels, ISIJ International, 36(12), 1996, 1500-1506.
- 6 SICILIANO, F., JONAS, J.J., Mathematical modeling of hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels, Metallurgical and Materials Transactions A, 31A, 2000, 511-530.
- 7 SIMS, R.B., **The calculation of roll force and torque in hot rolling**, Proc. of the Institution of Mechanical Engineers, No.168, 1954, 191-200.
- 8 MACCAGNO, T.M., JONAS, J.J., YUE, S., MCCRADY, B.J., SLOBODIAN, R. and DEEKS, D., Determination of recrystallization stop temperature from rolling mill logs and comparison with laboratory simulation results, ISIJ International, 34(12), 1996, 917-922.
- 9 GINZBURG, V.B., Steel-rolling technology (New York: Manufacturing Engineering and Materials Processing; 30, 1989).
- 10 FORD, H. and ALEXANDER, J. M., Simplified hot rolling calculations, Journal of the Institute of Metals, Vol. 92, 1963-1964, 397-404.
- 11 OROWAN, E. and PASCOE, K.J., A Simple Method of Calculating Roll Pressure and Power Consumption in Flat Hot Rolling, Iron and Steel Institute(London), No.34, 1946, 124-126pp.
- 12 WUSATOWSKI, Z., **Fundamentals of Rolling**, Pergamon Press, Oxford, 1969, 203-386pp.
- 13 JONAS, J.J., **The hot strip mill as an experimental tool**, ISIJ International, 40(8), 2000, 731-738.
- 14 RONALDO, L.P., EIDER, A.S., OZIRIS, O.F., Laminação dos aços Tópicos avançados (São Paulo: ABM; 1984).

- 15 SEREDYNSKY, Prediction of Plate Cooling During Rolling Mill Operation, Journal of the Iron and Steel Institute, March 1973, 197-203pp.
- 16 ZYUZIN, V.I. et al., "investigation of Thermo-Technological Parameters of Laminar and Jet Systems of Cooling Sheet on 2000mm Continuous Wide Sheet Mill, British Iron and Steel Industry Translation Service BISI 10146, Stal, 1971, 1121-1131pp.
- 17 LEE, P.W., SIMS, R.B. and WRITE, H., A Method for Predicting Temperatures in Continuous Hot-Strip-Mills, Iron and Steel, December 19, 1962, 624-627pp.
- 18 AUM, P.M. et al., Hot-Strip-Mill Runout-Table Processing, Iron and Steel Engineer Year Book, 1967, 678-685pp.
- 19 STEVENS, P.G., IVENS, K.P. and HARPER, P., Increasing Work-Roll Life by Improved Roll-Cooling Practice, Journal of the Iron and Steel Institute Jan., 1971, 1-11pp.
- 20 CHIAVERINI, Vicente. Aços e Ferros Fundidos, Associação Brasileira de metais (ABM), 5ª edição, São Paulo, 1982, 518p.
- 21 SPEICH, G.R., et al., Proc. Phase Transformation in Ferrous Alloys (Philadelphia), TMS-AIME, Warrendale, 1984, 341p.
- 22 KASPAR, R. and PAWELSKI, O., Austenite Grain in the Process of Thermomechanical Treatment, Steel Research, Vol.57, No.5, 1986, 199-206pp.
- 23 TANAKA, T. et al., Formation Mechanism of Mixed Austenite Grain Struture Accompaying Controlled-Ralling of Niobium-Bearing Steel, Thermomechanical Processing of Microalloyed Austenite, Metallurgical Society of AIME, New York, 1981, 195-215pp.
- 24 GRANGE, R.A., Microstrutural Alterations in Iron and Steel During Hot Working, Fundamentals of Deformation Processing, Syracuse Univ. Press, Syracuse, New York, 1964, 299-320pp.
- 25 SICILIANO, F., **Mathematical modeling of the hot strip rolling of Nb microalloyed steels** (Montreal, Canada: Ph.D. Thesis, McGill University, 1999).
- 26 KARJALAINEM, L.P.and PERTTULA, J., Characteristics of static and metadynamic recrystallization and strain accumulation in hot-deformed austenite as revealed by the stress relaxation method, ISIJ International, 36(6), 1996, 729-736.
- 27 MACCAGNO, T.M., JONAS, J.J.and HODGSON, P.D., **Spreadsheet modeling of grain size evolution during rod rolling**, ISIJ International, 36(6), 1996, 720-728.
- 28 KARJALAINEM, MACCAGNO, T.M., JONAS, J.J., Softening and flow stress behaviour of Nb microalloyed steels during hot rolling simulation, ISIJ International, 35(12), 1995, 1523-1531.

- 29 CETLIN, P.R., YUE, S., JONAS, J.J.and MACCAGNO, T.M., Influence of strain rate on interpass softening during the simulated warm rolling of interstitial-free steels, Metallurgical Transactions A, 24A, 1993, 1503-1553.
- 30 BEYNON, J.H. and SELLARS, M., **Modelling microstructure and its effects during** multipass hot rolling, ISIJ International, 32(3), 1992, 359-367.
- 31 SIWECKI, T., Modelling of microstructure evolution during recrystallization controlled rolling, ISIJ International, 32(3), 1992, 368-376.
- 32 HODGSON, P.D. and GIBBS, R.K., A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels, ISIJ International, 32(12), 1992, 1329-1338.
- 33 SELLARS, C.M. The Physical Metallurgy of Hot Working, Hot Working and Forming Processes, The Metals Society, London, 1980, 3-15pp.
- 34 ROUCOULES, C. et. al. Proc. Int. Conf. On Modelling of Metal Rolling Processes, The Inst. Of Materials. London, UK, 1993, pg.165.
- 35 ROUCOULES, C., HODGSON, P.D., YUE, S. and JONAS, J.J., **Softening and microstructural change following the dynamic recrystallization of austenite**, Metallurgical and Materials transactions A, 25A, 1994, 389-400.
- 36 MEYER, L. et al., Columbium, Titanium, and Normalized, Thermo-Mechanical Treated and Cold-Rolled Steels, Microalloying '75, Union Carbide Corp., New York, 1977, 153-171pp.
- 37 KATSUMATA, M. et. al., Recrystallization of Austenite in High-Temperature Hot-Rolling of Niobium Bearing Steel, Thermomechanical Processing of Microalloyed Austenite, Metallurgical Society of AIME, New York, 1981, 101-119pp.
- 38 HODGSON, P.D. et. al. Gloss: Microalloying'95, ed. M. Korchynsky et al., ISS of AIME, Warrendale, PA USA, 1995, pg.341.
- 39 CHOQUET, P. et. al., **Mathematical Modelling of Hot Rolling of Steel**, CIM, Montreal, Canada, 1990, pg.34
- 40 YADA, H., Proc. Int. Symp. **On Accelerated Cooling of Rolled Steel**, Pergamon, 1988, pg.105.
- 41 ROBERTS, W. et. al. Werlefors: Int. Conf. Tech. Applications of HSLA steels, ASM, Philadelphia, PA, 1983, pg.67.
- 42 DUTTA, B. and SELLARS, C.M., Effect of composition and process variables on Nb(C,N) precipitation in niobium microalloyed austenite, Materials Science and Technology, 3, 1987, 197-206.
- 43 IRVINE, K.J., PICKERING, F.B. and GLADMAN, T., **Grain-refined C-Mn steels**, Journal of The Iron and Steel Institute, 1967, 161-182.

- 44 VALDES, E. and SELLARS, C.M., Influence of roughing rolling passes on kinetics of strain induced precipitation of Nb(C,N), Materials Science and Technology, 7, 1991, 622-630.
- 45 DEWSNAP, R.F. et al., AIME Conf. On Processing and Properties of Low-Carbon Steel, 369, Nov. 1973, Pittsburgh.
- 46 DILLAMORE, I.L. et al., **Metallurgical Aspects of Steel Rolling Technology**, Metals Technology, July-Aug. 1975, 294-302pp.
- 47 BORATTO, F. et. al., Thermec 88, Iron Steel Inst. Japan ISIJ, Tokyo, Japan, 1988, pg.383.
- 48 BAI, D.Q., Proc. Int. Conf. **On Modelling of Metal Rolling Processes**, The Inst. Of Materials, London, UK, 1993, pg.180.
- 49 AUZINGER, D. et. al., **Advanced process models for today's hot strip mills**, MPT International, Jun. 1995, 58-64pp.
- 50 SARMENTO, F.H. and EVANS, J.F., Proc. Int. Conf. On Processing, Microstruture and Properties of Microalloyed and Other High Strength Low Alloy Steels, Iron and Steel Soc. Of AIME, Warrendale, PA, USA, 1992, pg.105.
- 51 CHOQUET, P. et al., Fast: A New Model for Accurace Prediction of Rolling Force Application on the Solmer Hot Strip Mill, Deaville, France, June 1-3, 1987, B5.1-B5.8.
- 52 LICKA, S. et. al., Rolling Load Calculation in Hot Strip Rolling With Respect to Restoration Process, Proceeding of the International Conference on Steel Rolling, Tokyo, Japan, Sept. 29-Oct. 4, 1980, 840-851pp.
- 53 BIGLOU, J.A. et. al., 37th MWSP Conference, ISS, Warrendale, PA, USA, 1996, pg.661.
- 54 SIMS, R.B., **The Calculation of Roll Force and Torque in Hot Rolling Mills**, Proc. of the Institution of Mechanical Engineers, Vol. 166, 1954, 75-81pp.
- 55 COOK, P.M. and MCCRUM, A.W., **The Calculation of Load and Torque in Hot, Flat Rolling, British Iron and Steel Reserch Association, London, 1958.**
- 56 DUCKWORTH, W.E., **Thermomechanical Treatment of Metals**, Journal of Metals, Vol. 18, 1966.
- 57 -TANAKA, T., Controlled Rolling of Steel Plate and Strip, International Metals Reviews, No.4, 1981, 185-212pp.
- 58 CHABOUD, M. et. al., Improvements in Controlled Roling for High Strength and High Toughness Plates, Proc. Int. Conf. On Steel Rolling, Vol.II, ISIJ, 1980, 980-991pp.
- 59 SHIGA, C. et. ali., Development of Large-Diameter High-Strength Line Pipes for Low-Temperature Service, Kawasaki Steel Technical Report, n.4, December, 1981, 97-109pp.

- 60 MACDONALD, J. K. and TOWERS, A. A., **Optimization of Controlled-Rolling**Practice Through Predictive Force Modelling, Ibid, 921-932pp.
- 61 SAITO, Y. et. al., Advanced Controlled Rolling Techniques for Manufacture of High-Dtrength, High-Toughness Steel Plates at 5500 mm Plate Mill, Ibid, 1063-1074pp.
- 62 MELLOY, G.F. and DENNISON, J.D., Continuum Rolling A Unique Thermomechanical Treatment for Plain-Carbon and Low-Alloy Steels, The Microstruture and Design of Alloys, Vol.1, Institute of Metals and Iron and Steel Institute, Cambridge, 1973, 60-64pp.
- 63 PICKERING, F.B., **High-Strenghth, Low-Alloy Steels A Decade of Progress**, Microalloying'75, Union Carbide Corp., New York, 1977, 9-31pp.
- 64 BAIRD, J.D. and PRETON, R.R., Processing and Properties of Low-Carbon Steel, Mechanical Working of Steel I, Metallurgical Society of AIME, New York, 1973, 1-46pp.
- 65 COHEN, M. and OWEN, W.S., Thermo-Mechanical Processing of Microalloyed Steels, Microalloying 75, Union Carbide Corp., New York, 1977, 2-8pp.
- 66 GROZIER, J.D., **Production of Microalloyed Strip and Plate by Controlled Cooling**, Microalloying '75, Union Carbide Corp., New York, 1977, 241-250pp.
- 67 RADCLIFFE, S.V. and Kula, E.B., Deformation, Transformation, and Strength, Fundamentals of Deformation Processing, Syracuse University Press, Syracuse, 1964, 321-363pp.
- 68 TERASAKI, F. et. al., Research and Development on Large-Diameter Line Pipe for Arctic Usage, Sumitomo Search, n. 33, Nov. 1986, 72-85pp.
- 69 IMBERT, C.A.C. and MCQUEEN, H.J. **Dynamic recrystallization of A2 and M2 tool steels**, Materials Science and Engineering A313, 2001, 104-116.
- 70 SELLARS, C.M., **Modelling microstructural development during hot rolling**, Materials Science and Technology, 6, 1990, 1072-1081.
- 71 FAGUNDES Jr., et. al., Otimização do modelo matemático do trem acabador de tirasa quente da USIMINAS, ABM XXXIV Seminário de Laminação Processos e Produtos Laminados e Revestidos, Belo Horizonte-MG, 1997, 551-566.
- 72 HELMAN, H., Fundamentos da Laminação de Produtos Planos, ABM-FCO, São Paulo-SP, 1988.
- 73 ALTAN, T., Conformação de metais: fundamentos e aplicações, EESC/USP, São Carlos-SP, 1999.
- 74 DENTI, J.F°., **Um Método de Controle Dinâmico de Laminadores Reversíveis**, Tese de Doutorado, PPGEM-EEUFMG, Belo Horizonte-MG, 1994.

ANEXO A - DISTÚRBIOS NA PRIMEIRA CADEIRA DE LAMINAÇÃO - F1

A1 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA ESPESSURA DE ENTRADA DO MATERIAL NA PRIMEIRA CADEIRA DE LAMINAÇÃO.

Tabela A1.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material na cadeira F1.

h1	26,88	27,48	28,08	28,68	29,27	29,87	30,47	31,06	31,66	32,26	32,86
ТЕМ, Мра	150,102	151,2	152,239	153,224	154,159	155,048	155,895	156,702	157,473	158,21	158,92
TG, μm	21,606	21,705	21,803	21,902	21,999	22,096	22,192	22,287	22,382	22,476	22,568
T, oC	966,321	966,812	967,299	967,781	968,258	968,731	969,198	969,659	970,115	970,565	971,01
h2, mm	16,774	16,874	16,972	17,068	17,162	17,255	17,346	17,436	17,524	17,611	17,696
P, ton.	1396,15	1445,66	1494,24	1541,94	1588,79	1634,82	1680,04	1724,49	1768,19	1811,16	1853,4

Tabela A1.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na espessura de entrada na cadeira F1, para o aço carbono manganês 3.

				Tens	ão de Es	scoamen	to Média,	MPa			
	h1-10%	h1-8%	h1-6%	h1-4%	h1-2%	h1	h1+2%	h1+4%	h1+6%	h1+8%	h1+10%
F1	150,102	151,2	152,239	153,224	154,159	155,048	155,895	156,702	157,473	158,21	158,915
F2	173,736	173,465	173,18	172,534	172,258	171,969	171,67	171,36	171,041	170,713	170,686
F3	207,382	206,14	205,507	205,208	205,204	204,566	203,939	203,322	202,121	201,498	200,588
F4	227,648	228,137	227,595	227,153	225,588	225,106	224,294	224,401	224,262	223,745	223,153
F5	246,192	245,113	244,45	244,422	244,126	243,462	239,801	238,937	238,572	237,402	236,977
F6	219,37	217,922	219,721	219,285	218,26	217,91	223,957	223,315	221,479	221,622	221,251

Tabela A1.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na espessura de entrada na cadeira F1, para o aço carbono manganês 3.

				Tan	nanho de	e Grão d	a Austen	ita, μm			
	h1-10%	h1-8%	h1-6%	h1-4%	h1-2%	h1	h1+2%	h1+4%	h1+6%	h1+8%	h1+10%
F1	21,606	21,705	21,803	21,902	21,999	22,096	22,192	22,287	22,382	22,476	22,568
F2	18,232	18,35	18,465	18,611	18,721	18,83	18,938	19,043	19,148	19,25	19,318
F3	23,826	24,041	24,218	24,393	24,521	24,685	16,753	16,847	16,968	17,06	17,148
F4	18,733	18,851	20,317	20,617	20,822	21,048	22,912	23,027	23,189	23,348	23,478
F5	18,141	18,313	17,095	17,198	17,309	17,439	17,283	17,412	17,571	17,732	17,821
F6	13,316	13,495	12,698	12,777	12,882	12,968	12,839	12,924	13,024	13,106	13,168

Tabela A1.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na espessura de entrada na cadeira F1, para o aço carbono manganês 3.

				Te	mperatu	ra de Lar	ninação,	оС			
	h1-10%	h1-8%	h1-6%	h1-4%	h1-2%	h1	h1+2%	h1+4%	h1+6%	h1+8%	h1+10%
F1	966,321	966,812	967,299	967,781	968,258	968,731	969,198	969,659	970,115	970,565	971,009
F2	940,154	941,411	942,65	943,748	944,957	946,146	947,316	948,466	949,597	950,709	951,921
F3	928,305	929,483	930,805	932,019	933,482	934,739	935,972	937,183	938,195	939,353	940,573
F4	914,336	915,62	916,858	918,163	919,343	920,507	921,639	922,908	923,841	924,894	925,835
F5	906,81	908,173	909,286	910,719	911,539	912,561	913,425	914,554	915,557	916,303	917,042
F6	890,868	891,907	892,919	894,368	895,053	895,935	896,681	897,51	898,305	898,885	899,488

Tabela A1.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na espessura de entrada na cadeira F1, para o aço carbono manganês 3.

					Espess	sura de s	Saída, mi	m			
	h1-10%	h1-8%	h1-6%	h1-4%	h1-2%	h1	h1+2%	h1+4%	h1+6%	h1+8%	h1+10%
F1	16,774	16,874	16,972	17,068	17,162	17,255	17,346	17,436	17,524	17,611	17,696
F2	10,438	10,458	10,476	10,525	10,54	10,554	10,568	10,582	10,595	10,607	10,588
F3	7,39	7,416	7,418	7,43	7,405	7,405	7,404	7,403	7,427	7,427	7,414
F4	5,37	5,363	5,361	5,364	5,366	5,364	5,359	5,342	5,348	5,346	5,341
F5	3,957	3,951	3,948	3,936	3,936	3,933	3,92	3,912	3,913	3,921	3,918
F6	3,398	3,4	3,402	3,39	3,395	3,393	3,383	3,379	3,391	3,394	3,392

Tabela A1.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na espessura de entrada na cadeira F1, para o aço carbono manganês 3.

					Força	de Lami	nação, to	n.			
	h1-10%	h1-8%	h1-6%	h1-4%	h1-2%	h1	h1+2%	h1+4%	h1+6%	h1+8%	h1+10%
F1	1396,154	1445,66	1494,24	1541,94	1588,79	1634,82	1680,037	1724,487	1768,187	1811,161	1853,432
F2	1583,949	1592,87	1601,43	1600,13	1608,74	1616,99	1624,897	1632,476	1639,74	1646,704	1662,483
F3	1365,799	1354,26	1354,5	1361,88	1374,4	1374,01	1373,659	1373,341	1360,736	1359,869	1352,433
F4	1129,009	1143,81	1142,06	1143,14	1124,34	1122,73	1119,983	1126,805	1131,714	1129,478	1124,173
F5	1049,829	1044,3	1041,92	1048,8	1048,6	1045,4	1032,047	1023,88	1024,54	1014,124	1011,075
F6	619,177	609,818	611,993	609,814	604,003	602,376	621,05	616,643	600,135	603,885	601,801

A2 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NO GAP NA PRIMEIRA CADEIRA DE LAMINAÇÃO.

Tabela A2.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap na cadeira F1.

gap	12,568	12,847	13,126	13,405	13,685	13,964	14,243	14,523	14,802	15,081	15,36
TEM, Mpa	159,311	158,477	157,634	156,782	155,92	155,048	154,167	153,277	152,377	151,467	150,55
TG, μm	22,303	22,258	22,215	22,174	22,134	22,096	22,059	22,025	21,991	21,959	21,929
T, oC	970,422	970,068	969,721	969,383	969,053	968,731	968,417	968,11	967,812	967,521	967,24
h2, mm	16,218	16,424	16,63	16,838	17,046	17,255	17,465	17,676	17,887	18,099	18,312
P, ton.	1806,95	1772	1737,31	1702,89	1668,72	1634,82	1601,17	1567,79	1534,68	1501,81	1469,2

Tabela A2.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações no gap na cadeira F1, para o aço carbono manganês 3.

				Tens	são de E	scoame	nto Média	a, MPa			
	gap1-10%	gap1-8%	gap1-6%	gap1-4%	gap1-2%	gap1	gap1+2%	gap1+4%	gap1+6%	gap1+8%	gap1+10%
F1	159,311	158,477	157,634	156,782	155,92	155,048	154,167	153,277	152,377	151,467	150,548
F2	168,874	169,498	170,121	170,741	171,357	171,969	172,576	173,177	173,771	174,358	174,937
F3	205,23	204,485	204,391	204,886	204,732	204,566	204,39	203,603	203,385	203,147	203,513
F4	226,512	226,741	226,575	226,042	225,249	225,106	224,614	224,803	225,236	225,01	224,339
F5	244,847	244,397	244,616	244,054	243,971	243,462	240	239,796	239,118	238,072	237,643
F6	217,821	218,058	216,317	216,01	218,131	217,91	223,984	223,298	221,499	221,661	221,301

Tabela A2.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações no gap na cadeira F1, para o aço carbono manganês 3.

				Tam	anho de	Grão d	la Austen	ita, μm			
	gap1-10%	gap1-8%	gap1-6%	gap1-4%	gap1-2%	gap1	gap1+2%	gap1+4%	gap1+6%	gap1+8%	gap1+10%
F1	22,303	22,258	22,215	22,174	22,134	22,096	22,059	22,025	21,991	21,959	21,929
F2	18,649	18,684	18,72	18,756	18,793	18,83	18,868	18,907	18,946	18,986	19,026
F3	24,156	24,3	24,406	24,474	24,58	24,685	16,715	16,803	16,862	16,922	16,949
F4	18,937	19,059	19,184	19,312	20,835	21,048	22,88	23,015	23,094	23,227	23,36
F5	18,251	18,411	18,506	18,595	17,33	17,439	17,272	17,424	17,548	17,71	17,798
F6	13,474	13,531	13,687	13,749	12,898	12,968	12,831	12,931	13,007	13,086	13,148

Tabela A2.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações no gap na cadeira F1, para o aço carbono manganês 3.

_											
				Τe	emperatu	ıra de La	aminação	, oC			
	gap1-10%	gap1-8%	gap1-6%	gap1-4%	gap1-2%	gap1	gap1+2%	gap1+4%	gap1+6%	gap1+8%	gap1+10%
F1	970,422	970,068	969,721	969,383	969,053	968,731	968,417	968,11	967,812	967,521	967,239
F2	945,893	945,929	945,973	946,024	946,081	946,146	946,218	946,296	946,381	946,473	946,572
F3	931,706	932,128	932,735	933,516	934,125	934,739	935,357	935,8	936,418	937,035	937,846
F4	916,675	917,319	918,118	919,066	919,706	920,507	921,301	921,943	922,896	923,679	924,623
F5	908,414	909,3	910,312	911,078	911,74	912,561	913,246	914,116	915,094	915,71	916,449
F6	891,795	892,797	893,723	894,356	895,168	895,935	896,588	897,495	898,078	898,598	899,2

Tabela A2.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações no gap da cadeira F1, para o aço carbono manganês 3.

					Espessi	ıra de	Saída, mr	m			
	gap1-10%	gap1-8%	gap1-6%	gap1-4%	gap1-2%	gap1	gap1+2%	gap1+4%	gap1+6%	gap1+8%	gap1+10%
F1	16,218	16,424	16,63	16,838	17,046	17,255	17,465	17,676	17,887	18,099	18,312
F2	10,283	10,338	10,392	10,446	10,5	10,554	10,608	10,662	10,716	10,769	10,822
F3	7,324	7,366	7,382	7,373	7,389	7,405	7,42	7,46	7,475	7,491	7,479
F4	5,329	5,343	5,347	5,342	5,36	5,364	5,365	5,377	5,367	5,37	5,364
F5	3,939	3,942	3,931	3,928	3,934	3,933	3,922	3,925	3,92	3,931	3,927
F6	3,395	3,39	3,39	3,388	3,394	3,393	3,384	3,384	3,394	3,399	3,396

Tabela A2.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações no gap da cadeira F1, para o aço carbono manganês 3.

					Força d	e Lamir	nação, tor	٦.			
	gap1-10%	gap1-8%	gap1-6%	gap1-4%	gap1-2%	gap1	gap1+2%	gap1+4%	gap1+6%	gap1+8%	gap1+10%
F1	1806,954	1772	1737,31	1702,89	1668,72	1634,82	1601,17	1567,786	1534,676	1501,813	1469,206
F2	1484,232	1510,89	1537,51	1564,06	1590,56	1616,99	1643,341	1669,606	1695,771	1721,848	1747,82
F3	1329,412	1325,99	1335,36	1356,69	1365,37	1374,01	1382,61	1378,72	1386,653	1394,31	1415,001
F4	1115,676	1126,34	1129,39	1125,25	1119,47	1122,73	1124,795	1134,887	1146,924	1149,519	1143,942
F5	1033,146	1035,96	1044,2	1040,84	1046,05	1045,4	1034,655	1037,634	1031,943	1023,382	1020,288
F6	604,718	610,154	598,311	596,621	602,779	602,376	622,165	622,405	603,128	608,079	605,993

A3 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TEMPERATURA DE ENTRADA DO MATERIAL NA PRIMEIRA CADEIRA DE LAMINAÇÃO.

Tabela A3.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F1.

7	Γe, ⁰ C	868,86	888,17	907,48	926,78	946,09	965,4	984,71	1004,02	1023,32	1042,6	1061,9
TE	М, Мра	188,019	180,527	173,541	166,77	160,725	155,048	149,71	144,685	139,951	135,49	131,39
Т	G, μm	27,805	23,557	17,229	18,784	20,394	22,096	23,893	25,786	27,777	29,869	32,045
-	T, oC	876,325	894,784	913,259	931,68	950,201	968,731	987,269	1005,82	1024,37	1042,9	1061,5
h	2, mm	17,777	17,658	17,545	17,471	17,36	17,255	17,156	17,063	16,975	16,891	16,787
F	P, ton.	1921,83	1858,51	1798,82	1736	1684,22	1634,82	1587,7	1542,79	1499,96	1459,1	1423,7

Tabela A3.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F1, para o aço carbono manganês 3.

				Tens	são de E	scoamer	nto Média	, MPa			
	Te1-10%	Te1-8%	Te1-6%	Te1-4%	Te1-2%	Te1	Te1+2%	Te1+4%	Te1+6%	Te1+8%	Te1+10%
F1	188,019	180,527	173,541	166,767	160,725	155,048	149,71	144,685	139,951	135,485	131,393
F2	229,387	214,235	191,035	184,465	178,508	171,969	166,4	160,366	154,951	149,872	144,538
F3	246,167	237,624	226,017	220,981	210,927	204,566	197,126	190,541	183,722	176,591	170,691
F4	250,472	244,519	244,82	235,718	231,832	225,106	219,288	213,375	207,016	201,61	196,595
F5	273,764	267,094	261,963	255,948	248,477	243,462	234,81	229,804	224,699	220,157	215,967
F6	238,647	235,529	229,947	225,424	221,546	217,91	218,588	214,121	209,457	204,772	199,405

Tabela A3.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F1, para o aço carbono manganês 3.

				Tam	anho de	Grão d	a Austen	ita, μm			
	Te1-10%	Te1-8%	Te1-6%	Te1-4%	Te1-2%	Te1	Te1+2%	Te1+4%	Te1+6%	Te1+8%	Te1+10%
F1	27,805	23,557	17,229	18,784	20,394	22,096	23,893	25,786	27,777	29,869	32,045
F2	13,271	14,219	15,215	16,369	17,535	18,83	20,114	21,527	22,956	24,425	26,009
F3	18,808	19,883	20,214	21,896	23,204	24,685	17,66	18,702	19,779	20,915	22,065
F4	13,405	14,39	15,299	16,701	18,042	21,048	24,255	25,933	27,689	29,44	31,214
F5	14,469	15,13	15,766	16,652	17,754	17,439	18,279	19,55	20,881	22,26	23,693
F6	10,561	11,014	11,576	12,237	12,983	12,968	13,522	14,392	15,318	16,295	17,375

Tabela A3.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F1, para o aço carbono manganês 3.

				Т	emperat	ura de L	aminação	o, oC			
	Te1-10%	Te1-8%	Te1-6%	Te1-4%	Te1-2%	Te1	Te1+2%	Te1+4%	Te1+6%	Te1+8%	Te1+10%
F1	876,325	894,784	913,259	931,68	950,201	968,731	987,269	1005,82	1024,372	1042,937	1061,541
F2	868,351	883,98	898,757	914,511	930,475	946,146	962,081	977,765	993,598	1009,48	1025,166
F3	873,611	885,811	894,18	908,586	921,312	934,739	948,253	961,602	975,021	988,324	1001,625
F4	872,044	881,191	886,938	898,889	909,331	920,507	931,678	942,903	953,844	964,749	976,017
F5	871,415	878,439	885,151	894,08	903,192	912,561	921,547	930,888	939,749	948,854	958,395
F6	861,908	867,378	873,374	880,445	888,065	895,935	903,056	910,98	918,396	926,098	934,093

Tabela A3.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F1, para o aço carbono manganês 3.

					Espess	ura de :	Saída, mr	m			
Te1-10% Te1-8% Te1-6% Te1-4% Te1-2% Te1 Te1+2% Te1+4% Te1+6% Te1+8%										Te1+10%	
F1	17,777	17,658	17,545	17,471	17,36	17,255	17,156	17,063	16,975	16,891	16,787
F2	11,428	11,161	10,876	10,775	10,628	10,554	10,419	10,354	10,252	10,135	10,073
F3	7,611	7,506	7,686	7,482	7,49	7,405	7,306	7,234	7,15	7,082	7,014
F4	5,543	5,483	5,52	5,436	5,402	5,364	5,29	5,243	5,204	5,161	5,105
F5	4,086	4,059	4,041	3,996	3,974	3,933	3,883	3,853	3,836	3,809	3,769
F6	3,45	3,434	3,441	3,415	3,4	3,393	3,374	3,349	3,34	3,322	3,297

Tabela A3.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F1, para o aço carbono manganês 3.

					Força	de Lamir	nação, to	n.			
	Te1-10%	Te1-8%	Te1-6%	Te1-4%	Te1-2%	Te1	Te1+2%	Te1+4%	Te1+6%	Te1+8%	Te1+10%
F1	1921,83	1858,51	1798,82	1736,01	1684,22	1634,82	1587,7	1542,79	1499,957	1459,113	1423,685
F2	2046,32	1950,14	1777,69	1724,63	1680,98	1616,99	1575,5	1516,09	1470,378	1430,771	1376,044
F3	1894,91	1783,63	1518,71	1536,5	1409,97	1374,01	1317,74	1277,87	1230,108	1171,969	1135,941
F4	1265,94	1218,23	1271,86	1180,34	1175,28	1122,73	1084,71	1045,59	997,108	961,352	932,577
F5	1200,88	1152,36	1155,49	1108,75	1067,55	1045,4	994,555	963,721	930,791	903,107	877,652
F6	745,361	726,78	686,783	657,628	640,359	602,376	582,013	564,444	545,149	525,455	499,055

A4 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TENSÃO A FRENTE APLICADA AO MATERIAL NA PRIMEIRA CADEIRA DE LAMINAÇÃO.

Tabela A4.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a frente do material na cadeira F1.

τ2, MPa	0	0,918	1,836	2,754	3,672	4,59	5,508	6,426	7,344	8,262	9,18
TEM, Mpa	154,875	154,909	154,944	154,979	155,013	155,048	155,083	155,118	155,153	155,187	155,22
TG, μm	22,125	22,119	22,113	22,108	22,102	22,096	22,09	22,084	22,078	22,072	22,067
T, oC	968,856	968,831	968,806	968,781	968,756	968,731	968,705	968,68	968,655	968,63	968,60
h2, mm	17,282	17,277	17,271	17,266	17,26	17,255	17,25	17,244	17,239	17,233	17,228
P, ton.	1648,27	1645,58	1642,89	1640,2	1637,51	1634,82	1632,12	1629,4	1626,73	1624,03	1621,3

Tabela A4.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F1, para o aço carbono manganês 3.

				Tens	ão de Es	coament	to Média,	MPa			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	154,875	154,909	154,944	154,979	155,013	155,048	155,083	155,118	155,153	155,187	155,222
F2	171,711	171,762	171,814	171,866	171,917	171,969	172,021	172,073	172,125	172,177	172,229
F3	203,859	204,484	204,505	204,525	204,546	204,566	204,587	204,608	204,015	204,027	204,039
F4	225,282	224,64	224,996	225,033	225,069	225,106	225,143	225,179	225,58	225,621	225,664
F5	243,107	240,096	243,206	243,291	243,376	243,462	243,547	243,633	243,787	243,874	243,961
F6	218,339	224,171	218,449	218,499	217,869	217,91	217,951	217,992	218,029	218,07	218,111

Tabela A4.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F1, para o aço carbono manganês 3.

				Tan	nanho de	Grão d	a Austeni	ita, μm			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	22,125	22,119	22,113	22,108	22,102	22,096	22,09	22,084	22,078	22,072	22,067
F2	18,882	18,872	18,862	18,851	18,841	18,83	18,82	18,809	18,799	18,788	18,778
F3	24,821	16,702	24,743	24,724	24,705	24,685	24,666	24,647	24,667	24,648	24,629
F4	21,245	22,835	21,148	21,115	21,081	21,048	21,014	20,98	20,98	20,947	20,914
F5	17,544	17,229	17,493	17,475	17,457	17,439	17,421	17,403	17,401	17,383	17,365
F6	13,01	12,802	12,976	12,964	12,98	12,968	12,957	12,945	12,942	12,93	12,919

Tabela A4.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F1, para o aço C-Mn 3.

				Te	mperatu	ra de Lar	ninação,	оС			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	968,856	968,831	968,806	968,781	968,756	968,731	968,705	968,68	968,655	968,63	968,604
F2	946,563	946,48	946,397	946,313	946,23	946,146	946,062	945,979	945,895	945,811	945,727
F3	935,195	935,244	935,118	934,992	934,865	934,739	934,612	934,485	934,182	934,052	933,923
F4	921,054	921,062	920,929	920,788	920,648	920,507	920,366	920,225	919,927	919,784	919,64
F5	913,296	912,976	912,972	912,835	912,698	912,561	912,424	912,287	912,2	912,064	911,927
F6	896,776	896,324	896,391	896,267	896,06	895,935	895,81	895,685	895,699	895,576	895,452

Tabela A4.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na tensão a ferente do material da cadeira F1, para o aço C-Mn 3.

					Espess	ura de S	Saída, mr	n			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	17,282	17,277	17,271	17,266	17,26	17,255	17,25	17,244	17,239	17,233	17,228
F2	10,582	10,577	10,571	10,566	10,56	10,554	10,549	10,543	10,538	10,532	10,527
F3	7,438	7,412	7,41	7,408	7,407	7,405	7,403	7,401	7,424	7,423	7,421
F4	5,374	5,363	5,365	5,364	5,364	5,364	5,363	5,363	5,372	5,372	5,372
F5	3,936	3,922	3,933	3,933	3,933	3,933	3,934	3,934	3,937	3,937	3,937
F6	3,388	3,384	3,387	3,387	3,393	3,393	3,393	3,393	3,394	3,395	3,395

Tabela A4.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na tensão a frente do material da cadeira F1, para o aço C-Mn 3.

					Força de	e Lamina	ção, ton.				
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	1648,273	1645,584	1642,893	1640,2	1637,508	1634,815	1632,12	1629,424	1626,728	1624,03	1621,332
F2	1630,507	1627,804	1625,102	1622,397	1619,694	1616,99	1614,286	1611,582	1608,876	1606,171	1603,466
F3	1365,729	1377,242	1376,432	1375,625	1374,818	1374,013	1373,208	1372,404	1359,163	1358,187	1357,209
F4	1131,324	1122,965	1123,633	1123,331	1123,029	1122,725	1122,421	1122,115	1128,963	1128,755	1128,548
F5	1047,421	1034,362	1044,787	1044,993	1045,198	1045,404	1045,609	1045,816	1049,094	1049,345	1049,596
F6	608,063	622,309	607,175	607,356	602,258	602,376	602,493	602,609	604,001	604,137	604,27

A5 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA VELOCIDADE DO CILINDRO DE TRABALHO NA PRIMEIRA CADEIRA DE LAMINAÇÃO.

Tabela A5.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro de trabalho na cadeira F1.

,	Vr, m/s	1,51	1,55	1,58	1,61	1,65	1,68	1,71	1,75	1,78	1,81	1,85
TI	ЕМ, Мра	153,367	153,716	154,058	154,394	154,724	155,048	155,367	155,681	155,99	156,294	156,59
-	TG, μm	22,161	22,149	22,136	22,123	22,11	22,096	22,082	22,068	22,053	22,039	22,024
	T, oC	967,869	968,052	968,23	968,402	968,569	968,731	968,888	969,041	969,19	969,335	969,48
ı	h2, mm	17,224	17,23	17,237	17,243	17,249	17,255	17,261	17,267	17,272	17,278	17,284
	P, ton.	1620,07	1623,13	1626,13	1629,08	1631,97	1634,82	1637,61	1640,35	1643,05	1645,71	1648,3

Tabela A5.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F1, para o aço carbono manganês 3.

				Tens	ão de Es	coament	to Média.	MPa			
	Vr1-10%	Vr1-8%	Vr1-6%	Vr1-4%	Vr1-2%	Vr1	Vr1+2%	Vr1+4%	Vr1+6%	Vr1+8%	Vr1+10%
F1	153,367	153,716	154,058	154,394	154,724	155,048	155,367	155,681	155,99	156,294	156,594
F2	173,11	172,865	172,628	172,401	172,181	171,969	171,764	171,566	171,375	171,189	171,01
F3	205,701	205,952	204,972	205,233	204,282	204,566	203,625	203,34	203,621	202,73	202,467
F4	227,576	226,88	226,947	225,633	225,728	225,106	225,225	224,969	224,049	224,516	224,282
F5	244,635	244,247	243,998	244,059	243,824	243,462	243,248	242,971	239,612	241,744	241,508
F6	219,458	219,254	218,379	218,241	218,069	217,91	218,405	218,226	223,853	218,544	218,366

Tabela A5.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F1, para o aço carbono manganês 3.

				Tan	nanho de	Grão d	a Austeni	ita, μm			
	Vr1-10%	Vr1-8%	Vr1-6%	Vr1-4%	Vr1-2%	Vr1	Vr1+2%	Vr1+4%	Vr1+6%	Vr1+8%	Vr1+10%
F1	22,161	22,149	22,136	22,123	22,11	22,096	22,082	22,068	22,053	22,039	22,024
F2	18,522	18,587	18,651	18,712	18,772	18,83	18,887	18,941	18,995	19,047	19,097
F3	24,32	24,367	24,489	24,531	24,649	24,685	24,8	24,87	16,789	25,009	25,074
F4	20,583	20,655	20,786	20,862	20,989	21,048	21,17	21,255	22,956	21,421	21,499
F5	17,167	17,213	17,289	17,327	17,399	17,439	17,509	17,56	17,31	17,715	17,762
F6	12,753	12,787	12,866	12,892	12,94	12,968	12,987	13,023	12,857	13,091	13,125

Tabela A5.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F1, para o aço C-Mn 3.

				Te	mperatu	ra de Lar	ninação,	оС			
	Vr1-10%	Vr1-8%	Vr1-6%	Vr1-4%	Vr1-2%	Vr1	Vr1+2%	Vr1+4%	Vr1+6%	Vr1+8%	Vr1+10%
F1	967,869	968,052	968,23	968,402	968,569	968,731	968,888	969,041	969,19	969,335	969,476
F2	942,43	943,224	943,991	944,732	945,451	946,146	946,82	947,475	948,109	948,726	949,325
F3	931,24	932,129	932,636	933,474	933,94	934,739	935,162	935,754	936,49	936,867	937,41
F4	917,686	918,445	918,87	919,425	919,817	920,507	920,863	921,37	921,996	922,324	922,788
F5	910,429	910,875	911,41	911,661	912,169	912,561	913,044	913,459	913,678	914,077	914,462
F6	894,178	894,457	894,918	895,184	895,704	895,935	896,518	896,858	896,869	897,294	897,612

Tabela A5.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F1, para o aço C-Mn 3.

					Espess	ura de S	Saída, mr	n			
	Vr1-10%	Vr1-8%	Vr1-6%	Vr1-4%	Vr1-2%	Vr1	Vr1+2%	Vr1+4%	Vr1+6%	Vr1+8%	Vr1+10%
F1	17,224	17,23	17,237	17,243	17,249	17,255	17,261	17,267	17,272	17,278	17,284
F2	10,565	10,563	10,56	10,558	10,556	10,554	10,553	10,551	10,549	10,548	10,546
F3	7,447	7,418	7,44	7,412	7,433	7,405	7,427	7,423	7,396	7,418	7,415
F4	5,37	5,359	5,366	5,369	5,375	5,364	5,371	5,368	5,355	5,364	5,362
F5	3,938	3,934	3,935	3,937	3,938	3,933	3,935	3,933	3,918	3,941	3,939
F6	3,391	3,389	3,395	3,395	3,395	3,393	3,388	3,387	3,382	3,39	3,39

Tabela A5.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F1, para o aço C-Mn 3.

					Força de	e Lamina	ção, ton.				
	Vr1-10%	Vr1-8%	Vr1-6%	Vr1-4%	Vr1-2%	Vr1	Vr1+2%	Vr1+4%	Vr1+6%	Vr1+8%	Vr1+10%
F1	1620,07	1623,13	1626,13	1629,08	1631,97	1634,82	1637,61	1640,35	1643,05	1645,71	1648,317
F2	1621,15	1620,24	1619,37	1618,54	1617,75	1616,99	1616,27	1615,58	1614,91	1614,28	1613,675
F3	1370,81	1381,41	1367,01	1377,5	1363,31	1374,01	1359,69	1358,54	1368,82	1355,05	1353,989
F4	1148,82	1139,25	1144,49	1126,08	1131,51	1122,73	1128,43	1126,62	1117,25	1123,92	1122,273
F5	1051,63	1046,77	1047,94	1049,03	1050,25	1045,4	1046,81	1045,04	1030,26	1033,56	1032,151
F6	611,298	608,904	603,89	604,188	604,543	602,376	607,943	606,869	620,161	610,636	609,541

ANEXO B - DISTÚRBIOS NA SEGUNDA CADEIRA DE LAMINAÇÃO - F2

B1 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NO GAP EM F1 E SUA INFLUÊNCIA EM F2.

Tabela B1.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap na cadeira F1 e sua influência em F2.

gap1, mm	12,568	12,847	13,126	13,405	13,685	13,964	14,243	14,523	14,802	15,081	15,36
ТЕМ, Мра	168,874	169,498	170,121	170,741	171,357	171,969	172,576	173,177	173,771	174,358	174,94
TG, μm	18,649	18,684	18,72	18,756	18,793	18,83	18,868	18,907	18,946	18,986	19,026
T, oC	945,893	945,929	945,973	946,024	946,081	946,146	946,218	946,296	946,381	946,473	946,57
h2, mm	10,283	10,338	10,392	10,446	10,5	10,554	10,608	10,662	10,716	10,769	10,822
P, ton.	1484,23	1510,89	1537,51	1564,06	1590,56	1616,99	1643,34	1669,61	1695,77	1721,85	1747,8

OBS: Resultados das tensões de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída e força de laminação, obtidos pelo modelo termomicroestrutural para aço C-Mn 3, devido a variações provocadas no gap na cadeira F1 e sua influência em todas as cadeiras de laminação estão mostradas nas tabelas A2.2, A2.3, A2.4, A2.5 e A2.6, respectivamente.

B2 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NO GAP NA SEGUNDA CADEIRA DE LAMINAÇÃO.

Tabela B2.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap na cadeira F2.

gap2, mm	6,565	6,71	6,856	7,002	7,148	7,294	7,44	7,586	7,732	7,878	8,023
ТЕМ, Мра	175,096	174,862	174,216	173,568	172,576	171,969	171,35	170,721	170,393	169,702	169,01
TG, μm	19,062	18,976	18,932	18,888	18,878	18,83	18,784	18,74	18,668	18,631	18,594
T, oC	947,849	947,643	947,282	946,93	946,462	946,146	945,835	945,528	945,33	945,017	944,71
h2, mm	10,1	10,157	10,249	10,342	10,466	10,554	10,644	10,733	10,795	10,89	10,984
P, ton.	1755,82	1738,69	1709,86	1681,33	1643,53	1616,99	1590,47	1564	1546,01	1518,48	1491,2

Tabela B2.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações no gap na cadeira F2, para o aço carbono manganês 3.

				Tens	são de E	scoame	nto Média	a, MPa			
	gap2-10%	gap2-8%	gap2-6%	gap2-4%	gap2-2%	gap2	gap2+2%	gap2+4%	gap2+6%	gap2+8%	gap2+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	175,096	174,862	174,216	173,568	172,576	171,969	171,35	170,721	170,393	169,702	169,005
F3	199,133	200,345	200,784	202,355	203,039	204,566	204,852	206,372	206,369	207,899	208,146
F4	223,889	223,738	224,421	224,399	225,183	225,106	225,754	225,284	225,828	225,66	226,285
F5	245,131	244,869	244,564	244,184	243,825	243,462	243,244	240,198	240,283	240,056	240,125
F6	216,52	216,423	216,174	215,989	217,96	217,91	218,478	223,566	222,604	222,245	221,579

Tabela B2.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações no gap na cadeira F2, para o aço carbono manganês 3.

				Tam	anho de	Grão c	la Austen	ita, μm			
	gap2-10%	gap2-8%	gap2-6%	gap2-4%	gap2-2%	gap2	gap2+2%	gap2+4%	gap2+6%	gap2+8%	gap2+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	19,062	18,976	18,932	18,888	18,878	18,83	18,784	18,74	18,668	18,631	18,594
F3	24,598	24,585	24,644	24,632	24,699	24,685	24,753	16,674	16,713	16,692	16,735
F4	19,245	19,297	19,379	19,455	20,893	21,048	21,263	22,919	22,98	23,069	23,152
F5	18,372	18,402	18,537	18,608	17,375	17,439	17,536	17,358	17,461	17,542	17,678
F6	13,614	13,634	13,711	13,755	12,93	12,968	13,001	12,886	12,927	12,982	13,074

Tabela B2.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações no gap na cadeira F2, para o aço carbono manganês 3.

				Te	emperatu	ıra de La	aminação	, oC			
	gap2-10%	gap2-8%	gap2-6%	gap2-4%	gap2-2%	gap2	gap2+2%	gap2+4%	gap2+6%	gap2+8%	gap2+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	947,849	947,643	947,282	946,93	946,462	946,146	945,835	945,528	945,33	945,017	944,712
F3	935,681	935,717	935,313	935,243	934,756	934,739	934,372	934,377	934,095	934,104	933,746
F4	918,806	919,149	919,323	919,775	920,033	920,507	920,672	921,161	921,245	921,769	921,95
F5	909,89	910,186	910,796	911,293	912,073	912,561	913,16	913,538	913,99	914,53	915,163
F6	893,035	893,284	894,034	894,508	895,48	895,935	896,757	897,051	897,548	898,049	898,835

Tabela B2.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações no gap da cadeira F2, para o aço carbono manganês 3.

					Espessi	ıra de	Saída, mi	m			
	gap2-10%	gap2-8%	gap2-6%	gap2-4%	gap2-2%	gap2	gap2+2%	gap2+4%	gap2+6%	gap2+8%	gap2+10%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,1	10,157	10,249	10,342	10,466	10,554	10,644	10,733	10,795	10,89	10,984
F3	7,249	7,248	7,309	7,322	7,395	7,405	7,465	7,475	7,524	7,535	7,598
F4	5,312	5,311	5,332	5,336	5,361	5,364	5,384	5,384	5,401	5,403	5,425
F5	3,922	3,921	3,927	3,927	3,934	3,933	3,939	3,929	3,934	3,934	3,941
F6	3,386	3,386	3,387	3,387	3,393	3,393	3,389	3,386	3,395	3,394	3,396

Tabela B2.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações no gap da cadeira F2, para o aço carbono manganês 3.

					Força d	e Lamir	ação, tor	٦.			
	gap2-10%	gap2-8%	gap2-6%	gap2-4%	gap2-2%	gap2	gap2+2%	gap2+4%	gap2+6%	gap2+8%	gap2+10%
F1	1634,815	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815	1634,815	1634,815	1634,815	1634,815
F2	1755,821	1738,69	1709,86	1681,33	1643,53	1616,99	1590,474	1563,998	1546,005	1518,48	1491,199
F3	1262,44	1286,4	1295,45	1327,48	1342,34	1374,01	1380,691	1412,788	1413,356	1446,28	1453,069
F4	1081,212	1080,59	1097,35	1100,51	1120,62	1122,73	1139,231	1140,022	1153,603	1155,678	1172,568
F5	1034,959	1033,76	1039,37	1039,25	1045,91	1045,4	1051,081	1041,173	1046,628	1046,432	1053,032
F6	594,866	594,293	596,308	596,063	602,515	602,376	609,83	624,255	615,35	614,641	616,269

B3 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TEMPERATURA DE ENTRADA DO MATERIAL NA SEGUNDA CADEIRA DE LAMINAÇÃO.

Tabela B3.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F2.

Te, ⁰ C	846,67	865,49	884,3	903,12	921,93	940,75	959,56	978,38	997,19	1016	1034,8
TEM, Mpa	207,504	199,896	192,341	184,83	178,563	171,969	166,491	160,918	155,436	150,59	146,24
TG, μm	17,651	13,418	14,65	15,989	17,34	18,83	20,328	21,947	23,674	25,445	27,268
T, oC	855,655	873,926	892,027	909,97	928,189	946,146	964,367	982,43	1000,41	1018,5	1036,7
h2, mm	11,024	10,887	10,787	10,728	10,608	10,554	10,438	10,366	10,321	10,245	10,146
P, ton.	1847,05	1809,19	1761,34	1703,7	1669,44	1616,99	1586,91	1546,19	1500,36	1465,9	1439,6

Tabela B3.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F2, para o aço carbono manganês 3.

				Tens	são de E	scoamer	nto Média	, MPa			
	Te2-10%	Te2-8%	Te2-6%	Te2-4%	Te2-2%	Te2	Te2+2%	Te2+4%	Te2+6%	Te2+8%	Te2+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	207,504	199,896	192,341	184,83	178,563	171,969	166,491	160,918	155,436	150,59	146,238
F3	254,59	244,05	236,966	225,567	211,969	204,566	195,374	187,357	179,715	172,331	164,613
F4	258,84	249,929	240,236	236,395	232,38	225,106	218,646	211,652	204,924	197,913	191,007
F5	280,772	275,708	268,136	257,765	249,999	243,462	233,327	227,595	222,617	217,191	211,772
F6	249,06	240,65	233,873	228,18	223,362	217,91	218,692	212,19	206,289	200,936	196,38

Tabela B3.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F2, para o aço carbono manganês 3.

				Tam	anho de	Grão d	a Austen	ita, μm			
	Te2-10%	Te2-8%	Te2-6%	Te2-4%	Te2-2%	Te2	Te2+2%	Te2+4%	Te2+6%	Te2+8%	Te2+10%
F1	17,628	18,467	19,334	20,227	21,147	22,096	23,072	24,078	25,112	26,175	27,268
F2	17,651	13,418	14,65	15,989	17,34	18,83	20,328	21,947	23,674	25,445	27,268
F3	15,654	18,452	20,324	21,633	22,837	24,685	17,872	19,105	20,392	21,698	23,077
F4	11,847	12,923	14,342	16,04	17,816	21,048	24,572	26,552	28,614	30,722	32,959
F5	12,855	14,155	15,095	16,192	17,552	17,439	18,598	20,105	21,704	23,339	25,123
F6	9,356	10,35	11,097	11,893	12,776	12,968	13,692	14,768	15,91	17,088	18,328

Tabela B3.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F2, para o aço carbono manganês 3.

				Т	emperat	ura de La	aminação	o, oC			
	Te2-10%	Te2-8%	Te2-6%	Te2-4%	Te2-2%	Te2	Te2+2%	Te2+4%	Te2+6%	Te2+8%	Te2+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	855,655	873,926	892,027	909,968	928,189	946,146	964,367	982,43	1000,412	1018,517	1036,7
F3	858,715	874,101	890,719	904,958	918,89	934,739	950,394	966,092	981,715	997,5	1013,149
F4	857,108	869,635	883,755	895,77	906,971	920,507	933,617	946,788	960,01	973,116	985,894
F5	857,284	867,966	879,155	890,195	901,208	912,561	923,236	934,19	945,401	956,107	966,536
F6	849,514	858,298	867,209	876,486	886,664	895,935	904,615	913,759	923,345	932,268	941,109

Tabela B3.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F2, para o aço carbono manganês 3.

					Espess	ura de	Saída, mr	m			
	Te2-10%	Te2-8%	Te2-6%	Te2-4%	Te2-2%	Te2	Te2+2%	Te2+4%	Te2+6%	Te2+8%	Te2+10%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	11,024	10,887	10,787	10,728	10,608	10,554	10,438	10,366	10,321	10,245	10,146
F3	7,522	7,472	7,278	7,355	7,509	7,405	7,326	7,238	7,162	7,053	6,96
F4	5,553	5,497	5,393	5,382	5,428	5,364	5,294	5,237	5,184	5,121	5,076
F5	4,125	4,091	4,02	3,997	3,987	3,933	3,892	3,856	3,813	3,777	3,757
F6	3,466	3,455	3,416	3,414	3,402	3,393	3,371	3,352	3,32	3,298	3,283

Tabela B3.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F2, para o aço carbono manganês 3.

					Força	de Lamir	nação, to	n.			
	Te2-10%	Te2-8%	Te2-6%	Te2-4%	Te2-2%	Te2	Te2+2%	Te2+4%	Te2+6%	Te2+8%	Te2+10%
F1	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815	1634,815	1634,815
F2	1847,05	1809,19	1761,34	1703,69	1669,44	1616,99	1586,91	1546,19	1500,355	1465,9	1439,591
F3	1869,46	1759,89	1759,46	1612,17	1404,97	1374,01	1304,29	1257,35	1215,769	1177,194	1125,621
F4	1272,8	1229,04	1146	1159,44	1174,86	1122,73	1086,74	1039,56	997,018	946,328	895,537
F5	1217,91	1183,7	1133,28	1090,57	1080,06	1045,4	984,853	949,696	922,701	886,625	851,693
F6	803,559	752,17	705,005	668,109	654,088	602,376	589,774	558,64	533,132	508,131	491,591

B4 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TENSÃO A RÉ APLICADA AO MATERIAL NA SEGUNDA CADEIRA DE LAMINAÇÃO.

Tabela B4.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a ré do material na cadeira F1.

τ	1, MPa	0	8,694	17,388	26,082	34,776	43,47	52,164	60,858	69,552	78,246	86,94
TI	ЕМ, Мра	171,711	171,762	171,814	171,866	171,917	171,969	172,021	172,073	172,125	172,177	172,23
_	ΓG, μm	18,882	18,872	18,862	18,851	18,841	18,83	18,82	18,809	18,799	18,788	18,778
	T, oC	946,563	946,48	946,397	946,313	946,23	946,146	946,062	945,979	945,895	945,811	945,73
ŀ	n2, mm	10,582	10,577	10,571	10,566	10,56	10,554	10,549	10,543	10,538	10,532	10,527
	P, ton.	1630,51	1627,80	1625,10	1622,40	1619,69	1616,99	1614,29	1611,58	1608,88	1606,17	1603,5

OBS: Resultados das tensões de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída e força de laminação, obtidos pelo modelo termomicroestrutural para aço C-Mn 3, devido a variações provocadas na tensão a ré na cadeira F2 e sua influência em todas as cadeiras de laminação estão mostradas nas tabelas A4.2, A4.3, A4.4, A4.5 e A4.6, respectivamente. Pois a tensão a ré em F2 é a tensão a frente de F1.

B5 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TENSÃO A FRENTE APLICADA AO MATERIAL NA SEGUNDA CADEIRA DE LAMINAÇÃO.

Tabela B5.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a frente do material na cadeira F2.

τ2, MPa	0	1,078	2,156	3,234	4,312	5,39	6,468	7,546	8,624	9,702	10,78
ТЕМ, Мра	171,694	171,749	171,804	171,859	171,914	171,969	172,024	172,079	172,135	172,19	172,25
TG, μm	18,856	18,851	18,846	18,841	18,835	18,83	18,825	18,82	18,815	18,809	18,804
T, oC	946,268	946,244	946,219	946,195	946,171	946,146	946,122	946,097	946,073	946,048	946,02
h2, mm	10,581	10,576	10,57	10,565	10,56	10,554	10,549	10,544	10,539	10,533	10,528
P, ton.	1629,59	1627,07	1624,56	1622,04	1619,51	1616,99	1614,46	1611,94	1609,41	1606,87	1604,3

Tabela B5.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F2, para o aço carbono manganês 3.

				Tens	ão de Es	coamen	to Média,	MPa			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,694	171,749	171,804	171,859	171,914	171,969	172,024	172,079	172,135	172,19	172,245
F3	204,302	203,73	203,793	203,855	203,917	204,566	204,607	204,044	204,107	204,169	204,232
F4	225,115	225,483	225,476	225,468	225,461	225,106	225,111	225,476	225,468	225,461	225,454
F5	242,992	243,159	243,25	243,342	243,434	243,462	243,559	243,722	243,817	243,913	244,009
F6	218,367	218,402	218,45	218,498	217,868	217,91	217,944	217,975	218,01	218,043	218,076

Tabela B5.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F2, para o aço carbono manganês 3.

				Tan	nanho de	Grão d	a Austeni	ita, μm			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,856	18,851	18,846	18,841	18,835	18,83	18,825	18,82	18,815	18,809	18,804
F3	24,761	24,787	24,771	24,755	24,739	24,685	24,671	24,696	24,68	24,664	24,648
F4	21,269	21,256	21,212	21,168	21,123	21,048	21,003	20,992	20,947	20,901	20,855
F5	17,546	17,541	17,519	17,497	17,476	17,439	17,417	17,412	17,39	17,368	17,347
F6	13,011	13,006	12,992	12,977	12,991	12,968	12,955	12,951	12,937	12,923	12,909

Tabela B5.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F2, para o aço C-Mn 3.

				Te	mperatu	ra de Lar	ninação,	оС			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,268	946,244	946,219	946,195	946,171	946,146	946,122	946,097	946,073	946,048	946,023
F3	935,153	934,889	934,809	934,729	934,649	934,739	934,652	934,391	934,31	934,229	934,148
F4	921,193	920,894	920,76	920,626	920,491	920,507	920,366	920,071	919,935	919,8	919,664
F5	913,348	913,241	913,084	912,926	912,768	912,561	912,404	912,299	912,14	911,981	911,822
F6	896,783	896,771	896,617	896,462	896,225	895,935	895,784	895,77	895,614	895,457	895,3

Tabela B5.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na tensão a ferente do material da cadeira F2, para o aço C-Mn 3.

					Espess	ura de S	Saída, mr	n			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,581	10,576	10,57	10,565	10,56	10,554	10,549	10,544	10,539	10,533	10,528
F3	7,429	7,45	7,445	7,439	7,434	7,405	7,4	7,421	7,415	7,41	7,405
F4	5,371	5,379	5,377	5,376	5,374	5,364	5,362	5,37	5,369	5,367	5,366
F5	3,934	3,937	3,937	3,937	3,936	3,933	3,933	3,936	3,936	3,936	3,936
F6	3,387	3,388	3,388	3,388	3,394	3,393	3,393	3,394	3,394	3,394	3,394

Tabela B5.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na tensão a frente do material da cadeira F2, para o aço C-Mn 3.

					Força de	e Lamina	ção, ton.				
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815
F2	1629,59	1627,074	1624,556	1622,036	1619,514	1616,99	1614,464	1611,937	1609,406	1606,874	1604,341
F3	1387,273	1371,891	1369,449	1367,002	1364,546	1374,013	1371,116	1355,959	1353,513	1351,06	1348,601
F4	1128,587	1134,713	1133,428	1132,145	1130,866	1122,725	1121,69	1127,724	1126,434	1125,147	1123,864
F5	1045,94	1048,966	1048,807	1048,651	1048,498	1045,404	1045,36	1048,349	1048,199	1048,051	1047,907
F6	607,485	608,816	608,844	608,872	603,642	602,376	602,372	603,626	603,574	603,524	603,471

B6 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA VELOCIDADE DO CILINDRO DE TRABALHO NA SEGUNDA CADEIRA DE LAMINAÇÃO.

Tabela B6.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro de trabalho na cadeira F2.

Vr, m/s	2,7	2,76	2,82	2,88	2,94	3	3,06	3,12	3,18	3,24	3,3
ТЕМ, Мра	170,287	170,636	170,978	171,314	171,644	171,969	172,288	172,602	172,911	173,215	173,51
TG, μm	18,9	18,886	18,873	18,859	18,845	18,83	18,816	18,801	18,787	18,772	18,757
T, oC	945,29	945,472	945,649	945,82	945,985	946,146	946,302	946,453	946,601	946,744	946,88
h2, mm	10,529	10,534	10,539	10,545	10,55	10,554	10,559	10,564	10,569	10,573	10,578
P, ton.	1605,85	1608,17	1610,44	1612,67	1614,85	1616,99	1619,09	1621,15	1623,18	1625,17	1627,1

Tabela B6.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F2, para o aço carbono manganês 3.

				Tens	ão de Es	coament	to Média,	MPa			
	Vr2-10%	Vr2-8%	Vr2-6%	Vr2-4%	Vr2-2%	Vr2	Vr2+2%	Vr2+4%	Vr2+6%	Vr2+8%	Vr2+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	170,287	170,636	170,978	171,314	171,644	171,969	172,288	172,602	172,911	173,215	173,514
F3	204,994	205,389	205,155	204,34	204,156	204,566	204,366	203,585	203,426	203,87	203,697
F4	227,413	226,75	226,487	226,594	225,691	225,106	224,895	225,04	224,508	224,527	224,309
F5	244,009	244,329	243,997	243,736	243,842	243,462	243,161	242,938	239,745	239,035	238,823
F6	220,182	219,288	218,405	218,219	218,075	217,91	218,405	218,209	223,583	223,4	223,164

Tabela B6.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F2, para o aço carbono manganês 3.

				Tan	nanho de	Grão d	a Austen	ita, μm			
	Vr2-10%	Vr2-8%	Vr2-6%	Vr2-4%	Vr2-2%	Vr2	Vr2+2%	Vr2+4%	Vr2+6%	Vr2+8%	Vr2+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,9	18,886	18,873	18,859	18,845	18,83	18,816	18,801	18,787	18,772	18,757
F3	24,297	24,349	24,439	24,563	24,644	24,685	24,764	24,878	16,817	16,829	16,869
F4	20,508	20,595	20,712	20,855	20,974	21,048	21,151	21,283	22,976	22,997	23,069
F5	17,188	17,186	17,254	17,335	17,393	17,439	17,499	17,573	17,364	17,39	17,448
F6	12,731	12,77	12,845	12,898	12,936	12,968	12,981	13,031	12,892	12,909	12,948

Tabela B6.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F2, para o aço C-Mn 3.

				Te	mperatu	ra de Lar	ninação,	оС			
	Vr2-10%	Vr2-8%	Vr2-6%	Vr2-4%	Vr2-2%	Vr2	Vr2+2%	Vr2+4%	Vr2+6%	Vr2+8%	Vr2+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	945,29	945,472	945,649	945,82	945,985	946,146	946,302	946,453	946,601	946,744	946,883
F3	931,382	932,24	932,892	933,351	933,97	934,739	935,311	935,695	936,241	936,944	937,451
F4	917,584	918,363	918,961	919,391	919,801	920,507	921,038	921,402	921,901	922,702	923,169
F5	910,019	910,699	911,229	911,794	912,126	912,561	913,033	913,54	913,853	914,386	914,801
F6	893,685	894,255	894,634	895,217	895,654	895,935	896,425	896,954	897,153	897,37	897,734

Tabela B6.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F2, para o aço C-Mn 3.

					Espess	ura de S	Saída, mr	n			
	Vr2-10%	Vr2-8%	Vr2-6%	Vr2-4%	Vr2-2%	Vr2	Vr2+2%	Vr2+4%	Vr2+6%	Vr2+8%	Vr2+10%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,529	10,534	10,539	10,545	10,55	10,554	10,559	10,564	10,569	10,573	10,578
F3	7,43	7,405	7,405	7,43	7,429	7,405	7,406	7,43	7,43	7,405	7,406
F4	5,364	5,354	5,354	5,361	5,374	5,364	5,363	5,37	5,367	5,343	5,342
F5	3,947	3,933	3,932	3,933	3,938	3,933	3,932	3,934	3,922	3,913	3,912
F6	3,396	3,389	3,393	3,393	3,395	3,393	3,387	3,387	3,384	3,379	3,379

Tabela B6.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F2, para o aço C-Mn 3.

					Força de	e Lamina	ção, ton.				
	Vr2-10%	Vr2-8%	Vr2-6%	Vr2-4%	Vr2-2%	Vr2	Vr2+2%	Vr2+4%	Vr2+6%	Vr2+8%	Vr2+10%
F1	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815
F2	1605,85	1608,17	1610,44	1612,67	1614,85	1616,99	1619,09	1621,15	1623,18	1625,17	1627,12
F3	1361,67	1374,17	1373,78	1361,45	1361,77	1374,01	1373,75	1361,52	1361,86	1374,37	1374,189
F4	1144,12	1135,53	1134,6	1140,77	1130,51	1122,73	1122,17	1128,54	1126,74	1127,69	1126,935
F5	1041,5	1045,62	1044,2	1045,7	1049,92	1045,4	1044,04	1045,68	1034,39	1024,51	1023,565
F6	616,608	608,494	602,331	602,799	604,402	602,376	606,784	607,095	621,476	617,027	616,293

ANEXO C - DISTÚRBIOS NA TERCEIRA CADEIRA DE LAMINAÇÃO - F3

C1 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NO GAP EM F2 E SUA INFLUÊNCIA EM F3.

Tabela C1.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap na cadeira F2 e sua influência em F3.

gap2, mm	6,565	6,71	6,856	7,002	7,148	7,294	7,44	7,586	7,732	7,878	8,023
ТЕМ, Мра	199,133	200,345	200,784	202,355	203,039	204,566	204,852	206,372	206,369	207,899	208,15
TG, μm	24,598	24,585	24,644	24,632	24,699	24,685	24,753	16,674	16,713	16,692	16,735
T, oC	935,681	935,717	935,313	935,243	934,756	934,739	934,372	934,377	934,095	934,104	933,75
h2, mm	7,249	7,248	7,309	7,322	7,395	7,405	7,465	7,475	7,524	7,535	7,598
P, ton.	1262,44	1286,4	1295,45	1327,48	1342,34	1374,01	1380,69	1412,79	1413,36	1446,28	1453,1

OBS: Resultados das tensões de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída e força de laminação, obtidos pelo modelo termomicroestrutural para aço C-Mn 3, devido a variações provocadas no gap na cadeira F2 e sua influência em todas as cadeiras de laminação estão mostradas nas tabelas B2.2, B2.3, B2.4, B2.5 e B2.6, respectivamente.

C2 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NO GAP NA TERCEIRA CADEIRA DE LAMINAÇÃO.

Tabela C2.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap na cadeira F3.

gap3, mm	4,4469	4,5457	4,6445	4,7434	4,8422	4,941	5,0398	5,1386	5,2375	5,3363	5,4351
ТЕМ, Мра	208,115	207,306	206,488	206,28	204,799	204,566	203,669	202,777	201,886	200,394	200,02
TG, μm	16,918	16,87	16,823	16,745	16,732	24,685	24,594	24,501	24,407	24,347	24,221
T, oC	936,298	935,937	935,584	935,427	934,892	934,739	934,399	934,071	933,753	933,291	933,13
h2, mm	7,179	7,229	7,279	7,303	7,38	7,405	7,457	7,508	7,559	7,633	7,662
P, ton.	1494,48	1467,64	1440,97	1427,39	1387,66	1374,01	1347,08	1320,64	1294,59	1257,39	1242,1

Tabela C2.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações no gap na cadeira F3, para o aço carbono manganês 3.

				Tens	são de E	scoame	nto Média	a, MPa			
	gap3-10%	gap3-8%	gap3-6%	gap3-4%	gap3-2%	gap3	gap3+2%	gap3+4%	gap3+6%	gap3+8%	gap3+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	208,115	207,306	206,488	206,28	204,799	204,566	203,669	202,777	201,886	200,394	200,02
F4	221,626	222,522	223,398	223,185	224,419	225,106	225,838	226,548	227,907	228,934	229,32
F5	238,848	239,107	239,362	239,813	240,233	243,462	243,441	243,428	243	243,056	243,008
F6	226,52	226,205	225,881	225,816	225,326	217,91	218,733	218,838	218,836	218,828	218,879

Tabela C2.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações no gap na cadeira F3, para o aço carbono manganês 3.

				Tam	anho de	Grão d	la Austen	ita, μm			
	gap3-10%	gap3-8%	gap3-6%	gap3-4%	gap3-2%	gap3	gap3+2%	gap3+4%	gap3+6%	gap3+8%	gap3+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83
F3	16,918	16,87	16,823	16,745	16,732	24,685	24,594	24,501	24,407	24,347	24,221
F4	22,597	22,618	22,638	22,703	22,725	21,048	21,184	21,312	21,411	21,548	21,631
F5	16,85	16,915	16,98	17,018	17,115	17,439	17,473	17,51	17,553	17,612	17,637
F6	12,55	12,588	12,628	12,653	12,713	12,968	12,957	12,976	13,004	13,041	13,056

Tabela C2.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações no gap na cadeira F3, para o aço carbono manganês 3.

				Te	emperatu	ıra de La	aminação	, oC			
	gap3-10%	gap3-8%	gap3-6%	gap3-4%	gap3-2%	gap3	gap3+2%	gap3+4%	gap3+6%	gap3+8%	gap3+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	936,298	935,937	935,584	935,427	934,892	934,739	934,399	934,071	933,753	933,291	933,127
F4	921,933	921,629	921,337	921,069	920,611	920,507	920,232	919,973	919,901	919,554	919,451
F5	911,926	912,055	912,195	912,135	912,33	912,561	912,708	912,865	913,208	913,463	913,589
F6	894,424	894,734	895,052	895,244	895,723	895,935	896,336	896,659	896,983	897,471	897,682

Tabela C2.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações no gap da cadeira F3, para o aço carbono manganês 3.

					Espessi	ura de	Saída, mi	m			
gap3-10% gap3-8% gap3-6% gap3-4% gap3-2% gap3 gap3+2% gap3+4% gap3+6% gap3+8% g										gap3+10%	
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,179	7,229	7,279	7,303	7,38	7,405	7,457	7,508	7,559	7,633	7,662
F4	5,264	5,283	5,301	5,324	5,352	5,364	5,383	5,401	5,405	5,431	5,441
F5	3,888	3,894	3,901	3,909	3,919	3,933	3,939	3,945	3,944	3,952	3,955
F6	3,369	3,371	3,373	3,376	3,379	3,393	3,39	3,392	3,392	3,395	3,397

Tabela C2.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações no gap da cadeira F3, para o aço carbono manganês 3.

					Força d	e Lamin	ação, tor	٦.			
	gap3-10%	gap3-8%	gap3-6%	gap3-4%	gap3-2%	gap3	gap3+2%	gap3+4%	gap3+6%	gap3+8%	gap3+10%
F1	1634,815	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815	1634,815	1634,815	1634,815	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1494,481	1467,64	1440,97	1427,39	1387,66	1374,01	1347,082	1320,638	1294,594	1257,39	1242,081
F4	1062,938	1078,29	1093,59	1092,21	1114,56	1122,73	1137,528	1152,098	1176,115	1197,613	1205,974
F5	1000,006	1006,51	1012,97	1021,47	1031,71	1045,4	1051,215	1056,941	1056,623	1064,833	1067,791
F6	615,395	617,715	619,991	623,605	627,212	602,376	610,347	612,888	612,693	616,069	617,369

C3 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TEMPERATURA DE ENTRADA DO MATERIAL NA TERCEIRA CADEIRA DE LAMINAÇÃO.

Tabela C3.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F3.

Te, ⁰ C	837,183	855,787	874,391	893	911,599	930,203	948,807	967,411	986,015	1004,6	1023,2
ТЕМ, Мра	254,235	243,476	232,63	221,15	211,159	204,566	197,761	190,808	184,986	179,61	174,19
TG, μm	14,748	16,888	18,778	20,488	22,439	24,685	18,055	19,556	21,077	22,686	24,382
T, oC	848,308	865,688	882,761	899,37	916,502	934,739	952,784	970,661	988,787	1006,9	1024,9
h2, mm	7,256	7,254	7,297	7,415	7,486	7,405	7,351	7,324	7,258	7,201	7,157
P, ton.	1829,46	1743,31	1637,28	1495,99	1392,36	1374,01	1343,96	1303,54	1282,16	1260,12	1233,5

Tabela C3.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F3, para o aço carbono manganês 3.

				Tens	são de E	scoamer	nto Média	ı, MPa			
	Te3-10%	Te3-8%	Te3-6%	Te3-4%	Te3-2%	Te3	Te3+2%	Te3+4%	Te3+6%	Te3+8%	Te3+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	254,235	243,476	232,63	221,146	211,159	204,566	197,761	190,808	184,986	179,61	174,192
F4	263,219	253,11	244,995	239,437	233,197	225,106	216,928	209,668	202,25	194,141	186,735
F5	292,134	283,21	272,563	261,359	252,324	243,462	232,534	226,554	219,228	213,339	206,195
F6	253,407	246,755	238,68	230,35	223,168	217,91	216,431	208,162	202,238	195,505	181,309

Tabela C3.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F3, para o aço carbono manganês 3.

				Tam	anho de	Grão d	a Austen	ita, μm			
	Te3-10%	Te3-8%	Te3-6%	Te3-4%	Te3-2%	Te3	Te3+2%	Te3+4%	Te3+6%	Te3+8%	Te3+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	14,999	15,719	16,462	17,228	18,017	18,83	19,667	20,529	21,415	22,325	23,261
F3	14,748	16,888	18,778	20,488	22,439	24,685	18,055	19,556	21,077	22,686	24,382
F4	10,369	11,585	13,343	15,373	17,464	21,048	25,091	27,492	29,906	32,542	19,02
F5	11,623	13,115	14,32	15,651	17,203	17,439	19,007	20,961	23,066	25,291	29,253
F6	8,633	9,623	10,514	11,519	12,619	12,968	13,994	15,403	16,841	18,447	22,159

Tabela C3.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F3, para o aço carbono manganês 3.

				T	emperati	ıra de La	minação	, oC			
	Te3-10%	Te3-8%	Te3-6%	Te3-4%	Te3-2%	Te3	Te3+2%	Te3+4%	Te3+6%	Te3+8%	Te3+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	848,308	865,688	882,761	899,365	916,502	934,739	952,784	970,661	988,787	1006,879	1024,891
F4	845,682	860,365	874,966	889,395	904,453	920,507	936,321	952,007	967,941	983,597	999,26
F5	845,359	858,066	871,299	884,968	899,012	912,561	925,794	939,567	952,918	966,217	979,632
F6	837,654	848,977	860,408	872,251	884,693	895,935	906,997	918,906	930,153	941,622	952,844

Tabela C3.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F3, para o aço carbono manganês 3.

					Espess	ura de 🤅	Saída, mr	m			
Te3-10% Te3-8% Te3-6% Te3-4% Te3-2% Te3 Te3+2% Te3+4% Te3+6% Te3+6									Te3+8%	Te3+10%	
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,256	7,254	7,297	7,415	7,486	7,405	7,351	7,324	7,258	7,201	7,157
F4	5,43	5,422	5,419	5,432	5,426	5,364	5,31	5,266	5,197	5,157	5,11
F5	4,102	4,088	4,055	4,025	3,981	3,933	3,894	3,849	3,816	3,785	3,738
F6	3,473	3,448	3,438	3,436	3,405	3,393	3,375	3,343	3,314	3,292	3,256

Tabela C3.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F3, para o aço carbono manganês 3.

					Força	de Lamir	nação, to	n.			
	Te3-10% Te3-8% Te3-6% Te3-4% Te3-2% Te3 Te3+2% Te3+4% Te3+6% Te3+8%									Te3+10%	
F1	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815	1634,815	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1829,46	1743,31	1637,28	1495,99	1392,36	1374,01	1343,96	1303,54	1282,162	1260,124	1233,472
F4	1248,87	1191,82	1167,54	1177,75	1171,75	1122,73	1079,41	1046,26	1008,279	959,238	920,144
F5	1218,26	1180,88	1148,25	1117,53	1093,89	1045,4	987,49	960,127	910,88	879,776	847,424
F6	797,38	780,874	731,409	680,617	646,695	602,376	582,367	548,376	527,177	502,016	454,327

C4 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TENSÃO A RÉ APLICADA AO MATERIAL NA TERCEIRA CADEIRA DE LAMINAÇÃO.

Tabela C4.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a ré do material na cadeira F3.

τ1, MPa	0	1,078	2,156	3,234	4,312	5,39	6,468	7,546	8,624	9,702	10,78
ТЕМ, Мра	204,302	203,73	203,793	203,855	203,917	204,566	204,607	204,044	204,107	204,169	204,23
TG, μm	24,761	24,787	24,771	24,755	24,739	24,685	24,671	24,696	24,68	24,664	24,648
T, oC	935,153	934,889	934,809	934,729	934,649	934,739	934,652	934,391	934,31	934,229	934,15
h2, mm	7,429	7,45	7,445	7,439	7,434	7,405	7,4	7,421	7,415	7,41	7,405
P, ton.	1387,27	1371,89	1369,45	1367,00	1364,55	1374,01	1371,12	1355,96	1353,51	1351,06	1348,6

OBS: Resultados das tensões de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída e força de laminação, obtidos pelo modelo termomicroestrutural para aço C-Mn 3, devido a variações provocadas na tensão a ré na cadeira F3 e sua influência em todas as cadeiras de laminação estão mostradas nas tabelas B5.2, B5.3, B5.4, B5.5 e B5.6, respectivamente. Pois a tensão a ré em F3 é a tensão à frente de F2.

C5 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TENSÃO A FRENTE APLICADA AO MATERIAL NA TERCEIRA CADEIRA DE LAMINAÇÃO.

Tabela C5.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a frente do material na cadeira F3.

τ2, MPa	0	2,052	4,104	6,156	8,208	10,26	12,312	14,364	16,416	18,468	20,52
ТЕМ, Мра	203,888	203,414	204,17	203,667	203,824	204,566	204,075	204,232	204,968	204,483	204,64
TG, μm	24,719	24,752	24,705	24,74	24,732	24,685	24,719	24,711	16,641	24,698	24,69
T, oC	934,874	934,67	934,823	934,611	934,59	934,739	934,53	934,508	934,653	934,446	934,42
h2, mm	7,434	7,453	7,422	7,442	7,435	7,405	7,425	7,418	7,388	7,407	7,4
P, ton.	1389,84	1374,26	1383,74	1367,59	1364,85	1374,01	1358,1	1355,34	1364,30	1348,51	1345,7

Tabela C5.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F3, para o aço carbono manganês 3.

				Tens	ão de Es	coament	to Média,	MPa			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	203,888	203,414	204,17	203,667	203,824	204,566	204,075	204,232	204,968	204,483	204,64
F4	225,186	225,661	225,391	225,885	225,337	225,106	225,607	225,725	225,805	225,996	226,113
F5	242,91	243,005	242,969	243,066	243,513	243,462	243,549	243,564	239,272	243,603	243,62
F6	217,843	217,971	218,127	218,256	217,771	217,91	218,039	218,174	226,403	218,448	218,586

Tabela C5.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F3, para o aço carbono manganês 3.

				Tan	nanho de	Grão d	a Austeni	ta, μm			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83
F3	24,719	24,752	24,705	24,74	24,732	24,685	24,719	24,711	16,641	24,698	24,69
F4	21,209	21,205	21,141	21,138	21,115	21,048	21,046	21,01	22,609	20,94	20,903
F5	17,613	17,595	17,545	17,528	17,488	17,439	17,421	17,386	17,052	17,318	17,283
F6	13,065	13,05	13,016	13,002	13,001	12,968	12,954	12,93	12,648	12,882	12,857

Tabela C5.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F3, para o aço C-Mn 3.

				Te	mperatu	ra de Lar	ninação,	оС			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	934,874	934,67	934,823	934,611	934,59	934,739	934,53	934,508	934,653	934,446	934,424
F4	921,267	920,992	921,027	920,745	920,467	920,507	920,229	920,117	920,3	919,875	919,761
F5	913,777	913,62	913,353	913,197	912,819	912,561	912,406	912,196	911,775	911,779	911,567
F6	897,219	897,116	896,734	896,637	896,317	895,935	895,834	895,585	894,936	895,099	894,847

Tabela C5.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na tensão a ferente do material da cadeira F3, para o aço C-Mn 3.

					Espess	ura de S	Saída, mr	n			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,434	7,453	7,422	7,442	7,435	7,405	7,425	7,418	7,388	7,407	7,4
F4	5,376	5,38	5,366	5,37	5,378	5,364	5,367	5,362	5,331	5,351	5,345
F5	3,936	3,937	3,933	3,934	3,938	3,933	3,935	3,933	3,922	3,93	3,928
F6	3,387	3,388	3,386	3,387	3,394	3,393	3,394	3,393	3,382	3,392	3,392

Tabela C5.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na tensão a frente do material da cadeira F3, para o aço C-Mn 3.

					Força de	e Lamina	ção, ton.				
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1389,837	1374,262	1383,739	1367,589	1364,853	1374,013	1358,1	1355,339	1364,298	1348,51	1345,729
F4	1153,484	1156,371	1144,491	1147,717	1133,92	1122,725	1125,949	1121,596	1118,373	1113,618	1109,251
F5	1047,207	1048,724	1044,268	1045,919	1050,095	1045,404	1046,901	1045,154	1016,046	1041,981	1040,239
F6	607,087	607,947	606,371	607,289	604,132	602,376	603,185	602,648	630,672	601,711	601,179

C6 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA VELOCIDADE DO CILINDRO DE TRABALHO NA TERCEIRA CADEIRA DE LAMINAÇÃO.

Tabela C6.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro de trabalho na cadeira F3.

Vr, m/s	4,041	4,131	4,221	4,31	4,4	4,49	4,58	4,67	4,759	4,849	4,939
ТЕМ, Мра	202,545	202,381	202,76	203,791	203,56	204,566	204,332	205,318	205,078	206,047	205,80
TG, μm	16,727	16,741	16,729	16,685	24,751	24,685	24,7	24,635	24,649	24,584	24,598
T, oC	933,95	933,952	934,104	934,442	934,413	934,739	934,703	935,018	934,976	935,283	935,23
h2, mm	7,39	7,417	7,421	7,398	7,427	7,405	7,433	7,411	7,438	7,417	7,444
P, ton.	1364,98	1354,96	1356,16	1370,75	1359,75	1374,01	1363,19	1377,2	1366,46	1380,3	1369,6

Tabela C6.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F3, para o aço carbono manganês 3.

				Tens	ão de Es	scoamen	to Média,	MPa			
	Vr3-10%	Vr3-8%	Vr3-6%	Vr3-4%	Vr3-2%	Vr3	Vr3+2%	Vr3+4%	Vr3+6%	Vr3+8%	Vr3+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	202,545	202,381	202,76	203,791	203,56	204,566	204,332	205,318	205,078	206,047	205,798
F4	226,574	226,702	225,839	225,218	225,677	225,106	225,274	224,722	224,897	224,361	224,546
F5	240,647	240,483	240,547	240,134	243,954	243,462	243,125	242,661	242,366	241,222	240,972
F6	226,88	226,982	226,734	226,546	217,968	217,91	218,488	218,399	218,28	218,192	218,084

Tabela C6.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F3, para o aço carbono manganês 3.

				Tan	nanho de	Grão d	a Austeni	ita, μm			
	Vr3-10%	Vr3-8%	Vr3-6%	Vr3-4%	Vr3-2%	Vr3	Vr3+2%	Vr3+4%	Vr3+6%	Vr3+8%	Vr3+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83
F3	16,727	16,741	16,729	16,685	24,751	24,685	24,7	24,635	24,649	24,584	24,598
F4	22,179	22,295	22,45	22,549	20,921	21,048	21,233	21,351	21,52	21,631	21,786
F5	16,801	16,914	16,996	17,039	17,388	17,439	17,519	17,565	17,641	17,737	17,809
F6	12,482	12,544	12,602	12,634	12,937	12,968	12,991	13,022	13,071	13,125	13,172

Tabela C6.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F3, para o aço C-Mn 3.

				Te	mperatu	ra de Lar	ninação,	оС			
	Vr3-10%	Vr3-8%	Vr3-6%	Vr3-4%	Vr3-2%	Vr3	Vr3+2%	Vr3+4%	Vr3+6%	Vr3+8%	Vr3+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	933,95	933,952	934,104	934,442	934,413	934,739	934,703	935,018	934,976	935,283	935,233
F4	917,541	918,069	918,54	919,316	919,767	920,507	920,912	921,618	921,987	922,664	922,998
F5	909,517	910,2	910,626	911,14	912,083	912,561	913,127	913,579	914,109	914,356	914,855
F6	893,027	893,813	894,347	894,7	895,612	895,935	896,605	896,905	897,46	897,428	897,961

Tabela C6.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F3, para o aço C-Mn 3.

					Espess	ura de S	Saída, mr	n				
	Vr3-10%	Vr3-8%	Vr3-6%	Vr3-4%	Vr3-2%	Vr3	Vr3+2%	Vr3+4%	Vr3+6%	Vr3+8%	Vr3+10%	
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	
F2	10,554	10,554 10,554 10,554 10,554 10,554 10,554 10,554 10,554 10,554 10,554										
F3	7,39	7,417	7,421	7,398	7,427	7,405	7,433	7,411	7,438	7,417	7,444	
F4	5,349	5,358	5,372	5,362	5,373	5,364	5,373	5,363	5,372	5,363	5,372	
F5	3,933	3,934	3,939	3,934	3,938	3,933	3,935	3,931	3,933	3,939	3,941	
F6	3,393	3,387	3,389	3,387	3,395	3,393	3,388	3,386	3,387	3,396	3,396	

Tabela C6.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F3, para o aço C-Mn 3.

					Força de	e Lamina	ção, ton.				
	Vr3-10%	Vr3-8%	Vr3-6%	Vr3-4%	Vr3-2%	Vr3	Vr3+2%	Vr3+4%	Vr3+6%	Vr3+8%	Vr3+10%
F1	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1364,98	1354,96	1356,16	1370,75	1359,75	1374,01	1363,19	1377,2	1366,46	1380,3	1369,597
F4	1131,16	1138,05	1129,15	1121,67	1129,92	1122,73	1129,95	1122,9	1130,03	1123,09	1130,146
F5	1025,61	1027,82	1032,41	1028,11	1050,06	1045,4	1047	1042,52	1044,22	1031,5	1033,399
F6	632,702	637,729	639,225	636,709	604,246	602,376	608,146	606,088	606,553	604,986	605,628

ANEXO D - DISTÚRBIOS NA QUARTA CADEIRA DE LAMINAÇÃO - F4

D1 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NO GAP EM F3 E SUA INFLUÊNCIA EM F4.

Tabela D1.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap na cadeira F3 e sua influência em F4.

gap3, mm	4,4469	4,5457	4,6445	4,7434	4,8422	4,941	5,0398	5,1386	5,2375	5,3363	5,4351
TEM, Mpa	221,626	222,522	223,398	223,185	224,419	225,106	225,838	226,548	227,907	228,934	229,32
TG, μm	22,597	22,618	22,638	22,703	22,725	21,048	21,184	21,312	21,411	21,548	21,631
T, oC	921,933	921,629	921,337	921,069	920,611	920,507	920,232	919,973	919,901	919,554	919,45
h2, mm	5,264	5,283	5,301	5,324	5,352	5,364	5,383	5,401	5,405	5,431	5,441
P, ton.	1062,94	1078,29	1093,59	1092,21	1114,56	1122,73	1137,53	1152,1	1176,12	1197,61	1206

OBS: Resultados das tensões de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída e força de laminação, obtidos pelo modelo termomicroestrutural para aço C-Mn 3, devido a variações provocadas no gap na cadeira F3 e sua influência em todas as cadeiras de laminação estão mostradas nas tabelas C2.2, C2.3, C2.4, C2.5 e C2.6, respectivamente.

D2 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NO GAP NA QUARTA CADEIRA DE LAMINAÇÃO.

Tabela D2.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap na cadeira F4.

gap4, mm	3,56	3,639	3,718	3,797	3,876	3,955	4,034	4,113	4,192	4,271	4,351
TEM, Mpa	231,418	230,873	228,96	227,718	226,434	225,106	224,396	223,058	221,599	219,633	218,69
TG, μm	22,802	22,467	22,191	21,844	21,465	21,048	19,449	19,31	19,143	18,964	18,71
T, oC	922,856	922,552	921,88	921,416	920,958	920,507	920,222	919,799	919,365	918,842	918,56
h2, mm	5,154	5,181	5,238	5,279	5,321	5,364	5,392	5,435	5,479	5,533	5,565
P, ton.	1272,03	1251,9	1211,65	1182,09	1152,43	1122,73	1102,14	1073,22	1043,25	1007,25	985,15

Tabela D2.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações no gap na cadeira F4, para o aço carbono manganês 3.

	Tensão de Escoamento Média, MPa												
	gap4-10%	gap4-8%	gap4-6%	gap4-4%	gap4-2%	gap4	gap4+2%	gap4+4%	gap4+6%	gap4+8%	gap4+10%		
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048		
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969		
F3	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566		
F4	231,418	230,873	228,96	227,718	226,434	225,106	224,396	223,058	221,599	219,633	218,685		
F5	236,142	236,4	238,213	240,36	241,878	243,462	244,673	246,331	248,093	250,211	251,667		
F6	224,388	223,922	223,596	221,864	219,617	217,91	215,813	214,999	214,93	215,771	215,783		

Tabela D2.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações no gap na cadeira F4, para o aço carbono manganês 3.

	Tamanho de Grão da Austenita, μm													
	gap4-10%	gap4-8%	gap4-6%	gap4-4%	gap4-2%	gap4	gap4+2%	gap4+4%	gap4+6%	gap4+8%	gap4+10%			
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096			
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83			
F3	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685			
F4	22,802	22,467	22,191	21,844	21,465	21,048	19,449	19,31	19,143	18,964	18,71			
F5	17,056	17,18	17,285	17,337	17,403	17,439	18,999	19,148	19,294	19,441	19,557			
F6	12,697	12,735	12,766	12,821	12,896	12,968	13,957	14,095	14,174	14,179	14,235			

Tabela D2.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações no gap na cadeira F4, para o aço carbono manganês 3.

	Temperatura de Laminação, oC												
	gap4-10%	gap4-8%	gap4-6%	gap4-4%	gap4-2%	gap4	gap4+2%	gap4+4%	gap4+6%	gap4+8%	gap4+10%		
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731		
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146		
F3	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739		
F4	922,856	922,552	921,88	921,416	920,958	920,507	920,222	919,799	919,365	918,842	918,555		
F5	914,853	914,396	913,69	913,408	912,975	912,561	912,323	911,956	911,592	911,159	910,953		
F6	895,829	895,654	895,718	895,988	895,905	895,935	896,109	896,19	896,385	896,734	896,951		

Tabela D2.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações no gap da cadeira F4, para o aço carbono manganês 3.

	Espessura de Saída, mm												
	gap4-10%	gap4-8%	gap4-6%	gap4-4%	gap4-2%	gap4	gap4+2%	gap4+4%	gap4+6%	gap4+8%	gap4+10%		
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255		
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554		
F3	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405		
F4	5,154	5,181	5,238	5,279	5,321	5,364	5,392	5,435	5,479	5,533	5,565		
F5	3,847	3,867	3,891	3,898	3,916	3,933	3,946	3,964	3,983	4,006	4,021		
F6	3,354	3,362	3,365	3,365	3,382	3,393	3,387	3,4	3,407	3,411	3,416		

Tabela D2.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações no gap da cadeira F4, para o aço carbono manganês 3.

	Força de Laminação, ton.													
	gap4-10%	gap4-8%	gap4-6%	gap4-4%	gap4-2%	gap4	gap4+2%	gap4+4%	gap4+6%	gap4+8%	gap4+10%			
F1	1634,815	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815	1634,815	1634,815	1634,815	1634,815			
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99			
F3	1374,013	1374,01	1374,01	1374,01	1374,01	1374,01	1374,013	1374,013	1374,013	1374,013	1374,013			
F4	1272,025	1251,9	1211,65	1182,09	1152,43	1122,73	1102,137	1073,22	1043,251	1007,249	985,152			
F5	956,832	960,506	983,477	1009,01	1027,01	1045,4	1058,313	1076,824	1096,374	1120,339	1135,253			
F6	589,097	597,37	611,121	611,363	601,628	602,376	607,741	609,796	617,532	633,111	639,35			

D3 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TEMPERATURA DE ENTRADA DO MATERIAL NA QUARTA CADEIRA DE LAMINAÇÃO.

Tabela D3.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F4.

Te, ⁰ C	824,366	842,685	861,004	879,32	897,643	915,962	934,281	952,6	970,92	989,24	1007,6
ТЕМ, Мра	276,082	260,123	250,382	241,39	233,687	225,106	218,292	210,724	204,168	198,36	192,04
TG, μm	9,722	10,819	12,315	14,482	17,011	21,048	24,701	28,15	31,408	34,526	19,963
T, oC	833,492	849,408	867,196	884,98	902,916	920,507	938,413	956,017	973,77	991,62	1009,3
h2, mm	5,423	5,52	5,478	5,438	5,386	5,364	5,315	5,294	5,261	5,218	5,194
P, ton.	1402,07	1246,64	1213,51	1182,1	1161,47	1122,73	1103,39	1068,19	1042,86	1024,2	995,35

Tabela D3.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F4, para o aço carbono manganês 3.

				Tens	são de E	scoamer	nto Média	, MPa			
	Te4-10%	Te4-8%	Te4-6%	Te4-4%	Te4-2%	Te4	Te4+2%	Te4+4%	Te4+6%	Te4+8%	Te4+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566
F4	276,082	260,123	250,382	241,393	233,687	225,106	218,292	210,724	204,168	198,359	192,04
F5	312,358	260,553	284,623	269,408	254,825	243,462	233,422	224,953	218,411	211,614	202,237
F6	258,233	246,613	239,851	230,099	224,01	217,91	212,115	205,794	197,502	189,882	179,367

Tabela D3.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F4, para o aço carbono manganês 3.

				Tam	anho de	Grão d	a Austen	ita, μm			
	Te4-10%	Te4-8%	Te4-6%	Te4-4%	Te4-2%	Te4	Te4+2%	Te4+4%	Te4+6%	Te4+8%	Te4+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83
F3	18,259	19,642	20,944	22,205	23,448	24,685	25,927	27,18	28,448	29,734	31,042
F4	9,722	10,819	12,315	14,482	17,011	21,048	24,701	28,15	31,408	34,526	19,963
F5	11,501	12,952	14,39	15,647	17,06	17,439	19,461	21,786	24,239	28,754	31,011
F6	8,542	9,901	10,602	11,609	12,532	12,968	14,363	15,946	17,747	20,753	22,984

Tabela D3.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F4, para o aço carbono manganês 3.

				Τe	emperatu	ıra de La	minação,	оС			
	Te4-10%	Te4-8%	Te4-6%	Te4-4%	Te4-2%	Te4	Te4+2%	Te4+4%	Te4+6%	Te4+8%	Te4+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739
F4	833,492	849,408	867,196	884,977	902,916	920,507	938,413	956,017	973,77	991,617	1009,274
F5	836,382	848,895	865,451	881,328	897,123	912,561	928,364	943,711	959,547	975,298	990,588
F6	830,357	840,035	856,132	869,428	882,788	895,935	909,459	922,869	936,699	950,326	963,421

Tabela D3.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F4, para o aço carbono manganês 3.

					Espess	ura de :	Saída, mi	m			
	Te4-10% Te4-8% Te4-6% Te4-4% Te4-2% Te4 Te4+2% Te4+4% Te4+6% Te4+8% Te4+1										
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405
F4	5,423	5,52	5,478	5,438	5,386	5,364	5,315	5,294	5,261	5,218	5,194
F5	4,157	4,037	4,111	4,038	3,976	3,933	3,886	3,864	3,821	3,786	3,759
F6	3,494	3,428	3,469	3,44	3,398	3,393	3,364	3,345	3,315	3,288	3,256

Tabela D3.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F4, para o aço carbono manganês 3.

					Força	de Lamir	nação, to	n.			
	Te4-10%	Te4-8%	Te4-6%	Te4-4%	Te4-2%	Te4	Te4+2%	Te4+4%	Te4+6%	Te4+8%	Te4+10%
F1	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815	1634,815	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,013	1374,013	1374,013
F4	1402,07	1246,64	1213,51	1182,09	1161,47	1122,73	1103,39	1068,19	1042,857	1024,194	995,348
F5	1273,63	1150,08	1204,39	1152,23	1089,23	1045,4	997,732	957,589	931,142	896,003	852,491
F6	839,625	755,851	754,965	685,602	650,331	602,376	571,215	550,717	517,384	489,427	461,549

D4 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TENSÃO A RÉ APLICADA AO MATERIAL NA QUARTA CADEIRA DE LAMINAÇÃO.

Tabela D4.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a ré do material na cadeira F4.

τ1, MPa	0	2,052	4,104	6,156	8,208	10,26	12,312	14,364	16,416	18,468	20,52
ТЕМ, Мра	225,186	225,661	225,391	225,885	225,337	225,106	225,607	225,725	225,805	225,996	226,11
TG, μm	21,209	21,205	21,141	21,138	21,115	21,048	21,046	21,01	22,609	20,94	20,903
T, oC	921,267	920,992	921,027	920,745	920,467	920,507	920,229	920,117	920,3	919,875	919,76
h2, mm	5,376	5,38	5,366	5,37	5,378	5,364	5,367	5,362	5,331	5,351	5,345
P, ton.	1153,48	1156,37	1144,49	1147,72	1133,92	1122,73	1125,95	1121,60	1118,37	1113,62	1109,3

OBS: Resultados das tensões de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída e força de laminação, obtidos pelo modelo termomicroestrutural para aço C-Mn 3, devido a variações provocadas na tensão a ré na cadeira F4 e sua influência em todas as cadeiras de laminação estão mostradas nas tabelas C5.2, C5.3, C5.4, C5.5 e C5.6, respectivamente. Pois a tensão a ré em F4 é a tensão à frente de F3.

D5 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TENSÃO A FRENTE APLICADA AO MATERIAL NA QUARTA CADEIRA DE LAMINAÇÃO.

Tabela D5.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a frente do material na cadeira F4.

τ2, MPa	0	8,694	17,388	26,082	34,776	43,47	52,164	60,858	69,552	78,246	86,94
ТЕМ, Мра	221,995	223,296	223,207	223,882	225,136	225,106	225,789	227,014	227,031	228,329	228,92
TG, μm	19,811	19,716	19,741	19,696	21,017	21,048	21,066	21,069	21,095	21,089	21,097
T, oC	921,069	921,134	920,846	920,747	920,789	920,507	920,399	920,421	920,142	920,174	920,03
h2, mm	5,436	5,407	5,408	5,392	5,364	5,364	5,348	5,32	5,319	5,29	5,276
P, ton.	1180,57	1178,9	1157,31	1146,49	1143,75	1122,73	1111,66	1108,09	1087,46	1084,63	1071,8

Tabela D5.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F4, para o aço carbono manganês 3.

				Tens	ão de Es	coament	to Média,	MPa			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566
F4	221,995	223,296	223,207	223,882	225,136	225,106	225,789	227,014	227,031	228,329	228,919
F5	240,602	241,362	242,195	241,843	242,639	243,462	243,16	243,986	244,804	244,174	245,4
F6	216,89	215,878	215,9	216,341	218,493	217,91	218,568	217,86	217,94	219,78	219,128

Tabela D5.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F4, para o aço carbono manganês 3.

				Tan	nanho de	Grão d	a Austeni	ta, μm			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83
F3	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685
F4	19,811	19,716	19,741	19,696	21,017	21,048	21,066	21,069	21,095	21,089	21,097
F5	19,467	19,306	19,202	19,12	17,539	17,439	17,391	17,235	17,133	17,073	16,919
F6	14,041	14,037	13,994	13,945	13,003	12,968	12,911	12,862	12,804	12,695	12,644

Tabela D5.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F4, para o aço C-Mn 3.

				Te	mperatu	ra de Lar	ninação,	оС			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739
F4	921,069	921,134	920,846	920,747	920,789	920,507	920,399	920,421	920,142	920,174	920,028
F5	914,646	914,6	913,953	913,313	913,214	912,561	911,909	911,761	911,099	910,586	910,236
F6	899,583	899,089	898,297	897,251	896,831	895,935	894,883	894,295	893,454	892,544	891,908

Tabela D5.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na tensão a ferente do material da cadeira F4, para o aço C-Mn 3.

					Espess	ura de S	Saída, mr	n			
	τ2-100% τ2-80% τ2-60% τ2-40% τ2-20% τ2 τ2+20% τ2+40% τ2+60% τ2+80% τ2+10										τ2+100%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405
F4	5,436	5,407	5,408	5,392	5,364	5,364	5,348	5,32	5,319	5,29	5,276
F5	4,021	3,988	3,979	3,974	3,942	3,933	3,928	3,897	3,887	3,876	3,851
F6	3,425	3,411	3,408	3,407	3,391	3,393	3,392	3,378	3,375	3,359	3,348

Tabela D5.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na tensão a frente do material da cadeira F4, para o aço C-Mn 3.

					Força de	e Lamina	ção, ton.				
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1374,013	1374,013	1374,013	1374,013	1374,013	1374,013	1374,013	1374,013	1374,013	1374,013	1374,013
F4	1180,572	1178,898	1157,313	1146,493	1143,749	1122,725	1111,66	1108,086	1087,455	1084,625	1071,772
F5	1113,661	1101,943	1092,227	1067,317	1055,609	1045,404	1020,979	1009,207	998,599	969,536	962,75
F6	637,461	621,63	618,012	616,566	611,29	602,376	601,104	586,4	582,388	593,759	581,449

D6 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA VELOCIDADE DO CILINDRO DE TRABALHO NA QUARTA CADEIRA DE LAMINAÇÃO.

Tabela D6.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro de trabalho na cadeira F4.

Vr, m/s	5,544	5,667	5,79	5,914	6,037	6,16	6,283	6,406	6,53	6,653	6,776
ТЕМ, Мра	223,499	223,986	223,824	224,262	224,678	225,106	225,516	226,599	227,034	227,459	227,88
TG, μm	21,485	21,39	21,306	21,217	21,133	21,048	20,967	20,877	19,511	19,493	19,474
T, oC	919,875	920,049	920,059	920,214	920,359	920,507	920,646	920,951	921,092	921,228	921,36
h2, mm	5,339	5,341	5,356	5,359	5,361	5,364	5,366	5,354	5,355	5,357	5,358
P, ton.	1123,48	1125,5	1118,44	1119,92	1121,31	1122,73	1124,08	1134,96	1136,75	1138,5	1140,2

Tabela D6.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F4, para o aço carbono manganês 3.

				Tens	ão de Es	coamen	to Média,	MPa			
	Vr4-10%	Vr4-8%	Vr4-6%	Vr4-4%	Vr4-2%	Vr4	Vr4+2%	Vr4+4%	Vr4+6%	Vr4+8%	Vr4+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566
F4	223,499	223,986	223,824	224,262	224,678	225,106	225,516	226,599	227,034	227,459	227,878
F5	242,824	243,432	243,717	243,62	243,538	243,462	243,398	242,185	242,137	242,097	242,062
F6	223,713	222,139	220,123	219,339	218,621	217,91	217,254	217,233	214,507	214,093	213,697

Tabela D6.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F4, para o aço carbono manganês 3.

				Tan	nanho de	Grão d	a Austen	ita, μm			
	Vr4-10%	Vr4-8%	Vr4-6%	Vr4-4%	Vr4-2%	Vr4	Vr4+2%	Vr4+4%	Vr4+6%	Vr4+8%	Vr4+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83
F3	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685
F4	21,485	21,39	21,306	21,217	21,133	21,048	20,967	20,877	19,511	19,493	19,474
F5	17,009	17,073	17,177	17,271	17,356	17,439	17,514	17,648	19,246	19,36	19,47
F6	12,577	12,655	12,755	12,83	12,899	12,968	13,032	13,1	14,187	14,277	14,365

Tabela D6.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F4, para o aço C-Mn 3.

				Te	mperatu	ra de Lar	ninação,	оС			
	Vr4-10%	Vr4-8%	Vr4-6%	Vr4-4%	Vr4-2%	Vr4	Vr4+2%	Vr4+4%	Vr4+6%	Vr4+8%	Vr4+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739
F4	919,875	920,049	920,059	920,214	920,359	920,507	920,646	920,951	921,092	921,228	921,361
F5	909,683	910,487	910,924	911,491	912,022	912,561	913,071	913,555	914,054	914,536	915,003
F6	893,181	893,992	894,385	894,921	895,423	895,935	896,42	896,649	897,082	897,539	897,983

Tabela D6.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F4, para o aço C-Mn 3.

					Espess	ura de S	Saída, mr	n			
	Vr4-10%	Vr4-8%	Vr4-6%	Vr4-4%	Vr4-2%	Vr4	Vr4+2%	Vr4+4%	Vr4+6%	Vr4+8%	Vr4+10%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405
F4	5,339	5,341	5,356	5,359	5,361	5,364	5,366	5,354	5,355	5,357	5,358
F5	3,936	3,926	3,931	3,932	3,933	3,933	3,934	3,939	3,939	3,94	3,94
F6	3,389	3,382	3,396	3,395	3,394	3,393	3,392	3,394	3,39	3,389	3,388

Tabela D6.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F4, para o aço C-Mn 3.

					Força de	e Lamina	ção, ton.				
	Vr4-10%	Vr4-8%	Vr4-6%	Vr4-4%	Vr4-2%	Vr4	Vr4+2%	Vr4+4%	Vr4+6%	Vr4+8%	Vr4+10%
F1	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,013
F4	1123,48	1125,5	1118,44	1119,92	1121,31	1122,73	1124,08	1134,96	1136,75	1138,5	1140,239
F5	1029,73	1038,55	1044,29	1044,63	1044,99	1045,4	1045,84	1031,79	1032,22	1032,66	1033,095
F6	627,866	620,369	605,572	604,421	603,384	602,376	601,466	603,624	598,261	597,589	596,953

ANEXO E - DISTÚRBIOS NA QUINTA CADEIRA DE LAMINAÇÃO - F5

E1 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NO GAP EM F4 E SUA INFLUÊNCIA EM F5.

Tabela E1.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap na cadeira F4 e sua influência em F5.

gap4, mm	3,56	3,639	3,718	3,797	3,876	3,955	4,034	4,113	4,192	4,271	4,351
ТЕМ, Мра	236,142	236,4	238,213	240,36	241,878	243,462	244,673	246,331	248,093	250,211	251,67
TG, μm	17,056	17,18	17,285	17,337	17,403	17,439	18,999	19,148	19,294	19,441	19,557
T, oC	914,853	914,396	913,69	913,408	912,975	912,561	912,323	911,956	911,592	911,159	910,95
h2, mm	3,847	3,867	3,891	3,898	3,916	3,933	3,946	3,964	3,983	4,006	4,021
P, ton.	956,832	960,506	983,477	1009,01	1027,01	1045,4	1058,31	1076,82	1096,37	1120,34	1135,3

OBS: Resultados das tensões de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída e força de laminação, obtidos pelo modelo termomicroestrutural para aço C-Mn 3, devido a variações provocadas no gap na cadeira F4 e sua influência em todas as cadeiras de laminação estão mostradas nas tabelas D2.2, D2.3, D2.4, D2.5 e D2.6, respectivamente.

E2 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NO GAP NA QUINTA CADEIRA DE LAMINAÇÃO.

Tabela E2.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap na cadeira F5.

gap5, mm	2,614	2,672	2,73	2,788	2,846	2,904	2,962	3,02	3,078	3,136	3,194
ТЕМ, Мра	249,845	247,881	247,35	245,372	244,806	243,462	242,107	240,738	238,612	237,845	235,73
TG, μm	20,01	19,796	19,447	19,166	18,78	17,439	17,285	17,101	16,924	16,659	16,421
T, oC	915,257	914,476	914,14	913,4	913,078	912,561	912,062	911,58	910,941	910,639	910,05
h2, mm	3,783	3,823	3,843	3,883	3,903	3,933	3,964	3,994	4,035	4,056	4,096
P, ton.	1188,33	1150,03	1130,4	1093,1	1073,8	1045,4	1017,43	989,8	954,16	934,36	900,12

Tabela E2.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações no gap na cadeira F5, para o aço carbono manganês 3.

				Tens	são de E	scoame	nto Média	a, MPa			
	gap5-10%	gap5-8%	gap5-6%	gap5-4%	gap5-2%	gap5	gap5+2%	gap5+4%	gap5+6%	gap5+8%	gap5+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566
F4	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106
F5	249,845	247,881	247,354	245,372	244,806	243,462	242,107	240,738	238,612	237,845	235,729
F6	205,01	208,784	210,628	213,2	215,172	217,91	220,698	223,531	228,213	230,507	233,977

Tabela E2.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações no gap na cadeira F5, para o aço carbono manganês 3.

				Tam	anho de	Grão c	la Austen	ita, μm			
	gap5-10%	gap5-8%	gap5-6%	gap5-4%	gap5-2%	gap5	gap5+2%	gap5+4%	gap5+6%	gap5+8%	gap5+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83
F3	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685
F4	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048
F5	20,01	19,796	19,447	19,166	18,78	17,439	17,285	17,101	16,924	16,659	16,421
F6	15,649	15,138	14,702	14,29	13,881	12,968	12,813	12,692	12,677	12,695	12,807

Tabela E2.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações no gap na cadeira F5, para o aço carbono manganês 3.

				Te	emperatu	ıra de La	aminação	o, oC			
	gap5-10%	gap5-8%	gap5-6%	gap5-4%	gap5-2%	gap5	gap5+2%	gap5+4%	gap5+6%	gap5+8%	gap5+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739
F4	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507
F5	915,257	914,476	914,135	913,4	913,078	912,561	912,062	911,58	910,941	910,639	910,052
F6	899,32	898,363	897,946	896,942	896,562	895,935	895,343	894,782	894,242	893,929	893,292

Tabela E2.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações no gap da cadeira F5, para o aço carbono manganês 3.

					Espessu	ıra de	Saída, mi	m			
	gap5-10%	gap5-8%	gap5-6%	gap5-4%	gap5-2%	gap5	gap5+2%	gap5+4%	gap5+6%	gap5+8%	gap5+10%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405
F4	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364
F5	3,783	3,823	3,843	3,883	3,903	3,933	3,964	3,994	4,035	4,056	4,096
F6	3,312	3,328	3,339	3,365	3,376	3,393	3,41	3,427	3,436	3,448	3,47

Tabela E2.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações no gap da cadeira F5, para o aço carbono manganês 3.

					Força d	e Lamin	ação, tor	١.			
	gap5-10%	gap5-8%	gap5-6%	gap5-4%	gap5-2%	gap5	gap5+2%	gap5+4%	gap5+6%	gap5+8%	gap5+10%
F1	1634,815	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815	1634,815	1634,815	1634,815	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1374,013	1374,01	1374,01	1374,01	1374,01	1374,01	1374,013	1374,013	1374,013	1374,013	1374,013
F4	1122,725	1122,73	1122,73	1122,73	1122,73	1122,73	1122,725	1122,725	1122,725	1122,725	1122,725
F5	1188,328	1150,03	1130,4	1093,1	1073,8	1045,4	1017,429	989,8	954,16	934,36	900,117
F6	514,461	541,936	553,774	572,172	584,212	602,376	620,667	639,108	680,618	694,676	719,413

E3 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TEMPERATURA DE ENTRADA DO MATERIAL NA QUINTA CADEIRA DE LAMINAÇÃO.

Tabela E3.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F5.

Te, ⁰ C	816,08	834,22	852,35	870,49	888,62	906,76	924,89	943,03	961,16	979,3	997,43
ТЕМ, Мра	317,085	295,11	279,494	265,61	253,407	243,462	234,073	225,145	218,289	211,39	205,07
TG, μm	8,954	9,812	11,463	13,306	15,336	17,439	21,351	24,482	27,544	30,663	33,761
T, oC	827,194	842,301	859,842	877,36	894,863	912,561	930,07	947,427	965,115	982,63	1000,2
h2, mm	4,032	4,102	4,057	4,016	3,978	3,933	3,903	3,885	3,849	3,826	3,803
P, ton.	1375,95	1194,67	1150,07	1108,5	1070,81	1045,4	1014,35	978,709	960,32	935,42	912,93

Tabela E3.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F5, para o aço carbono manganês 3.

				Tens	são de E	scoamer	nto Média	, MPa			
	Te5-10%	Te5-8%	Te5-6%	Te5-4%	Te5-2%	Te5	Te5+2%	Te5+4%	Te5+6%	Te5+8%	Te5+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566
F4	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106
F5	317,085	295,11	279,494	265,607	253,407	243,462	234,073	225,145	218,289	211,391	205,071
F6	276,861	272,699	258,066	243,254	229,423	217,91	208,503	199,247	190,647	183,799	178,096

Tabela E3.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F5, para o aço carbono manganês 3.

				Tam	anho de	Grão d	a Austen	ita, μm			
	Te5-10%	Te5-8%	Te5-6%	Te5-4%	Te5-2%	Te5	Te5+2%	Te5+4%	Te5+6%	Te5+8%	Te5+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83
F3	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685
F4	13,062	14,063	15,343	16,776	18,233	21,048	23,169	25,134	26,986	28,755	30,465
F5	8,954	9,812	11,463	13,306	15,336	17,439	21,351	24,482	27,544	30,663	33,761
F6	6,904	7,744	8,773	9,962	11,389	12,968	15,555	17,848	20,131	22,309	24,375

Tabela E3.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F5, para o aço carbono manganês 3.

				Τe	emperatu	ıra de La	minação,	оС			
	Te5-10%	Te5-8%	Te5-6%	Te5-4%	Te5-2%	Te5	Te5+2%	Te5+4%	Te5+6%	Te5+8%	Te5+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739
F4	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507
F5	827,194	842,301	859,842	877,355	894,863	912,561	930,07	947,427	965,115	982,628	1000,166
F6	822,612	834,408	849,965	865,164	880,412	895,935	911,553	926,858	942,654	958,255	973,927

Tabela E3.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F5, para o aço carbono manganês 3.

					Espess	ura de 🤅	Saída, mr	n			
	Te5-10%	Te5-8%	Te5-6%	Te5-4%	Te5-2%	Te5	Te5+2%	Te5+4%	Te5+6%	Te5+8%	Te5+10%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405
F4	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364
F5	4,032	4,102	4,057	4,016	3,978	3,933	3,903	3,885	3,849	3,826	3,803
F6	3,45	3,504	3,456	3,431	3,409	3,393	3,358	3,341	3,313	3,292	3,268

Tabela E3.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F5, para o aço carbono manganês 3.

					Força	de Lamir	nação, to	n.			
	Te5-10% Te5-8% Te5-6% Te5-4% Te5-2% Te5 Te5+2% Te5+4% Te5+6% Te5+8% Te5+										
F1	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815	1634,815	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,013	1374,013	1374,013
F4	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,725	1122,725	1122,725
F5	1375,95	1194,67	1150,07	1108,54	1070,81	1045,4	1014,35	978,709	960,32	935,417	912,933
F6	847,565	839,288	789,718	722,423	661,832	602,376	575,192	546,588	515,839	493,925	476,505

E4 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TENSÃO A RÉ APLICADA AO MATERIAL NA QUINTA CADEIRA DE LAMINAÇÃO.

Tabela E4.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a ré do material na cadeira F5.

τ1, MPa	0	8,694	17,388	26,082	34,776	43,47	52,164	60,858	69,552	78,246	86,94
ТЕМ, Мра	240,602	241,362	242,195	241,843	242,639	243,462	243,16	243,986	244,804	244,174	245,4
TG, μm	19,467	19,306	19,202	19,12	17,539	17,439	17,391	17,235	17,133	17,073	16,919
T, oC	914,646	914,6	913,953	913,313	913,214	912,561	911,909	911,761	911,099	910,586	910,24
h2, mm	4,021	3,988	3,979	3,974	3,942	3,933	3,928	3,897	3,887	3,876	3,851
P, ton.	1113,66	1101,94	1092,23	1067,32	1055,61	1045,40	1020,98	1009,21	998,599	969,536	962,75

OBS: Resultados das tensões de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída e força de laminação, obtidos pelo modelo termomicroestrutural para aço C-Mn 3, devido a variações provocadas na tensão a ré na cadeira F5 e sua influência em todas as cadeiras de laminação estão mostradas nas tabelas D5.2, D5.3, D5.4, D5.5 e D5.6, respectivamente. Pois a tensão a ré em F5 é a tensão à frente de F4.

E5 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TENSÃO A FRENTE APLICADA AO MATERIAL NA QUINTA CADEIRA DE LAMINAÇÃO.

Tabela E5.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a frente do material na cadeira F5.

τ2, MPa	0	4,246	8,492	12,738	16,984	21,23	25,476	29,722	33,968	38,214	42,46
ТЕМ, Мра	241,881	241,456	241,799	242,14	243,17	243,462	243,039	243,39	243,73	244,774	245,07
TG, μm	17,507	17,549	17,534	17,519	17,451	17,439	17,48	17,463	17,445	17,372	17,357
T, oC	912,825	912,581	912,536	912,49	912,622	912,561	912,314	912,27	912,22	912,347	912,28
h2, mm	3,958	3,964	3,958	3,953	3,938	3,933	3,939	3,934	3,928	3,913	3,908
P, ton.	1070,41	1056,58	1051,93	1047,3	1050,75	1045,4	1031,53	1026,8	1022,1	1025,57	1020,1

Tabela E5.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F5, para o aço carbono manganês 3.

				Tens	ão de Es	coamen	to Média,	MPa			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566
F4	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106
F5	241,881	241,456	241,799	242,142	243,17	243,462	243,039	243,386	243,732	244,774	245,069
F6	219,312	219,384	219,488	220,217	218,433	217,91	219,34	218,763	219,494	218,284	219,062

Tabela E5.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F5, para o aço carbono manganês 3.

	Tamanho de Grão da Austenita, μm													
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%			
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096			
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83			
F3	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685			
F4	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048			
F5	17,507	17,549	17,534	17,519	17,451	17,439	17,48	17,463	17,445	17,372	17,357			
F6	12,986	12,996	12,98	12,94	12,956	12,968	12,925	12,938	12,895	12,908	12,864			

Tabela E5.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na tensão a frente do material na cadeira F5, para o aço C-Mn 3.

				Te	mperatu	ra de Lar	ninação,	оС			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739
F4	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507
F5	912,825	912,581	912,536	912,49	912,622	912,561	912,314	912,266	912,217	912,347	912,283
F6	897,098	896,584	896,419	896,333	896,205	895,935	895,586	895,33	895,231	895,203	895,079

Tabela E5.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na tensão a ferente do material da cadeira F5, para o aço C-Mn 3.

					Espess	ura de S	Saída, mr	n			
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405
F4	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364
F5	3,958	3,964	3,958	3,953	3,938	3,933	3,939	3,934	3,928	3,913	3,908
F6	3,4	3,406	3,401	3,39	3,393	3,393	3,388	3,388	3,377	3,372	3,361

Tabela E5.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na tensão a frente do material da cadeira F5, para o aço C-Mn 3.

					Força de	Lamina	ção, ton.				
	τ2-100%	τ2-80%	τ2-60%	τ2-40%	τ2-20%	τ2	τ2+20%	τ2+40%	τ2+60%	τ2+80%	τ2+100%
F1	1634,815	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1374,013	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,013
F4	1122,725	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,725
F5	1070,405	1056,58	1051,93	1047,25	1050,75	1045,4	1031,53	1026,82	1022,07	1025,57	1020,149
F6	652,676	647,247	641,443	640,588	612,892	602,376	607,542	596,548	595,663	579,362	578,774

E6 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA VELOCIDADE DO CILINDRO DE TRABALHO NA QUINTA CADEIRA DE LAMINAÇÃO.

Tabela E6.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro de trabalho na cadeira F5.

Vr, m/s	7,083	7,24	7,398	7,555	7,713	7,87	8,027	8,185	8,342	8,45	8,657
TEM, Mpa	241,088	240,871	241,339	241,799	242,977	243,462	243,938	244,41	244,118	244,535	244,94
TG, μm	18,697	17,535	17,528	17,52	17,453	17,439	17,423	17,405	17,44	17,421	17,401
T, oC	911,74	911,732	911,898	912,058	912,401	912,561	912,717	912,869	912,819	912,952	913,08
h2, mm	3,925	3,937	3,939	3,941	3,932	3,933	3,935	3,936	3,948	3,949	3,951
P, ton.	1037,97	1031,02	1032,38	1033,69	1043,66	1045,4	1047,13	1048,84	1041,53	1042,71	1043,9

Tabela E6.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F5, para o aço carbono manganês 3.

				Tens	ão de Es	coament	to Média,	MPa			
	Vr5-10%	Vr5-8%	Vr5-6%	Vr5-4%	Vr5-2%	Vr5	Vr5+2%	Vr5+4%	Vr5+6%	Vr5+8%	Vr5+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566
F4	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106
F5	241,088	240,871	241,339	241,799	242,977	243,462	243,938	244,41	244,118	244,535	244,944
F6	217,509	218,237	219,005	219,067	217,818	217,91	218,651	218,714	218,814	218,969	219,129

Tabela E6.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F5, para o aço carbono manganês 3.

				Tan	nanho de	Grão d	a Austen	ita, μm			
	Vr5-10%	Vr5-8%	Vr5-6%	Vr5-4%	Vr5-2%	Vr5	Vr5+2%	Vr5+4%	Vr5+6%	Vr5+8%	Vr5+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83
F3	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685
F4	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048
F5	18,697	17,535	17,528	17,52	17,453	17,439	17,423	17,405	17,44	17,421	17,401
F6	13,773	12,987	12,945	12,942	12,971	12,968	12,943	12,948	12,979	12,986	12,997

Tabela E6.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F5, para o aço C-Mn 3.

				Te	mperatu	ra de Lar	ninação,	оС			
	Vr5-10%	Vr5-8%	Vr5-6%	Vr5-4%	Vr5-2%	Vr5	Vr5+2%	Vr5+4%	Vr5+6%	Vr5+8%	Vr5+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739
F4	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507
F5	911,74	911,732	911,898	912,058	912,401	912,561	912,717	912,869	912,819	912,952	913,08
F6	892,851	893,284	893,997	894,603	895,348	895,935	896,582	897,131	897,325	897,83	898,32

Tabela E6.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F5, para o aço C-Mn 3.

					Espess	ura de S	Saída, mr	n			
	Vr5-10%	Vr5-8%	Vr5-6%	Vr5-4%	Vr5-2%	Vr5	Vr5+2%	Vr5+4%	Vr5+6%	Vr5+8%	Vr5+10%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405
F4	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364
F5	3,925	3,937	3,939	3,941	3,932	3,933	3,935	3,936	3,948	3,949	3,951
F6	3,389	3,395	3,39	3,391	3,392	3,393	3,388	3,389	3,4	3,401	3,402

Tabela E6.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F5, para o aço C-Mn 3.

					Força de	e Lamina	ção, ton.				
	Vr5-10%	Vr5-8%	Vr5-6%	Vr5-4%	Vr5-2%	Vr5	Vr5+2%	Vr5+4%	Vr5+6%	Vr5+8%	Vr5+10%
F1	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,013
F4	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,725
F5	1037,97	1031,02	1032,38	1033,69	1043,66	1045,4	1047,13	1048,84	1041,53	1042,71	1043,866
F6	597,879	604,493	610,777	611,556	601,549	602,376	608,206	608,708	609,918	611,038	612,154

ANEXO F - DISTÚRBIOS NA SEXTA CADEIRA DE LAMINAÇÃO - F6

F1 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NO GAP EM F5 E SUA INFLUÊNCIA EM F6.

Tabela F1.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap na cadeira F5 e sua influência em F6.

gap5, mm	2,614	2,672	2,73	2,788	2,846	2,904	2,962	3,02	3,078	3,136	3,194
ТЕМ, Мра	205,01	208,784	210,63	213,2	215,172	217,91	220,698	223,531	228,213	230,507	233,98
TG, μm	15,649	15,138	14,702	14,29	13,881	12,968	12,813	12,692	12,677	12,695	12,807
T, oC	899,32	898,363	897,95	896,942	896,562	895,935	895,343	894,782	894,242	893,929	893,29
h2, mm	3,312	3,328	3,339	3,365	3,376	3,393	3,41	3,427	3,436	3,448	3,47
P, ton.	514,461	541,936	553,77	572,172	584,212	602,376	620,667	639,108	680,618	694,676	719,41

OBS: Resultados das tensões de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída e força de laminação, obtidos pelo modelo termomicroestrutural para aço C-Mn 3, devido a variações provocadas no gap na cadeira F5 e sua influência em todas as cadeiras de laminação estão mostradas nas tabelas E2.2, E2.3, E2.4, E2.5 e E2.6, respectivamente.

F2 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NO GAP NA SEXTA CADEIRA DE LAMINAÇÃO.

Tabela F2.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão(TG), temperatura de laminação(T), espessura de saída(h2) e força de laminação(P) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap na cadeira F6.

gap6, mm	2,552	2,609	2,666	2,723	2,779	2,836	2,893	2,949	3,006	3,063	3,12
ТЕМ, Мра	232,619	227,805	226,32	224,701	222,28	217,91	215,961	212,651	210,428	206,888	203,84
TG, μm	13,664	13,143	13,037	12,925	12,884	12,968	13,051	13,249	13,423	13,714	13,994
T, oC	898,658	897,604	897,31	896,99	896,578	895,935	895,666	895,278	895,037	894,707	894,46
h2, mm	3,223	3,282	3,3	3,32	3,347	3,393	3,414	3,446	3,469	3,501	3,529
P, ton.	819,457	742,281	719,5	691,274	657,078	602,376	574,565	537,723	509,704	473,637	442,12

Tabela F2.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações no gap na cadeira F6, para o aço carbono manganês 3.

				Tens	são de E	scoame	nto Média	a, MPa			
	gap6-10%	gap6-8%	gap6-6%	gap6-4%	gap6-2%	gap6	gap6+2%	gap6+4%	gap6+6%	gap6+8%	gap6+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566
F4	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106
F5	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462
F6	232,619	227,805	226,321	224,701	222,28	217,91	215,961	212,651	210,428	206,888	203,835

Tabela F2.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações no gap na cadeira F6, para o aço carbono manganês 3.

				Tam	anho de	Grão d	la Austen	ita, μm			
	gap6-10%	gap6-8%	gap6-6%	gap6-4%	gap6-2%	gap6	gap6+2%	gap6+4%	gap6+6%	gap6+8%	gap6+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83
F3	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685
F4	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048
F5	17,439	17,439	17,439	17,439	17,439	17,439	17,439	17,439	17,439	17,439	17,439
F6	13,664	13,143	13,037	12,925	12,884	12,968	13,051	13,249	13,423	13,714	13,994

Tabela F2.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações no gap na cadeira F6, para o aço carbono manganês 3.

	Temperatura de Laminação, oC												
				Τe	emperatu	ıra de La	aminação	, oC					
	gap6-10%	gap6-8%	gap6-6%	gap6-4%	gap6-2%	gap6	gap6+2%	gap6+4%	gap6+6%	gap6+8%	gap6+10%		
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731		
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146		
F3	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739		
F4	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507		
F5	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561		
F6	898,658	897,604	897,311	896,99	896,578	895,935	895,666	895,278	895,037	894,707	894,46		

Tabela F2.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações no gap da cadeira F6, para o aço carbono manganês 3.

					Espessi	ıra de	Saída, mi	m			
	gap6-10%	gap6-8%	gap6-6%	gap6-4%	gap6-2%	gap6	gap6+2%	gap6+4%	gap6+6%	gap6+8%	gap6+10%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405
F4	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364
F5	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933
F6	3,223	3,282	3,3	3,32	3,347	3,393	3,414	3,446	3,469	3,501	3,529

Tabela F2.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações no gap da cadeira F6, para o aço carbono manganês 3.

					Força d	e Lamin	ação, tor	٦.			
	gap6-10%	gap6-8%	gap6-6%	gap6-4%	gap6-2%	gap6	gap6+2%	gap6+4%	gap6+6%	gap6+8%	gap6+10%
F1	1634,815	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815	1634,815	1634,815	1634,815	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1374,013	1374,01	1374,01	1374,01	1374,01	1374,01	1374,013	1374,013	1374,013	1374,013	1374,013
F4	1122,725	1122,73	1122,73	1122,73	1122,73	1122,73	1122,725	1122,725	1122,725	1122,725	1122,725
F5	1045,404	1045,4	1045,4	1045,4	1045,4	1045,4	1045,404	1045,404	1045,404	1045,404	1045,404
F6	819,457	742,281	719,498	691,274	657,078	602,376	574,565	537,723	509,704	473,637	442,122

F3 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TEMPERATURA DE ENTRADA DO MATERIAL NA SEXTA CADEIRA DE LAMINAÇÃO.

Tabela F3.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F6.

Te, ⁰ C	807,545	825,49	843,436	861,38	879,327	897,272	915,217	933,163	951,108	969,05	987,0
ТЕМ, Мра	304,802	286,04	265,517	247,94	231,278	217,91	207,662	199,696	191,777	185,81	179,96
TG, μm	7,751	8,262	9,283	10,427	11,711	12,968	14,971	16,535	18,488	21,085	24,522
T, oC	808,719	826,839	844,031	861,37	878,538	895,935	913,511	931,17	948,693	966,34	983,94
h2, mm	3,472	3,416	3,41	3,397	3,401	3,393	3,375	3,354	3,345	3,328	3,317
P, ton.	811,426	816,569	753,362	703,11	641,186	602,376	582,719	570,704	551,456	541,86	529,31

Tabela F3.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F6, para o aço carbono manganês 3.

				Tens	são de E	scoamer	nto Média	, MPa			
	Te6-10%	Te6-8%	Te6-6%	Te6-4%	Te6-2%	Te6	Te6+2%	Te6+4%	Te6+6%	Te6+8%	Te6+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566
F4	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106
F5	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462
F6	304,802	286,04	265,517	247,944	231,278	217,91	207,662	199,696	191,777	185,813	179,963

Tabela F3.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F6, para o aço carbono manganês 3.

				Tam	anho de	Grão d	a Austen	ita, μm			
	Te6-10%	Te6-8%	Te6-6%	Te6-4%	Te6-2%	Te6	Te6+2%	Te6+4%	Te6+6%	Te6+8%	Te6+10%
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83
F3	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685
F4	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048
F5	11,525	12,356	13,467	14,76	16,118	17,439	20,284	22,025	23,664	25,228	26,736
F6	7,751	8,262	9,283	10,427	11,711	12,968	14,971	16,535	18,488	21,085	24,522

Tabela F3.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material na cadeira F6, para o aço carbono manganês 3.

				Te	emperatu	ra de La	minação,	оС			
	Te6-10%	Te6-8%	Te6-6%	Te6-4%	Te6-2%	Te6	Te6+2%	Te6+4%	Te6+6%	Te6+8%	Te6+10%
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146
F3	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739
F4	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507
F5	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561
F6	808,719	826,839	844,031	861,373	878,538	895,935	913,511	931,17	948,693	966,343	983,935

Tabela F3.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F6, para o aço carbono manganês 3.

					Espess	ura de S	Saída, mr	m			
	Te6-10%	Te6-8%	Te6-6%	Te6-4%	Te6-2%	Te6	Te6+2%	Te6+4%	Te6+6%	Te6+8%	Te6+10%
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554
F3	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405
F4	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364
F5	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933
F6	3,472	3,416	3,41	3,397	3,401	3,393	3,375	3,354	3,345	3,328	3,317

Tabela F3.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na temperatura de entrada do material da cadeira F6, para o aço carbono manganês 3.

					Força	de Lamir	nação, to	n.			
	Te6-10%	Te6-8%	Te6-6%	Te6-4%	Te6-2%	Te6	Te6+2%	Te6+4%	Te6+6%	Te6+8%	Te6+10%
F1	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815	1634,815	1634,815
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99
F3	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,013	1374,013	1374,013
F4	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,725	1122,725	1122,725
F5	1045,4	1045,4	1045,4	1045,4	1045,4	1045,4	1045,4	1045,4	1045,404	1045,404	1045,404
F6	811,426	816,569	753,362	703,108	641,186	602,376	582,719	570,704	551,456	541,864	529,311

F4 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA TENSÃO A RÉ APLICADA AO MATERIAL NA SEXTA CADEIRA DE LAMINAÇÃO.

Tabela F4.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a ré do material na cadeira F6.

τ1, MPa	0	4,246	8,492	12,738	16,984	21,23	25,476	29,722	33,968	38,214	42,46
ТЕМ, Мра	219,312	219,384	219,488	220,22	218,433	217,91	219,34	218,76	219,49	218,284	219,06
TG, μm	12,986	12,996	12,98	12,94	12,956	12,968	12,925	12,938	12,895	12,908	12,864
T, oC	897,098	896,584	896,419	896,33	896,205	895,935	895,586	895,33	895,23	895,203	895,08
h2, mm	3,4	3,406	3,401	3,39	3,393	3,393	3,388	3,388	3,377	3,372	3,361
P, ton.	652,676	647,247	641,443	640,59	612,892	602,376	607,542	596,55	595,66	579,362	578,77

OBS: Resultados das tensões de escoamento média, tamanho de grão, temperatura de laminação, espessura de saída e força de laminação, obtidos pelo modelo termomicroestrutural para aço C-Mn 3, devido a variações provocadas na tensão a ré na cadeira F5 e sua influência em todas as cadeiras de laminação estão mostradas nas tabelas E5.2, E5.3, E5.4, E5.5 e E5.6, respectivamente. Pois a tensão a ré em F6 é a tensão à frente de F5.

F5 - TABELAS RELATIVAS AO EFEITO DA VARIAÇÃO NA VELOCIDADE DO CILINDRO DE TRABALHO NA SEXTA CADEIRA DE LAMINAÇÃO.

Tabela F5.1 – Resultados das tensões de escoamento média(TEM), tamanho de grão e temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro de trabalho na cadeira F6.

Vr, m/s	8,604	8,795	8,986	9,178	9,369	9,56	9,751	9,942	10,134	10,325	10,516
ТЕМ, Мра	216,33	216,819	216,6	217,014	218,14	217,91	218,3	219,397	219,149	221,428	221,17
TG, μm	12,927	12,927	12,954	12,959	12,936	12,968	12,976	12,953	12,99	12,922	12,956
T, oC	895,366	895,508	895,56	895,686	895,894	895,935	896,049	896,247	896,277	896,645	896,67
h2, mm	3,384	3,384	3,391	3,392	3,387	3,393	3,394	3,389	3,395	3,377	3,383
P, ton.	603,128	604,227	599,88	600,481	606,675	602,376	602,935	609,014	604,711	626,431	622,09

Tabela F5.2 – Resultados das tensões de escoamento média em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F6, para o aço carbono manganês 3.

				Tens	ão de Es	coamen	to Média,	MPa			
	Vr6-10%	Vr6-8%	Vr6-6%	Vr6-4%	Vr6-2%	Vr6	Vr6+2%	Vr6+4%	Vr6+6%	Vr6+8%	Vr6+10%
F1	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048	155,048
F2	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969	171,969
F3	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566	204,566
F4	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106	225,106
F5	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462	243,462
F6	216,33	216,819	216,602	217,014	218,14	217,91	218,3	219,397	219,149	221,428	221,166

Tabela F5.3 – Resultados do tamanho de grão da austenita em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F6, para o aço carbono manganês 3.

	Tamanho de Grão da Austenita, μm											
	Vr6-10%	Vr6-8%	Vr6-6%	Vr6-4%	Vr6-2%	Vr6	Vr6+2%	Vr6+4%	Vr6+6%	Vr6+8%	Vr6+10%	
F1	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	22,096	
F2	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	18,83	
F3	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	24,685	
F4	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	21,048	
F5	17,439	17,439	17,439	17,439	17,439	17,439	17,439	17,439	17,439	17,439	17,439	
F6	12,927	12,927	12,954	12,959	12,936	12,968	12,976	12,953	12,99	12,922	12,956	

Tabela F5.4 – Resultados da temperatura de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho na cadeira F6, para o aço C-Mn 3.

	Temperatura de Laminação, oC											
	Vr6-10%	Vr6-8%	Vr6-6%	Vr6-4%	Vr6-2%	Vr6	Vr6+2%	Vr6+4%	Vr6+6%	Vr6+8%	Vr6+10%	
F1	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	968,731	
F2	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	946,146	
F3	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	934,739	
F4	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	920,507	
F5	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561	912,561	
F6	895,366	895,508	895,56	895,686	895,894	895,935	896,049	896,247	896,277	896,645	896,667	

Tabela F5.5 – Resultados da espessura de saída em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F6, para o aço C-Mn 3.

	Espessura de Saída, mm											
	Vr6-10%	Vr6-8%	Vr6-6%	Vr6-4%	Vr6-2%	Vr6	Vr6+2%	Vr6+4%	Vr6+6%	Vr6+8%	Vr6+10%	
F1	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	17,255	
F2	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	10,554	
F3	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	7,405	
F4	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	5,364	
F5	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933	3,933	
F6	3,384	3,384	3,391	3,392	3,387	3,393	3,394	3,389	3,395	3,377	3,383	

Tabela F5.6 – Resultados da carga de laminação em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho da cadeira F6, para o aço C-Mn 3.

	Força de Laminação, ton.											
	Vr6-10%	Vr6-8%	Vr6-6%	Vr6-4%	Vr6-2%	Vr6	Vr6+2%	Vr6+4%	Vr6+6%	Vr6+8%	Vr6+10%	
F1	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,82	1634,815	
F2	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	1616,99	
F3	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,01	1374,013	
F4	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,73	1122,725	
F5	1045,4	1045,4	1045,4	1045,4	1045,4	1045,4	1045,4	1045,4	1045,4	1045,4	1045,404	
F6	603,128	604,227	599,882	600,481	606,675	602,376	602,935	609,014	604,711	626,431	622,091	

ANEXO G – EFEITO DOS DISTÚRBIOS NA QUARTA CADEIRA DE LAMINAÇÃO

G.1 – Efeito da variação do gap em F3 e sua influência em F4 – gap3

Foram feitas simulações para variação do gap na primeira cadeira de laminação e levantados os gráficos de gap em F3 & tensão de escoamento média, gap em F3 & tamanho de grão, gap em F3 & temperatura de laminação, gap em F3 & espessura de saída e gap em F3 & carga de laminação. As tabelas relativas aos gráficos mostrados neste item estão no anexo D.

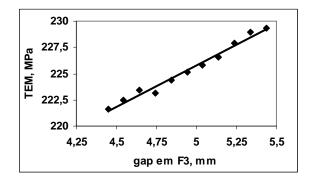


Figura G.1 – Resultados das tensões de escoamento média (TEM) em F4, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F3, tabela D1.1.

Observe que a TEM cresce com o aumento no gap em F3, o que esta de acordo com os comentários feitos para as cadeiras anteriores.

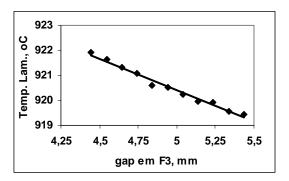


Figura G.2 – Resultados de temperatura de laminação em F4, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F3, tabela D1.1.

Nota-se neste caso uma diminuição na temperatura de laminação com o aumento no gap em F3. Isto significa que a parcela de perda de calor devido a radiação e convecção por causa do maior tempo entre passe de F3 para F4, foi superior ao aquecimento pela

deformação plástica. Além disso, a taxa de resfriamento foi mantida constante. Devido a estes efeitos concorrentes, a variação de temperatura foi pouco significativa.

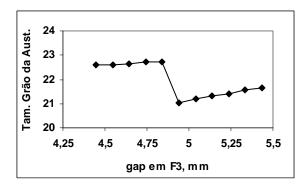


Figura G.4 – Resultados de tamanho de grão (μm) em F4 obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F3, tabela D1.1.

Observe na figura (G.4) e tabela (D1.1), que o tamanho de grão permanece praticamente constante devido a pouca variação na temperatura até gap3-2%. Em seguida ocorre uma queda acentuada no tamanho de grão devido ao início de recristalização dinâmica, como pode ser visto na tabela (5.12). Após o tamanho de grão volta a ser praticamente constante devido a pouca variação de temperatura.

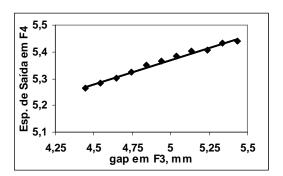


Figura G.5 – Resultados de espessura de saída (mm) em F4, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F3, tabela D1.1.

Observe na figura (G.5) que quanto maior o gap em F3, maior é a espessura de entrada em F4, portanto maior é a espessura de saída do material no laminador. Isto é devido ao aumento da carga de laminação provocada pelo aumento da espessura de entrada, fazendo com que o laminador se distenda mais, resultando no aumento da espessura de saída do material.

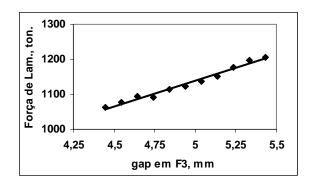


Figura G.6 – Resultados de carga de laminação (ton.) em F4, obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F3, tabela D1.1.

Como pode ser visto na figura (G.6), quanto maior o gap em F3, maior é a espessura de entrada do material em F4, consequentemente, maior é a carga de laminação, devido a maior resistência a passagem do material no laminador.

G.2 – Efeito da variação na abertura entre os cilindros de trabalho em F4- gap4

Foram feitas simulações para variação do gap em F4 e levantados os gráficos cujas tabelas estão no anexo D.

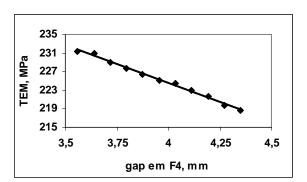


Figura G.7 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F4, tabela D3.1.

Observe que a TEM decresce com o aumento no gap em F4, devido ao aumento na espessura de saída do material, reduzindo assim a deformação e a taxa de deformação.

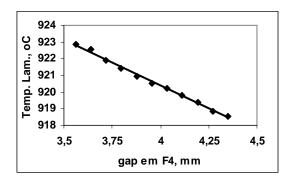


Figura G.8 – Resultados de temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F4, tabela D3.1.

Nota-se uma diminuição na temperatura de laminação com o aumento do gap em F4, pois irá reduzir o aquecimento do material devido a menor deformação plástica.

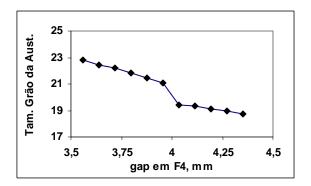


Figura G.9 – Resultados de tamanho de grão (μm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F4, tabela D3.1.

Observe na figura (G.9) e tabela (D3.1), que o tamanho de grão decresce com o aumento do gap em F4, provavelmente devido a queda na temperatura. Nota-se também um queda mais acentuada no tamanho de grao em gap4+2% devido a não mais ocorrência de recristalização completa do grão (X<0,95).

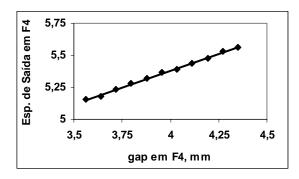


Figura G.10 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F4, tabela D3.1.

Observe na figura (G.10) que quanto maior o gap em F4, maior é a espessura de saída do material no laminador.

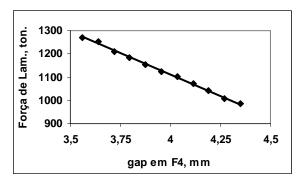


Figura G.11 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F4, tabela D3.6.

Como pode ser visto na figura (G.11), quanto maior o gap, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador.

Observe na figura (G.12) que o aumento no gap em F4 provocou uma redução da TEM neste passe e com o aumento na espessura de saída ocasiona um aumento na TEM no passe seguinte.

Observe-se na figura (G.13) que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores. Este crescimento é devido a não haver mais recristalização dinâmica no passe considerado.

A maior queda no tamanho de grão para gap maior do que gap4 na figura (G.13), foi devido a recristalização não completa em F4 (X<0,95), em seguida ocorre recristalização completa e o grão cresce para posteriormente cair.

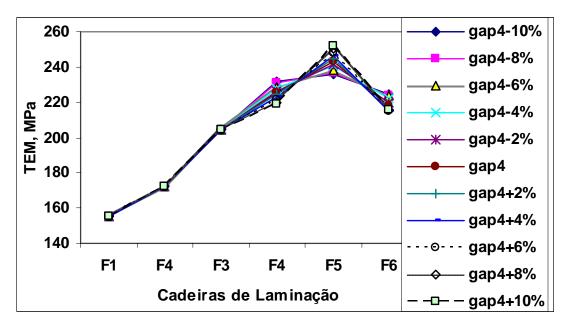


Figura G.12 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F4, tabela D3.2.

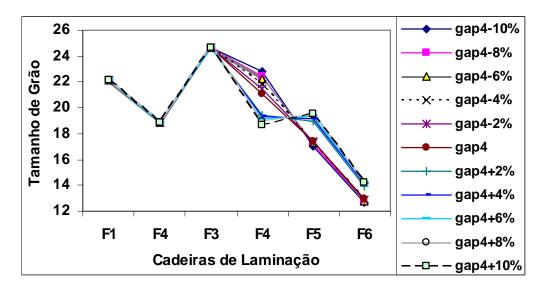


Figura G.13 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F4, tabela D3.3.

O aumento no gap em F4 proporcionou pequena redução na temperatura de laminação em F4 e F5, como pode ser visto na figura (G.14).

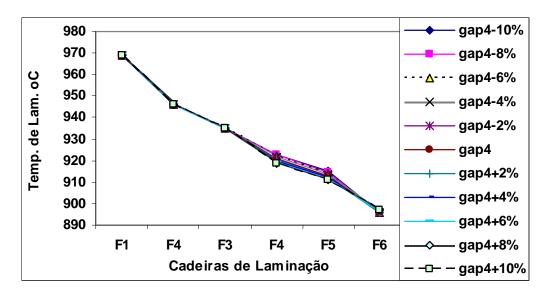


Figura G.14 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F4, tabela D3.4.

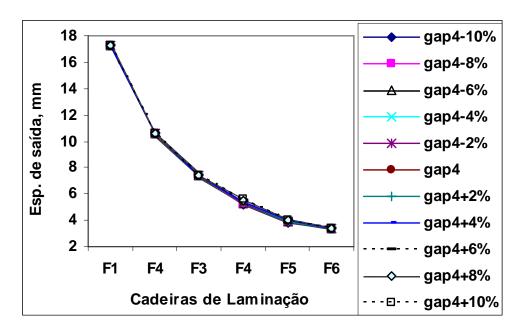


Figura G.15 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F4, tabela D3.5.

Observe na figura (G.15) que a partir da cadeira F5 o aumento na espessura de saída devido ao aumento no gap em F4 foi pouco significativo.

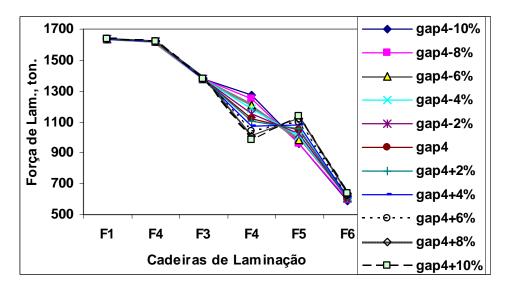


Figura G.16 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F4, tabela D3.6.

O aumento no gap em F4 provoca um aumento na espessura de entrada na F5, consequentemente reduz a carga de laminação em F4 e aumenta em F5, como observado na figura (G.16).

G.3 – Efeito da variação na temperatura de entrada do material – Te4

Foram feitas simulações para variação da temperatura de entrada em F4 e levantados os gráficos a seguir, cujas tabelas relativas aos gráficos mostrados neste item estão no anexo D.

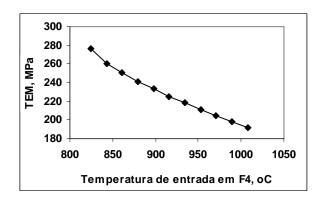


Figura G.17 – Resultados das tensões de escoamento média (TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F4, tabela D3.1.

Observe que a TEM diminui com o aumento na temperatura de entrada do material.

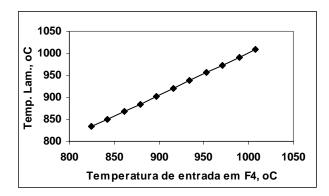


Figura G.18 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F4, tabela D3.1.

Nota-se uma relação quase direta do aumento na temperatura de laminação com o aumento na temperatura de entrada do material.

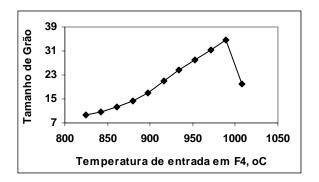


Figura G.19 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F4, tabela D3.1.

Observe na tabela (G.1) que para temperaturas de entrada da tira mais baixas do que Te4+10%, não houve recristalização dinâmica em F4, portanto estes tamanhos de grão são regidos pelo mecanismo de recristalização estática, equações (1.130) e (1.134), que produzem tamanho de grãos maiores, como pode ser visto na figura (G.19). Para a temperatura Te4+10% o mecanismo que rege o tamanho de grão é o de recristalização dinâmica. Por isto ocorre uma queda no tamanho de grão.

Tabela G.1 – Resultados da fração de recristalização dinâmica em todas as cadeiras de laminação devido a alterações temperatura de entrada do material em F4, para o aço carbono manganês 3.

	Recristalização dinâmica - Xdin											
	TE4-10%	TE4-8%	TE4-6%	TE4-4%	TE4-2%	TE4	TE4+2%	TE4+4%	TE4+6%	TE4+8%	Te4+10%	
F1	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	
F3	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	0,135	
F3	0	0	0	0	0	0	0	0	0	0	0	
F4	0	0	0	0	0	0	0	0	0	0	0,088	
F5	0	0	0	0	0	0	0	0	0	0	0	
F6	0	0	0	0	0	0	0	0	0	0	0	

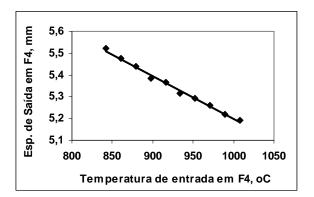


Figura G.20 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do em F4, tabela D3.1.

Observe na figura (G.20) que quanto maior a temperatura de entrada, menor é a espessura de saída do material no laminador. Isto é devido a menor carga de laminação e consequentemente o laminador distende menos.

Como pode ser visto na figura (G.21), quanto maior a temperatura de entrada do material, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador.

Observe na figura (G.22) que o aumento na temperatura de entrada na cadeira F4 provocou uma diminuição na TEM que continuou em todas as outras cadeiras subsequentes.

Observa-se que também neste caso, que a TEM é bastante sensível ao efeito na temperatura de entrada na cadeira F4, veja figura (G.22).

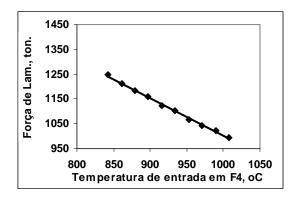


Figura G.21 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do material em F4, tabela D3.1.

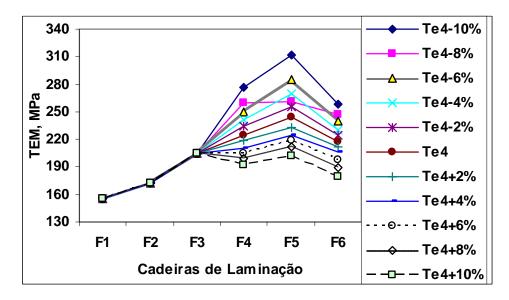


Figura G.22 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F4, tabela D3.3.

Nota-se na figura (G.23) que o efeito no tamanho de grão é bastante sensível à variação da temperatura de entrada em F4, e se propaga para as demais cadeiras de laminação.

Observa-se também na mesma figura que onde ocorre um crescimento rápido no tamanho de grão é exatamente onde não mais ocorre recristalização dinâmica, como pode ser visto na tabela (G.1).

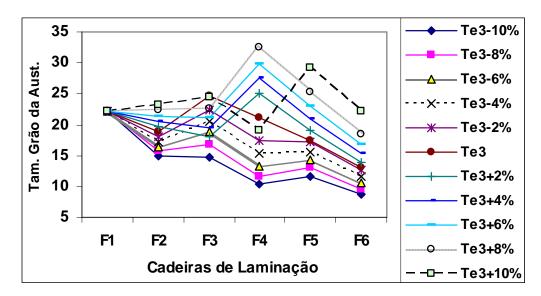


Figura G.23 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F4, tabela D3.3.

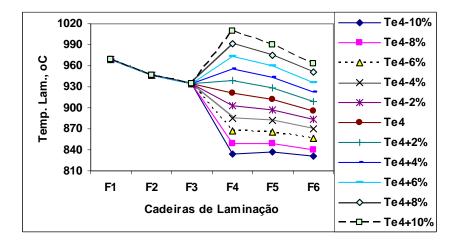


Figura G.24 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F4, tabela D3.4.

Observe que o aumento na temperatura de entrada em F4 aumenta a temperatura de laminação em todas as cadeiras seguintes, sendo que o seu efeito reduz gradativamente para as cadeiras mais distantes de F4.

Nota-se também que a temperatura de laminação é bastante sensível a temperatura de entrada na cadeira F4.

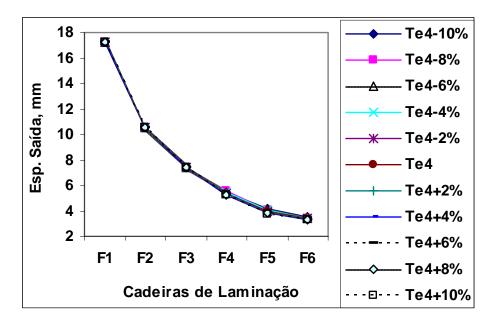


Figura G.25 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material em F4, tabela D3.5.

Observe na figura (G.25) que a variação na espessura de saída devido a variação na temperatura de entrada do material em F4 foi pouco significativa.

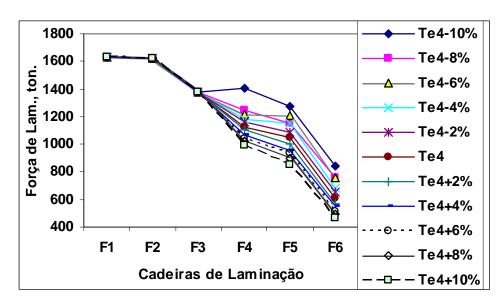


Figura G.26 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material em F4, tabela D3.6.

O aumento na temperatura de entrada do material em F4 provoca uma diminuição na TEM, portanto reduz a carga de laminação em todas as cadeiras posteriores.

G.4 – Efeito da variação na tensão a ré no material em relação a cadeira F4 - τ14

Foram feitas simulações para variação da tensão a ré do material em relação a F4 e levantados os gráficos cujas tabelas no anexo D.

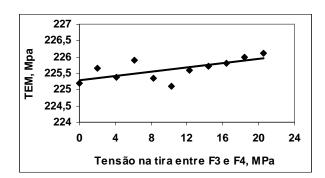


Figura G.27 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações tensão a ré na tira da cadeira F4, tabela D4.1.

Observe que existe uma tendência de pouco significativa de aumento da TEM com o aumento na tensão a ré do material. Isto é devido ao fato de a aplicação da tensão a ré reduzir a carga de laminação, que por sua vez irá reduzir na espessura de saída do material, aumentando assim, a deformação e a taxa de deformação. Por outro lado, A aplicação da tensão a ré diminui a espessura de saída do material na cadeira anterior que irá contribuir para a redução da deformação e taxa de deformação. Além disso, haverá uma redução de temperatura de laminação, veja figura (G.28), que também provoca aumento na TEM.

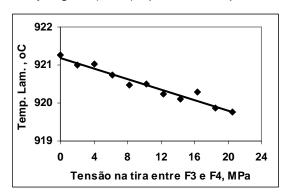


Figura G.28 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações tensão a ré da tira da cadeira F4, tabela D4.1.

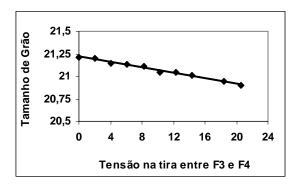


Figura G.29 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas tensão a ré da tira da cadeira F4, tabela D4.1.

Como o tamanho de grão é influenciado pela temperatura entre passe conforme as equações (1.130) e (1.134) para a recristalização estática e (1.138) e (1.136), para a recristalização dinâmica, se o aumento na tensão a ré diminui a temperatura de laminação, o tamanho de grão tende a cair ligeiramente.

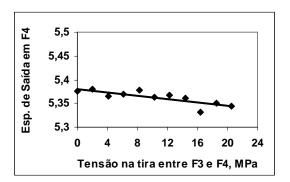


Figura G.30 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a ré na tira da cadeira F4, tabela D4.1.

A espessura de saída é fortemente influenciada pelas flutuações na carga de laminação. Observe que há uma tendência de redução na espessura de saída com a aplicação da tensão na tira, pois a carga de laminação tem também uma tendência de redução. Veja figura (G.31). Isto é devido principalmente a redução na resistência a deformação do material, equações (1.163) e (2.13).

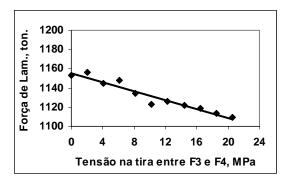


Figura G.31 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a ré na tira em F4, tabela D4.1

G.5 – Efeito da variação na tensão a frente no material na saída da cadeira F4 - τ24

Foram feitas simulações para variação da tensão a frente do material na saída de F4 e levantados os gráficos a seguir, cujas tabelas estão no anexo D.

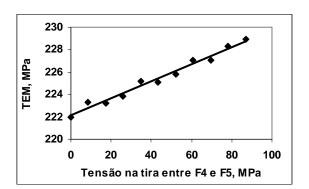


Figura G.32 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a frente na tira da cadeira F4, tabela D5.1.

Observe que a TEM aumenta com o aumento na tensão a frente do material. Isto é devido ao fato de a aplicação da tensão a frente reduzir a carga de laminação, que por sua vez irá reduzir a espessura de saída do material, aumentando assim a deformação e a taxa de deformação. Além disso, haverá uma redução de temperatura de laminação, que também provoca aumento na TEM.

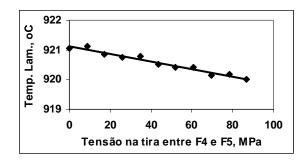


Figura G.33 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações tensão a frente na tira da cadeira F4, tabela D5.1.

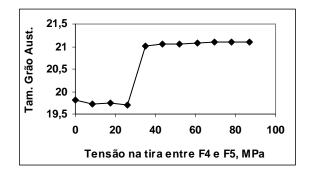


Figura G.34 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas tensão a frente na tira da cadeira F4, tabela D5.1.

O tamanho de grão final da austenita obtido na figura (G.34) se mantém praticamente constante devido a pequena variação na temperatura entre passe, porém para tensões na tira acima de τ 24-40% faz com que ocorra recristalização completa entre F4 e F5 (X>0,95) em F4, permitindo então o crescimento de grão. Isto pode ser observado na tabela (G.2).

Tabela G.2 – Resultados da fração de recristalização dinâmica em todas as cadeiras de laminação devido a alterações na tensão a frente da tira em F4, para o aço carbono manganês 3.

	Fração de Recristalização do Material - X												
	τ24-100%	τ24-80%	τ24-60%	τ24-40%	τ24-20%	τ24	τ24+20%	τ24+40%	τ24+60%	τ24+80%	τ24+100%		
F1	1	1	1	1	1	1	1	1	1	1	1		
F2	1	1	1	1	1	1	1	1	1	1	1		
F3	1	1	1	1	1	1	1	1	1	1	1		
F4	0,942	0,946	0,947	0,949	0,953	0,953	0,956	0,959	0,96	0,963	0,965		
F5	0,962	0,962	0,962	0,96	0,94	0,939	0,935	0,934	0,933	0,927	0,928		
F6	0,375	0,359	0,353	0,348	0,408	0,396	0,391	0,378	0,371	0,383	0,371		

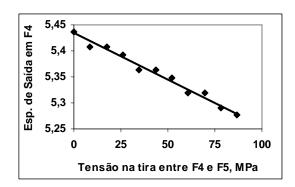


Figura G.35 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a frente da tira na cadeira F4, tabela D5.1.

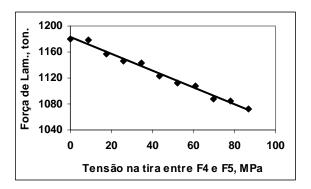


Figura G.36 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a rente da tira em F4, tabela D5.1

Como pode ser visto na figura (G.36), quanto maior a tensão a frente do material, menor é a carga de laminação, devido principalmente a redução na resistência a deformação do material.

Observe na figura (G.37) que o aumento na tensão a frente em F4 provocou um ligeiro aumento na TEM do material para cadeiras posteriores.

Observe-se na figura (G.38) que na cadeira F4 houve uma maior redução no tamanho de grão para as tensões a frente até τ 24-40. Isto foi devido a não haver recristalização completa entre passe F4 e F5, como pode ser visto na tabela (G.2).

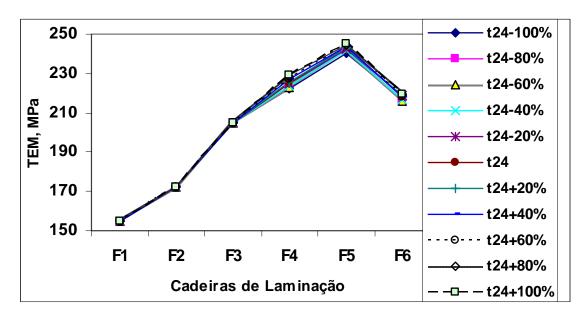


Figura G.37 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na tensão a frente na tira em F4, tabela D5.3.

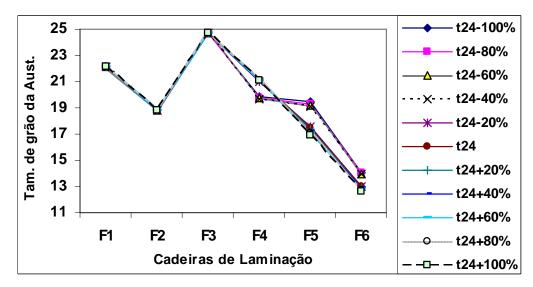


Figura G.38 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na tensão a frente na tira em F4, tabela D5.3.

Observe na figura (G.39) que um aumento na tensão a frente em F4, acarretou uma pequena redução de temperatura nos passes seguintes.

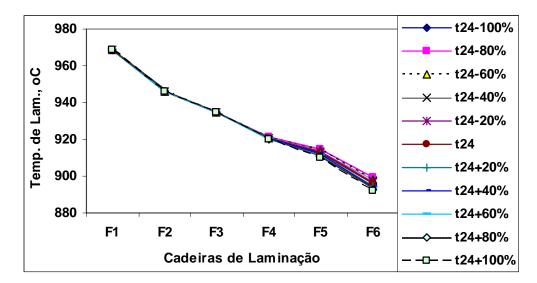


Figura G.39 – Resultados da temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a frente na tira em F4, tabela D5.4

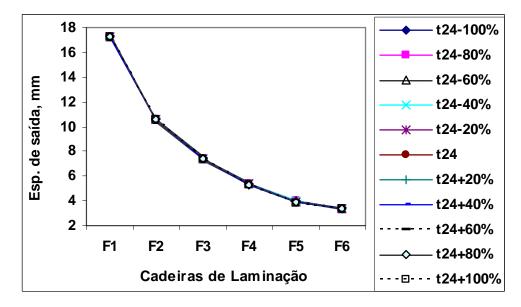


Figura G.40 – Resultados da espessura de saída do material, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a frente de F4, tabela D5.5.

Observe na figura (G.40) que houve muita pouca influencia da tensão a frente da F4 nas espessuras de saídas do material.

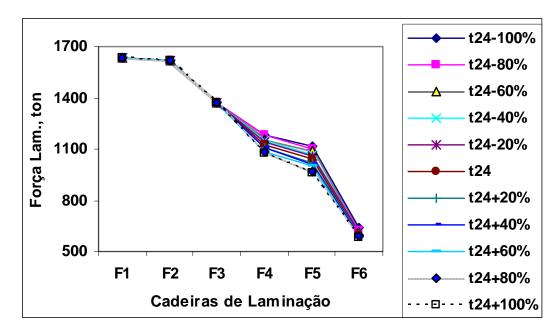


Figura G.41 – Resultados da carga de laminação, obtidos pelo modelo termomicroestrtural para aço carbono manganês 3, devido a variações provocadas na tensão a frente de F4, tabela D5.6.

Nota-se uma maior influencia do aumento da tensão a frente na tira de F4 foi na redução das cargas em F4 e F5.

G.6 – Efeito da variação na velocidade do cilindro de trabalho da cadeira F4 – Vr4

Foram feitas simulações para variação da velocidade do cilindro de trabalho de F4 e levantados os gráficos cujas tabelas estão no anexo D.

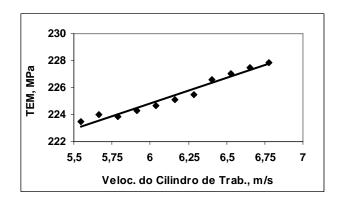


Figura G.42 – Resultados das tensões de escoamento média (TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro da cadeira F4, tabela D6.1.

Observe que a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.153), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho.

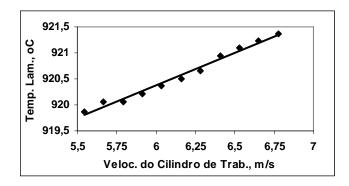


Figura G.43 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F4, tabela D6.1.

Nota-se um aumento na temperatura de laminação com o aumento velocidade do cilindro de trabalho, porque como foi dito, o aumento na TEM implica no aumento da carga de laminação e o aumento da carga de laminação provoca aumento da temperatura de laminação devido ao maior aquecimento por deformação plástica.

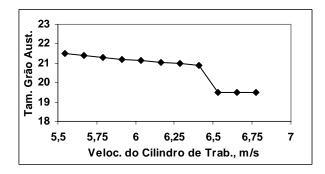


Figura G.44 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações na velocidade do cilindro da cadeira F4, tabela D6.1.

Observe-se que houve muito pouca influencia do tamanho de grão com a velocidade do cilindro, mas com tendência de queda. Para velocidades acima de Vr3+4% houve uma redução acentuada no tamanho de grão devido a não mais ocorrência de recristalização

completa em F4, acarretando acúmulo de deformação residual para o próximo passe, como pode ser visto na tabela (5.18).

Tabela G.3 – Resultados do índice de recristalização dinâmica em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho em F4, para o aço carbono manganês 3.

	Fração de Recristalização do Material - X												
	Vr4-10%	Vr4-8%	Vr4-6%	Vr4-4%	Vr4-2%	Vr4	Vr4+2%	Vr4+4%	Vr4+6%	Vr4+8%	Vr4+10%		
F1	1	1	1	1	1	1	1	1	1	1	1		
F3	1	1	1	1	1	1	1	1	1	1	1		
F3	1	1	1	1	1	1	1	1	1	1	1		
F4	0,965	0,963	0,96	0,958	0,956	0,953	0,951	0,951	0,949	0,947	0,945		
F5	0,909	0,918	0,925	0,93	0,935	0,939	0,944	0,944	0,965	0,967	0,969		
F6	0,444	0,433	0,41	0,405	0,4	0,396	0,392	0,391	0,321	0,318	0,316		

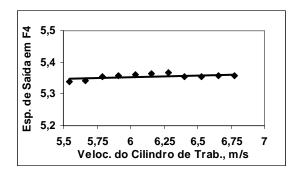


Figura G.45 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F4, tabela D6.1.

Nota-se que a espessura de saída praticamente se manteve constante, com o aumento da velocidade do cilindro de trabalho, com uma ligeira tendência de crescimento. Neste caso temos também alguns efeitos concorrentes, como no caso o aumento na velocidade do cilindro aumenta a temperatura que por sua vez provoca redução na espessura de saída do material. Por outro lado, a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho. O aumento da TEM aumenta a carga de laminação, figura (G.46), fazendo com que o laminador se distenda mais, acarretando no aumento da espessura de saída.

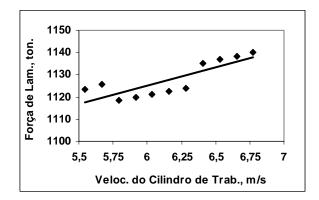


Figura G.46 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na velocidade do cilindro em F4, tabela D6.1

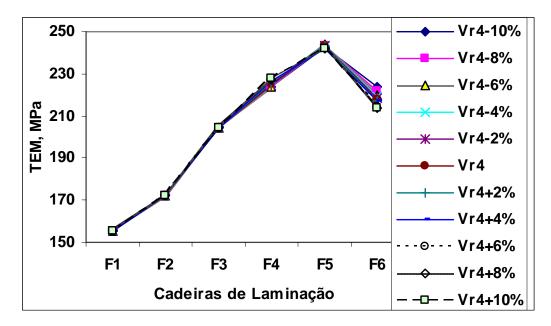


Figura G.47 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F4, tabela D6.3.

Observe que o aumento na velocidade do cilindro em F4 provocou um ligeiro aumento da TEM em F4 e redução em F5 que se manteve para as demais cadeiras. Isto provavelmente foi devido ao aumento na temperatura de entrada em F5.

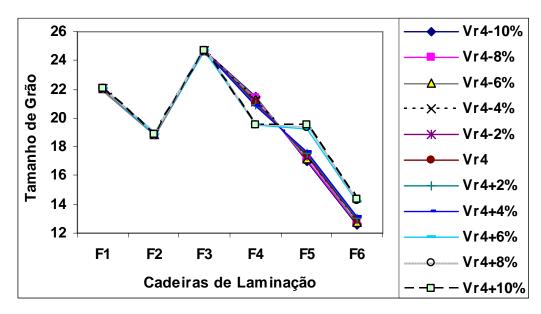


Figura G.48 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro na cadeira F4, tabela D6.3.

Observe-se que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores devido a não haver mais recristalização dinâmica no passe F3. A maior queda no tamanho de grão em F4 para velocidades do cilindro maiores (Vr4+6%, Vr4+8%, Vr4+10%), foi devido a não ocorrência de recristalização completa nestes casos (X<0,95).

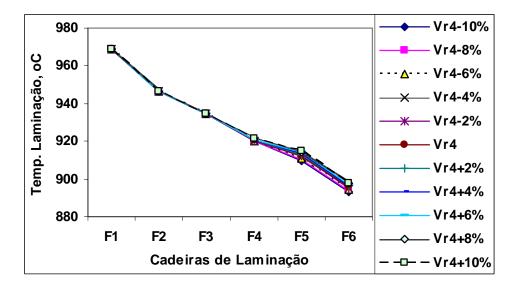


Figura G.49 – Resultados da temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na velocidade do cilindro em F4, tabela D6.4

Observe que o aumento na velocidade do cilindro em F4 influencia mais a temperatura de laminação na cadeira F5. Isto é devido ao fato de que com uma maior velocidade do material entre F4 e F5, menor é a perda térmica por radiação onde a mesma apresenta uma relação direta com o tempo entre passes. Da mesma forma isto acontece com a perda de calor para o ar.

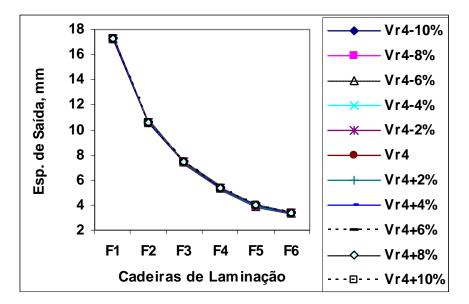


Figura G.50 – Resultados da espessura de saída do material, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F4, tabela D6.5.

Observe na figura (G.50) que houve muita pouca influencia da velocidade do cilindro em F4 nas espessuras de saídas do material.

Há maior influencia da variação na velocidade do cilindro em F4 foi na carga em F4, nas demais cadeiras sua influencia foi pouco significativa, veja na figura (G.51).

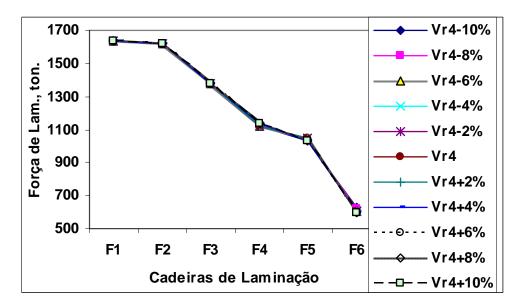


Figura G.51 – Resultados da carga de laminação, obtidos pelo modelo termomicroestrtural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F4, tabela D6.6.

ANEXO H – EFEITO DOS DISTÚRBIOS NA QUINTA CADEIRA DE LAMINAÇÃO

H.1 – Efeito da variação do gap em F4 e sua influência em F5 – gap4

Foram feitas simulações para variação do gap na primeira cadeira de laminação e levantados os gráficos cujas tabelas estão no anexo E.

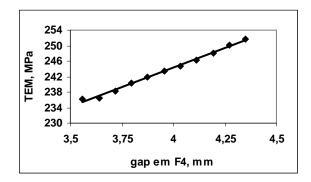


Figura H.1 – Resultados das tensões de escoamento média (TEM) em F5, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F4, tabela E1.1.

Observe que a TEM cresce com o aumento no gap em F4, o que esta de acordo com os comentários feitos para as cadeiras anteriores.

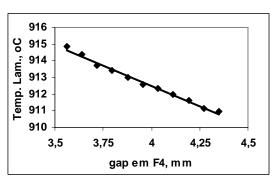


Figura H.2 – Resultados de temperatura de laminação em F5, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F4, tabela E1.1.

Nota-se neste caso uma diminuição na temperatura de laminação com o aumento no gap em F4. Isto significa que a parcela de perda de calor devido a radiação e convecção por causa do maior tempo entre passe de F4 para F5, foi superior ao aquecimento pela deformação plástica. Além disso, a taxa de resfriamento foi mantida constante. Devido a estes efeitos concorrentes, a variação de temperatura foi pouco significativa.

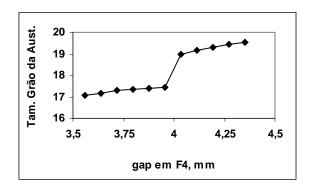


Figura H.3 – Resultados de tamanho de grão (μm) em F5 obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F4, tabela E1.1.

Observe na figura (H.3) e tabela (E1.1), que o tamanho de grão permanece praticamente constante devido a pouca variação na temperatura até gap4. Em seguida ocorre um aumento acentuado no tamanho de grão que se manteve para as demais cadeiras devido a ocorrência de recristalização completa (X<0,95) e crescimento de grão, como pode ser visto na tabela (H.1). Após o tamanho de grão volta a ser praticamente constante devido a pouca variação de temperatura.

Tabela H.1 – Resultados do índice de recristalização dinâmica em todas as cadeiras de laminação devido a alterações no gap do cilindro de trabalho em F4, para o aço C-Mn3.

	Fração de Recristalização do Material - X											
	gap4-10%	gap4-8%	gap4-6%	•			-		l	gap4+8%	gap4+10%	
F1	1	1	1	1	1	1	1	1	1	1	1	
F2	1	1	1	1	1	1	1	1	1	1	1	
F3	1	1	1	1	1	1	1	1	1	1	1	
F4	0,988	0,984	0,978	0,971	0,963	0,953	0,944	0,931	0,916	0,896	0,88	
F5	0,855	0,868	0,887	0,907	0,924	0,939	0,967	0,974	0,98	0,986	0,99	
F6	0,465	0,457	0,453	0,437	0,409	0,396	0,329	0,323	0,323	0,331	0,332	

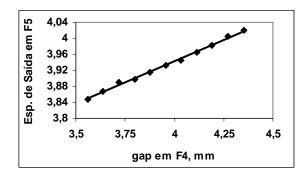


Figura H.4 – Resultados de espessura de saída (mm) em F5, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F4, tabela E1.1.

Observe na figura (H.4) que quanto maior o gap em F4, maior é a espessura de entrada em F5, portanto maior é a espessura de saída do material no laminador. Isto é devido ao aumento da carga de laminação provocada pelo aumento da espessura de entrada, fazendo com que o laminador se distenda mais, resultando no aumento da espessura de saída do material.

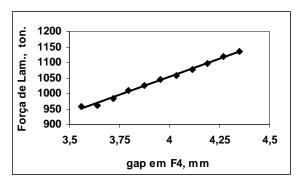


Figura H.5 – Resultados de carga de laminação (ton.) em F5, obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F4, tabela E1.1.

Como pode ser visto na figura (H.5), quanto maior o gap em F4, maior é a espessura de entrada do material em F5, consequentemente, maior é a carga de laminação, devido a maior resistência a passagem do material no laminador.

H.2 – Efeito da variação na abertura entre os cilindros de trabalho em F5– gap5

Foram feitas simulações pela variação do gap em F5 e levantados os gráficos cujas tabelas estão no anexo E.

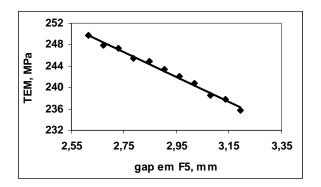


Figura H.6 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F5, tabela E3.1.

Observe que a TEM decresce com o aumento no gap em F5, devido ao aumento na espessura de saída do material, reduzindo assim a deformação e a taxa de deformação.

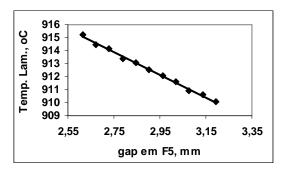


Figura H.7 – Resultados de temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F5, tabela E3.1.

Nota-se uma diminuição na temperatura de laminação com o aumento do gap em F5, pois irá reduzir o aquecimento do material devido a menor deformação plástica.

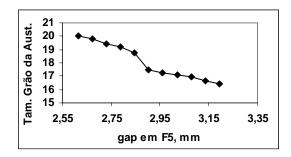


Figura H.8 – Resultados de tamanho de grão (μm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F5, tabela E3.1.

Observe na figura (H.8) e tabela (E3.1), que o tamanho de grão decresce com o aumento do gap em F5, provavelmente devido a queda na temperatura. Nota-se também um queda mais acentuada no tamanho de grao em gap5 devido a não mais ocorrência de recristalização completa do grão (X<0,95).

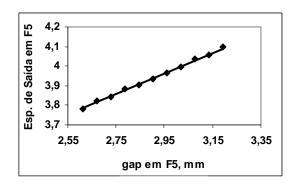


Figura H.9 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F5, tabela E3.1.

Observe na figura (H.9) que quanto maior o gap em F5, maior é a espessura de saída do material no laminador.

Como pode ser visto na figura (H.10), quanto maior o gap, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador.

Observe na figura (H.11) que o aumento no gap em F5 provocou uma redução da TEM neste passe e com o aumento na espessura de saída ocasiona um aumento na TEM no passe seguinte.

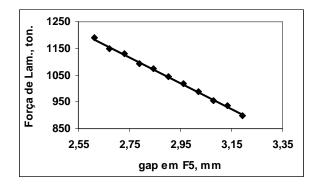


Figura H.10 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F5, tabela E3.6.

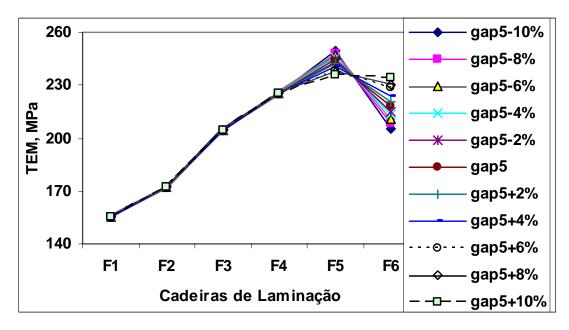


Figura H.11 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F5, tabela E3.2.

Observe-se na figura (H.12) que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores. Este crescimento é devido a não haver mais recristalização dinâmica no passe considerado.

A ocorrência de um crescimento mais acentuado no tamanho em F5 para gap menor do que gap5%, veja figura (H.12), foi devido a não mais ocorrência de recristalização completa em F5 (X<0,95), em seguida ocorre recristalização completa e o grão cresce para posteriormente cair. Nestes casos em que ocorreu recristalização completa e o tamanho de grão diminuiu, foi devido ao tempo entre passes (tip) ter sido muito pequeno, suficiente somente para a recristalização completa e que praticamente não houve crescimento de grão. Veja a equação (1.133) que foi a utilizada neste caso.

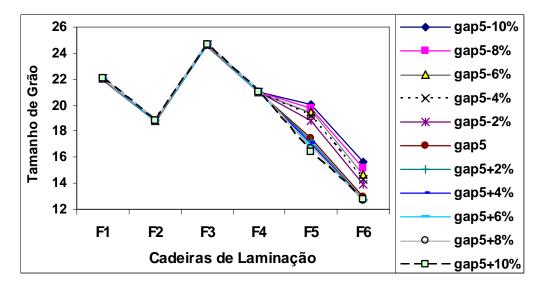


Figura H.12 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F5, tabela E3.3.

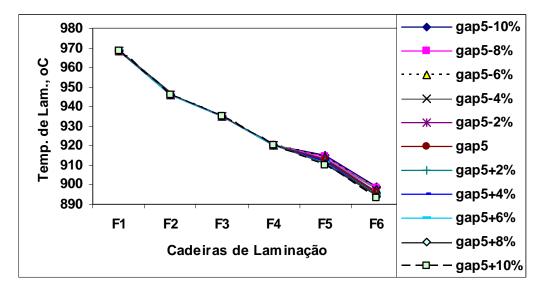


Figura H.13 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F5, tabela E3.4.

O aumento no gap em F5 proporcionou pequena redução na temperatura de laminação em F5 e F6.

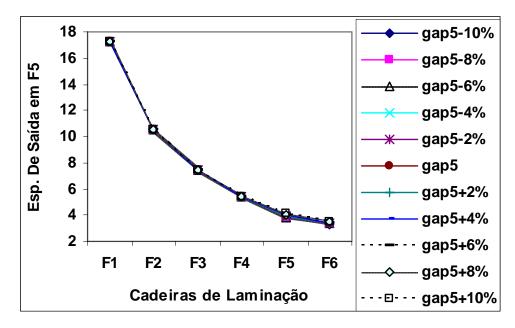


Figura H.14 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F5, tabela E3.5.

Observe na figura (H.14) que o aumento na espessura de saída devido ao aumento no gap em F5 foi pouco significativo.

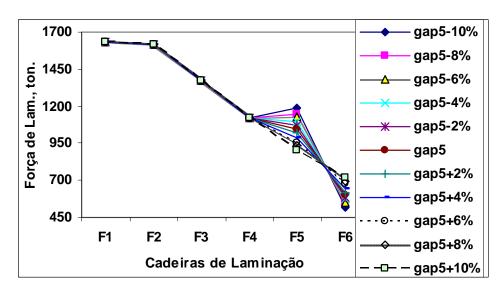


Figura H.15 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F5, tabela E3.6.

O aumento no gap em F5 provoca um aumento na espessura de entrada na F6, consequentemente reduz a carga de laminação em F5 e aumenta em F6, como observado na figura (H.15).

H.3 – Efeito da variação na temperatura de entrada do material – Te5

Foram feitas simulações pela variação da temperatura de entrada em F5 e levantados os gráficos a seguir, cujas tabelas relativas aos gráficos mostrados neste item estão no anexo E.

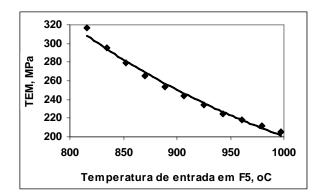


Figura H.16 – Resultados das tensões de escoamento média (TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F5, tabela E3.1.

Observe que a TEM diminui com o aumento na temperatura de entrada do material.

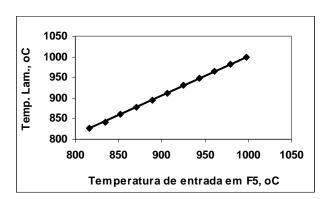


Figura H.17 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F5, tabela E3.1.

Nota-se uma relação quase direta do aumento na temperatura de laminação com o aumento na temperatura de entrada do material.

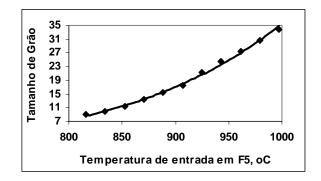


Figura H.18 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F5, tabela E3.1.

Observe na figura (H.18) que quanto maior a temperatura de entrada em F5, maior é o tamanho de grão do material, que são regidos pelo mecanismo de recristalização estática, equações (1.130) e (1.134).

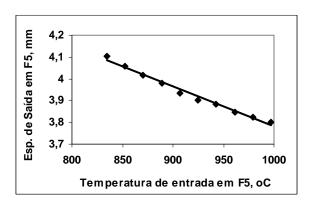


Figura H.19 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do em F5, tabela E3.1.

Observe na figura (H.19) que quanto maior a temperatura de entrada, menor é a espessura de saída do material no laminador. Isto é devido a menor carga de laminação e consequentemente o laminador distende menos.

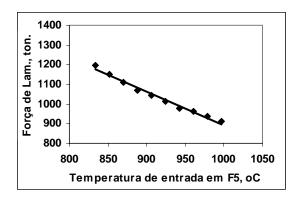


Figura H.20 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do material em F5, tabela E3.1.

Como pode ser visto na figura (H.20), quanto maior a temperatura de entrada do material, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador.

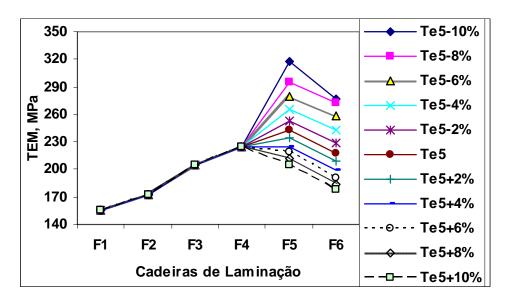


Figura H.21 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F5, tabela E3.3.

Observe que o aumento na temperatura de entrada na cadeira F5 provocou uma diminuição na TEM que continuou na cadeira seguinte.

Observa-se que a TEM é bastante sensível ao efeito na temperatura de entrada na cadeira F5.

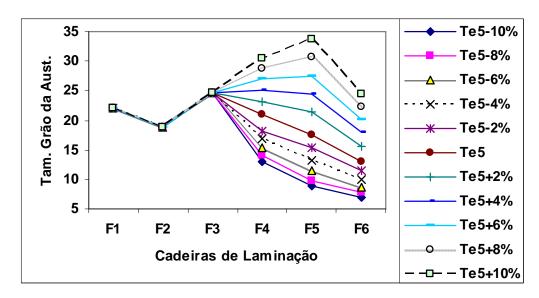


Figura H.22 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F5, tabela E3.3.

Nota-se que o efeito no tamanho de grão é bastante sensível à variação da temperatura de entrada em F5, e se propaga para as demais cadeiras de laminação.

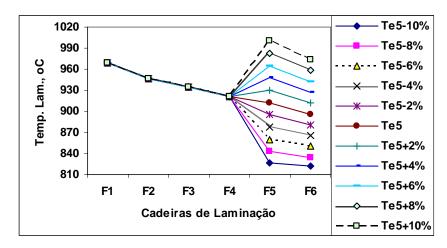


Figura H.23 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F5, tabela E3.4.

Observe que o aumento na temperatura de entrada em F5 aumenta a temperatura de laminação também em F6.

Nota-se também que a temperatura de laminação é bastante sensível a temperatura de entrada na cadeira F5.

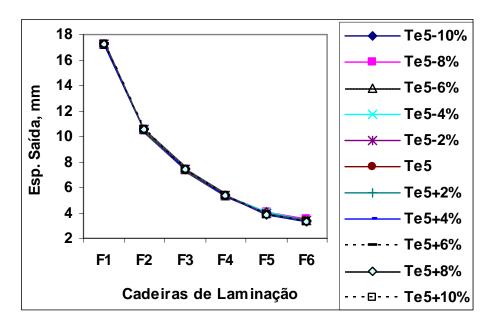


Figura H.24 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material em F5, tabela E3.5.

Observe na figura (H.24) que a variação na espessura de saída devido a variação na temperatura de entrada do material em F5 foi pouco significativa.

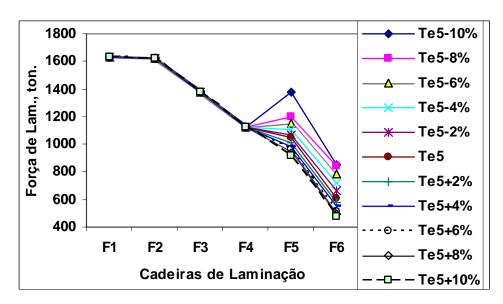


Figura H.25 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material em F5, tabela E3.6.

O aumento na temperatura de entrada do material em F5 provoca uma diminuição na TEM, portanto reduz a carga de laminação em todas as cadeiras posteriores.

H.4 – Efeito da variação na tensão a ré no material em relação a cadeira F5 - τ15

Foram feitas simulações pela variação da tensão a ré do material em relação a F5 e levantados os gráficos cujas tabelas estão no anexo E.

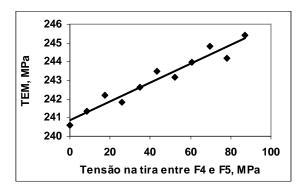


Figura H.26 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações tensão a ré na tira da cadeira F5, tabela E4.1.

Observe que existe uma tendência de pouco significativa de aumento da TEM com o aumento na tensão a ré do material. Isto é devido ao fato de a aplicação da tensão a ré reduzir a carga de laminação, que por sua vez irá reduzir na espessura de saída do material, aumentando assim, a deformação e a taxa de deformação. Por outro lado, A aplicação da tensão a ré diminui a espessura de saída do material na cadeira anterior que irá contribuir para a redução da deformação e taxa de deformação. Além disso, haverá uma redução de temperatura de laminação, veja figura (H.27), que também provoca aumento na TEM.

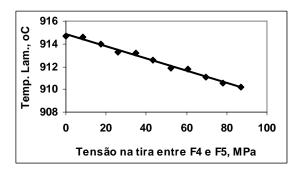


Figura H.27 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações tensão a ré da tira da cadeira F5, tabela E4.1.

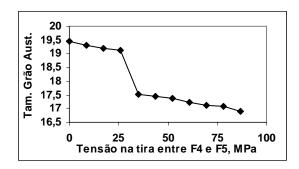


Figura H.28 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas tensão a ré da tira da cadeira F5, tabela E4.1.

Como o tamanho de grão é influenciado pela temperatura entre passe, se o aumento na tensão a ré diminui a temperatura de laminação, o tamanho de grão tende a cair ligeiramente.

Observe na figura (H.28) e na tabela (H.2), que para tensões na tira acima de τ15-40% o aumento da tensão a ré em F5 faz com que não ocorra recristalização completa entre F4 e F5 (X<0,95) em F5, acarretando numa redução mais acentuada do tamanho de grão.

Tabela H.2 – Resultados da fração de recristalização dinâmica em todas as cadeiras de laminação devido na tensão a ré da tira em F5, para o aço carbono manganês 3.

	Fração de Recristalização do Material - X											
	τ15-100%	τ15-80%	τ15-60%	τ15-40%	τ15-20%	τ15	τ15+20%	τ15+40%	τ15+60%	τ15+80%	τ15+100%	
F1	1	1	1	1	1	1	1	1	1	1	1	
F2	1	1	1	1	1	1	1	1	1	1	1	
F3	1	1	1	1	1	1	1	1	1	1	1	
F4	0,942	0,946	0,947	0,949	0,953	0,953	0,956	0,959	0,96	0,963	0,965	
F5	0,962	0,962	0,962	0,96	0,94	0,939	0,935	0,934	0,933	0,927	0,928	
F6	0,375	0,359	0,353	0,348	0,408	0,396	0,391	0,378	0,371	0,383	0,371	

A espessura de saída é fortemente influenciada pela carga de laminação. Observe na figura (H.29) que há uma tendência de redução na espessura de saída com a aplicação da tensão a ré na tira, pois a carga de laminação tem também uma tendência de redução. Veja figura (H.30). Isto é devido principalmente a redução na resistência a deformação do material, equações (1.163) e (2.13).

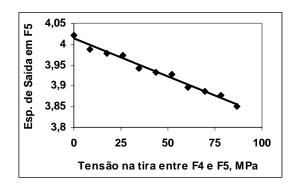


Figura H.29 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a ré na tira da cadeira F5, tabela E4.1.

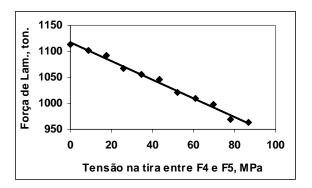


Figura H.30 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a ré na tira em F5, tabela E4.1

H.5 – Efeito da variação na tensão a frente no material na saída da cadeira F5 - τ25

Foram feitas simulações pela variação da tensão a frente do material na saída de F5 e levantados os gráficos a seguir, cujas tabelas estão no anexo E.

Observe na figura (H.31) que a TEM aumenta com o aumento na tensão a frente do material. Isto é devido ao fato de a aplicação da tensão a frente reduzir a carga de laminação, que por sua vez irá reduzir a espessura de saída do material, aumentando assim a deformação e a taxa de deformação. Além disso, haverá uma redução de temperatura de laminação, que também provoca aumento na TEM.

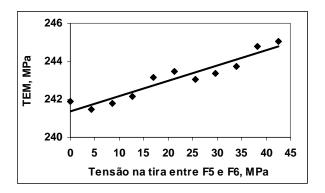


Figura H.31 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a frente na tira da cadeira F5, tabela E5.1.

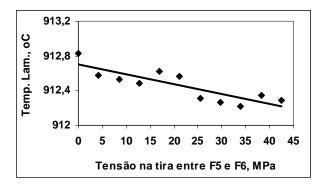


Figura H.32 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações tensão a frente na tira da cadeira F5, tabela E5.1.

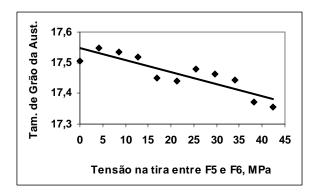


Figura H.33 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas tensão a frente na tira da cadeira F5, tabela E5.1.

O tamanho de grão final da austenita obtido na figura (H.33) mostra uma tendência de queda com o aumento da tensão a frente, mas pouco significativo. Provavelmente devido a pequna queda de temperatura.

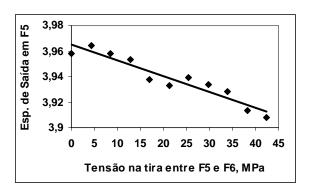


Figura H.34 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a frente da tira na cadeira F5, tabela E5.1.

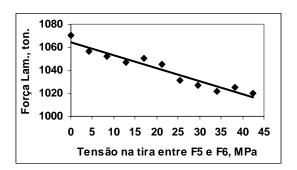


Figura H.35 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a rente da tira em F5, tabela E5.1

Como pode ser visto na figura (H.35), quanto maior a tensão a frente do material, menor é a carga de laminação, devido principalmente a redução na resistência a deformação do material.

Observe na figura (H.36) que o aumento na tensão a frente em F5 provocou um ligeiro aumento na TEM do material somente em F5.

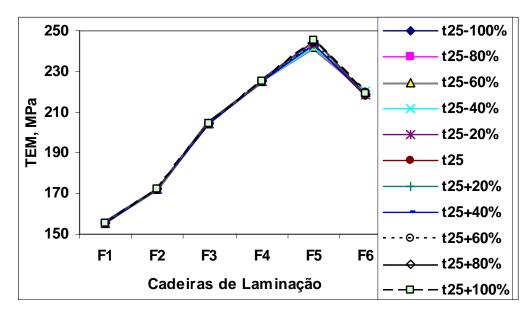


Figura H.36 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na tensão a frente na tira em F5, tabela E5.3.

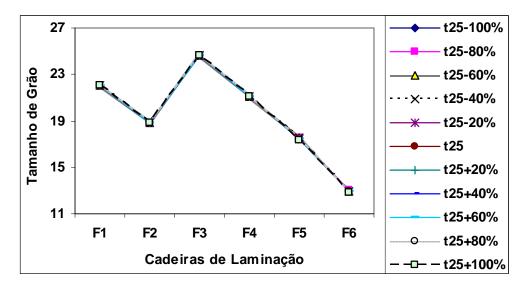


Figura H.37 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na tensão a frente na tira em F5, tabela E5.3.

Observe-se que da cadeira F3 em diante não ocorre mais recristalização dinâmica, pois houve um crescimento significativo do grão em F3 para em seguida cair. \isto mostra que o mecanismo de recristalização estática continuou até a ultima cadeira.

Nota-se muito pouca influencia da tensão a frente em F5 no tamanho de grão do material.

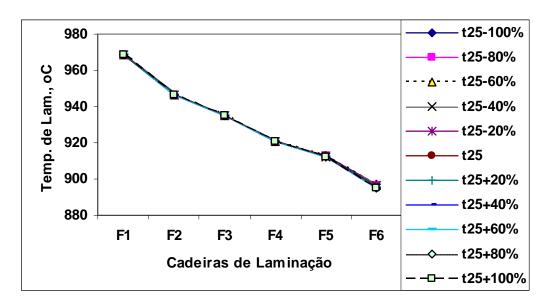


Figura H.38 – Resultados da temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a frente na tira em F5, tabela E5.4

Observe que um aumento na tensão a frente em F5, acarretou uma pequena redução de temperatura nos passes seguintes.

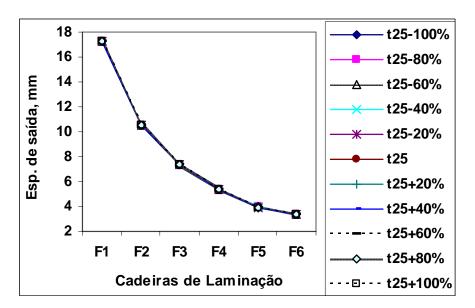


Figura H.39 – Resultados da espessura de saída do material, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na tensão a frente de F5, tabela E5.5.

Observe na figura (H.39) que houve muita pouca influencia da tensão a frente da F5 na espessura de saída do material.

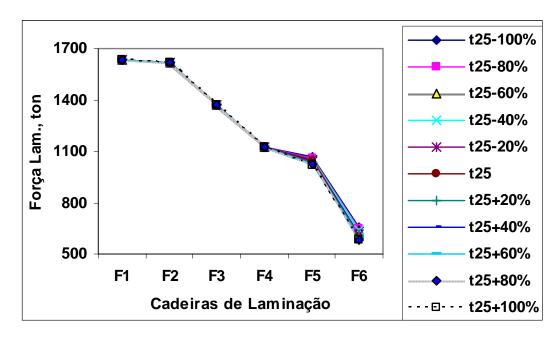


Figura H.40 – Resultados da carga de laminação, obtidos pelo modelo termomicroestrtural para aço carbono manganês 3, devido a variações provocadas na tensão a frente de F5, tabela E5.6.

Nota-se uma influencia do aumento da tensão a frente na tira de F5 na redução das cargas em F4 e F5.

H.6 – Efeito da variação na velocidade do cilindro de trabalho da cadeira F5 – Vr5

Foram feitas simulações pela variação da velocidade do cilindro de trabalho de F5 e levantados os gráficos cujas tabelas estão no anexo E.

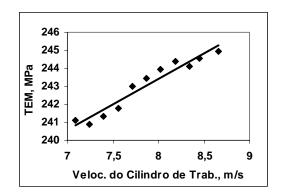


Figura H.41 – Resultados das tensões de escoamento média (TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro da cadeira F5, tabela E6.1.

Observe que a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.153), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho.

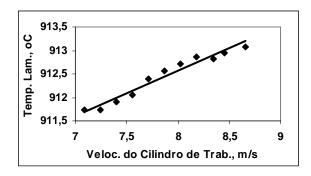


Figura H.42 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F5, tabela E6.1.

Nota-se um aumento na temperatura de laminação com o aumento velocidade do cilindro de trabalho, porque como foi dito, o aumento na TEM implica no aumento da carga de laminação e o aumento da carga de laminação provoca aumento da temperatura de laminação devido ao maior aquecimento por deformação plástica.

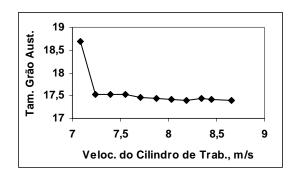


Figura H.43 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações na velocidade do cilindro da cadeira F5, tabela E6.1.

Observe-se que houve muito pouca influencia do tamanho de grão com a velocidade do cilindro em F5, mas apresenta tendência de diminuição. Para velocidades acima de Vr3-10% houve uma redução acentuada no tamanho de grão devido a não mais ocorrência de

recristalização completa em F5, acarretando acúmulo de deformação residual para o próximo passe, como pode ser visto na tabela (H.3).

Tabela H.3 – Resultados do índice de recristalização dinâmica em todas as cadeiras de laminação devido a alterações na velocidade do cilindro de trabalho em F5, para o aço carbono manganês 3.

	Fração de Recristalização do Material - X												
	Vr5-10%	Vr5-8%	Vr5-6%	Vr5-4%	Vr5-2%	Vr5	Vr5+2%	Vr5+4%	Vr5+6%	Vr5+8%	Vr5+10%		
F1	1	1	1	1	1	1	1	1	1	1	1		
F3	1	1	1	1	1	1	1	1	1	1	1		
F3	1	1	1	1	1	1	1	1	1	1	1		
F4	0,953	0,953	0,953	0,953	0,953	0,953	0,953	0,953	0,953	0,953	0,953		
F5	0,951	0,947	0,945	0,942	0,942	0,939	0,937	0,935	0,93	0,928	0,925		
F6	0,319	0,367	0,381	0,389	0,388	0,396	0,41	0,418	0,424	0,433	0,441		

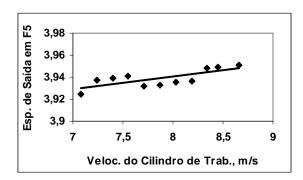


Figura H.44 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F5, tabela E6.1.

Nota-se que a espessura de saída praticamente se manteve constante, mostrando apenas uma ligeira tendência de crescimento com o aumento da velocidade do cilindro de trabalho. Neste caso temos também alguns efeitos concorrentes, como no caso o aumento na velocidade do cilindro aumenta a temperatura que por sua vez provoca redução na espessura de saída do material. Por outro lado, a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho. O aumento da TEM aumenta a carga de laminação, figura (H.45), fazendo com que o laminador se distenda mais, acarretando no aumento da espessura de saída.

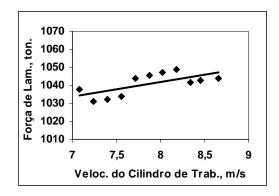


Figura H.45 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na velocidade do cilindro em F5, tabela E6.1

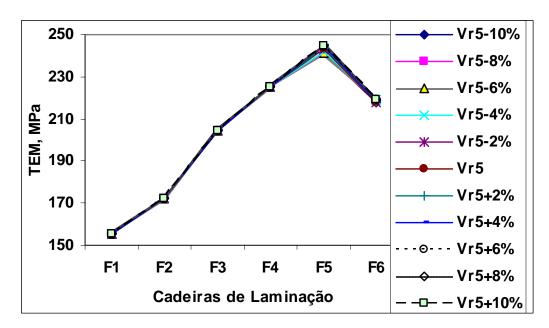


Figura H.46 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F5, tabela E6.3.

Observe que o aumento na velocidade do cilindro em F5 provocou um ligeiro aumento da TEM em F5.

Observe na figura (H.47) que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores devido a não haver mais recristalização dinâmica no passe F3. A maior queda no tamanho de grão em F5 para velocidades do cilindro maiores do que Vr5-10%, foi devido a não ocorrência de recristalização completa nestes casos (X<0,95), tabela (H.3).

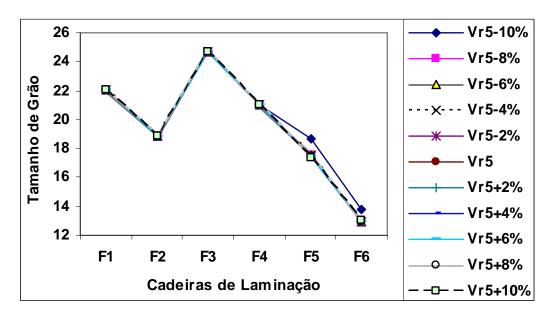


Figura H.47 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro na cadeira F5, tabela E6.3.

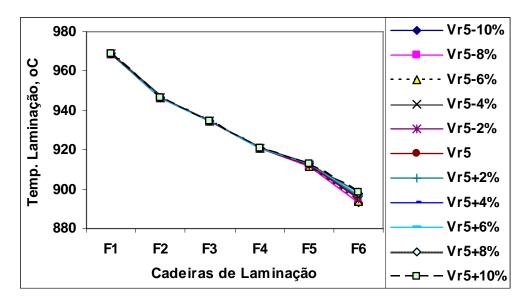


Figura H.48 – Resultados da temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na velocidade do cilindro em F5, tabela E6.4

Observe que o aumento na velocidade do cilindro em F5 influencia mais a temperatura de laminação na cadeira F6. Isto é devido ao fato de que com uma maior velocidade do material entre F5 e F6, menor é a perda térmica por radiação onde a mesma apresenta uma relação direta com o tempo entre passes. Da mesma forma isto acontece com a perda de calor para o ar.

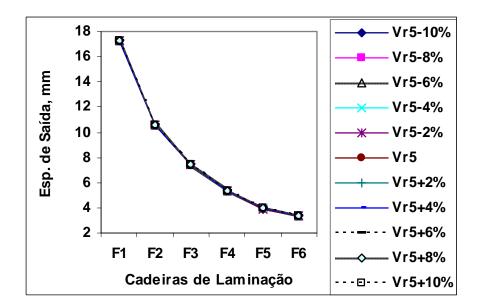


Figura H.49 – Resultados da espessura de saída do material, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F5, tabela E6.5.

Observe na figura (H.49) que houve muita pouca influencia da velocidade do cilindro em F5 na espessura de saída do material.

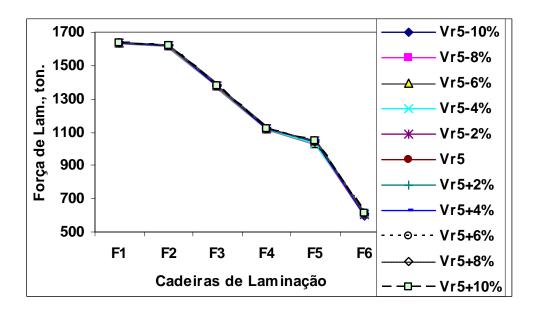


Figura H.50 – Resultados da carga de laminação, obtidos pelo modelo termomicroestrtural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro em F5, tabela E6.6.

Há maior influencia da variação na velocidade do cilindro em F5 foi na carga em F5, nas demais cadeiras sua influencia foi pouco significativa.

ANEXO I – EFEITO DOS DISTÚRBIOS NA SEXTA CADEIRA DE LAMINAÇÃO

I.1 – Efeito da variação do gap em F5 e sua influência em F6 – gap5

Foram feitas simulações pela variação do gap na primeira cadeira de laminação e levantados os gráficos cujas tabelas estão no anexo F.

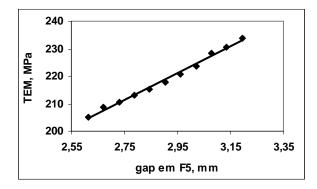


Figura I.1 – Resultados das tensões de escoamento média (TEM) em F6, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F5, tabela F1.1.

Observe que a TEM cresce com o aumento no gap em F5, o que esta de acordo com os comentários feitos para as cadeiras anteriores.

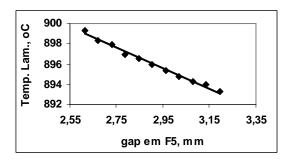


Figura I.2 – Resultados de temperatura de laminação em F6, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F5, tabela F1.1.

Nota-se neste caso uma diminuição na temperatura de laminação com o aumento no gap em F5. Isto significa que a parcela de perda de calor devido a radiação e convecção por causa do maior tempo entre passe de F5 para F6, foi superior ao aquecimento pela deformação plástica. Além disso, a taxa de resfriamento foi mantida constante. Devido a estes efeitos concorrentes, a variação de temperatura foi pouco significativa.

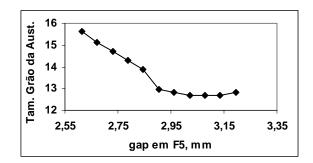


Figura I.3 – Resultados de tamanho de grão (μm) em F6 obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F5, tabela F1.1.

Observe na figura (I.3) e tabela (F1.1), que o tamanho de grão decresce com o aumento no gap em F5. Observe-se que quanto menor a temperatura menor é o tamanho de grão. Nota-se na mesma equação (1.128), que o aumento na espessura de entrada devido ao aumento do gap em F5 irá certamente aumentar a taxa de deformação no passe que por sua vez irá diminuir o tamanho de grão. Desta forma não existe mais efeito concorrente no mecanismo que controla o tamanho de grão, como ocorrido nas cadeiras F1 e F2. Neste caso os efeitos se somam no sentido de reduzir o tamanho de grão. Por isto a figura (I.3) mostra uma tendência significativa de redução no tamanho de grão do material com o aumento do gap em F5.

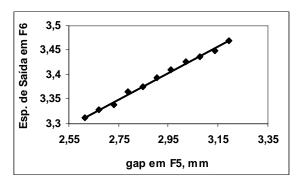


Figura I.4 – Resultados de espessura de saída (mm) em F6, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F5, tabela F1.1.

Observe na figura (I.4) que quanto maior o gap em F5, maior é a espessura de entrada em F6, portanto maior é a espessura de saída do material no laminador. Isto é devido ao aumento da carga de laminação provocada pelo aumento da espessura de entrada, fazendo com que o laminador se distenda mais, resultando no aumento da espessura de saída do material.

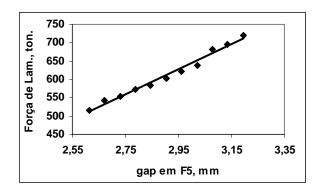


Figura I.5 – Resultados de carga de laminação (ton.) em F6, obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações no gap em F5, tabela F1.1.

Como pode ser visto na figura (I.5), quanto maior o gap em F5, maior é a espessura de entrada do material em F6, consequentemente, maior é a carga de laminação, devido a maior resistência a passagem do material no laminador.

1.2 - Efeito da variação na abertura entre os cilindros de trabalho em F6- gap6

Foram feitas simulações pela variação do gap em F6 e levantados os gráficos cujas tabelas estão no anexo F.

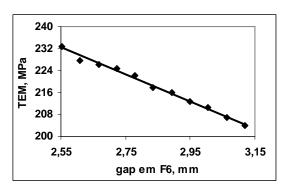


Figura I.6 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F6, tabela F3.1.

Observe que a TEM decresce com o aumento no gap em F6, devido ao aumento na espessura de saída do material, reduzindo assim a deformação e a taxa de deformação.

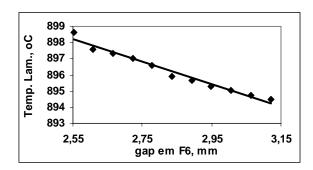


Figura I.7 – Resultados de temperatura de laminação, obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F6, tabela F3.1.

Nota-se uma diminuição na temperatura de laminação com o aumento do gap em F6, pois irá reduzir o aquecimento do material devido a menor deformação plástica.

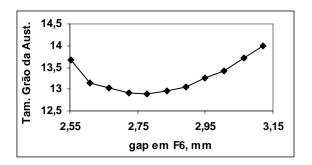


Figura I.8 – Resultados de tamanho de grão (μm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F6, tabela F3.1.

Observe-se que quanto menor a temperatura menor é o tamanho de grão. Nota-se na mesma equação (1.128), que o aumento no gap, irá certamente diminuir a taxa de deformação no passe que por sua vez irá aumentar o tamanho de grão. O gráfico da figura (I.8) mostra uma flutuação no tamanho de grão devido a estes dois efeitos concorrentes, de modo que sua variação foi pouco significativa.

Observe na figura (I.9) que quanto maior o gap em F6, maior é a espessura de saída do material no laminador.

Como pode ser visto na figura (I.10), quanto maior o gap, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador.

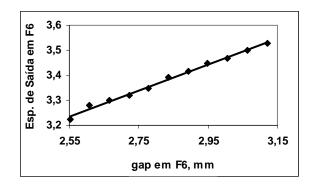


Figura I.9 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F6, tabela F3.1.

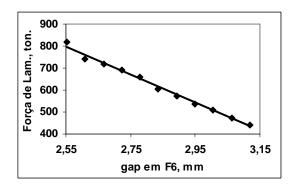


Figura I.10 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas no gap em F6, tabela F3.6.

Observe na figura (I.11) que o aumento no gap em F6 provocou uma redução da TEM neste passe.

Observe na figura (I.12) que na cadeira F3 houve um crescimento acentuado no tamanho de grão seguido de diminuição nas cadeiras posteriores. Este crescimento é devido a não haver mais recristalização dinâmica no passe considerado.

O aumento no gap em F6 proporcionou pequena redução na temperatura de laminação em F6, como pode ser visto na figura (I.13).

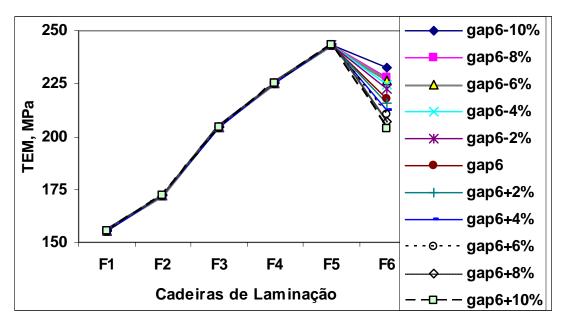


Figura I.11 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F6, tabela F3.2.

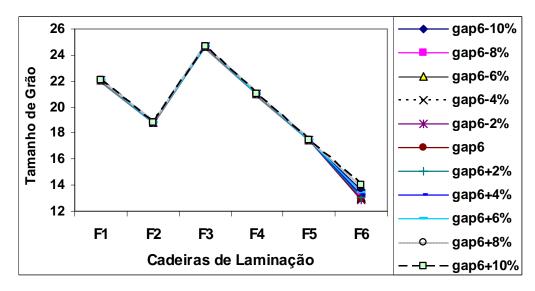


Figura I.12 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap da cadeira F6, tabela F3.3.

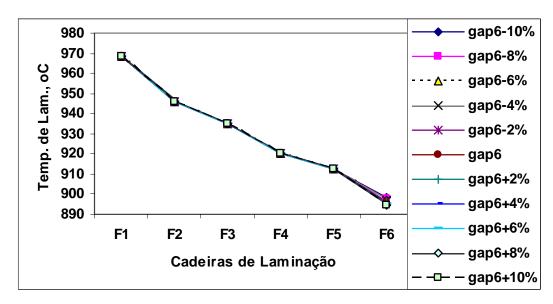


Figura I.13 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F6, tabela F3.4.

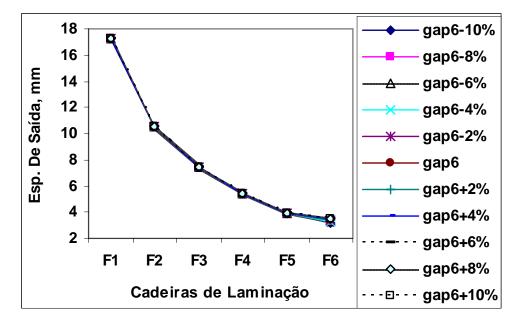


Figura I.14 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F6, tabela F3.5.

Observe na figura (I.14) que o aumento na espessura de saída devido ao aumento no gap em F6 foi pouco significativo.



Figura I.15 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas no gap em F6, tabela F3.6.

O aumento no gap em F6 provoca um aumento na espessura de saída na F6, consequentemente reduz a carga de laminação, como observado na figura (I.15).

I.3 - Efeito da variação na temperatura de entrada do material - Te6

Foram feitas simulações para variação da temperatura de entrada em F6 e levantados os gráficos a seguir, cujas tabelas relativas aos gráficos mostrados neste item estão no anexo F.

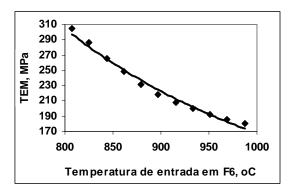


Figura I.16 – Resultados das tensões de escoamento média (TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F6, tabela F3.1.

Observe que a TEM diminui com o aumento na temperatura de entrada do material.

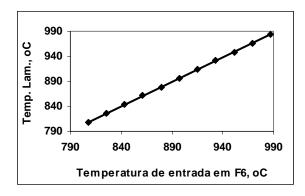


Figura I.17 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F6, tabela F3.1.

Nota-se uma relação quase direta do aumento na temperatura de laminação com o aumento na temperatura de entrada do material.

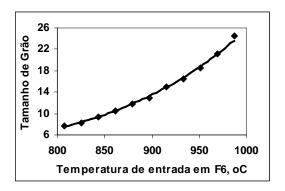


Figura I.18 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F6, tabela F3.1.

Observe na figura (I.18) que quanto maior a temperatura de entrada em F6, maior é o tamanho de grão do material, que são regidos pelo mecanismo de recristalização estática, equações (1.130) e (1.134).

Observe na figura (I.19) que quanto maior a temperatura de entrada, menor é a espessura de saída do material no laminador. Isto é devido a menor carga de laminação e consequentemente o laminador distende menos.

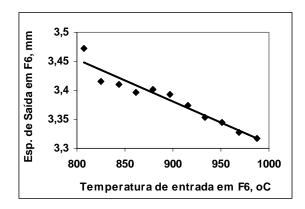


Figura I.19 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do em F6, tabela F3.1.

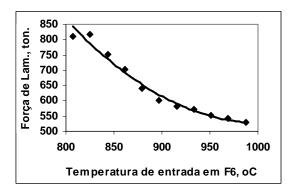


Figura I.20 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na temperatura de entrada do material em F6, tabela F3.1.

Como pode ser visto na figura (I.20), quanto maior a temperatura de entrada do material, menor é a carga de laminação, devido a menor resistência a passagem do material no laminador.

Observe na figura (I.21) que o aumento na temperatura de entrada na cadeira F6 provocou uma diminuição na TEM na mesma.

Observa-se na mesma figura, que também neste caso a TEM é bastante sensível ao efeito na temperatura de entrada na cadeira F6.

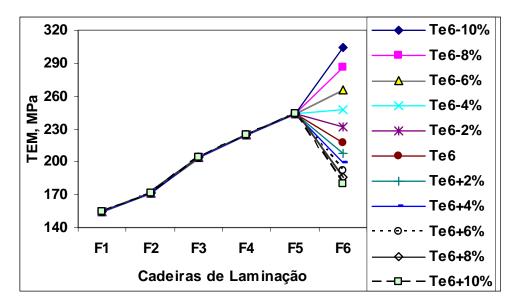


Figura I.21 – Resultados de TEM, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F6, tabela F3.3.

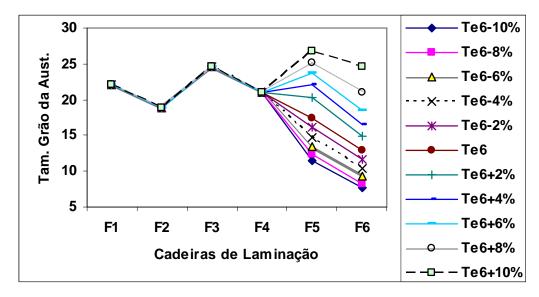


Figura I.22 – Resultados do tamanho de grão da austenita, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F6, tabela F3.3.

Nota-se que o efeito no tamanho de grão é bastante sensível à variação da temperatura de entrada em F6 e o mesmo aumenta com o aumento da temperatura. O aumento do tamanho de grão F5, ou seja, tamanho de grão do material na entrada da cadeira F6 é devido a temperatura média entre F5 e F6 ter aumentado.

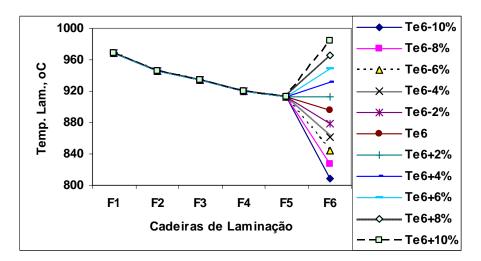


Figura I.23 – Resultados da temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material na cadeira F6, tabela F3.4.

Nota-se que a temperatura de laminação é bastante sensível a temperatura de entrada e que o aumento na temperatura de entrada aumenta a temperatura de laminação em F6.

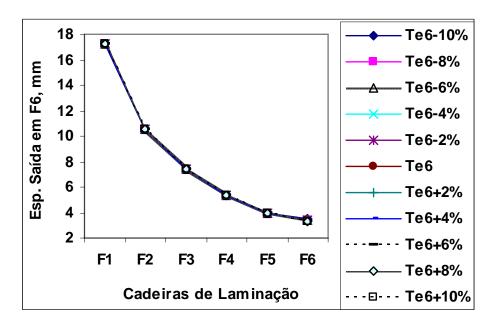


Figura I.24 – Resultados da espessura de saída do material, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na temperatura de entrada do material em F6, tabela F3.5.

Observe na figura (I.24) que a variação na espessura de saída devido a variação na temperatura de entrada do material em F6 foi pouco significativa.

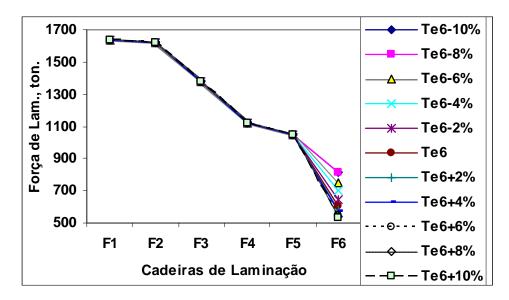


Figura I.25 – Resultados da carga de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas na espessura de entrada do material em F6, tabela F3.6.

O aumento na temperatura de entrada do material em F6 provoca uma diminuição na TEM, portanto reduz a carga de laminação.

I.4 – Efeito da variação na tensão a ré no material em relação a cadeira F6 - τ16

Foram feitas simulações pela variação da tensão a ré do material em relação a F6 e levantados os gráficos cujas tabelas estão no anexo F.

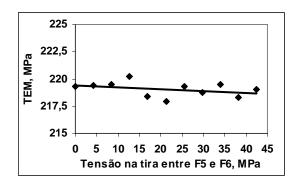


Figura I.26 – Resultados das tensões de escoamento média(TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações tensão a ré na tira da cadeira F6, tabela F4.1.

Observe que existe uma tendência de pouco significativa de diminuição da TEM com o aumento na tensão a ré do material. Isto é devido ao fato de a aplicação da tensão a ré reduzir a carga de laminação, que por sua vez irá reduzir na espessura de saída do material, aumentando assim, a deformação e a taxa de deformação. Por outro lado, A aplicação da tensão a ré diminui a espessura de saída do material na cadeira anterior que irá contribuir para a redução da deformação e taxa de deformação. Além disso, haverá uma redução de temperatura de laminação, veja figura (I.27), que também provoca aumento na TEM.

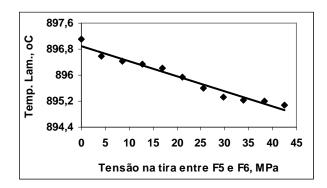


Figura I.27 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações tensão a ré da tira da cadeira F6, tabela F4.1.

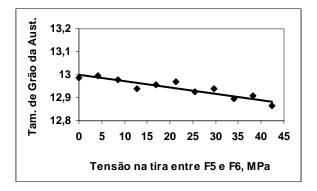


Figura I.28 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações provocadas tensão a ré da tira da cadeira F6, tabela F4.1.

Como o tamanho de grão é influenciado pela temperatura entre passe, se o aumento na tensão a ré diminui a temperatura de laminação, o tamanho de grão tende a cair ligeiramente.

Observe na figura (I.28) e na tabela (I.1), que não ocorreu queda acentuada do tamanho de grão com o aumento da tensão a ré. Isto foi devido ao fato de em momento

algum ter havido recristalização completa após F6, ou seja, não houve mudança de mecanismo no comportamento do tamanho de grão.

Tabela I.1 – Resultados da fração de recristalização dinâmica em todas as cadeiras de laminação devido na tensão a ré da tira em F6, para o aço carbono manganês
 3.

	Fração de Recristalização do Material - X										
	τ16-100%	τ16-80%	τ16-60%	τ16-40%	τ16-20%	τ16	τ16+20%	τ16+40%	τ16+60%	τ16+80%	τ16+100%
F1	1	1	1	1	1	1	1	1	1	1	1
F2	1	1	1	1	1	1	1	1	1	1	1
F3	1	1	1	1	1	1	1	1	1	1	1
F4	0,953	0,953	0,953	0,953	0,953	0,953	0,953	0,953	0,953	0,953	0,953
F5	0,933	0,932	0,934	0,935	0,938	0,939	0,939	0,94	0,941	0,944	0,945
F6	0,427	0,424	0,423	0,427	0,403	0,396	0,405	0,397	0,402	0,391	0,396

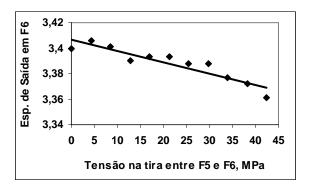


Figura I.29 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas tensão a ré na tira da cadeira F6, tabela F4.1.

A espessura de saída é fortemente influenciada pela carga de laminação. Observe que há uma tendência de redução na espessura de saída com a aplicação da tensão a ré na tira, pois a carga de laminação tem também uma tendência de redução. Veja figura (I.30). Isto é devido principalmente a redução na resistência a deformação do material, equações (1.163) e (2.13).

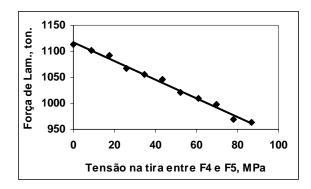


Figura I.30 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na tensão a ré na tira em F6, tabela F4.1

1.5 - Efeito da variação na velocidade do cilindro de trabalho da cadeira F6 - Vr6

Foram feitas simulações pela variação da velocidade do cilindro de trabalho de F6 e levantados os gráficos cujas tabelas estão no anexo F.

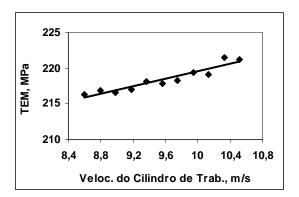


Figura I.31 – Resultados das tensões de escoamento média (TEM), obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações provocadas na velocidade do cilindro da cadeira F6, tabela F5.1.

Observe que a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.153), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho.

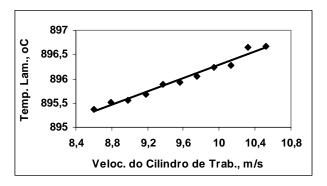


Figura I.32 – Resultados de temperatura de laminação, obtidos pelo modelo para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F6, tabela F6.1.

Nota-se um aumento na temperatura de laminação com o aumento velocidade do cilindro de trabalho, porque como foi dito, o aumento na TEM implica no aumento da carga de laminação e o aumento da carga de laminação provoca aumento da temperatura de laminação devido ao maior aquecimento por deformação plástica.

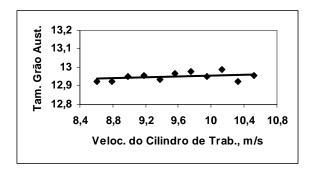


Figura I.33 – Resultados de tamanho de grão (μm) obtidos pelo modelo para aço carbono manganês 3, devido a variações na velocidade do cilindro da cadeira F6, tabela F6.1.

Observe-se que houve muito pouca influencia do tamanho de grão com a velocidade do cilindro em F6, podendo considerar-lo como constante.

Nota-se na figura (I.34) que a espessura de saída praticamente se manteve constante. Neste caso temos também alguns efeitos concorrentes, como no caso o aumento na velocidade do cilindro aumenta a temperatura que por sua vez provoca redução na espessura de saída do material. Por outro lado, a TEM cresce com o aumento da velocidade do cilindro, o que esta de acordo com a equação (1.152), de Misaka que mostra a relação direta com taxa de deformação do material, que por sua vez tem uma relação direta com a velocidade do cilindro de trabalho. O aumento da TEM aumenta a carga de laminação,

figura (I.35), fazendo com que o laminador se distenda mais, acarretando no aumento da espessura de saída.

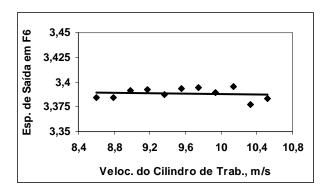


Figura I.34 – Resultados de espessura de saída (mm) obtidos pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações velocidade do cilindro da cadeira F6, tabela F6.1.

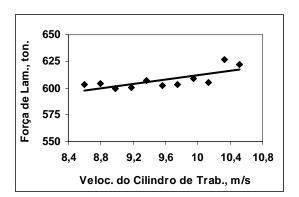


Figura I.35 – Resultados de carga de laminação (ton.) obtidas pelo modelo termomicroestrutural para aço carbono manganês 3, devido a variações na velocidade do cilindro em F6, tabela F6.1

Observe na figura (I.35) que existe uma ligeira tendência de aumento na carga de laminação com o aumento na velocidade do cilindro de trabalho.

Por ser a análise da última cadeira de laminação, não há a necessidade de apresentação e discussão dos resultados da influência em todas as cadeiras de laminação.